
PROCESSING, CHECKING, AND MODELING
OF TEXTUAL REQUIREMENTS SPECIFICATIONS

by

David Šenký̌r

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics

Department of Software Engineering

Prague, November 2023

Supervisor:
prof. Dr. Ing. Petr Kroha, CSc.
Department of Software Engineering
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright © 2023 David Šenkýř

ii

Abstract

The quality of requirements engineering plays an important role in the whole development
life cycle of every software project – because the other phases depend on it. The key result
of the requirements engineering phase is a requirements specification. Writing requirements
specifications in natural language is a common practice. However, textual requirements
specifications are, unfortunately, prone to several inaccuracies, such as ambiguity, incon-
sistency, and incompleteness.

In this thesis, we map the state-of-the-art methods of grammatical inspection to identify
patterns in requirements specification written in the textual form. On their basis, we
are able to extract the information from the text (text mining) and generate warning
messages targeting suspicious text formulations. We also discuss the integration of semantic
networks, such as ConceptNet and BabelNet, for text defect detection. Additionally, the
semantic networks are helpful in finding missing rules that are not evident from the current
state of the requirements – we call them default consistency rules.

We present our idea of functional requirements quality measurement and a method of
how analysts could iteratively improve the textual requirements.

As a software artifact verifying our approach, at the end of this thesis, we demonstrate
features of our created CASE tool called TEMOS. We present ideas on how such a tool
could be implemented, too. TEMOS is able to generate fragments of the UML class model
from textual requirements specification, and it also helps the user detect in the text signs
of incompleteness or inaccuracies that may cause ambiguity and inconsistency.

The main contributions of this dissertation thesis are as follows.

1. Identify types of problems introduced by ambiguity, incompleteness, and inconsist-
ency.

2. Design of methods identifying such problems in textual requirements specifications.

3. Propose how an analyst could improve the textual requirements according to our
defined quality measurement metric.

iii

Keywords:
requirements specification, requirements engineering, natural language processing, text

mining, grammatical inspection, ambiguity, incompleteness, inconsistency, quality meas-
urement, domain model, semantic networks.

iv

Abstrakt

Kvalita zpracováńı d́ılč́ıch úkol̊u discipĺıny zvané requirements engineering (ve volném
překladu inženýrstv́ı požadavk̊u) hraje d̊uležitou roli pro celý životńı cyklus vývoje soft-
warového projektu – protože to je fáze, na které ostatńı fáze závisej́ı. Kĺıčovým výstupem
fáze requirements engineering je specifikace požadavk̊u, jejichž formulace v přirozeném
jazyce je běžnou prax́ı. Textově vyjádřené požadavky jsou však náchylné k řadě nepřesnost́ı
jako je v́ıceznačnost, nekonzistence či neúplnost.

V této dizertačńı práci mapujeme aktuálńı stav metod gramatické inspekce za účelem
identifikováńı vzor̊u v textových specifikaćıch požadavk̊u. Na jejich základě jsme schopni
extrahovat informace z textu (discipĺına zvaná text mining, ve volném překladu dolováńı
dat z textu) a generovat varováńı ohledně podezřelých textových formulaćı. Zároveň disku-
tujeme integraci sémantických śıt́ı, jako je ConceptNet či BabelNet, za účelem detekce
nepřesnost́ı v textu.

Dále popisujeme naši metriku měřeńı kvality funkčńıch požadavk̊u a navrhujeme, jak
by analytici mohli iterativńım př́ıstupem vylepšit textové požadavky.

V závěru práce demonstrujeme funkcionality námi vytvořeného CASE nástroje TEMOS,
který vznikl jako softwarový artefakt ověřuj́ıćı námi navržené postupy. Zároveň před-
stavujeme nápady, jak by podobný nástroj mohl být implementován. TEMOS je schopný
generovat fragmenty UML diagramu tř́ıd z textové specifikace požadavk̊u a zároveň pomáhá
uživateli detektovat neúplné požadavky či nepřesnosti v textu, které mohou ve výsledku
zp̊usobit v́ıceznačnost či nekonzistenci v pochopeńı popisu požadavk̊u.

Hlavńı př́ınosy této dizertačńı práce shrnuj́ı následuj́ıćı body.

1. Identifikace typ̊u problémů zp̊usobených v́ıceznačnost́ı, neúplnost́ı či nekonzistenćı.

2. Návrh metod identifikuj́ıćıch zmı́něné problémy v textových specifikaćıch požadavk̊u.

3. Návrh postupu, jak by mohl analytik zlepšit textové požadavky s ohledem na námi
definovanou metriku kvality.

v

Kĺıčová slova:
specifikace požadavk̊u, requirements engineering, zpracováńı přirozeného jazyka, text

mining, gramatická inspekce, v́ıceznačnost, neúplnost, nekonzistence, měřeńı kvality,
doménový model, sémantické śıtě.

vi

Acknowledgements

First, I would like to express my gratitude to my supervisor, professor Petr Kroha, who
guided me throughout this academic research journey. I appreciate his encouragement,
research experience, and the valuable insights he shared with me.

Special thanks go to the staff of the Department of Software Engineering, who main-
tained a pleasant environment for my research. I am very grateful to the department
management – Dr. Michal Valenta, Dr. Alena Libánská, and Ing. Adéla Sv́ıtková – for
their positive support and help with my research-connected events organization.

I also had the pleasure of being a member of the Centre for Conceptual Modelling and
Implementation (CCMi). I enjoyed all the exciting discussions with my colleagues. I would
especially like to thank Dr. Marek Suchánek for his continuous encouragement and help
with the deployment of our TEMOS tool. Special thanks go to Dr. Marek Skotnica for
the support with the text analysis experiments regarding DEMO (Design & Engineering
Methodology for Organizations).

My research has also been partially supported by the Grant Agency of the Czech Tech-
nical University in Prague, specifically by the “Advanced Research in Software
Engineering” grants No. SGS17/211/OHK3/3T/18 and SGS20/209/OHK3/3T/18.

∼

Above all, my greatest thanks go to my family, especially to my parents and my sister, for
their infinite patience, care, and all the support and love they give me. I wish I could turn
back time and share my life stories with all of them again.

vii

Contents

Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Goals of the Dissertation Thesis . 3
1.4 Structure of the Dissertation Thesis . 4

1.4.1 Research Approach . 5

2 Research Domain 7
2.1 Requirements Engineering . 8

2.1.1 Requirements Engineering Process 8
2.1.2 Software/System Requirements Specification 9

2.2 Natural Language Processing . 12
2.2.1 Natural Language Processing Approaches 13
2.2.2 Natural Language Processing for Requirements Engineering 13

2.3 UML Class Diagram Generation . 14
2.3.1 UML Class Diagram . 15
2.3.2 Serialization Formats . 17

3 Overview of Our Approach 19
3.1 Main Algorithm . 20
3.2 Text Mining Process Pipeline . 20
3.3 The Method of Grammatical Inspection . 22
3.4 Internal Model (Manager) . 23

3.4.1 Internal Model (Manager) Constraints 24
3.5 Suitable Patterns . 25

3.5.1 Triplet Recognition . 25
3.5.2 Triplet Recognition – Challenges 26

ix

Contents

3.5.3 Attributes Recognition . 27
3.5.4 Hierarchy Recognition . 29

3.6 Evaluation . 30
3.6.1 Data Set . 30
3.6.2 Textual Modeling System (TEMOS) 34

4 Problem of Ambiguity in Textual Requirements Specification 35
4.1 Motivation . 36
4.2 Problem Statement and Related Work . 37

4.2.1 Ambiguity of Words . 37
4.2.2 Ambiguity of Sentences . 37

4.3 Our Approach – Patterns of Structural Ambiguity 38
4.3.1 Patterns of Attachment Ambiguity 38
4.3.2 Patterns of Analytical Ambiguity 41

4.4 Our Approach – Glossary Construction and Synonyms Resolving 43
4.5 Experiments and Results . 44
4.6 Problems of Semantic Sentence Ambiguity

and Coreference . 48
4.6.1 Linguistic Approach Completed by Knowledge Base 48
4.6.2 Model Approach . 49
4.6.3 Specific Attribute Values Distinguish the Coreference 49

5 Problem of Incompleteness in Textual Requirements Specification 53
5.1 Problem Statement . 54
5.2 Related Work . 56

5.2.1 Incompleteness Detection Tools . 56
5.2.2 Incompleteness Confrontation . 57
5.2.3 Incompleteness of Scenarios . 58
5.2.4 Related Works – Overview . 59

5.3 Our Approach . 59
5.3.1 Group S.1 (Usual Usage of Words) 60
5.3.2 Group S.2 (Acronyms Definition) 61
5.3.3 Group D.1 (Semantic Knowledge) 61
5.3.4 Group D.2 (Actions) . 62
5.3.5 Group D.3 (Model Validation) . 62

5.4 Our Approach – Incompleteness of Scenarios 63
5.4.1 Alternative Scenarios . 63
5.4.2 The Algorithm . 64
5.4.3 Static UML Model Construction . 65
5.4.4 Sets of Values . 65
5.4.5 Patterns To Find Scenarios . 67

5.5 Experiments and Results . 70
5.5.1 Evaluation Example #1 . 70

x

Contents

5.5.2 Evaluation Example #2 . 72
5.5.3 Results . 72

6 Problem of Inconsistency in Textual Requirements Specification 75
6.1 Problem Statement . 76
6.2 Related Work . 76
6.3 Sources of Inconsistency . 77

6.3.1 Semantic Overlaps as Sources of Inconsistency 77
6.3.2 Inconsistency between the Text and the UML Model 78

6.4 Our Approach . 79
6.4.1 Model Construction and Semantically Similar Sentences 80
6.4.2 Example – Library Information System 82

6.5 Experiments and Results . 84
6.5.1 Data . 84
6.5.2 Results . 85

7 Problem of Default Consistency Rules in Textual Requirements Spe-
cification 89
7.1 Problem Statement . 90
7.2 Case Study – Part 1:

Missing Consistency Rules in Chords Generation 90
7.2.1 Chord Generation Requirements . 91
7.2.2 Our Approach – Using External Context to Identify the Missing

Default Consistency Rules . 92
7.2.3 Construction of Pseudo-Questions 92
7.2.4 Semantic Similarity of Sentences . 93
7.2.5 Semantic Enrichment of Sentences 93
7.2.6 The Process of Semantic Enrichment of Sentences 94

7.3 Case Study – Part 2: Applying Our Approach 96
7.3.1 The Missing Consistency Rule No. 1 96
7.3.2 The Missing Consistency Rule No. 2 98

7.4 Experiments and Results . 99
7.4.1 Revealing Consistency Rule No. 1 100
7.4.2 Revealing Consistency Rule No. 2 101
7.4.3 Discussion . 101

8 Quality Measurement 103
8.1 Problem Statement . 104
8.2 Quality Measurement . 105
8.3 Our Approach to Quality of Requirements 107
8.4 Experiments and Results . 109

9 Created Artifact and Models Generation 113

xi

Contents

9.1 TEMOS – Textual Modeling System . 114
9.1.1 Core Features . 115
9.1.2 Additional Features . 116
9.1.3 Used Technologies . 116

9.2 Models Generation . 117
9.2.1 Generated Models – UML (Class Diagram) 117
9.2.2 Generated Models – SHACL . 120
9.2.3 Generated Models – Normalized Systems 125
9.2.4 Generating Information System Prototypes 128

10 Conclusions 129
10.1 Research Goals Revisited . 129
10.2 Contributions of the Dissertation Thesis 130
10.3 Future Work . 131

Bibliography 133

Reviewed Publications of the Author Relevant to the Thesis 147

Remaining Publications of the Author Relevant to the Thesis 151

Selected Relevant Supervised Thesis 153

xii

List of Figures

1.1 Software development life cycle (SDLC). 2
1.2 Overview of the structure of this thesis. 6

2.1 Problems of textual requirements specifications. 11
2.2 Result of tokenization process. 12
2.3 Result of part-of-speech tagging. 12
2.4 Class diagram example of hotel management system. 15
2.5 Class diagram – association example. 16
2.6 Class diagram – generalization example. 16
2.7 Class diagram – aggregation example. 17
2.8 Class diagram – composition example. 17

3.1 Example of an annotated sentence. 21
3.2 Basic triplet pattern. 25
3.3 Example of the passive voice #1. 26
3.4 Example of the passive voice #2. 27
3.5 Example of a sentence with attribute candidate and the verb have. 27
3.6 Example of a sentence with attribute candidates. 28
3.7 Example of a sentence with an indirect subject. 29
3.8 Example of a sentence representing hierarchy of entities. 29
3.9 Example of a sentence representing attribute values recognition. 30
3.10 TEMOS pipeline. 34

4.1 Pattern #1 (prepositional phrase modifier). 39
4.2 Pattern #2 (preposition phrase). 39
4.3 Pattern #3 (relative clause). 39
4.4 Pattern #4 (subsentence attachment). 40
4.5 Pattern #5 (adverbial position (1)). 40
4.6 Pattern #6 (adverbial position (2)) – example sentence. 41
4.7 Pattern #6 (adverbial position (2)). 41

xiii

List of Figures

4.8 Pattern #7 (reduced restrictive relative clause (1)). 41
4.9 Pattern #8 (reduced restrictive relative clause (2)). 42
4.10 Pattern #9 (present participle vs. adjective). 42
4.11 Pattern #10 (participle). 42
4.12 Ambiguous parsing structure in Grammarly. 44
4.13 Example of coreferential ambiguity. 48
4.14 USE tool example. 51

5.1 Example of incompleteness (restaurant). 55
5.2 Noun with preposition pattern. 60
5.3 “In order to action” pattern. 60
5.4 Values conditional pattern #1. 68
5.5 Values conditional pattern #2. 68
5.6 Incomplete conditional pattern #1. 68
5.7 Incomplete conditional pattern #2. 68
5.8 Unique attribute pattern. 69
5.9 Values in enumeration – check approach. 70

6.1 The idea of inconsistency patterns. 80
6.2 Pattern #1 (pure negation). 81
6.3 Matched pattern #1 (pure negation). 81
6.4 Pattern #2 (“except”). 81
6.5 Pattern #3 (numeric predicate). 81
6.6 Pattern #4 (determiner predicate). 81
6.7 Relation actor predicate. 82
6.8 Pattern #5 (predicate and auxiliary verb). 82
6.9 Consistency rule from Example 6.2. 85

7.1 Example of a not playable chord. [21] . 91
7.2 Example of a not playable chord – three tones on one string. 92
7.3 Chord definition from WordNet – the scope of the definition exceeds string

instruments. 99

8.1 Quality evaluation schema. 107
8.2 Quality measurement iterations as feedback. 108
8.3 Correlation comparison of IPA and ARI. 112
8.4 Correlation comparison of EN and Q-Req. 112

9.1 TEMOS – main page. 114
9.2 Generated elements. 115
9.3 Generated warnings concerning ambiguity. 116
9.4 Generated data elements for a hotel room booking system example. 127
9.5 Booking form for expanded NS application. 128

xiv

List of Tables

2.1 Requirements specification notations. [107] . 10

3.1 Data set statistics. 32

4.1 Evaluation of methods detecting ambiguity. 46

5.1 Evaluation of methods detecting incompleteness. 73

6.1 Evaluation of methods detecting inconsistency. 87

7.1 Google Web search: chord and chord + fingering. 101

8.1 The evaluation of the recognized issues (warnings) using Q-Req formula. . . . 110

xv

List of Algorithms

3.1 Our approach – main algorithm. 20

5.1 Revealing alternative scenarios. 64

7.1 The semantic enrichment of sentences. 94

xvi

Abbreviations

Requirements Engineering & Conceptual Modeling

BRS business requirements specification
CASE computer-aided software engineering
EMF Eclipse Modeling Framework
FRS functional requirements specification
MDD model-driven development
NLP4RE natural language processing for requirements engineering
NS Normalized Systems
OCL object constraint language
RDF resource description framework
RE requirements engineering
SDLC software development life cycle
SHACL shapes constraint language
SRS software/system requirements specification
UML unified modeling language
USE UML-based specification environment

Text Mining

POS part-of-speech
NLP natural language processing

xvii

Abbreviations

Miscellaneous Abbreviations

API application programming interface
ARI automated readability index
GFI Gunning fog index
GUI graphical user interface
XMI XML metadata interchange
XML extensible markup language

xviii

Chapter 1

Introduction

The idea of requirements specification is not new. The famous Italian painter Raffael
(1483–1520) produced his paintings to the orders of wealthy customers. They wanted to
know in advance what they would pay for. Rafael described the picture in words, for
example, “In the oil painting on canvas with dimensions according to the His Highness’s
wishes, there will be His Highness like a knight in armor on a white horse with a sword
and spear fighting a dragon” and added a sketch (drawing) of the painting. The customer
could opt, for example, for a black horse and a helmet with a plume. Then they wrote
a contract, and the image had to match its content. After five hundred years, we follow
(more or less) the same practice in software engineering projects. The description of the
software product to be constructed is called software requirements specification.

1.1 Motivation

The significant phase of the software development life cycle (SDLC1) is undoubtedly the
elicitation, the investigation, and the processing of a requirements specification. Actually,
by well-known standard phases of SDLC illustrated in Fig. 1.1, the mapping of the require-
ments specification is the first one or one of the first outputs from the initial investigation
of a software system utilization. The requirements specification is also the essential input
for the subsequent development steps – such as modeling individual parts of a system.
The quality of the outputs of these steps is, of course, dependent on the quality of the
input requirements because they are mandatory prerequisites. Although agile projects in-
clude more iterations more or less similar to the SDLC cycle, the precise understanding of
requirements in each iteration is still crucial [85].

According to Tichy et al. [80], the quality of the input requirements has the most
expensive impact. As Kof stated in his paper [75] – “Requirements Engineering is the
Achilles heel of the whole software development process.”

1In some literature also used as the system development life cycle.

1

1. Introduction

Figure 1.1: Software development life cycle (SDLC).

Textual formulated requirements specification is necessary as a base of communication
between a customer, a user, a domain expert, and an analyst. The majority of textual
requirements specification – compared to other forms, such as graphical notations (i.e.,
diagrams) or mathematical specifications – is observed in the market research surveys.

The market research [82] of 151 questionnaires from the early 2000s states that 79 % of
all specifications are written in common natural language without any structure or formal-
ism. A decade later, the majority of respondents (61 %) still report that their requirements
are expressed in terms of natural language [72]. The situation remains unchanged even in
recent research. The NaPiRE (Naming the Pain in Requirements Engineering) initiative
[127] confirms that the most frequent way to document requirements is free-form textual
structured requirements lists. The majority of natural language sentences usage is declared
in [44], too.

The textual formulation of requirements in natural language is also necessary due to
a contract with the clients. The contract is then the primary relevant source that can be
assessed in the event of a legal case. Unfortunately, requirements texts typically suffer from
ambiguity, incompleteness, and inconsistency. Usually, the reason is that writing require-
ments is a cooperative work of several people who are often distributed in various places.
This is a source of inaccuracies and misleading descriptions. Many words and statements
may have multiple meanings (ambiguity), text can obtain contradictions (inconsistency),
and specifications of some features can be omitted (incompleteness).

Given the severity of requirements specification and the new possibilities of computer-
aided support for natural language processing, there is a motivation for developing CASE

2

1.2. Problem Statement

tools supporting requirements engineering. Tools that assist in mapping parts of textual
requirements specification to corresponding fragments of some model.

In this dissertation thesis, we present the state-of-the-art of static model generation
(primary UML class diagram) and techniques for handling mentioned issues of a textual
formulation. We also present our tool TEMOS that we have developed to process textual
formulated requirements specification.

1.2 Problem Statement

In our research, we address the problem domain called NLP4RE – Natural Language
Processing for Requirements Engineering. This is an area of research and development
that seeks to apply natural language processing (NLP) techniques, tools, and resources to
the requirements engineering (RE) process, to support human analysts to carry out various
linguistic analysis tasks on textual requirements documents. [131]

“Software requirements sit in a tricky zone between business and technical thinking.”

— James Billson, CEO at Primary.app [14]

The Most Surprising Software Project Failure Statistics And Trends in 2023 [50] collects
data from various sources such as The Standish Group’s Chaos Report, Project Smart UK,
InfoQ articles, and PMI of the Profession reports. They state that:

� 32 % of software project failures are due to poor requirements management,

� 23 % of software project failures can be traced back to poor communication between
stakeholders.

Following the beforehand mentioned statistics and the NLP4RE problem domain, we define
the problem statement as processing, checking, and modeling of textual requirements spe-
cification. Accordingly, we formulate the objectives of this dissertation thesis in the fol-
lowing section.

1.3 Goals of the Dissertation Thesis

In general, our motivation is to support analysts, stakeholders, developers, or anyone else
who creates, updates, or just reads the textual requirements specifications. Therefore,
the main goal on the abstract level should be stated as to improve the text of textual
specification. Because of that, we define the following more concrete goals.

3

1. Introduction

1. G1. Identify the type of problems introduced by:

a) G1.A ambiguity,

b) G1.B incompleteness, and

c) G1.C inconsistency.

2. G2. Propose algorithms on how to identify such problems in textual requirements.

3. G3. Propose a method for how an analyst could improve the text.

1.4 Structure of the Dissertation Thesis

This thesis is organized into ten chapters as follows:

Chapter 1 (Introduction) describes the motivation behind our efforts together with our
goals. There is also a list of contributions of this dissertation thesis.

Chapter 2 (Research Domain) introduces the reader to the necessary theoretical back-
ground relevant to our research domain – requirements engineering and natural lan-
guage processing.

Chapter 3 (Overview of Our Approach) explains our approach and introduces our
internal model representing the parsed text of requirements.

Chapters 4, 5, 6, and 7 address the issues defined in goal G1 – ambiguity, incomplete-
ness, and inconsistency. During the investigation, we faced facts and rules that were
not part of the requirements specification. We call them default consistency rules,
and we devote a separate chapter to them.

Chapter 8 (Quality Measurement) summarizes the results of investigated problems
from the previous chapters and provides the quality measurement formula.

Chapter 9 (Created Artifact and Models Generation) describes our system
TEMOS as a created software artifact implementing the proposed methods from
Chapters 3–8. This chapter also addresses model generation and model export in
various formats.

Chapter 10 (Conclusions) summarizes the results of our research, suggests possible
topics for further research, and concludes the thesis.

4

1.4. Structure of the Dissertation Thesis

1.4.1 Research Approach

To achieve the goals, we proceeded in our research activities as shown in Fig. 1.2 that
gives an overview of the structure of this thesis and the connection to the defined goals.

First, we review the necessary background of requirements engineering and natural
language processing support, and we present the domain in the next chapter. Then, we
prepare a structure of our internal model representing the parsed text of requirements.
This structure helps us support goal G2 – the idea of a model representation makes a
step toward checking problems defined in goal G1 on the semantic level. We present this
structure in Chapter 3.

To address each problem of ambiguity, incompleteness, and inconsistency, we investigate
them in separate chapters where we identify the typical manifestations of the problem
(goal G1), and we propose algorithms to identify them in the text (goal G2). With each
proposed solution, we extend our created software artifact – system TEMOS. This system
is presented as a solution to support analysts when they process the text of requirements
(goal G3).

Our approach to overall text improvement (goal G3) is to use the results of invest-
igated problems detection and our proposed quality measurement metric as presented in
Chapter 8. The aforementioned system TEMOS (also supporting goal G3) is presented in
Chapter 9.

5

1
.

In
t
r
o
d
u
c
t
io
n

Figure 1.2: Overview of the structure of this thesis.

6

Chapter 2

Research Domain

This chapter reflects our publication:

� Šenkýř, D.; Kroha, P. Patterns in Textual Requirements Specification. In: Pro-
ceedings of the 13th International Conference on Software Technologies. SciTe-
Press, Madeira, 2018. [A.10]

7

2. Research Domain

In this section, we clarify the terms and methodologies of our research domain. First, we
introduce requirements engineering. Next, we present the basic approach of natural lan-
guage processing. We introduce the research area connecting requirements engineering and
natural language processing called NLP4RE – natural language processing for requirements
engineering. Last, we present propositions about UML class diagram generation.

2.1 Requirements Engineering

A central concept of our research domain is represented by a requirement. We follow the
definitions provided by IEEE, and we appreciate discussion of the terms presented in a book
called Requirements Engineering [28] by Jeremy Dick, Elizabeth Hull, and Ken Jackson.

Definition 2.1.1. A requirement is a statement that identifies a product or process opera-
tional, functional, or design characteristic or constraint, which is unambiguous, testable or
measurable, and necessary for product or process acceptability (by consumers or internal
quality assurance guidelines). [64]

A valid note concerning a requirement is that the requirement states what is required, not
how the requirement should be met. [65] To tackle the requirements engineering process,
let us first define a stakeholder.

Definition 2.1.2. A stakeholder is an individual, group of people, organisation or other
entity that has a direct or indirect interest (or stake) in a system to be developed. [28]

Definition 2.1.3. The process called requirements engineering is the initial process by
which it comes into contact an analyst and a client (a stakeholder) to clarify the client’s
expectations of the future software.

Definition 2.1.4. The (software/system) requirements specification (abbreviated SRS)
verified by a client (a stakeholder) is then the main output of the requirements engineering
process.

2.1.1 Requirements Engineering Process

The requirements engineering process primary consist of the following phases [108]:

� elicitation – meetings and appointments, observations of users, etc.,

� analysis – thinking and inventing, discussions, notes, etc.,

� specification – writing documents, using agreed notation, etc.,

8

2.1. Requirements Engineering

� verification – other meetings, reading documents, presenting prototypes, clarifying
the scope of functionality, etc.

These phases can be repeated multiple times with various people from various departments.

2.1.2 Software/System Requirements Specification

The software/system requirements specification covers the scope of the future software –
which should be characterized, at least, by the following categories [108]:

� functional requirements – requirements related to software functionality like the
workflow3 of tasks and activities that will be supported,

� interface requirements – user interface design, software/hardware integration re-
quirements, etc.,

� non-functional requirements – properties of systems as a whole like perform-
ance (e.g. response time), accessibility and availability, extensibility and scalability,
security, etc.,

� other requirements – legislative, multilingualism, etc.

From the formal point of view, there exist standards like ISO/IEC/IEEE 29148-2018 4 [66],
methodologies like SWEBOK Guide [105] or Volere Requirements Specification Template
[55] (that is translated in various languages), as well as CASE tools that support better
requirements organization or even manual assignment of requirements with parts of the
model like Enterprise Architect [118].

The SWEBOK Guide (The Guide to the Software Engineering Body of Knowledge), at
the time of writing this thesis in version 3, published by IEEE, includes a chapter dedicated
to previously mentioned requirement engineering phases with guidelines and best practices.

However, following the mentioned market research in Chapter 1, the most widely used
approach is to write requests in natural language as non-structured text. And these are
the specifications we are interested in. The other approaches to capture requirements are
categorized, e.g., in [107]. We present a summary in the following adopted Table 2.1.

3The set of inputs, the behavior, and the set of outputs.
4ISO/IEC/IEEE 29148-2018: Systems and software engineering – Life cycle processes – Requirements

engineering. The successor of IEEE 830-1998: Recommended Practice for Software Requirements Specific-
ations.

9

2. Research Domain

Table 2.1: Requirements specification notations. [107]

Notation Description

natural language sentences The requirements are written using numbered sen-
tences in natural language. Each sentence should ex-
press one requirement.

structured natural language The requirements are written in natural language on
a standard form or template. Each field provides in-
formation about an aspect of the requirement.

design description languages This approach uses a language like a programming lan-
guage, but with more abstract features to specify the
requirements by defining an operational model of the
system. This approach is now rarely used although it
can be useful for interface specifications.

gaphical notations Graphical models, supplemented by text annotations,
are used to define the functional requirements for the
system; UML use case and sequence diagrams are com-
monly used.

mathematical specifications These notations are based on mathematical concepts
such as finite-state machines or sets. Although these
unambiguous specifications can reduce the ambiguity
in a requirements document, most customers don’t un-
derstand a formal specification. They cannot check
that it represents what they want and are reluctant to
accept it as a system contract.

Many stakeholders who contract software projects, and IT projects in general, obviously
operate outside the IT sector. They are experts in their business domain. In these cases, the
natural language is surely the clear choice for describing the expected system functionality
and requirements. Otherwise, even if the client knows more formal methods of requirements
formulation like diagrams, models, etc., requirements formulation in the natural language
is necessary because of a contract. The contract is then the primary relevant source that
can be assessed in a legal case.

The advantage of using natural language is that the requirements specification can be
interpreted both by a customer (or other stakeholders) and by an analyst. However, the
freedom without any formal restriction makes them prone to a number of inaccuracies and
incomplete expressions. Previous customer nescience of the formal methods of requirements
formulation is now substituted by analyst nescience of the customer’s business domain.
What is natural for the domain expert from the customer team may not be fully evident
for the analyst – also a domain expert but in a different domain.

Writing requirements may also be a cooperative work of several people. When the
contractor is a company, it can be assumed that it is almost a rule. The cooperative work
is another source of inaccuracies and misleading descriptions. For example, describing a

10

2.1. Requirements Engineering

term in the text by several synonyms may – in the case of not well-known terms or domain-
specific terms – result in a situation where the analyst denotes synonyms as various terms.

Maintaining requirements specifications written in natural language complete and
straightforward is a difficult task with a high probability of introducing new inaccuracies,
as a schema adapted from professor Easterbrook’s presentation [30] in Fig. 2.1 illustrates.

Figure 2.1: Problems of textual requirements specifications.

Software requirements specification (SRS) can be a follow-up document to the business
vision stated in business requirements specification (BRS). According to IEEE standard
[66], the business requirements specification describes the organization’s motivation for
why the system is being developed or changed, defines processes and policies/rules under
which the system is used and documents the top-level requirements from the stakeholder
perspective including expressing needs of users/operators/maintainers as derived from the
context of use in a specific, precise and unambiguous manner.

As mentioned at the beginning of this section, software requirements specification (SRS)
can cover different kinds of requirements. The document extracting only the core functional
requirements is then called functional requirements specification (FRS).

11

2. Research Domain

2.2 Natural Language Processing

Computational processing of natural language requires the collaboration of engineers and
especially linguistic experts. A multidisciplinary field devoted to this domain is called
computational linguistics. Its origins date back to the 1950s [62], when there was the
first mention of computer-controlled translations of text from one language to another. In
recent years, there were created Natural Language Processing (NLP) frameworks that can
be used by developers. The increasing evolution of these frameworks offers opportunities
in the fields of information retrieval, text mining, question answering, speech recognition,
etc.

These frameworks typically provide some of the following operations:

� tokenization – usually the first step when a framework parses the input text (the
set of characters) into a sequence of tokens; a single token (a unit carrying signific-
ance) represents a word or a special character like an interpunction, etc.; whitespace
characters (like spaces) don’t represent tokens, but they are control characters for
token recognition; the result of the tokenization process is shown in Fig. 2.2 – the
parts of the text bounded by the top curve with the T character represent individual
tokens (as mentioned before, the dot character is also a separate token),

The rentable space is either a hotel bedroom or a meeting room .

T T T T T T T T T T T T T

Figure 2.2: Result of tokenization process.

� sentence segmentation – based on the tokenization, tokens are clustered into sen-
tences,

� part-of-speech tagging – annotates every token with the part-of-speech (POS) tag
– such as a noun (NN), an adjective (JJ), a verb (VB), 3rd person singular present

verb (VBZ), etc.; in our examples, we use Penn Treebank part-of-speech tagset [121]
that is adapted in multiple NLP frameworks mentioned below; an example result of
this process is shown in Fig. 2.3,

The rentable space is either a hotel bedroom or a meeting room .

DT JJ NN VBZ CC DT NN NN CC DT NN NN .

Figure 2.3: Result of part-of-speech tagging.

� lemmatization – a process of generation base forms (lemmas) for every token,

12

2.2. Natural Language Processing

� dependencies recognition – searches for relationships between words (nominal
subject(s) of a verb, dependency object(s) of a verb, etc.) based on the grammatical
structure of a sentence,

� coreferencies recognition – represents a search for words which pronouns refer to.

As an example of NLP frameworks, from our experience, we can mention Stanford CoreNLP
framework written in Java or spaCy and NLTK frameworks written in Python. One can
find other frameworks in [69] and [100].

2.2.1 Natural Language Processing Approaches

In [75] and [74], Kof categorized NLP approaches into three groups as follows.

� The first is related to lexical methods – methods that do not rely on basic NLP
approaches such as part-of-speech tagging or other parsing. These methods per-
ceive text as a sequence of characters and look for terms (subsequences) that occur
repetitively.

� Syntactical methods typify the second group. These methods use part-of-speech
tagging and look for specific sentence constructions. Based on this, they are able to
distinguish objects and relationships.

� The last group represents semantic methods – methods that interpret each sentence
as a logical formula or a partial model. The goal is then to look for predefined
patterns or structures.

Moreover, semantic methods should be supported by predefined patterns or structures
created by humans or via machine learning [120].

2.2.2 Natural Language Processing for Requirements Engineering

As introduced in Chapter 1, Natural Language Processing for Requirements Engineering
(NLP4RE) is an area of research and development that seeks to apply natural language pro-
cessing (NLP) techniques (e.g., part-of-speech tagging), tools (e.g., NLP frameworks such
as spaCy, NLTK, or Standford NLP), and resources (e.g., ontologies such as dictionaries
and corpus [18]) to the requirements engineering (RE) process. [131]

Applying NLP techniques to analyze market news or posts about elections on social
media could benefit from the pre-trained models for a specific domain with more or less
expected dictionary. Applying NLP techniques to requirements engineering documents
is more challenging because, in this case, NLP techniques should be open to multiple
domains – medicine, finance, law, etc. Therefore, we see the usage of online ontologies
(such as dictionaries) as a crucial discipline here.

13

2. Research Domain

NLP4RE is also a series of research workshops1 organized as a part of the REFSQ
conference. A mapping study of NLP4RE research area is provided in [131].

2.3 UML Class Diagram Generation

A (graphically represented) model can be considered as an interpretation of the require-
ments. It is common practice that the model precedes the system implementation. So, it
becomes an intermediary artifact between the software analysis and the software imple-
mentation. Moreover, high-level graphical visualization of a model can be helpful when
analysts clarify the requirements understanding with stakeholders even if the stakeholders
do not know the details of the process used to create the model or the full expressiveness
of the model.

As we describe in the next chapter (Chapter 3 – Overview of Our Approach), we
process textual requirements and generate a model from them. The model we use benefits
from UML class diagram concepts. Additionally, we are able to generate the UML class
diagram from our model. Therefore, we present concepts of the UML class diagram we
use in the next section. The UML class diagram generation is regularly considered in the
NLP4RE research area as presented in the survey [1]. An overview of tools and techniques
of UML diagram generation since the first attempts in the early 1980s is presented in [12].
The authors focused on the differences between manual, semi-automatic, and automatic
processing of the tools.

The UML is an abbreviation of Unified Modeling Language – the language designed for
visual modeling (primarily of object-oriented software systems). The UML was accepted
in 1997 by OMG2 as the first open, industry standard object-oriented visual modeling
language. The current latest version of UML specification is 2.5.1, published in 2017. The
UML specification in version 2.4.1 is proposed as standard ISO/IEC 19505 [70]. These
days, the UML is de facto standard No. 1 in the software development life cycle, and it is
widely supported by CASE tools.

The adjective unified refers to various diagrams throughout the entire development
cycle, independent of an application domain, a platform, and a programming language.
That is why many software design patterns are expressed using the UML [6].

There is also a development approach called Model-Driven Development (MDD) that
is based on generating prototypes from the models – users can quickly get an idea of the
system being developed.

Although, as mentioned, the UML provides various diagrams, we primarily focus on
the UML class diagram in the following chapters because the UML class diagram is the
most beneficial structure for us.

