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ABSTRAKT V �ESKÉM JAZYCE

Kvantové hamiltoniány s magnetickým polem:

efektivní dynamika a transportní vlastnosti

Tato práce pojednává o nerelativistických i relativistických kvantových hamiltoniánech s mag-
netickým polem pro £ástici vázanou na nadplochu £i její trubicovité okolí. V nerelativistickém
p°ípad¥ uvaºujeme magnetický laplacián, v relativistické situaci potom Dirac·v operátor s mag-
netickým polem. Nejprve budeme hledat efektivní operátor pro magnetický laplacián na velice
tenkém okolí nadplochy. Ukáºeme, ºe jde-li ²í°ka okolí k nule, je limitním operátorem magnetický
Laplace-Beltramiho operátor na nadplo²e s dodate£ným skalárním potenciálem, který lze zapsat
pomocí hlavních k°ivostí nadplochy. Je-li nadplocha vloºená do R3, potom efektivní magnetic-
ké pole je dáno projekcí vn¥j²ího magnetického pole do sm¥ru jednotkové normály k nadplo²e.
Speciáln¥ se dále zabýváme dvourozm¥rným magnetickým laplaciánem. Pro °adu transla£n¥ in-
variantních magnetických polí lze ukázat, ºe spektrum tohoto operátoru je £ist¥ absolutn¥ spo-
jité. Ukáºeme, ºe tato vlastnost m·ºe z·stat zachována i po p°i£tení transla£n¥ invariantního
elektrostatického potenciálu. Absolutní spojitost spektra dokáºeme i pro magnetický laplacián
s konstatním magnetickým polem na okolí zak°ivené transla£n¥ invariantní dvourozm¥rné nad-
plochy. P°ipome¬me, ºe absolutní spojitost spektra bývá spojována s transportními vlastnostmi
modelu. Navíc pro mnoho dvourozm¥rných model· s transla£n¥ invariantní magnetickou bariérou
byl odvozen dolní odhad pro velikost proud· podél bariéry. Ukáºeme, ºe nosi£i t¥chto proud·
mohou být stavy s malou £i nulovou disperzí a nalezneme posta£ující podmínky pro jejich exis-
tenci v relativistickém p°ípad¥. Je-li magnetická bariéra popsána vektorovým potenciálem, který
je úzkého vysokého pro�lu, jeví se jako smysluplné místo n¥j formáln¥ uvaºovat jednoduchou
vrstvu. P°itom vzhledem k transla£ní invarianci lze po zapojení £áste£né Fourierovy transformace
pracovat s jednorozm¥rnými Diracovými operátory. Dává tedy smysl zabývat se jednorozm¥rnou
relativistickou bodovou interakcí a jejími aproximacemi pomocí více realistických regulárních
potenciál·. Aproxima£ní výsledek odvodíme v uniformním rezolventním smyslu pro libovolný
typ bodové interakce. Nakonec rigorózn¥ de�nujeme dvourozm¥rný Dirac·v operátor s poten-
ciálem úm¥rným jednoduché vrstv¥ na uzav°ené k°ivce jako samosdruºený operátor a analogicky
jako v jednorozm¥rné situaci vy°e²íme otázku aproximací pomocí regulárních potenciál·. Detail-
n¥ji se budeme v¥novat p°ípadu, kdy je moºno singulární potenciál interpretovat jako vektorový
potenciál, tj. nov¥ zavedeme magnetickou δ-shell interakci.
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ABSTRACT IN ENGLISH

Quantum Hamiltonians with magnetic �elds:

e�ective dynamics and transport properties

This thesis deals with both non-relativistic and relativistic quantum Hamiltonians with mag-
netic �elds constrained to a hypersurface or its tubular neighbourhood. In the non-relativistic
case, the magnetic Laplacian will be considered, whereas in the relativistic situation we will
be concerned with the Dirac operator with magnetic �eld. Firstly, we will look for an e�ective
operator for the magnetic Laplacian on a very thin neighbourhood of the hypersurface. We will
show that, as the width of the neighbourhood tends to zero, the limit operator is the magnetic
Laplace-Beltrami operator on the hypersurface with an additional scalar potential, which may be
expressed in terms of the principal curvatures of the hypersurface. If the hypersurface is embed-
ded into R3 then the e�ective magnetic �eld is given as the projection of the ambient magnetic
�eld to the normal direction. Next, we will focus on the two-dimensional magnetic Laplacian.
It has been proved for a variety of translationally invariant magnetic �elds that the spectrum
of this operator is purely absolutely continuous. We will show that this still may be true even
after adding a translationally invariant electrostatic perturbation. Moreover, we will prove the
absolute continuity of the Laplacian with constant magnetic �eld on neighbourhoods of certain
curved translationally invariant two-dimensional hypersurfaces. Recall that the absolutely con-
tinuous spectrum is typically associated with transport properties of a model. Besides, for many
two-dimensional models with a translationally invariant magnetic barrier, there exists a lower
bound on currents along the barrier. We will show that these currents may be carried by states
that disperse slowly or not at all and we will �nd several su�cient conditions for existence of
such states in the relativistic case. If the vector potential that is associated with the magnetic
barrier is of very thin but high pro�le, it seems reasonable to work formally with the simple layer
distribution instead of the true, possibly complicated, potential. Moreover, due to the symme-
try with respect to translations, it is possible to consider one-dimensional Dirac operators after
employing the partial Fourier transform. Therefore, it makes sense to be concerned with the
one-dimensional relativistic point interaction and its approximations by more realistic regular
potentials. We will provide an approximation result in the norm resolvent sense for any type
of the point interaction. Finally, we will introduce rigorously as a self-adjoint operator the two-
dimensional Dirac operator with potential that is proportional to the simple layer distribution
supported on a closed curve and, similarly as in the one-dimensional setting, we will solve the
problem of approximations by regular potentials. We will investigate in more detail the case
when the singular potential may be associated with a vector potential, i.e., we will introduce a
sort of magnetic δ-shell interaction.
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Chapter 1

Scope of the thesis

1.1 Introduction

The bible of modern mathematical physics by Reed and Simon [103] starts with an observation
that "it is a common fallacy to suppose that mathematics is important for physics only because it
is a useful tool for making computations". In fact, if a successful mathematical model is created
to describe a physical phenomenon, it may be very fruitful to think about its mathematical
structure, because understanding the mathematics of the model can largely extend our knowledge
about the physics of the model or even lead to understanding of physical phenomena that were not
originally described by the model. As a prominent example, one can recall Newtonian mechanics
which was initially developed to describe the celestial motion but its model itself was used to
describe almost all physical phenomena before the advent of the quantum physics, which became
the central physical theory of 20th century and also these days. I dare to say that the role of
mathematics in the quantum physics is even more important because the quantum physics deals
with physical objects and phenomena that we do not experience directly by our human senses
and classical analogies are often misleading.

The mathematical foundations of quantum mechanics were laid by John von Neumann to a
large extend [93] with functional analysis being the key mathematical discipline. According to the
axioms of quantum mechanics, observables are represented by self-adjoint operators in a Hilbert
space of possible states. Prominent examples of these operators are the operators of the total
energy, the so-called Hamiltonians, since they appear on the right-hand side of the Schrödinger
and Dirac equations that govern the time evolution of a quantum state. This thesis deals with
several non-relativistic and relativistic quantum Hamiltonians in the presence of magnetic �elds.
In particular, we will be concerned with the following questions.

Q1 Is it possible to describe the motion of a quantum particle constrained to a hypersurface
by a Hamiltonian which is obtained as a certain limit of Hamiltonians on very thin tubular
neighbourhoods of the hypersurface? What happens with an ambient magnetic �eld in this
limit?

Q2 What are the e�ects of translationally invariant magnetic inhomogeneities in two-dimensional
quantum systems? Is it possible to replace a magnetic inhomogeneity by a geometric deforma-
tion to get the same or similar e�ects?

Q3 What is an e�ective model for a two-dimensional quantum system with magnetic �eld that
is associated with a vector potential which vanishes away from a very thin neighbourhood of a
curve but is very large on this neighbourhood?

5



1.2. MAGNETIC LAPLACIAN

Most of these questions have longer or shorter history1, thought in possibly slightly di�erent
settings, and are linked together. Moreover, although they lead to challenging problems in analysis
of self-adjoint operators, they are not just mathematical curiosities. In fact, they were motivated
by great achievements of the nano/meso-scopic physics and material sciences of recent decades.

After introducing the notion of magnetic Laplacian in Section 1.2, question Q1 is addressed
in Section 1.3. We will derive a norm resolvent convergence result in very general setting. Sections
1.4, 1.5, and 1.6 are devoted to problems related to question Q2. We will describe the e�ects
of considered magnetic �elds in terms of certain spectral quantities. First, we will study new
su�cient conditions under which the spectrum of the associated magnetic Laplacian is purely
absolutely continuous. Secondly, we will argue that the presence of energy bands in the spectrum
of a quantum Hamiltonian guarantees the existence of quantum states that propagate with
non-zero velocity and disperse only slowly or even not at all. As an example, we will study
two-dimensional Dirac operator with magnetic �elds. In Section 1.7, we will introduce the so-
called magnetic δ-shell potential for the two-dimensional Dirac operator and show that it can
be obtained as the strong resolvent limit of a sequence of two-dimensional Dirac operators with
scaled vector potentials. This answers question Q3 in the relativistic case. Comparing formal
and mathematically rigorous limit operators we will observe a non-intuitive renormalization of
the coupling constant. We will also discuss a similar one-dimensional model.

