
Department of Air Transport

Data driven and machine learning playbook
supporting identification of block time
deviations and the assessment of their

operational impact
DISSERTATION THESIS

Doctoral Study Programme: Technology in Transportation and
Telecommunication

Study Field: Air Traffic Control and Management

Ing. Miroslav Špák

Prague, November 2023



Prague, November 2023

This dissertation thesis was completed as part of the doctoral studies at the
Faculty of Transportation Sciences, Czech Technical University in Prague.

Candidate: Ing. Miroslav Špák
Faculty of Transportation Sciences, Czech Technical
University in Prague
Horská 3, 128 03 Prague 2

Supervisor: doc. Ing. Bc. Vladimír Socha, Ph.D.
Faculty of Transportation Sciences, Czech Technical
University in Prague
Horská 3, 128 03 Prague 2



Abstract

Nowadays, with the growth of air traffic, airports are congested, and air
traffic operations are disrupted by the formation of various bottlenecks on the
surface. Hence, the flight predictability and efficiency on the ground play an
important role in keeping the whole Air Traffic Management (ATM) business
sustainable. Flight efficiency is directly linked to the ability of flight to adhere
to airport arrival and departure slots, thus to minimize presence of primary
delays further generating reactionary delays. In 2019, overall departure
punctuality improved, with 37.6% of flights departing within the 5minute
threshold before or after the scheduled departure time. Flights delayed >30
minutes from all causes decreased by 1.6 percentage points to 12.1% compared
to 2018. Airline arrival punctuality also improved, with 77.6% of flights arriving
within 15 minutes or earlier than their scheduled arrival time, compared to
75.8% in 2018. Flights arriving >15 minutes ahead of schedule saw an increase
to 10.3%. Whilst being good for the passenger experience, this high share may
affect operations and ground resource allocation process. Excessively late or
early arrivals have direct and negative impact on airport operations including
air traffic flow management operations as Air Traffic Flow Management
(ATFM) regulations are often implemented as a result of demand shifts. It is
the variation of traffic in regards with a type of operating fleet, airline’s business
rules, or administrative requirements, which hinder any flexibility in tactical
resource re-allocation process. The focus of a presented proposal of the
dissertation thesis therefore lies in improved flight predictability process based
on data driven and machine learning model supporting development of a
predictive model enabling identification of in-block and landing time deviations.
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Abstrakt

V súčasnosti, s rastom leteckej dopravy, sú letiská preplnené, a letecké
prevádzky sú narušované tvorbou rôznych úzkych hrdiel. Preto predvídateľnosť
letu a efektívnosť na zemi a teda na letiskách, zohrávajú dôležitú úlohu pri
udržiavaní udržateľnosti celého riadenia letovej prevádzky. Efektívnosť letu je
priamo spojená s schopnosťou letu dodržiavať príletové a odletové časy na
letisku, a tak minimalizovať prítomnosť primárnych meškaní, ktoré ďalej
generujú reakčné meškania. V roku 2019 sa celková presnosť odletov zlepšila,
pričom 37,6% letov odletelo v priebehu 5 minút pred plánovaným odletom alebo
po ňom. Lety meškané viac ako 30 minút zo všetkých príčin sa znížili o 1,6
percentuálnych bodov na 12,1% v porovnaní s rokom 2018. Aj presnosť príletov
leteckých spoločností sa zlepšila, pričom 77,6% letov pristálo do 15 minút pred
alebo skôr ako plánovaný prílet, v porovnaní s 75,8% v roku 2018. Lety
prichádzajúce o viac ako 15 minút skôr než plánovaný čas príletu zaznamenali
nárast na 10,3%. Hoci je to pozitívne pre skúsenosti cestujúcich, táto vysoká
hodnota môže ovplyvniť prevádzku a proces pridelenia zdrojov na zemi. Prílišné
meškanie alebo prílišné skoré prílety majú priamy a negatívny vplyv na leteckú
prevádzku ale taktiež na chod samotného letiska. V dobe prevádzkových
odchyliek, aspekty ako variabilita dopravy v súvislosti s typom lietadlového
parku, či obchodnými pravidlami leteckej spoločnosti alebo administratívnymi
požiadavkami, predstavujú limitácie v procese prerozdelenia zdrojov na zemi.
Hlavným zámerom predloženého návrhu dizertačnej práce je preto zlepšenie
procesu predvídateľnosti letu na základe dátami riadeného modelu strojového
učenia, ktorý podporuje vývoj prediktívneho modelu umožňujúceho
identifikáciu odchýlok v čase blokovania a pristávania.

Kľúčové slová: Letisko, let, meškanie, model, predpoveď, predvídateľnosť
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Introduction

Because this thesis has been developed during the COVID-19 period, the
reference year for data used in this study dates back to 2019, a year in which
the aviation industry was operating at historic maximums prior to the
unprecedented disruption caused by the pandemic. According to the report
published by Walker (2022) from Eurocontrol’s Central office for delay analysis
(CODA), delays in European airspace in 2019 improved when compared to
2018. Despite this fact, in the context of long-term performance the level of
delay was the third worst in the last 10 years, behind 2010 and 2018. Following
on these negative records, the airlines made considerable efforts and investments
such as scheduling improvements by increasing schedule buffers (Arikan, 2011)
and using hot spare aircraft to improve on-time performance. This all led to
boosting of passenger experience as reactionary delays were reduced. The
reactionary delays as advised by Walker (2022); IATA (2018) are results of
primary delays. On-time performance is not only benefiting passengers but also
airports that often operate close to their capacity ceiling and an early or delayed
arrival may cause considerable amount of issues linked to resource unavailability.

Non-adherent traffic obviously limits airports in utilizing full potential of
their capacity as buffer times in resource allocation plans are included to cater
for unplanned deviations in airport slot utilization. However, today we know
that enhancing the airport capacity, improving the airport throughput, and
building robust operational plans resilient to traffic deviations may be achieved
through improved predictability process using big data techniques. The goal is
to have accurate information related to traffic prognosis so that airport
processes can adequately be planned and managed. Simply said, airports need
to know when the traffic is expected to land, to turn around and to depart from
their premises in order to maximize utilization of surface resources. Currently,
there are solutions such as Advanced Tower or Airport Collaborative Decision
Making (A-CDM), which help enhance operational and situational awareness
using information sharing platform, where flight updates are provided (for more
information see Eurocontrol (2005)). This allows for predictability of events and
allocation of resources as flight progresses through its lifecycle. A-CDM process
was introduced to improve the efficiency and resilience of airport operations by
optimising the use of resources and improving the predictability of air traffic. It
achieves this by encouraging the airport stakeholders (Airport operator (AO),
Aircraft operator (AOC), Ground handler (GH), Air traffic control (ATC),
etc.)) and the Network Manager (NM) of Eurocontrol to work more
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transparently and collaboratively, exchanging relevant accurate and timely
information. It focuses especially on aircraft turn-round and pre-departure
processes.

It also allows the exchange of more accurate departure information,
particularly target take-off times known as TTOT, with the European Air
Traffic Flow and Capacity Management (ATFCM) network, leading to improved
en-route and sectoral planning. Despite all benefits A-CDM process brings, its
limitations are found in ability of all concerned to anticipate performance
deviations beyond its operational horizon. According to Eurocontrol (2005) this
typically starts (short haul European flights) at the time of the flight plan
activation and that is done three hours prior to departure. This is often too late
for effective predictability and coordination of changes related to resource
allocation plans. Furthermore, the spatial scope of A-CDM is limited to airside
operations and as stated above only covering the day of operations in terms of
both time and process management.

Therefore, advanced, and performance-based airport operations are required
for a future performance-based Air Traffic Management (ATM) system as
prescribed by Single European Sky ATM Research (SESAR). The aim is to
build on A-CDM principles and eliminate its limitations described above. This
shall be enabled through a new Total Airport Management (TAM) concept
(Spies et al., 2008; Pick & Rawlik, 2011), which constitutes a solution for more
efficient resource utilisation and a holistic airport management system for
airside and landside processes. The efficiency is seen as an ultimate result of a
mechanism, which is based on predictability of events related to passenger and
aircraft flows. The anticipation of events linked to potentially distorted
operations is particularly important for flights of which duration exceeds 5 and
more hours. In this context we speak predominantely about interncontinental
flights also known as long-haul traffic. The latter presents a specific group of
operations, which typically become visible to ATM systems within the area of
European Civil Aviation Conference (ECAC) member states hours after the
flight activiation. In this context, predictability of events impacting flights
along the route beyond the ECAC region also known as Air Traffic Flow and
Management (AFTM) area, becomes paramount as deviations from planned
performances may occur.

As such, the performance linked to a duration of these flights does not only
impact subsequent outbound flow but severely burdens all airport stakeholders
as ground resources must be re-allocated. Airport Operations Centre (APOC)
was therefore designed to closely monitor the evolution of the traffic and adjust
the resource allocation plan when traffic deviations occur. That applies also for
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the traffic arriving ahead of its scheduled time, thus likewise disrupting original
resource allocation plan. Both instances may in fact cause excessive and
unexpected demand for ground resources, which do not have to be available at
time of the request as they are utilized elsewhere.

It is worth noting, that the impact assessment of both the early arrivals and
delayed traffic on the airport performance and resource optimization is currently
underestimated and overshadowed by focus on addressing the ATFM delays
without due diligence placed on the surface issues. Airports with limited
capabilities to improve predictability of non-adherence to scheduled in-block
time (SIBT) and scheduled off-block time (SOBT) may not perform efficiently.
Operational efficiency in this context consists in timely predictability of SIBT
and SOBT deviations, which in return improves impact assessment and
situational awareness about potential changes to resource allocation planning.
Both late and early arrivals present major issues at airports operating under
fully coordinated slot policy, where minimum room for manoeuvring with the
capacity is available. All resources on the surface are typically allocated to
accommodate a minimum turnaround time of a given flight, which is defined by
initial SIBT and SOBT values.

These are determined typically more than six months in advance, and
airports operating with limited resources and capacity may suffer from any
significant deviations from these scheduled values on the operational day. The
presented proposal of the thesis therefore aims at development of an automated
APOC mechanism using data driven and machine-learning playbook linked to
the long-haul traffic enabling predictability of deviations from SIBT values. The
predictability is built around the information and data linked to the operation
of a flight including meteorological parameters known prior to and during the
phase of a flight execution. In general, the anticipation of the deviations
identified may pre-tactically and tactically be used to build a shadow
operational plan enabling early impact assessment linked to the resource
allocation planning and management process. As such better planning and
execution of airport and network operations may result in an improvement in
utilisation of resources, airspace and airport infrastructure and in a reduction in
reactionary delays. Information sharing between airport operations and network
operations could aso assure the best overall system outcome while addressing
the needs of airport actors, the ATM network, individual aircraft operators and
the passengers who depend on their services. While, this work primarily aims to
reveal means for improving operations locally, a network wide aspect could also
be accounted for.
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1. Current state of the art

As indicated by Barnhart; Bacena et al. (2019), flight delays have negative
economic and operational impact on airlines, passengers, network but airports
nonetheless. Therefore, any reduction of these consequences can make flying
more effective and efficient. As indicated in the introduction, the way forward
lies in improved flight predictability of a particular group of flights arriving from
beyond ATFM area, therefore moving towards reinforced pre-tactical and tactical
planning through principles governed by TAM concept with APOC and Airport
Operations Plan (AOP) in place (Spies et al., 2008).

A good quantum of research attention has been devoted to the study of
flight predictability and delays as predicting and analysing delays’ root causes
have long been active subjects in order to support operational planning and
management for ATC, airlines, airport operators, ground handlers, but NM
nonetheless. The authors such as Reynolds-Feighan & Button (1999); Klein
(2010); Glover & Ball (2013) have used different prediction techniques such as
statistical method, probability method as conducted by Tu et al. (2005);
Abdel-Aty et al. (2007); Evans et al. (2008), or network-based method, which
was elaborated on by Mueller & Chatterji (2002); AhmadBeygi et al. (2008);
Wan & Roy (2008). Liu & Ma (2008); Hansen (2002) made efforts to use
operational methods, while (Abdelghany et al., 2004; Venkatesh et al., 2017;
Zanin et al., 2020; Al-Tabbakh et al., 2018) opted for machine learning method
to design a model for predictions of flight delays. Part of the machine learning
studies as conducted by Kim et al. (2016) developed deep learning models to
investigate prediction of air traffic delay including decision trees, or random
forest. According to Esmaeilzadeh & Mokhtarimousavi (2020) delay can be
propagated and affect subsequent flights at departure and arrival airports.
Having said that, the ability to better predict the delay and control all factors
affecting the delays is an important objective. Their study has employed a
support vector machine (SVM) model to explore the non-linear relationship
between flight delay outcomes. Flight delays are not happening for no reason
and can actually be attributed to all sort of them. As part of the most known
are weather conditions, origin/destination airport or airspace congestion,
aircraft mechanical problems, and airline flight scheduling (Arikan, 2011). The
latter is considered a critical matter when it comes to dealing with traffic
arriving ahead of or after its scheduled airport slot. Last but not least, there is
also a category of delays, which may be brought about by an unexpected event
such as diversion. Although this category of delays will not be subject of the
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presented thesis, the author elaborated on diversion airport selection
methodology under umbrella of Student Grant Competition (SGS). As function
of the efforts, two publications have been released.

Appendix A

Špák, M., Olexa, P., Enhancement of the diversion airport selection
methodology, Transportation Research Procedia. Linz: Elsevier BV, 2020. p.
232-242. ISSN 2352-1465.

Appendix B

Olexa, P., Špák, M., Stojić, S., Lán, S., Hamza, M., Static Validation of the
Enhanced Diversion Airport Selection Methodology, 2022 New Trends in Civil
Aviation (NTCA). Praha: České vysoké učení technické v Praze, 2022. p. 141-
146. ISBN 978-80-01-06985-1. ISSN 2694-7854.

One of the most interesting studies using supervised machine learning and
data mining technique on published by Deepudev et al. (2020) addressed a need
to improve predictability of actual landing times of scheduled flights. They have
rightly identified that historical data may help predict delays on arrival. The
predictive modelling was based on multi linear regression (MLR) model to predict
the arrival variations based on information retrieved at the time of departure. The
study has also revealed root cause for early arrival of the aircraft. The flying time
constituted one of the building element of MLR equation.

There has also been some research done in respect to evaluation of delays on
the turnaround process. Fricke & Schultz (2009) concluded that the scheduled
turnaround process is always disturbed if the airplane does not arrive at the
allocated gate or apron position on time. They propose to continue integrating
time buffers during the gate allocation planning phase as those allow a higher
system reliability. They investigated that there is no systematic buffer concept
applied and only empirical experiences seem to trigger this process. Therefore,
they attempted to develop a model allowing to optimize the time buffer size with
regard to the expected average delay.

Another solution led by the author of the presented thesis, aimed to improve
the operational performance through the development of a predictive tool
providing pre-tactical and tactical predictions of in-block and off-block time
deviations supported by predictions on passenger demand (load factors). The
project has developed a generic model based, customised for GVA airport based
on Random Forest Regression algorithm, for off-block time and turn-around
duration predictions. The performance of the predictions is slightly below the
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performance obtained during the testing phase during algorithms development.
The average error when predicting off-block times is 12.47 minutes and 8.45
minutes for turn-around durations. The accuracy of the predicted values
reaches 73% of the off-block predicted times with less than 15 minutes of error
and 85% of the turn-around predicted durations. Despite the acceptable level of
performance and error the algorithms provided, there are a set of drawbacks
identified during the trial related to both the prediction model and the designed
dashboard. The airport feedback and improvement opportunities have been
collected and detailed under a dedicated section. It includes remarks on the
understanding of the airport and airline planning and operational processes that
should be better reflected into the predictions cases to count with predictions
for all GVA flights and not only partially. This involves further development of
the algorithms and looking for different ways of linking arrivals and flights,
without counting on aircraft registration, and development of a dedicated
algorithm for in-block times.

Appendix C

Dalmau R., De Falco P., Spak M., Rodriguez Varela J. D. Probabilistic pre-
tactical arrival and departure flight delay prediction with quantile regression.
15th USA/Europe Air Traffic Management Research and Development Seminar.
2023.

As a by-product of the solution described above a Passenger Demand
Support Service was developed developed using machine learning principles
through analysis of Network Manager data and through monitoring of
commercial flights i.e seats offered in the market. Complementary features such
as day of the week, time of the day, airline ID, or airport ID are also used to
further support the passenger demand prediction accuracy. A current set up of
the solution provides solid prediction performance as mean absolute error
(MAE) between predicted load factor and real load factor (per flight) reaches on
average 8%. This prediction performance is achievable 7 days ahead of the
operational day. The overall prediction outlook extends out to 56 days, where
prediction error reaches 15% on average ahead of the operational day.

As such The scientific approach used may provide good benchmark in using
machine learning techniques within the presented thesis too.
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1.1 Total airport management

Moving from complex flight delays prediction analysis, Eurocontrol and
other industry partners have also effortlessly been working on TAM concept as
part of SESAR Wave 1, where focus lied on developing and validating a number
of key elements of the high performing airport operations. As explained TAM
takes a ‘holistic’ view of all key airport operations processes through APOC
platform – air and landside, aircraft, passengers, baggage etc. – and
importantly, the interaction between them (Spies et al., 2008). If some
operations are delayed such as flight arrivals or departures, it may easily affect
subsequent chain of processes. The degree of synchronisation between different
processes associated with aircraft, passenger and baggage handling constitutes a
significant contributory factor to punctual and predictable operations and
ultimately passenger satisfaction (Bacena et al., 2019).

As indicated on the Figure 1.1, a core element of TAM is APOC, which
provides a common platform to airport stakeholders to jointly organise and
coordinate their activities (Reyna et al., 2020) which includes operational
exchange with Network Manager Operations Centre (NMOC) in the European
airspace (Leeman et al., 2018). The figure further indicates that the final
product of the entire concept is called AOP (Leeman et al., 2018), which is
designed months away from the operational day until it is finally executed. The
AOP is a robust plan composed of various data elements flowing in from ample
number of sources. The purpose is to have full situational awareness of impacts
of joint decisions on others’ operational plans. The APOC can be either a
centralised physical command and control room or a distributed solution,
connecting stakeholder representatives by existing and new means of supporting
tools for arbitrated collaborative decision making. Very first prerequisite to
functional TAM stems in availability of flight data stored in systems and
databases inluding the airport operations database (AODB). Then it is a role of
technical layers and presence of adequate tools and applications catering for
different stages of planning, and real-time management.

