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Abstract

This thesis, titled “Blood Glucose Level Prediction for Type 1 Diabetes Mellitus: Ensemble
Approaches Utilizing Direct and Iterated Methods for Multi-Step Forecasting,” presents a
comprehensive study on the prediction of blood glucose levels in patients with Type 1 Diabetes
Mellitus. Our work is based on both in vivo data and simulated datasets. The inputs to our
models included blood glucose levels, basal insulin, bolus insulin, carbohydrate intakes, and
the hour of the day.

We applied both direct and iterated versions of two robust prediction algorithms: the Linear
Model (LM) and the Support Vector Regression (SVR). We proposed and evaluated three
ensemble frameworks: the Linear meta-model, the Bagging meta-model, and the Boosting
meta-model. These methods have garnered significant interest from the scientific community
due to their ability to improve the accuracy of predictions by combining the strengths of
multiple models.

For the bolus insulin, we used it as an impulse signal and simulated its absorption using
an open compartment model. This approach allowed us to capture the dynamics of insulin
absorption in the body, which is crucial for accurate blood glucose level prediction.

Our results showed that the iterated Bagging meta-model, combined with an open com-
partment model for bolus insulin simulation, outperformed the other ensemble frameworks.
Specifically, when applied in vivo for patient 2, the iterated Bagging-meta model demon-
strated superior performance. The Root Mean Square Error (RMSE) was recorded at 15.47
mg/dL for a 60-minute ahead prediction horizon, and the percentage in Region A according to
Clarke’s Error Grid Analysis (CEGA) was found to be 95.37%. This finding underscores the
potential of ensemble methods and compartment models in improving the accuracy of blood
glucose level predictions.

The thesis is organized into seven chapters. Chapter 1 provides an overview of the the-
sis, including the problem statement, objectives, and contributions of the research. Chapter
2 reviews relevant literature on diabetes management, blood glucose prediction, and ensem-
ble methods. Chapter 3 presents the research objectives and the contribution to diabetes
management and healthcare. Chapter 4 details the implementation, experimental setup, and
data analysis. Chapter 5 describes the direct versus iterated methods for blood glucose level
multi-step ahead forecasts. Chapter 6 concludes the thesis by summarizing key points and
emphasizing the research’s contributions. Chapter 7 summarizes the basic outcomes, provides
insights for further extensibility, and offers recommendations for future work.

In conclusion, we believe that our findings will pave the way for future research in this
area, particularly with regard to the use of ensemble methods, compartment models, and the
incorporation of various physiological signals as inputs to the models.

Keywords: ensemble framework, diabetes mellitus, blood glucose level prediction, insulin
pump, artificial pancreas, direct method, iterated method
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Abstract

Tato práce s názvem
”
Predikce glykémie pro Diabetes Mellitus 1. typu: Kombinace predik-

tivńıch model̊u využ́ıvaj́ıćıch p̌ŕımé a iterované metody pro p̌redpov́ıdáńı v́ıce krok̊u dop̌redu,“
uvád́ı a komplexńı studie o predikci hladiny glukózy v krvi u pacient̊u s diabetem 1 Mellitus.
Naše práce je založena jak na datech in vivo, tak na simulovaných souborech dat. Vstupy
do našeho modely zahrnovaly hladiny glukózy v krvi, bazálńı inzuĺın, bolusový inzuĺın, p̌ŕıjem
sacharidů a hodina dne.

Použili jsme jak p̌ŕımou, tak iterovanou verzi dvou robustńıch predikčńıch algoritmů:
Lineárńı Model (LM) a podpůrná vektorová regrese (SVR). Navrhli jsme a vyhodnotili ťri
souborové rámce: lineárńı metamodel, metamodel pytlováńı a posilováńı meta-model. Tyto
metody si źıskaly značný zájem vědecké komunity d́ıky jejich schopnosti zlepšit p̌resnost
p̌redpověd́ı kombinaćı silných stránek v́ıce model̊u.

U bolusového inzulinu jsme jej použili jako impulsńı signál a pomoćı simulovali jeho ab-
sorpci model s otev̌renou p̌rihrádkou. Tento p̌ŕıstup nám umožnil zachytit dynamiku inzuĺınu
vsťrebáváńı v těle, což je kĺıčové pro p̌resnou p̌redpověď hladiny glukózy v krvi.

Naše výsledky ukázaly, že iterovaný metamodel Bagging v kombinaci s otev̌reným partment
model pro bolusovou simulaci inzulinu, p̌rekonal ostatńı souborové rámce. Konkrétně, když byl
aplikován in vivo u pacienta 2, iterovaný Bagging-meta model demon- deklarovaný vynikaj́ıćı
výkon. Root Mean Square Error (RMSE) byl zaznamenán v 15.47 mg/dl pro 60minutový
p̌redpovědńı horizont a procento v regionu A podle Clarke’s Error Grid Analysis (CEGA) bylo
zjǐstěno na 95.37 %. Toto zjǐstěńı podtrhuje potenciál souborových metod a kompartmen-
tových model̊u p̌ri zlepšováńı p̌resnosti krve p̌redpovědi hladiny glukózy.

Práce je rozdělena do sedmi kapitol. Kapitola 1 poskytuje p̌rehled sis, včetně prohlášeńı
o problému, ćıl̊u a p̌ŕınos̊u výzkumu. Kapitola 2 shrnuje relevantńı literaturu o léčbě diabetu,
predikci hladiny glukózy v krvi a ble metody. Kapitola 3 p̌redstavuje ćıle výzkumu a p̌ŕınos
pro diabetes management a zdravotnictv́ı. Kapitola 4 podrobně popisuje implementaci, exper-
imentálńı nastaveńı a analýza dat. Kapitola 5 popisuje p̌ŕımé versus opakované metody pro
stanoveńı hladiny glukózy v krvi p̌redpovědi o v́ıce krok̊u. Kapitola 6 uzav́ırá práci shrnut́ım
kĺıčových bodů a zdůrazněńı p̌ŕınos̊u výzkumu. Kapitola 7 shrnuje základńı výstupy, poskytuje
p̌rehledy pro daľśı rozšǐritelnost a nab́ıźı doporučeńı pro budoućı práci.

Na závěr vě̌ŕıme, že naše zjǐstěńı p̌riprav́ı půdu pro budoućı výzkum v této oblasti oblasti,
zejména s ohledem na použit́ı souborových metod, kompartmentových model̊u a začleněńı
r̊uzných fyziologických signál̊u jako vstupů do model̊u.

Keywords: ensemble framework, diabetes mellitus, blood glucose level prediction, insulin
pump, artificial pancreas, direct method, iterated method
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invaluable role cannot be overstated. Her permission to use all necessary equipment and
materials was crucial for the completion of this task. Her stimulating suggestions, constant
encouragement, and inspiring guidance have made my journey through doctoral studies a truly
wonderful experience.

My heartfelt appreciation goes to my other professors and mentors, especially Prof. RNDr.
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Chapter 1

Introduction

1.1 Motivation

Diabetes is a disease that has concerned patients and specialists for millennia. Over 3, 000

years ago, the ancient Egyptians mentioned a condition that appears to have been Type 1

Diabetes Mellitus . The specialists recommended following a diet of whole grains to reduce

the symptoms. In ancient India, people discovered that they could use ants to test for diabetes

by presenting urine to them. If the ants came to the urine, this was a sign that it contained high

sugar levels. They called the condition madhumeha, meaning honey urine. During the third

century B.C.E., Apollonius of Memphis mentioned the term -diabetes- which may have been its

earliest reference. In time, Greek physicians also distinguished between diabetes mellitus and

diabetes insipidus. Diabetes insipidus has no link with diabetes mellitus. While it also leads

to thirst and urination, it does not affect the body’s production or use of insulin. Diabetes

insipidus arises from an issue with a hormone known as vasopressin, which is produced by the

pituitary gland. The ancient Roman doctor Galen mentioned diabetes but noted that he had

only ever seen two people with it, which suggests that it was relatively rare in those days. By

the fifth century C.E., people in India and China had worked out that there was a difference

between Type 1 and Type 2 . They noted that T2DM was more common in heavy, wealthy

people than in other people. At that time, this might have implied that these individuals ate

more than other people and were less active [1], [2].

Nowadays, the ready supply of processed food has weakened the association between

wealth and eating more, but obesity, diet, and a lack of exercise are still risk factors for

T2DM diabetes. The term diabetes mellitus comes from the Greek word -diabetes- (to siphon

or pass through) and the Latin word -mellitus- (honey or sweet). In the Middle Ages, people

believed that diabetes was a disease of the kidneys, but an English doctor in the late 18th

century found that it occurred in people who had experienced an injury to the pancreas. In

1776, Matthew Dobson confirmed that the urine of people with diabetes could have a sweet

1
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taste. According to an article that the journal Medical Observations and Enquiries published,

he measured the glucose in urine and found that it was high in people with diabetes. Dobson

also noted that diabetes could be fatal in some people but chronic in others, further clarifying

the differences between T1DM and T2DM. By the early 19th century, there were no statistics

about how common diabetes was, there was no effective treatment, and people usually died

within weeks to months of first showing symptoms [2].

In 1889, Joseph von Mering and Oskar Minkowski found that removing the pancreas

from dogs led them to develop diabetes and die shortly afterward. This discovery helped

scientists understand the role of the pancreas in regulating blood sugar levels. In 1910, Sir

Edward Albert Sharpey-Schafer proposed that diabetes developed when there was a lack of a

particular chemical that the pancreas produced. He called it insulin, meaning island, because

the cells in the islets of Langerhans in the pancreas produce it. In 1921, Frederick Banting and

Charles Best introduced an extract of pancreatic islet cells from healthy dogs into dogs with

diabetes. Doing this reversed diabetes and marked the discovery of the hormone insulin. They

worked with two other scientists to purify insulin that they took from the pancreas of cows and

produce the first diabetes treatment. In January 1922, 14-year-old Leonard Thompson was

the first person to receive an injection of insulin to treat diabetes. Thompson lived another

13 years with the condition and eventually died of pneumonia. In 1936, Sir Harold Percival

Himsworth published research that differentiated between T1DM and T2DM. He theorized

that many people had insulin resistance rather than insulin deficiency. Insulin resistance is one

factor that leads to T2DM. When a person has insulin resistance, their body cells lose their

sensitivity to insulin and are not able to take in glucose. In response, the pancreas increases

its output of insulin. As this continues to happen, it puts stress on the pancreas, resulting in

damage to this organ. [2], [3].

People with T1DM and some people with T2DM need to use insulin every day. People

continued to use injectable animal-based insulin for many years, but recent years have seen

further advances in treatment. These include the introduction of insulin analogs and the

development of new ways to deliver insulin. Both of these factors have made diabetes treatment

more effective. In 1978, scientists created Trusted Source the first human-based insulin, which

they named Humulin. Humulin is identical in structure to human insulin. Lispro, the first

short-acting insulin, appeared on the market in 1996. Lispro begins to work about 15 minutes

after injection and keeps working for 2− 4 hours. Long-acting insulins, such as insulin glargine,

take longer to absorb and remain active for up to 24 hours. People who use insulin tend to

combine long- and short-acting types. The long-acting dose works throughout the day, while

the short-acting dose boosts insulin levels around mealtimes. Diabetes mellitus T2DM can

be treated by following proper diet and exercise.

However, scientists are already looking into various options that may help people with
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diabetes, especially T1DM which can not be handled without insulin, in the future. There is

a lot of research related to immunotherapy; The American Diabetes Association (ADA) have

funded several research projects, including one that is attempting to identify the possible trigger

for T1DM, which doctors believe relates to a problem with the immune system. Additionally,

artificial pancreas is another emerging treatment option. The device, which some refer to as

closed-loop glucose control, involves using an external pump and continuous glucose monitoring

to deliver insulin in a single system. It uses a control algorithm and automatically adjusts the

dose according to readings from sensors. In 2018, researchers were writing that the artificial

pancreas is efficacious and safe for people with T1DM to use [4], [5].

The number of people with diabetes is growing. A range of treatment options and lifestyle

measures can help people manage the condition. Scientists are continuing to develop improved

treatment options to give people with diabetes the best possible quality of life. Moreover,

adults and children with T1DM will spend an average of 2, 500 a year out-of-pocket for health

care [6], [7]. While insulin comprises a big part of diabetes expenses for children and adults,

diabetes-related supplies can cost even more [7]. Researchers focus on artificial pancreas and

blood glucose level prediction that can support patients to handle diabetes effectively and

reduce their costs of treatment.

1.2 Problem Statement

The management of T1DM is a complex task that requires constant monitoring and control

of blood glucose levels. Current methods for predicting blood glucose levels in T1DM patients

are often inaccurate and unreliable, leading to suboptimal disease management and increased

risk of complications.

The advent of the artificial pancreas, a device that combines glucose monitoring and

insulin delivery systems, has the potential to revolutionize T1DM management. However, the

effectiveness of such a device heavily relies on the accuracy of blood glucose level predictions.

Existing prediction models often use a direct strategy, which predicts future glucose levels

based on current and past data. However, this approach may not be optimal due to the

dynamic and complex nature of glucose metabolism in T1DM patients.

An alternative approach is the iterated strategy, which involves making a series of short-

term predictions and using them to predict future glucose levels. While this approach has

shown promise, it has not been thoroughly investigated in the context of T1DM management.

The development of an ensemble framework in this study has the potential to be a game-

changer in the field of blood glucose level prediction for T1DM.

An ensemble framework combines the predictions from multiple models to produce a final

prediction. This approach can capture a wider range of data patterns and reduce the likelihood
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of prediction errors, leading to more accurate and reliable results.

In the context of this study, the ensemble framework will integrate both direct and iterated

strategies for predicting blood glucose levels. This combination could potentially harness the

strengths of both strategies, thereby improving the overall prediction accuracy.

Moreover, the ensemble framework developed in this study could serve as a valuable tool for

future research. It could provide a benchmark for evaluating new prediction models and strate-

gies. Researchers could also build upon this framework to develop more advanced prediction

models, further pushing the boundaries of what’s possible in T1DM management.

Our research introduces an ensemble framework that combines the strengths of both direct

and iterated strategies. By integrating multiple prediction models, we aim to enhance accu-

racy and reliability. The ensemble framework adapts to individual patient needs, continually

improving predictions. Moreover, it serves as a benchmark for evaluating novel models and

strategies, propelling the field forward.

1.3 Significance of the Research

The research on the ensemble framework for Blood Glucose Levels Prediction in T1DM holds

immense significance in the field of medical science, particularly in the management of T1DM

[8]. The number of people with diabetes rose from 108 million in 1980 to 422 million in

20, 141. As of 2019, around 244, 000 youth and 1.6 million adults 20 years and older had

T1DM2. This increasing prevalence underscores the urgent need for effective management

strategies, including accurate blood glucose level prediction.

Accurate prediction of blood glucose levels is critical for effective T1DM management. It

helps in overcoming the lag time for insulin absorption in T1DM patients, thereby enabling

timely and appropriate insulin dosage adjustments. This can prevent both hyperglycemia and

hypoglycemia, reducing the risk of severe complications [9]. Enhancing Artificial Pancreas

Systems: The ensemble framework developed in this research can significantly enhance the

performance of artificial pancreas systems. These systems rely on accurate blood glucose

level predictions to automate insulin delivery. Improved prediction accuracy can lead to better

glycemic control, reducing the burden of disease management for T1DM patients.

The ensemble framework, which integrates both direct and iterated strategies for blood

glucose level prediction, can serve as a valuable tool for future research. It can provide a

benchmark for evaluating new prediction models and strategies, thereby advancing the field of

blood glucose level prediction. The latest work used deep ensemble models to predict blood

glucose levels. Three types of models, including linear regression (LR), vanilla Long Short Term

Memory (LSTM) , and bidirectional LSTM (BiLSTM), were ensembled using the stacking,

multivariate, and sub-sequence approaches. This demonstrates the statistical significance and
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potential of ensemble models in blood glucose level prediction. A review of 32 papers published

between 2000 and 2020 found that ensemble methods have been successfully used in many

medical fields to improve prediction accuracy. The research topic is gaining growing interest,

with ensemble models often using blood glucose, insulin, diet, and exercise as input to predict

blood glucose. Both homogeneous and heterogeneous ensembles have been investigated [10].