Notation

We will denote by L2(Ω; H ) the Hilbert space of the equivalence classes of almost everywhere
identical square-integrable (with respect to the Lebesgue measure) functions on an open subset
Ω of Rn with values in a Hilbert space H . If H = C we will abbreviate L2(Ω; H ) to L2(Ω). We
will use similar conventions for all Lp-spaces, p ∈ [1,∞], and their subspaces. When convenient
we will identify L2(Ω;C2) ≡ L2(Ω) ⊗ C2 ≡ L2(Ω) ⊕ L2(Ω) and similarly for subspaces. The
Sobolev space of the elements of L2(Ω) that have all weak derivatives up to the order m ∈ N,
all of them being in L2(Ω), will be denoted by Hm(Ω). We will write Hm

0 (Ω) for the closure of
C∞0 (M), the space of all smooth functions with supports in M , with respect to the usual norm
on Hm(Ω).

1.2 Magnetic Laplacian

In this section, we review some basic results about the self-adjointness and spectral properties
of magnetic Laplacians. Let Ω be a domain, i.e., an open connected set, in Rn. Note that later
we will be mostly concerned with the case when Ω = R2 or Ω is a tubular neighbourhood of a
hypersurface in Rn. The magnetic Laplacian acts on a subspace Dom(HA) of L2(Ω) as follows

HA = (−i∇+A)2. (1.1)

Here A : Ω → Rn is the vector potential. Since HA (in appropriate units) should represent a
quantum mechanical observable, Dom(HA) has to be chosen so that HA is self-adjoint. There
has been lot of e�ort to show self-adjointness of HA under minimal assumptions on regularity of
A. To this purpose it is convenient to start with the following quadratic form

qA(ψ,ψ) = ‖(−i∇+A)ψ‖2L2(Ω)

1References will be provided later in separate sections.
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1.2. MAGNETIC LAPLACIAN

de�ned initially for all ψ ∈ C∞0 (Ω). If Ω = Rn and A ∈ L2
loc(Rn;Rn) then qA is closable and its

closure is the maximal form, i.e.,

Dom(qA) = {ψ ∈ L2(Rn)| ‖(−i∇+A)ψ‖L2(Rn) < +∞},

cf. [71]. By representation theorem, there is a self-adjoint operator associated with qA. We will
identify HA with exactly this operator. Moreover, if A ∈ L4

loc(Rn;Rn) and ∇ · A ∈ L2(Rn) then
HA maps C∞0 (Rn) to L2(Rn) and C∞0 (Rn) is an operator core of HA [71]. Note that if A is
di�erentiable and A,∇A are bounded then the domain of HA coincides with the domain of the
free Laplacian H0, i.e., Dom(HA) = H2(Rn).

For bounded domains Ω (and similarly for unbounded domains with boundaries), there is
no unique canonical way how to arrive at a self-adjoint realization of HA. However, there are
two realizations that appear almost exclusively in plenty of applications. For simplicity, let A ∈
C1(Ω). The quadratic form qA de�ned on the Sobolev space H1

0 (Ω) is closed and the associated
self-adjoint operator HA,D is de�ned on

Dom(HA,D) = {ψ ∈ H1
0 (Ω)| (−i∇+A)2ψ ∈ L2(Ω)}.

If we start with qA de�ned on H1(Ω) we get, using the representation theorem again, the self-
adjoint operator HA,N acting on

Dom(HA,N ) = {ψ ∈ H1(Ω)| (−i∇+A)2ψ ∈ L2(Ω), (−i∇+A)ψ · n = 0 on ∂Ω},

cf. [98]. Here n stands for the outer normal to the boundary ∂Ω of Ω. Operators HA,D and HA,N

are called the Dirichlet and Neumann realizations of the magnetic Laplacian, respectively, and
act as the right-hand side of (1.1). Recall at this point that for su�ciently smooth boundaries,
ψ ∈ H1(Ω) belongs to H1

0 (Ω) if and only the trace of ψ on ∂Ω is zero.
Let us now introduce the notion of the magnetic �eld. We will assume that the vector potential

A ≡ (A1, A2 . . . An) : Ω → Rn is C1-smooth. It gives rise to a 1-form α = Aidx
i. Here we used

the Einstein summation convention and {xi}ni=1 denote the Cartesian coordinates. The magnetic
�eld is de�ned as the antisymmetric 2-form β = dα. Remark that if χ stands for a di�erentiable
scalar function then

d(α+ dχ) = dα = β.

Therefore, starting with a �xed magnetic �eld we have a certain freedom in the choice of the
vector potential. This is well known change of gauge. On the other hand, if dα = dα̃, where α̃ is
another vector potential and Ω is such that we can use the Poincaré lemma (e.g., contractible)
there exists a function χ such that α̃ = α+dχ. Physical quantities, like energies of bound states,
depend on A (or equivalently α) only via β. Indeed, for any χ ∈ H1(Ω;R), we get

e−iχ(−i∇+A)eiχ = −i∇+A+∇χ.

Therefore, it follows that HA and HA+∇χ are unitarily equivalent, because

U †HAU = HA+∇χ (1.2)

with U = eiχ. This result is called gauge invariance. Note that we identify the vector potential
A+∇χ with a 1-form α + dχ. Let us stress that there exists domains and forms on them such
that dα = 0 but there is no χ with the property that α = dχ, i.e., forms that are closed but not
exact. Recall the exterior of in�nitely extended cylinder and the Aharonov-Bohm potential as an
iconic example [1]. Using the Hodge star operator in R2 and R3, one can identify 2-forms with

7



1.3. QUANTUM LAYERS

scalars and 1-forms, respectively. We will denote the Hodge dual of β by B and call it magnetic
�eld again. It is possible recover usual formulae for the coordinates of B. Namely, we have

B ≡ ∂1A2 − ∂2A1 and B ≡ ∇×A,

in R2 and R3, respectively. Nevertheless, the description of vector potentials and magnetic �elds
in terms of forms (written in some local coordinates) becomes indispensable when dealing with
Riemannian manifolds.

A universal feature of the magnetic �eld is that it cannot decrease the energy of the system
described by HA. This principle is encoded in the so-called diamagnetic inequality that may be
stated as follows. For any A ∈ L2

loc(Rn,Rn) and ψ ∈ L2(Rn) such that (−i∇+A) ∈ L2(Rn;Cn),
we have |ψ| ∈ H1(Rn) and

|∇|ψ|(x)| ≤ |(−i∇+A)ψ(x)|
for a.e. x ∈ Rn [72]. Consequently, we get

q0(|ψ|, |ψ|) ≤ qA(ψ,ψ),

which, in view of the min-max principle, implies minσ(H0) ≤ minσ(HA). Let us stress that the
diamagnetic inequality is not true when the spin is introduced.

Finally, we will present several important spectral results for HA when Ω = R2. Many authors
considered the case when the magnetic �eld B is asymptotically constant, i.e., B(x, y)→ B0 ∈ R
as |(x, y)| → +∞, where x and y stand for Cartesian coordinates in R2. If B0 = 0 then σ(HA) =
σess(HA) = [0,+∞) [90, 70]. Moreover, if B is short-range, i.e., B(x, y) = O(|(x, y)|−1−δ) at
in�nity with δ > 0, then the spectrum of HA is purely absolutely continuous [58]. However, the
character of the essential spectrum may be very di�erent in the long-range case. One can even
construct magnetic Laplacians with dense point spectra [90]. If B0 6= 0 then HA has pure point
spectrum

σ(HA) = σp(HA) = {(2k + 1)|B0|, k ∈ N ∪ {0}}, (1.3)

where all eigenvalues are of in�nite multiplicity and are known as the Landau levels [59]. The
situation when B is not asymptotically constant is not fully understood. Nevertheless, there is
a seminal result by Iwatsuka that deals with the magnetic �eld that is invariant with respect to
translations in one direction, say y. Then B may be viewed as function of variable x only. If the
limits of B = B(x) at ±∞ are di�erent then the spectrum of HA is purely absolutely continuous
and it may contain gaps [60]. A precise formulation of the result will be given in Section 1.4
together with an overview of related results.

1.3 Quantum layers

In the previous section we introduced the magnetic Laplacian not only in the physical three-
dimensional space, but also on two-dimensional domains. Such operators may serve as quantum
Hamiltonians describing charge carriers in �at mesoscopic structures [57, 74]. Since the real
structures are of very small but still non-zero width, a natural question arises whether it is
possible to get two-dimensional operators as limits of three-dimensional operators acting on
smaller and smaller neighbourhoods of the underlying structures. To answer the question we
will �rst need some notation. We will consider much more general situation than just �at two-
dimensional domains.