The AODB may effectively be used to tackle various operational and traffic
deviations identified through a Demand – Capacity and Balancing (DCB)
process which effectively feeds the AOP (Holoda et al., 2019). The greatest
movement forward with TAM lies in the ability of all stakeholders involved to
make harmonized decisions using performance monitoring platform and
predictive mechanisms enabling operational look-ahead view. To generalize and
as seen on Figure 1.2, the principal goals are to extend the planning horizon
beyond three hours ahead of operations, and to extend the spatial scope,
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TAM APOC AOP

Figure 1.1: Logical relationship between Total Airport Management (TAM),
Airport Operations Centre (APOC) and Airport Operations Plan (AOP)

meaning that landside operations would also get a due attention. This should
result in identification of potential imbalances between projected demand and
available capacity across the airport infrastructure. A demand-capacity (DC)
imbalance is an output of the DCB process, and it usually has operational
consequences when no preparatory measures are taken. Having knowledge of
potential DC imbalances will help implementation of best pre-tactical
operational mitigations to improve operational predictability, efficiency, and
resource utilization.

NOPA-CDM
(Airport CDM)

APOC
(Airport Operations Centre)

AOP
(Airport Operations Plan)

Extended 
planning 
horizon

Extended 
spatial
scope

TAM

Focus on turnaround 
process and a platform

to share data

Focus on bringing people 
(decision makers) together

Focus on tools 
and insights required

to create a plan

Data is shared between 
partners, but still lots of 
tactical and reactive 
recovery

Further strengthens 
collaboration and serves 
as enabler

An augmented plan 
that better represents 
demand and capacity

Figure 1.2: Diagram depicting build-up of technical and procedural elements of
TAM upon A-CDM

TAM project according to. Günther et al. (2006) aims at increasing
predictability, flexibility and efficiency of airport operations as well as resilience
through shorter recovery to normal operations. Moreover, it is exactly the
predictability element, which calls for attention for the purpose of this thesis
proposal, where better knowledge on expected flight performance linked to its
arrival time adherence, will increase chances for timely impact assessment.
TAM concentrates on strategic, and pre-tactical planning, tactical management
on day of operations, and last but not least on the post-ops analysis (Pick &
Rawlik, 2011).
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When it comes to using big data analysis, Eurocontrol at the end of SESAR
Wave 1 initiated two feasibility studies with the airports of London Heathrow and
Paris Charles de Gaulle focussing respectively on passenger transfer times and
aircraft taxi-out times. Each study also showed the great potential for machine-
learning techniques to be applied, based on the use of historic data to determine
the underlying drivers of those specific parameters of interest, the relative weight
of those drivers, and then enabling predictions of the parameter in question.
SESAR Wave 1 also served to perform a shadow mode exercise at Paris Orly
airport validating performance dashboards with aim to create airport learning
environment to assess landside and airside predictions based on machine-learning
technics to support decision-making.

TAM performed more research in this area as SESAR Wave 2 was launched,
and some of the simulation exercises further demonstrated operational benefits.
SESAR Wave 2 offered significant steps forward in relation to PJ.04 TAM
project. Operational improvements focused on airport-centric or airport vs
network issues. The work packages covered several solutions focusing on airport
integration with the Network (Network Connected Airports) and on rather local
airport solutions supporting decision-making process (Digital Smart Airports).
Research under SESAR solution PJ.04 and as explained by (Günther et al.,
2006) proves that one of the ways forward lies in application of
machine-learning techniques based on historical experience stored in operational
playbooks. As indicated above, one area that is soliciting a lot of interest at
both the academic and the industrial research consists in the exploitation of
considerable amounts of data recorded by airports and their partners in order to
perform predictions of the behaviour of certain indicators. Furthermore, flight
predictability in the context of estimation of flight delays has given opportunity
to think out of the box and therefore numerous mitigating solutions to reduce
impact of predicted SIBT and SOBT deviations have been developed.

One of the concepts developed under the umbrella of PJ.04 project also
elaborated on how to deliver more automated solution to rather regional
airports, where APOC would be set up as a virtual arrangement. The idea
remained the same, and as such targetted collaborative decision making based
on the situational awareness linked to information available. Automated Target
Off-block Time (TOBT) updates provided as result of the aircraft and
passenger flow monitoring ensured good visibility on potential deviations from
Estimated Off-block Time (EOBT) contained in the initial Flight plan (FPL)
filed for a given flight. The logic of the automated TOBT included identification
of Estimated Landing Time (ELDT) and Estimated In-block Time (EIBT)
estimates which triggered TOBT changes. The concept has been co-led by the
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author and was validated at LKPR in two-step exercise executed in autumn
2022.

Spak M., Rafidison J.P., Marsden A., Vlacil T., Kuran V., Zember M., Sosnovec
J., Collaborative Management at Regional Airports - Lite Airport Operations
Centre (APOC) concept, SESAR project, 2020 – 2022.

It should be noted that further development of TAM entailed proactive
handling of DC imbalances related to slot non-adherence through application
certain measures or enablers such as User Driven Prioritization Process (UDPP)
or Target Time of Arrival (TTA) (Pilon et al., 2021; Gatsinzi et al., 2018).
Potentially, this thesis may also try to take these solutions into account as part
of proposed set of measures generated by a new APOC mechanism. However, it
has to be underlined, that airlines’ disruption recovery and mitigation shall not
limited to proposed solutions above.

The UDPP concept gives more flexibility to airspace users to reschedule
their flights to keep their business-driven schedule priorities on track when
facing capacity constraints and delays. For example, they can reorder the flights
in the congested airspace or airports where delays are accumulated. This
candidate solution sees the extension of airspace user capabilities, through the
UDPP, allowing them to recommend a priority order request to NM, with other
ATM stakeholders and appropriate airport authorities, for flights affected by
delays on departure, arrival and en-route in capacity-constrained situations. In
other words, UDPP allows airlines to change the priority order of unregulated
flights among themselves and in collaboration with the airport authorities.
Airlines are given this flexibility in the pre-departure sequencing (PDS) for
last-minute disruptions, which usually lead to departure delays or cancelled
flights. The solution creates more opportunities for departure flexibility within
a group of airlines, with benefits increasing as more airlines join. It requires a
pre-departure planning process to function, for example using information
already shared between operators about planned push-back, start-up and target
take-off times. It is especially beneficial in case of disruption with significant
financial benefits for the airlines. This solution is available for industrialisation
and is now implemented at Paris Charles de Gaulle and Frankfurt airports, and
is planned for implementation in Austria and Poland.

Simultaneously to address improvements in arrival slot adherence when
traffic is predicted to arrive early, the introduction of TTA came into game.
TTA is progressively refined planning time used to coordinate between arrival
and departure management and is designed to propose the traffic entry into the
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Terminal Manoeuvring Area (TMA) at the right time. UDPP and TTA
minimise impact of flow measures on airlines’ costs, allow for introduction of
more optimum trajectories planned, ensure better use of spare capacity and
help decrease demand instability. TTA appears to be one of the solutions to be
deployed in short timeframe as it helps facilitate optimization of arrival
sequence. However, one has to say, that this solution is rather a reactionary
engine, that doesn’t necessarily tackle issues linked to predictability of late or
early arrivals.

1.2 Linking network and airport operations

Flight predictability is very much linked to what information is available.
Working exclusively with isolated information that is restricted to a single user
doesn’t provide full picture about events, which happened or are about to occur
during the execution of a flight. Therefore, it has to be recognized that
exchange of information amongst all partners involved in planning, and
managament of a flight must be ensured. As explained, APOC connected with
NMOC proved to be a right arrangamenet collecting all the vital informaiton
linked to a flight lifecycle. NM and its NMOC has a crucial role in european
aviation and concretely in ATFM area as it establishes Air Traffic Flow and
Capacity Management (ATFCM) that is a complementary to ATC at regional
level. The objective of ATFCM is to optimise traffic flows over the entire ECAC
region according to air traffic control capacity while enabling airlines to operate
safe and efficient flights. It is an arrangement managed from NMOC and is used
to organize the flow of air traffic in order to optimize capacity, reduce delays,
and enhance safety. The main goal of ATFCM is to ensure that the available
airspace and airport capacity is used efficiently and effectively. ATFCM involves
a number of different processes and procedures, including traffic demand
prediction, flow management, capacity planning, and resource allocation. These
processes are supported by a range of different tools and technologies, including
air traffic control systems, data analysis software, and communication networks.
The primary objective of ATFCM is to ensure that the demand for air traffic is
balanced with the available capacity in the airspace and at airports. This
involves monitoring the current and predicted traffic levels, and taking action to
adjust the flow of traffic when necessary.

As a core element of ATFCM, EUROCONTROL developed ETFMS
(Enhanced Tactical Flow Management System), which is a key component of
the European ATM system (Eurocontrol, 2023). It is a computerized system
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that provides a centralized view of air traffic flows in real-time, enabling air
traffic controllers and other stakeholders to monitor and manage air traffic in a
more efficient and effective way. The system receives and processes data from
various sources, such as FPL, radar data, and other air traffic management
systems. The ETFMS uses advanced algorithms and decision support tools to
provide controllers and other stakeholders with accurate and timely information
on traffic flows, airspace capacity, and potential congestion. It helps to optimize
the use of available airspace and resources, and provides a common platform for
collaborative decision-making between different air traffic control units and
stakeholders. The ETFMS supports a range of functions, including tactical flow
management, airspace management, and collaborative decision-making. In
summary, the ETFMS is a critical component of the European ATM system. It
provides real-time information on traffic flows and airspace capacity, helping to
optimize the use of available resources and support collaborative
decision-making between different stakeholders.

THe ETFMS processes FPL generated by airlines and processed by the
Initial Flight Plan Processing System (IFPS) in order to project flight
trajectories and to ensure smoothless ATFCM. As part of this process, several
flight profiles for each signle flight are generated in order to identify potential
conflicts with other trajectories along the route. A Filed Tactical Flight Model
(FTFM), which is a mathematical model containing a point and airspace
volume profile is created for a flight. The FTFM is an important very first
depiction of the intented trajectory for ensuring the safety and efficiency of
flights, as it allows airlines and controllers to plan and coordinate their actions
in advance, and make adjustments as necessary to ensure that the flight remains
on schedule and within safe operational limits. In addition to the FTFM, pilots
also use a variety of other tools and procedures to ensure the safe and efficient
operation of their flights. These may include pre-flight planning tools, in-flight
navigation systems, weather and traffic monitoring systems, and communication
and coordination protocols with air traffic controllers and other pilots.

FTFM may change to a Regulated Tactical Flight Model (RTFM), which is
typically created shortly before the flight takes place given that a ATFCM
measeure in form of a flight regulation along the projected FTFM profile is
neccessary. It is designed to ensure that the flight is operated safely and
efficiently, while also minimizing delays and optimizing the use of available
airspace and airport capacity. The RTFM is based on the same principles as the
FTFM, including the planned route, altitude, speed, and other critical flight
parameters.
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Once a flight is airborne, a Current Tactical Flight Model (CTFM) is
generated, which is continuously updated throughout the duration of the flight.
The CTFM is based on the FTFM or RTFM and takes into account real-time
changes in weather conditions, air traffic congestion, airspace restrictions, and
other operational considerations. Therefore, this profile is presents best known
and current trajectory guiding the flight crew in making real-time decisions
about the flight, including changes to the route, altitude, speed, and other
critical flight parameters. The CTFM is also continuously monitored by ATC,
who can provide guidance and assistance to the flight crew as necessary. ATC
may make adjustments to the CTFM to optimize the flow of traffic, minimize
delays, and ensure the safe and efficient operation of the airspace. Overall, the
CTFM is an essential part of the air traffic management system, and plays a
critical role in ensuring the safety and efficiency of air travel. The Figure 1.3
illustrates differences between respective profiles generated by ETFMS. In
comparision to the FTFM and RTFM, the CTFM is more adaptable to
changing conditions and provides greater flexibility for the flight crew to make
real-time decisions based on the latest information available.

lon

lat 

a
lt

FTFM

RTFM

CTFM

Figure 1.3: Comparision of profiles generated by Enhanced Tactical Flow and
Management System (ETFMS)

When relating back to a notion of ECAC region, in our terminology we also
call it the ATFCM area. If flight departs from within this area, it may be subject
to aforementioned ATFCM measures, which would be translated into RTFM and
CTFM profiles accordingly. That means that some of the traffic volumes along
the routes exceeeded their capacity in terms of counts at certain time, and that
leads to penalization of one or more flights in order to deconflict the traffic. At the
same time, this serves to release the workload of respective air traffic controllers
in their areas of responsibility. It is imperative to mention that flights departing
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from outside the ATFCM area and ATFCM adjacent area are exempted from
such measures.

The profiles may be modified subject to evolution of airborne or almost
airborne flights. For this purpose Koolen & Coliban (2020) was established,
which documents messages from and to systems external to the NM called as
Flight Progress Messages. These messages are exchanged between ATC, AO,
AOC and NM systems and can be classified into the following categories:

• Flight plan filing related messages

• Flight plan status reporting messages

• Flight plan progress messages

For this purpose of this study the flight plan progress messages are the most
relevant, as in reality they provide best picture about the flight progress, which
may effectively be used to update inbound traffic information at airport of
destination. These messages can either be generated by AOC/Air Traffic
Services or by NMOC and the overall objective is to improve coordination
between all stakeholders. Currently we recognize the following type of messages:

• Arrival planning information

• Aircraft (operator) Position Report

• Departure Planning Information

• First System Activation

• Correlated Position Report

• ETFMS Flight Data message

• Flight Update Message

In principle, Aircraft Position Report (APR) and Correlated Position Report
(CPR) are one of those messages, which may effectively be used to provide update
on the flight progress for long-haul traffic inbound to Europe. The APR is a
message that is sent by AOC and its purpose is to inform the NMOC about the
progress of an airborne long haul flight. The APR message informs the NMOC
with an accurate update of the Estimated Arrival Time or with an Actual Time
Over the aircraft’s current position. The APR message will be received and
processed by ETFMS. It will be used to update ETFMS flight data, in order to
get a more accurate prediction of the sector counts. The main benefit of the APR
message is to enable ETFMS to take the accurate flight profile into account for
the allocation of ATFM slots to other flights. This will prevent overdeliveries
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to ATC and reduce holdings for AOC. APR messages are expected to be sent
approximately 2 to 3 hours before the flight enters the ATFM area. This gives the
NMOC sufficient time to optimise the slot allocation and to prevent overloads of
air-spaces where long haul flights form a significant percentage of the traffic. This
moment of transmission will also prevent potential conflicts with flight update
messages coming from ATC such as FSA messages and radar position reports.
Although, the NMOC prefers to receive APR messages approximately 2 to 3
hours before the flight enters the NMOC area, if the AOC wishes to send an
APR earlier than that, this will be accepted as well. The APR can be sent on
any event that improves the times in the flight data of the AOC. It could e.g. be
based upon ACARS messages.

Similarly, the purpose of the CPR as another surveillance data update, is to
inform the NMOC about the actual 4D position of the flight when airborne. This
message will be received and processed by ETFMS. It will be used to update
ETFMS flight data, in order to get a more accurate prediction of the sector
counts. The CPR message shall be sent by ATC to the NMOC.

It is also important to say, that all this data exchange is done for the purpose
of distributing this further to APOC arrangements. This ultimately, serves to
improve predictability linked to inbound traffic, and as a result of it to optimize
resource allocation. Good planning presents higher odds for on-time performance,
which in return facilitates road towards reduction or elimination of downstream
delays in the network.

1.3 Meteorological aspects

Following on the flight trajectories, it should be noted that airlines and their
operational peresonnel invest efforts into the most optimal planning of routes.
These are then converted into the content of a FPL, which is subsequently
submitted to NM via aforementioned IFPS. Ultimatelly, IFPS communicates
with ETFMS, where respective mathematical models are used to generate
respective profiles. When talking about the FPL driving initial FTFM profile
generation, the weather en-route should not be ommitted as this may positively,
but also negatively affect the performance and ultimate duration of the flight.

Several weather factors have significant impacts on flying conditions, and
below are examples of the associations between meteorology and aircraft
operations. Air density, and consequently engine efficiency and lift generated by
wings, is influenced by temperature and pressure. Low temperatures below the
freezing point are especially significant for icing, and an aircraft flying through
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clouds or precipitation in such temperatures may be susceptible to icing.
Furthermore, the occurrence of condensation is dependent on humidity and dew
point, and it plays a significant role in the weather patterns we encounter. Low
visibility can result from the formation of fog and clouds. The condition of
runways can also be affected by precipitation, in the form of hail, snow, or rain.

However, flying is impacted predominantly by wind and in numerous ways.
The lift generated by the airflow over the wings of an aircraft can be impacted
by alterations in wind speed. Wind shear, a sudden variation in wind speed or
direction with altitude, can be hazardous during take-off and landing. Turbulence
caused by wind can produce sudden fluctuations in updrafts and downdrafts. Jet
streams are high-speed currents of air that can significantly affect the ground
speed of aircraft. Located between 30,000 and 45,000 feet, jet streams only occur
at specific latitudes, but they can have a substantial impact on the ground speed
of aircraft. With wind speeds exceeding 160 knots, a jet stream is typically 160
kilometres wide and only 2-3 kilometres in vertical extent. Not only jet streams,
but also moderate winds along the flown route may cause aircraft ground speed
to rise or to drop, ultimatelly leading to different flying times in comparision to
scheduled ones.

The flying time may also be impacted by local airport weather, as holding an
aircraft above the destination airport might lead to substantial delays. One of the
studies conducted by Thiagarajan et al. (2017) dealt with flight predictability with
focus on the arrival delays. In their paper a two-stage predictive model was built,
where the feature set used consisted of 12 airline data features and 24 weather
features. The pertinent weather data used in this study contained only local
meteorological reports capturing situation in the vicinity of the airport. Different
algorithms such as gradient boosting, random forest, extra-trees, or adaboost
classifiers were used for the classification stage in the model. The results proved
that gradient boosting classifier performed the best with 94,35 % accuracy. The
results of the regression stage in the model were achieved best with the extra-
trees regression that can predict the delay value with an error of approximately
8 minutes. The predictive model was further used to develop a decision support
tool to visualize prediction of flight delays.

The author was also involved in the development of the airport meteorological
application, which was developed in order to evaluate impact of local aerodrome
weather on the ground operations. The model was built to parse terminal area
forecast, meteorological aerodrome reports, or special reports of meteorological
conditions. This further enabled development of the application, which based
on the meteorogolical conditions predicted, alerts all local stakeholders about a
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potential disruption of ground handling services, a change of runway in use, or
overall interruption of the turnaround activities.

Spak M., Vlacil T., Kuran V., Zember M., Airport Operations Centre (APOC)
- Meteorological application assessing real-time impact on ground operations,
Prague, 2018 – 2020.