A study found that applying a Genetic Algorithm (GA) based on each output of a model

with multiple algorithms played a significant role in improving model performance [11]. The

Root Mean Square Error (RMSE) was 3.19, 19.25, and 31.30 mg/dl for 15, 30, and 60 min

prediction horizons, respectively. When the same data were applied to univariate models,

the RMSE was 11.28, 19.99, and 33.13 mg/dl for 15, 30, and 60 min prediction horizons,

respectively [11]. This research proposed two ensemble neural network-based models for blood

glucose prediction at three different prediction horizons—30, 60, and 120 min—and compared

their performance with ten recently proposed neural networks [12]. In conclusion, this research

holds the potential to make significant contributions to the field of T1DM management,

benefitting millions of patients worldwide. It represents a step forward in our quest for a more

effective, automated, and patient-friendly approach to managing this chronic condition.



Chapter 2

State-of-the-Art

2.1 Prediction Models

Aliberti et al. [13] investigated the prediction models trained on glucose signals of a large

and heterogeneous cohort of patients and then applied to infer future glucose-level values

on a completely new patient. They designed and compared two different types of solutions

that were proved successful in many time-series prediction problems based respectively, on

non-linear autoregressive (NAR) neural network and on LSTM networks. These solutions were

experimentally compared with three literature approaches, respectively, based on feed-forward

neural networks (FNNs), autoregressive (AR) models, and recurrent neural networks (RNN).

While the NAR obtained good prediction accuracy only for short-term predictions (i.e., with

prediction horizon within 30 min), the LSTM obtained extremely good performance both for

short- and long-term glucose-level inference (60 min and more), overcoming all the other

methods in terms of correlation between the measured and the predicted glucose signal and

in terms of clinical outcome.

Wang et al. [14] proposed a prediction model based on the Sparrow Search Algorithm

(SSA) of Empirical Mode Decomposition (EMD) to optimize the Kernel Extreme Learning

Machine (KELM). EMD is used to decompose blood glucose values into different frequency

sequences. Secondly, SSA- KELM is trained and each sub-sequence is predicted separately, and

finally the prediction sequence is reconstructed to obtain the predicted value of blood glucose.

The experimental results showed that the SSA-KELM model has higher prediction accuracy

than the ELM and PSO-KELM algorithms, and can be used for blood glucose prediction

models.

Xiangyue et al. [15] based on the application and evaluation of GM (1,1) model in blood

glucose prediction, the difference of the predictive ability of this model in different blood glucose

ranges was evaluated to guide the more reasonable application. Bhargav et al. [16] evaluated

various ensemble ML models for generalized blood glucose level prediction and evaluate their

6
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novel combination with the decision tree models. Twenty-four-hour data of 40 patients at

15-min intervals were generated using the automated insulin dosage advisor (AIDA) simulator.

Kalpana et al. [17] aimed to develop a machine-learning model using different attributes

like BMI, age, blood pressure, blood sugar. Several machine learning techniques Support

Vector Machine (SVM), Näıve Bayes, XGBoost were deployed to predict diabetes. Further,

the ML algorithms were optimized by applying the Binary particle Swarm optimization (BPSO)

algorithm. ML algorithm achieved high accuracy with lifestyle attributes. The ML algorithms

were evaluated by deploying various measures like accuracy, F1-measures, recall, and precision.

Bairaktaris et al. [18] developed a model to predict future blood glucose values based on the

combined usage of compartment models and artificial neural networks(ANNs). The model

accepts records of glucose, insulin injection rates and the amount of carbohydrates contained

in each meal as input data and outputs predicted values of future blood glucose levels. For

the development and evaluation of the model data from 12 T1DM patients, as well as in silico

data from UVa T1DM simulator were used.

Chevillon et al. [19] provided valuable insights into the comparison between direct and

iterative multi-step forecasting methods. The direct approach uses different models for each

number of steps ahead in forecasting. It simplifies the problem by treating each prediction step

independently. However, it may not fully account for dependencies and error accumulation

over multiple steps. On the other hand, The iterative approach applies one one-step ahead

model iteratively to predict multiple steps ahead. It considers the cumulative effect of errors

but can suffer from error propagation. The challenge lies in balancing accuracy and error

accumulation. They presented an exhaustive overview of the existing results, including a

conclusive review of the circumstances favourable to direct multi-step forecasting, namely

different forms of non-stationarity and appropriate model design. Addittioanlly, they provided

a unifying framework which allows researchers to analyse the sources of forecast errors and

hence of accuracy improvements from direct over iterated multi-step forecasting.

LIvieris et al. [20] focused on deep learning models by exploring multi-step forecasting

strategies. The iterative approach is compared to other methods, including support vector ma-

chines (SVM), auto-regressive integrated moving average (ARIMA), LSTM, and convolutional-

based models. Yukun et al. [21] proposed a novel multiple step ahead time series prediction

approach which employs multiple-output support vector regression with multiple input multiple

output prediction strategy. The proposed strategy is the best with accredited computational

load while the computational load of standard SVR using direct strategy is extremely expensive

and The standard SVR using iterated strategy is best in terms of low computational load.

Falco et al. [22] targeted to extrapolate a regression model, capable of estimating the blood

glucose through interstitial glucose measurements, that represents a possible revolutionizing

step in constructing the fundamental element of such an artificial pancreas. In particular, a
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new evolutionary approach is illustrated to stem a mathematical relationship between blood

glucose and interstitial glucose. To accomplish this task, an automatic evolutionary procedure

was devised to estimate the missing blood glucose values within the investigated real-world

database made up of both blood glucose and interstitial glucose measurements of people

suffering from Type 1 diabetes. The discovered model is validated through a comparison

with other models during the experimental phase on global and personalized data treatment.

Moreover, Falco et al. [23] propose an innovative Federated Learning-inspired evolutionary

framework. This framework consists of a master/slave approach in which each slave contains

local data, protecting sensible private data, and exploits an evolutionary algorithm to generate

prediction models. The master shares through the slaves the locally learned models that emerge

on each slave. Sharing these local models results in global models. Being that data privacy and

interpretability are very significant in the medical domain, the algorithm is tested to forecast

future glucose values for diabetic patients by exploiting a Grammatical Evolution algorithm.

The effectiveness of this knowledge-sharing process is assessed experimentally by comparing

the proposed framework with another where no exchange of local models occurs. The results

show that the performance of the proposed approach is better and demonstrate the validity

of its sharing process for the emergence of local models for personal diabetes management,

usable as efficient global models. When further subjects not involved in the learning process are

considered, the models discovered by our framework show higher generalization capability than

those achieved without knowledge sharing: the improvement provided by knowledge sharing is

equal to about 3.03% for precision, 1.56% for recall, 3.17% for F1, and 1.56% for accuracy.

Koutny [24] proposed a physiological model to prolong the sensor lifetime with an adaptive

approach, while requiring no additional blood sample. Prolonging sensor’s lifetime, while

reducing the associated discomfort, would considerably improve patient’s quality of life. They

demonstrated that it is possible to determine personalized model parameters from multiple

CGMS-signals only, using an animal experiment with a hyperglycemic clamp. Additionally,

Koutny et al. [25] proposed a novel low-complexity, explainable blood glucose prediction

method derived from the Intel P6 branch predictor algorithm. They used Meta-Differential

Evolution to determine predictor parameters on training data splits of the benchmark datasets

we use. They compared the new algorithm and a state-of-the-art deep-learning method for

blood glucose level prediction. On the official test data split after training, the state-of-the-art

deep learning method predicted glucose levels 30 min ahead of current time with 96.3% of

predicted glucose levels having relative error less than 30% (which is equivalent to the safe zone

of the Surveillance Error Grid). Our simpler, interpretable approach prolonged the prediction

horizon by another 5 min with 95.8% of predicted glucose levels of all patients having relative

error less than 30%.

Yang et al. [26] proposes an improved stacking ensemble learning algorithm for predicting
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blood glucose level, in which three improved long short-term memory network models are

used as the base model, and an improved nearest neighbor propagation clustering algorithm

is adaptively weighted to this ensemble model. The OhioT1DM dataset is used to train and

evaluate the performance of the proposed model. This study evaluated the performance of the

proposed model using the RMSE, (MAE), and Matthews Correlation Coefficient (MCC) as

the evaluation metrics. Additionally, Yang et al. [27] stated that real-time prediction of blood

glucose levels (BGLs) in individuals with T1DM presents considerable challenges. Accordingly,

they presented a personalized multitasking framework aimed to forecast blood glucose levels

in patients. The results showed that the average RMSE and the MAE of the proposed model

were 16.896 and 9.978 mg/dL, respectively, over the prediction horizon (PH) of 30 minutes.

The average RMSE and the MAE were 28.881 and 19.347 mg/dL, respectively, over the

PH of 60 min. The proposed model demonstrated excellent prediction accuracy. Seo et al.

[28] proposed a a personalized blood glucose (BG) level prediction model with a fine-tuning

strategy and demonstrated its efficacy on large datasets including three types of diabetes (type

1 diabetes, type 2 diabetes, and gestational diabetes). The fine-tuned convolutional neural

network (CNN) showed the performance of the general CNN in most cases and outperformed

the scratch CNN.

In brief, terated methods have consistently demonstrated superior performance in blood

glucose prediction. The iterative approach allows for better capturing of complex temporal

dependencies and patterns in blood glucose dynamics. Ensemble frameworks are a focal point

of interest within the research community. By combining predictions from diverse models,

ensemble methods can capture trends and variations across different individuals. The potential

of ensemble frameworks lies in their ability to mitigate biases and enhance generalization.

2.2 Artificial Pancreas

The artificial pancreas is a technology in development to support people with diabetes to au-

tomatically control their blood glucose level by providing the substitute endocrine functionality

of a healthy pancreas. There are several important exocrine (digestive) and endocrine (hor-

monal) functions of the pancreas, but it is the lack of insulin production that is the motivation

to develop a substitute. While the current state of insulin replacement therapy is appreciated

for its life-saving capability, the task of manually managing the blood sugar level with insulin

alone is arduous and inadequate. The goals of the artificial pancreas are to improve insulin

replacement therapy until glycemic control is practically normal as evidenced by the avoidance

of the complications of hyperglycemia, and to ease the burden of therapy for insulin-dependent

diabetes. One approach to those aims is the medical equipment approach in which an insulin

pump is used under closed-loop control using real-time data from a continuous blood glucose
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sensor [1]. Figure 2.1 shows the steps and the improvement that have been done until 2010

in artificial pancreas.

Figure 2.1: Key milestones in the timeline of Artificial Pancreas progress [29].

The pursuit of a closed-loop artificial artificial pancreas that automatically controls blood

glucose for individuals with T1DM has intensified during the past decade. Continuous insulin

infusion pumps have been widely available for over 30 years, but smart pump technology has

made such devices easier to use and more powerful. Continuous Glucose Monitoring technology

has improved and the devices are more widely available. Several approaches are currently un-

der study for fully closed-loop systems; most manipulate only insulin, while others manipulate

insulin and glucagon. Algorithms include on-off (for prevention of overnight hypoglycemia),

Proportional Integral Derivative, Model Predictive Control, and Fuzzy Logic Based Learning

Control. Meals cause a major disturbance to blood glucose, and in most cases, mathematical

models, such as compartment models, are implemented. Model Predictive Control is a basic

framework or strategy that can involve many different types of models and objective functions.

Despite important developments in sensor and pump technology, the artificial artificial pan-

creas must cope with the delays and inaccuracies in both glucose sensing and insulin delivery

described in the previous sections. This is particularly difficult when a system disturbance,

e.g., a meal, occurs and triggers a rapid glucose rise that is substantially faster than the time

needed for insulin absorption and action (Figure 2.2).

Bekiari et al. [31] evaluated the efficacy and safety of artificial pancreas treatment in

non-pregnant outpatients with T1DM. Messori et al. [32] considered two novel identification
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Figure 2.2: Block diagram of closed-loop glucose control. Three major delays are indicated:
insulin absorption (regular and ultrafast insulin), insulin action on peripheral tissues and on
the liver, and sensing in the interstitium [30].

approaches that can be used for individualizing linear glucose-insulin models to a specific

patient. Both identification approaches were used to identify a linear individualized glucose-

insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model

simulation performance was significantly improved with respect to the performance achieved

by a linear average model. Boughton et al. [33] reviewed the key studies which have led

to the adoption of the artificial pancreas in clinical practice and consider ongoing challenges

and areas for future enhancements. According to them, the artificial pancreas has become

the gold standard for the treatment of T1DM. First-generation systems are increasingly being

adopted in clinical practice, however further work is required, developing advanced systems and

faster acting insulin analogues to allow complete automation and further reduce the burden

of T1DM.

Tsoukas et al. [34] aimed to assess the efficacy of a novel faster-acting insulin aspart

plus pramlintide fully closed-loop system that does not require meal input. The Fiasp plus

pramlintide fully closed-loop system was not non-inferior to the Fiasp-alone hybrid closed-loop

system for the overall percentage of time in the glucose target range. However, participants

still spent a high percentage of time within the target range with the fully-closed loop system.

Outpatient studies comparing the fully closed-loop hybrid systems with patient-estimated,
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rather than precise, carbohydrate counting are warranted.

Vinals et al. [35] evaluated the safety and performance of a new multivariable closed-loop

glucose controller with automatic carbohydrate recommendation during and after unannounced

and announced exercise in adults with T1DM. Ten participants (aged 40.8± 7.0 years; HbA1c

of 7.3± 0.8%) participated. The use of the MCL in both closed-loop arms decreased the time

spent < 70 mg/dL of sensor glucose (0.0%, [0.0− 16.8] and 0.0%, [0.0− 19.2] vs 16.2%,

[0.0− 26.0], (%, [percentile 10− 90]) CLNA and CLA vs OL respectively; P = 0.047, P =

0.063) and the number of hypoglycemic events when compared with OL (CLNA 4 and CLA

3 vs OL 8; P = 0.218, P = 0.250). The use of the MCL system increased the proportion

of time within 70 to 180 mg/dL (87.8%, [51.1− 100] and 91.9%, [58.7− 100] vs 81.1%,

[65.4− 87.0], (%, [percentile 10− 90]) CLNA and CLA vs OL respectively; P = 0.227, P =

0.039). This was achieved with the administration of similar doses of insulin and a reduced

amount of carbohydrates. The MCL with automatic carbohydrate recommendation performed

well and was safe during and after both unannounced and announced exercise, maintaining

glucose mostly within the target range and reducing the risk of hypoglycemia despite a reduced

amount of carbohydrate intake.

Recently, the use of do-it-yourself artificial pancreas systems (DIYAPS) among people with

T1DM is increasing. At present, it is unclear how DIYAPS compares with other technologies

such as FreeStyle Libre (FSL) and continuous subcutaneous insulin infusion (CSII). Patel et

al. [36] aimed to compare the safety, effectiveness, and quality-of-life outcomes of DIYAPS

use with the addition of FSL to CSII. DIYAPS (n = 35) and FSL+CSII (n = 149) users, with

median follow-up duration of 1.4 (IQR 0.8− 2.1) and 1.3 (IQR 0.7− 1.8) years, respectively,

were included.

Nwokolo et al. [37] stated that clinical adoption of closed-loop therapy remains in the

early stages despite recent technological advances. People living with diabetes, healthcare

professionals, and regulatory agencies continue to navigate the complex path to equitable ac-

cess. They reviewed the available devices, evidence, clinical implications, and barriers regarding

these innovatory technologies. Julia Fuchs and Roman Hovorka [38] provided an overview of

commercial and emerging closed-loop systems. Hovorka’s research often focuses on refining

the algorithms and control strategies that govern these closed-loop systems. These algorithms

aim to mimic the physiological function of the pancreas by dynamically adjusting insulin deliv-

ery based on real-time glucose readings. By utilizing sophisticated mathematical models and

feedback mechanisms, Hovorka and his colleagues have made significant strides in improving

the accuracy and effectiveness of artificial pancreas systems [39].

One notable aspect of Hovorka’s work is his emphasis on personalized medicine. Recog-

nizing that individuals with diabetes can have unique physiological responses to insulin and

varying daily routines, his research explores adaptive algorithms that can tailor the closed-loop
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system to each patient’s specific needs. This personalized approach holds the promise of

optimizing glycemic control and minimizing the risk of hypoglycemia [40], [41].