Let Σ be a hypersurface in Rn with n ≥ 2 and de�ne its ε-neighbourhood

Ωε :=
{
xΣ + un ∈ Rd

∣∣ (xΣ, u) ∈ Σ× (−ε, ε)
}
, (1.4)

8



1.3. QUANTUM LAYERS

where n is a unit normal vector �eld of Σ and ε > 0. Next, we consider the magnetic Laplacian
with Dirichlet boundary conditions on ∂Ωε, which will be denoted by Hε

A,D. It is natural to
choose the Dirichlet boundary conditions, because they correspond to the "in�nite potential"
away from the neighbourhood. Finally, let Ae� be the projection of A on Σ and hΣ

Ae�,D
be the

magnetic Laplace-Beltrami operator on Σ subject to the Dirichlet boundary conditions on ∂Σ
(if Σ is not complete). Recall that the magnetic Laplace-Beltrami operator acts as the usual
Laplace-Beltrami operator after replacing derivatives with respect to local variables −i∂µ by
their magnetic counterparts (−i∂µ +Ae�,µ).

For n = 2, 3 and A ≡ 0, it was discovered already in 1970 that the formal limit of Hε
0,D is not

just hΣ
0,D but there is an extra potential Veff that depends explicitly on the principal curvatures

of Σ [64]. The same was later observed in higher dimensions [114]. The �rst mathematically
rigorous study of Hε

0,D for n = 2 appeared in 1995 [30] and started still ongoing interest in
the research of quantum layers and quantum waveguides, i.e., quantum systems living on Ωε

and tubular neighbourhoods of curves in Rn, respectively. Let us list just a few contributions
that are closest to the present setting but with no magnetic �eld, [23, 24, 40, 41, 68, 118,
119], see also the monograph [38] for further references. There are signi�cantly less results in
the magnetic case. E�ective Hamiltonians for two and three-dimensional magnetic quantum
waveguides were investigated in 2014 [65]. Almost simultaneously we published the �rst paper
dealing with e�ective Hamiltonians for magnetic quantum layers [66] (see Section 2.1 for the
full text). Note that in the two-dimensional space the notions of the waveguide and the layer
coincide, so there is a certain overlap. Recently, an alternative way how to arrive at e�ective
Hamiltonians both for waveguides and layers in a uni�ed manner was discovered [47].

Our main result says that

Hε
A,D −

( π
2ε

)2 ε→0−→ hΣ
Ae�,D

+ Ve� (1.5)

in the norm resolvent sense with

Ve� = −1

2

n−1∑

µ=1

κ2
µ +

1
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n−1∑

µ=1

κµ




2

,

where {κµ}n−1
µ=1 denote the principal curvatures of Σ. Let us stress that this result was novel

even for A ≡ 0 because convergence in that strong topology hadn't been settled before in an
arbitrary dimension. Note that the limit operator acts on a di�erent Hilbert space than Hε

A,D

and that the Hilbert space where Hε
A,D lives is ε-dependent. Therefore, in the schematic formula

(1.5) we have to identify Hε
A,D with a unitarily equivalent operator acting in the Hilbert space

of L2-functions on a layer of a �xed width and also identify the Hilbert space where the limit
operator lives with the range of the projection (in the new ε-independent Hilbert space) onto the
lowest Dirichlet eigenfunction in the transverse direction. During this procedure the coe�cients
of Hε

A,D become ε-dependent. This also roughly explains the need of subtracting the divergent
term on the left-hand side of (1.5).

Observe that the e�ective potential Ve� is the same as in the non-magnetic case and that
for n = 2, 3 it is always non-positive. The latter means that the limit operator comprises an
attractive interaction that may produce bound states below the essential spectrum. In fact, for
non-straight in�nite strips (n = 2), this is always the case [30]. Our result suggest that one can
eliminate these disturbing bound states by switching a magnetic �eld on, due to its repulsive
(diamagnetic) e�ect. For n = 2 and ε �xed this had been previously studied in [36].

Finally, note that hΣ
Ae�,D

contains information about both intrinsic and extrinsic geometry
of Σ. The latter is due to the way how Ae� is de�ned. This is best visualized for n = 2 when we

9



1.4. IWATSUKA MODEL

get for the e�ective magnetic �eld Be� = n · B|Σ, i.e., only the projection of ambient magnetic
�eld B to the normal direction plays a role in the limit.

1.4 Iwatsuka model

1.4.1 Classical two-dimensional case

In the previous section we justi�ed that planar quantum models with magnetic �elds may be
viewed as limits of more realistic systems living on very thin layers. Now, we look more closely
at an important example of such models, introduced in 1985 by Iwatsuka [60]. Let the magnetic
�eld be a function of one variable, say x, only, B = B(x). It is convenient to work in the Landau
gauge,

Ax ≡ 0, Ay(x, y) ≡ Ay(x) =

∫ x

0
B(t)dt, (1.6)

because the magnetic Laplacian,

HA = −∂2
x + (−i∂y +Ay(x))2,

is then unitarily equivalent to the direct integral of one-dimensional operators,

Fy→ξHAF−1
y→ξ =

∫ ⊕

R
HA[ξ]dξ,

where Fy→ξ stands for the partial Fourier-Plancherel transform and

HA[ξ] = −d2
x + (ξ +Ay(x))2.

If B ∈ L∞(R;R) then HA[ξ] is essentially self-adjoint on C∞0 (R) for every ξ ∈ R [71].
It is conjectured that the spectrum of HA is purely absolutely continuous, whenever B is

non-constant [25]. Recall that, from a physical perspective, the points of the absolutely contin-
uous spectrum of a Hamiltonian are energies at which the system described by the Hamiltonian
exhibits transport, see [19] for a possible mathematical explanation of this relationship. To get
a feeling why the conjecture may be true, consider the case B(x) = B± ∈ R \ {0} for all ±x > 0
with B+ 6= B−. Then there are classical orbits that consist of semicircles of di�erent radii on
each of the half-planes. Such orbits clearly wander o� to in�nity. Of course, for many initial
conditions, the classical orbits are just closed circles. On the other hand, quantum states are not
strictly localized, so a quantum particle may still "feel" the magnetic step along x = 0. Above
all, the conjecture was motivated by the Iwatsuka's result [60]. He proved the absolute continuity
of HA for magnetic �elds that obey

CON1 B ∈ C∞(R;R), and there exist constants M± such that 0 < M− ≤ B ≤M+

CON2 and either of the following holds

CON2a lim supx→−∞B(x) < lim infx→+∞B(x)
or lim supx→+∞B(x) < lim infx→−∞B(x),

CON2b B is constant for all |x| su�ciently large but non-constant on R, and there exists
x0 such that B′(x−)B′(x+) ≤ 0 for all x− ≤ x0 ≤ x+.

M. M�antoiu and R. Purice demonstrated in [79] that CON2b may be relaxed to

CON2c B is non-constant and there exists a point x0 such that for all x1, x2 with
x1 ≤ x0 ≤ x2 one has either B(x1) ≤ B(x0) ≤ B(x2) or B(x1) ≥ B(x0) ≥ B(x2).

10



1.4. IWATSUKA MODEL

Note that there is also some overlap of CON2c with CON2a.
P. Exner and H. Kova°ík proved that the spectrum of HA is purely absolutely continuous for

a large class of compactly supported variations of a constant non-zero magnetic �eld [37]. More
concretely, they arrive at the following su�cient conditions,

CON3 B(x) = B0 + b(x), where B0 > 0 and b is bounded, piecewise continuous and compactly
supported

CON4 and either of the following holds

CON4a b is nonzero and does not change sign,

CON4b let [al, ar] be the smallest closed interval that contains supp b; there are c, δ > 0
and m ∈ N such that |b(x)| ≥ c(x− al)m or |b(x)| ≥ c(ar − x)m for all x ∈ [al, al + δ)
or x ∈ (ar − δ, ar], respectively.

In [115] (see Section 2.2), I showed that it is possible to relax CON1 and, more importantly,
found su�cient conditions on absolute continuity ofHA+W , whereW is an electric �eld which is,
much like the magnetic �eld, assumed to be invariant with respect to translations in y-direction,
W (x, y) ≡W (x). To state the result we will need some notation. For any f ∈ L∞(R;R), we put

f
+

= sup
a∈R

ess inf
t∈(a,+∞)

f(t) f+ = inf
a∈R

ess supt∈(a,+∞) f(t)

f− = sup
a∈R

ess inf
t∈(−∞,a)

f(t) f− = inf
a∈R

ess supt∈(−∞,a) f(t).

I proved that the spectrum of HA +W is purely absolutely continuous if B, W ∈ L∞(R;R) are
such that either of the following holds

CON5a B± > 0 ∧ B+ ≥ B− ∧ (W− −W+ < B+ −B−),

CON5b B+ > 0 ∧ B− < 0.

The same is true if we interchange the ± indices everywhere in CON5a and CON5b. Note that
that we do not require positivity of B. In fact, in CON5b the magentic �eld has to change its
sign and in CON5a it may be negative on a compact subset of R.