1https://nlp4re.github.io/2023
2The Object Management Group – international not-for-profit technology standards consortium, foun-

ded in 1989 [90].

14

https://nlp4re.github.io/2023

2.3. UML Class Diagram Generation

2.3.1 UML Class Diagram

The UML diagrams are divided into categories. The UML class diagram is part of the
structure diagrams category [91]. As the name suggests, the UML class diagram deals with
units called classes. One of the key concepts of this diagram type is to map relationships
between classes.

It is not our goal to provide a summary of all supported concepts of the UML class
diagram here. The notation is fully described in the specification [91], and practical ex-
amples can be found in [6]. Here, we just want to recall the concepts that are useful for
our approach so we can reference them when we talk about (UML) model generation.

Figure 2.4: Class diagram example of hotel management system.

2.3.1.1 Concept of Classes

According to [101], a class is a descriptor for a set of objects with similar structure,
behavior, and relationships.

The example diagram in Fig. 2.4 describes a simple model (very far from the real
design) that contains four classes representing a building, a hotel, an award, and a group
of hotels. For our purposes, we limit the class notation to the class name (e.g., building),
a set of attributes (e.g., area (it could be defined in square meters) of a building), and a
set of operations (e.g., make a reservation in a hotel).

Every class should have some attributes. A class without attributes is suspicious of
incompleteness (as we describe in Chapter 5) – some part of the description of such a class
is probably missing.

15

2. Research Domain

2.3.1.2 Concept of Relationships

Relationships are semantic connections between UML elements. The basic relationship
between classes is called an association [6]. The association, among other properties,
should have a name (should be a verb phrase) representing the semantic meaning of the
connection between associated classes. For our purposes of the generated model check, it
is also important to note that the association can have multiplicity stated for both classes
that are part of the association.

There are many other relationship variants in UML, and some of them also distinguish
small semantic details. For our purposes, let us recall the graphical notation of the following
relationships:

� basic association – with a name and multiplicities; the name can have a navigation
arrow to specify the direction in which the association name should be read; also,
unidirectional associations can have a single arrow on one of the sides to determine
which class will hold the reference – in the example in Fig. 2.5, Class A holds the

reference to Class B , but not vice versa,

Figure 2.5: Class diagram – association example.

� generalization relationship – represents a concept called inheritance – in the sense
“it is a kind of”; following the example in Fig. 2.6, Class A represent a specializa-

tion of Class B and Class B represent a generalization of Class A ,

Figure 2.6: Class diagram – generalization example.

� aggregation – represents a more semantic detail in comparison to the basic associ-
ation; aggregation is a whole-part relationship where the whole (the aggregate) uses
services of the part(s) in the sense that the whole represents the controlling part of
the relationship and the part(s) service requests of the whole; the key point here is
that the part(s) may exist without the whole,

16

2.3. UML Class Diagram Generation

Figure 2.7: Class diagram – aggregation example.

� composition – is an “stronger” alternative to aggregation where the part(s) cannot
exist without the whole, and the whole has sole responsibility for managing its parts.

Figure 2.8: Class diagram – composition example.

The example diagram in Fig. 2.4 contains three relationships. The first one (generalization)
between the Building class and the Hotel class means that every hotel is also a building.

Therefore, every Hotel class also has the area property inherited from the Building

class.
The second relationship is an example of aggregation, and in this context, it means that

a hotel could be part of some business group of hotels. However, single hotels can still exist
without the need to be a part of any group.

The relationship between the Award class and the Hotel class is the bidirectional
association. The same award can be assigned to multiple hotels, and one hotel can be
awarded by multiple awards.

2.3.2 Serialization Formats

The exchange of UML models between different applications is possible via serialization
in XMI – the XML metadata interchange format. The XMI format is a standard of the
Object Management Group [92].

Java projects can benefit from Eclipse Modeling Framework (EMF), which includes a
custom meta-model called Ecore for describing models. EMF uses serialization in XMI,
too. [53]

We use these two options as the output of our UML class diagram generation, as
presented in Chapter 9 (Created Artifact and Models Generation).

17

Chapter 3

Overview of Our Approach

This chapter reflects our publications:

� Šenkýř, D.; Suchánek M.; Kroha, P.; Mannaert, H.; Pergl, R. Expanding Nor-
malized Systems from textual domain descriptions using TEMOS. In: Journal of
Intelligent Information Systems. Springer, 2022. [A.2]

� Šenkýř, D. SHACL Shapes Generation from Textual Documents. In: Enterprise
and Organizational Modeling and Simulation. Springer, Cham, 2019. [A.7]

� Šenkýř, D.; Kroha, P. Patterns in Textual Requirements Specification. In: Pro-
ceedings of the 13th International Conference on Software Technologies. SciTe-
Press, Madeira, 2018. [A.10]

19

3. Overview of Our Approach

In this chapter, we discuss the text processing methods that we use when solving all
presented problems described separately in the following chapters. Next, we define our
internal model that represents the parsed text of requirements. Finally, we discuss our
evaluation approach.

3.1 Main Algorithm

First, we introduce our approach in the very abstract steps in Algorithm 3.1. At the
beginning, we have textual requirements representing functional requirements specification
document – let us look at it as the input to the algorithm. The goal is to transform the
text into a domain model representation and to generate warnings and questions for users
– let us look at it as the output of the algorithm.

The input text is processed by the text mining process pipeline. Once this step is
complete, we use a method of grammatical inspection and our defined patterns to extract
a domain model representation. Using the grammatical inspection of individual sentences
and a generated domain model, we can warn the users about suspicious requirements
formulations.

Algorithm 3.1: Our approach – main algorithm.Algorithm 3.1: Our approach – main algorithm.

1. text mining process pipeline
2. grammatical inspection
3. domain model extraction
4. model and text requirements processing and warnings/questions generation

In this chapter, we present an overview of the first three steps of Algorithm 3.1 because
they are more or less shared concerning all the problems we investigate. The fourth step
is specific for each problem (ambiguity, incompleteness, and inconsistency) detection sep-
arately. According to the categorization of NLP approaches in Section 2.2.1, we combine
both syntactic (text mining process pipeline) and semantic (domain model extraction and
model quality processing) methods.

After the fourth step, the stakeholders could update the text of requirements, and
the process represented by Algorithm 3.1 could be repeated. We discuss this approach
regarding text quality improvements in Chapter 8.

3.2 Text Mining Process Pipeline

Let us consider the whole input text as a collection of sentences. A sentence is a couple
S = (T,D) where T is an ordered set of tokens ti and D is a set of dependencies. This
structure is created using a quite typical pipeline (already introduced in Section 2.2) of the
text mining process that includes these phases:

20

3.2. Text Mining Process Pipeline

tokenization identifies tokens ti where a token is a word or interpunction,

sentence segmentation composes the sentence S based on the tokens representing
interpunction,

part-of-speech tagging resolves the part-of-speech tag (e.g., VBZ – 3rd person singular

present verb) and part-of-speech tag category (e.g., VERB) of
each token ti,

lemmatization identifies the word’s lemma (sometimes also called dictionary
form),

dependency recognition constructs setD, where the dependencies, i.e., relations between
tokens, are mapped,

co-reference recognition links tokens represented by a pronoun to their original referent
(a person or thing typically represented by a (proper) noun).

We will record a serial number and a display size of each television.
PRN AUX VB DT ADJ NN CC DT NN NN ADP DT NN

prepccaux compoundamod det
nsubj det det pobj

dobj conj

Figure 3.1: Example of an annotated sentence.

A result of this pipeline is the annotated original text of requirements that we use as a
source for the method of grammatical inspection. An example of the annotated sentence
is in Fig. 3.1. For our purpose, each token ti has the following properties:

text the original text of the token presented in a sentence,

lemma a base (dictionary) form of the token text,

part-of-speech tag an assigned part-of-speech tag including details such as tense,
singular/plural form indication, 3rd person indication, etc.; one
can find a list of tags in [121],

part-of-speech category an assigned part-of-speech category that groups multiple tags
into one category, e.g., different kinds of verbs (VB , VBZ , or

VBD) into one category called VERB ; one can find a list of
categories in [125],

co-reference link optional co-reference link to another token.

A dependency dj is an asymmetric binary relation between two different tokens t1 and
t2 having a type such as nominal subject, direct object, etc. In our examples, we use types

21

3. Overview of Our Approach

provided by spaCy trained models for English1. It is a subset of Universal Dependency
Relations for English [124].

To shortly discuss the structure of the example in Fig. 3.1, as humans we identify
a subject (we), a predicate (to record), and two direct objects2 (a serial number and a
display size) here. The situation in the annotated sentence structure by NLP framework
(in this case by spaCy NLP framework) is similar; however, it is not the same. There
are 14 tokens, including the last token representing a dot. We can see that the verb (to
record) – representing the predicate of the sentence – is the third token having the VB

part-of-speech tag. There is a nominal subject dependency type (nsubj) connected to

the mentioned verb – the subject of the sentence is represented by the first token (we),
which is a pronoun as suggested by the PRN part-of-speech tag. However, direct object

recognition needs to be custom handled. There is a direct object dependency type (dobj)

referencing the sixth token (number), which is a noun as suggested by the NN part-of-
speech tag. However, there is no second direct object dependency type. To find the second
direct object, we need to navigate from the first direct object to the token connected via
the conjunct dependency type (conj). Also, we need to expand other dependencies to

get the full direct object text. Here, custom sentence patterns recognizing the sentence
structure could be helpful.

In the next step of our algorithm, we use the method of grammatical inspection im-
proved by our sentence patterns to process such annotated structures as the one in Fig. 3.1.

3.3 The Method of Grammatical Inspection

The method of grammatical inspection is based on the idea that the grammatical role of
words (mapped to tokens) in a sentence of a requirement, i.e., subject, object, etc., indicates
a representation of the requirement parts in a domain model. For example, both the subject
and the object are candidates for an entity (a class – for our purpose, these two terms are
interchangeable) or an attribute in a domain model.

On behalf of the method of grammatical inspection, we define sentence patterns fol-
lowing [99]. These patterns use the grammatical structure (primarily part-of-speech tags
and dependencies). The whole text is checked against our collection of patterns, sentence
by sentence. The extracted parts matching one of our patterns are stored in our internal
model. Before we present the concrete patterns, we will first show the structure of our
internal model to illustrate how we map the extracted parts of the text.

Although some approaches use machine learning techniques for the classification of
requirements (e.g., functional vs. non-functional requirements) [130], for the purpose of
model extraction and the subsequent semantic analysis, we use the approach of defining
sentence patterns. One of the reasons is the lack of missing data for machine learning

1https://spacy.io/models/en
2Multiple direct objects are called compound direct objects.

22

https://spacy.io/models/en

3.4. Internal Model (Manager)

model training because software requirements specifications are typically held as a private
property of software companies.

3.4 Internal Model (Manager)

In the end, the information that we would like to extract from the requirements is a
collection of entities (classes), their attributes, and relations between the entities. Thus,
the goal is to transform the syntactic analysis performed on a text of the requirements into
a semantic form – a domain model.

The output of our text mining process is an internal preliminary model represented by
a quadruple M = (E,G,R, S) where

� E is a set of elements,

� G is a set of element groups,

� R is a set of relationships, and

� S is a set of statements.

Each element e ∈ E has the following properties:

root lemma the lemma form of the main word (token) representing element, e.g.,
room if we have element representing hotel room,

full lemma the lemma form of the whole element, e.g., hotel room,

candidate type indicates whether the element should be modeled as an entity or as
an attribute or if it represents a value of some attribute,

is unique a flag indicating whether the requirements state that the element
values are unique or not.

Each element group g ∈ G clusters elements having the same root lemma; therefore, each
element e ∈ E is a part of exactly one element group g.

Each relationship r ∈ R is a binary relation linking two elements ek, el ∈ E. Typically,
k ̸= l; however, for recursive relationship, ek could equals el. Each relationship r ∈ R has
the following properties:

source element occurrence representing ek ∈ E; typically a subject,

target element occurrence representing el ∈ E; typically an object,

predicate the relationship name (represented by a verb),

23

3. Overview of Our Approach

is predicate negated a flag indicating if the predicate is negated or not,

type an optional value that indicates if a relationship represents
a special relation, e.g., attribute ownership or generaliza-
tion.

Element occurrence wraps an element and required properties for a relationship. The list
of properties is as follows:

element a reference to element e,

multiplicity exactly one (1), zero or one (0..1), zero to many (0..*), one

to many (1..*), or a custom range,

is multiplicity strict in some requirements, the multiplicity is explicitly mentioned; in
some requirements, the multiplicity could be derived from the
plural or singular nouns; in mentioned cases, this flag is set to
true ; in the rest cases, the default multiplicity zero to many is

used, and this flag is set to false ,

quantifier each, none, etc.

Finally, a statement s ∈ S represents an expression about an element e ∈ E when this
expression is not representable by a relationship – there is not present the second element.
In some cases, the missing second element could represent a user or a system in general.
For example, “A document can’t be edited.” Each statement s ∈ S has the following
properties:

element representing e ∈ E,

quantifier each, none, etc.,

predicate the statement name (represented by a verb),

is predicate negated a flag indicating if the predicate is negated or not.

3.4.1 Internal Model (Manager) Constraints

The goal of the internal model (manager) is to store the extracted information and to
provide constraints such as:

� text fragments representing the same semantic part of the model (e.g., hotel room)
are stored as only one element e,

� text fragments listed in a configurable blacklist are not processed,

24

3.5. Suitable Patterns

� elements marked as entity candidates (i.e., because we already found this semantic
indicator in the previous text parts) can not be changed to attribute candidates; the
opposite change from attribute candidate to entity candidate is fully legit because
we can find that original attribute candidate has custom attributes or other entity
symptoms in the different parts of the text.

Moreover, for selected problems detection, we use custom clustering based on selected
parts of the model M . Details are provided in the corresponding chapters where such an
approach is used.

The blacklist of text fragments excludes such parts from storing them in the model. The
typical reason is that the meaning of these text fragments is too general. For example, we do
not want some introductory sentence like “This document describes requirements of. . . ”
to generate entities document and requirement, and connect them via the relationship
describe. On the other hand, in the requirements describing a document management
system, the word document will represent one of the key entities. Because such exclusion
is highly context-dependent, we leave the blacklist configurable. The default blacklist has
been created manually by our previous experience with requirements processing.

3.5 Suitable Patterns

Now, we know the target structure that is the output of the grammatical inspection method,
so we can present the concrete suitable patterns that we use to create and populate the
internal model.

We divide this section into sub-sections representing specific text structure recognition.
It is not our goal to present all the patterns we use here; we present illustrative examples.

3.5.1 Triplet Recognition

The basic semantic information of sentences is hidden in triplets. In our case, a triplet
consists of a subject, a predicate, and an object, similar to the Resource Description
Framework (RDF). Such triplet is represented by a relationship with a source element and
a target element in our defined model M .

NOUN VERB NOUN

NN VB|AUX NN
dobj (1..*)nsubj (1..*)

Figure 3.2: Basic triplet pattern.

In Fig. 3.2, there is an example structure of the annotated text segment that corresponds
to a triplet recognition pattern. The predicate is represented by a verb (the part-of-speech
tag property of a token is VB) or by an auxiliary (for example, when we consider the verb

to be; the part-of-speech tag property of a token is AUX). Next, there are two already

introduced dependency types. The first one is annotated as nsubj , and the target token

25

3. Overview of Our Approach

represents the subject in our triplet. The second one is annotated as dobj , and the target

token represents the object in our triplet.

When such a pattern is matched, we can identify:

� entity candidate element e1 represented by the nominal subject part of a sentence,

� entity candidate element e2 represented by the dependency object part of a sentence,
and

� relationship r where the predicate (name) of the relation is represented by the lemma
of the verb token.

We can notice that the dependency type label includes the 1..* part. It represents a
multiplicity of the dependency type. We require at least one subject and one object. In
any case, there can be more subjects or objects. In such cases, we generate more triplets
with the same predicate.

The second level of multiplicity is directly represented by the concrete subject or object.
We need to distinguish between sentences “the business group owns a hotel” and “the
business group owns hotels.” This information is a part of the part-of-speech tag where
NN represents a singular noun and NNS represents a plural noun. Anyway, this is not
enough, and we need to consider other linguistic expressions of plurality, e.g., “the business
group could own more than one hotel” or “the business group owns at least one hotel”.

Because this pattern is too general, it is wise to use it as the last one when other
patterns considering more specific structures are not matched.

3.5.2 Triplet Recognition – Challenges

The pattern presented in Fig. 3.2 reflects the basic sentence structure. However, usually,
the situation is not that simple. We need to face the challenges in the form of passive
voice, modificators in the form of prepositions, indirect subjects, etc.

In Fig. 3.3, there is an example of a passive voice sentence. We are now curious
about the nsubjpass dependency type instead of the nsubj dependency type used in

the active voice. We can note that we also miss the direct dobj dependency type. This

time, there is the pobj dependency type that presents an object of a preposition. Also,

our object (the word guest) is not directly connected to the predicate (the verb place (the
lemma form)), so we need to check another dependency type called agent .

A booking is placed by a guest.
DT NN AUX VB ADP DT NN

detdet auxpass agent
pobjnsubjpass

Figure 3.3: Example of the passive voice #1.

26

3.5. Suitable Patterns

When we match this pattern, we consider the information as a triplet transformed into
an active voice. In the case of the example in Fig. 3.3, the result triplet is ⟨guest, place,
booking⟩.

A similar situation occurs when the agent dependency type is replaced by the prep

dependency type. The example is shown in Fig. 3.4. This time, we expect the triplet
⟨room, relate (to), booking⟩.

A booking is related to a room.
DT NN AUX VB ADP DT NN

detdet auxpass prep
pobjnsubjpass

Figure 3.4: Example of the passive voice #2.

To make it easier, in the examples of triplets recognition, we present the root token
(word) representing entity or attribute candidates. However, as defined in our internal
model structure in Section 3.4, we also recognize the full lemma. The entity or attribute
name is often a composition of multiple nouns, a noun and an adjective, or both. This
situation can be recognized by patterns checking the compound dependency type and the

amod (adjectival modifier) dependency type. Both representatives are present in Fig. 3.1:
the serial number (adjective + noun) and the display size (compound nouns).

3.5.3 Attributes Recognition

In this category, we present three illustrative representatives.

3.5.3.1 Attributes Recognition Pattern – To Have

In Fig. 3.5, there is an attribute(s) mapping using the verb have. In this case, the
root triplet of the sentence is ⟨user, has, username⟩. The subject (user) and the object
(username) are mapped to elements in our internal model. The user is mapped as an entity
candidate e1 and the username is mapped as an attribute candidate e2.

Each user has a unique username.
DT NN VBZ DT ADJ NN

nsubjdet amod
det

dobj

Figure 3.5: Example of a sentence with attribute candidate and the verb have.

Furthermore, we can see that the username token targets the unique token via the
amod (adjectival modifier) dependency type. Therefore, we can set the is unique property
of e2 to true .

Next, we can see the user token targets the each token via the det (determiner)
dependency type. Therefore, we can set the quantifier property of the element occurrence
representing the e1 in a corresponding relationship. A note – in our model, we still map the

27

3. Overview of Our Approach

relationships between an entity candidate and the potential attribute candidates because
any attribute candidate could be changed into an entity candidate during further analysis
of the text (as discussed in Section 3.4.1). The second reason is that we can benefit from
the mapped properties of the relationship. When the model is serialized, for example,
into a UML class diagram, we use the standard notation of a class and attributes and the
relationship is not present in the serialized diagram.

You can see that the sentence structure also conforms to the previously shown pattern
regarding the general triplet. So, we need to check the lemma of the verb first to prioritize
the attribute pattern over the general triplet pattern.

3.5.3.2 Attributes Recognition Pattern – Of

Let us recall the example of the annotated sentence from Section 3.2 in Fig. 3.6 as another
example of the attributes recognition pattern. This time, the attribute indication hint
comes from the preposition of (the part-of-speech tag property of the corresponding token
is ADP – it means adposition3). Following the already presented triplet recognition pattern,
we found a subject (the pronoun we), predicate (the verb record) and two objects (in their
full form – number and display size – using the compound dependency type). The second

object has an outgoing dependency with the prep (prepositional modifier) dependency

type targeting the preposition of. Following this preposition, we can find the television
token using the pobj dependency type that represents an object of a preposition.

We will record a serial number and a display size of each television.
PRN AUX VB DT ADJ NN CC DT NN NN ADP DT NN

prepccaux compoundamod det
nsubj det det pobj

dobj conj

Figure 3.6: Example of a sentence with attribute candidates.

To summarize the pattern matching – the object of preposition (the television token) is
an entity candidate element e1, and the original triplet objects (number and display size)
are attribute candidate elements e2 and e3. Because e2 and e3 are considered attributes,
we create two relationships:

� r1 connecting e1 and e2 with the substituted predicate to have and

� r2 connecting e1 and e3 with the substituted predicate to have.

We do not consider the combination of the original triplet subject (the personal pronoun
we) and predicate (the verb to record) semantically rich; therefore, we do not include them
in the model. Such combinations are part of the blacklist presented in Section 3.4.1. In
addition to the verb to record, we can also consider the verbs to register, to keep, or to
write down.

3Adposition is a cover term for prepositions and postpositions.

28

3.5. Suitable Patterns

3.5.3.3 Attributes Recognition Pattern – Indirect Subject

As mentioned in the triplet recognition challenges, we need to take into account indirect
subjects, too. Such a case is shown in Fig. 3.7. In this example sentence, we once again skip
the combination of the original triplet subject (the personal pronoun we) and predicate
(the verb to keep) because it is not semantically rich for us as discussed in the previous
paragraph.

We would like to extract triplets in the form ⟨booking, have, start date⟩ – with the
substituted predicate to have – and variants for other attributes (end date and price).
This sentence structure can be matched by a pattern detecting the prep (preposition)

dependency type of the original triplet predicate. When the preposition is matched, the
second step is to match the expected entity candidate (in our case – booking) using the
pobj (object of a preposition) dependency type.

For a booking, we keep start date, end date, and total price.
ADP DT NN PRN VB NN NN NN NN CC ADJ NN

nsubj compounddet compound amod
pobj conjdobj cc

conjprep

Figure 3.7: Example of a sentence with an indirect subject.

3.5.4 Hierarchy Recognition

In the UML class diagram, we can model the generalization relationship representing
a concept of inheritance as recalled in Section 2.3.1.2. In further model processing, we
can benefit from mapping entity hierarchy using the recognition of inheritance in the text.

In Fig. 3.8, there is an example sentence representing the hierarchy of entities. The
hierarchy recognition pattern comes from the verb that has to be a form of the verb
to be. Next, the pattern checks the nsubj (nominal subject) dependency type targeting

element e1, and there has to be the attr (attribute) dependency type instead of the

dobj (direct object) dependency type targeting element e2. Both e1 and e2 are mapped

as entity candidate elements – e1 represents the base entity and e2 represent the sub-entity.
There should be more than one sub-entity. We can find the other candidates via the conj

(conjunct) dependency type, as already illustrated.

A room can be a family apartment or a standard room.

DT NN AUX AUX DT NN NN CC DT ADJ NN
det aux cc amodcompound

nsubj detdet
attr conj

Figure 3.8: Example of a sentence representing hierarchy of entities.

In the words of triplets, we can identify two triplets here: ⟨family apartment, is, room⟩
and ⟨standard room, is, room⟩. When processing or serializing the internal model, such
relationships could be interpreted as a concept of inheritance.

29

3. Overview of Our Approach

3.5.4.1 Hierarchy Recognition – Challenges

The verb to be is so common; therefore, we introduce a check of element type candidates.
Let us consider a similar example sentence (in Fig. 3.9) to the one discussed in the previous
paragraphs – “A status of each user can be online, offline, or away.” This time, the nsubj

dependency type targets the status token that is (because of the attribute recognition
pattern with the preposition of) an attribute element candidate e1. Thus, the online,
offline, and away tokens are recognized as value-type elements connected with e1.

A status of each user can be online, offline, or away.

DT NN ADP DT NN AUX AUX ADJ ADJ CC ADV
auxdet prep det acomp ccconj

pobj conj
nsubj

Figure 3.9: Example of a sentence representing attribute values recognition.

3.6 Evaluation

In the following chapters, we discuss our approach to each problem defined in the goals of
this thesis. To evaluate our proposed methods, we define a data set in the next section.
Moreover, as proposed in Section 1.4.1 (Research Approach), we iteratively implement
selected methods to extend our created software artifact – system TEMOS. Therefore, we
introduce the general pipeline of our system TEMOS in this section, too.

3.6.1 Data Set

In this section, we describe the structure of the used data set. This same data set is
then used across all chapters where we evaluate the methods over a collection of different
documents. We have collected textual requirements from four different sources:

� a set of requirements from the PUblic REquirements (PURE) dataset [39] (prefixed
with uppercase P in the evaluation tables),

� a set of requirements collected by Hayes et al. [56] (prefixed with uppercase H in the
evaluation tables),

� a set of requirements provided by [24] (prefixed with lowercase g in the evaluation
tables),

� a custom collection of requirements found in the Internet (prefixed with uppercase
C in the evaluation tables).

From the existing data sets, we select such requirements that satisfy a domain description
(for example, we have excluded the specifications describing the physical signals). We
preserve the original file of the requirements (TXT , PDF , RTF , DOC , or HTML) and

30

3.6. Evaluation

add a plain text conversion. We have converted other formats into TXT text files and
improved the converted text – fixing UTF-8 formatting, removing page headers and footers,
fixing broken list numbering (e.g., due to interruption by an image or another page in the
original document), and fixing whitespace formatting (e.g., unnecessary double spaces or
whitespace characters at the end of the line). Moreover, we have converted selected original
files to the Markdown syntax (including a manual fix of headers and lists), too.

Additionally, for some of the requirements files where it was recognizable, we have
extracted part of functional requirements or functional specification relevant parts. We
have published this data set using the Zenodo open repository – it is available via DOI
identifier (10.5281/zenodo.7897601) [A.11].

For an idea of the complexity of the texts, we provide basic statistics. In Table 3.1,
we describe each input data text with the number of sentences, the number of words, the
average number of words per sentence, and two indices of readability – the automated
readability index (ARI) and the Gunning fog index (GFI) – that we obtained using the
Free Text Complexity Analyzer online tool4. One can find details about readability indices,
e.g., in [126].

4https://www.lumoslearning.com/llwp/free-text-complexity-analysis.html

31

10.5281/zenodo.7897601
https://www.lumoslearning.com/llwp/free-text-complexity-analysis.html

3
.

O
v
e
r
v
ie
w

o
f
O
u
r
A
p
p
r
o
a
c
h

Table 3.1: Data set statistics.

Case Words Sentences WpS ARI GFI

g02-federalspending 2,089 98 21.32 8.4 12.3
g03-loudoun 1,579 57 27.70 14.2 15.0
g04-recycling 1,287 51 25.24 10.1 14.2
g05-openspending 1,640 53 30.94 12.6 11.0

g08-frictionless 1,746 66 26.45 11.8 14.8
g10-scrumalliance 2,571 99 25.97 9.9 9.2
g11-nsf 1,749 73 23.96 9.0 13.6
g12-camperplus 1,397 53 26.36 10.5 9.7

g13-planningpoker 1,457 53 27.49 10.4 10.6
g14-datahub 1,841 67 27.48 11.0 10.0
g16-mis 1,536 67 22.93 12.1 12.9
g17-cask 1,627 64 25.42 11.4 16.8

g18-neurohub 2,200 101 21.78 9.4 13.5
g19-alfred 2,441 138 17.69 7.2 10.3
g21-badcamp 1,889 70 26.99 12.1 15.3
g22-rdadmp 2,246 83 27.06 12.4 16.5

g23-archivesspace 875 56 15.63 7.6 10.2
g24-unibath 1,464 52 28.15 13.8 17.8
g25-duraspace 2,015 100 20.15 9.5 16.2
g26-racdam 2,122 100 21.22 9.9 15.1

g27-culrepo 3,316 120 27.63 13.8 17.3
g28-zooniverse 1,060 60 17.67 9.2 12.6
P01. Blit 535 48 11.15 5.0 7.9
P02. CS179G – ABC Paint Project 1,199 66 18.17 8.0 10.4

P03. eProcurement 1,683 90 18.70 11.4 12.3
P04. Grid 3D 196 11 17.82 4.9 7.0
P05. Home 1.3 1,121 87 12.89 6.4 10.0
P06. Integrated Library System 1,974 79 27.80 8.3 9.2

32

3.6.
E
valu

ation
Case Words Sentences WpS ARI GFI

P07. Inventory 4,657 500 9.31 3.5 8.5
P08. KeePass Password Safe 466 36 12.94 4.2 7.9
P09. Mashbot 619 26 23.81 8.8 11.6
P10. MultiMahjong 1,759 88 19.99 9.3 9.0

P11. Nenios 944 82 11.51 6.6 8.3
P12. Pontis 5.0 Bridge Management System 4,395 221 19.89 11.5 13.5
P13. Public Health Information Network 2,988 110 27.16 17.4 16.9
P14. Publications Management System 2,546 61 41.74 9.1 6.9

P15. Puget Sound Enhancements 2,046 93 22.00 7.0 9.0
P16. Tactical Control System 5,855 296 19.78 7.5 10.9
P17. Tarrant County Integrated Justice Information System 1,763 134 13.16 13.1 11.7
P18. X-38 Fault Tolerant System Services 5,455 358 15.24 12.5 14.7

H01. CCHIT 2,430 112 21.70 12.7 13.8
H02. CM1 514 30 17.13 10.2 12.7
H03. InfusionPump 2,956 249 11.87 10.4 12.2
H04. Waterloo 11,810 664 17.79 9.0 10.8

C01. Amazing Lunch Indicator 3,241 93 34.85 5.4 8.7
C02. EU Rent 492 43 11.44 4.1 7.8
C03. FDP Expanded Clearinghouse Pilot 464 39 11.90 9.9 10.5
C04. Library System 1,779 128 13.90 6.1 10.7

C05. Nodes Portal Toolkit 2,239 153 14.63 7.8 8.8
C06. Online National Election Voting 3,240 264 12.27 6.1 5.6
C07. Restaurant Menu & Ordering System 896 46 19.48 7.9 11.6

Legend: WpS – average number of words per sentence, ARI – Automated Readability Index, GFI – Gunning Fog Index

33

3. Overview of Our Approach

3.6.2 Textual Modeling System (TEMOS)

In the schema in Fig. 3.10, we present the general pipeline of our approach according to
the defined Algorithm 3.1. This time, we also show the integration of our tool TEMOS. We
introduce details about TEMOS in Chapter 9 (Created Artifact and Models Generation).
However, as proposed in Section 1.4.1 (Research Approach), we iteratively implement
selected methods to extend TEMOS; therefore, we briefly describe the pipeline here so we
can refer to it.

First, we use the NLP framework pipeline as described in Section 3.2. The created
annotated text is then processed using our defined patterns (Section 3.5) – displayed as
the core analyzer in the scheme. Based on that, the internal model is created (Section 3.4).
Next, each researched problem is supported by a custom analyzer. This is the part in the
bottom right corner of the schema that is iteratively extended in the following chapters.
Finally, analyzers and the created internal model produce models to export (e.g., UML
class diagram) and generate warnings and questions regarding text issues.

Figure 3.10: TEMOS pipeline.

34

Chapter 4

Problem of Ambiguity in Textual
Requirements Specification

This chapter reflects our publications:

� Šenkýř, D.; Kroha, P. Patterns of Ambiguity in Textual Requirements Specific-
ation. In: New Knowledge in Information Systems and Technologies. Springer,
Cham, 2019. [A.9]

� Šenkýř, D.; Kroha, P. Patterns in Textual Requirements Specification. In: Pro-
ceedings of the 13th International Conference on Software Technologies. SciTe-
Press, Madeira, 2018. [A.10]

35

4. Problem of Ambiguity in Textual Requirements Specification

In this chapter, we investigate the ambiguity problem in textual requirements specifications.
We applied the structural ambiguity approach and extracted some patterns to indicate this
kind of ambiguity. We show that the standard linguistics methods are not enough in some
cases, and we describe a class of ambiguity caused by coreference that needs an underlying
domain model or a knowledge base to be solved. Part of our implemented solution includes
working with facts and rules acquired from OCL conditions of the domain model.

4.1 Motivation

Textual formulated requirements specifications are necessary as a base of communication
between the customer, the user, the domain expert, and the analyst. Unfortunately, any
text suffers from ambiguity, incompleteness, and inconsistency.

In this chapter, we focus on the problem of ambiguity that is caused by the phenomenon
that natural language is inherently ambiguous, i.e., one word can have multiple meanings
according to the context it is used. Requirements specifications have to be unambiguous
because, in general, any ambiguous requirement is not verifiable, and there is a risk that
programmers implement the meaning that was not intended by the specification. According
to IEEE standard [67], an SRS is unambiguous if, and only if, every requirement stated
therein has only one interpretation.

Information retrieval operates with a process called word sense disambiguation (WSD).
It has to determine the correct sense of the given word in the context it was used in the
text. Usually, this problem is solved by co-occurrence, i.e., the context is specified by
words occurring in the same text in some connection to the word whose ambiguity has to
be decided. The goal is to identify the unique meaning of each word.

Text mining operates with a more complex version of the ambiguity problem in text
documents that can be called sentence sense disambiguation. The goal is to identify the
unique meaning of each sentence.

In our tool TEMOS, we construct and maintain a glossary that defines and explains
the meaning of concepts (selected words) used in a textual requirements specification. The
word meaning is derived from the online dictionaries, and the glossary is discussed by the
customer, the user, the domain expert, and the analyst during the analysis of requirements.
Using a glossary of terms, we can check whether different terms are mistakenly used for
the same concept by checking synonyms in online semantic networks.

In this chapter, we explain why it is not enough for our purpose and how we solved
it. In common, the ambiguity of sentences is given by structural ambiguity that was
investigated by linguists. We have constructed the corresponding patterns and described
them in Section 4.3.

Practically, we found that in most cases, ambiguity is combined with the coreference
problem in textual requirement specifications. Coreference resolution has to find all ex-
pressions that refer to the same entity in a text. In textual requirements specification, it
often happens that a pronoun in a sentence refers to a specific noun from the previous

36

4.2. Problem Statement and Related Work

clause. If there is more than one noun as a possible candidate, it is to decide which is the
right one.

We propose a new method to solve the problem mentioned above because we have found
that the text layer used in computational linguistics is not strong enough for our purpose.
The roots of ambiguity in our investigated textual requirements specifications concern not
only the linguistic part of requirements but also the semantics of the underlying model, as
we show in Section 4.6.

4.2 Problem Statement and Related Work

The common ambiguity issues in various texts are discussed by linguists [79], [58], [2], [17].
We target the issue of ambiguity in textual requirements specification from two per-

spectives – the ambiguity of words (also called the lexical ambiguity) and the ambiguity of
sentences (also called the structural ambiguity or the syntactic ambiguity). We explain the
difference in the following subsections.

4.2.1 Ambiguity of Words

Natural languages are inherently ambiguous. Ambiguity arises whenever a word or an
expression can be interpreted in more than one way. If the expression is a single word, we
speak about word disambiguation to resolve it. The reason is that natural languages use:

� homonyms, i.e., words that are spelled alike but have different meanings,

� synonyms, i.e., different words that have the same meaning.

The user, the customer, and the domain expert understand the domain and know that
two or more different words have the same meaning (synonyms) or what homonym meaning
is the right one in the given context. However, the analyst does not know that in some
cases and can model them as unique entities. It happens that project teams are places in
different countries where different terminology has been used.

This word disambiguation we solved with the help of a glossary similar to the proposal
in [3]. Moreover, we support the glossary by thesaurus that is freely available on the
Internet. As a result, questions are generated by asking stakeholders whether they agree
with the equivalence found. Finally, the result is stored in the glossary again.

