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Abstract
The aeroacoustics of the boundary layer
is a relatively new field of study that con-
siders the boundary layer as a source of
sound. This thesis aims to extend the
theory of the aeroacoustic characteristics
of the boundary layer during the initial
stage of the transition from a laminar to a
turbulent boundary-layer state. The fun-
damental theoretical background of fluid
dynamics is introduced first, followed by a
literature survey on boundary-layer aeroa-
coustics. A novel theoretical approach
is presented, an acoustic source method,
for solving the frequency characteristics
of the boundary layer in the initial phase
of the transition. The proposed model is
based on the theory of single-mode lin-
ear instability. The last part of the thesis
describes experiments performed in a non-
aeroacoustic wind tunnel facility. The
experimental results obtained on a NACA
0012 airfoil at zero angle of attack are com-
pared with the results obtained from the
proposed method of solution of frequency
characteristics. The theoretical and ex-
perimental results agree closely with each
other and with the results obtained from
the empirical model of Brooks, Pope, and
Marcolini.
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boundary-layer aeroacoustics,
Tollmien–Schlichting waves, linear
instability, acoustic feedback
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Abstrakt
Aeroakustika mezní vrstvy je relativně
nový studijní obor, který se zabývá mezní
vrstvou jako zdrojem zvuku. Tato práce
si klade za cíl rozšířit teorii aeroakustic-
kých charakteristik mezní vrstvy během
počáteční fáze přechodu ze stavu lami-
nární mezní vrstvy do stavu turbulentní
mezní vrstvy. Nejprve jsou představeny zá-
kladní teoretické základy dynamiky teku-
tin, poté následuje literární přehled o ae-
roakustice mezní vrstvy. Tato práce před-
stavuje nový teoretický přístup, metodu
akustického zdroje, k řešení frekvenčních
charakteristik mezní vrstvy v počáteční
fázi přechodu. Navržený model je zalo-
žen na teorii lineární nestability. Poslední
část práce se zabývá experimentem, který
je navržen s ohledem na aerodynamický
tunel, který není primární určen pro aero-
akustický experiment. Experimentální vý-
sledky získané na NACA 0012 při nulovém
úhlu náběhu jsou porovnány s výsledky
získanými z navržené metody řešení frek-
venčních charakteristik. Teoretické a ex-
perimentální výsledky se velmi dobře sho-
dují mezi sebou a s výsledky získanými z
empirické metody dle Brookse, Popea a
Marcoliniho.

Klíčová slova: laminární mezní vrstva,
aeroakustika mezní vrstvy,
Tollmienovy-Schlichtingovy vlny, lineární
nestabilita, akustická zpětná vazba

Překlad názvu: Aeroakustická
charakteristika režimů mezní vrstvy
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Chapter 1
Introduction

Sound is one of the physical phenomena that can be perceived directly by
human beings, although an observer does not necessarily need to be in close
proximity to a source of sound. Usually, humans can readily distinguish
between loud and quiet sounds, and between discrete high- and low-pitch
tones in an emitted acoustic spectrum. Sound can be described as an acoustic
wave that propagates through a medium. The acoustic wave causes a small
perturbation in the local static pressure field. Such an acoustic wave can be
generated, for example, by vibrating surfaces or by certain local changes in
the pressure field. A solid object placed in a moving fluid (e.g., an airfoil in
an air flow) produces changes in the pressure field, which can be propagated
to the far field in the form of an acoustic wave.

The boundary layer is defined as a thin viscous layer around an object
placed in a moving fluid [1]. One of the main goals of studying the boundary
layer is to understand transitions from laminar to turbulent regimes. For
these investigations, it is usually necessary to conduct multiple measurements.
Intrusive measurement techniques affect the flow, so there can be no certainty
that the transition to the turbulent boundary layer is not caused by the
measurement device itself.

Aeroacoustics is a relatively new field of study that aims to understand
both aerodynamically generated sound and the effects of sound on fluid flow.
Sir James Lighthill (1924–1998) is considered one of the pioneers in the field of
aeroacoustics. His papers On sound generated aerodynamically I and II [2, 3]
are the two most important and fundamental works in this discipline. The
formal solution of his theory in the presence of a solid boundary was later
published by his student Samuel Newby Curle (1930–1989) in The influence
of solid boundaries upon aerodynamic sound [4]. Lighthill’s work was later
extended and generalized by John Ffowcs Williams and D. L. Hawkings in
Sound generation by turbulence and surfaces in arbitrary motion [5]. These
pioneering works laid the foundations of modern aeroacoustics, which is partly
a branch of aerodynamics and partly of acoustics.

This thesis aims to describe the boundary layer as a source of aerodynamic
noise, and to study the effects of the boundary-layer transition in the early
stages on the acoustic field. This research extends the current aeroacoustic
theory and experimentally validates the new theoretical findings, contributing

1



................................... 1.1. Structure of the Thesis

to the field of fundamental research into the aeroacoustics of the boundary
layer.

Since the boundary layer develops near walls in the flow of every viscous
fluid, the aims of thesis are focused on the external flow around flat plates
and surfaces with small curvature.

1.1 Structure of the Thesis

This thesis can be divided into two main parts. The first part consists of a
brief introduction to the key concepts and nomenclature of fluid dynamics that
are necessary to establish the main theoretical background for the literature
survey. This theoretical background is also necessary for the formulation of
the theoretical model presented in this thesis.

This is followed by a literature survey and a summary of key findings in
the field. This literature survey focuses on the aeroacoustics of the boundary
layer and concludes with the formulation of the main objectives of the thesis
in Section 3.3.

The first chapter of the second part of this thesis (i.e., Chapter 4) focuses on
theoretical modeling of the boundary-layer instability noise. In this chapter,
the main proposed aeroacoustic model of the instability noise is established.
For this extension of the current aeroacoustic model, the key theoretical
findings from Chapter 2 and the recent developments in the aeroacoustic field
outlined in Chapter 3 are used.

This is followed by a description of the setup of an experiment (Chapter 5),
which is required to validate the novel aeroacoustic model. The experiment
was designed for a non-aeroacoustic wind tunnel facility with the goal of
obtaining the frequency footprint of the boundary-layer noise.

The results obtained from the theoretical and experimental work are then
analyzed and compared in Chapter 6, and the conclusions of the thesis are
presented in Chapter 7.

2



Chapter 2
Introduction to Aerodynamics and
Acoustics

2.1 Fundamental Equations of Fluid Dynamics

Fluid dynamics is generally described by fundamental balance laws: balance
of momentum, balance of mass, and balance of energy. With knowledge of
fluid behavior (i.e., equations of state), the full system of equations describing
fluid dynamics can be established.

In this chapter, a brief introduction of the fundamental governing equations
of fluid dynamics is provided to establish the necessary background and
nomenclature. A more detailed derivation of these equations is beyond the
scope of this thesis.

2.1.1 Balance of Mass

The first balance law, which is also the most intuitive, is the balance of mass.
This can be described as follows: In the flow field, the total mass must remain
constant, unless there is a sink or source that adds or removes mass. The
derivation of the mathematical form is presented in almost every textbook
on fluid dynamics (e.g., [6]). Eq. (2.1) is a differential form of the balance of
mass of compressible fluids under unsteady flow conditions with no source or
sink:

∂ρ

∂t
+ ∂ (ρvx)

∂x
+ ∂ (ρvy)

∂y
+ ∂ (ρvz)

∂z
= 0 (2.1)

2.1.2 Balance of Momentum

The first attempt to formulate a quantity of motion was made by Descartes
in his 1644 work Principles of Philosophy; however, his definition of this
property is based only on the size and velocity of the body in question [7].
Descartes also formulated some laws of motion, which are very similar to the
laws used in today’s Newtonian physics. Descartes’ explanation of his laws
was the immutability of God; however, Descartes’ ideas laid the foundation
for the formulation of Newton’s laws of motion [7].

3



........................... 2.1. Fundamental Equations of Fluid Dynamics

In 1687, Sir Issac Newton published his Philosophiæ Naturalis Principia
Mathematica [8], in which he formulated his laws of motion. The quantity
of motion, the momentum, was defined based on the mass and velocity (not
on size and velocity like in Descartes’ definition). Based on Newton’s second
law of motion, Claude-Louis Navier and George Gabriel Stokes derived the
mathematical formulation of the balance of momentum in Newtonian fluids.

Today, the momentum balance equations in fluid dynamics are called the
Navier–Stokes equations1. The derivation of these equations is now part of
all basic textbooks on fluid dynamics, for example [6]. The Navier–Stokes
equation for the compressible fluid flow of a Newtonian fluid is as follows:

∂ (ρvi)
∂t

+ ∂ (ρvivj)
∂xj

= − ∂p

∂xi
+ ∂τij

∂xj
+ fi (2.2)

The terms fi are body forces, and τij denotes the viscous stress, which can
be defined as follows:

τij = µ

(
∂vi

∂xj
+ ∂vj

∂xi
− 2

3δij
∂vk

∂xk

)
+ ζδij

∂vk

∂xk
(2.3)

where µ is the dynamic viscosity and ζ is the bulk viscosity.

2.1.3 Balance of Energy

To complete this set of fundamental balance equations, the balance of energy
should be established. The enthalpy is an energy quantity defined as the sum
of the internal energy e and the external (pressure) energy p/ρ [6]:

h = e + p

ρ
(2.4)

The enthalpy form of the energy balance equation [9], neglecting heat transfer
and body forces, is

∂(ρh)
∂t

+ ∂(ρhvj)
∂xj

= ∂p

∂t
+ vj

∂p

∂xj
+ τij

∂vi

∂xj
(2.5)

2.1.4 Vorticity

One of the quantities used in flow dynamics is vorticity. Mathematically, the
vorticity is defined as the curl of the velocity field:

ω⃗ = ∇ × v⃗ (2.6)

The vorticity equation is derived by taking the curl of the momentum
equation, Eq. (2.2). For an incompressible fluid, the vorticity equation can
be simplified as follows:

∂ω⃗

∂t
− ∇ × (v⃗ × ω⃗) = ∇ × f⃗ + µ · ∇2ω⃗ (2.7)

1In some works, the Navier–Stokes equations also include the balance of mass, i.e.,
Eq. (2.1).
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where the term v⃗ × ω⃗ is called the Lamb vector and, for two-dimensional
incompressible flow, can be written as −(ω⃗ · ∇)v⃗. This leads to a two-
dimensional vorticity equation for the flow of an incompressible fluid:

∂ω⃗

∂t
+ v⃗(ω⃗ · ∇) = ∇ × f⃗ + µ∇2ω⃗ (2.8)

This equation describes the generation of vorticity, and can be applied to
study the vorticity around an airfoil, which is generated in the force field (the
curl of the force field) and is destroyed by the viscous forces.

2.1.5 Stream Function

The two-dimensional stream function Ψ(x, y) is defined as the flux across
a line between two arbitrary points A and P from right to left, as defined
by Lamb [10], for velocity components u and v in the x- and y-directions,
respectively:

Ψ(x, y) =
∫ P

A
(udy − vdx) (2.9)

Using the total differential of the stream function Ψ, the relation between
the velocities (u, v) and the stream function Ψ can be found [6]:

u = ∂Ψ
∂y

(2.10a)

v = −∂Ψ
∂x

(2.10b)

Since, by its definition, the stream function always satisfies the continuity
equation, using the stream function to describe a flow field of inviscid fluid is
usually convenient.

2.1.6 Fluid Model

The definition of the fluid physical model is crucial to obtaining some of
the basic physical properties. Since the scope of this thesis is limited to the
flow of air under standard conditions, it is sufficient to model air as an ideal
gas. The equation of state of the ideal gas (2.11) describes the link between
three state variables (pressure, temperature, and density), via the specific gas
constant r = 287.05 J K−1 kg−1 [11]:

p

ρ
= r · T (2.11)

Air is considered not only a thermally perfect gas2, but also a calorically
perfect gas, so the heat capacity at constant pressure cp and the heat capacity
at constant volume cv are constant (i.e., they do not change with temperature
or pressure).

2A thermally perfect gas is one that obeys the equation of state for an ideal gas.
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The ratio of heat capacity at constant pressure to heat capacity at constant
volume is the isentropic exponent

γ = cp

cv
(2.12)

For air as a calorically perfect gas, γ = 1.4. The dynamic viscosity of the air
can be obtained using the Sutherland equation [11]:

µ = βS · T 3/2

T + S
(2.13)

where S = 110.4 K and βS = 1.458·10−6 kg · m−1·s−1·K−1/2 are constants [11].
Among the important properties of a fluid is the speed of sound. This

is the convective speed of an acoustic wave, so is of great importance for
aeroacoustics. The sound wave is assumed to be isentropic, so the definition
of the speed of sound for the ideal gas is [12]

c2 =
(

∂p

∂ρ

)
s

= γp

ρ
(2.14)

Based on the first law of thermodynamics and the assumption of isentropic
flow, the relationship between instantaneous pressure, density, and speed of
sound can be obtained [12]:

∂p

∂t
+ vi · ∂p

∂xi
= γp

ρ

(
∂ρ

∂t
+ vi · ∂ρ

∂xi

)
(2.15)

2.2 Laminar and Turbulent Flow

Laminar flow is commonly described in the literature as smooth and regular [6,
p. 152], [13, p. 415]. However, this definition is not entirely accurate. The
definition of laminar flow adopted in this thesis is based on the stability of
the flow under external perturbations, which leads to the following definition:
Laminar flow is a type of flow in which external disturbances are damped, so
that they do not grow and eventually vanish. This means that, in laminar
flow, there is the possibility of the existence of a perturbation of flow from the
base value. If such a perturbation has no significant impact on the flow field
(and this is assumed in most cases), this perturbation is usually neglected.

However, turbulent flow is quite different. Perturbations from the base
value (or time-averaged value) are a key attribute of turbulent flow. However,
the existence of a perturbation itself is not enough to define turbulent flow.
The basic description of turbulent flow is that the fluid particles move in
a random and irregular manner; there are seven characteristic features for
turbulence, as defined by Tennekes and Lumley [14]:. Irregularity. Diffusivity

6



................................... 2.3. Reynolds Decomposition

. Large Reynolds numbers.Three-dimensional vorticity fluctuations. Dissipation. Continuum.Turbulent flows are flows (i.e., “Turbulence is not a feature of fluids but
of fluid flow” [14]).

2.3 Reynolds Decomposition

Since the time-averaged value was mentioned in the previous section as part
of the definition of turbulent flow, it should also be properly defined. The idea
of decomposing a time-dependent quantity into a time-averaged value and
a fluctuating value was developed by Osborne Reynolds [15]. The Reynolds
decomposition of an arbitrary variable a(xi, t) can be written as

a(xi, t) = A(xi) + a′(xi, t) (2.16)

where A(xi) is the time-averaged value and a′(xi, t) represents the fluctuations.
The definition of the time-averaged quantity is [16]

A(xi) = lim
T →∞

1
T

∫ T

0
a(xi, t)dt (2.17)

In real cases, the time interval T cannot approach infinity; it must be signifi-
cantly large compared to the time scales of the fluctuations. The definition
of time-averaged value implies that the time-averaged fluctuations of the
variable a are

a′(xi, t) = 0 (2.18)

The Reynolds decomposition (Eq. (2.16)) can be applied to each quantity in
the flow field: the density, pressure, and velocity. For example, the Reynolds
decomposition of the velocity vi is

vi = Vi + v′
i (2.19)

where Vi is the time-averaged value of the velocity and v′
i represents the

velocity fluctuations about the time-averaged value.

2.3.1 Reynolds-Averaged Navier–Stokes Equations

Applying the Reynolds decomposition to the continuity equation (Eq. (2.1))
and the momentum equations (Eq. (2.2)) for the flow of an incompressible
fluid without body forces yields the Reynolds-Averaged Navier–Stokes (RANS)
equations [16]:

∂(ρVi)
∂xi

= 0 (2.20)
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∂(ρVi)
∂t

+ ∂

∂xj

(
ρViVj + ρv′

iv
′
j

)
= − ∂p

∂xi
+ ∂τij

∂xj
(2.21)

where τij is the mean viscous stress tensor, defined by

τij = µ

(
∂Vi

∂xj
+ ∂Vj

∂xi

)
(2.22)

The term −ρv′
iv

′
j in Eq. (2.21) is called the Reynolds stress and is one of the

main subjects of turbulence modeling [17, 18].

2.4 Boundary Layer

The boundary layer is defined as a thin layer of viscous fluid in motion near
a solid wall. In the boundary layer, the effects of the frictional forces are
important. The fluid adheres to the wall under the no-slip condition. This is
an important assumption, and it defines significant difference between the
flow of a real fluid and an ideal fluid [1, p. 3]. The concept of the boundary
layer was first presented by Ludwig Prandtl in Heidelberg in his 1904 paper
On the motion of fluids with very little friction (English translation of the
original paper from German) [19, p. 77–84]. Prandtl’s idea was to divide
the flow field into two regions—one in which the friction is so small that
it may be neglected, and one in which there is a large variation in velocity
caused by the friction. The second region is now called the boundary layer ;
however, Prandtl used this term in his original work only once, preferring the
term transition layer. Since this could cause confusion with the transition
region to turbulence, this term was later dropped [19]. He also formulated
the assumption of the no-slip condition.

An illustration of the velocity profile in the boundary layer is shown in
Fig. 2.1. Since the original formulation of the boundary layer hypothesis,
which was one of the most important achievements in modern aerodynamics3,
there has been a major development of boundary-layer models, experimental
research, and computational simulations.

The boundary-layer flow can be described using the following attributes [16]:. Diffusive transport of momentum in the parallel flow direction is much
smaller than convection and is negligible.The velocity component in the parallel flow direction is much higher
than in other directions.The pressure gradient across the flow is much lower than in the principal
flow direction

3Some would say that this achievement was worthy of a Nobel Prize; however, it was
rumored that the Nobel Prize Committee was reluctant to award prizes in the field of
classical physics [20].

8



.......................................2.4. Boundary Layer

Figure 2.1: Schematic illustration of the boundary layer at a flat plate [21].

2.4.1 Boundary-Layer Parameters

A boundary layer is defined as a thin imaginary layer, whose thickness is
not formulated based on geometrical considerations, but rather on the fluid
dynamics characteristics of the boundary-layer flow. The main attribute of
the boundary-layer flow is its velocity profile. This and other flow parameters
are used to define the basic parameters of the boundary layer.