Similar models with electric potentials were studied before. If the magnetic �eld is constant
B(x, y) = B0 > 0 then we can choose A = (0, B0x) and all �ber operators HA[ξ] are mutu-
ally uniformly equivalent. Moreover, HA[0] is the one-dimensional harmonic oscillator Hamilto-
nian. Using [104, Theorem XIII.85], we deduce immediately the aforementioned result that the
spectrum of HA with a constant non-zero magnetic �eld contains only eigenvalues of in�nite
multiplicity�the Landau levels (1.3). Since the magnetic Laplacian with constant magnetic �eld
is known as the Landau Hamiltonian, we will write HL instead of HA for it. It was observed
that HL + ω2x2 with ω > 0 is purely absolutely continuous and this property remains stable
under adding perturbations of some type [34]. For W = W (x) non-constant non-decreasing and
bounded, it was proved that the spectrum of HL +W is also purely absolutely continuous, with
a band structure [20]. We obtained a similar result for non-positiveW 6≡ 0 supported on the pos-
itive half-line [35] (see also Section 2.3). In fact, another new extension of the original su�cient
conditions by Iwatsuka was presented in [35, Theorem V.1]. If W = W (x) is periodic only the
spectrum below a �xed energy (that depends on the strength of the magnetic �eld) was shown
to be absolutely continuous [91].

Since each of CON1, CON3, CON5a or CON5b implies

| lim
x→±∞

Ay(x)| = +∞, (1.7)

11



1.4. IWATSUKA MODEL

HA[ξ] has compact resolvent under either of these conditions. Consequently, the spectrum of
HA[ξ] consists solely of eigenvalues, say {λn[ξ]}n∈N. Moreover, it is rather straightforward to
verify that {H[ξ]} form an analytic family of type (B). In view of [104, Theorem XIII.86], to
show the absolute continuity of HA it is now su�cient to prove that each λn[ξ] is simple and non-
constant. The latter condition is hardest to verify. Typically one uses cleverly chosen comparison
operators or the Feynman-Hellmann formula. The �rst approach yields asymptotic behaviour of
the eigenvalues at ξ = ±∞ and it is particularly useful in situations when the magnetic �eld
behaves di�erently at ±∞. The second approach gives the derivative of λn[ξ] with respect to
ξ and is usually applied when the magnetic �eld (as a function of one variable) is compactly
supported. Note that the absence of eigenvalues in the spectrum of HA was proved recently even
for some magnetic �elds that do not necessarily obey (1.7) [101]. In some particular situations,
this may also imply that the spectrum of HA is purely absolutely continuous.

1.4.2 Iwatsuka type e�ect in curved layers

We have seen in Section 1.3 that a quantum particle con�ned to a three-dimensional layer of
a small width in an ambient magnetic �eld "feels" only the the projection of the �eld to the
transverse direction, Be� = n ·B|Σ, where n is the unit normal �eld of the underlying surface Σ.
This suggests that keeping the ambient �eld constant, B = B0 6= 0, one can produce e�ectively
non-constant magnetic �eld by modifying the layer's geometry. If the layer is invariant with
respect to the translations in one direction and it is not �at then it seems reasonable to expect
the spectrum of HA to be purely absolutely continuous, in view of the results of Iwatsuka and
his followers. We studied such layers in [35], which is included in this thesis as Section 2.3, and
proved absolute continuity of the spectrum under several additional conditions on Σ and/or the
width of the layer, i.e., 2ε. Let us stress that we did not always assume ε to be very small.
On the other hand, in the very de�nition (1.4) of the layer, one typically wants the mapping
(xΣ, u) 7→ xΣ + un to be di�eomorphic which yields a certain upper bound on the layer's width.

To formulate our results, let us begin with some notation. Let Γ : s 7→ (x(s), z(s)) be a curve
in the xz�plane parametrized by its arc-length measured from a reference point on the curve
and κ its signed curvature. We de�ne the surface Σ as the image of (s, y) ∈ R2 7→ (x(s), y, z(s))
and the layer Ωε as its ε-tubular neighbourhood�see (1.4). Next, let us consider the Dirichlet
magnetic Laplacian Hε

A,D on Ωε with A = (0, B0x, 0), B0 > 0. The corresponding magnetic �eld
points in the direction of positive z-coordinate, B = (0, 0, B0). The operator Hε

A,D is unitarily
equivalent to the operator that acts in (global) curvilinear coordinates (s, y, u) ∈ R2 × (−1, 1)
on the layer of �xed width equal to 2,

Hε
A,D ≡ −∂sfε(s, u)−2∂s + (−i∂y +A2(s, u))2 − ε−2∂2

u + V (s, u),

where

fε(s, u) = 1− εuκ(s), A2(s, u) = B0

(
x(s)− εudz

ds
(s)
)
,

and V is a rather complicate function of fε and the curvature of Γ, which will be denoted by κ,
together with its �rst and second derivatives. One can deduce that

lim
ε→0

fε = 1, lim
ε→0

V = −κ
2

4
,

pointwise, and, after the appropriate identi�cations described at the end of Section 1.3,

Hε
A,D −

( π
2ε

)2 ε→0−→ hΣ
e� := −∂2

s + (−i∂y +B0x(s))2 − κ2(s)

4
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1.5. MAGNETIC TRANSPORT

in the uniform resolvent topology. The limit operator hΣ
e� acts in the Hilbert space L2(R2, dsdy)

as the Iwatsuka's Hamiltonian with an extra potential, which has been discussed above. Note
that after applying the partial Fourier-Plancherel transform in y-variable, both operators Hε

A,D

and hΣ
e� decompose into direct integrals.

Our �rst su�cient condition on absolute continuity ofHε
A,D relies on the fact that the uniform

resolvent convergence implies the convergence of eigenvalues. Consequently, if we know that the
energy bands of the �ber operators of hΣ

e� are non-constant, we can conclude the same for the
energy bands associated with the �bers of Hε

A,D. However, this works only for energies below
arbitrarily chosen threshold shifted by the lowest Dirichlet eigenvalue in the transverse direction,
(π/(2ε))2, and all su�ciently small ε. Therefore, if Γ is such that CON5a or CON5b from
Section 1.4.1 holds true for B = B0 dx/ds and W = −κ2/4, then we deduce that for any
E > 0 there exists εE such that the spectrum of Hε

A,D below E + (π/(2ε))2 is purely absolutely
continuous for all ε ∈ (0, εE). Similarly, any new result on non-constancy of the energy bands of
hΣ
e� would yield a new su�cient condition on absolute continuity of Hε

A,D below any threshold.
Modifying [104, Theorem XIII.86] for the case when energy bands may be degenerate or cross

each other and using carefully chosen comparison operators we deduced that the spectrum of
Hε
A,D is purely absolutely continuous for

one-sided-fold layers , i.e., when lims→±∞ x(s) = +∞ or lims→±∞ x(s) = −∞ with no extra
assumptions on the width of the layer, or

bent asymptotically �at layers , i.e., when dx/ds = α± ∈ (0, 1] for all large enough positive
and negative s, respectively, α+ 6= α−, and the width of the layer is restricted.

See Figures 1 and 2 in [35] (Section 2.3) that depict typical pro�les of the considered layers.
It is also remarkable that one can observe a rather wild spectral transition for �at inclined

layers, i.e., layers with Γ(s) = (s cos γ, s sin γ), where γ ∈ (−π/2, π/2] is the angle between B and
n. If γ ∈ (−π/2, π/2) then the spectrum of Hε

A,D consists of in�nitely degenerate eigenvalues
only, whereas for γ = π/2, i.e., for layers parallel to the magnetic �eld, we deduced that the
spectrum ofHε

A,D is purely absolutely continuous. Moreover, in the latter case we have σ(Hε
A,D) =

σac(H
ε
A,D) = [µ1,+∞) where µ1 is the lowest eigenvalue of the Dirichlet realization of the

di�erential expression
−ε−2∂2

u +B2
0ε

2u2

in L2((−1, 1), du).
Finally, let us note that we believe that our su�cient conditions on absolute continuity are

probably far from being optimal. On the other hand, since the considered �ber operators are now
partial di�erential operators (in variables (s, u)), the spectral analysis is much more demanding
than in the case of the classical Iwatsuka model.

1.5 Magnetic transport

1.5.1 Edge states

In this section we will discuss e�ects of translationally invariant magnetic �elds on propaga-
tion properties of two-dimensional electron gas. We will focus on single-particle states that are
described by the magnetic Laplacian introduced in Section 1.4.1. There we were interested ex-
clusively in absolute continuity of the Hamiltonian. Now, we will look closer at other quantities
that characterize transport properties of the system in �ner detail.

Let us start with a magnetic step, B(x) = B± ∈ R for all ±x > 0. As already noted in
Section 1.4.1, for non-zero B± such that B+ 6= B−, there are classical orbits that propagate
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along the step, i.e., y-axis, to in�nity. If B+B− < 0 then they are called snake orbits and they
were used already in early 70's to describe electron transport in multi-domain ferromagnets by
semi-classical approach [78]. The snake orbits and other classical paths were compared with
their quantum mechanical counterparts from a physicist's point of view in [102]. A detailed
mathematical study for the case 0 < B− < B+ and also a smoothed version of the magnetic step
was done by Hislop and Soccorsi [53]. They found a uniform lower bound for the so-called edge
current Jy de�ned as the expectation of the y-component of the velocity operator,

Jy(ψ) := 〈ψ, i
2

[HA, y]ψ〉 = 〈ψ, (−i∂y +Ay(x))ψ〉,

for all states ψ in the range of the spectral projector for HA and certain subintervals of

((2n+ 1)B−, (2n+ 1)B+), n ∈ N ∪ {0}. (1.8)

These states are called edge states are localized close to the step. Note that the endpoints of
(1.8) are Landau levels for B±. The results obtained in [53] complement results of Dombrowski,
Germinet, and Raikov who proved that the so-called edge Hall conductance is quantized for a
family of Iwatuska-like models [28]. To get the above mentioned results on the edge currents
and the localization of edge states it is crucial to understand the behaviour of underlying energy
bands in detail. It was later studied even in situations when B± are of di�erent signs or one of
them is zero [50].

