
Czech Technical University

Faculty of Civil Engineering

HABILITATION THESIS

Miloslav Vlasák

Analysis of time discretizations for
parabolic problems with application to

space discretizations



2

Abstract

This work summarizes some of the theoretical results of the author in last ten
years, where the main area of the research was the numerical analysis for the stable
higher order time discretization methods applied on parabolic problems. The main
discretization scheme is the time discontinuous Galerkin method in combination
with the conforming finite element method or the discontinuous Galerkin method
in space. The thesis presents a priori error estimates for nonstationary singularly
perturbed convection-diffusion problems, stability results for the problems with the
domain evolving in time and a posteriori error estimates based on the equilibrated
flux reconstructions. The technique presented for a posteriori analysis in time is
applied to purely spatial problem and the quality of the recontruction is investigated
with respect to the degree of polynomial approximation.
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Chapter 1

Introduction

There is number of areas for application of parabolic problems (mathematics, engi-
neering, physics, biology, chemistry, economy, sociology, etc.). These problems are
often discretized in space variables and the resulting large system of stiff ordinary
differential equations (ODEs) needs to be solved by a suitable method. Backward
differentiation formulae (BDF) were often considered as the method of the first
choice for stiff problems, see e.g. [26], since they are robust and quite cheap. Nev-
ertheless, BDF methods suffer from number of disadvantages. Namely, the order
of convergence is limited by order 6, BDF are A-stable only to the order 2 and the
robustness (area of stability) of the method decreases with the increasing order.
Moreover, these methods are multi-step methods and suffers from usual disadvan-
tages of multi-step methods in general, e.g. the necessity to define artificial starting
values and stability issues connected with the step-size adaptation.

On the other hand, certain implicit Runge-Kutta methods and Galerkin time
discretizations do not suffer these disadvantages. These methods are A-stable one-
step methods of arbitrary order, for the overview about these methods see e.g. [29]
and [30] and the citations therein. The main disadvantage of these methods that
prevented the use of them in past years was their expensiveness, where the compu-
tational costs significantly increase with the order of the method. In comparison,
BDF methods remain at the same cost independently of the order. Fortunately, the
increase in computational power and advancements in numerical linear algebra in
last two decades enabled practical applications of implicit RK or Galerkin methods.
This makes implicit Runge-Kutta and Galerkin methods competitive with more
traditional approaches like BDF.

This thesis presents some results achieved by the author and his coworkers in last
10 years about theoretical (numerical) analysis of Galerkin time discretizations for
unsteady convection-diffusion problems. The main part of the thesis consists from
5 papers [6], [17], [34], [47] and [48] published in impact journals and presented
here as Chapters 3–7. Each of these papers is presented in the same form as it
is published. Therefore, all of these papers have their own individual style, page
numbering, notation and references.

Chapter 3 and Chapter 4 study unsteady singularly perturbed convection-diffu-
sion problems. The convection-diffusion problems appear in many practical appli-
cations, especially as a simplified model to Navier-Stokes equations. This problem
represents a serious challenge to discretize, whenever the diffusion term is small
in comparison to the other terms or data. Such a situation represents the transi-
tion state between parabolic and hyperbolic problems, where sharp boundary layers
often appear. Usual finite element or finite difference discretizations fail in this sit-
uation, since they lead to the solution with highly oscillatory behavior around these
layers that pollutes the solution not only in the vicinity of the layer, but at the all
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CHAPTER 1. INTRODUCTION 7

computational domain. The overview of discretization techniques and their analysis
for linear singularly perturbed problems can be found in [41]. The analysis of un-
steady linear singularly perturbed problems can be found in e.g. [1] and [16]. The
application to unsteady nonlinear problems can be found in [22]. For the analysis
of Runge-Kutta methods applied to hyperbolic problems see [51].

Chapter 5 is devoted to the higher order analysis of unsteady convection-diffusion
problems in time dependent domains, where the domain change is driven by a
given smooth mapping. There are number of approaches dealing with time depen-
dent domain problems, e.g. the fictitious domain method or the immersed bound-
ary method. Another popular approach is Arbitrary Lagrangian-Eulerian (ALE)
method based on one-to-one ALE mapping between the current evolving domain
and the fixed reference domain. ALE method was analyzed mainly for the lower
(first or second) order time discretization methods in combination with the classical
conforming finite element method, see e.g. [23] and [25]. Analysis of higher order
discretizations based on the discontinuous Galerkin method can be found in [8], [9]
and [44].

Chapter 6 studies a posteriori error estimates for nonlinear parabolic problems.
The aim of this chapter is to derive a posteriori error estimates that are cheap
in comparison with the original discrete problem, fully computable, reliable and
locally efficient. There are number of results devoted to a posteriori error estimates
for parabolic problems. Most of these results assume lower (first or second) order
time discretizations, see e.g. [27] or [40]. The aposteriori analysis of linear parabolic
problems discretized by higher order methods in time based on the discontinuous
Galerkin method can be found in [3], [20] and [42]. Nonlinear parabolic problems
and higher order time discretizations are addressed in [36], where the upper bound
consists from a dual norm and therefore it is not directly computable. For a general
overview on a posteriori error concepts see e.g. [45].

Chapter 7 apply the reconstruction principle developed for the time discretiza-
tion in [17] to the space discretization. Moreover, the efficiency of the derived a
posteriori error estimate is studied with respect to the polynomial degree in one
dimension. The topic of polynomial robustness (or polynomial dependence of the
estimates) is important for the save application of a posteriori error bounds in hp-
adaptive strategies with high polynomial degrees and it started to be very popular
in the community of a posteriori error analysis in recent years. The first results
for residual based estimates can be found in [37]. Very important results showing
complete polynomial independence of equilibrated reconstructions are in [10]. The
results from [10] are applied to large number of numerical methods in [21]. Pa-
per [20] shows a complete polynomial independence of efficiency estimates for the
discontinuous Galerkin time discretization for parabolic problems.

A general overview chapter precedes these main chapters. This overview contains
a brief description of Chapters 3–7. Moreover, it contains a general description of
several concepts for discretizations as well as the corresponding numerical analysis.
The notation in this chapter is unified for convenience of the reader and is chosen
as close as possible to the notation used in following chapters. The full explanation
of the ideas and the full description of the concepts from the original papers can
be rather long and technical in many situations. Therefore, the precision of the
formulations is not always perfect in this overview, e.g. mean values, penalization
parameters, reconstructions, etc., are defined only inside of the computational do-
main. The complete precise formulations can be found in the original papers or in
Chapters 3–7.



Chapter 2

Overview

2.1 Notation

Here, we summarize a basic notation for the upcoming discretizations.

2.1.1 Space discretization notation

Let us assume a bounded polygonal domain Ω ⊂ Rd with Lipschitz continuous
boundary. We assume a partition of this domain into closed subsetsK with mutually
disjoint interiors and covering Ω, often called elements. For simplicity, we assume
that elements K are simplices and that the partition is conforming, i.e. that the
neigbouring elements share the entire edge or face depending on the dimension d.
To simplify further notation, we call these boundary objects of co-dimension 1 edges
regardless of the dimension d and denote them e.

We assume patches of elements ωa denoting the patch consisting of the ele-
ments containing the common vertex a and ωK denoting the patch consisting of the
elements surrounding K and K itself.

We assume that the elements are shaped regular, i.e. the ratio of the diameters
of the inscribed and circumscribed ball is bounded. We denote the local mesh-size
hK = diam(K) and the global mesh-size h = maxK hK . Finally, we assume that the
mesh is locally quasi-uniform, i.e. the ratio hK/hK′ is bounded for neighnouring
elements K and K ′.

Moreover, we denote unit normals on edge e as n. The direction of the normals
is arbitrary but fixed for the inner edges and outward for the boundary edges.

For piece-wise discontinuous function v, we need to define one-sided values on
the edges

vL(x) = lim
ϵ→0+

v(x− ϵn), vR(x) = lim
ϵ→0+

v(x+ ϵn) (2.1)

depending on the orientation of n, jumps and mean values

[v] = vL − vR, ⟨v⟩ = vL + vR
2

. (2.2)

We denote by (., .)M and ∥.∥M L2(M)-scalar product and norm, respectively.
Typically, we apply this notation with M = K or M = e. The global L2(Ω)-scalar
product and norm are denoted by (., .) and ∥.∥, respectively. We denote the sum
over all elements K or over all edges e of the mesh by

∑
K or

∑
e, respectively.