1.4 Current state of the art limitations

Due to deviations between planned and actual operations, airports are forced
to apply tactical adjustments to their resource allocation plans. This creates
greatest impact mainly during peak operations when buffer capacity is seldom
available. Nowadays, airports have very limited means for projecting pre-tactical
and tactical block time (gate slots) deviations for long-haul routes, which would
help them optimize their planning. This is mainly due to reason that greatest
visibility on flight progress happens only once FPL (flight plan) is activated.
However – as explained – this gives a very short notice to airports taking into
consideration uncertainty linked to execution of the FTFM profile. Today we
know, that due to a limited radar coverage, a great portion of the trajectory
for long-haul routes presents a greay area. F.e. for some of the inbound traffic
approachin LKPR from far east, the two thirds of the trajectory remains with
no real-time positional reporting. If deviations along that portion of the route
happen as result of velocity conditions, this may leave the GH and AO in a difficult
position. Consequently, the level of service provided to AOCs and their passengers
deteriorates too. Therefore, it is proposed to improve operational performance
through development of a service helping provide predictions on in-block time
deviations. The predictions as part of the service could potentially be visible to
APOC or similar operational arrangement and provide primarily pre-tactical, but
also tactical support at times of a flight being airborne. The predictions might
be built around machine learning or equivalent techniques based on exploitation
of massive amount of data. The main limitations of today’s system not allowing
for such a process are as follows:

• Limited visibility on a flight progress along the trajectory beyond the
ATFCM region.

• Existing predictability models in regards with in-block time predictions
taking into account predominantly local airport meteorological reports and
not full scale en-route data along computed FTFM profiles.
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• Substantial amount of experimental work done on off-block predictability
through turnaround duration predictability and missing emphasise on in-
block time predictability.

• No presence of en-route forecasts including velocity information in AODB
enabling timely identification of potential increments or decrements of flying
times

• Limited information sharing between AO and AOC on the flight progress,
which would allow for updates on estimated landing, in-block timestamps.

There is a crucial need to for AO to possess own means for long-haul flight
predictability. Reasons vary, but of them also lies in AOCs behaviour linked to
flight planning, where schedule buffering plays a substantial role. Having said
that, although meteorological conditions along the projected route are taken into
account when submitting the route to NM, economical and business aspects force
AOCs to perform on time. The author presumes from his own experience and
practice, that initially estimated time over a destination aerodrome may not be
realistic. To this effect, the engine installed by the AO allowing him to compute
its own estimates based on the flight, trajectory and meteorogolical data along the
route, may make resource allocation planning more resilient. AODB is expected
to be one of the main data sources as all pertinent information would sit in there.
In support of this, a currently missing evaluation of the operational impact of
early or delayed long-hauld traffic on airport resources may also be developed.

31



2. Thesis objective and hypothesis

Considering the results of the research that has been carried out by the author and
broader scientific community over the past years, it has been concluded that big
data analytics and machine-learning techniques will greatly be used to improve
flight predictability within the presented thesis.

2.1 Thesis objective

The main objective of the thesis lies in further exploration on how the current
research achievements can be used in broader perspective. This shall be done
through development of a new data driven and machine learning model supporting
predictability of flight arrival time deviations.

2.1.1 Prediction of in-block time deviations

As some studies revealed there is a number of potential constants and
variables also called precursors, or predictors that should be taken into account
when designing predictive models helping identify delayed or early arrivals. It is
presumed that a data driven and machine learning model using multiple data
sources will be developed to anticipate in-block time delay.

This step shall enable development of an engine, which may ultimately be
used to support local airport solutions allowing for a decision-making process
when allocating ground resources such as parking positions and gates. To
maximize efficiency of ground resource utilization and minimize tactical changes
to resource allocation plans, timely identification of potential conflicts in
resource distribution caused by delayed or early arrivals has to be ensured.
This, although not necessarily covered by this thesis, could be done through
development of a shadow resource allocation plan, which encompasses arrival
time deviations enabling resource allocation assessment. Furthermore, delayed
or early traffic impacts more than just resources and so particular attention may
also be given to airport standard operating procedures, or other operational
nodes, which may also suffer given that unexpected demand kicks in. Obviously,
each arrival time deviation may bear certain hallmarks in terms of predictors
involved and predicted deviation value itself. Some may generated low, but
others moderate or high severity of impact. Based on the thesis objectives,
below are the hypotheses, which shall form part of the thesis structure.
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2.2 Hypotheses

1. Airline ID, flight ID, origin airport ID, time of day, wind speed, wind
direction may be considered as predictors with the highest importance
when predicting in-block time deviations.

2. Reduction of tactical stand allocation changes using data driven and
machine-learning playbook is proved statistically significant.

3. Delayed and early arrival by more than 15 minutes present the same severity
of impact on stand availability.
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3. Methodology

To fulfil the objectives of the proposed thesis, a multiple approach may be
used. In essence and looking at the nature of expected outcomes while taking
into consideration subject matter of the thesis, a predictive model needs to be
developed. The model is a pre-requisite for hypotheses to be proven true or false.

The execution of the research entails data acquisition and mathematical
approach for data analytics. Ultimately, forecasting techniques will have to be
used to enable development of data driven and machine-learning playbook.

The process of literature review settled the background knowledge for this
project, involving all relevant information and lessons learned to be reflected
in the work to be done. Existing predictive models having as objectives same or
similar objective indicators as the ones defined for this project have been identified
and further understood to take advantage of the work already done.

The main goal of the model is to improve airport operational performance
by providing pre-tactical and potentially tactical predictions of in-block time
deviations taking into consideration predicted time increment or decrement
along the flight trajectory. For this purpose access to historical data for the
model-building process is essential to provide accurate forecasts and predict
flight behaviour on the trajectory. Stemming from the objectives an evolving
process for the predictive modelling development has been defined.

As such the study is structured on three main technical tasks, starting with
the description of the methodology, continuing with development and validation
of the predictive model and finally concluding with visualization of prediction
outputs.

3.1 Data characteristics, availability and
preprocessing

The data inputs described below were provided by Eurocontrol, the Czech
Hydrometeorological Institute, Prague International Airport, and Air
Navigation Services of the Czech Republic. These data inputs were chosen
based on their availability and therefore, some of the elements potentially
contributing to delay predictability might be missing. Instead, this is a data set
obtained for the purpose of the dissertation work, presented in a comprehensive
and representative manner, offering sufficiently high-quality and time-acurate
information (see Fig. 3.1).
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Source: 
Prague International Airport

Source: 
Eurocontrol

Source: 
Czech  Hydrometeorological Institute  

Source: 
Air Navigation Services of the Czech Republic
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Figure 3.1: Structure of data from respective sources.

Trajectory data provided by Eurocontrol containt multiple fields for each
single flight record. The sequence of data elements starts with an unique
database identifier assigned to a given flight (FLT_UID), continues with actual
take-off time (FLT_ATOT), scheduled off block time (FLT_SOBT) and
followed by actual off block time (FLT_AOBT). Additional elements include
aircraft identifier (Aircraft_IF), aircraft type and flight plan related information
such as initial estimated off block time (LOBT). The sequence continues with
information on airport of departure (ADEP), airport of destination (ADES),
flight plan identifier recorderd in Eurocontrol database (SAM_ID), and
indication of the filed or current tactical flight model (FTMF/CTFM).
Completeness of the record is conlcuded with flight level information
(Flight_level), time over certain point of airspace (Time_Over), distance of the
flown portion of trajectory (Point_Dist), and data capturing geographical
position expressed in latitude and longitude (LAT/LON) as well as ground
speed of the flight (KM/H).

A dataset combining Prague International Airport and Air Navigation
Services of the Czech Republic presents additional sequence of fields and data
types. This includes airport flight database identifier stored as (CAODB ID),
air navigation services identifier as (IFPLID), flight name, call sign, and notion
of the movement type stored as arrival The additional information contains
airport of departure, aircraft type, and terminal building assigned. Last but not
least, scheduled in block time stored as (SIBT), timestamp on the actual
runway time as (ALDT), and actual in block time (AIBT) are also present.

Meteorological data constituting essential element of this thesis includes
forecasting information for respective region represented by longitude, latitude,
and correspoding prediction of velocity elements such as wind speed (ws), and
wind direction (wd). These parameteres are further assigned to a corresponding
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altitude (alt). Further breakdown of the analysis linked to the meteorological
considerations is available in chapter 3.1.2.

Datasets, i.e. slot coordination data, time-stamps and movement data,
trajectory data (including FTFM and CTFM profiles) and meteorological data,
were merged to form a consolidated dataset. Before the actual merging of the
data, it was important to clean and prepare the data to ensure that it is
consistent and free from errors. This involved removing duplicate records,
standardizing data formats, and correcting any missing or incorrect data.

First step, at this point of data merge, was on merging slot coordination data
with FTFM profiles (part of trajectory dataset) and time-stamps and movement
data, primarily using the departure time as a key criterion. These three datasets
unfortunately did not share the same unique flight identifier. Trajectory dataset
included a time-dependent flight description, with each flight having multiple
waypoints associated with latitude, longitude coordinates, and flight-over times,
among other details (as described in Fig. 3.1). By associating slot coordination
as well as time-stamps and movement data with FTFM data, variables with a
constant nature for a given flight were created. For instance, the SIBT or AIBT
remains constant across all waypoints for a single flight.

In this scenario, only the merging of FTFM profiles with other datasets is
discussed. This is because CTFM profile may have a different length compared
to FTFM for speciffic flight. Consequently, adjustments were made to the
CTFM data, and these modifications are detailed in the following chapter (refer
to section 3.1.1). For illustration, the merged dataset (in this initial meging
phase) would look like Tab. 3.1:

Table 3.1: Exaple of dataset after initial data merging.

FLT_UID FLT_ATOT ... ADEP TIME_OVER ... LAT SEQ_ID*
5 1.6.2019 1:49 ... KJFK 1.6.2019 1:47 ... 40.64 1
5 1.6.2019 1:49 ... KJFK 1.6.2019 1:47 ... 40.65 2
5 1.6.2019 1:49 ... KJFK 1.6.2019 1:47 ... 40.66 3
5 1.6.2019 1:49 ... KJFK 1.6.2019 1:47 ... 40.67 4
...

...
. . .

...
...

. . .
...

...
5 1.6.2019 1:49 ... KJFK 1.6.2019 8:37 ... 51.29 61
...

...
. . .

...
...

. . .
...

...
3 1.6.2019 4:22 ... RKSI 1.6.2019 4:32 ... 37.31 15
...

...
. . .

...
...

. . .
...

...
3 1.6.2019 4:22 ... RKSI 1.6.2019 11:26 ... 59.27 35
...

...
. . .

...
...

. . .
...

...
3 1.6.2019 4:22 ... RKSI 1.6.2019 14:09 ... 50.95 75
...

...
. . .

...
...

. . .
...

...
* SEQ_ID is a newly created variable characterizing the sequence order of the flight-over
point.
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3.1.1 FTFM and CTFM profile data

As mentioned in the preceding chapters, FTFM and CTFM data represent
flight models that can be described as the planned flight trajectory (in the case
of FTFM) and the updated trajectory (CTFM), which essentially becomes the
actual flown trajectory upon completion of the flight.

FTFM and CTFM profiles inherently differ, as shown in Fig. 3.2, not only in
the absolute values of latitude, longitude, and altitude but also in their length.
This means that a CTFM profile can, and typically does, contain more points
along the trajectory over which the flight was conducted compared to an FTFM
profile.

For further processing and analytical purposes, it was necessary to align the
time points from FTFM and CTFM profiles by generating linearly spaced time
vectors of same number of samples. The principle of the aforementioned process
is schematically depicted in Fig. 3.3. This step allowed understanding delay
along the flown CTFM trajectory in comparison to planned FTFM trajectory
from the moment of flight departure until its arrival. FTFM and CTFM times
were compared at same phase of fligth, i.e. if FTFM time stamp was at 20 %
of planned flight time then corresponding CTFM time stamp reflected 20 % of
actually flown time.

Firstly, time stamps in both FTFM and CTFM dataset were converted from
datetime format to Unix time. This conversion ensured that timestamp was
presented in seconds as Unix time represents seconds elapsed since January 1,
1970 (Matthew & Stones, 2007). Therefore, converted vectors TimeC and TimeF

representing time stamps in Unix time for CTFM and FTMF, respectively, were
created. The total FTFM time was then crucial for TimeC vector resampling.
Total FTFM time TimeFtotal was calculated as:

TimeFtotal = TimeF (NF ) − TimeF (1) + 1 (3.1)

where TimeF is the FTFM time vector (in seconds) and NF is a total number
of TimeF samples. After that, the CTFM time vector was resampled in the way
that:

TimeCr(1) = TimeC(1), and (3.2)

TimeCr(TimeFtotal) = TimeC(NC) (3.3)

where TimeCr has NF number of samples and represent lineary resampled vector
TimeC. The NC is then number of samples in TimeC vector.
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Figure 3.2: Example of FTFM and CTFM profiles for QTR87DF flight from
OTHH to LKPR (Terrain source: GMTED2010 7.5 arc-seconds resolution
(approx. 250 meters). Terrain data available from the U.S. Geological Survey -
Source: Esri, Maxar, Earthstar Geographics and the GIS User Community).

Also TimeF vector was resampled in the same way, therefore

TimeFr(1) = TimeF (1), and (3.4)

TimeFr(TimeFtotal) = TimeC(NF ) (3.5)

represents vector in which each data point represents one second of FTFM flight
time (planned flight time). The indexes of vector TimeFr (idx) of data points
that are common to both vectors TimeF and TimeFr was then identified as

{idx|1 ≤ idx ≤ TimeFtotal, idx ∈ TimeF, i ∈ TimeFr}. (3.6)
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FTFM

CTFM

FTFM waypoint

CTFM waypoint  Interpolated CTFM waypoint

Figure 3.3: Resampling of CTFM data according to FTFM.

The aforementioned principle was also applied for linear interpolation of
latitude, longitude, and altitude at individual time points of modified CTFM
data. Nevertheless, these variables are not necessary in the context of this work
and were derived solely to verify the correctness of this procedure, further data
exploration and potential future processing in upcoming research tasks.

The thus resampled data could then be assigned to the overall dataset (as
illustrated in the example in Tab. 3.1). This also enabled the calculation of the
vector of time differences (FCdelay) between CTFM (flown) and corresponding
FTFM (planned). This way FCdelay vector was calculated as (note: the time
differences were converted to minutes):

FCdelay = TimeCr(idx) − TimeFr(idx)
60 . (3.7)

Described process ensured, that FCdelay contains time delay for each time stamp
in original FTFM dataset.

Further step involved calculating the delay while taking into consideration the
planned and current in-block times. Calculation of delay as δIBT = AIBT −SIBT

would however result in δIBT being an dependent variable in sequential data. In
other words, sequence dependence within one flight (dependent on the number
of waypoints described by independent variables) would address a single overall
delay. In addition to the above, a landing delay was defined from the available
data, i.e., δLT = ART − SRT , where SRT is FTFM datapoint Pw and ART is
CTFM Pw for given flight. Here, Pw represents the last point on the trajectory.

The final dataset, which includes added meteorological data, along with a list
of dependent and independent variables, is detailed in Chapter 3.3.
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3.1.2 Meteorological data

Meteorological data refers to a dataset provided by the Czech
Hydrometeorological Institute. It contains information about wind direction
and speed. These data cover the period from June 1, 2019, to August 31, 2019,
and encompass a geographical region extending from 120°W to 120°E and from
80°N to 20°S. The grid divides this region into increments of 1.25 degrees,
following the specifications outlined in ICAO Annex 3.

Within this dataset, there are 17 different flight levels, ranging from 050 to
530. For each point defined within this coordinate system, predictions for wind
direction and speed are available in 3-hour intervals, with a time step of 3 hours.
The predictive interval varies from 6 to 36 hours, and the data is updated four
times a day at the following times: 00:00, 06:00, 12:00, and 18:00. The structure
of this data, along with its visualization, is depicted in Fig. 3.4.

These data were used to define the meteorological situation at specific points
within the FTFM and CTFM profiles. The initial step involved selecting
meteorological information, specifically the wind speed and direction, for each
point along the flight path. From the previous chapter, it is evident how these
profiles are defined. However, for the sake of clarifying the data preprocessing
procedure, let’s define a flight profile as follows:

FPi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lat1 lon1 alt1

lat2 lon2 alt2
... ... ...

latw−1 lonw−1 altw−1

latw lonw altw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)

where FPi represents a specific flight profile selected from the set of all profiles
based on a unique flight identifier i, where i = 1 . . . 1730. This simplified
notation contains information about the geographical longitude, latitude, and
flight altitude at a specific point along the route. The number of route points
varies, and it is therefore defined by the total count of route points, denoted
as w.

In simpler terms, the process of associating meteorological data involved
attempting to locate the nearest available data point within the meteorological
dataset for a specific point along the flight path. Therefore, when given a flight
trajectory point Pp (where Pp ∈ FPi) and a set of meteorological points Q, the
nearest point Qnearest to point Pp can be determine as:

Qnearest = arg min
q∈Q

||Pp − q||, (3.9)
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where ||Pp − q|| represents the Euclidean distance between point Pp (p = 1 . . . w)
and each point q in the set Q, and arg min

q∈Q
finds the point in Q that minimizes

this distance.
Meteorological data were effectively divided into batches based on

geographical latitude, longitude, and time, considering their size, as shown in
Figure 3.4. This process led to the selection of data subset(s) that covered the
geographical latitude and longitude of the flight trajectory at a specific time.
For this purpose, i.e., batch processing, a software solution was created in the
Matlab environment. The mentioned process, in reality, preceded the actual
selection of meteorological data concerning the flight trajectory.

Meteorological data batches
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Figure 3.4: Structure of meteorological data and an example of visualisation
of this data as a plot of wind direction (wd) and wind speed (ws) relative to
geographic latitude (lat), longitude (lon), and altitude (alt).

Within dissertation data processing methodology, a two-step process was
employed to ascertain the nearest meteorological data point concerning a
specific target point. This approach accommodates both horizontal position
(latitude and longitude) and altitude (in feet). This process was iterative and
chosen because calculating the Euclidean distance between two points in 3D
space would be complicated due to the different units of measurement for
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altitude (in feet) and coordinates (in degrees). The process was therefore as
follows.