Wang et al. [128] presented a different approach via a ranking method to deal with the
problem of overloaded (it refers to different semantic meanings) and synonymous concepts
(several different concepts are used interchangeably to refer to the same semantic meaning).

4.2.2 Ambiguity of Sentences

The ambiguity of sentences is a more complex problem because the parsing structure of a
sentence is not unique in all cases, i.e., identical sentence text segments (composed from

37

4. Problem of Ambiguity in Textual Requirements Specification

the same words – even if these words would have unique meaning), can have a different
meaning that depends on their position in the parsing tree of the sentence.

This problem has been discussed in detail by computational linguists as the problem
of structural ambiguity, e.g., in [89]. The complete analysis is given, e.g., in [89] and [57],
and it is out of the scope of this chapter. Our contribution is that we have developed a set
of patterns that indicate possible ambiguities in textual requirements and, in some cases,
offer possible solutions. Actually, the semantics of the world is very complex, so we do not
think it is possible to solve the ambiguity problem automatically in all cases.

Some of the ambiguities can be indicated by tools of computational linguistics, as shown
in Section 4.3. Some others can not, and they are shown in Section 4.6.

4.3 Our Approach – Patterns of Structural Ambiguity

In this contribution, we focus on the ambiguity of sentences that should be solved by pat-
terns. The candidates for structural ambiguity patterns can be derived from the following
linguistic features: attachment ambiguity and analytical ambiguity [57].

Legend. Within the following examples of patterns, we reuse the presented approach of
grammatical inspection using part-of-speech and dependency tags as presented in Chapter 3.
In some cases, it is possible to have multiple part-of-speech tag candidates. We use the
pipe symbol (|) in these situations. This symbol means that a pattern is matched if
and only if exactly one part-of-speech tag from the defined candidates is present in the
grammatical sentence structure.

Often, the subjects and the objects are represented by a composition of several nouns.
Therefore, we introduce a shortened notation NN* , which means that at least one noun
is required, and there should also be more nouns composited via the compound relation
type.

In the following examples, we present a generated warning structure when the concrete
pattern is matched – it means that the sentence structure is suspicious from our point of
view. In the warning structure, we refer to the parts of the pattern. The referred part is
then replaced by an actual word from the investigated sentence.

4.3.1 Patterns of Attachment Ambiguity

Attachment ambiguity represents sentences with more than one node to which a particular
syntactic constituent can be attached [57]. The nature of the constituent is clear, but it is
not clear where to put it. Below, we attach selected examples with sample patterns that
help to reveal such ambiguity.

4.3.1.1 Pattern #1 (Prepositional Phrase Modifier)

A prepositional phrase may either modify a verb or an immediately preceding noun phrase,
e.g., “He saw the man with field glass.” The interpretation of the sentence can vary – “he

38

4.3. Our Approach – Patterns of Structural Ambiguity

saw the man using his field glass” or “he saw the man who has a field glass”. The pattern
matching such sentence structure is in the following Fig. 4.1.

"SEE"|"HEAR" NOUN1 "WITH" NOUN2

VB NN* IN NN*
prep pobjdobj

Figure 4.1: Pattern #1 (prepositional phrase modifier).

� Example of generated warning : Ambiguity – “ VERB NOUN1 via/using NOUN2 ” vs.

“ VERB NOUN1 that has/have NOUN2 ”.

4.3.1.2 Pattern #2 (Preposition Phrase)

A prepositional phrase may have more than one noun phrase available to attach it to [57],
e.g., “The door near to stairs with the ‘Members Only’ sign. . . ” The interpretation can
vary – “door with the ‘Members Only’ sign” or “stairs with the ‘Members Only’ sign”?
The pattern matching such sentence structure is in the following Fig. 4.2.

NOUN1 ADPOSITION ADPOSITION NOUN2 "WITH"
NN* IN IN NN* IN

prepadvmod pobjprep

Figure 4.2: Pattern #2 (preposition phrase).

� Example of generated warning : “with” – ambiguity between NOUN1 and NOUN2 .

4.3.1.3 Pattern #3 (Relative Clause)

A similar problem to the previous pattern can also occur with relative clauses. Relative
clauses may have a relation to more than one noun of the main clause [57], e.g., “The door
near to stairs that had the ‘Members Only’ sign. . . ”. The pattern matching such sentence
structure is in the following Fig. 4.3.

NOUN1 ADPOSITION ADPOSITION NOUN2 "THAT" VERB
NN* IN IN NN* JJ VB

nsubjadvmod pobjprep
relcl

Figure 4.3: Pattern #3 (relative clause).

� Example of generated warning : “that” – ambiguity between NOUN1 and NOUN2 .

39

4. Problem of Ambiguity in Textual Requirements Specification

4.3.1.4 Pattern #4 (Subsentence Attachment)

When a sentence contains a subsentence, both may include places for the attachment of
a prepositional phrase or adverb [57], e.g., “He said that she had done it yesterday.” The
interpretation can vary – “he said it yesterday” or “she had done it yesterday”? The
pattern matching such sentence structure is in the following Fig. 4.4.

PRONOUN|NOUN1 VERB PRONOUN|NOUN2 "THAT" VERB NOUN3

PRN|NN VB PRN|NN IN VB NN
npadvmodmarknsubj

nsubj
ccomp

Figure 4.4: Pattern #4 (subsentence attachment).

� Example of generated warning : NOUN3 – ambiguity between

“ PRONOUN|NOUN1 . . . ” and “ PRONOUN|NOUN2 . . . ”

4.3.1.5 Pattern #5 (Adverbial Position (1))

An adverbial placed between two clauses can be attached to the verb of either [57], e.g.,
“The lady you met now and then came to visit us.” The pattern matching such sentence
structure is in the following Fig. 4.5.

VERB "NOW" "AND" "THEN" VERB
VB RB CC RB VB

advmod advmod
cc

conj

Figure 4.5: Pattern #5 (adverbial position (1)).

� Example of generated warning : A possible “now and then” ambiguity – do you
mean “sometimes” or not?

4.3.1.6 Pattern #6 (Adverbial Position (2))

“A secretary can type quickly written reports” is an example of adverb placement ambiguity
[57]. The pattern of this example is a little bit complicated because of a bad annotated
word written as a verb instead of an adjective, as shown in the following parsing result in
Fig. 4.6.

40

4.3. Our Approach – Patterns of Structural Ambiguity

A secretary can type quickly written reports
DT NN VB VB RB VB NN

auxdet amodadvmod
nsubj dobj

Figure 4.6: Pattern #6 (adverbial position (2)) – example sentence.

However, when we replace the word written with handwritten, then the word hand-
written is correctly recognized as an adjective. Based on this observation, we have created
the corresponding pattern presented in Fig. 4.7.

VERB ADV VERB|ADJECTIVE NOUN
VB RB VB|JJ NN*

advmod amod
dobj

Figure 4.7: Pattern #6 (adverbial position (2)).

� Example of generated warning : Please consider a possible ambiguity of the adverb
ADV .

4.3.2 Patterns of Analytical Ambiguity

Analytical ambiguity represents sentences with more than one possible syntactic analysis,
and the nature of the constituent is itself in doubt [57]. It is also presented in the im-
plementation where the misrecognition of a part-of-speech tag is itself a sign of ambiguity
because the NLP pipeline is unsure of the choice.

4.3.2.1 Patterns #7 and #8 (Reduced Restrictive Relative Clause (1) and (2))

Reducing a pronoun of the restrictive relative clause of the example sentence “I want the
box on the table” can have the meaning “I want the box that is on the table” or “I want
the box to be on the table” [57]. The pattern matching such sentence structure is in the
following Fig. 4.8.

"WANT" NOUN1 ADPOSITION NOUN2

VB NN* IN NN*
dobj prep pobj

Figure 4.8: Pattern #7 (reduced restrictive relative clause (1)).

“I want the chair next to the bed” is an example of a variation with the adverb. The
pattern matching such sentence structure is in the following Fig. 4.9.

41

4. Problem of Ambiguity in Textual Requirements Specification

"WANT" NOUN1 ADPOSITION NOUN2

VB NN* IN NN*
dobj prep pobj

Figure 4.9: Pattern #8 (reduced restrictive relative clause (2)).

� Example of generated warning : NOUN1 – that is/are “ ADPOSITION . . . ” or to be

“ ADPOSITION . . . ”?

4.3.2.2 Pattern #9 (Present Participle vs. Adjective)

Distinguishing a present participle from an adjective is another source of ambiguity [57],
e.g., “We are writing a letter.” and “Pen and pencils are writing implements.” The pattern
matching such sentence structure is in the following Fig. 4.10.

"BE" VERB (present participle) NOUN
VB VBG NN*

aux dobj

Figure 4.10: Pattern #9 (present participle vs. adjective).

� Example of generated warning : Please consider a possible ambiguity of the word
VERB .

4.3.2.3 Pattern #10 (Participle)

The participle could be attached to the object either as a reduced restrictive relative clause
or as a verb complement, e.g., “The manager approached the boy smoking a cigar.” or
“The manager caught the boy smoking a cigar.” The pattern matching such sentence
structure is in the following Fig. 4.11.

"BE" VERB (present participle) NOUN
VB VBG NN*

aux dobj

Figure 4.11: Pattern #10 (participle).

� Example of generated warning : Please consider a possible ambiguity of the word
VERB2 .

42

4.4. Our Approach – Glossary Construction and Synonyms Resolving

4.4 Our Approach – Glossary Construction and Synonyms
Resolving

The key part of the textual requirements specification analysis is building a glossary of
terms. A glossary should describe all the domain-specific terms used in the requirements.
Every class or attribute candidate (as proposed in Section 3.4) is automatically introduced
as a term of the glossary. This is the default basic generated version of the glossary that
should be extended by stakeholders – terms can be added or corrected.

Concerning the glossary and the text disambiguation process, we can support stake-
holders on two levels.

First, we can use online dictionaries to get a default meaning (definition) of terms that
can then be corrected by stakeholders if needed. We use the Babel [86] and Wordnik
online dictionaries for that. Authors claim that Wordnik is the world’s biggest online
English dictionary by number of words [129].

Second, handle synonyms of terms. Because requirements specifications could be con-
structed and updated by distributed teams, multiple terms for the same concept could
arise in the text.

We can support stakeholders here using the online thesaurus service. Even the already
mentioned Wordnik provides a collection of synonyms for the queried term. In our imple-
mentation, we use ConceptNet [113] – the online semantic network – where we can look
for synonyms in a collection of terms of our glossary. ConceptNet API also provides a list
of synonyms of a particular term, such as Wordnik. Moreover, ConceptNet API provides a
relation called relatedness of a particular pair of terms [112] that returns a weighted value
on the scale [0; 1]. In our implementation, a user can set a threshold value for the accepting
terms as synonyms.

Listing 4.1: ConceptNet – relatedness of a particular pair of terms – call the endpoint.

GET

https://api.conceptnet.io/relatedness

?node1=/c/en/booking

&node2=/c/en/reservation

Let us present an example of a hotel management system where two terms representing
the same domain concept have been introduced – a booking and a reservation. Calling the
relatedness of a particular pair of terms endpoint, as shown in Listing 4.1, results in the
response presented in Listing 4.2 saying that these two terms are 72 percent related.

43

4. Problem of Ambiguity in Textual Requirements Specification

Listing 4.2: ConceptNet – relatedness of a particular pair of terms – response.

{

"@context": [

"http://api.conceptnet.io/ld/conceptnet5.7/context.ld.json"

],

"@id": "/relatedness?node1=/c/en/booking&node2=/c/en/reservation",

"value": 0.721,

"version": "5.8.1"

}

As a result of the presented synonyms check, a user can update the text based on the
synonyms suggestion or at least group the synonyms as one term in the process of model
creation.

4.5 Experiments and Results

Although we have presented examples investigated by linguists [57][89] (taken from novels,
newspapers, and jokes), the created patterns are easily applicable to the text of require-
ment, too. For example, the pattern Nr. 2 (preposition phrase) could catch sentences like
“The button next to the warning box with the red border. . . ” that could imply multiple
meanings. Does the button have the red border? Or does the warning box have the red
border?

In the development of our other project, our colleague wrote this sentence as a definition
of done of one request ticket: “Having a checkbox next to the save and cancel buttons that
says something like ‘create another’.” We have tested this sentence in Grammarly [68], the
writing assistant. The result is shown in Fig. 4.12. As you can see, Grammarly is confused
about the subject. Such sentence structure is matched by our pattern Nr. 3 (relative
clause), and the warning is generated. We motivate our users to use simple sentences
where the subject is directly mentioned without a reference.

Figure 4.12: Ambiguous parsing structure in Grammarly.

44

4.5. Experiments and Results

Table 4.1 summarizes the results of experiments of our presented ambiguity detection
approach using the data set introduced in Section 3.6. The results include the following:

� the frequency of matched patterns of structural ambiguity defined in this chapter,

– we include only the patterns that have been matched,

– the table uses this legend:

PP pattern #10 (participle),

PPA pattern #9 (present participle vs. adjective pattern),

RRRC patterns #7 and #8 (reduced restrictive relative clause (1) and (2)),

RC pattern #3 (relative clause),

PPH pattern #2 (prepositional phrase),

AP pattern #6 (adverbial position pattern (#2)),

� the frequency of synonyms hints:

– some of them can be interpreted as true positives, e.g., the case called g12-
camperplus (specifying camp organization information system) generated syn-
onyms hint consider entities child and kid that seems to be used inter-
changeably in the specification; however, for most of the specifications, a domain
expert should judge, so we leave the hints without classification,

– for comparison with the number of generated synonym hints, one can find num-
bers of generated entities and attributes for cases from the used data set in
Chapter 8.

We interpret the results in the following way.

Patterns When some of our presented pattern is matched, it means that the formulation
could be ambiguous. We recommend to rewrite the sentence following the
provided hint.

Synonyms We encourage users of our system to create a glossary. Among terms clarifying,
a glossary is useful to process generated synonyms hints. A user of our system
can interpret them as follows:

� if the two terms of generated hint represent synonyms, we recommend
selecting one and using it strictly across the whole document, document-
ing it in a glossary, and mentioning the synonym variant in a glossary to
make it clear for other users,

� if the generated hint is recognized as a false positive, we recommend
making sure that both terms are part of a glossary and they are docu-
mented.

45

4
.

P
r
o
b
l
e
m

o
f
A
m
b
ig
u
it
y
in

T
e
x
t
u
a
l
R
e
q
u
ir
e
m
e
n
t
s
S
p
e
c
if
ic
a
t
io
n

Table 4.1: Evaluation of methods detecting ambiguity.

Case PP PPA RRRC RC PPH AP Synonyms

g02-federalspending 0 4 7 0 0 1 2
g03-loudoun 0 2 0 1 0 1 1
g04-recycling 1 2 1 2 1 0 0
g05-openspending 0 3 0 1 0 1 0

g08-frictionless 5 2 3 0 0 1 2
g10-scrumalliance 1 1 3 0 0 3 1
g11-nsf 0 3 2 0 2 1 2
g12-camperplus 0 5 0 0 1 1 1

g13-planningpoker 0 6 1 0 0 0 1
g14-datahub 1 4 0 0 0 2 0
g16-mis 0 2 1 0 1 0 1
g17-cask 1 0 0 1 0 1 0

g18-neurohub 10 2 0 0 0 4 4
g19-alfred 3 4 1 0 2 2 2
g21-badcamp 0 6 0 1 1 1 2
g22-rdadmp 0 0 0 0 1 1 3

g23-archivesspace 1 1 0 0 0 0 0
g24-unibath 0 1 1 0 0 1 0
g25-duraspace 1 0 1 2 0 0 3
g26-racdam 0 2 4 0 0 0 0

g27-culrepo 4 3 2 4 1 1 5
g28-zooniverse 4 0 1 0 0 0 0
P01. Blit 1 0 0 0 1 0 1
P02. CS179G – ABC Paint Project 0 0 0 0 2 1 9

P03. eProcurement 1 4 0 1 2 0 13
P04. Grid 3D 0 1 0 0 0 0 1
P05. Home 1.3 1 0 0 0 0 0 1
P06. Integrated Library System 1 1 0 0 2 0 21

46

4.5.
E
x
p
erim

en
ts

an
d
R
esu

lts

Case PP PPA RRRC RC PPH AP Synonyms

P07. Inventory 2 1 0 0 3 1 4
P08. KeePass Password Safe 0 0 0 0 0 0 5
P09. Mashbot 0 0 0 0 1 0 1
P10. MultiMahjong 2 2 0 1 3 1 8

P11. Nenios 0 0 0 1 1 0 4
P12. Pontis 5.0 Bridge Management System 10 0 0 0 1 0 23
P13. Public Health Information Network 0 0 0 0 1 2 31
P14. Publications Management System 1 0 0 0 0 1 4

P15. Puget Sound Enhancements 1 5 0 0 0 1 17
P16. Tactical Control System 7 2 0 0 6 0 28
P17. Tarrant County Integrated Justice Information System 0 0 0 0 3 1 3
P18. X-38 Fault Tolerant System Services 6 4 0 1 3 3 28

H01. CCHIT 4 0 0 2 1 1 35
H02. CM1 0 0 0 0 0 1 0
H03. InfusionPump 1 0 0 0 0 2 14
H04. Waterloo 7 20 0 4 4 5 53

C01. Amazing Lunch Indicator 1 0 0 0 0 1 12
C02. EU Rent 0 0 0 0 2 0 1
C03. FDP Expanded Clearinghouse Pilot 0 0 0 0 0 0 2
C04. Library System 0 0 0 1 0 0 6

C05. Nodes Portal Toolkit 4 0 0 0 0 1 8
C06. Online National Election Voting 3 0 1 0 0 0 10
C07. Restaurant Menu & Ordering System 2 2 0 0 0 0 2

47

4. Problem of Ambiguity in Textual Requirements Specification

4.6 Problems of Semantic Sentence Ambiguity
and Coreference

In requirements specifications, we expect that the text interpretation semantically corres-
ponds to the domain model, i.e., the text makes sense in the context of the domain. Systems
based only on parsing, as we discussed in Section 4.2.1 and Section 4.3, do not have access
to the knowledge stored in the domain model required to make an interpretation properly.

We construct the model (as proposed in Section 3.4, in some aspects similar to the
UML class diagram) from the textual requirements specification, but in this model, some
interpretations need to be clarified. To solve this problem, we need a domain model and
the part of the problem model that has already been built. Of course, at the starting
point, the problem model is not available. Unfortunately, the domain model is often not
available, too.

The only practical possibility is to build both these models incrementally and iterative
during textual requirements processing through discussions with stakeholders. Then, sus-
picions of ambiguity can be generated by comparing the textual requirements specification
and the model derived.

4.6.1 Linguistic Approach Completed by Knowledge Base

Figure 4.13: Example of coreferential ambiguity.

48

4.6. Problems of Semantic Sentence Ambiguity
and Coreference

Multiple coreference examples are shown in two extracted paragraphs from SRS [5] in
Fig. 4.13. Let us inspect the sentence “A check box next to each name which the user will
use to select to vote for that candidate.” The determiner which could reference a check
box or name. This one itself could indicate to think about the formulation. Nevertheless,
there is a hint in the form of the to select verb. We can check the typical actions of both
noun candidates using a knowledge base (e.g., ConceptNet [113]). If select is found as an
action of a check box, our tool can hint a user with the probably intended candidate.

4.6.2 Model Approach

In the previous section, we used only the linguistic information. In this section, we include
the information coming from the constructed model. This suggests a two-phase processing.
In the first step, we use the linguistic information coming from the text, and we build the
skeleton of the model. In the second phase, we analyze the text with regard to the obtained
model. Because of that, we can find that two classes have the same attribute as you can
see in this example: “Our delivery contains product XYZ-123 in container X-50. Its weight
is 50 kg.”

In the model, there are three classes: Delivery , Product , and Container .

Delivery consists of Product and Container . The weight attribute candidate is

not directly mentioned for any of the mentioned classes. Additionally, we may find that
the attribute is common to all mentioned classes, e.g., in a semantic network. Therefore,
the weight of 50 kg may concern any of them.

However, maybe the Product XYZ-123 is a radioactive isotope. In this case, its weight
will not be 50 kg because, e.g., 235-uranium has 48 kg as its critical mass, so 50 kg would
mean a nuclear explosion. It is surely obvious for all stakeholders, but it is a question of
how obvious it is for the programmer.

4.6.3 Specific Attribute Values Distinguish the Coreference

In textual formulations, there may be a context (e.g., given by a coreference) in which the
relation between an entity and the mentioned property represented by an attribute or its
value is ambiguous. These ambiguities cannot be solved by syntactic means (like part-of-
speech tagging) or by statistical means (like statistic sample data about co-occurrence).

To introduce the core of the problem, we present the following example sentence: “In
the picture, there is Lady Diana and her grandmother, as she was <number> years old.”
We can see that changing the age number affects the coreference meaning of the pronoun
she. Suppose there are some OCL expressions associated with these classes. In that
case, we can use, e.g., USE tool2 (UML-based Specification Environment)) to check which
coreference option is consistent with the domain model.

2https://www.db.informatik.uni-bremen.de/projects/USE-2.3.1

49

https://www.db.informatik.uni-bremen.de/projects/USE-2.3.1

4. Problem of Ambiguity in Textual Requirements Specification

Let us start with the model representation defined in the following Listing 4.3.

Listing 4.3: Model representation of a human (USE notation).

1: model HUMAN 14: association mother_of between

2: 15: HUMAN_BEING[1..*] role child

3: class HUMAN_BEING 16: MOTHER[0..1] role mother

4: attributes 17: end

5: age : Integer 18:

6: sex : String 19: association grandmother_of between

7: end 20: HUMAN_BEING[1..*] role grandchild

8: 21: GRANDMOTHER[0..2] role grandmother

9: class MOTHER < HUMAN_BEING 22: end

10: end

11:

12: class GRANDMOTHER < MOTHER

13: end

We continue with the OCL expressions to support the previous UML model with the
constraints in the following Listing 4.4.

Listing 4.4: OCL constraints of the model representing a human.

1: context HUMAN_BEING inv: self.age >= 0

2:

3: context MOTHER inv MotherAge:

4: self.child->forAll(y|y.age < self.age - 12)

5: context HUMAN_BEING inv MotherExclude: self.mother->excludes(self)

6:

7: context GRANDMOTHER inv GrandmotherAge:

8: self.child->forAll(y|y.age < self.age - 24)

9: context HUMAN_BEING inv GrandmotherExclude:

10: self.grandmother->excludes(self)

11: context HUMAN_BEING inv GrandmotherExclude2:

12: self.grandmother->excludes(mother)

Using this simple model, we can resolve the ambiguity for the number equals 18 of
our example, i.e., that a grandmother cannot have 6 years, and the pronoun she is co-
referencing Lady Diana.

In the case of the number equals 96, we can resolve the ambiguity too, because if Lady
Diana were 96, her mother had to have at least 110 years and her grandmother at least
124 years, which is a possibility not contained in our realistic domain model.

50

4.6. Problems of Semantic Sentence Ambiguity
and Coreference

In the case of the number equals 32, our domain model will not help us to solve the
ambiguity shown above because both ladies can be 32 years old. In such a case, we have to
generate a remark concerning the found ambiguity and generate a question for the analyst.

From the linguistic analysis, we have the information that Lady Diana is a woman
(pronouns she and her), so we can set up the sex attribute of the object representing the

HUMAN_BEING class from our domain model. We associate the found word grandmother

with the class GRANDMOTHER in our domain model.
We are able to check defined OCL expressions with the mentioned USE tool – an

example of the tool GUI is in Fig. 4.14.

Figure 4.14: USE tool example.

51

Chapter 5

Problem of Incompleteness in Textual
Requirements Specification

This chapter reflects our publications:

� Šenkýř, D.; Kroha, P. Patterns for Checking Incompleteness of Scenarios in Tex-
tual Requirements Specification. In: Proceedings of the 15th International Con-
ference on Evaluation of Novel Approaches to Software Engineering. SciTePress,
Porto, 2020. [A.6]

� Šenkýř, D.; Kroha, P. Problem of Incompleteness in Textual Requirements Spe-
cification. In: New Knowledge in Information Systems and Technologies. SciTe-
Press, Porto, 2019. [A.8]

� Šenkýř, D.; Kroha, P. Patterns in Textual Requirements Specification. In: Pro-
ceedings of the 13th International Conference on Software Technologies. SciTe-
Press, Madeira, 2018. [A.10]

53

5. Problem of Incompleteness in Textual Requirements Specification

In this chapter, we investigate the incompleteness problem in textual requirements specific-
ations. Incompleteness is a typical problem that arises when stakeholders (e.g., domain
experts) hold some information for generally known, and they do not mention it to the
analyst. A model based on the incomplete requirements suffers from missing objects,
properties, or relationships as we show in an illustrative example.

We investigate this problem from two perspectives.

1. A perspective of sentences and a created model. Our presented methods are based
on grammatical inspection, semantic networks (ConceptNet and BabelNet), and pre-
configured data from online dictionaries. Additionally, we show how a domain model
has to be used to reveal some missing parts of it.

2. A perspective of scenarios and a created model.

5.1 Problem Statement

According to [107], completeness means that all services required by the user should be
defined. According to [43], a complete requirements specification has to cover all responses
to all input data in all situations. Our ambitions are not so great. We try to reveal possible
sources of incompleteness in the text of requirements.

Often, textual requirements do not contain complete information about the system to
be constructed. There are more reasons for that.

First, we use a simplified model omitting some details of the real system to be modeled.
We do not model and describe the complete reality, we are interested only in a subset of
all existing objects, properties, and relationships the real system consists of. For example,
when writing information systems, this subset is given by supposed queries needed to
answer the user’s requests.

Second, some details are forgotten initially, or some queries are appended later without
worrying whether the underlying model contains the necessary objects, properties, or re-
lationships.

Third, stakeholders working with the analyst on the textual version of requirements
suppose that some facts are obvious and do not mention them. However, what is obvious
for a user of a biological information system is usually not obvious for a computer scientist.
We discuss such cases in Chapter 7.

Fourth, during requirements analysis, we can find some sorts of scenarios in functional
requirements, e.g., normal case scenario (also called “sunny day scenario”), exceptional
(alternative) case scenario (also called “rainy day scenario”), start-up scenario, shut-down
scenario, installation scenario, configuration scenario, etc. Missing alternative scenarios
are one of the incompleteness sources, i.e., descriptions of processing in the cases when
something runs in another way than expected. It may easily happen. One of the cases is
the following one. The analyst supposes a specific user’s reaction in a given context because
the analyst uses his/her knowledge of the problem. Contrary to the analyst’s expectation,

54

5.1. Problem Statement

the user does something else – it may be done by mistake or incompetence. In such a
situation, alternative scenarios should guide the user to the next correct step.

Using incomplete information in requirements leads to incomplete or bad models. The
resulting program has to be laboriously enhanced. Missing alternative scenarios can cause
users to be disappointed and frustrated with the system, and it can cause customers to
reject the system.

In [35], there is incompleteness together with ambiguity and other natural language
processing defects called requirements smells, similar to the concept of code smells.

To illustrate the problem of incompleteness, we introduce two typical examples. In
Example 5.1, the source of incompleteness is that some attributes of the class Restaurant

are not clearly and uniquely defined.

3.2.1.19 Functional Requirement 1.19

ID: FR19
TITLE: Mobile application – Sorting results
DESC: When viewing the results in a list, a user should be able to sort the results according to price,
distance, restaurant type, specific dish or restaurant name.

• When sorting by restaurant name, specific dish or restaurant type the results should be ordered
alphabetically.

• When sorting by price the results should be ordered from cheapest to most expensive.
• When sorting by distance the results should be ordered from closets to furthest distance

according to the user’s position.

A list of what?

A price of what?
I.e., price of drinks,

price of vegetarian meals,
price of non-vegetarian meals, etc.

A restaurant can have more attributes.

How is the distance measured?
I.e., in km of air-line distance,

in km of walk distance or in minutes of walk distance,
using subway is included or not, etc.

What does it mean exactly?
The type can describe:

geographical origin (chinese)
or type of dishes (vegetarian)
or type of service (take away)

or quality of service (fast food)
or some constraints (BYO – bring your own, no smoking).

Figure 5.1: Example of incompleteness (restaurant).

Example 5.1: Restaurants.

In the description of functional requirement Nr. 1.19 in Fig. 5.1, taken from [47] that is
part of our collected data set (Section 3.6.1), we can see some incomplete formulations.
The user should have the possibility to sort the list of found restaurants according
to attributes that are not uniquely defined. We extracted the following sources of
incompleteness:

1. . . . viewing the results as a list −→ a list of what?

2. . . . a user should be able to sort the results according to price −→ the price of
what (price of drinks, price of vegetarian meals, price of non-vegetarian meals,
etc.)?

55

5. Problem of Incompleteness in Textual Requirements Specification

3. . . . distance −→ how is the distance measured, i.e., in km of air-line distance, in
km of walk distance, or in minutes of walk distance using the subway included?

4. . . . restaurant type −→ what does it mean exactly, i.e., the type can describe, e.g.,
a geographical origin (Chinese), a type of dishes (vegetarian), a type of service
(take away), a quality of service (fast food), some other constraint (BYO = bring
your own, no-smoking, etc.).

In Example 5.2, the set of queries used by the information system of a military university
contains the attribute shoe size , but the set of queries used by a university of technology
does not.

Example 5.2: University information system.

Suppose we want to write requirements specifications for a university information sys-
tem. Modeling attributes of classes Student and Teacher , we need to include

attributes like first name , last name , address , etc.

However, we do not include the attribute shoe size in the case of a university
of technology, but we have to include it in the case of a military university because
of a uniform. This means that the completeness of the set of attributes of the class
Student can be decided only with respect to the set of queries or operations that
concern the data stored.

5.2 Related Work

Completeness of requirements specification is a complex problem discussed for years in
detail in many publications, e.g., in [41] and [35].

In this section, we discuss some key areas and approaches related to the research of
software-assisted detection of incompleteness in textual requirements.

5.2.1 Incompleteness Detection Tools

A tool called Cordula (Compensation of Requirements Descriptions Using Linguistic Ana-
lysis), presented in [11], follows the vision of On-the-Fly (OTF) Computing. This vision
assumes ad hoc providing software services based on requirements description written by
a user in natural language. The authors of the paper discuss the question “How users
might be involved in the compensation process?”. Cordula represents a chatbot [45]. The
chatbot can highlight the inaccuracies, and a user can confirm the proposed suggestion
by the chatbot or reject it. The proposed approach engages the users in the following
steps. First, they describe their requirements in a short text. Based on that, they receive
a response from the chatbot. Second, they are asked to react to the proposed suggestion.
Based on that, the chatbot can adapt to the situation.

56

5.2. Related Work

In the prerequisite paper [10], there are presented methods of quality violations in a
requirements specification. The authors call them linguistic triggers. Besides the problem
of incompleteness, there is also presented an approach to ambiguity detection. In the
case of incompleteness triggers, authors pursue an already presented approach divided into
two steps [9]. First, the detection via predicate-argument analysis in which a semantic
role labeler (SRL) assigns semantic roles such as agent, theme, and beneficiary to the
recognized predicate. The presented illustrative example is the verb “send”, which is a
three-place predicate because it requires the agent (sender), the theme (sent), and the
beneficiary argument (sent-to). If the beneficiary is not specified here, it is unknown
whether one or more recipients are possible. The second step is compensation. The authors
state that they gathered software descriptions and their corresponding reviews from the
site https://download.cnet.com. Using the similarity search component known from the
information retrieval (IR) domain, they try to find the potentially missing part sent-to.

The authors of [31] focused on performance requirements – the requirements that de-
scribe system behavior. They created a UML model reflecting three categories of perform-
ance requirements – time behavior requirements (e.g., “The operation must have an average
response time of less than 5 seconds.”), throughput requirements (e.g., “The system must
have a processing speed of 100 requests/second.”), and capacity requirements (e.g., “The
system must support at least 50 concurrent users.”). Following the UML model, they are
able to map a textual requirement to parts of the model. Based on the predefined man-
datoriness of each single part, they can indicate the possible missing parts. The mapping
of textual requirements is done via sentence patterns derived from the model.

A tool called NLARE (A Natural Language Processing Tool for Automatic Require-
ments) is presented in the papers [60] and [59]. There is a functional requirement defined
as a finite set of words where words can form one of 3 three elements: actor (performs
the action in the statement), function (indicates what action needs to be performed), or
detail (indicates conditions under what action be expected). Based on this categorization,
incompleteness exists if any of the mentioned elements is not found. Mapping of words and
elements uses patterns represented by regular expressions that operate on part-of-speech
tags.

The work of Chattopadhyay et al. [19] focuses on user stories of one project and feature
descriptions of another project. On the level of sentences, they identify verbs (using part-
of-speech tagging), and they try to find all typical structure usages of identified verbs
defined in FrameNet1. Based on the proposed structure usage, they check if this structure
is used in the text of a requirement. Our approach differs in using semantic networks, and
we also do not focus only on verbs.

5.2.2 Incompleteness Confrontation

The research in the corresponding area of processing of textual corpora also takes into the
problem of incompleteness. For example, in [98], authors propose methods of knowledge

1https://framenet.icsi.berkeley.edu

57

https://download.cnet.com
https://framenet.icsi.berkeley.edu

5. Problem of Incompleteness in Textual Requirements Specification

acquisition from Wikipedia, and they argue that it should be a source of minimization of
incompleteness.

Paper [35] classifies the problem of incompleteness as one of the requirements smells.
Following ISO 29148 [65] requirements engineering standard, they introduce a category
of requirements smell called incomplete references that should be processed in their tool
Smella. The detection mechanism is not in the scope of their paper.

Also, a paper with a concise name “What Did You Mean” [48] refers to the prob-
lem of incompleteness. They follow [33] where the incompleteness is indicated by under-
specification. An under-specification indicator is pointed out in a sentence when the subject
of the sentence contains a word identifying a class of objects without a modifier specifying
an instance of this class. Concerning the example sentence – “The system shall be able to
run also in case of attack.” – we ask which attack the writer means?

5.2.3 Incompleteness of Scenarios

In [116], scenarios and their usages are described in detail, but their completeness or
incompleteness is not mentioned.

Two incompleteness metrics of input documents of the requirements specifications are
described in [38]. This approach takes into account all the relevant terms and all the
relevant relationships among them, and it defines forward functional completeness and
backward functional completeness. The forward functional completeness corresponds with
the reference functional model, i.e., with the future implementation of the system. The
backward functional completeness, which the paper focuses on, refers to the completeness
of a functional requirements specification with respect to the input documents.

In our approach, we mix both methods. We use requirements specifications first to
build a model that can be implemented (as we described in Section 3.4) and check in the
sense of the forward functional completeness (the methods presented in Section 5.3 except
the scenario-based method). Then, in the next step, we use the input documents, the
existing text of requirements specification, the fresh model, and some information from
external knowledge databases to search for the backward functional incompleteness that
is represented by missing alternative scenarios (Section 5.4). Contrary to the approach
in [38], we do not measure the incompleteness using metrics and quantified results, even
though it is a good idea. Using our tool, we generate warning messages only.

In [81], a meta-model approach is used to detect the missing information in a conceptual
model. It is also an approach of the class forward functional completeness but at the level
of a conceptual model.

In [31], sentence patterns are used to uncover incompleteness with performance re-
quirements. According to the unified model, the performance requirements describe time
behavior, throughput capacity, and cross-cutting. The sentence patterns used in the paper
are completely different from our sentence patterns.

In [25], the authors explore potential ambiguity and incompleteness based on the ter-
minology used in different viewpoints. They combine the possibilities of NLP technology
with information visualization. Their approach is entirely different from our approach.

58

5.3. Our Approach

The approach based on NLP techniques and grammatical inspection methods to extract
use case scenarios is proposed in [122]. It is a similar approach to ours, but the question
of incompleteness is not discussed there.