8



CHAPTER 2. OVERVIEW 9

2.1.2 Time discretization notation

Let us assume time interval I = (0, T ), where T > 0. We assume time partition of I
by partition nodes 0 = t0 < t1 < . . . < tr = T . Although the papers discussed often
assume a general time partition, we assume here for simplicity that the partition
is equidistant, i.e. tm = mτ , where τ is a global step-size. We denote local time
subintervals Im = (tm−1, tm).

Combining the space and time discretization, we denote by (., .)M,m and ∥.∥M,m

L2(M × Im)-scalar product and norm, respectively. We denote the sum over all
elements of the mesh and all the time subintervals by

∑
K,m.

For any function f(t) defined in I we denote one sided nodal values f(tm±) =
fm± , where the subscript ± can be omitted for continuous functions, and we denote
the corresponding jump in time as {v}m = vm+ −vm− . The time derivative of function
f(t) is denoted as f ′(t).

2.2 One-step higher order time discretizations

Here, we present some classical one-step discretization techniques. For the overview
see e.g. [29] and [30].

2.2.1 One-step discretizations

Let us consider ordinary differential equation (ODE)

y′(t) = f(t, y(t)), t ∈ (0, T ), (2.3)

y(0) = α.

Let us denote the approximate solution {Y m}rm=0 such that y(tm) ≈ Y m. We can
define three classes of one-step methods.

Runge–Kutta methods: Let ai,j , bi, ci, i, j = 1, . . . , q + 1 be suitable coeffi-
cients. Then we call the sequence Y m satisfying Y 0 = α

gmi = Y m−1 + τ

q+1∑
j=1

ai,jf(tm−1 + τcj , g
m
j ), ∀i = 1, . . . , q + 1, (2.4)

Y m = Y m−1 + τ

q+1∑
i=1

bif(tm−1 + τci, g
m
i )

the Runge-Kutta (RK) solution of (2.3). The auxiliary values gmi called inner stages
represent the approximation of the exact solution in tm−1 + τci.

Collocation methods: Let ci, i = 1, . . . , q + 1 be suitable coefficients. Let
Y 0 = α. In every step we construct polynomial p of degree at most q+ 1 such that

p(tm−1) = Y m−1, (2.5)

p′(tm−1 + τci) = f(tm−1 + τci, p(tm−1 + τci)), ∀i = 1, . . . , q + 1.

Then we put Y m = p(tm). We call the resulting sequence the collocation solution
of (2.3). The points tm−1 + τci are called collocation points. The method produces
a piecewise polynomial function that satisfies the original equation (2.3) in these
collocation points only.

Continuous and discontinuous Galerkin method: Let us define function
spaces

Xτ = {v ∈ L2(0, T ) : v|Im ∈ P q(Im)}, (2.6)

Y τ = {v ∈ C(0, T ) : v|Im ∈ P q+1(Im), v(0) = α}, (2.7)
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where P q and P q+1 are spaces of polynomials of degree q and q + 1, respectively.
It should be pointed out that both these spaces have the same dimension. We call
u ∈ Y τ the continuous Galerkin solution of (2.3) if∫

Im

u′(t)v(t)dt =

∫
Im

f(t, u(t))v(t)dt, ∀v ∈ Xτ . (2.8)

We call u ∈ Xτ the discontinuous Galerkin solution of (2.3) if u0− = α and∫
Im

u′(t)v(t)dt+ {u}m−1v
m−1
+ =

∫
Im

f(t, u(t))v(t)dt, ∀v ∈ Xτ . (2.9)

For comparison with previous methods we focus mainly on endpoints of intervals:
um− = Y m ≈ y(tm).

The integrals in the definition of continuous and discontinuous Galerkin method
are often approximated by quadratures. Suitable quadratures are Gauss or right
Radau quadratures on q+1 quadrature nodes, respectively, since they approximate
all linear terms involved in the integrals exactly. We refer to these Galerkin methods
approximated by Gauss or Radau quadrature as to quadrature variants.

2.2.2 Mutual connection between Runge-Kutta methods and
Galerkin methods

It is very useful in the numerical analysis to understand the mutual connections
among Runge-Kutta methods, collocation methods and Galerkin methods. This
connection can be described by following lemmae.

Lemma 2.2.1 Let the RK coefficients be chosen in the following way

ai,j =

∫ ci

0

ℓj(t)dt, i, j = 1, . . . , q + 1, (2.10)

bi =

∫ 1

0

ℓi(t)dt, i = 1, . . . , q + 1, (2.11)

where ℓi is the Lagrange interpolation basis function

ℓi(t) =
∏
j ̸=i

t− cj
ci − cj

. (2.12)

Then the values gmi , i = 1, . . . , q + 1 and Y m produced by such a RK method are
equal to the values p(tm−1+τci), i = 1, . . . , q+1 and Y m produced by the collocation
method with the same coefficients ci.

The proof can be found in [28] or [50].

Lemma 2.2.2 Let p ∈ P q+1 be the collocation polynomial on Im associated to the
collocation method with coefficients ci chosen as Gauss quadrature nodes on (0, 1),
u ∈ P q+1 be the quadrature variant of continuous Galerkin solution on Im. Then

p(t) = u(t). (2.13)

Lemma 2.2.3 Let p ∈ P q+1 be the collocation polynomial on Im associated to
the collocation method with coefficients ci chosen as right Radau quadrature nodes,
u ∈ P q be the quadrature variant of discontinuous Galerkin solution on Im and
rm ∈ P q+1 satisfy rm(tm−1) = 1, rm(tm) = 0 and rm ⊥ P q−1 on Im. Then

p(t) = u(t)− {u}m−1rm(t). (2.14)
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The proof for continuous Galerkin version can be found directly in [31]. The proof
for discontinuous Galerkin version can be made similarly, see e.g. [49].

Summarizing these results, it is possible to realize that both Galerkin methods
(up to corresponding quadrature and mild reconstruction (2.14) in case of discon-
tinuous version) are special variants of the collocation methods and the collocation
methods are special variants of the implicit Runge-Kutta methods. This can be
exploited in the numerical analysis by application of the knowledge from one area
to another area, especially by using the results about very well understood Runge-
Kutta methods for the analysis of the Galerkin methods. The variants of Runge-
Kutta methods corresponding to continuous and discontinuous Galerkin method are
well known Kuntzmann-Butcher method (also known as Gauss-Legendre method)
and Radau IIA method, respectively. For more details see [35] and [18], respectively.

2.3 Discontinuous Galerkin space discretization

Although most of the papers in this thesis are devoted to the time discretization
techniques and their analysis, the space discretization is often made with the aid
of the discontinuous Galerkin method. We shall briefly describe the discontinuous
Galerkin method on simplified example of the Poisson equation

−∆u = f, in Ω. (2.15)

We assume for simplicity the homogeneous Dirichlet boundary conditions. The
other possibilities can be found in [15].

We apply the notation from Section 2.1.1. The difference between the classical
finite element method and the discontinuous Galerkin method is in application of
the discontinuous finite element space

Xh = {v ∈ L2(Ω) : v|K ∈ P p(K)}. (2.16)

Since Xh ̸⊂ H1
0 (Ω), we could not apply the week formulation of problem (2.15)

directly. In fact, we enhance the classical week formulation with additional terms.
Among many variants of the discontinuous Galerkin method, one of the most pop-
ular approaches is the interior penalty method

(−∆u, v) ≈ Ah(u, v) =
∑
K

(∇u,∇v)K −
∑
e

(⟨∇u⟩ · n, [v])e (2.17)

−θ
∑
e

(⟨∇v⟩ · n, [u])e +
∑
e

(α[u], [v])e,

where the choice of the parameter θ = 1, 0,−1 corresponds to the symmetric (SIPG),
incomplete (IIPG) and nonsymmetric (NIPG) variant. The parameter α is usually
chosen as

α =
CW

he
, (2.18)

where he is some intermediate value between hK and hK′ for neigbouring elements
K andK ′ sharing the edge e. The constant CW > 0 needs to be chosen large enough
to guarantee the positivity of Ah(., .) on Xh. The detailed information about the
suitable choice of the constant CW can be found in [15].

