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Preface

During the past two decades, the Boltzmann–Gibbs statistical mechanics

(BGS) undergone an important conceptual shift. An important catalyst

has been the massive infusion of new ideas from the theory of critical phe-

nomena (scaling laws, renormalization group, etc.), (multi-) fractals and

trees, random matrix theory, network theory, and non-Shannonian infor-

mation theory. While successful in describing stationary systems charac-

terized by ergodicity or metric transitivity, BGS fails to reproduce statis-

tical behaviour of many real-world systems encountered, e.g., in biology,

astrophysics, geology, climatology, economics or social sciences. Typical

signatures of the BGS are Exponential and Gaussian distributions. These

distributions are those that maximise the Boltzmann–Gibbs or Shannon

entropy and ensure the equilibrium state. The Maxwell distribution is

an instance of the ensuing equilibrium distribution for the velocities of

molecules in an ideal gas. The underlying mathematical reason for this can

be expressed in terms of the standard Central Limit Theorem (CLT) and its

various information-theoretic reincarnations. On the other hand, ergodicity

breakdown, strong correlations, long-range interactions or non-equilibrium

conditions, such as energy flows through dissipative systems, are all mech-

anisms that can push a system away from the typical equilibrium states

otherwise predicted by BGS.

Recently the use of a new paradigm known as generalized statistics has

become very popular especially in physics and biology. In this connection,

the field of complex dynamical systems has provided a fertile ground for

a systematic study of various generalized-statistics frameworks, which are

pertinent to large classes of systems that do not conform to BGS. The

notion of generalized statistics refers to statistical systems that are char-

acterized by fat- (or heavy-) tailed rather than Exponential-type distribu-
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tions. Fat-tailed distributions concentrate much statistical weight in the

tails of the distribution and consequently rare events occur more frequently

than a naive use of the BGS would indicate. Fat-tailed distribution func-

tions are ubiquitous in complex systems and processes. Typical arenas are

in nonlinear dynamics, network theory, chemistry, climatology, social sci-

ences and finance. Examples of relevant fat-tailed distributions include Log-

normal distribution, Weibull distributions, Fréchet distribution, Stretched

exponential distributions, and various power-law tail distributions (such as

Zipf–Pareto, Lévy, or q-exponential distributions). Especially, the statistics

associated with power-law tails accounts for a rich class of phenomena that

have been observed in numerous experimental, observational and model

systems. Impressive experimental examples include; velocity differences

measured in a Couette–Taylor experiment for a fully developed turbulence

regime, transverse momentum spectra of hadrons at the Large Hadron Col-

lider experiments in CERN, transport properties of cold atoms in dissipative

optical lattices, and confined granular matter. As for observational systems,

I can mention, e.g., rotation periods and diameters of asteroids and distri-

bution of meteor showers, rotation curves of galaxies, citation of scientific

papers, magnitude of earthquakes and population of cities. Among model

systems, one of the paradigmatic dissipative low dimensional models, the

logistic map, exhibits power-law tail behavior in the vicinity of the chaos

threshold.

The purpose of this thesis is to offer my personal viewpoint on the

subject of generalized statistics. In particular, the route to the generalized

statistics that I wish to emphasize here hinges on such concepts as informa-

tion theory of Rényi, q-deformed thermostatistics of Tsallis, Superstatistics

of Beck et al., and various generalized non-extensive entropies. Respective

topics are introduced and logically knitted in three chapters. While Chap-

ter 1 serves as an introductory chapter where some essentials about the

generalized statistics are introduced and discussed, Chapter 2 and Chap-

ter 3 deal with more specific issues that represent recurring themes in my

research. Notably, in Chapter 2 I outline and discuss generalized statis-

tics based on the concept of Rényi entropy, whereas in Chapter 3 selected

topics in generalized statistics are elucidated from the point of view of su-

perstatistics. Further, each chapter is supplied with four reprinted articles

of mine that are logically connected with the topic of each chapter. The the-

sis is also accompanied with “Glossary of relevant financial terms”, “Some

important biographies” and a number of technical appendices where more

specialized issues related to the bulk of the thesis are presented and proved.
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Chapter 1

Going Beyond Boltzmann–Gibbs
Statistics

The Boltzmann–Gibbs entropy and its associated statistical mechanics are producing

countless contributions to our knowledge about systems whose collective dynamics

satisfies simplifying hypothesis such as ergodicity, metric transitivity, and indepen-

dence or quasi-independence of relevant random variables. Nevertheless, a fascinat-

ing world exists outside these assumptions. In this chapter I discuss the conceptual

rationale that justify existence of this world. The corresponding mathematical un-

derpinning will be located in the Generalized Central Limit Theorem. The passage to

physics will be established via the concept of information-theoretic entropies. Various

concepts of entropy are presented. Among them, I pay a particular attentions to the

non-extensive entropy of Tsallis–Havrda–Charvát and extensive entropy of Rényi.

1.1 Breakdown of Boltzmann–Gibbs statistics

The standpoint adopted throughout this thesis is that statistical physics is

mathematical statistics applied to physics. Maxwell, Boltzmann and (fore-

most) Gibbs should not be blamed for not having adopted this point of

view. They established field of statistical physics more than 30 years be-

fore Kolmogorov formulated the fundamentals of mathematical statistics,

more than 40 years before Cramér laid out the mathematical theory of

large deviations and more then 70 years before first versions of the Lévy–

Gnedenko’s Generalized Central Limit Theorem appeared. The essence of

statistical physics is clearly a model building, and as such it only approx-

imates the physical reality. It consists of a probability distribution, or its

quantum-mechanical analogue — density matrix, which is used to calcu-

late statistical averages. It depends on a small number of the so-called

1
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state parameters that can be estimated from experimental data. The roots

of statistical physics lie in thermodynamics, a nineteenth century science

predating statistical physics by almost 50 years. Nowadays it is a com-

mon practice to explain thermodynamical concepts in terms of statistical

physics, rather than the other way round. There is yet another conceptual

route to statistical physics, namely the route based on information theory.

This route has revolved around the concept of information entropy found

by Shannon at the end of 1940’s and in statistical physics popularized by

Jaynes in 1970’s and 1980’s. Here I will follow both routes with some bias

towards information-theoretic approaches.

In recent years, a considerable effort has been made to extend the

statistical-physics paradigm beyond the limits set out by Gibbs in his 1902

book “Elementary Principles of Statistical Mechanics”. Traditional statisti-

cal physics focuses on systems with many degrees of freedoms and accommo-

dates such simplifying assumptions as ergodicity, or (quasi-) independence.

The formalism becomes exact in the thermodynamic limit, i.e. in the limit

of infinitely many degrees of freedom. In such a case the so-called extensive

thermodynamic variables acquire their true extensive status (e.g., surface

effects are irrelevant). One natural motivation to go beyond the standard

formalism is therefore the current interest in relatively small systems, such

as Bose–Einstein condensates, single macromolecules, molecular clusters or

molecular engines. Further motivation is to consider strongly correlated

degrees of freedom, which can be found, for instance, in strongly correlated

electron systems, in systems with long-time memory, in systems with long-

range interactions or in multipartite entangled systems. Many new insights

have originated from the paradigm known as generalized statistics which

tries to justify a plethoric appearance of fat-tailed distributions in natural

and social sciences. These include, Tsallis’ thermostatistics [311, 312], Ka-

niadakis’ κ entropy [162, 163], Beck’s et al. Superstatistics [23, 24, 333] or

Rényi’s extensive entropy [144, 263, 264]. Despite the fact that these do-

mains of research are not older than 25 years, they have already established

an impressive publication record. For instance, Tsallis’ thermostatistics pa-

per alone has yielded to date more than 5000 publications.

1.1.1 Central limit theorem

A lot of important phenomena addressed by statistical physics can be conve-

niently described as the compound effect of many small random influences.

The observable effects can be then attributed to the sum of a very large
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number of such events. Paradigmatic example of this is the pressure that

an ideal gas exerts on the walls of the containment vessel. Pressure as

such is a state variable resulting from a large number of collisions of gas

molecules with the walls. Already in 1730’s D. Bernoulli realized that in

order to evaluate the pressure one needs an average effect of the sum of

impulses that the gas molecules impart on the walls when colliding with

and recoiling from them. Simple kinematic reasonings then led him to the

formula (see, e.g., Ref. [187]):

p =
1

V m

N∑

i=1

p2
ix + p2

iy + p2
iz

3
=

2

3V

N∑

i=1

p2
i

2m
=

2

3
n〈ε〉 . (1.1)

The latter is presently known as Bernoulli’s formula for pressure. Here V

is the vessel volume, N is the total number of molecules, n is the number of

molecules per unit volume and m is the corresponding molecule mass. In

his own words, by “〈ε〉” Bernoulli meant [33] “...the average value of kinetic

energy of a single molecule”, but what he actually mathematically done

was a simple arithmetical average of the kinetic energy of all participat-

ing molecules. One may thus ask, in what sense the arithmetical average

of kinetic energies could be equated with the average kinetic energy of a

single particle, particularly when the underlying single-particle momentum

distribution could not be known — certainly not in Bernoulli’s time. In

fact it took another 140 years before Maxwell–Boltzmann distribution was

discovered and both predictions could be compared.

The answer to this question provides central limit theorem (CLT) which

was mathematically properly formulated in 1930’s but it had had its in-

ceptive already in works of A. de Moivre, P.S. Laplace or A. Lyapunov.

Roughly speaking, the CLT states that the (arithmetic) mean value of a

sufficiently large number (say N) of independent, identically distributed

random variables, each with finite mean µ and variance σ2, will be approx-

imately normally (or Gaussian) distributed with parameters µ and σ2/N .

With the development of probability in 1930’s many variants of the

CLT were formulated. For our purpose the so-called Lindeberg version of

the CLT will be sufficient (cf. Ref. [85]):

Theorem 1.1. Let {Xk} be a sequence of mutually independent random

variables with a common distribution. Suppose that Xk (for all k) have the

finite expected value µ and finite variance σ2 and let SN = X1 +X2 + · · ·+
XN . Define the random variable ŜN = (SN − Nµ)/

√
N , then ŜN has a
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density function fN (x) which satisfies the relation

lim
N→∞

fN (x) =
1√

2πσ2
exp

[
− x2

2σ2

]
for all real numbers x ,

and the convergence is uniform in the parameter x. If a sequence of dis-

tribution functions PN (x), N = 1, 2, . . . have density functions fN (x), and

they satisfy previous formula, then

lim
N→∞

PN (ŜN < x) =
1√

2πσ2

∫ x

−∞
exp

[
− u2

2σ2

]
du .

The convergence is uniform with respect to the variable x. So in particular,

SN is in the large-N limit distributed according to normal distribution where

the mean and variance are 0 and σ2, respectively.

If, in addition, Xk (for all k) have also finite 3-rd moment then

fN (x) =
1√

2πσ2
exp

[
− x2

2σ2

]
+ O

(
1√
N

)
.

2

In Appendix B I present a simple proof of this theorem and also list some

other frequently used versions of the CLT. Note that by defining the arith-

metic (or sample) average X̄N = SN/N , then the CLT implies

lim
N→∞

PN

(
−x < X̄N − µ

σ/
√
N

< x

)
= erf(x) , (1.2)

where erf(x) is the Gauss error function. This, in turn, gives that for N � 1

PN (−x < X̄N − µ < x) ' erf

(
x
√
N

σ

)
= 1 − erfc

(
x
√
N

σ

)

= 1 − O
(

1√
N

)
. (1.3)

Here erf(x) is the complementary error function, i.e. erfc(x) = 1 − erf(x).

So, for arbitrarily small x and N � 1, the arithmetic mean converges in

probability to µ, i.e.

X̄N
P−→ µ . (1.4)

Thus, the CLT automatically subsumes a weak law of large numbers.

By going back to Bernoulli’s pressure formula, I can now identify Xk

with p2
kx and assume that the variance of p2

kx is finite then in the large-N

limit
N∑

i=1

p2
ix

N

P−→ 〈p2
kx〉 , (1.5)
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where 〈· · · 〉 represents the average value with respect to the single-particle

distribution (whatever this might be). So, in particular, for a large number

of particles I can formally write

1

2m

N∑

i=1

p2
i

N
=

〈
p2
k

2m

〉
= 〈ε〉 . (1.6)

This last result, in turn, justifies a posteriori the correctness of Bernoulli’s

pressure formula (1.1). Let me emphasize, in passing, that historically the

Bernoulli formula represented a major achievement because it allowed mi-

croscopically explain Boyle’s empirical law for ideal gases, i.e. that the

pressure is inverse proportional to the volume. Incidentally, because the

Gaussian distribution in the CLT is a stable distribution (see Section 1.1.3

and Appendix B.6) the natural candidate for a single-particle momentum

distribution is also Gaussian distribution, namely Maxwell–Boltzmann dis-

tribution.

At this stage I should particularly stress that CLT is a very fundamental

concept in statistical physics. Apart from the well known fact that the

measurement error (and in particular, instrumental error) in an experiment

is usually well fitted with a Gaussian distribution — evidently because an

observed error emerges from a sum of many random (typically) independent

error influences, the CLT allows rigorously justify an equivalence between

microcanonical and canonical ensembles.

In statistical physics the problem of the equivalence of ensembles goes

back to Boltzmann and Gibbs. In addition, the ensemble equivalence is

not confined to statistical physics only; it can be found in other areas

of applied probability theory, for instance, in information theory. To my

knowledge the first who use the CLT to prove the ensemble equivalence

was A.Y. Khintchine [168, 170] who established it for a classical ideal (i.e.,

non-interacting) gas. Dobrushin and Tirozzi [74] used in mid 70’s the CLT

to demonstrate the equivalence for lattice gas models. More general proofs

of the the ensemble equivalence date to 90’s and are connected with a

concept closely related to the CLT, namely with a large deviation princi-

ple [68, 78, 97, 198].

We may note in passing that the independence of the distribution PN or

fN (in the large-N limit) on actual form of the single-event distribution is

one of the key hallmarks of the CLT. It is akin to the universality hypothesis

of critical phenomena in which short-range details of a system do not affect

its large-scale properties (e.g., order parameter) [41, 295]. As we shall see

in Chapter 3.5, the same type of universality typifies random walks with
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short-range memory and/or correlation. The only property that will be

relevant is that the first two momenta are finite. All such random walks

can be then universally described in the large-time limit by a diffusion

process.

1.1.2 Heavy-tailed distributions

Despite rather mild assumptions which enter the CLT (cf. also Ap-

pendix B), there is a myriad of statistical and stochastic systems that vi-

olate strict Gaussian behavior regardless the fact that their macroscopic

observables can be viewed as emerging from a large number of seemingly

random effects. Let us look, for instance, on statistical systems depicted in

Fig. 1.1.

Each of them is a result of a large collection of ostensibly random effects

and yet the cumulative probability density function (PDF) exhibits poly-

nomial (or heavy) tails. Such a non-Gaussianity should be attributed to a

violation of one of the two basic premises of the CLT, that is, there either

must exist non-trivial correlations among entering random variables (i.e.,

influences are not quasi-independent) or the ensuing first two momenta of

individual distributions are not finite. Such violations can be observed in:

• Systems with long-range correlations — e.g., cellular automata or

self-gravitating systems.

• Systems with long-time memories — e.g., financial markets or var-

ious chemical clocks

• Non-ergodic systems — e.g., glassy systems or (most) systems at

low enough temperature.

• Systems with non-Gaussian domains of attraction — e.g., systems

with Lévy noise or entangled Quantum Mechanical systems

Many systems, which violate the CLT clearly belong to more than one

category. For instance, systems with long-time correlations or non-ergodic

systems exhibit frequently also long-range correlations.

In the following subsection I will answer the question concerning the

last premise of the CLT. In particular, I will show how the CLT should be

generalized in order to account for random variable with PDF without first

two momenta.
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Fig. 1.1: Some examples of heavy-tailed distributions in real systems: (a) Empirical
PDF’s (points) and q-Gaussians (solid lines) for normalized returns of the 10 top-volume

stocks in the NYSE in 2001. The dotted line is the Gaussian distribution. The 2-

and 3-min curves are moved vertically. See Ref. [316]. (b) Distributions of transverse
momenta pt of hadronic jets produced in electron-positron annihilation. The dotted

line is the Gaussian distribution. See Ref. [313]. (c) PDF of changes of wind speed for
τ = 4sec is represented by the squares. The solid line is the Gaussian distribution with

the same standard deviation, see Ref. [42]. (d) PDF of returns, P (r), versus return, r.

The symbols represent P (r) for the Dow Jones Industrial daily return index from 1900
until 2003. The solid line represents the best q-Gaussian numerical fit. See Ref. [317] for

further details.

1.1.3 Generalized central limit theorem

In Section 1.1.1 we have seen that the Gaussian distribution is an attractor

(or better fixed point in the functional space of PDF’s) under addition

of independent identically distributed random variables. In Appendix B I

have, in addition, stated a number of useful and interesting generalizations

of the CLT, which take into account various degrees of correlation among
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entering random variables, however, all of these CLT’s assume, in one way

or another, assume that (at least) first two moments are finite.

Nevertheless, as we have observed in the previous sub-section, a num-

ber of real-world stochastic processes violate strict Gaussian behavior de-

spite the fact that they emerge from a large number of seemingly random

influences. As already mentioned, such a non-Gaussianity must be at-

tributed to a violation of one of the premises of the CLT, i.e., either to

non-trivial correlations among entering random variables (i.e., influences

are not (quasi-)independent) or to non-existence of first two momenta of

individual random variables. I shall concentrate here on the violation of

the second premise.1 In this connection a question arises, whether there

exist a variant of the CLT that can account for an observable appearance

of statistical systems with underlying heavy-tail distributions. In particu-

lar, one would like to address the entire class of the underlying single-event

distributions that do not have finite second and/or first momenta, i.e., in

1D they posses long, inverse-power-law tails:

p(x) ∼ 1

|x|1+α
, 0 < α < 2 (|x| → ∞) . (1.7)

Such a generalized CLT was historically formulated independently in 1950’s

by B.V. Gnedenko [105, 106] and P. Lévy [196].

Before I embark on the actual formulation of the generalized CLT, I

will mention two closely related important concepts, that will be needed in

the following considerations. These are: 1) the notion of stable distributions

and 2) Lévy distributions. Roughly speaking, stable distributions represent

a class of probability distributions that do not change their functional form

under convolution. In other words, for such distributions the statistical law

of sum

fN (x) =

∫
p(x1)p(x2) · · · p(xN ) δ

(
N∑

i=1

xi − x
)

N∏

i=1

dxi

= [p ∗ p ∗ . . . ∗ p](x) = [p∗N ](x) , (1.8)

has exactly the same shape as the elementary single-event distribution p(x).

The fact that two distributions have the “same shape” means that one can

find a (generally N -dependent) translation and dilatation of x such that

the two probability laws coincide, i.e.

fN (x)dx = p(y)dy with y = aNx+ bN . (1.9)

1A violation of the first premise will be briefly discussed in Section 1.2.7
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The most general class of stable distributions is the family of the so-called

Paretian or Lévy (stable) distributions. Due to the lack of a closed form

for PDF’s for all but three distributions (see further), the stable distribu-

tions are most easily defined via their characteristic function — the inverse

Fourier transform of the PDF. The latter have the generic form given by

the following Lévy or first Lévy–Khintchine theorem [45, 106, 171, 195]:

Theorem 1.2. A probability density Lα,β(x) is stable iff 2 the logarithm of

its characteristic function

L̃α,β(ξ) =

∫ ∞

−∞
dx Lα,β(x) eiξx ,

has the form

ln L̃α,β(ξ) = iγξ − c|ξ|α (1 + iβ sgn(ξ) ω(ξ, α)) ,

where the parameters γ, c, α and β are real and take the values:

• γ is arbitrary ,

• c ≥ 0

• α ∈ (0, 2] ,

• β ∈ [−1, 1] ,

and the function ω(ξ, α) is given by

ω(ξ, α) =

{
− tan(πα/2) for α 6= 1 ,

(2/π) ln |ξ| for α = 1 . 2

In mathematical physics, the logarithm of a characteristic function is known

under the name a cumulant generating function. The proof of the Lévy

theorem (possibly formulated differently) can be found in numerous books

on probability theory. Due to its quite complex nature I can point the

interested reader, e.g., to Ref. [84] for more details.

Note that stable distributions require four parameters for complete de-

scription. Their meaning can be easily understood. First, for large |x| the

Lévy distributions fall off with the characteristic asymptotic power-law (see

Appendix B.4)

Lα,β(x) ∼ 1

|x|1+α
, |x| → ∞ , (1.10)

2Generally, the conjunction “iff” refers to “if and only if”, i.e., to a necessary and

sufficient condition.
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The parameter α thus gives the tail exponent also called the tail index

or index of stability. When α < 2, the variance is infinite and the tails

are asymptotically fat (or heavy), i.e., they exhibit a power-law behavior.

The mean is finite provided that α ∈ (1, 2]. All higher moments clearly

diverge for α ∈ (0, 2]. The case α > 2 has no mathematical sense since the

Fourier transform gives only semidefinite functions which are not suitable

to represent PDF’s [45]. The parameter γ gives the peak position, and

specifically for α ∈ (1, 2] it coincides with the mean value3. The parameter

β is called a skewness parameter and it describes how much the distribu-

tion is asymmetric under the parity transformation x ↔ −x at γ = 0.

Finally, the parameter c is a scale factor which characterizes the width of

the distribution.

It is worth noting that a simple replacement of x − γ with c1/αx gives

(provided α 6= 1) the stable distribution that is no longer dependent on γ

and which is multiplied with a simple normalization constant c−1/α, indeed

1

2π

∫ ∞

−∞
dξ exp[−i(x− γ)ξ − c|ξ|α (1− iβ sgn(ξ)ω(ξ, α))]

x−γ→c1/αx
=

1

2πc1/α

∫ ∞

−∞
dξ′ exp[−ixξ′ − |ξ′|α (1− iβ sgn(ξ′)ω(ξ′, α))].(1.11)

Here ξ′ = c1/αξ. We thus see that the parameters γ and c are only respon-

sible for shifting the origin and rescaling the abscissa but they do not alter

the shape. Parameters α and β are thus the only ones that are responsible

for the shape and the other properties of stable distributions. For α = 1

the replacement x− (γ + 2βc ln c/π) with cx does the same job.

For these reasons one typically uses only two parameters, to specify

stable distributions. The members of the two-parametric class of PDF’s

Lα,β(x) are known as Paretian or Lévy (stable) PDF’s. Sometimes also the

name α-stable distributions is used. Among the most prominent examples

of Lévy stable distributions belong:

Gaussian distribution: By setting α = 2, β ∈ [−1, 1], c = σ2/2 and

γ = m, I obtain the characteristic function

L̃2,0(ξ) = exp
(
imξ − σ2ξ2/2

)
, (1.12)

which after the Fourier transform gives the Gaussian distribution

pG(x) ≡ L2,0(x) =
1√

2πσ2
exp

(
− (x−m)2

2σ2

)
, x ∈ R . (1.13)

3This follows directly from the definition of the characteristic function.
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So, we see hat the Lévy stable distributions exhibit a crossover from a

power-low decay (with α < 2) to the exponential tail (for α = 2).

Lorentz–Cauchy distribution: By setting α = 1, β = 0, c ≥ 0 and

γ = m, I obtain the characteristic function

L̃1,0(ξ) = exp (imξ − c|ξ|) , (1.14)

which after the Fourier transform gives the Lorentz–Cauchy distribution

pLC(x) ≡ L1,0(x) =
c

π (c2 + (x−m)2)
, x ∈ R . (1.15)

Lévy–Smirnov distribution: when I set α = 1/2, β = 1, c ≥ 0 and

γ = m, I obtain the characteristic function

L̃1/2,1(ξ) = exp
(
imξ −

√
c|ξ|(1− i sgn(ξ))

)

= exp
(
imξ −

√
−i2cξ

)
, (1.16)

which after the Fourier transform gives the Lévy distribution

pLS(x) ≡ L1/2,1(x) =

√
c

2π

exp
(
− c

2 (x−m)−1
)

(x−m)3/2
, x ≥ m. (1.17)

These three PDF’s are also the only ones that can be written in a closed

form in terms of elementary functions, though there are also special sit-

uations where a closed form of the PDF is reachable in terms of special

functions [84, 239].

Now we are in position to proceed to the generalized CLT. One of the

frequently used formulation is the following [45]:

Theorem 1.3. Let {Xk} be a sequence of mutually independent random

variables with a common distribution. Consider the stochastic process SN =

X1 +X2 + · · ·+XN . Suppose further that the PDF of the random variable

X1 has an asymptotic tail given as

p(X1 = x) ∼
{
C−|x|−(1+α), as x→ −∞ ,

C+|x|−(1+α), as x→ +∞ .

Define the parameter

β =
C+ − C−
C+ + C−

.
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and scaled random variable ŜN = SN/N
1/α. Then ŜN has a density func-

tion fN (x) which satisfies the relation

lim
N→∞

fN (ŜN = x) = Lα,β(x) ,

i.e., fN (x) belongs to the attraction basin of the Lévy stable distribution of

the tail exponent α and skewness parameter β.

A two comments concerning the generalized CLT are in order. The

Theorem 1.3 states that the (normalized) sum of heavy-tailed distributions

with the tail exponent α has as the limit distribution — the Lévy stable

distribution, with the same tail exponent. The theorem is not applicable if

the involved distributions have different tail exponents at spatial infinities

x → ±∞. Similarly, the theorem implies that a sum of two independent

random variables with α-stable distributions is again stable distribution

with the same tail exponent α. This invariance property, however does not

hold if the two α’s are different.

The generalized central limit theorem started to enter world of physics

rather slowly. The first attempt (I am aware of) came from B. Mandelbrot4,

who in 60’s investigated statistical systems with no finite second momenta

in the context future-price forecast in financial models [212, 213, 215].

It should be stressed that distributions without second and/or first mo-

menta were used as a golden thread in much of Mandelbrot works (see,

e.g., [216–219]). By Mandelbrot’s own admission [220], the whole concept

of fractal mathematics stemmed from his effort to correctly mathematically

describe the observed scaling in financial prices.

The aforementioned works remained largely overlooked both by the

physics and quantitative-finance community. With few exceptions, such

as anomalous diffusion or self-organized criticality which both started to be

experimentally and theoretically analyzed already in 70’s and 80’s (see, e.g.,

Refs. [12, 120, 121, 175]), the real boom in the practical employment of

the generalized CLT came at the turn of the 80’s to 90’s. The catalyst has

been massive infusion of ideas from generalized thermostatistics of Tsallis,

from theory of complex dynamical systems, as well as from improvements

in observational and numerical sensitivity that allowed to examine large

data sequences.

Let me finally stress that there are clearly other heavy-tailed alterna-

tives to Lévy stable distributions. These include, for instance, Student’s

4Perhaps not so surprisingly, Benoit Mandelbrot was a PhD student of Paul Lévy at

the École Polytechnique in Paris.
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t-distributions, normal inverse Gaussian distributions, Tsallis-type distri-

butions or hyperbolic distributions. But even though the Lévy stable dis-

tributions are not universal, the generalized CLT provides them with a

good reason why they should be expected in nature more than any other

heavy-tailed PDF’s. Namely, the stable laws are the only possible limit

distributions for (properly normalized) sums of independent, identically

distributed random variables.

1.2 MaxEnt and generalized entropies

Maximal entropy principle (or MaxEnt for short) is presently a key

paradigm in statistical physics and probability theory. In both these fields it

is related to the issue of inference about the most “representative” distribu-

tion for a system at hand which is compatible with whatever constraints (or

knowledge) one might control. Since its inception, both statistical physics

and probability theory have approached the MaxEnt principle differently

— with different underlying justifications and with different objectives in

mind. In the following I will briefly discuss the both respective routes and

their merger in what is currently known as Jaynes’ MaxEnt principle. I will

also point out that the MaxEnt provides, among others, a natural arena in

which some of heavy-tailed distributions find their conceptual justification.

1.2.1 Entropy in statistical physics and thermodynamics

The entropy concept was originally introduced by Clausius [59, 131] in the

thermodynamics. By analyzing a Carnot engine he was able to identify

a new state function which never decreases in isolated systems. Clausius

showed that entropy of a given thermodynamic state can be interpreted as

the measure of useful energy (i.e., energy available for work) that cannot

be extracted from that state. So the increase in the entropy reflects a loss

of useful energy in the course of system’s evolution.

Modern axiomatic underpinning for thermodynamic entropy was pro-

vided in 1908 by the German-born Greek mathematician, Constantin

Carathéodory [52] and later elaborated by Chandrasekhar [57], Buch-

dahl [47], Landsberg [191] and others. In contrast to Clausius’ approach,

Carathéodory’s axiom is not directly rooted in any experience or experiment

but when used in conjunction with purely mathematical theorem on inte-

grability of Pfaffian differential forms (which is also due to Carathéodory)
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one can derive all of the consequences (including existence of entropy),

which normally follow from the Claussius approach. Carathéodory’s ap-

proach is, however, more convenient in proving the existence of entropy for

thermodynamic systems with 3 or more state variables [190].

The microphysical origin of Clausius’ phenomenological entropy was

clarified more than 20 years later in works of Boltzman and (yet later)

Gibbs. In particular, Gibbs associated Clausius entropy with the number

of allowed microscopic states compatible with a given observed macrostate.

The ensuing so-called Boltzmann–Gibbs entropy (BGE) has the form

SBG(P) = −kB
W∑

x ∈ X

p(x) ln p(x) , (1.18)

where kB = 1.3806488(13)× 10−23J/K denotes Boltzmann’s constant, X is

the set of all accessible microstates compatible with whatever macroscopic

observable (state variable) one controls and W denotes the number of such

microstates. The explicit form (1.18) of BGE conceptually follows from

Gibbs’ choice of the so-called coefficient of probability PΓ(Ω) of the Γ-space

(i.e., the macrosystem phase space) considered [101]. Gibbs made the choice

so that the quantity PΓ(Ω)dΩ (here dΩ is an infinitesimal volume in Γ-

space) would represent the ratio of the number of the ensemble systems

contained in dΩ around the point Ω in Γ-space. With this Gibbs gave the

definition of the entropy as [101]

SG(Ω) = −kB
∫

Γ

PΓ(Ω) lnPΓ(Ω) dΩ . (1.19)

Gibbs was able to show that in cases when the correct equilibrium ensemble

is used then SG reduces to the usual thermodynamic entropy.

Gibbs’s entropy (1.19) had its precursor in Boltzmann’s H-theorem. In

the framework of his kinetic theory of gasses Boltzmann was able to identify

a new function, the so-called H-function (also Eta-function)

H(t) =

∫

µ

f(x,p, t) ln f(x,p, t) dxdp , (1.20)

which statistically decreases in time. Function f(x,p, t) appearing in (1.20)

is a single-particle distribution in µ-space (i.e., a single-particle phase

space). With this Boltzmann defined the entropy as SB(t) = −kBH(t).

Note that for a system of N statistically independent particles, H is related

to the Gibbs entropy through identity

SG = −NkBH . (1.21)
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It should be stressed that the equivalence between Boltzmann–Gibbs

and Clausius entropy is established only when the conditional extremum

Pex of SBG subject to the constraints imposed by observed state variables

is inserted back into SBG. As long as this MaxEnt prescription is uti-

lized, SBG turns out to be a thermodynamic state function and not mere

functional on a probability space [101].

The reason why one should strive for MaxEnt in statistical physics is

closely related to the ergodic theorem. The ergodic theory is presently an

independent branch of mathematics with many applications in information

theory, statistics (e.g., the Strong Law of Large Numbers), number theory

(e.g., Gelfand’s problem), differential geometry, functional analysis, etc.,

much of which seems, however, unrelated to contemporary physics. In sta-

tistical physics, the ergodic hypothesis was introduced by L. Boltzmann

in his 1877 paper [44] to prove equipartition of energy in the kinetic the-

ory of gases. Boltzmann’s ergodic hypothesis is frequently stated as the

condition that the average of any quantity over all the microstates of a

system equals the time average of that quantity in any one example of the

system (i.e., when different initial conditions are used). To facilitate the

concept of probability, Boltzmann conjectured that all phase space cells on

a given energy hypersurface are equally probable — this is epitomized in

his famous Stoßzahlansatz. Unfortunately, with the rigor that would sat-

isfy mathematics community, classical dynamics has not been able to prove

that the path of a generic system in phase space would move through all the

cells, let alone spend equal time in each cell. The difficulty stems from the

complexity of the underlying molecular/atomar motion resulting from the

chaotic nature of particle collisions. For a system to be ergodic, the particle

motions, must in some sense, be sufficiently mixed up or random. Though

in a strict mathematical sense chaoticity of interactions does not imply er-

godicity, it is likely that chaos explains the practical success of statistical

mechanics. To account for billions of collisions that happen per particle

per second in a usual gas5 one must make a gross simplifications hoping

that they capture the essence of the actual atomic disordered behavior. To

this end, such properties as mixing, equidistribution or K-flow, have been

extensively studied (see, e.g., [253, 308]).

From statistical physics point of view, the most important example of

the ergodic theorem is the Birkhoff (or Birkhoff–Khinchin) theorem [38].

Before I state it, let me set the requisite terminology and compile some

5Note that a typical mean free time in gases is ∼ 0.1ns. For instance in Ar is the mean

free time 0.165ns, in N2 it is 0.130ns, while in CO2 only 0.108ns.
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basic facts. As a rule, ergodic theory studies dynamical systems in terms

of two fundamental mathematical concepts: a measure space (X,F , µ) and

a measure preserving (time) map T : X → X.6 I discuss the measure space

in Appendix B.5, and so I will not dwell into at this stage. Let us now

assume that we have the σ-algebra F and measure µ. One may then define

measure preserving map as follows: first, one defines that T is measurable

if for any A ∈ F follows that T−1A = {x : T (x) ∈ A} ∈ F . That is, T

is measurable if and only if the preimage of every measurable set under

T is again measurable. The map T is then said to be measure preserving

with respect to µ (or equivalently µ is T -invariant), when µ(T−1A) = µ(A)

for all A ∈ F . (If the map T is invertible this is the same as saying

that µ(A) = µ(TA).) Clearly, a function f : X → R transforms under

action of T as f(x) 7→ Tf(x) = f(T (x)). Generally, for the k successive

T -transformations acting on f(x) one has T kf(x) = f(T k(x)). When k is

extended to the real axis R, then T k 7→ Tt, t ∈ R and the family {Tt} is

called a (continuous) measurable flow in X. The measurable flow is measure

preserving w.r.t. µ if for any A ∈ F follows that µ(T−1
t A) = µ(A) for all t.

In statistical physics the role of X is typically taken over by the phase

space Γ and the transformation Tt represents the time evolution by a time

t. For instance, for systems where the time evolution is driven by the

Hamiltonian H(p,q) with p = (p1, p2, . . . , pN ) and q = (q1, q2, . . . , qN )

the time transformation on a phase-space function f(p,q) can be explicitly

written as

Ttf(p,q) = etLf(p,q) = f(etL(p,q)) , (1.22)

where the linear operator

L =

N∑

n=1

{
∂H

∂qn
∂

∂pn
− ∂H

∂pn

∂

∂qn

}
, (1.23)

is the Liouvillian of the system. The measure µ can be in this case taken

to be the Lebesgue measure on Γ. The Liouville theorem then ensures that

the above Hamiltonian flow {Tt} is measure preserving w.r.t. µ on Γ.

After this prelude I can state the Birkhoff ergodic theorem. One of its

frequently used versions is formulated as follows [38, 168]:

Theorem 1.4. Let X be the configuration space of a physical system with

a σ-finite measure µ and a function f : X → R. Let further T : X → X be

6In ergodic theory it is customary to call T as endomorphism. If T is, in addition,

reversible then the name automorphism is habitually used.
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measure preserving time transformation. For any f ∈ L1(X,µ) the limit

lim
n→∞

1

n

n∑

i=0

f(T i(x)) = 〈f〉x .

(i.e., the time average along a trajectory) exists for almost all x ∈ X. If,

in addition, the measure µ is ergodic (i.e., for all f ∈ L1(X,µ) is 〈f〉x
constant for almost all x) then for almost all x ∈ X

lim
n→∞

1

n

n∑

i=0

f(T i(x)) =

∫

X

f(x)µ(dx) .

This means that

µ

(
x ∈ X: lim

n→∞
1

n

n∑

i=0

f(T i(x)) 6=
∫

X

f(x)µ(dx)

)
= 0 .

The version that is in its spirit closest to the original Boltzmann ergodic

hypothesis is Birkhoff’s version for a measurable flow {Tt} in X. In this

case is the Birkhoff theorem states that [168]

Theorem 1.5. Let X be the configuration space of a physical system with

a σ-finite measure µ and a function f: X → R such that f ∈ L1(X,µ). For

a measurable flow {Tt} in X the limit

lim
T→∞

1

T

∫ T+t0

t0

f(Tt(x))dt = 〈f〉x ,

exists for almost all x ∈ X and is t0 independent. If, in addition, the

measure µ is ergodic then for almost all x ∈ X

lim
T→∞

1

T

∫ T+t0

t0

f(Tt(x))dt =

∫

X

f(x)µ(dx) .

This means that

µ

(
x ∈ X: lim

T→∞
1

T

∫ T+t0

t0

f(Tt(x))dt 6=
∫

X

f(x)µ(dx)

)
= 0 .

The latter is an extremely important property for statistical mechanics,

since it implies that for a typical orbit of an ergodic dynamical system,

time averages equal space averages. In fact, it is the time averaged (or

coarse-grained) behavior that is experimentally observed and tested but it

is the phase-space average that can be mathematically dealt with.
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The proof of the ergodic theorems was originally given by Birkhoff in

Ref. [38]. Simpler (but still rather technical) proof was presented by A. Kol-

mogorov which was reviewed in the book of Khinchin [168]. The proof of

the above stated versions can be found, for instance, in Refs. [255, 291].

Few comments are now in order. It should be first stressed that the

configuration space X in statistical physics does not need to be (and as a

rule is not) the entire phase-space. Typically it is only allowed part of it.

By the allowed part I mean the set of all points in the phase space, which

satisfy macroscopic constraints, such as constancy of energy, total linear

momentum, total angular momentum or other integrals of the motion.

Second, Birkhoff’s theorem does not ensure the existence of T -invariant

ergodic measure and, in fact, the existence of such a measure in not guar-

anteed for general X’s. However, if X is a compact metric space (e.g.,

phase space of an isolated Hamiltonian system) then for any continuous

map T : X → X there exists at least one T -invariant measure (this results

follows from the Krylov–Bogolyubov theorem [43, 236]). In addition, in the

set of all T -invariant measures exists at least one T -ergodic measure (this

follows from the Krein–Milman theorem [185]). In the special case when

there is only one T -invariant measure, there exists a unique T -ergodic mea-

sure (Furstenberg’s theorem [94]).

Third, if the above ergodic relation holds, then 〈A〉x does not depend

neither on the initial position x (excluding a set of measure zero) nor on

the initial time t0. In particular, Birkhoff’s theorem asserts that the time

average is the same for almost all initial points (except possibly for a set

of measure zero): statistically speaking, the system that evolves for a long

time “forgets” its initial state. Such a behavior can be expected, e.g., in the

(macroscopic) equilibrium. The premise that 〈A〉x ≡ 〈A〉 corresponds at

the fixed value of energy to the equilibrium value of A (for each observable

A) constitutes the so-called microcanonical ensemble assumption and the

corresponding µ is known as the microcanonical measure.

Fourth, if I take A = χC , where

χC(x) =

{
1, for x ∈ C ∈ F ;

0, otherwise,
(1.24)

is the indicator function of some set C ⊆ X, then the time mean
1
n

∑n
i=0 χC(T i(x)) represents the relative frequency of visits to C of the

trajectory staring at the point x and evolving in the time interval [0, n]. By

Birkhoff’s ergodic theorem the limit value of such frequencies as n → ∞
exists and, in addition, it equals to the measure µ(C). This is therefore
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analogous to the strong law of large numbers in probability theory. In the

case of a flow {Tt} the time mean 1
T

∫ T
0
χC(Tt(x)) represents the fraction

of time the particle spends in the set C during its evolution from initial

time t = 0 to the final time t = T . In the large T limit this represents the

relative time spent in the set C (i.e., the relative sojourn time in C). So

the ergodic measure of a given set C is proportional to the sojourn time of

the system on the set C.

Let me finally stress that the Boltzmann ergodic conjecture as origi-

nally stated by Boltzmann is false, since it holds only when the involved

integral measure is T -invariant and ergodic. In fact, the Boltzmann ergodic

conjecture is based on the implicit assumption that the typical timescale

over which the observation (and hence the coarse-graining or averaging) is

made is sufficiently large in comparison with the inner timescales of the

microscopic processes, so that the system has sufficient time to explore

all the allowed part of phase space. Despite much effort the existence of

ergodic properties in Boltzman’s sense has never been proven for most sys-

tems. By now is known that a large number of physical systems is certainly

non-ergodic, e.g., system of anharmonic oscillators. Some other systems

are technically ergodic in the large-time limit but in practice non-ergodic

over typical physical time scales. The latter is typical in systems that

exhibit slow aging — such as (spin) glasses [247], or represent spontaneous-

symmetry broken systems in the ordered phase — such as ferromagnets

bellow the Curie temperature [96, 247].

In statistical physics it is often tacitly assumed that systems in question

are ergodic enough to justify the use of the principle of equal weight (or

equal a priori probability) of allowed microstates. That is, in an isolated

system in a thermal equilibrium each of microstates on a constant energy

hyper-surface is realized with equal probability, i.e.

f(p,q) = constant = lim
δE→0

[∫

E<H<E+δE

dΩ

]−1

,

⇒ µ(dx) = f(p,q)δ(H(p,q)− E)dΩ . (1.25)

Above µ is know as the microcanonical measure. Because the average is

taken over the energy hyper-surface one can with the help of (1.25) write

〈· · · 〉 =

∫

X

· · ·µ(dx) =
1

Vol Γ

∫

Γ

· · · δ(H(p,q)− E)dΩ

=
1

Vol Γ

∫

Σ

· · · dΣ

|gradH| , (1.26)
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where Σ is the energy hyper-surface and Vol Γ is the accessible phase-space

volume, and

|gradH| =

[∑

n

{(
∂H

∂qn

)2

+

(
∂H

∂pn

)2
}]1/2

. (1.27)

Similar considerations are valid also for quantum-statistical sys-

tems [131, 187].

Though, in statistical physics the most fundamental ensemble is the

micro-canonical ensemble, the actual calculations are notoriously difficult

in this ensemble. For that reason it is typically more tractable to consider

other (but equivalent) ensembles by allowing for a small fluctuations in

system’s energy or number of particles.7 For instance, using the principle

of equal weight and partitioning the energy between two systems (that

exchange energy) — heat bath (reservoir) and system under consideration,

one gets a canonical-ensemble distribution [173, 187]

µ(dx) =
1

Z
exp(−βH(p,q))dΩ . (1.28)

where Z represents the partition function (also called sum-over-states ; Ger-

man Zustandssumme) and β = 1/kBT . In cases when one must take into

account the precise relation between a volume element in the Γ-space and

the corresponding number of distinct states of the system then

dΩ =
dpdq

CN
. (1.29)

Here the factor CN = h3N for distinguishable particles and CN = N !h3N

for indistinguishable particles (N represents the number of particles con-

stituting the system and h = 6.62606957(29)10−34 Js is the (unreduced)

Planck constant).

In the statistical physics the justification for the MaxEnt is related to

the presumed validity of the ergodic hypothesis. In particular, natural

tendency of dynamical systems to (almost)evenly distribute over available

microstates naturally leads to an increasing trend in the value of the BGE

in the course of time. The BGE reaches its maximum in thermodynamic

equilibrium, i.e., when the microstates are “maximally” evenly distributed

over microstates condition the observable constraints (cf. e.g. [188]). For

7For systems that are away from thermodynamic limit the equivalence between en-
sembles is broken and a proper justification for a given ensemble is not due to ergodic

hypothesis but instead via information theory, see Sec. 1.2.3.
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instance, the canonical ensemble distribution comes from the conditional

extremum of

δSBG(P) = 0,

W∑

n ∈ X

pnEn = 〈H〉 = const.,
∑

n ∈ X

pn = 1 , (1.30)

which uniquely implies the maximizer

pn = Z−1e−βEn , Z =

W∑

n ∈ X

e−βEn . (1.31)

By the same token, one can generate also other standard ensembles when

other constraining conditions are employed. In this way one can gen-

erate, e.g., grand-canonical, isobaric = pressure, rotational, etc. ensem-

bles [138–141, 187].

For the sake of completeness, I should mention that apart from the

ergodic hypothesis one may also find justification for the MaxEnt by intro-

ducing another concepts from the chaotic dynamical systems such as the

metric (or Kolmogorov–Sinai) entropy and topological entropy. Loosely

speaking these entropies represent numerical indicators of the degree of

complexity in the orbit structure of the evolving system in its configura-

tion space. In certain cases they can be indeed identified with the BGE.

Because this topic is far beyond the scope of this thesis, I will refrain from

discussing it further. The interested reader can find some essentials, e.g.,

in Refs. [243, 283].

Let me close by observing that MaxEnt’s in statistical physics and ther-

modynamics are of a different nature, albeit in thermodynamic equilib-

rium they typically lead to identical conclusions. On thermodynamics side

the entropy reaches its maximum in an equilibrium state (provided system

evolves in an adiabatically isolated fashion) not due to ergodic hypothesis

but due to Clausius inequality (cf. e.g. [187]). From this point of view is the

thermodynamic entropy less ambiguous in its scope of validity and mathe-

matical rigor than the BGE. Usefulness of the BGE stems mostly from its

applications beyond equilibrium. Apart from equilibrium thermodynam-

ics is the BGE routinely used in near-to-equilibrium thermodynamics, for

instance, in Green–Kubo relations [13, 188] or in Onsager’s reciprocal rela-

tions [141, 188]. In the following two sections we will see that there is yet

another, conceptually deeper justification for the MaxEnt which does not

relies on the concepts borrowed from dynamics.
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1.2.2 Entropy in information theory

Information theory concerns how efficiently one can encode information,

compute, evade eavesdroppers, and communicate. One of the key goals

of information theory is to construct an optimal code. By optimal code

one means the shortest averaged code from which one can uniquely de-

code the source data. Optimality of coding was first solved by Shannon in

his 1948 seminal paper [285, 286]. According to Shannon’s source coding

theorem [285, 286, 288], the quantity

H(P) = −
∑

x ∈ X
p(x) log2 p(x) , (1.32)

corresponds to the averaged number of bits needed to optimally encode (or

“zip”) the source dataset X with the source probability distribution P(X)

(more details will be presented in Chapter 2.1). On a quantitative level

(1.32) represents (in bits) the minimal number of binary (yes/no) ques-

tions that brings us from our present state of knowledge about the system

X to the one of certainty [8, 263, 285, 286]. It should be stressed that

in Shannon’s formulation X represents a discrete set (e.g., processes with

discrete time), and this will be also the case here. Apart from the coding-

theory based operational definitions, Eq. (1.32) has also several axiomatic

underpinnings. Axiomatic approaches were advanced by Shannon himself

in Refs. [285, 286, 288], Khinchin [169], Fadeev [82] an others [114]. The

quantity (1.32) has became known as Shannon’s entropy (SE).

1.2.3 Jaynes’ MaxEnt

Jaynes and his so-called subjectivist school has followed a different line

of reasoning in order to justify the MaxEnt. To them, the problem of

statistical mechanics is basically a problem of statistical inference. As we

have seen, Shannon’s entropy is simply the measure of the uncertainty

inherent in a preassigned probability scheme, and as such it has nothing to

do with thermodynamic entropy per se, except that in the cases in which the

probability distribution is known, or proven to be, “(grand-)canonical” one

can identify the ensuing SE with the thermodynamic entropy of Clausius.