In the first iteration nearest point determination based on latitude and
longitude took place. The minimum Euclidean distance for latitude and
longitude between the flight trajectory point (latPp and lonPp) and all points in
the meteorological dataset (latQ and lonQ) was calculated as:

dhorizontal = arg min
q∈Q

√︂
(latPp − latQ)2 + (lonPp − lonQ)2. (3.10)

The indexes k of the nearest data points in the dataset, based on the calculated
dhorizontal, were identified. These indexes represent the nearest data points in
terms of their horizontal positions from original dataset, and they also define
the respective altitudes. Consequently, based on the k, it is possible to select
the vector of altitudes corresponding to the nearest data points with horizontal
positions defined by latitude and longitude. From the resulting vector A, it is
then possible to determine the nearest point in terms of altitude by applying a
similar approach as defined in equations 3.9 or 3.10. If we denote the nearest
point in terms of altitude as l, then the sought-after information about wind
speed and direction in meteorological data will be at position Qkl

.
The above describes an approach for selecting meteorological information for a

specific flight point. Subsequently, the headwind or tailwind, i.e., the component
of the wind in the direction of or opposite to the each point (Pp) of the flight
route, was calculated. Tailwind/headwind was considered a crucial parameter
for further modeling. Typically, aircraft operators make use of weather forecasts
and wind data to plan their flights and take advantage of favorable wind in
terms of its speed and direction. However, the variation of velocity parameters
along the flight path may tactically impact the flying time itself. Therefore, the
parametrization of velocity behaviour in relation to wind direction in particular,
would help understand and reveal potential nuances indicating positive, negative
or alternatively none affect on the flight duration.

In this context, the first step was to determine the flight direction for each
point along the designated flight path within the FTFM and CTFM profiles.
Using the same notation, the heading (hdg) from point Pp to point Pp+1 can be
calculated as follows:

hdg = atan2(X,Y ), (3.11)

where

X = cos(latPp+1) · sin(lonPp+1 − lonPp) (3.12)
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and

Y = cos(latPp)·sin(latPp+1)−sin(latPp)·cos(latPp+1)·cos(lonPp+1 −lonPp). (3.13)

To provide additional context, it’s worth mentioning that the variable p =
1 . . . w − 1, where w denotes the total number of points along the flight path.
Furthermore, it’s crucial to emphasize that the determination of flight direction
is relative to the initial point, which means that the flight direction is associated
with Pp. In other words, the final point does not have a specified hdg. In the case
of the ultimate point on the flight trajectory, this corresponds to the instance
when the aircraft is on the runway. In such a scenario, it has been posited
that the flight direction remains consistent with that of the preceding point, i.e.,
hdgPw−1 = hdgPw . It’s worth noting that the ’atan2’ function inherently produces
values within the range of (-180°, 180°), with 0° denoting North, 90° denoting
East, 180° denoting South, and -90° denoting West. The above approach led to
the conversion of the hdg into a range from 0° to 360°, where 0° corresponds
to the north, and the other cardinal directions are represented in a clockwise
manner within this range (e.g., 90° represents east, and so on). This conversion
was achieved using modulo as follows:

hdg360 ≡ (hdg + 360) mod 360. (3.14)

From the above, it is then possible to calculate the component of the wind
speed in relation to the direction of flight as:

wcomponent = ws · cos(hdg360 − wd), (3.15)

where negative values of wcomponent indicate headwind and positive ones indicate
tailwind.

3.2 Data descriptive statistics

This sub-chapter investigates trends and dependencies within the data set
available. This analysis can help identify patterns and relationships between
different variables in the data, such as the relationship between flight delays or
aircraft performance and wind related conditions along the flight trajectory.
Furthermore, the analysis also helps detect a neccesity for a development of
synthetic variables. The latter, along with other relevant features, may then be
used as inputs for machine learning models aimed at predicting flight delays.
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Therefore, the data merging process and this statistical analysis enabling
determination of new variables are essential steps in preparing the data for
predictive modeling.

The analysis starts with looking at overall number of flights available in the
data sample over the period of summer 2019. This reference period captures
high summer traffic in standard operations. Certainly, it is possible to perform
a relatively robust statistical analysis on the available data; however, this is not
the goal of this chapter. The description below aims to outline the main and
interesting data characteristics that may influence the prediction.

Furthermore, a section documenting schedules duration of flights that are
compared with those flown is also included. There, a reader may also find a view
on range of deviations related to difference between scheduled and actual in-block
times on respective connections.

The Figure 3.5-A encapsulates the traffic volume recorded during the summer
months of June, July, and August 2019 (in total, the dataset included 1 730
flights).
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Figure 3.5: Total number of flights to LKPR categorized by date (A), airport of
departure (B), and day of the week (C).

In Figure 3.5-B, a deeper exploration is undertaken into the inbound traffic
to LKPR by documenting the counts of flights arriving at LKPR from their
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respective origin airports. This perspective aims to improve the comprehension
of the global network converging at LKPR, specifically focusing on all airports
outside the ECAC region, but not excluding intra-european origins such as
LSZH and LHBP. In total, visibility is provided regarding the sources of
international and intercontinental travel to LKPR. The figure offers an
illustration of the connectivity with LKPR, revealing that it is linked to a total
of 13 origin airports. Although the initial intention was to exclusively include
long-haul flights in the analysis, the airports LSZH and LHBP were also added
to create a more diverse dataset. In addition to expanding the studied data
sample, these airports also contribute to defining the characteristics and
behavior of short-haul flights. In any case, with short-haul flights, there is an
inherent uncertainty that these “short” flights will be influenced by
meteorological conditions along the route, particularly in terms of speed and
wind direction, which is assumed more prominently in long-haul flights.

Further analysis of the distribution of traffic counts over the summer months
allows for a breakdown to be conducted, examining the distributions on a
weekday basis, as depicted in Figure 3.5-C. An interesting pattern is revealed
through this detailed examination, with Fridays being identified as the busiest
day, characterized by the highest number of overall and long-haul flights (153)
arriving at LKPR. In contrast, Sunday and Thursday emerges as the least busy,
marked by the lowest count of inbound long-haul flights - totaling 124 and 125
respectively. This weekday-specific breakdown yields valuable insights into the
weekly variations in long-haul traffic to LKPR, shedding light on the flow of
long-haul arrivals throughout the summer season.

Within the dataset, it is also possible to observe a variable distribution of
flight times from various destinations. This is further illustrated in Figure 3.6,
where these distributions are represented in the form of boxplots for FTFM and
CTFM data. From the differences between median values, it is also observable
that the anticipated flight times differ from the actual ones, not necessarily in
favor of FTFM concerning shorter flight times.

These times are naturally dependent on the distance from the departure
airport but also on the type of aircraft used for the flight. Therefore, Figure 3.6
also illustrates the representation of aircraft types for individual flight categories
and their median flight times. For example, from Figure 3.6, a significant
increase in flight time can be observed when using an AT72-type aircraft in the
case of departure from LHBP. The variability of the flight time itself, the causes
of this variability, and the difference between the planned and actual flight,
where delays or significantly earlier arrivals may occur, are the subject of this
dissertation. Nevertheless, in this section, it is necessary to demonstrate
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dependencies and data characteristics that may be significant in feeding a
machine learning model.
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and CTFM data, along with the representation of median flight times from
individual destinations depending on the type of aircraft.
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From the information provided, it is clear that ADEP and Aircraft type will
play crucial roles as predictors. Nevertheless, in this scenario, addressing how
this information will be integrated into the training data becomes imperative.
Given the sequential nature of the data (each specific flight is characterized by
a sequence of variables from its initiation to its termination), it is essential to
ensure that features which remain constant across time steps are not present
within a single sequence. Consequently, determining the approach to incorporate
this information into the input data becomes a key consideration, and this is
elaborated upon in Chapter 3.3.

Another parameter that may have an intuitive impact on the prediction is
the difference between the planned and actual aircraft pushback time from the
stand, denoted as δOBT and calculated as δOBT = AOBT − SOBT , where
AOBT is the actual off-block time (the actual time the aircraft is pushed back
from the stand), and SOBT represents the scheduled off-block time. This data
feature is important in that if we assume a significantly meaningful difference
between AOBT and SOBT , there is an expectation that this difference will also
be reflected in the actual landing time and the actual in-block time. The
histogram of δOBT , including all observations in the dataset, along with the
histograms of δLT and δIBT (see Chapter 3.1.1), is illustrated in Figure 3.7. In
this figure, the mutual dependencies of these variables are also displayed.

Upon scrutinizing the data related to the total number of arrivals at LKPR,
a striking pattern emerges when examining the δIBT . Figure 3.7 reveals a
considerable range of variations, with some instances showing delays exceeding
2 hours. Further investigation has established that these substantial delays can
often be attributed to flights that encountered unforeseen circumstances
necessitating diversions from their original routes. After enduring hours of
stopovers, these flights eventually resumed their journeys to their final
destinations, resulting in the notable disparities between AIBT and SIBT .
Simultaneously, the data distribution reveals a notable trend of flights arriving
ahead of their SIBT . The majority of instances show values concentrated
within the timeframe of approximately 15 minutes or earlier before the
scheduled arrival time.

The above can be observed in the case of both δOBT and δLT , although in
these cases, the interpretation of these differences would be quite different.
While in the case of δLT , it is conceivable in extreme cases that a significant
delay could be caused, for example, by a diversion, in the case of δOBT , there
are likely a multitude of potential causes, ranging from handling issues to
exceptional situations at the airport. Nevertheless, Figure 3.7 reveals a linear
dependency between δLT and δOBT , confirming the previous consideration
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regarding the relationship between these delays, i.e., if the aircraft is pushed
back from the stand earlier/later, it will arrive earlier/later. This dependency
can even be considered causal. In this specific case, if we look at the average
residual error, it would be at the level of −2.4629 ± 7.6829 minutes.
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Figure 3.7: Distribution of time differences between actual and planned off-block
times (δOBT ), in-block times (δIBT ), and landing times (δLT ) along with the
presentation of dependencies between these variables. Negative values indicating
early arrivals.

However, this does not hold for the other dependencies related to δIBT , where
a significant linear dependence is not observable. The presumed reason is that
the time between landing and parking the aircraft at the stand can be influenced
by many factors associated with the current airport situation. In contrast, linear
independence between δIBT and δOBT is absolutely incomprehensible.

48



However, from this presentation, on one hand, a very nice linear and intuitively
causal dependency is evident; on the other hand, there is a need for additional
information for a better description of δIBT .

Note, that δOBT is a known quantity during departure and, therefore, will be
used in the predictive model as an input variable.

The next, in this context, related information is the flight behavior depending
on the route and its length in the context of delay. Of course, this is likely also
related to the departure destination. Looking at the distribution of δIBT and δLT

with respect to departure airports, see Figure 3.8, it can be observed that the
departure airport influences both parameters δ. In other words, when testing the
hypothesis of statistically significant differences in δIBT and δLT among groups
characterized by the departure airport, statistically significant differences could
be observed between some pairs of airports at the significance level α = 5%.
This analysis was conducted through one-way ANOVA Hogg & Ledolter (1987).
However, the interpretation of these results, including post-hoc analysis Hochberg
& Tamhane (1987), would excessively saturate the information provided with
statistical results in the context of this work. Either way, for the purposes of
the work and the subsequent machine learning-related aspects, this information
is sufficient and once again demonstrates the importance of the departure airport
for specifying the target variables δIBT and δLT .
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Figure 3.8: Distributions of time differences between actual and planned in-block
times (δIBT ) and landing times (δLT ) for specific departure airports.

Figure 3.8 provides information about the distributions of δIBT and δLT for
individual airports, but it does not offer insights into the evolution of delay on
routes with a distinction between individual airports. To understand the flight
behavior on specific flight routes, which should be characteristic for individual
departure airports, it was necessary to work with a different parameter, namely
FCdelay (see Eq. 3.7 in Chapter 3.1.1). The variable FCdelay signifies the current
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difference between the planned and actual flight at individual route points. It is
clear that the variability of this variable will be substantial across all flights,
significantly limiting its graphical representation and making characteristic
patterns in the data difficult to discern. Therefore, Z-scores for FCdelay were
calculated for each route, to address this issue, as:

ZdelayF P
=

FCdelayF P i
− FCdelayF P

σ(FCdelayF P
) , (3.16)

where FP represents a specific flight profile (ranging from 1 to 1730), i denotes a
specific route point within FP , · denotes the average value, and σ( · ) represents
the standard deviation of all FCdelay for a given FP . In such transformed data,
the new values represent information about how many standard deviations a given
value is away from the mean. In these data, 0 reflects the average value from the
original data, 1 represents one standard deviation, and so forth.
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Figure 3.9: Dependency of the standardized time difference between actual and
planned flight (Zdelay) on geographical coordinates and departure airport.

By visualizing Zdelay against geographical coordinates, the representation
presented in Figure 3.9 can be obtained. Of course, due to the nature of
Z-scores, information about the absolute time differences between FTFM and
CTFM profiles is lost. However, this presentation demonstrates characteristic
flight behavior depending on FCdelay. Even from this image, it is evident that
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flights from different destinations either continuously accumulate delays or
consistently reduce delays.

Taking a closer look at these data by plotting Zdelay against distance and
SEQ_ID (sequence point number), it is possible to observe that the time
differences between FTFM and CTFM profiles behave constantly in some
segments, i.e., they do not change (see Figure 3.10). In certain flight segments,
the accumulation or reduction of delay is accelerated, while in some specific
segments, the delay is decelerated. The mentioned findings indicate that the
relative behavior of delays from specific destinations is, among other factors,
dependent on the particular flight route. This was further confirmed by the
principal component analysis, where variables such as SEQ_ID, Zdelay, and
Distance demonstrated the ability to cluster flights with respect to the
departure airport.
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Figure 3.10: Dependency of the standardized time difference between the actual
and planned flight (Zdelay) on the flown distance and sequence point number
(SEQ_ID) along with the departure airport classification.

To link on the above findings, the effort was made to investigate whether
these time increments and decrements on given segment may be brought about
by wind component. Therefore, we start looking at correlation between flight
ground speed and and wind speed along the flown routes. Figure 3.11-A provides
a insight into the relationship between flight speed and the wind component,
specifically headwind and tailwind experienced en-route. Upon the data scrutiny,
no significant trend becomes apparent. As such flights that encounter headwinds
along their route tend to not exhibit lower flight speeds but rather maintain the
performance. Similarly, if the tail wind is experienced only a slight increase of
the flight speed is observed. Although, the fact that wind conditions can have
positive or negative impact on the efficiency and performance of the flights is
generally recognized, the current data set doesn’t not provide sufficient evidence
to advocate this narrative. This may be due to the nature of these flights, actual
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velocity conditions over the given period, or limited amount of traffic sample used
within this thesis. Seemingly, the Figure 3.11 further indicates some erroneous
data, which may be result of false measurements feeding CTFM reports used in
the analysis.
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Figure 3.11: Overall view on comparision of wind component versus flight speed
(A) and Visualization of prevailing wind direction and speed for all flights (B)

Despite of no real evidence that the wind would impact speed of the flight
en-route, some additional insights into the dataset are provided. In Figure ??-B,
a depiction of prevailing winds along all the routes within the observed dataset
emerges. The data underscores that northerly winds predominantly prevail in the
regions covered by these flight paths. It’s also notable that althought some portion
of flights experienced also winds exceeding 100 knots during their journeys, the
ratio of flights experiencing rather nominal conditions with lighter winds prevail.
This insight may indicate reduced impact that high-velocity winds may have on
flights within the studied sample.

To conclude on this part where the focus is placed on detection of the
relationship between flight speed and wind component, the correlation analysis
was conducted Gogtay & Thatte (2017). The Figure 3.12-B shows, that while
there is a predominant negative correlation for the majority of flights, indicating
that wind conditions typically affect flight speed in the opposite direction, the
presence of high positive correlations suggests that in certain cases, the wind
component may have a significant impact on flight speed in the same direction.
A negative correlation between flight speed and headwind speed can indeed
indicate that aircraft are adjusting their speed to counter the effects of
headwinds. In other words, when faced with stronger headwinds, aircraft may
increase their flight speed to maintain their scheduled arrival times or minimize
the impact of adverse wind conditions. While a negative correlation suggests a
compensatory effect, it doesn’t necessarily imply that wind has no effect on
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flight duration. Instead, it indicates that the aircraft are responding to the wind
conditions, and this response results in a negative correlation between the two
variables. Overall, the distribution of the correlation coefficients within the
scale suggests no real conclusion on wind effect can be made.

In spite of the reasoning, the Figure 3.12-A indicates slight but progressive
increment in positive correlations between flight speed and wind speed in the
period of August. This may suggest a potential seasonal trend, which may be
influenced by changing weather patterns, wind conditions, or operational
practices during different times of the year.
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Figure 3.12: Correlation coeficients depicting relationship between wind
component and flight speed per date (A), Correlation coeficients and a linear
regression model depicting a trendline (B) and Correlation coeficient depicting
relationship between wind component and flight speed per airport (C).

This tendency of higher distribution of positive coefficients can also be seen
on the Figure 3.12-B. However, and as said, the impact seems to be negligible.

The breakdown observed in Figure 3.12-C, where some airports like
Philadelphia (KPHL), Dubai (OMDB), and Hamad (OTHH) show both strong
positive and strong negative correlations between flight speed and wind speed,
is an interesting finding. It indeed suggests that there is variation in how
different flight operations are adapted to the wind component. The presence of
both positive and negative correlations for the same group of airports indicates
that airlines operating from these airports might have varying strategies or
responses to changing wind conditions, which may be translated into
manipulation of cost index applied on respective segments.

Stemming from the desriptive analysis, and based on trends and relationships
observed, it transpires that the available data manifest certain dependancies.
At the same time certain correlations performed on meteorological and flight
related data suggest that no or limited relationship may exist. As such, and
considering the fact mentioned above, the dataset may not neccessiraly be meeting
requirements for a predictive modelling approach that would enable computation
of a predicted arrival delay. Thus, it is imperative to analyze the predictive
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technique used and options to include additional data as explained in Chapter 3.3
below.

3.3 Aditional variables for model

A sequential pattern is followed by our data, where each flight is represented
by a sequence of variables (see Table 3.1 for an overview of the data structure.),
as mentioned earlier. In total, considering individual flights and the waypoints
within them, 122 158 observations are included in this dataset, 1730 filtered
arrivals were recorded at LKPR and the dataset is composed of 45 features and
two dependent variables, namely δLT and δIBT .

Not all features, however, can be used for modeling due to containing
information about real flights, i.e., CTFM profiles and details associated with
actual flight execution. For prediction, only information available at the
departure phase must be selected.