5.2.4 Related Works – Overview

The presented papers use, similarly to us, methods of natural language processing in the
sense of resolving part-of-speech tags and the dependency structure of a sentence. Our
work differs in the usage of support resources. In Section 5.3, we present the sources
that we use – a prepared static collection of collocations and online resources: ConceptNet
and BabelNet. Our implemented tool analyzes the whole document at once and generates
warnings. This is the difference compared with the mentioned chatbot in [45].

5.3 Our Approach

The goal of our project is to identify sources of incompleteness in textual requirements. In
our approach, we distinguish the sort of incompleteness according to the scope, in which the
incomplete information is spread in the text of requirements specification. The first scope
includes one sentence of the textual requirement specifications. The second scope includes
the whole document of the textual requirements specifications, i.e., all its sentences.

We follow with a categorization of our investigated methods.

� Scope of sentence (S):

– the usual usage of words – group S.1,

– acronyms definition – group S.2.

� Scope of the whole document (D):

– the semantic knowledge stored in our model – group D.1,

– the information contained in the set of proposed queries as sources of actions to
be performed – group D.2,

– the draft of the pre-generated model – group D.3,

– the proposed scenarios – group D.4.

Our approach to the problem of incompleteness uses grammatical patterns based on gram-
matical inspection, semantic networks such as ConceptNet [113] and BabelNet [86], and
pre-configured data from online dictionaries. We also show how a domain model can be
used to reveal a possible problem of a single incomplete requirement (i.e., missing details)
and to reveal a possible problem of incomplete requirements specification as a whole.

Our tool TEMOS generates warning messages in the case when a suspicious formulation
has been found. A warning message signals the necessity of human intervention.

59

5. Problem of Incompleteness in Textual Requirements Specification

5.3.1 Group S.1 (Usual Usage of Words)

Nouns in sentences are investigated using a specific, predefined set of words. If the kind of
usage in the textual requirements (e.g., a list) does not correspond to any defined usages
in the vocabulary (e.g., a list of) then a warning message is generated.

The set of words we used for this purpose is available on our web page2, hereinafter
referred to as a common noun and preposition collocation set. We build this collection
based on various collocation web pages. Each entry is provided with a resource reference.
We would like to mention Free Online Collocations Dictionary3 from ProWritingAid. The
advantage of this dictionary is that one can find collocation also via preposition (e.g.,
of). Based on the query, the result contains collections of commonly used collocated
words grouped by the part-of-speech category. Our second significant resource is Corpus
of Contemporary American English4 (COCA). One can search the corpus via expression
containing part-of-speech tags. In our situation, we were looking for common collocation,
e.g., of preposition of. Therefore, we inserted the [nn*] of query expression. The result
list contains found words sorted by the frequency of usage.

The search for nouns belonging to this group S.1 can be done using a simple sen-
tence pattern presented in Fig. 5.2 that uses corresponding part-of-speech tags and the
preposition dependency type relation.

NOUN ADPOSITION
NN ADP

prep

Figure 5.2: Noun with preposition pattern.

If this pattern is matched, then no further action is needed. Otherwise, we will look at
the mentioned preconfigured common noun and preposition collocation set to check if the
tested noun is to be found together with a preposition or not. Because the concrete noun
can have various forms, we check the lemma (dictionary form) of the noun.

In order to …
ADP NN PART VB

auxpobj
acl

Figure 5.3: “In order to action” pattern.

To precise this method, in the case when the simple pattern is not matched, we use
the whitelist of supporting patterns. The purpose of these patterns is that, during the
testing phase, we indicate some repetitive parts of sentences that should not be indicated
as a warning. For example, we can show the whitelist pattern of common sentence start
illustrated in Fig. 5.3. When any of the whitelist patterns are matched, no warning is
generated, and the analysis continues with the next word.

2https://temos.ccmi.fit.cvut.cz/sources
3https://prowritingaid.com/en/Collocation/Dictionary
4https://www.english-corpora.org/coca

60

https://temos.ccmi.fit.cvut.cz/sources
https://prowritingaid.com/en/Collocation/Dictionary
https://www.english-corpora.org/coca

5.3. Our Approach

5.3.2 Group S.2 (Acronyms Definition)

Here, we reuse the concept of glossary discussed in the previous chapter concerning am-
biguity. If we find a word composed only of capital letters, we consider it as an acronym
and check whether the acronym is defined in the glossary.

This approach can be refined by using a configurable word length limit. The reason is
that some writers use capitals to highlight a word. When the word length limit is set, e.g.,
we consider a word as an acronym up to 5 characters, then no (probably) false warning is
generated for longer words.

5.3.3 Group D.1 (Semantic Knowledge)

The semantic knowledge stored in our model of reality contains some specific information,
e.g., the information that not every restaurant has to serve meat.

In the textual expression, this kind of information corresponds with a possible (but
avoided) existence of:

� adjectives before nouns, e.g., a vegetarian restaurant, or

� compound nouns, e.g., a university restaurant.

The crucial nouns to check are those nouns that represent entity candidates. Let us define
a set of nouns Ne where each noun n ∈ Ne:

� represents a lemma of an entity candidate according to our internal model definition
(Section 3.4),

� there are missing adjectives before noun n, and noun n is not part of compound
nouns.

We iterate over all n ∈ Ne, and we check the following information sources.
Our first source of information is ConceptNet [113], which provides the is-a relation

(an example of the endpoint call for the noun restaurant is in Listing 5.1). We check the
found collocations (e.g., French restaurant) of the queried noun n, and we recommend it
to a user. In the result, there could also be terms that are not collocation of the queried
noun, e.g., bistro is a restaurant; however, we can display them to a user as hints, too.

Listing 5.1: ConceptNet – is-a relation – call the endpoint.

GET

https://api.conceptnet.io/query

?node=/c/en/restaurant

&rel=/r/IsA

Concerning our example of restaurants, if we query the term restaurant directly in the
ConceptNet web application GUI, the is-a relation is presented as types of restaurants.

61

5. Problem of Incompleteness in Textual Requirements Specification

Our second source is BabelNet [86], which provides the has kind relation. Similarly
to the previous, if some examples are found for a specific noun n, we generate a question
concerning the possibility of missed specialization of the entity.

Another aspect of this group (D.1) targets element groups (as defined in our internal
model). Element group clusters elements with the same root lemma, i.e., a lemma of
the main word (token) representing the element. It could happen that an element group
consists of elements with adjectives or compound nouns and one element that is represented
by the root lemma only. In our example context, we can have a restaurant and a vegetarian
restaurant as elements in one element group. Does it mean that all occurrences of the word
restaurant in the text of requirements represent a vegetarian restaurant? We can generate
a question for a user regarding that.

5.3.4 Group D.2 (Actions)

Verbs in sentences of queries are investigated in the sense of whether the action that they
describe can be performed in the existing model (e.g., sorting without a key, sorting without
a unique key, the number of shoes of size 42 for students of military university).

As a prerequisite, we are able to check the relationships in the way of correct usage of
the verb. The English verbs can take 0, 1, or 2 (direct and indirect) objects, depending
on the verb. Verbs without objects are called intransitive, and the other ones are called
transitive. Using the dependencies recognition, we check if the verb has any objects. If no
object is found, we check the verb against the list of intransitive verbs (e.g., Wiktionary
collection of such verbs5). For example, the standalone sentence “A warning appeared.”
does not bring new information, but it is grammatically correct. On the contrary, the
standalone sentence “Administrator needs to maintain.” contains transitive verb need,
and we are missing the information about what needs to be maintained. Therefore, such
a sentence is suspicious, and TEMOS generates a warning for the user.

5.3.5 Group D.3 (Model Validation)

We process each sentence one by one and incrementally build our internal model in the
sense of the UML class model as proposed in Section 3.4.

When the draft of our model is ready, we have a chance to check the following simple
indicators of missing or unrecognized information:

� “empty” classes (entity candidates) without attributes,

� classes (entity candidates) with no relationship to any other class.

5https://en.wiktionary.org/wiki/Category:English intransitive verbs

62

https://en.wiktionary.org/wiki/Category:English_intransitive_verbs

5.4. Our Approach – Incompleteness of Scenarios

5.4 Our Approach – Incompleteness of Scenarios

For examples of group D.4 (the proposed scenarios), we set aside this separate section.

As mentioned, we can find some sorts of scenarios in functional requirements, e.g., nor-
mal case scenario (also called “sunny day scenario”), exceptional (alternative) case scenario
(also called “rainy day scenario”), start-up scenario, shut-down scenario, installation scen-
ario, configuration scenario, etc. Missing alternative scenarios are one of the incompleteness
sources, i.e., descriptions of processing in the cases when something runs in another way
than expected.

The goal of our method described in this section is to find such a kind of incompleteness
that can be revealed only in the context of the whole textual document or in the context
of thematically closed and compact sections.

In this section, we present some simple examples that concern user interface. As the
norms ISO/IEC/IEEE 29148-2018 [66] and IEEE 1012-2016 [63] explain, the specification
of a user interface is a part of the software requirements specification.

5.4.1 Alternative Scenarios

More or less, we are trying to reveal the non-existence of some alternative scenarios. As an
alternative scenario, we denote here a scenario that depends on a specific value of a class
attribute.

Scenarios are used for requirements specification elicitation. We use three types of
scenarios in our approach:

� a description of the system context (input events, system output, i.e., the system’s
communication with the actors out of the system),

� a description of system usage, including users’ goals (including use cases) and system
function,

� a description of constraints that concern attributes or application of methods.

We assume that some alternative scenarios have to be present in the textual description of
the requirements specification.

First, we state which alternative scenarios should be present, i.e., we construct a set of
alternative scenarios for each normal case scenario.

Second, we find the alternative scenarios present in the textual requirements, and we
compare the corresponding sets.

Let us continue with the following illustrative example. Assume we have textual re-
quirements specification of a text editor. One of the use cases is described as a functional
requirement, as proposed in Example 5.3.

63

5. Problem of Incompleteness in Textual Requirements Specification

Example 5.3: Text editor.

Normal case scenario: To edit a text file, the user has to click the Open button to
choose the file he/she wants to edit. After the user sees the file content, he/she provides
the changes to its textual content. To save the changes, the user uses the Save button.

Alternative (exceptional) scenario 1: . . . If the user has got the message “The file cannot
be found”, the user has to do the following. . .

Alternative (exceptional) scenario 2: . . . If the user has got the message “The file you
want open is not a text file”, the user has to do the following. . .

To have the possibility of testing the existence of these alternative scenarios, we need a
class File containing attributes status (values: exists , not found , opened , etc.)

and type (values: docx , doc , rft , txt , tex , etc.) in the model. Some text editors

can open files of types such as PDF or PNG , but the user can be confused by the result
he/she can see on the screen.

In some cases, the implementation will be written as an exception-handling procedure
that delivers a message the user can understand instead of the message of the operating
system.

In Adobe Photoshop CC, you will get the message “Could not complete your request
because Photoshop does not recognize this type of file” if you try opening a file of type
DOCX .

In Microsoft Word, you can try opening a PDF file, but you will get the message “To
open and export to certain types of files, Word needs to convert the file using a Microsoft
online service” in the first step.

If our model (constructed via extracting classes and attributes) has the property de-
scribed above, we can check whether the corresponding alternative scenarios are part of
the textual requirements specification.

5.4.2 The Algorithm

The algorithm implemented in our tool follows these steps:

Algorithm 5.1: Revealing alternative scenarios.Algorithm 5.1: Revealing alternative scenarios.

1. To identify enumerations, paragraphs, and chapters by using white and special
characters.

2. To construct a static UML model by using grammatical inspection, i.e., to find
classes, relationships, and attributes. Section 5.4.3 provides additional informa-

64

5.4. Our Approach – Incompleteness of Scenarios

tion.

3. To find sets of values of each attribute as described in Section 5.4.4.

4. To find alternative scenarios in all components (chapters) of the specification, i.e.,
such sentences that use different values of the same attribute. A component of a
specification is the basic part of the structured text of the specification. Usually,
components are numbered, as we show in Example 5.6. This core step of the
whole algorithm is described separately in Section 5.4.5.

5. To find groups of attribute values because some attribute values can be grouped
together, and they can use a common alternative scenario. Such a group of
attribute values has to be identified.

6. To test whether there are alternative scenarios for all attribute values described
in all components.

7. To generate warning messages if some alternative scenarios are missing.

5.4.3 Static UML Model Construction

Using grammatical inspection, our tool TEMOS finds classes, their attributes, and the
constraints involved, as we described in Chapter 3 (Overview of Our Approach). When
we have classes and their attributes, our tool looks for their values, and it builds a corres-
ponding set of values to each attribute of each class that participates in scenarios.

These sets need not be built only from the text of requirement specifications. Using
some pre-defined knowledge databases, we can generate warning messages, e.g., we find in
a knowledge database that the File class (from Example 5.3) can have a status value

locked or encoded . Such a value is not mentioned in the requirements specification.
We suppose that the alternative scenario concerning the case of a locked or encoded file is
missing, and we indicate incompleteness.

5.4.4 Sets of Values

In common, we can describe our approach as follows. We denote sets of attribute values
that are built from the textual requirement specification as R-sets having cardinalities
Card(R-sets) and sets of attribute values that are built from scenarios as S-sets having
cardinalities Card(S-sets).

As a result, each attribute Attr of each class C has a corresponding set of its values
taken from requirement specifications denoted as RC,Attr, and each of these sets has its
cardinality CardR,C,Attr. Similarly, each attribute Attr of each class C has a corresponding
set of its values taken from scenarios denoted as SC,Attr, and each of these sets has its
cardinality CardS,C,Attr.

65

5. Problem of Incompleteness in Textual Requirements Specification

In the first step – we can call it calibration – the cardinalities of sets constructed from
requirements will be compared with the cardinalities of sets from scenarios. Probably, it will
be found that CardR,C,Attr > CardS,C,Attr. If more values are mentioned in the specification
than in the scenarios, it means that scenarios do not cover all possible situations or some
values need not be taken into account. Our tool will generate a message to check this
situation.

The case in which CardR,C,Attr < CardS,C,Attr means that the information obtained from
requirements contains fewer attribute values than the information obtained from scenarios.
It happened in cases when requirements do not count with all values, maybe because all
values were accumulated at the time of writing the scenarios. Our tool will generate a
message, too.

The case in which CardR,C,Attr = CardS,C,Attr means that we can start the incomplete-
ness checking in the scope of the whole document as follows.

In the second step, we suppose that the reason why a set of attribute values is mentioned
in the description is that each of these values indicates a different path of data processing.
Theoretically, we could expect alternative scenarios for different attribute values, as shown
in the following example.

Example 5.4: Traffic simulation.

In the traffic simulation, the class representing Traffic Light has the correspond-

ing set of attributes such as type , year of production , light (representing the

current light that is active), etc. From the specification, we know the possible values
of the attribute light . It is this set: red , orange , and green .

Scenario for “light” equals “red”:
The stop procedure is applied. . .

Scenario for “light” equals “green”:
The run procedure is applied. . .

The enumeration of attribute light was ended and not all possible values were men-

tioned. Our tool generates a warning message: “What is to do if the “light” is “orange”,
i.e., the alternative for “light” equals “orange” is missing?”

In practice, some attribute values can be grouped, and the alternative scenario is defined
for the whole group. It means that multiple values are mentioned together and separated
by commas, or the multiple values are hidden behind the noun “others”.

66

5.4. Our Approach – Incompleteness of Scenarios

5.4.5 Patterns To Find Scenarios

Following Algorithm 5.1 described above, we replace the problem of finding scenarios with
the problem of finding typical textual patterns that indicate the presence of scenarios in a
text of requirements specification. We reuse the already presented idea of the grammatical
inspection and sentence patterns, as discussed in Chapter 3 (Overview of Our Approach).
So, we construct the corresponding patterns, we apply them to the whole text, and we find
all sentences in which such a situation can be found.

We can categorize the patterns into two groups. The patterns from the first group
(Section 5.4.5.1 and Section 5.4.5.2) cover situations where the class name and names of
its attributes have to be mentioned. The patterns from the second group (Section 5.4.5.3)
cover situations where the values of some attribute are used but the attribute name is not
explicitly mentioned.

5.4.5.1 Patterns Covering Class/Attribute Name

Usually, the class name and its attributes are embedded in a description of a process started
by calling a method. Often, there is the same verb in a negative clause in the alternative
scenario. The example situation follows.

Example 5.5: File processing.

The File class has methods Open (means open existing file), Enter data (or

Import file from an external device), Save (without changing attributes name ,

directory , or type), and Save As (changes are possible).

Normal case scenario:
To process an existing file that can be seen in the window of the file manager, the

user uses the “Open” item in the “File” menu.

Alternative scenario:
To process an existing file that cannot be seen in the window of the file manager,

the user uses the “Import” item in the “File” menu.

Normal case scenario:
After the action “Enter data” is completed, and if the data is ok, the system shall

store the data.

Alternative scenario:
After the action “Enter data” is completed, and the data is not ok, the system

shall issue an error message.

Based on the proposal, we introduce two pattern categories here. The first category
represents the values conditional pattern (variants are in Fig. 5.4 and Fig. 5.5), which

67

5. Problem of Incompleteness in Textual Requirements Specification

checks if the requirements enumerate behavior based on all mapped values of a concrete
attribute. If there is a scenario for at least one concrete value of a specific attribute, it
should be checked if all already mapped values of this specific attribute are concerned.

‘IF’ ATTRIBUTE NAME ‘BE’/‘EQUAL’/‘=’ ATTRIBUTE VALUE

mark nsubj attr

Figure 5.4: Values conditional pattern #1.

‘WHEN’ ATTRIBUTE NAME ‘BE’/‘EQUAL’/‘=’ ATTRIBUTE VALUE

advmod nsubj attr

Figure 5.5: Values conditional pattern #2.

The second category represents the incomplete conditional pattern. Typically, the re-
quirement describes the prospective situation in a conditional way (e.g., if something is
(successfully) loaded/processed/OK), but alternatives are missing. Based on this obser-
vation, we can create two sets. The first one contains prospective nouns (Fig. 5.6) and
verbs (in the past participle (“-ed”) form, Fig. 5.7), and the second one contains their
opposites. When the scenario mapping prospective situation appears, it is time to check
if the opposite exists. The not resolved challenge represents the formulations that are not
directly negation, e.g., the next statement starts with the word “otherwise”.

CLASS/ATTRIBUTE NAME ‘BE’ PROSPECTIVE SET
AUX

acompnsubj

Figure 5.6: Incomplete conditional pattern #1.

CLASS/ATTRIBUTE NAME ‘BE’ PROSPECTIVE SET
AUX

auxpassnsubjpass

Figure 5.7: Incomplete conditional pattern #2.

5.4.5.2 Unique Attribute Pattern

In the requirements, some attributes may be marked as unique (as presented in Section 3.4).
When such a unique attribute is used within the extracted positive or negative use case
scenario, an alternative scenario should indeed exist. We can find it via the pattern in
Fig. 5.8, where the unique set should consist of words such as taken, occupied, used, etc.
Attribute representing “username” is a typical example. When a user tries to register an
already-taken username, we need an alternative scenario for such a situation.

68

5.4. Our Approach – Incompleteness of Scenarios

‘IF’/‘WHEN’ UNIQUE ATTRIBUTE NAME ‘BE’ UNIQUE SET

attrnsubjmark/advmod

Figure 5.8: Unique attribute pattern.

5.4.5.3 Patterns Covering Values of Attribute

In this section, we focus on sentences where the name of the attribute is not mentioned.
The values in enumeration pattern considers enumerations, and the pattern is based

on the text structure of a block of requirement statement(s). Different from the values
conditional pattern, we do not require a conditional form in this case.

As shown in Example 5.66, adapted from our old faculty guideline page, all (three)
points of enumeration listed in the Installation part together cover all values of one specific
attribute (representing operating system). However, only two of them are discussed in the
Configuration part.

Example 5.6: OpenVPN.

Non-functional requirement specification 5.13: The system OpenVPN will work under
Windows, macOS, and Linux.

Design specification 5.13:
5.13.1 Installation of OpenVPN
We need an OpenVPN client from the community edition at least of version 2.4.

� Users of MS Windows should download from
https://openvpn.net/index.php/open-source/downloads.html

� Users of Linux will very probably use a package from their Linux distribution.
It can be useful to install Network Manager, too.

� Users of macOS have the application available from https://tunnelblick.net,
which contains both Open VPN and the graphical interface.

5.13.2 Configuration of OpenVPN

� Users of MS Windows are recommended to store configuration files in their
personal profile, e.g., in folder C:\Users\Name\OpenVPN\config where Name is
the user’s name in MS Windows.

6This example is taken from a grey zone between non-functional requirement specifications and a
design specification. However, the border between requirement specifications and the design specification
is not exactly defined, and usually, they overlay each other in some aspects and properties.

69

5. Problem of Incompleteness in Textual Requirements Specification

� Users of Linux place the configuration file into the folder that is used by their
specific distribution of Linux, probably \etc\openvpn.

To configure OpenVPN we need the following files. . .

One can see that the name of the attribute is not explicitly mentioned there. Therefore,
the first step of mapping this pattern is to check each item of enumeration against the values
of all attributes. By this step, we find the attributes that are possibly enumerated, and we
can check the missing values. See illustrative Fig. 5.9.

TEXT
…

enumerating
symbol

or
itemizing
symbol

value 1 of attribute

value 2 of attribute

value n of attribute

?

existing
scenarios

missing scenarios?

whitespace

Figure 5.9: Values in enumeration – check approach.

This kind of incompleteness has to be found and indicated by our tool, i.e., a message
like “In the 5.13.2 Configuration part of the specification, the alternative concerning macOS
is missing.” has to be generated.

5.5 Experiments and Results

In this section, we first present two illustrative examples from one selected software require-
ments specification where our methods could help. The software requirements specification
is called Amazing Lunch Indicator [47], and it is part of our collected data set (Section
3.6.1).

Second, we present an evaluation of our proposed methods using the entire dataset
(Section 3.6.1) in the form of the frequency of matched patterns.

5.5.1 Evaluation Example #1

We continue in the analysis of Example 5.1 (description of functional requirement Nr. 1.19)
from this chapter’s introduction – Section 5.1 (Problem Statement).

Our tool TEMOS delivers the first version of classes, attributes, and relationships,
including the class representing restaurant – class Restaurant having attributes: name ,

telephone number , type of food , average price , description , link (to the

70

5.5. Experiments and Results

restaurant’s web page). The connected Restaurant element class used in the listing of

restaurants has attribute distance (according to the user’s position).
The procedure of analyzing the text of DESC (authors use it as a shortcut of descrip-

tion; it does not mean descending sort order) in FR19 will run as follows.

1. The Oxford Advanced Learner’s Dictionary7 defines the noun “list” as a series of
names, items, figures, etc. According to the definition, this means that the “. . .of
what” part may have been omitted (group S.1, Section 5.3.1).

� Our tool TEMOS generates the first warning message: “FR 19 – DESC: A list
of what should be generated?”

� After a discussion with stakeholders, the analyst writes a new formulation:
“DESC: When viewing the results in a list of restaurants, a user should be
able to sort the restaurants according to price, . . . ”

2. As the updated sentence analysis continues – “. . . to sort the restaurants accord-
ing to price” (assumption: the existence of a unique sort key among attributes of
objects to be sorted, i.e., of the corresponding class), our tool TEMOS checks whether
the Restaurant class has the price attribute that can be used for sorting – in-

formation of the group D.2 (Section 5.3.4). The exactly named attribute price is

among the attributes of the Dish class, but it is not among the attributes of the

Restaurant class.

� As it is not the case, TEMOS generates the following warning message: “Res-
taurants as results of the search cannot be sorted according to the ‘price’ attribute
because ‘price’ is not an attribute of the ‘Restaurant’ class. The ‘Restaurant’
class has the following attributes: name, telephone number, type of food, average
price, description, and link. Do you mean the ‘average price’ attribute?”

The situation is even more complicated if we should sort restaurants according to their
distance from the user’s position. Without sorting, it would be enough to show a map
to the user with his/her position and the position of the restaurant. Unfortunately, this
cannot be used for sorting.

If we were interested in air-line distance, we would need the GPS coordinates of the
restaurants, which would belong to attributes of the Restaurant class, and we need to

obtain the GPS coordinates of the user’s position. However, the Restaurant class does

not have such an attribute mentioned in the requirements. The distance attribute is

mentioned in the connected Restaurant element class, but how it would be computed
is not mentioned. Moreover, the air-line distance is not very useful in many towns. Often,
it is much more important to know how much time we need to achieve the goal place. So,
we speak about distance, but we mean the time interval. Other metrics, e.g., Manhattan

7https://www.oxfordlearnersdictionaries.com/definition/english/list 1

71

https://www.oxfordlearnersdictionaries.com/definition/english/list_1

5. Problem of Incompleteness in Textual Requirements Specification

metric, using a subway or a taxi route, are complicated, too. As we can see, a simple
formulation of requirements can cause implementation problems. The description in detail
is out of the scope of this investigation.

5.5.2 Evaluation Example #2

We continue with the same software requirements specification as in the previous section.
This time, we investigate the functional requirement Nr. 1.6 stating “The search options
are price, destination, restaurant type, and specific dish.” Our tool maps these four options
as values of the search option attribute.

The functional requirement Nr. 1.8 contains the following rule: “When searching by a
search option other than price, the restaurants should be sorted according to the following
order: 1. distance, 2. average price, 3. restaurant type, 4. specific dish.” The order
represents a list where 3 of 4 values of the search option attribute are mentioned. The

values in enumeration pattern (Section 5.4.5.3) from the group D.4 is applied in such a
case. Therefore, our tool generates a warning regarding the missing value destination.
Based on this warning, the analyst can decide whether the distance is an expression of the
destination in this context, and if the meaning is clear.

5.5.3 Results

Table 5.1 summarizes the results of experiments of our presented incompleteness detection
approach using the data set introduced in Section 3.6.1. The results include word count
(for comparison with group S.1 results) and the frequency of matched patterns of groups
S.1, D.1, D.2, D.3 (where we focus on classes (entity candidates) with no relationship to
any other class), and D.4.

72

5.5.
E
x
p
erim

en
ts

an
d
R
esu

lts
Table 5.1: Evaluation of methods detecting incompleteness.

Case Words S.1 D.1 D.2 D.3 D.4

g02-federalspending 2,089 7 8 0 0 0
g03-loudoun 1,579 30 9 0 0 0
g04-recycling 1,287 11 7 0 0 0
g05-openspending 1,640 3 6 0 0 0

g08-frictionless 1,746 29 8 0 0 0
g10-scrumalliance 2,571 36 16 0 0 0
g11-nsf 1,749 10 6 1 0 0
g12-camperplus 1,397 22 7 0 0 0

g13-planningpoker 1,457 21 10 0 0 1
g14-datahub 1,841 13 6 0 0 0
g16-mis 1,536 18 11 0 0 0
g17-cask 1,627 4 5 0 0 2

g18-neurohub 2,200 25 15 0 0 0
g19-alfred 2,441 16 11 0 0 3
g21-badcamp 1,889 14 6 1 0 2
g22-rdadmp 2,246 20 7 0 0 1

g23-archivesspace 875 6 3 0 0 3
g24-unibath 1,464 7 4 0 1 0
g25-duraspace 2,015 15 11 0 1 0
g26-racdam 2,122 17 8 0 0 2

g27-culrepo 3,316 39 19 0 0 3
g28-zooniverse 1,060 4 6 0 0 0
P01. Blit 535 5 5 0 0 0
P02. CS179G – ABC Paint Project 1,199 7 10 1 1 0

P03. eProcurement 1,683 35 19 0 0 0
P04. Grid 3D 196 1 4 0 0 0
P05. Home 1.3 1,121 13 11 0 0 0
P06. Integrated Library System 1,974 84 34 0 0 273

5
.

P
r
o
b
l
e
m

o
f
In

c
o
m
p
l
e
t
e
n
e
ss

in
T
e
x
t
u
a
l
R
e
q
u
ir
e
m
e
n
t
s
S
p
e
c
if
ic
a
t
io
n

Case Words S.1 D.1 D.2 D.3 D.4

P07. Inventory 4,657 71 24 4 0 5
P08. KeePass Password Safe 466 4 7 1 0 0
P09. Mashbot 619 6 7 0 0 0
P10. MultiMahjong 1,759 32 17 0 0 2

P11. Nenios 944 53 10 0 0 3
P12. Pontis 5.0 Bridge Management System 4,395 34 26 0 0 0
P13. Public Health Information Network 2,988 99 32 1 0 5
P14. Publications Management System 2,546 72 21 0 0 1

P15. Puget Sound Enhancements 2,046 13 15 0 1 0
P16. Tactical Control System 5,855 21 23 1 0 1
P17. Tarrant County Integrated Justice Information System 1,763 63 12 0 0 0
P18. X-38 Fault Tolerant System Services 5,455 38 27 1 1 0

H01. CCHIT 2,430 26 29 0 0 0
H02. CM1 514 0 5 0 0 0
H03. InfusionPump 2,956 6 11 1 1 0
H04. Waterloo 11,810 80 48 1 0 1

C01. Amazing Lunch Indicator 3,241 51 22 0 0 3
C02. EU Rent 492 13 11 0 0 0
C03. FDP Expanded Clearinghouse Pilot 464 2 4 0 0 0
C04. Library System 1,779 38 16 0 0 2

C05. Nodes Portal Toolkit 2,239 4 7 0 0 0
C06. Online National Election Voting 3,240 96 24 4 6 1
C07. Restaurant Menu & Ordering System 896 6 7 0 0 0

74

Chapter 6

Problem of Inconsistency in Textual
Requirements Specification

This chapter reflects our publications:

� Šenkýř, D.; Kroha, P. Problem of Inconsistency in Textual Requirements Spe-
cification. In: Proceedings of the 16th International Conference on Evaluation of
Novel Approaches to Software Engineering. SciTePress, Porto, 2021. [A.4]

� Šenkýř, D.; Kroha, P. Patterns in Textual Requirements Specification. In: Pro-
ceedings of the 13th International Conference on Software Technologies. SciTe-
Press, Madeira, 2018. [A.10]

75

6. Problem of Inconsistency in Textual Requirements Specification

In this chapter, we investigate the inconsistency problem in the textual description of func-
tional requirements specifications. In the past, the inconsistency problem was investigated
using analysis of the UML models. We argue that some sources of inconsistency can be
revealed in the very first steps of textual requirements analysis using linguistic patterns
that we developed. We cluster the sentences according to their semantic similarity given
by their lexical content and syntactic structure. Our contribution focuses on revealing lin-
guistic contradictions (e.g., a combination of passive voice, antonyms, negated synonyms,
etc.) of facts and rules described in different parts of requirements together with contra-
dictions of the internally generated model.

6.1 Problem Statement

Textual requirements do not always contain consistent information about the system to
be constructed. The reason is that they might be written by independent groups of stake-
holders who have different interests, goals, backgrounds, and/or (incomplete) knowledge
of the domain.

The conflicts may erase in the case when more than one requirement, i.e., a set of
requirements, refers to the same object of the domain. It will be denoted as an overlap
between requirements [110].

In this chapter, we identify two kinds of the core sources of the inconsistency of textual
requirements. First, semantic overlaps of requirements sentences, e.g., at least two con-
tradicting assertions that concern the same subject and the corresponding verb with the
object exist. Second, the incompleteness of requirements discussed in the previous chapter.

Our goal is to reveal at least some of the inconsistencies and generate questions or
warning messages that have to be answered by domain experts and analysts. The answers
have to be used to edit the text of requirements.

The text of the requirements is the only source of information. We divided the text
analysis into two phases. The first phase builds a domain model from sentences using the
grammatical inspection (as proposed in Chapter 3) – see Example 6.1 in Section 6.3.2. The
second phase provides an analysis of sentences using our linguistic patterns with the goal
of finding contradictions in them. Part of it is the using information already stored in the
created domain model.

We use the part-of-speech and dependency analysis of sentences to construct the cor-
responding oriented graphs, and we analyze sentences that describe the same event. We
present our patterns that may indicate candidates for inconsistency.

6.2 Related Work

The problem of inconsistency of requirements specification has been investigated since the
late '80s [61]. As basic papers and surveys, we can denote [111] and [71].

76

6.3. Sources of Inconsistency

Some works are based on semi-formal specifications in the form of UML diagrams [123]
and use methods of formal specifications [103] to check the consistency. However, the
adoption of formal methods is still not widely accepted by industries [34]. Other works use
ontologies [77] or OCL [23].

Our approach uses informal specifications written in natural language. There is some
similarity to the approach described in [46]. The difference is that in [46], the authors
use only RDF triplets representation of the textual requirements specifications, whereas
we use the complete text. The knowledge represented in RDF consists of triplets ⟨subject,
predicate, object⟩. However, it reduces the semantic meaning of most sentences drastically
because of the omitted information carried by omitted words in sentences. We use a
structure similar to RDF triplets only to cluster sentences.

Computational linguistics is engaged in a problem of text entailment (in query an-
swering). The edit distance of two sentences (text and hypothesis) is used as a measure.
A similar approach to the contradiction of two sentences is used in [27] – see Section 6.3.1.1.
The difference to our approach is that linguists do not use the information stored in the
domain (UML) model [104] – see Example 6.1 in Section 6.3.2 to check the completeness
that can be a source of inconsistency.

6.3 Sources of Inconsistency

In our investigation, we distinguish the following sources of inconsistency: inconsistency
caused by semantic overlaps of sentences (Section 6.3.1), inconsistency caused by incom-
pleteness (Section 6.3.2), and inconsistency caused by external information. We do not
discuss the last case here because we analyze it in the next chapter regarding default
consistency rules.

6.3.1 Semantic Overlaps as Sources of Inconsistency

The idea of inconsistency starts from the intuitive concept of contradiction, which means
that a statement and its negation are found to hold simultaneously [46]. A semantic
overlap between two sentences occurs if these two sentences express their statements about
the same situation. The problem is how to reveal the contradiction of statements because
they are often expressed in some “camouflaged” forms using synonyms, antonyms, and
other “linguistic tricks” (Section 6.3.1.1).

6.3.1.1 The Linguistic Sources of the Inconsistency

In [27], there is a list of contradiction types from a linguistic point of view. We have
adapted it for the purposes of our patterns as follows:

� using antonyms,

� using a negation,

77

6. Problem of Inconsistency in Textual Requirements Specification

� using a combination of synonyms together with changed roles of subject and object,
passive voice, and negation, e.g., “the user can edit a document” contra “the user
cannot correct a document in this mode” (here, we suppose that the verbs “to edit”
and “to correct” have the same meaning) contra “a document cannot be corrected
by the user”,

� using numerically different data, e.g., “you will start the function by double click”
contra “you will start the function by one click”,

� using factive contradiction in the sense of attributes of the subject,

� using lexical contradiction, e.g., “to obtain results stay joined and wait” contra “to
obtain results restart the application” contra “to obtain results restart the system”,

� using world knowledge to indicate the contradiction, e.g., “there is public access to
your private data”.

Additionally, some words may change, influence, or limit the sense of the sentence, e.g.,
but, except, however, instead of, when, so that, that.

6.3.2 Inconsistency between the Text and the UML Model

Using the grammatical inspection in the first phase of our process, we construct a skeleton
of the domain (UML class) model, e.g., classes, attributes and their values, and methods.
When we later compare the sentences in which the attribute and its values are mentioned,
we test whether all attribute values are mentioned in formulations defining decisions about
the object’s behavior. If some of them are not mentioned, then this incompleteness can
cause inconsistency because it may happen that the behavior is not defined for the missing
attribute values. Further, we test whether the chains of applied methods are the same
in sentences of similar semantics – see Example 6.2. In this way, we can find conflicts
among descriptions of instances, classes, and relations of the static model and also among
descriptions of the sequence diagram and state diagram of the dynamic model. We search
for sentences that describe the same event and compare them. More details are given in
Section 6.4.1.