The resulting discrete formulation of problem (2.15) is: find uh ∈ Xh such that

Ah(uh, vh) = (f, vh), ∀vh ∈ Xh. (2.19)

The corresponding error analysis can be found in [15].
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2.4 Analysis of discontinuous Galerkin time dis-
cretization

In this section is described the most common approach to the derivation of a pri-
ori error estimates for the discontinuous Galerkin time discretization of parabolic
problems. For simplicity, let us assume the heat equation

u′ −∆u = f, in Ω× (0, T ) (2.20)

u(0) = u0, in Ω

with homogeneous Dirichlet boundary condition.
We apply the notation from Section 2.1.1 and Section 2.1.2. We discretize this

problem in space by the classical finite element method with the finite element space

Xh = {v ∈ H1
0 (Ω) : v|K ∈ P p(K)}. (2.21)

The resulting semidiscrete problem assumes the solution uh ∈ C1(0, T,Xh) such
that

(u′h, v) + (∇uh,∇v) = (f, v), ∀v ∈ Xh (2.22)

(uh(0), v) = (u0, v), ∀v ∈ Xh.

The semidiscrete problem (2.22) represents the system of ODEs that can be
solved by the discontinuous Galerkin method. Similarly as in Section 2.2.1, we
define the fully discrete space

Xτ
h = {v ∈ L2(0, T,Xh) : v|Im ∈ P q(Im, Xh)}. (2.23)

Then the fully discrete solution U ∈ Xτ
h satisfies∫

Im

(U ′, v) + (∇U,∇v)dt+ ({U}m−1, v
m−1
+ ) =

∫
Im

(f, v)dt, ∀v ∈ Xτ
h , (2.24)

(U0
−, v) = (u0, v), ∀v ∈ Xh.

We may apply the technique of the error analysis described in [43]. Typically,
we are interested in upper bounds of the error e = U − u and most often in the
nodes of the time partition tm, i.e. em− = Um

− − u(tm). The error analysis most
often consists from construction of suitable projection π on Xτ

h and dividing the
error into projection part of the error η = πu− u, i.e. the error of the projection of
the exact solution, and the rest of the error ξ = U − πu ∈ Xτ

h . We gain the error
equation by integrating relation (2.20) in weak form over Im and subtracting this
relation from (2.24). After dividing the error into ξ and η we gain for any v ∈ Xτ

h∫
Im

(ξ′, v) + (∇ξ,∇v)dt+ ({ξ}m−1, v
m−1
+ ) = −

∫
Im

(∇η,∇v)dt (2.25)

−
(∫

Im

(η′, v)dt+ ({η}m−1, v
m−1
+ )

)
.

The most usual projection π : L2(0, T, L2(Ω)) → Xτ
h is defined as∫

Im

(πu− u, vtj)dt = 0, ∀v ∈ Xh, j ≤ q − 1, (2.26)

((πu)m− , v) = (u(tm), v), ∀v ∈ Xh.
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Advantage of this projection is that the terms on the second row of (2.25) vanish
for any v ∈ Xτ

h . Setting v = 2ξ we gain

2

∫
Im

(ξ′, ξ)dt+ 2({ξ}m−1, ξ
m−1
+ ) = ∥ξm− ∥2 − ∥ξm−1

− ∥2 + ∥{ξ}m−1∥2, (2.27)

cf [19]. Using (2.27) together with Cauchy inequality gives the error estimate for
∥ξm− ∥ in terms of η

∥ξm− ∥2 − ∥ξm−1
− ∥2 + ∥{ξ}m−1∥2 +

∫
Im

∥∇ξ∥2dt ≤
∫
Im

∥∇η∥2dt. (2.28)

The estimate ∫
Im

∥∇η∥2 ≤ Cτ(h2p + τ2q+2), (2.29)

where the constant C depends on the corresponding derivatives of the exact solution
u, are most often derived by the standard scaling argument using Bramble-Hilbert
trick applied for Bochner spaces, see e.g. [46]. Since ηm− is the error of L2-orthogonal
projection of um that satisfies ∥ηm− ∥ ≤ Chp+1, we gain from (2.28) and (2.29) the
final desired estimate

∥em−∥ = ∥Um
− − um∥ ≤ ∥ξm− ∥+ ∥ηm− ∥ ≤ C(hp + τ q+1). (2.30)

This estimate is usually considered optimal with respect to the polynomial de-
gree in time, but suboptimal with respect to the polynomial degree in space, since
hp+1 is usually expected for the finite element error in L2-norm. The improvement
to hp+1 can be found in [46]. Moreover, the basic theory of Runge-Kutta methods
suggests that the nodal errors should converge with the rate τ2q+1 instead of τ q+1.
This faster convergence in a finite element setting is usually described as nodal
superconvergence. Unfortunately, these faster rates appear only exceptionally for
parabolic problems when certain compatibility conditions are met, cf. [3]. This or-
der reduction phenomenon is analyzed in [11]. See also [24], where the investigation
of convergence rate τ q+2 for q ≥ 1 is presented.

2.5 A posteriori error estimates

Let us consider the Poisson problem

−∆u = f, in Ω, (2.31)

where we assume for simplicity the homogeneous boundary condition. The resulting
weak solution of problem (2.31) satisfies u ∈ H1

0 (Ω). Moreover, it is possible to find
out that

∇u ∈ H(div,Ω) = {w ∈ L2(Ω)d : ∇ · w ∈ L2(Ω)} (2.32)

whenever the right-hand side f ∈ L2(Ω).
Denoting

Xh = {v ∈ H1
0 (Ω) : v|K ∈ P p(K)} (2.33)

the finite element space, we can define the finite element solution uh ∈ Xh satisfying

(∇uh,∇v) = (f, v), ∀v ∈ Xh. (2.34)
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In comparison with a priori analysis, where the convergence of the error with
respect to the discretization data is studied and the error bound typically depends
on the high derivatives of the unknown exact solution, a posteriori error analysis
provides the error bounds depending on the discrete solution itself. There are many
techniques for a posteriori error estimates, for overview see e.g. [45].

The goal of this section is to briefly describe the upper bound construction to
the error uh − u by the so called equilibrated flux reconstruction technique. The
resulting a posteriori error estimate can be viewed as a generalization of the hyper-
circle theorem, cf. [39].

Theorem 2.5.1 (Hyper-circle) Let u ∈ H1
0 (Ω) be the exact solution of problem

(2.31), σ ∈ H(div,Ω) satisfies f +∇ · σ = 0 and v ∈ H1
0 (Ω) be arbitrary. Then

∥∇u−∇v∥2 + ∥σ −∇u∥2 = ∥∇v − σ∥2. (2.35)

When such a σ is available, then the estimate can be achieved be setting v = uh
and omitting the term ∥σ −∇u∥2, i.e. ∥∇u−∇uh∥ ≤ ∥∇uh − σ∥.

Unfortunately, it is not easy to find a suitable σ ∈ H(div,Ω) satisfying f+∇·σ =
0 globally. Here, we describe the construction of σ ≈ σh ∈ H(div,Ω) that satisfies
the relation f+∇·σh = 0 in a weaker sense. Let us denote the local Raviart-Thomas
space on element K as RT(K) = xP p(K)+(P p(K))d. This space is the usual finite
element approximation space to H(div,Ω) in the mixed finite element method. For
the overview on the mixed finite element method and corresponding polynomial
approximations see e.g. [7]. We construct the extension of Raviart-Thomas space
to patches ωa for given vertex a

W (ωa) = {w ∈ H(div, ωa) : w|K ∈ RT(K), w|∂ωa
· n = 0}. (2.36)

Denoting the space P p
∗ (ωa) as the space of piece-wise polynomial functions with zero

mean value, we can formulate the local patch-wise mixed finite element problem:
find σa ∈W (ωa) and ra ∈ P p

∗ (ωa) such that

(σa, v)ωa − (ra,∇ · v)ωa = (ψa∇uh, v)ωa , ∀v ∈W (ωa), (2.37)

(∇ · σa, φ)ωa = (∇ψa · ∇uh − ψaf, φ)ωa , ∀φ ∈ P p
∗ (ωa),

where ψa is the hat function associated with the vertex a and serves as the discrete
decomposition of the unity. The final reconstruction σh is the sum of all the local
contributions σa, i.e. σh =

∑
a σa. Since each of the local contributions σa ∈

H(div,Ω) if prolongated by zero outside of the patch ωa then also the complete
reconstruction satisfies σh ∈ H(div,Ω). Moreover, it is possible to show that

(f +∇ · σh, 1)K = 0. (2.38)