Since the SE quantifies lack of knowledge (or our ignorance) about a system,

the (grand-)canonical distributions naturally enter, according to Jaynes, the

scene when one tries to infer the least biased distributions permitted by

our knowledge of the mean energy (and mean number of particles). In this

approach the ergodicity is not requisite. Jaynes’ justification of MaxEnt
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principle is sometimes also known as the principle of maximum honesty.

Already in mid 50’s Jaynes pointed out that there is an intimate connec-

tion between Boltzmann–Gibbs entropy and Shannon’s entropy [138, 139].

In fact, thermodynamics can be viewed as a specific application of Shan-

non’s information theory: thermodynamic entropy may be interpreted

(when rescaled to “bit” units) as the amount of Shannon information needed

to define the detailed microscopic state of the system, that remains “un-

communicated” by a description that is solely in terms of thermodynamic

state variables [46, 138, 139, 141, 302].

There have arisen a number of objections in connection with Jaynes’

information-theoretic underpinning of thermodynamic entropy. These orig-

inated from the viewpoint that thermodynamics entropy is a measurable

quantity (up to an additive constant), and as such it should be indepen-

dent of observer’s knowledge (different people have different amounts of

ignorance). Any other definition of entropy that is observer-dependent is

unacceptable.

In this connection I can quote Jaynes’ answer to critique of Professor

Uhlenbeck [141]: The entropy of a thermodynamic system is a measure of

the degree of ignorance of a person whose sole knowledge about its microstate

consists of the values of the macroscopic quantities Xi which define its

thermodynamic state. This is a completely ‘objective’ quantity, in the sense

that it is a function only of the Xi, and does not depend on anybody’s

personality. There is no reason why it cannot be measured in the laboratory.

Similar rebuttal to the criticism was given by Rothstein [273]: Physical

information and its associated entropy reduction, localized in the system

to which the information refers, can be expressed via specification or con-

straints taken as a part of the description of the system ... Measuring a

system and thus finding it to be in some state is formally equivalent ... to

preparing it to be in that state, specifying it to be in that state, or constrain-

ing it in a manner that it can be in no other state (the state in question

can, of course, be mixed).

By now, it is well recognized [141, 138–140] that within the context of

Shannonian information theory the laws of equilibrium statistical mechanics

can be viewed as inferences based entirely on prior information that is

given in terms of expected values of energy, energy and number of particles,

energy and volume, energy and angular momentum, etc. This framework

is known as inductive inference and its internal consistency and uniqueness

was proved by Shore and Johnson in Ref. [290].

Since the SE differs only by a scaling factor from Boltzmann’s and Gibbs
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entropies one can obtain, for instance, the canonical ensemble distributions

by looking for an extremum of the SE subject to 〈H〉 = const., which yields

SG(P) = kBH(P) = −kB
∑

n ∈ X
pn log pn

MaxEnt⇒ pn ∝ e−βEn . (1.33)

In the case that the SE is formulated of the µ-space, one arrives at

SG(F) = −NkBH(F) = −NkB
∫

µ

dxdp f log f

MaxEnt⇒ f(p) ∝ e−βp
2/2m . (1.34)

which is the usual stationary solution of Boltzmann’s H-function, i.e.,

Maxwell–Boltzmann distribution8.

Let me finally note that, the close relation between information theory

and the BGE was already anticipated by Szilard [302] and Brillouin [46] in

their analysis of the Maxwell demon9. A modern connection of the informa-

tion theory and BGE is phrased via the so-called Landauer’s principle [189].

The latter basically states that when a single bit of information is erased

(e.g., in a computer or in a black hole) then the amount of energy dissi-

pated into environment is at least kBT ln 2, where T is the temperature

of the erasing environment. Landauer’s principle has been elaborated in

the literature quite extensively. The debate culminated in works of Ben-

nett [29, 30], Lloyd [202], Vedral [321] and others.

1.2.4 Entropy and its basic properties

Let me now briefly state some of the basic properties that are (due to

identical mathematical structure) shared by both BGE and SE.

Among important properties of SE is its concavity in P, i.e. for any

pair of distributions P and Q, and a real number 0 ≤ λ ≤ 1 holds

H(λP + (1− λ)Q) ≥ λH(P) + (1− λ)H(Q) . (1.35)

8Entropies over density functions are not true entropies but rather entropy gains,

cf. Ref. [144] and are normally called differential entropies. More on differential en-

tropies will be said in Chapter 2.4.3.2.
9Maxwell demon, is a hypothetical being of intelligence but molecular order of size

imagined to illustrate limitations of the second law of thermodynamics was invented by

J.C. Maxwell
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Eq. (1.35) follows from Jensen’s inequality and a convexity of x log x for

x > 0. Concavity is an important concept since it ensures that any maxi-

mizer found by the methods of the differential calculus yields an absolute

maximum rather than a relative maximum or minimum or saddle point. At

the same time it is just a sufficient (i.e., not necessary) condition guaranty-

ing a unique maximizer. It is often customary to denote SE of the source10

X as H(X) rather than H(P). Note that SE is generally not convex in X!

It should be stressed that the entropy (1.32) really represents a self-

information: the information yielded by a random process about itself. A

step further from a self-information offers the joint entropy of two random

variables X and Y which is defined as

H(X,Y ) = −
∑

x ∈ X, y ∈ Y
p(x, y) log2 p(x, y) , (1.36)

and which represents the amount of information gained by observing jointly

two (generally dependent or correlated) statistical events.

A further concept that I will need is the conditional entropy of X given

Y , which can be motivated as follows: Let us have two statistical events X

and Y and let event Y has a sharp value y, then the gain of information

obtained by observing X is

H(X|Y = y) = −
∑

x ∈ X
p(x|y) log2 p(x|y) . (1.37)

Here the conditional probability p(x|y) = p(x, y)/p(y). For general random

variable Y one defines the conditional entropy as the averaged Shannon

entropy yielded by X under the assumption that the value of Y is known,

i.e.

H(X|Y ) =
∑

y ∈ Y
p(y)H(X|Y = y)

= −
∑

x ∈ X, y ∈ Y
p(x, y) log2 p(x|y) . (1.38)

From (1.38) it follows that

H(X,Y ) = H(Y ) + H(X|Y ) = H(X) + H(Y |X) . (1.39)
10In Shannon’s theory source is typically a random variable, say X that has a discrete

alphabet (a set of possible values or autcomes) X = x1, . . . , xn. Strictly speaking one
should write Shannon’s entropy as

H(PX) = H(X) = −
∑
x∈X

p(x) log2 p(x) ,

but I will stick to more conventional notation given by (1.32).



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

26 Generalized statistics and its applications

Identity (1.39) is known as additivity (or chain) rule for Shannon’s entropy.

In statistical thermodynamics this rule allows to explain, e.g., Gibbs para-

dox [318]. Because both H(X|Y ) ≥ 0 and H(Y |X) ≥ 0, I get that

H(X,Y ) ≥ H(Y ) and H(X,Y ) ≥ H(X) . (1.40)

These inequalities (known as the monotonicity of SE) state that when more

random variables are included then the entropy of the joint outcome gets

never smaller. Or, equivalently, the entropy of the whole is at least as great

as the entropy of the part.

Another relevant quantity that will be needed is the mutual information

between X and Y . This is defined as:

I(X;Y ) =
∑

x ∈ X, y ∈ Y
p(x, y) log2

p(x, y)

p(x)q(y)
, (1.41)

and can be equivalently written as

I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X) . (1.42)

This shows that the mutual information measures the average reduction in

uncertainty (i.e., gain in information) about X resulting from observation

of Y . Of course, the amount of information contained in X about itself is

just the Shannon entropy:

I(X;X) = H(X) . (1.43)

Notice also that from Eq. (1.41) follows I(X;Y ) = I(Y ;X) and so X

provides the same amount of information on Y as Y does on X. For this

reasons the mutual information is not a useful measure to quantify a flow of

information. In fact, the flow of information should be by its very definition

directional.

It is also interesting to observe that since I(X;Y ) ≥ 0 (Gibbs’s in-

equality, see Appendix D.2), I have that H(Y |X) ≤ H(Y ) which can be

perceived as a variant of the second law of thermodynamic. Namely, en-

tropy increases when the influence of the boundary conditions gets lost in

the course of time evolution.

In the following we will also find useful the concept of conditional mutual

entropy between X and Y given Z which is defined as

I(X;Y |Z) = H(X|Z) − H(X|Y, Z) ,

= I(X;Y,Z) − I(X;Y ) . (1.44)

For further details on the basic concepts of Shannon’s information theory,

we refer the reader to classical books, e.g., Ash [8] and, more recently,

Csiszár and Shields [64] or Cover and Thomas [62].
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Let me note finally that strictly speaking Shannon’s entropy can be

written with an arbitrary multiplicative constant, i.e., as

H(P) = −κ
∑

n

pn log pn .

If the multiplicative constant is chosen to be κ = kB then Shannon’s en-

tropy corresponds Gibbs entropy [101]. The presence of Boltzmann’s con-

stant kB merely indicates the units in which Shannon’s entropy coincides

with Clausius thermodynamic entropy (should we choose pn to be Gibbs’s

maximizer). Case with κ = log 2 corresponds to Shannon’s entropy mea-

sured in bits. Sometimes one chooses κ = 1 which represents Shannon’s

entropy measured in natural units — nats.

1.2.5 World beyond Shannon

As I have already mentioned, the SE provides via MaxEnt prescription a

least biased PDF compatible with observable (or macroscopic) constraints.

For instance, the usual thermodynamics ensemble PDF’s are obtained with-

out ergodic and metric transitivity assumptions, which are normally indis-

pensable in ergodic theory.

Despite their heuristic appeal and conceptual simplicity, the arguments

from Section 1.2 concerning the MaxEnt inference procedure have a loop-

hole. The loophole resides in the fact that information in physics is a richer

concept than Shannon’s information measure can grasp. This fact was also

recognized and stressed by Shannon himself: It is hardly to be expected

that a single concept of information would satisfactorily account for the

numerous possible applications of this general field. ... [287]

In following sub-sections I will illustrate this point with some selected

information concepts that do not fall under the umbrella of Shannon’s in-

formation theory, but first it will be convenient to consider Shannon’s in-

formation measure from a slightly different angle of view.

1.2.5.1 Shannon’s information as syntactic information:

Word “syntax” refers to the rules used for constructing, or transforming

the symbols and words in a language (be it formal, programming or natu-

ral language). Particularly in linguistics the syntactic rules prescribe how

words are combined to larger units — to phrases and sentences, that are

well-formed (but not necessary meaningful) strings in a given language. So,

for instance, the sentences: “portrait Rembrandt painted that a ...” and
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“A portrait that Rembrandt painted ...” or “1+1 = 2” and “1 = 2+1”

are from a syntactic point of view identical. The ensuing syntactic infor-

mation then quantifies the amount of uncertainty involved in transmission

and processing of well-formed syntactic strings.

In syntactic systems one can often affiliate with the “alphabet” (i.e. a

set of building language units — usually words and hyphens) a probability

distribution. Since the syntactic strings do not need to convey any meaning,

one can consider the “alphabet letters” appearing in the string as statis-

tically independent events. In this way one can endow the string with a

statistical description through the product of probabilities associated with

“alphabet letters” involved. For aforesaid syntactic systems Shannon’s en-

tropy is the pertinent quantifier of the syntactic information. Indeed, Shan-

non’s entropy takes into account only the probability of observing specific

“alphabet letters”, so the information it encapsulates is information about

the underlying probability distribution of the “alphabet”, not about the

meaning of the events themselves. Reverse is also true, Shannon’s informa-

tion theory, by its very formulation, deals only with information systems

that are syntactic in their nature.

1.2.5.2 Semantic information:

Above mentioned syntactic information should be contrasted with the so-

called semantic information. The latter is concerned with the “meaning”

conveyed by a transmitted message or signal. In fact, the word “semantics”

refers to the field of study that deals with meanings in languages. Here,

by “language” I mean generically both formal, programming and natu-

ral language. Every language has apart from its own syntax also seman-

tics. Roughly speaking, syntactic information is how to say something in a

“grammatically correct” way, whereas semantic information has some sort

of context or meaning behind what is said. The concept of semantic infor-

mation was introduced by Bar-Hillel–Carnap [15], and Minsky [228, 229].

The difference between syntactic and semantic information can be illus-

trated, for instance, by the difference between DNA molecule and snowflake.

In particular, DNA molecule contains semantic information because it has

intrinsic meaning. Indeed, DNA stores the instructions needed to construct

and operate organism. By putting DNA in right molecular environment —

in the right semantic context, life happens! DNA has clearly also syntac-

tic information epitomized by Shannon’s entropy. Such information per se

does not carry any meaning since it makes no distinction between mean-
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ingful DNA sequences that encodes life, and random DNA sequences of

equal length and equal probability distribution of nucleotides. By con-

trast, snowflakes contain only syntactic information which is encoded in

the specific arrangements of their hexagonal shapes. These patterns have

no semantic content, there is no meaning for anything beyond the structure

itself. Snowflakes certainly do not code for, or symbolize anything, whereas

genes (i.e., regions od DNA) most definitely do.

1.2.5.3 Algorithmic information:

As already mentioned, Shannon’s entropy quantifies the syntactic informa-

tion. It clearly ignores the meaning of the message/signal as the only rel-

evant quantity is the probability associated with “alphabet letters”. Ques-

tion thus stands whether one can define some measure of semantic infor-

mation. While the idea of semantic information is intuitively clear, it is

difficult to implement it quantitatively. The most prominent exception is

the concept of algorithmic information (or complexity) introduced in their

seminal works by Chaitin [56] and Kolmogorov [180–182].

In its essence, the algorithmic information of a message/signal (typi-

cally binary) string is equivalent to the length of the shortest possible self-

contained representation of that string. A self-contained representation is

essentially a program — in some fixed but otherwise irrelevant universal

programming language — that, when run, generates the original string.

When the self-contained representation is shorter than the signal/message

string one says that the string is algorithmically compressible. For instance

a binary string

10101010101010101010101010101010101010101010 ,

can be represented by the simple instruction: print 10 twenty-two times.

So, the (algorithmic) information content is very low because the sequence

can be described by a very simple procedure or computer algorithm.

Often, a seemingly random (patternless) sequence might have a very

low information content. For instance, the binary representation of π is

11001001000011111101101010100010001000010110 . . . ,

which can clearly be generated via simple algorithm.

According to Chaitin [56], a sequence is random if it cannot be algo-

rithmically compressed, i.e., the shortest description of a random sequence

is simply the sequence itself. So, clearly π is not algorithmically random.
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Clearly, disadvantage of the algorithmic information paradigm is that

one can not (in most situations) decide about string compressibility. For

instance, a portion of genom of the virus MS2 has the binary representa-

tion [65]

. . . 01000111011101001001110011010110101110111 . . . .

Here binary assignment of the base nucleotides is: A = 00, U = 11, G = 01

and C = 10. Is there a code within the genetic code? Nobody knows,

though it is believed that “higher” organisms should have genomes with

higher algorithmic entropy in order to store genetic information required

for their biological function.

1.2.5.4 Quantum information:

Quantum theory brings yet another twist into the concept of information.

In order to deal with information theoretic issues in quantum theory one

needs to treat probability distribution over quantum states. This is embod-

ied in the density matrix conventionally denoted as ρ̂. For an n-dimensional

Hilbert space (quantum state space) H, a density matrix is n×n Hermitian

trace-one positive semi-definite matrix. A rank one density matrix corre-

sponds to the pure state |a〉 in which case ρ̂ = |a〉〈a| (which is nothing but

the projector onto the subspace spanned by |a〉).
Density matrices emerge from quantum states in two qualitatively dis-

tinct ways. In the first case, the density matrices are associated with “clas-

sical” probability distributions over quantum states. That is, if a given

system is prepared (by nature or by experimentalist) in a pure state |ai〉
with probability pi, then

ρ̂ =
∑

k

pk|ak〉〈ak| . (1.45)

An example might be provided by a system in thermal equilibrium where

the probability of the system being in the microstate |Ei〉 with an energy

Ei is proportional to the Boltzmann factor e−βEi .
In the second case, density matrices emerge through ignoring part of a

pure entangled quantum state. Let me recall that two (or more) systems

that are entangled have a definite quantum state (i.e., a pure state) when

considered jointly, but to each of the systems separately one cannot assign

a pure state. To illustrate this point, let me consider a bi-partite pure state

defined on a tensor product system HA⊗HB with dimHA = dimHB = n.

In this case it is a matter of taste if I employ density-matrix or pure-state
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description. By using the density matrix I can write

ρ̂AB =


∑

i,j

cij |ai〉 ⊗ |bj〉



(∑

p,q

〈ap| ⊗ 〈bq|c∗pq

)
. (1.46)

If one can see (or control) only part A of the system, this part is described

be the reduced density matrix

ρ̂A = TrB(ρ̂AB) =
∑

i,j

aij |ai〉〈aj | , (1.47)

with aij =
∑
k cikc

∗
jk (so aij is the Hermitian trace-one matrix with non-

negative eigenvalues — as it should be). With the help of the Cauchy–

Schwarz inequality I can write

TrA(ρ̂2
A) =

∑

ij

aijaji =
∑

ij

|aij |2 ≤ (
∑

i

aii)
2 = 1 , (1.48)

so, unless all but one eigenvalues of aij are zero (i.e., unless ρ̂A describes a

pure state), the above inequality is not saturated. As a result, the quantum

state ρ̂A is generally not a pure state and the description via density matrix

is compulsory. Similar argument applies for ρ̂B .

The quantity P = Tr(ρ̂2) is called the purity of a state. A state is

pure when its purity equals 1, and mixed otherwise. By employing Jensen’s

inequality for convex functions [118], I can estimate PA from below, namely

PA =
∑

ij

|aij |2 =
∑

i

λ2
i ≥

1

n
(
∑

i

λi)
2 =

1

n
. (1.49)

Here {λi}ni=1 is the spectrum of aij . A key point about Jensen’s inequality

is that it provides a clear criterion under which the inequality saturates. In

particular, Eq. (1.49) is saturated if and only if all λi are equal, in which

case λi = 1/n for all i. This is the same as saying that ρ̂A is a 1/n multiple

of the identity matrix. The state ρ̂A that saturates Eq. (1.49) is known as

a maximally mixed state because it is a mixture where all states occur with

the same probability. In addition, the latter is true in any orthonormal

basis in which system A is measured.

A typical example of bi-partite entangled pure states that produce max-

imally entangled states is provided by the four Bell states [238]:

|Φ±〉 =
1√
2

(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B) ,

|Ψ±〉 =
1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B) . (1.50)
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In all four cases the reduced density matrix ρ̂A = 1
2 (|0〉A〈0|A + |1〉A〈1|A) =

1
2 1̂I and ensuing PA = 1/2. Similarly for ρ̂B and PB . Note that both PA
and PB saturate the lower bound and so the above Bell states are indeed

maximally mixed.

Another alternative criterion used for quantifying pure states versus

mixed states is based on Shannon’s entropy (in the form of von Neu-

mann’s entropy), i.e., H = −Tr (ρ̂ log2 ρ̂). In contrast to purity, Shan-

non’s entropy is minimal for a pure state (actually zero11) and maximal

for maximally mixed state (in which case it is log2 n — for n-dimensional

Hilbert space). One can easily check that for the Bell states (1.50) one has

H(ρ̂A) ≡ H(A) = H(ρ̂B) ≡ H(B) = 1.

Information theory allows to establish connections between the con-

cept of information and purity. To do so, one must, however, go beyond

Shannonian paradigm. For instance, purity is trivially related to the so-

called Tsallis–Havrda–Charvát entropy of the order two; S2 (cf. Chap-

ter 1.2.7) and with Rényi information measure of the order two; I2 (cf.

Chapter 1.2.8). Namely,

S2 = 1 − P , I2 = − log2 P . (1.51)

One often employs also other two quantities, namely tangle

τ(ρ̂) = 2S2(ρ̂A) = 2
(

1− 2−I2(ρ̂A)
)
, (1.52)

and concurence C =
√
τ . By expressing the criterion for mixed states in

terms of information measures (i.e., entropies) rather than purity, one can

regard mixing as a degree of uncertainty (or ignorance) about the pure

states involved. Loosely speaking, the higher mixing entropy, the higher

uncertainty about the weights that the respective pure states carry in the

mixed state. Advantage of this information theoretic setting is that one

can affiliate with mixed states an operational meaning furnished by various

(Shannonian and non-Shannonian) coding theorems, see, e.g. [50, 51].

Apart from mixed-state diagnostic, generalized entropic measures can

also be used as quantifiers (or degrees) of entanglement. I have pointed

out that when a given pure state |ψ〉 ∈ HA ⊗HB is not entangled (i.e., is

separable), then both reduced density matrices ρ̂A and ρ̂B correspond to
11It is often said that since in quantum theory the vacuum state is a pure state, the 3rd
law of thermodynamics does not need to be considered as an independent postulate. This
is true, provided certain assumptions are satisfied. Those assumptions include: a) sta-

tistical picture is considered as being more important than thermodynamical one, b) the
Gibbs/Shannon/von Neumann’s entropy functional is the correct measure of ignorance

about an actual microstate.
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pure states, i.e., PA = PB = 1. In the opposite case the pure state |ψ〉
is entangled. This naturally begs for the question: to what extend is a

given state |ψ〉 entangled? There does not exist a unique answer to this

question. Frequently used criterion (mainly for the bipartite systems) is

the so-called entanglement entropy, which is nothing but the von Neumann

entropy applied to the reduced density matrix ρ̂A or ρ̂B .12 When this is

equal to zero one has a separable pure state, when it is log2 n (i.e., the

reduced density matrices are maximally mixed states), then |ψ〉 is said to

be maximally entangled.

In general, the issue of separability (not to mention classification) of

multipartite states is still unsolved problem. What is, however, well recog-

nized is that entropies (both Shannon and non-Shannon-type) play a perti-

nent rôle in this task. Many of the axiomatic entanglement measures exist

which are based on the concept entropy, such as relative entropy of entan-

glement [323], reversed relative entropy of entanglement [323] or squashed

entanglement [324]. For instance, Rényi information measure of the order

∞ (cf. Chapter 1.2.8) has the form I∞(ρ̂) = − log2 λmax. Here λmax is

the maximal value of the Schmidt vector, i.e. the component vector in the

Schmidt decomposition of ρ̂. If the Schmidt vector is ordered decreasingly

and λ1 = λmax, then the state |0〉 ⊗ |0〉 is the separable pure state closest

to |ψ〉 in the sense of the Fubini–Study distance. There the distance of |ψ〉
to the set of separable pure states is

Dmin
FS = arccos(

√
λmax) = arccos

(
2−

1
2I∞(ρ̂)

)
. (1.53)

Important is also the so-called Bures distance which measures the dis-

tance from an analyzed state ρ̂ to the set of separable states. This can be

phrased (at least in some cases) in terms of the Rényi entropy [322].

Let me stress that quantum SE (von Neumann entropy) has a number of

properties than are different from its classical counterpart. For instance, if

A and B are two random variables then classically we have (see Eq. (1.40))

that H(A,B) ≥ H(A) and H(A,B) ≥ H(B). If I now consider any of the

four Bell’s states from (1.50) then H(A) = H(B) = 1. On the other hand,

the joint system AB is a pure state and so H(A,B) = 0. Consequently,

because of the entanglement the quantum entropy of the whole can be less
12In fact, due to Schmidt decomposition [77] it is immaterial whether one uses reduced
density ρ̂A or ρ̂B , both will provide the same entanglement entropy. Let me remind
that the Schmidt decomposition ensures that that ρ̂A or ρ̂B have the same non-zero

eigenvalues with the same multiplicities. The multiplicity of the zero eigenvalue (if
present) may or may not be different. The latter is the case only when dimHA 6=
dimHB .
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than the quantum entropy of the part. Another (closely related) problem

is related to the definition of a conditional quantum entropy. By using the

classical definition of it, i.e. H(A|B) = H(A,B) − H(B), we see that for

entangled states this can be negative and so it cannot be understood as an

average over (positive) entropies as in (1.38).

Let me finally mention that apart from issues related to entanglement,

quantum mechanics adds also further layer of problems to the concept of

entropy. For instance, in the presence of a conservation law the obtain-

able accuracy of the measurement of a physical observable is limited when-

ever the operator representing the observable does not commute with the

conserved quantity. Any related consistent quantum-mechanical entropy

should quantify our knowledge of such a difficult-to-measure observable

with respect to a conserved quantity. In particular, it should vanish when

the observable commutes with the conserved quantity (our ignorance can

be completely removed). In this context a number of information measures

were proposed. Among these, perhaps the most known candidate measure

is the so-called Wigner–Yanase skew information [332].

1.2.6 From Boltzmann–Gibbs statistics to heavy tails

In the search for foundations of power-law distributions, the MaxEnt pre-

scription should no doubt play a key rôle. As mentioned, MaxEnt represents

a sort of “maximum honesty principle” according to which the sought dis-

tribution is the only one satisfying the observational constrains and in all

other aspects being maximally “noncomitant”. Otherwise, one would risk

introducing false information into system’s description. On the other hand,

the previous discussion suggests that a statistical inference based on Max-

Ent should go beyond Shannon’s information theory in order to success-

fully address the ubiquitous appearance of heavy tailed distributions. This

begets a very natural question; How this can be done? What element of the

classical information theory should be modified so that one could still re-

tain the desirable principle of maximal ignorance? A typical solution to this

question is in a sense pedestrian; one introduces a number of generalized en-

tropies that have various degrees of justification. The heavy tails may then

appear (and they often do) when the MaxEnt principle is applied to such

entropies. In particular, post-Shannonian developments of information and

estimation theory offer various generalized measures of information to deal

with such situations [153, 154]. Measures of Havrda–Charvát [122], Tsal-

lis [311], Sharma–Mittal [289], Rényi [263, 264], Kapur [164], Landsberg–
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Vedral [193, 192], Kaniadakis [162, 163] and Naudts [234] can serve as

examples. In the following I will briefly discuss two most prominent ex-

amples that have represented a recurrent theme in my research, namely

Tsallis–Havrda–Charvát entropy and Rényi’s entropy.

1.2.7 Tsallis–Havrda–Charvát entropy

After Havrda and Charvát published their 1967 seminal paper in which they

introduced axiomatically a new non-additive information measure called

structural α-entropy [122], it has become obvious that other generalizations

of Shannon’s information measure (which differ from the venerable Rényi’s

generalization) are possible. However, because of the lack of an operational

meaning and inherent non-additivity or non-extensivity13 the entropy of

Havrda and Charvát had laid dormant for nearly 20 years.

Inspired by multifractals, Tsallis [311] rediscovered in 1988 Havrda–

Charvát’s entropy. He turned its non-extensive nature into a virtue by

observing that many complex systems exhibit, indeed, behavior that can

be modeled by Havrda–Charvát non-extensive entropies.

Sq(P) =
1

q − 1

(
1−

W∑

n

p qn

)
, q > 0 . (1.54)

Entropy (1.54) is presently known as Tsallis–Havrda–Charvát (THC) en-

tropy. In a statistical-physics community, expression (1.54) is also known

under the name Tsallis’ entropy.

By applying l’Hôpital’s rule one can easily show that for q = 1 the THC

entropy reduces to Shannon’s entropy. In addition, the THC entropy is

not-additive in the sense that is satisfies the chain rule

Sq(P1 ∩ P2) = Sq(P1) + Sq(P2|P1) + (1− q)Sq(P1)Sq(P2|P1) . (1.55)

This is a very peculiar property — at least in the framework of classical

information theory since it implies, among other things, that entropy of

two independent statistical events cannot be described as a sum of two
13A physical observable based on a joint probability distribution is said to be additive
if for a factorizable or separable distribution it can be written as the sum of the one-

particle (or marginal) contributions. A physical observable based on the joint state

of n sub-states is said to be extensive if it scales proportionally with n or, at least,
asymptotically proportionally with n when this number becomes large. Though in most
cases encountered in physics, additivity does imply extensivity (and vice versa) in general

this is not the case [309]. In the following I will loosen a bit rigor and consider non-
extensivity and non-additivity to be synonymous — a practice that is not uncommon in

the Tsallis thermostatistics.
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autonomous entropies. This makes the THC entropy difficult to fit within

some operational schema. Despite the great deal of work dedicated to the

formal study of the THC expression (1.55) (see, e.g., Ref. [314]), far more

than the entropy Sq itself are in practice used ensuing MaxEnt probabil-

ity distributions. In fact, a typical practical utility of Tsallis statistical

paradigm is to find various fits to experimental data and limits thus values

of q. On a theoretical side one is trying to use MaxEnt principle in order

to impose limits on the amount by which q is likely to differ from the Shan-

non value of q = 1. For instance, when one controls in an experiment the

averaged value of energy then the MaxEnt implies the entropy maximizer

— “q-canonical distribution” in the form (cf Chapter 1.2.8)

pn =
1

Zq
[1 + (q − 1)βEn]

1/(1−q)
. (1.56)

It is clear that for large spectral values of energy the tails approach a power

law behavior pn ∝ E1/(1−q)
n . This type of the THC maximizer is successfully

applied in many complex systems (see, e.g., references in [315]), thought

the rôle of Tsallis’ inverse temperature β is as yet not fully understood.

Some cases where β can be given an operational meaning are discussed in

Chapter 3 in connection with superstatistics.

It needs to be highlighted that Tsallis’s 1988 paper gave rise to an en-

tirely new field known as non-extensive (or Tsallis’) thermostatistics. The

latter has become a fertile ground for study of numerous complex dynami-

cal systems (cf Ref. [315]). It should be also mentioned that the structure

of non-extensive thermostatistics is interesting from a mathematical point

of view. This is because Tsallis’ thermostatics can be viewed as a deformed

Shannon’s information theory. Indeed, by using the basic relations from the

the so called q-calculus (also known as quantum calculus) of Jackson [136],

Kac [161], Cones [61], Majid [211] and others, one can introduce two basic

functions: q-exponent

expq(x) ≡ [1 + (1− q)x]
1/(1−q)
+ , (1.57)

and the q-logarithm

logq(x) ≡ x1−q − 1

1− q , x > 0 . (1.58)

The symbol [z]+ is defined so that

[z]+ =

{
z, if z ≥ 0 ;

0, if z < 0 .
(1.59)
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The previous q-functions fulfill the following important relations:

logq(expq(x)) = expq(logq(x)) = x ,

expq(x) expq(y) = expq(x⊕q y) ,

logq(xy) = logq x⊕q logq y . (1.60)

Here x⊕q y ≡ x+ y+ (1− q)xy is the q-deformed (or Jackson’s) sum. First

and third equation in (1.60) allows to define the q-product and q-division

as the following binary relations:

x⊗q y = [x1−q + y1−q − 1]
1/(1−q)
+ ,

x�q y = [x1−q − y1−q + 1]
1/(1−q)
+ . (1.61)

These fulfil the consistency identities:

expq(x+ y) = expq(x)⊗q expq(y) ,

expq(x− y) = expq(x)�q expq(y) ,

logq(x⊗q y) = logq(x) + logq(y) ,

logq(x�q y) = logq(x)− logq(y) . (1.62)

Note that all the above q-functions satisfy the desired limiting conditions

logq(x)
q→1→ log(x) and expq(x)

q→1→ exp(x) . (1.63)

Also the involved q-deformed operations correctly approach the standard

behavior in the q → 1 limit.

The q-functions (1.60) allow to view the THC entropy as the q-deformed

version of Shannon’s (or Boltzmann–Gibbs’s) entropy, namely

Sq(P) =

W∑

n

pn logq(1/pn) = −
W∑

n

pn log2−q pn

= −
W∑

n

p qn logq pn . (1.64)

The analogy between the Shannon and the THC entropy can be seen from

yet another point of view. Let me define the “multiplicative” Jackson q-

derivative as [161]

Dq(f(x)) ≡ f(qx)− f(x)

qx− x , so that lim
q→1

Dq(f(x)) =
df(x)

dx
. (1.65)

With this the THC entropy can be written as

Sq(P) = −
[
Dq

(
W∑

n

pxn

)]∣∣∣∣∣
x=1

. (1.66)
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This should be compared with an analogous relation for the Shannon en-

tropy which reads

H(P) = −
[
d

dx

(
W∑

n

pxn

)]∣∣∣∣∣
x=1

. (1.67)

Since the the Jackson q-derivative is often used as a derivative on the lat-

tice [55] one can consider the THC entropy as a natural candidate for the

entropy on a discrete configuration space — lattice entropy.

It should be stressed that if only the first and second moment of pn are

experimentally (or theoretically) controlled then the THC entropy max-

imizers are the so-called q-Gaussian distributions [320]. Note that the

q-Gaussian distribution is nothing but a (normalized) q-exponent with a

quadratic argument — as could be expected by analogy with Shannon’s

entropy. Because of its intimate connection with the q-calculus, the non-

extensive statistics appears to be strikingly mathematically coherent. This,

in part, explains its popularity in a large segment of a statistical physics

community.

The heavy-tailed nature of the distribution (1.56) suggests that the non-

extensive thermostatistics can be conveniently used for certain strongly cor-

related random variables, whose correlations do not rapidly decrease with

increasing distance and/or time. Since the CLT does not hold if correlations

between far-ranging random variables are not negligible, one can expect

that the THC entropy might serve as a tool for derivation of the generalized

CLT as is the case of ordinary CLT and SE. Such a q-generalized version

of the central limit theorem (q-CLT) was formulated by various authors,

see, e.g., Refs. [127, 319, 320]. The essence of the proofs is, in one way

or another, based a q-generalized version of Barron’s information-theoretic

proof [18] known from Shannon’s information theory (cf also Appendix B.3).

Since the definitions and lemmas entering proofs of the q-CLT make the pre-

requisite mathematics too lengthy, I will, for definiteness, extract only the

essential points from Umarov et al. version of the q-CLT [319].

Let me first define the notion of q-moments.

Definition 1.1. Let X be a continuous random variable and f(x) its PDF.

Let, in addition,

νq(f) ≡
∫ ∞

−∞
dx [f(x)]q < ∞ ,

for certain values of q > 0. I define the escort (or zooming) PDF as

fq(x) =
[f(x)]q

νq(f)
.
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The a-th q-moment is then defined as

〈Xa〉q =

∫ ∞

−∞
dxxafq(x) ,

in particular the q-mean is defined as

µq =

∫ ∞

−∞
dxxfq(x) ,

and the q-variance is defined as

σ2
q =

∫ ∞

−∞
dx (x− µq)2 fq(x) .

With these definitions the Umarov et al. states the following q-CLT; Let

{Xk}k≤N be a sequence of equally distributed random variables with a

finite q-mean µq and finite (2q − 1)-variance σ2
2q−1 which are correlated

according to a certain condition CN (q). Then the partial sum

SN =
1

DN (q)
(X1 + . . .+XN −Nµq) ,

with DN (q) being an appropriate scaling tends in the limit N → ∞ to a

q-Gaussian distribution, namely

Gq(x) ∝ expq(−x2) ,

The theorem is restricted to 1 < q < 2. The conditions CN (q) are often

referred to as q-independence as for q → 1 it reduces to the usual condition

for independent random variables.

Regardless of their potential applicability in correlated systems,

the q-CLT’s are notoriously difficult to operationalize. First, the q-

independencies CN (q) are difficult to treat analytically. In addition, so far

there is not know any system (not even a model system) that would obey

CN (q). In the absence of examples it is difficult to see why nature would

produce exactly this type of correlations among its variables. Second, the

mathematics involved in the proofs, such as the q-Fourier transform or the

q-independence has very peculiar features (e.g., non-uniqueness of the in-

verse q-Fourier transform and non-uniqueness of the q-independence) that

are conceptually not very desirable. As yet, the q-CLT’s represent rather

interesting curiosity than a full-fledged tool.

Non-extensive thermostatistics of Tsallis has grown into a vast research

discipline in a very short time. There are many interesting features that

can be calculated in detail. However, enthusiasm sometimes carries its sup-

porters too far. Promises are made concerning the ultimate generalization
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beyond Boltzmann and Gibbs statistical physics. It is hard to believe that

this could be the full story. In any case, the non-extensive thermostatis-

tics provides for a new framework allowing one to find number hitherto

unsuspected structures and conceptual connections in complex dynamical

systems.

1.2.8 Rényi entropy

Out of the many possible generalizations of the concept of entropy in in-

formation theory one of the most important is Rényi’s entropy (RE). RE

was introduced by Hungarian mathematician and information theorist Al-

fred Rényi [263, 264]. Applications of RE in information theory, namely

its generalization to coding theorems, were carried over by Campbel [50],

Csiszár [64], Aczél [2] and others. In a physical setting was RE popularized

by Kadanoff et al [116] and Mandelbrot [216] in connection with multi-

fractals, and by Horodecky and Bennett in connection with multipartite

entanglement. Rényi’s entropy corresponds to a one-parametric class of

information measures defined as [144, 263, 264]

Iq(P) =
1

1− q log2

(∑

x

pq(x)

)
, q > 0 . (1.68)

It is also remarked that if q → 1, then Rényi’s entropy tends to Shan-

non’s entropy analogously as the THC entropy. Thus the parameter q − 1

characterizes the departure from the usual Boltzmann–Gibbs statistics or

from Shannonian information theory. Shannon’s entropy can be therefore

considered as a measure of information of order 1. In contrast to the THC

entropy the RE is additive, in fact, it satisfies the chain rule

Iq(P1,P2) = Iq(P1) + Iq(P2|P1) . (1.69)

In the spirit of the information theory one can interpret the previous as im-

plying that the uncertainty (entropy) of the joint event P1 ⊗ P2 is the

uncertainty of P1 plus uncertainty of P2 when P1 is known. In addi-

tion, by looking at the conditional extremum of Iq(P) under the constrain∑
i pi = 1 yields that maxPIq(P) is attained only for the uniform distribu-

tion P = {1/n, . . . , 1/n}. The latter corresponds to a maximal ignorance

about the system as any additional constraint (reflecting extra knowledge)

would provide lower conditional extremum. The RE also fulfills the ana-

logue of the second law of “thermodynamics”, known from Shannon’s case,

i.e.

Iq(B|A) ≤ Iq(B) . (1.70)
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Relation (1.70) says, among others, that in the course of an evolution a

system looses memory of its boundary conditions — e.g., chaotic behavior,

with equality if and only of B and A are independent events (i.e., knowing

outcome A does not have any effect on the distribution of outcome B).

For the sake of simplicity I shall consider here only the analog of canon-

ical ensembles, where the prior information is characterized by a fixed

energy expectation value. The corresponding MaxEnt distributions for

S(R)
q ≡ Iq and S(THC)

q ≡ Sq can be obtained by extremizing the associated

Lagrangians

L(R;THC)
q (P) = S(R;THC)

q − α
∑

i

pi − β〈H〉r , (1.71)

where α and β are Lagrange multipliers, the latter being the analog of

the inverse temperature in natural units. The subscript r on the energy

expectation value 〈H〉 distinguishes two conceptually different approaches.

In information theory one typically uses the linear mean, i.e.,

〈H〉1 ≡ 〈H〉r=1 =
∑

i

piEi , (1.72)

while in non-extensive thermostatistics it is customary to utilize a non-

linear mean

〈H〉q ≡ 〈H〉r=q =
∑

i

Pi(q)Ei ; Pi(q) ≡
pqi∑
i p
q
i

. (1.73)

The distribution Pi(q) is called escort or zooming distribution and it has

its origin in chaotic dynamics [26], albeit it was Rényi who first introduced

it in Ref. [264]. Simple analysis reveals [19] that

δL
(R)
q (P)

δpi
= 0

⇒




p

(1)
i = Z−1

R

[
1− β̃(q − 1)∆Ei

]1/(q−1)

, for 〈H〉r=1 ,

p
(2)
i = Z−1

R [1− β(1− q)∆Ei]1/(1−q) , for 〈H〉r=q .
(1.74)

Here β̃ = β/q and ∆Ei = Ei − 〈H〉r. By the same token one obtains for

the THC case [19]

δL
(THC)
q (P)

δpi
= 0

⇒




p

(1)
i = Z−1

THC

[
1− β̃∗(q − 1)∆Ei

]1/(q−1)

, for 〈H〉r=1 ,

p
(2)
i = Z−1

THC [1− β∗(1− q)∆Ei]1/(1−q) , for 〈H〉r=q ,
(1.75)



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

42 Generalized statistics and its applications

with β∗ = β/
∑
i p
q
i and β̃∗ = β̃/

∑
i p
q
i . So in contrast to (1.74), the THC

MaxEnt distributions are self-referential. Generalized distributions of the

form (1.74) and (1.75) are known as Tsallis distributions (or Tsallis thermo-

statistics distributions) and they indeed appear in one form or another in

numerous statistical systems [315]. For historical reasons is P(1) = {p(1)
i } in

(1.75) also known as the Bashkirov’s 1-st version of thermostatistics, while

P(2) = {p(2)
i } in (1.75) is called the Tsallis’ 3-rd version of thermostatistics.

Important feature of Tsallis distributions is that they are invariant under

uniform shift of the energy spectrum since ∆Ei does not change under such

a shift.

In passing, observe that the RE is related to the THC entropy through

simple relations:

Sq =
1

q − 1

[
1− 2(q−1)Iq

]
,

Iq =
1

1− q log2 [(1− q)Sq + 1] . (1.76)

The above monotonic relation between Sq and Iq is the reason why they

have the same global (i.e., unconditional) maximizer, thought the condi-

tional maximizer is generally different (cf Eq. (1.74) and Eq. (1.75)).

Despite the many conceptual parallels between the RE and both the SE

and the THC there is as yet no generalized CLT based on the RE. It might

be, however, hoped that a suitable generalization of Barron’s information-

theoretic proof [18] coupled with Campbell’s coding theorem [50] will facil-

itate this task.

Let me finally stress that there exist various generalizations of Rényi en-

tropies to the quantum mechanical setting. Most prominent among theses

are Petz’s quasi-entropies [254] and Renner’s conditional min-, max-, and

collision entropies [232, 262]. Nevertheless, the situation in the quantum

setting is much less satisfactory in that these generalizations do not have

any operational underpinning and, in addition, they are incompatible with

each other in number of ways. For instance, whereas the classical condi-

tional min-entropy can be naturally derived from the Rényi divergence, this

does not hold for their quantum counterparts.
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Appendix B

Additional notes on the central limit
theorem

B.1 Proof of the CLT and the Lindeberg version of the CLT

The Central Limit Theorem was first proved by A. de Moivre for Bernoulli

trials and appeared in his book, The Doctrine of Chances, first published

in 1718. In its various reincarnations (and with varying degrees of rigor)

was the CLT proved by P.-S. Laplace, A. Lyapunov and more recently by

J.W. Lindeberg and P. Lévy. The CLT basically states that the normalized

sum of a large number of mutually independent random variables with

finite variances tends to the Normal cumulative distribution function. Here

I first furnish the statement and proof of the classical univariate CLT for

independent identically distributed (IID) random variables. Generalization

to the multivariate CLT and for generic independent random variables with

finite variances will be presented in sub-Section B.2.

Theorem B.6 (Central Limit Theorem). Consider a sequence of IID

random variables {Xk} with k = 1, 2, . . . , N . Let the common mean 〈Xk〉 =

µ and common variance 〈(Xk−µ)2〉 = σ2. The distribution for the random

variable ŜN = [
∑N
i=1(Xi − µ)]/

√
N approaches in the large-N limit the

Normal (or Gaussian) variable with the mean 0 and variance σ2.

Proof: Because Xk’s are IID, the joint distribution is p(x) =

pN (x1, x2, . . . , xN ) = p(x1)p(x2) · · · p(xN ). The distribution of ŜN is then

given by integrating p(x) over all possible values of the Xi subject to the

constraint ŜN = [
∑N
i=1(Xi − µ)]/

√
N , i.e.,

fN (x) =

∫

RN
dx δ(x− ŜN )p(x) . (B.1)

To proceed, it is convenient to compute the characteristic function of fN (x).

This can be done as follows

81
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f̃N (k) =

∫ ∞

−∞
dx eikxfN (x) =

∫

RN
dx p(x)

∫ ∞

−∞
dx eikx δ(x− ŜN )

=

∫

RN
dx p(x) eikŜN =

[∫ ∞

−∞
dx1p(x1)eik(x1−µ)/

√
N

]N

= e−ikµ
√
N

[ ∞∑

n=0

(ik)n

n!

〈xn1 〉√
Nn

]N
. (B.2)

The sum over averages can be exponentiated with the help of cumulant

expansion, namely

f̃N (k) = e−ikµ
√
N exp

[
N

∞∑

n=1

(ik)n

n!

〈xn1 〉c√
Nn

]

= exp

[
N

∞∑

n=2

(ik)n

n!

〈xn1 〉c√
Nn

]
. (B.3)

The first few cumulants can be easily deduced by comparing the expansions

in (B.2) and (B.3), namely

〈x〉c = 〈x〉 = µ ,

〈x2〉c = 〈(x− 〈x〉)2〉 = 〈x2〉 − µ2 ≡ σ2 ,

〈x3〉c = 〈(x− 〈x〉)3〉 ,
〈x4〉c = 〈(x− 〈x〉)4〉 − 3〈(x− 〈x〉)2〉2 . (B.4)

So we may write (B.3) as

f̃N (k) = exp

[
−k

2σ2

2
+O

(
1√
N

)]
. (B.5)

Inverse Fourier transform then yields

fN (x) =
1√

2πσ2
exp

[
− x2

2σ2

]
+ O

(
1√
N

)
. (B.6)

Since all cumulants of X1 beyond the second are suppressed by powers of

1/
√
N , they vanish for N →∞. The distribution of ŜN must in this limit

be a Gaussian with the mean 0 and variance σ2. 2

Notes to proof: The CLT can be established under less restrictive con-

ditions on p(x) than those employed above. First, note that the above
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derivation assumes that all moments exists. This assumption is, in fact,

not needed. One can skip the expansion on the last-line in (B.2) and write

instead e−ikµ
√
N
[
f̃
(

k√
N

)]N
. Here, f̃(. . .) is the characteristic function re-

lated to a single random variable, say x1. Since the characteristic function

of a distribution always exists (integral converges absolutely, and hence

uniformly), even when some of the moments do not. The fact that the

existence of a moment of a certain order implies the existence of the cor-

responding derivative of the characteristic function allows to expand (B.2)

to a second order in k, namely

e−ikµ
√
N

[
f̃

(
k√
N

)]N

=

[(
1 + f̃ ′(0)

k√
N

+ f̃ ′′(0)
k2

2N
+ . . .

)(
1− ikµ√

N
− k2µ2

2N
+ . . .

)]N

=

[
1− σ2k2

2N
+O

(
1

N3/2

)]N
N→∞→ e−σ

2k2/2 . (B.7)

Let us note that on the level of random variables ŜN the CLT states

nothing but that ŜN converge in distribution (or probability) to a normally

distributed random variable and one may write ŜN
d→ Z ∼ N(0, σ2).

Furthermore, one does not need insist on identically distributed Xk’s.

In fact, this condition can be traded for a less restrictive condition — the

so-called Lindeberg’s condition. Ensuing Lindeberg’s CLT is formulated as

follows [201]:

Theorem B.7 (Lindeberg’s Central Limit Theorem). Consider

a sequence of independent random variable {Xk} with k = 1, 2, . . . , N . Let

the expected values are 〈Xk〉 = µk and variance 〈(Xk−µk)2〉 = σ2
k. Let also

Σ2
N =

∑N
i=k σ

2
k. If this sequence of independent random variables satisfies

Lindeberg’s condition:

lim
N→∞

1

Σ2
N

N∑

n=1

〈
(Xk − µk)

2
χ{|Xk−µk|>εΣN}

〉
= 0 , (B.8)

for all ε > 0. Here, χ{··· } is the indicator function. Then the distribution

for the random variable ŜN = [
∑N
i=1(Xi − µi)]/ΣN (i.e., the standardized

sum) approaches in the large-N limit the Normal (or Gaussian) variable

with the mean 0 and variance 1.