In general, we suppose that the textual description of the requirements specification
may contain:

� the sentence S1, in which an attribute value of an object O is expected to be V1 to
start a specific action A in a specific context Cont,

� the sentence S2, in which an attribute value of an object O is expected to be V2 to
start the same specific action A in a specific context Cont.

In the following Example 6.1, we show a situation of the constructed domain model con-
cerning the same specific action A, the same object O, and different attributes and their
values.

78

6.4. Our Approach

Example 6.1: Attributes of a button.

Maybe the following sentences are a part of a requirements specification:
1. To exit the application, the user has to press the red button.
2. To exit the application, the user has to press the square-shaped button.
3. To exit the application, the user has to press the “Exit” button.

Analyzing these requirements, we can derive a class called Button , which has the

following attributes: color , shape , and label .

These sentences as part of the requirements are confusing, but they are not incon-
sistent because a red, square-shaped button with the label “exit” may exist, i.e., it is
possible to construct an object of the Button class, whose attributes color , shape ,

and label have the described values.
Our task is to generate a message saying that there is a suspicion of inconsistency.

In any case, this is not a preferred style of writing textual requirements.

Another case, we found, concerns the sequence of actions that is stored in a sequence
diagram. If the chain of actions differs in different sentences that should have the same
effect, we generate a warning message.

Example 6.2: A missing segment in a chain of actions.

Sentence 1: To edit a file, the user has to open the file, make changes, save the file (or
save the file as), and close the file.

Sentence 2: To edit a file, the user has to open the file, make changes, and close
the file.

6.4 Our Approach

Our motivation and goal are to identify suspicious textual formulations that could be the
source of inconsistency.

The idea of our approach is shown in Fig. 6.1. The basic structure is given by subject–
verb–object. However, they can be expressed by related synonyms, antonyms, direct neg-
ation, and numerical data. So, the spectrum of possible descriptions of one statement is
semantically very rich. Our patterns should reveal it. Practical examples of data used for
experiments are given in Section 6.5.1.

79

6. Problem of Inconsistency in Textual Requirements Specification

Figure 6.1: The idea of inconsistency patterns.

6.4.1 Model Construction and Semantically Similar Sentences

For our methods, the sentences containing the standard couple of subject and verb or the
to-infinitive clauses are interesting. We benefit from mapping such sentences to acts. One
reason is that one sentence can represent multiple acts. Our act is a tuple containing the
original subject of the sentence, the original verb of the sentence, the original object of
the sentence, an indicator of whether the sentence contains negation, an auxiliary verb if
present, an adverbial modifier (e.g., automatically) if present, a predicate (e.g., only one,
each) if present, a condition act if present, what is the point of interest if recognized, who
is responsible for the action if recognized.

To reduce the complexity of the analysis, we define semantically similar acts as follows:

� C1: acts having the same subject, verb, and object,

� C2: acts having the same subject and verb (passive mode),

� C3: acts having the same subject (passive mode),

� C4: acts having the same subject and object,

� C5: acts having the same what-part and verb.

In the following presented sentence patterns, we reuse the already introduced graphical
representation (as shown in Chapter 3) involving part-of-speech tags and dependency types.
Also, we reuse the shortened notation NN* , representing the usual situation when a com-
position of several nouns represents subjects and objects.

80

6.4. Our Approach

In the first phase, we need to consider the following steps.

� Negation recognition. We check the pure negation of verbs (can–can not–can’t) or
compound nouns via Pattern in Fig. 6.2. In Fig. 6.3, there is this pattern matched
as a part of matching standard subject–verb–object(s) pattern.

not *
PART NN*/VB

neg

Figure 6.2: Pattern #1 (pure negation).

Students may borrow books but not proceedings.
NN* AUX VB NN* CC PART NN*

ccaux dobj neg
nsubj conj

Figure 6.3: Matched pattern #1 (pure negation).

Besides the not part, there are other words influencing the negation of meaning. Let
us show the pattern of the word except in Fig. 6.4 as an example.

except *
CC NN*

pobj

Figure 6.4: Pattern #2 (“except”).

� Coreference recognition. Clustering of sentences based on subject or object is chal-
lenging because of the coreferences of pronouns. This means that we are not simply
looking for all sentences that have the same subject or object.

� Predicates recognition. We identify parts of sentences that describe predicates –
numeric ones (see Fig. 6.5) or determiner ones (see Fig. 6.6).

only one system administrator
ADV NUM NN*

advmod nummod

Figure 6.5: Pattern #3 (numeric predicate).

each system administrator
DT NN*

det

Figure 6.6: Pattern #4 (determiner predicate).

The determiner should be represented by words like each, every, all, any, etc. We
use the simple first-order logic definition saying that a predicate is a statement about

81

6. Problem of Inconsistency in Textual Requirements Specification

the properties of an object that may be true or false depending on the values of its
variables. Predicates can affect actors of relations, as with the relation “borrow” in
the example sentence in Fig. 6.7 or aspects and limits of classes via the auxiliary verb
“be” (see Fig. 6.8). Mapped predicates also may indicate cardinalities of relations
between actors or objects. We find predicates concerning the same objects and the
same attributes.

Each member can borrow magazines.
DT NN AUX VB NN

auxdet dobj
nsubj

Figure 6.7: Relation actor predicate.

penalty is same for all users
NN* AUX ADJ ADP DT NN*

attr prep detrelcl
pobj

Figure 6.8: Pattern #5 (predicate and auxiliary verb).

� Condition recognition. Describing actions often includes a conditional part. The
conditional parts of two sentences may have the same subject–verb–object. If one
sentence considers the positive case and another sentence considers the negative case,
then there would be a conflict generating a warning because of the negation of the
action. We use these conditional parts as separate conditional acts (affecting standard
acts) in the conflict resolution of the standard acts.

6.4.2 Example – Library Information System

To discuss our approach, we use and extend the simple example of Library information
system requirements taken from [110].

Example 6.3: Library information system: functional requirements.

FR 1. Users of the Library information system are students and staff members.

FR 2. Users borrow books.

FR 3. Holding an item is limited in time.

FR 4. Holding an item beyond the time limit carries a penalty, which is the same for
all users.

FR 5. Students may borrow books but not proceedings.

82

6.4. Our Approach

FR 6. Staff members can borrow both books and proceedings.

FR 7. Students may borrow an item for up to 10 days. Holding an item beyond this
period carries a penalty of 50 p per day.

FR 8. Staff members can borrow an item for up to 30 days. Holding an item beyond
this period carries a penalty of 10 p per day.

FR 9. Each user except an administrator needs to change his/her password every three
months.

The purpose of this example is to show the contradiction caused by teaching students.
To reduce the ambiguity of the previous intentionally worded sentence, we state that we
mean students who study and teach at the same time. We use this situation to illustrate
our approach. When using an algorithm to analyze these textual requirements instead of
a human being analyst (like in [110]), we can see the following problems.

1. In FR 1, there are two missing rules. In the next chapter, we call them default
consistency rules. The first default consistency rule is “All information systems need an
administrator, who is a unique, specific user”. The second default consistency rule is
“All libraries need library staff members, who are specific users of the library information
systems, too”.

So, the set of users is incomplete, and it has to be completed. In this case, we model the
classes and the is-a relationship between a user (as a superclass) and subclasses student
and university-staff-member. Then, we generate a question asking about the completeness
of this relation, i.e., whether the superclass user has only these two mentioned subclasses.
The right answer contains not only the missing administrator and the missing library staff
member but also the missing teaching students. After the subclasses administrator, library
staff member, and teaching student1 are included in the requirements, our tool TEMOS will
complain of incompleteness because the loan time periods and penalties are not defined
for these three subclasses.

2. In FR 2, the formulation “Users borrow books” is misleading because users not only
borrow books. They hold them and have to return them, too. Without this information,
the time limit mentioned in FR 4 and the period mentioned in FR 7 and FR 8 make no
sense. Using linguistic analysis, we find that there are only the verbs “borrow” and “change
(the password)”. Here, we can see the incompleteness as the source of the inconsistency
again.

3. In FR 3, this formulation is understandable to a human being but not to an
algorithm. “Holding an item” means “holding a borrowed item”. Also, it should be stated
that the item represents a book and a proceeding in this context. The domain expert
should improve the formulation: “Users borrow books or proceedings, hold them, and
return them.”

4. In FR 5, the pattern #1 (pure negation) matches the statement as shown in Fig. 6.3.

1It would be even better to design this using roles.

83

6. Problem of Inconsistency in Textual Requirements Specification

5. In FR 7 and FR 8, we can detect an inconsistency with FR 4. Either all library
users pay the same penalty, or a different penalty is applied according to the library user
status.

6. In FR 9, there is pattern #4 (determiner predicate) matched twice (“each user” and
“every three months”) and pattern #2 (except) is matched once.

6.5 Experiments and Results

In this section, we first present the data used in our inconsistency checks. Second, we
present an evaluation of our proposed methods using the entire dataset (Section 3.6.1) in
the form of the frequency of detected issues.

6.5.1 Data

We decided to focus on antonyms; negations; a combination of synonyms together with
swapped roles of subject and object, passive voice, and negation; and numerically different
data described in Section 6.3.1.1.

6.5.1.1 The List of Antonyms

The list of antonyms used to test the inconsistency: source—destination, first—last, all—
selected, open—close, at the front—at the end, send—receive, numeric—alphabetic, high—
low, valid—invalid, insert—delete, locked—unlocked, unique—duplicated, chronologically
sorted—alphabetically sorted, able—unable, in only one—in one or more, private—public,
at the bottom—at the top, expanded list—reduced list, upper-right corner of the window—
upper-left corner of the window, undo command—redo command, enable—disable, more—
less, appear—disappear, manually—automatically.

6.5.1.2 The List of Negations

The list of negations used to test the inconsistency:

� simple negations of verb forms (modal verbs, e.g., “it is the same”, “it is not the
same”, standard verbs, e.g., “it exists”, “it does not exist”),

� negation of the similar meaning, e.g., “imported data can’t be modified” contra “you
can modify the imported data”,

� complex negations of the sentence meaning, e.g., “you can display it if you are in the
review mode” contra “you can display it at any time”.

84

6.5. Experiments and Results

6.5.1.3 The List of Numerically Different Data

The numerical data can be given by digits, by words, or by other means, e.g., Max-Int.
We test similar sentences and generate warnings when some suspicious formulations are
found. For example: “There is an unused field that should be set to zero.” contra “There
is an unused field that should be set to Max-Int.”

The numerically different data also includes statements about object uniqueness, as
shown in the following example.

Example 6.4: A unique object.

Sentence 1: The system has only one system administrator.
Sentence 2: All system administrators have the same access rights, but each of them
has his/her password.

Here, pattern #3 (numeric predicate) is matched as shown in Fig. 6.9. We generate
a warning message because “only one system administrator” in the first sentence and
“all” and “each of them” (system administrators) in the second sentence contradict
each other.

Pattern #4 (determiner predicate) is matched two times. First, it is applied in the
part “All system administrators”. Second, it is applied in the part “each of them”
when the co-reference to system administrators is resolved.

The system has only one system administrator.
DT NN AUX ADV NUM NN*

advmoddet nsubj nummod
dobj

Figure 6.9: Consistency rule from Example 6.2.

6.5.1.4 The Incomplete List of Items

We identify this source of inconsistency using the domain (UML) model that we obtained
in the first phase of the processing. In the model, the attribute values are given by a list
of values, but in some sentences, only a subset of them is mentioned. Often, this is a
signal that a reaction to some state of the system has been forgotten. In this case, the
incompleteness (as described in the previous chapter) is the source of the inconsistency.

6.5.2 Results

Table 6.1 summarizes the results of experiments of our presented inconsistency detection
approach using the data set introduced in Section 3.6.1. The results include a breakdown
according to individual clusters defined in Section 6.4.1, where we present the count of each

85

6. Problem of Inconsistency in Textual Requirements Specification

cluster for each case of the data set, the cardinality of each cluster (the column “card.”),
and the number of detected issues in each cluster (the column “is.”).

86

6.5.
E
x
p
erim

en
ts

an
d
R
esu

lts
Table 6.1: Evaluation of methods detecting inconsistency.

C1 C2 C3 C4 C5
Case count card. is. count card. is. count card. is. count card. is. count card. is.

g02-federalspending 4 2–3 0 0 0 0 0 0 0 10 2–7 0 2 2–3 0
g03-loudoun 4 2–2 0 0 0 0 0 0 0 11 2–4 0 5 2–2 0
g04-recycling 1 3–3 0 0 0 0 0 0 0 4 2–3 0 1 3–3 0
g05-openspending 1 2–2 0 0 0 0 0 0 0 3 2–2 0 1 2–2 0

g08-frictionless 6 2–12 0 0 0 0 0 0 0 5 3–14 0 2 2–11 0
g10-scrumalliance 11 2–4 0 0 0 0 1 2–2 0 20 2–7 0 9 2–4 0
g11-nsf 4 2–2 0 1 2–2 0 0 0 0 7 2–2 0 4 2–2 0
g12-camperplus 2 2–2 0 0 0 0 0 0 0 2 2–2 0 1 2–2 0

g13-planningpoker 5 2–3 0 0 0 0 0 0 0 9 2–8 0 4 2–3 0
g14-datahub 5 2–3 0 0 0 0 0 0 0 6 2–19 0 6 2–3 0
g16-mis 1 3–3 0 0 0 0 0 0 0 4 2–3 0 1 3–3 0
g17-cask 12 2–6 1 0 0 0 1 2–2 0 15 2–9 2 12 2–4 0

g18-neurohub 7 2–18 0 0 0 0 0 0 0 12 2–18 0 7 2–18 0
g19-alfred 16 2–24 0 0 0 0 0 0 0 20 2–35 0 13 2–24 0
g21-badcamp 8 2–6 0 1 2–2 0 0 0 0 12 2–8 0 7 2–6 0
g22-rdadmp 6 2–6 0 6 2–4 0 2 2–2 0 14 2–6 0 13 2–6 0

g23-archivesspace 6 2–4 0 1 2–2 0 0 0 0 8 2–5 0 6 2–2 0
g24-unibath 7 2–3 1 0 0 0 0 0 0 10 2–7 1 8 2–2 0
g25-duraspace 7 2–4 0 0 0 0 1 2–2 0 12 2–7 0 6 2–4 0
g26-racdam 4 2–5 0 0 0 0 1 2–2 0 18 2–11 0 4 2–5 0

g27-culrepo 7 2–3 0 2 2–2 1 1 3–3 0 16 2–6 0 9 2–3 0
g28-zooniverse 6 2–3 0 0 0 0 0 0 0 7 2–4 0 6 2–3 0
P01. Blit 3 2–2 0 0 0 0 0 0 0 2 2–4 0 0 0 0
P02. CS179G. . . 1 2–2 0 0 0 0 0 0 0 1 2–2 0 0 0 0

P03. eProcurement 6 2–2 0 5 2–2 0 1 2–2 0 8 2–2 0 8 2–4 0
P04. Grid 3D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P05. Home 1.3 2 2–2 0 0 0 0 0 0 0 2 2–2 0 3 2–3 0
P06. Integrated. . . 7 2–4 0 0 0 0 1 2–2 0 7 2–7 0 0 0 0

87

6
.

P
r
o
b
l
e
m

o
f
In

c
o
n
sist

e
n
c
y
in

T
e
x
t
u
a
l
R
e
q
u
ir
e
m
e
n
t
s
S
p
e
c
if
ic
a
t
io
n

C1 C2 C3 C4 C5
Case count card. is. count card. is. count card. is. count card. is. count card. is.

P07. Inventory 39 2–20 2 8 2–11 1 3 3–6 0 40 2–20 2 23 2–11 0
P08. KeePass. . . 1 2–2 0 2 2–3 0 2 2–3 0 1 2–2 0 3 2–3 0
P09. Mashbot 1 2–2 0 0 0 0 1 2–2 0 1 3–3 0 0 0 0
P10. MultiMahjong 8 2–5 1 0 0 0 1 2–2 0 9 2–6 1 1 2–2 0

P11. Nenios 1 2–2 1 0 0 0 1 2–2 0 4 2–2 1 1 3–3 0
P12. Pontis 5.0. . . 10 2–6 0 4 2–4 0 3 2–2 0 10 2–6 0 5 2–4 0
P13. Public. . . 8 2–9 0 2 2–4 0 3 2–2 0 9 2–9 0 7 2–8 0
P14. Publications. . . 15 2–5 0 1 2–2 0 0 0 0 17 2–5 0 4 2–3 0

P15. Puget. . . 4 2–2 0 2 2–2 0 1 2–2 0 5 2–4 0 2 2–2 0
P16. Tactical. . . 13 2–33 0 0 0 0 2 2–2 0 12 2–47 0 2 2–3 0
P17. Tarrant. . . 7 2–8 0 1 2–2 0 1 2–2 0 11 2–12 0 1 3–3 0
P18. X-38 Fault. . . 35 2–8 1 11 2–8 2 3 2–3 0 40 2–8 1 17 2–8 0

H01. CCHIT 10 2–7 1 1 2–2 0 4 2–2 0 20 2–9 1 2 2–2 0
H02. CM1 0 0 0 0 0 0 1 2–2 0 3 2–2 0 0 0 0
H03. InfusionPump 11 2–5 1 2 3–4 0 4 2–2 0 13 2–5 1 6 2–4 0
H04. Waterloo 92 2–131 1 3 2–3 0 12 2–7 1 84 2–164 3 16 2–16 0

C01. Amazing. . . 7 2–7 0 4 2–16 0 3 2–4 0 17 2–7 0 12 2–17 0
C02. EU Rent 2 2–4 0 0 0 0 0 0 0 2 2–4 0 0 0 0
C03. FDP. . . 0 0 0 1 3–3 0 1 3–3 0 0 0 0 1 3–3 0
C04. Library System 8 2–6 0 5 2–3 0 3 2–10 0 9 2–6 0 11 2–3 0

C05. Nodes. . . 18 2–6 0 0 0 0 0 0 0 28 2–19 0 0 0 0
C06. Online. . . 17 2–7 0 1 2–2 0 2 2–2 0 23 2–7 0 3 2–4 0
C07. Restaurant. . . 3 2–4 0 0 0 0 0 0 0 4 2–4 0 1 2–2 0

Legend: C1, C2, C3, C4, C5 – clusters defined in Section 6.4.1, card. – the cardinality of each cluster, is. –the number
of detected issues in each cluster

88

Chapter 7

Problem of Default Consistency Rules in
Textual Requirements Specification

This chapter reflects our publications:

� Šenkýř, D.; Kroha, P. Problem of Inconsistency and Default Consistency Rules.
In: New Trends in Intelligent Software Methodologies, Tools and Techniques. IOS
Press, Amsterdam, 2021. [A.3]

� Šenkýř, D.; Kroha, P. Problem of Semantic Enrichment of Sentences Used in Tex-
tual Requirements Specification. In: Advanced Information Systems Engineering
Workshops. Springer, Cham, 2021. [A.5]

89

7. Problem of Default Consistency Rules in Textual Requirements
Specification

Incompleteness and inconsistency are well-known defects of textual requirements. Some
missing parts are detectable as we proposed in the previous chapters, e.g., when the state
of the object is, by definition, described using four different values, but the connected use
case scenarios are prepared only for three values out of four.

However, some missing rules and definitions are not detectable just based on the
provided text because the indicators are missing in the text. In some situations, the
authors of the requirements forgot them by mistake. Nevertheless, in some situations,
they do not mention them intentionally because they think that the rules and definitions
are so obvious. This may not be true for teams with different problem domain knowledge.
We dedicate this chapter to such types of missing parts, and we present our approach using
the existing web application.

7.1 Problem Statement

In this chapter, we focus on such facts and rules that are so obvious to domain experts that
they do not even mention them to the analysts during the discussions about the product
to be constructed. However, what is very obvious to stakeholders may not be obvious to
analysts. We call such rules default consistency rules. The problem is that they are not
described in the textual description of requirements, i.e., we cannot simply use the analysis
concerning inconsistency as we have done it in the previous chapter.

The missing description of the default consistency rules represents incompleteness of
the requirements, and it causes inconsistency with all unpleasant consequences. In this
section, we describe our approach to the problem of how the missing information can be
identified in requirements and how it can be found (sometimes) in external sources. We
show a motivational example and explain our method.

Our solution is based on the assumption that the missing default consistency rules
can be found somewhere in external sources of information, e.g., on the Web, and then
linked to the text of requirements to enrich them. After this replenishment phase is done,
we analyze the completed text of requirements using our methods that we developed to
identify inconsistency of textual requirements, as proposed in Chapter 6.

This problem is complex because we cannot always find such rules in external sources
explicitly. We need to provide text mining of web pages that concern the same semantic
context as the expected system’s functionality.

7.2 Case Study – Part 1:
Missing Consistency Rules in Chords Generation

To introduce the default consistency rules concept and to prove its existence, we show a
practical example taken from an existing application.

We found a web application [21] that generates chords for 4-string instruments. We use
it to illustrate the problem to be solved. We do not have access to its textual requirements

90

7.2. Case Study – Part 1:
Missing Consistency Rules in Chords Generation

Figure 7.1: Example of a not playable chord. [21]

specification, but we can see the results, i.e., we can see that one of the default consistency
rules was not included in the requirements. In Fig. 7.1, it should be shown how to play
the chord Ebm9 on a 4-string banjo with tuning C-G-D-A.

The problem is that the fingering shown in Fig. 7.1 is not realistic because no musician
has such a wide finger span to play tones in position three and position ten simultaneously.
The authors of the application have seen it and solved this mistake by a notice (see the
arrow in the figure): “All chords are calculated and therefore may not be playable!”.
However, users usually look for playable chords.

So, the default consistency rule – “All chords have to be playable” – is missing, i.e., it
has been forgotten because it is obvious to domain experts.

7.2.1 Chord Generation Requirements

Suppose we have to specify a program generating chords fingering for 4-string music in-
struments. Besides the rules of the chord construction, we have to include the default
consistency rule: “The generated chords have to be playable. The playability of a chord
means that all chord tones come from different strings simultaneously (Fig. 7.2), and the
finger span over positions is limited to 4.”

91

7. Problem of Default Consistency Rules in Textual Requirements
Specification

Now, we suppose to know the missing rules, and we explain how to find them semi-
automatically. We list the basic properties of playable chords and denote them as missing
default consistency rules.

� Default consistency rule No. 1:

The chord tones sound simultaneously (we abstract from arpeggio at this moment),
i.e., every tone of a chord has to be played on a unique string if they should sound sim-
ultaneously. This means that we have to omit all automatically generated solutions
in which there is more than one tone on one string (see Fig. 7.2).

� Default consistency rule No. 2:

The chord fingerings on the fingerboard respect the limited hand span of musicians,
i.e., the chord finger positions on the fingerboard have to be in a specific frame of
finger span, e.g., 1–4, because of the realistic finger span of musicians (see Fig. 7.1).

In the following parts of this chapter, we introduce our method that consists of searching
for additional information in external sources to enrich the requirements.

Figure 7.2: Example of a not playable chord – three tones on one string.

7.2.2 Our Approach – Using External Context to Identify the Missing
Default Consistency Rules

Our method consists of collecting and importing such sentences from web sources (e.g.,
Wikidata, Wordnik, etc.) that have a semantic similarity with the topic described in the
textual requirements. We cluster these sentences and analyze them to find some semantic
enrichment that could be used to reduce the incompleteness of the requirements.

7.2.3 Construction of Pseudo-Questions

We define pseudo-questions as patterns that are partially filled in by:

� words, their types, and their syntactic roles in a sentence,
e.g., ⟨chord, noun, SUBJECT⟩,

� empty containers that match any part of a sentence based on the restrictions.

These are definitions of pseudo-questions used when revealing semantic enrichment regard-
ing a concrete noun N :

92

7.2. Case Study – Part 1:
Missing Consistency Rules in Chords Generation

� Pseudo-question Type 1:
optional ⟨any adjective⟩
⟨N , noun, SUBJECT⟩
⟨is, verb, PREDICATE⟩
⟨empty container, noun, OBJECT⟩

� Pseudo-question Type 2:
⟨empty container, noun, SUBJECT⟩
⟨is called, verb, PREDICATE⟩
optional ⟨any adjective⟩
⟨N , noun, OBJECT⟩

� Pseudo-question Type 3:
⟨N , noun, SUBJECT⟩
⟨empty container, verb, PREDICATE⟩
⟨empty container, noun, OBJECT⟩

7.2.4 Semantic Similarity of Sentences

The evaluation of semantic similarity between two sentences belongs to the most important
tasks in natural language processing and the derived topics like information retrieval, text
mining, and query-answer systems.

Generally, the semantic similarity of two sentences determines how similar the meaning
of two sentences is. In paper [114], there are given some definitions of semantic similarity
of sentences (semantic similarity between words of the sentences like cosine similarity, and
syntactic measures like path-based approach or feature-based approach).

We need to measure the semantic similarity of sentences in the third step of our Al-
gorithm 7.1 (Section 7.2.6). We use only a very simple method based on RDF, i.e., in the
external sources, we search for sentences containing the same triplet ⟨subject, predic-
ate, object⟩ or their subsets as our pseudo-question. However, the process is not simple
because of synonyms, antonyms, negations, co-reference, and other linguistic challenges
that influence sentence meaning. Each pseudo-question is a seed of a cluster, to which we
cluster the found semantically similar sentences.

7.2.5 Semantic Enrichment of Sentences

To find the semantic enrichment of sentences, we compare each pseudo-question with sen-
tences in its cluster. The goal is to find enrichment but exclude a sentence with the same
meaning. We have proposed our measure of semantic enrichment based on graph repres-
entation in [A.5]. It contains its lexical part (node names) and its structural part (roles
of nodes and edges representing sentence structure). We use the graph representation as
node-node matrices and denote the matrix of the pseudo-question as G0 and the matrices
of sentences in a cluster as G1, G2, . . . Then we investigate whether the graph G0 is a

93

7. Problem of Default Consistency Rules in Textual Requirements
Specification

subgraph of graphs G1, G2, . . . of sentences in the corresponding cluster. If we find such
cases, we hold the differences G1 − G0, G2 − G0, . . . for semantic enrichments of G0, i.e.,
semantic enrichments of the pseudo-question.

Based on these semantic enrichments (additional nodes and edges), we generate a ques-
tion asking a human analyst and domain expert to which extent these enrichments should
be included in the next version of the requirements.

7.2.6 The Process of Semantic Enrichment of Sentences

The whole semantic enrichment process runs iteratively, and it includes the steps illustrated
in the following algorithm.

Algorithm 7.1: The semantic enrichment of sentences.Algorithm 7.1: The semantic enrichment of sentences.

1. information extraction from sentences in the original requirements

2. searching and clustering similar sentences from external sources

3. information extraction from the found similar sentences

4. identification and extraction of semantic enrichment from the found sentences

5. linguistic inference (replaced by a human intervention here)

Once the analyst completes the enrichment phase, we can analyze the completed text using
our inconsistency patterns. We discussed the problems of requirements inconsistency in the
previous chapter, and we developed some patterns that indicate inconsistency of textual
requirements. It may be used for the next iteration.

Below, we describe each step of Algorithm 7.1.

7.2.6.1 Step 1: Information Extraction from Original Requirements

The first goal is to the identify entity and attribute candidates represented by nouns. We
describe the corresponding method in Chapter 3. We eliminate all such nouns that have
too general meaning, e.g., application. Such nouns are used in many projects, and they do
not carry the semantic information typical for the specific project.

7.2.6.2 Step 2: Searching and Clustering Similar Sentences

We generate pseudo-questions (Section 7.2.3) from selected nouns from the previous step.
Our pseudo-questions are patterns, not questions in the sense of linguistics. The goal of
this step is to find sentences in external information sources that have semantic similarities
with the generated pseudo-questions. To complete the missing knowledge, we use the
following resources (hereinafter referred to as proposed information sources):

94

7.2. Case Study – Part 1:
Missing Consistency Rules in Chords Generation

� knowledge bases, e.g., Wikidata, including dictionaries, e.g., Wordnik [129],

� a Web search engine, e.g., Google,

� internal company documents with definitions, if available.

Thus, obtained sentences are then clustered with the extracted part from the first step,
depending on the type of pseudo-question.

When this level of clustering is done, we introduce the second level of clustering using
subject and object, both including optional adjectives. This clustering is beneficial because
two different sentences should have the same semantic meaning. For example, let us use
sentences matching pseudo-question type 1 and type 2.

� “A chord is a harmonic set of tones.”

� “A harmonic set of tones is called a chord.”

In the end, both sentences contain the same semantic information. The second level of
clustering eliminates such duplicates.

Of course, we need to omit the duplicates on both levels of clustering. There is a chance
of clustering similar sentences with the same semantic meaning, such as already included
sentence extracted from the original requirements.

7.2.6.3 Step 3: Information Extraction from Similar Sentences

On the level of clusters created in the previous step, we find the important differences
in the added sentences found by the pseudo-questions. We expect to find a semantic
enrichment (Section 7.2.5) of pseudo-questions, e.g., different definitions or some additional
properties of entities presented as adjectives that are used in external sources but not in
the requirements to the same nouns.

7.2.6.4 Step 4: Enrichment

In this step, we propose the insertion of the missing information, i.e., the information of
semantic enrichment, into the textual requirements. The hints that could potentially enrich
the text of requirements are given to a human expert – it is then their task to complete
the text of requirements.

The number of external information sources used for the semantic enrichment is one
of the factors of scalability. As the number of resources grows, the number of possibly
generated hints increases. Therefore, we sort the collection of hints. First, we consider
hints where the same semantic information came from multiple sources and was clustered
into a single hint. Then, we prioritize hints that came from knowledge bases, dictionaries,
or internal documents (if available) over hints from a plain Web search.

95

7. Problem of Default Consistency Rules in Textual Requirements
Specification

7.2.6.5 Step 5: Human Intervention

The result of the last steps is a generation of questions on domain experts and analysts,
who decide how to fill in the information gaps in the requirements.

7.3 Case Study – Part 2: Applying Our Approach

The missing default consistency rule: “The chords have to be playable” appears in external
information sources clearly. For example, the playability of chords is mentioned in [95] as
a property of chords: “. . . but the number of playable chords is very large and depends on
the players.” There is the adjective playable used together with the noun chord.

As described above, we split this default consistency rule into two default consistency
rules on a more detailed level.

7.3.1 The Missing Consistency Rule No. 1

In this section, we show how to find the missing default consistency rule No. 1: “The chord
tones sound simultaneously.” It means the generated tones cannot be played on the same
string. We start by searching for nouns in descriptions of the project defined in Section
7.2.1, because they have the main impact on semantics.

In the very brief description (Specification 1), we find only nouns: application, chord,
and 4-string music instrument. From the linguistic point of view, the words 4-string music
instrument is not a single noun, but it represents the concept of biwords from information
retrieval, such as New York. It means that these three words (4-string music instrument)
are used to denote one object.

In the brief description of the project goal (Specification 2) in Section 7.2.1, we find
nouns: application, definition, chord, type, scale, user interface, tuning, 4-string music
instrument, chord diagram, finger position, fingerboard.

The nouns application, definition, type, scale, user interface, and program are contained
in all requirements specifications, so they can be eliminated: they are not typical for the
context-specific semantics, i.e., they do not contribute to the unique semantics of the given
project. Thus, we skip these nouns.

We suppose that the nouns chord, tuning, 4-string instrument, chord diagram, finger
position, and fingerboard build the set of words that can be used to find the context of our
project in external sources.

Now, we illustrate the steps of our method that we described in Algorithm 7.1 (Sec-
tion 7.2.2).

7.3.1.1 Step 1: Information Extraction from Original Requirements

As described, we identify all entity and attribute candidate nouns in the textual description
of requirements, and we skip the general ones. This way, we got these nouns: chord, tuning,
string instrument, chord diagrams, finger position, and fingerboard.

96

7.3. Case Study – Part 2: Applying Our Approach

7.3.1.2 Step 2: Searching and Clustering Similar Sentences

We use our specific patterns, called pseudo-questions (Section 7.2.3), that are construc-
ted to find a definition. When we consider the noun chord, it looks like this:

� Pseudo-question Type 1:
optional ⟨any adjective⟩
⟨chord, noun, SUBJECT⟩
⟨is, verb, PREDICATE⟩
⟨empty container, noun, OBJECT⟩

– Example of typically matched sen-
tence: “A ⟨optional adjective⟩
chord is a ⟨any rest of the sentence
including object⟩.”

� Pseudo-question Type 2:
⟨empty container, noun, SUBJECT⟩
⟨is called, verb, PREDICATE⟩
optional ⟨any adjective⟩
⟨chord, noun, OBJECT⟩

– Example of typically matched sen-
tence: “⟨any begin of the sen-
tence including subject⟩ is called
a ⟨optional adjective⟩ chord.”

� Pseudo-question Type 3:
⟨chord, noun, SUBJECT⟩
⟨empty container, verb, PREDICATE⟩
⟨empty container, noun, OBJECT⟩

– Example of typically matched sentence:
“A chord ⟨any predicate⟩ ⟨any rest of the sentence including object⟩.”

7.3.1.3 Step 3: Information Extraction from Similar Sentences

To find the missing information, we assume that such information exists in one or more
proposed information sources. Querying the sources, we try to find a definition for each
noun on the list, e.g., for the noun chord:

� “A chord is a combination of three or more tones sounded simultaneously” [20],

� “When three or more notes are sounded together, the combination is called a
chord” [20],

� “A chord, in music, is any harmonic set of usually three or more notes (also called
“pitches”) that is heard as if sounding simultaneously” [20].

7.3.1.4 Step 4: Enrichment

Hereafter, we compare our artificial definition and the definition(s) found. Then, we convert
the difference into a question. The generated questions (for our case study):

1. The difference between the chord concept found in the requirements and the chord
concept found in proposed information sources is the property described by:

a) “a chord is a harmonic set of notes” −→ what does mean harmonic?

97

7. Problem of Default Consistency Rules in Textual Requirements
Specification

b) “tones sounded simultaneously” or “notes sounded together” or “notes often
sounded together”
−→ tones equals notes?
−→ simultaneously equals together?
−→ chord means together?
Here, we can reuse our approach of synonyms recognition, as presented in
Chapter 4.

2. Is there a rule that has to be satisfied due to the chord has this property?

3. Should this rule be included into the set of the consistency rules of the requirements?

7.3.1.5 Step 5: Human Intervention

The answers formulated by a domain expert (exemplified, again, for our case study):

1. “If you want to play a chord as one sound, then each tone of the chord has to be
played on a unique string.”

2. “If you want to play a broken chord (or arpeggio), then each tone of the chord may
or may not to be played on a unique string.”

3. “The user has to indicate whether he/she will obtain only one-sound chords, i.e.,
chords whose tones are played simultaneously, or broken chords, i.e., chords whose
tones are played in some sequence after each other), or both.”

4. “Yes, this rule has to be included in the textual requirements.”

One of the missing default rules has been revealed. It concerns the relation between the
number of tones of a chord and the number of the participating strings.

7.3.2 The Missing Consistency Rule No. 2

The missing default consistency rule No. 2 (this rule is broken in our case study of ap-
plication [21]): “The chord fingering on the fingerboard has to respect the limited hand
span of musicians.” It means the chord finger positions on the fingerboard have to be in a
specific frame of finger span.

The playability of chords also assumes that the player can put his/her fingers in the
prescribed positions on the fingerboard. On the web page [94], we can read: “For chords
that require a wider finger span, . . . ” Such sentence corresponds to our pseudo-question
type 3, and it can be resolved via Algorithm 7.1, similarly to the missing consistency
rule No. 1. We found experimentally that for this type of missing consistency rule, it is
beneficial to repeat Algorithm 7.1 with the following changes.

� Step 1. When identifying nouns, we remember the corresponding sentence for each
noun. Let S be a set of sentences. Then, all nouns of the i-th sentence create a set
NSi.