The conventional thickness of the boundary layer is defined as the perpen-
dicular distance from the solid boundary (i.e., the surface) to the point where
the local flow velocity is equal to 99 % of the velocity outside the boundary
layer [22]:

δ = δ(vx = 0.99Ue) (2.23)

where Ue is the velocity outside the boundary layer in the principal x-direction.
The displacement thickness for a compressible fluid is defined as follows [22]:

δ∗ =
∫ δ

0

(
1 − ρvx

ρeUe

)
dy (2.24)

where ρe is the fluid density outside the boundary layer. The displacement
thickness has two physical interpretations [22]: First, it is proportional to the
missing mass flow due to the presence of the boundary layer. Second, it is
the distance by which the inviscid flow is displaced in the presence of the
boundary layer.

The momentum thickness for a compressible fluid is defined as follows [22]:

δ∗∗ =
∫ δ

0

ρvx

ρeUe

(
1 − vx

Ue

)
dy (2.25)

The momentum thickness can be physically interpreted as the distance by
which the solid surface must be displaced in an inviscid fluid flow to have the
same momentum flow rate as in the boundary layer.

The ratio of the displacement thickness to the momentum thickness is
called the shape parameter :

H = δ∗

δ∗∗ (2.26)
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2.4.2 Shape Parameter

The shape parameter has a significant meaning in the classification of the
boundary-layer velocity profile. On the basis of its value, the regime (or state)
of the boundary layer can be determined as laminar or turbulent [21]. In the
case where the shape factor is equal to 1, there is no boundary layer present
and the flow past the wall can be described as an inviscid potential flow:.H = 1: Potential Flow.H = 2.59: Blasius boundary layer velocity profile (i.e., a laminar bound-

ary layer on a flat plate).H ≤ 1.4: Turbulent boundary layer [21, p. 585]
The values of the shape parameter in the range between the laminar and
turbulent regions are characteristic of the transition region [23].

The boundary-layer separation is described in Section 2.8; however, the
shape factor can also be used to identify the boundary-layer separation. For a
laminar boundary layer, a shape factor around H = 4 (based on the Falkner–
Skan equation; see Section 2.5.2) indicates separation. However, because of
the rapid growth of the displacement thickness before the separation point,
this shape factor may not be reliable for the experimental measurement, and
the shape parameter based on the energy thickness can be used instead [24].

The above list of values of the shape factor is merely an approximation, for
example, M. Drela in XFOIL [25] used H = 3.8 to identify laminar boundary-
layer separation and H = 1.8 for turbulent boundary-layer separation.

2.4.3 Reynolds Number

One of the most important similarity numbers in fluid dynamics is the
Reynolds number. The Reynolds number indicates the significance of inertia
over viscous forces. The higher the Reynolds number, the more important
the inertial force. The common definition of the Reynolds number is

ReL = ρ · v · L

µ
(2.27)

where v is the velocity, µ is the dynamic viscosity, and ρ is the density of the
fluid. The characteristic length L can be subject to discussion; however, for
a boundary layer, it should be the length connected to the shear layer (i.e.,
some boundary-layer thickness). The distance from the leading edge to some
point on the surface (or trailing edge) is used as the characteristic length in
many cases. This distance is connected to the thickness of the boundary layer,
since the latter increases with distance from the leading edge [21, p. 31].

2.5 Laminar Boundary Layer

Initially, every boundary layer starts in the laminar state of flow. Later,
based on the external and internal flow parameters, the boundary layer can

10



................................... 2.5. Laminar Boundary Layer

transition (Section 2.6) from this laminar state to a turbulent state or can
separate (Section 2.8).

2.5.1 Prandtl’s Boundary-Layer Equations

Prandtl not only proposed the concept of the boundary layer but also de-
veloped the simplification of the Navier–Stokes equation for boundary-layer
flow. However, Prandtl did not provide a detailed explanation of this process
during his presentation in Heidelberg in 1904. A more detailed explanation
can be found in a work by his student H. Blasius, Boundary layers in fluids
with small friction (English translation [19, p. 107–142]). In fact, Prandtl’s
concept of the boundary layer was somewhat forgotten until Blasius’ solution
surfaced in 1908 [20].

The thickness of the boundary layer is denoted as δ, and because the velocity
in the direction parallel to the surface (vx) increases with the distance from
the surface, Blasius formulated the following proportional relations [19, p. 107–
142]:

∂vx

∂y
∝ 1

δ
; ∂2vx

∂y2 ∝ 1
δ2

Blasius also stated that when ∂vx/∂x is on the order of one4, based on the
continuity equation (Eq. (2.1)), the derivative ∂vy/∂y is also on the order of
one (or proportional to 1/L; see the footnote). This leads to the following
proportional relations:

vy ∝ δ; ∂2vy

∂y2 ∝ 1
δ

The derivative of the pressure field ∂p/∂x is proportional to one (or 1/L; see
the footnote) and ∂p/∂y is proportional to δ [19, p. 107–142].

Recalling the Navier–Stokes equations (Eq. (2.2)) for two-dimensional
steady flow of an incompressible fluid (i.e., ∂vi/∂t = 0, ∂ρ/∂t = 0) and
without mass forces (i.e., fi = 0), and substituting in the viscous stress of a
Newtonian fluid, Eq. (2.3), the balance of momentum equations are as follows:

ρ

(
vx

∂vx

∂x
+ vy

∂vx

∂y

)
= − ∂p

∂x
+ µ

(
∂2vx

∂x2 + ∂2vx

∂y2

)
(2.28a)

ρ

(
vx

∂vy

∂x
+ vy

∂vy

∂y

)
= −∂p

∂y
+ µ

(
∂2vy

∂x2 + ∂2vy

∂y2

)
(2.28b)

Based on Blasius’ proportional analysis, in Eq. (2.28a), the second deriva-
tives satisfy, with the assumption that δ ≪ 1 (or δ ≪ L), the relation

∂2vx

∂x2 ≪ ∂2vx

∂y2

4If it is assumed that there is a boundary-layer development from the leading edge, this
can be analogously assumed to be proportional to ∂vx/∂x ∝ 1/L, where L is the length of
the immersed surface. However, in Blasius’ original derivation, he did not proceed with
this length scale.

11
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In the second Eq. (2.28b), the only remaining term is the pressure derivative
with respect to y:

ρ

(
vx

∂vx

∂x
+ vy

∂vx

∂y

)
= − ∂p

∂x
+ µ · ∂2vx

∂y2 (2.29a)

∂p

∂y
= 0 (2.29b)

The equations (2.29) are called Prandtl’s boundary-layer equations or simply
the boundary-layer equations.

There are many possible approaches to solving the boundary-layer equations.
Blasius proposed a solution for zero pressure gradient ( ∂p

∂x = 0), the well-known
Blasius solution [19, p. 107–142]. This is based on the principle of mechanical
similarity. Using this similarity method, it is possible to transform Prandtl’s
partial differential equations into a single third-order ordinary differential
equation (called the Blasius equation, in this case). Unfortunately, the zero
pressure gradient is a limited case with only one shape for the velocity profile.
(The shape factor for the Blasius boundary layer is 2.59.)

In 1931, Falkner and Skan [26] derived, using a more general approach
and the differential Bernoulli’s equation instead of the zero pressure gradient
( ∂p

∂x = 0), a third-order ordinary differential equation with parameter β.

2.5.2 Falkner–Skan Boundary Layer

Prandtl’s boundary-layer equations (Eq. (2.29)) are partial differential equa-
tions; using the similarity transformation, they can be reduced to ordinary
differential equations [27]. One of the most well-known families of similarity
solutions is the Falkner–Skan boundary layer. This solution was derived
by Falkner and Skan [26] in 1931, and six years later it was numerically
calculated by Hartree [28].

Using the differential form of Bernoulli’s equation to express the pressure
gradient along the x-axis yields

−1
ρ

∂p

∂x
= Ue

∂Ue

∂x
(2.30)

The velocity outside the boundary layer Ue(x) is used as the scaling factor
for the velocity in the direction parallel to the wall. The factor δL(x) is used
as a boundary-layer thickness scale. The stream function is then defined as
follows:

Ψ = Ue(x)δL(x)f(η) (2.31)
where η is defined as a non-dimensional coordinate in the y-direction (η =
y/δL). Falkner and Skan assumed a flow over a wedge, which can be in a
potential flow described as a function of a power of a complex coordinate
(a power law) [29]. This key assumption is included in the main similarity
expressions for Ue as a scaling factor (x/L)m, where L is the length of the
wedge:

Ue = U∞ (x/L)m (2.32)
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Falkner and Skan found that the similarity is achieved when η = C ·y·xa, where
C is an arbitrary constant, which makes η non-dimensional and a consistent
with the power-law, i.e., m = 2a + 1 [29]. Constant C can be chosen to be
consistent with the Blasius boundary-layer solution [19, p. 107–142], when
m = 0. The boundary-layer thickness scale is then

δL = y

η
=
√

2
m + 1 · ν(x/L)

Ue
(2.33)

By substituting the velocity components (Eq. (2.10a) and (2.10b)), with
the stream function in Eq. (2.31), into the Prandtl equation, Eq. (2.29), the
Falkner–Skan boundary-layer equation5 is found [26]:

f ′′′ + ff ′′ + β
(
1 − f ′2

)
= 0 (2.34)

β = 2m

m + 1 (2.35)

The boundary conditions for the Falkner–Skan equations are f(0) = f ′(0) =
0 and limη→∞ f ′(η) = 1. Physical solutions of the Falkner–Skan boundary
layer exist only in the range −0.198838 ≤ β ≤ 4/3 [28]. In Fig. 2.2, some
selected velocity profiles with different shape factors are shown.

Figure 2.2: Falkner–Skan equation boundary-layer velocity profiles.
5The description of the Falkner–Skan equation presented in this thesis is not a full

derivation. Falkner and Skan had to derive the equation using a more general approach,
because they did not know the scaling factor δL, which is an important result of their work.
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2.6 Boundary-Layer Transition

As the Reynolds number increases, the boundary-layer flow experiences a
transition from laminar to turbulent flow. This is of key importance for
fluid dynamics [21] and is influenced by a number of parameters; the most
important are the Reynolds number, the outer flow pressure distribution, the
wall roughness, and the intensity of turbulence [21].

There are three possibilities for the boundary-layer transition from laminar
to turbulent states [27]:. Natural transition. Bypass transition. Separated-flow transition

In a natural transition, there are four stages of transition before the fully
turbulent boundary layer is developed (see Fig. 2.3). For the bypass transition,
the boundary-layer flow may skip the first two stages (Tollmien–Schlichting
waves and spanwise vorticity generation) [27]. In the case of laminar separated
flow, the transition may occur in the separated flow and then the flow may
reattach to the wall.

Figure 2.3: Boundary layer natural transition [27, p. 377].

The natural transition of the boundary layer contains the following steps [27,
21]:
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Even in the turbulent boundary layer, there is a small viscous sublayer. The
previously mentioned no-slip condition must be maintained. In the turbulent
boundary layer, the Blasius and Falkner–Skan boundary-layer models are
no longer valid. The turbulent boundary-layer mean velocity profile can
be described using the law of the wall [6]. However, this description is not
sufficient for studying the aeroacoustics of the boundary layer because there is
no information about the fluctuation component of the velocity (or pressure).

2.7 Stability of the Boundary Layer

An investigation of the stability of the laminar boundary layer when subject
to flow perturbation is crucial to determine the location of the start of the
natural transition to the turbulent state.

Figure 2.4: Curves of neutral stability for a plane boundary layer [21].
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The concept of marginal boundary-layer stability is shown in Fig. 2.4,
where there are neutral curves for two different types of velocity profile and
instability (inviscid instability: curve a; viscous instability: curve b) [21].

2.7.1 Linear Stability

The simplest model of the stability of the boundary layer is linear stability.
The main concept of the stability analysis is based on the solution of the
laminar base flow to which a small disturbance is added. The disturbance
can be defined, for example, in the form of a stream function Ψ(x, y) of one
mode6 [21]:

Ψ = Φ(y) · ei(kx−ωt) (2.36)

where Φ(y) is the complex amplitude function of the perturbation stream
function, k is the streamwise wave number, and ω is the angular frequency.
The complex phase speed is c = ω/k. Based on Eq. (2.10a) and Eq. (2.10b),
the perturbation velocity field can be described as follows:

u′ = ∂Ψ
∂y

= ∂Φ
∂y

· ei(kx−ωt) (2.37a)

v′ = −∂Ψ
∂x

= −ikΦ · ei(kx−ωt) (2.37b)

The complex phase velocity is

c = ω

k
= cr + i · ci (2.38)

where cr is the real phase velocity of the disturbance and ci is its growth
(ci > 0) or decay (ci < 0) rate.

Assuming the flow is parallel to the x-direction (i.e., V = 0), substituting
the equations (2.37a) and (2.37b) into the Navier–Stokes equations yields the
Orr-Sommerfeld equation [13, 27, 30]:

(U(y) − c)
(

∂2Φ
∂y2 − k2Φ

)
−Φ∂2U

∂y2 + iν

k

(
∂4Φ
∂y4 − 2k2 ∂2Φ

∂y2 + k4Φ
)

= 0 (2.39)

The trivial solution of Eq. (2.39) is Φ(y) = 0. Nontrivial solutions depend
on solving the standard eigenvalue problem and obtaining the associated
eigenfunctions Φ [13].

Tollmien–Schlichting Waves

The natural transition from the laminar boundary layer to the turbulent
boundary layer starts with the occurrence of Tollmien–Schlichting waves [27].
A Tollmien–Schlichting wave is an unstable perturbation wave, i.e., the
perturbations grow either in time or in space [30].

6The conventional nomenclature for the perturbation stream function uses the prime
symbol (i.e., Ψ′); however, since only this perturbation stream function will be used in the
following chapters, the prime symbol is omitted.
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These waves are named in honor of Walter Tollmien and Hermann Schlicht-
ing7, who independently showed that the Orr–Sommerfeld equation has
unstable modes for flow without inflection points [30].

2.8 Boundary-Layer Separation

Boundary-layer separation is a phenomenon in which the flow stops following
the shape of the immersed body. At the point of separation, the streamlines
leave the wall [21]. This point is defined based on the position where the
gradient of velocity at the wall normal to the wall is zero.(

∂vx

∂y

)
w

= 0 (2.40)

This is directly connected to the shear stress on the wall, which is, based on
Newton’s law of viscosity, also zero:

τw(xsep) = 0
[
N m−2

]
(2.41)

2.8.1 Laminar Boundary-Layer Separation Bubble

If boundary-layer separation occurs while the boundary layer is still in the
laminar state, the separation is called laminar boundary-layer separation. In
the separated region, a transition from a laminar to a turbulent boundary
layer may occur. The turbulent detached boundary layer may be able to
reattach to the boundary surface [24, 31]. This phenomenon is called a
laminar boundary-layer separation bubble.

Dovgal et al. [32] conducted a comprehensive study of laminar boundary-
layer separation bubbles with non-stationary behavior. One of their important
conclusions was the following: “Small-amplitude oscillations excited in the
separation bubble produce a disturbance of the natural laminar flow profile
which can be an order of magnitude higher than the local amplitude of the
instability wave” [32]. This is an important statement because small distur-
bances can essentially be amplified in the laminar separation bubble. This
disturbance itself also has some influence on the transition in the separation
bubble.

2.9 Introduction to Acoustics

An introduction to some basic concepts in linear acoustics is needed for a full
understanding of the following parts of this thesis. Sound waves are small and
weak perturbations of static pressure that propagate through a flow field. For
the investigation of sound waves, the density and pressure fields are expressed

7Tollmien (1900–1968) and Schlichting (1907–1982) were students of Prandtl [20].
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in terms of acoustic density and pressure fluctuations about their respective
mean values, ρ0 and p0:

ρ′ = ρ − ρ0 (2.42)

p′ = p − p0 (2.43)

The sound wave is propagated to the acoustic far field according to the
wave equation,

∂2ρ′

∂t2 − c2
∞

∂2ρ′

x2
i

= 0 (2.44)

where c∞ is the speed of sound and small isentropic density perturbations
are assumed [12]. The solution of this equation can be obtained using a
standard numerical approach (or an analytical approach in a few special
cases). The sound source in the wave equation can be incorporated into the
boundary conditions or by introducing a source term on the right-hand side
of Eq. (2.44):

∂2ρ′

∂t2 − c2
∞

∂2ρ′

x2
i

= Q(xi, t) (2.45)

where Q(xi, t) is the scalar source term.

2.9.1 Sound Pressure Level

In many industrial applications, the decibel (dB) unit is used as a scale of
sound level. This quantity is usually interpreted as the sound pressure level
(SPL), which is defined in the following equation [33, p. 130]:

SPL = 20 · log10

(
p′

pref

)
(2.46)

where the reference pressure is pref = 20 · 10−5 Pa for air; for water, the refer-
ence pressure is pref = 10−6 Pa [33]. In air, for example, pressure fluctuations
of magnitude 1 Pa correspond to an SPL of 94 dB.

The sound could be periodic or a single impulse. In cases of repeating
acoustic noise, the root-mean-square value of the acoustic pressure (i.e.,
pressure fluctuations) is used:

p′
RMS =

√
1
T

∫ T

0
(p(t) − p0)2 dt (2.47)

where p0 is the time-averaged value of the pressure (i.e., the mean value).
The sound pressure is than obtain using the relation (2.46).

2.10 Summary

In this chapter, the key fluid dynamics concepts relevant to the aeroacoustics
of the boundary layer were outlined, as well some important definitions for
acoustics.
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......................................... 2.10. Summary

The transition from a laminar boundary layer to a turbulent boundary layer
and Tollmien–Schlichting waves were described. Tollmien–Schlichting waves
are present in the boundary layer from an early phase of the boundary-layer
transition. Because of their wavelike character, they are of great importance
to the aeroacoustic theory of the boundary layer. Additionally, the effect of
laminar separation bubbles in the presence of linear instabilities (disturbances)
cannot be neglected.
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Chapter 3
Literature Survey and Objectives of the
Study: Aerodynamically Generated Sound

3.1 Aerodynamically Generated Sound

In 1952, Lighthill proposed the fundamental theory of aerodynamically gener-
ated noise [2, 3]. His theory is today known as Lighthill’s analogy. A different
approach was proposed by Goldstein [34] by linearizing the momentum and
continuity equations. Powell [35] introduced the vortex sound theory, which
was later extended by Howe [36].

In one of the first applications of Lighthill’s analogy, Proudman [37], and
later Lilley [38], derived a simple approach to obtain the acoustic power of
isotropic turbulence.