NOTE: The Lindeberg condition (B.8) guarantees that the individual vari-

ances σ2
k are small compared to their sum Σ2

N in the sense that for given



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

Additional notes on the central limit theorem 84

ε > 0 for all sufficiently large N , σk/ΣN < ε for k = 1, . . . , N . Roughly

speaking, the Lindeberg condition requires that no variance in the sequence

should substantially dominate, in particular, it should not be comparable

with Σ2
N . It should be stressed that the Lindeberg condition is only suffi-

cient condition for the CLT. It can be shown that the Lindeberg condition

is also necessary provided that σN/ΣN → 0 as ΣN →∞, see, e.g. [83, 84].

B.2 Multivariate CLT and CTL for correlated variables

We have seen that the CLT is concerned with the necessary and sufficient

conditions that a sum ŜN of independent random variables converges to a

Gaussian random variable as N → ∞. The distribution function of each

of the Xj ’s should have a finite second moment. So far I have presented

only versions for independent univariate random variables. In fact, it is not

difficult to generalize the CLT to multivariate random variables. Let me

state as simple generalization of the Theorem B.6:

Theorem B.8 (CLT for multivariate random variables).

Consider a sequence of IID random multivariate variables {Xk} with

k = 1, 2, . . . , N . Let the common mean 〈Xk〉 = m and common covari-

ance matrix 〈(Xk −m)(Xk −m)T 〉 = Σ. The distribution for the random

variable ŜN = [
∑N
i=1(Xi −m)]/

√
N approaches in the large-N limit the

Normal (or Gaussian) distribution with the mean 0 and the covariance

matrix Σ.

NOTE: The proof is just a vector form of the proof of the CLT from the

Theorem A.6. 2

An adapted version of the Central Limit Theorem remains true also

for sufficiently weakly correlated variables {Xk}. To this end I define the

concept of mixing sequences.

Definition B.2 (Mixing sequence). A sequence of random variables

{Xm} is said to be mixing (or strongly mixing) if and only if

lim
k→∞

[〈f(Xn+1, . . . , Xn+q)g(Xn+k+1, . . . , Xn+k+q)〉
− 〈f(Xn+1, . . . , Xn+q)〉〈g(Xn+k+1, . . . , Xn+k+q)〉] = 0 ,

for any two functions f and g and for any n and q.
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In other words, a sequence is strongly mixing if and only if the two random

vectors [Xn+1 . . . Xn+q] and [Xn+k+1 . . . Xn+k+q] tend to become more and

more independent by increasing k (for any n and q).

Now I can state without proof a formulation of the CLT that takes into

account correlations among random variables {Xj}.

Theorem B.9 (CLT for correlated variables). Consider a stationary

and mixing sequence of random variables {Xk} with k = 1, 2, . . . , N , satis-

fying for all k 〈Xk〉 = µ, Var[Xk] = σ2 and

lim
N→∞

Var[ŜN ] = σ2 + 2

∞∑

i=2

Cov[X1, Xi] = V ,

where ŜN = [
∑N
i=1(Xi − µ)]/

√
N . Then, ŜN converges in distribution to

the Normal random variable with the mean 0 and the variance V .

In the literature one can find a number of further generalizations of

Theorem A.9, e.g, for non-Markovian but block (or “clumpy”) Markovian

processes [130] or for random walks on Lie groups [297]. In all the afore-

mentioned cases one can, roughly speaking, say that the universality of the

CLT holds for all systems where the random variables {Xk} (e.g., local

events) have a “sufficiently” short-range memory and/or correlations.

B.3 Information theory and the CLT

There exists also striking connection of the CLT with Shannon’s informa-

tion theory. This connection was contemplated by many authors, here I

present the version which is due to A.R. Barron [18]:

Theorem B.10. Let φ be the normal distribution N(0, σ2) and let {Xk}
be a sequence of mutually independent random variables with a common

distribution. Suppose that Xk (for all k) have the finite expected value µ

and finite variance σ2. Denote by gN the probability density function of

the random variable ŜN = [
∑N
i=1(Xi − µ)]/

√
N . The relative Shannon’s

entropy converges to zero:

lim
N→∞

D(gN ||φ) = 0 ,

if and only if D(gN ||φ) is finite for some N .

NOTE: The relative Shannon’s entropy D(f ||g) is also known as the

Kullback–Leibler distance (or divergence) between two probability distribu-

tions f and g. In statistics, the entropyD(f ||g) is the measure of inefficiency
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of assuming that a systems is described by the distribution g when the true

distribution is f , see, e.g. [62]. The key property of the relative entropy is

that it is always non-negative and is zero if and only if f(x) = g(x) for all

x. This is a consequence of Jensen’s inequality and it is known as Gibbs in-

equality [141] (see also Appendix D.2). If one knows, for instance, the true

distribution gN , then one could construct a code with average description

length given by Shannon’s entropy H(gN ). If, instead, one used the code

based on the Gaussian distribution φ, one would need H(gN ) + D(gN ||φ)

bits on the average to describe the random variable. Barron’s version of

the CLT ensures that both codes would have in the large N limit the same

average length. 2

We have seen that the hallmark of the CLT is the independence of the

cumulative distribution on details of the single event distribution. This is

akin to the universality hypothesis of critical phenomena in which short-

range details of a system do not affect large-scale properties [295]. This

parallel goes even further. The non-Gaussian fix points in theory of critical

phenomena can be associated with another class of attractive universal dis-

tributions — Lévy stable distributions (of which the Gaussian distribution

is a special case).

B.4 Asymptotic behavior of the symmetric Lévy stable dis-

tributions with β = 0

Among the most prominent class of Lévy stable distributions are symmetric

(i.e., γ = 0) distributions Lα,0(x). The problem of estimating the tail

index (as well as other parameters) is in these cases severely hampered by

the lack of known closed-form density functions for all but a few members

of the Lα,0(x) family. Apart from the Gaussian (α = 2) and Lorentz–

Cauchy (α = 1) distributions the explicit form of Lα,0(x) cannot be phrased

via simple functions. Fortunately, their asymptotic tail behavior (which is

important for the generalized CLT) can be however extracted relatively

easily. To this end I write

Lα,0(x) =
1

2π

∫ ∞

−∞
dξ exp[−ixξ − c|ξ|α]

=
1

π

∫ ∞

0

dξ e−c|ξ|
α

cos(xξ) = Lα,0(|x|) . (B.9)
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Before proceeding we observe that upon setting |x| = ε−1 and |x|ξ = τ in

(B.9) we obtain

Lα,0(x) =
ε

π

∫ ∞

0

dτ exp[−c(ετ)α] cos(τ) . (B.10)

If I expand exp[−c(ετ)α] and formally exchange summation with integra-

tion, Lα,0(x) becomes

Lα,0(x) =
1

π

∞∑

k=0

(−c)kεαk+1

k!

∫ ∞

0

dτ ταk cos(τ) . (B.11)

Unfortunately the integral inside the sum is defined only for <(αk) ∈
(−1, 0). Since our interest is in α ∈ (0, 2) we should in some way extend

the definition region of the integration. This can be done by various means.

In present approach I introduce into the integral a spurious exponentially

damping term, namely
∫ ∞

0

dτ ταk cos(τ) = lim
ε→0+

∫ ∞

0

dτ e−ετταk cos(τ) . (B.12)

The right-hand-side is now defined for any value of kα provided <(αk) > −1

and ε > 0. An explicit integration and successive limit give
∫ ∞

0

dτ ταk cos(τ)
def.
= −Γ(kα+ 1) sin

(
kπα

2

)
. (B.13)

Prescription (B.12) basically represents an analytical extension of the inte-

gral. In fact, while the left-hand-side of (B.13) justifies the right-hand-side

only for <(αk) ∈ (−1, 0), the latter is analytic for any αk 6= −1,−2,−3, · · · .
Since (B.10) is analytic for all α, I can directly work with an analytically

extended version of the integral (B.13). With this proviso I can write

Lα,0(x) = − 1

π

∞∑

k=0

(−c)k
k!

εαk+1Γ(kα+ 1) sin

(
kπα

2

)

= − 1

π

∞∑

k=1

(−c)k
k!

Γ(αk + 1)

|x|αk+1
sin

(
kπα

2

)
. (B.14)

From this one can obtain the two-term asymptotic approximation of Lα,0(x)

for large |x| as a function of the parameter α,

Lα,0(x) ' cΓ(α+ 1)

π|x|α+1
sin
(πα

2

)
− c2Γ(2α+ 1)

π|x|2α+1
sin(πα) . (B.15)

So, when α 6= 2 then Lα,0(x) has a long inverse power tail.
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Note that for α > 2 the distribution Lα,0(x) is not proper since it may,

for some values of x, become negative. Result (B.14) coincides with the

result of Humbert [133] who obtained the very same answer by different

means.

In general, one can make a similar analysis for general Lévy distribution

Lα,β . The leading-order power law tail will stay the same as in the case of

Lα,0. The explicit form of the leading order reads (cf. eg. Ref. [239])

Lα,β(x) ' c(1 + sgn(x)β)Γ(α+ 1)

π|x|α+1
sin
(πα

2

)
. (B.16)

B.5 Probability space as a measure space

A triple (X,F , µ) is called a measure space. Here, X is a non-empty set,

F is a σ-algebra on the set X, and µ is a measure on F . By a σ-algebra

(or also σ-field) on X is meant a collection F of all subsets of X that

includes the empty subset, is closed under complement, and is closed under

countable unions and countable intersections. A simple example of measure

spaces is the n-dimensional Euclidean space, with the Borel σ-algebra on

Rn (i.e. B(Rn)) and with Lebesgue measure. This also serves as a canonical

measure space in integral calculus.

An important example of a measure space is a probability space. A

probability space is a measure space where the triple is typically denoted

as (Ω,F , P ) and P (Ω) = 1. Here, Ω is a sample space (i.e., the set of all

possible outcomes of a probabilistic experiment), the σ-algebra F is the

set of all subsets of Ω that are considered as events, and the probability

measure P is a function that associates a probability to each of the events

belonging to F .

The actual probability measure is a set of functions P (. . .) that assigns

to every event E ∈ F a number 0 ≤ P (E) ≤ 1 called the probability of

event E. This is done via Kolmogorov axioms:
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Axiom 1 (Kolmogorov axioms).

(1) P (E) ≥ 0, P (E) ∈ R for all E ∈ F .

(2) P (Ω) = 1.

(3) Assumption of σ-additivity. Any countable sequence of disjoint sets

(mutually exclusive events, i.e. Ei ∩ Ej = ∅, for i 6= j) E1, E2, . . .

satisfies

P

( ∞⋃

i=1

Ei

)
=

∞∑

i=1

P (Ei) .

Note: Some authors consider merely finitely additive probability spaces

(i.e., index i in the 3rd axiom is bounded from above), in which case one

just needs an algebra of sets, rather than a σ-algebra. On the other hand,

infinite additivity enables one to deal rigorously with limits and countable

unions.

Three above axioms are sufficient to establish other useful rules for

calculating probabilities. For instance [85]

• P (∅) = 0.

• P (E ∩F c) = P (E)−P (E ∩F ) where F c is the complement of a set F .

• P (E) = 1− P (Ec).

• “Monotonicity property”. If E ⊆ F then P (E) ≤ P (F ). This directly

implies that 0 ≤ P (E) ≤ 1 for all E ∈ F .

To illustrate the use of Kolmogorov axioms let me consider, for instance,

the experiment consisting of throwing a dice once. The sample space Ω are

possible outcomes (the number of dots appearing on the upward-facing side

of the dice), i.e., Ω = {1, 2, 3, 4, 5, 6}. The σ-algebra of events consists of

6∑

n=0

(
6

n

)
= 26 , (B.17)

events. Some typical events from F are: ∅,Ω, {1}, {1, 2}, {1, 2, 3}, {1, 3, 6}
and {2, 3, 4, 6}. The measure/probability assignment is done by affiliat-

ing probabilities to the elementary events {i} so that P ({i}) = 1/6 for

i = 1, . . . , 6. All remaining probabilities can be computed from the Kol-

mogorov axioms and the assumed probabilities of elementary events. For

instance, with A ≡ {1} and B ≡ {3, 5}, I can write P (A∪B) = P (A)+P (B)

since A and B are mutually exclusive events. In addition, P (B) = P ({3})+

P ({5}) = 2/6. Consequently, P (A ∪B) = P ({1, 3, 5}) = 1/6 + 2/6 = 1/2.
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Note: The Kolmogorovian axiomatic approach for the assignment of

probabilities (which parallels with a measure theory), is of major conceptual

importance, and provides the mathematical foundation for all standard uses

of probability theory, including the whole of classical statistical physics. In

the Kolmogorovian approach, the probabilities are specified as measures on

sets, and if the sets are subsets of a multi-dimensional space they have the

properties of volume. In fact, the Kolmogorovian probability of a subset

Ei is given as a relative volume with respect to the entire set’s volume

Ω by Vol(Ei)/Vol(Ω). The probabilities thus obtained behave like relative

frequencies, and indeed two disjoint (relative) volumes can be added to give

the relative volume of the union.

The key feature of probabilities used in quantum theory is that they

do not arise in this way but rather from something quite different, namely

from the (n-dimensional) Pythagorean theorem. Indeed, the important in-

gredient of the Kolmogorov probability theory is the additivity property of

the measure for mutually exclusive events, while in quantum theory such

additivity holds only for probability amplitudes (which do not need to add

up to unity).

In Fig. B.1 I denote with x and y two eigenvectors of some two-

state observable X which form a 2-dimensional orthonormal basis for a

2-dimensional space. The projection of any state c onto x is a, while pro-

Fig. B.1: The Pythagoras theorem in 2 dimensions.

jection to y is b. By setting c ≡ |c|, one has (by the Pythagoras theorem)

in two dimensions a2 + b2 = c2, which implies that (a/c)2 + (b/c)2 = 1.

This is just cos2 θ + sin2 θ = 1 or equivalently cos2 θ + cos2 φ = 1 where θ

and φ = π/2 − θ are angles between the vector c and the axes x and y,

respectively.
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This gives a way of interpreting a probability of observing the result

of an observable X with two outcomes a1, a2, where a1 is the eigenvalue

corresponding to the eigenvector x, and a2 is the eigenvalue corresponding

to the eigenvector y. The state of the system is represented by the vector

c, and if normalised its length is c = 1. So, one can interpret p1 to be

the probability that one gets a1 for observable X given the state c, where

p1 = P (X = a1|c) = cos2 θ and p2 = P (X = a2|c) = cos2 φ. The state

c can vary throughout the space but p1 + p2 = 1 for any c. In particular

p1 = 1 and p2 = 0, if c lies along x and vice versa if c lies along direction

y.

This reasoning can be easily extended to higher dimensions. For in-

stance, in 3-dimensional state space the generalized Pythagoras theorem

reads: cos2 θ1 + cos2 θ2 + cos2 θ3 = 1, where θi represent the angles made

by an unite state vector c with three eigenvectors of some three-state ob-

servable X. This fact is known, for instance from crystallography (the-

ory of Miller indices) [174]. Above construction constitutes the essence

of the non-classical (non-Kolmogorovian) probability framework employed

quantum mechanics (though using vectors whose components are complex,

rather than real numbers). As noted in Ref. [134]: ... It is salutary though

that the heart of the radically different natures of classical and quantum

probability is just the difference between numbers obtained from ratios of

volumes, and numbers that come from Pythagoras theorem!

B.6 Infinitely divisible variables and distributions

Concept of an infinitely divisibility (ID) was introduced in 1929 by Bruno

de Finetti [66] as a mean for the study of general stochastic processes

with stationary independent increments. The connection of ID distribu-

tions with the generalized CLT was highlighted by Khintchine [171] and

by Kolmogorov and Gnedenko [106] who proved that the limit distribution

functions from the (generalized) CLT must belong to the class of infinitely

divisible distributions. Opposite is, however, not true.

Roughly speaking, one can say that a distribution function is ID if it

can be expressed as the probability distribution of the sum of an arbitrary

number of independent and identically distributed random variables. More

rigorously

Definition B.3 (Infinitely divisible variables and distributions).

A random vector X in Rd (or its distribution) is said to be infinitely divisi-
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ble if for every n ≥ 1 there exist independent identically distributed random

vectors Yn1, . . . , Ynn in Rd (possibly on a different probability space) such

that

X
d
= Yn1 + . . .+ Ynn .

Equivalently, a probability density function p on Rd is ID if an only if

for every n ≥ 1 there exists a probability density function pn on Rd such

that

p = pn ∗ · · · ∗ pn︸ ︷︷ ︸
n

= [pn] ∗n .

Consequently, the characteristic function ϕ(p) associated with p(x) can be

written for every n ≥ 1 as the n-th power of some characteristic function

ϕn(q). So, in particular, for any n ≥ 1 one requires that ϕ(p) = [ϕn(p)]n

with (i) ϕn(0) = 1 and (ii) ϕn(p) is continuous for all p from the definition

region.

Normal (i.e., Gauss), Gamma and Poisson distributions in R1 may serve

as typical examples of the ID distributions. Indeed, the Gaussian distribu-

tion (of the mean µ and variance σ2) has the characteristic function

ϕ(p) = exp

[
iµp− σ2

2
p2

]
, (B.18)

so that

ϕn(p) = exp

[
i
µp

n
− σ2

2n
p2

]
. (B.19)

Analogously, the Gamma distribution (of the mean α/β and variance α/β2)

has the characteristic function

ϕ(p) =

[
1− i p

β

]−α
, (B.20)

so that

ϕn(p) =

[
1− i p

β

]−α/n
. (B.21)

Finally, the Poisson distribution (with mean a+ λh and variance h2λ) has

the PDF

%(y) =

∞∑

m=1

λm

m!
e−λ δ(y − a−mh) . (B.22)
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The characteristic function is

ϕ(p) =

∞∑

m=0

λm

m!
e−λ eip(a+mh) = exp

[
iap+ λ

(
eiph − 1

)]
, (B.23)

so that

ϕn(p) = exp

[
ia
p

n
+
λ

n

(
eiph − 1

)]
. (B.24)

On the other hand, any continuous uniform distribution

P (x) =

{
1/2L for − L ≤ x ≤ L ,

0 for x > L or x < −L , (B.25)

has the characteristic function

ϕ(p) =
sin(pL)

pL
. (B.26)

In this case the generic n-th root does not represent a genuine charac-

teristic function. This is a direct consequence of the fact that the char-

acteristic function ϕ(p) has zero(s) [277]. Quite generally, no probabil-

ity density (except Dirac δ function) with bounded support can provide

ID distributions [277]. The second Lévy–Khintchine theorem or Lévy–

Khintchine formula gives a structural form of cumulants of ID distribu-

tions [84, 106, 171, 196, 277].

Theorem B.11 (second Lévy–Khintchine theorem). Let X be an ID

random vector X in Rd, let the ensuing probability density function be L(x)

and the characteristic function

L̃(ξ) =

∫

Rd
ddx L(x) eiξ·x , (B.27)

then there exits a unique triplet (b,Σ, µ) such that

ln L̃(ξ) = ib · ξ − 1

2
ξ · (Σξ) +

∫

Rd
µ(dx)

[
eiξ·x − 1− iξ · τ(x)

]
, (B.28)

where ξ, b ∈ Rd, Σ is a nonnegative definite d×d matrix and µ is a measure

on Rd with µ({0}) = 0 and
∫
Rd(||x||2 ∧ 1)µ(dx) <∞. τ : Rd 7→ Rd is a fixed

bounded measurable function such that limx→0 ||x||−2[τ(x)− x] = 0.

The matrix Σ is called a Gaussian covariance matrix, µ a Lévy measure,

and τ a truncation function. Conversely, given a triple (b,Σ, µ) and τ as

above, there exists an ID random vector X satisfying (B.28).
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One typically writes X ∼ ID(b,Σ, µ).

The proof of the Lévy–Khintchine characterisation of ID random vari-

ables is quite lengthy and I avoid it here. I can refer the interested reader

to Refs. [204, 277] for more details. Despite its key importance, the Lévy–

Khintchine canonical formula is rather cumbersome to use in practical ap-

plications and, in fact, there are many distributions where it is notori-

ously hard to prove ID. Examples include Student’s t-distribution, Pareto

distribution, Log-normal distribution or Weibull distribution. It is worth

mentioning that proving or disproving infinite divisibility of certain distri-

butions is often a very tedious task and special techniques may be needed

for particular special problems.

In the class of ID distributions there is an important subclass of so-

called stable processes (see Chapter 1.1.3 and Appendix B.4). Correspond-

ingly, a special rôle belongs to the class of stable laws a stable random

variables. The class of stable random variables and distributions, by def-

inition, corresponds to the case when the random variables Yn1, . . . , Ynn,

in Definition A.3 can be constructed by means of a special procedure from

a sequence X1, . . . , Xn of independent and identically distributed random

variables

Ynk = anXk + bn , (B.29)

where an > 0 and bn ∈ R are suitable constants (see Chapter 1.1.3). A

remarkable result of Lévy and Khintchine states that for a stable random

variable the logarithm of characteristic function L̃(ξ) is given by the first

Lévy–Khintchine theorem (cf. Theorem 1.2). From Theorem 1.3 we have

seen that an = 1/n1/α for some 0 < α ≤ 2 (particular α defines class of

α-stable distributions). In the case of bn = 0 a stable distribution is called

a strictly α-stable distribution.

Let me finally mention that the collection of all ID distributions is in a

one-to-one correspondence to Lévy processes which are heavily used in the

financial literature [45, 222], see Chapter 3.
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Fig. B.2: Classes of random processes associated with discussed distributions. Among
distributions that have finite moments and are not infinitely divisible belong, e.g. dis-

tributions which have densities with bounded support. Among distributions that have

infinite first/second moment and are not infinitely divisible belong, e.g. generic mixtures
of Lévy stable distributions.
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Chapter 2

Statistics of Rényi

In Section 1.2.8 I have provided some incentives for Rényi entropy. In the present

chapter I discuss Rényi entropy in more detail. In particular, I show that the concept

of Rényi entropy (and associated differential Rényi entropy) can be conveniently

applied in theory of multifractals, in financial markets and in quantum mechanics.

2.1 Rényi enatropy as information measure

In the previous chapter I have introduced two important entropic mea-

sures with non-gaussian maximizers, namely Rényi and Tsallis entropies.

A brief comparison between Chapters 1.2.7 and 1.2.8 shows that maximiz-

ers of both entropies are formally identical provided the same constraints

are employed. Natural question thus arises: Why do we need RE if the

associated maximizer coincides with that of THC entropy? In particular,

since THC entropy is simpler to handle due to its intimate connection with

the q-calculus, it would seem only natural to employ THC instead of RE.

In fact, the aforementioned link with the q-calculus is one of the major

reasons for a widespread use of the non-extensive statistics of Tsallis. In

this chapter I will put forward various motivations in favour of RE. The

selected topics are based on my research and hence inevitably reflect my

personal prejudices and biases towards RE. I will briefly return to THC

entropy in Section 2.4.3.6

To proceed, let me first make a brief comparison between Rényi and

Tsallis entropies.

(1) H(P) ≤ Iq(P) ≤ Sq(P) for 0 < q ≤ 1,

96
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Sq(P) ≤ Iq(P) ≤ H(P) for q ≥ 1.

(2) Iq is additive (or extensive) while Sq is superadditive for q < 1 and

subadditive for q > 1, i.e. Sq exhibits a non-extensive behavior.

(3) Sq is concave for q > 0 while Iq is concave only for 0 < q ≤ 1 (irrespec-

tive of the dimensionality of the sample space). Convexity/concavity

properties of Iq for q > 1 depend on dimensionality of probabilistic

vectors. For instance, the binary RE is concave for q ∈ [0; 2].

(4) Both Sq and Iq are Schur-concave for all q > 0.

(5) Iq = log2[(1−q)Sq+1]/(1−q), i.e. Iq and Sq are monotonic functions

of each other and hence they have identical maximizer under identical

constraints.

(6) limq→1 Iq = limq→1 Sq = H.

(7) Iq has operational meaning given by coding theorems while for Sq no

such operational meaning exists yet.

It is mainly the last point, which singles out RE for applications in (quan-

tum) information theory. In fact, information-theory based entropies (i.e.,

information measures) are primarily important because there exist various

coding theorems which endow them with an operational (that is, experimen-

tal determinable) meaning, and not because of intuitively pleasing aspects

of their definitions. While coding theorems do exist both for the Shannon

entropy and the Rényi entropy, there are (as yet) no such theorems for THC

entropy. In order to understand the core idea behind the RE-based coding

theorem let me state first the key inequality of information theory, namely

the so-called Kraft–McMillan (inequality (KMI):

Theorem 2.1 (Kraft–McMillan inequality). Let {xi}Ni=1 be source

symbols. These can be encoded into a uniquely decodable code over the

alphabet of size D with codeword lengths {`i}Ni=1 if and only if

N∑

i=1

D−`i ≤ 1 .

So, for instance, when I wish to encode source symbols {xi}4i=1 =

{a, b, c, d} into a binary alphabet {0, 1} I might employ the coding scheme:

a → 0, b → 10, c → 110 and d → 111. Since in this case D = 2 and the
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codeword lengths {`i}4i=1 are {1, 2, 3, 3} I obtain that

4∑

i=1

2−`i = 2−1 + 2−2 + 2−3 + 2−3 = 1 , (2.1)

which saturates the KMI1. The proof of the KMI can be found in various

textbooks, cf. e.g., Ref. [8].

From Theorem 2.1 we see that the KMI specifies the fundamental con-

straint on the lengths of the codewords. When codeword lengths are quan-

tified via single parameter — an expected length 〈`〉 =
∑N
i=1 pi`i, then the

KMI can be used to show that any uniquely decodable code must have 〈`〉
larger than or equal to Shannon’s entropy. This is the essence of Shannon’s

coding theorem. In fact, there are various coding algorithms that saturate

Shannon’s bound 〈`〉 = H(P) subject to the KMI. The most familiar is the

so-called Huffman coding algorithm [132].

It is, however, possible to satisfy the KMI with another types of coding

schemes where different quantifiers of codewords lengths are employed. The

most prominent coding theorem among these is Campbell’s coding theorem

(CCT) [50]:

Theorem 2.2 (Campbell’s coding theorem). Let {pi}Ni=1 be the prob-

abilities of N input symbols {xi}Ni=1 which we wish to encode. Suppose

there is an alphabet of D symbols into which the input symbols are to be

encoded. Let xk be represented by a sequence of `k characters from the

alphabet satisfying the KM inequality. Then

Iq ≤ Lβ < Iq + 1

where a code length of order β with β ∈ (0,∞) is

Lβ =
1

β
logD

(
N∑

i=1

piD
β`i

)

and β = (1− q)/q.

So, while in the Shannon case one can view the cost of a code-word as

a linear function of the length, in the Rényi case the cost of a code-word is

an exponential function of its length [50] with q playing the role of a cost

parameter. Campbell’s theorem then basically states that the optimal code

for a noiseless cannel has a minimal cost out of all codes with a given cost

function.
1This coding scheme is known as a prefix code. Any coding scheme where no codeword

is a prefix of any other codewords is called a prefix code.
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According to the CCT RE corresponds to the averaged number of

bits needed to optimally encode the discrete source X with the probabil-

ity P(X), provided that the codeword-lengths are exponentially weighted

(or priced). This exponential weighting is also known as a Kolmogorov–

Nagumo averaging. While the linear averaging is given by

〈X〉 =
∑

x∈X
p(x)x , (2.2)

the exponential weighting is defined as

〈X〉exp = φ−1

(∑

x∈X
p(x)φ(x)

)
, (2.3)

with φ(x) = Dβx. In our case, p(x) = p(`i) ≡ pi and x = `i. The

β = (1− q)/q factor is also known as the Campbell exponent. It is easy to

check that the equality in Campbell’s lower-bound inequality is achieved

by choosing the `i such that

D−`i =
pqi∑n
j=1 p

q
j

, (2.4)

or equivalently

`i = −q logD pi + (1− q)Iq(P) . (2.5)

Clearly, the individual lengths `i obtained through the saturation of Camp-

bell’s lower-bound inequality can be made smaller than the ensuing Shan-

nons’ lengths `i = − logD pi, particularly for small pi by selecting a suf-

ficiently small value of q. This is a simple consequence of the fact the

inequality Iq(P) ≤ − logD pi can be satisfied for any pi < 1/N by a suffi-

ciently small q. So, Campbell’s coding procedure effectively penalizes longer

codewords and supplies a code different from Shannon’s code, with gener-

ally shorter codewords associated with lower probabilities. The codewords

are the shorter the lower Rényi’s parameter q or, equivalently, the higher

price factor β.

In this connection I should also point out that Campbell’s coding theo-

rem for RE is equivalent to Shannon’s coding theorem for SE provided one

uses instead of pi the escort distribution [26, 32]:

%(q, `i) =
pqi∑N
j=1 p

q
j

. (2.6)

Indeed, in order to see this let me define the average code-word length with

the help of escort distribution, i.e.

〈`〉q =

N∑

k=1

%(q, `k)`k . (2.7)
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pi β = 9 (q = 1/10) β = 0.5 (q = 2/3) β = 0 (q = 1)

0.3 01 11 0

0.38 00 10 10

0.2 111 01 111

0.1 110 001 1101

0.01 101 0001 11001

0.0 100 0000 11000

Table 2.1: Example of a lossless data compression algorithm — Huffman coder, for

6 source symbols with probabilities {pi}6i=1 and the binary encoding alphabet {0, 1}
(D = 2). Three different price factors β = (1− q)/q are depicted.

Shannon’s coding theorem which would employ %q = {%(q, `k)}Nk=1 instead

of P = {pk}Nk=1 would imply Shannon’s inequality

H(%) = I1 ≤ 〈`〉q ≤ H(%) + 1 . (2.8)

It is easy to check that the equality in Shannon’s lower-bound inequality is

achieved by choosing the `i such that

`i = − logD %(q, `i) = −q logD pi + (1− q)Iq(P) , (2.9)

which is nothing but the Campbell result (2.5). So, in practical applications

one can employ the Campbell coding theorem in such a way that standard

Shannonian coding algorithms (such as Huffman’s one) are feeded with the

escort distribution %q instead of the original source distribution P. As

a simple example, I use in Tab. 2.1 a standard Huffman algorithm2 to

encode 6 source symbols with given occurrence probabilities into a binary

alphabet. The corresponding codes are generated for 3 distinct price factors

β corresponding to q = 1 (Shannon’s coding), q = 2/3 and q = 1/10.

In passing one can note that the spacial case q = 2 was studied already

prior Rényi’s work by many authors, see, e.g., Refs. [16, 265] in connection

with the correlation dimension. Among other information-theoretic appli-

cations of RE I can mention, e.g., Csiszár, Campbell and Ahlswede–Cai

works on block coding [3, 51, 63] or Bennet at al. works on use of RE in

quantum cryptography [31, 208, 224].

2There is a number of online Huffman coders, see, e.g.: https://planetcalc.com/2481/
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2.2 World according to Rényi

Among the most prominent applications of RE is the application in fractal

and multifractal systems. The purpose of this section is to stress this rôle

and provide some related discussion. In my exposition I will closely follow

Refs. [143–145].

2.2.1 Fractals and Multifractals — brief introduction

In the previous section we have seen that Rényi’s q parameter quantifies the

cost of a code-word in Campbell’s coding theorem. Another area where the

q-parameter has a well defined meaning is the theory of multifractals. In

particular, there the q-parameter corresponds to the so-called multifractal

spectral dimension. To clarify this connection, I start first with a brief

introduction into theory of fractals.

Fractals typically appear in study of geometrical properties of sets and

are characterized by property of self-similarity (i.e., form invariance under

magnification) and by non-integer dimension DH — Hausdorff or fractal

or Mandelbrot dimension [80, 81]. Fractal patterns appear not just in the

shape of coastlines (as depicted in its seminal work by Mandelbrot [214])

and in the decorative designs generated by innumerable computer programs,

but they are very real. They appear in the distribution of galaxies through-

out the cosmos, in biological systems but also in the price changes of securi-

ties. Some examples typical fractals with their respective fractal dimensions

are depicted in Fig. 2.1:

(a) (b) (c) (d) (e)

Fig. 2.1: Some examples of real-world fractal systems: Brownian motion in x−t plane
(DH = 1.5), coast of Norway (DH = 1.52), Brownian motion in x−y plane (DH = 2),

distribution of galaxy clusters (DH ∼ 2), brain (DH = 2.79)
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The concept of fractal dimension can be most easily understood via the

so-called box-counting dimension. Let me consider a set M embedded in

a d-dimensional space. Let us cover the set with a mesh of d-dimensional

cubes with the edge size l and let Nl(M) is a minimal number of the cubes

needed for the covering, see Fig. 2.2. The coarse-grained volume Vl(M) ≡ Vl
of the set M is then Vl(M) = lDNl(M) from which we have the pre-fractal

dimension

D =
lnVl(M)

ln l
− lnNl(M)

ln l
. (2.10)

The box-counting (fractal) dimension of M is then defined as

DBC = lim
l→∞

lnVl(M)

ln l
− lnNl(M)

ln l
= − lim

l→∞
lnNl(M)

ln l
. (2.11)

Here an implicit assumption was made that Vl is finite in the small l limit.

Fig. 2.2: Box counting in 2 dimensional embedding space.

It is quite instructive to illustrate the utility of DBC on a simple example

of the so-called triadic Koch curve. The latter is defined iteratively in the

following way [cf., Fig. 2.3 a)]: in 0th iteration (n = 0) I start with a

straight line - initiator - with length r0 = a. In the following step (n = 1)

I raise an equilateral triangle over the middle third of initiator. The result

is generator. Its four straight line segments (N1 = 4) have length r1 =

a/3 and total length L[a/3] = 4/3a. The construction of the Koch curve

proceeds by replacing each segment of initiator with generator, i.e., for

n = 2, r2 = (1/3)2a, L[(1/3)2a] = (4/3)2a and N2 = 16 [cf., Fig. 2.3 b)],

etc. So, when n = k, I have rk = (1/3)ka, L[(1/3)ka] = (4/3)ka and
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Fig. 2.3: a) Iterative steps in the construction of a triadic Koch curve. Initiator and
first four iterations are depicted. b) Details of the 2nd iterative step. It is composed of

4 re-scaled generators and the initiator length r0 is set to 1.

b)

a)

Nk = 4k. Consequently, the box-counting dimension of a triadic Koch

curve is

DBC = lim
r→0

logN(r)

log 1
r

= lim
n→∞

log 4n

− log a
3n

=
log 4

log 3
> 1 . (2.12)

One may often write (e.g., for strictly self.similar fractals), after n iterations

N = Nn
G (NG is the number of pieces of the generator) r = arnG (rG is the

length of the segments of the generator). In such cases the fractal dimension

follows from a simple analysis:

lim
r→0

N(r)rD = lim
n→∞

(
NGr

D
G

)n
= const. ⇒ DBC = − logNG

log rG
.(2.13)

Relation 2.13 allows to recover fairly simply some standard results; e.g.,

the result for a triadic Cantor dust (rG = 1/3, NG = 2), cf. Fig. 2.4 where

DBC = log 2/ log 3 < 1.

I should stress that in most cases of interest the box-counting dimen-

sion DBC defined by (2.11) coincides with the Hausdorff–Besicovich fractal
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Fig. 2.4: Iterative steps in the construction of a triadic Cantor dust. Initiator and first

four iterations are depicted.

dimension DH used by Mandelbrot [119, 214]. For some exceptional situ-

ations, see, e.g., Refs. [80, 81].

Multifractals, on the other hand, are related to the study of a distribu-

tion of physical or other quantities on a generic support (be it or not fractal)

and thus provide a move from the geometry of sets as such to geometric

properties of distributions.

In contrast to ordinary fractals, whose structure is specified by a sin-

gle scaling exponent — fractal dimension, multifractals have not one but

an infinite number of scaling exponents for their description [125] and, in

addition, there are two qualitatively distinct types of them [116]. To eluci-

date the idea behind the first type, let us suppose that over some support

(usually a subset of a metric space) is distributed a probability of a certain

phenomenon, be it, e.g., probability of electric charge, magnetic momenta,

hydrodynamic vorticity or mass. If I cover the support with a mesh of

d-dimensional cubes of size l and denote the integrated probability in the

ith cube as pi, I may define the local scaling exponent αi via the scaling

pi ∼ lαi . (2.14)

At this point I should stress that the existence of such a scaling in one of

the defining properties of the multifractal paradigm. The scaling exponent

α is known as the Lipshitz–Hölder exponent. Let me denote the number of

cubes where pi has αi ∈ (α, α+ dα) as N(α), see Fig. 2.5. The second type

of exponents is determined through the scaling

N(α) ∼ l−f(α) , (2.15)

where the spectral dimension f(α) by its very definition [see Eq. (2.11)]

corresponds to a fractal dimension of the region that carries an identical
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Fig. 2.5: Multifractal: schematic picture

value of pi. So, in its essence the multifractal is ensemble of intertwined

(uni)fractals each with its own fractal dimension f(α). The neologism “mul-

tifractal phenomena” describes the fact that different regions of an object

have different fractal properties. Multifractal scaling provides a quantita-

tive description of a broad range of heterogeneous phenomena. Paradig-

matic example is the so-called diffusion-limited aggregation (DLA) that

can be observed in many real-world systems ranging from electrodeposi-

tion, Hele–Shaw flow, mineral deposits, to dielectric breakdown [14, 334].

Scaling phenomena are so ubiquitous in the nature that the multifractal

paradigm is very well suited to describe a large number of complex dynam-

ical systems, see, e.g. Fig. 2.6.

(a) (b) (c) (d) (e)

Fig. 2.6: Some examples of real-world multifractal systems with corresponding support
dimensions: soap bubble (DH = 2), particle in turbulent flow (DH = 1.38), Lorentz

attractor (DH = 2.6), DLA with cca. 103 particles (DH = 1.85), DLA with cca. 106

particles (DH = 1.71)

Particularly important applications are also in Statistical analysis of time-

series data, namely in finance, climatology or medicine. I will have more
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to say about this in Chapter 2.3.2. An extensive and expanding literature

now exists on fractals and multifractals, see for instance Refs. [80, 81, 216]

and citation therein.

2.2.2 Rényi entropy and Multifractals

There is an intimate connection between Rényi entropy and theory of mul-

tifractals. It will be seen, that the ensuing relationship is very useful in

a wide range of complex structures including many non-linear dynamical

systems and their attractors [116, 296]. To this end, I first introduce the

so called Rényi (or generalized) dimensions [111, 112, 125, 296, 305]. The

Rényi dimension of order q is defined as

Dq = lim
ε→0

1

(q − 1)

log
∑N(l)
i=1 pqi

log l
= − lim

l→0

Iq(l)
log2 l

, q ≥ 0 , (2.16)

where N(l) =
∑
iNl(pi) is the total number of cubes of the edge-length

l covering the support of the investigated system. When the superposed

physical, biological, etc. phenomena are not considered, then the geometri-

cal structure of the system alone is generally a fractal, see Fig. 2.6. In this

case the number of cubes that cover the system scales with l as N(l) ∼ l−d

with d being the (box-counting) fractal dimension.

As I mentioned in previous section, multifractals are characterized by

the (local) probability scaling exponent α and ensuing support fractal di-

mension f(α). The essence of the multifractal paradigm hinges on the

assumption that f(α) is a smooth function of α where α is a continuous

variable on R≥0. The above premise is often strengthened by assuming

that f(α) is differentiable. For example, in chaotic dynamical systems one

is often interested in a strange attractor and how often a given region of

the attractor is visited in the configuration space [see Fig. 2.6(c)]. In such

cases, α is the Lipshitz–Hölder exponent of the visiting PDF (also known

as the distribution of the number of visits) and f(α) is the Hausdorff frac-

tal dimension of the support of the visiting PDF with the same scaling

exponent α. Assumption that f(α) is differentiable grasps very well the

observed behavior in strange attractors.

Rather than focus on f(α) and α, it is more convenient for most practical

purposes to work with another couple of scaling exponents. These can be

obtained from f(α) and α via the Legendre transform. In fact, to keep

track with pi’s it is customary in probability theory to define “partition
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function” [296]

Z(q) =
∑

i

p qi =
∑

α

N(α)p q(α) . (2.17)

Relation (2.17) can be further rewritten as

Z(q) =

∫

R≥0

dN(α)lqα =

∫

R≥0

dα n(α) l−f(α)+qα . (2.18)

Here, n(α) is (weakly l dependent) proportionality function having its ori-

gin in relations (2.14) and (2.15). In the small-l limit the asymptotic be-

havior of the partition function can be evaluated by the steepest descent

method [231]. This yields the scaling

Z(q) ∼ lτ , (2.19)

with

τ(q) = inf
α∈R≥0

[qα− f(α)] . (2.20)

If the function f is concave and everywhere differentiable then I can rewrite

(2.20) as

τ(q) = qα∗ − f(α∗) where f ′(α∗) = q . (2.21)

The latter relation defines α∗ = α∗(q) = (f ′)−1(q) since a differentiable

concave function has inverse. By differentiating the first identity in (2.21)

with respect to q, I obtain

τ ′(q) = α∗ . (2.22)

In following we will simply write α instead of α∗, unless explicitly stated

otherwise. This is also a typical convention employed in the literature.

Equation (2.20) alongside with its special case (2.21)-(2.22) represents the

Legendre–Fenchel transform [272], which for concave functions f boils down

to the conventional Legendre transform. Consequently, pairs {f(α), α} and

{τ(q), q}, are convex conjugates that comprise the same mathematical con-

tent. Scaling function τ(q) is called correlation or mass exponent of the q-th

order.

Connection of Rényi entropies with multifractals can be introduced

through the concept of generalized dimensions (2.16). In particular, we

can observe that

Dq(P) = − lim
l→0

Iq(P, l)
log2 l

=
τ(q)

(q − 1)
. (2.23)
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In multifractal systems all Dq are necessary to describe uniquely e.g.,

strange attractors [111, 112, 125]. While the proof of this is based on

a rather complicated self-similarity argumentation, by employing the infor-

mation theory one can show that the assumption of a self-similarity is not

really fundamental, and in fact, the validity of the statement extends even

beyond the multifractal paradigm [144]. For instance, when the outcome

space is discrete then all Dq with q ∈ [1,∞) are needed to reconstruct

the underlying distribution, and when the outcome space is d-dimensional

subset of Rd then all Dq, q ∈ (0,∞) are required to pinpoint uniquely

the underlying PDF. The latter examples are nothing but the information

theoretic variants of Hausforff’s moment problem [144].

In practice, however, only relatively few values of q (typically between

0 and 4) are used. This can be attributed to the fact that only a relatively

small number of Dq’s have a well defined operational meaning. Notable

examples are provided by D0, D1 and D2. In particular, D0 represents the

fractal dimension DBC of the multifractal support. The latter can be seen

by employing equations (2.16) and the fact that Z(q = 0) = N(l) ∼ l−d,
where d = DBC . Dimension D1 corresponds to the so-called curdling di-

mension3 and D2 coincides with the correlation dimension [110]. Note also

that by its very definition, D1 is affiliated with Shannon entropy. This

clearly illustrates that SE alone brings only a partial information on mul-

tifractal systems.

2.2.3 Canonical formalism on multifractals

The connection of Rényi’s entropy with multifractal systems can be further

deepened in the framework of canonical approach that can be developed in

a close analogy with canonical formalism of statistical mechanics. As this

approach is thoroughly discussed, e.g., in [144], I will, for shortness’s sake,

mention only the salient points here.

Let us first consider a multifractal with a density distribution p(x). If

we use, as previously, the covering grid with the lattice spacing spacing l

then the coarse-grained Shannon’s entropy of such a process will be

H(P(l)) = −
∑

k

pk(l) log2 pk(l) . (2.24)

3Verb “curdle” is synonymous with “coagulate”. The neologism “curdling dimension”
was coined by Mandelbrot, to denote the fractal dimension of the set on which almost

all the probability is concentrated, i.e. curdled.
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Here the coarse–grained probability distribution P(l) = {pk(l)}N(l)
k=1 has the

explicit form

pk(l) =

∫

k−th box

p(x) ddx . (2.25)

Let us now observe that from (2.21)-(2.22) and (2.23) we have for q = 1

α(1) =
dτ(q)

dq

∣∣∣∣
q=1

= f(α(1))

= lim
l→0

∑
k pk(l) log2 pk(l)

log2 l
= − lim

l→0

S(Pn(l))

log2 l
. (2.26)

In wring this relation I have also used (2.18) and (2.20) to get 0 = τ(1) =

α(1)− f(α(1)), and (2.19) to write

dτ(q)

dq
=

1

log l

d logZ(q)

dq
= α(q) . (2.27)

We might also note that α(1) is nothing but D1(P), i.e., the Hausdorff

dimension of the set on which the probability is concentrated — measure

theoretic support. In fact, the relative probability of the complement set

approaches zero when l → 0. This statement is known as Billingsley theo-

rem [37] or curdling [216], and it is a part of a wider family of phenomena

know as the concentration of measure phenomena [99].

The concavity of f(α) ensures that α = α(q) is monotonically decreasing

function of q, and thus α(q1) < α(q2) for q1 > q2. The latter implies that

f(α) must terminate at points αmin = α(q = +∞) and αmax = α(q =

−∞). Now, because f ′(α) = q we have

df(α) =

{≤ dα if q ≤ 1 ,

≥ dα if q ≥ 1 .
(2.28)

After integrating the first inequality in (2.28) from α(q = 1) to α(q) and

the second inequality from α(q) to α(q = 1), I get that f(α) ≤ α. This

is very important inequality from which we can immediately understand

why D1 = α(1) describes the (curdling) dimension of the measure theoretic

support. In fact, we might observe that each unifractal characterized by

αi carries probability N(αi)l
αi ∼ l−f(αi)+αi . Since f(αi) ≤ αi, we see

that in the limit l → 0, the probability of each unifractal tends to zero

apart from the situation when f(αi) = αi in which case the probability is

1. Due to concavity of f(α) the later will happen only in a single point,

namely in the point α = α(1), see Fig. 2.7. Consequently, α(1) describes
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not only the Lipshitz–Hölder exponent of the the measure theoretic support

but also its fractal dimension f(α(1)). In this connection it is interesting

to notice that since I0 > I1, I have also D0 > D1, so the fractal dimension

of the multifractal support is bigger than the fractal dimension of measure

theoretic support. In a sense, the multifractal support must be rougher

then the measure theoretic support.

Fig. 2.7: The graph of f(α) versus α is known as the multifractal spectrum. Note
that the whole curve satisfies the condition f(α) ≤ α with equality only in the point

α = α(q = 1) = D1. Though all q ∈ R can in principle enter into multiftactal analysis,

from information theoretic point of view only q > 0 are relevant.

For the following considerations it is useful to introduce a one–

parametric family of normalized measures %(q) — the so-called zooming

or escort distributions [26, 32] [cf. Eq. (2.6)] that is given by

%i(q, l) =
[pi(l)]

q

∑
j [pj(l)]

q
∼ lf(αi) . (2.29)

As the escort distribution (2.29) alters the scaling of original Pn from lα

to lf(α), also the measure theoretic support must change. The fractal (cur-

dling) dimension of the new measure theoretic support M(q) of %(q) is

dh(M(q)) = lim
l→0

1

log2 l

∑

k

%k(q, l) log2 %k(q, l) . (2.30)

Note that the curdling (2.30) mimics the situation that is well known from

equilibrium statistical physics. There, in the canonical ensemble formalism

one works with (usually infinite) ensemble of identical systems with all

possible energy configurations. But only the configurations with Ei close
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to 〈E(T )〉 dominate in the thermodynamic limit. A choice of temperature

then shifts the value of 〈E(T )〉 and hence the support of contributing energy

configurations. In statistical physics this behavior is a consequence of the

so-called asymptotic equipartition property [62].