The property (2.38) is usually called the flux equilibration property.
We can derive the error bound using the reconstruction σh. Let us assume

v ∈ H1
0 (Ω). Then

(f, v)− (∇uh,∇v) = (f +∇ · σh, v) + (σh −∇uh,∇v). (2.39)

Estimating these terms individually and using the flux equilibration property (2.38)
we get

(f, v)− (∇uh,∇v) ≤
∑
K

(CPhK∥f +∇ · σh∥K + ∥σh −∇uh∥K)∥∇v∥K , (2.40)

where CP is the known constant form the Poincare inequality, cf. [38]. Since

∥∇u−∇uh∥ = sup
v∈H1

0 (Ω)

(∇u−∇uh,∇v)
∥∇v∥

= sup
v∈H1

0 (Ω)

(f, v)− (∇uh,∇v)
∥∇v∥

, (2.41)
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we can conclude that

∥∇u−∇uh∥2 ≤
∑
K

(CPhK∥f +∇ · σh∥K + ∥σh −∇uh∥K)2. (2.42)

The estimate (2.42) is a guaranteed upper bound and the right-hand side contains
only the terms that are fully computable from the discrete solution uh. Since the
construction of σh is based on the local problems only, cf. (2.37), the evaluation of
this reconstruction σh as well as the evaluation of the estimator itself is essentially
computationally cheaper than the original problem (2.34).

It is possible to provide the efficiency estimates, i.e. the opposite bounds, for
the individual local estimators. These estimates are traditionally done under the
assumption that the right-hand side f is a piece-wise polynomial, otherwise the
additional oscillation term appears in the estimates. Denoting by ≲ the inequality
up to some fixed constant that does not depend on the exact solution u nor the
discrete solution uh nor the mesh-size h, it is possible to derive following local
efficiency estimates

hK∥f +∇ · σh∥K ≲ ∥∇u−∇uh∥ωK
, (2.43)

∥σh −∇uh∥K ≲ ∥∇u−∇uh∥ωK
,

see e.g. [21]. The proofs are quite technical and therefore they are skipped in this
overview. These estimates (2.43) show that large local estimators correspond to
large local contributions to the complete error. This property is important for the
identifications of the source of the error in possible adaptive strategies. Unfortu-
nately, the locality grows from elements K to patches ωK .

2.6 Overview of Chapter 3: Linear unsteady sin-
gularly perturbed convection-diffusion prob-
lems

Chapter 3 is based on the paper An optimal uniform a priori error estimate for
an unsteady singularly perturbed problem published in International Journal of
Numerical Analysis and Modeling in 2014, [48].

The paper deals with the numerical analysis of unsteady singularly perturbed
convection-diffusion problems on a square Ω = (0, 1)2

u′ − ε∆u+ b · ∇u+ cu = f in Ω× (0, T ) (2.44)

with homogeneous Dirichlet boundary condition and corresponding initial condition.
The paper presents an optimal a priori error estimate for any general mesh-adapted
space discretization and discontinuous Galerkin time discretization.

The paper [48] assumes a singularly perturbed case, where the diffusion coeffi-
cient ε is small in comparison to the rest of the data. The goal of the paper is to
derive error estimates for mesh-adapted spatial methods in combination with the
discontinuous Galerkin method in time that are independent of ε.

2.6.1 Discretization

A possible remedy comes from two different sources: high adaptation of the meshes
around the layers (Shishkin meshes, Bakhvalov meshes, etc.) and stabilizations
of the method (SUPG, local projection stabilization, etc.), see e.g. [41]. Both
approaches are very often used together. The paper assumes the layer-adaptated
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S-type meshes in combination with any consistent discretization method either sta-
bilized or not.

The construction of the mesh in each direction is similar. Therefore we describe
them in x direction only. Let us assume increasing and differentiable generating
function ϕ satisfying ϕ(0) = 0 and ϕ(1/2) = ln(N), where N + 1 is number of
discretization nodes in x direction including boundaries. Then the partition nodes
xi can be defined by

xi =
2i

N

(
1− σε

β1
ϕ

(
1

2

))
, ∀i = 0, . . . , N/2 (2.45)

xi = 1− σε

β1
ϕ

(
N − i

N

)
, ∀i = N/2, . . . , N, (2.46)

where b = (β1, β2) and σ ≥ 5/2. For instance, classical Shishkin mesh coresponds to
the choice ϕ(s) = 2 ln(N)s and the choice ϕ(s) = − ln(1− 2s(1−N−1)) coresponds
to Bakhvalov-type mesh. Such an approach leads to the ε-uniform spatial error
estimates even with respect to resulting norms of the exact solution. For the detail
see e.g. [41].

The discretization in space is made with the aid of conforming bilinear space
VN , bilinear form ast(., .) representing the discretization of the spatial terms from
(2.44) and corresponding right-hand side fst

(u′, v) + ast(u, v) = (fst, v), ∀v ∈ VN . (2.47)

The time discretization is made using the discontinuous Galerkin discretization
described in Section 2.2.1, i.e. discrete solution U ∈ V τ

N satisfies∫
Im

(U ′, v) + ast(U, v)dt+ ({U}m−1, v
m−1
+ ) =

∫
Im

(fst, v)dt ∀v ∈ V τ
N , (2.48)

where

V τ
N = {v ∈ L2(0, T, VN ) : v|Im ∈ P q(Im, VN )}. (2.49)

Let us denote right Radau quadrature on q + 1 quadrature nodes∫
Im

f(t)dt ≈ Qm[f ]. (2.50)

Assuming for simplicity that f or fst, respectively, is a polynomial in time of the
same degree as the discrete solution we can replace all the integrals in (2.48) by the
right Radau quadratures, since all the terms in (2.48) are linear, i.e.

Qm[(U ′, v)] +Qm[ast(U, v)] + ({U}m−1, v
m−1
+ ) = Qm[(fst, v)], ∀v ∈ V τ

N . (2.51)

2.6.2 Error analysis

We may apply a similar technique of the proof as in Section 2.4. We design a
suitable projection π and divide the error into projection part η = πu − u and
ξ = U − πu ∈ V τ

N . Then the error equation is as follows

Qm[(ξ′, v)] +Qm[ast(ξ, v)] + ({ξ}m−1, v
m−1
+ ) = −Qm[ast(η, v)] (2.52)

−Qm[(η′, v)]− ({η}m−1, v
m−1
+ )

There are two sources of difficulties in the error analysis comparing with the
analysis presented in Section 2.4. The first difficulty is that it is not possible to
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provide ellipticity and continuity estimates of ast(., .) in any norm in such a way
that the constants in these estimates would be independent of ε and N . The second
difficulty is that L2-orthogonal projection on VN that is essentially involved in the
definition of space-time projection π in Section 2.4 is very unsuitable for deriving
accurate error estimates with respect to space variables for this specific problem,
see e.g. [32], where suboptimal error analysis is presented due to this fact.

To overcome these difficulties, the projection π is designed differently to respect
the Runge-Kutta nature of the discontinuous Galerkin method in time, cf. Section
2.2.2, and with the aid of classical Ritz projection in space, namely π = P τRN ,
where P τ is the Lagrange interpolation operator on right Radau quadrature nodes
and RN : H1

0 (Ω) → VN is the Ritz projection satisfying

ast(RNu− u, v) = 0, ∀v ∈ VN . (2.53)

Then it is possible to show that

sup
Im

∥πu− u∥ ≤ C(τ q+1 + g(N)), (2.54)

where the constant C is completely independent of ε even with respect to the
derivatives of the exact solution u and the term g(N) depends on the choice of the
mesh adaptation and the stabilization, e.g. g(N) = N−2 ln2(N) for the Shishkin
mesh or g(N) = N−2 for the Bakhvalov mesh when the classical bilinear finite
element method without any stabilization is used.