Another thing that needed to be taken into account is dealing with constant
features. The mentioned was more or less discussed in Chapter 3.2 (page 47).
It is therefore a matter that, by the nature of the data, the prediction approach
must be based on a sequence-to-one approach Ye et al. (2022). For this purpose,
one can utilize, for example, the Long Short-Term Memory architecture of a
recurrent neural network Le et al. (2019) (this is further described in the following
chapters). This approach is based on learning through multivariate time series,
where these time series essentially represent a sequence describing one flight,
with the aim of addressing one corresponding dependent variable (in this case, the
predicted delay) for each sequence. Including input features that remain constant
throughout a sequence (such as ADEP) may not always be beneficial for several
reasons. Firstly, such features provide limited information gain as they don’t
vary across time steps, and sequential models typically rely on changing patterns
for effective predictions. Additionally, the introduction of constant features can
lead to redundancy, repeating the same information across all time steps without
substantial added value for the model.

Moreover, there’s a risk of potential overfitting when constant features are
included. The model might memorize specific patterns associated with these
constants, compromising its ability to learn more generalized patterns in the data.
Furthermore, there’s an increase in computational overhead during training when
constant features are present, potentially without a proportional improvement in
model performance.
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Lastly, the presence of constant features may pose a challenge for sequential
models like Long Short-Term Memory (LSTM) Le et al. (2019), which excel in
capturing temporal dependencies and dynamic patterns. Constant features might
divert the model’s attention away from the evolving aspects of the data, making
it difficult to effectively learn the underlying dynamics.

Model Testing

Dataset

Training Dataset

Testing Dataset

Validation Dataset

Historical context variables 

Model Training

Figure 3.13: Schematic representation of utilizing historical data in model
training.

The assumption is that a better model can be obtained by utilizing historical
CTFM data. This involves comparing the planned flight time against the
average of actually flown flights, considering constant features such as Aircraft
type, ADEP, etc. For proper training, these variables need to be calculated from
the training data to avoid introducing bias into the prediction during testing
(note: the dataset will be standardly divided into training, validation, and
testing sets). A schematic representation of this process is shown in Figure 3.13.

The fundamental idea was to calculate the average (historical) flight times
from CTFM profiles for each aircraft type, within a specific departing airport.
This information was computed from the training dataset, following its definition,
and thus:

hFTad,ac =
∑︁AF Tad,ac

n
(3.17)

where hFT is the average historical flight time from the subdataset defined based
on the unique departing airport ad and unique aircraft type ac from the training
dataset A. AF Tad,ac

je pritom definované ako:

AF Tad,ac
= FTfn − FTf1 ⊂ Aadf ,acf

⊂ A (3.18)

where FTf represents the time vector for individual waypoints of a specific
flight f . The flight duration is then defined as the difference in times between
the last n and the first waypoint of that specific flight. FTf is a subset of the
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dataset Aadf ,acf
, which is a subset of the overall training dataset A. Aadf ,acf

is
defined by the departing airport ad and aircraft type ac. The variables ad and
ac are categorical in the original dataset and were used for its categorization.

The average values of historical parameters were calculated not only for the
overall flight duration but also for the delay increment hFCdelay (see equation 3.7
in Chapter 3.1.1), historical hδOBT , hδIBT , hδLT , flight speed hFS and wind
component (headwind/tailwind) hwcomponent (see equation 3.15).

As mentioned earlier and will become clearer from the following description,
the creation of the predictive model will utilize the LSTM neural network
architecture approach. The data for the final dataset were modified to meet the
requirements of this approach.

This architecture operates with multivariate time series, so it was necessary to
create time series for each flight, describing the flight and containing the necessary
information for training. Let F represent the data matrix for a specific flight
included in the dataset. The defined predictors will then look as follows (note:
the notation of predictors is kept in the form used in modeling in the Matlab
environment):

dSIBT_TO = FSIBT − FT O, (3.19)

dSOBT_TO = FSOBT − FT O, (3.20)

dATOT_TO = FAT OT − FT O, (3.21)

dAOBT_TO = FAOBT − FT O, (3.22)

where FT O represents the vector of times of passage for individual waypoints on
the planned route (from the FTFM profile) for a specific flight. FSIBT , FSOBT ,
FAT OT and FAOBT represent the scheduled in-block time and off-block time, the
actual take-off time, and the real off-block time, respectively. Before calculating
these differences, the times were converted to posix time. FSIBT , FSOBT , FAT OT

and FAOBT represent a constant feature (represented by one number). This means
that the aforementioned variables define time series of the scheduled flight of the
aircraft over individual planned waypoints, taking into account already known
time deviations.

Furthermore, information about the flight, such as latitude (LAT ), longitude
(LON), altitude (ALT ), ground speed (FS), and the distance of the waypoint
from the departing airport (POINT_DIST ), was utilized as predictors.
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Naturally, information about the weather along the route at the time of
departure, including wind speed (windspd), wind direction (winddir), and wind
component (WindComponent), was also used. All these features also represent
time series as they are defined for each waypoint in F .

The variables mentioned above could be created before dividing them into
training, validation, and test datasets. After splitting the data into these types
of datasets, the principle of the approach described above regarding historical
data was then applied. Let Tr, V a, and Te represent the training, validation,
and test datasets, respectively, and let TrF , V aF , and TeF represent a specific
flight in these datasets. Then it is possible to apply the approach described above
in equations 3.17 and 3.18. In this case, A = Tr. First of all, “historical” values
from Tr were calculated, which were then used to define new variables also in
datasets V a and Te. For the example of one flight, the calculations would look
as follows (note: the same notation is used as was used in the real solution in the
Matlab environment):

histDelay_TO = V aFT O
− hFCdelay, histDelay_TO ∈ V a, (3.23)

histD_IBT_TO = V aFT O
− hδIBT , histD_IBT_TO ∈ V a, (3.24)

histD_OBT_TO = V aFT O
− hδOBT , histD_OBT_TO ∈ V a, (3.25)

histD_LT_TO = V aFT O
− hδLT , histD_LT_TO ∈ V a, (3.26)

histFS_FS = V aFF S
− hFS, histFS_FS ∈ V a, (3.27)

histWC_WC = V aFwc − hwcomponent, histWC_WC ∈ V a, (3.28)

where the above-calculated parameters represent time series of the difference
between the planned development of a specific parameter and the average
historical development. In all cases, it is the difference of a specific parameter
for a flight selected based on the departing airport and aircraft type, with the
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subtracted value representing the average of that parameter from all flights
classified according to this specific departing airport and aircraft type in Tr.
This is represented for the V a subdataset, but implemented for the Tr and Te

datasets as well.
The overall dataset used for prediction utilizes the predictors described above,

which have the format of time series forming a data sequence for a specific flight.
Each of these sequences is assigned exactly one dependent variable, either δLT

or δIBT , depending on the model being built (either for predicting δLT or δIBT ).
The dataset contains 1730 flights, with each flight being described by 18 time
series. Emphasis was placed on the possibility of using such an approach in real
operations, meaning each flight is described by known information at the time of
departure.

3.4 Predictive modelling

For the purposes of the work, the tendency is to primarily predict δIBT .
However, as evident from the previous analysis, such a task can be quite
challenging, mainly due to the lack of available information about the flight’s
behavioral aspects in the time interval between landing and arrival at the stand.
Therefore, prediction will also be performed for δLT .

As outlined in previous chapters, in this case, two approaches can be
utilized. While in the case of δIBT and δLT , it involves a sequence-to-one
approach Ye et al. (2022), prediction can also be performed using a
sequence-to-sequence approach Saxena et al. (2008). In the latter case, the
target variable would represent the delay increment at each point of the flight.

In other words, the primary difference between the sequence-to-one and
sequence-to-sequence approaches lies in the structure of their input and output.
In the sequence-to-one paradigm, the model takes a sequence of inputs but
produces a single output, often referred to as a many-to-one architecture. This
is commonly employed in tasks like sentiment analysis (Chan et al., 2022),
where the goal is to classify the sentiment of an entire sequence, such as a
sentence or document.

On the other hand, the sequence-to-sequence approach deals with both input
and output as sequences, forming a many-to-many architecture. This model
configuration is suitable for tasks where the input and output have variable
lengths, as seen in machine translation, text summarization, and speech-to-text
conversion. In machine translation, for example, the model processes a sequence
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of words in one language as input and generates a sequence of words in another
language as output.

In summary, the key distinction between these approaches is in the nature of
the output. Sequence-to-one models produce a single output based on a sequence
of inputs, while sequence-to-sequence models are designed for tasks involving the
transformation of one sequence into another, where both input and output are
sequences of variable lengths (Rao et al., 2022).

In addressing this work, both approaches were employed, but for practical
reasons within the context of the work itself, only the sequence-to-one approach
will be utilized and further described. This is because the main focus of the work
is not based on predicting delays at each point of the route. Although solving
such a problem would be interesting, its practical application would likely require
updating the predictive model during the flight with real-time flight information.
For this reason, it seems more suitable and practical to predict a single final
delay based on the information available at “take-off” including initial CTFM
timestamp but also available FTFM profile. Additionally, historical CTFM flown
profiles on given route may also bring additional insights and improve modelling.

3.4.1 Sequence to sequence approach

Based on the earlier explanation, the sequence-to-sequence approach may not
be the most appropriate option for modeling. This approach involves predicting
delays across the entire trajectory as a sequence, which may not effectively solve
the problem. Put differently, this technique would convert input parameters,
including the sequence of FTFM profiles, into an output sequence of CTFM.

In the course of addressing the work, however, a deeper exploration of this
approach was undertaken. The philosophy was to predict the delay increment at
a point on the flight route. In this case, a neural network was not utilized, but
rather a linear regression approach. The dataset was treated as a whole, with
each row describing a single waypoint. All types of variables, both categorical
and continuous, were considered, but the flight progression itself was not taken
into account. The goal, among other things, was to elucidate the importance of
predictors capable of capturing the delay increment in regression.

These results were published and presented at the international conference
mentioned below.
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Appendix D

Špák, M., Socha, V., Hanakova, L., Matowicki, M., Predictability of
In-block Time Deviations: An Analysis of Operational Data, Tactical Flight
Models and Meteorological Information, Proc. of XVIII. International Scientific
Conference New Trends in Aviation Development. The High Tatras – Starý
Smokovec: IEEE, 2023. p. 222-227. ISBN 979-8-3503-7040-9.

The thesis findings highlight the significance of SOBT, ATOT (Actual Takeoff
Time), and SIBT values in predictive modeling for anticipating in-block time
deviations. These parameters offer insights into potential delays, which can be
attributed to factors like operational patterns of airlines, air navigation services,
airport layout complexity, or weather conditions along the route within a specified
time period.

Additionally, the choice of the ADEP as a predictive element emphasizes the
role of distance in improving prediction accuracy. Considering gate or terminal
information, including variable taxiing times, reduces prediction error and
enhances accuracy.

The thesis also introduced a synthetic variable called the wind component,
reflecting velocity in relation to flight heading, to enrich the modeling phase.
While no significant improvement was observed, there’s potential for further
research on the impact of meteorological conditions along the route on flight
duration and in-block time deviations.

3.4.2 Sequence to one approach

As mentioned several times above, for the purposes of the work in the
context of predictions, a recurrent neural network with LTSM architecture was
used. Specifically, the Bidirectional LTSM (BiLTSM) was employed. The
rationale, basic logic behind choosing this approach, characteristics of LTSM
and BiLTSM, and the configuration of the neural network for fine-tuning
predictions are described below.

The LSTM neural network architecture has proven effective in addressing
the vanishing gradient problem associated with traditional recurrent neural
networks (RNNs) (Da Silva & De Moura Meneses, 2023). Particularly suitable
for sequential data analysis.

The vanishing gradient problem is a challenge that arises during the training
of deep neural networks, particularly in the context of recurrent neural networks
(RNNs). It is related to the difficulty of updating the weights of the earlier layers
in a deep network during the backpropagation process.
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During backpropagation as explained by Gerlinghoff et al. (2023), gradients
are calculated and used to update the weights of the network to minimize the
error. However, as the gradient is propagated backward through the layers, it
can diminish exponentially as it moves toward the input layers. This means that
the gradients for the weights in the early layers become very small, approaching
zero. As a result, the weights of these early layers are updated very little, if at
all, during training.

When the gradients become too small, the network has difficulty learning
meaningful representations from the input data. This phenomenon is
particularly problematic in deep networks and sequences where information
needs to be captured over long distances or time steps. In the context of
sequential data processing, such as language modeling or time series prediction,
the vanishing gradient problem can make it challenging for the model to capture
dependencies that span across many steps.

LSTMs were introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997.
The key idea behind LSTMs is the introduction of a memory cell and gating
mechanisms that control the flow of information, allowing for better learning and
retention of long-term dependencies.

Sherstinsky (2020) explains that LSTM is a type of recurrent neural network
(RNN) architecture designed to address the vanishing gradient problem in
traditional RNNs, which makes it difficult for them to capture long-term
dependencies in sequential data. LSTMs are well-suited for tasks involving
sequences, such as time series prediction, natural language processing, and
speech recognition (Senthilkumar et al., 2022).

In a sequence-to-one approach using LSTM, the goal is typically to process
an input sequence and produce a single output at the end of the sequence
(Sherstinsky, 2020). This is common in tasks like sentiment analysis or image
classification where the entire sequence contributes to the final decision.

The basic components of LTSM include Cell State (Ct), Hidden State (ht),
Gates and Cell Input (gt). The cell state serves as the repository for the network’s
long-term memory, facilitating the storage and transmission of information across
various time steps. Updates to the cell state occur dynamically as the network
processes the input sequence.

Representing short-term memory or information pertinent to the ongoing task,
the hidden state is updated at each time step based on the input, prior hidden
state, and cell state. The final hidden state, or a derived transformation thereof,
is instrumental in making predictions or classifications for the entire sequence.
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The Input Gate (it), Forget Gate (ft), and Output Gate (ot) regulate the flow
of information within the LSTM. Schematic interpretation of vanilla LSTM is
depicted in Figure 3.14.
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Figure 3.14: Vanilla LSTM architecture

Cell Input represents new information that may be incorporated into the cell
state and is computed using the hyperbolic tangent (tanh) activation function.
The cell state update (eq. 3.29) and hidden state update (eq. 3.30) is performed
using the following approach:

Ct = ft · Ct+1 + it · gt (3.29)

ht = ot · tanh(Ct) (3.30)

At the end of the sequence, there might be a fully connected layer or another
type of output layer that takes the final hidden state as input to produce the
desired output. In the case of models created in this work, two fully connected
layers were used, one with 100 hidden units followed by a layer with 25 hidden
units. This configuration was done empirically through repeated testing during
the course of the dissertation work. The training process involves adjusting the
weights (W and U) and biases (b) through backpropagation and gradient descent.

In the sequence-to-one approach, the LSTM sequentially processes input (X)
time steps, updating the cell state (Ct) and hidden state (ht) at each step. The
ultimate prediction for the entire sequence is derived from the final hidden state
(hT ).

Bidirectional Long Short-Term Memory (BiLSTM) is an extension of the
traditional LSTM architecture (Jamshidzadeh et al., 2023). In a standard
LSTM, information is processed from the beginning to the end of a sequence,
capturing dependencies from the past to the present. In contrast, BiLSTM
processes the sequence in both forward and backward directions simultaneously.
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The bidirectional nature of BiLSTM is achieved by maintaining two hidden
states for each time step—one for the forward pass and one for the backward
pass. The final representation at each time step is a concatenation of these two
hidden states, providing a comprehensive understanding of the context from both
past and future perspectives.

This bidirectional processing is particularly advantageous in tasks where
context from both directions is crucial. For instance, in natural language
processing (NLP) tasks like named entity recognition or part-of-speech tagging,
the meaning of a word often relies on information from both preceding and
following words (Prabakaran et al., 2023).

During training, the backward pass in BiLSTM is typically performed in
reverse time order. The model is trained to predict the current time step based
on information from both past and future time steps, facilitating the capture of
dependencies in both directions.

BiLSTM networks are applied across various domains where capturing
context from both past and future information is essential. As worked out by
Chai & Li (2019), in NLP, BiLSTM is employed for tasks like sentiment
analysis, named entity recognition, and part-of-speech tagging. In speech
recognition, BiLSTM models dependencies in acoustic features, improving
accuracy. Time series prediction benefits from BiLSTM in capturing temporal
dependencies for accurate forecasting.

Handwriting recognition, particularly in the context of sequences of
handwritten strokes, utilizes BiLSTM for its ability to learn patterns and
dependencies. In biomedical data analysis, BiLSTM is applied to tasks such as
DNA sequence analysis and protein structure prediction.

Gesture recognition tasks leverage BiLSTM to understand sequences of
movements, enhancing the recognition of complex gestures. In event detection
within videos, BiLSTM aids in capturing temporal context, contributing to
improved analysis and understanding of dynamic events.

These applications demonstrate the versatility of BiLSTM in capturing
contextual information from both ends of a sequence, making it a valuable
architecture for tasks requiring a nuanced understanding of context.

In the context of this work, the chosen architecture at the end was specifically
the BiLSTM architecture. This decision was made with the goal of working with
a perspective on the entire flight behavior described by input parameters, rather
than through its gradual development.

In the development of a Bidirectional BiLSTM network, the configuration of
hyperparameters plays a pivotal role in optimizing the model’s performance. The
selection of hyperparameters involves careful consideration of various aspects to
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strike a balance between model complexity and generalization. The theoretical
framework provided below describes key hyperparameters and their impact on
the BiLSTM architecture.

The number of LSTM units is a fundamental hyperparameter, dictating the
network’s capacity to capture intricate patterns. The decision on the number of
layers influences the depth of the architecture, with deeper structures capable of
grasping more complex dependencies, albeit with an associated risk of overfitting.

The choice between a bidirectional or unidirectional structure is a critical
decision. Bidirectional LSTMs, by processing input sequences in both forward
and backward directions, excel in capturing information from past and future
time steps, providing a comprehensive understanding of sequential data. The
dropout rate, as a regularization technique, is pivotal in balancing the trade-off
between preventing overfitting and maintaining model performance.

The learning rate and batch size are key optimization parameters. The
learning rate determines the step size during optimization, influencing
convergence, while the batch size impacts regularization and memory
requirements. The number of training epochs, representing the complete
traversal of the training dataset, poses implications for both training duration
and the risk of overfitting.

The optimizer, a crucial component in the training process, merits careful
consideration. Choices such as Adam or RMSprop are contingent on the
dataset’s characteristics and the specifics of the problem at hand. Additionally,
the activation functions within the LSTM cells, such as tanh or ReLU,
contribute significantly to the model’s capacity to capture temporal patterns.

Tailoring the input sequence length to the inherent characteristics of the
sequential data is imperative. This adaptation ensures the network is
appropriately attuned to the nature of the input information. Finally, the
determination of the output dimensionality, often aligning with the number of
classes in classification tasks, completes the hyperparameter configuration.