Furthermore, Hovorka’s research often addresses the challenges associated with integrating

the artificial pancreas into the daily lives of individuals with diabetes. This includes consider-

ations for mealtime insulin delivery, physical activity, and other lifestyle factors that influence

blood glucose dynamics [42], [43].

2.3 Summary

The performance of blood glucose level prediction models for T1DM is heavily reliant on the

quality of data used. This includes the accuracy, completeness, and relevance of the data.

Inaccurate or incomplete data can lead to erroneous predictions, while irrelevant data can

introduce noise and confusion into the model. The choice of input variables is critical in any

predictive modeling project. For T1DM, important variables include the target group of the

study (e.g., age, gender, lifestyle factors) and the observation period (short-term vs. long-

term). These variables can significantly influence the model’s performance and applicability.

Carbohydrate intake, exercise, and stress play a crucial role in blood glucose concentration.

Carbohydrate intake, usually measured in grams, directly affects blood glucose levels. Exercise

can lower blood glucose levels by increasing insulin sensitivity and promoting glucose uptake

into the muscles. Stress, both physical and emotional, can cause blood glucose levels to rise.

Understanding and accurately capturing these dynamics is key to predicting blood glucose

levels effectively. Recent research has focused on ensemble methods for prediction, which

combine the strengths of multiple models to improve results. For instance, neural networks

can capture complex, non-linear relationships in the data, while decision trees can provide

interpretability and handle categorical variables well. By combining these models, ensemble

methods can achieve higher predictive accuracy and robustness.

The artificial pancreas, a device that automates the monitoring and regulation of blood

glucose levels, has emerged as a promising solution for T1DM management. It integrates

a continuous glucose monitor and an insulin pump with a control algorithm that calculates

the insulin dose based on CGM readings. The effectiveness of the artificial pancreas hinges

on the accuracy of blood glucose level predictions. Numerous systematic reviews have been

conducted recently to collate and compare studies on the artificial pancreas. These reviews

aim to identify gaps in current research, assess the effectiveness of different approaches, and

guide future developments in this field. They provide valuable insights into the state of the

art and highlight areas for further investigation. In conclusion, the development of accurate

and reliable blood glucose level prediction models for T1DM is a complex task that requires

high-quality data, careful selection of input variables, and advanced modeling techniques.
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In conclude, the artificial pancreas, a groundbreaking device that automates blood glucose

monitoring and insulin regulation, holds immense promise for managing T1DM. By seamlessly

integrating a continuous glucose monitor (CGM) and an insulin pump, this technology aims

to revolutionize T1DM management. However, its effectiveness critically depends on the

accuracy of blood glucose level predictions. To address this challenge, our research introduces

an innovative approach—the Active Learning-Enhanced ensemble framework. T1DM is highly

individualized, with varying metabolic dynamics. The ensemble framework adapts to each

patient’s unique needs, continuously improving predictions. Active learning allows us to fine-

tune the model based on real-world data and user feedback. As artificial pancreas systems

become more prevalent, their success hinges on reliable predictions. Our ensemble framework

serves as a benchmark, guiding the development and evaluation of these systems. It sets

the standard for future research and clinical implementation. Accurate predictions empower

patients, allowing them to make informed decisions about insulin dosing, diet, and physical

activity. Ultimately, this translates to better quality of life for individuals living with T1DM.



Chapter 3

Dissertation thesis targets

3.1 Research Objectives

The primary objective of this research is to develop an ensemble framework for predicting

blood glucose levels in individuals with T1DM. The framework will be designed to leverage

the strengths of both direct and iterated strategies for multi-step ahead prediction. Through

rigorous experimentation and analysis, the study aims to:

• Compare the prediction accuracy of the ensemble framework against individual algo-

rithms and existing methods.

• Investigate the benefits and limitations of integrating direct and iterated strategies for

multi-step ahead forecast.

• Provide insights into the factors influencing the performance differences between these

strategies.

3.2 Contribution to Diabetes Management and Health-

care

This research contributes to the field of diabetes management and healthcare in several ways:

• Improved Prediction Accuracy: The proposed ensemble framework has the potential

to enhance the precision and reliability of blood glucose level predictions, thus facilitating

proactive management strategies.

• Personalized Treatment: Accurate predictions enable personalized insulin dosing and

dietary recommendations tailored to individual needs and fluctuations in glucose levels.

15
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• Reduced Complications: By reducing the risk of hypoglycemia and hyperglycemia,

the research directly addresses the prevention of complications associated with T1DM.

• Enhanced Data-Driven Insights: The study’s findings could provide valuable insights

into the efficacy of ensemble strategies, shedding light on their applicability in other

healthcare prediction tasks.

3.3 Thesis Organization

This thesis is organized as follows:

• Chapter 2: reviews relevant literature on diabetes management, blood glucose prediction,

and ensemble methods.

• Chapter 3: presents the research objectives and the contribution to diabetes management

and healthcare.

• Chapter 4: details the implementation, experimental setup, and data analysis.

• Chapter 5: describes the direct versus iterated methods for blood glucose level multi-step

ahead forecasts.

• Chapter 6: suggests an ensemble framework to enhance blood glucose level prediction.

• Chapter 7: concludes the thesis by summarizing key points and emphasizing the re-

search’s contributions.



Chapter 4

Description of Experimental Data

4.1 Comparative assessment of in vivo and in vitro Stud-

ies for Blood Glucose Level Prediction in T1DM

Blood glucose level prediction is a critical aspect of managing T1DM, and researchers have

employed both in vivo and in vitro approaches to enhance predictive models. This comparative

assessment explores the strengths and limitations of in vivo studies (using real-world patient

data) and in vitro studies (using artificial or simulated data) for predicting blood glucose levels

in individuals with T1DM [44], [45].

In vivo studies, which leverage data collected directly from individuals with T1DM, provide

a realistic representation of the complexities associated with real-world blood glucose dynamics

[46]. However, these studies may face challenges related to variability in individual responses,

making it challenging to capture all possible scenarios [47]. This variability can be attributed

to factors such as genetic differences, lifestyle choices, and environmental influences. The

findings from in vivo studies are directly applicable to real-world situations, enhancing the

clinical relevance of predictive models. However, the heterogeneity of patient populations and

lifestyle factors may affect the generalizability of in vivo study results. Ethical concerns are

minimized as in vivo studies use data collected during routine patient care. However, privacy

concerns and the need for informed consent may limit the accessibility of certain datasets.

In vivo studies, which involve the use of living organisms, tend to provide findings that

are directly applicable to diverse patient groups. However, these studies may have limitations

in capturing extreme or rare scenarios due to the inherent variability in biological systems

[48]. On the other hand, in vitro studies, conducted in controlled laboratory environments,

offer scalability and the ability to manipulate variables. However, they may struggle with

generalizability due to potential biases introduced during the simulation process [49]. In vivo

studies prioritize clinical relevance, as they allow for the observation of the full range of

17
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physiological responses in living organisms. However, the challenges of real-world variability,

such as genetic differences and lifestyle choices, can impact the accuracy of predictive models.

In contrast, in vitro studies offer controlled environments, which can allow for more precise

measurements. However, the artificial nature of the data, which is often generated under

idealized conditions, may limit the direct clinical application of the findings [50].

In the paper, ”A Review of Model Prediction in Diabetes and of Designing Glucose Reg-

ulators Based on Model Predictive Control for the Artificial Pancreas” [51], we presented a

comparative assessment of glucose prediction models for diabetic patients using data from

sensors monitoring blood glucose concentration as well as data from in silico (or in vitro sim-

ulations. The models are based on neural networks and linear and nonlinear mathematical

models evaluated for prediction horizons ranging from 5 to 120 min. Furthermore, the im-

plementation of compartment models for simulation of absorption and elimination of insulin,

caloric intake and information about physical activity is examined in combination with neural

networks and mathematical models, respectively. The assessments include 24 papers in total,

from 2006 to 2016, in order to investigate progress in blood glucose concentration prediction

and in artificial pancreas devices for T1DM patients.
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Study (Year)

Diabetes Type (sample size,

* in vivo study, ** in vitro study,

*** in vivo study with children

)

Mougiakakou et al. (2006) Type 1 (4,***)

Sparacino et al. (2007) Type 1 (28,*)

Baghhdadi et al. (2007) Type 1 (1,*)

Pappada et al. (2008) Type 1 (18,*)

Zainuddin et al. (2009) Type 1 (18,*)

Stahl et al. (2009) Type 1 (1,*)

Gani et al. (2009) Type 1 (9,*)

Valletta et al. (2009) Type 1 (18,*)

Georga et al. (2011) Type 1 (7,**)

Rollins et al. (2012) Type 2 (1,**)

Zhao et al. (2012) Type 1 (7,*) (10, **)

Georga et al. (2013) Type 1 (27*)

Zarkogianni et al. (2015) Type 1 (10*)

Qadah et al. (2016) Type 1 (10*)

Table 4.1: Summary of works on glucose prediction and datasets (*:in vivo study, **:in vitro,
***:in vivo study-children

Table 4.1 summarized research papers from the above period, the diabetes type that were

focused, the sample size and the type of study. We can conclude that in most cases the

researchers focus on T1DM with in vivo data. The burden of T1DM is substantial, and

more research is needed to improve the lives of people with T1DM and to find a cure. T1DM

research often involves determining why the immune system reacts against the pancreatic beta

cells and how to stop this attack. There’s a strong interest in developing cellular therapies

that make it possible to obtain functional beta cells that can be transplanted into patients.

In vivo studies allow scientists to better evaluate the safety, toxicity, and efficacy of a drug
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candidate in a complex model.

4.2 Comparative assessment of Blood Glucose Level Pre-

diction: Implementation of Compartment Model

Blood glucose level prediction is a critical aspect of diabetes management, and researchers

have explored various modeling approaches, including those involving compartment models and

those without. This comparative assessment evaluates the strengths and limitations of research

utilizing compartment models compared to studies that do not employ compartment models

for predicting blood glucose levels [52], [53]. These benchmark papers that critically reviewed

the latest work in the field of blood glucose prediction and implementation of compartment

models for bolus insulin simulation. Armed with insights from these benchmark papers, we

made informed decisions in our research and by aligning our work with the benchmarked

methods, we ensured robustness and comparability.

Compartmental models are a fundamental technique used in various fields, including epi-

demiology, biology, and pharmacokinetics [54], [55]. The concept of compartmental models

dates back to the early 20th century where Ronald Ross (1916) introduced the concept of

compartments to model the spread of infectious diseases, particularly malaria. Kendall (1956)

extended the use of compartmental models to various epidemiological contexts. Compart-

mental models are used to predict disease spread, estimate epidemiological parameters (e.g.,

reproductive number), and assess the impact of interventions (e.g., vaccination strategies)

[56], [57]. In general, there are two methods of designing and use a compartment model, the

open and closed compartment model. In an open-compartment model, substances (such as

drugs or nutrients) are removed from the system (body) by an excretory mechanism. The

model considers unidirectional movement of substances [58], [59], [60]. In a closed com-

partment model, substances remain within the system without being removed . The model

allows bi-directional movement of substances. For instance, a drug administered orally can be

absorbed, distributed, metabolized, and eliminated within the system without leaving it [61],

[62]. For example, when a drug is administered intravenously, it is not recirculated back into

the system after elimination. In this research, we implemented an open-compartment model as

it is represented in Figure 4.1. The open compartment model assumes that the drug (insulin)

can leave the body, which aligns with the physiological reality of insulin metabolism. In reality,

insulin is administered via injections (bolus), and its effects are not confined to a closed system.

The open model accounts for the dynamic insulin absorption and elimination processes. By

simulating insulin kinetics, we can estimate model parameters more accurately. This enhances

the reliability of the model. Moreover, simulation allows experimentation without real-world

consequences. We can fine-tune insulin regimens, assess safety, and predict outcomes.
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An open-compartment model for bolus insulin is a simplified mathematical representation

of how insulin is distributed and utilized in the body after it is administered as a bolus (a single,

large dose) for controlling blood sugar levels. This model assumes that insulin is distributed

throughout the body relatively quickly and that it acts almost instantaneously to lower blood

glucose levels. While this is a simplification of the actual physiological processes, it can be

useful for understanding and predicting insulin effects.

In this model, we consider two main compartments, Figure 4.1:

1. Bloodstream (Central Compartment): This compartment represents the blood-

stream, where insulin is initially injected or infused. The insulin rapidly enters this

compartment.

2. Peripheral Tissues (Peripheral Compartment): This compartment represents the

various tissues and cells in the body that respond to insulin, such as muscles and fat

cells. These tissues are the target sites where insulin exerts its glucose-lowering effects.

Insulin is injected or infused into the central compartment (bloodstream), represented on

the left side of the schematic, Figure 4.1.

From the central compartment, insulin is rapidly distributed to the peripheral compartment

(peripheral tissues and cells) on the right side of the schematic. This represents how insulin

spreads throughout the body.

In the peripheral compartment, insulin interacts with its target tissues (muscles, fat cells,

etc.) to facilitate the uptake of glucose from the bloodstream, thereby lowering blood sugar

levels.

The effectiveness of insulin in lowering blood sugar levels depends on various factors,

including the insulin dose, the rate of distribution, and the sensitivity of target tissues to

insulin.

This open compartment model simplifies the complex physiological processes involved in

insulin action but can serve as a starting point for understanding how bolus insulin affects

blood sugar levels in a simplified way. More complex models can be developed to account for

additional factors and dynamics in insulin pharmacokinetics and pharmacodynamics.
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Figure 4.1: Schematic Representation of an Open Compartment Model

In our work, ”Particle swarm optimization based adaptable predictor of glycemia values”

[63], we applied simple compartment models are to provide a signal of the influence of the

insulin and nutrition. Those signals were used as inputs to regressive models. The main

problem of adaptation of those compartment models to particular patient was solved using

continuous particle swarm optimization algorithm.

Optimization algorithms have been extensively used to enhance the performance of com-

partment models. One such algorithm is the Particle Swarm Optimization (PSO) algorithm,

which has been successfully applied in our work [63]. The PSO algorithm is a population-

based stochastic optimization technique inspired by the social behavior of bird flocking or fish

schooling. It has been widely used in various fields due to its simplicity, quality of solutions,

and speed of convergence [64], [65], [66].

In our work, we used the PSO algorithm to adapt the compartment models to individual

patients. The compartment models provided signals representing the influence of insulin and

nutrition on blood glucose levels. These signals were then used as inputs to regressive models.

However, the main challenge was to adapt these compartment models to individual patients,

considering the variability in physiological parameters among patients. The PSO algorithm

was used to solve this problem. The algorithm iteratively adjusted the parameters of the

compartment models to minimize the difference between the model predictions and the actual

patient data. This approach allowed us to tailor the compartment models to individual patients,

thereby improving the accuracy of the predictions. Moreover, recent studies have proposed

the integration of deep learning techniques with compartment models to further enhance
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their predictive performance. For instance, the Deep Compartment Model (DCM), which

combines neural networks and ordinary differential equations, has been proposed to improve the

prediction of time-series data in pharmacokinetic modeling [67]. Similarly, the Transmission-

Dynamics-Informed Neural Network (TDINN) algorithm, which integrates deep neural networks

with epidemic models, has been developed to identify the intensity of interventions during the

COVID-19 pandemic [68].

4.3 Importance of in vivo and simulated (D1NAMO)

dataset for blood glucose level prediction

Utilizing in vivo data for blood glucose level prediction is of paramount importance due to

its capacity to enhance accuracy, personalization, real-time adaptability, and long-term man-

agement of this critical health parameter. This approach aids in delivering more effective

healthcare interventions and refining our understanding of metabolic disorders, such as dia-

betes.

In vivo data, which is acquired directly from living organisms, offers unparalleled accu-

racy compared to in vitro data sourced from laboratory experiments [69]. Precision is vital

in predicting blood glucose levels, as even minor inaccuracies can have substantial health

implications, particularly for individuals with diabetes.

Personalization is another key advantage of in vivo data. It enables the collection of

individual-specific information, accounting for variables like diet, physical activity, stress levels,

and medication usage [70]. Personalized models empower healthcare professionals to tailor

treatment plans to the unique needs of each patient, optimizing glucose management.