The advantage of this projection π described above is that the energy term
Qm[ast(η, v)] vanishes in (2.52) and it is only necessary to deal with the terms on
the second row of the right hand side of (2.52). Following estimate is derived for
these terms in the paper [48] or in Chapter 3

Qm[(η′, v)] + ({η}m−1, v
m−1
+ ) ≤ τC(τ q+1 + g(N)) sup

Im

∥v∥. (2.55)

2.6.3 Estimates inside of intervals Im

Since the estimate (2.55) contains the supremum over Im, we need to handle this
supremum term which represents a significant difficulty in comparison with the
basic approach described in Section 2.4, where only the nodal values need to be
handled. Following paper [2], it can be shown that

2Qm[(ξ′, ξ̃)] + 2({ξ}m−1, ξ̃
m−1
+ ) = ∥ξm− ∥2 + 1

τ
Qm[∥ξ̃∥2], (2.56)

where

ξ̃ = P τ

(
τξ(t)

t− tm−1

)
∈ V τ

N . (2.57)

Moreover, it is possible to show that

0 ≤ Qm[ast(ξ, ξ)] ≤ Qm[ast(ξ, ξ̃)]. (2.58)

Since the norms

1

τ
Qm[∥ξ̃∥2], sup

Im

∥ξ∥2, sup
Im

∥ξ̃∥2 (2.59)

are equivalent, we can apply these relations to derive the error estimate. The details
are shown in the paper [48] or in Chapter 3.
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The interesting question arise: Why the choice of the test function ξ̃ defined in
(2.57) gives such a nice result (2.56)? The answer can be found in the connection
between Runge-Kutta methods and discontinuous Galerkin methods described in
Section 2.2.2 and in the classical analysis for the error estimates of the inner stages
of RK. For the overview see e.g. [30], where the results from the original paper [13]
are presented.

2.7 Overview of Chapter 4: Semilinear unsteady
singularly perturbed convection-diffusion prob-
lems

Chapter 4 is based on the paper A priori diffusion-uniform error estimates for non-
linear singularly perturbed problems: BDF2, midpoint and time DG published in
Mathematical Modelling and Numerical Analysis in 2017, [34].

The paper deals with the numerical analysis of unsteady singularly perturbed
semilinear convection-diffusion problems

u′ − ε∆u+∇ · f(u) = g in Ω× (0, T ) (2.60)

with homogeneous Dirichlet boundary condition and corresponding initial condi-
tion. The paper presents a priori error estimates for discontinuous Galerkin space
discretization in combination with either the second order backward differentiation
formula (BDF2) or the midpoint rule or the discontinuous Galerkin method in time.

Once again, we are mostly interested in the singularly perturbed situation, where
the parameter ε is small. Since the problem (2.60) is nonlinear, it represents even
more difficult challenge then the linear problem from Section 2.6 respectively from
[48].

2.7.1 Discretization

We can apply the same notation as in Section 2.1.1 and Section 2.1.2. The space
discretization is made with the aid of the discontinuous Galerkin method. The
diffusion term −∆u is discretized by SIPG formulation described in Section 2.3.
The discretization of the convective term ∇ · f(u) is made similarly as in the finite
volume method

(∇ · f(u), v) ≈ bh(u, v) = −
∑
K

(f(u),∇v)K +
∑
e

(H(uL, uR, n), [v])e, (2.61)

where the flux f(u) · n is approximated on the edge e by the value H(uL, uR, n)
called numerical flux. We assume that the numerical flux can be arbitrary function
satisfying following assumptions

� H(u, v, n) is Lipschitz continuous, i.e.

|H(u, v, n)−H(ū, v̄, n)| ≤ C(|u− ū|+ |v − v̄|), (2.62)

� H(u, v, n) is consistent, i.e.

H(u, u, n) = f(u) · n, (2.63)

� H(u, v, n) is conservative, i.e.

H(u, v, n) = −H(v, u,−n), (2.64)
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� H(u, v, n) is E-flux, i.e.

H(u, v, n)− f(q) · n ≥ 0, ∀q between u, v. (2.65)

We shall point out that every monotone numerical flux is E-flux.
The semidiscrete formulation of problem (2.60) is

(u′h, v) + εAh(uh, v) + bh(uh, v) = (g, v), ∀v ∈ Xh. (2.66)

This problem is discretized in time by either BDF2(
3

2
Um − 2Um−1 +

1

2
Um−2, v

)
+ τεAh(U

m, v) + τbh(U
m, v) (2.67)

= τ(g, v) ∀v ∈ Xh,

where the starting value U1 is obtained by the backward Euler method, or by the
midpoint rule

(Um − Um−1, vh) +
τ

2
εAh(U

m + Um−1, vh) + τbh

(
Um + Um−1

2

)
(2.68)

= τ(g(tm−1 + τ/2), vh), ∀vh ∈ Xh

or by the quadrature version of the discontinuous Galerkin method∫
Im

(U ′, v) + εAh(U, v)dt+Qm[bh(U, v)] + ({U}m−1, v
m−1
+ ) = Qm[(g, v)], (2.69)

∀vh ∈ Xτ
h ,

where

Xτ
h = {v ∈ L2(0, T,Xh) : v|Im ∈ P q(Im, Xh)} (2.70)

and the right Radau quadrature Qm[.] is defined in Section 2.6.1.

2.7.2 Error analysis

The error analysis follows the idea from the paper [33] following the results from the
paper [51]. The complete description of the idea is quite long and very technical.
Here, we summarize the most important steps.

The resulting nonlinear form bh(., .) with Lipschitz continuous, consistent and
conservative numerical fluxes with the E-flux property satisfies following important
estimate

bh(vh, vh −Πu)− bh(u, vh −Πu) ≤ C

(
1 +

∥vh − u∥2L∞(Ω)

h2

)
(h2p+1 + ∥vh −Πu∥2),

(2.71)

where Π is L2-orthogonal projection on Xh, u is any sufficiently regular function
and vh ∈ Xh, cf. [33]. Difficulties come from the term ∥vh − u∥2L∞(Ω)/h

2, where vh
is typically chosen as the discrete solution U or some term directly derived from U .
If it is possible to estimate a priori the error as ∥U−u∥L∞(Ω) = O(h), then standard
application of the technique will give the desired error estimate that is usually much
smaller then the considered bound O(h), typically it is ∥U−u∥2 ≤ C(h2p+1+τ2q+2),
where q = 1 for BDF2 and the midpoint rule and q is the degree of the polynomial
approximation in time for the discontinuous Galerkin method. Unfortunately, it is
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not easy to prove the error bound O(h) a priori, since the error is the object of
investigation and is unknown.

This problem is solved by the continuous mathematical induction, cf [33]. Let
us assume that the discretization parameters h, p, τ and s are chosen in such a way
that

∥U − u∥2 ≤ C(h2p+1 + τ2q+2) =⇒ ∥U − u∥L∞(Ω) ≤
h

2
. (2.72)

If the error is represented by a continuous function and if the error is at some
point t = t∗ sufficiently small, e.g. ∥U − u∥L∞(Ω) = h/2, then it takes some time
δ > 0 to grow the error over the bound h. Then it is possible to avoid the term
∥U − u∥2L∞(Ω)/h

2 on interval [t∗, t∗ + δ] in the estimate (2.71) and it is possible to

derive the desired error estimate ∥U − u∥2 ≤ C(h2p+1 + τ2q+2) on [t∗, t∗ + δ] by
rather standard technique, where the constant is independent of ε. Moreover, it is
possible to see that (2.72) implies ∥U−u∥L∞(Ω) ≤ h

2 at a new time t = t∗+δ. Since
the continuity of the error holds on the bounded interval [0, T ], i.e. on a compact
set, there exists a minimal finite δ necessary for such a grow and we can deplete
the set [0, T ] in a finite number of steps. It should be pointed out that the starting
error in the initial condition is inherently small.

Alternatively, the concept of the continuous mathematical induction can be
replaced by the argument that the error under the assumption (2.72) cannot hit
the value ∥U − u∥L∞(Ω) = h and assuming the error evolves continuously and is
started from the small initial condition error it is not possible to grow over h and
therefore the square of the error behaves as O(h2p+1 + τ2q+2).

2.7.3 Discrete solution continuation

Since we assume that the exact solution u is continuous in time, the aim of this
section is to describe how to reconstruct the discrete solution that is defined nodal-
wise as Um in the case of BDF2 and the midpoint rule and interval-wise (element-
wise) as U |Im in the case of the time discontinuous Galerkin, as a continuous function
U(t) that corresponds to the error in the nodal point, i.e. U(tm) = Um or U(tm) =
Um
− .
The idea of the construction of the nodal-wise defined solution as a continuous

function can be found in [33], where the backward Euler method is discussed. Let
us assume that the continuation is well defined on the interval [0, tm−1] and the goal
is to define the continuation on the next time interval (tm−1, tm]. Then the value
of U(tm−1 + s), where s ∈ (0, τ ], is defined as the discrete solution for the given
method by replacing the step-size τ by the new step-size s. Still, it remains to prove
a number of technical results that imply that the resulting continuation U(tm−1+s)
exists uniquely for arbitrary s ∈ (tm−1, tm] and that the resulting function U(t) is
really continuous. These results are described in detail in the paper [34] or Chapter
4. It should be pointed out that the BDF2 analysis also applies the stability theory
for the multistep methods with non-equidistant time steps, see e.g. [30].