3.1.1 Lighthill’s Analogy

Lighthill’s equation is derived by subtracting the divergence of the momentum
equation (Eq. (2.2)) from the time derivative of the continuity equation
(Eq. (2.1)) and substituting the density with its fluctuations (Eq. (2.42)):

∂2ρ′

∂t2 − c2
∞

∂2ρ′

∂x2
i

= ∂2Tij

∂xi∂xj
(3.1)

Here, Tij is the Lighthill stress tensor, defined as follows:

Tij = ρvivj − τij + (p′ − ρ′ · c2
∞) · δij (3.2)

where τij is the compressive stress tensor defined in Eq. (2.3), ρ′ is the density
fluctuation, ρ is the density, p′ is the pressure fluctuation, c∞ is the speed
of sound, and δij is the Kronecker symbol. Because of the importance of
Lighthill’s analogy, a full derivation is provided in Appendix A.1.

3.1.2 Solution of Lighthill’s Equation

The formal solution of Lighthill’s equation (3.1) in the case with no solid
boundaries is as follows [4]:

ρ′(x⃗, t) = 1
4πc0

∂2

∂xi∂xj

∫
V

Tij (y⃗, tr)
r

dV (y⃗) (3.3)
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...............................3.1. Aerodynamically Generated Sound

where r = |x⃗ − y⃗|, tr = t − r/c0, and c0 is the speed of sound.
Curle [4] derived a formal solution of Lighthill’s equation in the presence

of a solid boundary:

ρ′(x⃗, t) = 1
4πc0

∂2

∂xi∂xj

∫
V

Tij (y⃗, tr)
r

dV (y⃗) − 1
4πc0

∂

∂xi

∫
S

Pi (y⃗, tr)
r

dS(y⃗)

(3.4)
where Pi = −njpij is the force per unit area exerted on the fluid by the solid
boundaries in the direction xi [4]. This solution was later extended by Ffowcs
Williams and Hawkings [5] for a surface in arbitrary motion.

Curle’s solution (3.4) of Lighthill’s equation (3.1) is sometimes called
Curle’s analogy. The first term on the right-hand side is the sum of all
quadrupoles, while the second term consists of dipoles. This second term
accounts for all the diffraction and reflection of the quadrupoles at the solid
boundary [4, 39, 40].

This solution is convenient because, for many industrial applications, the
first term is negligible and so the numerical solution consists only of the surface
integral of pressure fluctuations. Nevertheless, to understand the mechanism
of noise generation in the boundary layer, it is necessary to evaluate the
source term in Lighthill’s equation. However, it must be remembered that all
source terms in the boundary layer are reflected by the solid surface.

3.1.3 Howe Theory

Powell [35] discussed the significance of vorticity for incompressible fluids in
motion. His idea was later extended by Howe [36]. For a low Mach number, a
constant mean density value, and zero entropy fluctuations (i.e., an isentropic
flow field), the Howe equation takes the following form [12]:

1
c2

∞

∂2h0
∂t2 − ∂2h0

∂x2
i

= ∇ · (ω⃗ × v⃗) (3.5)

This wave equation is very similar to the wave equation of Lighthill, Eq. (3.1).
In this equation, h0 is the stagnation enthalpy, and the source term on the
right-hand side is the divergence of the Lamb vector (see Section 2.1.4). This
approach can be useful in cases where it is possible to calculate the Lamb
vector.

3.1.4 Empirical Model of Brooks, Pope, and Marcolini

Unlike the previously mentioned aeroacoustic theories, Brooks, Pope, and
Marcolini [41] conducted an extensive experimental study of the self-noise of
the NACA 0012 airfoil. They investigated the noise generation and emission
of this airfoil under different flow conditions, and described five basic self-noise
mechanisms:.Turbulent boundary-layer trailing-edge noise. Separation-stall noise
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. Laminar boundary-layer vortex-shedding noise.Tip vortex formation noise.Trailing-edge bluntness vortex-shedding noise

For each of these noise generation mechanisms, they published measured (1/3
octave band) SPLs, a proposed scaling method, and a scaled SPL spectrum.
Their scaling method is based on the boundary-layer parameters, such as the
conventional and displacement thicknesses, and the empirical spectral shape
function.

This method is quite effective, and for some applications, it is the only
available method [12]. However, this empirical spectral scaling approach is
based on the measurement of only one airfoil shape.

3.2 Boundary-Layer Noise

The typical representatives of objects around which a boundary layer develops
are flat plates or thin airfoils. The airfoil self-noise mechanism was described
by Brooks et al. [41]. The airfoil self-noise directly connected to the boundary
layer can be separated into categories based on the mechanism:. Laminar boundary-layer (instability) noise. Separated flow noise.Turbulent boundary-layer noise

Brooks, et al. [41] described tip vortex formation noise as one of the airfoil
self-noise mechanisms. Since this type of noise is related to the formation of
the tip vortex, and not the state of the boundary layer, it is not considered a
boundary-layer noise mechanism. Similarly, trailing-edge bluntness noise is
connected to the formation of vortices behind the airfoil, so is not considered
a mechanism for the generation of boundary-layer noise.

Glegg and Devenport [12] proposed a method to evaluate the right-hand
side of Lighthill’s equation (Eq. (3.1)) for low Mach numbers, in which case
the fluid is considered nearly incompressible.

For homentropic flow, it is assumed that pressure fluctuations are directly
proportional to density fluctuations [12], as stated in the following equation:

p′ = ρ′c2
∞ (3.6)

This condition and the definition of the Lighthill stress tensor (Eq. (3.2)) lead
to a modified right-hand side of the wave equation for homentropic flow of
an incompressible fluid [12, 42]:

Q(xi, t) = ∂2Tij

∂xi∂xj
= ρ∞

∂2(vivj)
∂xi∂xj

− µ
∂2

∂xi∂xj

(
∂vi

∂xj
+ ∂vj

∂xi

)
(3.7)
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Since the fluid is assumed to be incompressible, the last term of Eq. (3.7) is
zero (based on the continuity equation (2.1)):

Q(xi, t) = ∂2Tij

∂xi∂xj
= ρ∞

∂2(vivj)
∂xi∂xj

(3.8)

This equation is rather important because no further approximation is made:
the only assumptions are incompressible fluid and homentropic flow. The
source term is related to the unsteady part of the Reynolds stress of this flow.

Using Reynolds’ decomposition vi = Vi + v′
i and the boundary-layer flow

assumptions—two-dimensional flow with V2 = 0, and V1 being a function
of x2 only—the source term for the boundary-layer noise is as follows (the
derivation of this source term is given in Appendix A.2):

Q(xi, t) = 2ρ∞
∂V1
∂x2

∂v′
2

∂x1
+ ρ∞

∂v′
j

∂xi

∂v′
i

∂xj
(3.9)

The first term is called the mean shear–turbulence interaction term and the
second is the mean turbulence–turbulence interaction term [42].

This decomposition was used by Landahl in 1975 [43] to describe large-scale
damped traveling shear waves and small-scale intermittent motion. One of
his assumptions for the bursts was that the dimensions of these structures
are small compared to the wavelength of radiated sound; it can therefore
be treated as a compact noise source. The small-scale disturbances are also
convected by the large-scale disturbances [43].

3.2.1 Laminar Boundary-Layer Instability Noise

One of the mechanisms of boundary-layer noise that has been described is
laminar boundary-layer instability noise. The first systematic experimental
study was carried out by Paterson et al. [44] in 1973 on NACA 0012 and
NACA 0018 airfoils. Based on their experimental investigation, they derived
a law for the frequency of a discrete tone f = 0.011U1.5

∞ /(Lν)0.5, where U∞
is the freestream velocity, L is the chord length of the airfoil, and ν is the
viscosity. This is also related to the Strouhal number1 of the vortex street,
so they suggested that the noise was generated by the vortex wake behind
the airfoil. The dependence of the emitted acoustic frequency on velocity
described by Paterson et al. [44] is shown in Fig. 3.1.

1The Strouhal number is given by St = 2 · f · δ/U∞, based on the dimension of twice
the thickness of the boundary layer at the trailing edge [44].
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Figure 3.1: Laminar boundary-layer vortex-shedding noise as it was observed
by Paterson in 1973 [44].

This generation mechanism was argued against by Tam [45], who in 1974
proposed a self-excited feedback loop formed by the acoustic field, the boundary
layer, and the wake flow. Tam showed that the primary and secondary
frequencies observed by Paterson et al. lie in the hydrodynamic instability
region of the Blasius boundary-layer profile.2 The proposed noise source is
located downstream in the wake, in the region where the instabilities of the
boundary layer cause strong lateral vibration.

Longhouse [46] experimentally investigated the vortex-shedding noise for
axial fans and concluded that it is significantly reduced when the boundary
layer is tripped. This finding is in agreement with that of Paterson et al. To
observe the vortex-shedding noise, the boundary layer at the trailing edge
must not be in the turbulent state.

Arbey and Bataille [47] (in 1983) found discrepancies between Tam’s
feedback loop and Fink’s theory [48], and proposed a new phase-loop condition
for discrete frequencies:

fnL

cr

(
1 + cr

c∞ − U∞

)
= n + 1

2 (3.10)

2Paterson et al. based their research on NACA 0012 and NACA 0018 airfoils. The
Blasius boundary-layer velocity profile is a rough approximation of the velocity profiles for
these airfoils.
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where L is the feedback length, cr is the convective disturbance velocity, c∞
is the speed of sound, and U∞ is the freestream velocity.

Lowson et al. [49] obtained experimental data and discovered an occurrence
of Tollmien–Schlichting waves in the boundary layer of NACA 0012 without
vortex-shedding noise. Therefore, the presence of the Tollmien–Schlichting
waves in the boundary layer is not a sufficient condition for vortex-shedding
noise. After further study, they found a correlation between the existence of
a laminar separation bubble and the occurrence of laminar vortex-shedding
noise.

Nash et al. [50] conducted laser Doppler anemometry and acoustic measure-
ments, which showed a high correlation between strongly amplified instabilities
and the trailing-edge separated flow region on the pressure surface and the
acoustic field. The same authors conducted deeper theoretical work in [51]
and connected the frequency of vortex-shedding noise to the frequency of
instabilities (i.e., Tollmien–Schlichting waves) on the pressure surface of the
airfoil. They also identified an important role for the laminar separation
bubble, which is needed to amplify the incoming Tollmien–Schlichting waves.

Desquesnes et al. [52] performed direct numerical simulation (DNS) of
the two-dimensional compressible Navier–Stokes equations. One of their
conclusions was the determination of the role of the suction side, which was
neglected by the previous researchers. One of their hypotheses was that the
phase change of hydrodynamic instabilities on the pressure and suction sides
affects the amplitude of the sound wave.

Kingan and Pearse [53] used the XFOIL software, by M. Drela [25], to
determine the shape parameters, and thus the Falkner–Skan velocity profiles,
along the pressure side of an airfoil. These velocity profiles were used to solve
the problem of linear stability (Orr–Sommerfeld equation) and find the modes
of the Tollmien–Schlichting waves, which they connected with the frequency
of the vortex-shedding noise.

Plogmann et al. [54] conducted an experimental study of NACA 0012 using
the oil-flow visualization technique. They confirmed previous findings on
the existence of a laminar separation bubble near the trailing edge and the
effect of tripping the boundary layer to mitigate this type of noise. They
investigated the influence of suction-side tripping near the leading edge on
the main feedback loop. However, they did not observe any difference in the
tonal noise produced by the laminar boundary-layer vortex shedding.

Chong et al. [55] conducted experimental research on laminar boundary-
layer instability noise. They found that the SPL of the instability noise may
not be determined solely by Tollmien–Schlichting wave amplification. Chong
et al. [56] also investigated the tonal noise generated by the airfoil if the
trailing edge is serrated and found, significantly, that the serration reduces
this noise.

Golubev et al. [57] performed a remote microphone probe (RMP) mea-
surement on the NACA 0012 airfoil to determine wall-pressure spectra and
compare them to the far field. Furthermore, the effects of weak upstream
turbulence were studied, with the conclusion that suppression of tonal noise
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is related to acoustic feedback.
Pröbsting et al. [58, 59] experimentally investigated tonal noise generation

in 2014. Their research aimed to provide an experimental background for the
DNS performed by Desquesnes et al. [52] using the particle image velocimetry
(PIV) method. They concluded that multiple tones arise not only from
phase modulation of fluctuations (as proposed by Desquesnes et al. [52])
but also from periodic modulation of the fluctuation amplitude. Pröbsting
and Yarusevych [60] investigated the laminar separation bubble in more
detail using two-component PIV measurements. They stated that amplified
disturbances in the laminar separated bubble play a crucial role in the
mechanism of the boundary-layer transition and that they can create acoustic
feedback.

In 2019, Arcondoulis et al. [61] studied a dual acoustic feedback mechanism.
Based on their findings, they proposed a variation of the original feedback
model of Arbey and Bataille (see Fig. 3.2):

fn(Re, α) = cr(Re, α)
LSp+s(Re, α)

(
n + 1

2

)(
1 + cr(Re, α)

c∞ − U∞

)−1
(3.11)

They used the distance from the boundary-layer separation point to the
trailing edge LS as the feedback length. They also proposed an alternative
empirical feedback length based on the primary measured frequency.

Figure 3.2: Dual-feedback model proposed by Arcondoulis et al. [61].

Gelot and Kim [62] performed a large-eddy simulation (LES) on a symmetric
Joukowski airfoil to study the effects of the serrated trailing edge on acoustic
feedback. They were able to extract the acoustic expansion wave from field
fluctuations and describe the acoustic feedback loop. Their results were in
agreement with the findings of Chong et al. [56].

Jaiswal et al. [63] experimentally investigated a controlled-diffusion airfoil
using tomographic PIV and remote microphone probes. Based on the remote
microphone probe measurement, they verified the existence of an acoustic
feedback loop.
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Redonnet et al. [64] carried out measurements on a NACA 0021 airfoil
in a hard-walled closed-vein wind tunnel at Hong Kong University. They
found that the effects of the installation could affect the aeroacoustic analysis,
and that the acoustic feedback might be influenced, for example, by the side
plates3 of an airfoil.

Laminar Boundary Layer—Instability Noise

The laminar boundary-layer vortex-shedding noise is directly connected
to the instabilities in the laminar boundary layer (Tollmien–Schlichting
waves). These instabilities are amplified by the laminar separation
bubble. The boundary layer eventually reattaches to the surface,
and as the instability moves past the trailing edge, it generates an
omnidirectional noise source with a phase shift, which affects the point
of boundary-layer separation and the boundary-layer instabilities.
However, the actual primary acoustic source may not be located di-
rectly at the trailing edge, but a short distance downstream [52]. The
transition in the boundary layer to the turbulent state causes the
acoustic feedback of the Tollmien–Schlichting waves to break.

3.2.2 Turbulent Boundary-Layer Trailing-Edge Noise

Ffowcs Williams and Hall [65] discussed the importance of edge scattering.
They showed that the acoustic field generated from edge scattering is more
powerful than the acoustic field defined by Lighthill (Eq. (3.1)), even after
incorporating reflections from the solid wall [65]. This makes the edge
scattering (or trailing-edge noise) the most important component of the noise
generation around the airfoil in most practical situations.

Chase [66] calculated the acoustic spectrum and intensity caused by diffrac-
tion at the trailing edge. The acoustical properties were obtained on the basis
of the wall-pressure spectrum of the turbulent boundary layer. Christopher
Tam [67] showed that, based on the knowledge of an empirical wall-pressure
cross-correlation function, it is possible to find the directivity pattern and
the noise power spectrum in the acoustic far field.

Amiet [68] proposed a theoretical method to estimate the spectral density
of the acoustic power emitted from a solid surface in a turbulent stream based
on the Kármán spectrum of turbulence. Amiet also studied the influence of
the trailing edge and extended his previous paper in [69], using a method
similar to that of Chase [66] but with different assumptions: a non-zero mean
flow assumption, a different response function, and an assumption of equal
radiation to the upper and lower regions from the trailing edge.

Schlinker and Amiet [70] performed an experimental and analytical study
of trailing-edge noise. They assumed the boundary-layer thickness to be

3The most common experimental setup for airfoil testing is with the parallel side plates
and the ends of the airfoil to avoid the three-dimensional effects caused by the different
pressures on the suction and pressure surfaces. In all the reviewed research papers, there
was no indication of a different setup.
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an important quantity that controls noise generation in the boundary layer.
They also proposed a scaling law based on the Strouhal number for the overall
SPL.

Marsden et al. [71] conducted a large-eddy simulation of NACA 0012 for a
chord-based Reynolds number of 500 000. For noise computations conducted
directly, without using an acoustic analogy, their results are comparable
to the experimental results of Brooks et al. [41]. Since a transition to a
turbulent state was present, they observed no discrete tone connected with
the previously described vortex shedding.

Another numerical simulation of the Navier–Stokes equations for com-
pressible fluid and a large-eddy simulation were performed by Gloerfelt and
Berland [72, 73, 74]. Their results indicate a strong potential for direct noise
calculation (DNC) with large-eddy simulation.

Devenport et al. [75] conducted experimental research on the noise generated
by turbulent flow on a rough surface. They found that even smooth surfaces
produce noise, implying the presence of scattering as a source mechanism.
The wall-pressure fluctuations were measured using microphones embedded
in pinholes in the rough surface. They stated that the roughness noise is of a
dipole nature.

Küçükosman et al. [76] performed a RANS simulation incorporating Amiet’s
theory with different empirical models of wall-pressure fluctuations. Further-
more, they investigated the sensitivity of the acoustic model to the boundary-
layer thickness, finding that two out of six investigated spectral models are
insensitive to the boundary-layer thickness. In a recent study, Glegg et
al. [42, 77] discussed a different approach to modeling the source term. They
showed that the surface pressure can be estimated based on the vorticity
outside the viscous sublayer.

3.2.3 Summary

The aeroacoustics of the boundary layer is a rapidly evolving field. The range
of computational methods is still limited. There are established approaches
of large-eddy simulations for direct noise calculations, or RANS simulation
using Curle’s solution (i.e., based on pressure fluctuations on the boundary
surface).

It has been shown that a non-negligible part of the boundary layer noise is
the trailing-edge noise. The trailing edge is important regardless of whether
the noise mechanism is based on linear disturbances or non-linear turbulence–
turbulence interaction noise. Some of the noise generation mechanisms are
not yet fully understood, and there is still room for further improvement and
development, not only in the computational and experimental methods but
also in the theoretical and analytical approaches.
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3.3 Objectives of the Thesis

This chapter summarizes key findings on the subject of boundary-layer aeroa-
coustics. Based on this literature survey, the following hypothesis is formu-
lated:

In a laminar boundary-layer regime, the acoustic source is created by
a velocity perturbation. If the perturbation is assumed to be of a single
mode, the linear Orr–Sommerfeld equation can be used to estimate the
acoustic source term of Lighthill’s equation for the boundary layer to
obtain the peak tone emitted by the laminar boundary layer.