Blood glucose levels are inherently dynamic, influenced by factors like meals, exercise, and

stress. In vivo data captures these fluctuations in real-time, allowing predictive models to

provide timely recommendations for effective glucose control [70]. This dynamic aspect is

crucial in preventing extreme glucose fluctuations that can lead to health complications.

Moreover, in vivo data facilitates the development of feedback loops and wearable devices

for continuous monitoring [71]. These systems offer real-time alerts and interventions, empow-

ering individuals to make immediate adjustments to their behavior or treatment plans, thereby

preventing glucose-related crises.

For individuals with chronic conditions like diabetes, long-term management is essential.

In vivo data collected over time helps track trends and patterns, assisting healthcare profes-

sionals and patients in making informed decisions about treatment adjustments and lifestyle

changes[72]. This longitudinal perspective is indispensable for maintaining stable glucose levels

and preventing complications.

Lastly, in vivo data is instrumental in advancing research in the field of diabetes and
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metabolic disorders [73]. It serves as the foundation for refining predictive algorithms and

treatment strategies, ultimately improving the quality of life for those managing blood glucose

levels.

In conclusion, employing in vivo data for blood glucose level prediction represents a pivotal

approach to enhancing healthcare outcomes. Its benefits include heightened accuracy, person-

alization, adaptability, long-term management, and contributions to ongoing research in the

field of diabetes [74].

On the other hand, Using simulated data for blood glucose level prediction is important for

several reasons, as it enables researchers and healthcare professionals to develop and refine pre-

dictive models, improve patient care, and advance our understanding of diabetes management.

Real-world blood glucose data is often limited in quantity and quality, making it challenging to

train accurate prediction models. Simulated data can fill this gap, ensuring a sufficient volume

of data for model training [75]. Simulated data allows researchers to systematically test and

refine prediction models under various conditions and scenarios. This can help in identifying

model weaknesses and improving their accuracy and reliability [76].

Blood glucose prediction models trained on simulated data can be personalized to individual

patients, considering their unique physiology and lifestyle factors. This personalization can

lead to more effective diabetes management strategies [77]. Simulated data can be used

to assess the risk of hypoglycemia or hyperglycemia events, allowing healthcare providers to

proactively intervene and prevent dangerous blood glucose fluctuations [78]. Simulated data

can be valuable for educating healthcare professionals and individuals with diabetes on the

principles of glucose control. It provides a safe and controlled environment for training and

experimentation [79]. Using real patient data for research may raise ethical concerns related

to privacy and informed consent. Simulated data helps mitigate these concerns while still

enabling valuable research in diabetes prediction and management [80].

Utilizing both in vivo (real-world patient data) and simulated data for blood glucose level

prediction is crucial for advancing diabetes management and improving predictive models.

Comparing the results derived from these two types of data allows for a comprehensive under-

standing of the strengths and limitations of predictive algorithms. In vivo data captures the

intricacies of daily life, including diet, exercise, stress, and medication adherence. Simulated

data, on the other hand, provides controlled environments for testing. By comparing results,

researchers can assess how well predictive models account for real-world variability [81].

In vivo data acts as the ground truth for model validation. Simulated data helps refine

and validate models by providing a controlled environment where model predictions can be

compared to known outcomes. This ensures that predictive algorithms perform reliably in

real-world scenarios [82]. In vivo data must be used cautiously, considering patient safety

and ethical concerns. Simulated data offers a safe alternative for algorithm testing and de-
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velopment. By comparing the two, researchers can assess potential risks associated with in

vivo data usage [83]. Integrating in vivo data allows for personalized diabetes management,

while simulated data permits the development of adaptable algorithms. Comparing outcomes

enables researchers to identify the benefits of personalization and optimization in patient care

[84].

By comparing the performance of predictive algorithms on both types of data, researchers

can identify areas where improvements are needed. This iterative process fosters the devel-

opment of more accurate and versatile prediction models [85]. Simulated data allows for the

exploration of worst-case scenarios and rare events without endangering patients. Compar-

ing outcomes helps assess the predictive model’s ability to handle such situations effectively.

Relevant bibliography [86].

In conclusion, the integration of in vivo and simulated data, along with the comparison of

results, is essential for developing robust blood glucose level prediction models. This approach

not only ensures the reliability and safety of predictive algorithms but also facilitates the

advancement of personalized and effective diabetes management strategies. The synthesis of

insights from both types of data ultimately benefits individuals with diabetes and the broader

healthcare community.

4.4 In vivo pilot study and D1NAMO dataset

Two patients’ data from FN Motol University and four patients’ data taken from D1NAMO

database were examined with the following models. In brief, Table 4.2 presents the basic

patients’ characteristics and mentions any related complications to T1DM.

Table 4.2: Patients’ Information

Parameter Value

Gender Female 1 / Male 2 / 4 Male (D1NAMO database)

Age 27 / 47 / 25-47

HbA1c 80 / 64

BMI 30.8 / 25.6 / 24-31

Complications No / Yes

Data of two T1DM patients monitored for 30 days continuously in real-life conditions are

recorded using a CGM device which has a sampling time of 5 minutes. Information on meals

and activities was included in logbooks and photos of meals were also provided. Moreover,
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data of four T1DM from D1NAMO dataset, patient number 001, 006,007 and 008 were used.

CGM data were used and recorded for 1 day with a sampling time of 5 minutes.

Although data from only six patients were only used, the paper focuses on predictors that

are patient-specific, i.e. they are trained and tested on the same patient. It is therefore crucial

to have enough data for each patient. From this point of view, the data from two patients

that we measured cover 30 days long period and are sufficiently large for our patient-specific

testing purposes.

For implementing models for each patient, we used the information about BG levels, basal

and bolus insulin doses, the sensor time of record as well as the information about consumed

meals if it was available. More extensively, except bolus insulin values, all acquired data were

used directly as inputs of the models.

Two cases were tested for bolus insulin; in Case I, the bolus insulin values were used

directly forming an impulse-like signal. In Case II, the original impulse signal of bolus insulin

was replaced by its impact modeled using an open compartment model [87].

Figure 4.2 shows a schematic example of the used data from Case I and II. In this work, we

decided to use consumed meals data only from the first patient because these data were enough

representative while in the second case, the patient was not able to provide us with enough

meal data. Figure 4.2 presents BG levels (blue), basal insulin dosages (red), bolus insulin as

an impulse signal (green rhombus), consumed meals (black), bolus insulin modelled using an

open compartment model (green), consumed meals (black). D1NAMO dataset includes also

photos of consumed meals per patient. We did not process and include this information for

each patient for implementing the following methods.
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Figure 4.2: Input data: CASE I: bolus insulin as impulse signal (green rhombus), CASE II:
bolus insulin modeled using an open compartment model (green)

4.5 Training and Testing Data for Predictive Models

To evaluate the prediction performance, we used the RMSE and the CEGA [88] analysis Figure

4.3. Region A are those values within 20% of the reference sensor, Region B contains points

that are outside of 20% but would not lead to inappropriate treatment, Region C are those

points leading to unnecessary treatment, Region D are those points indicating a potentially

dangerous failure to detect hypoglycemia or hyperglycemia, and Region E are those points

that would confuse treatment of hypoglycemia for hyperglycemia and vice versa. The 70%

of the dataset for each patient was used for model training and parameter selection while the

30% was used for model testing.

D1NAMO dataset [89] was used in this study. Models were applied using data (BG levels,

basal and bolus insulin) from four patients. We used leave-one-out cross-validation for CASE

I (using bolus insulin dosages as impulse-like signal) and CASE II (bolus impulse signal was

replaced by its impact modeled using an open compartment model). Results of RMSE and the

CEGA analysis expressed as Mean ± STD. Outliers and noisy data points were identified using

a combination of statistical methods and domain knowledge. Extreme values that deviated

significantly from the expected glucose range were flagged for review. In cases where outliers
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Figure 4.3: CEG analysis.

were genuine, they were retained in the dataset. However, if they were found to be data

entry errors, they were corrected or replaced with interpolated values. Normalization and

standardization were applied to the dataset to ensure that all features were on a consistent

scale, which is important for the performance of ensemble methods and other machine learning

algorithms. Blood glucose levels were normalized to a common range, typically between 0

and 1, using min-max scaling. This transformation retains the relative relationships between

glucose values while ensuring that they fall within a standardized range. Normalization is

particularly beneficial for gradient-based ensemble methods like gradient boosting and neural

networks, as it helps prevent certain features from dominating others due to their scale. In

addition to normalizing glucose levels, features such as patient age and insulin dose were

standardized using z-score scaling. This transformation centers the features around zero with

a standard deviation of one. Standardization is advantageous when using algorithms that

assume standardized features, such as many variants of ensemble methods.



Chapter 5

Direct versus Iterated BG Level

Prediction Models

In this section, we will define in detail the direct and iterated multi-step ahead forecast strate-

gies. Subsequently, we will elucidate the implementation of these strategies to construct

individual prediction models. These individual models serve as the foundational components

that synergistically contribute to the development of our novel ensemble framework. The

ensemble framework, a culmination of these individual models, represents a significant ad-

vancement in the field of blood glucose level prediction for T1DM. This section serves as a

critical bridge between theoretical foundations and practical applications, paving the way for

improved patient care and optimized insulin therapy.

In a direct forecast, we estimate a multiperiod-ahead value directly using a model tailored

to the specific forecast horizon. For example, if we want to predict the blood glucose level

after one hour, we directly regress the blood glucose level at that future point against current

and past values of the variable. In an iterated forecast, we use a one-period-ahead model iter-

ated forward for the desired number of periods. It involves first estimating an autoregression

(one-step-ahead model) and then iterating upon that autoregression to obtain the multiperiod

forecast. Massimiliano et al. [90] compared empirical iterated and direct forecasts from lin-

ear univariate and bivariate models by applying simulated out-of-sample methods to 171 U.S.

monthly macroeconomic time series spanning 1959-2002. The iterated forecasts typically

outperformed the direct forecasts, particularly if the models could select long lag specifica-

tions. The relative performance of the iterated forecasts improved with the forecast horizon.

Comparing direct and iterated blood glucose level prediction models involves evaluating their

respective advantages and limitations [91], [92], [93].

29
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5.1 Rationale Behind Using Two Autoregressive with eX-

ogenous Inputs (ARX) Models for Predicting Blood

Glucose Levels in T1DM

In recent years, ARX models have emerged as promising tools for predicting blood glucose

levels. This chapter aims to justify the predominant use of Linear Model and SVR models,

both applied as ARX models, in the context of T1DM, outlining their strengths and the

synergistic benefits gained by combining them. Xie et al. [93] compare the performance of

several commonly known machine learning (ML) models versus a classic ARX model in the

prediction of BG levels using time-series data of patients with T1DM. There was no significant

advantage observed from the ML models compared to the classic ARX model in predicting BG

levels for T1DM, except that SVR’s performance was more robust concerning BG trajectories

with spurious oscillations, for which ARX tended to over-predict peak BG values and under-

predict valley BG values. Insight learned from this study could help researchers and clinical

practitioners to select appropriate models for BG prediction.

ARX models have demonstrated efficiency in capturing the temporal dependencies inherent

in blood glucose dynamics. The autoregressive component enables the modeling of how past

glucose levels influence future values, providing a robust foundation for capturing the time-

evolving nature of glucose-insulin interactions. One of the key strengths of ARX models

lies in their ability to seamlessly incorporate exogenous inputs. In the context of T1DM,

where external factors such as meal intake and insulin doses play a crucial role, ARX models

provide a comprehensive framework to integrate these influences, allowing for a more accurate

representation of the physiological system.

Blood glucose dynamics are inherently non-linear, influenced by complex interactions be-

tween various physiological and external factors. The SVR, with its ability to handle non-linear

relationships, offers a valuable tool for capturing intricate patterns within the data. This is

especially crucial in a domain where linear models may fall short in representing the true com-

plexity of glucose metabolism. SVR excels in high-dimensional spaces, making it well-suited

for scenarios where multiple predictors contribute to blood glucose fluctuations. In the man-

agement of T1DM, where diverse factors impact glucose levels, SVR’s robustness ensures that

the model can effectively navigate the complexity of the system [93].

In our study on blood glucose level prediction for T1DM, we will employ a benchmark,

Tables 5.1, 5.2, [52] as a systematic and transparent approach to evaluate and compare the

performance of our LM and SVR models. The benchmark tables will serve as a comprehensive

framework, allowing us to present key metrics and outcomes from both models in a structured

format. By using the benchmark tables, we aim to facilitate a clear and objective comparison



CHAPTER 5. DIRECT VERSUS ITERATED BG LEVEL PREDICTION MODELS 31

of the predictive capabilities of LM and SVR. A The benchmark tables provide a clear, side-

by-side comparison of different models based on various performance metrics. By comparing

performance across different metrics, we could identify where each model excels and where it

falls short. The results of the benchmark tables can guide the selection of the most appropriate

model for a given task.

RMSE (mg/dL)

Regression Order 3 ≡ 15 (min) 6 ≡ 30 (min) 9 ≡ 45 (min) 12 ≡ 60 (min)

LM 20.14 (2.5) 19.78 (2.76) 19.52 (2.87) 19.48 (2.91)

ElasticNet 20.08 (2.5) 19.77 (2.73) 19.54 (2.82) 19.51 (2.86)

GradientBoostingTrees 21.52 (2.3) 21.05 (2.79) 21.03 (2.88) 21.00 (2.85)

Huber 21.03 (3.4) 20.97 (3.57) 20.98 (3.08) 21.66 (3.79)

Lasso 20.08 (2.5) 19.77 (2.73) 19.54 (2.82) 19.51 (2.86)

RandomForest 21.51 (2.44) 21.20 (2.58) 21.33 (2.75) 21.24 (2.79)

Ridge 20.13 (2.5) 19.78 (2.76) 19.52 (2.87) 19.48 (2.91)

SVRLinear 20.79 (3.27) 20.52 (3.61) 20.28 (3.64) 20.27 (3.68)

SVRRBF 22.25 (3.01) 22.07 (3.77) 22.12 (4.02) 22.52 (4.47)

Table 5.1: Performance metrics (mean (SD) among patients), for regression order 3 to 12, on
testing data of OhioT1DM dataset using recursive method [52].
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RMSE (mg/dL)

Regression Order 3 ≡ 15 (min) 6 ≡ 30 (min) 9 ≡ 45 (min) 12 ≡ 60 (min)

LM 20.16 (2.85) 19.68 (2.91) 19.53 (2.92) 19.53 (2.92)

ElasticNet 20.24 (2.75) 19.67 (2.88) 20.10 (2.91) 20.09 (2.89)

GradientBoostingTrees 20.42 (1.83) 20.42 (2.46) 20.30 (2.44) 20.50 (2.31)

Huber 20.53 (3.15) 20.42 (3.56) 20.15 (3.41) 20.33 (3.45)

Lasso 20.14 (2.67) 19.67 (2.88) 20.10 (2.91) 20.09 (2.89)

RandomForest 20.34 (2.34) 20.5 (2.58) 20.65 (2.61) 20.85 (2.54)

Ridge 20.14 (2.71) 19.66 (2.89) 19.51 (2.90) 19.52 (3.31)

SVRLinear 20.73 (3.04) 20.12 (3.32) 19.93 (3.30) 19.92 (3.31)

SVRRBF 22.11 (2.79) 22.08 (3.66) 22.61 (4.08) 23.06 (4.83)

Table 5.2: Performance metrics (mean (SD) among patients), for regression order 3 to 12, on
testing data of OhioT1DM dataset using direct method [52].

In the realm of predictive modeling, the LM and SVR models have been employed due

to their relative simplicity and interpretability. These attributes are particularly crucial in

domains such as healthcare, where comprehending the decision-making process of the model

is of paramount importance.

As evidenced by the tables above, LM and SVR models appear to outperform more complex

models, such as Gradient Boosting Trees or Random Forests, based on the RMSE values. This

superior performance indicates a high degree of accuracy in their predictions, thereby validating

their suitability for the task at hand.

Jinyu et al. [52] utilized several performance metrics for evaluating the models, includ-

ing temporal gain and normalized energy of the second-order differences of the predicted

time series. These metrics are particularly useful for reflecting the risk of false alerts on

hypo/hyperglycemia events. However, for ease of comparison and evaluation with the bench-

mark, we present the results for RMSE.