The edge current is not bounded from below for states ψ in the range of the spectral projector
forHA and intervals containing the endpoints of (1.8) (or for subintervals of (1.8) being arbitrarily
close to the endpoints). This was proved in [88] for a subclass of C∞-smooth magnetic �elds such
that B is increasing and limx→±∞B(x) = B± with 0 < B− < B+ and later for su�ciently regular
magnetic �elds obeying B(x) = B+ on a neighbourhood of +∞ [89]. Such states are referred
to as the bulk states and in contrast to the edge states they are not localized (in x-variable) in
general [88].

Originally, the edge and bulk states were investigated for models with boundaries, a half-
plain being the most prominent example. Let Ω = {(x, y) ∈ R2|x > 0} and HA,D be the
Dirichlet realization of the magnetic Laplacian on Ω with A = (0, B0x), B0 ∈ R \ {0}. Such
operator describes a charged particle con�ned to a half-plane (by a "hard wall" along x = 0)
under in�uence of the perpendicular magnetic �eld B0. There exist arc-shaped classical orbits
bouncing from the hard wall and wandering o� to in�nity. It is natural to call the quantum
states that propagate similarly along the boundary x = 0 the edge states. The existence these
current carrying states for HA,D perturbed by an impurity potential, which is small relative to
the magnetic �eld strength, was showed rigorously by De Bièvre and Pulé [26]. This phenomenon
was pointed out before by Halperin in his seminal work on the quantum Hall e�ect [48], cf. [69],
too. Occurrence of edge states was also studied for a model with the hard wall, i.e., the Dirichlet
boundary conditions, replaced by a potential wall [77, 42]. In [42] also more general geometries
(with hard walls) than a half-plane were considered. Estimates on the edge currents along both
potential and hard walls for di�erent geometries together with a nice review of previous results
may be found in [51] and [52]. Note that whenever a general impurity potential is considered,
the translational symmetry is lost. Therefore, one can not use the approached described in the
last paragraph of Section 1.4.1 to prove the absolute continuity of the magnetic Laplacian for a
range of energies. Instead, Mourre's theory of positive commutators [92] is applied typically.

1.5.2 Dispersionless states

Let us now recall an alternative direct de�nition of the edge and bulk subspaces that was intro-
duced in [26] for the particular case of the Dirichlet realization HA,D of the magnetic Laplacian
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on a half-plane with a constant magnetic �eld B0 > 0. Such operator is unitarily equivalent to

Hhw =

∫ ⊕

R
Hhw[ξ]dξ with Hhw[ξ] = −∂2

x + (ξ −B0x)2.

Here the subscript "hw" stands for "hard-wall" and the �ber operators act in L2((0,+∞)) with
the Dirichlet boundary condition at x = 0. One can show that, for all ξ ∈ R, the spectrum
of Hhw[ξ] consists of isolated non-degenerate eigenvalues λn[ξ] with normalized eigenfunctions
ψn[ξ]. It is now possible to introduce nth band subspace as

Hn := {fψn[ξ] = f(ξ)ψn[ξ](x)| f ∈ L2(R, dξ)},

which is clearly an invariant subspace of Hhw. To understand better the dependence of λn[ξ] and
ψn[ξ] on B0, it is convenient to scale x and ξ as follows

x̃ :=
√
B0x, κ :=

ξ√
B0
.

Then Hhw is unitarily equivalent to

B0H̃hw = B0

∫ ⊕

R
H̃hw[κ]dκ with H̃hw[κ] = −∂x̃2 + (κ− x̃)2.

If we denote αn[κ] the nth eigenvalue of H̃hw[κ] then

Figure 1.1: Four lowest energy bands αn[κ], n ∈ {1, 2, 3, 4} of H̃hw.

λn[ξ] = B0αn[
ξ√
B0

] and
d

dξ
λn[ξ] =

√
B0

d

dκ
αn[

ξ√
B0

]. (1.9)

Four lowest energy bands of H̃hw, that were computed numerically, are depicted in Figure
1.1. By standard techniques for Schrödinger operators, it was deduced in [26] that d

dκαn[κ] =

−| d
dx ψ̃n[κ](0)|2 < 0, where ψ̃n[κ] is the eigenfunction of H̃hw[κ] associated with αn[κ], and that
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d
dκαn[κ] is exponentially small for large values of κ. Taking the second equation of (1.9) into
account, this implies that, for all ξ's of order

√
B0 and smaller, d

dξλn[ξ] is of order
√
B0, whereas,

for all ξ's of strictly higher order than
√
B0, d

dξλn[ξ] is exponentially small. Therefore, it is natural
to de�ne the following subspaces of Hn,

Hn,e := {fψn[ξ]| f ∈ L2((−∞, σBγ
0 ),dξ)}

Hn,b := {fψn[ξ]| f ∈ L2((σBγ
0 ,+∞),dξ)},

where σ, γ > 0. If γ ≤ 1/2 then Hn,e is called an edge space and if γ > 1/2 then Hn,b is called a
bulk space. Since d

dξλn[ξ0] is the group velocity in the y-direction of a wave packet fψn[ξ] with f
supported close to ξ0 and the currents carried by wave packets are proportional to their velocity,
we see that this de�nition corresponds well to the description of the edge and bulk states given
in Section 1.5.1.

We will now look closer at the time evolution of wave packets from the band spaces of a
general quantum system possessing the translational symmetry. We will follow our paper [63],
which is included as Section 2.4. For brevity, the problem will be described in the two-dimensional
setting. Let a quantum Hamiltonian H in the Hilbert space L2(I ×R,dxdy), where I is an open
interval, be invariant with respect to translations in y-direction. Then we have

Fy→ξHF−1
y→ξ =

∫ ⊕

R
H[ξ]dξ,

where H[ξ] acts in L2(I). Next, let us suppose that for open intervals Jn, n ∈ 1, 2, . . . N with
N ∈ N ∪ {+∞}, there exist eigenpairs of H[ξ] denoted by the same symbols λn[ξ] and ψn[ξ] as
in the special case discussed above, i.e., for all ξ ∈ Jn,

H[ξ]ψn[ξ] = λn[ξ]ψn[ξ].

Take βn ∈ L2(R,dξ) such that suppβn ⊂ Jn and
∫
Jn
|βn(ξ)|2dξ = 1. If ψn[ξ] are normalized to

one then the same holds true for the wave packet

Ψ(x, y) :=
(
F−1
y→ξ(βn(ξ)ψn[ξ](x))

)
(y),

which is just the Fourier preimage of a vector from the nth band subspace, so the following
observations apply to the edge and bulk states introduced above. It is straightforward to verify
that, for all t ∈ R, ∫

R

∣∣(e−itHΨ)(x, y)
∣∣2dy =

∫

R
|Ψ(x, y)|2dy,

i.e., the probability density of �nding a particle described by Ψ at distance x from the y-axis
does not change with time. The dispersion of Ψ may be completely suppressed provided that the
dispersion relation ξ 7→ λn[ξ] is linear,

λn[ξ] = en + vnξ,

since in that case one gets

(e−itHΨ)(x, y) = e−itenΨ(x, y − vnt).

We see that the wave packet Ψ propagates along the y-axis with the uniform group velocity vn =
d
dξλn[ξ].
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If the dispersion relation is not linear but is close to linear (which can be achieved by con-
sidering βn with a very narrow support) then Ψ disperse relatively slowly. For the speed of
propagation of a dispersing wave packet we found a reasonably simple and accurate expression,

v =

∫
Jn

dλn
. . .ξ

dξ

|Jn|
=
λn[b]− λn[a]

b− a , (1.10)

where Jn = (a, b). Note that v is nothing but the averaged group velocity and the result is in a
very good agreement with numerical examples, cf. Figure 2 in [63].

A natural question arises whether there are models of quantum systems with a linear band
in the spectrum of their Hamiltonians. So far, we are only aware of few of them. Gruber and
Leitner found linear bands in the spectrum of the two-dimensional Dirac operator on a half-
plane with self-adjoint boundary conditions [46]. A linear band was also observed for a model of
graphene with the so-called domain walls [107], the corresponding Hamiltonian being just 4× 4
matrix two-dimensional Dirac operator with non-constant translationally invariant "mass term"
m = m(x, y) ≡ m(x) such that limx→±∞±m(x) = m0 with some m0 > 0. Interestingly, if m(x)
is proportional to tanh(x) then the model is exactly solvable [87, 61, 63]. Finally, we recently
studied the two-dimensional Dirac operator with the electrostatic δ-shell potential supported
on a straight line [12]. If one adds the so-called magnetic δ-shell potential then it is possible
to generate linear bands by �ne tuning of coupling parameters�we are currently preparing a
paper on this topic. All these Hamiltonians are relativistic. This is not surprising, because we are
looking for systems whose energy depends linearly on ξ which is just the canonical momentum
in y-direction.