To validate this hypothesis, the following constituent objectives of the
thesis are formulated:. Description of the aeroacoustic footprint of a boundary layer experiencing

linear instabilities in a laminar regime before the transition to a turbulent
regime.Theoretical description of the aeroacoustic sources caused by linear

instabilities in the boundary layer. Proposal of a frequency model for the prediction of laminar boundary-
layer instability noise. Experimental investigation of the boundary-layer instability noise. Design of an experiment to validate the obtained theoretical results. Further examination of the experimental data—using the experi-
mental data to determine the acoustic feedback length.Validation of the proposed model and experimental results.Validation of the proposed theoretical frequency model and ex-
perimental results on the NACA 0012 airfoil with the empirical
model

These objectives can be divided into two parts, the extension of the cur-
rent theoretical findings and the setup of the experimental method.
The theoretical part of this thesis should bring new insight into the frequency
of sound emitted by a laminar boundary layer with linear instabilities.

For a turbulent boundary layer, methods have already been established,
as described in Section 3.2.2, so the thesis is focused only on the laminar
boundary layer (with separation).

Methods for Achieving the Objectives

The theoretical description of the acoustic footprint of the boundary layer will
be based on studying linear instabilities in the boundary layer, i.e., the spatial
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solution of the Orr-Sommerfeld equation. The solution of the Orr-Sommerfeld
equation will be used with the source term of Lighthill’s equation for the
boundary layer to obtain the point acoustic source. These acoustic sources
will then be evaluated to obtain the frequency footprint of the boundary layer.
For the case study, the NACA 0012 airfoil is chosen, due to the availability of
an empirical model of Brooks, Pope, and Marcolini [41]. The BPM empirical
model of NACA 0012 is quite extensive and will be used for the validation
and comparison of the proposed frequency model.

The experimental part will include measurement of acoustic pressure using
built-in microphones on the NACA 0012 airfoil. These results will be used to
confirm the theoretical frequency model and analyze the instability feedback
length.
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Chapter 4
Laminar Boundary-Layer Instability Noise

The common conception of the laminar boundary layer does not incorporate
disturbances. From the point of view of fluid dynamics, this assumption causes
no problems and is an adequate simplification of the flow in the boundary
layer. However, regarding the aeroacoustic footprint, this is not an entirely
valid assumption. A laminar boundary layer without disturbances does not
generate any noise, and even with a small perturbation (a perturbation that
is damped and does not cause a transition to a turbulent boundary layer) in
the flow field, the laminar boundary layer emits a very weak acoustic wave.

These disturbances become more important when they grow in space, i.e.,
when they are spatially unstable. To analyze the stability of the disturbances,
the velocity profile in the boundary layer is required. In Section 2.5.2, the
Falkner–Skan boundary layer velocity model was introduced. Kingan et
al. [53] proposed a promising method based on solving the spatial instability
problem of the Orr–Sommerfeld equation using Falkner–Skan velocity profiles
based on knowledge of the shape factor of the boundary layer. The shape
factor can be obtained experimentally or by using a computational approach,
such as XFOIL. Kingan originally proposed this method in his thesis [78];
however, a detailed analysis of the solution was not presented. A minor
objective of this thesis is to validate Kingan’s approach to obtaining the
frequency of maximal spatial growth. Another approach to prediction of
boundary-layer instability noise is based on the empirical model of Brooks,
Pope, and Marcolini [41] (the BPM model). The comparison of the BPM
model to experimental results was presented in [A1]; however, this paper
does not compare the BPM model to the solution based on maximal spatial
growth of Tollmien–Schlichting waves.

To utilize the general approach to the boundary-layer instability noise,
first, the velocity profiles along a flat plate or airfoil need to be obtained.
For this task, the Falkner–Skan boundary-layer model is used as a function
of the shape factor. With knowledge of the velocity profile, the standard
spatial stability equation is solved. However, due to the lack of data in the
literature for validation of the spatial stability problem, the neutral curve
obtained from the spatial stability analysis is compared to the neutral curve
obtained from the temporal stability. With the verified solution method for
the Orr–Sommerfeld equation of spatial stability, it is possible to obtain the
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most amplified frequency along the airfoil or flat plate. This solution is also
accompanied by a novel approach that utilizes the linear disturbances in the
boundary layer as acoustic sources.

4.1 Falkner–Skan Laminar Velocity Profiles

The Falkner–Skan boundary layer has already been briefly introduced. Equa-
tion (2.34) is an ordinary differential equation with parameter β, which
defines the velocity profile and is related to the shape factor H. According to
Hartree [28], and also discussed in [21], when the parameter β is greater than
zero, there is only one solution for the shape factor H, but when β is negative,
there are two solutions—one for positive shear stress and one for negative
shear stress. Hartree [28] stated that the Falkner–Skan velocity profiles are
also valid in laminar separation, where there is a negative shear stress:(

du

dy

)
w

= 1
µ

τw (4.1)

Based on Eq. (4.1) and the previously stated conditions for shear stress on
the wall in laminar separation, the solution of the Falkner–Skan equation can
be divided into two parts:. (

du
dy

)
w

> 0: For given β, the first derivative of the velocity on the wall
must be found by enforcing the boundary conditions.. (

du
dy

)
w

< 0: The (negative) first derivative of the velocity on the wall is
given and β is found by enforcing the boundary conditions.

These require partially different approaches to obtain the Falkner–Skan
velocity profile based on the shape factor. These approaches are discussed in
more detail in Section 4.1.1.

For the interpretation of the velocity profile in the following analysis, the
length scale δL of the boundary-layer thickness must be precisely defined.
The well-defined boundary layer thickness is the displacement thickness, as
given by Eq. (2.24). The length scale δL can be defined as follows:

ηδ∗ = δ∗

δL
(4.2)

where ηδ∗ is the non-dimensional boundary-layer thickness based on the
Falkner–Skan velocity profile and δ∗ is the boundary-layer displacement
thickness based on an experimental measurement or computer simulation.
Using the properties of function f(η) (see Eq. 2.31) of Falkner–Skan equation,
the length scale is

δL = δ∗∫∞
0 (1 − ∂f/∂η)dη

= δ∗

ηδ∗
(4.3)

The velocity profile of the boundary layer is now given by three well-
defined parameters: the non-dimensional shape factor H [1], the dimensional
displacement thickness δ∗ [m], and the velocity outside the boundary layer
Ue [m · s−1].
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4.1.1 Solution of the Falkner–Skan Equation

The Falkner–Skan equation (2.34) is an ordinary differential equation, and it
can be reduced to a system of first-order differential equations by making the
following substitution:

f(η) = a1(η) (4.4a)
∂f(η)

∂η
= a2(η) (4.4b)

∂2f(η)
∂η2 = a3(η) (4.4c)

The corresponding system of first-order ordinary differential equations (to
Eq. (2.34)) is as follows:

f1(η, a1, a2, a3) = ∂a1
∂η

= a2 (4.5a)

f2(η, a1, a2, a3) = ∂a2
∂η

= a3 (4.5b)

f3(η, a1, a2, a3) = ∂a3
∂η

= −a1 · a3 − β · (1 − a2
2) (4.5c)

The boundary conditions are then a1(0) = 0, a2(0) = 0 (the no-slip condition),
and a2(η → ∞) = 1. The latter condition means that the velocity has reached
the freestream velocity; for a practical solution, the infinity is replaced with
η = 25. In the following sections, it will be shown that the conventional
non-dimensional boundary-layer thickness δη is usually below 10. Since the
boundary condition for a3 is not known, this is not an initial value problem,
but a boundary value problem.

The function a3 is directly proportional to the shear stress. For a positive
Hartree parameter β, there exists only one solution for a3(0) [28], and the
shear stress (i.e., a3(0)) is positive. On the other hand, for a negative
Hartree parameter β, there exist two solutions for a3(0), one negative and one
positive [28, 79]. Stewartson [79] provided a proof that there is no solution
to the Falkner–Skan equation with the given boundary conditions for β < β0.
Here, β0 is the Hartree parameter for zero shear stress at the wall, i.e., for
a3(0) = 0. This parameter can be computed or taken from the literature:
according to [79], β0 = −0.1988.

The Falkner–Skan velocity profile is needed for a full solution of the
boundary-layer stability. Therefore, it is essential to find a map between the
shape factor H and the Hartree parameter β. The shape factor H provides a
unique Falkner–Skan velocity profile, unlike the Hartree parameter β.

Positive Shear Stress

The solution for positive shear stress at the wall (i.e., a3(0) > 0) for a
known Hartree parameter β is found using the shooting method to obtain a3
and reduce the boundary value problem to an initial value problem, which is
solved using the Runge–Kutta method (RK4).
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Negative Shear Stress

The solution for negative shear stress at the wall (i.e., a3 < 0) for the
unknown (negative) Hartree parameter β is slightly different. Instead of using
the shooting method to reduce the boundary value problem to an initial value
problem, the system of ODEs is solved directly as an initial value problem with
given negative a3(0). The boundary condition at the edge of the boundary
layer, [1 − a2(η → ∞)] = 0, is enforced by finding the corresponding β. This
can be done using an appropriate root-finding algorithm. For the following
results, the trust region reflective method is used to obtain the parameter β,
as implemented in the SciPy Python package. This approach seems to be
robust; however, the solution is sensitive to the initial guess for the Hartree
parameter [80]. For a given negative a3, it is possible to obtain more than one
solution for β and thus more than one value of the shape factor (see Fig. 4.1).

Figure 4.1: Detail at local minimum of ∂2f
∂η2 (0) as a function of shape factor.

Based on the discussion above, it can be hypothesized that the shear stress
at the wall as a function of shape factor is not monotonic and that a local
minimum value of a3 must exist.

Using the method described above, it was found that the minimum possible
value of a3 = ∂2f

∂η2 (0) is −0.142978, which corresponds to a value of H =
10.308351 for the shape factor. This local minimum is shown in Fig. 4.1 and
in Fig. 4.2. This also explains why the solution is sensitive to the initial guess.
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Figure 4.2: Local minimum of ∂2f
∂η2 (0) as a function of Hartree parameter β.

These findings are in agreement with the partial solutions of Stewartson [79],
Cebecci and Keller [80], and Christian et al. [81]. However, they did not
provide this deeper insight into the local extremum of the negative shear
stress.

4.1.2 Summary

Based on the described method, the mapping between the Hartree parameter
β and the shape factor H has been established. In Fig. 4.3, an H–β plot is
shown as a graphical representation of this relationship.

Figure 4.3: The H–β plot for the Falkner–Skan boundary layer.
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Some selected points of interest of the solution for different Falkner–Skan
velocity profiles are listed in Table 4.1.

Table 4.1: Selected parameters of the Falkner–Skan equation for different shape
factors.

H β ∂2f
∂η2 (0)

2.190 1.307 1.3880
2.591 0 0.4696
3.800 −0.197657 0.029936

4.029226 −0.198838 0
4.100 −0.198747 −0.007966
5.000 −0.188724 −0.075630

10.308351 −0.117706 −0.142978

In Fig. 4.4, the second derivative of the solution of the Falkner–Skan
equation is plotted, providing an intuitive understanding of the parameter’s
value. A shape factor H below H0 = 4.029226 corresponds to an attached
laminar boundary layer, and a value above H0 is characteristic of a local
velocity profile in the laminar separation bubble. The solution for the shape
factor above H0 can be found based on further splitting the range at the value
of the shape factor 10.308351. It is subject to further discussion whether the
solution for a shape factor above 10.308351 is required. Since this value of
the shape factor would mean long laminar separation, it is not expected that
velocity profiles with a shape factor above 10.308351 are needed.

Figure 4.4: Dependency of ∂2f
∂η2 (0) on the shape factor H.
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The solution of the Falkner–Skan equation based on the shape factor
has been established. This solution was designed to be robust, sacrificing
computational time. This method has been validated against values from the
literature and is an appropriate way to obtain the velocity profile, which will
be required for elucidation of the aeroacoustic characteristics of the laminar
boundary layer.

4.2 Stability: Orr–Sommerfeld Equation

When the velocity profile is known, a solution of spatial stability (i.e., a
solution of the Orr–Sommerfeld equation) can be obtained. To solve the
Orr–Sommerfeld equation, the parameter scale based on the scaling factors of
the Falkner–Skan equation described in Section 4.1 is used. Due to this scale,
the Orr–Sommerfeld equation can be solved non-dimensionally in general
(non-dimensional values are denoted by subscript η). For some basic analysis,
the variables related to the displacement thickness δ∗ are used, and are
denoted with the corresponding subscript:

kη = k · δL = kδ∗
ηδ∗

(4.6a)

ωη = ω · δL

Ue
= ωδ∗ · 1

Ue · ηδ∗
(4.6b)

Uη = f ′ = U

Ue
(4.6c)

cη = c

Ue
(4.6d)

A similar scaling can be applied to the variables that are already non-
dimensional, such as the Reynolds number:

Reδ∗ = Ue · δ∗

ν
= Reηδ∗ · ηδ∗ (4.7)

The Orr–Sommerfeld equation (2.39) multiplied by δ2
L/Ue, and with the

substitutions introduced in equations (4.6), is then

(Uη − cη)
(

∂2Φ
∂η2 − k2

ηΦ
)

− Φ∂2Uη

∂η2 + i

Reηδ∗ · kη

(
∂4Φ
∂η4 − 2k2

η

∂2Φ
∂η2 + k4

ηΦ
)

= 0

(4.8)
The solution of the Orr–Sommerfeld equation (4.8) described in the fol-
lowing sections is based on a global approach using the Chebyshev matrix
method [82].

4.2.1 Chebyshev Method

The amplitude function Φ can be approximated by a Chebyshev expansion [30].

Φ(η) =
N∑

n=0
an · Tn(η̂) (4.9)
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where Tn(η̂) are Chebyshev polynomials. Chebyshev polynomials can have
different forms, of which the best-known definition is as follows [30]:

Tn(η̂) = cos(n · cos−1(η̂)) (4.10)

The N Chebyshev collocation points are defined in the domain [−1, 1] and
are unevenly spaced according to the cosine function (4.11). These points are
also known as Gauss–Lobatto points, and are defined as follows [30]:

η̂k = cos
(

k · π

N

)
, k = 0, . . . , N (4.11)

The Chebyshev domain is then the finite domain η̂ ∈ [−1, 1], while the
boundary layer is the semi-infinite domain η ∈ [0, +∞). The rational map
based on [30, p. 486] is introduced:

η̂ = b · η − a

η + a
(4.12a)

η = a(1 + η̂)
b − η̂

(4.12b)

where a and b are constants based on the required domain resolution,

a = ηhηmax
ηmax − 2 · ηh

(4.13a)

b = 1 + 2a

ηmax
(4.13b)

and ηmax is a point far enough from the surface. The variable ηh defines
the range [0, ηh] in which half of the points are distributed. Based on the
Falkner–Skan velocity profiles analyzed in Section 4.1, the following values of
these variables were chosen: ηmax = 25 and ηh = 15.

The kth derivatives of the approximated amplitude function can be found
using the Chebyshev derivative operator D(k):

Φ(k)(ηi) =
N∑

j=0
D(k)

ij aj · Tj(η̂i) (4.14)

The derivative operator D̂ij in the Chebyshev domain is defined as follows:

D̂(1)
00 = −D̂(1)

NN = 2N2 − 1
6 (4.15a)

D̂(1)
ii = − η̂i

2(1 − η̂2
i ) (4.15b)

D̂(1)
ij = −cj

ci
· (−1)i+j

η̂j − η̂i
, i ̸= j, c0 = cN = 2, ci = 1 (4.15c)
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To transform the derivative operator D̂(k) = D̂k from the Chebyshev
domain η̂ ∈ [−1, 1] to the semi-infinite domain η ∈ [0, +∞], the chain rule for
derivatives must be applied:

D(1)
ij = dη̂

dη
D̂(1)

ij (4.16a)

D(2)
ij =

(
dη̂

dη

)2
D̂(2)

ij + d2η̂

dη2 D̂(1)
ij (4.16b)

D(3)
ij =

(
dη̂

dη

)3
D̂(3)

ij + 3d2η̂

dη2
dη̂

dη
D̂(2)

ij + d3η̂

dη3 D̂(1)
ij (4.16c)

D(4)
ij =

(
dη̂

dη

)4
D̂(4)

ij +6d2η̂

dη2

(
dη̂

dη

)2
D̂(3)

ij +

3
(

d2η̂

dη2

)2

+ 4d3η̂

dη3
dη̂

dη

 D̂(2)
ij +d4η̂

dη4 D̂(1)
ij

(4.16d)
The derivatives of the transformation function are then

dη̂

dη
= a(b + 1)

(a + η)2 (4.17a)

d2η̂

dη2 = −2 · a(b + 1)
(a + η)3 (4.17b)

d3η̂

dη3 = 6 · a(b + 1)
(a + η)4 (4.17c)

d4η̂

dη4 = −24 · a(b + 1)
(a + η)5 (4.17d)

Using the derivative operators on the amplitude function, the Orr–Sommerfeld
equation (4.8) is(

(Uη − cη)
(
D2 − k2

η

)
− ∂2Uη

∂η2 + i

Reηδ∗

(
D4 − 2k2

ηD2 + k4
η

))
Φ = 0 (4.18)

In Section 2.7.1, it was stated that there exists a trivial solution Φ = 0, which
can be confirmed as a solution of Eq. (4.18). For non-trivial solutions, the
following boundary conditions are defined:

Φ(0) = Φ(ηmax) = DΦ(0) = DΦ(ηmax) = 0 (4.19)

The amplitude function is expanded using the Chebyshev series (Eq. (4.9));
this discretization leads to a system of N + 1 equations, while four equations
are modified for the boundary conditions. Since the boundary conditions
are linearly independent (and independent of wave number), it is reduced
to a system of N − 3 equations. This approach of implementing boundary
conditions is described by Danabasoglu and Biringen [83].
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Implementing the Boundary Conditions

The other way to implement the boundary conditions, without modifying
equations, is to directly remove the first and last equations, while the dif-
ferentiation matrix is modified. This method was proposed by Huang and
Sloan [84] and was further described by Trefethen [85]. The principal idea
of this method is the assumption that the eigenfunction is interpolated by
polynomial of order ≤ N + 1.