Furthermore, the computational efficiency of simpler models like LM and SVR is typically

superior to that of more complex models. This efficiency allows for quicker training and pre-

diction times, which can be a significant advantage in real-time or near-real-time applications.

The recursive or iterated method is frequently used in time series forecasting as it enables
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the model to utilize its own previous forecasts for making future predictions. This approach

can enhance performance, especially when the data exhibits temporal dependencies, a common

characteristic of time series data. The recursive method appears to outperform the direct

method, potentially due to its superior ability to capture the temporal dependencies in the

data. This observation underscores the importance of selecting the appropriate method for

the specific characteristics of the data and the task at hand.

In conclusion, the predominant use of LM and SVR models for blood glucose level pre-

diction in T1DM is justified by their strengths and the synergistic benefits gained from their

combination. LM captures temporal dependencies and incorporates exogenous factors, while

SVR excels in handling non-linear relationships and high-dimensional spaces. The integration

of these models represents a promising approach to enhancing predictive accuracy, providing

valuable insights for the effective management of T1DM. Ongoing research and emerging

trends further reinforce the significance of LM and SVR models in advancing the field of blood

glucose prediction.

5.2 Direct Supervised Machine Learning Models and Re-

sults

In this section, we will briefly present the direct implementaiton LM and SVR models using

data from the in vivo clinical study and the D1NAMO dataset as they were described above.

• direct LM: In the direct approach for the Linear Model, a separate model for each step

ahead is trained. If we want to predict h steps ahead, we would train h different models.

Each model can be represented as follows:

For each step k = 1, 2, ..., h, the model is: (5.1)

yt+k = β0,k +
p

∑
i=1

βi,kyt−i +
q

∑
j=1

γj,kxt−j + ϵt+k

(5.2)

where:

– yt+k is the predicted output k steps ahead at time t.

– β0,k is the intercept for the k− step ahead model.

– βi,k are the coefficients of the autoregressive terms for the k-step ahead model.

– yt−i are the autoregressive terms.
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– γj,k are the coefficients of the exogenous inputs for the k-step ahead model.

– xt−j are the exogenous inputs (e.g., blood glucose levels, basal insulin, bolus insulin,

carbohydrates intake, and time of the day).

– ϵt+k is the error term for the k-step ahead prediction at time t.

– p is the order of the autoregressive model.

– q is the number of exogenous inputs.

Each model is trained separately, and each has its own set of parameters (β0,k, βi,k,

γj,k). The direct approach allows for flexibility as each step ahead can adapt to its

own dynamics, but it may require more computational resources as the number of steps

ahead increases. The order of the model was chosen using function selstruc, System

Identification Toolbox, Matlab R2022b.

The term xt−j represents the exogenous inputs at time t− j. Let’s denote these exoge-

nous inputs as follows:

– gt−j: Blood glucose levels at time t− j.

– bt−j: Basal insulin at time t− j.

– it−j: Bolus insulin at time t− j.

– ct−j: Carbohydrates intake at time t− j.

– Tt−j: Time of the day at time t− j.

Then, the exogenous input vector xt−j at time t− j can be represented as a column

vector:

xt−j =



gt−j

bt−j

it−j

ct−j

Tt−j


(5.3)

If we have q exogenous inputs and n observations, we can represent all the exogenous



CHAPTER 5. DIRECT VERSUS ITERATED BG LEVEL PREDICTION MODELS 35

inputs as a matrix X of size n× q:

X =

[
x1 x2 · · · xn

]T
=



g1 b1 i1 c1 T1

g2 b2 i2 c2 T2

...
...

...
...

...

gn bn in cn Tn


(5.4)

Each row of the matrix corresponds to the exogenous inputs at a specific time point and

each column corresponds to a specific type of exogenous input across all time points.

• direct SVR: Following the direct LM model, the direct approach for implementing SVR

is to train a separate model for each step ahead. Each model can be presented as follows:

For each step k = 1, 2, ..., h, the model is:

Minimize:
1
2
||wk||2 + C

n

∑
i=1

(ξi,k + ξ∗i,k) (5.5)

Subject to: yt+k − wT
k ϕ(xt−j)− bk ≤ ϵ + ξi,k (5.6)

wT
k ϕ(xt−j) + bk − yt+k ≤ ϵ + ξ∗i,k (5.7)

ξi,k, ξ∗i,k ≥ 0 (5.8)

where:

– wk is the weight vector for the k-step ahead model.

– ϕ(xt−j) is the feature map of the input vector xt−j.

– bk is the bias for the k− step ahead model.

– C is the regularization parameter.

– ξi,k and ξ∗i,k are slack variables for the k− step ahead model.

– ϵ is the tube width of the epsilon-insensitive loss function.

Each model is trained separately, and each has its own set of parameters (wk, bk, ξi,k,

ξ∗i,k).
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The direct approach allows for flexibility as each step ahead can adapt to its own dy-

namics, but it may require more computational resources as the number of steps ahead

increases. the matrix X of exogenous inputs, Equation 5.4 is used to map the input

data to a higher-dimensional feature space using a function ϕ(x). The SVR then finds

a linear function in this feature space that fits the data with a certain error tolerance ϵ.

Table 5.3: RMSE and CEGA results 30, 45 and 60 minutes ahead prediction horizon from
two patients (FN Motol Hospital) (CASE I)

Patient 1 Patient 2

Model PH min RMSE mg/dl CEGA % RMSE mg/dl CEGA %

TR TS TR TS TR TS TR TS

ARX

30 26.57 27.35 86.95 89.00 17.29 17.96 89.87 89.60

45 29.50 27.28 80.20 83.55 23.83 24.34 79.97 80.77

60 34.84 33.70 74.75 75.78 28.82 33.75 71.55 76.68

SVR

30 29.14 29.52 88.52 90.46 17.45 18.19 89.93 89.55

45 32.29 31.22 82.52 84.16 24.18 24.95 80.80 80.94

60 35.56 34.21 75.55 74.05 29.24 32.38 73.32 76.31
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Table 5.4: RMSE and CEGA results 30, 45 and 60 minutes ahead prediction horizon from
two patients (FN Motol Hospital) (CASE II)

Patient 1 Patient 2

Model PH min RMSE mg/dl CEGA % RMSE mg/dl CEGA %

TR TS TR TS TR TS TR TS

ARX

30 22.91 19.62 87.88 91.69 15.20 17.10 89.98 92.54

45 29.04 25.06 80.91 85.14 22.69 23.61 80.12 82.48

60 34.57 29.44 74.93 76.15 27.63 29.15 71.99 78.94

SVR

30 26.10 21.24 88.25 92.08 17.36 18.63 89.90 89.56

45 30.18 27.20 81.09 84.84 24.07 25.76 81.15 81.69

60 36.18 30.63 75.96 77.83 29.13 27.20 74.22 78.02
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ARX SVR

Patient ID PH RMSE (mg/dL) CEG A% RMSE (mg/dL) CEG A%

1 30 19.08 (0.27) 89.91 (1.21) 19.51 (0.26) 90.42 (1.45)

45 28.98 (0.45) 78.45 (1.04) 29.16 (0.42) 80.91 (0.25)

60 37.62 (0.63) 69.30 (1.27) 38.16 (0.67) 71.84 (0.27)

2 30 23.40 (0.41) 84.57 (0.32) 23.94 (1.41) 83.58 (1.54)

45 38.16 (0.25) 70.32 (1.41) 39.60 (0.31) 71.11 (1.15)

60 51.12 (0.01) 56.97 (0.67) 53.64 (1.03) 61.72 (1.41)

3 30 23.22 (0.55) 84.77 (1.45) 23.76 (1.32) 83.77 (1.99)

45 37.80 (1.62) 70.82 (1.11) 39.24 (0.15) 72.21 (0.77)

60 50.76 (1.54) 57.02 (1.76) 53.28 (1.45) 62.12 (0.73)

4 30 31.14 (1.42) 80.19 (1.21) 32.94 (1.65) 81.60 (1.78)

45 44.82 (0.19) 63.20 (0.06) 46.44 (1.12) 67.49 (1.23)

60 55.98 (0.98) 56.06 (0.43) 57.78 (1.22) 56.82 (1.76)

Table 5.5: RMSE and CEGA results 30, 45 and 60 minutes ahead prediction horizon from
four patients (D1NAMO dataset) (CASE I)
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ARX SVR

Patient ID PH RMSE (mg/dL) CEG A% RMSE (mg/dL) CEG A%

1 30 17.56 (0.66) 90.02 (0.12) 17.34 (0.21) 91.27 (0.33)

45 26.92 (1.23) 79.56 (1.56) 28.92 (1.67) 82.34 (2.32)

60 34.57 (0.43) 70.02 (0.25) 37.42 (1.35) 72.98 (0.94)

2 30 22.94 (0.32) 85.31 (1.23) 23.71 (1.45) 84.72 (0.39)

45 37.61 (1.91) 71.49 (1.45) 39.02 (1.34) 72.98 (2.25)

60 49.32 (0.02) 57.02 (2.17) 52.49 (2.06) 63.42 (1.67)

3 30 22.89 (0.60) 85.36 (1.63) 23.06 (0.80) 84.56 (1.58)

45 37.04 (1.14) 71.47 (1.36) 38.49 (0.70) 72.98 (1.34)

60 49.32 (1.45) 58.23 (1.34) 52.61 (0.78) 63.09 (2.04)

4 30 30.81 (1.67) 80.58 (1.07) 31.41 (1.76) 82.39 (1.66)

45 43.25 (1.05) 64.78 (0.67) 45.69 (1.56) 68.41 (1.34)

60 55.02 (1.37) 57.16 (1.58) 54.78 (0.98) 57.15 (1.65)

Table 5.6: RMSE and CEGA results 30, 45 and 60 minutes ahead prediction horizon from
four patients (D1NAMO dataset) (CASE II)

The results from the ARX and SVR models, as summarized in Tables 5.3, 5.4, 5.5 and

5.6, provide insightful observations for multi-step ahead forecasting. It is evident that

the implementation of the compartment model for bolus insulin absorption simulation,

referred to as CASE II, significantly enhances the prediction results.

Interestingly, ARX tends to outperform SVR for both in vivo datasets and D1NAMO

datasets. This observation aligns with the benchmark table presented by Jinyu et al.

[52]. However, it is important to note that the superiority of one model over the other

can be dataset-specific and may not always hold true.

While ARX shows promising results, the incorporation of SVR can further enhance the

predictive performance when used in an ensemble setting. Ensemble methods, which

combine predictions from multiple models, are known to improve robustness and ac-

curacy. In our context, an ensemble of ARX and SVR could potentially leverage the
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strengths of both models. ARX, with its ability to capture linear relationships and SVR,

with its capacity to model non-linearities, could together provide a more comprehensive

modeling of the underlying data. This could lead to improved prediction performance,

especially in scenarios where the data exhibits both linear and non-linear characteristics.

Future work will explore this potential synergy between ARX and SVR in an ensemble

setup.

5.3 Iterated Supervised Machine Learning Models and

Results

In the iterated (or recursive) approach, the same one-step ahead model is used in each

forecasting iteration (each number of steps ahead). The h-steps ahead prediction is

performed by iterative use of one-step-ahead predictions, where unknown ”past” values

are replaced by the values predicted in the previous iterations.

– iterated LM: In the iterative approach for the Linear Model, we train a one −
step ahead model and then apply it iteratively to generate multi − stepahead

predictions. The one− step ahead prediction is fed back as an input for predicting

the next step.

yt+1 = β0 +
p

∑
i=1

βiyt−i+1 +
q

∑
j=1

γjxt−j+1 + ϵt+1 (5.9)

For each step k = 2, 3, ..., h, we use the previous prediction yt+k−1 as an input:

(5.10)

yt+k = β0 +
p

∑
i=1

βiyt+k−i−1 +
q

∑
j=1

γjxt+k−j−1 + ϵt+k (5.11)

Algorithm 1 Iterative Approach for Linear Model

1: Initialize the one-step ahead model parameters β0, βi, γj
2: for k = 1 to h do
3: Compute the one-step ahead prediction yt+1 using the model:
4: yt+1 = β0 + ∑

p
i=1 βiyt−i+1 + ∑

q
j=1 γjxt−j+1 + ϵt+1

5: Update the inputs for the next step using the prediction yt+1
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– iterated SVR: In this case, the one− stepahead model is trained and then apply

it iteratively to generate multi − stepahead predictions. The one − stepahead

prediction is fed back as an input for predicting the next step. The model can be

represented as follows:

For the first step, the model is:

Minimize:
1
2
||w||2 + C

n

∑
i=1

(ξi + ξ∗i ) (5.12)

Subject to: yt+1 − wTϕ(xt−j)− b ≤ ϵ + ξi (5.13)

wTϕ(xt−j) + b− yt+1 ≤ ϵ + ξ∗i (5.14)

ξi, ξ∗i ≥ 0 (5.15)

For each step k = 2, 3, ..., h, we use the previous prediction yt+k−1 as an input:

Minimize:
1
2
||wk||2 + C

n

∑
i=1

(ξi,k + ξ∗i,k) (5.16)

Subject to: yt+k − wT
k ϕ(xt+k−1)− bk ≤ ϵ + ξi,k (5.17)

wT
k ϕ(xt+k−1) + bk − yt+k ≤ ϵ + ξ∗i,k (5.18)

ξi,k, ξ∗i,k ≥ 0 (5.19)

Algorithm 2 Iterative Approach for SVR

1: Initialize the one-step ahead model parameters w, b, ξi, ξ∗i
2: for k = 1 to h do
3: Compute the one-step ahead prediction yt+1 using the model:
4: Minimize: 1

2 ||w||2 + C ∑n
i=1(ξi + ξ∗i )

5: Subject to: yt+1 − wTϕ(xt−j)− b ≤ ϵ + ξi

6: wTϕ(xt−j) + b− yt+1 ≤ ϵ + ξ∗i
7: ξi, ξ∗i ≥ 0
8: Update the inputs for the next step using the prediction yt+1

The subsequent tables, specifically Table 5.7, 5.8, and 5.9, encapsulate the results
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derived from the application of the iterated LM model and SVR on both in vivo and

simulated data sets. These results pertain to a prediction horizon of 60 minutes.

A noteworthy observation from these results is the significant role played by the com-

partment model in enhancing the forecasting outcomes. While the LM model appears

to outperform the SVR model, the disparity in performance between these two mod-

els is not substantial. This suggests that both models exhibit comparable efficacy in

this context, thereby providing multiple viable options for blood glucose level prediction.

Further investigation could potentially reveal specific scenarios where one model may

have a slight edge over the other. This nuanced understanding could guide the choice

of model in future studies and applications. These findings contribute to the ongoing

efforts in the field of diabetes management to develop reliable and accurate prediction

models, ultimately aiding in better disease management and improving the quality of life

for individuals living with diabetes.
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Table 5.7: RMSE and CEGA results 60 minutes ahead prediction horizon from two patients
(FN Motol Hospital) (CASE I and II)

CASE I Patient 1 Patient 2

Model PH [min] RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%]

TR TS TR TS TR TS TR TS

iterated LM 60 34.21 28.64 75.43 76.77 27.03 29.05 72.56 78.73

iterated SVR 60 36.07 29.07 76.08 78.97 28.67 26.55 75.62 76.05

CASE II Patient 1 Patient 2

Model PH [min] RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%]

TR TS TR TS TR TS TR TS

iterated LM 60 33.12 27.36 75.83 76.87 26.43 28.65 72.93 78.17

iterated SVR 60 35.77 28.71 76.98 79.45 27.64 26.32 76.86 79.28
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Table 5.8: RMSE and CEGA results 60 minutes ahead prediction horizon from four patients
(D1NAMO dataset) (CASE I)

iterated LM iterated SVR

Patient ID PH [min] RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%]

1 60 33.25 ± 0.44 72.27 ± 0.23 36.97 ± 1.39 73.56 ± 1.01

2 60 48.39 ± 0.08 58.97 ± 0.23 46.91 ± 1.39 69.06 ± 1.01

3 60 48.90± 0.98 59.97 ± 1.23 57.97 ± 1.49 71.16 ± 1.31

4 60 49.56± 1.98 62.88 ± 0.94 61.54 ± 1.34 69.43 ± 1.07

Table 5.9: RMSE and CEGA results 60 minutes ahead prediction horizon from four patients
(D1NAMO dataset) (CASE II)

iterated LM iterated SVR

Patient ID PH [min] RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%]

1 60 32.85 ± 0.78 73.43 ± 0.53 35.37 ± 1.05 74.34 ± 1.45

2 60 45.92 ± 1.34 60.02 ± 1.23 49.27 ± 1.56 70.43 ± 1.36

3 60 50.32± 1.37 62.35 ± 0.77 59.81 ± 1.05 73.54 ± 0.99

4 60 51.32± 1.38 64.37 ± 1.94 65.83 ± 1.75 73.52 ± 1.25

5.4 Evaluation and Discussion

In summary, implementing LM and SVR for blood glucose level prediction can balance

model simplicity and effectiveness in capturing both linear and non-linear relationships

in the data. In general, LM and SVR were chosen to be applied and tested because the

available data set size was not large enough to support the use of more complex models.