Let me now define “microcanonical” (unifractal) partition function as

Zmic(αi) =


 ∑

αk∈[αi,αi+dαi]

1


 = N(αi) . (2.31)

This implies, e.g. that

〈α〉mic = αi =
∑

αk∈[αi,αi+dαi]

αk/Zmic . (2.32)

The corresponding microcanonical (Boltzmann-like) entropy is

Smic(αi) = log2N(αi) = log2 Zmic(αi) , (2.33)

which immediately applies that

−Smic(αi)

log2 l
∼ f(αi) ≡ 〈f(α)〉mic . (2.34)

Interpreting Ei = −αi log2 l as i-th “energy level”, I may define the “inverse

temperature” 1/T = β/ ln 2 (note that here kB = 1/ ln 2) as

1/T =
∂Smic

∂E

∣∣∣∣
E=Ei

= f ′(αi) = q . (2.35)

On the other hand, I can define the “canonical” partition function as

Zcan(q) =
∑

i

pi(l)
q =

∑

i

e−βEi , (2.36)

where β = q ln 2 and Ei = − log2 pi(l). The corresponding mean values are

f(q) ≡ 〈f(α)〉can =
∑

i

f(αi)

Zcan
e−βEi ∼

∑
i %i(q, l) log2 %i(q, l)

log2 l
,

α(q) ≡ 〈α〉can =
∑

i

αi
Zcan

e−βEi ∼
∑
i %i(q, l) log2 pi(l)

log2 l
. (2.37)

Let us note that the fractal dimension of the measure theoretic support

dh(M(q)) is simply f(q). The previous results are gathered in Tab. 2.1:
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microcanonical ensemble canonical ensemble

- unifractals - multifractals

Zmic; Smic = log2 Zmic Zcan; Scan = log2 Zcan − q〈α〉can log2 l

〈α〉mic = αi =
∑
k αk/Zmic 〈α〉can =

∑
k αk p

q
k/Zcan

〈f(α)〉mic = f(αi) = −Smic/ log2 l 〈f(α)〉can = −Scan/ log2 l

q = ∂Smic/∂E|E=Ei
q = ∂Scan/∂〈E〉can

1/T = q (kB ∼= 1/ ln 2) 1/T = q (kB ∼= 1/ ln 2)

Ei = − log2 pi = −αi log2 l 〈E〉can = −〈α〉can log2 l

〈f(α)〉mic = q〈α〉mic − τ 〈f(α)〉can = q〈α〉can − τ

Tab. 2.1. Parallelism between microcanonical and canonical description in multifractals.

It is worth of noting that the last lines are basically the first lines in disguise.

In addition, by defining the “Helmholtz free energy” F = −q log2 Zcan =

−β lnZcan, I get from the first/last identity the usual thermodynamical

relation

F = 〈E〉can − ScanT . (2.38)

By, looking at fluctuations of α in the “canonical” ensemble one can

easily establish an equivalence between microcanonical and canonical de-

scription of multifractals. Let us first observe that

∂2(log2 Zcan)/∂q2 = 〈E2〉can − 〈E〉2can

=
(
〈α2〉can − 〈α〉2can

)
(log2 l)

2 . (2.39)

Despite its appearance, the true scaling of Var(E) is log2 l and not (log2 l)
2.

Indeed, recalling Eq. (2.19) I can write

∂2(τ log2 l)/∂q
2 = (∂α/∂q) log2 l ∝ log2 l . (2.40)

So, the relative standard deviation of “energy” reads
√
〈E2〉can − 〈E〉2can

〈E〉can
=

√
〈α2〉can − 〈α〉2can

〈α〉can
∝ 1√

− log2 l
→ 0 . (2.41)
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Consequently, in the small-l limit (i.e., exact multifractal limit) the α-

fluctuations become negligible and all relevant αi are sharply peaked (cur-

dled) around 〈α〉can, provided q is a solution of the equation αi = τ ′(q), see

Fig 2.8.

β  β2 

canonical ensemble

E can ≈  Ei EjE can ≈  

Ei Ei�� EjEj Ej��
. . . . . . . . .

ensemblemicrocanonical 

. . . Ei Ei��
. . . Ej Ej��

. . .

E mic ≈  Ei

ensemble

equivalence

   

. . .. . .. . . . . . . . . . . .

q1
 q2

 

i�� α α α 

α 

i j j��

multifractal

. . .

α 

i α i��
. . . α j α j��

. . .

unifractal

E mic   mic ≈  iα 

α 

  can ≈     iα α   can α ≈  α    j

curdling

  (l      0)       

Fig. 2.8: Comparison of the microcanonical and canonical description in equilibrium

statistical physics and in multifractal theory.

The foregoing implies that in the “thermodynamic” limit (l→ 0)

f(αi) = 〈f(α)〉mic = 〈f(α)〉can = f(q(〈α〉can)) , (2.42)

since the RHS’s of the last equations in Tab. 2.1 are identical. This in turn

implies (see, 3rd line in Tab. 2.1) that the microcanonical and canonical

entropies on multifractal coincide. Hence

Smic(αi) ∼ −
∑

k

%k(q, l) log2 %k(q, l) ≡ S(%)|f(q) .

The subscript f(q) emphasizes that the Shannon entropy S(%) is basically

the entropy of an unifractal specified by the fractal dimension f(q) with

q = f ′(〈α〉can) ∼ f ′(αi). Legendre transform then implies that

Smic(αi) ∼ −q〈α〉can log2 l + (1− q)Iq(P(l)) . (2.43)

In the continuum limit when l → 0, one can employ the renormalization

prescription which leads to finite entropies — so-called continuous (or dif-

ferential) entropies [144]. With this one gets

Irq = Srmic(αi) , (2.44)
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where superscript r indicates renormalized quantities. So, by changing

the q parameter in Rényie’s entropy one can “skim over” all renormalized

unifractal entropies. Rényi’s entropy thus provides a unified information

measure that keeps track of all respective unifractal entropies.

The passage from multifractals to single-dimensional statistical systems

is done by assuming that the α-interval is infinitesimally narrow and that

the corresponding PDF is smooth. In such a case both α and f(α) collapse

to α = f(α) ≡ D and q = f ′(α) = 1. For instance, for a statistical system

with a smooth measure and the support space Rd one can see that Eq. (2.44)

constitutes a trivial identity. This is the primary reason why Shannon’s

entropy plays such a predominant role in physics of single-dimensional sets.

Further discussion of the relation (2.44) can be found in [144].

2.2.4 Rényi’s entropy and Fisher’s information

There exits an interesting connection between Riemaniann geometry on

statistical parameter spaces (so-called information geometry) and Rényi

entropies.

To see this let us consider a family of PDF’s characterized by a vector

parameter θ

Fθ = {p(x, θ);x ∈M ; θ ∈M, a manifold inRn} . (2.45)

Let me further assume that p(x, θ) ∈ C2. The Gibbs PDF’s (with θi being

the inverse temperature β, the external field H, etc.) represent particular

examples of (2.45).

To construct a metric on M which reflects the statistical properties

of the family (2.45), Rao a co-workers [48, 49] proposed to adopt various

measures of dissimilarity between two probability densities, and then use

them to derive the metric. Important class of dissimilarity measures are

information-theoretic measures and, in particular, the gain of information

when a density p(x, φ) is replaced with a density p(x, θ). In Shannonian

information theory the gain of information is represented be the Kullback–

Leibler divergence (also called relative entropy), i.e.

D(pθ||gφ) ≡ (θ||φ) =

∫

M

dx p(x, θ) log2

(
p(x, θ)

p(x, φ)

)
. (2.46)

In the case of Rényi’s entropy the gain of information (or relative entropy

of order q) has the forms [144, 264]

Iq(θ||φ) =
1

q − 1
log2

∫

M

dx
p(x, θ)q

p(x, φ)q−1
. (2.47)
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At this point I should stress that the relative entropy cannot be understand

as the “distance” between probability distributions, because it does not

satisfy basic properties of a distance function (i.e., metric). It does not obey

the triangle inequality, and in general D(pθ||gφ) does not equal D(pφ||gθ)
(same for Rényi’s relative entropy). However, its infinitesimal form has

correct distance function properties. Indeed, let me look at the leading

order of dissimilarity between p(x, θ) and p(x, (θ + dθ)), namely

Iq(θ||θ + dθ) =
1

2!

∑

i,j

gij(θ) dθidθj + . . . . (2.48)

Note that because Iq(θ||φ) is minimal at θ = φ, the linear term in (2.48)

vanishes. So we have

gij(θ) =

[
∂2

∂φi∂φj
Iq(θ||φ)

]

θ=φ

=
q

2 log 2

(∫

M

dx p(x, θ)
∂ log p(x, θ)

∂θi

∂ ln p(x, θ)

∂θj

)

=
q

2 log 2
Fij(p(x, θ) . (2.49)

Since the Hessian Fij is a symmetric matrix, Eq. (2.49) represents a metric

tensor, which in the information geometry is known as the Fisher infor-

mation matrix (or Fisher–Rao metric) [48, 49, 259]. Fisher matrix is the

only Riemaniann metric which is invariant under transformation of vari-

ables as well as reparametrization [259]. In addition, the diagonal elements

of Fisher’s information matrix represent the amount of information on θi
in an element of a sample chosen from a population of density functions

p(x, θ). Due to its relation with Cramér–Rao inequality Fisher information

matrix plays a crucial rôle in parametric estimation [93]. Let me also stress

that the latter is used in quantum mechanics to formulate information un-

certainty relations [93, 146].

The information geometry is presently a fast growing field in statistical

physics and statistical inference theory with a number or important results.

An interested reader can consult e.g., Ref. [5] for further details.

2.3 Financial markets and econophysics - I

Particularly important application of the Rényi’s entropy paradigm is in

econophysics. Econophysics is an emerging interdisciplinary field that uses
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a deep analogy of economical and financial processes with physical phenom-

ena (treated in many body physics, physical kinetics, statistical mechanics

and even quantum theory) in order to analyze, e.g., the growth or death

of the company, profit rate and company size optimization, as well as the

behavior, growth and failure of markets [45, 222].

2.3.1 Multifractal financial markets

The evolution of many complex systems in natural, economical, medical

and biological sciences is usually presented in the form of time data se-

quences. A global massification of computers together with their improved

ability to collect and process large data-sets has brought about the need for

novel analyzing methods. Particularly in the connection with financial time

series there has been rapid development of techniques for measuring and

managing the fractal and multifractal scaling behavior observed in empiri-

cal high-frequency data sequences. A non-trivial scaling behavior in a time

data-set represents a key signature of a multi-time scale cooperative behav-

ior in much the same way as a non-trivial scaling behavior in second-order

phase transitions reflects the underlying long-range (or multi-scale) coop-

erative interactions. The usefulness of the scaling approach is manifested,

for instance, in quantifying critical or close-to-critical scaling, which typi-

cally signalizes the onset of financial crises, including stock market crashes,

currency crises or sovereign defaults [179]. A multifractal scaling, in partic-

ular, is instrumental in identifying the relevant scales that are involved in

both temporal and inter-asset correlations [151]. In passing, I should stress

that aside from financial data sequences, similar (multi)fractal scaling pat-

terns are also routinely observed (and analyzed) in time data-sets found,

for instance, in heart rate dynamics [252, 326], DNA sequences [222, 251]

or long-time weather records [304].

One can establish connection between financial time series and multi-

fractals through generalized dimensions (2.16) and (2.23). The point is

that Dq can be obtained from high-quality time series data if care is taken.

This is done by employing some convenient estimators of Rényi entropy.

For instance, I can partition the configuration space into disjoint cubes or

balls where sides or radiuses have size l and introduce the coarse-grained

distribution [cf. Eq. (2.25)]

pl(xk) =

∫

Ul(xk)

ddxp(x) =

∫

Ul(xk)

dµ(x) , (2.50)

where dµ(x) is ensuing probability measure and Ul(xk) is a ball of radius l
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centered at xk. With this I get the coarse-grained RE

Iq(P, l) =
1

1− q log2

∑

k

[pl(xk)]q

=
1

1− q log2

∑

k

∫

Ul(xk)

dµ(x)[pl(xk)]q−1

∼= 1

1− q log2

∫

Rd
dµ(x)

[∫

Rd
dµ(y) θ(l − ||x− y||)

]q−1

. (2.51)

Here θ(x) is the Heaviside step function, i.e., θ(x) = 0 for x ≤ 0 and

θ(x) = 1 for x > 0. The last line holds in the small-l limit where I can

assume that pl(xk) ∼= pl(x) for any x within the Ul(xk) ball.

Formula (2.51) allows to define an estimator of the RE from a finite

sequence of N points as

Îq(l) =
1

(1− q) log2





1

N(N − 1)q−1

N∑

i=1



N∑

j 6=i
θ(l − ||xi − yj ||)



q−1



, (2.52)

where an implicit assumption was made that each point contributes with

equal weight that is inverse proportional to the number of points in the

considered sums.

Estimator (2.52) is of practical value in cases when q > 1. For q ≤ 1

it runs into severe problems whenever inside of some ball there are no

points. This can be rectified by another estimators such as, e.g., fixed-mass

algorithm [11] (where the radius l of balls Ul(xk) is not fixed but can vary so

that each ball contains an equal number of points), Kozachenko–Leonenko

estimator [183] or various Leonenko et al., entropic estimators [194].

2.3.2 Causality and Rényi’s information transfer between

financial time series

With a proper estimator of the RE one can attack number of important

issues in data analysis. Particularly pertinent application concerns the

causality between two or more time series.

The first general definition of causality, which could be quantified and

measured computationally was given by Wiener in 1956, namely “... For

two simultaneously measured signals, if we can predict the first signal bet-

ter by using the past information from the second one than by using the

information without it, then we call the second signal causal to the first

one...” [331].
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2.3.2.1 Granger causality ad other causal measures

The introduction of the concept of causality into the experimental practice,

namely into analyses of data observed in consecutive time instants (i.e.,

time series) is due to Nobel prize winner (economy, 2003) C.W.J. Granger.

Definition 2.1 (Granger causality). Process Yt Granger causes an-

other process Xt if future values of Xt can be better predicted using the

past values of Yt and Xt rather than only past values of Xt.

The standard test of Granger causality was developed by Granger him-

self [109] and it is based on a linear regression model, namely

Xt = a0 +

n∑

`=1

a1`Xt−` +

n∑

`=1

a2`Yt−` + et , (2.53)

where n represents the maximum number of lagged observations included

in the model (the model order), t is a discrete time with possible discrete

values n+ 1, . . . , N and et is uncorrelated random variable (random error)

with zero mean and variance σ2. The null hypothesis that Yt does not

cause Xt (in the sense of Granger) is accepted if and only if a2` = 0 for

` = 1, . . . , n, which reduces (2.53) to

Xt = a0 +

n∑

`=1

a1`Xt−` + ẽt . (2.54)

Here the noise term ẽt might be generically different (if σ1 6= σ2). This null

hypothesis can be tested by various means. Particularly popular statistical

tests is F -test of the null hypothesis that a2` = 0 for ` = 1, . . . , n. In this

case one defines the F -statistic (the Grange–Sargent statistic) [129] as

F =
(RSS1 −RSS2)

df1 − df2

/RSS2

df2
=

(RSS1 −RSS2)/n

RSS2/(N − 3n)
, (2.55)

whereRSS1 andRSS2 are sums of squares of residual errors after (2.54) and

(2.53) are fitted to the same data set. The degrees of freedom — denoted as

df1 and df2 — are associated with the model (2.54) and (2.53), respectively.

In particular, in the null-hypothesis model (2.54) df1 = N − 2n. Indeed,

we start with N − n data points (degrees of freedom) but out of those, n

data points are needed for estimation of parameters a11, . . . , a1n that enter

in RSS1. Parameter a0 can be find from the consistency requirement that

the mean error is zero4. Similarly, for (2.53) we get df2 = N − 3n.
4Note that, e.g.,

RSS1 =
N∑

t=n+1

(xt − X̄t)2 , (2.56)
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Note that F itself is a random variable, which under assumption that

the residual errors from the two models are i) independent and ii) normally

distributed (which incidentally happen to be requirements of ordinary least

squares regression) has the Fisher F -distribution F (n,N − 3n).

Aforementioned linear framework for measuring and testing causality

has been widely applied in a number of fields. In finance, one typically uses

Granger’s linear regression model to study the internal cross-correlations

between various market activities. The correlation functions have, how-

ever, at least two limitations: First, they measure only linear relations,

although it is clear that linear models do not faithfully reflect real market

interactions. Second, all they determine is whether two time series (e.g.,

two stock-index series) have correlated movement. They, however, do not

indicate which series affects which, or in other words, they do not provide

any directional information about cause and effect.

Although there is an extensive literature on causality modeling that goes

beyond the linear regression model, e.g., applying and combining mathe-

matical logic, graph theory, Markov models, Bayesian probability, etc. (for

extensive review see, e.g., [250]), I will focus here mostly on the information-

theoretic approaches which understand causality as a phenomenon which

can be not only detected or measured but also quantified.

Particularly important quantifier of the information flow between two

time series is the so-called transfer entropy (TE). In order to illustrate what

is involved I will first start with the concept of Shannonian transfer entropy

and then generalize it to the RE setting.

2.3.2.2 Shannon’s transfer entropy

Concept of TE was introduced by Schreiber in his 2000 seminal paper [280]

and independently under the name conditional mutual information by Paluš

et al. in Ref. [248]. According to these, TE represents a measure of a direc-

tional (Shannonian) information flow defined by means of Kullback–Leibler

divergence on conditional transition probabilities of two finite-order Markov

processes Xt and Yt. An advantage of information theoretic measures, as

compared to standard Granger causality, is that they are sensitive to nonlin-

ear signal properties as they do not rely on linear regression models. A limi-

tation of transfer entropies, in comparison to Granger causality, is that they

where xt are empirical data and X̄t = a0 +
∑n
`=1 a1`Xt−` are fitted data. Actual

parameters in the fitted data are obtained from the method of minimal squared errors

under additional constraint that the mean error
∑N
t (xt − X̄t) = 0.
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are by their very formulation restricted to bivariate situations. In addition,

information theoretic measures often require substantially more data than

regression methods. For a comparison of transfer entropy with other causal

measures, including various implementations of Granger causality, see e.g.,

Ref. [205]. It can be also shown that for Gaussian variables, Granger causal-

ity and transfer entropy are entirely equivalent [17].

Let us now consider two time sequences (e.g., two stock market time

series) described by stochastic random variables Xt and Yt. Let us assume

further that the time steps (e.g., data ticks) are discrete with the time step

τ and with tn = t0 + nτ where t0 is some reference time. Shannon’s TE

TY→X(m, l) is defined as [248, 280]

TY→X(m, l) = H(Xtm+1
|Xt1 , . . . , Xtm)

− H(Xtm+1
|Xt1 , . . . , Xtm , Ytm−l+1

, . . . , Ytm)

= I(Xtm+1 ;Xt1 , . . . , Xtm , Ytm−l+1
, . . . , Ytm)

− I(Xtm+1
;Xt1 , . . . , Xtm) . (2.57)

Here I(; ) denotes mutual information, cf. Eq. (1.44). In (2.57) I have

assumed that Xt and Yt are Markovian processes of order m and l, re-

spectively. The actual values m and l (characterizing a memory effects)

typically arise from numerical tests.

Let us notice that the last two lines of (2.57) can be rephrased as fol-

lows: TY→X(m, l) represents gain of information about Xtm+1
caused by

the whole history of X and Y up to time tm minus gain of information about

Xtm+1
caused by the whole history of X up to time tm. This is, however,

nothing but gain of information about Xtm+1 caused purely by the whole

history of Y up to time tm. With the definition of conditional mutual en-

tropy one can recognize that the last two lines represent the conditional

mutual entropy [cf. Eq. (1.44)], namely

TY→X(m, l) = I(Xtm+1
;Ytm−l+1

, . . . , Ytm |Xt1 , . . . , Xtm) . (2.58)

With the help of the first equality in (2.57), I can explicitly rewrite TE as

TY→X(m, l) =
∑

p(xt1 , . . . , xtm+1
, ytm−l+1

, . . . ytm)

× log2

p(xtm+1
|xt1 , . . . , xtm , ytm−l+1

, . . . , ytm)

p(xtm+1 |xt1 , . . . , xtm)

≡
∑

x∈X,y∈Y
p(xm+1, x

(m)
m , y(l)

m ) log2

p(xm+1|x(m)
m , y

(l)
m )

p(xm+1|x(m)
m )

, (2.59)
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where xti and ytj represent the discrete-valued states (alphabet) of random

variables Xti and Ytj , respectively. On the last line I used a concise notation

xm+1 = xtm+1
and y

(l)
m ≡ (ytm , . . . , ytm−l+1

) (similarly for x
(m)
m ) with m and

l denoting corresponding Markovian orders. The sum runs over all possible

states of the random variables Xt1 , . . . , Xtm+1
, Ytm−l+1

, . . . , Ytm .

A few observations related to TY→X are in order:

i) From the first line of Eq. (2.57) we see that TY→X ≥ 0. This is a conse-

quence of Gibbs inequality (see Appendix D.1). This might be restated

as saying that any extra knowledge in conditional entropy lessens our

ignorance.

ii) Since Gibbs’ inequality is saturated if and only if

p(xtm+1 |xt1 , . . . , xtm , ytm−l+1
, . . . , ytm)

p(xtm+1 |xt1 , . . . , xtm)
= 1 , (2.60)

for all states involved, TE is zero if and only if the history of Y up

to time tm has no influence on the value of Xtm+1 or, in other words,

when there is no information flow from Y to X; i.e., the Y and X time

series are independent processes.

iii) TY→X is clearly explicitly non-symmetric (directional) since it mea-

sures the degree of dependence of X on Y and not vice versa.

The definition (2.57) allows to interpret the transfer entropy TY→X as a

rating factor which quantifies a gain/loss in the risk concerning the behav-

ior of X at some future time tm+1 after we have taken into account the

historical values of a time series Y until tm, see Ref. [151].

2.3.2.3 Rényi’s transfer entropy

Rényi’s transfer entropy can be defined in much the same way as its Shan-

non’s counterpart [151, 157]. In particular, we can utilize the concept of

mutual information of order q and define the Rényi’s transfer entropy (RTE)

of order q as

T
(R)
q;Y→X(m, l) = Iq(Xtm+1 |Xt1 , . . . , Xtm)

− Iq(Xtm+1
|Xt1 , . . . , Xtm , Yt1 , . . . , Yt1)

= Iq(Xtm+1
;Yt1 , . . . , Yt1 |Xt1 , . . . , Xtm) . (2.61)
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With the help of (1.41) and (1.44) this can be written in an explicit form

as

T
(R)
q;Y→X(m, l)

=
1

1− q log2

∑
%q(xt1 , . . . , xtm)pq(ytm−l+1

, . . . , ytm |xt1 , . . . , xtm)∑
%q(xt1 , . . . , xtm+1

)pq(ytm−l+1
, . . . , ytm |xt1 , . . . , xtm+1

)

=
1

1− q log2

∑
%q(xt1 , . . . , xtm)pq(xtm+1 |xt1 , . . . , xtm)∑
%q(xt1 , . . . , ytm)pq(xtm+1 |xt1 , . . . , ytm)

≡ 1

1− q log2

∑
%q(x

(m)
m )pq(xm+1|x(m)

m )
∑
%q(x

(m)
m , y

(l)
m )pq(xm+1|x(m)

m , y
(l)
m )

. (2.62)

Here, %q is the escort distribution. It can be easily seen that in the limit

q → 1 we regain Shanonn’s transfer entropy (2.59).

A few comments related to T
(R)
q;Y→X(m, l) are now in order:

i) When the history of Y up to time tm has no influence on the value of

the random variable Xtm+1 , then from (2.62) (second line) it follows

that T
(R)
q;Y→X(m, l) = 0, which implies that no information flows from

Y to X, as it should be expected.

ii) Opposite implication does not hold (unlike in Shannon’s case), namely

T
(R)
q;Y→X = 0 does not imply independence of X and Y processes. This

is because T
(R)
q;Y→X can also be negative. The reason for this is not diffi-

cult to understand. Rényi’s entropy works with rescaled distributions,

and so it allows to address information flow between different parts of

underlying distributions in bivariate time series. For instance for, q < 1

the negativity of TRq,Y→X simply means that the knowledge of historical

values of both X and Y flattens the tail part of the anticipated distri-

bution function for the price value Xtm+1
more than historical values

of X alone would do. In other words, extra knowledge of historical

values of Y shows that there is a greater risk in the next time step of X

than one would expected by only knowing the historical data of X. In

this sense TRq;Y→X represents a rating factor which quantifies a gain or

loss in the risk concerning the behavior of X at the future time Xtm+1

after the historical values of Y until Ytm were accounted for [151]. In

other words, Rényi’s TE provides more detailed information concerning

the excess (or lack) of information in various parts of the underlying

distribution resulting from updating the distribution on the condition
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that a second time series is known. This can be particularly relevant

in the context of financial time series where the knowledge of tail-part

(or “black swan”) events such as spikes or sudden jumps bears direct

implications, e.g., in various risk-reducing formulas in portfolio theory.

iii) T
(R)
q;Y→X is again explicitly directional since it measures the degree of

dependence of X on Y and not the other way around, though in this

case we should indicate, e.g. by an arrow, whether the original risk

rate about Xtm+1
was increased or reduced by observing the historical

values of Y .

iv) In order to view T
(R)
q;Y→X as a genuine transfer entropy, one should

really include in it the whole history of Y and X up to time tm (i.e.,

all historical data that may be responsible for cross-correlations with

Xtm+1
). The history is finite only if X or/and Y processes are finite-

order Markovian processes. In particular, if X is a Markov process of

order m + 1 and Y is of order l, then T
(R)
q;Y→X(m, l) is a true transfer

entropy. Unfortunately, most dynamical systems cannot be mapped

on Markovian processes with finite-time memory. For such systems

one should consider limits m → ∞ and l → ∞. However, in practice

the finite size of any real data set hinders this limiting procedure. In

order to avoid unwanted finite-size effects, one might define the effective

transfer entropy as [151, 223]

T eff
q;Y→X(m, l) ≡ Tq;Y→X(m, l) − Tq;Yschuffled→X(m, l) . (2.63)

Effective RTE is simply a difference between two RTEs, where the

second one is computed on the shuffled Y series. Here the shuffling is

done in terms of the surrogate data technique [167]. In its essence, a

surrogate data series has the same mean, the same variance, the same

autocorrelation function, and therefore the same power spectrum as

the original series, but phase relations are destroyed. Consequently, all

the potential correlations between X an Y are removed, which implies

that TRq;Yshuffled→X should be zero. In practice, this is typically not the

case, despite the fact that there is no obvious structure in the data.

The non-zero value of TRq;Yshuffled→X must then be a consequence of the

finite data set. Definition (2.63) then simply ensures that pseudo-effects

caused by finite values of m and l are subtracted.

So, Rényi’s TE defined in (2.62) has many specific properties that are desir-

able for the quantification of an information flow between two interrelated
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stochastic systems. In particular, RTE can serve as an efficient rating fac-

tor, which quantifies a gain or loss in the risk that is inherent in the passage

from Xtm to Xtm+1 when a new information, namely historical values of a

time series Y until time tm, is taken into account. This gain/loss is param-

eterized by a single parameter, the Rényi q parameter, which serves as a

“zooming index” that emphasizes or de-emphasizes different sectors of the

underlying empirical PDF. In this way one can scan various sectors oft the

price distribution and analyze associated information flows. In particular,

the fact that one may separately scrutinize information fluxes between tails

or central-peak parts of asset price distributions simply by setting q < 1

or q > 1, respectively, can be employed, for example, by financial insti-

tutions to quickly analyze the global (across-the-border) information flows

and use them to redistribute their risk. For instance, if an American in-

vestor observes that a certain market, say the S&P500, is going down and

he/she knows that the corresponding NASDAQ effective RTE for q < 1 is

low, then he/she does not need to relocate the portfolio containing related

assets rapidly, because the influence is in this case slow. Slow portfolio relo-

cation is generally preferable, because fast relocations are always burdened

with excessive transaction costs. Let us stress that this type of conduct

could not be deduced from Shannon’s transfer entropy alone. In fact, the

effective Shannon’s TE might suggests a fast (and thus expensive) portfolio

relocation as a best strategy [151].

2.4 Information Theoretic Uncertainty Relations in Quan-

tum Mechanics

Quite unexpected but very fruitful application of Rényi entropies is in the

field of quantum-mechanical uncertainty relations (UR).

2.4.1 Uncertainty Relations in Quantum Mechanics

— a bit of history

Quantum-mechanical uncertainty relations place fundamental limits on the

accuracy with which one is able to measure the values of different physi-

cal quantities. This has profound implications not only on the microscopic

but also on the macroscopic level of physical systems. The archetypal un-

certainty relation formulated by Heisenberg in 1927 describes a trade-off

between the error of a measurement to know the value of one observable
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and the disturbance caused on another complementary observable so that

their product should be no less than a limit set by ~. Since Heisenberg’s

intuitive, physically motivated deduction of the error-disturbance uncer-

tainty relations [124], a number of methodologies trying to improve or su-

persede this result have been proposed. In fact, over the years it have

became steadily clear that the intuitiveness of Heisenberg’s version cannot

substitute mathematical rigor and it came as no surprise that the viola-

tion of the Heisenberg’s original relation was recently reported a number

of experimental groups, e.g., most recently by the Vienna group in neu-

tron spin measurements [79]. At present it is Ozawa’s universally valid

error-disturbance relation [244, 245] that represents a viable alternative to

Heisenberg’s error-disturbance relation.

Yet, already at the end of 1920s Kennard and independently Robert-

son and Schrödinger reformulated the original Heisenberg (single exper-

iment, simultaneous measurement, error-disturbance) uncertainty prin-

ciple in terms of a statistical ensemble of identically prepared experi-

ments [166, 271, 281]. Among other things, this provided a rigorous mean-

ing to Heisenberg’s imprecisions (“Ungenauigkeiten”) δx and δp as stan-

dard deviations in position and momenta, respectively, and entirely avoided

the troublesome concept of simultaneous measurement. The Robertson–

Schrödinger approach has proven to be sufficiently versatile in accom-

modating other complementary observables apart from x and p, such as

components of angular momenta, or energy and time. Because in the

above cases the variance is taken as a “measure of uncertainty”, expres-

sions of this type are also known as variance-based uncertainty relations

(VUR). Since Robertson and Schrödinger’s papers, a multitude of VURs

has been devised; examples include the Fourier-type uncertainty relations

of Bohr and Wigner [71], the fractional Fourier-type uncertainty rela-

tions of Mustard [233], mixed-states uncertainty relations [75], the angle-

angular momentum uncertainty relation of Lévy–Leblond [197] and Car-

ruthers and Nietto [53], the time-energy uncertainty relation of Mandel-

stam and Tamm [221], Luisell’s amplitude-phase uncertainty relation [203],

and Synge’s three-observable uncertainty relations [301].

2.4.2 Why do we need Information Theoretic URs?

Unfortunately, even VURs have many limitations. In fact, the essence of a

VUR is to put an upper bound to the degree of concentration of two (or

more) probability distributions, or, equivalently impose a lower bound to
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the associated uncertainties. While the variance is often a good measure of

the concentration of a given distribution, there are many situations where

this is not the case. For instance, variance as a measure of concentration

is a dubious concept in the case when a distribution contains more than

one peak (multimodal distribution). Let me illustrate this with two simple

examples [35]:

Example I: Consider two possible situations of a particle in one dimension.

First situation describes a particle with a uniform probability density in a

box of total length L, i.e.

% =

{
1/L, inside the box;

0, outside the box.

Second situation describes a particle localized with equal probability densi-

ties in two boxes each of length L/4, see Fig. 2.9.

% =

{
2/L, inside the box;

0, outside the box.

Let us now can ask in which situation (F or C) is the uncertainty in

Fig. 2.9: Two states F = flat and C = clustered.

particle’s position greater. Intuition would suggest that the uncertainty is

greater in the case F since in the case C we know more about particle’s

position (particle is not in the regions II and III). However, explicit calcu-

lation shows that ∆xF = L/
√

12 while ∆xC =
√

7/4L/
√

12.

Example II: Consider a particle in one dimension where the probability

density is constant in two regions I and II separated by a large distance
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NL (N is a large number). The region I has the size L(1 − 1/N) and the

distant region II has the size L/N (see Fig. 2.10). Probability density is:

% =





1/L, in region I;

1/L, in region II;

0, otherwise.

Note in particular that ∆x tends to infinity with increasing N even though

Fig. 2.10: Example II: ∆x ∼ (L/
√

12)
√

1 + 12N .

the probability of finding the particle in the region I tends to 1.

These two examples clearly illustrate the problem with the standard

deviation as a measure of uncertainty. It gets very high contributions from

distant regions because these enter with a large weight: namely, the distance

from the mean value.

Another troublesome feature of VURs appears in the case of finite-

dimensional Hilbert spaces, such as the Hilbert space of spin or angular

momentum. In such cases the commutator cannot be a multiple of a unit

operator [115] and hence the uncertainty product, which is bounded from

below by the (normed) mean value of the commutator can attain zero min-

imum even when one of the distributions is not absolutely localized, i.e.,

even when the value of one of the observables is not precisely known. In

such a case the uncertainty is just characterized by the lower bound of the

uncertainty product (i.e., by zero) and thus it only says that this product

is greater than zero for some states and equal to zero for others. This is,

however, true also in classical physics.

There is yet another important limitation of the variance as measure of

the concentration of a given distribution. In particular, variance diverges

in many distributions even though such distributions are sharply peaked.

Notorious examples of this are provided by heavy-tail distributions such

as Lévy [84, 196], Weibull [84] or Cauchy–Lorentz distributions [84]. For

instance, in the theory of Bright–Wigner shapes it has been known for along
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time [206] that the Cauchy–Lorentz distribution can be freely concentrated

into an arbitrarily small region by changing its scale parameter, while its

standard deviation remains very large or even infinite.

Fig. 2.11: Cauchy PDF can be concentrated into an arbitrarily small region by changing

γ, while σ might be even infinite.

2.4.3 Uncertainty relations based on Rényi entropy

From the previous account we see that there is a need to quantify quantum

unpredictability also differently. Among non-variance-based uncertainty re-

lations a particularly prominent role is played by uncertainty relations that

are conceptually rooted in information theory. In these cases the uncer-

tainty is quantified in terms of various information measures — entropies,

which often provide more stringent bound on concentrations of the proba-

bility distributions. The purpose of this section is to give a brief account of

some key information-theoretic uncertainty relations (ITUR) and present

some new results based on Rényi entropy. In particular, we will see that

the system of RE based ITUR’s allows to quantify a shape of multimodal

distributions and make sense even for heavy tailed distributions.

2.4.3.1 Discrete probability case

Mathematical underpinning of most uncertainty relations is in theory of

inequalities. For instance, the celebrated Robertson–Schrödinger VUR is

based on the Cauchy–Schwarz inequality. Similarly, the Riesz–Thorin in-
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equality (also known as the Riesz–Thorin interpolation theorem) [118] al-

lows to prove the following Rényi’s ITUR for discrete PDF’s [146]:

Theorem 2.3. Let x = (x1, . . . , xn) ∈ Cn. Suppose that (Lx)j =∑
i aijxj ≡ (Ax)j and that∑

j

|(Lx)j |2 ≤
∑

j

|xi|2 , for all xi .

Define c ≡ maxi,j |aij |. If r ∈ [−1/2, 0] and t = −r/(2r + 1) and the

probability distributions P(1) and P(2) are related by Lx(1) = x(2) where

|xi| ≡ ξi =
√
pi, then

I1+t(P(2)) + I1+r(P(1)) ≥ −2 log2 c . (2.64)

The proof of this theorem is relegated to Appendix E. Let me now

discuss some implications of the inequality (2.64), more detailed discussion

can be found in Ref. [146].

We might first observe that since information measures Iq(P) are al-

ways non-negative (for all q), the inequality (2.64) can represent a genuine

uncertainty relation only when c < 1. On the other hand, for A ∈ SO(n)

or SU(n) (i.e. for most physically relevant situations) one always has that

c ≤ 1. This is because for such A’s

c = max
i,j
|aik| = ||A||max ≤ ||A||2 =

√
λmax(A†A) = 1 . (2.65)

The last identity results from the fact5 that all of eigenvalues of A ∈ SO(n)

or SU(n) have absolute value 1. Rényi’s ITUR (2.64) was originally found

by Kraus [184] and Maassen [207].

In the particular case when r = 0 (and thus t = 0) we get the Shannon

entropy based ITUR

H(P(2)) + H(P(1)) ≥ −2 log2 c . (2.66)

A weaker version of this Shannon’s ITUR was also earlier proposed by

Deutsch [69] and Bialynicky-Birula [36].

Let me now illustrate that the ITUR’s (2.64) can provide more stringent

bound on concentrations of PDF’s than VUR’s. To this end let |φ〉 be

the two-dimensional state of a spin- 1
2 particle, and let Ŝx and Ŝz be spin

components in orthogonal directions:

|Sx〉 ≡
( |Sx; +〉
|Sx;−〉

)
, |Sz〉 ≡

( |Sz; +〉
|Sz;−〉

)
. (2.67)

5One can be even more specific. Since for any matrix A ∈ Rn×n the following inequality
holds ||A||max ≤ ||A||2 ≤ n||A||max, which implies that for A ∈ SO(n) we have that

c ∈ [1/n, 1].
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Because ( |Sx; +〉
|Sx;−〉

)
=

1√
2

(
1 1

−1 1

)( |Sz; +〉
|Sz;−〉

)
, (2.68)

we have that c = 1/
√

2.

Let now P = (p, (1 − p)) = (|〈Sx; +|φ〉|2, |〈Sx;−|φ〉|2). Question now

stands how this restricts Q = (q, (1− q)) = (|〈Sz; +|φ〉|2, |〈Sz;−|φ〉|2)

In case of Shannon’s ITUR we have

H(P) + H(Q) ≥ − log2
1
2 = 1 , (2.69)

which can be equivalently phrased in the form

pp(1− p)1−p ≤ 1
2 q
−q(1− q)q−1 . (2.70)

A graphical solution of this inequality is depicted at Fig. 2.12.

0.2 0.4 0.6 0.8 1

q

0.5

0.6

0.7

0.8

0.9

p = 0.9 - > q = 0.879

p = 0.8 - > q = 0.951

p = 0.7 - > q = 0.983

p = 0.6 - > q = 0.997

p = 0.5 - > q = 1

shape of q- function

Fig. 2.12: Graphical representation of the inequality (2.70). For fixed value of p
the inequality is fulfilled for all q’s that lie inside the q-function, i.e., function y(q) =
1
2
q−q(1− q)q−1.

y(q)

Along similar lines I can employ Rényi’s ITUR. The most stringent

relation between p and q is provided via Rényi’s ITUR

I∞(P) + I1/2(Q) ≥ −2 log2 c = 1 , (2.71)

which is equivalent to
√
q
√

1− q + 1/2 ≥ p . (2.72)

Again, one can seek for the solution graphically, see Fig. 2.13.

The comparison with the ordinary Schrödinger–Robertson’s VUR, can

also be made easily. In fact, we have

〈(4Sx)2〉φ〈(4Sz)2〉φ ≥
~2

4
|〈Sy〉φ|2 , (2.73)
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0.2 0.4 0.6 0.8 1

q

0.5

0.6

0.7

0.8

0.9

p = 0.9 - > q = 0.8

p = 0.8 - > q = 0.9

p = 0.7 - > q = 0.95

p = 0.6 - > q = 0.99

p = 0.5 - > q = 1

shape of q- function

Fig. 2.13: Graphical representation of the inequality (2.72). For fixed value of p

the inequality is fulfilled for all q’s that lie inside the q-function, i.e., function y(q) =√
q
√

1− q + 1/2.

y(q)

which can be equivalently rewritten as

p(1− p) ≥ 1
4 sin2(ϕ+ − ϕ−) , (2.74)

where the phase ϕ± is defined as

eiϕ± ≡ 〈φ|Sz;±〉
|〈φ|Sz;±〉|

. (2.75)

Note, that by symmetry the VUR inequality can also be equally written as

q(1− q) ≥ 1
4 sin2(ϕ̃+ − ϕ̃−) , (2.76)

with

eiϕ̃± ≡ 〈φ|Sx;±〉
|〈φ|Sx;±〉| . (2.77)

From (2.73) and (2.76) we see that the VUR does not pose any strong

restriction between P and Q. Since the phase factors ϕ± (or ϕ̃±) do not

enter the definition of Q (or P), then for a fixed (but otherwise arbitrary) q

the VUR (2.73) can be in principle fulfilled by any p ∈ [0.5, 1]. Of course, if

the relative phase is known the restriction between P and Q is less trivial.

On the other hand, the ITURs discussed above are far more specific in their

constrains on values of P andQ, see Tab. 2.2. From the table we see that for

given P, Rényi’s ITUR considered improves on Shannon’s ITUR. Indeed,

for instance, the marginal case P = (0.8, 0.2) and Q = (0.951, 0.049) that is

allowed by Shannon’s ITUR explicitly violates Rényi’s ITUR and hence it

cannot be realized (ITURs represent necessary conditions). Both Shannon’s

ITUR and Rényi’s ITUR improve on VUR — unless some extra information



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

132 Generalized statistics and its applications

p VUR q ∈ S-ITUR q ∈ R-ITUR q ∈
0.5 [0.067, 0.933] [0, 1] [0, 1]

0.6 [0.067, 0.933] [0.003, 0.997] [0.010, 0.990]

0.7 [0.067, 0.933] [0.017, 0.983] [0.042, 0.958]

0.8 [0.067, 0.933] [0.049, 0.951] [0.1, 0.9]

0.9 [0.067, 0.933] [0.121, 0.879] [0.2, 0.8]

Table 2.2: Comparison of three uncertainty relations: variance-based uncertainty rela-

tion (VUR) with ϕ̃+− ϕ̃− = π/6, Shannon’s information uncertainty relation (S-ITUR)

and Rényi’s information uncertainty relation (R-ITUR) for different values of p. In the
respective columns one can see the peakedness of the distribution Q = (q, (1− q)).

about the relative wave-functions phase is provided. In Tab. 2.2 we find

that when the relative phase is known, e.g., ϕ̃+− ϕ̃− = π/6, Rényi’s ITUR

still improves on VUR for values p = 0.9 and p = 0.8 while Shannon’s

ITUR improves over VUR only for p = 0.9.

In its essence the above ITURs represent non-linear constraining rela-

tionships between two distributions. Rather than trying to find the best

set of parameters in URs that can to put a better upper bound to the de-

gree of concentration of the distributions involved, I prefer to view Rényian

ITURs as an infinite (one parameter) class of constraining relations that

can be equivalently understood as constraining relations among higher-

order moments. So, by their very formulations ITURs go beyond VUR. I

will illustrate this point in more detail in the following section

2.4.3.2 Continuous probability case

Particularly important class of ITURs for continuous probabilities (or

PDFs) are Fourier-transform based entropic uncertainty relations. The key

inequality that is used in this context is based on the following Beckner–

Babebko’s theorem [10, 27]:

Theorem 2.4 (Beckner–Babebko’s theorem). Let

f (2)(x) ≡ f̂ (1)(x) =

∫

RD
e2πix.y f (1)(y) dy ,
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then for p ∈ [1, 2] we have

||f̂ ||p′ ≤
|pD/2|1/p
|(p′)D/2|1/p′ ||f ||p , (2.78)

or, equivalently

|(p′)D/2|1/p′ ||f (2)||p′ ≤ |pD/2|1/p||f (1)||p .
Here, p and p′ are the usual Hölder conjugates (i.e., p′ ∈ [2,∞)). For any

X ∈ `p(RD) the p-norm ||X||p is defined as

||X||p =

(∫

RD
|X(y)|p dy

)1/p

.

Due to symmetricity of the Fourier transform also the reverse inequality

holds:

||f ||p′ ≤
|pD/2|1/p
|(p′)D/2|1/p′ ||f̂ ||p . (2.79)

In connection with the Beckner–Babenko theorem it is important to

mention that Lieb proved in Ref. [199] that the inequalities (2.78)-(2.79)

are saturated (for all p) only for Gaussian functions. I postpone the proof

of the Beckner–Babebko’s theorem to Appendix F.

To proceed, I first introduce the concept of Rényi’s entropy power

(REP). This is defined as the solution of the equation [146, 158]

Iq (X ) = Iq
(√

NR
q (X ) · ZG

)
, (2.80)

where {ZG} represents a Gaussian random vector with zero mean and unit

covariance matrix. So, NR
p (X ) denotes the variance of a would be Gaussian

distribution that has the same Rényi information content as the random

vector {Xi}. Expression (2.80) was studied in [95, 146, 158] where it was

shown that the only class of solutions of (2.80) is

NR
q (X ) =

1

2π
p−q

′/q exp

(
2

D
Iq(X )

)
, (2.81)

with 1/p + 1/p′ = 1 and p ∈ R+. In addition, when p → 1+ one has

NR
p (X ) → N(X ), where N(X ) is Shannon’s entropy power introduced by

Shannon himself in Ref. [286]. In this latter case, one can use the asymptotic

equipartition property [62, 153] to identify N(X ) with “typical size” of a

state set, which in the present context is the effective support set size for a

random vector. In passing, we may observe that from (2.81) it follows that

NR
q (σZG) = σ2, i.e. for Gaussian processes the REP is simply the variance
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σ2. In the case where ZKG represents a random Gaussian vector of zero

mean and covariance matrix Kij , then NR
q (ZKG ) = [det(Kij)]

1/D ≡ |K|1/D.

It should be also noted that the form of the REP expressed in (2.81) is

not universally accepted version. In a number of works, it is defined merely

as an exponent of RE, see, e.g., [67, 257]. My motivation for the form

(2.81) is twofold: first, it has a clear interpretation in terms of variances of

Gaussian distributions and, second, it leads to simpler formulas, cf. e.g.,

Eq. (2.88).

The passage to quantum mechanical UR is now quite straightforward.

First, we realize that, in quantum mechanics, the Fourier conjugate wave

functions are related via two reciprocal relations

ψ(x) =

∫

RD
eip·x/~ ψ̂(p)

dp

(2π~)D/2
,

ψ̂(p) =

∫

RD
e−ip·x/~ ψ(x)

dx

(2π~)D/2
. (2.82)

Plancherel (or Riesz–Fischer) equality then implies that ||ψ||2 = ||ψ̂||2 = 1.

Let me define new functions, namely

f (2)(x) = (2π~)D/4ψ(
√

2π~x) ,

f (1)(p) = (2π~)D/4ψ̂(
√

2π~p) . (2.83)

The factor (2π~)D/4 ensures that also the new functions are normalized (in

sense of || . . . ||2) to unity. With these we will have the same structure of the

Fourier transform as in the Beckner–Babenko inequality. Beckner–Babenko

inequality can be then rewritten as

[(
q′

2π~

)D]1/q′

|||ψ|2||q′/2 ≤
[( q

2π~

)D]1/q

|||ψ̂|2||q/2 . (2.84)

This is equivalent to

[(
q′

2π~

)D]1/q′

exp

[
2(1− q′/2)

q′
Iq′/2

(
|ψ|2

)]

≤
[( q

2π~

)D]1/q

exp

[
2(1− q/2)

q
Iq/2

(
|ψ̂|2

)]
. (2.85)

Now I take power q/(D(1 − q/2)) of both left and right side and use the
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fact that 2/q − 1 = 1− 2/q′. This gives

( q

2π~

)1/(1−q/2)

exp

[
2

D
Iq/2

(
|ψ̂|2

)]

×
(
q′

2π~

)1/(1−q′/2)

exp

[
2

D
Iq′/2

(
|ψ|2

)]
≥ 1 . (2.86)

This is equal to (use that for Hölder double one has 1/(1 − q/2) + 1/(1 −
q′/2) = 2)

1

2π

(q
2

)1/(1−q/2)

exp

[
2

D
Iq/2

(
|ψ̂|2

)]

︸ ︷︷ ︸
NR
q/2

(|ψ̂|2)

× 1

2π

(
q′

2

)1/(1−q′/2)

exp

[
2

D
Iq′/2

(
|ψ|2

)]

︸ ︷︷ ︸
NR
q′/2

(|ψ|2)

≥ ~2

4
. (2.87)

Hence REP-based Beckner–Babenko inequality acquires in the QM setting

a simple form

NR
q/2(|ψ̂|2)NR

q′/2(|ψ|2) ≥ ~2

4
. (2.88)

This represents an infinite tower of mutually distinct (generally irreducible)

REP-URs [158].