Using the boundary condition DΦ(0) = DΦ(ηmax) = 0, the modified fourth
derivative operator D̂(4)∗ is obtained:

D̂(4)∗
ij =

[
δikl(1 − η̂2

l )(D̂4)km − 8δiklη̂l(D̂3)km − 12(D̂2)im

]
·
(

δmjn

1 − η̂2
n

)
(4.20)

The symbol δijk is a modified version of the Kronecker delta, defined to be
zero except when i = j = k. Equation (4.20) is valid only for 0 < i, j < N and
this fourth derivative is used in Eq. (4.16d) instead of the original D̂(4). To
impose the boundary condition Φ(0) = Φ(ηmax) = 0 on the system, the first
and last rows are removed from the matrices (4.16), so there is no problem
with the range of validity of this modified derivative operator. The resulting
system of equations is of order N − 1.

4.2.2 Temporal Stability

Even though the problem of temporal stability is not essential to obtaining
the footprint of the boundary-layer instability noise, it is crucial for the
validation of the computational method. The temporal stability results for
the Orr–Sommerfeld equation are well known (for example, for the Poiseuille
flow [86, 30] and the Blasius boundary layer [30]).

For the temporal stability problem, the wave number k ∈ R is given,
and the angular velocity ω ∈ C is to be solved. Specifically, the complex
phase velocity c is found as an eigenvalue of the Orr–Sommerfeld equation
with corresponding eigenfunction Φ. The discretized equation (4.18) can be
rewritten in the following matrix form:

(C1 − cη · C0) Φ = 0 (4.21)

where

C1 = i

kη · Reη∗
δ

(
D(4) − 2 · k2

η · D(2) + k4
η + U(D(2) − k2

ηI) − d2U

dη2 I
)

(4.22a)
C0 = D(2) − k2

ηI (4.22b)
Equation (4.21) can be solved using the QZ method1 for the general eigenvalue
problem [87].

1In this thesis, the described computational methods are implemented using Python and
the SciPy module, in which the low-level LAPACK library is interfaced. Therefore, for the
solution of a general eigenvalue problem, the function zggev is used.
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The implemented temporal stability solver was first validated for the
Poiseuille flow. This was chosen because the computational domain [−1, 1] of
the Poiseuille flow corresponds to that of the Chebyshev method, so there is
no need for domain mapping. However, a more important test is to validate
the solution for the Blasius boundary layer with a velocity profile defined
via the Falkner–Skan equation. In this way, not only is the solution of the
eigenvalue problem checked, but also the domain mapping and the solution
to the Falkner–Skan equation.

Temporal Stability of the Blasius Boundary Layer

The Blasius boundary-layer profile can be defined as a special case of the
Falkner–Skan equation with the Hartree parameter β = 0. The shape factor
of the Blasius boundary layer is H = 2.56. In Fig. 4.5, eigenmodes of the
Orr–Sommerfeld equation are shown for the Blasius boundary layer with
wave number kδ∗ = 1 and Reynolds number Reδ∗ = 800. These conditions
were chosen due to the possibility of comparison with the solution provided
by Schmid [30, p. 507]. Solutions based on different orders of polynomials N
are also shown.

Figure 4.5: Argand diagram of the complex phase velocity as a solution to the
temporal stability problem.

According to Schmid [30], the eigenvalues (complex phase velocities) of the
Blasius boundary layer, shown in Fig. 4.5, can be divided into two groups.
The first group is the A branch of the modes, which are also called wall modes.
The second group is a combination of the P and S branches and depends
strongly on the numerical method and discretization [30]. The important
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properties of A mode are the small phase velocity cr and the fact that the
mode of the Tollmien–Schlichting wave is always A mode.

The leftmost A branch of the eigenmodes in Fig. 4.5 shows agreement
between all three tested orders of polynomials (N) and the results from the
literature. The boundary-layer flow is stable under these conditions because
all modes in the A branch have a negative imaginary part ci.

The second part (or branch) of this Argand diagram is formed of the
continuous spectrum around cr → 1. It can be seen that, for a high value of
N , the rightmost modes form an almost vertical line. Since the goal is to
obtain modes of Tollmien–Schlichting waves, these rightmost modes are not
especially important in this thesis; therefore, it should be sufficient to use 120
as the order of the Chebyshev polynomial.

A computational procedure can be used to obtain the mode with the highest
growth rate (ci) in the A branch. The method used to find this eigenmode
is based on the phase speed cr of the modes. Since, in the second branch
of the eigenmodes, the phase speed is close to one (or the growth rate has
a larger negative value), the condition used to choose the correct mode can
be formulated as follows: The most unstable/least stable mode of the
boundary flow is the mode with the highest growth or the lowest decay rate ci

and a phase velocity lower than 0.9 (cr < 0.9).

Figure 4.6: Temporal stability of the Blasius boundary layer, i.e., H = 2.56,
β = 0. The curves are iso-curves of constant phase velocity (blue) and constant
growth/decay rate (black).

In Fig. 4.6, the modes for the range of wave numbers kδ∗ and Reynolds
numbers Reδ∗ are shown. This plot is well known due to the neutral curve
that lies between the region of modes with ci > 0 and ci < 0. This neutral
curve is also important for validating the method used. The numerical values
can be found in Appendix B.1, which are comparable to the results in the
literature.
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4.2.3 Spatial Stability

The spatial stability problem concerns the growth of disturbances in space.
For the solution of this problem, the frequency (or angular velocity ω) is
given, and the wave number k (or phase speed c) is assumed to be determined
by the solution of the eigenvalue problem. Unfortunately, there is a lack of
data in the literature that could be used to validate this. However, the points
of the neutral curve are the same for the solution of the temporal and spatial
stability problems, and so validation can be performed against the previously
obtained neutral curve.

The angular velocity ω ∈ R is given and the wave number k ∈ C is found
based on the solution of the eigenvalue problem (4.18). In this equation, the
wave number k is raised to the fourth power. This complicates the solution
because the eigenvalue problem has a fourth-order characteristic polynomial.
Haj-Hariri [88] proposed a transformation to reduce the order of the eigenvalue
problem, as follows:

Φ = ϕ · e−k·η (4.23)

where ϕ is the reduced amplitude function. Substituting Eq. (4.23) into
Eq. (4.18) and applying the chain rule for derivatives leads to the new
discretized Orr–Sommerfeld equation with a reduced power of k:(

(kηUη − ωη)
(
D2 − 2kηD

)
− kη · ∂2Uη

∂η2 + i

Reηδ∗

(
D4 − 4kηD3 + 4k2

ηD2
))

ϕ = 0

(4.24)
The unknown wave number kη now occurs in the Orr–Sommerfeld equation

raised to the second power. This leads to a second-order characteristic
polynomial (with redefined coefficients C0, C1, and C2):

C2 · k2
η + C1 · kη + C0 (4.25)

The redefined coefficients of the characteristic polynomial are as follows:

C2 = 2i · U · D + 4D2

Reηδ∗
(4.26a)

C1 = −2i · ωηD − iUD2 + iU′′ − 4D3

Re
(4.26b)

C0 = i · ωηD2 + D4

Re
(4.26c)

where U′′ is the matrix of second derivatives of base velocity U with respect
to η. Following the approach proposed by Bridges and Morris [82], the
companion matrix method is used:

(A − kηB) =
[
−kηϕ

ϕ

]
(4.27)
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where the matrices A and B are constructed based on the coefficient matrices
C0, C1, and C2:

A =
[
−C1 −C0

I 0

]
(4.28a)

B =
[
−C2 0

0 I

]
(4.28b)

The solution to the generalized eigenvalue problem (Eq. (4.27)) with ma-
trices A and B can be obtained using the same computational method as for
the temporal problem, i.e., the QZ algorithm.2 The obtained eigenfunction ϕ
is then transformed, using Eq. (4.23), to the complex amplitude function Φ.

Spatial Stability of the Blasius Boundary Layer

The spatial stability of the Blasius boundary layer is solved in a similar
manner to the temporal stability. Using the Falkner–Skan boundary-layer
solver with the corresponding parameters, the velocity profile (and the second
derivative) is obtained.

Figure 4.7: Argand diagram of complex phase velocity for the Blasius boundary
layer (i.e., H = 2.56, β = 0) for three different cases.

The validation cases were chosen based on the results of Jordinson [89] for
three different Reynolds numbers and angular velocities. Solutions of spatial

2The same method zggev of the LAPACK library is used to obtain the results. However,
the size of the matrices is 2(N − 1) × 2(N − 1), so the solution requires more computational
time than in the case of temporal stability.
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stability for these cases are shown in Fig. 4.7 in the Argand diagram of the
normalized complex phase velocity c.

In Fig. 4.7, all the computed modes are shown. In all three cases, there is
a distinct point (marked by a filled circle in the plot) that corresponds to the
most unstable (ci > 0), or least stable (ci < 0) mode.

It is possible to create a diagram with the maximum growth/decay rate of
the most unstable (or least stable) disturbance in a manner similar to that
used for the temporal stability case. Ranges of ωδ∗ and Reδ∗ were chosen
and this diagram is shown in Fig. 4.8 for the Blasius boundary layer. This
diagram can also be obtained for different shape factors, even for the shape
factor of the separated laminar boundary layer. Gleyzes et al. [90] predicted
marginal stability for values of the shape factor up to 35.94.

The selection of the most unstable (or least stable) mode, which is important
to establish the marginal stability, is based on the phase velocity cr. The real
part of the phase velocity of the disturbance is assumed to be in the range
cr ∈ (0, 0.9).

Figure 4.8: Spatial stability of the Blasius boundary layer, i.e., H = 2.56, β = 0.
The curves shown are iso-curves of constant phase velocity (blue) and constant
growth/decay rate (black).

The corresponding eigenfunctions (or amplitude functions) are also ob-
tained. However, the amplitude functions are not so well-defined. The
Orr–Sommerfeld equation (2.39) is a homogeneous linear ordinary differential
equation, which means that if Φ(y) is a solution, then κ·Φ(y) is also a solution,
where κ is an arbitrary non-zero constant κ ∈ C. For the rest of this thesis,
the notation Φ(y) is used to refer to the solution for which the condition
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max |Φ(y)| = 1 is satisfied (i.e., it is the eigenfunction normalized to its maxi-
mum absolute value3). For example, Jordinson [89] chooses the maximum
value of the real part of the eigenfunctions to be one; however, this choice is
ambiguous because an arbitrary complex number x + i · y can be multiplied
by a complex constant κ such that the equation x + i · y = κ · (y + i · x) is
satisfied, which swaps the magnitudes of the real and imaginary parts. How-
ever, by using the absolute value for subsequent calculations, this ambiguity
is removed, because the absolute value of the complex number x + i · y is the
same as that of y + i · x.

The normalized absolute value of the amplitude function for the Blasius
boundary layer is shown in Fig. 4.9. The eigenfunctions correspond to the
least stable/most unstable modes of disturbance, which are shown in the
Argand diagram in Fig. 4.7. Jordinson [89] obtained a similar result with the
maximum value of the amplitude functions slightly below 2δ∗.

Figure 4.9: Amplitude functions of the least stable/most unstable modes of the
Blasius boundary layer, i.e., H = 2.56, β = 0, for three different cases (with the
same conditions as in Fig. 4.7).

4.2.4 Conclusion

With the knowledge of the velocity profile (or the parameters of the Falkner–
Skan velocity profile—the shape factor H, the displacement thickness δ∗, and
the velocity outside the boundary layer Ue) the spatial stability can be solved
at a given point of the flat plate (or airfoil). This method to solve the spatial
stability problem is designed using the Chebyshev collocation method. The

3Since Φ(y) ∈ C, the absolute value refers to the absolute value of the complex number.
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results are validated against the available data. The neutral modes of the
Blasius boundary layer calculated from the temporal and spatial problem are
compared, which is important to validate the chosen approach (the comparison
is presented in Appendix B.1). The relative difference between the temporal
and spatial solutions is below 0.2 %, which mostly caused by the rounding
error.

The method of selecting the most unstable mode (i.e., selecting the mode
of the Tollmien–Schlichting wave) or the least stable mode is proposed. This
approach is based on the value of the phase velocity of the disturbance. The
method of normalizing the amplitude function is described to avoid ambiguity
in the following solutions.

4.3 Spatial Instability in the Boundary Layer of an
Airfoil

In the previous section, the local stability of the boundary layer was solved.
In real scenarios, the boundary layer develops from the leading edge to the
trailing edge of a streamlined body.4 The airfoil is of finite length, and the
usual convention is to use the symbol c to represent the chord length; however,
to avoid confusion with the complex phase velocity (and the speed of sound),
the symbol L will be used instead.

The values of the three local parameters described in Section 4.2 must be
obtained along the contour of the streamlined body, which is assumed to
be an airfoil. For airfoils, the widely used and validated software package
XFOIL is available [25]. This software uses a panel method with a coupled
boundary-layer model [91] to obtain the characteristics of the airfoil and the
parameters of the boundary layer.

For validation and demonstration purposes, the well-known NACA 0012
airfoil will be used. For this airfoil, empirical relations are available for
aeroacoustic noise [41] and many of the airfoil’s characteristics are also
known.

4.3.1 Boundary-Layer Development

The boundary layer on the leading edge is always in a laminar state. Under
normal conditions, the laminar boundary layer increases in thickness along
the surface. The transition of the boundary layer to the turbulent state was
described in Section 2.6. An example of the development of the boundary-
layer parameters of NACA 0012 at zero angle of attack is shown in Figs. 4.10,
4.11, and 4.12.

In Fig. 4.10, the distribution of the shape factor along the NACA 0012
airfoil (at zero angle of attack) is shown. With the reference to Section 4.1.1,
it can be seen that for all Reynolds numbers displayed, the laminar separation

4A streamlined body is assumed because, in the aeroacoustics of a bluff body, the
boundary-layer noise is negligible in comparison to the noise caused by the wake.

47



...................... 4.3. Spatial Instability in the Boundary Layer of an Airfoil

bubble is present (i.e., H > 4). The Reynolds number 5 000 is very low, and
corresponds approximately to the freestream velocity 0.7 m · s−1 for an airfoil
of 0.1 m chord length under standard atmospheric conditions.

Figure 4.10: Shape factor along NACA 0012 for four different Reynolds numbers
(5 000, 10 000, 50 000, and 100 000) based on the chord length L. Obtained using
XFOIL.

Figure 4.11: Displacement thickness along NACA 0012 for four different
Reynolds numbers (5 000, 10 000, 50 000 and 100 000). Obtained using XFOIL.

The other input parameter needed for the aeroacoustic analysis of the
boundary layer is the distribution of displacement thickness along an airfoil.
An example of such a distribution for the NACA 0012 airfoil is shown in

48



...................... 4.3. Spatial Instability in the Boundary Layer of an Airfoil

Fig. 4.11.
The last important parameter, according to the discussion in Section 4.2,

is the distribution of the velocity outside the boundary layer Ue(x). For
the range of low Reynolds numbers used in the previous examples, this
distribution does not change significantly with Reynolds number; therefore,
in Fig. 4.12, a distribution of the velocity along the airfoil is shown only for
one Reynolds number.

Figure 4.12: Velocity outside the boundary layer along NACA 0012 for a
Reynolds number of 50 000. Obtained using XFOIL.

Using XFOIL to obtain the input parameter for the method described in
Section 4.1 is not only viable, but convenient and reliable [92]. The other
approach is to obtain these data using different boundary layer solvers or
experimental measurements. This is also the case for the Falkner–Skan velocity
profiles. While it is convenient to use them, the following procedures and
derivations are independent of the source of the boundary-layer parameters
and velocity profiles.

4.3.2 Linear Perturbation

It is assumed that the disturbance moves slowly along the parallel axis, so
that some derivatives can be neglected. The perturbation stream function
(Eq. (2.36)) can be modified for a non-constant wave number:

Ψ(x, y, t) = Φ · e
i

(∫ x

x0
k·dx−ωt

)
(4.29)

where Φ is the local amplitude function, k is the complex wave number, and
ω is the angular velocity, which is related to the frequency f by

ω = 2 · π · f (4.30)
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4.3.3 Growth Rate

Jaffe et al. [93] proposed an amplification factor for the fixed frequency
disturbance as a means to predict the transition to the turbulent state. This
is commonly known as the eN method. In this approach, when the growth
rate reaches some defined value (i.e., eNcrit), the boundary layer’s state is no
longer considered to be laminar.

The amplification factor for a constant ω is given by the following equation
(which involves the real part of the exponential function in Eq. (4.29)):

A = exp
(

−
∫ b

a
ki(x)dx

)
(4.31)

where ki(x) is the imaginary part of the local wave number, obtained using
the method described in Section 4.2.3. In a similar manner, Schubauer [94]
defined an amplification rate for a fixed (real) wave number (i.e., for the
temporal growth rate).

4.3.4 Transition in a Laminar Separation Bubble

As discussed in the previous chapters, the boundary-layer transition can occur
in a laminar separation bubble. This means that the Falkner–Skan velocity
profiles can no longer be used, and neither can the linear instability solution.
Predicting the behavior of the initially linear disturbance after passing to the
turbulent part of the boundary layer could be the subject of a future study.

Kingan and Pearse [53] proposed using XFOIL and Falkner–Skan velocity
profiles to predict the peak frequency based on the maximum growth rate A
at the trailing edge, and other tonal frequencies based on acoustic feedback
model of Tollmien-Schlichting waves. They presented four case studies of
NACA airfoils; however, these case studies have relatively high velocities
(over 20 m/s, while the chord length is around 0.1 m) and it is unclear if there
was a transition to a turbulent boundary layer or whether their measurement
stayed in the region of linear instabilities. There is no further description of
how the potential occurrence of a turbulent boundary layer was handled in
their work.

4.4 Noise Source in a Laminar Boundary Layer

The noise source in the boundary layer itself can be described using Eq. (3.9).
This can be written in terms of velocities u and v, and spatial coordinates x
and y, as

Q(x, y, t) = 2ρ∞
∂U

∂y

∂v′

∂x
+ ρ∞

(
∂u′

∂x

)2
+ 2 · ρ∞

∂u′

∂y

∂v′

∂x
+ ρ∞

(
∂v′

∂y

)2
(4.32)

Jordinson [89] evaluated the Reynolds stress in terms of amplitude functions
of the perturbation stream function. The value of the acoustic source term
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Q can be evaluated in a similar manner. According to Schlichting and
Gersten [21, p. 428], only the real part Ψr of the perturbation stream function
Ψ(x, y) = Ψr(x, y) + i · Ψi(x, y) has a physical meaning. Substituting the
perturbation velocities u′ and v′ as functions of the perturbation stream
function, Eq. (2.37), into Eq. (4.32) leads to the following equation:

Q(x, y, t) = −2ρ∞
∂U

∂y

∂2Ψr

∂x2 + 2ρ∞

(∂2Ψr

∂x∂y

)2

− ∂2Ψr

∂x2
∂2Ψr

∂y2

 (4.33)

The complex amplitude function is Φ(x, y) = Φr(x, y) + i · Φi(x, y). For the
spatial stability problem, the components of the complex wave number are
k(x) = kr(x) + i · ki(x).