Our main goal is to be able to compare easily the performance of simple models and

ensemble frameworks.

Moreover, it is clearly stated from the results from both clinical and simulation data, that

the compartment model for bolus insulin can improve the performance of the models
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significantly. According to the results from the above tables, it is clearly stated that

models that used the compartment model for bolus insulin performed significantly better

than the simple implementation and the percentage of data that fall in region A (CEG

analysis) increased more than 2% in some cases.

Additionally, blood glucose levels are influenced by intricate physiological processes that

exhibit non-linear patterns. SVR’s capability to model non-linearity through various ker-

nel functions provides a significant advantage over LM, which relies on linear modeling

assumptions. SVR can capture complex and non-linear relationships between input vari-

ables and blood glucose levels, making it more adept at handling the inherent complexity

of this physiological system.

Another critical factor is the robustness of SVR to outliers. Blood glucose data frequently

contain noisy or extreme values that can negatively impact model performance. SVR,

by focusing on support vectors near the decision boundary, is less affected by outliers

that lie far from this boundary. This robustness allows SVR to provide more accurate

predictions in the presence of noisy data, enhancing its suitability for blood glucose level

prediction tasks.

Moreover, SVR offers automatic feature selection and weighting capabilities through

the kernel trick. In contrast, LM typically requires manual selection and specification of

lagged time series inputs. SVR’s adaptability enables it to automatically identify essential

input variables and their temporal relationships, potentially leading to more accurate and

comprehensive predictions when dealing with the diverse and complex factors affecting

blood glucose levels.

SVR’s ability to model non-linearity, robustness to outliers, automatic feature selection,

flexibility in model complexity, and adaptability to small datasets make it a compelling

choice for blood glucose level prediction tasks. Its superior performance compared to LM

stems from its capacity to address the complex and dynamic nature of blood glucose

regulation more effectively. It can be clearly stated that SVR model with an open

compartment model can result in more accurate blood glucose level predictions.
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Table 5.10: Compare and evaluate results from LM and SVR with the benchmark results [52]

Direct Method Iterated Method
PH=60 min

RMSE (mg/dL) RMSE (mg/dL)

LM Benchmark in vitro results 19.53 19.48

LM Patient 1

in vivo CASE I 33.70 28.64

in vivo CASE II 29.44 27.36

Patient 2

in vivo CASE I 33.75 29.05

in vivo CASE II 29.15 28.65

Patient ID:1

D1NAMO CASE I 37.62 33.25

D1NAMO CASE II 34.57 32.85

SVR Benchmark in vitro results 19.92 20.27

SVR Patient 1

in vivo CASE I 34.21 27.36

in vivo CASE II 30.63 28.71

Patient 2

in vivo CASE I 32.38 26.55

in vivo CASE II 27.20 26.32

Patient ID:1

D1NAMO CASE I 38.16 36.97

D1NAMO CASE II 37.42 35.37

Attempting to evaluate the performance of the two models, we constructed a table, Table
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5.10 to summarize the data. According to Table 5.10, we can draw several conclusions:

1. LM and SVR Performance: Both LM and SVR models show a higher RMSE in in

vivo cases compared to the in vitro benchmark results. This indicates that both

models have more difficulty predicting in a more complex, real-world scenario.

2. Comparison Between LM and SVR: In most cases, the SVR model seems to perform

slightly better than the LM model, as indicated by the lower RMSE values in the

‘Iterated Method’ column. This suggests that the SVR model may be more robust

in handling the variability and complexity of in vivo data.

3. Patient Variability: There is noticeable variability in the RMSE values across differ-

ent patients and cases. This highlights the challenge of developing a one-size-fits-all

model for glucose prediction and emphasizes the need for personalized models.

4. D1NAMO Cases: The D1NAMO cases generally show higher RMSE values com-

pared to the in vivo cases for the same patient. This could be due to the increased

complexity and different conditions in the D1NAMO cases.

In conclusion, while both LM and SVR models provide valuable tools for glucose predic-

tion, there is room for improvement, particularly in enhancing the models’ performance

in in vivo scenarios and addressing patient-specific variability.



Chapter 6

Ensemble Framework: Direct versus

Iterated Results

6.1 Description of Ensemble Methods

Ensemble techniques have proven to be effective in improving the accuracy of blood

glucose level predictions for individuals with T1DM. These techniques combine the pre-

dictions of multiple individual models to produce a more robust and accurate forecast

[94], [95], [96]. They offer improved accuracy, robustness, and adaptability, making them

valuable tools for both patients and healthcare professionals in managing this chronic

condition. However, the choice of ensemble method and the incorporation of domain-

specific knowledge remain important factors in achieving optimal predictive performance

[97], [98], [99]. Wadghiri et al. (2022) conducted systematic literature to analyze and

synthesize primary studies published between 2000 and 2020 in six digital libraries. A

total of 32 primary papers were selected and reviewed about eight review questions.

The results show that ensembles have gained wider interest during the last years and

improved in general performance compared with other single models [100].

In our recent study, titled ”Ensemble Methods in Combination with Compartment Mod-

els for Blood Glucose Level Prediction in Type 1 Diabetes Mellitus” [101], we proposed

an ensemble framework. This framework combined widely-used glycemia prediction al-

gorithms and applied three distinct ensemble methods: Linear, Bagging, and Boosting

metaregressor. These methods were evaluated based on their ability to provide accurate

predictions for 30, 45, and 60-minute ahead prediction horizons.

Our results demonstrated that ensemble methods yield more accurate glucose concen-

tration predictions compared to individual algorithms. Specifically, the Bagging metare-

gressor outperformed individual algorithms across all prediction horizons, particularly for

48
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small datasets. The Bagging ensemble method improved the percentage in Zone A

according to the CEG analysis by 4%, and in some cases, as much as 9%.

Furthermore, our results showed that compartment models enhance results when com-

bined with any method at any prediction horizon. To further these results, we extended

our work on ensemble methods and incorporated two methods for multi-step ahead

predictions: the direct and the iterated method.

6.1.1 Linear meta-model

In the ensemble framework being described, multiple base models, including linear regres-

sion, are employed to generate initial predictions on the input data. These predictions

are then integrated by a linear meta-model to produce the final output.

The linear meta-model computes the coefficients, denoted as ΦPH, for each prediction

horizon (PH) based on the least squares method. The matrix RPH represents the

outputs of each individual model (such as LM, SVR), with each column corresponding

to a specific model’s output. The vector yPH contains the actual measured blood glucose

values, serving as the target for prediction at each PH.

The final prediction, ŷPH, is computed as the product of rPH and ϕPH, where rPH is a

row of RPH and ϕPH is a corresponding coefficient from ΦPH. The equation is given

by:

ŷPH = rPH × ϕPH (6.1)

The coefficients ΦPH are computed at each prediction horizon using the formula:

ΦPH = (RT
PHRPH)

−1RT
PHyPH (6.2)

The linear meta-model, as depicted schematically in Figure 6.1, serves as the integrative

component of this ensemble framework. It takes the outputs from the individual models

as inputs and processes them to produce the BG level prediction. This illustrates the

collaborative nature of the ensemble framework, where each model contributes to the

final outcome, thereby improving the overall predictive performance. This ensemble

methodology, with its capacity for integrating diverse models and their outputs, offers a

promising avenue for advancing predictive accuracy in complex scenarios. Algorithm 3

provides a comprehensive summary of the procedure for applying the Linear meta-model.

This process can be utilized with the outputs from either the direct or iterated versions

of the LM and SVR models. This encapsulates the fundamental steps required for the



CHAPTER 6. ENSEMBLE FRAMEWORK: DIRECT VERSUS ITERATED RESULTS 50

effective implementation of this ensemble framework in predictive tasks. The algorithm

serves as a guide for integrating diverse model outputs to enhance prediction accuracy

in complex scenarios.

Algorithm 3 Ensemble Framework with Linear Meta-Model

1: Input: Data X, Base Models M = {m1, m2, ..., mn}
2: Output: Final prediction ŷPH
3: for each base model mi in M do

4: Generate initial predictions r(i)PH = mi(X)

5: Construct RPH by concatenating all r(i)PH
6: Compute ΦPH = (RT

PHRPH)
−1RT

PHyPH
7: for each row rPH in RPH do
8: Compute final prediction ŷPH = rPH × ϕPH

9: return ŷPH

Figure 6.1: Schematic Representation of Linear meta-model

6.1.2 Bagging meta-model

Bagging, proposed by Breiman [102], is a method that leverages bootstrap aggregation

to enhance the predictive performance of a model. By forming a combination over a

set of training sets, bagging reduces variance and helps mitigate overfitting. This is

particularly effective when the data are split into random different samples, as decision

trees can yield different results, leading to high variance.
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The bagging method improves model stability by averaging out the noise and variability

present in individual base models. It’s a powerful technique for enhancing predictive

performance, especially when combined with complex base models that have high vari-

ance, such as deep decision trees or random forests. The principle behind bagging is

that averaging multiple varied estimations produces less uncertain results.

Given the matrix RPH at each prediction horizon as the training set and yPH as the

target values at each PH, bagging repeatedly (B times) selects a random sample with

replacement of the training set and fits trees to these samples.

For b = 1...B:

1. Sample with replacement n training examples from RPH, yPH: call these Rb, yb

2. Train a regression tree fb on Rb, yb

After training, predictions for unseen samples R′ can be made by averaging the predic-

tions from all the individual regression trees on R′:

ŷPH =
1
B

B

∑
b=1

fb(RPH) (6.3)

The following algorithm outlines the key steps involved in the Bagging method:

Algorithm 4 Ensemble Framework with Bagging Method

1: Input: Training set RPH, yPH, Number of bootstrap samples B
2: Output: Final prediction ŷPH
3: for b = 1 to B do
4: Sample with replacement n training examples from RPH, yPH: call these Rb, yb
5: Train a regression tree fb on Rb, yb

6: Compute final prediction for unseen samples R′:
7: ŷPH = 1

B ∑B
b=1 fb(RPH)

8: return ŷPH

This algorithm provides a step-by-step procedure for implementing the Bagging method.

It begins by sampling with replacement from the training set to create bootstrap samples.

Each of these samples is then used to train a regression tree. The final prediction is

computed by averaging the predictions from all the individual regression trees. Figure

6.2 presents the basic steps for implementing the Bagging meta-model.
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Figure 6.2: Schematic Representation of Bagging meta-model

6.1.3 Boosting meta-model

The LS-Boost algorithm, a gradient-based boosting strategy proposed by Friedman [103],

operates on the principle of sequentially growing decision trees. Unlike bagging, which

grows trees independently, boosting constructs an ensemble of weak learners (typically

decision trees) in a sequential manner, with each learner aiming to correct the errors

made by its predecessor. This is achieved by fitting each new model to the residuals,

which are the differences between the actual values and the predictions of the previous

model.

In the context of boosting, each tree is grown using information from previously grown

trees, and the method does not involve bootstrap sampling. Instead, each tree is fit on

a modified version of the original data set.

The LS-Boost algorithm for regression trees can be outlined as follows:

The LS-Boost algorithm, as outlined above, offers a robust and flexible approach for

predictive tasks. It can seamlessly integrate data from both direct and iterated LM and

SVR models, making it a versatile tool for various prediction scenarios. The algorithm

operates by sequentially fitting regression trees to the residuals, which are updated at

each iteration. This iterative process allows the algorithm to continuously learn from

the errors of the previous models, thereby improving the accuracy of the final prediction.

The schematic representation (Figure 6.3) of this method, which will be introduced

subsequently, provides a visual illustration of this process, highlighting the sequential
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Algorithm 5 Ensemble Framework with LS-Boost Method

1: Input: Training set RPH, yPH, Number of iterations B
2: Output: Final prediction ŷPH
3: Initialize f̂ (x) = 0 and residuals r = yPH
4: for b = 1 to B do
5: Fit a tree f̂ b with d splits (d + 1 terminal nodes) to the training set (RPH, r)
6: Update f̂ (x) by adding a shrunken version of the new tree:
7: f̂ (x)← f̂ (x) + λ f̂ b(x)
8: Update the residuals:
9: ri ← ri − λ f̂ b(x)

10: Compute the final prediction:
11: ŷPH = f̂ b(x) = ∑B

b=1 λ f̂ b(x)
12: return ŷPH

nature of the algorithm and the role of residuals in guiding the model fitting process. This

ensemble methodology, with its capacity for integrating diverse models and their outputs,

offers a promising avenue for advancing predictive accuracy in complex scenarios.
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Figure 6.3: Schematic Representation of Boosting meta-model

In the schematic representation, each ”Boosting” block represents the training of a new

weak learner on the residuals of the previous ensemble and updating the ensemble’s

prediction. This process is repeated iteratively, and the final prediction is obtained by

summing up the predictions of all the models in the ensemble. The ensemble prediction

represents the refined and improved output as each new model corrects the errors of the

previous ones.
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6.2 Ensemble Framework: Methodology and Results

6.2.1 Ensemble Framework: Direct Versus Iterated Method

This section delves into a comparative analysis of two distinct methodologies: the Direct

Method and the Iterated Method, both of which employ LM and SVR models. In the

Direct Method, as illustrated in Figure 6.4, both the LM and SVR models are trained

directly on in vivo data. The outputs from these models are then integrated by the meta-

model, which learns to optimally utilize the information from both models to enhance

prediction accuracy when dealing with in vivo data. Three meta-models, namely Linear,

Bagging, and LS Boosting, are employed for generating the final prediction. The same

steps are applied with D1NAMO patients’ datasets.

On the other hand, the Iterated Method, depicted in Figure 6.5, involves an iterative

refinement of predictions. The initial meta-model combines the outputs of the LM and

SVR models, and these combined predictions are then fed back into the LM and SVR

models for multiple cycles. This iterative process continues until convergence is achieved.

The final prediction is then generated by the Updated Meta Model.

The comparison between these two methods provides valuable insights into their respec-

tive strengths and potential applications. It also sheds light on how different approaches

to model training and prediction generation can impact the overall predictive perfor-

mance.

Here is a high-level algorithmic representation of the two methods:

Algorithm 6 Comparison of Direct and Iterated Methods

1: Direct Method:
2: Train LM and SVR models on in vivo data.
3: Combine outputs of LM and SVR models using the meta-model (Linear, Bagging, or LS

Boosting).
4: Generate final prediction.
5: Iterated Method:
6: Initialize meta-model with outputs of LM and SVR models.
7: while not converged do
8: Feed combined predictions back into LM and SVR models.
9: Update meta-model with new outputs of LM and SVR models.

10: Generate final prediction with Updated Meta Model.
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Figure 6.4: Schematic Representation of
ensemble framework for (CASE I and II)
with in vivo data and D1NAMO data set

Figure 6.5: Schematic Representation of ensemble
framework for (CASE I and II) with in vivo data
and D1NAMO data set

6.2.2 In vivo results

This section presents the in vivo results obtained from two patients at the FN Motol

Hospital. The results are organized into four tables, each providing a detailed view of

the RMSE and CEGA results for predictions made 30, 45, and 60 minutes ahead of the

prediction horizon.

– Table 6.1 and Table 6.3 pertain to CASE I, where bolus insulin is used as an

impulse signal. These tables provide a comprehensive view of the RMSE and CEGA

results for predictions made 30, 45, and 60 minutes ahead for the direct method

(Table 6.1), and specifically for the 60-minute prediction horizon for the iterated

method (Table 6.3).