The time discontinuous Galerkin discretization is more complicated, since the
solution at the final time of each interval depends on the corresponding inner stages,
see Section 2.2.2, and the continuation should respect this fact. Let us assume that
the continuation is constructed to the time level y = tm−1. The approach from [34]
defines the continuation on (tm−1, tm] as a set of functions on Im

{Uy}y∈(tm−1,tm] ⊂ Xτ
h . (2.73)

Denoting s ∈ (0, τ ] such that y = tm−1+s and denoting Radau quadrature rescaled
from interval Im to the new interval (tm−1, y) as Qm

s [.], then each function Uy of
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the continuation is defined on Im as∫ y

tm−1

(U ′
y, v) + εAh(Uy, v)dt+Qm

s [bh(Uy, v)] + ({U}m−1, v
m−1
+ ) (2.74)

= Qm
s [(f, v)], ∀vh ∈ Xτ

h .

The resulting continuity is described by the relations

sup
(tm−1,min(y,ȳ))

∥Uy − Uȳ∥→0, as |y − ȳ| → 0, (2.75)

sup
(tm−1,y)

∥Uy − Um−1
− ∥→0, as y → tm−1+ . (2.76)

The proof of this continuity with respect to y is very technical and the details are
presented in the paper [34] or Chapter 4.

2.8 Overview of Chapter 5: Nonlinear unsteady
convection-diffusion problems in time-dependent
domains

Chapter 5 is based on the paper Stability of the ALE space-time discontinuous
Galerkin method for nonlinear convection-diffusion problems in time-dependent do-
mains published in Mathematical Modelling and Numerical Analysis in 2018, [6].

The paper deals with the numerical analysis of unsteady nonlinear convection-
diffusion problems

u′ −∇ · (β(u)∇u) +∇ · f(u) = g (2.77)

with Dirichlet boundary conditions and corresponding initial condition. The non-
linearity in the diffusion term described by the function β(u) is considered bounded
and Lipschitz continuous, i.e.

β : R → [β0, β1], 0 < β0 ≤ β1 <∞, (2.78)

|β(u)− β(v)| ≤ C|u− v|. (2.79)

The paper [6] does not assume the singularly perturbed case, where β0 → 0, but
the dependence of the derived results on β0 is tracked for further investigations.

In comparison with previous sections, the problem (2.77) is not considered
in a fixed space-time cylinder Ω × (0, T ), but in an evolving space-time cylinder
Ωt × (0, T ), where the space domain Ωt depends smoothly on time t. The goal of
the paper [6] is to present a stability bound for discontinuous Galerkin space-time
discretization.

2.8.1 Arbitrary Lagrangian-Eulerian description

The evolution of the domain Ωt is described by a one-to-one mapping At : Ωref → Ωt

which maps the point X ∈ Ωref onto the point x ∈ Ωt, i.e. x = At(X) ∈ Ωt.
Collecting these mappings for t ∈ [0, T ] we get the so called ALE mapping A.
Although such a mapping is assumed individually for each time interval Im in the
paper [6], we consider here only a single ALE mapping over all time interval (0, T ).
We also assume that the evolution of the domain as well as the ALE mapping A is
independent of the solution u of problem (2.77). We assume that the evolution of
the domain is smooth and that the ALE mapping A and its inverse A−1satisfies

A ∈W 1,∞(0, T,W 1,∞(Ωref)), (2.80)

A−1 ∈W 1,∞(0, T,W 1,∞(Ωt)).



CHAPTER 2. OVERVIEW 22

The important concept in the ALE description is the ALE derivative. The ALE
derivative Dt of function f(x, t) is defined as the time derivative of the reference
function f̃(X, t) = f(At(X), t), where x = At(X). By the chain rule we gain

Dtf(x, t) =
∂

∂t
f̃(X, t) =

d

dt
f(At(X)), t) = ∇f(x, t) · ∂

∂t
At(X) + f ′(x, t). (2.81)

Denoting the mesh velocity z(x, t) = z̃(X, t), where z̃(X, t) = ∂
∂tAt(X), we can

rewrite (2.81) as

Dtf = z · ∇f + f ′. (2.82)

The interpretation of the ALE derivative is the derivative along the ALE curve,
where the ALE curve is defined as the evolution of the single point X ∈ Ωref .

Using the ALE derivative, we can reformulate the original problem (2.77) into
equivalent problem

Dtu−∇ · (β(u)∇u) +∇ · f(u)− z · ∇u = g. (2.83)

2.8.2 Discretization

The aim of this section is to discretize the problem (2.83) by the space-time discon-
tinuous Galerkin method. We apply the notation from Section 2.3 and Section 2.4
on fixed space-time cylinder. Let us assume the discontinuous finite element space

X̃h = {ṽ ∈ L2(Ωref) : ṽ|K̃ ∈ P p(K̃)} (2.84)

on Ωref . We can define fully discrete space

X̃τ
h = {ṽ ∈ L2(0, T, X̃h) : v|Im ∈ P q(Im, X̃h)} (2.85)

on the fixed (reference) space-time cylinder. Finally, the fully discrete space Xτ
h on

the evolving space-time cylinder is defined as

Xτ
h = {v : v ◦ A ∈ X̃τ

h}. (2.86)

Applying the space and time discontinuous Galerkin technique described in Section
2.3 and Section 2.2.1, we arrive to the discrete formulation of problem (2.77)∫

Im

(DtU, v)t +Ah(U, v, t) + bh(U, v, t)− (z · ∇U, v)tdt (2.87)

+({U}m−1, v
m−1
+ )tm−1

=

∫
Im

ℓ(v, t)dt, ∀v ∈ Xτ
h ,

where (., .)t denotes the L2-scalar product on Ωt. The detailed description of the
forms Ah(., ., t), bh(., ., t) and ℓ(., t) can be found in the paper [6] or in Chapter 5.

2.8.3 Stability analysis

The goal of this section is to derive the stability estimate, i.e. the estimate that
bounds the discrete solution U ∈ Xτ

h in L∞(L2)-norm by the data of the problem
in suitable norms, i.e. by the initial and boundary conditions and by the right-hand
side g. Setting v = U in (2.87) gives after some manipulations

∥Um
− ∥2tm − ∥Um−1

− ∥2tm−1
+ ∥{U}m−1∥2tm−1

+

∫
Im

Ah(U,U, t)dt (2.88)

≤ Rt + C

∫
Im

∥U∥2tdt,
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where ∥.∥t denotes the L2-norm on Ωt and the term Rt consists of the norms of the
boundary condition and the right-hand side. The main difficulty lies in the estimate
of the L2(L2)-norm of the discrete solution U on the right-hand side of (2.88). Since
the discrete solution is from the finite dimensional space, it is possible to show that
the norms ∫

Im

∥U∥2tdt and τ sup
Im

∥U∥2t (2.89)

are equivalent. For piece-wise constant or piece-wise linear time approximations, i.e.
q = 0, 1, it is possible to deal with the supremum term directly, since the supremum
over Im is gained only at the endpoints of the interval Im, see [5]. The polynomial
approximations of higher degree need to be treated more carefully.

2.8.4 Discrete characteristic function

Denoting y ∈ [tm−1, tm] such that

∥U(y)∥2y = sup
Im

∥U∥2t , (2.90)

the ideal choice of the test function in (2.87) is v = Uχ(0,y), where χ(0,y) is the
characteristic function of interval (0, y). The applications of this test function in
(2.87) leads after some manipulations to

∥U(y)∥2y − ∥Um−1
− ∥2tm−1

+ ∥{U}m−1∥2tm−1
+

∫ y

tm−1

Ah(U,U, t)dt (2.91)

≤ Rt + C

∫ y

tm−1

∥U∥2tdt.