This first major simplification relies on the assumption that the changes in
the amplitude function Φ(x, y) and wave number k(x) with the coordinate x
are negligible, and therefore their partial derivatives with respect to x are
zero. Then, the second derivatives of the stream function are as follows:

∂2Ψr

∂x∂y
= A ·

[(
−kr · ∂Φi

∂y
− ki · ∂Φr

∂y

)
cos (ωt − φ(x))

]
+

A ·
[(

kr · ∂Φr

∂y
− ki · ∂Φi

∂y

)
sin (ωt − φ(x))

]
(4.34a)

∂2Ψr

∂x2 = A ·
[(

k2
rΦr − k2

i Φr − 2kikrΦi

)
cos (ωt − φ(x))

]
+

A ·
[(

k2
rΦi − k2

i Φi + 2kikrΦr

)
sin (ωt − φ(x))

]
(4.34b)

∂2Ψr

∂y2 = A ·
[(

∂2Φr

∂y2

)
cos (ωt − φ(x))

]
+

A ·
[(

∂2Φi

∂y2

)
sin (ωt − φ(x))

]
(4.34c)

Here, two substitutions have been made for the phase change φ(x) of the
perturbation wave and the amplification factor A:

φ(x) =
∫ x

x0
kr(x)dx (4.35)

A(x) = e
−
∫ x

x0
ki(x)dx (4.36)

where x0 is the position of the first instability (i.e., the first occurrence of
ci > 0 from the leading edge). The disturbance travels with velocity cr,
which is always greater than zero. This means the points of decay are only
important downstream from the initial disturbance. (If there is a region after
the initial disturbance in which ci < 0, it can eventually lead to mitigation of
the original disturbance.)
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The boundary layer is under steady boundary conditions and the spatial
stability analysis is established for a given frequency 2πω. The root-mean-
square value of the expressions (4.34) for one corresponding period can be
found: (

∂2Ψr

∂x∂y

)
RMS

= 1√
2

· A ·
∣∣∣∣∂Φ
∂y

∣∣∣∣ · |k| (4.37a)

(
∂2Ψr

∂x2

)
RMS

= 1√
2

· A · |Φ| · |k| (4.37b)

(
∂2Ψr

∂y2

)
RMS

= 1√
2

· A ·
∣∣∣∣∣∂2Φ
∂y2

∣∣∣∣∣ (4.37c)

Equations (4.37) differ from each other by the derivative of the absolute
value of the amplitude function. Using this RMS analysis to obtain some
insight into the terms in the source equation (4.33) leads to the following
proportionality assumptions:

∂2Ψr

∂x∂y
∝ A ·

∣∣∣∣∂Φ
∂y

∣∣∣∣ · |k| (4.38a)

∂2Ψr

∂x2 ∝ A · |Φ| · |k| (4.38b)

∂2Ψr

∂y2 ∝ A ·
∣∣∣∣∣∂2Φ
∂y2

∣∣∣∣∣ (4.38c)

The complex amplitude function is normalized by its maximum absolute
value |Φ|, and the absolute values of the first and the second derivatives of
the amplitude function are considered to be of similar magnitude to |Φ|. The
amplification factor A depends on its exponent, which is negative for ki > 0
(i.e., a stable mode) and positive for ki < 0 (i.e., an unstable mode). This is
significant because A < 1 for stable modes and A > 1 for unstable modes.
The first term of Eq. (4.33) depends on the first power of A, so it is the
dominant term of the equation for the stable region, whereas the second and
third terms are the dominant terms for the unstable modes. The first term is
in fact the linear instability version of the mean shear–turbulence interaction
term of Eq. (3.9), so it is more appropriate to call it the mean shear–linear
instability interaction term.

To obtain a time-dependent value of the simplified source term Q(x, y, t),
the equations (4.34) can be substituted into Eq. (4.33). The time-dependent
source term can be used to obtain information on the acoustic pressure in
the far field (for example, using the nonfield method of Kulish et al. [A2]).
However, such a solution also requires taking into account sound reflection on
the surface and scattering at the trailing edge, which would require further
computational models to be established. To evaluate the frequency footprint,
it could be helpful to obtain a comparable value for the source.
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The root-mean-square value of Q(x, y, t) for one period corresponding to a
given frequency can be found:

Q(x, y)RMS =

√
ω

2π

∫ 2π
ω

0
(Q(x, y, t))2 dt (4.39)

By substituting the derivatives of the stream function into Eq. (4.39), a full
expression of the point source strength is obtained. There is no analytical
solution for this integral in the general form, so the solution must be obtained
numerically for each point in the discretized boundary layer. However, this
is a key result of this thesis: it expresses the linear instability noise of the
boundary layer in the form of a point acoustic source in the boundary layer.

Figure 4.13: Field of acoustic sources in the boundary layer Q(x, y)RMS of
NACA 0012 with 6.62 m/s freestream velocity and perturbation frequency 293 Hz.
The red curve is the local boundary-layer displacement thickness (δ∗/δLTE) and
the green curve is the local conventional boundary-layer thickness (δ/δLTE). The
displacement and conventional thicknesses are both normalized to the boundary-
layer length scale at the trailing edge (δLTE).

In Fig. 4.13, results are presented for the solution of the acoustic source field
defined by Eq. (4.39) under one of the specified boundary conditions. The
boundary-layer length scale at the trailing edge (as defined by Eq. (4.3)) is
used as the length scale for this figure. The results show, as expected, that the
most important acoustic source is near the trailing edge. The displacement
(red curve) and conventional (green curve) boundary-layer thicknesses are
also shown. The displacement thickness is very similar to the position of
the maximum value of the acoustic source (QRMS) for each span station,
while the conventional thickness behaves as an envelope curve for the location
of the significant part of the acoustic source field. This could explain the
finding of Brooks et al. [41] that using the conventional thickness for the
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Strouhal frequency scaling produces better results than with the displacement
thickness.

For comparison of the different boundary-layer states (e.g., solutions of the
Orr–Sommerfeld equation for different frequencies), the following approach
is established. The influence of acoustic sources on each other is neglected.
However, the RMS value of the source strength cannot be summarized over
the entire boundary layer, because with the x-coordinate there is also a
phase shift (based on Eq. (4.35)). A comparison method could be established
using some artificial variable that summarizes the RMS value only over the
y-coordinate (i.e., the thickness of the boundary layer). This would provide
some insight into the strength of the ideal acoustic source, though without
direct physical meaning.

4.4.1 Tonal Noise Frequency Model

To find the peak frequency of boundary-layer instability noise, it is necessary
to evaluate Eq. (4.39) for a range of frequencies. This requires evaluating the
spatial instability Orr–Sommerfeld problem to obtain the wave number k, the
amplitude of the growth of the instability A, and the amplitude function Φ for
the number of span stations along the surface and the discretized boundary
layer.

Proposed Frequency Model of Laminar Boundary-Layer Noise

For the given boundary-layer conditions and constant frequency, the
maximum value of the acoustic source term in the boundary layer can
be found:

max
x

(∑
y

Q(x, y)RMS∆y

)
ω

= F(ω) (4.40)

The peak frequency of the boundary layer instability is the frequency
for which the expression in (4.40) is maximized.

This model is derived without any assumptions regarding refraction, reflec-
tion, or scattering of the sound wave due to the presence of the solid boundary.
Hence, the magnitudes of the RMS values from the source-term model are
not directly comparable to the measured spectrum. It is also important to
note that the function F has no physical meaning and is only used to predict
the frequency with the strongest source terms.

Fig. 4.14 compares the method of maximal amplification of Tollmien–
Schlichting waves at the trailing edge (i.e., the maximum of A(xTE)) and the
proposed method (Eq. (4.40)) based on the acoustic sources. The proposed
method predicts a higher dominant frequency.

54



........................... 4.4. Noise Source in a Laminar Boundary Layer

Figure 4.14: Comparison of the proposed tonal model with the model of the
maximal growth of Tollmien–Schlichting waves for velocity 6.62 m/s (Reynolds
number ReL = 44143).

It is also important to note that the model of point sources cannot be
used directly to evaluate the acoustic pressure in the far field (i.e., the sound
pressure level), to determine whether the emitted noise is audible. This is
due to one of the properties of the homogeneous Orr–Sommerfeld equation
(described in Section 4.2.3), that any multiple of a non-trivial solution is also a
solution. This leads to the problem of the magnitude of the initial disturbance,
i.e., the magnitude of the emitted sound depends on the magnitude of the
velocity perturbation. Therefore, it is suitable to use this method for the
frequency comparison; however; it cannot be used to evaluate the acoustic
pressure in the far field and determine whether the sound is audible.

In Section 3.2.1, the acoustic feedback caused by a sound source near the
trailing edge was described. According to that literature survey, the acoustic
feedback drives the generation of multiple discrete tones connected to the
main tone.

4.4.2 Conclusion

The source model for the noise in the boundary layer based on the perturbation
stream function are proposed in Eq. (4.39). This equation only describes the
source of noise, without any acoustic effects caused by the presence of the solid
wall. This means that there is no verification that the sound source is audible
and is present in the acoustic far-field noise spectrum. This acoustic source
model is used to predict the dominant acoustic frequency of the boundary
layer caused by linear instabilities. Although the aerodynamically generated
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noise could be connected to the Tollmien–Schlichting waves, this does not
necessarily mean that the frequency of the dominant sound source is the
same as the frequency of the most amplified Tollmien–Schlichting waves. As
Eq. (4.39) shows, the noise source depends not only on the amplification
factor of the Tollmien–Schlichting waves, but also on their wave number and
the magnitude of the perturbation. In the proposed model, the magnitude of
the perturbation is normalized to its maximum absolute value (the motivation
for this normalization was explained in Section 4.2.3). This magnitude of
perturbation is influenced by the outer flow (i.e., by the turbulence intensity
of the freestream) and cannot be expressed directly.

This model of the acoustic sources incorporates only the acoustic source
above the surface. An acoustic source behind the trailing edge can be more
powerful than those in the proposed boundary-layer model. An acoustic
source in the wake is expected to be connected with acoustic sources in the
boundary layer by frequency; i.e. the sources in the boundary layer are the
origin of the acoustic source in the wake (for the laminar boundary-layer
instability noise). This assumption makes the proposed model consistent
with the findings of Desquesnes et al. [52], or with the trailing-edge treatment
in the experimental measurement of Chong et al. [56]. This is also another
reason why the exact value of the magnitude of the acoustic sources in the
boundary layer is not the primary focus of the proposed model. This theory
can also offer an extension of the proposed model to incorporate the other
side of the airfoil. In that case, the acoustic source in the wake should be
influenced by the acoustic sources from both the pressure and suction sides
of the airfoil.

A further validation of the proposed method is presented in Chapter 6,
where it is compared with the method of maximal amplification of Tollmien–
Schlichting waves, the empirical model of Brooks, Pope, and Marcolini, and
experimental data obtained using the method described in the following
Chapter 5.

4.5 Acoustic Feedback

As an acoustic feedback model, the equation proposed by Arcondoulis et
al. [61] is used,

fn(Re, α) = cr(Re, α)
LF (Re, α)

(
n + 1

2

)(
1 + cr(Re, α)

c∞ − U∞

)−1
(4.41)

The convective velocity cr can be obtained from the solution of the stability
problem as the real part of the complex phase velocity corresponding to the
main frequency. The convective velocity depends not only on the Reynolds
number and the angle of attack, but also on the frequency.

The freestream velocity U∞ is known, as is the speed of sound c∞. However,
the feedback length LF is subject to further discussion. Arbey and Bataille [47]
assumed it to be the distance between the maximum velocity point and the
trailing edge. Arcondoulis et al. [61] theorized that this length should be the
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distance between the laminar boundary-layer separation point and the noise
source behind the trailing edge. They proposed an empirical method to predict
ladder frequencies based on guessing n as an integer with feedback-length
constraints below the length of the chord.

The empirical method can also be based on the frequency difference because,
based on the Tam feedback model (which is the foundation for the other
feedback models), the difference between frequencies is the same for a given
velocity. This frequency difference can be described using Eq. (4.41) and the
definition of ∆f = fn+1 − fn:

∆f = cr

LF

(
1 + cr(Re, α)

c∞ − U

)−1
(4.42)

However, the feedback length is still not well defined. Equation (4.42) is
used in Section 6.2 in an inverted way to obtain the feedback length based
on the measured frequency difference.
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Chapter 5
Experiment

The experimental validation of the theoretical findings of the aeroacoustic
(frequency) signature of the boundary layer is carried out on the well-known
NACA 0012 airfoil. This choice of airfoil is based on the possibility of
validating the simulated solution and eventually extending the set of measured
data for future use.

Aeroacoustic measurements are usually conducted in a special wind tunnel,
which is designed to produce low background noise and to be anechoic [12].
However, for the required wind speed (up to 15 m/s, which is based on the
Reynolds number for chord length 0.1 m), such a facility is not available in
the Department of Fluid Dynamics and Thermodynamics at FME CTU in
Prague, so a substitute measurement method is proposed in this chapter.

The main goal is to obtain the frequency footprint of one NACA 0012 airfoil
for different freestream speeds. These measurements should be sufficient to
obtain a comparison with simulated data and with the empirical model of
Brooks, Pope, and Marcolini [41]. The chord length of the designed test model
is 100 mm and the span is 390 mm. The airfoil has end plates to minimize
the velocity in the third direction.

5.1 Wind Tunnel

Measurements are conducted in the low-speed wind tunnel at the Department
of Fluid Dynamics and Thermodynamics at FME CTU in Prague. This
wind tunnel was built in 2015 and has no special modification for acous-
tic measurement. An analysis of the possibility of some limited acoustic
measurement was published in 2019 by Suchý [A3]. This analysis shows
higher low-frequency background noise in the wind tunnel with an empty test
section; however, by using the method of spectral subtraction, it should be
possible to obtain reliable frequency values and estimates of the corresponding
magnitudes [95]. Another problem is the presence of background noise at
4 kHz and its harmonic frequencies, probably caused by the fluctuating core
of the electric engine that drives the wind tunnel (the frequency of 4 kHz is
the switching frequency of the variable-frequency drive) [A3]. These factors
must be taken into consideration during the design of the experiment and in
processing and evaluating the results.
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5.2 Measurement Methods

The main requirements for the desired measurement are to capture very
small, weak, and rapid changes in either the velocity or the pressure flow
field. Methods based on hot-wire anemometry can provide sufficiently fast
responses and sensitivity to small changes in the velocity field. However,
placing a hot-wire anemometry probe (or any probe) inside the flow field
near the trailing edge causes a break-down of the tonal noise emitted by the
airfoil. This leads to the conclusion that a non-intrusive method must be
used, because the effects of intrusive methods on acoustic emission are not
fully understood.

The second method considered is the measurement of static pressure fluctu-
ations on the airfoil surface. Using a small electret microphone, preliminary
tests were conducted that showed promising results; therefore, further mea-
surements were conducted using this approach.

5.3 Measurement Setup

The measurement of static pressure fluctuations was performed using electret
microphones. Due to the background noise in the wind tunnel, a modified
measurement approach was established based on measuring the acoustic pres-
sure on the airfoil surface, similar to pinhole measurement of the fluctuating
turbulence pressure [12]. A small electret microphone is placed directly below
the surface of the airfoil, which has a hole matching the diameter of the hole
in the microphone capsule. This microphone setup is shown in Fig. 5.1a. The
pinhole diameter is 0.9 mm, which should yield a lower frequency resolution
for low-wavelength waves, so the microphone should primarily capture the
acoustic noise. It is assumed that the wavelength of the sound is much
longer than the scale of the originating structures. This assumption is based
on the structure’s convective velocity, which is assumed to be around half
the freestream velocity. So, for freestream velocities up to 15 m · s−1, the
convective velocity is approximately 100 times slower than the speed of sound.
If the frequency of the flow structure is the same as the frequency of the
sound, the sound wavelength should be 100 times higher than the scale of
the flow structure. For the purpose of this measurement, it is desirable to
obtain acoustic waves, rather than fluctuating static pressure in the boundary
layer. In the proposed measurement method, three microphones are placed in
the surface of an airfoil test segment; see Fig. 5.1b. These microphones are
placed in the top surface of the airfoil at 55 %, 68 %, and 80 % of the chord
length from the leading edge.
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(a) : Cross-sectional illustration of
the positioning of the microphone
capsule.

(b) : The central part of the airfoil
test segment.

Figure 5.1: Positioning of the microphones inside the airfoil.

To verify that the captured frequency spectrum is of acoustic origin, two
reference microphones are placed outside the airflow. (They are also important
for the evaluation of the potential effects of the airflow on the microphone
itself.) The positioning of the microphones is also important because, in some
locations, a dominant frequency could be distorted by the effects created on
the other side of an airfoil. This is similar, for example, to vortex shedding
behind a cylinder, for which there is a dominant frequency twice as high in
the centerline downstream than elsewhere [A4].

List of Main Components

The main data acquisition (DAQ) unit is NI cDAQ-9174, which provides
slots for 4 NI DAQ modules. The raw electrical signal acquired is the voltage
(from microphone probes), so the first two modules are chosen to capture
the voltage with a high sampling rate per channel. The third slot is used
for a module dedicated to recording the current electrical signal from the
pressure transducer of a Pitot-static tube (also known as a Prandtl probe).
The Pitot-static tube is used to calibrate the airspeed in the wind tunnel.

An overview of the modules used in the NI cDAQ-9174 chassis is as follows:. NI 9250: 2-channel, 102.4 kS/s/ch, ±5 V. NI 9230: 3-channel, 12.8 kS/s/ch, ±30 V. NI 9203: 200 kS/s, ±20 mA

The setup consists of 5 microphones. Three electret microphones are built
inside the airfoil surface, and two are placed outside the air stream as reference
microphones. In the remainder of this thesis, the microphones are referred to
as follows:.Mic A: Microphone in the airfoil surface at 55 % of the chord length.Mic B: Microphone in the airfoil surface at 68 % of the chord length

60



..................................... 5.3. Measurement Setup

.Mic C: Microphone in the airfoil surface at 80 % of the chord length.Ref A: Free-field microphone above the leading edge outside the airflow.Ref B: Free-field microphone outside the airflow

5.3.1 Free-Field Microphones Setup

For the reference sound measurement outside the airflow, the Microtech Gefell
M370 was chosen. This is a free-field omnidirectional constant-current power
electret microphone. The nominal sensitivity of this microphone model is
12.5 mV/Pa. The microphone with its casing is shown in Fig. 5.2.