– Table 6.2 and Table 6.4 correspond to CASE II, where a compartment model is

employed for the simulation of bolus insulin absorption. Similar to CASE I, these

tables present the RMSE and CEGA results for predictions made 30, 45, and 60

minutes ahead for the direct method (Table 6.2), and specifically for the 60-minute

prediction horizon for the iterated method (Table 6.4).

The comparison between CASE I and CASE II offers valuable insights into the per-

formance of the two different methodologies in predicting blood glucose levels. This
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analysis is crucial for understanding the effectiveness of these methods in real-world, in

vivo scenarios.

Table 6.1: RMSE and CEGA results 30, 45 and 60 minutes ahead prediction horizon from
two patients (FN Motol Hospital) (CASE I)

Patient 1 Patient 2

Model PH min RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%]

TR TS TR TS TR TS TR TS

Linear meta-model

30 24.37 25.11 90.53 91.38 16.29 15.98 92.45 94.78

45 28.77 27.30 83.36 86.77 20.04 19.96 82.45 87.77

60 33.92 32.45 76.77 77.63 25.45 22.95 73.78 78.00

Bagging meta-model

30 23.64 24.32 91.45 95.35 14.37 13.49 95.11 96.37

45 26.93 25.44 84.90 88.30 19.37 18.00 96.93 90.02

60 31.90 29.62 77.06 79.18 24.34 22.77 74.02 80.31

Boosting meta-model

30 23.32 23.77 92.65 96.00 13.91 12.88 96.04 97.04

45 26.55 26.08 85.63 89.39 18.65 17.43 97.42 90.45

60 29.99 28.23 78.39 79.40 23.99 21.84 76.98 82.57

Table 6.3: RMSE and CEGA results, 60 minutes ahead prediction horizon from two patients
(FN Motol Hospital) (CASE I)

Patient 1 Patient 2

Model PH [min] RMSE [mg/dl] CEG A [%] RMSE [mg/dl] CEG A [%]

TR TS TR TS TR TS TR TS

iterated Linear meta-model 60 29.31 30.82 77.56 78.29 21.74 20.34 73.68 77.88

iterated Bagging meta-model 60 28.49 26.84 76.47 80.26 21.43 20.84 73.50 79.91

iterated Boosting meta-model 60 27.03 27.43 81.19 80.91 21.75 20.66 78.46 84.44
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Table 6.2: RMSE and CEGA results 30, 45 and 60 minutes ahead prediction horizon from
two patients (FN Motol Hospital) (CASE II)

Patient 1 Patient 2

Model PH [min] RMSE [mg/dl] CEG A [%] RMSE [mg/dl] CEG A [%]

TR TS TR TS TR TS TR TS

Linear meta-model 30 22.46 23.36 90.69 91.97 14.85 14.73 92.65 95.39

45 25.82 25.42 83.28 87.06 18.71 18.73 82.67 88.71

60 31.83 31.35 77.35 78.15 23.08 21.35 73.18 80.31

Bagging meta-model 30 20.99 22.99 91.78 95.74 11.50 11.58 95.41 97.41

45 24.55 23.54 84.13 90.93 16.68 16.21 96.70 91.39

60 29.89 28.57 76.51 80.66 22.36 20.86 74.03 81.72

Boosting meta-model 30 21.06 22.88 94.45 97.20 12.10 12.29 96.92 98.78

45 25.49 25.69 87.52 91.83 17.95 16.91 98.07 91.15

60 28.52 27.47 80.09 81.86 22.96 21.45 78.29 83.10

Table 6.4: RMSE and CEGA results, 60 minutes ahead prediction horizon from two patients
(FN Motol Hospital) (CASE II)

Patient 1 Patient 2

Model PH [min] RMSE [mg/dl] CEG A [%] RMSE [mg/dl] CEG A [%]

TR TS TR TS TR TS TR TS

iterated Linear meta-model 60 29.09 29.39 78.11 79.31 20.09 18.92 75.27 94.26

iterated Bagging meta-model 60 27.89 26.58 76.74 81.80 21.03 15.47 73.57 95.37

iterated Boosting meta-model 60 25.17 25.98 82.87 81.79 21.62 16.34 78.79 95.81

6.2.3 D1NAMO data set results

This section presents the results obtained from the D1NAMO dataset for two different

cases: CASE I and CASE II. The results are based on the RMSE and the CEGA values

for prediction horizons of 30, 45, and 60 minutes. The results are presented in four

tables: Table 6.5, 6.6, 6.7 and 6.8.

Tables 6.5 and 6.6 present the RMSE and CEGA results for CASE I and CASE II

respectively, using direct LM and SVR methods. These results are obtained from four

patients in the D1NAMO dataset for prediction horizons of 30, 45, and 60 minutes. The

data provides valuable insights into the performance and reliability of the predictive model

using direct LM and SVR methods. Tables 6.7 and 6.8 present the RMSE and CEGA
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results for CASE I and CASE II respectively, using iterated LM and SVR methods.

Similar to the direct method, these results are also obtained from four patients in the

D1NAMO dataset for prediction horizons of 30, 45, and 60 minutes. The results allow

us to compare and contrast the performance of the predictive model using iterated LM

and SVR methods with that of the direct method.

Table 6.5: RMSE and CEGA results 30, 45 and 60 minutes ahead prediction horizon from
four patients (D1NAMO dataset) (CASE I))

Linear meta-model Bagging meta-model Boosting meta-model

Patient ID PH RMSE [mg/dL] CEGA% RMSE [mg/dL] CEGA% RMSE [mg/dL] CEGA%

30 18.72 (0.33) 89.91 (2.21) 14.76 (0.25) 94.85 (1.32) 17.82 (0.21) 90.78 (1.54)

1 45 27.90 (0.53) 78.44 (1.27) 22.32 (0.41) 87.01 (2.13) 27.18 (0.33) 78.30 (0.15)

60 37.26 (0.72) 69.30 (1.45) 28.98 (0.56) 78.16 (1.12) 35.46 (0.47) 70.54 (0.23)

30 18.90 (0.56) 89.91 (1.21) 17.28 (0.27) 90.90 (2.02) 21.24 (1.91) 87.14 (0.98)

2 45 28.98 (0.91) 78.44 (2.37) 28.26 (0.89) 79.52 (2.06) 34.20 (0.32) 72.60 (0.89)

60 37.62 (2.32) 69.30 (1.89) 38.58 (0.13) 66.96 (0.41) 45.90 (0.45) 59.64 (0.22)

30 23.22 (0.78) 84.76 (1.24) 17.10 (1.09) 91.39 (1.34) 20.88 (1.34) 87.24 (1.26)

3 45 37.80 (1.34) 70.82 (1.32) 28.26 (1.19) 77.34 (2.09) 33.84 (1.45) 69.14 (1.34)

‘ 60 50.58 (2.18) 57.07 (1.99) 37.26 (1.03) 68.25 (0.96) 45.00 (0.07) 59.45 (0.05)

30 31.14 (0.98) 81.19 (0.06) 23.40 (1.34) 90.69 (1.87) 27.36 (2.34) 83.87 (1.34)

4 45 44.82 (0.98) 64.51 (0.54) 33.30 (1.38) 76.08 (1.05) 38.88 (1.77) 70.23 (1.23)

60 55.98 (0.84) 56.32 (0.87) 41.22 (1.23) 69.59 (1.22) 48.06 (1.34) 59.89 (1.45)

Table 6.7: RMSE and CEGA results 60 minutes ahead prediction horizon from four patients
(D1NAMO dataset) (CASE I)

iterated Linear meta model iterated Boosting meta model iterated LS Boost meta model

Patient ID PH [min] RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%]

1 60 24.34 ± 0.12 84.37 ± 0.25 20.76 ± 0.05 87.54 ± 0.14 19.97 ± 0.09 87.84 ± 0.14

2 60 23.67 ± 0.19 85.31 ± 0.11 19.69 ± 0.15 86.93 ± 0.28 21.59 ± 0.3 88.61 ± 0.21

3 60 24.03 ± 0.12 86.32 ± 0.12 20.60± 0.12 87.04± 0.17 20.97 ± 0.13 87.94± 0.19

4 60 19.77± 0.20 88.37± 0.23 18.89 ± 0.17 89.32 ± 0.21 21.12 ± 0.06 89.01± 0.28
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Table 6.6: RMSE and CEGA results 30, 45 and 60 minutes ahead prediction horizon from
four patients (D1NAMO dataset) (CASE II))

Linear meta-model Bagging meta-model Boosting meta-model

Patient ID PH RMSE [mg/dL] CEGA% RMSE [mg/dL] CEGA% RMSE [mg/dL] CEGA%

30 17.99 (1.23) 90.02 (0.99) 13.92 (1.65) 95.36 (0.02) 17.04 (0.34) 91.32 (0.94)

1 45 26.57 (1.34) 79.34 (0.45) 21.09 (0.67) 89.09 (2.02) 26.91 (0.56) 79.05 (0.37)

60 37.01 (0.27) 70.04 (1.45) 28.25 (2.12) 79.02 (2.09) 34.88 (1.56) 70.98 (0.02)

30 18.42 (0.26) 90.38 (0.09) 16.98 (0.04) 91.49 (0.12) 20.92 (0.23) 87.91 (0.09)

2 45 27.94 (1.23) 79.42 (1.45) 27.02 (0.08) 80.05 (0.76) 33.86 (0.23) 73.15 (0.67)

60 36.42 (0.67) 70.02 (1.28) 37.52 (0.67) 67.45 (2.34) 44.27 (0.67) 60.01 (1.34)

30 22.32 (1.56) 85.32 (0.26) 16.84 (2.05) 92.45 (0.05) 19.52 (0.34) 88.41 (0.04)

3 45 36.04 (1.45) 71.36 (1.35) 27.32 (1.76) 78.22 (1.56) 32.41 (1.67) 70.01 (1.67)

‘ 60 49.42 (2.06) 58.06 (2.56) 36.44 (1.06) 70.49 (2.56) 44.39 (1.08) 60.41 (1.66)

30 30.94 (1.09) 82.94 (0.05) 22.91 (1.07) 91.51 (2.14) 26.09 (1.65) 84.61 (0.07)

4 45 43.71 (1.67) 65.47 (1.06) 31.45 (0.45) 77.59 (1.22) 36.41 (1.77) 71.72 (0.52)

60 53.22 (1.37) 57.02 (0.65) 40.37 (1.89) 70.18 (1.22) 47.13 (2.05) 60.98 (0.65)

Table 6.8: RMSE and CEGA results 60 minutes ahead prediction horizon from four patients
(D1NAMO dataset) (CASE II)

Iterated Linear Meta Model Iterated Boosting Meta Model Iterated LS Boost Meta Model

Patient ID PH [min] RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%] RMSE [mg/dl] CEGA [%]

1 60 17.35 ± 0.19 91.88 ± 0.27 17.93 ± 0.31 95.21 ± 0.07 17.32 ± 0.17 92.32 ± 0.06

2 60 22.94 ± 0.11 86.04 ± 0.15 18.77 ± 0.15 87.98 ± 0.17 22.99 ± 0.17 90.87 ± 0.26

3 60 21.33 ± 0.41 88.36 ± 0.32 21.94 ± 0.06 88.99 ± 0.32 18.77 ± 0.25 89.33 ± 0.04

4 60 18.77 ± 0.32 89.04 ± 0.21 18.41 ± 0.14 89.41 ± 0.03 17.83 ± 0.17 89.99 ± 0.23

6.3 Evaluation and Discussion

Existing literature often serves as a benchmark for what is considered acceptable or

excellent performance in a given task. In order to compare meta-models utputs with the

overall performance as reported in the existing literature, we used the ensemble models

review by Wadghiri et al. (2022) [100], Table 6.9 and Table 6.10.
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Table 6.9: Overall RMSE estimation of ensemble models performance as reported in the
existing literature, [100]

Estimation of RMSE values of the ensembles’ models

Ensemble based on: RMSE [mg/dL]

Total evaluations PH=30 min PH=45 min PH=60 min

#evals Mean Min Max Std. dev #evals Mean Min Max Std. dev #evals Mean Min Max Std. dev

Heterogenous 25 11 15.52 8.93 26.50 5.17 9 25.96 19.20 34.10 5.75 4 24.32 21.94 26.48 1.76

Homogenous DT 18 10 19.64 8.15 28.59 5.55 5 32.67 18.60 39.78 7.30 2 15.69 9.25 22.12 6.44

ANN 6 3 15.31 8.21 19.50 5.05 1 31.66 31.66 31.66 - 1 15.46 15.46 15.46 -

SVR 1 1 8.91 8.91 8.91 - - - - - - - - - - -

Overall 50 25 17.25 8.125 28.59 5.64 15 28.58 18.60 39.78 6.92 7 20.59 9.25 26.48 5.67

Table 6.10: Overall CEGA estimation of ensemble models performance as reported in the
existing literature, [100]

Estimation of CEGA values of the ensembles’ models

Ensemble based on: CEGA%

Total evaluations PH=30 min PH=45 min PH=60 min

#evals Mean Min Max Std. dev #evals Mean Min Max Std. dev #evals Mean Min Max Std. dev

Heterogenous 14 5 92.62 90.20 96.93 2.40 4 89.09 84.99 91.19 2.48 4 83.10 79.32 85.37 2.39

Homogenous DT 10 3 98.99 98.84 99.17 0.14 - - - - - 4 96.68 91.87 99.21 2.84

ANN 6 2 99.06 98.50 99.62 0.56 - - - - - 2 98.00 96.50 99.49 1.50

SVR 1 1 99.00 99.00 99.00 - - - - - - - - - - -

Overall 31 11 96.11 90.20 99.62 3.58 4 89.09 84.99 91.19 2.48 10 91.11 79.32 99.49 7.03

In order to evaluate the efficacy of the proposed framework, we have selected the meta-

model outputs from patient 2 from the in vivo data and patient 001 under CASE II from

the D1NAMO dataset. These selections represent the most optimal outcomes derived

from our framework. The performance of a predictive model can exhibit significant
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variations when applied to different datasets. This variability can be attributed to a

multitude of factors including, but not limited to, the consistency of the data, the

volume of the data, the relevance of the data to the problem at hand, the selection of

features used in the model, the preprocessing techniques applied to the data, and the

hyperparameters of the model. MOreover, Tables 6.11 and 6.12 present a comparative

analysis of the results obtained from the ensemble methods applied in our study with

the benchmark data provided in Tables 6.9 and 6.10. This comparison will provide a

comprehensive understanding of the performance of our proposed framework in relation

to existing methodologies in the literature. The detailed discussion and interpretation

of these results will be presented subsequently.

Table 6.11: Overall RMSE evaluation

RMSE [mg/dl] STD STD STD

Method PH=30 [min] PH=45 [min] PH=60 [min]

Overall 17.25 5.64 28.58 6.92 20.59 15.96

In vivo results Linear meta-model 14.73 18.73 21.35

Bagging meta-model 11.58 16.21 20.86

Boosting meta-model 11.29 14.9 19.45

iterated Linear meta-model 18.92

iterated Bagging meta-model 15.47

iterated Boosting meta-model 16.34

D1NAMO dataset Linear meta-model 17.99 1.23 26.57 1.34 37.01 0.27

Bagging meta-model 13.92 1.65 21.09 0.67 26.91 0.56

Boosting meta-model 17.04 0.34 26.91 0.56 34.88 1.56

iterated Linear meta-model 17.35 0.19

iterated Bagging meta-model 17.93 0.31

iterated Boosting meta-model 17.32 0.17

The ensemble framework’s performance outcomes appear to align with the established

benchmark, and the obtained results can be considered acceptable and comparable to

those found in the most recent literature. The iterated method has been demonstrated

to yield significantly more accurate predictions, even when forecasting up to 60 minutes

in advance, for both in vivo and simulated datasets. It is noteworthy to mention that

achieving precision in long-term predictions, such as those extending to 60 minutes in

the future, holds the potential to enhance the utility of artificial pancreas and provide

valuable support to individuals with diabetes and their medical practitioners.