In connection with (2.88) one might observe that the conventional

Robertson–Schrödinger URs [271, 281]) and Shannon differential entropy

based URs (e.g., Hirschman or Bia lynicki-Birula URs [36, 128]) naturally

appear as special cases in this hierarchy. Indeed, when X is a random

Gaussian vector, then Y is also Gaussian and (2.88) reduces to

|KX |1/D|KY |1/D =
~2

4
. (2.89)

The equality follows from the saturation of the Beckner–Babenko inequality

(2.84) by Gaussian functions.

By assuming that a PDF has a finite covariance matrix (KX )ij then

important inequalities hold, namely

N(X ) ≤ |KX |1/D ≤ σ2
X , (2.90)

with equality in the first inequality if and only if X is a Gaussian vector, and

in the second if and only if X has covariance matrix that is proportional to
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the identity matrix. The proof of (2.90) is based on the non-negativity of the

Kullback–Leibler divergence and can be found in Appendix D. Inequality

(2.88) together with (2.90) immediately gives

σ2
Xσ

2
Y ≥ |KX |1/D|KY |1/D ≥ N(X )N(Y) ≥ ~2

4
, (2.91)

which saturates only for Gaussian (respective white) random vectors X
and Y. Note, that when (KX )ij and (KY)ij exist then (2.91) automatically

implies the conventional Robertson–Schrödinger variance-based UR.

Second, the information–theoretic entropies enter quantum information

theory typically in three distinct ways: a) as a measure of the quantum in-

formation content (e.g., how many qubits are needed to encode the message

without loss of information), b) as a measure of the classical information

content (e.g., amount of information in bits that can be recovered from the

quantum system) and c) to quantify the entanglement of pure and mixed

bipartite quantum states. Logarithms in base 2 are then typically used be-

cause in quantum information, because one quantifies entropy in bits and

qubits (rather than nats). This in turn also modifies Rényi’s EP as

1

2π
p−p

′/pe(
2
D ··· ) 7→ 1

2π
p−p

′/p 2( 2
D ··· ) . (2.92)

Third, though the most prominent example of the Fourier transform (2.82)

is that between configuration and momentum space wave functions, one can

use for the purpose of the ITUR (2.92) also other Fourier transform duals,

such as the angular momentum and angle or conjugate quandratures [158].

2.4.3.3 Information distribution

Since the variance-based UR is implied by the Shannon EPUR alone, a nat-

ural question arises; in what sense is the general set of inequalities (2.88)

more informative than the special case q = q′ = 2? To aid our intu-

ition and, furthermore, to show the conceptual underpinning for REP-URs

(2.88) I first start with the concept of information distributions (or better

information PDF).

Let F(x) be the PDF for the random variable X . I define the informa-

tion random variable iX (X ) so that iX (x) = log2 1/F(x). In other word

iX (x) represents the information in x with respect to F(x). In this con-

nection it is expedient to introduce the cumulative distribution function for

iX (X ) as

℘(y) =

∫ y

−∞
d℘(iX ) =

∫

RD
F(x)θ(log2 F(x) + y)dx . (2.93)
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Such ℘(y) thus represents the probability that the random variable iX (X ) is

equal or less than y. I have denoted the corresponding probability measure

as d℘(iX ). Taking the Laplace transform of both sides of (2.93), we get

L{℘}(s) =

∫

RD
F(x)

es log2 F(x)

s
dx =

E
[
es log2 F

]

s
, (2.94)

where E [· · · ] denotes the mean value with respect to F . By assuming that

℘(x) is smooth then the PDF associated with iX (X ) — so-called informa-

tion PDF, is

g(y) =
d℘(y)

dy
= L−1

{
E
[
es log2 F

]}
(y) . (2.95)

By setting s = (p− 1) log 2 I get

L{g}(s = (p− 1) log 2) = E
[
2(1−p)iX

]
. (2.96)

The mean is taken here with respect to the PDF g. Eq.(2.96) can be written

also explicitly as
∫

RD
dxFp(x) =

∫

R
g(y)2(1−p)ydy . (2.97)

Note that when Fp is integrable for p ∈ [1, 2] then (2.97) ensures that the

moment-generating function for g(x) PDF exists. So, in particular, the

moment-generating function exists when F(x) represents Lévy α-stable

distributions, including the heavy-tailed stable distributions (i.e, PDFs

with the Lévy stability parameter α ∈ (0, 2]). The same holds for F̂ and

p′ ∈ [2,∞) due to the Beckner–Babenko theorem [10, 27, 146] (cf. also

Appendix F).

2.4.3.4 Reconstruction theorem

Since L{g}(s) from (2.96) is the moment-generating function of the random

variable iX (X ) one can find all moments of the PDF g(x) (if they exist) by

taking the derivatives of L{g} with respect to s. From conceptual reasons it

is often more convenient to work with cumulants rather than moments. Us-

ing the fact that the cumulant-generating function is simply the logarithm

of the moment-generating function, we see from (2.97) that the differential

RE is a reparametrized version of the cumulant generating function of the

information random variable iX (X ). In fact, from (2.96) I can write

Ip(X ) =
1

(1− p) log2 E
[
2(1−p)iX

]
. (2.98)
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To understand the meaning of REP-URs I begin with the cumulant expan-

sion (2.98), i.e.

pI1−p(X ) = log2 e

∞∑

n=1

κn(X )

n!

(
p

log2 e

)n
, (2.99)

where κn(X ) ≡ κn(iX ) denotes the n-th cumulant of the information ran-

dom variable iX (X ) (in units of bitsn). Let us note that

κ1(X ) = E [iX (X )] = H(X ) ,

κ2(X ) = E
[
iX (X )2

]
− (E [iX (X )])2 , (2.100)

i.e., they represent the entropy and varentropy, respectively. By employing

the identity

I1−p(X ) =
D

2
log2

[
2π(1− p)−1/pN1−p(X )

]
, (2.101)

I can rewrite (2.99) in the form

log2 [N1−p(X )]

= log2

[
(1− p)1/p

2π

]
+

2

D

∞∑

n=1

κn(X )

n!

(
p

log2 e

)n−1

. (2.102)

I turn, from (2.102) one can see that

κn(X ) =
nD

2
(log2 e)

n−1 d
n−1 log2 [N1−p(X )]

dpn−1

∣∣∣∣
p=0

+
D

2
(log2 e)

n [(n− 1)! + δ1n log 2π] , (2.103)

(here δij is the Kronecker delta) which, in terms of the Grünwald–Letnikov

derivative formula [275], allows us to write

κn(X ) = lim
∆→0

nD

2

(log2 e)
n

∆n−1

n−1∑

k=0

(−1)k
(
n− 1

k

)
log [N1+k∆(X )]

+
D

2
(log2 e)

n [(n− 1)! + δ1n log 2π] . (2.104)

So, in order to determine the first m cumulants of iX (X ) we need to know

all N1, N1+∆, . . . , N1+(m−1)∆ entropy powers. In practice ∆ corresponds

to a characteristic resolution scale for the entropy index which is typically

of the order 10−2.

When all cumulants exist then the problem of recovering the underlying

PDF for iX (X ) is equivalent to the Stieltjes moment problem [260]. In this
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connection, there are a number of ways to proceed; the PDF in question can

be reconstructed e.g., in terms of sums involving orthogonal polynomials

(e.g., the Gram–Charlier A series or the Edgeworth series [327]), the inverse

Mellin transform [336] or via various maximum entropy techniques [303].

Pertaining to this, the theorem of Marcinkiewicz [204] implies that there are

no PDFs for which κm = κm+1 = . . . = 0 for some m ≥ 3. In other words,

the cumulant generating function cannot be a finite-order polynomial of

degree greater than 2. The important exceptions, and indeed the only

exceptions to Marcinkiewicz’s theorem, are the Gaussian PDFs which can

have the first two cumulants nontrivial and κ3 = κ4 = . . . = 0. Thus,

apart from the special case of Gaussian PDFs where only N1 and N1+∆

are needed, one needs to work with as many entropy powers N1+k∆, k ∈ N
as possible to receive as much information as possible about the structure

of the underlying PDF. In theory, the whole infinite tower of REP-URs

would be required to uniquely specify a system’s information PDF. From

(2.102) and (2.104) we see that knowledge of N1 corresponds to κ1(X ) =

H(X ) while N1+∆ further determines κ2, i.e. the varentropy. Since N1 is

involved [through (2.104)] in the determination of all cumulants, it is the

most important entropy power in the tower.

I should stress, that the focus of the presented reconstruction theorem

is on cumulants κn which can be directly used for a shape estimation of

g(x) but not F(x). However, by knowing g(y) we have a complete “infor-

mation scan” of F(x). Such an information scan is, however, not unique,

indeed two PDFs that are rearrangements of each other — equimeasur-

able PDFs have identical both ℘(y) and g(y). Even though equimeasurable

PDFs cannot be distinguished via their entropy powers, they can be, as a

rule, distinguished via their respective momentum-space PDFs and asso-

ciated entropy powers. So, the information scan has a tomographic flavor

to it. It should be noted that from the multi-peak structure of g(y) one

can determine the number and height of the stationary points (for moro

details see [158]). These are invariant characteristics of a given family of

equimeasurable PDFs.

2.4.3.5 Information scan of the state PDF

Let me now briefly illustrate how one can in practice reconstruct the infor-

mation distribution g(x) from REPs. I will do this by using the (general-

ized) Gram–Charlier A expansion [327]. At the same time I should stress

that other — often more efficient methods — are also available [327].
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Let κn be cumulants obtained from entropy powers and let G(x) be

some reference PDF whose cumulants are γk. The information PDF g(x)

can be then written as [327]

g(x) = exp

[ ∞∑

k=1

(κk − γk)(−1)k
(dk/dxk)

k!

]
G(x) . (2.105)

With the hindsight I choose the reference PDF G(x) to be a shifted gamma

PDF, i.e.

G(x) ≡ G(x|a, α, β) =
e−(x−a)/β(x− a)α−1

βαΓ[α]
, (2.106)

with a < x <∞, β > 0, α > 0. In doing so, I have implicitly assumed that

the F(y) PDF is in the first approximation equimeasurable with the Gaus-

sian PDF [cf. Eqs. (2.93) and (2.95)]. To reach a corresponding matching

we should choose a = log2(2πσ2)/2, α = 1/2 and β = log2 e. Using the fact

that [246]

(β)k+1/2 d
k G(x|a, 1/2, β)

k! dxk

=

(
x− a
β

)−k
L

(−1/2−k)
k

(
x− a
β

)
G(x|a, 1/2, β) , (2.107)

(where Lδk is an associated Laguerre polynomial of order k with parameter

δ) and given that κ1 = γ1 = αβ + a = log2(2πσ2e)/2, and γk = αβk =

(log2 e)
k/2 for k > 1 I can write (2.105) as

g(x) = G(x|a, 1/2, β)

[
1 +

(κ2 − γ2)

β1/2 (x− a)
2 L

(−3/2)
2

(
x− a
β

)

− (κ3 − γ3)

β1/2 (x− a)
3 L

(−7/2)
3

(
x− a
β

)
+ · · ·

]
. (2.108)

If needed, one can use a relationship between the moments and the cumu-

lants (Faà di Bruno’s formula [204]) to recast the expansion (2.108) into

more familiar language. For the Gram–Charlier A expansion various formal

convergence criteria exist (see, e.g., [327]). In particular, the expansion for

nearly Gaussian equimeasurable PDFs F(y) converges quite rapidly and

the series can be truncated fairly quickly. Since in this case one needs fewer

κk’s in order to determine the information PDF g(x), only EPs in the small

neighborhood of the index 1 will be needed. On the other hand, the further

the F(y) is from Gaussian (e.g., heavy-tailed PDFs) the higher orders of

κk will be required to determine g(x), and hence a wider neighborhood of

the index 1 will be needed for EPs. Some explicit information scans based

on formula (2.108) were presented in Refs. [147, 158].
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2.4.3.6 Note on Tsallis entropy powers

Let me now briefly comment on the entropy powers associated with Tsallis

differential entropy, i.e. the differential entropy of the form [314]

Sq(F) =
1

(1− q)

[∫

RD
(Fq(x)−F(x)) dx

]
, (2.109)

where, the PDF F(x) is associated with a D-dimensional random vector

{Xi}.
By analogy with the RE case, I define the Tsallis entropy power NT

q (X )

as the solution of the equation [cf. Eq. (2.80)]

Sq (X ) = STq
(√

NT
q (X ) · ZG

)
. (2.110)

NT
q can be easily derived from the scaling property

Sq(aX ) = Sq(X ) ⊕q lnq |a|D , (2.111)

where a ∈ R and the q-deformed sum and q-logarithm are defined in (1.62)

and (1.58), respectively. Relation (2.111) results from the fact that

Sq(aX ) =
1

1− q

[∫

RD
dDy

(∫

RD
dDx δ(y − ax)F(x)

)q
− 1

]

=
1

1− q

[
|a|D(1−q)

∫

RD
dDyFq(y)− 1

]

= |a|D(1−q) Sq(X ) + lnq |a|D = Sq(X ) ⊕q lnq |a|D . (2.112)

I will further use the simple result

Sq(ZG) = lnq(2πq
q′/q)D/2 . (2.113)

Here q and q′ is a Hölder double, i.e. 1/q + 1/q′ = 1 with q, q′ ∈ R+. If I

now combine (2.110)-(2.113) I obtain

Sq(X ) = lnq(2πq
q′/q)D/2 ⊕q lnq(N

T
q )D/2

= lnq(2πq
q′/qNT

q )D/2 . (2.114)

This directly gives

NT
q (X ) =

1

2π
q−q

′/q
[
expq (Sq(X ))

]2/D

=
1

2π
q−q

′/q exp1−(1−q)D/2

(
2

D
Sq(X )

)
. (2.115)
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In addition, when q → 1+ one has

lim
q→1

NT
q (X ) =

1

2πe
exp

(
2

D
H(X )

)
= N(X ) , (2.116)

where N(X ) is the conventional Shannon entropy power (D.11).

In connection with Tsallis EP one might notice that Rényi’s EP (con-

sidering RE in nats) can be re-written as

Nq(X ) =
1

2π
q−q

′/q exp

(
2

D
Iq(X )

)

=
1

2π
q−q

′/q

(∫
dDxFq(x)

)2/(D(1−q))

=
1

2π
q−q

′/q

[
e
STq (X )
q

]2/D

= NT
q (X ) . (2.117)

Here I have used
(∫

dDxFq(x)

)1/(1−q)
=
[
(1− q)STq (X ) + 1

]1/(1−q)

= e
STq (X )
q . (2.118)

So, we have obtained that Rényi and Tsallis EPs coincide with each other.

Consequently, Rényi’s EPI (2.88) can be equivalently written in the form

NT
p/2(X )NT

q/2(Y) ≥ ~2

4
. (2.119)

Though URs (2.119) are quite interesting from a mathematical point of

view, it is, however, not clear how they could be practically utilized in the

estimation theory as there is no obvious operational meaning associated

with Tsallis entropy (e.g., there is no coding theorem for Tsallis entropy).

On the other hand, Tsallis entropy is important concept in the description

of entanglement [328]. For instance, Tsallis entropy of order 2 (also known

as linear entropy) directly quantifies state purity [28].
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Some useful relations

D.1 Gibbs inequality and mutual information

Gibbs’ inequality is a statement in information theory about Shannon’s

entropy of a discrete probability distribution. The essence of the inequality

is that the mutual information between X and Y is non-negative. Let me

recall first that mutual information between two random variables X and

Y is defined as:

I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)

=
∑

x ∈ X, y ∈ Y
p(x, y) log2

p(x, y)

p(x)q(y)
. (D.1)

Gibbs’ inequality states that I(X;Y ) ≥ 0 and proof of this is based on

Jensen’s inequality for concave functions. In particular, one has that for a

random variable X 〈log2X〉 ≤ log2〈X〉 with equality iff all states of X are

identical, i.e., x1 = x2 = . . . = xm.

Proof of Gibbs inequality:

I(X;Y ) = −
∑

x ∈ X, y ∈ Y
p(x, y) log2

p(x)q(y)

p(x, y)

≥ − log2


 ∑

x ∈ X, y ∈ Y
p(x)q(y)


 = log2 1 = 0 . (D.2)

This implies that H(X) ≥ H(X|Y ) with equality iff p(x, y) = p(x)q(y)

for all x ∈ X and y ∈ Y , i.e. when the two random variables are

independent. 2

235
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In thermodynamical framework Gibbs’ inequality represents a particular

variant of the 2nd law of thermodynamics. This can be understood in the

sense that in the course of its evolution a large system loses memory of its

boundary conditions (represented here by the random variable Y ), e.g., due

to chaotic behavior of its parts, and thus inevitably increases its entropy.

D.2 Gibbs inequality and relative entropy

Mutual information is a specific realization of relative entropy (or the

Kullback–Leibler divergence in Shannon’s framework) from the product

of the marginal distributions, pX · pY , to the joint distribution p(X,Y ). In

particular one has the relation

I(X;Y ) ≡ I1(X;Y ) = DKL(p(X,Y )||pX · pY ) . (D.3)

Gibbs inequality is often more generally formulated in terms of relative

entropies in which case it simply states that relative entropy is always non-

negative. To see how this comes about let us take X to be random variable

with two possible distributions pX = p(x) (known as reference or prior

distribution) and qX = q(x) (known as updated or posterior distribution).

The relative entropy, or equivalently gain of information when replacing

pX by qX , is in Shannon’s case

I1(qX ||pX) = DKL(qX ||pX) =
∑

x ∈ X
q(x) log2

q(x)

p(x)

≥ − log2

∑

x ∈ X
p(x) = 0 , (D.4)

where the inequality follows from Jensen’s inequality for the concave func-

tion log2 x. Clearly, the relative entropy is zero iff pX = qX . Since relative

entropy represents the information gained by updating from pX to qX , zero

value of relative entropy means that no information is gained when the

updating distribution is the same as the reference one.

It is quite interesting to note that the relative Rényi entropy (i.e., rela-

tive entropy associated with information measure of the order q (q 6= 1)) is
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also non-negative. Indeed, I can write

Iq(qX ||pX) =
1

q − 1
log2

∑

x ∈ X

(
q(x)q

p(x)q−1

)

=
1

q − 1
log2

∑

x ∈ X
q(x)

(
q(x)

p(x)

)q−1

≥ 1

q − 1

∑

x ∈ X
q(x) log2

(
q(x)

p(x)

)q−1

= DKL(qX ||pX) ≥ 0 . (D.5)

Here in the first inequality I have applied Jensen’s inequality to the con-

cave function log2 x. I could alternatively apply Jensen’s inequality to the

function xq which is convex for q > 1 and concave if 0 < q < 1. In the

second inequality I have used the result (D.4). The equality in (D.5) holds

iff p(x) = q(x). Note that in the limit q → 1 the relative Rényi entropy

reduces to the Kullback–Leibler divergence.

In passing we can observe that the relative entropy remains well-defined

even for continuous distributions, and furthermore is invariant under pa-

rameter transformations. Since Jensen’s inequality is valid also for generic

average values the above Gibbs’ inequality (D.5) (and similarly (D.2)) re-

mains valid for continuous distributions and equals to zero iff pX = qX
almost everywhere.

D.3 Mutual information vs. relative entropy

While in Shannon’s case we have the relation between mutual information

and relative entropy given by the identity

I1(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)

= DKL(p(X,Y )||pX · pY )

=
∑

x ∈ X, y ∈ Y
p(x, y) log2

p(x, y)

p(x)q(y)
, (D.6)
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no similar relation exists for information measures of the order q (q 6= 1).

Indeed, in such a case we have

Iq(X;Y ) = Iq(X) − Iq(X|Y ) = Iq(Y ) − Iq(Y |X)

=
1

q − 1
log2

∑
x ∈ X, y ∈ Y p

q(x, y)∑
x ∈ X, y ∈ Y q

q(x)pq(y)

6= Iq(p(X,Y )||pX · pY )

=
1

q − 1
log2

∑

x ∈ X, y ∈ Y

pq(x, y)

[q(x)p(y)]q−1
. (D.7)

The later fact has two important consequences: a) while Iq(p(X,Y )||pX ·pY )

is always non-negative due to Gibbs’ inequality, Iq(X;Y ) can be negative

and b) while Iq(p(X,Y )||pX · pY ) = 0 implies that p(X,Y ) = pX · pY (i.e. X

and Y are independent), Iq(X;Y ) = 0 does not imply that X and Y are

independent (though if they are independent Iq(X;Y ) is clearly zero). We

might, however, observe that

lim
q→1

Iq(X;Y ) = lim
q→1

Iq(p(X,Y )||pX · pY ) = DKL(p(X,Y )||pX · pY ) . (D.8)

Above dissimilarity between mutual information and relative entropy in the

Rényi entropy case is reason why Rényi transfer entropy (cf. Chapter 2.3.2)

is so different in comparison with its Shannon’s counterpart.

D.4 Proof of Eq. (2.90)

In this proof I will loosely follow Refs. [146, 158]. Let me assume that a ran-

dom D-dimension vector X has a finite covariance. The non-Gaussianness

ofX can be quantified via Shannon’s relative entropy (i.e., Kullback–Leibler

divergence) with respect to a Gaussian random vector ZKG with identical

second moments6. In other words, I wish to evaluate a gain of information

when replacing the Gaussian prior distribution with non-Gaussian poste-

rior distribution. The ensuing relative entropy (measured in nats) can be

written as

I1(X||ZKG ) ≡ I1(qX ||pG,X) =
∑

x ∈ X
q(x) log

q(x)

pG(x)

= H(ZKG ) − H(X) . (D.9)
6It is implicitly assumed that first moments of both distributions are the same and equal

to zero. In case when the mean of X is non-zero, one must work with correspondingly

shifted Gaussian random vector.
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Here

pG(x) = (2π)−D/2|K|−1/2 exp

(
−1

2
xiK

−1
ij xj

)
, (D.10)

and H(ZKG ) = 1
2 log

[
(2πe)

D |K|
]
. So, by using the formula for entropy

power (2.81) I get

N(X) ≡ N1(X) =
1

2πe
exp

(
2

D
H(X)

)

=
1

2πe
exp

(
2

D
H(ZKG )

)
exp

(
− 2

D
I1(X||ZKG )

)

≤ 1

2πe
exp

(
2

D
H(ZKG )

)
= |K|1/D . (D.11)

I can further use the fact that

log(detA) = Tr(logA) , (D.12)

which is certainly valid for any diagonalizable matrix A, and more generally

for all matrices since diagonalizable matrices are dense. With this I can

write

log |K|1/D =

D∑

i=1

[
1

D
log(K)ii

]

≤ log [Tr(Kij)/D] = log σ2 , (D.13)

where σ2 is the variance per component. The inequality follows from

Jensen’s inequality for the logarithm. Note that (D.13) directly implies

that |K|1/D ≤ σ2. The equality in (D.11) is saturated iff X is a Gaussian

vector and the inequality in (D.13) is saturated iff the covariance matrix

Kij is proportional to the identity matrix. This completes the proof of

Eq. (2.90).



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

Appendix E

Riesz–Thorin inequality

To prove the ITUR (2.64) I need to prove a particular variant of the Riesz–

Thorin inequality [118, 268, 306] upon which my considerations are based.

For this purpose I first state the Riesz convexity theorem.

Theorem E.5 (Riesz convexity theorem). Let x = (x1, . . . , xn) ∈ Cn
and L be a linear operator such that (Lx)j =

∑
i aijxj. Let, in addition,

Mαβ be the least number “k” satisfying

||Lx||1/(1−β) ≤ k||x||1/α ,

where ||x||p = (
∑
i |xi|p)

1/p
. Then, log(Mαβ) is convex in triangle 0 ≤

α;β ≤ 1, α+ β ≥ 1.

The convexity triangle is depicted in Figure E.1. Detailed exposition of

the proof can be found for example in [118].

Corollary E.1. Let (α1, β1) and (α2, β2) be two points in the above convex

triangle. If I define

α = α1s+ α2(1− s) , β = β1s+ β2(1− s) ; s ∈ [0, 1] ,

then clearly

log(Mαβ) ≤ s log(Mα1β1
) + (1− s) log(Mα2β2

) ,

or equivalently

Mαβ ≤ Ms
α1β1

M
(1−s)
α2β2

.

240
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1

1

b

a

Fig. E.1: Riesz convexity triangle. Riesz’s inequality in Theorem 1 holds only when α

and β belong to the shaded region.

Theorem E.6 (Riesz–Thorin inequality). Let x = (x1, . . . , xn) ∈ Cn.

Suppose that (Lx)j =
∑
i ajixi and that

∑

j

|(Lx)j |2 ≤
∑

j

|xj |2 .

Then for p ∈ [1, 2] and c ≡ maxi,j |aij |

||Lx||p′ ≤ c(2−p)/p||x||p = c1/pc−1/p′ ||x||p ⇔ c1/p
′ ||Lx||p′ ≤ c1/p||x||p ,

holds. Here p and p′ are Hölder conjugates, i.e., 1/p+ 1/p′ = 1.

Proof of Theorem E.6. I will use the notation α = 1/p, β = 1/q (and

the Hölder conjugates p′ = p/(p − 1), q′ = q/(q − 1)). Consider the line

from (α1, β1) = ( 1
2 ,

1
2 ) to (α2, β2) = (1, 1) in the (α, β) plane. This line lies

entirely in the triangle of concavity (see Figure E.1). Let me now define

α = α1s+ α2(1− s) = s/2 + (1− s) = −s/2 + 1 ,

implying s = 2(1− α), and I also define

β = β1s + β2(1− s) = −s/2 + 1 ,

implying β = α. Hence by Corollary E.1

Mα,α ≤ Ms
α1β1

M
(1−s)
α2β2

= M
2(1−α)
1
2 ,

1
2

M2α−1
1,1 . (E.1)

Note particularly that because s ∈ [0, 1] then α ∈ [ 1
2 , 1] and p ∈ [1, 2].
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To estimate the right hand side of (E.1) I use that M 1
2 ,

1
2
≤ 1. This

results from the very assumption of the theorem, namely that

‖Lx‖22 =
∑

j

|(Lx)j |2 ≤
∑

j

|xj |2 = ‖x‖22 .

Hence, M 1
2 ,

1
2
≤ k = 1. To find the estimate for M11 I employ that it

represents the smallest k in the relation

||Lx||∞ ≤ k||x||1 .
Thus

M11 = max
x 6=0

||Lx||∞
||x||1

= max
x 6=0

maxj |(Lx)j |∑
i |xi|

≤ max
i,j
|aij | ≡ c .

So, finally I can write that

Mα,α = M1/p,(1−1/p′) ≤ c2α−1 = c(2−p)/p = c1/pc−1/p′ ,

which proves the theorem. 2

E.1 Connection with Theorem 2.3

To establish the connection with the Theorem 2.3 let me assume that X is a

discrete random variable with n different values, Pn is the probability space

affiliated with X and P = {p1, . . . , pn} is a sample probability distribution

from Pn. Normally the geometry of Pn is identified with the geometry

of a simplex. For our purpose it is more interesting to embed Pn in a

sphere. Because P is non–negative and summable to unity, it follows that

the square–root likelihood |xi| ≡ ξi =
√
pi exists for all i = 1, . . . , n, and it

satisfies the normalization condition
n∑

i=1

(ξi)
2 = 1 .

Hence ξ can be regarded as a unit vector in the Hilbert space H = Rn.

Then the inner product

cosφ =

n∑

i=1

ξ
(1)
i ξ

(2)
i = 1− 1

2

n∑

i=1

(
ξ

(1)
i − ξ

(2)
i

)2

, (E.2)

defines the angle φ that can be interpreted as a distance between two prob-

ability distributions. More precisely, if Sn−1 is the unit sphere in the n-

dimensional Hilbert space, then φ is the spherical (or geodesic) distance

between the points on Sn−1 determined by ξ(1) and ξ(2).
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Now, let P(1) and P(2) denote a pair of probability distributions and

ξ(1) and ξ(2) the corresponding elements in Hilbert space. Because ξ(1)

and ξ(2) are non-negative, they are located only on the positive orthant of

Sn−1.

To proceed, I now set p′ = 2(1 + t) and p = 2(1 + r) (remembering that

1/p+ 1/p′ = 1). Then the Riesz–Thorin inequality reads (substituting |xi|
for ξ

(1)
i )

(∑

i

(ξ
(2)
i )p

′

)1/p′

≤ c(2−p)/p
(∑

i

(ξ
(1)
i )p

)1/p

, (E.3)

which is equivalent to

∑

j

(p
(2)
j )(1+t)




1/2(1+t)(∑

k

(p
(1)
k )(1+r)

)−1/2(1+r)

≤ c−r/(1+r) .

I raise both sides to the power 2 (1 + t) /t and get


∑

j

(p
(2)
j )(1+t)




1/t(∑

k

(p
(1)
k )(1+r)

)−(1+t)/t(1+r)

≤ c−2r(1+t)/t(1+r) . (E.4)

The parameters are limited due to the condition p ∈ [1, 2] and 1/p+1/p′ = 1

implying that

t = −r/(2r + 1) . (E.5)

This implies that r ∈ [−1/2, 0] and t ∈ [0,∞). Combining (E.4) and (E.5)

we get

∑

j

(p
(2)
j )(1+t)




1/t(∑

k

(p
(1)
k )(1+r)

)1/r

≤ c2 . (E.6)

By applying the negative binary logarithm on both sides of (E.6) I obtain

the Theorem 2.3.
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Appendix F

Beckner–Babenko theorem

To prove the Beckner–Babebko’s theorem 2.4, I follow the exposition from

Ref. [146]. I start with the (generalized) Young inequality that is instru-

mental in the proof. Since the actual proof of Young’s inequality is rather

involved I provide only its statement. The reader can find the proof together

with further details, e.g., in Ref. [200].

Theorem F.7 (Young’s theorem). Let q, p, r > 0 represent Hölder

triple, i.e.,

1

q
+

1

p
= 1 +

1

r
,

and let F ∈ `q(RD) and G ∈ `p(RD) are two non-negative functions, then

||F ∗ G||r ≥ CD||F||q||G||p , (F.1)

for q, p, r ≥ 1 and

||F ∗ G||r ≤ CD||F||q||G||p , (F.2)

for q, p, r ≤ 1. The constant C is

C = CpCq/Cr with C2
x =

|x|1/x
|x′|1/x′ .

Here x and x′ are Hölder conjugates. Symbol ∗ denotes a convolution.

Let us now observe that the following chain of reasonings holds

||F ∗ δ||r ≥ CD||F||q||δ||p = CD||F||qV (p−1)/p
R . (F.3)

Here I have used the fact that for the δ function

||δ||p =

[∫

RD
dx δp(x)

]1/p

=

[∫

RD
dx δ(x)δp−1(0)

]1/p

= V
(p−1)/p
R .

244
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In the derivation I have utilized that

δ(0) =

∫

RD
dx eip·0 = VR .

Subindex R indicates that the volume is regularized, i.e., I approximate the

actual volume of RD with a D-dimensional ball of the radius R, where R is

arbitrarily large but fixed. At the end of calculations I send R to infinity.

I should also stress that in (F.3) an implicit assumption was made that

q, p, r ≥ 1.

The norm ||F ∗ δ||r fulfills yet another inequality, namely

||F ∗ δ||r =

[∫

RD
dx

(∫

RD
dp e−ip·xF̂(p)

)r ]1/r

≤ ||F̂ ||nV 1/n′+1/r
R , (F.4)

where I have used the Hölder inequality
∫

RD
dp e−ip·xF̂(p) =

∣∣∣∣
∫

RD
dp e−ip·xF̂(p)

∣∣∣∣ ≤ ||F̂ ||n ||e−ip·x||n′

= ||F̂ ||nV 1/n′

R , (F.5)

with n and n′ being Hölder’s conjugates (n ≥ 1).

Comparing (F.3) with (F.4) I get the inequality

||F̂ ||nV 1/n′+1/r
R ≥ CD||F||qV (p−1)/p

R . (F.6)

The inequality is explicitly volume independent provided 1/n′+1/r+1/p =

1, or equivalently, when 1/n′ = 1/q− 2/r. With this I can rewrite (F.6) as

||F̂ ||n ≥ CD||F||q ≥ CD||F||n′ . (F.7)

The last inequality results from Hölder’s inequality

||F||a ≥ ||F||b when a ≤ b . (F.8)

In fact, in the limit r → ∞ the last inequality in (F.7) is saturated and

C
r→∞→ 1. Consequently I get the so-called Hausdorff–Young inequality in

the form

||F̂ ||n ≥ ||F||n′ . (F.9)

This inequality holds, of course, only when q ≥ n′ (cf. equation (F.8)),

i.e., when n ≥ q/(q − 1). Since q ≥ 1 one has that n ∈ [1, 2]. Should I

have started in the derivation with F̂ instead of F , I would have obtain the

reverse inequality

||F||n ≥ ||F̂ ||n′ . (F.10)
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Inequalities, (F.9) and (F.10) are known as classical Hausdorff–Young in-

equalities [118]. Note that in the spacial case when n = 2 also n′ = 2 and

equations (F.9) - (F.10) together imply equality

||F||2 = ||F̂ ||2 . (F.11)

This is the familiar Plancherel (or Riesz–Fischer or Parseval) equality [118].

It should be noted that the Beckner–Babenko inequality as stated in

Theorem 2.4 improves upon the Hausdorff–Young inequalities. This is be-

cause Cx ≤ 1 for x ∈ [1, 2], see Fig. F.1. The Beckner–Babenko inequality

BB CCAA

1.0 1.5 2.0 2.5 3.0
x

0.85

0.90

0.95

1.00

1.05

Cx

Fig. F.1: Dependence of the constant Cx on the Hölder parameter x. When x is
between points B and C, i.e., when x ∈ [1, 2] than Cx ≤ 1. For x ≤ A is Cx also smaller

than 1 but such x are excluded by the fact that x must be ≥ 1.

now follows easily from Young’s inequality. Indeed, assume that there exists

a (possibly p-dependent) constant k(p) ≤ 1, such that

k(p)||F||p ≥ ||F̂ ||p′ and k(p)||F̂ ||p ≥ ||F||p′ . (F.12)

The constant k(p) can be easily found by writing

k(r)||F ∗ G||r ≥ ||F̂Ĝ||r′ ≥ ||F̂ ||q′ ||Ĝ||p′

≥ [k(q′)]−1||F||q[k(p′)]−1||G||p , (F.13)

which gives

||F ∗ G||r ≥ [k(r)]−1[k(q′)]−1[k(p′)]−1||F||q||G||p . (F.14)

The middle inequality in (F.13) is the Hölder inequality that is valid for

1/r′ = 1/p′ + 1/q′ (i.e., for 1/p + 1/q = 1/r + 1). Comparison of (F.14)

with (F.1) gives the equation

[k(r)]−1[k(q′)]−1[k(p′)]−1 = CD = [CqCp/Cr]
D

= [1/Cq′Cp′Cr]
D . (F.15)
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This is clearly solved with k(p) = CDp . By choosing p ∈ [1, 2] I get the

statement of the Beckner–Babenko theorem.
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Chapter 3

Superstatistics

In this chapter I consider yet another important concept which gives rise to gen-

eralized statistics, namely superstatiscs. In contrast to previous approaches, where

generalized statistics enters via non-Gibbsian (or non-Shannonian) entropic measures,

the superstatistics paradigm is based on a superposition of several dynamics and their

respective statistics. In particular, the entropy is not a pivotal concept in superstatis-

tics. Among a rich palette of applications I discuss applications in finance in option

pricing and in quantum mechanics of a relativistic particle. A remarkable connection

of superstatistics with a doubly-special relativity is also briefly discussed.

3.1 Old wine in new bottles

Complex dynamical systems often demonstrate patterns of behavior that

can be regarded as a superposition of several dynamics operating on dif-

ferent spatio-temporal scales. The corresponding effects then produce a

superposition of respective statistics, or in short superstatistics [23, 24].

Christian Beck, one of the founders of the superstatistics concept vividly

describes the situation as follows [24]:

“Many non-equilibrium systems actually exhibit spatial or temporal temperature

fluctuations on a rather large scale. Think, for example, of the weather: It is un-

likely that the temperature in London, New York, and Firenze is the same at the

same time. There are spatio-temporal temperature fluctuations on a rather large

scale, though locally equilibrium statistical mechanics with a given fixed tempera-

ture is certainly valid. A traveler who frequently travels between the three cities

248
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Fig. 3.1: A Brownian particle moving through spatio-temporal inhomogeneous envi-

ronment with temperature fluctuations on a large scale.

sees a “mixture” of canonical ensembles corresponding to different local tempera-
tures. Such type of macroscopic inhomogeneities of an intensive parameter occur
not only for the weather but for many other driven nonequilibrium systems as
well.”

The important point in the above description of the superstatistics is the

existence of two well separated time scales, say τ and T . The local (or

relaxation) time scale τ is the relevant time scale on which the particle

equilibrates with its local environment. The large time scale T � τ , is

the correlation time, i.e., the relevant time scale over which β appreciably

changes (cf. Fig. 3.1).

Previously described situation can be also nicely illustrated with a Brow-

nian particle suspended in thermally inhomogeneous fluid environment, see

Fig. 3.2. In this case the probability to find a Brownian particle to have

velocity v in the interval (v,v + dv) is

p(v)dv =

∫
p(v|β) f(β)dβdv ∝

∫
e−βmv2/2 f(β)dβdv . (3.1)

The latter is the usual marginalization prescription with β serving as

a nuisance parameter, p(v|β) as a conditional PDF (which is Maxwell–

Boltzmann by assumption) and p(v) as a marginal PDF. The marginal

PDF thus describes the long-term behavior of the particle for times T � τ .

Let me emphasize that the prescription (3.1) have sense only when p(v|β) is

operationally well defined, which in turn, is true only when the two relevant

scales are well separated. According to terminology used in classical and
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Fig. 3.2: Example of Brownian particle in thermally inhomogeneous fluid environment.

A different color denotes a different local equilibrium temperature 1/β.

quantum mechanics, the above classifies as adiabatic process since grad-

ually changing conditions (in our case β) allow the system to adapt its

configuration (in our case the conditional distribution p(v|β)).

Let me finally stress that the intensive parameter in question not neces-

sarily need to be (inverse) temperature β. In the literature one can find also

other pertinent parameters, for instance, energy dissipation rate (turbulent

flow in Kolmogorov theory), volatility (econophysics), einbein (quantum

relativistic particle), etc.

3.1.0.1 Toy-model motivation — Tsallis’ thermostatistics

One of the simplest, and at the same time conceptually very important is

the reconstruction of Tsallis-type distributions out of superstatistics. This

was first performed in Ref. [24], and the corresponding path-integral deriva-

tion was originally presented in Ref. [148]. To this end, I can consider

Tsallis’ probability density and set q = ε+ 1 then

ρ
T

(β) =
1

Zq
[1 + (q − 1)βH]

1/(1−q)
=

1

ZqΓ(1/ε)

∫ ∞

0

dt

t
t1/εe−te−εβtH

=

∫ ∞

0

dv g

(
v;

1

εβ
,

1

ε

)
ρ
G

(v) , (3.2)

where ρ
G

(H, v) ≡ p(H|v) represents the the Gibbsian PDF, namely

ρ
G

(v) =
e−vH

Z
G

, (3.3)
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and the smearing PDF

g(x;µ, ν) =
1

Γ(ν)
µνxν−1e−µx, (3.4)

is the so-called Gamma distribution [85]. The corresponding first two mo-

menta read [85]:

〈x〉 = ν/µ , 〈x2〉 =
ν(ν + 1)

µ2
. (3.5)

The form (3.2) allows to reinterpret Tsallis’s distribution as Gibbs’ dis-

tribution with the inverse temperature v weighted with Gamma PDF. In

this picture the distribution parameters have a particularly clear meaning.

With the help of (3.5) I have 〈v〉 = β and 〈v2〉/〈v〉2 = q. In addition, be-

cause limq→1+
g(x;µ, ν) = δ(x− ν/µ) I get that ρ

T
(β) → e−βGH/Z

G
with

β
G

= β|q→1 representing the usual inverse equilibrium temperature. This

again reconfirm the result of Chapter 1, i.e. that Tsallis statistics goes over

into Gibbs–Boltzmann statistics in the q → 1+ limit. Once more, I should

stress that the above picture has sense only when the associated relaxation

and correlation time scales are well separated.

Important property of Gamma distribution is its infinite divisibility (for

technical exposition of infinite divisibility see Appendix B.6). The infinite

divisibility is, in fact, a key property allowing to formulate Tsallis thermo-

statistics in the path-integral language, cf. Refs. [148, 179]. I will return

back to this point in Section 3.2.

3.1.1 Universality Classes

While in principle any smearing PDF f(β) is possible in the superstatis-

tics approach, in practice one usually observes only few relevant PDF’s.

These are the Gamma, inverse Gamma and log-normal distribution. In

other words, in complex systems with (two-)time-scale separation one

usually observes three physically relevant “universality classes” [25, 117]:

a) Gamma-superstatistics (leading to Tsallis thermostatistics), b) inverse

Gamma-superstatistics and c) log-normal-superstatistics. The reason for

these classes can be traced, according to Beck–Gell-Mann et al. [25, 117],

to three typical phenomenological situations that could be realistically re-

sponsible for emergence of the random variable β.

The basic assumption involved is that β results from a collective (or

cumulative) effect of a large number of independent microscopic random

variables, say Xi, i = 1, . . . , N , which are present in the system. If this
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is so, then the relevant variable is ŜN = [
∑N
i=1Xi]/

√
N (assuming, for

simplicity, zero mean). Presuming validity of the classical CLT, ŜN will

approach in the large-N limit a Gaussian random variable, say S̄. Since, β

is by definition positive, it can be obtained by squaring S̄, so that β ∝ S̄2.

The distribution for β is thus

f(β) =

∫

R
dx δ(cx2 − β)

1√
2πσ2

e−x
2/(2σ2)

=

∫

R
dx

(
δ(x−

√
β/c)

2
√
cβ

+
δ(x+

√
β/c)

2
√
cβ

)
1√

2πσ2
e−x

2/(2σ2)

=
1√

2πσ2cβ
e−β/(2cσ

2). (3.6)

Which is nothing but the Gamma distribution with 2cσ2 representing the

scale and c > 0 being the proportionality constant between random vari-

ables β and S̄2. The full Gamma distribution appears when there are more

than just 1 (say k) Gaussian random variables S̄1, . . . , S̄k corresponding to

relevant degrees of freedom in the system that contribute to β. In this case

I indeed get (assuming, for simplicity, equal variances)

f(β) =

∫

Rk
dx δ(cx2 − β)

1

(2πσ2)k/2
e−x

2/(2σ2)

=
2πk/2

Γ(k/2)

∫ ∞

0

dr rk−1 δ(r −
√
β/c)

2
√
cβ

e−r
2/(2σ2)

(2πσ2)k/2

=
βk/2−1

(2σ2c)k/2Γ(k/2)
e−β/(2cσ

2) . (3.7)

Which is the defining distribution of the Gamma-superstatistics [25].

The inverse Gamma-superstatistics is obtained by assuming that β ∝
1/S̄2 or, in case of more (say k) relevant degrees of freedom, β ∝ 1/(

∑k
1 S̄

2
i ).

This situation is clearly more suited for temperature rather than inverse

temperature. In this case the smearing distribution reads

f(β) =

∫

Rk
dx δ

( c

x2
− β

) 1

(2πσ2)k/2
e−x

2/(2σ2)

=
2πk/2

Γ(k/2)

∫ ∞

0

dr rk+2 δ(r −
√
c/β)

2c

e−r
2/(2σ2)

(2πσ2)k/2

=
β−k/2−1

(2σ2/c)k/2Γ(k/2)
e−c/(2βσ

2) . (3.8)
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Finally, the log-normal-superstatistics is based on the idea that β re-

sults from a random multiplicative process rather than random additive

process. This is, for instance, the situation known from multifractal pro-

cesses [80, 296]. By using the multiplicative version of CLT (which ensures

that the product of many independent, equally distributed positive random

variables approaches a log-normal distribution) I can write the smearing

distribution in the form

f(β) =

∫

Rk
dx

δ
(
c
∏k
i=1 xi − β

)

(2πσ2)k/2
∏k
i=1 xi

exp


− 1

2σ2

(
k∑

i=1

log xi − kµ
)2



=
c

(2πσ2)k/2β
exp

[
− 1

2σ2
(log β/c− kµ)

2

]
. (3.9)

Here µ = 〈log xi〉 and σ2 = 〈(log xi − µ)2〉. For simplicity I have assumed

identical means and variances, i.e., µ and σ are i-independent.

The above universality of the classes as presented by Beck at al. is

thus a consequence of the classical CLT and positivity of β. It might be

therefore expected that the above three types of superstatistics will be valid

for a wide class of (fast-time scale) stochastic environments.

Though, in principle one can envisage more complicated situations, it

is believed that most experimentally relevant cases fall into one of the

above three universality classes (or simple combinations of them). Gamma-

superstatistics seems to be relevant for cosmic ray statistics [21], candidate

systems for inverse gamma-superstatistics are systems exhibiting veloc-

ity distributions with exponential tails [276, 310], cancer survival statis-

tics [58] or quantum relativistic particles [149, 159, 160], and log-normal

superstatistics has been found for Lagrangian [23, 261] and Eulerian [22]

turbulence. Existence of transitions between various superstatistics uni-

versality classes was demonstrated in the context of financial time series

in Ref. [155]. In addition, in Ref. [148] it was shown that gamma and in-

verse gamma-superstatistics naturally appear in the framework of so-called

superstatistics path integrals (cf. also Chapter 3.2).

3.2 Superstatistics path integral

The path integral (PI) has been used in quantum physics since the revo-

lutionary work of Feynman [87, 91], although the basic observation goes

back to Dirac [71, 73] who appreciated the rôle of the Lagrangian in
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short-time evolution of the wave function, and even suggested the time-

slicing procedure for finite, i.e., non-infinitesimal, time lags. Since then

the PI approach has yielded invaluable insights into the structure of quan-

tum theory [92, 282] and provided a viable alternative to the traditional

operator-formalism-based canonical quantization. During the second half

of the 20th century, the PI became a standard tool in quantum field the-

ory [70, 178, 258] and statistical physics [335], often providing the easiest

route to derivation of perturbative expansions and serving as an excel-

lent framework for (both numerical and analytical) non-perturbative anal-

ysis [179]. Because of its overall space-time viewpoint, PI has also often

helped to shed a new light on such fundamental issues as, quantization

of gravity [6, 7, 70, 123] or alternative interpretations of quantum the-

ory [39, 40, 107, 108].

Feynman’s PI has its counterpart in pure mathematics, namely, in the

theory of continuous-time stochastic processes [266]. There the concept of

integration over a space of continuous functions (so-called fluctuating paths

or sample paths) had been introduced by Wiener [330] already in 1920’s in

order to represent and quantify the Brownian motion. Interestingly enough,

this so-called Wiener integral (or integral with respect to Wiener measure)

was formulated 2 years before the discovery of the Schrödinger equation

and 25 years before Feynman’s PI formulation. I present some necessary

foundations of both Feynman’s and Wiener’s PI in Appendix I.

In works [148, 149, 159, 160] it was shown that PI when coupled with

the superstatistics paradigm can have interesting and unexpected implica-

tions in relativistic quantum physics. To understand what was at stake, I

need to introduce the concept of the so-called superstatistics path integral.