Then the proof of the stability can be finished by Gronwall lemma.
Unfortunately, this choice of the test function is not possible, since Uχ(0,y) /∈ Xτ

h ,
and it is necessary to construct a discrete approximation of Uχ(0,y) in the space Xτ

h .
In the paper [6], the approximation Uχ(0,y) ≈ Uy ∈ Xτ

h is made with the aid of the
discrete characteristic function described in [12] for fixed domains. Denoting the
corresponding function Ũ ∈ X̃τ

h to the original function U ∈ Xτ
h , we can define the

discrete characteristic function Ũy ∈ X̃τ
h on the fixed space-time cylinder by∫

Im

(Ũy, v)refdt =

∫ y

tm−1

(Ũ , v)ref , ∀v ∈ P q−1(Im, X̃h), (2.92)

(Ũy)
m−1
+ = (Ũ)m−1

+ .

Then the final discrete characteristic function Uy is defined as the transformation

of Ũy back to the evolving domain, i.e. Uy(x, t) = Ũy(A−1
t (x), t) ∈ Xτ

h .
The main properties of this discrete characteristic function Uy ∈ Xτ

h is that it
behaves similarly as the true characteristic function Uχ(0,y) when applied on the
term that corresponds to the discrete time derivative, i.e.

2

∫
Im

(DtU,Uy)tdt+ 2({U}m−1, (Uy)
m−1
+ )tm−1

≥ ∥U(y)∥2y − ∥Um−1
− ∥2tm−1

(2.93)

−C
∫
Im

∥U∥2tdt.

The application of Uy on all of the other terms in (2.87) is treated with the aid of
the following continuity property of U → Uy proved in the paper [6] or in Chapter
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5 ∫
Im

∥Uy∥2tdt ≤ C

∫
Im

∥U∥2tdt, (2.94)∫
Im

Ah(Uy, Uy, t)dt ≤ C

∫
Im

Ah(U,U, t)dt.

2.9 Overview of Chapter 6: A posteriori error es-
timates for nonlinear parabolic problems

Chapter 6 is based on the paper A posteriori error estimates for higher order space-
time Galerkin discretizations of nonlinear parabolic problems published in SIAM
Journal on Numerical Analysis in 2021, [17].

The paper deals with the numerical analysis of unsteady singularly perturbed
nonlinear convection-diffusion problems

u′ −∇ · σ(u,∇u) + c(u) = 0 in Ω× (0, T ) (2.95)

with homogeneous Dirichlet boundary condition and corresponding initial condition
u0. The nonlinearity is supposed to be monotone and continuous.

The paper [17] assumes either conforming or nonconforming Galerkin discretiza-
tions in space or time resulting in four different types of discretizations. The goal
of the paper [17] is to present a unified a posteriori error analysis based on the
equilibrated flux reconstructions for all these Galerkin discretizations.

To simplify forthcoming explanations, we only consider the heat equation instead
of (2.95), i.e. σ(u,∇u) = ∇u and c(u) = −f , and the discontiunous Galerkin time
discretization in combination with the classical finite element method.

2.9.1 Continuous problem and its discretization

Let us denote spaces

X = L2(0, T,H1
0 (Ω)), (2.96)

Y = {v ∈ X : v′ ∈ L2(0, T, L2(Ω))} ⊂ C([0, T ], L2(Ω)),

Y 0 = {v ∈ Y : v(0) = u0}.

Then the weak solution satisfies u ∈ Y 0 and∫ T

0

(u′, v) + (∇u,∇v)dt =
∫ T

0

(f, v)dt, ∀v ∈ X. (2.97)

We define Xτ
h in the same way as in Section 2.4. It shall be pointed out that

Xτ
h is a very natural approximation space to the space X, but not to the spaces Y

or Y 0, since Xτ
h ̸⊂ Y . The fully discrete solution U ∈ Xτ

h satisfies∫
Im

(U ′, v) + (∇U,∇v)dt+ ({U}m−1, v
m−1
+ ) =

∫
Im

(f, v)dt, ∀v ∈ Xτ
h , (2.98)

where U0
− = u0.

2.9.2 Discrete solution reconstruction

Similarly in Section 2.5, we need to reconstruct the discrete solution. The spatial
reconstruction στ

h ∈ L2(0, T,H(div,Ω)) can be obtained in a similar way as de-
scribed in Section 2.5 and the precise description can be found in the paper [17] or
in Chapter 6.
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It remains to reconstruct the discrete solution in time. The exact solution u
belongs to Y 0. It is possible to see that any function v ∈ Xτ

h belongs to the space
Y 0 if and only if v is continuous in time and satisfies the initial condition, i.e.
v(0) = u0. Then the reconstruction Rτ

h ∈ Y 0 can be obtained directly from the
discrete solution U

Rτ
h(x, t) = U(x, t)− {U}m−1(x)rm(t), t ∈ Im, x ∈ Ω, (2.99)

where rm are Radau polynomials defined in Lemma 2.2.3, i.e. rm ∈ P q+1(Im),
rm(tm) = 0, rm(tm−1) = 1 and rm ⊥ P q−1(Im). In fact, the reconstruction (2.99)
is identical to the reconstruction (2.14).

The resulting reconstruction Rτ
h satisfies Rτ

h ∈ Y 0 and together with the spatial
reconstruction στ

h also satisfies the space-time version of the equilibration property
(2.38), i.e.

(f − (Rτ
h)

′ +∇ · στ
h, 1)K,m = 0 (2.100)

The details of the proof are presented in the paper [17].

2.9.3 Error measure

Inspired by the work [14], we design the error measure Res(U) as the dual norm
of residual. Since the method (2.98) is nonconforming and the formulations for the
exact and the discrete solutions differ, we design a common formulation for both
these solutions.

Since the space Xτ
h ̸⊂ Y 0, we design a new space

Y τ = {v ∈ X : v′|Im ∈ L2(Im, L
2(Ω))}. (2.101)

The space Y τ can be considered as the broken Sobolev space with respect to time.
Then this space satisfies Y 0 ⊂ Y ⊂ Y τ ⊂ X and also Xτ

h ⊂ Y τ . We can exploit
these properties to define the extended formulation that covers the formulation for
the exact solution (2.95) as well as the formulation for the discrete solution (2.98):
find u ∈ Y τ such that∫

Im

(u′, v) + (∇u,∇v)dt+ ({u}m−1, v
m−1
+ ) =

∫
Im

(f, v)dt, ∀v ∈ Y τ . (2.102)

It shall be pointed out that the formulation (2.102) has a unique solution in Y τ and
this solution is the exact solution u of the original problem (2.97).

Then the error measure is defined as a dual norm of residual with respect to the
extended formulation (2.102)

Res(U) = sup
v∈Y τ

1

∥v∥Y τ

∑
K,m

(f − U ′, v)K,m − (∇U,∇v)K,m − ({U}m−1, v
m−1
+ )K ,

(2.103)

where the norm ∥.∥Y τ is designed locally and similarly as in [14]

∥v∥2Y τ =
∑
K,m

∥v∥2Y τ ,K,m, where ∥v∥2Y τ ,K,m =
1

d2K,m

h2K∥∇v∥2K,m + τ2∥v′∥2K,m.

(2.104)

The norm ∥.∥Y τ in [17] contains a user dependent local parameter dK,m. To simplify
the forthcoming exposition, we assume here dK,m = 1.
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2.9.4 Error estimate

The upper bound can be derived similarly as in Section 2.5. Let us assume v ∈ Y τ .
Then ∑

K,m

(f − U ′, v)K,m − (∇U,∇v)K,m − ({U}m−1, v
m−1
+ )K (2.105)

=
∑
K,m

(f − (Rτ
h)

′ +∇ · στ
h, v)K,m +

∑
K,m

(στ
h −∇U,∇v)K,m

+
∑
K,m

((Rτ
h)

′ − U ′, v)K,m − ({U}m−1, v
m−1
+ )K .