Figure 5.2: Free-field Microtech Gefell M370 microphone.

Both NI modules, NI 9250 and NI 9230, can power this type of microphone,
and therefore it is possible to connect this microphone directly to the data
acquisition module. Field microphone sensitivity calibration was performed
using the Microtech Gefell Kalibrator 4011, which conforms to IEC 60942
Class 1, and the CM-C200 SPL Meter Calibrator, which conforms to IEC
60942 Class 2.

5.3.2 Airfoil Microphones Setup

Particular attention was given to the choice of microphones within the airfoil.
One of the criteria was price, because it is assumed that the microphone is
permanently mounted to the airfoil and cannot be removed without damaging
the airfoil section or the microphone itself. The technical criteria were the
dimensions, frequency response, and sensitivity. Based on all these criteria,
the small electret microphone CMC-4015-25L100 was chosen; see Fig. 5.3.
This microphone was first applied to measurements of surface pressure spectra
by Suchý et al. [A5].

Figure 5.3: CMC-4015-25L100 microphone.
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The manufacturer, CUI Devices, provides information [96] on the nominal
sensitivity −25 dB with reference value 0 dB = 1 V/Pa and standard operating
voltage 3 V, which can be easily converted to the units of mV/Pa by analogy
to Eq. (2.46):

S [mV/Pa] = 10
S [dB]

20 (5.1)

Using this equation, the nominal sensitivity of this microphone is found to be
50.12 mV/Pa, which is relatively high for such a device. Using the microphone
calibrator, it was found that the value from the datasheet is not correct. The
correct sensitivity lies in the range of 32 mV/Pa to 35 mV/Pa, which is still
high enough for use without a preamplifier between the microphone and the
NI DAQ module.

The datasheet [96] also contains information on the microphone’s RMS
self-noise, which is 32 dbA, which can be converted to an acoustic pressure of
10−4 Pa. This value is low enough to be undetectable against the background
noise. The maximum value is not given; however, it can be reasonably
assumed that the maximum value is at least 114 dB (i.e., 10 Pa).

Figure 5.4: The electrical circuit used to power the electret microphones with
a low-pass filtered power supply.

The chosen electret microphone requires a bias voltage. The basic electrical
measurement circuit is provided by the manufacturer in the datasheet [96];
this is a standard circuit used to supply a bias voltage to electret microphones.
The bias voltage should be as free from electrical noise as possible because
any noise in the bias voltage would be measured in the output signal. A
modified measurement circuit was designed; see Fig. 5.4. This extended
circuit was originally designed for the measurement of the turbulence pressure
spectra in [A5]. To reduce the noise in the supply voltage, a low-pass filter
with a cutoff frequency of approximately 1 Hz was used (R1 = 1.1 kΩ and
C1 = 100 µF):

fc = 1
2πR1C1

= 1.45 Hz

The capacitor C2 = 1 µF was chosen based on the original circuit in the
datasheet [96]. This capacitor acts with the resistances R1 and R2 as a
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high-pass filter with cutoff frequency

fc = 1
2π(R1 + R2)C2

= 72.34 Hz

The high-pass filter does not cut off the frequency signal sharply below fc;
rather, it gradually attenuates the frequency signal below the cutoff frequency.
Therefore, the measurement should be reliable for frequencies above 72 Hz.

The measurement circuit was built four times on a stripboard for four
measurement channels; see Fig. 5.5. Tantalum capacitors were used and the
circuits were powered with a 3 V battery pack to avoid electrical noise from a
switching power supply1 or any other transformer connected to the laboratory
electrical network.

Figure 5.5: The stripboard with the electrical circuit for the electret micro-
phones.

Figure 5.6: Electret microphones inside the test airfoil segment.
1A switching power supply, which are now quite common, would be a poor choice. As the

name suggests, the supply power is switching, so there would be some unwanted frequencies
caused by the power supply.
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The whole measurement chain was calibrated using the field microphone
calibrator with RMS pressure fluctuations of 1 Pa and 10 Pa at 1 kHz. The
microphones were built inside the tested airfoil segment; see Fig. 5.6. The
surface of the tested segment seems to have some roughness in the figure;
however, this is only a visual artifact, and the surface was smoothed out. The
airfoil segment was printed using a Prusa SLA 3D Printer.

5.3.3 Velocity Calibration

The used wind tunnel provides information on the airspeed inside the test
section by measuring the change in static pressure at the contraction before
the test section. The speed obtained from this measurement is not entirely
accurate, so for each measurement point, additional velocity calibration
was performed using the Pitot-static probe. The pressure difference of the
Pitot-static probe (i.e., dynamic pressure) was measured using a 984Q.353D
differential pressure transmitter from Beck Sensors. The obtained dynamic
pressure was acquired using NI hardware and recorded for the airspeed
evaluation. Since the Pitot-static probe was placed upstream of the leading
edge of the tested airfoil section (see Fig. 5.7), the measured airspeed can be
used as a reference value for the measured point.

Figure 5.7: The calibration of the airspeed with the Pitot-static probe.
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5.4 Processing of Measured Data

The measured data are obtained in the form of time series. To find the
frequency spectrum, Welch’s [97] method is used. This method was chosen
due to its ability to reject non-periodic arbitrary noise. A comprehensive
study of this method is provided, for example, by Solomon [98]. Welch’s
method is based on splitting data into overlapping segments and calculating
a modified periodogram for each, and then averaging these periodograms.
In this thesis, this method is used only as a tool to obtain results in the
frequency domain. The key parameters of this method are the length of each
time segment, which affects the frequency resolution of the output spectrum,
and the number of overlapping points between segments.

During the measurement campaign, the interim results showed that a
90-second data acquisition interval for each measured point was enough to
obtain information about the frequency peaks. This preliminary study is
shown in Fig. 5.8, where the amplitude–frequency spectra calculated for four
different lengths of the input data from the same test case are presented. The
sampling rate of this measurement is 102.4 kHz. A 1-second interval is not
enough to obtain clear peaks from the recorded noise data. This same effect
of averaging was observed by Solomon [98]. With a longer time interval, the
averaging in Welch’s method would produce less noisy results. This requires
more resources, i.e., more disk space for the measured data and a longer run
in the wind tunnel, and there would be no new information in the produced
data. Therefore, longer measurements are not justified for determining the
peak frequencies.

Figure 5.8: Study of the effect of time interval length for data recording.

The length of each segment in Welch’s method is chosen based on the
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sampling frequency to obtain a resolution of 1 Hz in the frequency domain.

5.4.1 Selected Measured Spectra

The most important information obtained from the proposed measurement
method is an amplitude spectrum under given measurement conditions. From
the amplitude spectrum, it should be possible to evaluate the dominant
frequency. There are three built-in microphones inside the tested segment.
The results from these microphones can be compared not only to each other
but also to the reference microphones outside the airflow.

The main measurement of the previously defined NACA 0012 segment at
zero angle of attack was conducted at 59 velocity points between 2.74 m · s−1

and 30.89 m · s−1. For lower velocities below 7.59 m · s−1, only the dominant
frequency peak is clear in the acoustic pressure fluctuation spectrum. For
higher velocities, it is also possible to analyze the difference between the main
frequency and the secondary tones, as described in Section 4.5.

For a detailed discussion of the main features of the obtained amplitude
spectra, a few results are now selected. The first selected spectrum is shown
in Fig. 5.9. There is a main frequency of 363 Hz, which is dominant in both
the reference and airfoil microphones. There are also some secondary peaks
in the signal from Mic A–C; however, there is no peak in Ref A. The tone of
266 Hz can be considered as the secondary peak.

In the second selected spectrum in Fig. 5.10 at freestream velocity 8.56 m ·
s−1, there is a primary peak at 289 Hz, and a secondary peak at 410 Hz.
These peaks are of similar magnitude, which creates uncertainty about which
of the tones is the dominant one. The peaks could also be contaminated
by the background noise and echoes, so for a more precise examination, an
aeroacoustic facility would be needed.

The spectrum in Fig. 5.11, with the primary dominant frequency at about
522 Hz, was selected for this discussion as it shows significant differences from
the first two selected spectra. There is no sharp dominant frequency peak;
rather, the peak is surrounded by several other peaks. It is also not possible
to determine the secondary tonal peak.

In Fig. 5.12, there is a selected spectrum measured with a freestream
velocity of 14.87 m · s−1. There is a primary peak frequency at about 686 Hz,
and also a second dominant tone at 863 Hz, with pressure fluctuations of
similar magnitude to the dominant frequency.

The last selected spectrum was chosen above the velocity, for which XFOIL
predicted an occurrence of boundary-layer transition (see Section B.2). The
amplitude spectrum of the pressure fluctuations is shown in Fig. 5.13. The
peak frequency in this case is 1429 Hz; there is also a secondary tone with
frequency 1263 Hz.
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Figure 5.9: First selected spectrum at freestream velocity 7.59 m/s.

Figure 5.10: Second selected spectrum at freestream velocity 8.56 m/s.
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Figure 5.11: Third selected spectrum at freestream velocity 10.99 m/s.

Figure 5.12: Fourth selected spectrum at freestream velocity 14.87 m/s.
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Figure 5.13: Fifth selected spectrum at freestream velocity 22.64 m/s.

5.5 Conclusion

The measurement method proposed and used in this thesis mainly provides
information on the peak/main tones in the sound emitted by an airfoil
placed in the wind tunnel test section. This method was designed to be a
substitute method for the measurement method in a special aeroacoustic
facility; therefore, very accurate results are not expected. However, the main
results of this measurement method are information about the dominant
frequency, not its magnitude (the magnitude is highly contaminated by the
sound produced by the running wind tunnel), so these results can be compared
with those obtained from the theoretical approach described in Chapter 4.
This comparison will be presented in the following chapter.

The obtained spectra can also be used to determine the length scale of the
acoustic feedback, which could be considered as a minor result of this thesis.
The determination of the length scale will also be addressed in the following
chapter, which presents and discusses the obtained results.
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Chapter 6
Results and Discussion

This chapter presents the computational results based on the method described
in Chapter 4 and the results of measurements based on the method described in
Chapter 5. The first results presented are the peak/dominant frequencies with
a comparison between the measurements, the theoretical calculations, and the
results based on the empirical method of Brooks, Pope, and Marcolini [41].

6.1 Dominant Frequency of NACA 0012

Dominant frequencies of the laminar boundary-layer instability were obtained
using a novel method of acoustic sources (Section 4.4.1), the method of
maximum instability amplification factor [53], and experimental measurements
(Chapter 5). These results are compared to the empirical model proposed by
Brooks, Pope, and Marcolini (the BPM model).

6.1.1 BPM Empirical Model

The empirical model of peak frequency for the laminar vortex-shedding noise
of NACA 0012 proposed by Brooks, Pope, and Marcolini [41] is as follows:

St = f · δ

U∞
(6.1a)

St =


0.18 (ReL ≤ 1.3 · 105)
0.001756 · Re0.3931

L (1.3 · 105 < ReL ≤ 4 · 105)
0.28 (4 · 105 < ReL)

(6.1b)

This empirical model probably assumes that up to a Reynolds number of
1.3 ·105, the boundary layer is in a laminar state. This assumption is based on
the expectation of frequency characteristics change when the boundary-layer
transition occurs. It will be assumed that the prediction of the Strouhal
number of 0.18 from the BPM method is valid only in the Reynolds number
range for which there is only a laminar boundary-layer state present. The
previously used XFOIL calculation of the boundary-layer parameters predicts
the transition to a turbulent boundary layer in the laminar separation bubble
at a Reynolds number based on the eN criterion. It is possible to set this
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criterion (to at least Ncrit = 11) to obtain the laminar boundary-layer state up
to a Reynolds number of 1.3 · 105. For the Reynolds number, the chord length
is used as the characteristic length, while the conventional boundary-layer
thickness (where 99 % of the velocity is reached) is used for the Strouhal
number. A short discussion on this length scale was presented in Section 4.4
and there is another short discussion in Section 6.1.3.

6.1.2 Tonal Frequency Comparison

Fig. 6.1 presents one of the major results of this thesis. Peak frequencies of
the NACA 0012 laminar boundary-layer instability noise are plotted, obtained
using four different methods (of which two are newly proposed in this thesis).

Figure 6.1: Measured, empirical, and simulation peak frequency for velocities
below the predicted transition in the laminar separation bubble.

The results from the proposed method of acoustic sources match the
frequencies based on the BPM empirical method better than the method of
maximal amplification of Tollmien–Schlichting waves. The experimentally
obtained tones are also plotted in Fig. 6.1. In the range of velocities from
8.56 m · s−1 to 10.02 m · s−1, there are secondary peaks at lower frequencies
than the primary peaks. In the range from 10.50 m · s−1 to 12.93 m · s−1, it is
not possible to clearly determine the secondary peaks. From the velocity of
13.42 m · s−1, secondary peaks can again be identified. Except for the range
from 10.50 m · s−1 to 12.93 m · s−1, the measured tones (either the primary
peak or the secondary peak) match the empirical model of BPM sufficiently
(i.e., the difference is below 8 %).
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The frequency can be scaled to the non-dimensional Strouhal number, using
the conventional boundary-layer thickness as the characteristic length. Scaled
frequency peaks based on the calculated boundary-layer thickness are shown
in Fig. 6.2. The proposed acoustic sources method again shows a smaller
difference from the BPM model than the method of maximal amplification of
Tollmien–Schlichting waves.

Figure 6.2: Measured, empirical, and simulation peak Strouhal number for
velocities below the predicted transition in the laminar separation bubble. The
characteristic length used to define the Strouhal number is based on the conven-
tional boundary-layer thickness.

The experimentally obtained tones (primary and secondary) in Fig. 6.2
have a similar structure to the ladder structure described by Arbey and
Bataille [47]. Either the primary or secondary peak frequency is, in most
cases, close to the constant Strouhal number of 0.18 predicted by the empirical
model.

Table 6.1: The mean value and standard deviation of the obtained results in
the predicted laminar boundary-layer state.

Method Mean Strouhal number Std. deviation
Measurement (primary peak) 0.1662 0.0140
Max. TS wave growth 0.1456 0.0032
Acoustic sources 0.1798 0.0039

To further compare the approaches, mean values and corresponding stan-
dard deviations of the results obtained using each method are presented in
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Table 6.1. This comparison shows that the Strouhal number predictions
from the method developed in this thesis have the lowest relative standard
deviation (2.17 %) in this velocity range.

In Figs. 6.1 and 6.2, the results are shown only for those conditions for which
the XFOIL software does not predict a transition to a turbulent boundary
layer based on eNcrit criteria with Ncrit = 11.

The measurement was carried out for even higher velocities (up to 30.89 m ·
s−1). However, there is no method available to treat linear instabilities
in the turbulent boundary layer (even when assuming that only the linear
instabilities that originated in the laminar state are present), so there are no
computational results for comparison. In addition, no computational method
was used to predict the turbulent boundary-layer thickness; therefore, only
the peak frequency as a function of velocity is presented. In Fig. 6.3, measured
peak frequencies are shown for the entire velocity range investigated, and the
results are fitted to the function a · U b

∞; this function is based on the findings
of Paterson et al. [44].

Figure 6.3: Primary and secondary tones in all measured points

In Fig. 6.3, some velocity ranges can be seen in which there is a swap
between the primary (blue crosses) and secondary (green crosses) peaks
(for example, for measured points between 24 m · s−1 and 26 m · s−1). The
mechanism of the dominant tone selection could be explored in future work.
Fig. 6.3 shows the ladder-type evolution of tonal peaks in the measured
spectrum, similar to the findings of Arbey and Bataille [47].
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6.1.3 Discussion on the Strouhal Number Length Scale

The non-dimensional similarity number used for the frequency scaling is
the Strouhal number, which depends on the velocity, the frequency, and a
characteristic length. As was mentioned in Section 4.4.1, the conventional
boundary-layer thickness creates an envelope around the acoustic sources
in the boundary layer, so this is a rather convenient length scale. However,
the displacement thickness is often used as a length scale for scaling. (For
example, Brooks et al. [41] used the displacement thickness as a length scale
of the other mechanisms of airfoil self-noise.)

Figure 6.4: Dominant tones’ Strouhal number based on two different length
scales: the displacement thickness δ∗ and the conventional thickness δ99.

In Fig. 6.4, a comparison of the Strouhal numbers with two different length
scales is shown. Using the displacement thickness, the mean value of the
Strouhal number is 0.1, which is half the well-known Strouhal number 0.2 of
vortex shedding behind bluff bodies [44].

There is no definite answer to the question of which length scale should
be used for frequency scaling of the laminar boundary-layer instability noise.
The conventional thickness is more closely related to the size of the acoustic
source, while the displacement thickness is more closely related to the position
of the strongest acoustic source (see Fig. 4.13).
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6.2 Acoustic Feedback

The secondary results of the measurements presented in Chapter 5 are the
differences between the dominant frequency and its secondary frequencies,
which are generated by the acoustic feedback loop proposed notably by Arbey
et al. [47]. The measured frequency differences are shown in Table 6.2. For low
velocities, it was not possible to determine these results, and for the velocities
above 20 m · s−1, the convective velocity is not known due to the presence of a
turbulent boundary layer in the computational model. For further evaluation
of the acoustic feedback, it is necessary to obtain the convective velocity of
the instability, which is not possible with the present model in the case of a
turbulent boundary layer.

Table 6.2: Measured difference ∆f between the peak frequency and secondary
frequency.

U∞ [m · s−1] ∆f [Hz]
7.59 97
8.08 112
8.56 121
9.05 131
9.53 139
10.02 147
13.42 157
13.90 164
14.39 170
14.87 177

U∞ [m · s−1] ∆f [Hz]
15.36 183
15.84 190
16.33 197
16.81 202
17.30 207
17.79 212
18.27 143
18.76 146
19.24 151
19.73 150

Equation (4.42) can be used to find an empirical value for the feedback
length based on the measured ∆f and the convective velocity cr obtained
as an average value between the point of the first occurrence of the unstable
linear perturbation and the trailing edge. The predicted numerical values of
the convective velocity are shown in Appendix B.3.