I start with the key observation that when a conditional probability

density function1 can be formulated in terms of a PI, then it inevitably sat-

isfies the Chapman–Kolmogorov semigroup equation (CKE) for Marcovian

process [92, 282]

P (y, t′′|x, t) =

∫ ∞

−∞
dz P (y, t′′|z, t′)P (z, t′|x, t) , (3.10)

with t′ being any time between t′′ and t. Conversely, any transition prob-

ability satisfying CKE possesses a PI representation [92]. In physics one

1Conditonal probability density function with the boundary condition P (y, t|x, t) =

δ(y − x) is called transitional probability density function. In the context of PI the
conditional probabilities involved are always implicitly assumed to be transitional prob-

abilities, unless specified otherwise.
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often encounters probabilities formulated as a superposition of PI’s, namely

℘(x′, t′|x, t) =

∫ ∞

0

dζ ω(ζ, T )

∫ x(t′)=x′

x(t)=x

DxDp e
∫ t′
t
dτ [ipẋ−ζH(p,x)] . (3.11)

Here ω(ζ, T ) with T = t′− t is a normalized PDF defined on R+×R+. The

form (3.11) is quite ubiquitous and it often appears in non-perturbative

approximations to statistical partition functions, in polymer physics, in fi-

nancial markets, in systems with reparametrization invariance, etc. The

corresponding random variable ζ is then associated with the inverse tem-

perature, coupling constant, volatility, vielbein, etc. For some explicit ex-

amples see e.g. Ref. [179] and citations therein.

The most general class of distributions ω(ζ, T ) on R+× R+ for which

the superposition of Markovian processes remain Markovian, i.e., when also

℘(x′, t′|x, t) itself satisfies the CKE (3.10), was found in Ref. [148]. The key

in the proof is to note that in order to have (3.10) satisfied by ℘, the rescaled

PDF w(ζ, T ) ≡ ω(ζ/T, T )/T should satisfy the integral equation

w(ζ, t1 + t2) =

∫ ζ

0

dζ ′ w(ζ ′, t1)w(ζ − ζ ′, t2) . (3.12)

At this stage it is convenient to perform the (one-sided) Laplace transform

of w(ζ, t), i.e.

w̃(p
ζ
, T ) =

∫ ∞

0

dζ e−pζ ζw(ζ, T ) . (3.13)

In terms of w̃ one can rephrase Eq. (3.12) as a simple functional equation

w̃(p
ζ
, t1 + t2) = w̃(p

ζ
, t1)w̃(p

ζ
, t2) , (3.14)

with t1, t2 ∈ R+. By assuming continuity in T , the functional equation

(3.14) has the generic solution w̃(p
ζ
, T ) = {w̃(p

ζ
, 1)}T . From this we see

that the distribution of ζ at T is completely determined by the distribu-

tion of ζ at T = 1. In addition, from (3.14) it can be also deduced that

w̃(p
ζ
, 1) = {w̃(p

ζ
, 1/n)}n for any n ∈ N+, and hence w(ζ, 1) is infinitely

divisible (see Appendix B.6). The Lévy–Khinchine theorem [34, 84] (see

also Appendix B.6) then ensures that log w̃(p
ζ
, T ) ≡ −TF (p

ζ
) must have

the generic form

log w̃(p
ζ
, T ) = −T

[
αp

ζ
+

∫ ∞

0

(1− e−pζu)µ(du)

]
, (3.15)

where α ≥ 0 is a drift constant and µ is some non-negative measure on

(0,∞) satisfying
∫
R+ min(1, u)µ(du) <∞. The measure µ is called the Lévy
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measure of the random variable ζ. Finally, the Laplace inverse of w̃(p
ζ
, T )

yields ω(ζ, T ). In passing we note that the RHS of (3.15) is basically the

cumulant-generating function2.

Once ω(ζ, T ) is found, then ℘(x′, t′|x, t) possesses a PI representation

on its own. What is the form of the new Hamiltonian H(p, x)? To answer

this question I rewrite (3.11) in Dirac’s notation as

℘(x′, t′|x, t) = 〈x′|
∫ ∞

0

dζ w(ζ, T )e−ζĤ |x〉 = 〈x′|{w̃(Ĥ, 1)}T |x〉

= 〈x′|e−TF (Ĥ)|x〉 . (3.16)

Hence, the identification H(p, x) = F (H(p, x)) can be made. Correspond-

ing generalization to higher dimensions is also straightforward [148].

At this stage one might worry about the operator-ordering issue. For

my purpose it suffices to note that when H is x-independent, the former

relation between H and H is exact. In more general situations the Weyl

ordering is a natural choice because in this case the required mid-point rule

follows automatically and one does not need to invoke the gauge invari-

ance [20, 149]. Further details related to the ordering issue can be found in

Ref. [149]. Transitional probability (3.11) with w given by (3.13) and (3.15)

has been introduced in Ref. [148] and due to its inherent PI nature dubbed

as superstatistics path integral.

Superstatistics PI permits the calculation of transitional probabilities

for number of doubly stochastic processes in a novel way. Some calculations

along those lines were presented in Refs. [148, 149, 159, 160]. Particularly

important class of superstatistics PI’s is related to the choice of the Lévy–

Khinchine function F (p
ζ
) = a

√
p
ζ

+ b, with a and b being real constants.

Such a choice leads to PI’s for relativistic and doubly relativistic particle

systems, which can be written as a superstatistics average over nonrela-

tivistic single-particle paths. In the following two subsections I will briefly

discuss these two cases.

2At this point I should stress that in Chapter I, I used for infinitely divisible distribu-

tion the Lévy–Khintchine representation of characteristic functions. Since in the present

context of superstatistics PIs the Laplace (rather than Fourier) transform is a more nat-
ural tool, the Lévy–Khintchine representation of moment-generating functions is more

pertinent.
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3.3 Emergent special relativity

The Feynman transition amplitude for a relativistic particle or better its

Euclidean version — transition probability, naturally fits into the structure

of superstatistics PI discussed above.

To see this, we might note that when in (3.15) I chose α = 0 and

µ(du) = 1/(2
√
πu3/2)du then the Lévy–Khinchine function F (p

ζ
) =
√
p
ζ
.

In Refs. [148, 149] it was shown that with such F (p
ζ
) one can rewrite

the well known Newton–Wigner (Euclidean) propagator [237] for a Klein–

Gordon (i.e., spinless relativistic) particle, i.e.

℘(x′, t′|x, t) =

∫ x(T ) = x′

x(0) = x

DxDp e
∫ T
0
dτ

[
ip·ẋ − c

√
p2+m2c2

]
, (3.17)

as a superposition of non-relativistic free-particle PI’s, namely

℘(x′, t′|x, t)

=

∫ ∞

0

dv ω(v, T )

∫ x(T ) = x′

x(0) = x

DxDp e
∫ T
0
dτ [ip·ẋ − v(p2c2+m2c4)] , (3.18)

with ω(v, T ) being the Weibull distribution of order 1, i.e., ω(v, T ) ≡
W (v, 1, T ) where Weibull’s PDF of order a is defined as [85]

W (v, a, T ) =
a exp

(
−a2T/4v

)

2
√
π
√
v3/T

. (3.19)

It should be noted that neither (3.17) nor (3.18) are genuine propagators for

a wave equation of a relativistic spinless particle — Klein–Gordon equation.

As stressed first by Stückelberg [298, 299] (see also Refs. [90, 329]), the

true relativistic propagator must include also the negative energy spectrum,

reflecting the existence of antiparticles. In Refs. [148, 149] it has been

proved that this can be rectified provided one rephrases the Klein–Gordon

equation in the so-called Feshbach–Villars (FV) representation [86, 149]

i∂tΨ = Ĥ
FV

(p)Ψ with Ĥ
FV

(p) = (σ3 + iσ2)
p̂2

2m
+ σ3mc

2 . (3.20)

Here Ψ is a two component wave function where the respective components

are related by opposite parity.

The Schrödinger equation-like structure of the FV equation allows to

set up the PI representation of the propagator, which in this case is 2 × 2

matrix. In Ref. [149] it has been shown that in order to handle the full

PI representation of the Klein–Gordon particle it suffices to discuss the PI

relation (3.18) alone. This is because the latter serves as a building block
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of the matrix structure of the FV propagator from which the Klein–Gordon

propagator can be reconstructed [149].

By changing in Eq. (3.18) the variable vc2 to 1/2m̃, the RHS of (3.18)

can be rewritten in the form
∫ x(T ) = x′

x(0) = x

DxDp e
∫ T
0
dτ

[
ip·ẋ−c

√
p2+m2c2

]

=

∫ ∞

0

dm̃ f 1
2

(
m̃, T c2, T c2m2

)∫ x(T ) = x′

x(0) = x

DxDp e
∫ T
0
dτ

[
ip·ẋ− p2

2m̃−mc2
]
. (3.21)

Here the smearing PDF

fp(z, a, b) =
(a/b)p/2

2Kp(
√
ab)

zp−1 e−(az+b/z)/2 , (3.22)

is the generalized inverse Gaussian distribution [85](Kp is the modified

Bessel function of the second kind with index p). The LHS of (3.21) repre-

sents the PI for the free spinless relativistic particle in the Newton–Wigner

representation [237]. The full Klein–Gordon (KG) kernel which also con-

tains the negative-energy spectrum can be obtained from (3.22) by consid-

ering the Feshbach–Villars representation of the KG equation and making

the substitution [149]

f 1
2

(
m̃, T c2, T c2m2

)
7→ 1 + sgn(T )σ3

2
f 1

2

(
m̃, |T |c2, |T |c2m2

)
. (3.23)

The matrix nature of the smearing distribution (σ3 is the Pauli matrix)

naturally includes the Feynman–Stuckelberg causal boundary condition and

thus treats both particles and antiparticles in a symmetric way [86, 149].

The structure of (3.21) allows to interpret m̃ as a Galilean-invariant

Newton-like mass which takes on continuous values distributed according to

f 1
2

(
m̃, T c2, T c2m2

)
with 〈m̃〉 = m+ 1/Tc2 and var(m̃) = m/Tc2 + 2/T 2c4.

Fluctuations of the Newtonian mass can be then depicted as originating,

e.g., from particle’s evolution in an inhomogeneous or granular medium.

Granularity, as known, for instance, from solid-state systems, typically leads

to corrections in the local dispersion relation [9] and hence to alterations

in the local effective mass. The following picture thus emerges: on a short-

distance scale, a non-relativistic particle can be envisaged as propagating

via classical Brownian motion through a single grain with a local mass m̃.

This fast-time process has a time scale ∼ 1/m̃c2. An averaged value of

the local time scale represents a transient temporal scale 〈1/m̃c2〉 = 1/mc2

which coincides with particle’s Compton time TC — i.e., the time for light
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to cross the particle’s Compton wavelength. At time scales much longer

than TC (large-distance scale), the probability that the particle encounters

a grain which endows it with a mass m̃ is f 1
2

(
m̃, T c2, T c2m2

)
. As a re-

sult one may view a single-particle relativistic theory as a single-particle

non-relativistic theory where the particle’s Newtonian mass m̃ represents a

fluctuating parameter which approaches on average the Einstein rest mass

m in the large T limit. I stress that T should be understood as the obser-

vation time, a time after which the observation (position measurement) is

made. In particular, during the period T the system remains unperturbed.

One can thus justly expect that in the long run all mass fluctuations will

be washed out and only a sharp time-independent effective mass will be

perceived. From the form of 〈m̃〉 it can be seen that the time scale at

which this happens is T ∼ 1/mc2, i.e. the Compton time TC . One might

also observe that by coarse-graining the velocity over the correlation time

T
C

one gets

〈|v|〉
TC

=
〈|p|〉
〈m̃〉

∣∣∣∣
TC

= c . (3.24)

So, on a short-distance scale of order λC the spinless relativistic particle

propagates with an averaged velocity, which equals to the speed of light

c. But if one checks the particle’s position at widely separated intervals

(much larger than λC), then many directional reversals along a typical PI

trajectory will take place, and the particle’s net velocity will be then less

than c — as it should be for a massive particle. The particle then acquires

a sharp mass equal to Einstein’s mass, and the process (not being hindered

by fluctuating masses) is purely Brownian. This conclusion is in line with

the Feynman checkerboard (FC) picture [137, 160] to which it reduces in

the case of (1 + 1) dimensional relativistic Dirac particle.

To appreciate the latter connection, I briefly mention the essence of FC

approach (see also Fig. K.1). Feynman published his idea about FC only

in the form of a short note in his book with Hibbs [92]. Apparently it was

Schweber who discovered, while going through Feynman’s notes, that the

more complete formulation of the FC is dated as early as 1946 (for details

see Ref. [284]). The chessboard formulation was also independently found

by Riazanov [267]. In its essence, the FC is a way how to calculate (causal)

Green’s function of a massive Dirac fermion in 1 + 1 dimensions. There

the (massive!) electron propagates at the speed of light c. At random

Poisson distributed moments of time its helicity and direction of motion

are simultaneously changed and the average path traversed between these
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moments of time is equal to λC . Feynman hoped that with FC he could

explain particle’s spin as a result of the space-time structure alone. By

his own admission, he never succeeded in extending the chessboard picture

to higher dimensions [89]. He abandoned this program in 60’s partially

because he felt dissatisfaction with not being able to extend the picture to

higher dimensions and partially because Grassmann integral (invented in

60’s be Berezin) became just the right tool to describe fermions in line with

his path-integral philosophy. In spite of (or perhaps because of) Feynman’s

abandonment of the checkerboard paradigm, there has been over the years

a growing number of works indicating that the checkerboard picture is

not merely an interesting mathematical curiosity but it may have more

substance than originally thought [142, 225, 240, 241]. For an interested

reader I present a technical exposition of the FC in Appendix K.

3.4 Emergent doubly special relativity

As described in the previous subsection, the configuration space for a rela-

tivistic particle could be operationally described through polycrystalline or

inhomogeneous vacuum. We have also seen that the emergence of special

relativity in a QM setting is tightly connected with a particular distribution

of grains or regions of inhomogeneity. One might thus ask how robust is

this result in regard to a slight perturbation of the mass-smearing distribu-

tion. I will now show that the answer is closely related to the concept of

doubly special relativity or deformed special relativity (DSR).

In a nutshell, DSR is a theory which tries to implement coherently a

second invariant, besides the speed of light, into the transformations among

inertial frames. This new invariant is usually assumed to be an observer-

independent length-scale — the Planck length `p ≈ 1.62 × 10−35m, or

its inverse, i.e., the Planck energy Ep = c`−1
p . It is thus not surprising

that DSR is often employed in connection with various quantum gravity

models [102, 103, 274, 292, 293].

To extend my previous reasonings to DSR, I start by considering the

modified invariant, or deformed dispersion relation,

ηabpapb
(1− `pp0)2

= m2c2 , (3.25)

proposed by Magueijo and Smolin [209, 210, 226]. Here m plays the rôle

of the DSR invariant mass. Assuming a metric signature (+,−,−,−), one

can solve (3.25) with respect to p0, which essentially coincides with the
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physical Hamiltonian H̄ = cp0. The latter is the generator of the tempo-

ral translations with respect to the coordinate time t, cf. [209, 210]. My

starting Hamiltonian is therefore

H̄∓ = c
−m2c2`p ∓

√
p2(1−m2c2`2p) +m2c2

1−m2c2`2p
, (3.26)

and similarly as in the previous subsection only the positive root of H̄∓ is

important in superstatistic PI. At this stage I assume that the transformed

Hamiltonian entering the PI representation of ℘(x′, t′|x, t) is of the form

H̄+(p, x) = F (H(p, x)) where F is some Lévy–Khinchine function, which

ensures that H(p, x) is non-relativistic Hamiltonan for a free particle. It is

not obvious a priori that such F exists. In close analogy with (3.21), it is

possible to show [159] that the following superstatistics PI identity holds
∫ x(t) = x

x(0) = x′
DxDp exp

[∫ T

0

dτ
(
ip · ẋ + H̄+

)
]

=

∫ ∞

0

dm̃ f 1
2

(
m̃, T̂ c2, T̂ c2m2

)

×
∫ x(T ) = x

x(0) = x′
DxDp exp

[∫ T

0

dτ

(
ip · ẋ− p2

2m̃
− E0

)]
. (3.27)

Here E0 = mc2/(1 +mc`p) is the particle’s rest energy, see, e.g., [210], T̂ =

Tλ and λ = 1/(1−m2c2`2p) is the deformation parameter. From the explicit

form of the smearing distribution, it is easy to find that 〈m̃〉 = m+1/(T̂ c2)

and var(m̃) = m/T̂ c2 + 2/T̂ 2c4.

From the structure of 〈m̃〉 we can obtain further useful insights. Sim-

ilarly as in the special relativistic framework, the fluctuating Newtonian

mass m̃ converges for large times T to the DSR invariant mass m. How-

ever, now, the rate of convergence is also controlled by the parameter λ.

Recalling that Ep = c/`p, I can write that λ = 1/(1−E2/E2
p). So, 〈m̃〉 can

converge rapidly to the invariant mass m, even at short times T , provided

the particle’s energy E is close to the Planck energy Ep.

From the identity (3.27) one can deduce the canonical commutation re-

lations (CCR) via the standard PI analysis [92]. In particular, the CCR can

be directly related to the degree of roughness (described through Hausdorff

dimension DH or Hurst exponent H) of a sample path in PI [92, 186, 282].

For instance, the usual non-relativistic canonical relation [x̂i, p̂j ] = iδij re-

sults from the fact that, for a sample path occurring in non-relativistic PI’s,
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DH and H are 3/2 (in time-position plane) and 1/2, respectively. In fact,

in non-relativistic quantum mechanics all local potentials fall into the same

universality class (as for the scaling behavior — DH = 3/2) as the free sys-

tem [186]. The latter might be viewed as a PI justification of the universal

form of non-relativistic CCR’s.

It is not hard to show [159] that the PI identity (3.27) implies the CCR

[x̂i, p̂j ]DSR1 = i

(
δij +

κ2 −m2c2

κ2m2c2
p̂ip̂j

)
. (3.28)

Here κ = 1/`p. The CCR (3.28) coincides with the so-called general-

ized uncertainty principles (or GUP) with the GUP deformation param-

eter [278, 279]

β =
κ2 −m2c2

m2c2
. (3.29)

We may note in passing that when mc→ κ, i.e., when m coincides with the

Planck mass, i.e. m = Mp ≈ 2.18 × 10−8kg then the CCR (3.28) reduces

to the non-relativistic one — as expected. This can also be directly seen

from (3.27), where for m → Mp the deformation parameter λ → ∞, and

the smearing distribution f 1
2

(
m̃, T̂ c2, T̂ c2m2

)
→ δ(m − m̃), which yields

the usual PI for a Wiener process. On the other hand, when κ � mc we

obtain

[x̂j , p̂i]DSR1 ≈ i

(
δij +

p̂ip̂j
m2c2

)
. (3.30)

which coincides with the special-relativistic commutator 3.

Should I have used instead of (3.25) a different DSR dispersion relation,

for example

p2
0 − p2

1− (`pp0)2
= m2c2 , (3.31)

(which is discussed, e.g., in Ref. [172]), I would have obtained the DSR

Hamiltonian

H̄± = ±
√

p2c2 +m2c4√
1 +m2c2`2p

, (3.32)

from which follows the superstatistics identity holds:
3The CCR (3.30) is obtained by lifting Dirac brackets (corresponding to the first class

constraint Φ ≡ p2 −m2 and the Polyakov gauge condition χ ≡ xµpµ − ςm2c2, with ς

being the world-line parameter) to QM commutators [98, 159]
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∫ x(T ) = x

x(0) = x′
DxDp exp





∫ T

0

dτ


ip · ẋ −

√
p2c2 +m2c4√
1 +m2c2`2p







=

∫ ∞

0

dm̃ f 1
2

(
m̃, T c2ζ2, T c2m2

)

×
∫ x(T ) = x

x(0) = x′
DxDp exp

{∫ T

0

dτ

[
ip · ẋ− p2

2m̃
− Ē0

]}
. (3.33)

Here Ē0 = mc2/
√

1 +m2c2`2p is the particle’s rest energy and the defor-

mation parameter now reads ζ = 1/
√

1 +m2c2`2p. In this case one has

〈m̃〉 = m/ζ + 1/(c2Tζ2) and var(m̃) = m/(Tc2ζ3) + 2/(T 2c4ζ4). One can

also observe that this double-special relativity model does not have the de-

sired property that the fluctuating mass m̃ converges to the DSR invariant

mass in the large T . The PI (3.33) implies the CCR [159]

[x̂j , p̂i]DSR2 = i

(
δij +

p̂ip̂j
m2c2

)
. (3.34)

This commutator coincides with the special-relativistic one. This fact is

not so surprising since the fractal dimension DH of a sample path of the

DSR2 system coincides with that of special relativity [159].

Let me finally add a few clarifying comments. The qualitative difference

in behavior of CCR (3.28) and (3.34) can be traced back to the fact that

commutators in (doubly-)special relativity depend on two things: First, the

fundamental commutators are essentially the Dirac brackets of the canon-

ical variables that are promoted on the QM level via Dirac’s prescription.

The explicit definition of the Dirac brackets depends on the choice of a

gauge (gauge fixing condition), which for relativistic systems corresponds

to choice of a specific physical time. So, the commutation relations are

generally gauge fixing dependent in both SR and DSR systems. In the

presented approach, the gauge which is implicitly incorporated in the su-

perstatistics PI is the so-called Polyakov gauge [256].

Second, the fundamental commutator [x̂j , p̂i] depends (through the Ja-

cobi identities) on the whole symplectic structure of the system (and there-

fore also on the commutator [x̂j , x̂i], for example). These are not specified

by a particular DSR model, but they have to be chosen aside. Of course,

one obtains different theories for different choices of [x̂j , x̂i]. In presented
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case, I automatically obtain the same fundamental commutators as Ghosh

[98] and Mignemi [227] did. In order to satisfy the Jacoby identities one

must assume that p̂j ’s commute but x̂j ’s do not commute. For instance,

in DSR1 model we should have

[x̂j , x̂i] = i
κ2 −m2c2

κ2m2c2
(x̂jp̂i − x̂ip̂j) . (3.35)

Such a set of commutators closes the so-called Snyder algebra [294].

Let me conclude with an important observation. It is possible to

show [159] that a slight perturbation in the mass-smearing distribution in

aforementioned DSR models would yield again identical DSR systems with

slightly perturbed deformation parameter. From this standpoint, the DSR

(as well as its low-energy limit — special relativity) is a robust concept, i.e.

its algebraic structure continues to hold despite (potentially dynamical)

alterations in polycrystalline structure conditions.

3.4.1 Cosmological implications

Gravity and Cosmology. — When spacetime is curved, a metric tensor

enters in both PI’s in (3.21) in a different way, yielding different “countert-

erms” [20, 179]. I.e., terms that are generated in the PI action action as a

perturbation corrections that ensure the finiteness of the PI. For instance,

in Bastianelli–van Nieuwenhuizen’s time slicing regularization scheme [20]

one has (when ~ is reintroduced)

p2

2m̃
7→ gijpipj

2m̃
+

~2

8m̃
(R+ gijΓmil Γ

l
jm) ,

√
p2 +m2c2 7→

√
gijpipj +

~2

4
(R + gijΓmil Γ

l
jm) + m2c2

+ ~4Φ(R, ∂R, ∂2R) + O(~6) , (3.36)

where gij , R, Γjkl and Φ(. . .) are the (space-like) pull-back metric tensor,

the scalar curvature, the Christoffel symbol, and non-vanishing function

of R and its first and second derivatives, respectively. This causes the

superstatistics identity (3.21) to break down, which one can explicitly check

to the leading order in ~.

The two respective cases have different physical consequences. This

implies the breakdown of the superstatistics PI identity. Because the Ein-

stein equivalence principle requires that the local spacetime structure should

be identifiable with the Minkowski spacetime possessing Lorentz symme-

try, one might assume the validity of (3.21) at least locally. However, in
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different space-time points one has, in general, a different typical length

scale of the local inertial frames, depending on the gravitational field. The

characteristic size of the local inertial (i.e. Minkowski) frame is of order

1/|K|1/4 where K = RαβγδR
αβγδ is the Kretschmann invariant and Rαβγδ

is the Riemann curvature tensor. Relation (3.21) tells us that the special

relativistic description breaks down in regions of size smaller than λ
C

.

For curvatures large enough, namely for strong gravitational fields,

the size of the local inertial frame can become smaller than λ
C

, that is

1/|K|1/4 . λ
C

. In such regions the special relativistic description is no

more valid, and according to (3.21) must be replaced by a Newtonian

description of the events. For instance, in Schwarzschild geometry4 one

has K = 12 r2
s/r

6, and the breakdown should be expected at radial dis-

tances r . (λ2
C
rs)

1/3 (rs = 2Gm/c2 is the Schwarzschild radius, G is

the gravitational constant and m is the source mass) which are — apart

from the hypothetical case of micro-black holes (where λ
C
' rs) — al-

ways deeply buried below the Schwarzschild event horizon. In the cosmo-

logically relevant Friedmann–Lemâıtre–Robertson–Walker (FLRW) geom-

etry5, one has K = 12 (ȧ4 +a2ä2)/(ac)4, and the breakdown happens when

(ȧ4+a2ä2) & (ac/λ
C

)4, where a(t) is the FLRW scale factor of the Universe

and ȧ = da/dt. Applying the Vilenkin–Ford model [325] for inflationary

cosmology, where a(t) is given by: a(t) = A
√

sinh(Bt) with B = 2c
√

Λ/3

(Λ is the cosmological constant), I obtain a temporal bound on the validity

of local Lorentz invariance, which, expressed in FLRW time, is

t . 1

B
arcsinh

[
Bλ

C

(8c4 − (Bλ
C

)4)
1/4

]
≡ t̄ . (3.37)

By using the presently known value of Λ ' 10−52m−2 (cf. e.g., Ref. [60])

and the τ -lepton Compton’s wavelength λτ
C
' 6.7 × 10−16m (yielding the

tightest upper bound on t), I obtain t̄ ' 4 × 10−24s. Note that, since

Bλ
C
� c, then t̄ ' λ

C
/c = t

C
. Such a violation of the local Lorentz invari-

ance naturally breaks the particle-antiparticle symmetry since there is no

unified theory of particles and antiparticles in the non-relativistic physics

— formally one has two distinct theories. If the resulting matter-antimatter

asymmetry provides a large enough CP asymmetry then this might have

essential consequences in the early Universe, e.g., for leptogenesis. In this

4The Schwarzschild geometry is described by the Schwarzschild metric, which is the
most general spherically symmetric vacuum solution of the Einstein field equations.
5The FLRW geometry is characterized by the metric tensor, which describes a homo-

geneous, isotropic, expanding (or contracting) universe.
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respect, t̄ is compatible with the nonthermal leptogenesis period that typi-

cally dates between 10−26–10−12s after the Big Bang.

3.5 Financial markets and econophysics - II

Another important application of the superstatistics paradigm is in econo-

physics. As mentioned in Chapter 2, econophysics is an emerging interdisci-

plinary field that makes use of concepts and methods of statistical physics

in order to analyze complex economical phenomena (be it financial time

series, portfolio management or success and failure of companies). The va-

lidity and promise of this paradigm has been demonstrated in a number of

recent publications and review papers, see e.g., Refs. [45, 179, 222, 307]

and citations therein. For the reader’s convenience I provide a glossary of

relevant financial terms in Supplementary notes.

My take on superstatistics applications in econophysics was presented

in three papers [148, 150, 155]. In particular, in Ref. [148] the so-called

stochastic adiabatic theorem was proved, in Ref. [150] a generalization of the

option pricing formula for a Gamma-superstatistics (non-Gaussian) price

fluctuations was introduced and discussed, and in Ref. [155] the transitions

between distinct superstatistical regimes in the context of high-frequency

(minute-tick) share-price returns of seven selected companies was observed

and analyzed.

Let me start first with the stochastic adiabatic theorem.

3.5.1 Stochastic “adiabatic” theorem:

As seen in Section 3.2 one can compute the conditional probabilities for

Markovian processes by employing PI calculus. For non-quadratic Hamil-

tonians such computations are typically quite difficult and hence one might

prefer to study such conditional probabilities directly in terms of their time-

evolution equations. Such equations are called (forward) Kramers–Moyal

equations and are of the form [269]

∂t′P (x′, t′|x, t) = LP (x′, t′|x, t) , (3.38)

where the Kramers–Moyal operator L has the expansion

L(∂t′ , x
′) =

∞∑

n=1

(−∂x′)nD(n)(x′, t′) . (3.39)
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Here the coefficients D(n)(x′, t′) are equal to the moments of the short-time

conditional probability P (x′, t′|x, t), namely

D(n)(x, t) =
1

n!
lim
τ→0

1

τ

∫ ∞

−∞
dz (z − x)n P (z, t+ τ |x, t)

=
1

n!
lim
τ→0

1

τ

∫ ∞

−∞
dz (z − x)n 〈z|e−τĤ |y〉 , (3.40)

cf. e.g., [148, 269]. According to Pawula’s theorem [249] (see also Ap-

pendix J) there is either infinite number of non-zero coefficients D(n)(x, t)

or, if there is a finite number of them, they can be non-zero only up to

n = 2. In addition, any artificial truncation of of expansion (3.39) at n > 2

would produce non-positive conditional probabilities. This is the basic rea-

son why phenomenological models for L go typically only up to n = 2,

i.e. to Fokker–Planck operator LFP and ensuing (forward) Fokker–Planck

equation.

Because Eq. (3.38) involves derivatives with respect to final coordinates

(x′, t′), it is also called forward Kramers–Moyal equation. To solve this

equation one has to specify boundary conditions at the initial time t. Since

Ĥ might contain diffusive terms, e.g. terms proportional to momenta, back-

ward time evolution is generally not described by the same operator L as

the forward evolution. Though the backward Kramers–Moyal equations are

easy to construct (see e.g. [269]), they are less relevant in practical appli-

cations, and hence I shall deal here only with their forward counterparts.

Let me first start with the following theorem.

Theorem 3.1 (“Adiabatic” theorem). If both P
ζ
(x′, t′|x, t) and

P (x′, t′|x, t) =

∫
dζ P

ζ
(x′, t′|x, t) ω(ζ, T ) with T = t′ − t ,

are Markovian PDF’s then their dynamics can be described via two (for-

ward) Fokker–Planck equations:

∂T ω(ζ, T ) = LFP
ω ω(ζ, T ) ,

∂t′Pζ (x
′, t′|x, t) = LFP

ζ
P
ζ
(x′, t′|x, t) , (3.41)

with

LFP
ω = −∂

ζ
K(1)(ζ, T ) + ∂2

ζ
K(2)(ζ, T ) ,

LFP
ζ

= −∂x′ D(1)
ζ

(x′, t′) + ∂2
x′ D

(2)
ζ

(x′, t′) . (3.42)
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Here K(1), D(1)
ζ

are drift coefficients and K(2), D(2)
ζ

are diffusion coeffi-

cients. In addition, the previous Fokker–Planck equations are on the level

of sample trajectories equivalent to two coupled Itô stochastic equations

dx′ = D(1)
ζ

(x′, t′) dt′ +

√
2D

(2)
ζ (x′, t′) dW1 ,

dζ = K(1)(ζ, T ) dT +
√

2K(2)(ζ, T ) dW2 . (3.43)

Here W1(t′) and W2(T ) are Wiener processes.

Proof of the theorem is rather lengthy and I would refer the interested

reader to the original paper [148]. Let me however, add few comments that

would clarify the meaning of Theorem 3.1.

One way to study implications of the superstatistics PI (3.11) is to di-

rectly compute such PIs. This is, however, often very hard and aside from

simple cases (cf. e.g. Ref. [113]), such computations is accessible only

through perturbative methods. Often more easier is to solve associated

Kramers–Moyal or Fokker–Planck equations. Since both P
ζ
(x′, t′|x, t) and

P (x′, t′|x, t) satisfy the Chapman–Kolmogorov equation, it would be nat-

ural to study Kramers–Moyal or Fokker–Planck equations associated with

those transition probabilitis. This might still be quite difficult task due to

(typically) non-linear nature of the emergent Hamiltonian H = F (H). The

adiabatic theorem allows to circumvent this by solving equivalent (but often

simpler) problem in terms of two coupled Fokker–Planck equations (3.41).

In the latter case, the drift and diffusion coefficients K(1) and K(2), respec-

tively, can be easily computed from first two moments of the distribution

ω(ζ, T ), which are often even tabulated.

Notice, further, that there are two very different characteristic time

scales involved in Eqs. (3.41): t, the “internal” time scale, representing

typical time scale over which P
ζ
(x′, t′|x, t) changes (e.g. financial data tick

scale, mean collision time or time-slicing scale), and T , the “external” time,

over which the “external” parameter ζ changes. Processes where T � t, as

in our case, are called adiabatic processes — hence the adjective adiabatic in

name of the theorem. Basic strategy for analysing an adiabatic process is

first to solve the problem with the external parameters held constant, and

only at the end of the calculation allow them to vary (slowly) with time.

This makes the theorem useful for practical applications.
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3.5.2 Double-stochastic process in financial markets

The previous adiabatic theorem has a direct implications in financial mar-

kets. In particular, it implies that Gamma superstatistics PI is closely

related to the Heston stochastic volatility model. To see this more explic-

itly let me start with the Gamma superstatistics PI, i.e. I assume that the

distribution w(ζ, T ) is a Gamma distribution with parameters b > 0 and

c > 0, such that

w(ζ, t) =
(b)ctζct−1

Γ(ct)
e−bζ , ζ ∈ R+ , (3.44)

or in terms of the smearing distribution ω(ζ, t)

ω(ζ, t) =
(bt)ctζct−1

Γ(ct)
e−btζ , ζ ∈ R+ . (3.45)

Since a Gamma distribution is infinitely divisible [84], it has the Lévy–

Khintchine representation of the moment-generating function cf. Eq. (3.15).

It can be directly checked that in this case the Lévy measure µ(du) =

ce−buu−11(0,+∞)(u)du and α = 0. With this we get

F (pζ) = ζ̄b
[
log
(pζ
b

+ 1
)]
, (3.46)

where ζ̄ = c/b is the mean of ω(ζ, t). In particular, for H = p2/2 we have

H(p) = ζ̄b

[
log

(
p2

2b
+ 1

)]
, (3.47)

which leads to the superstatistics PI identity

℘(x′, t′|x, t) =

∫ x(t′)=x′

x(t) = x

DxDp e
∫ t′
t
dτ[ipẋ − ζ̄b log(p2/2b+1)]

=

∫ ∞

0

dζ ω(ζ, T )

∫ x(T ) = x′

x(0) = x

DxDp e
∫ t′
t
dτ(ipẋ−ζp2/2)

≡
∫ ∞

0

dζ ω(ζ, T )℘
ζ
(x′, t′|x, t) , (3.48)

with T = t′ − t. Since the RHS of (3.48) involves only PI with quadratic

action, I can integrate it out to obtain

∫ ∞

0

dζ
(bT )cT ζcT−1

Γ(cT )

√
1

2πTζ
e−bTζe−r

2/2ζT , (3.49)
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where r = x′ − x. After the integration I find

K1/2−cT (2
√

2b |r|) T−3/2

√
π Γ(cT )

(
2
√

2b T

|r|

)1/2−cT

. (3.50)

It is quite interesting to note that in Fourier space, this coincides with a

Tsallis distribution [24, 25, 150, 333].

Connection with theory of financial markets arises when I consider

the free-particle Hamiltonian with drift: p2/2 + ip(r/ζ − 1/2), see e.g.,

Refs. [150, 179]. Here r is the drift constant and ζ volatility (see Supple-

mentary notes H.1). In order to find forward Fokker–Planck equations for

℘
ζ
(x′, t′|x, t) and ω(ζ, T ), I need to compute corresponding drift and dif-

fusion coefficients D(1)
ζ

and D(2)
ζ

for ℘
ζ
(x′, t′|x, t) and similarly K(1) and

K(2) for ω(ζ, T ). By employing the prescription of Eq. (3.40), the drift

coefficients read

D(1)
ζ

=

(
r − ζ

2

)
, D(2)

ζ
(x′, t′) =

ζ

2
. (3.51)

Similarly, the diffusion coefficients K(n) are

K(1)(ζ, T ) =
1

T

(c
b
− ζ
)

=
1

T

(
ζ̄ − ζ

)
,

K(n)(ζ, T ) =
1

Tn
c

nbn
, n ≥ 2 . (3.52)

With the help of adiabatic theorem I can write down the underlying Itō

processes for corresponding sample trajectories, namely

dx′ =

(
r − ζ

2

)
dt′ +

√
ζ dW1

dζ =
1

T

(
ζ̄ − ζ

)
dT +

1

T

√
ζ̄

b
dW2 . (3.53)

I can now view x′ as a logarithm of a stock price S, and ζ and r as the

associated variance and drift. If, in addition, I replace for large T the

quantity
√
ζ̄ with

√
ζ, the systems (3.53) reduces to

dS = rS dt′ +
√
ζS dW1 ,

dζ = γ
(
ζ̄ − ζ

)
dT + ε

√
ζ dW2 , (3.54)

where γ = 1/T and ε = 1/(
√
bT ). The system of equations (3.54) constitute

Heston’s stochastic volatility model [126] which is often used in financial
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markets to model bond and currency options (for further reference on this

model see, e.g., Ref. [126, 179] and citations therein). In this framework,

the parameters ζ̄, γ and ε are interpreted as the long-time volatility average,

the drift of the variance and the volatility of the variance, respectively.

Let us finally observe that in the large T limit ω(ζ, T ) = δ(ζ − ζ̄) and

so volatility is constant. In this case the solution of the Focker–Planck

equation (3.41) with the initial condition ℘
ζ̄
(x′, t|x, t) = δ(x′ − x) can be

easily found as follows. I define first the short-time transition probability

℘
ζ̄
(x′, t+ ∆t|x, t) where time increment ∆t is small. With this I can write

℘
ζ̄
(x′, t+ ∆t|x, t) = exp(τLFP

ζ̄
)℘

ζ̄
(x′, t|x, t)

= exp(τLFP
ζ̄

) δ(x′ − x) . (3.55)

Now I expand exp(τLFP
ζ̄

) in ∆t, which gives

℘
ζ̄
(x′, t+ ∆t|x, t) =

[
1 + ∆tLFP

ζ̄
+O(∆t2)

]
δ(x′ − x)

=
[
1−∆t∂xD

(1)
ζ̄

(x, t) + ∆t∂2
xD

(2)
ζ̄

(x, t) +O(∆t2)
]
δ(x′ − x). (3.56)

On the second line I have exchanged x for x′ inside of [. . .]. By using the

Fourier transform representation of the δ-function, I can further rewrite the

RHS of (3.56) as

1

2π

∫ ∞

−∞
dp
[
1− ip∆tD(1)

ζ̄
(x, t) − p2∆tD(2)

ζ̄
(x, t) +O(∆t2)

]
eip(x

′−x)

=
1

2π

∫ ∞

−∞
dp exp

[
ip(x′ − x)− ip∆tD(1)

ζ̄
(x, t) − p2∆tD(2)

ζ̄
(x, t)

]
, (3.57)

where on the first line integration by parts was used and on the second line

the contributions of the order O(∆t2) were neglected. Integration of the

Gaussian integral yields the short-time transition probability

℘
ζ̄
(x′, t+ ∆t|x, t)

=
1

2

√
π∆tD

(2)
ζ̄ (x, t)

exp

{
−

[(x′ − x)−∆tD(1)
ζ̄

(x, t)]2

4∆tD
(2)
ζ̄ (x, t)

}

=
1√

2π∆tζ̄
exp

{
− [(x′ − x)−∆t(r − ζ̄/2)]2

2∆tζ̄

}
. (3.58)

The short-time transition probability can be now used to find a final-time

solution of the Fokker–Planck equation. To this end I divide time difference
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T into N + 1 small intervals of length ∆t = T/(N + 1), defining tn = t+nτ

(so that t = t0 and t′ = tN+1), and by repeatedly applying the Chapman–

Kolmogorov equation (3.10), I get

℘
ζ̄
(x′, t′|x, t) =

∫

R
dx

N
· · ·
∫

R
dx1 ℘ζ̄ (x

′, t′|x
N
, t
N

) · · ·℘
ζ̄
(x1, t1|x, t)

=

[√
1

2π∆tζ̄

N∏

k=1

∫

R

(
dxk

√
1

2π∆tζ̄

)]

× exp

{
−

N∑

n=0

[(xn+1 − xn)−∆t(r − ζ̄/2)]2

2∆tζ̄

}
, (3.59)

which in the large N limit tends to the PI (cf. Appendix I)

∫ x(t′)=x′

x(t)=x

Dx exp

{
−
∫ t′

t

dt
[ẋ− (r − ζ̄/2)]2

2ζ̄

}

=

∫ x(t′)=x′

x(t)=x

DxDp exp

{
−
∫ t′

t

dt

[
ipẋ− ζ̄p2

2
− ip

(
r − ζ̄

2

)]}

=

∫ x(t′)=x′

x(t)=x

DxDp exp

{
−
∫ t′

t

dt
(
ipẋ− ζ̄H

)
}
, (3.60)

with H = p2/2 + ip(r/ζ − 1/2). This PI representation precisely coincides

with the prescription (3.48) where instead of a free-particle Hamiltonian I

use the Hamiltonian with drift H. Since this PI has a well known solu-

tion [113], the full transition probability can be written in a closed form

℘
ζ̄
(x′, t′|x, t) =

1√
2πζ̄T

exp




−

[
(x′ − x)−

(
r − ζ̄

2

)
T
]2

2ζ̄T




. (3.61)

The transition probability distribution (3.61) is recognized as the risk-free

member of the family of Gaussian martingale distributions for the stock

price S(t) = ex(t), cf. e.g. Ref. [179].
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moments of time is equal to λC . Feynman hoped that with FC he could

explain particle’s spin as a result of the space-time structure alone. By

his own admission, he never succeeded in extending the chessboard picture

to higher dimensions [89]. He abandoned this program in 60’s partially

because he felt dissatisfaction with not being able to extend the picture to

higher dimensions and partially because Grassmann integral (invented in

60’s be Berezin) became just the right tool to describe fermions in line with

his path-integral philosophy. In spite of (or perhaps because of) Feynman’s

abandonment of the checkerboard paradigm, there has been over the years

a growing number of works indicating that the checkerboard picture is

not merely an interesting mathematical curiosity but it may have more

substance than originally thought [142, 225, 240, 241]. For an interested

reader I present a technical exposition of the FC in Appendix K.

3.4 Emergent doubly special relativity

As described in the previous subsection, the configuration space for a rela-

tivistic particle could be operationally described through polycrystalline or

inhomogeneous vacuum. We have also seen that the emergence of special

relativity in a QM setting is tightly connected with a particular distribution

of grains or regions of inhomogeneity. One might thus ask how robust is

this result in regard to a slight perturbation of the mass-smearing distribu-

tion. I will now show that the answer is closely related to the concept of

doubly special relativity or deformed special relativity (DSR).

In a nutshell, DSR is a theory which tries to implement coherently a

second invariant, besides the speed of light, into the transformations among

inertial frames. This new invariant is usually assumed to be an observer-

independent length-scale — the Planck length `p ≈ 1.62 × 10−35m, or

its inverse, i.e., the Planck energy Ep = c`−1
p . It is thus not surprising

that DSR is often employed in connection with various quantum gravity

models [102, 103, 274, 292, 293].

To extend my previous reasonings to DSR, I start by considering the

modified invariant, or deformed dispersion relation,

ηabpapb
(1− `pp0)2

= m2c2 , (3.25)

proposed by Magueijo and Smolin [209, 210, 226]. Here m plays the rôle

of the DSR invariant mass. Assuming a metric signature (+,−,−,−), one

can solve (3.25) with respect to p0, which essentially coincides with the
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physical Hamiltonian H̄ = cp0. The latter is the generator of the tempo-

ral translations with respect to the coordinate time t, cf. [209, 210]. My

starting Hamiltonian is therefore

H̄∓ = c
−m2c2`p ∓

√
p2(1−m2c2`2p) +m2c2

1−m2c2`2p
, (3.26)

and similarly as in the previous subsection only the positive root of H̄∓ is

important in superstatistic PI. At this stage I assume that the transformed

Hamiltonian entering the PI representation of ℘(x′, t′|x, t) is of the form

H̄+(p, x) = F (H(p, x)) where F is some Lévy–Khinchine function, which

ensures that H(p, x) is non-relativistic Hamiltonan for a free particle. It is

not obvious a priori that such F exists. In close analogy with (3.21), it is

possible to show [159] that the following superstatistics PI identity holds
∫ x(t) = x

x(0) = x′
DxDp exp

[∫ T

0

dτ
(
ip · ẋ + H̄+

)
]

=

∫ ∞

0

dm̃ f 1
2

(
m̃, T̂ c2, T̂ c2m2

)

×
∫ x(T ) = x

x(0) = x′
DxDp exp

[∫ T

0

dτ

(
ip · ẋ− p2

2m̃
− E0

)]
. (3.27)

Here E0 = mc2/(1 +mc`p) is the particle’s rest energy, see, e.g., [210], T̂ =

Tλ and λ = 1/(1−m2c2`2p) is the deformation parameter. From the explicit

form of the smearing distribution, it is easy to find that 〈m̃〉 = m+1/(T̂ c2)

and var(m̃) = m/T̂ c2 + 2/T̂ 2c4.

From the structure of 〈m̃〉 we can obtain further useful insights. Sim-

ilarly as in the special relativistic framework, the fluctuating Newtonian

mass m̃ converges for large times T to the DSR invariant mass m. How-

ever, now, the rate of convergence is also controlled by the parameter λ.

Recalling that Ep = c/`p, I can write that λ = 1/(1−E2/E2
p). So, 〈m̃〉 can

converge rapidly to the invariant mass m, even at short times T , provided

the particle’s energy E is close to the Planck energy Ep.

From the identity (3.27) one can deduce the canonical commutation re-

lations (CCR) via the standard PI analysis [92]. In particular, the CCR can

be directly related to the degree of roughness (described through Hausdorff

dimension DH or Hurst exponent H) of a sample path in PI [92, 186, 282].

For instance, the usual non-relativistic canonical relation [x̂i, p̂j ] = iδij re-

sults from the fact that, for a sample path occurring in non-relativistic PI’s,
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DH and H are 3/2 (in time-position plane) and 1/2, respectively. In fact,

in non-relativistic quantum mechanics all local potentials fall into the same

universality class (as for the scaling behavior — DH = 3/2) as the free sys-

tem [186]. The latter might be viewed as a PI justification of the universal

form of non-relativistic CCR’s.

It is not hard to show [159] that the PI identity (3.27) implies the CCR

[x̂i, p̂j ]DSR1 = i

(
δij +

κ2 −m2c2

κ2m2c2
p̂ip̂j

)
. (3.28)

Here κ = 1/`p. The CCR (3.28) coincides with the so-called general-

ized uncertainty principles (or GUP) with the GUP deformation param-

eter [278, 279]

β =
κ2 −m2c2

m2c2
. (3.29)

We may note in passing that when mc→ κ, i.e., when m coincides with the

Planck mass, i.e. m = Mp ≈ 2.18 × 10−8kg then the CCR (3.28) reduces

to the non-relativistic one — as expected. This can also be directly seen

from (3.27), where for m → Mp the deformation parameter λ → ∞, and

the smearing distribution f 1
2

(
m̃, T̂ c2, T̂ c2m2

)
→ δ(m − m̃), which yields

the usual PI for a Wiener process. On the other hand, when κ � mc we

obtain

[x̂j , p̂i]DSR1 ≈ i

(
δij +

p̂ip̂j
m2c2

)
. (3.30)

which coincides with the special-relativistic commutator 3.