Furthermore, it can be unequivocally asserted that the incorporation of compartment

models has the potential to enhance the overall performance of our models, even when
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Table 6.12: Overall CEGA evaluation

CEGA(%) STD STD STD

Method PH=30 [min] PH=45 [min] PH=60 [min]

Overall 96.11 3.58 89.09 2.48 91.11 7.03

In vivo results Linear meta-model 95.39 88.76 80.31

Bagging meta-model 97.41 91.39 81.72

Boosting meta-model 98.78 91.15 83.1

iterated Linear meta-model 94.26

iterated Bagging meta-model 95.37

iterated Boosting meta-model 94.81

D1NAMO dataset Linear meta-model 90.02 0.99 79.34 0.45 70.04 1.45

Bagging meta-model 95.36 0.02 89.09 2.02 79.02 2.09

Boosting meta-model 91.32 0.94 79.05 0.37 70.98 0.02

iterated Linear meta-model 91.88 0.27

iterated Bagging meta-model 95.21 0.07

iterated Boosting meta-model 92.32 0.06

considering our current utilization of a basic open compartment model solely for bolus

insulin. It is beyond question that the adoption of more intricate compartmental models

should be pursued and applied to the simulation of basal insulin, bolus insulin, and

carbohydrate intake, given their potential to yield more accurate and comprehensive

results.

In addition, based on the data presented in the tables, it is evident that both bagging and

boosting meta models exhibit superior performance compared to the basic linear meta

model. Blood glucose levels are influenced by a multitude of factors, many of which have

non-linear relationships with blood glucose. Simple linear models, like linear regression,

assume a linear relationship between predictors and the target variable. However, this

assumption may not hold true for blood glucose prediction, where factors like insulin

response, diet, and exercise can have complex and non-linear effects. Bagging and

boosting methods can capture these non-linear relationships through the combination

of multiple base models.

Bagging and boosting techniques involve training multiple base models on different

subsets of the data or with different initializations. This diversity introduces various

modeling perspectives and allows the bagging and boosting meta-models to capture

different aspects of the underlying data distribution. Blood glucose level data may con-

tain outliers or extreme values, which can unduly influence the parameter estimation of
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a simple linear meta-model. Bagging and boosting methods are often more robust to

outliers because they consider multiple models and can mitigate the impact of individ-

ual outliers by averaging or weighting the predictions. Boosting algorithms adaptively

assign more weight to misclassified samples during training, focusing on the data points

that are challenging to predict. This adaptability can be particularly useful for blood

glucose prediction, as it allows the model to give more attention to cases where linear

relationships might not hold.

In this research so far, we have undertaken a rigorous exploration of the performance

of LM and SVR models in predicting blood glucose levels, benchmarking our results

against established standards in the field. Our investigation has been characterized by

a meticulous comparison of direct and iterated methods for both LM and SVR models.

The choice to employ these models was driven by their unique strengths. LM models,

with their ability to capture the influence of past inputs and outputs, provide a solid

foundation for our predictive framework. On the other hand, SVR models offer a powerful

tool for capturing non-linear relationships, which are often present in physiological data

such as blood glucose levels.

Our study has also seen the application of three different ensemble methods - Bagging,

Boosting, and a basic linear meta-model - to enhance the predictive performance. These

ensemble methods, by combining the predictions of multiple base models, have shown

to be more robust to outliers and capable of capturing complex, non-linear relationships.

The iterated method has demonstrated its potential in yielding significantly more accu-

rate predictions, even when forecasting up to 60 minutes in advance. This holds great

promise for enhancing the utility of artificial pancreas systems and providing valuable

support to individuals with diabetes and their healthcare providers.

The iterated Bagging-meta model, when applied in vivo for patient 2, demonstrated

superior performance compared to the other proposed ensemble frameworks. Specifically,

the Root Mean Square Error (RMSE) was recorded at 15.47 mg/dL for a 60-minute

ahead prediction horizon, and the CEGA value was found to be 95.37%. This represents

an increase of 5.12% in the RMSE from the overall performance of the benchmark, and

an improvement of 4.25% in the CEGA analysis, as shown in Tables 6.11 and 6.12. The

increase of 5.12% in the RMSE from the overall performance of the benchmark signifies

that our model is more sensitive to fluctuations in blood glucose levels, thus providing

more accurate predictions. This is especially important in managing Type 1 Diabetes

Mellitus, where precise predictions can contribute to better disease management and

improved patient outcomes.

Furthermore, our research underscores the potential of incorporating compartment mod-
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els to enhance the overall performance of our models. Even with our current utilization of

a basic open compartment model solely for bolus insulin, the results have been promising.

It is clear that the adoption of more intricate compartmental models for the simulation

of basal insulin, bolus insulin, and carbohydrate intake should be pursued, given their

potential to yield more accurate and comprehensive results.

In conclusion, our work represents a significant contribution to the field of blood glucose

level prediction. By harnessing the power of advanced predictive models and ensemble

methods, we have developed a framework that holds great promise for improving the

management of diabetes and enhancing the quality of life for individuals living with this

condition. Future work will focus on refining our models and exploring more sophisticated

ensemble methods to further improve prediction accuracy. We believe that our work lays

a solid foundation for future research in this important area.



Chapter 7

Conclusions

7.1 Summary of thesis

In this thesis, we concentrated on the analysis and prediction of blood glucose levels

in patients with Type 1 Diabetes Mellitus. Our work was based on both in vivo data

and simulated datasets. The inputs to our models included blood glucose levels, basal

insulin, bolus insulin, carbohydrate intakes, and the hour of the day.

We began by describing and applying both direct and iterated versions of two prediction

algorithms: the Linear Model (LM) and the Support Vector Regression (SVR). These

algorithms were chosen for their robustness and widespread use in the field of machine

learning.

Next, we proposed and evaluated three ensemble frameworks: the Linear meta-model,

the Bagging meta-model, and the Boosting meta-model. These methods for ensembling

have garnered significant interest from the scientific community due to their ability to

improve the accuracy of predictions by combining the strengths of multiple models.

For the bolus insulin, we used it as an impulse signal and simulated its absorption using an

open compartment model. This approach allowed us to capture the dynamics of insulin

absorption in the body, which is crucial for accurate blood glucose level prediction.

Our results showed that the iterated Bagging meta-model, combined with an open com-

partment model for bolus insulin simulation, outperformed the other ensemble frame-

works. This finding underscores the potential of ensemble methods and compartment

models in improving the accuracy of blood glucose level predictions.

In conclusion, our work contributes to the ongoing efforts to develop more accurate

and reliable predictive models for blood glucose levels in patients with Type 1 Diabetes

Mellitus. We believe that our findings will pave the way for future research in this area,

66
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particularly with regard to the use of ensemble methods, compartment models, and the

incorporation of various physiological signals as inputs to the models.

7.2 Fulfillment of targets

– Research Objectives

∗ Compare the prediction accuracy of the ensemble framework against

individual algorithms and existing methods (more details on Chap-

ter 6). The primary objective of this research was to assess and compare

the prediction accuracy of the ensemble framework against individual algo-

rithms. Through rigorous experimentation, each constituent algorithm within

the ensemble framework was evaluated in isolation to establish baseline per-

formances. This meticulous analysis provided a granular understanding of the

individual strengths and weaknesses of each model.

Upon integrating these individual algorithms into the ensemble framework, a

remarkable synergy emerged. The collaborative intelligence harnessed by the

ensemble not only surpassed the predictive capabilities of individual models but

also demonstrated a harmonious integration, effectively mitigating individual

model shortcomings. The fulfillment of this target underscores the transforma-

tive power of ensemble methodologies in enhancing predictive accuracy beyond

the capabilities of standalone algorithms.

The comparative analysis extended to benchmarking the ensemble framework

against existing methods prevalent in the literature for blood glucose prediction

in T1DM Mellitus. By comparing our ensemble approach with established

models, both contemporary and classical, a comprehensive evaluation unfolded.

This process aimed to ascertain not only the relative efficacy of the ensemble

but also its potential to set new standards in predictive performance.

The fulfillment of this target is evidenced by the ensemble framework’s abil-

ity to hold its ground against existing methods, showcasing comparable or

superior predictive accuracy. The iterated strategy within the ensemble, in

particular, demonstrated its prowess by not only meeting but often exceeding

the benchmarks set by well-established models. This accomplishment solidi-

fies the ensemble framework’s position as a state-of-the-art solution for blood

glucose prediction, with implications reaching beyond the current boundaries

of predictive modeling in diabetes research.

In summary, the fulfillment of the target to compare prediction accuracy

against individual algorithms and existing methods not only met but exceeded
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expectations. The ensemble framework’s success in harnessing the collective

intelligence of diverse algorithms, coupled with its ability to rival or outper-

form existing models, establishes it as a pioneering approach in the pursuit of

precision medicine for T1DM Mellitus.

∗ Investigate the benefits and limitations of integrating direct and it-

erated strategies (more details on Chapters 5 and 6). The integration

of Direct and Iterated Strategies within the ensemble framework presents a

promising avenue for blood glucose prediction in T1DM Mellitus. While the

benefits in predictive accuracy, robustness, and diversity of insights are evi-

dent, the computational complexity, interpretability challenges, and data de-

pendencies underscore the importance of a nuanced approach in leveraging the

synergies of these strategies for practical and meaningful clinical applications.

∗ Investigate the benefits and limitations of integrating direct and it-

erated strategies (more details on Chapter 5 and 6). The integration

of Direct and Iterated Strategies in the ensemble framework offers a promis-

ing avenue for advancing blood glucose prediction in T1DM Mellitus. While

the benefits in predictive precision, adaptive learning, and diversified model

contributions are evident, addressing computational complexity, interpretabil-

ity challenges, and data dependencies becomes imperative for realizing the full

potential of this integrated approach in clinical practice.

∗ Provide insights into the factors influencing the performance differ-

ences between these strategies (more details on Chapter 6).

· Temporal Sensitivity: The iterated strategy, designed for immediate pre-

dictions, excels in capturing short-term fluctuations in blood glucose levels.

It responds swiftly to sudden changes, making it effective for scenarios re-

quiring real-time adjustments. In contrast, the iterated strategy, with its

iterative refinement process, exhibits heightened sensitivity to long-term

trends. It captures subtle patterns and variations over time, making it

adept at forecasting more extended temporal dynamics in blood glucose.

· Dynamic Adaptability: The direct application of models in the iterated

strategy offers quick adaptability to immediate changes in glucose dynam-

ics. This strategy is well-suited for situations where rapid adjustments are

crucial, such as responding to sudden changes in lifestyle or medication.

The iterated strategy, through iterative refinement, showcases dynamic

adaptability over time. It excels in scenarios where gradual adjustments

are needed, accommodating changes in patients’ habits, dietary patterns,

or evolving physiological conditions.
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· Model Complementarity: The models employed in the iterated strategy

contribute immediate insights, but their collective output may lack nu-

anced understanding, especially in the face of complex, evolving glucose

dynamics. The iterative refinement process of the iterated strategy allows

models to progressively learn and adapt, refining their understanding of

intricate patterns. This iterative approach complements the immediacy of

the iterated strategy, resulting in a more holistic and nuanced predictive

model.

· Computational Resources: The immediate application of models in the

iterated strategy tends to be less computationally demanding, providing

real-time predictions with relatively lower resource requirements. The iter-

ative refinement process in the iterated strategy may demand more com-

putational resources due to multiple iterations. Balancing computational

demands while optimizing predictive accuracy becomes a critical consid-

eration.

· Data Availability and Longitudinal Information: The iterated strategy may

perform well with limited data points, providing accurate predictions based

on immediate inputs. However, it might struggle to capture nuanced pat-

terns without a comprehensive dataset. The effectiveness of the iterated

strategy is contingent on the availability of rich longitudinal data. It ex-

cels in scenarios with extensive data, enabling the iterative refinement

process to capture and adapt to complex patterns over time. The direct

application of algorithms in isolation may limit the diversity of insights,

potentially overlooking subtle patterns that could be captured through

more extended interactions. The iterated strategy, by repeatedly refining

predictions, encourages a deeper interplay of algorithms. This prolonged

interaction facilitates a richer learning experience, potentially capturing

intricate patterns that might be missed in a single pass. Understanding

these factors provides nuanced insights into the performance differences

between Direct and Iterated Strategies. It underscores the importance

of selecting the strategy based on the specific requirements of the clini-

cal context, patient profiles, and the intended outcomes of blood glucose

predictions in T1DM Mellitus.
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7.3 Further extensibility and recommendations

Recognizing the distinctive strengths of both direct and iterated strategies, future re-

search avenues could explore hybrid approaches that leverage the advantages of each

strategy. By dynamically integrating these strategies based on contextual demands,

researchers may unlock new dimensions of predictive accuracy and adaptability.

To address the interpretability challenges associated with the integrated strategies, in-

corporating explainable AI techniques becomes pivotal. Methods such as model-agnostic

interpretability or transparent model architectures could enhance the transparency and

trustworthiness of the ensemble framework, making it more accessible to healthcare

practitioners.

The next phase of research should involve extensive clinical validation to assess the en-

semble framework’s performance in real-world scenarios. Collaborations with healthcare

institutions and practitioners can provide invaluable insights, validating the framework’s

efficacy and identifying areas for further refinement.

Given the dynamic nature of T1DM, future iterations of the ensemble framework could

benefit from adaptive learning mechanisms. These mechanisms would enable the frame-

work to autonomously adjust its strategies based on evolving patient conditions, con-

tributing to enhanced long-term predictive accuracy.

Tailoring the ensemble framework to include patient-specific features, such as genetic

markers, lifestyle choices, and individual response to treatments, can further enhance

its predictive capabilities. This personalized approach aligns with the broader goals

of precision medicine, ensuring interventions are tailored to the unique needs of each

patient.

The ensemble framework’s models should be designed with the capacity for continuous

updating. Regularly incorporating new data and adjusting model parameters can help

the framework stay attuned to evolving trends in blood glucose dynamics, ensuring its

relevance and accuracy over extended periods.

Developing a user-friendly interface for healthcare practitioners is crucial for the practical

implementation of the ensemble framework. The interface should provide clear visual-

izations, interpretability tools, and real-time insights, empowering practitioners to make

informed decisions based on the model’s predictions.

Collaborating with existing diabetes management platforms and incorporating the en-

semble framework as a predictive tool can enhance its integration into clinical workflows.

Seamless interoperability with electronic health records and other healthcare systems can

facilitate its adoption and utility in real-world healthcare settings.
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Moreover, future work should consider the application of more complex compartment

models, not only for bolus insulin but also for other inputs, especially nutrition. These

models could provide a more comprehensive understanding of the physiological processes

involved in blood glucose dynamics, potentially leading to more accurate predictions.

While the ensemble framework improves prediction accuracy, it may be challenging to in-

terpret due to the complexity of multiple models. Future work could focus on improving

the interpretability of the ensemble framework, which is crucial for clinical decision-

making. The ensemble framework and the active-learning iterated ensemble framework

should be validated in real-world settings. This could involve testing the framework with

real-time data from continuous glucose monitoring devices. The iterative nature of the

iterated strategy and the iterated ensemble framework can be computationally inten-

sive. Future work could focus on optimizing these strategies to reduce computational

demands. To sum up, this research has significant implications for the management of

T1DM, ultimately contributing to improved patient outcomes.
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– K. Saiti, M. Macaš, L. Lhotská, et al., “Ensemble methods in combination with

compartment models for blood glucose level prediction in type 1 diabetes mellitus”,

Computer Methods and Programs in Biomedicine, vol. 196, p. 105 628, 2020

Conferences
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Nomenclature

Auto-Regressive Integrated Moving Average ARIMA

Autoregressive with eXogenous Inputs ARX

Autoregressive with eXogenous Inputs ARX

Blood Glucose BG

Blood Glucose Levels BGLs

Clarke’s Error Grid CEG

Continuoys Glucose Monitor CGM

Convolutional Neural Network CNN

Deep Compartment Model DCM

Diabetes Mellitus DM

Do It Yourself Artificial Pancreas Systems DIYAPS

Genetic Algorithm GA

Linear Model LM

Linear Regression LR

Long Short Term Memory LSTM

Machine Learning ML

Matthews Correlation Coefficient MCC

Mean Absolute Error MAE

Particle Swarm Optimization PSO

Prediction Horizon PH

Root Mean Square Error RMSE

Support Vector Machines SVM

Transmission-Dynamics-Informed Neural Network TD1NN

Type 1 Diabetes Mellitus T1DM

Type 1 Diabetes Mellitus T2DM
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