As was stated in Section 4.5, there are multiple theories about the determi-
nation of the acoustic feedback length. In Fig. 6.5, empirical values of the
feedback length are presented based on the method proposed in Section 4.5.
For comparison, the distance from the first occurrence of an instability in
the boundary layer to the trailing edge is shown with blue dots. For cases
with freestream velocity below 10 m · s−1, the experimentally obtained value
of the feedback length is close to the proposed theoretical distance based
on the occurrence of the first instability. In the range from 10.50 m · s−1 to
12.93 m · s−1, it was not possible to determine the secondary tones from the
measured spectra. In the second part of this diagram, between velocities
13.42 m · s−1 and 17.79 m · s−1, the experimentally obtained value of the
feedback length is approximately 6–7 % of the chord length higher than the
distance from the point of the first instability to the trailing edge. In the
last obtained range of velocities between 18.27 m · s−1 and 19.73 m · s−1, the
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feedback length is predicted to be approximately 55 % of the chord length.
Although XFOIL predicts (with Ncrit = 11) the transition to the turbulent

boundary layer for velocities above 20 m · s−1, it should be assumed that the
transition in the experiment occurs at a lower velocity. It can be theorized
that the change in feedback length could be a footprint of the boundary-layer
transition.

Figure 6.5: Feedback length based on experimentally obtained ∆f and the
theoretical feedback length, which is equal to the distance from the first occurrence
of instability to the trailing edge.

Certainly, a possible direction for future work would be to investigate and
validate the acoustic feedback with greater precision. This would require
a specialized aeroacoustic facility to minimize contamination of the mea-
sured data with the background acoustic noise of the running wind tunnel.
Measurements in such a facility could provide clearer information about the
secondary tones and thus the ∆f value used in the formula for the empirical
prediction. This acoustic feedback could be used to develop a non-intrusive
way of examining the boundary-layer state.
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Chapter 7
Conclusions

This thesis is focused on fundamental research into the aeroacoustic charac-
teristics of boundary-layer regimes. In the first part of the thesis, the main
nomenclature and fundamental theory of fluid dynamics are introduced, fol-
lowed by a literature survey and the goals of the thesis regarding the acoustic
noise generated by linear instability in the boundary layer. The second part
of the thesis first develops the relevant theory, including a novel theoretical
model, then validates the proposed model using experimental results.

The novel theoretical model is based on the linear instability theory. The
solution of the Orr–Sommerfeld equation is used to determine the acoustic
source field of one mode within the boundary layer. Then, a method of
comparison of acoustic fields for different frequencies is developed. The
proposed model is compared with the solution of the method of maximal
amplification of Tollmien–Schlichting waves.

For the experimental validation of the proposed theoretical model, a mea-
surement method was established. Since it was not possible to use a specialized
aeroacoustic facility (i.e., a wind tunnel with an anechoic chamber as a test
section), a substitute method was proposed. This was based on measurements
with electret microphones built into the surface of a test segment of a NACA
0012 airfoil. This airfoil was chosen as it offered the strongest prospects of
comparing the theoretical and experimental results with the empirical model
of Brooks, Pope, and Marcolini [41].

The experimental investigation showed that it is possible to obtain reliable
results for the tonal noise even though there is a stronger background noise
in the running wind tunnel. For the reference measurement, two microphones
were placed outside the open test section of the wind tunnel. Since some of
the measured tones were also detectable by the reference microphones, they
were also used to confirm the measured main tones.

The proposed model of acoustic sources was successfully validated against
the obtained experimental data. Furthermore, the proposed model was
compared with the BPM empirical method. Regarding the results obtained
using the theoretical method of acoustic sources, the characteristic length
of the Strouhal number was discussed. The proposed model predicts a
constant Strouhal number for the dominant-frequency solution with either
the conventional or displacement boundary-layer thickness as a characteristic
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length. When using the conventional boundary-layer thickness, the Strouhal
number of the laminar boundary-layer instability noise is 0.18, whereas when
using the displacement thickness, the Strouhal number of the dominant tone
is 0.1. The result with the displacement thickness is rather interesting because
it is half the well-known Strouhal number of the vortex shedding of a bluff
body (e.g., a cylinder).

The experimental results were also used to analyze the acoustic feedback
length. It was possible to obtain this quantity; however, it is rather difficult
to compare these results. The feedback length (and the acoustic feedback
overall) could be investigated in more detail in some future work using a
different experimental approach in an aeroacoustic facility. For example, with
a higher sampling rate, the phase delay between measurement points could
be investigated; however, effort must be taken to prevent the results from
being contaminated with the background noise and echoes.

7.1 Application of the Thesis Results

The main result of this thesis is an acoustic source model of the boundary-layer
instability noise. This noise is essentially tonal noise, which is quite annoying
for humans. The model could be used as the core of a computational software
package for boundary-layer noise. The model could also be extended to an
airfoil under an arbitrary angle of attack and then used as a part of a more
complex computational approach to predict the noise of an arbitrary airfoil.
This would bring the benefit of predicting the tonal noise, which could be
used in an optimization process to avoid undesirable tones.

7.2 Brief Summary of the Thesis Objectives

Recalling the objectives of the thesis in Section 3.3, the following hypothesis
was stated:

In a laminar boundary-layer regime, the acoustic source is created by
a velocity perturbation. If the perturbation is assumed to be of a single
mode, the linear Orr–Sommerfeld equation can be used to estimate the
acoustic source term of Lighthill’s equation for the boundary layer to
obtain the peak tone emitted by the laminar boundary layer.

This hypothesis was confirmed by successfully achieving the constituent
thesis objectives:. Description of the aeroacoustic footprint of a boundary layer experiencing

linear instabilities in a laminar regime before the transition to a turbulent
regime. Theoretical description of the aeroacoustic sources caused by linear

instabilities in the boundary layer
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A theoretical model of point acoustic sources (Eq. (4.33) and
Eq. (4.39)) has been established.. Proposal of a frequency model for the prediction of laminar boundary-
layer instability noise
A tonal noise model has been proposed in Section 4.4.1.. Experimental investigation of the boundary-layer instability noise. Design of an experiment to validate the obtained theoretical results
The proposed experimental approach to obtaining tonal noise fre-
quencies in a non-aeroacoustic facility is described in Section 5.. Further examination of the experimental data—the using the exper-
imental data to determine the acoustic feedback length
The experimental data were studied further. The ladder structure
(in Fig. 6.3) is observed, and these results were utilized to obtain
the acoustic feedback length, which was compared to the distance
from the first occurrence of an instability to the trailing edge in
Section 6.2.. Validation of the proposed model and experimental results. Validation of the proposed theoretical frequency model and experi-
mental results on the NACA 0012 airfoil with the empirical model
An overall comparison of the proposed theoretical model with ex-
perimentally obtained data is presented in Section 6.1.2 together
with a comparison to the BPM empirical model.

The initial hypothesis is confirmed. It is possible to use the linear Orr–
Sommerfeld equation to estimate the source of Lighthill’s equation to estimate
the peak frequency of the laminar boundary-layer instability noise.

The most important contribution of this thesis is the validated model of the
acoustic sources of the laminar boundary layer instability noise, formulated
in Section 4.4.

7.3 Future Work

In the present work, the main focus was on the boundary layer as an acoustic
source. Future work should combine these findings with other measured
boundary-layer parameters (e.g., the boundary-layer thickness). This should
lead to further confirmation of the proposed model of acoustic sources.

The proposed model could also be extended with a (perhaps empirical)
model of the behavior of the linear instabilities when they reach the part of
the boundary layer in the turbulent state. The impact of the linear instability
noise on the overall noise in the presence of turbulent boundary-layer noise
could be investigated.

Another extension of the proposed model of acoustic sources could be based
on estimating the magnitude of the initial velocity perturbation. With this
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estimation and by taking into account the presence of the solid surface, it
should be possible to evaluate the emitted sound in the far field and determine
whether it is audible.

Other future work could focus on acoustic feedback. It was mentioned at
the end of the previous chapter that acoustic feedback has been theoretically
proposed, but experimental data are lacking. Therefore, a new set of experi-
mental data would be useful. The possible connection between the state of
the boundary layer and the acoustic feedback length could also be explored.
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Appendix A
Derivation of the Basic Aeroacoustic
Equations of the Boundary Layer

A.1 Derivation of Lighthill’s Equation

Lighthill’s equation is derived by taking the time derivative of the continuity
equation (Eq. (2.1)),

∂

∂t

(
∂ρ

∂t
+ ∂(ρvi)

∂xi

)
= 0 (A.1)

and subtracting the divergence of the balance of momentum (Eq. (2.2)),

∂

∂xi

(
∂(ρvi)

∂xi
+ ∂(ρvivj + Pij)

∂xj

)
= 0 (A.2)

where Pij = p · δij − τij , resulting in

∂2ρ

∂t2 = ∂2(vivjρ)
∂xj∂xi

+ ∂2Pij

∂xj∂xi
(A.3)

Based on Eq. (2.42), the time derivative of the density fluctuations ρ′ is

∂ρ′

∂t
= ∂ρ

∂t
(A.4)

Substituting Eq. (A.4) into Eq. (A.3) and subtracting c2
∞

∂2ρ′

∂x2
i

from both sides
of the equations leads to

∂ρ′

∂t
− c2

∞
∂2ρ′

∂x2
i

= ∂2(vivjρ)
∂xj∂xi

+ ∂2Pij

∂xj∂xi
− c2

∞
∂2ρ′

∂x2
i

The last term can be rewritten in the following form with the Kronecker
symbol:

∂2ρ′

∂x2
i

= ∂2(ρ′δij)
∂xi∂xj

The final equation is then

∂ρ′

∂t
− c2

∞
∂2ρ′

∂x2
i

= ∂2(vivjρ)
∂xi∂xj

+ ∂2Pij

∂xi∂xj
− c2

∞
∂2(ρ′δij)
∂xi∂xj

(A.5)
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Lighthill’s stress tensor is then defined (based on the right-hand side of
Eq. (A.5)):

Tij = ρvivj − τij + (p′ − c2
∞ρ′) · δij (A.6)

where p′ is the pressure fluctuation relative to the surrounding pressure. Then
Lighthill’s equation is as follows:

∂ρ′

∂t
− c2

∞
∂2ρ′

∂x2
i

= ∂2Tij

∂xi∂xj
(A.7)

A.2 Source Term for the Boundary Layer

The source term of Lighthill’s equation is as follows:

∂2Tij

∂xi∂xj
= ∂

∂xi∂xj

(
ρvivj − τij + (p′ − c2

∞ρ′) · δij

)
(A.8)

For isentropic flow (based on the definition of the speed of sound, Eq. (2.14)),

(p′ − c2
∞ρ′) = 0 (A.9)

For incompressible fluid flow, ρ = ρ0,

∂2Tij

∂xi∂xj
= ρ0

∂2(vivj)
∂xi∂xj

− ∂2τij

∂xi∂xj
(A.10)

For incompressible fluid flow (i.e., ∂vi
∂xi

= 0, based on Eq. (2.3)),

∂2τij

∂xi∂xj
= 0 (A.11)

For isentropic incompressible fluid flow, the source term of Lighthill’s
equation is

∂2Tij

∂xi∂xj
= ρ0

∂2(vivj)
∂xi∂xj

(A.12)

The following identity can be used:

∂2(vivj)
∂xi∂xj

= ∂vj

∂xi
· ∂vi

∂xj
(A.13)

The decomposition of the velocity to the mean velocity and fluctuating velocity
is

vi = Vi + v′
i (A.14)

The assumptions for the two-dimensional flow of the boundary layer (the
x1-axis is in the direction parallel to the flow and x2 is in the direction normal
to the wall) are as follows:. V2 ≪ V1: the mean velocity in the normal direction is negligible
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. V1 = V1(x2), ∂V1/∂x1 = 0: the mean velocity in the parallel direction is
a function only of x2

Based on this analysis, the components of vi are

v1(x1, x2) = V1(x2) + v′
1(x1, x2) (A.15)

v2(x1, x2) = v′
2(x1, x2) (A.16)

Using these substitutions, Eq. (A.12) can be written in the following form:

∂2Tij

∂xi∂xj
= 2 · ρ0 · ∂V1

∂x2
· ∂v′

2
∂x1

+ ρ0 ·
∂v′

j

∂xi
· ∂v′

i

∂xj
(A.17)
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Appendix B
Supplementary Results

B.1 Neutral Curve of the Blasius Boundary Layer

Table B.1 was generated using the method of solving the Orr–Sommerfeld
equation described in Section 4.2. The table presents a fundamental com-
parison of the solution of the marginal stability problem (i.e., ci = 0) of the
Blasius boundary layer (i.e., the Falkner–Skan boundary layer with Hartree
parameter β = 0), and shows the relative difference between the spatial sta-
bility and temporal stability solutions (for each root; for the given Reynolds
numbers, there exist two roots for neutral stability—see Fig. 4.6 and Fig. 4.8).
The number of Chebyshev collocation points (see Section 4.2.1) for this
comparison was chosen to be 120.

Table B.1: Flat plate marginal stability solution

Spatial solution Temporal solution Relative difference
Reδ∗ c [1] c [1] c [1] c [1] Diff. [%] Diff. [%]
650 0.36239 0.39524 0.36296 0.39471 0.159 0.134
800 0.34180 0.38457 0.34217 0.38426 0.109 0.080
950 0.32662 0.37501 0.32690 0.37479 0.087 0.057
1100 0.31462 0.36667 0.31485 0.36651 0.074 0.043
1250 0.30476 0.35936 0.30496 0.35923 0.065 0.034
1400 0.29643 0.35289 0.29660 0.35279 0.059 0.028
1550 0.28925 0.34710 0.28940 0.34702 0.053 0.023
1700 0.28296 0.34188 0.28310 0.34182 0.049 0.019
1850 0.27739 0.33714 0.27752 0.33708 0.046 0.015
2000 0.27240 0.33279 0.27252 0.33275 0.042 0.013
2150 0.26789 0.32879 0.26800 0.32876 0.040 0.010
2300 0.26380 0.32509 0.26390 0.32506 0.038 0.008
2450 0.26004 0.32164 0.26014 0.32162 0.036 0.007
2600 0.25659 0.31842 0.25668 0.31841 0.034 0.005
2750 0.25339 0.31541 0.25347 0.31539 0.033 0.004
2900 0.25042 0.31257 0.25050 0.31256 0.032 0.002
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B.2 Boundary-Layer Thickness

The boundary-layer thickness values at the trailing edge shown in Table B.2
were generated using XFOIL and the Falkner–Skan equation solver described
in Section 4.1.1. The boundary-layer thickness was obtained only for the
laminar boundary layer (i.e., where the Falkner–Skan velocity profile is
applicable). The Reynolds number ReL is defined as

ReL = U∞ · L

ν

where L is the chord length of the airfoil.

Table B.2: NACA 0012 boundary-layer thickness at the trailing edge.

ReL δ99/L δ∗/L

18267 0.057175 0.031095
21467 0.053797 0.029587
24733 0.050428 0.028356
27933 0.048361 0.027361
31200 0.046617 0.026496
34467 0.045166 0.025755
37667 0.043422 0.025127
40933 0.042397 0.024567
44133 0.041026 0.024082
47400 0.040279 0.023643
50600 0.039652 0.023257
53867 0.038606 0.022903
57067 0.038138 0.022588
60333 0.037255 0.022296
63533 0.036458 0.022034
66800 0.036142 0.021787
70000 0.035451 0.021565
73267 0.035214 0.021356

ReL δ99/L δ∗/L

76533 0.034595 0.021164
79733 0.034432 0.020989
83000 0.033883 0.020823
86200 0.033376 0.020672
89467 0.033276 0.020529
92667 0.032820 0.020398
95933 0.032380 0.020273
99133 0.032343 0.020159
102400 0.031943 0.020049
105600 0.031933 0.019949
108867 0.031566 0.019854
112067 0.031224 0.019766
115333 0.031242 0.019682
118600 0.030920 0.019603
121800 0.030618 0.019530
125067 0.030664 0.019461
128267 0.030384 0.019397
131533 0.030110 0.019336

Note: To obtain these results, the criterion for the natural transition of the
boundary layer must be set to Ncrit = 11.
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B.3 Instability Noise Peak Frequency for NACA
0012

In the results listed in Tables B.3 and B.4, the velocity cr is the average
value of the convective velocity of the unstable modes between their initial
occurrence and the trailing edge.

Table B.3: NACA 0012 prediction of peak frequencies based on the method
of maximal amplitude growth and associated properties of the linear stability
analysis.

U∞ fpeak cr/U∞
[m · s−1] [Hz] [1]

2.74 67 0.453
3.22 83 0.450
3.71 102 0.449
4.19 121 0.448
4.68 142 0.447
5.17 163 0.446
5.65 185 0.445
6.14 207 0.444
6.62 230 0.443
7.11 253 0.441
7.59 277 0.441
8.08 302 0.440
8.56 328 0.439
9.05 352 0.438
9.53 378 0.437
10.02 404 0.436
10.50 431 0.436
10.99 458 0.435

U∞ fpeak cr/U∞
[m · s−1] [Hz] [1]

11.48 486 0.434
11.96 513 0.434
12.45 541 0.433
12.93 569 0.432
13.42 595 0.431
13.90 623 0.430
14.39 652 0.430
14.87 681 0.429
15.36 710 0.429
15.84 739 0.428
16.33 769 0.428
16.81 798 0.427
17.30 828 0.426
17.79 858 0.426
18.27 887 0.425
18.76 918 0.425
19.24 947 0.424
19.73 978 0.424
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Table B.4: NACA 0012 prediction of peak frequencies based on the method of
acoustic sources (the method proposed in this thesis) and associated properties
of linear stability analysis.

U∞ fpeak cr/U∞
[m · s−1] [Hz] [1]

2.74 91 0.485
3.22 112 0.481
3.71 136 0.479
4.19 160 0.477
4.68 186 0.475
5.17 210 0.473
5.65 238 0.472
6.14 266 0.470
6.62 293 0.468
7.11 322 0.467
7.59 351 0.465
8.08 381 0.464
8.56 405 0.462
9.05 438 0.461
9.53 467 0.459
10.02 498 0.458
10.50 529 0.457
10.99 560 0.456

U∞ fpeak cr/U∞
[m · s−1] [Hz] [1]

11.48 592 0.455
11.96 624 0.454
12.45 656 0.453
12.93 690 0.453
13.42 714 0.450
13.90 746 0.449
14.39 779 0.448
14.87 811 0.447
15.36 844 0.447
15.84 876 0.446
16.33 909 0.445
16.81 942 0.444
17.30 975 0.443
17.79 1011 0.443
18.27 1046 0.442
18.76 1079 0.441
19.24 1112 0.441
19.73 1146 0.440
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