Estimation of these terms individually with the aid of (2.100) leads to

(f − (Rτ
h)

′ +∇ · στ
h, v)K,m ≤ CP ∥f − (Rτ

h)
′ +∇ · στ

h∥K,m∥v∥Y τ ,K,m, (2.106)

(στ
h −∇U,∇v)K,m ≤ ∥στ

h −∇U∥K,m∥∇v∥K,m,

((Rτ
h)

′ − U ′, v)K,m − ({U}m−1, v
m−1
+ )K ≤ ∥Rτ

h − U∥K,m∥v′∥K,m,

where CP is again the constant from Poincare inequality, cf. [38]. Application of
these estimates together and denoting the individual local estimators from (2.106)
as

ηR,K,m = CP ∥f − (Rτ
h)

′ +∇ · στ
h∥K,m, (2.107)

ηS,K,m =
1

hK
∥στ

h −∇U∥K,m,

ηT,K,m =
1

τ
∥Rτ

h − U∥K,m

gives a posteriori error estimate

Res(U)2 ≤ η2 =
∑
K,m

(
ηR,K,m + (η2S,K,m + η2T,K,m)1/2

)2
. (2.108)

2.9.5 Efficiency estimates

Similarly as in Section 2.5, we can derive local efficiency estimates for the individual
error estimators ηR,K,m, ηS,K,m and ηT,K,m. We assume traditionally that f is a
piece-wise polynomial function. Again, we denote by≲ the inequality up to constant
independent of the exact solution u, the discrete solution U , mesh-size h and step-
size τ .

To be able to provide the efficiency estimates locally, we need to define a local
version of the error norm Res(U). Since the error norm is dual norm of residual of
the extended formulation, i.e. certain supremum term over all functions v ∈ Y τ ,
see (2.103), we define local versions of the error norm as

ResM,m(U) = sup
v∈Y τ

M,m

1

∥v∥Y τ
M,m

∑
K,m

(f − U ′, v)K,m (2.109)

− (∇U,∇v)K,m − ({U}m−1, v
m−1
+ )K ,

where Y τ
M,m ⊂ Y τ is a space consisting from functions supported byM × Im, where

M is some collection of elements K.
The efficiency estimates for ηR,K,m and ηS,K,m can be derived by generalizing

the stationary technique, see [21] and [45]. The proof of the efficiency estimate for
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ηT,K,m is made more directly with the aid of a suitable test function, for the details
see [17]. The resulting efficiency estimates are following

ηR,K,m = CP ∥f − (Rτ
h)

′ +∇ · στ
h∥K,m ≲ ResωK ,m(U), (2.110)

ηS,K,m =
1

hK
∥στ

h −∇U∥K,m ≲ ResωK ,m(U),

ηT,K,m =
1

τ
∥Rτ

h − U∥K,m ≲ ResK,m(U).

Since ∑
K,m

ResK,m(U) ≤
∑
K,m

ResωK ,m(U) ≲ Res(U), (2.111)

we can derive from (2.110) the global efficiency estimate

η =
∑
K,m

(
ηR,K,m + (η2S,K,m + η2T,K,m)1/2

)
≲ Res(U). (2.112)

2.10 Overview of Chapter 7: Polynomial robust-
ness of efficiency estimates

Chapter 7 is based on the paper On polynomial robustness of flux reconstructions
published in Appl. Math. in 2020, [47].

The paper deals with the numerical analysis of convection-diffusion-reaction
problems

−∆u+ b · ∇u+ cu = f in Ω (2.113)

with homogeneous Dirichlet boundary condition. The problem is discretized by
the standard finite element method. A posteriori error estimate, where the flux
reconstructions are designed element-wise, is derived. The main result of the paper
show that the efficiency constant of the flux reconstruction in 1D (d = 1) depends
on the discretization polynomial degree as p1/2 at most. The main contribution
behind this paper lies in the application of the reconstruction developed for the
time discretization in [17] for the space discretization as well.

To simplify forthcoming explanations, we only consider the Poisson equation
instead of (2.113), i.e. b = 0 and c = 0.

2.10.1 Discretization and upper bound

We descretize the problem (2.113) by the standard finite element method. We can
apply the notation from Section 2.1.1. The finite element space is defined as

Xh = {v ∈ H1
0 (Ω) : v|K ∈ P p(K)} (2.114)

and we can formulate the discrete problem: find uh ∈ Xh such that

(∇uh,∇v) = (f, v), ∀vh ∈ Xh. (2.115)

In contrary to Section 2.5, we compose the reconstruction σh ∈ H(div,Ω) from
the local element-wise information, i.e. we define σh|K ∈ RT(K) such that

σh|e · n = ⟨∇uh⟩|e · n, (2.116)

(σh, w)K = (∇uh, w)K , ∀w ∈ P p−1(K)d.
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The resulting global function σh is in H(div,Ω), since the normal component of σh
is continuous across the edges. Moreover, σh is equilibrated in generalized sense

(f +∇ · σh, v) = 0, ∀v ∈ Xh. (2.117)

The advantage of the reconstruction defined by (2.116) in comparison with the
reconstruction defined in Section 2.5 is its simplicity that enables to evaluate the
reconstruction directly without solving an artificial mixed finite element problem
on patches ωa. It shall be pointed out that the relations from (2.116) correspond
to the classical (natural) degrees of freedom for RT(K), see e.g. [7].

Instead of Poincare inequality applied in Section 2.5, we need a more accurate
estimate

inf
vh∈Xh

∥v − vh∥K ≤ CFl
hK
p

∥∇v∥K (2.118)

that holds for any function v ∈ H1
0 (K), see e.g. [4]. The constant CFl is unknown

in general, but it can be determined in some special cases. E.g., it is possible to
take

CFl =
p√

(2p+ 3)(2p− 1)
(2.119)

in 1D (d = 1), see [47] or Chapter 7.
Denoting local estimators

ηR,K = CFl
hK
p

∥f +∇ · σh∥K , (2.120)

ηF,K = ∥σh −∇uh∥K

and applying (2.117) together with (2.118) imply a posteriori error estimate

∥∇u−∇uh∥2 = Res(uh)
2 ≤ η2 =

∑
K

(ηR,K + ηF,K)2. (2.121)

The idea of the proof is similar as in Section 2.5.

2.10.2 Efficiency

We derive local efficiency estimates for the individual error estimators ηR,K and
ηF,K in 1D (d = 1). We traditionally assume that f ∈ Xh, similarly as in Section
2.5. Again, we denote by ≲ the inequality up to constant independent of the exact
solution u, the discrete solution uh and mesh-size h. Since we are also interested in
the polynomial dependence of this constant, we assume that this constant is also
independent of the discretization polynomial degree p and denote this polynomial
dependence separately.

Similarly as in [17], we define local errors

ResM (uh) = sup
v∈H1

0 (Ω), supp(v)⊂M

(f, v)− (∇uh,∇v)
∥∇v∥

, (2.122)

where M is some collection of elements K. Similarly as in [17], it is possible to
show that ∑

K

ResK(uh) ≤
∑
K

ResωK
(uh) ≲ Res(uh). (2.123)
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Moreover, it is possible to see that the reconstruction defined by (2.116) in 1D
can be equivalently rewritten on element K = [a, b]

σh|K = ∇uh + (⟨∇uh⟩(a)−∇uh(a))ra + (⟨∇uh⟩(b)−∇uh(b))rb, (2.124)

where the values of∇uh(a) and∇uh(b) are taken from inside ofK and ra, rb ∈ P p+1

are Radau orthogonal polynomials on K oriented either to the left endpoint a or
the right endpoint b. Comparing with the reconstruction (2.14), we can see that
the reconstruction of σh is defined according to the similar principle, but assumes
the jump term on both sides of the interval K.

The efficiency of ηF,K can be proved by similar argument as in the proof of
efficiency of ηT,K,m in [17]. The advantage of the directness of the proof enables to
track the dependence on the polynomial degree

ηF,K = ∥σh −∇uh∥K ≲ p1/2 ResωK
(uh). (2.125)

The proof is rather technical and therefore it is skipped here. The details can be
found in [47] or in Chapter 7. This estimate can be applied for the proof of the
efficiency of ηR,K , where it is possible to show that the polynomial dependence is
the same as in ηF,K

ηR,K = CFl
hK
p

∥f +∇ · σh∥K ≲ p1/2 ResωK
(uh). (2.126)

Again, the proof is quite technical and the details can be found in [47] or in Chapter
7.

The estimate of ηR,K is quite interesting, since usually the authors in the lit-
erature are focused in the efficiency of ηF,K only. The problem with traditional
concept of the term ηR,K is that only standard Poincare inequality (or a similar
inequality like Friedrichs inequality etc.) is applied. This enables to determine the
constant CFl as Poincare constant CP that is known in standard situations, e.g. on
convex domains. On the other hand, classical Poincare inequality only contains the
term CPhK instead of CFl

hK

p . Avoiding the 1/p term seems to lead to suboptimal
efficiency analysis with respect to the polynomial degree p.
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