The configuration of hyperparameters for the neural network was carried out
experimentally and empirically, considering continuous monitoring of the
behavior of the training process and the predictive capability of the resulting
model. The network configuration is shown below in Matlab notation. The
network presented below works with an input dataset characterized by the
variable XTrain and a target variable contained in the variable TTrain and
validation datasets XV alidation a TV alidation. At the output of the training,
the function provides the final model (net) selected based on the smallest
validation loss in the training, along with information and data from the
training process (tr), such as the progression of RMSE, loss, etc.
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numResponses =1;
numHiddenUnits =50;

layers = [ ...
sequenceInputLayer (size(X{1} ,1) ,...

'Normalization ','zscore ')
bilstmLayer ( numHiddenUnits ,...

'OutputMode ','last ',...
'StateActivationFunction ', 'tanh ',...
'GateActivationFunction ', 'sigmoid ')
fullyConnectedLayer (100)
dropoutLayer (0.8)
fullyConnectedLayer (25)
dropoutLayer (0.8)
fullyConnectedLayer ( numResponses )
regressionLayer

];

options = trainingOptions ('adam ', ...
'MaxEpochs ', 300, ...
'ValidationData ', { XValidation TValidation }, ...
'InitialLearnRate ', 1e-3, ...
'SequenceLength ', 'longest ', ...
'Shuffle ', 'never ', ...
'OutputNetwork ', 'best -validation -loss ', ...
'GradientThreshold ', 1
);

[net , tr] = trainNetwork (XTrain , TTrain , layers ,
options )

To determine the learning stability, an approach was employed in which the
entire training process, along with predictor computation (see Chapter 3.3), was
repeated 60 times. Within this process, a training, validation, and test dataset
were consistently selected in a 70/15/15 ratio by random selection, and basic
performance characteristics of each resulting model were calculated when
predicting using the test dataset. Specifically, this involved the computation of
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), the mean
value of residuals (rMean), the standard deviation of residuals (rSTD), and R2.
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The above was done to avoid selecting data for which the model would
work/not work based on a single random selection. Average performance
characteristics were then calculated from these 60 iterations. These resulting
characteristics indicate the reliability of the final model and the stability of the
model-building approach set (see Chapter 4). It is also necessary to note that
the same approach was used for predicting δIBT and δLT . However, the training
results for δIBT and δLT will be presented and interpreted separately.
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4. Results

During the training of the predictive model for estimating δIBT and δLT ,
performance characteristics were iteratively collected for 60 models. The
average values of prediction performance indicators for models trained for δIBT

were at the level of RMSE = 23.7736 ± 20.4742, MAE = 11.2068 ± 1.9567,
rMean = −1.2613 ± 3.0895, rSTD = 23.5353 ± 20.5743, and
R2 = 0.8050 ± 0.2058.

The resulting models exhibit a relatively high degree of variability, which is
caused by the random selection of the training dataset. This implies that to
optimize the training process for more stable results in the context of resulting
models, additional information should be added to the dataset. Nevertheless,
any model trained on the data defined in Chapter 3.3 should achieve predictive
performance within the intervals illustrated above.

On the other hand, for models predicting δLT , the following metrics were
obtained: RMSE = 9.2779±1.4897, MAE = 6.1911±0.5155, rMean = 0.3517±
1.4294, rSTD = 9.1748 ± 1.5244, and R2 = 0.8999 ± 0.0243. Compared to
the previous models, the performance in predicting δLT is much more stable,
indicating the independence of the random selection of the training dataset on
the resulting model.

In the context mentioned above, it is also possible to observe that the final
models for predicting δIBT and δLT (trained independently of the previous 60
cases) exhibit similar performance to the respective average performance.

Figure 4.1 offers a graphical depiction of the final model training process
throughout individual iterations, taking into account RMSE and loss for both
training and validation data. Here, the loss signifies the model’s performance,
quantifying the disparity between predicted and actual values within a specified
input dataset. RMSE on the other hand gauges the average magnitude of errors in
predicted versus actual values, calculated as the square root of the mean squared
differences.

Before training, the training option was configured to create a model based
on the minimum validation loss. In the case of predicting δIBT (Figure 4.1-A),
this model was selected with an RMSE of 31.5 minutes and a loss of 213. This
result suggests relatively high error, which may be caused due variations within
the training dataset. In this case, it’s apparent that the learning process was
unable to advance beyond this level.

On the contrary when re-directing our focus on prediction of δLT and as seen
on Figure 4.1-B, the uncertainty seems to significantly decrease, suggesting more
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stable inputs. The final model for predicting δLT was selected based on the best
validation loss, with an RMSE of 20.64 minutes and a loss of 7.9. Generally
speaking, the training and validation loss both decrease and become relatively
stabilized at certain point, which may indicate a good fit of the model.
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Figure 4.1: Visualization of the training process for the model predicting δIBT

(A) and δLT (B).

Once the training has succesffuly been performed, the testing of the final
models took place with results captured in Figure 4.2. When looking at
Figure 4.2-A, the outputs of the testing suggest that predictability of in-block
deviations may operate with certain volatility. This may be caused due to
unavailibility or limited visibility the model has in relation to key factors
influencing the time aircraft spends between landing and parking at the stand.
In spite of these statements, the RMSE of 18.37 minutes and residual Standard
Deviation (rSTD) of 18.40 minutes may still be operationally seen as beneficial
when pre-tactical and close to real-time efforts to optimize airport resources, are
made.

Furthermore, when looking at Figure 4.2-B, the model performs evidently
well when predicting δLT with RMSE at 8.71 minutes. With such a result, the
operational planning becomes resilient as presence of inbound traffic on the
runway can be predicted with a rSTD of 8.70 minutes. Thus, the stand and
gate allocators together with remaining ground resource planners in the ranks of
ground handlers may efficiently anticipate demand and adjust respective
capacity.

In summary, when running the exercise, where the performance of the model
predicting δIBT and δLT is compared, the predictions of the latter are of better
quality, thus closer to the ground truth.
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5. Discussion

The thesis revealed that the development of an operational playbook in form
of a predictive model based on operational, meteorological and trajectory related
data may generate satisfactory results. Firstly, the endeveaours were made to
use linear regression and predict delays delay increments at each single point
on the flight route. Different types of data including categorical and continuous
variables were used allowing to focus on predictability of FCdelay. The analysis
using forward selection process proved that values such as SOBT, ATOT, LOBT
play an important role in predicting the said delay increments. Furthermore,
progressive adding of predictive elements including terminal information, or wind
component improved the model performance and its accuracy as such.

However, the regression approach did not allow studying behavioural
changes of input variables along the route as the dataset was treated as a whole,
with each flight record stored in a single row. Furthermore, the prediction of
FCdelay, which constitutes a vector of time difference between planned and flown
trajectories, was a diversion from an initially declared target, which focuced on
prediction of in-block time delays. This led to additional research, which
entailed development of an operational playbook in form of a predictive model
applying BiLSTM network approach. The sequence to one technique allowed to
study the behavioral evolution of input variables along the flight. Stemming
from the experience gained with the regression approach, the BiLSTM was
selected due to its ability to concentrate on generation of δIBT predictations,
where this variable constitute a difference between SIBT and AIBT values.

However, as explained in Chapter 4 the elevated error when predicting in-block
time delay may imply variations in the training dataset. As such, it indicates
a learning process that couldn’t progress further due to nature and volume of
data elements present. The fact that the input data may have suffered level of
inconsistency when undergoing training process, this could cause in-block time
predictions being of rather undesired quality with RMSE of 18.37 minutes. This
also imply that the model cannot be well generalized from the training dataset.

In light of the suboptimal accuracy observed in predicting in-block times,
a subsequent initiative was undertaken to validate the potential for predictive
capabilities in relation to forecasting landing times. In contrast, when shifting our
attention to predicting δLT , there is a notable decrease in uncertainty, indicating
more consistent inputs and robust training, which is also proved by RMSE value
of 8.71 minutes. Moreover, as depicted in Figure 4.2-B, the model demonstrates
notable and greater success in predicting δLT as oppose to δIBT . An ultimate
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RMSE achieving a value of 8.71 minutes suggests that testing was successful.
As such, this discovery proves to be intriguing and enlightening. It becomes
apparent that the lower quality of predictions for in-block time is compensated
by the enhanced accuracy achieved in predicting landing times. This suggests
that the decline in predictive performance may be linked to the specific phase
of operations between these two variables. In essence, the observed discrepancy
underscores the importance of understanding of the operational phases and their
impact on predictive outcomes.

The phase in question appears to be when the aircraft taxis into its parking
position. Delving into this taxing-to-parking maneuver may be crucial to
understanding the factors influencing predictive performance of existing model.
Therefore, considerations could be given to incorporating several key factors
that typically influence taxi in time. The inclusion of these elements as
additional input data may have a potential to enhance the model’s accuracy
and robustness. Simultaneously, it is also imperative to acknowledge a
secondary factor that might significantly influence taxi in time duration and
that is stand availability. The real-time availability of parking stands directly
affects the course an arriving aircraft takes to reach its designated position,
introducing another layer of complexity to the taxiing process. Integrating data
on stand availability into the existing model’s input parameters may further
enhance its capability to generate better output.

Understanding how planes move to parking positions after landing and
whether those positions are vacant at the very moment, can be tricky to predict
because there are many factors involved. To make things systemetic and
conceptual, subsequent research may be built around two additional models:
one for predicting taxi in time, and another for predicting parking position
availability. As indicated, these two new models may then have the potential to
complement the current predictions for δIBT , and/or δLT alternatively. As such,
this approach allows for a more comprehensive understanding of the entire
arrival process called gate-to-gate. The model for taxi in predictions could
incorporate the following considerations:

• Typical runway occupancy time:
Understanding the customary duration an aircraft occupies the runway
during its arrival may present a parameter enriching the model. Assiging
a typical duration of runway occupancy per aircraft type may shed more
light.

• Taxiway layout:
The design and structure of taxiways are critical as different taxiway layouts
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may introduce variations in the route and speed of an aircraft as it navigates
toward its parking position.

• Preceding traffic:
The presence and movement of preceding aircraft on the runway, taxiway,
and apron can influence the speed and path of an arriving aircraft.

• Runway in use:
The specific runway designated for arrivals can impact taxi in times,
especially if there are variations in distance and routes from the runway to
parking areas. Identifying the runway in use adds a valuable layer of
information for more precise predictions.

• Parking position:
The choice of parking position for an arriving aircraft contributes
significantly to the taxi in duration. Different parking positions may
involve distinct taxiing paths and distances, influencing the overall time
required to reach the designated location.

• Adverse Conditions:
Integrating data related to weather, especially during instances of reduced
visibility, into the model enhances its capability to accurately predict taxi
in times by considering the specific challenges posed by adverse weather
scenarios.

Considering the large number of factors involved, it may make sense to build
a separate model for taxi in predictions. Nevertheless, it’s complexity will
require mass amount of data from AODB. In this context, further research in
this region may build on already existing results of the Taxi-in Taxi-out
Predictions (TITOP) project led by Eurocontrol and proposed by Swiss
Airlines. The project started in January 2023 and emerged based on the need of
users to have a more accurate prediction of taxi time that is necessary between
landing and stand for an Arrival flight and between stand and take-off for a
Departure flight. Many of the above elements were taken into consideration
when computing targets. Additionally, this project also links on another efforts
made by Eurocontrol and partners aiming at improving the prediction of the
runway in use depending on weather information. Runway in use predictions are
also mentioned above as those effecting the taxi in time, and as such it may be
beneficial to utilize existing research outcomes too.

On the other side, and when diverting our attention to the development of
a second predictive model anticipating the availability of a parking position, a
multitude of complex elements need to be regarded too. Key factors include:
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• Parking stand occupancy status:
Determining the current status of parking stands, whether occupied or
vacant, is crucial for predicting availability. On top of that what aircraft
type is allocated may also enhance the information provided.

• Expected stand occupancy:
Assessing the anticipated time duration for which aircraft are expected to
remain parked provides insights into turnover rates. This may also include
availability of ground handling resources.

• Allocation policies:
Understanding the policies governing the allocation of parking positions,
including prioritization rules, influences predictive accuracy as hard and
soft business rules may play a crucial role too.

• External factors (e.g. weather):
Accounting for external factors such as adverse weather conditions or
unforeseen disruptions is crucial as they can interrupt usage of particular
parking position of entire apron.

As in previous example, majority of input data required will be fed from
AODB. From the above mentioned contributing factors, current allocation
process and predicted stand occupancy may require highest attention. Here, as
in case of taxi in predictions, existing Eurocontrol project called Optimization
of Turnaround Times (OpTT) may serve as a good foundation. The OpTT
project uses machine learning principles to predict turnaround durations and
stand occupancies as such. The aim is to assess the risk of potential ground
delay and improve off-block predictability. The methodology was validated at
Prague, Geneva and Arlanda airports. The development of new models or
enhancement of those existing within the research community with aim to boost
predictions of δIBT is open for discussion, but the clear imperative is to evaluate
techniques for effectively merging multiple models ultimately.

While the draft proposal for the next research phase is underway and
proposed in this Chapter 5, it is crucial to recognize the current thesis’s
noteworthy success in achieving quality landing time predictions. Furthermore,
the majority of flights, for which the predictions are made pertain long-long to
haul traffic. The attained performance stands as a significant accomplishment,
opening the door for potential discussions with the industry and airport
community regarding the practical application of the predictive model
developed. Focus on en-route phase of the flight inluding parameter of velocity
as well as flight speed proved to be appropriate and contributed to
undertanding of delay increments or decrements produced along the trajectory.
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6. Conclusion

The presented thesis reveals details on current status of technical and
technological means enabling monitoring of flight progress. The latter becomes
a vital element for airport stakeholders when preparing for ground operations.
There associated processes with airport resource allocation become a critical
task. Timely accomodation of aircraft on stand with appropriate turnaround
service is a pre-requisite for on time performance and elimination of reactionarry
delay on day of operations. However, to allow for a process of efficient resource
allocation, a good visibility on the time as to when to expect acceptance of
aircraft on blocks, is a necessity. Typically, when having nominal operations
without any extraordinary situation, flights operate on time. However, an early
or delayed arrival of an aircraft is a common practice as we operate in high
intensity airport and airspace environments. External factors such as technical
issues, weather elements, industrial actions or other special events, regularry
impact flight operations on ground and en-route. Some of the events mentioned
are hapenning ad-hoc and are difficult to predict and such the affect on flight
and airport operations is immense. A second category of happenings is formed
by events such as weather or operational nuancies such as repeatitve rotational
delay, etc.. In fact, there is a number of datalinked to meteorological, flight, or
airport operations, which may be used to anticipate departure and arrival
delays. On top of that, certain information can be synthetized and used to
generate additional variables supporting predictable capability.

Nevertheless, a vast majority of airports in the European network, perhaps
excluding a small number of major hubs, struggle to build a capacity enabling
anticipation of deviations between scheduled and actual flight performances.
They rely on the information available through local Human machine interface
(HMI), which is based on manual inputs or automated as aircraft or radar
reports kick in. However, the problem is deepened with intercontinental traffic,
where a greater portion of the flight trajectory is executed beyond the ECAC
region. This provides a very limited flight progress monitoring at airports side,
which may result in identification of flight delays at very late stage. This leaves
reduced time window for resource allocation changes.

Therefore, this work aims to build a predictable capability supporting
airport operations in becoming resilient through anticipation of early and late
arrivals. A primary aim is to build a functionality focusing on in-block
deviations. However, the results do not manifest a reliable performance in
relation to prediction accuracy. This happened despite the efforts made in using
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appropriate machine learning technique considering the nature of data. It
transpires that the available input data, its volume and the nature, seem not to
suffice as model struggles to understand interdepandancies having affect on the
target variable δIBT . Although, the main objective to predict the in-block
deviations was accomodated, the quality of presented outputs constrains its
potential use.

When dealing with the hypothesis of this thesis, the statistical significance
of reducing tactical stand allocation changes through a data-driven and
machine-learning playbook could not been confirmed. Similarly, it’s crucial to
acknowledge that the equivalency in the severity of impact on stand availability
for delayed and early arrivals by more than 15 minutes could not be validated
either. Inability to cope with the verification of these 2 hypothesis is due to the
constraints in the model’s performance. The latter appears to be a great
limitation of the presented work as it impacted accomodation of previously
stated goals. Another identified constraint lies in the restricted capacity to
conduct feature importance analysis within the neural network framework.
Unlike regression models, where the importance of parameters is interpreted
through p-value and t-statistics providing the evidence against the null
hypothesis, the neural network does not provide intuitive view on feature
weights. Having no direct evidence of parameter importance does not allow
acceptance or rejection of the last hypothesis, where Airline ID, flight ID, origin
airport ID, time of day, wind speed, wind direction are considered as predictors
with the highest importance when predicting in-block time deviations. However,
the training dataset included wind component information, suggesting that the
assumption in the hypothesis considered the impact of velocity on flight
duration and eventual arrival time. Having said that, it is presumed that the
wind direction and speed may play a role in refining the final prediction.

Ultimately, the limitations of this thesis turned out to be an opportunity to
re-direct towards a secondary deliverable of this thesis and that is predictability
of landing times. The ability to predict those not only overcame an initial
setback linked to poor in-block time predictions but also emerged as a crucial
and successful aspect in the methodology. This success is particularly significant
when considering the prediction of early or late arrivals, even after adapting the
approach to detecting presence of aircraft on runway rather than on stand. The
low erorr in predictability of δLT , reflected in the RMSE of 8.71 minutes,
presents a valuable opportunity for airport stakeholders. This accuracy allows
them to foresee the arrival of flights, regardless of their profile, whether long or
short haul, within the specified on-time performance window of -15 to +15
minutes. Despite the fact, that this deliverable is a clear success, it did not help
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in hypothesis verification process. Either way, the achieved precision enhances
operational planning and responsiveness. As such, this byproduct of the thesis
poses additional questions as to how further extend the research in this region
so that improvements of in-block time predictions are addressed. As Chapter 5
suggests and to enhance predictions for arrival processes, two new models could
be developed: one for taxi-in time and another for parking position availability.
These models could complement existing model capabilities, offering better
anticipation of (δIBT ). At the same time, the assumption is made that the final
model could be applicable to any airport environment, given that input data are
available. Furthemore, having such model at disposal may provide airport
operators with a flexibility in regards with the utter reliance on CPR, APR and
other position related messages fed by ETFMS into airport systems. At the
same time, the model outputs cater for applications of TTAs or similar
pre-emptive measures to protect airport capacity at times of DC imbalances. As
result of it, improved knowledge of arrival time deviations, may improve overall
predictability of departuring traffic trough stable TOBT and TTOT
declarations. Undeniably, the truth is that results of presented work aiming to
optimize operations localy may benefit wider ATM network. This thesis
successfully achieves its primary objective of predicting in-block and ultimately
also landing time deviations. Despite the inability to conclusively verify certain
hypotheses, the demonstrated precision of landing time predictions, provides a
reliable basis for evaluating operational impact in resource allocation, should
additional information become available. The thesis’s outcomes may thus be
considered academically significant and operationally consequential.
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Abstract

The paper deals with the airlines diversion management as this entails a complex decision-making process that 
comes into action during the adverse events, preventing the execution of the regular flight operations. Diverting from 
the intended route can be caused by several reasons both when the safety of the flight or the wellbeing of the 
passengers is concerned. The most frequent reasons to divert a flight are the repugnant weather, medical emergency 
or the technical fault. A flight diversion can severely disrupt the passenger’s comfort, jeopardize the fleet or the crew 
planning and is generally accompanied with the significant expenses. The intention of every airline in a case of a 
diversion is to assure the fastest turnaround time and/or provide the passengers with the highest level of services to 
mitigate the negative effects. 