1.6 Dirac operator with magnetic barrier

With enormous recent progress in understanding and preparation of the Dirac materials, the
graphene being the most prominent example, there appeared a huge amount of physical papers
dealing with the two-dimensional Dirac operator with magnetic barriers. There is no hope to
provide a complete list of references. Let us just mention few of them that are close to our
setting, [99, 75, 76, 94, 45, 100, 67, 83, 97, 73, 105, 112]. Since the dispersionless and slowly-
dispersing states are associated with energy bands, it is desirable to know for which magnetic
barriers there are bands in the spectrum of the associated Hamiltonian. In [39] (see Section 2.5
for the full text of the paper), we found several su�cient conditions for existence of energy bands
in the spectrum of the two-dimensional Dirac operator DA with a magnetic �eld possessing
translational symmetry in one direction.

Working in the Landau gauge (1.6) again, DA acts as follows

DA = σ1(−i∂x) + σ2(−i∂y +Ay(x)) + σ3m

in the Hilbert space L2(R2;C2) ≡ L2(R2;C)⊗ L2(R2;C) ≡ L2(R2;C)⊗ C2. Here

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ1 =

(
1 0
0 −1

)

are the usual Pauli matrices and m is a positive constant. We will assume in this section that
the real function Ay is continuously di�erentiable and

lim
x→±∞

Ay(x) = 0, lim
x→±∞

A′y(x) = lim
x→±∞

B(x) = 0.
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Then DA is self-adjoint on the Sobolev space H1(R2;C2), by the Kato-Rellich theorem and the
fact that the free Dirac operator D0 is well known to be self-adjoint on the same domain, cf.
[113]. Similarly as for the magnetic Laplacian, we get

DA = F−1
y→ξ

∫ ⊕

R
DA[ξ]dξFy→ξ,

where
DA[ξ] = σ1(−i∂x) + σ2(ξ +Ay(x)) + σ3m (1.11)

acts in L2(R;C2). The energy bands of DA consist of eigenvalues of DA[ξ]. Existence of these
eigenvalues in the gap of the spectrum ofDA[ξ], i.e., in the interval (−

√
ξ2 +m2,

√
ξ2 +m2), was

investigated in [62] using some ideas of supersymmetric quantum mechanics [86] together with
the minimax principle for semi-bounded operators. This relies on the fact that the square of DA

is a direct sum of two Schrödinger operators d±[ξ], where d+[ξ] = pp∗ +m2 and d− = p∗p+m2

with p := −i(∂x + ξ +Ay).
Using the main theorem of [62] we deduced several su�cient conditions for the discrete

spectrum of DA[ξ] be non-empty, which are easy to verify, such as

• If there exists x0 ∈ R such that for all x < x0, Ay(x) ≥ 0 or Ay(x) ≤ 0, respectively, and
Ay is not integrable on (−∞, x0) then for any ξ < 0 or any ξ > 0, respectively, DA[ξ] has
in�nite number of discrete eigenvalues.

• If there exists x0 ∈ R such that for all x > x0, Ay(x) ≥ 0 or Ay(x) ≤ 0, respectively, and
Ay is not integrable on (x0,+∞) then for any ξ < 0 or any ξ > 0, respectively, DA[ξ] has
in�nite number of discrete eigenvalues.

On the other hand, we derived the following su�cient conditions for emptiness of the discrete
spectrum of DA[ξ],

• If Ay ≥ 0 then, for all ξ ≥ 0, there are no discrete eigenvalues in the spectrum of DA[ξ].

• If Ay ≤ 0 then, for all ξ ≤ 0, there are no discrete eigenvalues in the spectrum of DA[ξ].

With the help of these and similar criteria one can show that the studied system may host slowly-
dispersing states. If all bands are monotonous then v de�ned in (1.10) is of de�nite sign, and so
there exist only unidirectional slowly-dispersing states. In the opposite case bidirectional trans-
port is possible. We analysed existence of slowly-dispersing states together with their character
(unidirectional/bidirectional) for several realistic magnetic �elds. See [39, Table 1] for a tabular
overview of such results for the magnetic �eld generated by a system of parallel wires that carry
currents that sum to zero.

1.7 Dirac operator with δ-interaction

1.7.1 One-dimensional Dirac operator with point interaction

Choosing Ay(x) = CεΘ(x)Θ(ε − x) in (1.11), where Cε, ε > 0 and Θ is the Heaviside theta
function, one arrives at a simple implicit formula for the eigenvalues of DA[ξ] [83]. If we put
Cε = ε−1 then limε→0Ay = δ in the sense of distributions. The corresponding limit operator
was formally derived and studied in [97]. It acts as the free Dirac operator but on functions
obeying certain transmission condition at the interaction point x = 0. However, we will show
below that taking the formal limit does not yield the correct coupling constant that appears in
the transmission condition. Instead, a careful mathematically rigorous treatment is necessary.
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1.7. DIRAC OPERATOR WITH δ-INTERACTION

We will approach the problem from other side�we will start by introducing the one-dimensional
Dirac operator with the so-called point interaction and then we will address the question how to
approximate such interaction by more realistic potentials.

Consider formal expressions

D := σ1(−i∂x) + σ3m, Dη,τ,λ,ω := D + (ησ0 + τσ3 + λσ2 + ωσ1)δ,

where m, η, τ, λ, ω ∈ R and σ0 is the 2× 2 identity matrix. Note that {σi}3i=0 constitute a basis
of the space of 2× 2 hermitian matrices. Therefore, any hermitian matrix may occur in front of
the Dirac δ-function. We would like to introduce Dη,τ,λ,ω as a self-adjoint operator in L2(R;C2).
To this aim, we have to �rstly de�ne a product of a not necessarily smooth function with δ-
distribution. For any test function ϕ and ψ ∈ L2(R;C2) such that one-sided limits ψ(0−) and
ψ(0+) exist we put

(ψδ, ϕ) :=
ψ(0+) + ψ(0−)

2
ϕ(0) =

(ψ(0+) + ψ(0−)

2
δ, ϕ
)
.

If ψ ≡ ψ− ⊕ ψ+ ∈ H1(R−;C2)⊕H1(R+;C2) ⊂ L2(R−;C2)⊕ L2(R+;C2) ≡ L2(R;C2) then one
can understood ψ(0−) and ψ(0+) as the values of the continuous representatives of ψ− and ψ+,
respectively. For ψ ∈ H1(R−;C2)⊕H1(R+;C2), we have

Dψ = Dψ− ⊕Dψ+ − iσ1(ψ(0+)− ψ(0−))δ.

If we want Dη,τ,λ,ωψ to be in L2(R;C2), the singular contributions have to cancel out. This yields

−iσ1(ψ(0+)− ψ(0−)) + (ησ0 + τσ3 + λσ2 + ωσ1)
ψ(0+) + ψ(0−)

2
= 0,

which is convenient to rewrite as

(2iσ1 − (ησ0 + τσ3 + λσ2 + ωσ1))ψ(0+) = (2iσ1 + (ησ0 + τσ3 + λσ2 + ωσ1))ψ(0−). (1.12)

This motivates us to de�ne the following operator

Dom(Dη,τ,λ,ω) = {ψ ≡ ψ− ⊕ ψ+ ∈ H1(R−;C2)⊕H1(R+;C2)| (1.12) holds}
Dη,τ,λ,ω = Dψ− ⊕Dψ+.

If the matrix on the left-hand side of (1.12) is invertible then we may further rewrite (1.12) as

ψ(0+) = Λψ(0−) (1.13)

with

Λ :=
1

d− (2i− ω)2

(
4 + 4λ+ ω2 − d 4i(τ − η)
−4i(τ + η) 4− 4λ+ ω2 − d

)
,

where
d := η2 − τ2 − λ2. (1.14)

This is exactly the transmission condition for the point interaction at x = 0 studied in [16]. An
equivalent condition appeared before in [27] and some special cases were investigated even earlier
in [44]. The operator Dη,τ,λ,ω is self-adjoint and its spectral and scattering properties are very
well understood, cf. [16, 21, 96].
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1.7. DIRAC OPERATOR WITH δ-INTERACTION

To understand the nature of point interactions it is demanding to �nd approximating se-
quences with a clear physical interpretation. One is tempted to start with the following family
of self-adjoint operators

Dom(Dε
η,τ,λ,ω) := Dom(D0,0,0,0) = H1(R;C2)

Dε
η,τ,λ,ω := D + (ησ0 + τσ3 + λσ2 + ωσ1)hε,

where

hε(x) := ε−1h(ε−1x) for some ε > 0 and h ∈ L1(R;R) ∩ L∞(R) such that
∫

R
h = 1, (1.15)

because hε → δ in the sense of distributions. It was demonstrated by �eba [108] that Dε
η,0,0,0

and Dε
0,τ,0,0 converge in the norm resolvent sense to Dη̃,0,0,0 and D0,τ̃ ,0,0, respectively, where the

new coupling constants η̃, τ̃ are non-trivial functions of h and are di�erent from η, τ in general.
This does not happen in the non-relativistic case, cf. [2]. In fact, a discrepancy between solving
formally the Dirac equation with a δ-potential and solving it for a sequence of scaled short-ranged
potentials and then taking the limit was observed before by physicists [84, 85]. The �rst approach
was refused as unphysical, but we see that is perfectly admissible if one renormalizes the coupling
constant properly.