Should I have used instead of (3.25) a different DSR dispersion relation,

for example

p2
0 − p2

1− (`pp0)2
= m2c2 , (3.31)

(which is discussed, e.g., in Ref. [172]), I would have obtained the DSR

Hamiltonian

H̄± = ±
√

p2c2 +m2c4√
1 +m2c2`2p

, (3.32)

from which follows the superstatistics identity holds:
3The CCR (3.30) is obtained by lifting Dirac brackets (corresponding to the first class

constraint Φ ≡ p2 −m2 and the Polyakov gauge condition χ ≡ xµpµ − ςm2c2, with ς

being the world-line parameter) to QM commutators [98, 159]
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∫ x(T ) = x

x(0) = x′
DxDp exp





∫ T

0

dτ


ip · ẋ −

√
p2c2 +m2c4√
1 +m2c2`2p







=

∫ ∞

0

dm̃ f 1
2

(
m̃, T c2ζ2, T c2m2

)

×
∫ x(T ) = x

x(0) = x′
DxDp exp

{∫ T

0

dτ

[
ip · ẋ− p2

2m̃
− Ē0

]}
. (3.33)

Here Ē0 = mc2/
√

1 +m2c2`2p is the particle’s rest energy and the defor-

mation parameter now reads ζ = 1/
√

1 +m2c2`2p. In this case one has

〈m̃〉 = m/ζ + 1/(c2Tζ2) and var(m̃) = m/(Tc2ζ3) + 2/(T 2c4ζ4). One can

also observe that this double-special relativity model does not have the de-

sired property that the fluctuating mass m̃ converges to the DSR invariant

mass in the large T . The PI (3.33) implies the CCR [159]

[x̂j , p̂i]DSR2 = i

(
δij +

p̂ip̂j
m2c2

)
. (3.34)

This commutator coincides with the special-relativistic one. This fact is

not so surprising since the fractal dimension DH of a sample path of the

DSR2 system coincides with that of special relativity [159].

Let me finally add a few clarifying comments. The qualitative difference

in behavior of CCR (3.28) and (3.34) can be traced back to the fact that

commutators in (doubly-)special relativity depend on two things: First, the

fundamental commutators are essentially the Dirac brackets of the canon-

ical variables that are promoted on the QM level via Dirac’s prescription.

The explicit definition of the Dirac brackets depends on the choice of a

gauge (gauge fixing condition), which for relativistic systems corresponds

to choice of a specific physical time. So, the commutation relations are

generally gauge fixing dependent in both SR and DSR systems. In the

presented approach, the gauge which is implicitly incorporated in the su-

perstatistics PI is the so-called Polyakov gauge [256].

Second, the fundamental commutator [x̂j , p̂i] depends (through the Ja-

cobi identities) on the whole symplectic structure of the system (and there-

fore also on the commutator [x̂j , x̂i], for example). These are not specified

by a particular DSR model, but they have to be chosen aside. Of course,

one obtains different theories for different choices of [x̂j , x̂i]. In presented
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case, I automatically obtain the same fundamental commutators as Ghosh

[98] and Mignemi [227] did. In order to satisfy the Jacoby identities one

must assume that p̂j ’s commute but x̂j ’s do not commute. For instance,

in DSR1 model we should have

[x̂j , x̂i] = i
κ2 −m2c2

κ2m2c2
(x̂jp̂i − x̂ip̂j) . (3.35)

Such a set of commutators closes the so-called Snyder algebra [294].

Let me conclude with an important observation. It is possible to

show [159] that a slight perturbation in the mass-smearing distribution in

aforementioned DSR models would yield again identical DSR systems with

slightly perturbed deformation parameter. From this standpoint, the DSR

(as well as its low-energy limit — special relativity) is a robust concept, i.e.

its algebraic structure continues to hold despite (potentially dynamical)

alterations in polycrystalline structure conditions.

3.4.1 Cosmological implications

Gravity and Cosmology. — When spacetime is curved, a metric tensor

enters in both PI’s in (3.21) in a different way, yielding different “countert-

erms” [20, 179]. I.e., terms that are generated in the PI action action as a

perturbation corrections that ensure the finiteness of the PI. For instance,

in Bastianelli–van Nieuwenhuizen’s time slicing regularization scheme [20]

one has (when ~ is reintroduced)

p2

2m̃
7→ gijpipj

2m̃
+

~2

8m̃
(R+ gijΓmil Γ

l
jm) ,

√
p2 +m2c2 7→

√
gijpipj +

~2

4
(R + gijΓmil Γ

l
jm) + m2c2

+ ~4Φ(R, ∂R, ∂2R) + O(~6) , (3.36)

where gij , R, Γjkl and Φ(. . .) are the (space-like) pull-back metric tensor,

the scalar curvature, the Christoffel symbol, and non-vanishing function

of R and its first and second derivatives, respectively. This causes the

superstatistics identity (3.21) to break down, which one can explicitly check

to the leading order in ~.

The two respective cases have different physical consequences. This

implies the breakdown of the superstatistics PI identity. Because the Ein-

stein equivalence principle requires that the local spacetime structure should

be identifiable with the Minkowski spacetime possessing Lorentz symme-

try, one might assume the validity of (3.21) at least locally. However, in
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different space-time points one has, in general, a different typical length

scale of the local inertial frames, depending on the gravitational field. The

characteristic size of the local inertial (i.e. Minkowski) frame is of order

1/|K|1/4 where K = RαβγδR
αβγδ is the Kretschmann invariant and Rαβγδ

is the Riemann curvature tensor. Relation (3.21) tells us that the special

relativistic description breaks down in regions of size smaller than λ
C

.

For curvatures large enough, namely for strong gravitational fields,

the size of the local inertial frame can become smaller than λ
C

, that is

1/|K|1/4 . λ
C

. In such regions the special relativistic description is no

more valid, and according to (3.21) must be replaced by a Newtonian

description of the events. For instance, in Schwarzschild geometry4 one

has K = 12 r2
s/r

6, and the breakdown should be expected at radial dis-

tances r . (λ2
C
rs)

1/3 (rs = 2Gm/c2 is the Schwarzschild radius, G is

the gravitational constant and m is the source mass) which are — apart

from the hypothetical case of micro-black holes (where λ
C
' rs) — al-

ways deeply buried below the Schwarzschild event horizon. In the cosmo-

logically relevant Friedmann–Lemâıtre–Robertson–Walker (FLRW) geom-

etry5, one has K = 12 (ȧ4 +a2ä2)/(ac)4, and the breakdown happens when

(ȧ4+a2ä2) & (ac/λ
C

)4, where a(t) is the FLRW scale factor of the Universe

and ȧ = da/dt. Applying the Vilenkin–Ford model [325] for inflationary

cosmology, where a(t) is given by: a(t) = A
√

sinh(Bt) with B = 2c
√

Λ/3

(Λ is the cosmological constant), I obtain a temporal bound on the validity

of local Lorentz invariance, which, expressed in FLRW time, is

t . 1

B
arcsinh

[
Bλ

C

(8c4 − (Bλ
C

)4)
1/4

]
≡ t̄ . (3.37)

By using the presently known value of Λ ' 10−52m−2 (cf. e.g., Ref. [60])

and the τ -lepton Compton’s wavelength λτ
C
' 6.7 × 10−16m (yielding the

tightest upper bound on t), I obtain t̄ ' 4 × 10−24s. Note that, since

Bλ
C
� c, then t̄ ' λ

C
/c = t

C
. Such a violation of the local Lorentz invari-

ance naturally breaks the particle-antiparticle symmetry since there is no

unified theory of particles and antiparticles in the non-relativistic physics

— formally one has two distinct theories. If the resulting matter-antimatter

asymmetry provides a large enough CP asymmetry then this might have

essential consequences in the early Universe, e.g., for leptogenesis. In this

4The Schwarzschild geometry is described by the Schwarzschild metric, which is the
most general spherically symmetric vacuum solution of the Einstein field equations.
5The FLRW geometry is characterized by the metric tensor, which describes a homo-

geneous, isotropic, expanding (or contracting) universe.
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respect, t̄ is compatible with the nonthermal leptogenesis period that typi-

cally dates between 10−26–10−12s after the Big Bang.

3.5 Financial markets and econophysics - II

Another important application of the superstatistics paradigm is in econo-

physics. As mentioned in Chapter 2, econophysics is an emerging interdisci-

plinary field that makes use of concepts and methods of statistical physics

in order to analyze complex economical phenomena (be it financial time

series, portfolio management or success and failure of companies). The va-

lidity and promise of this paradigm has been demonstrated in a number of

recent publications and review papers, see e.g., Refs. [45, 179, 222, 307]

and citations therein. For the reader’s convenience I provide a glossary of

relevant financial terms in Supplementary notes.

My take on superstatistics applications in econophysics was presented

in three papers [148, 150, 155]. In particular, in Ref. [148] the so-called

stochastic adiabatic theorem was proved, in Ref. [150] a generalization of the

option pricing formula for a Gamma-superstatistics (non-Gaussian) price

fluctuations was introduced and discussed, and in Ref. [155] the transitions

between distinct superstatistical regimes in the context of high-frequency

(minute-tick) share-price returns of seven selected companies was observed

and analyzed.

Let me start first with the stochastic adiabatic theorem.

3.5.1 Stochastic “adiabatic” theorem:

As seen in Section 3.2 one can compute the conditional probabilities for

Markovian processes by employing PI calculus. For non-quadratic Hamil-

tonians such computations are typically quite difficult and hence one might

prefer to study such conditional probabilities directly in terms of their time-

evolution equations. Such equations are called (forward) Kramers–Moyal

equations and are of the form [269]

∂t′P (x′, t′|x, t) = LP (x′, t′|x, t) , (3.38)

where the Kramers–Moyal operator L has the expansion

L(∂t′ , x
′) =

∞∑

n=1

(−∂x′)nD(n)(x′, t′) . (3.39)
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Here the coefficients D(n)(x′, t′) are equal to the moments of the short-time

conditional probability P (x′, t′|x, t), namely

D(n)(x, t) =
1

n!
lim
τ→0

1

τ

∫ ∞

−∞
dz (z − x)n P (z, t+ τ |x, t)

=
1

n!
lim
τ→0

1

τ

∫ ∞

−∞
dz (z − x)n 〈z|e−τĤ |y〉 , (3.40)

cf. e.g., [148, 269]. According to Pawula’s theorem [249] (see also Ap-

pendix J) there is either infinite number of non-zero coefficients D(n)(x, t)

or, if there is a finite number of them, they can be non-zero only up to

n = 2. In addition, any artificial truncation of of expansion (3.39) at n > 2

would produce non-positive conditional probabilities. This is the basic rea-

son why phenomenological models for L go typically only up to n = 2,

i.e. to Fokker–Planck operator LFP and ensuing (forward) Fokker–Planck

equation.

Because Eq. (3.38) involves derivatives with respect to final coordinates

(x′, t′), it is also called forward Kramers–Moyal equation. To solve this

equation one has to specify boundary conditions at the initial time t. Since

Ĥ might contain diffusive terms, e.g. terms proportional to momenta, back-

ward time evolution is generally not described by the same operator L as

the forward evolution. Though the backward Kramers–Moyal equations are

easy to construct (see e.g. [269]), they are less relevant in practical appli-

cations, and hence I shall deal here only with their forward counterparts.

Let me first start with the following theorem.

Theorem 3.1 (“Adiabatic” theorem). If both P
ζ
(x′, t′|x, t) and

P (x′, t′|x, t) =

∫
dζ P

ζ
(x′, t′|x, t) ω(ζ, T ) with T = t′ − t ,

are Markovian PDF’s then their dynamics can be described via two (for-

ward) Fokker–Planck equations:

∂T ω(ζ, T ) = LFP
ω ω(ζ, T ) ,

∂t′Pζ (x
′, t′|x, t) = LFP

ζ
P
ζ
(x′, t′|x, t) , (3.41)

with

LFP
ω = −∂

ζ
K(1)(ζ, T ) + ∂2

ζ
K(2)(ζ, T ) ,

LFP
ζ

= −∂x′ D(1)
ζ

(x′, t′) + ∂2
x′ D

(2)
ζ

(x′, t′) . (3.42)
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Here K(1), D(1)
ζ

are drift coefficients and K(2), D(2)
ζ

are diffusion coeffi-

cients. In addition, the previous Fokker–Planck equations are on the level

of sample trajectories equivalent to two coupled Itô stochastic equations

dx′ = D(1)
ζ

(x′, t′) dt′ +

√
2D

(2)
ζ (x′, t′) dW1 ,

dζ = K(1)(ζ, T ) dT +
√

2K(2)(ζ, T ) dW2 . (3.43)

Here W1(t′) and W2(T ) are Wiener processes.

Proof of the theorem is rather lengthy and I would refer the interested

reader to the original paper [148]. Let me however, add few comments that

would clarify the meaning of Theorem 3.1.

One way to study implications of the superstatistics PI (3.11) is to di-

rectly compute such PIs. This is, however, often very hard and aside from

simple cases (cf. e.g. Ref. [113]), such computations is accessible only

through perturbative methods. Often more easier is to solve associated

Kramers–Moyal or Fokker–Planck equations. Since both P
ζ
(x′, t′|x, t) and

P (x′, t′|x, t) satisfy the Chapman–Kolmogorov equation, it would be nat-

ural to study Kramers–Moyal or Fokker–Planck equations associated with

those transition probabilitis. This might still be quite difficult task due to

(typically) non-linear nature of the emergent Hamiltonian H = F (H). The

adiabatic theorem allows to circumvent this by solving equivalent (but often

simpler) problem in terms of two coupled Fokker–Planck equations (3.41).

In the latter case, the drift and diffusion coefficients K(1) and K(2), respec-

tively, can be easily computed from first two moments of the distribution

ω(ζ, T ), which are often even tabulated.

Notice, further, that there are two very different characteristic time

scales involved in Eqs. (3.41): t, the “internal” time scale, representing

typical time scale over which P
ζ
(x′, t′|x, t) changes (e.g. financial data tick

scale, mean collision time or time-slicing scale), and T , the “external” time,

over which the “external” parameter ζ changes. Processes where T � t, as

in our case, are called adiabatic processes — hence the adjective adiabatic in

name of the theorem. Basic strategy for analysing an adiabatic process is

first to solve the problem with the external parameters held constant, and

only at the end of the calculation allow them to vary (slowly) with time.

This makes the theorem useful for practical applications.
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3.5.2 Double-stochastic process in financial markets

The previous adiabatic theorem has a direct implications in financial mar-

kets. In particular, it implies that Gamma superstatistics PI is closely

related to the Heston stochastic volatility model. To see this more explic-

itly let me start with the Gamma superstatistics PI, i.e. I assume that the

distribution w(ζ, T ) is a Gamma distribution with parameters b > 0 and

c > 0, such that

w(ζ, t) =
(b)ctζct−1

Γ(ct)
e−bζ , ζ ∈ R+ , (3.44)

or in terms of the smearing distribution ω(ζ, t)

ω(ζ, t) =
(bt)ctζct−1

Γ(ct)
e−btζ , ζ ∈ R+ . (3.45)

Since a Gamma distribution is infinitely divisible [84], it has the Lévy–

Khintchine representation of the moment-generating function cf. Eq. (3.15).

It can be directly checked that in this case the Lévy measure µ(du) =

ce−buu−11(0,+∞)(u)du and α = 0. With this we get

F (pζ) = ζ̄b
[
log
(pζ
b

+ 1
)]
, (3.46)

where ζ̄ = c/b is the mean of ω(ζ, t). In particular, for H = p2/2 we have

H(p) = ζ̄b

[
log

(
p2

2b
+ 1

)]
, (3.47)

which leads to the superstatistics PI identity

℘(x′, t′|x, t) =

∫ x(t′)=x′

x(t) = x

DxDp e
∫ t′
t
dτ[ipẋ − ζ̄b log(p2/2b+1)]

=

∫ ∞

0

dζ ω(ζ, T )

∫ x(T ) = x′

x(0) = x

DxDp e
∫ t′
t
dτ(ipẋ−ζp2/2)

≡
∫ ∞

0

dζ ω(ζ, T )℘
ζ
(x′, t′|x, t) , (3.48)

with T = t′ − t. Since the RHS of (3.48) involves only PI with quadratic

action, I can integrate it out to obtain

∫ ∞

0

dζ
(bT )cT ζcT−1

Γ(cT )

√
1

2πTζ
e−bTζe−r

2/2ζT , (3.49)
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where r = x′ − x. After the integration I find

K1/2−cT (2
√

2b |r|) T−3/2

√
π Γ(cT )

(
2
√

2b T

|r|

)1/2−cT

. (3.50)

It is quite interesting to note that in Fourier space, this coincides with a

Tsallis distribution [24, 25, 150, 333].

Connection with theory of financial markets arises when I consider

the free-particle Hamiltonian with drift: p2/2 + ip(r/ζ − 1/2), see e.g.,

Refs. [150, 179]. Here r is the drift constant and ζ volatility (see Supple-

mentary notes H.1). In order to find forward Fokker–Planck equations for

℘
ζ
(x′, t′|x, t) and ω(ζ, T ), I need to compute corresponding drift and dif-

fusion coefficients D(1)
ζ

and D(2)
ζ

for ℘
ζ
(x′, t′|x, t) and similarly K(1) and

K(2) for ω(ζ, T ). By employing the prescription of Eq. (3.40), the drift

coefficients read

D(1)
ζ

=

(
r − ζ

2

)
, D(2)

ζ
(x′, t′) =

ζ

2
. (3.51)

Similarly, the diffusion coefficients K(n) are

K(1)(ζ, T ) =
1

T

(c
b
− ζ
)

=
1

T

(
ζ̄ − ζ

)
,

K(n)(ζ, T ) =
1

Tn
c

nbn
, n ≥ 2 . (3.52)

With the help of adiabatic theorem I can write down the underlying Itō

processes for corresponding sample trajectories, namely

dx′ =

(
r − ζ

2

)
dt′ +

√
ζ dW1

dζ =
1

T

(
ζ̄ − ζ

)
dT +

1

T

√
ζ̄

b
dW2 . (3.53)

I can now view x′ as a logarithm of a stock price S, and ζ and r as the

associated variance and drift. If, in addition, I replace for large T the

quantity
√
ζ̄ with

√
ζ, the systems (3.53) reduces to

dS = rS dt′ +
√
ζS dW1 ,

dζ = γ
(
ζ̄ − ζ

)
dT + ε

√
ζ dW2 , (3.54)

where γ = 1/T and ε = 1/(
√
bT ). The system of equations (3.54) constitute

Heston’s stochastic volatility model [126] which is often used in financial
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markets to model bond and currency options (for further reference on this

model see, e.g., Ref. [126, 179] and citations therein). In this framework,

the parameters ζ̄, γ and ε are interpreted as the long-time volatility average,

the drift of the variance and the volatility of the variance, respectively.

Let us finally observe that in the large T limit ω(ζ, T ) = δ(ζ − ζ̄) and

so volatility is constant. In this case the solution of the Focker–Planck

equation (3.41) with the initial condition ℘
ζ̄
(x′, t|x, t) = δ(x′ − x) can be

easily found as follows. I define first the short-time transition probability

℘
ζ̄
(x′, t+ ∆t|x, t) where time increment ∆t is small. With this I can write

℘
ζ̄
(x′, t+ ∆t|x, t) = exp(τLFP

ζ̄
)℘

ζ̄
(x′, t|x, t)

= exp(τLFP
ζ̄

) δ(x′ − x) . (3.55)

Now I expand exp(τLFP
ζ̄

) in ∆t, which gives

℘
ζ̄
(x′, t+ ∆t|x, t) =

[
1 + ∆tLFP

ζ̄
+O(∆t2)

]
δ(x′ − x)

=
[
1−∆t∂xD

(1)
ζ̄

(x, t) + ∆t∂2
xD

(2)
ζ̄

(x, t) +O(∆t2)
]
δ(x′ − x). (3.56)

On the second line I have exchanged x for x′ inside of [. . .]. By using the

Fourier transform representation of the δ-function, I can further rewrite the

RHS of (3.56) as

1

2π

∫ ∞

−∞
dp
[
1− ip∆tD(1)

ζ̄
(x, t) − p2∆tD(2)

ζ̄
(x, t) +O(∆t2)

]
eip(x

′−x)

=
1

2π

∫ ∞

−∞
dp exp

[
ip(x′ − x)− ip∆tD(1)

ζ̄
(x, t) − p2∆tD(2)

ζ̄
(x, t)

]
, (3.57)

where on the first line integration by parts was used and on the second line

the contributions of the order O(∆t2) were neglected. Integration of the

Gaussian integral yields the short-time transition probability

℘
ζ̄
(x′, t+ ∆t|x, t)

=
1

2

√
π∆tD

(2)
ζ̄ (x, t)

exp

{
−

[(x′ − x)−∆tD(1)
ζ̄

(x, t)]2

4∆tD
(2)
ζ̄ (x, t)

}

=
1√

2π∆tζ̄
exp

{
− [(x′ − x)−∆t(r − ζ̄/2)]2

2∆tζ̄

}
. (3.58)

The short-time transition probability can be now used to find a final-time

solution of the Fokker–Planck equation. To this end I divide time difference
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T into N + 1 small intervals of length ∆t = T/(N + 1), defining tn = t+nτ

(so that t = t0 and t′ = tN+1), and by repeatedly applying the Chapman–

Kolmogorov equation (3.10), I get

℘
ζ̄
(x′, t′|x, t) =

∫

R
dx

N
· · ·
∫

R
dx1 ℘ζ̄ (x

′, t′|x
N
, t
N

) · · ·℘
ζ̄
(x1, t1|x, t)

=

[√
1

2π∆tζ̄

N∏

k=1

∫

R

(
dxk

√
1

2π∆tζ̄

)]

× exp

{
−

N∑

n=0

[(xn+1 − xn)−∆t(r − ζ̄/2)]2

2∆tζ̄

}
, (3.59)

which in the large N limit tends to the PI (cf. Appendix I)

∫ x(t′)=x′

x(t)=x

Dx exp

{
−
∫ t′

t

dt
[ẋ− (r − ζ̄/2)]2

2ζ̄

}

=

∫ x(t′)=x′

x(t)=x

DxDp exp

{
−
∫ t′

t

dt

[
ipẋ− ζ̄p2

2
− ip

(
r − ζ̄

2

)]}

=

∫ x(t′)=x′

x(t)=x

DxDp exp

{
−
∫ t′

t

dt
(
ipẋ− ζ̄H

)
}
, (3.60)

with H = p2/2 + ip(r/ζ − 1/2). This PI representation precisely coincides

with the prescription (3.48) where instead of a free-particle Hamiltonian I

use the Hamiltonian with drift H. Since this PI has a well known solu-

tion [113], the full transition probability can be written in a closed form

℘
ζ̄
(x′, t′|x, t) =

1√
2πζ̄T

exp




−

[
(x′ − x)−

(
r − ζ̄

2

)
T
]2

2ζ̄T




. (3.61)

The transition probability distribution (3.61) is recognized as the risk-free

member of the family of Gaussian martingale distributions for the stock

price S(t) = ex(t), cf. e.g. Ref. [179].
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Appendix H

Supplementary notes

H.1 Glossary of relevant financial terms

• Geometric Brownian motion Geometric Brownian motion is a spe-

cial case of Itô process

dY (t) = a(Y, t)dt + b(Y, t)dW (t) , (H.1)

where W (t) is the Wiener process (or Brownian motion) and functions

a(Y, t) and b(Y, t) are proportional to the random variable Y (t). In

particular, when Y (t) is identified with the asset price S(t) at time t

(i.e. with the spot price), the geometric Brownian motion for S(t) is

described via the stochastic equation

dS(t) = µS(t)dt + σS(t)dW (t) , (H.2)

where µ denotes the drift (it measures the average growth rate of the

asset price) and σ is the volatility (i.e., strength of price fluctuations —

see in this glossary item volatility). With the help of Itô’s lemma one

can rewrite (H.2) as

d logS(t) =

(
µ− 1

2
σ2

)
dt + σdW (t) . (H.3)

Thus, it is logS(t), and not the spot price S(t) itself that performs

a Wiener process with a (constant) drift. In other words, it is the

log-return rdt(t + dt) = d logS(t) rather than the absolute change

dS(t) = S(t + dt) − S(t), which is the relevant financial quantity (see

in this glossary item returns).

• Options Options are financial derivatives (i.e., a particular type of

financial instruments) that give buyers the right, but not the obliga-

tion(!), to buy or sell (depending on the type of contract they hold) an

326
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underlying asset at an agreed-upon price and date. There are two types

of options; a) call options, which allow the holder to buy the asset at

a stated price within a specific time frame and b) put options, which

allow the holder to sell the asset at a stated price within a specific time

frame.

According to how one treats the dates on which the option may be

exercised, options fall into various classes that are called styles. The

vast majority of options are either European or American style options

(or simply European or American options). These options (as well as

others where the payoff is calculated similarly) are referred to as vanilla

options. Options where the payoff is calculated differently are known

as exotic options. For instance, European options can be exercised only

at the expiration date of the option, i.e. at a single pre-defined point

in time, while American options may be exercised at any time before

the expiration date.

In 1973, Fisher Black, Myron Scholes and independently Robert

Merton used the geometric Brownian motion to construct theory for

determining the price of European style options. The key property of

their model is that it shows that the European option has a unique

price regardless of the risk of the underlying security and its expected

return. This new paradigm has formed a landmark in the development

of mathematical finance and currently represents a standard tool in

daily capital market practice. Despite the fact that Merton and Sc-

holes received the Nobel Prize jointly in 1997 for their work on the

option pricing formula — Black–Scholes option pricing formula, the

pricing formula itself is far from being perfect. For instance, significant

limitations arise from:

– The underestimation of extreme moves in the stock, which yields

heavy-tail risk.

– The assumption of instant, cost-less trading (though banks always

take a manipulation fee), which yields liquidity risk.

– The assumption of a stationary process, which yields volatility risk

(empirical volatility is time dependent).

– The assumption of continuous time and trading, which yields the

so-called gap risk (e.g. trading hours per day are limited).

In practice there exist diverse investment strategies trying to account

for these limitations. In addition, Black–Scholes pricing formula works

only for European style options (e.g., no corresponding formula exist



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

Supplementary notes 328

for American options), which by themselves represent only a particular

segment of the total option market.

• Returns In finance, return is a profit on an investment and it serves

as a fundamental financial and business performance measure. In fi-

nancial practice one recognizes various types of returns. For instance,

return on assets or ROA, measures how much money a company earns

by putting its assets to use. In other words, ROA is an indicator of

how efficient or profitable a company is relative to its assets or the

resources it owns or controls. Return on invested capital: is used to

assess a company’s efficiency at allocating the capital under its control

to profitable investments. The return on invested capital ratio gives

a sense of how well a company is using its capital to generate profits.

Return on investment (ROI): is used to evaluate the efficiency or prof-

itability of an investment. ROI tries to directly measure the amount

of return on a particular investment, relative to the investment’s cost.

It can be calculated by dividing the profit earned on an investment by

the cost of that investment.

Quite generally, if Y (t) is the price of a financial asset at a time t one

can calculate the net return over a single period of time length (or time

horizon) ∆t as:

R∆t(t+ ∆t) =
Y (t+ ∆t)− Y (t)

Y (t)
. (H.4)

For the analysis of the high-frequency financial data one can consider

∆t � 1. Given a financial price record Y (t) and a time lag ∆t, one

defines the price log-return in the interval ∆t as

r∆t(t+ ∆t) = log Y (t+ ∆t)− log Y (t)

= log [1 +R∆t(t+ ∆t)] . (H.5)

For high-frequency data |R∆t(t + ∆t)| � 1 which gives r∆t(t + ∆t) ≈
R∆t(t+∆t). So, when one is interested in high-frequency data or when

his/her investigations are limited to short term horizons the log-returns

and net returns are approximately equal.

One advantage of using log returns is simplicity in dealing with

multiperiod returns. A k-period log-return is simply the sum of the
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single-period log-returns since

rk∆t(t+ k∆t) = log [1 +Rk∆t(t+ k∆t)]

= log





k∏

j=1

[1 +R∆t(t+ j∆t)]





=

k∑

j=1

log [1 +R∆t(t+ j∆t)]

=
k∑

j=1

r∆t(t+ j∆t) . (H.6)

This should be contrasted with a k-period gross return

1 +Rk∆t(t+ k∆t) =
Y (t+ k∆t)

Y (t)

=

k∏

j=1

[
Y (t+ j∆t)

Y (t+ (j − 1)∆t)

]

=

k∏

j=1

[1 +R∆t(t+ j∆t)] . (H.7)

One of the key assumption in modeling the evolution of asset prices is

that returns from a single asset are mutually independent and identi-

cally distributed with normal distribution. So, log-returns rather than

net/gross returns are better suited to satisfy these assumptions. E.g.,

sum of random normally distributed variables r∆t(t + j∆t) is normal

while the products of normally distributed variables 1 + R∆t(t+ j∆t)

is not.

• S&P500 index There are some very important and less important

stock market places around the world, on which one can buy or sell

shares of companies. Most important are located in New York, Lon-

don, Frankfurt and Tokyo. Particularly important stock market is the

New York Stock Exchange (NYSE) where one of the oldest indexes

— the S&P500 Index (Standard & Poor Composite Index) is traded.

The S&P500 Index comprises portfolio of 500 different stocks: 400 in-

dustrials, 40 financial institutions, 40 utilities and 20 transportation
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companies. Because of its representativeness of the U.S. stock mar-

ket, diverse constituency, and the portfolio weighting methodology, the

S&P500 Index enjoys broad applicability in economic models. For in-

stance, analysis of the S&P 500 returns shows that the decorrelation

time is ≈ 4 min. In fact, with the present computer massification the

decorrelation times can be squeezed up to seconds. On the other hand,

the decorrelation times of the S&P 500 volatility is ≈ 3 months. There

exists a strong evidence that a higher momenta (namely skewness and

kurtosis) have decorrelation times of order years.

• Securities A security is a financial instrument, typically any financial

asset that can be traded. Term security broadly covers all traded finan-

cial assets and breaks such assets down into three primary categories:

a) equity security (e.g. share of a company’s stock) b) debt security

(e.g. corporate and government bonds) and c) derivative (e.g. options).

• Stock market The financial markets and specially an important part

of these, the stock markets, are places on which the companies and

governments can buy and sell the so-called shares. Nearly every major

stock market has his own index. For example, the New York Stock

Exchange market index is known as NYSE Composite and covers more

than 2000 stocks traded in the New York Stock Exchange (NYSE).

Similarly, the Frankfurt Stock Exchange index is known as the DAX

Index (Deutsche Aktien Index) and contains the 30 biggest and highest

volume German company shares traded in Frankfurt. Typically there

are more then one index on a single stock exchange. In New York there

are traded 4 large indexes (Dow Jones, Average, S&P500 and NYSE

Composite) while in Frankfurt it is 10 indexes. A large company will

usually have its stock listed on many stock markets across the world.

• Volatility The volatility can be most broadly defined as a degree to

which price moves. For instance, a stock with a price that fluctuates

wildly-hits new highs and lows or moves erratically is said to be highly

volatile. A stock that maintains a relatively stable price is considered

to have a low volatility. A highly volatile stock is inherently riskier. For

this reason, multiple measures of volatility are implemented in practice.

By far the most popular measure of market volatility is standard de-

viation. Among another volatility measures belong e.g., first absolute

moment when standard deviation is infinite (e.g., for heavy tailed dis-
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tributions), maximum drawdown (i.e., the largest historical loss for an

asset, measured from peak to trough, during a specific time period),

beta coefficient (i.e., indication of the volatility of a stock, a fund, or

a stock portfolio in comparison with the market as a whole — as a

benchmark index is most commonly used the S&P 500 index) or en-

tropy which quantifies ignorance and hence riskiness.

H.2 Some important biographies

There are numerous researchers that have substantially shaped our present

understanding of generalized statistics. For completeness sake and in or-

der to put my exposition into a historical context, I briefly sketch some

biographies which I consider as a “well-balanced ensemble”. My choice is

inevitably subjective but as already stressed by Edward Gibbon [100]: “A

choice of gurus is always personal.”. Finally, for the reader convenience I

organize the biographies alphabetically.

H.2.1 L.E. Boltzmann (1844-1906)

Ludwig Eduard Boltzmann was one of the major

figures in the development of the atomic theory

of matter. He was born in Vienna, Austria on

February 20. After receiving his PhD from the

University of Vienna in 1866, Boltzmann held pro-

fessorships in mathematics and physics at Vienna,

Graz, Munich, and Leipzig. He returned back to

Vienna in 1895 where he remained till his death.

In 1872 Boltzmann proposed the kinetic equation

presently known as the Boltzmann kinetic equa-

tion. This equation determines the evolution of a single-particle velocity dis-

tribution for molecules in a dilute gas. The stationary solution of this equa-

tion gives the celebrated Maxwell–Boltzmann velocity distribution law on

which the statistical thermodynamics of dilute gases was found. It should

be stressed that already in 1866 Maxwell derived this distribution from

vastly different (and simpler) arguments than Boltzmann.

Even more fundamental aspects of Boltzmann kinetic equations is that

it provides a method for calculating properties of dilute gases in non-

equilibrium states. Over time the Boltzmann equation has became a proto-
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type for a general kinetic method to formulate a temporal evolution of the

distribution function. The Boltzmann equation was also important math-

ematically, in being the first equation that described the time-evolution of

a probability.

It seems more than certain that Boltzmann’s atomistic ideas were cen-

tral to M. Planck’s later analysis of black body radiation in 1900 and A. Ein-

stein’s paper of 1905 on the nature of Brownian motion. He recognized that

the assumption of equal weights of microscopic states is sufficient to build

a general scheme for the statistical mechanics of equilibrium states, namely

statistical thermodynamics.

Boltzmann works on the kinetic theory of gases and statistical mechanics

together with his atomic hypothesis were strongly attacked many scientists

including such prominent figures as E. Mach, E Zermelo and W. Ostwald.

He remained misunderstood and this status que contributed badly to his

mental condition which culminated in resigning his position at Vienna Uni-

versity in 1906. On the same year Boltzmann hanged himself while on a

holiday in Duino in the north-eastern Italy.

It is rather ironic that his conclusions started to gain theoretical support

already during his life by the discoveries in atomic physics that began to

emerge shortly before 1900. It was recognized also soon after 1900 that

fluctuation phenomena, such as Brownian motion (and later Lévy process),

could be explained only through statistical concepts. Presently the most

prestigious price in statistical physics is named after Boltzmann — the

Boltzmann Medal.

H.2.2 J.W. Gibbs (1839-1903)

Josiah Willard Gibbs was born in New Haven,

USA on February 11, 1839. Both his professional

and personal life were confined to a single city

— New Haven in Connecticut. With the excep-

tion of a three-year long visit to Europe (Berlin,

Heidelberg and Paris) where he attended lectures

of leading European mathematician and physicists

including J. Liouville, L. Kronecker, H. Magnus,

H. Helmholtz and G. Kirchoff, he studied and

taught at Yale University, which is also in New

Haven, and died in the same city on April 28, 1903. In 1971 Gibbs became

an (unpaid) Adjunct Professor of mathematical physics at Yale. He started
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to be paid after more than 10 years, and only after the John Hopkins uni-

versity offered him a full professorship with a regular salary. Apparently

he found it difficult to break his ties with Yale University and accepted a

(financially less convenient) counter-offer from Yale.

During his scientific career was Gibbs active in thermodynamics of

fluids and substances. His paper “On the Equilibrium of Heterogeneous

Substances” from 1875 is still considered as a classic work in the field.

It is widely believed that Gibbs was the first who systematically dis-

cussed the transformation of the fundamental equation of thermodynamics;

TdS = dU(S, V ) + dW into equivalent forms with functional dependence

on (T, V ), (T, P ) and (S, P ). In fact, it is almost certain that it was Gibbs

who coined the name thermodynamic potential.

As for a statistical physics, Gibbs published his famous “Elementary

Principles of Statistical Mechanics” in 1902. It summarized 14 years of his

research in statistical physics. There he proposed that in order to develop

a macroscopic basis for thermodynamics one should instead a detailed me-

chanical description of the behavior of the individual constituents of matter

(àla Boltzmann) consider the statistical behavior of system of molecules,

provided one wish. To this end he introduced the concept of statistical

ensemble and formulated the ensemble entropy (Gibbs’s entropy) that al-

lows to assigns probability via the maximal entropy principle to each given

microstate. According to Gibbs, one should then identify the thermody-

namical quantities with averages of the corresponding microscopic quanti-

ties over all systems in the ensemble. This constitutes what Gibbs called

ensemble average.

Similarly as A. Einstein’s “Relativity, the special & the general theory”

or P.A.M. Dirac’s “The principles of Quantum Mechanics”, Gibbs’ book

has basically no reference to the literature. In fact, apart from his book

Gibbs published no paper on the subject of Statistical Mechanics.

Gibbs name is connected with many concepts in Thermodynamics and

Statistical Physics, including Gibbs paradox, Gibbs free energy, Gibbs equa-

tion, Gibbs–Duhem equation, Gibbs factor or Gibbs entropy. Among oth-

ers, Gibbs also coined the term statistical mechanics. This apparently hap-

pened during an oral presentation of one of his papers before the American

Association for the Advancement of Science in 1884.
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H.2.3 E.T. Jaynes (1922-1998)

Among prominent researchers exploring the con-

nection between the maximal entropy princi-

ple (MaxEnt) and Shannon’s information the-

ory was indisputably Edwin Thompson Jaynes.

E.T. Jaynes was born in Waterloo, Iowa, USA on

July 5, 1922. He received his B.A. in Physics from

the University of Iowa in 1942 and graduated at

UC-Berkeley. In 1947 he transferred to Princeton

University, where he completed a Ph.D. thesis in

1950 on ferroelectricity under the supervision of Eugene Wigner. In 1960

he accepted a senior faculty appointment at the University of Washington,

St. Louis, where, with few interruptions, he remained for the rest of his

life.

Jaynes’s major contributions lie essentially in four fields; applied classi-

cal electrodynamics, information theory and statistical mechanics, quantum

optics and neoclassical radiation theory, and probability theory and statis-

tical inference. Much of his work was in one way or another controversial

and in some cases it remains so till today. In 1957 he published his first

two papers interpreting statistical mechanics in terms of information the-

ory. It is true that the relationship between entropy and information was

already explored before Jaynes, e.g., by Szilárd, Schrödinger, Wiener or

Brillouin. In particular, it was Brillouin who, while re-examining the prob-

lem of Maxwell’s demon, introduced in 1952 the notion of “negentropy”.

Jaynes, however, rightly pointed out that Shannon’s measure of informa-

tion is simply the “measure of the uncertainty inherent in a preassigned

probability scheme” and per se it has nothing to do with thermodynamic

entropy, except in the cases in which the probability distribution is known,

or proven to be, “(grand-)canonical”. At the same time he realized that

in practice one should always adopt for the statistical description the dis-

tribution of maximal Shannon’s entropy among all those which satisfy ex-

perimentally given constraints. In other words, one should always choose

the least biased (most noncommittal) distribution permitted by the cir-

cumstances. The Gibbs probability distribution can be then derived from

a principle of maximum entropy subject to constraints representing prior

knowledge (e.g., when we know the average energy). According to Jaynes,

the statistical mechanics can thus viewed as a form of statistical inference

based partial information, rather than a physical theory.



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

Supplementary notes 335

Like Einstein, he did not like the Copenhagen interpretation of quantum

mechanics which he viewed as an incursion of mysticism into science. Out

of this line of dissatisfaction arose a work on neoclassical radiation theory,

published together with Fred Cummings in 1963. This theory, known as

Jaynes–Cummings model is probably his most cited and most notorious

paper. In 1975 he became the Wayman Crow Distinguished Professor of

Physics at Washington University in St. Louis. Jaynes died in St Louis,

Missouri, USA on April 30, 1998.

H.2.4 A.Y. Khinchin (1894-1959)

Aleksandr Yakovlevich Khinchin (or Khintchine)

was born on July 19, 1894 in the village Kon-

drovo (in Kaluga region) in Russian Empire. He

obtained his secondary school education both in

Russia (in Kaluga) and in Switzerland (in Zürich).

His university study was done at Moscow State

University under supervision of a famous Russian

mathematician Nicolai. N. Luzin. Khinchin grad-

uated from the university in 1916 and in 1922 he returned back to MSU

as a full professor of mathematics. He stayed at MSU until his death.

Khinchin’s work focuses mainly on probability theory and number the-

ory. He became one of the founders of modern probability theory. He

embraced Kolmogorov’s axiomatic approach and discovered the law of the

iterated logarithm in 1924 and achieved important results in the field of

limit theorems. Togetehr with P.P. Lévy, he was also one of the founders

of theory of stationary processes. Despite his mathematical upbringing, he

was extremely well versed in such subjects as statistical physics, quantum

mechanics and information theory. He published two key (and influential)

books: “Mathematical foundations of information theory” and “Mathe-

matical foundations of statistical mechanics” where he used the methods of

probability theory, information theory, queuing theory and mathematical

analysis in rather unusual but very inspiring way. With his name are con-

nected such concepts as Wiener–Khinchin theorem, Lévy–Khinchin formula

for infinitely divisible random variables, Lévy–Khinchin formula for stable

processes or Khinchin’s constant. Khinchin died in Moscow on November

18, 1959.
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H.2.5 P.P. Lévy (1886-1971)

Paul Pierre Lévy was born on September 15, 1886

in Paris. He came from a family of mathemati-

cians. His father was a teacher at the prestigious

École Polytechnique and his grandfather was a

professor of mathematics. He attended the Lycée

Saint Louis in Paris where he excelled in number of

subject including, chemistry, physics and mathe-

matics. After the secondary school he entered the

École Polytechnique and in the age of 19 (while

still undergraduate) he published his first paper

on semi-convergent series. He finished his PhD under supervision of

Hadamard in 1912. In 1913 he became professor at École des Mines de

Saint-Étienne in Paris and then in 1920 a professor of analysis at the École

Polytechnique in Paris where he remained until he retired in 1959. Among

his students were, e.g., Benoit Mandelbrot. In 1919 was Lévy asked to

deliver three lectures at the École Polytechnique titled “Notions of cal-

culus of probabilities and the role of Gaussian law in the theory of er-

rors.” These changed both Lévy’s life and probability theory. He discov-

ered the class of probability distributions known as “stable distributions”

(the Lévy–Khintchine formula) and proved the generalized version of the

Central Limit Theorem for independent variables with infinite variance. In-

dependently from the Soviet mathematicians Kolmogorov, Gnedenko and

Khinchin, he discovered the major part of what is presently known as the

theory of stochastic processes. Some of Lévy’s works were originally con-

sidered as unrealistic or even obscure. Among theses were, e.g., works on

processes with infinite variance (known as stable processes) or on local times

of stochastic processes which turned out to be extremely useful in a num-

ber of contexts, including condensed matter physics, statistical physics and

finance. In 1953 he started to used Hausdorff measure to study Brownian

paths and become a pioneer of fractals, which were in 1970’s popularized

by his student Benoit Mandelbrot.

In 1963 was Lévy elected as an honorary member of the London Math-

ematical Society. In the following year he was elected to the Académie des

Sciences. Lévy died on December 15, 1971 in Paris.
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H.2.6 B. Mandelbrot (1924-2010)

Benôıt Mandelbrot was born on November 20,

1924 in Warsaw, Poland into a Jewish family from

Lithuania. His mother was a dentist and his fa-

ther worked in the clothing business. The family

fled to Paris in 1936, in time to escape Hitler’s

advances. Once in Paris, he was mentored by his

bright mathematician uncle Szolem Mandelbrojt

(who was also an early member of the Bourbaki

group). After the fall of France his family fled

Paris, taking refuge in the south of France (Vichy Zone libre) before the

country was liberated in summer 1944. After the war he studied at the pres-

tigious École Polytechnique in Paris, and later at the California Institute

of Technology, Princeton (where he was the last postdoc of the great math-

ematician John von Neumann) and M.I.T. At M.I.T. he got to know the

young Noam Chomsky with whom he often debated linguistic and philoso-

phy. Mandelbrot ultimately settled at I.B.M.’ Thomas J. Watson Research

Center, where he stayed for 35 years. He took frequent leaves, teaching at

many universities, including Harvard and Yale. In the latter he was the

Sterling professor for 17 years (though he got tenure at Yale only when he

was 75).

Mandebrot’s life was irrevocably changed when his uncle Szolem in-

troduced him to Zipf’s Law, i.e. the law that was originally invented to

deal with the frequencies of words in various languages. Mandelbrot ob-

served that Zipf’s law led to some counterintuitive and universal results that

could only be explained by non-standard distributions (heavy-tailed distri-

butions); this was when he discovered the high prevalence of what many

had previous considered to be “rare” events. His work in this area as well

as some preliminary work in economics led him to a highly productive po-

sition at I.B.M. It was while at I.B.M. that Mandelbrot discovered what he

is most famous for — fractals and fractal geometry. The concept of fractals

arose originally from analyzing price and market fluctuations. Mandelbrot

was impressed by the striking similarity of disparate price and income time

series and realized that the equilibrium model that economists were rely-

ing upon for decades was of little use in analyzing real world jumps which

tended to be much more numerous than the standard CLT would indicate.

Today fractals as well as their sophisticated version — multifractals (in-

vented by Madelbrot in early 1970’s), are known to manifest themselves in a
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staggering range of phenomena in physics, engineering, arts, medicine (e.g.,

vessels, lungs, and brains are fractal), biology, etc. Surprisingly enough,

Mandelbrot was long ignored by the very field he started in — economics,

despite the fact the he proved already in the 1960’s that financial theo-

ries vastly underestimate market risk. His approach was not adopted by

economists partly because they found it difficult to use and partly because

the field was populated by “established” ideas from equilibrium models.

It was only in the 1980s that his insights became accepted into the main-

stream, and the global recession in 2008 and the shocks to the economy

have soundly validated his (multi-)fractal fluctuation models. He died on

October 14, 2010 in hospice in Cambridge, Massachusetts, USA.

H.2.7 A. Rényi (1921-1970)

Alfréd Rényi belongs together with Pál Erdös and

John von Neumann among the most prominent

Hungarian-born world mathematicians. He was

born on March 20, 1921 in Budapest, Hungary to

a Jewish family. In 1940 he was admitted to the

University of Budapest to study mathematics and

physics. After graduation in 1944 he was drafted

to forced labor service, escaped, and completed

his Ph.D. in 1947 at the University of Szeged, un-

der the advisement of the famous mathematician

Frigyes Riesz. After a brief assistant professorship

and Privatdozentship at Budapest University, he was appointed in 1949 as

Extraordinary Professor at the University of Debrecen and held this posi-

tion till 1950, when he founded the Mathematics Research Institute of the

Hungarian Academy of Sciences, now bearing his name. From 1952, he

also headed the Department of Probability and Mathematical Statistics of

the Eötvös Loránd University in Budapest. Rényi counts as a founder of

Hungarian Probability Theory School — now worldwide renown.

During his short life he was exceptionally prolific. He produced joint

papers with 36 co-authors on variety of mathematical subjects. For in-

stance, with Erdös alone he wrote 32 papers. As a visiting professor he

spent a substantial time period at number of universities, mostly in the

USA. Between 1965 and 1969, he was a member, and then vice president

of the International Statistical Institute

In 1961 he introduced the one-parametric class of information measures
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of order α — presently known as Rényi’s entropies, which give an important

generalization of the Shannon entropy and the Kullback–Leibler divergence.

Rényi name is connected with many concepts in information theory

probability theory and statistics including Rényi entropies, Rényi–Ulam

game, Erdös–Rényi phase transition (also known as percolation transition),

etc. He died at the lung cancer at the age of 49 in 1970.