98

7.4. Experiments and Results

� Step 2. We create all unique pairs from each set NSi. These pairs are the subject of
the following query phase. The reason to do it in the sentence scope is the semantic
connection between concrete nouns in the pair. Since – in this variant of our algorithm
– we query pairs, we omit knowledge bases and dictionaries that are constructed for
single-term querying. This step generates texts for applying the same patterns from
the third step for each noun (please note that the pair of nouns is used just to retrieve
the extending texts to process).

Following the found sentence: “For chords that require a wider finger span, . . . ” and the
fourth step of Algorithm 7.1, the generated question can be: “Is there a rule that has to
be satisfied due to the statement that chord −→ relation require −→ wider finger
span?”

The answer formulated by a human specialist should be: “Considering a 19-fret 4-string
banjo and supposing that the fretting range (inclusive of the fingered notes) for an average
hand is 4 frets in the first 8 frets, 5 frets in the 9–14 fret region and 6 frets on the remaining
of the fingerboard. There may be other rules for other 4-string instruments.”

7.4 Experiments and Results

Following the example of our case study, we present the concrete data processed in the
implementation of our solution. We note that using information from external sources

Figure 7.3: Chord definition from WordNet – the scope of the definition exceeds string
instruments.

99

7. Problem of Default Consistency Rules in Textual Requirements
Specification

opens the problem of information veracity. In this chapter, we do not solve it. However,
to illustrate that such a problem also exists in respected WordNet, see Fig. 7.3. It is not
true that “to chord means to play chords on a stringed instrument” because it is possible
to play chords on an organ or an accordion that are not string instruments.

7.4.1 Revealing Consistency Rule No. 1

To reveal the consistency rule No. 1, we first process the following results from the know-
ledge bases. The data are presented only for the key noun chord.

� Wikidata1: A chord is harmonic set of three or more notes.

� Wordnik [129]: A chord is a combination of three or more pitches sounded simultan-
eously.

� DBPedia2: In music, a guitar chord is a set of notes played on a guitar.

� BabelNet [86]: In computing, Chord is a protocol and algorithm for a peer-to-peer
distributed hash table.

One can see that only one definition (BabelNet) is not usable in our case because it targets
a different field.

The condition of automatic querying requires a search engine with a public API. For
this purpose, we use our configured instance of the Programmable Search Engine provided
by Google3 with the following set-up:

� language: English,

� search the entire web: activated.

The current limitation of the free version is 10,000 requests per day. The response of a
query is in JSON format, and it consists of 10 results. Each result provides metadata,
including the web page link. We use these 10 result web pages from querying the noun
chord to create the following statistic in the first numeric column in Table 7.1. It reflects
the sentences containing the noun chord and the corresponding clusters. The last point
of the ratio of reasonable questions to all questions is our subjective categorization. We
discuss the ratio in Section 7.4.3.

1https://www.wikidata.org
2https://www.dbpedia.org
3https:/programmablesearchengine.google.com

100

https://www.wikidata.org
https://www.dbpedia.org
https:/programmablesearchengine.google.com

7.4. Experiments and Results

Resolving consistency rule No. 1 No. 2

Search word(s) chord chord + fingering

Sentences containing the noun chord 80 18

Sentences matching our pseudo-questions 30 5

Clusters 21 5

— Clusters of cardinality 1 19 5

— Clusters of cardinality 2 2 0

Sentences already used in requirements 2 0

Reasonable questions (hints) 6/19 2/5

Table 7.1: Google Web search: chord and chord + fingering.

7.4.2 Revealing Consistency Rule No. 2

When revealing the consistency rule No. 2, we were not successful with querying knowledge
bases and searching via Google API by a single noun. However, we were successful using
the extended version of Algorithm 7.1 (Section 7.3.2) with the pair of nouns chord and
fingering. One of the results was the web page [94] that provides the hint with a “wide
finger span”.

A statistic similar to the previous consistency rule regarding the noun chord, now with
the pair of nouns chord and fingering used as a query, is shown in the second numeric
column in Table 7.1.

7.4.3 Discussion

Regarding the ratio of reasonable questions, we recall that questions (hints) are sorted
based on our relevance criteria defined in Section 7.2.6.4. Based on the number of inform-
ation sources, the number of questions (hints) should increase. Therefore, we expect the
analysts to consider the top hints from the sorted list primarily.

We also note that due to the nature of online resources, results are variable over time.
This primarily applies to a web search. Definitions from knowledge bases and dictionaries,
on the other hand, are expected to be more or less stable.

Regarding the scalability, we already mentioned that the amount of questions (hints)
is dependent on the number of information sources. In our experiments, we select the first
result (definition) of a query from knowledge bases. Although it is possible to include other
results without a limit on the first one, we note (based on our experiments) that removing
the limit brings rather a disadvantage in the form of definitions from areas unrelated to
the main topic of requirements. In any case, another open problem is the selection of
definitions based on the main topic of requirements.

101

Chapter 8

Quality Measurement

This chapter reflects our publication:

� Šenkýř, D.; Kroha, P. Quality Measurement of Functional Requirements. In:
Proceedings of the 18th International Conference on Software Technologies. SciTe-
Press, Porto, 2023. [A.1]

103

8. Quality Measurement

There are two viewpoints on the quality of a software product. It has to satisfy the
requirements specification, and it has to state and imply the needs of all stakeholders.
The problem is that the requirements specification usually does not reflect the needs of
the stakeholders completely. The reason is that many stakeholders cannot articulate the
requirements or do not even know what they want. The analysts help them, but they
often do not deeply understand the semantics of the branch (e.g., molecular biology). So,
mistakes are practically guaranteed.

For these reasons, it is worth investing effort into formulations of textual requirements
before the analysis starts.

8.1 Problem Statement

The development of a software product should follow a software development process model
given by the used development methodology. It is a set of related activities that have to be
carried out during the production of the software product. As everything goes according
to plan, the software product will be completed, tested, and delivered to the customer. At
the same time, documentation relating to this product will be created. The problem is
that this is not often the case. Due to competition, managers force programmers to hurry
at the expense of product quality and documentation quality.

While the quality of the product is tested at the last minute for the customer, the quality
of the documentation remains often marked by haste during development because it stays
in the software house and because managers mean that the “polishing” of documentation
is not as important as the product delivery. There is not always enough time for the
documentation to be further improved. As a result, textual requirements specification is
often outdated and does not match the latest version of the product completely. This could
cause problems with maintenance and further product development.

Customers obtain the program of the software product and the user guide. Users
learning from the user guide provide feedback when using the program. We suppose that
the user guide is the only updated document (except for the executable program).

Textual formulated requirements specifications are necessary as a base of communica-
tion between the customer, the user, the domain expert, and the analyst. Unfortunately,
any text suffers from ambiguity, incompleteness, and inconsistency.

The textual description of functional requirements specification has one advantage and
many disadvantages.

� Advantage – it is understandable.

– The analyst can discuss its content with the customer easier in comparison to
specific modeling language.

– In the event of a lawsuit between the company and the customer, the judge has
a facilitated role because he understands the assignment and can assess whether
the product meets the assignment.

104

8.2. Quality Measurement

� Disadvantage – it is not precise like all texts. It is easily ambiguous, incomplete, and
inconsistent, as presented in Chapters 4–7.

Mainly, the inspection is used to check the quality of requirements. Experienced people
remove some of the problems in requirements, but some of the shortcomings remain. Some
deficiencies are cleared and corrected or removed gradually during the program develop-
ment in the following development steps. Some of them are discovered during testing, and
some others are revealed after release by the customer.

Mistakes made but not corrected during the first phase of the cycle migrate then to
other phases. This fact results in a costly process because all corrections cause costs that
increase multiplicative with the later discovery and correction of the bugs. [96]

It is known that manual approaches that rely on human intelligence and the application
of inspection checklists do not scale to large specifications [25].

Therefore, we try to detect errors in the requirements specification caused by ambiguity,
incompleteness, and inconsistency during the requirements definition process. We provide
defect density, i.e., we count the number of detected places in formulations that may have
the meanings of defect. A human intervention makes the decision.

In the previous chapters, we described our methods for checking ambiguity, incom-
pleteness, and inconsistency of textual functional requirements specifications. Using these
methods, we have defined quality metrics that are used in the process of requirements’
quality improvement. Our methods are supported by the implemented tool TEMOS.

8.2 Quality Measurement

Quality in software development on all levels is a topic discussed for many years, and it
has been included in ISO standards [65], [43], [15]. Quality of requirements is a specific
part of it. It is a well-established concept that is described in many articles.

In [26], the authors list 24 qualities of requirements (we selected only three of them –
ambiguity, incompleteness, and inconsistency). Most of them are qualitative – they can
only be judged and not be measured. In [26], the authors state a 200:1 ratio between
detecting and repairing an error during the requirements specification vs. maintenance
phase.

A mapping between requirements specification and a UML model is described in [16],
but the author uses controlled English.

In [36], a quality model of requirements is presented that investigates the impact of
each of them. In [35], the authors classify 166 rules for requirements and estimate that
53 % of them can be checked automatically with good heuristics. They investigate the
problem of what cannot be checked automatically in requirements. We do not exclude
human intervention because we think that the semantics may be very complex and that
the mistakes of automated checking may be very expensive. In [84], the requirements of
agile projects are investigated.

105

8. Quality Measurement

In paper [87], a study of practice is given, and it is stressed that the quality problems
of requirements are an important topic. The quality evaluation is done manually during
review sessions [102]. A survey of methods is given in [106], [78]. The inspection is described
also in [119].

A complexity measure for textual requirements is described in [4]. The measure indic-
ates the amount of actions (and actors) and their relations in requirements. We do not
investigate correctness like in [37].

A semantic representation of functional requirements is investigated using methods of
information retrieval in [109].

Requirements are usually categorized into functional requirements, non-functional re-
quirements, and quality requirements. We investigate the quality of functional require-
ments, i.e., the quality of their textual description.

In [10], the authors developed methods of detecting quality violations in a requirements
specification called linguistic triggers. Besides the problem of incompleteness, an approach
to ambiguity detection is also presented.

Patterns belong to the standard technology of text mining. In [31], sentence patterns
have been used but for performance requirements, not for functional requirements like
in our tool. Using NLP for requirements engineering is analyzed in [13], [25], [131], [40].
Building models from requirements is used for example in [97]. Different from our approach,
they do not use it to analyze requirements.

Ambiguity is defined in [26] as the percentage of requirements that have been interpreted
in a unique manner by all its human reviewers. The ambiguity of words is investigated in
[76].

There are many papers about automated construction of glossaries, e.g., [29], [7], [49],
[32]. In [76], a method is proposed to extract a glossary from a set of models automatically.
We derived a glossary from the text of requirements. They all are investigating the ambi-
guity of words [51], [7]. We additionally investigate the ambiguity of sentences in Chapter
4.

In [25], the authors explore potential ambiguity and incompleteness based on the ter-
minology used in different viewpoints. They combine the possibilities of NLP technology
with information visualization. Their approach is completely different from our approach.

Two incompleteness metrics of input documents of the requirements specifications are
described in [38]. The second one – the backward functional completeness that the paper
[38] focuses on – refers to the completeness of a functional requirements specification with
respect to the input documents. Contrary to the approach in [38], we do not measure the
incompleteness using metrics and quantified results, even though it is a good idea. Using
our tool, we generate warning messages only and count their numbers.

In [81], a meta-model approach is used to detect the missing information in a conceptual
model. It is also an approach of the class forward functional completeness but at the level
of a conceptual model.

In [31], sentence patterns are used to uncover incompleteness with performance re-
quirements. According to the unified model, the performance requirements describe time

106

8.3. Our Approach to Quality of Requirements

behavior, throughput capacity, and cross-cutting. The sentence patterns used in the paper
are completely different from our sentence patterns.

Figure 8.1: Quality evaluation schema.

8.3 Our Approach to Quality of Requirements

We have developed our tool TEMOS to test whether there are some problems of ambiguity,
incompleteness, and inconsistency in requirements. Then we found that we can use it to
measure the quality of the requirements as a “side effect”.

Our approach is based on a concept that is well-known in traditional publishing houses.
During the editing process of manuscripts, all editors’ corrections can be qualified, collected
and evaluated for the quality of the manuscript. We used the same method. We present
our quality evaluation schema in Fig. 8.1.

Each positive test (i.e., a test revealing a potential problem) is evaluated, and the
value becomes part of the quantitative description using metrics. The best quality (zero
problems) is achieved when our algorithms do not find any suspicious formulations in the
sense of ambiguity, incompleteness, and inconsistency.

107

8. Quality Measurement

While checking, our system TEMOS always generates warning messages when it reveals
some suspicious irregularities. We have defined the quality metrics of functional require-
ments as the value computed from the numbers of the generated warning messages. For
clarity, it is structured according to the topics (ambiguity, incompleteness, inconsistency).

In some topics, we can compute the relative quality, which is the number of generated
warning messages related to the number of sentences in the requirements.

The proposed metrics use the following components:

� ambiguity

– AW – the number of ambiguous words found,

– AS – the number of ambiguous sentences found,

� incompleteness

– ISen – the number of incomplete sentences found,

– ISc – the number of incomplete scenarios found,

� inconsistency

– CGS – the number of contradictions in groups of sentences,

– DSR – the number of necessary enrichments in the sense of the default consist-
ency rules.

The proposed quality measure formula is

Q-Req = w1 · AW + w2 · AS + w3 · ISen+ w4 · ISc+ w5 · CGS + w6 ·DSR

where variables wi are weights that can be individually set.

Figure 8.2: Quality measurement iterations as feedback.

As we already mentioned in Section 8.1, our quality measurement can be (and should
be) used during the maintenance to master all the inserted corrections, enhancements,

108

8.4. Experiments and Results

and upgrades requirements into existing textual requirements specification – the process is
illustrated in Fig. 8.2.

8.4 Experiments and Results

To evaluate our proposed methods, we reuse the prepared data set1, which is a collection of
textual requirements from four different sources [A.11]. The data set is defined in Section
3.6.1 and we use it for testing our proposed methods in Chapters 4–6.

In Table 8.1, for each input requirements text (case) from the aforementioned data set,
we record (a legend of the table):

� the number of all recognized issues (warnings) in the sense of the proposed quality
measure formula Q-Req defined in Section 3.6.1 and selected issues measured in the
previous chapters, where we use all weights wi equivalent and equal to 1,

� EN – the number of recognized entities in the requirements text,

� IEN – the number of issues per one recognized entity in the requirements text,

� RN – the number of recognized relations in the requirements text,

� IRN – the number of issues per one recognized relation in the requirements text,

� AN – the number of recognized attributes in the requirements text,

� IPW – the number of issues per word in the requirements text,

� IPS – the number of issues per sentence in the requirements text,

� IPA – the number of issues per average number of words in a sentence in the require-
ments text.

1DOI identifier: 10.5281/zenodo.7897601

109

10.5281/zenodo.7897601

8
.

Q
u
a
l
it
y
M
e
a
su

r
e
m
e
n
t

Table 8.1: The evaluation of the recognized issues (warnings) using Q-Req formula.

Case Issues EN IEN RN IRN AN IPW IPS IPA

g02-federalspending 27 81 0.33 51 0.53 0 0.01 0.28 1.27
g03-loudoun 43 34 1.26 23 1.87 1 0.03 0.75 1.55
g04-recycling 25 29 0.86 17 1.47 0 0.02 0.49 1.01
g05-openspending 14 38 0.37 26 0.54 0 0.01 0.26 0.46

g08-frictionless 48 38 1.26 29 1.66 1 0.03 0.73 1.90
g10-scrumalliance 60 62 0.97 45 1.33 1 0.02 0.61 2.29
g11-nsf 25 36 0.69 21 1.19 0 0.01 0.34 1.21
g12-camperplus 36 21 1.71 15 2.40 0 0.03 0.68 1.34

g13-planningpoker 39 41 0.95 34 1.15 1 0.03 0.74 1.42
g14-datahub 26 35 0.74 33 0.79 2 0.01 0.39 0.95
g16-mis 33 63 0.52 62 0.53 1 0.02 0.49 1.46
g17-cask 17 42 0.40 45 0.38 2 0.01 0.27 0.67

g18-neurohub 56 72 0.78 62 0.90 0 0.03 0.55 2.57
g19-alfred 42 55 0.76 42 1.00 2 0.02 0.30 2.37
g21-badcamp 32 39 0.82 26 1.23 0 0.02 0.46 1.19
g22-rdadmp 30 51 0.59 48 0.63 0 0.01 0.36 1.11

g23-archivesspace 14 14 1.00 9 1.56 0 0.02 0.25 0.90
g24-unibath 17 31 0.55 21 0.81 1 0.01 0.33 0.60
g25-duraspace 31 65 0.48 67 0.46 4 0.02 0.31 1.46
g26-racdam 33 33 1.00 23 1.43 0 0.02 0.33 1.54

g27-culrepo 77 94 0.82 64 1.20 1 0.02 0.64 2.65
g28-zooniverse 15 29 0.52 17 0.88 0 0.01 0.25 0.85
P01. Blit 12 30 0.40 34 0.35 1 0.02 0.25 1.10
P02. CS179G – ABC Paint Project 22 95 0.23 83 0.27 6 0.02 0.33 1.21

P03. eProcurement 62 72 0.86 78 0.79 0 0.04 0.69 3.06
P04. Grid 3D 6 18 0.33 13 0.46 0 0.03 0.55 0.37
P05. Home 1.3 25 60 0.42 74 0.34 2 0.02 0.29 1.94
P06. Integrated Library System 124 115 1.08 149 0.83 1 0.06 1.57 4.46

110

8.4.
E
x
p
erim

en
ts

an
d
R
esu

lts

Case Issues EN IEN RN IRN AN IPW IPS IPA

P07. Inventory 116 180 0.64 317 0.37 8 0.02 0.23 13.79
P08. KeePass Password Safe 12 44 0.27 32 0.38 0 0.03 0.33 0.94
P09. Mashbot 14 24 0.58 28 0.50 0 0.02 0.54 0.66
P10. MultiMahjong 62 61 1.02 66 0.94 1 0.04 0.70 3.21

P11. Nenios 70 44 1.59 59 1.19 2 0.07 0.85 6.08
P12. Pontis 5.0 Bridge Management System 71 168 0.42 267 0.27 3 0.02 0.32 3.83
P13. Public Health Information Network 140 181 0.77 244 0.57 0 0.05 1.27 10.68
P14. Publications Management System 96 99 0.97 196 0.49 3 0.04 1.57 3.43

P15. Puget Sound Enhancements 36 104 0.35 123 0.29 1 0.02 0.39 1.90
P16. Tactical Control System 61 223 0.27 204 0.30 1 0.01 0.21 3.10
P17. Tarrant County Integrated Justice IS 79 30 2.63 33 2.39 4 0.04 0.59 6.00
P18. X-38 Fault Tolerant System Services 88 211 0.42 233 0.38 4 0.02 0.25 5.95

H01. CCHIT 65 173 0.38 205 0.32 4 0.03 0.58 3.10
H02. CM1 6 21 0.29 13 0.46 0 0.01 0.20 0.35
H03. InfusionPump 24 186 0.13 185 0.13 2 0.01 0.10 1.61
H04. Waterloo 175 355 0.49 1070 0.16 3 0.01 0.26 9.85

C01. Amazing Lunch Indicator 78 101 0.77 251 0.31 9 0.02 0.84 2.28
C02. EU Rent 26 61 0.43 97 0.27 12 0.05 0.60 2.33
C03. FDP Expanded Clearinghouse Pilot 6 39 0.15 29 0.21 1 0.01 0.15 0.49
C04. Library System 57 74 0.77 109 0.52 1 0.03 0.45 4.01

C05. Nodes Portal Toolkit 16 97 0.16 259 0.06 1 0.01 0.10 1.09
C06. Online National Election Voting 135 93 1.45 137 0.99 3 0.04 0.51 12.42
C07. Restaurant Menu & Ordering System 17 32 0.53 65 0.26 0 0.02 0.37 0.87

111

8. Quality Measurement

Figure 8.3: Correlation comparison of IPA and ARI.

In Figure 8.3, we compare the correlation of IPA (the number of issues per average number
of words in a sentence in the requirements text) and ARI (automated readability index).
According to the used data set, it cannot be claimed that the requirements texts with the
most generated warnings are the most complex texts according to ARI at the same time.

Figure 8.4: Correlation comparison of EN and Q-Req.

In Figure 8.4, we compare the correlation of EN (the number of recognized entities in the
requirements text) and the Q-Req formula result (the number of generated warnings). In
this case, as might be intuitively expected, the increasing size of the generated model in
the sense of recognized entities is reflected in the number of generated warnings due to the
need for a more complex specification.

112

Chapter 9

Created Artifact and Models Generation

This chapter reflects our publications:

� Šenkýř, D.; Suchánek M.; Kroha, P.; Mannaert, H.; Pergl, R. Expanding Nor-
malized Systems from textual domain descriptions using TEMOS. In: Journal of
Intelligent Information Systems. Springer, 2022. [A.2]

� Šenkýř, D. SHACL Shapes Generation from Textual Documents. In: Enterprise
and Organizational Modeling and Simulation. Springer, Cham, 2019. [A.7]

� Šenkýř, D.; Kroha, P. Patterns in Textual Requirements Specification. In: Pro-
ceedings of the 13th International Conference on Software Technologies. SciTe-
Press, Madeira, 2018. [A.10]

113

9. Created Artifact and Models Generation

This chapter describes the created software artifact – our tool TEMOS. We present features
of the implemented tool and ideas on how such a tool could be created. We present used
frameworks, too. Finally, we present the benefit of creating the internal model defined in
Chapter 3 in the form of exporting the mapped model to various formats.

9.1 TEMOS – Textual Modeling System

As mentioned, TEMOS is an acronym for Textual Modeling System. Firstly, we implemen-
ted this tool as a prototype to recognize entities and relationships between them for basic
statistics of the requirements text, e.g., how many entities the text approximately contains,
if all of them have attributes (that can indicate if they are properly described), etc. While
investigating the problems described in the previous chapters, we extend TEMOS with the
features to detect these problems and highlight them in the text.

Based on the categorization presented in [11] that distinguishes between tools focused
on one specific linguistic inaccuracy and tools capable of identifying multiple linguistic
inaccuracies, our tool TEMOS belongs to the second category.

Fig. 9.1 shows the screenshot of the tool’s main page.

Figure 9.1: TEMOS – main page.

In the following sections, we describe the features of TEMOS. Disclaimer : The following
sections present feature ideas; they do not present a complete specification. Therefore, the
text is incomplete, which may lead to ambiguity.

114

9.1. TEMOS – Textual Modeling System

9.1.1 Core Features

We describe the features primarily from the perspective of the user interface we designed;
however, they can be viewed in general as features that a similar system could provide.

First, a user provides the text of requirements and starts the analysis process.

9.1.1.1 Model Recognition

Available features in the mode of the analyzed document are as follows.

� The main output of the analysis process is an annotation of the text of requirements
according to the internal model definition (Section 3.4). In our tool, the user interface
looks as shown in Figure 9.2.

– A user can navigate through the text and, according to the annotation, see
recognized parts representing entities, attributes, and relationships between en-
tities.

� A user can see all recognized element groups. When a user selects the concrete
element group, a list of all elements of the selected element group is provided.

– A user can merge elements in the concrete element group.

– A user can display details of the selected element – a list of element attributes
and a list of other elements connected to the selected element via a relationship.

� A user can display and manage the glossary.

– A user can merge terms and corresponding elements using synonym help, as
proposed in Chapter 4.

� A user can export the internal model in various formats, as proposed in Section 9.2.

Figure 9.2: Generated elements.

115

9. Created Artifact and Models Generation

9.1.1.2 Generated Warnings

The analysis process configuration allows a user to select which category of issues should
be analyzed (ambiguity, incompleteness, or inconsistency). The recommended way is to
analyze all issue type categories.

As a result, a user can see a list of warnings and annotated text where these warnings
are highlighted. In our tool, the user interface looks as shown in Figure 9.2.

Figure 9.3: Generated warnings concerning ambiguity.

9.1.2 Additional Features

As a by-product, we offer sentence visualization in the form of graph rendering containing
separated tokens, their part-of-speech tags, and relationships between tokens. Exactly the
same form that we use in our approach based on grammatical inspection, and therefore,
we have all relevant data available.

Using the parsing structure, we can also highlight pronouns, passive voice parts, or
coreference in the text. The analyst should consider all three to determine whether their
presence in the text is appropriate.

9.1.3 Used Technologies

TEMOS tool is represented by the backend core part written in Python, and the frontend
part is developed as a single-page application using HTML, CSS, and TypeScript without
a specific frontend framework.

TEMOS tool core analyzing part is powered by the spaCy1 NLP framework, in version
3.7.2. We use a pre-trained model called en_core_web_trf in version 3.7.3 (available to-
gether with the spaCy installation) to process text written in English. The text-processing
logic is written in Python. Both the spaCy version and the model version are the latest
versions available at the time of writing this thesis. We selected the en_core_web_trf

1https://spacy.io

116

https://spacy.io

9.2. Models Generation

trained model based on the English models documentation [52], where we compared the
accuracy values. The selected model performs the same or better in 11 of 13 categories
compared to the second best model (en_core_web_lg , which is larger in size.

9.2 Models Generation

Methods detecting ambiguity, incompleteness, and inconsistency are embedded in our tool
TEMOS. Many of the presented approaches benefit from the internal model defined in
Section 3.4. The internal model semantically represents recognized domain entities, their
attributes, and the relationships between entities. The internal model could be further
reused for:

� visual feedback and

� further processing in the sense of exporting our model and importing exported data
into other tools.

To discuss these two points, we describe the types of generated models (formats) that our
tool supports in the following sections.

As a prerequisite, we expect that analysts have processed generated hints and finalized
the internal model M (see Section 3.4) in the sense of:

� merge terms according to the glossary processing,

� merge entity elements (e ∈ E) clustered in the element groups (set G) if they repres-
ent the same concept, and

� review warnings about hierarchy cycle detection of entity (class) candidates.

When the hints settlement is complete, we can narrow down our internal model to a set of
elements E and a set of relationships R ready to be exported.

9.2.1 Generated Models – UML (Class Diagram)

The standard class diagram is handy to visualize the complexity of the requirements. A
user can see the number of classes and the relations between them. A user can also see
suspicious classes not related to other classes or classes without attributes.

Our tool generates GraphViz code to visualize the diagram easily, and we support XMI
and Ecore (a format used in Eclipse Modeling Framework [53]) to standardize the output.

The format of XMI (XML metadata interchange), as the name suggests, is an XML
structure. The XMI format is a standard of the Object Management Group [92]. The
serialized XMI file can be imported for further processing, e.g., in Enterprise Architect
[117].

In this section, we show the mapping of our internal model to the XMI format (XML
structure). ECore format also uses XML structure (with different tags); therefore, we
do not show it here because the mapping is similar. GraphViz uses DOT language for

117

9. Created Artifact and Models Generation

defining nodes and edges in a graph. Our internal model could be serialized as a graph,
where classes represent graph nodes and relationships represent graph edges. DOT format
supports HTML elements, so classes could be represented as HTML table elements. We
do not show details here.

9.2.1.1 Mapping to XMI

For the illustrative purpose of XMI serialization generation, we use the minimalistic re-
quirements of a hotel room booking system shown in Example 9.1. We used the same
sentences in the description of suitable patterns in Section 3.5. The sentence structure
visualization (in the sense of part-of-speech tags and dependency types) of Example 9.1 is
shown in Fig. 3.3, Fig. 3.4, Fig. 3.7, and Fig. 3.8.

Example 9.1: A minimalistic requirements of a hotel room booking system.

A booking is placed by a guest. A booking is related to a room. For a booking, we
keep the start date, end date, and total price. A room can be a family apartment or a
standard room.

After processing by our tool, the internal model should look like this:

� a set of elements E containing:

– E1 ⊂ E having entity (class) candidate type: Booking , Guest , Room ,

Family apartment , and Standard room ,

– E2 ⊂ E having attribute candidate type: start date , end date , and

total price , where all attributes candidates belong to the Booking entity

element (class),

� a set of relationships R containing:

– r1 and r2 representing the association between the Booking class and the

Guest class, and the Booking class and the Room class, respectively,

– r3 and r4 representing class hierarchy where the Room class is the parent

class and the Family apartment class and the Standard room class are sub-

classes, and

– relationships representing the attribute ownership.

The abridged result of XMI file generation is in Listing 9.1. We refer to the lines of this
listing when describing the following steps used for conversion into XMI format.

1. First, we generate the header (lines 1–6), where we state the XMI specification version
and we list TEMOS as the exporter of this file.

118

9.2. Models Generation

2. Next, we generate the model tag (line 7).

3. Then, we generate a root package for the model as a packaged element with an ID
equal to 0.

4. We keep a number series starting with 1 representing ID for other packaged elements.

5. For each element ei from the set of elements E:

� if the is entity candidate property equals true, we convert ei to a packaged
element with an ID (from the previously mentioned number series in the fourth
point) and a name represented by the full lemma property of ei (lines 8–22),

� otherwise, when ei is an attribute candidate of entity candidate with an already
created packaged element, we include it as a child tag called owned attribute
having the full lemma property of ei as the name (lines 12–13); the visibility is
private by default.

6. For each relationship rj from the set of relationships R:

a) if the rj type is not specific, we generate it as a standard association as another
packaged element that has two ends (tags called owned end) referring to the ID
of created packaged elements representing classes (lines 24–42); we include re-
cognized multiplicities for both ends of rj (lines 30–32 and 38–40) – multiplicity
“many” is represented with type uml:LiteralUnlimitedNatural and value
equals -1,

b) if the rj type is specific, e.g., represents a generalization, we generate a corres-
ponding tag in the corresponding packaged element, e.g., a generalization

tag for classes representing subclasses with an ID referring to the parent class
represented by a packaged element (line 21).

Listing 9.1: Example of generated XMI file.

01: <?xml version="1.0" encoding="UTF-8"?>

02: <xmi:XMI xmi:version="2.1"

03: xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

04: xmlns:uml="http://schema.omg.org/spec/UML/2.1">

05: <xmi:Documentation exporter="Textual Modeling System (TEMOS)"

06: exporterVersion="1.0" />

07: <uml:Model xmi:type="uml:Model" name="Hotel_Model">

08: <packagedElement xmi:type="uml:Package"

09: name="Hotel" xmi:id="0">

10: <packagedElement xmi:type="uml:Class"

11: name="Booking" xmi:id="1">

119

9. Created Artifact and Models Generation

12: <ownedAttribute xmi:type="uml:Property"

13: name="start date" visibility="private" />

14: ...

15: </packagedElement>

16: <packagedElement xmi:type="uml:Class"

17: name="Room" xmi:id="2">

18: </packagedElement>

19: <packagedElement xmi:type="uml:Class"

20: name="Family apartment" xmi:id="3">

21: <generalization xmi:type="uml:Generalization" general="2" />

22: </packagedElement>

23: ...

24: <packagedElement xmi:type="uml:Association"

25: name="relates">

26: <memberEnd xmi:idref="4" />

27: <ownedEnd xmi:type="uml:Property"

28: isOrdered="true" xmi:id="4">

29: <type xmi:idref="1" />

30: <lowerValue xmi:type="uml:LiteralInteger" value="0" />

31: <upperValue xmi:type="uml:LiteralUnlimitedNatural"

32: value="-1" />

33: </ownedEnd>

34: <memberEnd xmi:idref="5" />

35: <ownedEnd xmi:type="uml:Property"

36: isOrdered="true" xmi:id="5">

37: <type xmi:idref="2" />

38: <lowerValue xmi:type="uml:LiteralInteger" value="0" />

39: <upperValue xmi:type="uml:LiteralUnlimitedNatural"

40: value="-1" />

41: </ownedEnd>

42: </packagedElement>

43: ...

44: </packagedElement>

45: </uml:Model>

46: </xmi:XMI>

9.2.2 Generated Models – SHACL

Shapes Constraint Language (SHACL) is the new recommendation by the W3C consortium
to uniform both describing and constraining the content of an RDF graph. Based on the
inspiration of UML class diagram generation from textual requirements specifications in
the previous section, we investigate the possibility of mapping parts of a textual document

120

9.2. Models Generation

to shapes described by SHACL.
First, we introduce the context, and then we show an illustrative example of SHACL

shapes generation from our internal model.

9.2.2.1 Motivation – Structured Knowledge on Web

Most, but not all, of the structured knowledge on the Web is deeply connected to the
Semantic Web and its standards. From history, we can mention the original intention of
HTML meta tags, which were unfortunately predominantly used for spam – therefore, they
are widely ignored by search engines [115].

Nowadays, we can use description-logic-based languages (e.g., OWL, SHACL) provided
in the form of a recommendation by the W3C consortium. Based on them, in the second
half of the 2000s, projects like DBpedia [8], Freebase2, or Schema.org3 started. They
represent knowledge graphs (ontologies) formed by RDF triplets. We can also mention a
semantic network called ConceptNet [113] that combines its own data with other resources
(including the mentioned DBpedia) to provide a meaning of words or phrases entered as a
query.

Let us briefly introduce the mentioned standards and corresponding technologies.

RDF
The Resource Description Framework (RDF) [22] is a W3C specification used as a general
approach for the conceptual modeling of information using various syntax notations and
data serialization formats. The structure is formed by a set of triplets – each consisting
of a subject, a predicate, and an object. We benefit from such a structure in our internal
model, too, as proposed in Section 3.5.1. The set of triplets creates an RDF graph.

RDF Schema
The Resource Description Framework Schema (RDF Schema or just RDFS) [54] is a se-
mantic extension of RDF. It provides a data-modeling vocabulary for RDF data – a mech-
anism for describing groups of related resources and the relationships between these re-
sources.

OWL
The W3C Web Ontology Language (OWL) [83] is a computational logic-based language.
It is perceived as the first level above RDF required for the Semantic Web, which can
formally describe the meaning of the terminology used in Web documents. The knowledge
expressed in OWL can be exploited by computer programs, e.g., to extend knowledge of
the specific problem or to verify the consistency of specifically requested knowledge.

The basic building elements are classes, typically arranged in a subclass hierarchy.
Below, you can find an example (Listing 9.2, in Turtle notation) presented in [73]. Note
that OWL relies on RDF Schema vocabulary for the basic mechanism.

2terminated project – data still available via https://developers.google.com/freebase
3https://schema.org

121

https://developers.google.com/freebase
https://schema.org

9. Created Artifact and Models Generation

Listing 9.2: Example of Turtle notation (1).

@prefix ex: <http://example.com/ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

ex:Person

a owl:Class ;

rdfs:label "Person" ;

rdfs:comment "A human being" .

ex:Customer

a owl:Class ;

rdfs:subClassOf ex:Person .

We introduced the Customer subclass of the parent class Person . In OWL notation,

let us say that no Person can have more than one father – Listing 9.3.

Listing 9.3: Example of Turtle notation (2).

@prefix ex: <http://example.com/ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

ex:Person

a owl:Class ;

rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty ex:hasFather ;

owl:maxCardinality 1 ;

] ;

rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty ex:hasFather ;

owl:allValuesFrom ex:Person ;

] .

OWL operates on classes, which are understood as sets of instances that satisfy the
same restrictions. OWL includes the metaclass owl:Restriction , which is typically used

122

9.2. Models Generation

as an anonymous superclass of the named class that the restriction is about [73].

SHACL
The Shapes Constraint Language (SHACL) is the new recommendation by W3C introduced
in July 2017. The purpose of SHACL is to uniform both describing and constraining the
content of the RDF graph. The sets of constraints used by SHACL for validation are
expressed as an RDF graph, and they are called shapes or shape graphs. The RDF data
being validated is called the data graph. Shapes offer a description of the data graph in the
form of constraints that a valid data graph satisfies [93].