Approximations for a general point interaction were studied by Hughes in the series of papers
[55, 56]. However, she got convergence in the strong resolvent sense only. Recently, I proved the
norm resolvent convergence for a three-parametric family of interactions [116] (see Section 2.6
for the full text of the paper) and my student R·ºek completed the analysis by considering a
general point interaction [106]. Moreover, I showed explicitly that the coupling constants must
be renormalized, except for special cases, and that the limit coupling constants are independent
of h as long as it integrates to a constant value. Note that this could have been deduced from
the results of Hughes but it remained unnoticed for two decades. Here, we will present the
approximation result in the same manner as in our very recent work [22] (see Section 3.1) on
δ-shell interactions in two dimensions, which will be discussed in the next section. First, one
can reduce the four-parametric family of point interactions to the three-parametric family with
ω = 0 by unitary equivalences. Then, for every η, τ, λ ∈ R such that d /∈ {(2k − 1)2π2| k ∈ N},
Dε
η,τ,λ,0 converges in the norm resolvent sense to Dη̃,τ̃ ,λ̃,0 with

(η̃, τ̃ , λ̃) =
tan(
√
d/2)√

d/2
(η, τ, λ), (1.16)

where d was de�ned in (1.14). If d = 0, we replace the factor in (1.16) by its limit, and for d < 0
we can choose either branch of the square root.

The approximation results justify why the interaction terms with coupling constants η and
τ are referred to as the electrostatic and Lorentz scalar point interactions, respectively. The
two remaining interaction terms were recently related to the magnetic interaction [22]. After
"gauging away" the interaction term with the coupling parameter ω, which is a procedure that
will be explained in the next section, we are left with the term λσ2δ. By adding a symmetric
bounded perturbation σ2ξ, ξ ∈ R, to Dε

0,0,λ,0 we get exactly the �ber operator (1.11) of the
two-dimensional Dirac operator with magnetic barrier, whose pro�le is given by Ay = hε. The
corresponding limit operator is D0,0,λ̃,0 + σ2ξ with λ̃ = 2 tanh(λ/2), which is di�erent from λ
whenever λ 6= 0.

If the matrix on the left-hand side of (1.12) is not invertible, which happens if and only if ω = 0
and d = −4, then one can show similarly as in [22, Lemma 5.1] that (1.12) is equivalent to a pair
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1.7. DIRAC OPERATOR WITH δ-INTERACTION

of conditions that do not mix values ψ(0±), i.e., the operator under consideration decouples into
a direct sum of operators living on half-lines. These operators are also self-adjoint, as was proved
in [46]. It is much more delicate task to �nd regular approximations in the decoupled case. Let
us just mention that approximating potentials do not converge even in the distributional sense,
cf. [106].

Finally, recall that �eba also studied non-local approximations of the purely electrostatic and
purely Lorentz scalar point interactions. For the purely electrostatic point interaction they were
of the following form,

D + ησ0|hε〉〈hε|.

As ε→ 0, this converges to Dη,0,0,0 in the norm resolvent sense [108], i.e., there is no renormaliza-
tion of the coupling constant. Similar result holds for the Lorentz scalar point interaction, and my
student Heriban proved the same for an arbitrary, not necesarilly self-adjoint, point interaction
[49]. This suggests that the nature of the relativistic point interactions may be non-local.

1.7.2 Two-dimensional Dirac operator with δ-shell interaction

The usual strategy how to add a point interaction to an essentially self-adjoint di�erential opera-
tor is to restrict its domain to the functions that vanish at the interaction point and then look for
all possible self-adjoint extensions. There is a well known result by Svendsen [111] which implies
that for n-dimensional Dirac operator the restriction itself is essentially self-adjoint whenever
n ≥ 2. Therefore, there is no point interaction for higher-dimensional Dirac operators. On the
other hand, if we restrict the domain of the n-dimensional Dirac operator to the functions that
vanish on a (n − 1)-dimensional smooth closed manifold Σ, the resulting operator has in�nite
de�ciency indices. Thus, there exists a huge family of self-adjoint extensions, which are referred
to as n-dimensional Dirac operators with δ-shell interaction.

As far as I know, the �rst mathematically rigorous study that deals with the relativistic
δ-shell interaction is by Dittrich, Exner, and �eba [27]. They considered the three-dimensional
Dirac operator with δ-shell interaction supported on a sphere. The model was further analyzed
in [29, 109, 81]. Of course, all these works are based on separation of variables. Self-adjointness
and spectral properties for more general shells were derived relatively recently, �rstly for the case
of purely electrostatic δ-shell interaction [3, 4, 5, 8, 10], then for the purely Lorentz scalar δ-shell
interaction [54], and �nally for almost arbitrary combination of them [9], cf. also survey works [33]
and [95]. The quasi-boundary triples, that were originally introduced to study elliptic di�erential
operators [13], turned out to be very convenient tool when dealing with general shells. They just
slightly generalize the concept of (ordinary) boundary triples from the extension theory, cf. [18].

In the two-dimensional setting, a general combination of the electrostatic and Lorentz scalar
δ-shell interactions was introduced very recently by Behrndt, Holzmann, Ourmierès-Bonafos, and
Pankrashkin [11]. They studied operators that act formally as

DΣ
η,τ := D2D + (ησ0 + τσ3)δΣ,

where
D2D := σ1(−i∂x) + σ2(−i∂y) + σ3m

and δΣ is the simple layer distribution supported on a smooth closed non-self-intersecting curve Σ
in R2, cf. [117]. Similarly as in Section 1.7.1, we deduce that if we want DΣ

η,τf to be in L2(R2;C2)
for a function f with suitably de�ned Dirichlet traces on both sides of Σ then

− in · σ(T+f+ − T−f−) =
1

2
(ησ0 + τσ3)(T+f+ + T−f−). (1.17)
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Here n = (n1, n2) is the unit normal �eld to Σ pointing outward the bounded domain Ω enclosed
by Σ, n · σ := n1σ1 + n2σ2, f+ := f |Ω, f− := f |R2\Ω, and T±f± stand for the Dirichlet traces of
f± on Σ. Furthermore, for any open set U ⊂ R2, we introduce

H(σ, U) := {f ∈ L2(U ;C2)| (σ1∂x+σ2∂y)f ∈ L2(U ;C2)} = {f ∈ L2(U ;C2)|D2Df ∈ L2(U ;C2)}.

We are now ready to de�ne the two-dimensional Dirac operator with the electrostatic and Lorentz
scalar δ-shell interactions supported on Σ as

Dom(DΣ
η,τ ) := {f ≡ f+ ⊕ f− ∈ H(σ,Ω)⊕H(σ,R2 \ Ω)| (1.17) holds true}

DΣ
η,τ := D2Df+ ⊕D2Df−.

Self-adjointness of DΣ
η,τ was basically proved by rewriting the transmission condition (1.17)

in terms of operators Γ0,Γ1 of a cleverly chosen boundary triple {L2(Σ;C2),Γ0,Γ1} for (DΣ)∗,
where DΣ acts as D2D on the domain H1

0 (R2 \ Σ;C2), followed by showing self-adjointness of a
certain boundary operator in L2(Σ;C2) [11]. Moreover, it turns out that in the so-called non-
critical case, i.e., when η2−τ2 6= 4, the functions in the domain of DΣ

η,τ belong to H
1(R2 \Σ;C2).

On the other hand, in the critical case, i.e., when η2 − τ2 = 4, Dom(DΣ
η,τ ) 6⊂ Hs(R2 \ Σ;C2) for

any s > 0. In the non-critical case, σess(DΣ
η,τ ) = σess(D

Σ
0,0) = (−∞,−|m|] ∪ [|m|,+∞) and the

discrete spectrum in (−|m|, |m|) is �nite. The essential spectrum in the critical case di�ers from
the essential spectrum in the non-critical case�it contains an extra value −τm/η ∈ (−|m|, |m|).
The key tool for spectral analysis is the Krein formula, an abstract version of the Birman-
Schwinger principle.

Motivated by these results, we decided to study general δ-shell interactions [22] (see Section
3.1 for the full text of the manuscript), i.e., operators acting formally as

DΣ
η,τ,λ,ω := D2D + (ησ0 + τσ3 + λ t · σ + ω n · σ)δΣ,

where t ≡ (t1, t2) = (−n2, n1) is the unit tangent �eld to Σ, t ·σ := t1σ1 + t2σ2, and η, τ, λ, ω are
smooth real functions on Σ. We de�ne the operator DΣ

η,τ,λ,ω in the exactly same manner as the
operator DΣ

η,τ was de�ned, except for the transmission condition that now reads

−in · σ(T+f+ − T−f−) =
1

2
(ησ0 + τσ3 + λ t · σ + ω n · σ)(T+f+ + T−f−).