A wrong selection of an alternate airport, that is not having enough capacity, personnel or material resources to 
handle a flight diversion in a timely manner can negatively influence the airline in several ways. Both strategic and 
tactical diversion management process is a collaborative decision-making procedure, heavily dependent on the base of 
the information available, where the main actors are not only flight crew and the airline OCC but also the ATC, 
airport operators and the local service providers.

Airline strategic diversion planning shall comprehend a well-defined data set and its data quality procedures shall 
ensure the information accuracy in the pre-tactical phase. The consequent real time data processing can enhance the 
decision-making process in a tactical phase of the flight diversion. The data and information required comprise of 
available airport capacities and other relevant ground resources needed to handle a diverted flight. As stated, such 
data and information are mostly tactically critical, therefore continuous monitoring and updating shall be ensured. 
The paper suggests that the overall data management is managed via a local Airport Operations Center (APOC), 
which will assure provision of actual airport diversion capabilities (incl. weather situation) needed for 
accommodation of an affected flight. 

Keywords: Diversion; Airport Operations Centre (APOC); Index system 
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1. Introduction

The problematics of the aircraft diversions is becoming gradually more significant in line with the growing 
volume of the air traffic hitting the limits of the current infrastructure. From the publicly available data (BTS, 2020) a 
portion of the diverted flights in the US is approximately 0.33 %. When this percentage is extrapolated over the 
annual number of worldwide flights, which is app. 40 million yearly (ICAO, https://www.icao.int/annual-report-
2018/Pages/the-world-of-air-transport-in-2018.aspx, 2019), roughly estimated number of 132 000 of flights are 
affected annually (estimation of the paper authors). Every diversion is considered as an adverse event connected with 
the negative impacts mainly on the aircraft operator, secondary on the airport stakeholders and as a knock down effect 
on the other industry members linked with the air traffic. A delay caused by a flight diverting from its intended route 
can be directly expensed and expressed monetarily in the additional costs decreasing the rentability of flight 
operation. These expenses and the following causal consequence of impacts is gradually deepened as the delay is 
prolonged. The events triggering an operative flight diversion (Ryerson et.al., 2015) are caused by force major and 
although significant risk reducing actions can be achieved by careful foreseeing and planning, the main mitigation 
efforts of the industry must be aimed on the most effective operational handling of diverted flights. 

In the airline business, the so called IROPS - Irregular Operations, especially the diversion handling and 
consequent recovery from the point of view of the aircraft operator must be executed tactically based on the current 
condition of the diversion airports. (Myeonghyeon Kim, YuriChoi, Ki HanSong, 2017) The operators are preselecting 
the diversion locations for all phases of flights, after the departure, enroute and as the destination alternates based on 
the information and data available with the aim of the least disruption effect in a diversion occasion. Thus, a so-called 
“diversion risk index” (see paragraph: 4.1.1 Airport diversion risk index) for each location can be extrapolated. 
Currently this index is based only on static data collected in the pre-tactical phase of the flight, often even in strategic 
one. However, it is typical the aircraft will already be airborne when the decision will be taken to divert, therefore it is 
inevitable to aim our focus into the tactical time horizon. Here the data variables, such as actual airport diversion 
capacity, ground handler availability of personnel and equipment, fueler capacities and others are floating in time and 
have a dramatic influence on the factual TARMAC delay, especially in events, when several flights are diverted to 
same location. Therefore, a benefit has been identified in sharing these data variables in a real time.

An important role here lies in the framework of a local coordination arrangement, developed within European 
SESAR program, called APOC (Airport Operations Centre) and its data exchange with the airspace users using direct 
or indirect communication means. Within the APOC given operational stakeholders (actors) collaborate for the 
effective/efficient establishment and execution of an agreed Airport Operations Plan (AOP), in a structured manner 
with agreed processes, either through physical or virtual interaction or their combination. In the European theatre, the 
APOC is the prime interface between the Airport and the Network Manager Operations Center (NMOC) established 
in the States within, and adjacent to the ECAC area.  (EUROCONTROL, 2018) 

It is vital that tactical changes to an actual airport diversion capacity are provided in order to safeguard dynamic 
adjustment of the diversion risk index values. The research paper aims to address a necessity to produce a complex 
system able to gather the airport data through the APOC, and subsequently evaluate them using a standard taxonomy. 
As a result of this, airlines may produce real-time decisions and select the most suitable alternate airport based on its 
calculated diversion risk index value, which is a proposed variable elaborated in following paragraphs. The concept 
then leads to a significant reduction of the flight diversion costs and mitigation of other negative effects of the 
diversion on the network management. 

2. Methodology

To justify a need for change in the selection process of alternate airports a qualitative investigation of current 
techniques is to be performed. The focus will be aimed on the existing means of securing a real-time data exchange. 
The investigation of this area of the analysis shall unveil current limitations hampering effective and efficient 
diversion airport selection methodology.  The limitations shall then be subject to examination to identify both 
immediate and future improvements leading to operationally and financially feasible flight diversion management. 
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3. Current diversion airport selection methodology

There is no given methodology for the diversion airport selection that would be determining and mandating to use 
the alternate airport as per given set of hard rules. Therefore, for every flight a flight planner can select an alternate 
airport as per the current requirements of dedicated flight or preferences of the airline operator. Especially for small 
airlines, only basic characteristics of the airport are examined such as the opening hours, current NOTAMs and 
physical characteristics. As a best practice, various factors playing a role in the diversion location selection are 
evaluated and can be divided into two groups: 

Basic factors (determining if an aircraft can land on an airport):
o Airport operational, physical and technical characteristics to accept the aircraft type at given time (RWY 

length, equipment, PCN, opening hours, curfews, NOTAMs, etc.)
o Weather conditions (Marco-Michael Temme, Charlotte Tienes, 2018)
o Distance from the intended route and destination (fuel planning)
o Other (pilot licenses, etc.)

Commercial factors (influencing the diversion recovery):
o Relative proximity of the diversion location (both along the planned flight route and from ADEP/ADES) 

- as a passenger wellbeing factor (Ryerson, 2018)
o Level of airport infrastructure (airport size)
o Airline own infrastructure (own or contracted airline staff present on the location)
o Existence of agreements with the handlers, fueler and other stakeholders
o Experiences with the given location
o Other commercially important and detailed factors (hotels availability, transportation possibilities, etc.)

Based on the evaluation of the above, the flight planner decides about the alternate locations, files them in the flight 
plan and provides to the crew at the time of the pre-flight briefing. At least two scenarios consequent to the diversion 
landing shall be assessed:

o Technical stop - the aircraft is refueled and dispatched as soon as possible, the passengers are often 
remaining on board 

o Full termination of the flight – when an aircraft is forced to stay on the diversion airport for an 
extended period time

3.1 Diversion event flow of actions 

The most common cause for diversion can be divided into:
o Safety and security reasons:

o Not assessed, as such diversion has an utmost priority and economic factors are negligible
o Flight internal factors: 

o Medical - airports that enable the medical assistance are selected
o Technical - minor technical fault 

o External factors of a flight:
o Capacity constraints (see paragraph 3.1.1 Trigger events) at the destination airport. Under such 

circumstances the air crew will typically get information from the ATC that the approach cannot 
be completed at the destination airport and therefore the arriving aircraft will be directed into a 
holding pattern. However, it is very likely that the air crew will contact their OCC to consult 
options. 

It may happen that holding will take a significant amount of time and that can negatively influence the level of 
remaining fuel on board. Furthermore, late arrival at the destination airport will most likely result in late departure, 
which may potentially fall into the night curfew period, and that can considerably disrupt the flight continuation. 
Having said that, after a thorough situation assessment, the air crew under consent of their OCC1 (if available) may 
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decide to divert to an alternate airport for landing. A diversion destination is then usually one of predefined locations 
that have been filled in the flight plan.

3.1.1 Trigger events

Capacity constraints:
o

1 Operations Control Centre
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o Weather issues 
o Ground handling issues
o Industrial action
o System failure (airport, ANSP)
o Night curfew issues 
o Others

3.2 Data collection

In order to facilitate air crews to take better business decisions in case of diversion circumstances, there is a 
provision in place to inform airlines. 

3.2.1 Pre-flight horizon

In the European network, there is a EUROCONTROL platform called Airport Corner, where airports share 
information typically related to capacity topics. One element of the Airport Corner is dedicated to diversions and 
provides information about handling capabilities for various aircraft types, night curfews, etc. The Airport Corner is 
also made available to the airlines. As an alternate, the private databases of the airline operators with their 
subjectively defined set of basic and commercial factors (see paragraph 3.) are used and flight planners bear the 
decision-making responsibility upon the most suitable diversion location for a dedicated flight.

3.2.2 Real-time horizon

Currently in the European framework, there is a trial running, when NMOC contacts airports in the network with 
the request to update their diversion-related information provided in the Airport Corner. This occurs, when it is 
anticipated that multiple diversion can take place. Although the trials are successful, airports are often found unable to 
share their available diversion capabilities needed to ensure commercial handling of the affected traffic with a 
minimum TARMAC time. In general, there is no consolidated approach in place for collection of real-time data 
reflecting the airport’s capability to handle any diverted flight, and so the airlines are typically left to make their final 
judgement about an alternate airport based on the data available prior to the flight plan activation.

There are publicly available airport delay indexes of the flight trackers such as the one of FlighRadar24 platform 
(FlightRadar24, 2020) whereas the index is extrapolated from the difference of the scheduled and actual times of the 
operations based on the data gathered by this platform. Similarly, the EUROCONTROL NMOC is providing the real 
time information of the airports generating the highest delays.

3.3 Problem definition

The boundaries of the current diversion airport selection methodology lay in the fact that operational situation at 
the alternate airport and its vicinity may change during the flight and these real-time updates will not be instantly 
reflected in the list of predefined alternate airports contained in the flight plan. Instances may vary; however, one 
common is when multiple diversions are directed to the same alternate airport of which the ground capacity is quickly 
consumed. This transpires that TARMAC delays will be excessively prolonged as ground resources are not available 
to be allocated for the affected flight. To enable reaction to these dynamic changes and select the most suitable 
alternate airport, more real-time diversion-related data must be gathered and distributed to the airspace users at any 
moment of the flight, if required so.

4. Proposed diversion airport selection methodology

The biggest challenge remains in having the real-time airport diversion capacity data available. To achieve that, it 
is proposed that the data collection is performed through a local APOC establishment, where centralization of airport 
services takes place and where operational data and information is concentrated. (1) As a second step to overall 
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success, it is necessary to provide this diversion-related data to the airspace users who may then effectively and real-
time select a diversion airport in case such a need occurs. The data distribution and its overall flow may be done 
either directly to a given airspace user or indirectly via the NMOC. 

4.1 Flow of actions

To achieve information sharing related to airport diversion capabilities, air to ground communication channels 
must be used. The process starts at the airport, where appropriate data is collected and airport diversion risk index 
(see below) is generated. Subsequently, the latter is distributed either directly or indirectly to a given air crew. The 
means through which this is done, very much depends on the communication infrastructure available. This paper tries 
to look at both currently available and foreseen information management. Either way, there is no difference 
anticipated in the nature of data needed to be collected to serve in determination of the airport diversion risk index, 
now and in the future. 

APOC as a platform uniting all the airport’s key players involved in managing passenger, aircraft and baggage 
processes, will remain the very foundation of clear and uniform view on all ground processes and available capacities. 
(International Airport Review, 2018) Future diversion airport selection process is to be based on real-time airport’s 
diversion risk index management and updates provision. All alternate airports included in the flight plan will be 
selected based on the preflight airport diversion risk index as a product of the APOC arrangement, and on the 
aforementioned basis and commercial factors that airlines consider too. However, a decisive element here remains the 
value of the airport diversion risk index, and should the latter be changed after the aircraft is reported airborne, 
updates must be provided, so that a right decision when choosing an alternate airport can be made. Furthermore, for 
the purpose of this paper, no changes to future diversion trigger events are anticipated. 

4.1.1 Airport diversion risk index 

As stated above, the airport diversion risk index generated by APOC, is a new proposed variable that shall be 
shared to the actors based on the real time or frequently updated data. There are many scenarios that determine how 
long an airplane will be delayed in an event of a diversion and many elements that do play a role in the delay 
estimation. The most important key triggers factors contributing to the delays that need to be looked at, are mostly 
associated with ground resources availability. 

As their evaluation per-partes in a diversion event might be complicated, it is beneficial to assign every data item 
with a specific severity index based on the possible impact it might have on a delay and multiply them with the 
current availability index.  The sum of all diversion risk elements shall be resulting in the airport diversion risk index.

Airport diversion risk index calculation formula:

Item 1 (severity index) x Item 1 (Current availability index) +
Item 2 (severity index) x Item 2 (Current availability index) +

= Airport diversion risk index
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Proposal of minimum list of ground resources required for a diversion risk index calculation:

Table 1: Diversion risk elements

Diversion risk elements Details

Delay 
Impact 
Severity 

Index

Availability 
index

Item 1 ATC Capacity RWY capacity, adjacent airspace capacity X Y

Item 2 Available pier / remote 
stands

To be assessed per the aircraft dimensions and in 
regard to the air bridges availability X Y

Item 3 Terminal capacity Shall be discussed if the deplaning of passengers 
is likely X Y

Item 4 Ground handler GSE and 
personnel availability

Complex variable that shall be discussed in detail 
per partial services X Y

Item 5 Fueling service and 
equipment availability

Availability of tankers and/or hydro trucks and 
staff that can be allocated in a given timeframe X Y

Item 6 Deicing availability Can be considered based on the deicing waiting 
times X Y

Item 7 Other factors Caterer, Customs and Immigration, Airport 
ambulance, etc. X Y

Proposal of current availability index (incl. TARMAC delay code) and delay impact severity index:

Table 2: Current Availability Index and associated delay risk

Current Availability Index TARMAC delay

Available 1 None

Limited 2 Moderate

Unavailable 3 Long

Table 3: Delay impact and Severity index

 Delay Impact Severity Index

Severe impact 3

Intermediate 2

Small influence 1
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Use case (example):
Table 4: Airport Diversion Risk Index

Diversion Risk 
Element

Delay Impact 
Severity Index

Current Availability Index per airport

London Heathrow (LHR) London Gatwick
(LGW)

London Luton (LTN)

Item 1 2 1 1 1

Item 2 3 2 3 3

Item 3 3 1 3 2

Item 4 1 2 3 2

Item 5 3 3 2 1

Item 6 3 1 1 2

Item 7 1 2 3 1

Item 8 1 1 1 2

Airport Diversion Risk Index 28 36 31

A resulting number shall be called the airport diversion risk index and scaled based on the overall result of all the 
airports in the network or based on the predefined measure scale. The airport with the lowest diversion index has a 
potential to recover the diverted aircraft with the shortest delay (LHR), whilst the locations where the risk is high are 
to be considered as those with the highest potential to generate the delay (LGW).

4.2. Data collection

As seen above, to support and to enhance the diversion airport selection process using the airport’s diversion risk 
index, the attention must be placed on the airport’s ability to collect right data in an effective manner. The data 
elements (Table XY) to be collected which ultimately determine the diversion risk index are continuously recorded 
and updated, if any changes occur. Looking at the nature of these elements, it is obvious that collaboration in the data 
collection entails inputs from a broad variety of airport stakeholders. 

Table 5:  Data providers list

Airport stakeholder Items from the Diversion risk index assessment

ANSP Item 1

Airport Operator Item 2 – 4

Ground Handler Item 5

Fueler Item 6

De-icing Company Item 7

Other actors Item 8

4.2.1. Real-time horizon
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Despite the EUROCONTROL efforts to enhance the scope of the Airport Corner in relation to data collection 
associated with airports’ diversion capabilities, there is a rising need to assure more flexible approach catering for 
reflection of dynamic changes linked to the airport diversion capabilities. These capabilities have to be determined, 
monitored and managed through the APOC arrangements. (EUROCONTROL, 2018)

The airport diversion capabilities shall ideally be determined a day before the day of operations and form part of 
the Airport Operations Plan (AOP). As the operational hours draw closer and flight plans are getting activated, it is 
then a role of the APOC team to provide updates to previously determined airport diversion risk indexes, if required 
so. The airport diversion capabilities always have to be as accurate as feasibly possible for the benefit of the entire 
network. The APOC HMI (Human-Machine interface) shall enable the airport stakeholders to provide real-time 
information inputs on the resources available known as the diversion risk elements (Table 4).  

4.2.2. Service Level Agreement (SLA)

Levels of service shall be jointly agreed between all airports’ stakeholders. It is expected that the SLA shall be 
established to ensure an approach of openness, transparency and collaboration. (IATA, 2019) The stakeholders shall 
in the first instance jointly agree to the framework of the diversion risk index assessment elements which are to be 
measured, provided, monitored and managed through the collaborative approach within the APOC. Secondly, this 
document shall provide policy guidance on how these elements representing a broad variety of airport ground 
resources, are to be made available in case a diversion takes place. 

The agreement shall always grant transparent provision of resource availability without discrimination. Meaning, 
there shall not be a space for prejudice in business and all unutilized resources indicated in the Table 4 shall be made 
available to handle a flight of any airline without other business bonds considerations.

4.3. Data distribution

Once the data has been collected and the airport diversion risk index generated, it is necessary to publish it and 
make available for further use. This is the moment when ground-ground and air-ground communication channels 
shall be used to complete the flow of actions. As stated previously, the paper depicts both immediate and future 
prospective applications for the information exchange. For both instances, now and then, it is the System Wide 
Information Management (SWIM) (ICAO, ICAO-SWIM, 2020) that will play a major role. 