Let us continue with Listing 9.3 above. SHACL offers more flexibility in the way of
restriction definition. In Listing 9.4, the equivalent of the previous example in the SHACL
language is presented.

Listing 9.4: Example of SHACL notation.

@prefix ex: <http://example.com/ns#> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

ex:Person

a owl:Class, sh:NodeShape ;

sh:property [

sh:path ex:hasFather ;

sh:maxCount 1 ;

sh:class ex:Person ;

] .

Another example of defining SHACL shapes is presented in [93]. A nice comparison of
built-in constraint types is presented in [73].

9.2.2.2 Mapping to SHACL Shapes

For the illustrative purpose of SHACL Shapes generation, we use the minimalistic require-
ments of a university information system (Example 9.2) that is taken (and shortened) from
our paper [A.7].

Example 9.2: A minimalistic requirements of a university information system.

A user is either a student or a teacher. Every user has exactly one username. Each
student has at least one subject enrolled.

123

9. Created Artifact and Models Generation

After processing by our tool, the internal model should look like this:

� a set of elements E containing:

– E1 ⊂ E having entity (class) candidate type: User , Student , Teacher , and

Subject ,

– E2 ⊂ E having attribute candidate type represented by one element – username

– belonging to the User entity element (class),

� a set of relationships R containing:

– r1 and r2 representing class hierarchy where the User class is the parent class

and the Student class and the Teacher class are subclasses,

– r3 representing attribute (username) ownership with multiplicity equals 1,

– r4 representing a relationship between the Student class and the Subject

class with a matched multiplicity.

The result of SHACL shapes generation is in Listing 9.5. We refer to the lines of this listing
when describing the following steps used for the result format generation. The SHACL
validation format options are more complex, as presented in [73]. We focus on a subset of
it as follows.

1. First, we generate the header (lines 1–4), where we define the prefixes.

2. For each element ei from the set of elements E:

� if the is entity candidate property equals true, we convert ei to a class node
(lines 9–27),

� otherwise, when ei is an attribute candidate of entity candidate with an already
created class element, we include it as a child node called property (lines

8–12) with multiplicity restrictions if they are recognized.

3. For each relationship rj from the set of relationships R:

a) if the rj type is not specific, we generate it as a standard association as a
property with recognized multiplicity (lines 17–21),

b) if the rj type is specific, e.g., represents a generalization, we generate a cor-
responding statement in the corresponding class shape, e.g., subClassOf for
shapes representing subclasses (lines 16 and 23).

Listing 9.5: Example of generated SHACL file.

01: @prefix ex: <http://example.com/ns#> .

124

9.2. Models Generation

02: @prefix sh: <http://www.w3.org/ns/shacl#> .

03: @prefix owl: <http://www.w3.org/2002/07/owl#> .

04: @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

05:

06: ex:User 22: ex:Teacher

07: a owl:Class, sh:NodeShape ; 23: a owl:Class, sh:NodeShape .

08: sh:property [24: rdfs:subClassOf ex:User ;

09: sh:path ex:username ; 25:

10: sh:minCount 1 ; 26: ex:Subject

11: sh:maxCount 1 ; 27: a owl:Class, sh:NodeShape .

12:] .

13:

14: ex:Student

15: a owl:Class, sh:NodeShape ;

16: rdfs:subClassOf ex:User ;

17: sh:property [

18: sh:path ex:hasSubject ;

19: sh:minCount 1 ;

20: sh:class ex:Subject ;

21:] .

9.2.3 Generated Models – Normalized Systems

In [A.2], we transform our internal model M (see Section 3.4) into a model of Normalized
Systems elements. This may realize a text-to-software pipeline. The input is represented
by textual requirements processed by our tool TEMOS. Its output is a running prototype
of an information system created using Normalized Systems techniques.

To achieve this, we use the phases as follows.

9.2.3.1 Mapping to an NS Metamodel

When the input text is processed, our internal model M is ready for conversion to an NS
model. The following steps are used for conversion.

1. For each element ei from the set of elements E in our model M :

� if the is entity candidate property equals true, we convert ei to a data element
in the created NS model,

� otherwise, when ei is an attribute candidate, we assign it as a value field to the
corresponding data element representing the entity.

2. The type of data element is primary by default. However, if the root lemma of ei is
type, then the data element type is taxonomy.

125

9. Created Artifact and Models Generation

3. We convert each binary relation (relationship) rj from the set of relationships R in
our model M to a link field of the data element created from ek (in the first step).
We set the link field properties as follows:

� link field type is set based on the multiplicity type of rj,

� required is also set based on the multiplicity type of rj,

� target is set to the data element el already created (in the first step).

4. We convert each recognized hierarchy relation. According to NS theory, inheritance
causes combinatorial effects; i.e., it is considered an obstacle to evolvability. There-
fore, inheritance must be modeled using link fields. These link fields are created
based on the data element representing subentity ek of parent entity el. The target
of a link field is the data element representing el. In this case, the required property
always equals true, and the multiplicity is singular.

5. The last step is the enhancement phase. We describe it in the next section.

9.2.3.2 Enhancement Phase

After composing a model of data elements, we add several steps to apply conventions
from NS modeling and enhance the resulting model. The first step is to handle relations
between the primary data elements and their corresponding taxonomy data elements. It
is a pervasive pattern to have a taxonomy data element with name suffix Type and just
a single attribute name. In other modeling languages, such as UML, this would become
an enumeration. However, in terms of NS theory, enumerations block evolvability (e.g.,
when we need to add fields to enumerated items). We note that the type is specified as
only a “type” without any additional information in the textual requirements. When such
a value field is created, it is changed in the enhancement phase to a link field linking the
newly created taxonomy data element with the name suffix Type and a name value field.
For example, if there is a Vehicle data element with a type value field, it is changed

to a link field pointing to a new VehicleType that has a name .

The second step is again related to the taxonomy data elements. We note that some
texts describe both primary and taxonomy data elements but not the relation between
them. This is addressed by simply looking for such data elements with missing relations
to the corresponding taxonomy data element (if they exist). For each of them, a new link
field in the primary data element is created. The final step of enhancement adjusts the link
field names using the conventions of NS modeling. According to the mapping, the names
of the fields are taken from triples that do not allow matching bidirectional links in NS
models. If there is just a single link field for the target data element, it is named with the
target element’s name. In the case of a many-sided relationship, i.e., a relationship that
contains a collection of target element instances, a suffix is added to express plurality. For
example, the value field drives from “Person drives vehicles” is renamed vehicles ,
but we keep drives as a description of the field.

126

9.2. Models Generation

9.2.3.3 Exporting NS Elements

The classes for representing data elements, their value and link fields, and other properties
are expanded directly from the NS metamodel, which is meta-circular. The XML format
is required to allow the translation of NS models in TEMOS to NS models for expanders.
Due to the versatility of NS tooling, we are able to implement expanders for the data
classes in Python and XML serialization. There are two benefits to using the approach with
expanders in this case. First, when the NS metamodel is updated, it is possible to re-expand
the classes and related serialization for TEMOS. Second, although we currently focus on
the structural part of the NS metamodel (i.e., data elements and the constructs around
them), expansion works with a full NS metamodel. It will simplify future development
when we can focus, for example, on task and flow elements. TEMOS has been extended
with a command-line interface that takes text as input and writes a set of XML files with
data elements according to the NS tooling expectations.

The set of XML files generated by TEMOS can be added to an existing NS component or
to a newly prepared component. It is not possible to generate a component completely from
functional requirements. A component contains various implementation and environment
details, e.g., the source base used or the version or qualified name of the component. These
details need to be provided in other NS tools, or an example component XML file can be
adjusted accordingly. The component can then be imported for further refinement, e.g., in
NS Modeler, or directly used for expansion.

We reused the minimalistic requirements of a hotel room booking system from Example
9.1 to generate an NS model of data elements. A more detailed example is presented in
our paper [A.2].

Figure 9.4: Generated data elements for a hotel room booking system example.

127

9. Created Artifact and Models Generation

Fig. 9.4 shows the resulting model with five data elements. There are no fields for
the Guest data element and the Room data element mentioned in the text. Both

StandardRoom and FamilyApartment data elements have a relation to the parent ele-

ment Room , as they form a hierarchy. Finally, there are several fields (value and link) for

the Booking data element.

9.2.4 Generating Information System Prototypes

Expansion is directly possible from a Normalized Systems component filled by data ele-
ments from our transformation. The expanded information system can be built and de-
ployed by simply executing a set of commands or by clicking the button in the Normalized
Systems tool called Prime Radiant [88]. The resulting system is a basic CRUD application
but is fully operational and can serve as a prototype for further elaboration on require-
ments. Fig. 9.5 shows a form based on the Booking data element. We manually added

the value field name for Room and Guest , as data elements without any attribute are
meaningless – we discuss this issue in Section 5.3.5.

Figure 9.5: Booking form for expanded NS application.

With the prototype, it is possible to change the NS model directly in NS Modeler or
Prime Radiant and quickly re-expand, build, and redeploy the application. If the require-
ments are more specific, even custom code fragments called craftings can be added to the
expanded code base. NS comes with a method of harvesting craftings, so they are not
lost upon re-expansion. Whenever there is a change in the requirements text, it is possible
to regenerate the XML files of data elements, but if other changes are made, they are
overwritten. On the other hand, if there are harvested craftings or elements other than
data elements in the component, these additional elements stay intact.

128

Chapter 10

Conclusions

10.1 Research Goals Revisited

In Section 1.3, we have defined the following three research goals.

1. G1. Identify the type of problems introduced by:

a) G1.A ambiguity,

b) G1.B incompleteness, and

c) G1.C inconsistency.

2. G2. Propose algorithms how to identify them in the text.

3. G3. Propose method how an analyst could improve the text.

First, we needed to tackle the problem of the text’s meaning itself. We described how we
use a natural language processing framework to identify sentences, tokens, and different
types of dependencies between tokens in Chapter 3. In the same chapter, we introduced
our internal model representing the semantics of the text.

Regarding the first research goal G1, we devoted a separate chapter to each problem.
We described the problems of ambiguity in Chapter 4, the problems of incompleteness in
Chapter 5, and we divided the problems of inconsistency into two areas – inconsistency
presented in the text itself (Chapter 6) and default consistency rules not presented in the
text (Chapter 7). In the same chapters, we also propose methods on how to identify the
described problems in the textual requirements via a combination of syntactic methods,
semantic methods, and online dictionaries to fulfill the second research goal G2.

In Chapter 8, we described the iterative process of how users could interpret generated
warnings regarding the identified issues of ambiguity, incompleteness, and inconsistency.
This chapter fulfills the third research goal G3.

129

10. Conclusions

10.2 Contributions of the Dissertation Thesis

All goals of this thesis were achieved. Let us briefly highlight the main contributions of
the presented dissertation thesis and our published papers as follows.

1. We provide a list of problems in textual requirements specification in different areas:

� ambiguity :

– on the level of words,

– on the sentence level,

� inconsistency :

– on the sentence level,

– on the whole document level,

– on the level of statements not presented in a document (we call them default
consistency rules),

� incompleteness :

– on the sentence level,

– on the level of scenarios.

2. We provide algorithms recognizing problems from the previous point using natural
language processing techniques and a model created during textual requirements spe-
cification processing.

3. We proposed how to extend and validate a created model using online semantic
networks (e.g., ConceptNet) and online dictionaries (e.g., Wordnik).

4. We tested the proposed methods using documents from different data sets, and we
proposed the quality measurement formula.

� We published the collected documents as a data set available in Zotero [A.11].

5. We developed a prototype system TEMOS1 based on the proposed methods to
demonstrate how the methods could be used by analysts or other users in the in-
dustry.

1During development, we reported the problems we found in used resources as feedback.
https://github.com/explosion/spaCy/issues/10699
https://github.com/explosion/spaCy/issues/11301
https://github.com/commonsense/conceptnet5/issues/325

130

https://github.com/explosion/spaCy/issues/10699
https://github.com/explosion/spaCy/issues/11301
https://github.com/commonsense/conceptnet5/issues/325

10.3. Future Work

10.3 Future Work

In our work, we have proposed methods and a tool for analysts and other team roles
processing the textual requirements of a product. It would be interesting to monitor the
usage of such a tool and improve current recognition methods. Similar to the spelling and
grammar-check tools, it would be useful to popularize the usage of similar tools to our
proposed one to check the model interpreted in the text.

The implementation of our proposed methods could be further improved to recognize
selected dynamic models of UML.

Nowadays, tools are available to extract the (UML) model from the code. Although
the model of an implemented product has more types of classes (e.g., classes representing
internal logic or framework classes), there should be classes representing concepts described
in the requirements (especially for domain-driven development). There is an open space
for comparing the subset of the model from implementation with the model extracted from
the textual requirements and marking the fulfillment (in the testing phase) or the progress
(in the development phase).

Considering the dynamic models and the current research on test generation from the
text of requirements as proposed in [42], it would be interesting to investigate this area
using patterns and our internal domain model recognition method, too.

131

Bibliography

[1] Esra A. Abdelnabi, Abdelsalam M. Maatuk, and Mohammed Hagal. Generating
UML Class Diagram from Natural Language Requirements: A Survey of Approaches
and Techniques. In 2021 IEEE 1st International Maghreb Meeting of the Conference
on Sciences and Techniques of Automatic Control and Computer Engineering MI-
STA, pages 288–293, 2021. doi:10.1109/MI-STA52233.2021.9464433.

[2] Eneko Agirre and Philip Edmonds. Foundations of Computational Linguistics. 978-
1-4020-4808-4, 1 edition, 2007.

[3] Vincenzo Ambriola and Vincenzo Gervasi. Processing Natural Language Require-
ments. In Proceedings of the 12th International Conference on Automated Software
Engineering (Formerly: KBSE), ASE ’97, pages 36–45, Washington, DC, USA,
1997. IEEE Computer Society Press. URL: https://dl.acm.org/citation.cfm?id=
786767.786786, doi:10.1109/ASE.1997.632822.

[4] Vard Antinyan, Miroslaw Staron, Anna Sandberg, and Jörgen Hansson. A Com-
plexity Measure for Textual Requirements. In 2016 Joint Conference of the In-
ternational Workshop on Software Measurement and the International Conference
on Software Process and Product Measurement (IWSM-MENSURA), pages 148–
158, Los Alamitos, CA, USA, 2016. IEEE Computer Society. URL: https:

//doi.ieeecomputersociety.org/10.1109/IWSM-Mensura.2016.030, doi:10.1109/
IWSM-Mensura.2016.030.

[5] Seth Appleman, Patrick Coffey, David Kelley, and Cliff Yip. System Re-
quirements Specification – E-Voting. https://docplayer.net/24435423-
System-requirements-specification-e-voting-authored-by-seth-appleman-

patrick-coffey-david-kelley-cliff-yip.html, 2006. Accessed: 2023-09-24.

[6] Jim Arlow and Ila Neustadt. UML 2.0 and The Unified Process: Practical Object-
Oriented Analysis and Design. Addison-Wesley, 2nd edition, 2005.

133

https://doi.org/10.1109/MI-STA52233.2021.9464433
https://dl.acm.org/citation.cfm?id=786767.786786
https://dl.acm.org/citation.cfm?id=786767.786786
https://doi.org/10.1109/ASE.1997.632822
https://doi.ieeecomputersociety.org/10.1109/IWSM-Mensura.2016.030
https://doi.ieeecomputersociety.org/10.1109/IWSM-Mensura.2016.030
https://doi.org/10.1109/IWSM-Mensura.2016.030
https://doi.org/10.1109/IWSM-Mensura.2016.030
https://docplayer.net/24435423-System-requirements-specification-e-voting-authored-by-seth-appleman-patrick-coffey-david-kelley-cliff-yip.html
https://docplayer.net/24435423-System-requirements-specification-e-voting-authored-by-seth-appleman-patrick-coffey-david-kelley-cliff-yip.html
https://docplayer.net/24435423-System-requirements-specification-e-voting-authored-by-seth-appleman-patrick-coffey-david-kelley-cliff-yip.html

Bibliography

[7] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. Automated
extraction and clustering of requirements glossary terms. IEEE Transactions on
Software Engineering, 43(10):918–945, 2017. doi:10.1109/TSE.2016.2635134.

[8] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In Karl Aberer,
Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer
Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Phil-
ippe Cudré-Mauroux, editors, The Semantic Web, pages 722–735, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[9] Frederik S. Bäumer and Michaela Geierhos. Running Out of Words: How Similar
User Stories Can Help to Elaborate Individual Natural Language Requirement De-
scriptions. In Giedre Dregvaite and Robertas Damasevicius, editors, Information and
Software Technologies, volume 639, pages 549–558. Springer International Publishing,
Cham, 2016. URL: https://link.springer.com/10.1007/978-3-319-46254-7 44,
doi:10.1007/978-3-319-46254-7\ 44.

[10] Frederik S. Bäumer and Michaela Geierhos. Flexible Ambiguity Resolution and
Incompleteness Detection in Requirements Descriptions via an Indicator-Based Con-
figuration of Text Analysis Pipelines. In Proceedings of the 51st Hawaii International
Conference on System Sciences, pages 5746–5755, 2018.

[11] Frederik S. Bäumer, Joschka Kersting, and Michaela Geierhos. Natural Language
Processing in OTF Computing: Challenges and the Need for Interactive Approaches.
Computers, 8(1):14, 2019. doi:10.3390/computers8010022.

[12] Wahiba Ben Abdessalem Karaa, Zeineb Ben Azzouz, Aarti Singh, Nilanjan Dey,
Amira S. Ashour, and Henda Ben Ghazala. Automatic Builder of Class Diagram
(ABCD): An Application of UML Generation from Functional Requirements. Soft-
ware: Practice and Experience, 46(11):1443–1458, 2016. doi:10.1002/spe.2384.

[13] Daniel M. Berry, Erik Kamsties, and Michael M. Krieger. From Contract Drafting to
Software Specification: Linguistic Sources of Ambiguity: A Handbook (version 1.0).
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf, 2003. Ac-
cessed: 2023-11-28.

[14] James Billson. What are some good examples of a software requirements specifica-
tion? https://www.quora.com/What-are-some-good-examples-of-a-software-
requirements-specification/answer/James-Billson, 2021. Accessed: 2023-04-
18.

[15] Jørgen Bøegh. A New Standard for Quality Requirements. IEEE Software, 25(2):57–
63, 2008. doi:10.1109/MS.2008.30.

134

https://doi.org/10.1109/TSE.2016.2635134
https://link.springer.com/10.1007/978-3-319-46254-7_44
https://doi.org/10.1007/978-3-319-46254-7_44
https://doi.org/10.3390/computers8010022
https://doi.org/10.1002/spe.2384
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
https://www.quora.com/What-are-some-good-examples-of-a-software-requirements-specification/answer/James-Billson
https://www.quora.com/What-are-some-good-examples-of-a-software-requirements-specification/answer/James-Billson
https://doi.org/10.1109/MS.2008.30

Bibliography

[16] Yegor Bugayenko. Combining Object-Oriented Paradigm and Controlled Natural
Language for Requirements Specification. In Proceedings of the 1st ACM SIGPLAN
International Workshop on Beyond Code: No Code, BCNC 2021, pages 11—-17,
New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/
3486949.3486963.

[17] Davide Buscaldi and Paulo Rosso. A Conceptual Density-Based Approach for the
Disambiguation of Toponyms. International Journal of Geographical Information
Science, 22(3):301–313, 2008. doi:10.1080/13658810701626251.

[18] Johnathan Mauricio Calle Gallego and Carlos Mario Zapata Jaramillo. QUARE:
towards a question-answering model for requirements elicitation. Automated Software
Engineering, 30(2):25, 2023. doi:10.1007/s10515-023-00386-w.

[19] Aurek Chattopadhyay, Ganesh Malla, Nan Niu, Tanmay Bhowmik, and Juha Sa-
volainen. Completeness of Natural Language Requirements: A Comparative Study
of User Stories and Feature Descriptions. In 2023 IEEE 24th International Con-
ference on Information Reuse and Integration for Data Science (IRI), pages 52–57,
2023. doi:10.1109/IRI58017.2023.00017.

[20] Chord (music): Definition. https://en.wikipedia.org/wiki/Chord (music), 2004.
Accessed: 2020-12-21.

[21] Chordfind: 4-String Version. http://chordfind.com/4-string, 2003. Accessed:
2020-09-30.

[22] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. W3C recommendation, W3C, 2014. Available from: https://

www.w3.org/TR/2014/REC-rdf11-concepts-20140225.

[23] Alberto Rodrigues da Silva and João Costa Fernandes. Variability Specification
and Resolution of Textual Requirements. In Proceedings of the 20th International
Conference on Enterprise Information Systems, pages 157–168. SciTePress – Science
and Technology Publications, 2018. doi:10.5220/0006810801570168.

[24] Fabiano Dalpiaz, Ivor van der Schalk, Sjaak Brinkkemper, Fatma Başak Ay-
demir, and Garm Lucassen. Detecting terminological ambiguity in user
stories: Tool and experimentation. Information and Software Technology,
110:3–16, 2019. URL: https://www.sciencedirect.com/science/article/pii/
S0950584918300715, doi:https://doi.org/10.1016/j.infsof.2018.12.007.

[25] Fabiano Dalpiaz, Ivor van der Schalk, and Garm Lucassen. Pinpointing Ambiguity
and Incompleteness in Requirements Engineering via Information Visualization and
NLP. In Erik Kamsties, Jennifer Horkoff, and Fabiano Dalpiaz, editors, Requirements
Engineering: Foundation for Software Quality, pages 119–135, Cham, 2018. Springer
International Publishing.

135

https://doi.org/10.1145/3486949.3486963
https://doi.org/10.1145/3486949.3486963
https://doi.org/10.1080/13658810701626251
https://doi.org/10.1007/s10515-023-00386-w
https://doi.org/10.1109/IRI58017.2023.00017
https://en.wikipedia.org/wiki/Chord_(music)
http://chordfind.com/4-string
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
https://doi.org/10.5220/0006810801570168
https://www.sciencedirect.com/science/article/pii/S0950584918300715
https://www.sciencedirect.com/science/article/pii/S0950584918300715
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.007

Bibliography

[26] Alan Davis, Scott Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, G. Kincaid,
G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and Mary Theofanos. Identifying and
Measuring Quality in a Software Requirements Specification. In Proceedings First
International Software Metrics Symposium, pages 141–152, Los Alamitos, CA, USA,
1993. IEEE Computer Society. URL: https://doi.ieeecomputersociety.org/
10.1109/METRIC.1993.263792, doi:10.1109/METRIC.1993.263792.

[27] Marie-Catherine de Marneffe, Anna N. Rafferty, and Christopher D. Manning. Find-
ing Contradictions in Text. In Johanna Moore, Simone Teufel, James Allan, and
Sadaoki Furui, editors, Proceedings of ACL-08: HLT, pages 1039–1047, Columbus,
Ohio, 2008. Association for Computational Linguistics.

[28] Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements Engineering. Springer
Cham, 4th edition, 2017. ISBN 978-3-319-61072-6. doi:https://doi.org/10.1007/
978-3-319-61073-3.

[29] Anurag Dwarakanath, Roshni R. Ramnani, and Shubhashis Sengupta. Automatic
Extraction of Glossary Terms from Natural Language Requirements. In 2013 21st
IEEE International Requirements Engineering Conference (RE), pages 314–319,
2013. doi:10.1109/RE.2013.6636736.

[30] Steve Easterbrook. Lecture 17: Requirements Specifications. https://

www.cs.toronto.edu/~sme/CSC340F/slides/17-specifications.pdf, 2004. Lec-
ture notes, Requirements Engineering (CSC340F), University of Toronto. Accessed:
2023-08-24.

[31] Jonas Eckhardt, Andreas Vogelsang, Henning Femmer, and Philipp Mager. Chal-
lenging Incompleteness of Performance Requirements by Sentence Patterns. In
2016 IEEE 24th International Requirements Engineering Conference (RE), pages
46–55, Beijing, China, 2016. IEEE Computer Society Press. URL: https://

ieeexplore.ieee.org/document/7765510, doi:10.1109/RE.2016.24.

[32] Saad Ezzini, Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, and Li-
onel C. Briand. Using Domain-Specific Corpora for Improved Handling of Am-
biguity in Requirements. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1485–1497, Los Alamitos, CA, USA, 2021.
IEEE Computer Society. URL: https://doi.ieeecomputersociety.org/10.1109/
ICSE43902.2021.00133, doi:10.1109/ICSE43902.2021.00133.

[33] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami. An Automatic
Quality Evaluation for Natural Language Requirements. In Proceedings of the Sev-
enth International Workshop on Requirements Engineering: Foundation for Software
Quality (REFSQ), volume 1, 2001.

[34] Gauthier Fanmuy, Anabel Fraga, and Juan Llorens. Requirements Verification in the
Industry. In Omar Hammami, Daniel Krob, and Jean-Luc Voirin, editors, Complex

136

https://doi.ieeecomputersociety.org/10.1109/METRIC.1993.263792
https://doi.ieeecomputersociety.org/10.1109/METRIC.1993.263792
https://doi.org/10.1109/METRIC.1993.263792
https://doi.org/https://doi.org/10.1007/978-3-319-61073-3
https://doi.org/https://doi.org/10.1007/978-3-319-61073-3
https://doi.org/10.1109/RE.2013.6636736
https://www.cs.toronto.edu/~sme/CSC340F/slides/17-specifications.pdf
https://www.cs.toronto.edu/~sme/CSC340F/slides/17-specifications.pdf
https://ieeexplore.ieee.org/document/7765510
https://ieeexplore.ieee.org/document/7765510
https://doi.org/10.1109/RE.2016.24
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00133
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00133
https://doi.org/10.1109/ICSE43902.2021.00133

Bibliography

Systems Design & Management, pages 145–160, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[35] Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian Eder.
Rapid Quality Assurance with Requirements Smells. Journal of Systems and
Software, 123:190–213, January 2017. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0164121216000789, doi:10.1016/j.jss.2016.02.047.

[36] Henning Femmer, Jakob Mund, and Daniel Méndez Fernández. It’s the Activit-
ies, Stupid! A New Perspective on RE Quality. In 2015 IEEE/ACM 2nd Inter-
national Workshop on Requirements Engineering and Testing (RET), pages 13–
19, Los Alamitos, CA, USA, 2015. IEEE Computer Society. URL: https://

doi.ieeecomputersociety.org/10.1109/RET.2015.11, doi:10.1109/RET.2015.11.

[37] Shiling Feng, Xiaohong Chen, Qin Li, and Yongxin Zhao. RE2B: Enhancing
Correctness of Both Requirements and Design Models. In 2021 International
Symposium on Theoretical Aspects of Software Engineering (TASE), pages 191–
198, Los Alamitos, CA, USA, 2021. IEEE Computer Society. URL: https:

//doi.ieeecomputersociety.org/10.1109/TASE52547.2021.00034, doi:10.1109/
TASE52547.2021.00034.

[38] Alessio Ferrari, Felice dell’Orletta, Giorgio Oronzo Spagnolo, and Stefania Gnesi.
Measuring and Improving the Completeness of Natural Language Requirements. In
Camille Salinesi and Inge van de Weerd, editors, Requirements Engineering: Found-
ation for Software Quality, pages 23–38, Cham, 2014. Springer International Pub-
lishing.

[39] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. PURE: A Dataset
of Public Requirements Documents. In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pages 502–505, 2017. doi:10.1109/RE.2017.29.

[40] Alessio Ferrari, Liping Zhao, and Waad Alhoshan. NLP for Requirements En-
gineering: Tasks, Techniques, Tools, and Technologies. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion), pages 322–323, Los Alamitos, CA, USA, 2021. IEEE
Computer Society. URL: https://doi.ieeecomputersociety.org/10.1109/ICSE-
Companion52605.2021.00137, doi:10.1109/ICSE-Companion52605.2021.00137.

[41] Donald Firesmith. Are Your Requirements Complete? Journal of Object Technology,
4(1):27–43, 2005.

[42] Jannik Fischbach, Julian Frattini, Andreas Vogelsang, Daniel Mendez, Michael
Unterkalmsteiner, Andreas Wehrle, Pablo Restrepo Henao, Parisa Yousefi, Tedi
Juricic, Jeannette Radduenz, and Carsten Wiecher. Automatic creation of ac-
ceptance tests by extracting conditionals from requirements: NLP approach and

137

https://linkinghub.elsevier.com/retrieve/pii/S0164121216000789
https://linkinghub.elsevier.com/retrieve/pii/S0164121216000789
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.ieeecomputersociety.org/10.1109/RET.2015.11
https://doi.ieeecomputersociety.org/10.1109/RET.2015.11
https://doi.org/10.1109/RET.2015.11
https://doi.ieeecomputersociety.org/10.1109/TASE52547.2021.00034
https://doi.ieeecomputersociety.org/10.1109/TASE52547.2021.00034
https://doi.org/10.1109/TASE52547.2021.00034
https://doi.org/10.1109/TASE52547.2021.00034
https://doi.org/10.1109/RE.2017.29
https://doi.ieeecomputersociety.org/10.1109/ICSE-Companion52605.2021.00137
https://doi.ieeecomputersociety.org/10.1109/ICSE-Companion52605.2021.00137
https://doi.org/10.1109/ICSE-Companion52605.2021.00137

Bibliography

case study. Journal of Systems and Software, 197:111549, 2023. URL: https://
www.sciencedirect.com/science/article/pii/S0164121222002254, doi:https:

//doi.org/10.1016/j.jss.2022.111549.

[43] Institute for Electric and Electronics Engineers. IEEE Guide to Software Require-
ments Specifications, 1984.

[44] Xavier Franch, Cristina Palomares, Carme Quer, Panagiota Chatzipetrou, and Tony
Gorschek. The state-of-practice in requirements specification: an extended in-
terview study at 12 companies. Requirements Engineering, 28(3):377–409, 2023.
doi:10.1007/s00766-023-00399-7.

[45] Edwin Friesen, Frederik S. Bäumer, and Michaela Geierhos. CORDULA: Soft-
ware Requirements Extraction Utilizing Chatbot as Communication Interface. In
Klaus Schmid, Paola Spoletini, Eya Ben Charrada, Yoram Chisik, Fabiano Dalpiaz,
Alessio Ferrari, Peter Forbrig, Xavier Franch, Marite Kirikova, Nazim Madhavji, and
et al.Editors, editors, Joint Proceedings of REFSQ-2018 Workshops, Doctoral Sym-
posium, Live Studies Track, and Poster Track co-located with the 23rd International
Conference on Requirements Engineering: Foundation for Software Quality (REFSQ
2018), pages 234–241. CEUR-WS.org, 2018.

[46] Francesco Gargiulo, Gabiella Gigante, and Massimo Ficco. A Semantic Driven Ap-
proach for Requirements Consistency Verification. Int. J. High Perform. Comput.
Netw., 8(3):201–211, August 2015. doi:10.1504/IJHPCN.2015.071261.

[47] Sarah Geagea, Sheng Zhang, Niclas Sahlin, Faegheh Hasibi, Farhan Hameed,
Elmira Rafiyan, and Magnus Ekberg. Software Requirements Specification:
Amazing Lunch Indicator. http://www.cse.chalmers.se/~feldt/courses/reqeng/
examples/srs example 2010 group2.pdf, 2010. Accessed: 2019-01-21.

[48] Michaela Geierhos, Sabine Schulze, and Frederik S. Bäumer. What Did You Mean?
Facing the Challenges of User-generated Software Requirements. In Proceedings of
the International Conference on Agents and Artificial Intelligence, pages 277–283,
Lisbon, Portugal, 2015. SCITEPRESS – Science and and Technology Publications.
doi:10.5220/0005346002770283.

[49] Tim Gemkow, Miro Conzelmann, Kerstin Hartig, and Andreas Vogelsang. Automatic
Glossary Term Extraction from Large-Scale Requirements Specifications. In IEEE
26th International Requirements Engineering Conference, pages 412–417, 2018.

[50] Gitnux. The most surprising software project failure statistics and trends in
2023. https://blog.gitnux.com/software-project-failure-statistics, 2023.
Accessed: 2023-06-19.

[51] Benedikt Gleich, Oliver Creighton, and Leonid Kof. Ambiguity Detection: Towards
a Tool Explaining Ambiguity Sources. In David Hutchison, Takeo Kanade, Josef

138

https://www.sciencedirect.com/science/article/pii/S0164121222002254
https://www.sciencedirect.com/science/article/pii/S0164121222002254
https://doi.org/https://doi.org/10.1016/j.jss.2022.111549
https://doi.org/https://doi.org/10.1016/j.jss.2022.111549
https://doi.org/10.1007/s00766-023-00399-7
https://doi.org/10.1504/IJHPCN.2015.071261
http://www.cse.chalmers.se/~feldt/courses/reqeng/examples/srs_example_2010_group2.pdf
http://www.cse.chalmers.se/~feldt/courses/reqeng/examples/srs_example_2010_group2.pdf
https://doi.org/10.5220/0005346002770283
https://blog.gitnux.com/software-project-failure-statistics

Bibliography

Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Roel Wieringa, and Anne Persson,
editors, Requirements Engineering: Foundation for Software Quality, volume 6182,
pages 218–232. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. doi:10.1007/
978-3-642-14192-8\ 20.

[52] ExplosionAI GmbH. English · spacy Models Documentation. https://spacy.io/
models/en. Accessed: 2023-11-29.

[53] Richard Gronback. Eclipse Modeling Framework (EMF). https://eclipse.dev/
modeling/emf. Accessed: 2023-08-26.

[54] Ramanathan Guha and Dan Brickley. RDF Schema 1.1. W3C recommendation,
W3C, 2014. https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[55] The Atlantic Systems Guild. Volere Requirements Specification Template. http:

//www.volere.co.uk/template.htm. Accessed: 2016-11-28.

[56] Jane Huffman Hayes, Jared Payne, and Mallory Leppelmeier. Toward Improved
Artificial Intelligence in Requirements Engineering: Metadata for Tracing Datasets.
In 2019 IEEE 27th International Requirements Engineering Conference Workshops
(REW), pages 256–262, 2019. doi:10.1109/REW.2019.00052.

[57] Graeme Hirst. Semantic Interpretation and the Resolution of Ambiguity. Cambridge
University Press, 1987.

[58] Florentina Hristea. The Naive Bayes Model for Unsupervised Word Sense Disam-
biguation: Aspects Concerning Feature Selection. Springer Publishing Company,
Incorporated, 2012.

[59] Carlos Huertas and Reyes Juárez-Ramı́rez. NLARE, A Natural Language Processing
Tool for Automatic Requirements Evaluation. In Proceedings of the CUBE Interna-
tional Information Technology Conference, CUBE ’12, pages 371–378, New York,
NY, USA, 2012. ACM Press. doi:10.1145/2381716.2381786.

[60] Carlos Huertas and Reyes Juárez-Ramı́rez. Towards Assessing the Quality of Func-
tional Requirements Using English/Spanish Controlled Languages and Context Free
Grammar. In The Third International Conference on Digital Information and Com-
munication Technology and its Applications (DICTAP2013), pages 234–241, 2013.

[61] Anthony Hunter and Bashar Nuseibeh. Managing Inconsistent Specifications: Reas-
oning, Analysis, and Action. ACM Trans. Softw. Eng. Methodol., 7(4):335–367,
October 1998. doi:10.1145/292182.292187.

139

https://doi.org/10.1007/978-3-642-14192-8_20
https://doi.org/10.1007/978-3-642-14192-8_20
https://spacy.io/models/en
https://spacy.io/models/en
https://eclipse.dev/modeling/emf
https://eclipse.dev/modeling/emf
http://www.volere.co.uk/template.htm
http://www.volere.co.uk/template.htm
https://doi.org/10.1109/REW.2019.00052
https://doi.org/10.1145/2381716.2381786
https://doi.org/10.1145/292182.292187

Bibliography

[62] John Hutchins. Retrospect and Prospect in Computer-Based Translation. In Proceed-
ings of Machine Translation Summit VII 99, pages 30–34, Tokyo, 1999. Asia-Pacific
Association for Machine Translation (AAMT).