H.2.8 E. Schrödinger (1887-1961)

His father ran a small linoleum factory in Erdberg,

Austria. He studied mathematics and physics at

the University of Vienna, receiving a doctorate on

the conduction of electricity on the surface of insu-

lators in moist air. He then undertook voluntary

military service until he obtained an assistantship

at Vienna. During World War I he saw active

service in Italy and Hungary, receiving a citation

for outstanding service, but in 1917 he returned

to Vienna, where he worked on color theory, and

moved to Jena and then Zürich in 1921. He began

to study atomic structure and quantum statistics and was influenced by

L. de Broglie’s thesis. In 1926 he published his revolutionary wave mechan-

ics including his great discovery, Schrödinger’s wave equation. According

to his own admission “... this work was a result of my dissatisfaction with

the quantum condition in the Bohr’s theory of the atom and my believe

that atomic spectra should really be determined by some kind of eigenvalue

problem.” In 1927 he moved to Berlin as Planck’s successor at the Uni-

versity of Berlin (currently the Humboldt University). While in Berlin, he

published his famous derivation od the Heisenberg’s uncertainty relation

based on the Schwarz inequality. In 1929 he was elected as the youngest

member of the Prussian Academy of Sciences. This was at that time the

most prestigious scientific honor. Due to the rise of the Nazi Party (NS-

DAP) and ensuing racial laws excluding Jews and other ‘undesirables’ from

holding governmental (including academic) posts Shrödinger resigned his

membership of the Prussian Academy and later in 1933 also his post at

Berlin University. After this moved from place to place (including Oxford

University, Princeton University and the University of Graz), finally taking

appointment at the Dublin Institute for Advanced Studies in 1939. In 1933

he was awarded jointly with Paul Dirac the Nobel Prize in Physics and
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in 1935 (while at Oxford University) his famous Schrödinger’s cat paradox

appeared. He published work on a unified field theories, but was devas-

tated by Einstein’s criticism of this work. He also wrote various books

including “What is life?” and “Statistical thermodynamics”, before return-

ing to Vienna in 1956. There Schrödinger was appointed to a professorial

post specially created for him at the University of Vienna. Apart from

his work on quantum mechanics and general relativity he dedicated also

a substantial part of his work to statistical physics and thermodynamics.

Known are particularly his influential papers on the statistical meaning

of entropy (quantifying the concepts of order and disorder) and quantum

statistical physics (e.g., Schrödinger–Park paradox). He was also first to

discuss the concept of negentropy and its relation to genetic information

stored in molecules (later named as the DNA molecule). He died at the age

of 73 years on January 4, 1961 in Vienna. The cause of death was simply

given as old age but most likely it was tuberculosis.

H.2.9 C.E. Shannon (1916-2001)

Claude Elwood Shannon was born on April 30,

1916 in Petoskey, Michigan, USA. His father was

mathematically skilful and worked as a probate

judge in Gaylord, Michigan. His mother was

a language teacher in Gaylord. From the early

childhood he had remarkable mechanical aptitude

and liked mathematical puzzles. In 1932 Shannon

started his undergraduate studies at the Univer-

sity of Michigan. In 1936 he was awarded a first

degree in electrical engineering and another in mathematics. He maintained

his love for both subjects throughout his life. In 1936 he joined Department

of Electrical Engineering at the M.I.T. as a research assistant. After two

years, he transferred to the Department of Mathematics, where he wrote

a brilliant master’s thesis entitled “An analysis of relay and switching cir-

cuits”. In this work he showed that the Boolean binary arithmetic could

be represented by electrical circuits. As a result he was able to develop

mathematical techniques for building a network of switches and relays to

realize a specific logical function.

In 1940 he completed his Ph.D. and was awarded a National Research

Fellowship to work at the Institute for Advanced Study (IAS) in Princeton,

New Jersey. His research line at IAS was strongly influenced by John von
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Neumann, whose many interests included computing, automata and game

theory. In 1940 was Shannon recruited as a research mathematicians for

the Bell Telephone Laboratories in Manhattan. Among his colleagues were

at that time John Bardeen, Walter H. Brattain and William B. Shockley

who received the Nobel Prize in Physics for the invention of the transistor.

In 1948 he published his most influential paper “A Mathematical Theory

of Communication”. The paper is often considered as the most important

engineering paper ever written. There he laid down mathematical foun-

dations of a new mathematical discipline — communication theory (now

called information theory). As stressed by the famous Russian mathe-

matician A.I. Khinchin: Rarely does it happen in mathematics that a new

discipline achieves the character of a mature and developed scientific theory

in the first investigation devoted to it. .... so it was with information theory

after the work of Shannon.

The axiomatic style of the paper paper not only allowed to provide an

operational meaning to hitherto vague notion of information but allowed

Shannon to formulate his (now famous) coding theorem. In particular, in

his source coding theorem Shannon shows that it is impossible to compress

the source data so that the expected length of a source code is less than the

Shannon entropy of the source, without loosing some part of the original

source information. Interestingly enough, Shannon entropy is identical in its

form (apart from a scaling factor) to Gibb’s expression for thermodynamic

entropy. This had a wide repercussions for a development of statistical

physics and information technology in the second half on 20th century.

Apart from information theory, Shannon was scientifically prolific also

in the game theory and cybernetics. His pioneering work on computer chess

and on mechanical “mouse” (Theseus) that learn the path through a maze

are among the earliest contributions to the field of artificial intelligence.

He was also skilful electro-engineer and to the general public he was well

known for numerous ingenious machines and gadgets he invented and built.

In 1956 Shannon came to M.I.T. to join its faculty as the Donner Pro-

fessor of Science. At the M.I.T. he worked in the Research Laboratory of

Electronics from which he formally retired in 1978. Interestingly enough,

Shannon’s publication activity essentially came to an end in 1967 when

he was just over 50 years. By the end of 1990’s he developed Alzheimer’s

disease and died at the age of 84 years on February 24, 2001 in a nursing

home in Medford, Massachusetts, USA.
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H.2.10 C. Tsallis (1943-∗)

Constantino Tsallis is a Brazilian physicist of

Greek origin. He was born on November 5, 1943

in Athens. He grew up in Argentina, where

he studied physics at Instituto Balseiro, in Bar-

iloche. In 1974, he received a Doctorat d’État ès

Sciences Physiques degree from Université Paris

Sud-Orsay under supervision of Andre Guinier.

His scientific interests has focused since on foun-

dational issues of statistical physics. In 1988 he

published in Journal of Statistical Physics an influential paper in which he

proposed a generalization of Boltzmann–Gibbs entropy and ensuing modi-

fications of conventional statistical physics. It was later on found that his

generalized entropy — presently known as Tsallis entropy, can be identi-

fied with Havrda–Charvát’s information measure (or structural α entropy).

Tsallis put the Havrda–Charvát’s measure “on the map” by stressing that it

represents a natural entropy (or complexity measure) for a specific class of

anomalous systems that are characterised by non-ergodicity and for a num-

ber of systems with metastable states. Tsallis seminal paper became a fer-

tile ground for several further investigations in the area of non-equilibrium

statistical physics. To date, there is in a number of practical applications of

Tsallis thermostatistics in the areas of critical phenomena, chaos and non-

linear dynamics, economics, cognitive psychology, immunology, population

evolution, etc.

Presently Tsallis holds a joint appointment with the National Academy

of Sciences of Brazil and the Santa Fe Institute, New Mexico.
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Crash course on path integral

I.1 Quantum mechanics — Feynman path integral

For logical consistency I will briefly sketch here some essentials of Feynman’s

path integral (PI). For more detailed exposition I would relegate the reader

to Refs. [92, 179, 335]. For simplicity’s sake I work with a bosonic particle

in one dimension. Generalization to more dimensions is quite straightfor-

ward. Fermionic PI which is typically formulated in terms of Grassmann

variables will not be discussed here as it is not needed in the main text.

In its essence, Feynman’s PI is a particular representation for the tran-

sition amplitude 〈xf , tf |xi, ti〉. Simplest way how to introduce PI (also the

way I follow here) is to assume validity of conventional canonical quantiza-

tion and derive PI from it. An alternative viewpoint where PI is introduced

heuristically is presented, e.g. in Ref [92].

Let me start with the Heisenberg-picture resolution of unity

1I =

∫

R
dx |x, t〉〈x, t| , (I.1)

which is valid for any time t. I now partition the time interval [ti, tf ] into

N + 1 equidistant pieces ∆t (see Fig. I.1) by writing tf − ti = (N + 1)∆t.

Consequently I get that

〈xf , tf |xi, ti〉 =

(∫

RN

N∏

k=1

dxk

)
〈xf , tf |xN , tf −∆t〉

× 〈xN , tf −∆t|xN−1, tf − 2∆t〉

× 〈xN−1, tf − 2∆t|xN−2, tf − 3∆t〉

...

× 〈x1, ti + ∆t|xi, ti〉 . (I.2)

343
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For a future reference it will be convenient to formally set t0 = ti and

Fig. I.1: Sliced time interval [tb, ta] with representative trajectory. Note that momenta

pi+1 in each interval ∆t = ti+1 − ti are constant and change discontinuously from one
interval ∆t to another. See also Eqs. (I.8)-(I.9). The right-to-left quantum mechanical

convention is employed. Figure is reproduced from Ref. [179].

t0

tN+1 = tf .

To proceed, I utilize the trick that consists in rewriting the infinitesimal-

time transition amplitudes in terms of the Schrödinger picture base vectors

|xk〉, i.e.

〈xj , tj |xj−1, tj−1〉 = 〈xj |T
[

exp

(
−i
∫ tj

tj−1

dt Ĥ(t)

)]
|xj−1〉 , (I.3)

where the time ordering prescription T must be enfoced when Ĥ is explicitly

time dependent (e.g., when it includes time dependent external fields).

In connection with (I.3) I should emphasize that the Schrödinger-picture

base vectors are time independent in contrast with Schrödinger-picture state

vectors that are, of course, time dependent (opposite statement holds for
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Heisenberg picture). By using the expansion

T

[
exp

(
−i
∫ tj

tj−1

dt Ĥ(t)

)]

= 1− i

∫ tj

tj−1

dt1 Ĥ(t1)−
∫ tj

tj−1

dt1 Ĥ(t1)

∫ t1

tj−1

dt2 Ĥ(t2)

+ i

∫ tj

tj−1

dt1 Ĥ(t1)

∫ t1

tj−1

dt2 Ĥ(t2)

∫ t2

tj−1

dt3 Ĥ(t3) . . . , (I.4)

For a very small ∆t I can employ the resolution of unity for the momentum

base vectors (in Schrödinger picture) and write

〈xj , tj |xj−1, tj−1〉

' 〈xj |
(

1− i
∫ tj

tj−1

dt Ĥ(t)

)
|xj−1〉

'
∫

R
dpj〈xj |pj〉 [1− i Hcl(pj , xj−1, tj−1)∆t] 〈pj |xj−1〉

'
∫

R

dpj
2π

eipj(xj−xj−1)−iHcl(pj ,xj−1,tj−1)∆t . (I.5)

Here I have defined

Hcl(pj , xj−1, tj−1) = 〈pj |Ĥ(tj−1)|xj−1〉 , (I.6)

and tj = ti + j∆t. Note that Hcl coincides with the classical Hamiltonian

if Ĥ is in the “px-ordered form” in which all p̂-operators stand left of all

x̂-operators. If Ĥ is not in the px-ordered form then there are in Hcl

correction of order O(~) in comparison with the classical Hamiltonian.

By inserting (I.5) into the formula (I.2) we get exponential including

the sum of Hamiltonians and term

exp

[
i

N+1∑

k=1

pk

(
xk − xk−1

∆t

)
∆t

]
, (I.7)

which in the N →∞ limit (“continuous” time limit) goes over to

exp

(
i

∫ tf

ti

dt p(t)ẋ(t)

)
.
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Similarly

exp

(
−i

N+1∑

k=1

Hcl(pk, xk−1, tk−1)∆t

)

N→∞→ exp

(
−i
∫ tf

ti

dt Hcl(p(t), x(t), t)

)
.

If, in addition, one adopts the formal notation

lim
N→∞

[
N∏

k=1

∫

R2

(
dpkdxk

2π

)]∫

R

dpN+1

2π
=

∫ x(tf )=xf

x(ti)=xi

DpDx , (I.8)

it is possible to rewrite the amplitude of transition (I.2) in the so-called

phase-space path-integral representation as

〈xf , tf |xi, ti〉 =

∫ x(tf )=xf

x(ti)=xi

DxDp exp

[
i

∫ tf

ti

dt (pẋ−Hcl)

]
. (I.9)

Note that since p and x are not related in (I.9), the expression p(t)ẋ(t) −
Hcl(p(t), x(t), t) is not the Lagrangian despite its suggestive form [see note

after Eq. (I.14)]. At this point one can ask: Given PI (I.9) with Hcl being

the conventional the classical Hamiltonian, what is the most general (time-

independent) Hamiltonian for which (I.9) holds. The answer is the “Weyl-

ordered” Hamiltonian ĤW . So, in particular in (I.9) we should use

〈xf , tf |xi, ti〉 = 〈xf |e−i(tf−ti)ĤW |ti〉 . (I.10)

The proof of this statement can be found, e.g., in Ref. [20].

The phase-space PI (I.9) was firstly derived by Feynman in Ref. [88].

It heuristically represents a sum over trajectories in phase space where

each trajectory carries the phase factor proportional to the classical action

evaluated along respective trajectory. The concept of the PI phase-space

trajectories is, however, quite troublesome from mathematical (as well as

conceptual) point of view as such trajectories are discontinuous almost ev-

erywhere (see Fig. I.1). There is an extensive literature on this topic. The

interested reader may consult, e.g. Refs. [54, 76, 177, 282, 300]. A math-

ematically cleaner alternative to phase-space PI is the so-called coherent-

state PI introduced by Klauder [177].

When Hcl = p2

2m + V (x) with V being momentum independent, one

can reduce the phase-space PI to the configuration-space PI. The actual

argument goes as follows. I first rewrite (I.9) as
∫ x(tf )=xf

x(ti)=xi

Dx
{
e−i

∫ tf
ti

dt V (x)

∫
Dp exp

[
i

∫ tf

ti

dt

(
pẋ− p2

2m

)]}
.
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The PI within {. . .} can be further recast to the form
∫
Dp exp

[
i

∫ tf

ti

dt

(
pẋ− p2

2m

)]

= lim
N→∞

∫

RN+1

(
N+1∏

k=1

dpk
2π

)
exp

[
i∆t

N+1∑

i=1

(
pi

(xi − xi−1)

∆t
− p2

i

2m

)]

= lim
N→∞

N+1∏

k=1

∫

R

dp

2π
exp

[
i∆t

(
p

(xi − xi−1)

∆t
− p2

2m

)]

= lim
N→∞

N+1∏

k=1

√
m

i2π∆t
exp


i∆t

N+1∑

j=1

m(xj − xj−1)2

2∆t2




= N exp

[
i

∫ tf

ti

dt
m

2
ẋ2

]
, (I.11)

where N is the (infinite) constant factor that can be assimilated to the the

definition of Dx. On the fourth line I have used the Fresnel integral
∫

R
dx eiax

2

=

√
π

|a| e
i sign(a) π/4 , for all a ∈ R . (I.12)

Identity (I.11) represents a special case of the so-called Hubbard–

Stratonovich transformation. Consequently, I can formulate the transition

amplitude 〈xf , tf |xi, ti〉 in an alternative form

〈xf , tf |xi, ti〉=
∫ x(tf )=xf

x(ti)=xi

Dx exp

(
i

∫ tf

ti

dt L(ẋ, x)

)
. (I.13)

Here, L = mẋ2/2−V (x) is the conventional configuration-space Lagrangian

and

lim
N→∞

[√
m

i2π∆t

N∏

k=1

∫

R

(
dxk

√
m

i2π∆t

)]
=

∫ x(tf )=xf

x(ti)=xi

Dx , (I.14)

defines the so-called Feynman’s “measure”, which in fact is not a proper

measure in a mathematical sense [see the comment after Eq. (I.23)].

The integration over x1, . . . , xN can be interpreted as summing over

all possible broken line paths connecting xi and xf . Since any continuous

path can be approximated by a broken-line path, the limit N →∞ can be

viewed as a passage to a sum over all continuos paths in the configuration

space.
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In connection with (I.13) it should be noted that the Hubbard–

Stratonovich transformation plays on the level of PI analogous role as the

Legendre transform in the classical physics. In fact, both concepts will

coincide when the stationary phase (or WKB) approximation is applied

to the PI (I.11). In such a case only classical (on-shell) configurations

for p will contribute. In fact, the stationary phase leads to the relation

pst = mẋ/2 = ∂L/∂ẋ, which is the required relation when passing from

Hamiltonian to Lagrangian picture.

The form (I.13) often serves as a starting point for discussions concern-

ing the classical or semiclassical limits of quantum theory. The PI (I.13)

also serves as an excellent tool for setting up perturbation treatment [179].

Although ensuing technical and mathematical issues are both important,

intriguing and interesting they lay outside the scope of this work and thus

I shall not dwell on them. The corresponding technical aspects are well

covered, e.g., in Refs. [4, 54, 104, 270].

I.2 Statistical physics and Euclidean PI

Let me now briefly outline an important connection between statistical

physics and quantum mechanics that can be exemplified in terms of PIs.

To this end I consider the matrix element

ρ(xi, xf , β) ≡ 〈xf |e−βĤ |xi〉 , (I.15)

of the Gibbs operator e−βĤ , where β = 1/(kBT ) is the inverse temperature

and kB is the Boltzmann constant. The matrix ρ(xi, xf , β), known also as

the Bloch density matrix, is a fundamental object in quantum statistical

physics, as the expectation value of an operator Ô at the temperature T

can be written in the form

〈Ô〉 =
1

Z

∫

R

∫

R
dxidxf ρ(xi, xf , β) 〈xf |Ô|xi〉 , (I.16)

where Z =
∫
R dx ρ(x, x, β) is the partition function of the system.

The matrix element (I.15) may be thought as the matrix element of the

imaginary time evolution operator

U(xf , τf ;xi, τi) = 〈xf |e−(τf−τi)Ĥ |xi〉 , (I.17)

evaluated for the interval τf − τi = β. Given the observation that the

essence of PI is the subdivision of the time interval into sufficiently small

intervals so that in the expansion (I.4) one can neglect higher-order terms
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(safe for the liner one), all the steps in the derivation of the real-time PI

from previous subsection can be repeated for the case of imaginary time.

So, by combining (I.2) and (I.5) with (I.17) I can write

ρ(xi, xf , β) ≡ U(xf , τf ;xi, τi)

= lim
N→∞

[
N∏

k=1

∫

R2

(
dpkdxk

2π

)]∫

R

dpN+1

2π

× e
∑N+1
j=1 [ipj(xj−xj−1)−Hcl(pj ,xj−1)∆τ ]

=

∫ x(τf )=xf

x(τi)=xi

DpDx exp

[∫ τf

τi

dt (ipẋ−Hcl)

]
. (I.18)

Note in particular, that there is “i” factor in front of pẋ but not in front of

Hcl. By using the fact that U(xf , τf ;xi, τi) = U(xf , τf − τi;xi, 0) one can

also rewrite (I.18) as

ρ(xi, xf , β) =

∫ x(β)=xf

x(0)=xi

DpDx exp

[∫ β

0

dt (ipẋ−Hcl)

]
. (I.19)

In cases when Hcl = p2

2m + V (x) with V being momentum indepen-

dent, one can easily integrate over p. By employing the Hubbard–

Stratonovich transformation together with the Gaussian integral, one ob-

tains the configuration-space PI representation of the density matrix in the

form

ρ(xi, xf , β) =

∫ x(β)=xf

x(0)=xi

Dx exp

(
−
∫ tf

ti

dt H(ẋ, x)

)
, (I.20)

where H(ẋ, x) = m
2 ẋ

2 + V (x) can be identified with the classical Hamilto-

nian function, in which the momentum p is substituted for mẋ. In addition,

Feynman’s “measure” (I.14) changes to the Euclidean measure

lim
N→∞

[√
m

2π∆τ

N∏

k=1

∫

R

(
dxk

√
m

2π∆τ

)]
=

∫ x(β)=xf

x(0)=xi

Dx , (I.21)

with β = (N + 1)∆τ . Thus the configuration-space PI representation of

the density matrix (or imaginary-time PI) corresponds to a “sum” over

all continuous trajectories x(τ), τ ∈ [0, β], connecting the initial point

x(0) = xi with the final point x(β) = xf .
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In connection with (I.20) it should be noted that the integral∫ β
0
dτ
[
m
2 ẋ

2 + V (x)
]

is the classical Euclidean action integral6 along the path

x(τ) with τ ∈ [0, β]. One can also regard (I.20) as an expectation value

of the functional exp[−
∫ β

0
dτ V (x(τ))] over the (driftless) Brownian motion

with the diffusion coefficient 1/m, and duration β, that starts at point xi,

and terminates at xf . Corresponding stochastic process with fixed end

points is also known as Brownian bridge.

Equation (I.20) is much better behaved mathematically than (I.13). In

particular, the new exponential tends to suppress very rough paths. Even

so, the “typical” path x(τ) is merely continuous and not differentiable. This

is because with the time sliced density and (I.16) the mean square velocity

diverges when the time slicing ∆τ → 0, namely

〈v2〉 ≡
〈(

xk+1 − xk
∆τ

)2
〉

=
1

βm∆τ
. (I.22)

This means that a typical path in the PI is a nowhere differentiable contin-

uous path — fractal, with the Hurst exponent H = 1/2 and the Hausdorff–

Besicovich dimension DH = 2−H = 3/2. So, ẋ2 appearing in the expo-

nent should not be taken too literally and in fact mathematicians typically

subsume it into the measure, which is then known as Wiener measure. The

latter is defined as

dµmW (x) ≡ exp

{
− 1

2m

∫ β

0

dτ ẋ2(τ)

}
Dx , (I.23)

where Dx is given in (I.21). Strictly speaking, (I.23) represents the so-called

conditional Wiener measure, i.e., measure on a set of continuous trajectories

x(τ), with τ ∈ [0, β], for which x(0) = xi and x(β) = xf . The traditional

uncoditional Wiener measure, which we do not really use here, specifies

its values only at the initial time, and it corresponds to one additional

integration (i.e., extra dxf in Dx) over the final value xf at the final time

tf .

Let us finally note that despite the similarity of the PI (I.20) with the

Feynman PI (I.13), there is a profound difference between these two ex-

pressions. In the former (Feynman’s) case the underlying measure is only

finitely additive (the limiting procedure is ambiguous), while in the latter
6The adjective Eucliden simply emphasizes the fact that the time derivative term in the

action has an opposite sign in comparison to the original time derivative term in (I.13).

This terminology descents from Quantum Field Theory where one starts with Minkowski
metric in the gradient term and by changing the sign in front of a time derivative term

one obtains (modulo overall minus sign) an Euclidean metric in the gradient part.
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(Wiener’s) case the continuum limit actually defines a genuine measure, i.e.,

a countably additive measure on paths. In fact, the Wiener measure can be

formulated even without time-slicing procedure [104, 135, 235, 282]. Var-

ious attempts to put Feynman’s PI on a firm mathematical ground, e.g.,

define Feynman’s PI with respect to a pseudomeasure [54, 176, 230] are

still under way.
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Pawula theorem

In this Appendix I will prove Pawula theorem. My exposition will loosely

follow Refs. [249, 269].

In its essence, the Pawula theorem states that there are only three possi-

ble cases in the Kramers–Moyal expansion (3.40)-(3.38): (a) The Kramers–

Moyal expansion is truncated at n = 1, which means that the process is

deterministic; (b) the Kramers–Moyal expansion stops at n = 2, in which

case it is equivalent to the Fokker–Planck equation, and describes diffusion

processes and, finally, (c) the Kramers–Moyal expansion contains all coeffi-

cients up to n =∞. The Pawula theorem is a consequence of the following

lemma:

Lemma J.1. If D(n) <∞ for all n and if D(n) = 0 for some even n > 2,

then D(n) = 0 for all n ≥ 3. If D(2) = 0 then only D(1) can be nonzero.

Proof.

To prove the lemma, let me consider the Cauchy–Schwarz inequality

[∫
dz p(z)f(z)g(z)

]2

=

[∫
dz p(z)f2(z)

] [∫
dz p(z)g2(z)

]
, (J.1)

where both f(z) and g(z) are non-negative functions and p(z) is some prob-

ability distribution. Now I set p(z) = P (z, t+ τ |x, t), f(z) = (z − x)n and

g(z) = (z− x)n+m, with n ≥ 0 and m ≥ −n, and divide both sides of (J.1)

by τ2. In the limit of τ → 0 I obtain

[
(2n+m)!D(2n+m)

]2
≤ (2n!)(2n+ 2m)!D(2n)D(2n+2m) . (J.2)

352
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So, in particular

D(n) ∝ D(2n)D(0) ,

D(n+1) ∝ D(2n)D(2) ,

D(n+2) ∝ D(2n)D(4) ,

... (J.3)

By noting the fact that D(0) diverges with 1/τ as τ → 0, one must exclude

the first line in (J.3). Assuming that D(4) = 0 (i.e., n = 2), then from (J.3)

I have

D(4) = 0 ⇒ D(3) = D(5) = D(6) = · · · = 0 . (J.4)

By assuming that D(2) = 0 (i.e., n = 1), I similarly get

D(2) = 0 ⇒ D(3) = D(5) = D(6) = · · · = 0 . (J.5)

Note that this does not provide any restriction on D(1), so when D(2) = 0

then only D(1) can be nonzero. This closes the proof. �

Clearly, the only possibility how no to have all D(n) with n ≥ 3 equal

zero is that there should not exist any non-zero D(n) with n even. This, in

turn means that all terms up to n =∞ must be considered, though, some

of the odd coefficients can be zero.

It should be stressed finally that the Pawula theorem, does not state

that the expansions truncated at n ≥ 3 cannot be used (in fact often it is

used), but in such cases the ensuing transition probability possess various

undesirable properties, e.g., it has inevitably negative values at least for

sufficiently short time [269].
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Appendix K

Feynman chessboard — technical
exposition

The relativistic checkerboard (also chessboard) picture [92, 137, 165] was

an attempt by R.P. Feynman to generalize his space-time approach to in-

clude special relativity. In particular, Feynman hoped that he could explain

particle’s spin as a result of the space-time structure alone. This attempt

was in many respects incomplete, though some recent works suggest that

the checkerboard picture may prove to be more fundamental than just an

interesting mathematical curiosity [149, 159, 241, 242]. In this Appendix

I provide a brief technical exposition of the basic ideas involved.

K.1 Prelude — Dirac equation in 1 + 1 dimensions

In ordinary 3 + 1 dimensions the Dirac equation can be written in a

Schrödinger-like form [72]:

i~
∂ψ

∂t
= mc2γ0ψ − i~cγ0γi

∂ψ

∂xi
= mc2βψ − i~cαi ∂ψ

∂xi
, (K.1)

with the γ-matrices satisfying the Clifford algebra {γµ, γν} = 2ηµν . In

passing to 1+1 dimensions the Clifford algebra keeps its structure, but µ

and ν can be only 0 or 1. The corresponding representation of the two

γ-matrices is well known. In particular, one can choose γ0 = γ0 = σ1 and

γ1 = −γ1 = iσ2. With this the Dirac equation in 1 + 1 dimensions can be

cast in the form

i~
∂ψ

∂t
= mc2σ1ψ − i~cσ1(−iσ2)

∂ψ

∂x
= mc2σ1ψ − i~cσ3

∂ψ

∂x
, (K.2)

where I have used the identity σiσj = δij + iεijkσk.

The propagator, say G(x, tx; y, ty), for ψ is a 2 × 2 matrix function of

space and time which fulfills the defining equation

354
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ψ(x, tx) =

∫

R
dy G(x, tx; y, ty)ψ0(y, ty) . (K.3)

Euclidean version of (K.2) is easily obtained when one analytically continues

the time t to imaginary times and assumes the Clifford algebra in the form

{γµE , γνE} = 2δµν . By setting t = −iτ (τ ∈ R) and using γ0
E = σ1 and

γ1
E = −σ2 one obtains

∂ψE
∂τ

=
mc2

~
σ1ψE − cσ3

∂ψE
∂x

. (K.4)

Here ψE(x, τ) ≡ ψ(x, t = −iτ). Among others, the equation (K.4) im-

plies the correct Euclidean Klein–Gordon equation in 1+1 dimensions. The

Euclidean Green function G(x,−iτx, y,−iτy) ≡ P (x, τx|y, τy) satisfies the

Fokker–Planck-like equation:

(∂τ + cσ3∂x − σ1mc
2/~)P(x, τ |x′, τ ′) = δ(x− x′)δ(τ − τ ′) . (K.5)

Note also that mc2/~ = 1/τC where τC is the Compton time, i.e., time in

which light crosses a distance equal to particle’s Compton wave length λC .

K.2 Euclidean checkerboard picture

I start by introducing a so-called Euclidean checkerboard picture. To this

end I consider a particle with a fixed speed v moving on a line. I suppose,

further, that from time to time the particle suffers a complete reversal of

the direction (and hence also v ↔ −v). Let these reversals be random with

a fixed rate, say a, of the reversal and with the probability for the reversal

in a time interval dτ being adτ . Such a process represents the Poisson

stochastic process.

Let p+(x, τ) and p−(x, τ) be PDF’s for the particle being at the positions

x at time τ and moving to the right and left, respectively. One can easily

persuade himself that the following difference master equations hold

p±(x, τ + ∆τ) = p±(x∓∆x, τ)(1− a∆τ)

+ p∓(x±∆x, τ)a∆τ . (K.6)

In the continuum limit, I receive two interlocked differential equations

∂p±(x, τ)

∂τ
= −a (p±(x, τ)− p∓(x, τ)) ∓ v

∂p±(x, τ)

∂x
, (K.7)
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where the identification v = dx/dτ was made. At this point one may

introduce the probability doublet

P (x, τ) =

(
p+(x, τ)

p−(x, τ)

)
. (K.8)

In terms of P the equation (K.7) reads as

∂P (x, τ)

∂τ
= −aP (x, τ) + aσ1P (x, τ)− vσ3

∂P (x, τ)

∂x
. (K.9)

The latter implies that the underlying stochastic process is indeed the Pois-

son process. Equation (K.9) can be brought into a simpler form by per-

forming the substitution

P (x, τ) = e−aτP(x, τ) . (K.10)

For P then the following master equation holds

∂P(x, τ)

∂τ
= aσ1P(x, τ)− vσ3

∂P(x, τ)

∂x
. (K.11)

Before I proceed further, two comments are in order. First, the substi-

tution (K.10) represents more than a simple mathematical trick. In fact,

back in the Minkowski picture the substitution (K.10) represents a mul-

tiplication of the wave function by a phase factor exp
[
(imc2/~)t

]
. This

is the usual relativistic phase factor which is responsible for a shift of the

ground-state energy by mc2 [149]. Second, by comparing Eq. (K.4) with

Eq. (K.11) one can see that the equations are identical provided one sets

P(x, τ) = ψE(x, τ), a = mc2/~ = 1/τC and v = c.

The Euclidean propagator, or equivalently, conditional probability associ-

ated with Eq. (K.11) can be calculated by various means. In particular, the

Feynman–Kac formula allows to phrase the propagator via path integral.

There one should perform a weighted sum over all continuous trajectories

running from the initial position (x′, τ ′) to the final position (x, τ) (see, e.g.,

Ref. [179] for a detailed exposition of the path-integral approach). Interest-

ingly enough, not all trajectories have a non-trivial contribution. Indeed, in

deriving (K.11) I have considered only a special sub-class of zig-zag paths.

From (K.10) follows that the propagator can be then written as

Pij(x, τ |x′, τ ′) = eaTPij(x, τ |x′, τ ′) , (K.12)

where T ≡ τ − τ ′ and P (x, τ |x′, τ ′) is the matrix-valued conditional prob-

ability density linking together the initial (prior) PDF’s P (x′, τ ′) and the

final (marginal) PDF P (x, τ), i.e.

Pi(x, τ) =

∫

R
dx′Pij(x, τ |x′, τ ′)Pj(x′, τ ′) . (K.13)
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Fig. K.1: An example of a typical “++” trajectory that enters Feynman

checkerboard picture for a spin 1/2 particle in (1+1)-dimensional spacetime.

Indices i, j in both (K.12) and (K.13) run through the set {+,−}. At

this stage I define Xij as a set of all Poisson processes (with the rate a)

that start at the state described by values {x′, τ ′, j} and end at the state

{x, τ, i}. I denote n(T ) as the number of events that happen in the time

interval T . With these I can write the transitional probability for our

Poisson process by summing (marginalizing) in the the joint probability

distribution P ((n(T ) = k) ∩Xij) over all possible events k. In particular

Pij(x, τ |x′, τ ′) =
∑

k

P ((n(T ) = k) ∩Xij)

=
∑

k

P(n(T ) = k)P (Xij |n(T ) = k) . (K.14)

The second equality in (K.14) is just the Bayes rule with P(n(T ) = k)

describing the probability that during the time T one observes k events.

The analysis can be carried further when I discretize the time interval into

N equidistant pieces. Such a regularization allows to evaluate the above

conditional probability explicitly for any N . As with any regulating scheme,

the limit N →∞ should be performed after the calculations with the fixed
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N are done. Consequently I can write

Pij(x, τ |x′, τ ′) = lim
N→∞

∑

k

P(n(T ) = k)
φ(N)((n(T ) = k) ∩Xij)

φ(N)(n(T ) = k)

= lim
N→∞

e−aT
∑

k

(
aT

N

)k
φ(N)((n(T ) = k) ∩Xij) . (K.15)

In the first equality I have utilized the definition of the conditional prob-

ability. The function φ(N)(. . .) denotes the number of distinct realizations

of the random process in its argument. In the second equality I have used

the fact that in the large N limit Stirling’s formula gives

φ(N)(n(T ) = k) =
N !

k!(N − k)!
∼= Nk

k!
. (K.16)

This in turn allows to write the Euclidean propagator in the form

Pij(x, τ |x′, τ ′) = lim
N→∞

∑

k

(
mc2T

N~

)k
φ

(N)
ij (k) . (K.17)

Here I have employed the simplifying notation φ
(N)
ij (k) ≡ φ(N)((n(T ) =

k)∩Xij). Eq. (K.17) is (in spirit of Feynman’s PI) a sum over alternatives,

where each summand is a (weighted) number of the Poisson processes (with

the rate a = mc2/~) with exactly k reversals (events) running from the

initial state {x′, τ ′, j} to the final state {x, τ, i}.
Since φ

(N)
ij (k) represents the number of paths it does not change when

I pass from Euclidean to Minkowski picture. The only change is in the

path weighting factor (mc2T/N~)k where the Euclidean T changes to the

Minkowski iT . Consequently I can write the ensuing Minkowski Green

function in the form

Gij(x, t|x′, t′) = lim
N→∞

∑

k

(
i
mc2T

N~

)k
φ

(N)
ij (k) , (K.18)

where now T = t − t′. This is precisely Feynman’s original result [92].

By its very construction should (K.18) coincide with the usual Bessel-

functions based formula for the Dirac propagator. Taking into account

the explicit form of φ
(N)
ij (k) this can be, indeed, easily checked. Following

Refs. [137, 165], I can calculate, for instance, φ
(N)
++ (k) as follows: first I re-

alize that for any “++” (and also “−−”) configuration k is an even number

and there are precisely k/2 turns to the left and k/2 turns to the right.7 By
7For “−+” and “+−” configurations k is odd. For “−+” configuration there (k−1)/2+1

turns to the left and (k− 1)/2 turns to the right. For “+−” configuration the rôle of left

and right is reversed.
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splitting the time axis into N equidistant pieces, I define the elementary

time step ∆τ ≡ T/N . I further denote the total time (in the units of ∆τ)

that corresponds to the left turns as L and the time for right turns as R.

With this I can write

x− x′ = c(R− L)∆τ ≡ c∆τM and R+ L = N , (K.19)

⇒ R =
N +M

2
, L =

N −M
2

. (K.20)

From Fig. K.2 one may infer that the total number of “++” paths starting

at (x′, τ ′) and ending at (x, τ) with k turns can be written as the product

’

{∆τ

∆τ

+

+
x

τ

τ
L

R

τ
τ(x,  )

(x’,   )

x−x’ = (R−L)c

Fig. K.2: Conventions used in the φ
(N)
++ (k) calculation.

of the number of different ways in which one can distribute k/2 right turns

among R−2 potential time occasions for the right turn (−2 enters because

the initial and final time steps are fixed by the “++” boundary conditions),

times the number in which one can distribute k/2− 1 left turns (−1 enters

because one turn to the left is compulsory for m 6= 0) among L−1 potential

time occasions for the left turn (−1 enters because one turn to the left is
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compulsory for m 6= 0), i.e.

φ
(N)
++ (k) =

(
R− 2

k/2

)(
L− 1

k/2− 1

)
∼= Lk/2−1

(k/2− 1)!

Rk/2

(k/2)!

=
(LR)(k−1)/2

(k/2− 1)!(k/2)!

√
R

L
. (K.21)

Using further that

LR =
1

4

(
N2 −M2

)
=

1

4
N2
(
1− v2/c2

)
=

(
N

2γ

)2

, (K.22)

R/L =
(1 +M/N)

(1−M/N)
=

(1 + v/c)

(1− v/c)

=
γ2

(∆τ2N)2
(T + (x− x′)/c)2 , (K.23)

(here v = (x − x′)/T and γ is the Lorentz factor) and plugging (K.22)–

(K.23) to (K.21) I receive

P++(x, t|x′, t′) ∼= γ

T
(T + (x− x′)/c)

∞∑

k=1

(
mc2T

N~

)2k (
N

2γ

)2k−1
1

(k − 1)!k!

= ∆τ
mc2(T + (x− x′)/c)

s~
I1(mc2s/~) . (K.24)

In the last line I have used the series representation for the Modified Bessel

function [1]

I1(z) =
z

2

∞∑

n=0

(z
2

)2n 1

n!(n+ 1)!
, (K.25)

and abbreviation s = T/γ = (T 2 − (x − x′)2/c2)1/2. In a similar way I

would arrive at the result

P−+(x, t|x′, t′) ∼= ∆τ
mc2

~
I0(mc2s/~) . (K.26)

The correct normalization in the continuum limit can be deduced from the

probability normalization. Going back to the Poisson process described by

Pij(x, τ |x′, τ ′) (cf. Eq. (K.12)) one should require the normalization

e−at
∫ ct

−ct
dx [P−+(x, t|0, 0) + P++(x, t|0, 0)] = P+(n(t) ≥ 1)

= 1− exp(−at) , (K.27)
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(similar normalization should hold if I have started from the “−” initial

configuration). Here I have used the fact that the LHS of the equation

represents the probability that the particle (which starts from the state

{0, 0,+}) is in the interval (−ct, ct) at time t. At the same time this should

represent probability that during t will happen at least one reversal. For the

Poisson process in question this is 1− e−at. Explicit calculation, however,

gives that

e−at
∫ ct

−ct
dx [P−+(x, t|0, 0) + P++(x, t|0, 0)] = 2c∆τ(1− e−at) . (K.28)

This suggests that both (K.24) and (K.26) should be divided by 2c∆τ in

order to fulfill the normalization condition (K.27).

The passage from the Euclidean transition probability (K.24) to the

Minkowski Green function is established by changing T to iT in the path-

weighting factor. Consequently I can write

G++(x, t|x′, t′) ∼= −mc(T + (x− x′)/c)
2s~

J1(mc2s/~) , (K.29)

where I have employed the series representation for the Bessel function of

the first kind [1]

J1(z) =
z

2

∞∑

n=0

(−1)n
(z

2

)2n 1

n!(n+ 1)!
, (K.30)

Analogous reasonings can be done also for other components. Finally I can

write for the full matrix propagator

Gij(x, t|x′, t′) =

mc

2s~

(−(T + (x− x′)/c)J1(mc2s/~) s J0(mc2s/~)

s J0(mc2s/~) (−T + (x− x′)/c)J1(mc2s/~)

)
.

(K.31)

This indeed coincides with the known result for the 1+1 dimensional Dirac’s

fermion propagator (see, e.g. Ref. [137]).

Eq. (K.17) offers a conceptually interesting interpretation of a represen-

tative trajectory for an Euclideanized Dirac particle in two dimensions. In

particular, a massive(!) particle propagates over an average distance λC
with velocity c before it reverts its direction. It is only on much larger

spatial scales (after many directional reversals take place) where the Brow-

nian motion with a sub-luminal average velocity emerges. So in quantum

mechanics one must sum over all such zig-zag trajectories subject given
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Dirichlet boundary conditions in order to obtain correct Feynman causal

propagator for Dirac’s fermion.

The results obtained should be compared with the corresponding Eu-

clidean version for a non-relativistic particle. In this case the particles obey

Wiener (i.e., Brownian) process, where the scaling 〈∆x2〉 ∝ ∆t implies that

the representative trajectories have the Hurst exponent H = 1/2, or equiv-

alently the Hausdorff fractal dimension DH of the trajectory is 3/2. In

addition, such a scaling is independent of the local potential as long as the

potential is velocity independent. In other words, all local potentials fall

into the same universality class as a free particle [186]. This is also reflected

in the fact that the canonical commutation relations for non-relativistic par-

ticles have all the same algebraic structure.



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

Bibliography

[1] Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Func-
tions (Dover Publications, New York).
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[28] Bengtsson, I. and Życzkowski, K. (2006). Geometry of Quantum States.
An Introduction to Quantum Entanglement (Cambridge University Press,
Cambridge, UK).

[29] Bennett, C. H. (1982). The thermodynamics of computation - a review,
Int. J. Theor. Phys. 21, p. 905.

[30] Bennett, C. H. (1987). Demons, engines and the second law, Scientific
American 11, p. 108.
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mation estimators for multidimensional densities, The Annals of Statistics
36, p. 2153.
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Villars, Paris).
[197] Levy-Leblond, J. M. (1976). Who is afraid of nonhermitian operators? A

quantum description of angle and phase, Ann. Phys. 101, p. 319.
[198] Lewis, J. T., Pfister, C. E. and Sullivan, W. G. (1994). The equivalence

of ensembles for lattice systems: some examples and a counterexample, J.
Stat. Phys. 77, p. 397.

[199] Lieb, E. H. (1990). Gaussian kernels have only gaussian maximizers, Invent.
Math. 102, p. 179.

[200] Lieb, E. H. and Brascamp, H. H. (1976). Best constants in Young’s in-
equality, its converse, and its generalization to more than three functions,
Adv. in Math. 20, p. 151.

[201] Lindeberg, J. W. (1922). Eine neue Herleitung des Exponentialgesetzes in
der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift 15, p. 211.

[202] Lloyd, S. (200). Quantum-mechanical Maxwell’s demon, Nature 406, p.
1047.

[203] Luisell, W. H. (1973). Quantum Statistical Theory of Radiation (Wiley,
New York).

[204] Lukacs, E. (1970). Characteristic Functions (Hafner Publishing Co., New
York).

[205] Lungerella, M., Ishigoro, K., Kuniyoshi, Y. and N. Otsu, N. (2007). Meth-
ods for quantifying the causal structure of bivariate time series, Progress
in Neurobiology 77, p. 1.

[206] Lyons, L. (1989). Statistics for Nuclear and Particle Physicists (Cambridge
University Press, Cambridge).

[207] Maassen, H. and Uffink, J. B. M. (1988). Generalized entropic uncertainty
relations, Phys. Rev. Lett. 60, p. 1103.

[208] Mafu, M., Garapo, K. and Petruccione, F. (2013). Finite-size key in the
Bennett 1992 quantum-key-distribution protocol for Rényi entropies, Phys.
Rev. A88, p. 062306.

[209] Magueijo, J. and Smolin, L. (2002). Lorentz invariance with an invariant
energy scale, Phys. Rev. Lett. 88, p. 190403.

[210] Magueijo, J. and Smolin, L. (2003). Lorentz invariance with an invariant
energy scale, Phys. Rev. D 67, p. 044017.

[211] Majid, S. (2002). A quantum groups primer (Cambridge University Press,
Cambridge).



November 14, 2021 20:33 World Scientific Book - 9in x 6in hab˙new˙C

Bibliography 373

[212] Mandelbrot, B. B. (1961). Stable paretian random functions and the mul-
tiplicative variance of income, Econometrica 29, p. 517.

[213] Mandelbrot, B. B. (1963). New methods in statistical economics, Journal
of Business 36, p. 392.

[214] Mandelbrot, B. B. (1967). How long is the coast of britain? Statistical
self-similarity and fractional dimension, Science 156, p. 636.

[215] Mandelbrot, B. B. (1969). Long-run linearity, locally Gaussian processes,
H-spectra and infinite variances, Int. Econ. Rev. 10, p. 82.

[216] Mandelbrot, B. B. (1977). Fractal-Form, Chance and Dimension (Freeman,
San Francisco).

[217] Mandelbrot, B. B. (1997). Fractals and Scalling in Finance: Discontinuity,
Concentration, Risk (Springer-Verlag, New York).

[218] Mandelbrot, B. B. (1999). A fractal walk down wall street, Scientific Amer-
ican 2, p. 70.

[219] Mandelbrot, B. B. (2001). Stochastic volatility, power-laws and long mem-
ory, Quant. Fin. 1, p. 558.

[220] Mandelbrot, B. B. (2005). Fraktale und Finanzen, Maerkte zwischen Risiko,
Rendite und Ruin (Piper, Muenchen).

[221] Mandelstam, L. and Tamm, I. G. (1945). The uncertainty relation between
energy and time in non-relativistic quantum mechanics, J. Phys. USSR 9,
p. 249.

[222] Mantegna, R. N. and Stanley, E. (2007). Introduction to Econophysics:
Correlations and Complexity in Finance (Cambridge University Press,
Cambridge).

[223] Marschinski, R. and Kantz, H. (2002). Analysing the information flow be-
tween financial time series, Eur. Phys. J. B30, p. 275.

[224] Maurer, U. and Wolf, S. (1997). Privacy amplification secure against active
adversaries, in B. S. Kaliski (ed.), Advances in Cryptology — CRYPTO ’97
(Springer Berlin Heidelberg, Berlin, Heidelberg), pp. 307–321.

[225] McKeon, D. G. C. and Ord, G. N. (1992). Time reversal in stochastic
processes and the Dirac equation, Phys. Rev. Lett. 69, p. 3.

[226] Mignemi, S. (2003a). On the definition of velocity in theories with two
observer-independent scales, Phys. Lett. A 316, p. 173.

[227] Mignemi, S. (2003b). Transformations of coordinates and Hamiltonian for-
malism in deformed special relativity, Phys. Rev. D 68, p. 065029.

[228] Minsky, M. L. (1968). Matter Mind and Models. In Minsky, M. L., ed.,
Semantic Information Processing (MIT Press, Cambridge, MA.).

[229] Minsky, M. L. (2006). The Emotion Machine (Pantheon, New York).
[230] Morette DeWitt, C. (1972). Feynman’s path integral: Definition without

limiting procedure, Commun. Math. Phys. 28, p. 47.
[231] Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics

(McGraw-Hill Book Co., London).
[232] Müller-Lennert, M., Dupuis, F., Szehr, O. and Tomamichel, M. (2013). On
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nelles linéaires, Acta. Math. 49, p. 465.

[269] Risken, H. (1996). The Fokker–Planck Equation Methods of Solution and
Applications (Springer, Stuttgart).

[270] Rivers, R. J. (1987). Path integral methods in quantum field theory (Cam-
bridge Univ. Press, Cambridge, UK).

[271] Robertson, H. P. (1929). The uncertainty principle, Phys. Rev. 34, p. 163.
[272] Rockafellar, R. T. (1972). Convex Analysis (Princeton University Press,

Princeton).
[273] Rothstein, J. (1971). Informational Generalization of Entropy In physics

(Cambridge University Press, London), ed. Bastin, T.
[274] Rovelli, C. and Speziale, S. (2003). Reconcile Planck-scale discreteness and

the Lorentz–Fitzgerald contraction, Phys. Rev. D 67, p. 064019.
[275] Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integrals

and Derivatives: Theory and Applications (Gordon and Breach, New York,
USA).

[276] Satin, F. and Salasnich, L. (2002). Multiparameter generalization of nonex-
tensive statistical mechanics, Phys. Rev. E65, p. 035106.
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