Extending ideas of [80], we proved that DΣ
η,τ,λ,ω is unitarily equivalent to DΣ

Xη,Xτ,Xλ,0 with an ex-
plicitly known constant X. Note that this result is always true for constant coupling parameters,
but with non-constant coupling parameters we had to assume that at least ω and d = η2−τ2−λ2

remain constant along Σ in order to eliminate the coupling parameter ω. The involved unitary
transform resembles U from the usual gauge invariance (1.2) but with a discontinuous gauge
function. Having this sort of "gauge invariance" result in mind, we will further consider only the
operators DΣ

η,τ,λ ≡ DΣ
η,τ,λ,0. To prove their self-adjointness we had to modify the boundary triple

introduced in [11]. In the present case, the non-critical case is characterized by the condition

(d
4
− 1
)2
− λ2 6= 0 everywhere on Σ. (1.18)

Under this assumption we succeeded in proving self-adjointness of DΣ
η,τ,λ and H1-regularity of

the functions in the operator domain away from Σ.
If d = −4 everywhere on Σ then DΣ

η,τ,λ decomposes into a direct sum of operators acting
in L2(Ω;C2) and L2(R2 \ Ω;C2), respectively. In the non-critical case, each of the operators is
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self-adjoint. Therefore, this provides an alternative way how to show self-adjointness of the Dirac
operator subject to a certain boundary conditions on a bounded domain Ω. In particular, for
η = 0, one gets the so-called quantum dot boundary conditions, cf. [14, 15]. Note that one can
get all quantum dot boundary conditions, except the zig-zag boundary conditions, by means of
con�nement with solely the electrostatic and Lorentz scalar δ-shell interactions [11]. Considering
the magnetic δ-shell interaction (λ 6= 0) we can recover also the zig-zag boundary conditions,
i.e.,

(σ0 ± σ3)T+f+ = 0, (1.19)

which correspond to the the choice (η, τ, λ) = (0, 0,±2). Beware that with this choice (1.18) is
not valid, so we can not use our general self-adjointness result. Nevertheless, for m = 0, DΣ

0,0,±2

was proved to be self-adjoint employing the concept of supersymmetry [110]. The operators with
m 6= 0 are just symmetric bounded perturbations of the operator with m = 0. Hence, their
self-adjointness follows from the Kato-Rellich theorem. Spectral properties of DΣ

0,0,±2 may be
describe in a �ne detail. In particular, σ(DΣ

0,0,±2) = (−∞,−|m|]∪ [|m|,+∞), ±m are eigenvalues
of in�nite multiplicity and beside them there is also a sequence of embedded eigenvalues derived
from the eigenvalues of the Dirichlet Laplacian on Ω.

Beside generalizing the model considered in [11] in several directions, we found approxima-
tions of δ-shell interactions by means of scaled regular potentials. Let Ωε be the ε-tubular neigh-
bourhood of Σ and hε be given as in (1.15) but with the extra assumption that supph ⊂ [−1, 1]. If
ε is below a certain threshold then for every p ∈ Ωε there is exactly one pair (pΣ, u) ∈ Σ× (−ε, ε)
such that p = pΣ + un(pΣ). We are now ready to introduce a reasonable candidate for the
approximating potential as

Vη,τ,λ;ε(p) :=

{
(ησ0 + τσ3 + λ t · σ)(pΣ)hε(u) if p = pΣ + un(pΣ) ∈ Ωε

0 if p /∈ Ωε.

Clearly, Vη,τ,λ;ε
ε→0−→ (ησ0 + τσ3 + λ t · σ)δΣ in the sense of distributions. By the Kato-Rellich

theorem, DΣ
η,τ,λ;ε := D2D + Vη,τ,λ;ε is self-adjoint on H1(R2;C2), which is the domain of self-

adjointness of the two-dimensional free Dirac operator [113]. We proved that DΣ
η,τ,λ;ε converges

to DΣ
η̃,τ̃ ,τ̃ with the coupling constants given in (1.16) in the strong resolvent sense as ε → 0,

whenever d(pΣ) 6= k2π2, for all k ∈ N, pΣ ∈ Σ, and we are in the non-critical case with the limit
operator. Therefore, the same renormalization of the coupling constants as in the one-dimensional
case is necessary.

In the three-dimensional setting only approximations for the purely electrostatic and purely
Lorentz scalar interactions were studied so far by Mas and Pizzichillo [82]. They observed the
same renormalization of the coupling constants as in the one-dimensional case, too. To prove the
strong resolvent convergence they employed the Kato resolvent formula for the resolvent of the
approximations and the Krein formula for the resolvent of the δ-shell interactions. At one point
they had to assume a sort of smallness of the approximating potentials. In our proof, we decided
to show the strong graph convergence, which is equivalent to the strong resolvent convergence
in the self-adjoint setting. Beside being more direct, this approach does not yield any smallness
restriction on the approximating potentials. Recall that the strong resolvent convergence implies
that the spectrum of the limiting operator cannot suddenly expand in the sense that for any
z in the spectrum of the limiting operator there is zε in the spectrum approximating operator
such that limε→0+ zε = z [103]. However, the spectrum of the limiting operator may contract
in general. (This is not possible if one shows the norm resolvent convergence.) For spherical
electrostatic δ-shell interaction it was proved that the point spectrum of the limiting operator
does not contract [81].
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Finally, let us look more closely at the purely magnetic δ-shell interaction. The formal ex-
pression for DΣ

0,0,λ is

D2D + λ t · σδΣ = σ1(−i∂x + λt1δΣ) + σ2(−i∂y + λt2δΣ) + σ3m,

i.e., the term λ t · σδΣ corresponds to the singular vector potential AΣ = λ(t1δΣ, t2δΣ). This
justi�es why we call this term the magnetic δ-shell interaction. We will de�ne the magnetic �eld
BΣ by exactly the same formula as in the regular case,

BΣ = ∂xAΣ,y − ∂yAΣ,x = λ∂nδΣ,

where ∂nδΣ stands for the double layer distribution, cf. [117]. The vector potential and the
corresponding magnetic �eld that appear in the approximating operator DΣ

0,0,λ;ε are given by

Aε(p) =

{
λhε(u)t(pΣ) for p = pΣ + un(pΣ) ∈ Ωε

0 for p /∈ Ωε,

and

Bε(p) =

{
λhε(u)κ(pΣ)

1+uκ(pΣ) + λh′ε(u) for p = pΣ + un(pΣ) ∈ Ωε

0 for p /∈ Ωε,

respectively. Here, κ stands for the signed curvature of Σ. It is straightforward to show that
Aε

ε→0−→ AΣ and Bε
ε→0−→ BΣ in the sense of distributions. However, according to our approximation

result, DΣ
0,0,λ;ε converges to D0,0,λ̃ in the strong resolvent sense, where λ̃ is always (except for

the trivial case λ = 0) di�erent from λ.

1.8 Future prospects

Self-adjointness of Dirac operators on domains has been understood only recently [14]. This is
probably the reason why there are no rigorous mathematical studies concerning the relativistic
counterparts of quantum waveguides and layers except for a recent preprint [17]. Therein, the
two-dimensional Dirac operator constrained to a tubular neighbourhood Ωε of a curve Σ, cf.
(1.4), was investigated. The Dirichlet boundary conditions, that are usual choice in the non-
relativistic setting, would not yield a self-adjoint realization of the Dirac operator. However,
it is known that the so-called in�nite mass boundary conditions are right replacement for the
Dirichlet ones [6, 7]. When ε tends to zero, the limiting operator for the Dirac operator on Ωε with
the in�nite mass boundary conditions is just the free one-dimensional Dirac operator (with the
mass term being 2/π-multiple of the original mass term) [14]. Recall that in the two-dimensional
non-relativistic setting there is always an attractive geometric potential in the limiting operator,
cf. (1.5). Consequently, existence of bound states induced by geometry is a hallmark of non-
relativistic quantum waveguides. In the relativistic setting, the limiting operator has purely
absolutely continuous spectrum. Nevertheless, the question whether there are bound states for
small but non-zero ε's remains open. Beside studying relativistic quantum waveguides with the
in�nite mass boundary conditions in further detail, one should be concerned with other types of
boundary conditions such as the zig-zag boundary conditions since they have been considered
for graphene nano-ribbons by physicists [43, 32, 31]. In particular, a mathematical analysis of
edge states would be desirable.

In Section 1.7.2, we brie�y described how to introduce the two-dimensional relativistic δ-shell
interactions supported on smooth closed curves. A more detailed analysis reveals that during the
proof of self-adjointness using the boundary triples techniques one needs to show regularity
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preserving properties of a certain boundary integral operator, cf. [11, Proposition 3.3]. This is
done using the Cauchy transform and some pseudo-di�erential calculus on closed smooth curves.
These tools are not available when we decide to deal with unbounded curves. However, for the
special case of a straight line one can use the Fourier transform instead [12]. In fact, one can
even consider compactly supported perturbations of the straight line. This will be explained in
future work. Our �nal aim is to introduce any type of δ-shell interaction supported on a general
unbounded curve. Note that even for the simplest example of such operator that is formally given
by the di�erential expression

D2D + ησ0δΣ, (1.20)

where Σ is a straight line and η 6= 0, we observed spectral e�ects that do not occur for interac-
tions supported on closed curves. In particular, if η 6= ±2 then the spectrum of the self-adjoint
realization of (1.20) is purely absolutely continuous and it is always strictly larger that the spec-
trum of the free Dirac operator, cf. [12, Theorem 1.1]. Therefore, playing with the parameter η,
one can shrink the gap (−|m|, |m|) in the spectrum of the latter operator. If η = ±2 then the
absolutely continuous spectrum is stable but zero is an extra eigenvalue of in�nite multiplicity.
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