[63] IEEE International Standard for System, Software, and Hardware Verification and
Validation. IEEE Standard 1012-2016 (Revision of IEEE Standard 1012-2012), 2016.
doi:10.1109/IEEESTD.2017.8055462.

[64] IEEE Standard for Application and Management of the Systems Engineering Pro-
cess. IEEE Standard 1220-2005 (Revision of IEEE Standard 1220-1998), 2005.
doi:10.1109/IEEESTD.2005.96469.

[65] ISO/IEC/IEEE International Standard – Systems and software engineering – Life
cycle processes – Requirements engineering. ISO/IEC/IEEE 29148:2011(E), 2011.
doi:10.1109/IEEESTD.2011.6146379.

[66] ISO/IEC/IEEE International Standard – Systems and software engineering – Life
cycle processes – Requirements engineering. ISO/IEC/IEEE 29148:2018(E), 2018.
doi:10.1109/IEEESTD.2018.8559686.

[67] IEEE Recommended Practice for Software Requirements Specifications, 1998. doi:
10.1109/IEEESTD.1998.88286.

[68] Grammarly Inc. My Grammarly. https://app.grammarly.com/, 2009–2023. [soft-
ware: web application]. Accessed: 2023-11-15.

[69] Prathamesh Ingle. Best Natural Language Processing (NLP) Tools/Platforms
(2023). https://www.marktechpost.com/2023/04/14/top-natural-language-
processing-nlp-tools-platforms, 2023. Accessed: 2023-09-06.

[70] Information technology – Object Management Group Unified Modeling Language
(OMG UML), Infrastructure. https://www.omg.org/spec/UML/ISO/19505-1/PDF,
2012. ISO/IEC 19505-1:2012(E). Accessed 2023-09-10.

[71] Massila Kamalrudin and Safiah Sidek. A Review on Software Requirements Valid-
ation and Consistency Management. International Journal of Software Engineering
and Its Applications, 9(10):39–58, 2015.

[72] Mohamad Kassab, Colin Neill, and Phillip Laplante. State of Practice in Require-
ments Engineering: Contemporary Data. Innovations in Systems and Software En-
gineering, 10(4):235–241, 2014. doi:10.1007/s11334-014-0232-4.

[73] Holger Knublauch. SHACL and OWL Compared. https://spinrdf.org/shacl-
and-owl.html. Last updated: 2017-08-17. Accessed: 2019-01-08.

[74] Leonid Kof. An Application of Natural Language Processing to Domain Modelling:
Two Case Studies. International Journal on Computer Systems Science Engineering,
20:37–52, 2004.

140

https://doi.org/10.1109/IEEESTD.2017.8055462
https://doi.org/10.1109/IEEESTD.2005.96469
https://doi.org/10.1109/IEEESTD.2011.6146379
https://doi.org/10.1109/IEEESTD.2018.8559686
https://doi.org/10.1109/IEEESTD.1998.88286
https://doi.org/10.1109/IEEESTD.1998.88286
https://app.grammarly.com/
https://www.marktechpost.com/2023/04/14/top-natural-language-processing-nlp-tools-platforms
https://www.marktechpost.com/2023/04/14/top-natural-language-processing-nlp-tools-platforms
https://www.omg.org/spec/UML/ISO/19505-1/PDF
https://doi.org/10.1007/s11334-014-0232-4
https://spinrdf.org/shacl-and-owl.html
https://spinrdf.org/shacl-and-owl.html

Bibliography

[75] Leonid Kof. Natural Language Processing: Mature Enough for Requirements Doc-
uments Analysis? In David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Ty-
gar, Moshe Y. Vardi, Gerhard Weikum, Andrés Montoyo, Rafael Muńoz, and Elisa-
beth Métais, editors, Natural Language Processing and Information Systems, volume
3513, pages 91–102. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. URL:
https://link.springer.com/10.1007/11428817 9, doi:10.1007/11428817 9.

[76] Salih G. Köse and Fatma B. Aydemir. Automated Glossary Extraction from Collab-
orative Requirements Models. In 2021 IEEE 29th International Requirements Engin-
eering Conference Workshops (REW), pages 11–15, Los Alamitos, CA, USA, 2021.
IEEE Computer Society. URL: https://doi.ieeecomputersociety.org/10.1109/
REW53955.2021.00008, doi:10.1109/REW53955.2021.00008.

[77] Petr Kroha, Robert Janetzko, and José Emilio Labra. Ontologies in Checking for
Inconsistency of Requirements Specification. In 2009 Third International Confer-
ence on Advances in Semantic Processing, pages 32–37, Sliema, Malta, 2009. IEEE
Computer Society Press. URL: https://ieeexplore.ieee.org/document/5291538,
doi:10.1109/SEMAPRO.2009.11.

[78] Patrick Sebastian Kummler, Léa Vernisse, and Hansjörg Fromm. How Good are My
Requirements? A New Perspective on the Quality Measurement of Textual Require-
ments. In 2018 11th International Conference on the Quality of Information and
Communications Technology (QUATIC), pages 156–159, Los Alamitos, CA, USA,
2018. IEEE Computer Society. URL: https://doi.ieeecomputersociety.org/
10.1109/QUATIC.2018.00031, doi:10.1109/QUATIC.2018.00031.

[79] Oi Yee Kwong. New Perspectives on Computational and Cognitive Strategies for
Word Sense Disambiguation. Springer Publishing Company, Incorporated, 2013.

[80] Mathias Landhäußer, Sven J. Körner, and Walter F. Tichy. From Requirements
to UML Models and Back: How Automatic Processing of Text Can Support Re-
quirements Engineering. Software Quality Journal, 22(1):121–149, 2014. doi:

10.1007/s11219-013-9210-6.

[81] Ao Li. Analysis of Requirements Incompleteness Using Metamodel Specification.
Master’s thesis, University of Tampere, June 2015.

[82] Mich Luisa, Franch Mariangela, and Novi Inverardi Pierluigi. Market Research for
Requirements Analysis Using Linguistic Tools. Requirements Engineering, 9(1):40–
56, 2004. doi:10.1007/s00766-003-0179-8.

[83] Deborah McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C recommendation, W3C, 2004. Available from: https://www.w3.org/
TR/2004/REC-owl-features-20040210.

141

https://link.springer.com/10.1007/11428817_9
https://doi.org/10.1007/11428817_9
https://doi.ieeecomputersociety.org/10.1109/REW53955.2021.00008
https://doi.ieeecomputersociety.org/10.1109/REW53955.2021.00008
https://doi.org/10.1109/REW53955.2021.00008
https://ieeexplore.ieee.org/document/5291538
https://doi.org/10.1109/SEMAPRO.2009.11
https://doi.ieeecomputersociety.org/10.1109/QUATIC.2018.00031
https://doi.ieeecomputersociety.org/10.1109/QUATIC.2018.00031
https://doi.org/10.1109/QUATIC.2018.00031
https://doi.org/10.1007/s11219-013-9210-6
https://doi.org/10.1007/s11219-013-9210-6
https://doi.org/10.1007/s00766-003-0179-8
https://www.w3.org/TR/2004/REC-owl-features-20040210
https://www.w3.org/TR/2004/REC-owl-features-20040210

Bibliography

[84] Juliana Medeiros, Miguel Goulão, Alexandre Vasconcelos, and Carla Silva. Towards
a Model about Quality of Software Requirements Specification in Agile Projects.
In 2016 10th International Conference on the Quality of Information and Com-
munications Technology (QUATIC), pages 236–241, Los Alamitos, CA, USA, 2016.
IEEE Computer Society. URL: https://doi.ieeecomputersociety.org/10.1109/
QUATIC.2016.058, doi:10.1109/QUATIC.2016.058.

[85] Juliana Medeiros, Alexandre Vasconcelos, Carla Silva, and Miguel Goulão. Re-
quirements specification for developers in agile projects: Evaluation by two indus-
trial case studies. Information and Software Technology, 117, 2020. doi:https:

//doi.org/10.1016/j.infsof.2019.106194.

[86] Roberto Navigli and Simone Paolo Ponzetto. BabelNet: The Automatic Construc-
tion, Evaluation and Application of a Wide-Coverage Multilingual Semantic Network.
Artificial Intelligence, 193:217–250, 2012.

[87] Azlin Nordin, Nurul H. A. Zaidi, and Noor A. Mazlan. Measuring Software Require-
ments Specification Quality. Journal of Telecommunication, Electronic and Computer
Engineering, 9(3–5):123–128, 2017.

[88] NSX bvba. NSX: Normalized Systems. https://normalizedsystems.org, 2020.
Accessed: 2022-09-27.

[89] Dallin D. Oaks. Structural Ambiguity in English. Continuum International Publishing
Group, London, 1st edition, 2010.

[90] About OMG. https://www.omg.org/about/index.htm. Accessed: 2019-01-19.

[91] OMG Unified Modeling Language (OMG UML). https://www.omg.org/spec/UML/
2.5.1/PDF, 2017. Specification. Version 2.5.1. Accessed 2023-09-10.

[92] XML Metadata Interchange (XMI) Specification. https://www.omg.org/spec/XMI/
2.5.1/PDF, 2015. Specification. Version 2.5.1. Accessed 2023-08-26.

[93] Harshvardhan J. Pandit, Declan O’Sullivan, and Dave Lewis. Using Ontology Design
Patterns to Define SHACL Shapes. In Proceedings of the 9th Workshop on Ontology
Design and Patterns (WOP 2018) co-located with 17th International Semantic Web
Conference (ISWC 2018), pages 67–71, 2018.

[94] Piano Chord Fingering – Which Fingers to Use When Playing Chords.
https://www.piano-keyboard-guide.com/piano-chord-fingering-which-
fingers-to-use-when-playing-chords, 2016. Accessed: 2021-01-09.

[95] Playable chords for string instruments? https://www.youngcomposers.com/t18240/
playable-chords-for-string-instruments, 2009. Accessed: 2020-09-30.

142

https://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.058
https://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.058
https://doi.org/10.1109/QUATIC.2016.058
https://doi.org/https://doi.org/10.1016/j.infsof.2019.106194
https://doi.org/https://doi.org/10.1016/j.infsof.2019.106194
https://normalizedsystems.org
https://www.omg.org/about/index.htm
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/XMI/2.5.1/PDF
https://www.omg.org/spec/XMI/2.5.1/PDF
https://www.piano-keyboard-guide.com/piano-chord-fingering-which-fingers-to-use-when-playing-chords
https://www.piano-keyboard-guide.com/piano-chord-fingering-which-fingers-to-use-when-playing-chords
https://www.youngcomposers.com/t18240/playable-chords-for-string-instruments
https://www.youngcomposers.com/t18240/playable-chords-for-string-instruments

Bibliography

[96] Anjalie Rajkumar, Mimi Taylor, and Nicholas Yap. Your bad requirements
are costing you money. White paper. Deloitte Quality and Test Engineer-
ing, Deloitte, 2022. https://www2.deloitte.com/content/dam/Deloitte/uk/
Documents/technology/deloitte-uk-your-bad-requirements-are-costing-

you-money.pdf.

[97] Marcel Robeer, Garm Lucassen, Jan Martijn E. M. van der Werf, Fabiano Dalpiaz,
and Sjaak Brinkkemper. Automated Extraction of Conceptual Models from User
Stories via NLP. In 2016 IEEE 24th International Requirements Engineering Con-
ference (RE), pages 196–205, 2016. doi:10.1109/RE.2016.40.

[98] Danissa V. Rodriguez, Doris L. Carver, and Anas Mahmoud. An Efficient Wikipedia-
Based Approach for Better Understanding of Natural Language Text Related to User
Requirements. In 2018 IEEE Aerospace Conference, pages 1–16, Big Sky, MT, 2018.
IEEE Computer Society Press. URL: https://ieeexplore.ieee.org/document/
8396645/, doi:10.1109/AERO.2018.8396645.

[99] Colette Rolland and Christophe Proix. A Natural Language Approach for Require-
ments Engineering. In Pericles Loucopoulos, editor, Advanced Information Systems
Engineering, pages 257–277, Berlin, Heidelberg, 1992. Springer.

[100] Rudolf Rosa and Zdeněk Žabokrtský. Spacy, NLTK and
other NLP frameworks. https://ufal.mff.cuni.cz/courses/
npfl125#spacy nltk and other nlp frameworks, 2022. Lecture notes, Intro-
duction to Language Technologies (NLP125), Charles University. Accessed:
2023-09-06.

[101] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 2nd edition, 2004.

[102] Shinobu Saito, Mutsuki Takeuchi, Masatoshi Hiraoka, Tsuyoshi Kitani, and
Mikio Aoyama. Requirements Clinic: Third Party Inspection Methodology
and Practice for Improving the Quality of Software Requirements Specifications.
In 2013 IEEE 21st International Requirements Engineering Conference (RE),
pages 290–295, Los Alamitos, CA, USA, 2013. IEEE Computer Society. URL:
https://doi.ieeecomputersociety.org/10.1109/RE.2013.6636732, doi:10.1109/
RE.2013.6636732.

[103] Wladimir Schamai, Philipp Helle, Nicolas Albarello, Lena Buffoni, and Peter
Fritzson. Towards the Automation of Model-Based Design Verification.
INCOSE International Symposium, 26(1):585–599, 2016. URL: https://

onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2016.00180.x, arXiv:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2016.00180.x,
doi:10.1002/j.2334-5837.2016.00180.x.

143

https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/technology/deloitte-uk-your-bad-requirements-are-costing-you-money.pdf
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/technology/deloitte-uk-your-bad-requirements-are-costing-you-money.pdf
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/technology/deloitte-uk-your-bad-requirements-are-costing-you-money.pdf
https://doi.org/10.1109/RE.2016.40
https://ieeexplore.ieee.org/document/8396645/
https://ieeexplore.ieee.org/document/8396645/
https://doi.org/10.1109/AERO.2018.8396645
https://ufal.mff.cuni.cz/courses/npfl125#spacy_nltk_and_other_nlp_frameworks
https://ufal.mff.cuni.cz/courses/npfl125#spacy_nltk_and_other_nlp_frameworks
https://doi.ieeecomputersociety.org/10.1109/RE.2013.6636732
https://doi.org/10.1109/RE.2013.6636732
https://doi.org/10.1109/RE.2013.6636732
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2016.00180.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2016.00180.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2016.00180.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2016.00180.x
https://doi.org/10.1002/j.2334-5837.2016.00180.x

Bibliography

[104] Viliam Šimko, Petr Kroha, and Petr Hnětynka. Implemented Domain Model Gen-
eration. Technical Report No. D3S-TR-2013-03, Department of Distributed and De-
pendable Systems, Faculty of Mathematics and Physics, Charles University, Prague,
2013.

[105] IEEE Computer Society, Pierre Bourque, and Richard E. Fairley. Guide to the Soft-
ware Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer
Society Press, Los Alamitos, CA, USA, 3rd edition, 2014.

[106] Badariah Solemon, Shamsul Sahibuddin, and Abdul Azim Abd Ghani. Require-
ments Engineering Problems and Practices in Software Companies: An Industrial
Survey. In Dominik Ślezak, Tai-hoon Kim, Akingbehin Kiumi, Tao Jiang, June
Verner, and Silvia Abrahão, editors, Advances in Software Engineering, pages 70–77,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[107] Ian Sommerville. Software Engineering. Addison-Wesley, Harlow, United Kingdom,
9th edition, 2011.

[108] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practice
Guide. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.

[109] Riad Sonbol, Ghaida Rebdawi, and Nada Ghneim. Towards a Semantic Repres-
entation for Functional Software Requirements. In 2020 IEEE Seventh Interna-
tional Workshop on Artificial Intelligence for Requirements Engineering (AIRE),
pages 1–8, Los Alamitos, CA, USA, 2020. IEEE Computer Society. URL: https:
//doi.ieeecomputersociety.org/10.1109/AIRE51212.2020.00007, doi:10.1109/
AIRE51212.2020.00007.

[110] George Spanoudakis and Anthony Finkelstein. A Semi-automatic Process of Identi-
fying Overlaps and Inconsistencies between Requirements Specifications. In Collete
Rolland and George Grosz, editors, OOIS’98, pages 405–424, London, 1998. Springer
London.

[111] George Spanoudakis and Andrea Zisman. Inconsistency Management in Software
Engineering: Survey and Open Research Issues. In Handbook of Software Engin-
eering and Knowledge Engineering: Volume I: Fundamentals, pages 329–380. World
Scientific, 2001.

[112] Robyn Speer and Julian Chaidez. API · commonsense/conceptnet5 Wiki · Git-
Hub. https://github.com/commonsense/conceptnet5/wiki/API#relatedness-
of-a-particular-pair-of-terms. Accessed: 2023-11-08.

[113] Robyn Speer, Joshua Chin, and Catherine Havasi. ConceptNet 5.5: An Open Mul-
tilingual Graph of General Knowledge. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17, pages 4444–4451. AAAI Press, 2017.

144

https://doi.ieeecomputersociety.org/10.1109/AIRE51212.2020.00007
https://doi.ieeecomputersociety.org/10.1109/AIRE51212.2020.00007
https://doi.org/10.1109/AIRE51212.2020.00007
https://doi.org/10.1109/AIRE51212.2020.00007
https://github.com/commonsense/conceptnet5/wiki/API#relatedness-of-a-particular-pair-of-terms
https://github.com/commonsense/conceptnet5/wiki/API#relatedness-of-a-particular-pair-of-terms

Bibliography

[114] Pantulkar Sravanathi and B. Srinivasu. Semantic Similarity between Sentences. In-
ternational research Journal of Engineering and Technology (IRJET), 4(1):156–161,
2017.

[115] Steffen Staab, Jens Lehmann, and Ruben Verborgh. Structured Knowledge on the
Web 7.0. In Companion of the The Web Conference 2018 on The Web Conference
2018 - WWW ’18, pages 885–886, Lyon, France, 2018. ACM Press. URL: https://
dl.acm.org/citation.cfm?doid=3184558.3190666, doi:10.1145/3184558.3190666.

[116] Alistair Sutcliffe. Scenario-based Requirements Analysis. Requirements Engineering,
3(1):48–65, March 1998. doi:10.1007/BF02802920.

[117] Sparx Systems. Enterprise Architect User Guide: Import from XMI. https:

//sparxsystems.com/enterprise architect user guide/16.1/model exchange/

importxmi.html. Accessed: 2023-11-27.

[118] Sparx Systems. UML modeling tools for Business, Software, Systems and Architec-
ture. https://www.sparxsystems.com. Accessed: 2023-09-20.

[119] Akiyuki Takoshima and Mikio Aoyama. Assessing the Quality of Software Require-
ments Specifications for Automotive Software Systems. In 2015 Asia-Pacific Software
Engineering Conference (APSEC), pages 393–400, Los Alamitos, CA, USA, 2015.
IEEE Computer Society. URL: https://doi.ieeecomputersociety.org/10.1109/
APSEC.2015.57, doi:10.1109/APSEC.2015.57.

[120] Pratvina Talele and Rashmi Phalnikar. Software Requirements Classification and
Prioritisation Using Machine Learning. In Amit Joshi, Mahdi Khosravy, and Neeraj
Gupta, editors, Machine Learning for Predictive Analysis, pages 257–267, Singapore,
2021. Springer Singapore.

[121] Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The Penn Treebank: An Over-
view, pages 5–22. Springer Netherlands, Dordrecht, 2003. doi:10.1007/978-94-
010-0201-1\ 1.

[122] Saurabh Tiwari, Deepti Ameta, and Asim Banerjee. An Approach to Identify Use
Case Scenarios from Textual Requirements Specification. In Proceedings of the 12th

Innovations on Software Engineering Conference, ISEC’19, pages 5:1–5:11, New
York, NY, USA, 2019. ACM. doi:10.1145/3299771.3299774.

[123] Damiano Torre, Yvan Labiche, Marcela Genero, and Maged Elaasar. A System-
atic Identification of Consistency Rules for UML Diagrams. Journal of Systems
and Software, 144:121–142, 2018. URL: https://www.sciencedirect.com/science/
article/pii/S0164121218301249, doi:10.1016/j.jss.2018.06.029.

[124] Universal Dependency Relations. https://universaldependencies.org/u/dep.
Accessed: 2023-09-20.

145

https://dl.acm.org/citation.cfm?doid=3184558.3190666
https://dl.acm.org/citation.cfm?doid=3184558.3190666
https://doi.org/10.1145/3184558.3190666
https://doi.org/10.1007/BF02802920
https://sparxsystems.com/enterprise_architect_user_guide/16.1/model_exchange/importxmi.html
https://sparxsystems.com/enterprise_architect_user_guide/16.1/model_exchange/importxmi.html
https://sparxsystems.com/enterprise_architect_user_guide/16.1/model_exchange/importxmi.html
https://www.sparxsystems.com
https://doi.ieeecomputersociety.org/10.1109/APSEC.2015.57
https://doi.ieeecomputersociety.org/10.1109/APSEC.2015.57
https://doi.org/10.1109/APSEC.2015.57
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1145/3299771.3299774
https://www.sciencedirect.com/science/article/pii/S0164121218301249
https://www.sciencedirect.com/science/article/pii/S0164121218301249
https://doi.org/10.1016/j.jss.2018.06.029
https://universaldependencies.org/u/dep

Bibliography

[125] Universal POS tags. https://universaldependencies.org/u/pos. Accessed: 2023-
09-20.

[126] Philip van Oosten, Dries Tanghe, and Véronique Hoste. Towards an Improved
Methodology for Automated Readability Prediction. In Calzolari, Nicoletta and
Choukri, Khalid and Maegaard, Bente and Mariani, Joseph and Odijk, Jan and
Piperidis, Stelios and Rosner, Mike and Tapias, Daniel, editor, Proceedings of the Sev-
enth International Conference on Language Resources and Evaluation (LREC’10),
pages 775–782. European Language Resources Association (ELRA), 2010. URL:
http://www.lrec-conf.org/proceedings/lrec2010/pdf/286 Paper.pdf.

[127] Stefan Wagner, Daniel Méndez Fernández, Michael Felderer, Antonio Vetrò, Marcos
Kalinowski, Roel Wieringa, Dietmar Pfahl, Tayana Conte, Marie-Therese Christians-
son, Desmond Greer, Casper Lassenius, Tomi Männistö, Maleknaz Nayebi, Markku
Oivo, Birgit Penzenstadler, Rafael Prikladnicki, Guenther Ruhe, André Schekelmann,
Sagar Sen, Rodrigo Sṕınola, Ahmed Tuzcu, Jose Luis De La Vara, and Dietmar
Winkler. Status Quo in Requirements Engineering: A Theory and a Global Family
of Surveys. ACM Transactions on Software Engineering and Methodology, 28(2),
2019. doi:10.1145/3306607.

[128] Yue Wang, Irene L. Manotas Gutièrrez, Kristina Winbladh, and Hui Fang. Auto-
matic Detection of Ambiguous Terminology for Software Requirements. In David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern,
John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Stef-
fen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Elisabeth Métais, Farid Meziane, Mohamad Saraee, Vijayan Sugumaran,
and Sunil Vadera, editors, Natural Language Processing and Information Systems,
volume 7934, pages 25–37. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
doi:10.1007/978-3-642-38824-8\ 3.

[129] Wordnik Society, Inc. About Wordnik. https://www.wordnik.com/about. Accessed:
2023-11-08.

[130] Liping Zhao, Waad Alhoshan, Alessio Ferrari, and Keletso J. Letsholo. Classification
of Natural Language Processing Techniques for Requirements Engineering, 2022.
arXiv. arXiv:2204.04282.

[131] Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J. Letsholo, Muideen A.
Ajagbe, Erol-Valeriu Chioasca, and Riza T. Batista-Navarro. Natural Language Pro-
cessing for Requirements Engineering: A Systematic Mapping Study. ACM Comput.
Surv., 54(3), 2021. doi:10.1145/3444689.

146

https://universaldependencies.org/u/pos
http://www.lrec-conf.org/proceedings/lrec2010/pdf/286_Paper.pdf
https://doi.org/10.1145/3306607
https://doi.org/10.1007/978-3-642-38824-8_3
https://www.wordnik.com/about
https://arxiv.org/abs/2204.04282
https://doi.org/10.1145/3444689

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] Šenkýř, D.; Kroha, P. Quality Measurement of Functional Requirements. In: Pro-
ceedings of the 18th International Conference on Software Technologies. SciTePress,
Porto, 2023. doi:10.5220/0012148700003538.

[A.2] Šenkýř, D.; Suchánek M.; Kroha, P.; Mannaert, H.; Pergl, R. Expanding Normalized
Systems from textual domain descriptions using TEMOS. In: Journal of Intelligent
Information Systems. Springer, 2022. doi:10.1007/s10844-022-00706-8.

The paper has been cited in:

� Slifka, J.; Knaisl, V.; Pergl, R. Evolvable transformation of knowledge graphs
into human-oriented formats. In: Journal of Intelligent Information Systems.
Springer, 2023.

� Skotnica, M. Design of Systems Supporting Compliance Management. Disser-
tation thesis. Czech Technical University in Prague, 2023.

� Fernandes, W. J. de M. O estado da arte do processamento de linguagem nat-
ural em histórias de usuário. Bachelor thesis. Pontif́ıcia Universidade Católica
de Goiás, 2023.

[A.3] Šenkýř, D.; Kroha, P. Problem of Inconsistency and Default Consistency Rules.
In: New Trends in Intelligent Software Methodologies, Tools and Techniques. IOS
Press, Amsterdam, 2021. doi:10.3233/FAIA210063.

[A.4] Šenkýř, D.; Kroha, P. Problem of Inconsistency in Textual Requirements
Specification. In: Proceedings of the 16th International Conference on Evalu-
ation of Novel Approaches to Software Engineering. SciTePress, Porto, 2021.
doi:10.5220/0010421602130220.

The paper has been cited in:

147

https://doi.org/10.5220/0012148700003538
https://doi.org/10.1007/s10844-022-00706-8
https://doi.org/10.3233/FAIA210063
https://doi.org/10.5220/0010421602130220

Reviewed Publications of the Author Relevant to the Thesis

� Talele, P.; Phalnikar, R. Multiple correlation based decision tree model for clas-
sification of software requirements. In: International Journal of Computational
Science and Engineering. Inderscience Publishers, 2023.

� Vigneshwar, M. Using Neo4j DB system to store and query linguistic pattern.
Master thesis. Czech Technical University in Prague, 2022.

� de Ribaupierre, H.; Cutting-Decelle, A. F.; Baumier, N.; Blumental, S. Auto-
matic extraction of requirements expressed in industrial standards: A way
towards machine readable standards? arXiv, 2021.

[A.5] Šenkýř, D.; Kroha, P. Problem of Semantic Enrichment of Sentences Used in Tex-
tual Requirements Specification. In: Advanced Information Systems Engineering
Workshops. Springer, Cham, 2021. doi:10.1007/978-3-030-79022-6 7.

The paper has been cited in:

� Vigneshwar, M. Using Neo4j DB system to store and query linguistic pattern.
Master thesis. Czech Technical University in Prague, 2022.

[A.6] Šenkýř, D.; Kroha, P. Patterns for Checking Incompleteness of Scenarios in Textual
Requirements Specification. In: Proceedings of the 15th International Conference
on Evaluation of Novel Approaches to Software Engineering. SciTePress, Porto,
2020. doi:10.5220/0009344202890296.

[A.7] Šenkýř, D. SHACL Shapes Generation from Textual Documents. In: En-
terprise and Organizational Modeling and Simulation. Springer, Cham, 2019.
doi:10.1007/978-3-030-35646-0 9.

The paper has been cited in:

� Saleh, D. R. et al. On Generating SHACL Shapes from Collective Collection
of Plant Trait Data. In: Proceedings of the 2022 International Conference on
Computer, Control, Informatics and Its Applications. Association for Comput-
ing Machinery, New York, 2022.

� Álvarez, D. F. Extraction of structured semantic knowledge through data min-
ing over social media. Doctoral thesis. University of Oviedo, 2023.

� Pareti, P.; Konstantinidis, G. A Review of SHACL: From Data Validation to
Schema Reasoning for RDF Graphs. In: Reasoning Web. Declarative Artificial
Intelligence. Springer, Cham, 2022.

[A.8] Šenkýř, D.; Kroha, P. Problem of Incompleteness in Textual Requirements Specific-
ation. In: New Knowledge in Information Systems and Technologies. SciTePress,
Porto, 2019. doi:10.5220/0007978003230330.

The paper has been cited in:

148

https://doi.org/10.1007/978-3-030-79022-6_7
https://doi.org/10.5220/0009344202890296
https://doi.org/10.1007/978-3-030-35646-0_9
https://doi.org/10.5220/0007978003230330

Reviewed Publications of the Author Relevant to the Thesis

� Castillo-Motta, M.; Dorado-Cordoba, R.; Pardo-Calvache, C.; Orozco-Garces,
C. Systematic Mapping of the Literature on Smells in Software Development
Requirements. In: Revista Facultad de Ingenieŕıa. 2023.

� Vigneshwar, M. Using Neo4j DB system to store and query linguistic pattern.
Master thesis. Czech Technical University in Prague, 2022.

� Żeliński, J. Who is to blame for the project’s failure? Pur-
chaser! https://it-consulting.pl/2020/12/24/kto-winien-porazki-
projektu-zamawiajacy, 2020. Last updated: 2022-09-12. Accessed: 2023-11-
30.

[A.9] Šenkýř, D.; Kroha, P. Patterns of Ambiguity in Textual Requirements Specification.
In: New Knowledge in Information Systems and Technologies. Springer, Cham,
2019. doi:10.1007/978-3-030-16181-1 83.

The paper has been cited in:

� Vigneshwar, M. Using Neo4j DB system to store and query linguistic pattern.
Master thesis. Czech Technical University in Prague, 2022.

[A.10] Šenkýř, D.; Kroha, P. Patterns in Textual Requirements Specification. In: Pro-
ceedings of the 13th International Conference on Software Technologies. SciTePress,
Madeira, 2018. doi:10.5220/0006827302310238.

The paper has been cited in:

� Álvarez, D. F. Extraction of structured semantic knowledge through data min-
ing over social media. Doctoral thesis. University of Oviedo, 2023.

� Suchánek, M. Towards a Normalized Systems Gateway Ontology for Concep-
tual Models. Dissertation thesis. Czech Technical University in Prague, 2023.

� Vigneshwar, M. Using Neo4j DB system to store and query linguistic pattern.
Master thesis. Czech Technical University in Prague, 2022.

� Šimonová, S. Requirements Gathering for Specialized Information Systems in
Public Administration. In: 2021 International Conference on Information and
Digital Technologies (IDT). IEEE, 2021.

149

https://it-consulting.pl/2020/12/24/kto-winien-porazki-projektu-zamawiajacy
https://it-consulting.pl/2020/12/24/kto-winien-porazki-projektu-zamawiajacy
https://doi.org/10.1007/978-3-030-16181-1_83
https://doi.org/10.5220/0006827302310238

Remaining Publications of the Author
Relevant to the Thesis

[A.11] Šenkýř, D.; Kroha, P. Software Requirements Data Set. Data set. Zenodo.
doi:10.5281/zenodo.7897601, 2023.

[A.12] Šenkýř, D. Processing, Checking, and Modelling of Textual Requirements Specica-
tions. Doctoral minimum thesis, Faculty of Information Technology, Czech Tech-
nical University in Prague. Prague, Czech Republic, 2019.

[A.13] Šenkýř, D. Patterns in Textual Requirements Specification. Technical Report, No.
TR-FIT-19-02, Faculty of Information Technology, Czech Technical University in
Prague. Prague, Czech Republic, 2019.

[A.14] Šenkýř, D. Generating of UML Entities from Textual Requirements Specification.
Master thesis, Faculty of Information Technology, Czech Technical University in
Prague. Prague, Czech Republic, 2017.

151

https://doi.org/10.5281/zenodo.7897601

Selected Relevant Supervised Thesis

[A.15] Šprysl, M. Sentence Patterns Visualisation Tool. Bachelor thesis, Czech Technical
University in Prague, Faculty of Information Technology, Prague, Czech Republic,
2021.

153

	Abbreviations
	Introduction
	Motivation
	Problem Statement
	Goals of the Dissertation Thesis
	Structure of the Dissertation Thesis
	Research Approach

	Research Domain
	Requirements Engineering
	Requirements Engineering Process
	Software/System Requirements Specification

	Natural Language Processing
	Natural Language Processing Approaches
	Natural Language Processing for Requirements Engineering

	UML Class Diagram Generation
	UML Class Diagram
	Serialization Formats

	Overview of Our Approach
	Main Algorithm
	Text Mining Process Pipeline
	The Method of Grammatical Inspection
	Internal Model (Manager)
	Internal Model (Manager) Constraints

	Suitable Patterns
	Triplet Recognition
	Triplet Recognition – Challenges
	Attributes Recognition
	Hierarchy Recognition

	Evaluation
	Data Set
	Textual Modeling System (TEMOS)

	Problem of Ambiguity in Textual Requirements Specification
	Motivation
	Problem Statement and Related Work
	Ambiguity of Words
	Ambiguity of Sentences

	Our Approach – Patterns of Structural Ambiguity
	Patterns of Attachment Ambiguity
	Patterns of Analytical Ambiguity

	Our Approach – Glossary Construction and Synonyms Resolving
	Experiments and Results
	Problems of Semantic Sentence Ambiguity and Coreference
	Linguistic Approach Completed by Knowledge Base
	Model Approach
	Specific Attribute Values Distinguish the Coreference

	Problem of Incompleteness in Textual Requirements Specification
	Problem Statement
	Related Work
	Incompleteness Detection Tools
	Incompleteness Confrontation
	Incompleteness of Scenarios
	Related Works – Overview

	Our Approach
	Group S.1 (Usual Usage of Words)
	Group S.2 (Acronyms Definition)
	Group D.1 (Semantic Knowledge)
	Group D.2 (Actions)
	Group D.3 (Model Validation)

	Our Approach – Incompleteness of Scenarios
	Alternative Scenarios
	The Algorithm
	Static UML Model Construction
	Sets of Values
	Patterns To Find Scenarios

	Experiments and Results
	Evaluation Example #1
	Evaluation Example #2
	Results

	Problem of Inconsistency in Textual Requirements Specification
	Problem Statement
	Related Work
	Sources of Inconsistency
	Semantic Overlaps as Sources of Inconsistency
	Inconsistency between the Text and the UML Model

	Our Approach
	Model Construction and Semantically Similar Sentences
	Example – Library Information System

	Experiments and Results
	Data
	Results

	Problem of Default Consistency Rules in Textual Requirements Specification
	Problem Statement
	Case Study – Part 1: Missing Consistency Rules in Chords Generation
	Chord Generation Requirements
	Our Approach – Using External Context to Identify the Missing Default Consistency Rules
	Construction of Pseudo-Questions
	Semantic Similarity of Sentences
	Semantic Enrichment of Sentences
	The Process of Semantic Enrichment of Sentences

	Case Study – Part 2: Applying Our Approach
	The Missing Consistency Rule No. 1
	The Missing Consistency Rule No. 2

	Experiments and Results
	Revealing Consistency Rule No. 1
	Revealing Consistency Rule No. 2
	Discussion

	Quality Measurement
	Problem Statement
	Quality Measurement
	Our Approach to Quality of Requirements
	Experiments and Results

	Created Artifact and Models Generation
	TEMOS – Textual Modeling System
	Core Features
	Additional Features
	Used Technologies

	Models Generation
	Generated Models – UML (Class Diagram)
	Generated Models – SHACL
	Generated Models – Normalized Systems
	Generating Information System Prototypes

	Conclusions
	Research Goals Revisited
	Contributions of the Dissertation Thesis
	Future Work

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Selected Relevant Supervised Thesis