4.3.1. Immediate application in EU network - APOC to Network Manager (NM)

As SWIM enables seamless information access and interchange between all providers and users of ATM 
information and services, it is the right candidate to cater for real-time airport diversion risk index dissemination. 
Currently, it is only the yellow and blue concept infrastructure profiles (SESAR, SESAR Joint Undertaking, 2020), 
which may be of use for real-time information exchange in the context of dynamic evolution of the airport diversion 
capabilities. 

In principle, the SWIM yellow and blue profiles are limited to ground-ground communication and therefore a 
direct link between the ground and the air crew would not be possible using the latter. Immediate distribution of the 
airport diversion risk index would today only be feasible using Very High Frequency (VHF), or alternatively a two-
way data link system called Controller Pilot Data Link Communications (CPDLC) by which controllers can transmit 
non urgent strategic messages to an aircraft. However, there is a full range of downsides for using VHF or CPDLC to 
communicate vital and real-time operational messages linked with the airport diversion capabilities. 

Therefore, it is proposed that the operational information containing the airport diversion risk index value is sent 
out by the APOC team using EUROCONTROL Network Manager Business t0o Business (B2B) Services that are 
here and available to provide real-time situational awareness and to support Collaborative Decision Making (CDM) 
processes. NM B2B Services form part of the SWIM concept and their main advantage lies in ability to provide 
conditioned subscription to a topic or selected data related to flight, airspace or flow services. (EUROCONTROL, 
Network Manager B2B, 2020)

It is therefore proposed that the airport diversion risk index becomes an ATM information element belonging to a 
group of flight related services, and is then made available to subscribed airlines’ Operations Control Centre (OCC), 
or to anyone else who may consider this information element vital for the operations. OCC retrieves the pertinent 
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ATM information element and communicates the latter to the respective air crew. 
The idea of providing real-time changes to data contained in the flight plan further also supports the concept of 

Trajectory Based Operations (TBO), (Air Traffic Management, 2020) which aims to enable the Air Traffic 
Management (ATM) systems to know and, where appropriate, modify the flight’s planned and actual trajectory, 
before or during flight, based on accurate information that has been shared by all stakeholders. In this context, last 
minute changes to the selection process of an appropriate alternate airport as per the actual airport diversion risk index 
may be instantly reflected in projection of a new flight trajectory, thus improving the overall ATM. 
https://www.sesarju.eu/sesar-solutions/trajectory-based-operations

4.3.2. Future application on global level - ATC to Cockpit

In context with SWIM and its use for direct air-ground communication exchange, the purple infrastructure profile 
constitutes a right candidate for application. As stated, SWIM allows the distribution of information through the 
aeronautical telecommunications network/Internet protocol suite (ATN/IPS) in place of legacy point-to-point 
contracted services.

And here comes the SWIM purple profile, which aims to replace legacy services – such as those in place to 
support CPDLC or Automatic Dependent Surveillance - Contract (ADS-C). (SESAR, SWIM PURPLE PROFILE, 
2020)

Research and specification documents are being currently drafted under the European SESAR research program 
aiming to define the functional and non-functional requirements of the air-ground service infrastructure. Having said 
that, once this work has been concluded, it is proposed that the airport diversion risk index is communicated directly 
between the Air Traffic Controller (ATC) and the air crew through the datalink based on the SWIM purple profile 
functional requirements. The ATC is expected to retrieve the airport diversion risk index value through the APOC 
interface and communicate it to the air crew, if required so. 

An alternate solution to ensure that the airport diversion risk index is directly communicated to the air crew 
consists in deployment of the concept called Data link - Operational Terminal Information Service (D-OTIS). The D-
OTIS service is to provide automated assistance in requesting and delivering compiled meteorological and operational 
flight information derived from ATIS2, METAR3 and NOTAMs / SNOWTAMs4, specifically relevant to the 
departure, approach and landing flight phases. (WG-78, RTCA SC-214 / EUROCAE, 2013) In principle, the D-OTIS 
service encompasses three different sub-services, namely ATIS, METAR and OFIS5. ATIS and METAR contain 
standardized meteorological information and data which are made available to all Air Traffic Services Units (ATSU) 
and further to air crews by requesting and receiving voice transmissions from ATC. Some airline operators might also 
provide access to METAR reports through data link service.

Either way, the paper investigates possibilities of transmitting real-time operational information to aircrews on 
request. For this purpose, the OFIS element of D-OTIS is being developed and is intended to issue information 
promptly whenever direct operational significance to the approach and landing phases has been detected. 

To fulfill the objective of the submitted paper, the OFIS shall not be only limited to data such as approach 
minima, reduced runway length, runway contamination, or NAVAIDs operating status (information derived from 
NOTAM/SNOWTAM). The extended scope of OFIS shall also contain information on the airport diversion 
capabilities. The former shall be broadcasted to air crews through the ATC using a data link. 

In case of data link failure, the ATM information linked to the airport diversion capabilities shall be an element of 
conventional ATIS and provided to aircrews through ATC using customary VHF broadcasting method - voice 
transmission. ATC is to feed D-OTIS, alternatively conventional ATIS with the information on the airport diversion 
capabilities retrieved from the APOC platform. (EUROCONTROL, 2018)

5. Results and discussion

2 Automatic Terminal Information Service (ATIS)
3 Meteorological Terminal Air Report (METAR)
4 Notice to Airmen (NOTAM)
5 Operational Flight Information Service (OFIS)
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The proposal to collect, process and share airport data relevant to the diversion has direct and immediate benefit to 
the air traffic stakeholders even when shared in the currently available environment. The willingness to enforce the 
real time diversion capability sharing has been already recognized in the European ATM network, however a clear 
framework has not yet been proposed. This article sets a proposal of the basic airport data elements to be monitored, 
collected and distributed throughout the network and suggests the assessment methodology algorithm resulting in the 
airport diversion risk index. 

6. Conclusion

Currently there is no real time data available, that would indicate to the aircraft operators if a dedicated airport - 
selected as the one to be diverted to, will be able to comfortably handle the diverted flight without severe delays 
caused by the airport capacity or airport services unavailability. There is also no, either nationally, regionally or 
globally driven methodology relying on real time data used to determine diversion strategies for the airlines. The 
diversion destination selection is relatively flexible based on the operator needs, provided the ATC capacity and 
safety margins are met.

To estimate the number of impacted flights that could potentially benefit the enhanced diversion handling the 
publicly available FAA (BTS, 2020) and sourced EUROCONTROL data have been used. As an example, in July 
2019 (selected as a statistically busiest month), the number of flights routed through the European network was 1 093 
734. Out of this 0.507 %, have been diverted from their intended route, which is 5548 flights in total. Looking 
overseas, in the same month in the US, 2517 flights have been diverted out of 717 684, representing 0,3 % of flights. 
The analysis of the single airline operator (Delta Air Lines) revealed the 2119 diverted flights in 2019 to or from the 
US airport which is 177 diverts per month in average. Most diversion in July (358) and June (338) and least in 
November (69) and March (77). Daily average number of the diverts is- 6 (6,42), ranging from 0 diverts a day to 
maximum 58, concerning only a single aircraft operator. An estimated cost of a diversion in 2014 was ranging from 5 
000 USD to 100 000 USD (Johnson, 2014). When multiplied over the global number of diverted flights, even a small 
contribution to the reduction of aircraft delays can represent significant cost reductions.

Shall the direct delay impact of a diversion be assessed; the airline operator could benefit from smaller delay 
times on ground and their direct and mainly indirect diversion cost could be significantly reduced. As the diversion 
events and their effect have the domino effect, the list of direct benefiters from the operatively driven airport 
diversion selection can be widely enlarged. The clients of the aircraft operators can experience less disturbance shall 
their diverted flight be dispatched or handled expeditiously. The distribution of movements throughout the ATC 
network could be used more evenly and even the more distant airports that are not frequently diverted to but could 
potentially offer a quick turnaround due to a lower diversion risk index could increase their annual income.
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Abstract—This paper describes the elaboration of Enhanced
diversion airport selection methodology, which can be used for
the optimization of flight planning by airline operators and the
better diversion decisions in the real time operations. The paper is
based on the analysis of the problematics of flight diversion from
different perspectives and determining the factors influencing
the diversion recovery. Based on these factors an methodology
is proposed for decision making in the process of alternate
airports selection during the planning process and real time
operations. The selection methodology incorporates operational
and commercial factors determining the suitability of an airport
as an alternate destination. Emphasis is put on the economic
suitability of the airport in terms of minimizing costs in case
of flight diversion. In the validation process the methodology
was applied on selected airports using real data and compared
with actual operations, and as such presented to the experts.
The result of the work is an optimized system for selecting an
alternate airport in case of diversion from the destination, with
the possibility of wider application and further elaboration when
using the real-time shared data.

Index Terms—airport data, diversion risk index, diversion risk
factor, flight diversion

I. INTRODUCTION

Aircraft diverts and the management of diverted flights
remains an underestimated problem mainly due to the lower
frequency of such occurrences in comparison to the total
number of all flights. In accordance with the US Bureau of
Transportation Statics, Diversions of US air carriers 1990-2017
averages on 0.0022 % of flights (out of over 5.67 million
operations, 12 530 of such flights were diverted.) [1]. The asso-
ciated costs are however significant and seeking the means of
minimizing the adverse effect offers room for improvement in
the efficiency of commercial aircraft operations. In the cases,
when an aircraft is forced to divert from its intended route
and the flight destination cannot be reached in accordance
with the planned schedule, the adverse effects are not only
disrupting the airline itself but also aircraft traffic and the
associated services at the alternate airport [2]. The selection

of an appropriate airport to divert to, plays a crucial role in
the process of diversion recovery and the adverse effect might
be significantly reduced. There is a proposal of the Enhanced
diversion airport selection methodology based on indexing
the alternate airports in accordance to their Diversion Risk
Factor, driven by airports scoring based on the actual real-time
availability of the given factors (Ground service equipment
availability, Fueler availability, Apron Stands availability, etc.)
and their relevance to the aircraft operator [2]. As this airport
selection methodology proposal is expecting the usage of the
real time data, its validation is limited due to the current non-
existence of the network and the data flow that would enable
its validation.

It is important to differentiate emergency landing from
flight diversion. While the classification of every specific
diversion occasion is up to the operating airline, some general
characteristics of each event can be determined. Emergency
landing is considered to be a manoeuvre following a severe
safety-threatening event preventing the flight from continuing
(i.e. double engine failure, structural damage to the aircraft,
pilot incapacitation etc.) [3]. From the Air Traffic Control
(ATC) point of view, an emergency landing is when the flight
crew declare a state of emergency (either via voice “Mayday”
call, Secondary Surveillance Radar (SSR) transponder code
7700 or Controller-Pilot Data Link Communications (CPDLC)
message DM 56) and this is not cancelled by the time the
aircraft touches down. A flight diversion, on the other hand, is
performed as a precaution of possible further threats but with
no presence of a direct danger. such case, most likely to be
misinterpreted as an emergency landing, should be a single
engine failure, one system failure or similar abnormality. A
flight diversion also ends on an airfield while an emergency
landing might be terminated by a forced landing in the terrain
or on water, respectively [3].

Generally, there are two main reasons leading the crew
decision to alter from their intended flight destination. The first
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of them occurs when there are factors degrading the airports
characteristics, making the flight destination unsuitable for
landing. This can be caused either by the airport closure,
runway contamination, weather conditions or due to the de-
cision made by the operating company/state of registration of
the operator. All these reasons can be named ground located
causes. In the second case, the aeroplane becomes unable to
reach its destination due to in-flight cause (e.g., change of
aircraft technical state) [4], [5].

Alternate airports are always planned for every flight so that
pilots know where they can divert to in every stage of flight
even before getting on board. In airlines and major aircraft
operator companies flight plans are created by Dispatch depart-
ments or Operations Control Centres (OCC). Weather situation
and Notices to Airmen (NOTAMs) at destination and at the
alternate airports as well as significant weather en-route are
considered. In either case, when there is a need to divert, there
is always a suitable airport included in the flight plan providing
all the required properties guaranteeing safe diversion despite
the reason of diverting. Even though adhering to the diversion
plan is not obligatory and flight crew have the right to divert to
an airport they consider most suitable, choosing a non-planned
alternate is very unusual.

This paper is summarizing the results of further elaboration
of the Enhanced diversion airport selection methodology, as
part of early research done on this subject by Olexa and
Spak [6]. Pre-validation was based on the static data usage
and detailed and focused research performed in the aircraft
operators and airlines environment.

II. METHODS

A. Expert Assessment

The Enhanced Diversion Airport Selection Methodology
has been assessed with the expert’s evaluation. The authors
of the paper have presented the methodology and problem
statement to major airlines (Delta Air Lines, United Airlines,
Smartwings, Vueling) – their operational and dispatch experts
and pilots, airport authorities and the ATC representatives –
all former or active air traffic controllers (on the platform
of EUROCONTROL focus group meeting) to determine the
common diversion problematics denominators.

• The methodology itself has been presented, discussed,
and evaluated.

• The diversion factors have been presented, discussed, and
evaluated.

• The limitations of the methodology have been discussed.
The full methodology assessment and testing in a real time

is momentarily limited by the nonexistence of the data sources
that would be usable for the direct computation of the risk
indexed and associated measurements of the delays. Therefore,
the methodology was first evaluated by the experts and the
testing platform is proposed in the following chapters of this
article.

Similarly for demonstration purposes, the methodology has
been applied with the usage of the static data on the series

of airport both for the en-route diversion scenario (occurrence
of the flight diversion in the en-route phase) and the scenario,
when the aircraft is forced to divert when close to its original
destination. State of Florida (USA) was chosen for this purpose
as a polycentric region with several international airports
located relatively close to each other. Unlike in other regions
with fewer airports suitable for diversions, the density of
possible alternate airports in this state reduces the advantage
of proximity to the destination, which is usually one of the
most considered variables. Therefore, other criteria must be
considered to select the most suitable alternate airport. Several
diverting flights of Delta Air Lines were chosen and analyzed
using the suggested method and then compared to the actual
course of the diversion. Delta was chosen because it is one
of the biggest operators in the North American region with
statistically relatively high chance of flight diversion. It also
operates several flights to various airports in Florida and there
is an active relation between the airline and the US Bureau of
Transportation Statistics providing access traffic information.

B. Problem Scope Definition

The main problem of selecting the alternate airport lies in:

• Considering the most suitable location for the flight to
divert to.

• Monitoring the dynamic changes of the airport conditions
and the fluctuation of the availability of the airport
resources [6].

In the model situation, we will be referring to within the
scope of this article, there is an external cause of diversion,
adverse weather situation on the destination airport, posing a
hazard for the incoming air traffic and forcing the aircraft to
divert for a finite time.

On the Fig 1, A model situation is depicted, with the in-
bound traffic for the original destination airport (Dap). Where
there are the adverse weather present. The patter of incoming
traffic is dispersed in the diversion locations – alternates (A1,
A2 and A3). Such situation can be named as a massive
diversion and depicts one of the most complex air traffic
situations.

Fig. 1. Destination airport (Dap) is not available due to adverse weather
conditions, with traffic being diverted to alternates A1, A2 and A3.
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C. Problem Definition

Problem can be better defined as shown as described in the
model situation (see Fig. 1). The external diversion factors
such as adverse weather conditions are influencing an airport
with the high volume of the inbound traffic are creating
situations, where a higher demand is put on the nearly located
airport that are often filed as the alternate airports. in the
strive for the resource’s optimisation, the airports are not
keeping sufficient buffer of the resources (manpower, stand
and equipment capacity) to accommodate higher volumes of
the non-plannable traffic (diverted flights) and hence the free
capacity can be quickly occupied. Any incoming flight above
the available airport capacity (requiring the resources that
are occupied at the moment) will suffer from the delay with
obtaining the airports services (parking spot, ground handling,
fuel tanking and eventually also the passenger related ser-
vices) [5]. An optimisation can be sought of diverting the
aircraft in-flight in a need to divert to a location, that is
having an available capacity to accommodate them. The study
is focusing on commercial passenger air traffic, as it holds the
biggest share in the total number of flights [7].

D. Listing the Diversion Factors and Assesment Methodology

The paper authors have cross examined the factors influ-
encing a so called “diverted flight resolution”. In a diversion
situation, there are generally two main scenarios to be assessed
– a “fuel and go” when an aircraft can proceed either further
to the destination airport (providing the reason for the flight
continuation has been resolved) or elsewhere (based on the
requirements of the aircraft operator) or the “full termination
of the flight” – which is requiring the passengers to be
disembarked and the aircraft needing a prolonged period of
parking on ground. In the defined problem scope, the most
frequent resolution scenario would be the “fuel and go” [8]–
[10].

There were however common factors nominated for both
scenarios as an inbound aircraft is utilizing the same airport
resources. Out of which the initial set of the static data used
for the methodology assessment has been pre-selected and
evaluated as shown on the Table I.

The Diversion Risk Formula (1) consists of two elements.
The first one is Severity s and that evaluates how important of
chosen factor (or vendor such as ground handling, fueller etc.)
is important for the operator. The second element is Availabil-
ity a of chosen factor or vendor. The basic distinctiveness are
three levels of state for each element. For Severity the states
of importance are low, medium and high. For Availability the
states are available, limited and unavailable. The factors are
determined by experts and those select the level of Severity.
This formula allows to anyone to utilize each element of
severity to match any company priorities [6].

DiversionRisk Index =

e∑

i=1

si · ai (1)

TABLE I
EXAMPLE OF THE INITIAL SET OF THE STATIC DATA USED FOR THE

METHODOLOGY ASSESSMENT.

Order Name Severity
Index

Current
Availability

Index
1 Airport characteristics 3 1
2 Weather 3 2
3 Fuel on board, ETOPS 3 1
4 Training, licences and other 2 1
5 Company polices 1 1
6 Transport to the destination 1 1
7 Airport infrastructure 2 1
8 Flight operator’s infrastructure 1 1
9 Services agreements 1 1
10 Local familiarity and difficulty 1 2
11 Services for passengers 2 1

III. RESULTS

The main result of the consequent research of the Enhanced
Diversion Airport Selection Methodology [6] and the aircraft
diversion problematics stem in comperhensive understanding
of the operational and commercial requirements and limita-
tions. As such and following the expert assessment, it has been
confirmed, that more significant benefits can be obtained, when
applying this methodology during the final phase of flight.
The main reason is that that en-route types of diversion, and
diversions shortly after the departure are more often caused by
the “internal factors” (technical malfunction, medical problem,
etc.).

The diversions factors have been divided Into the 3 cate-
gories, the primary – determining if the flight can land on the
airport, secondary – commercially significant – determining,
if whether there is a risk of delaying the aircraft due to
the non-availability of the airport resources and tertiary –
not having a significant influence on the aircraft landing and
timely turnaround of the flight but rather respecting the airline
contractual relations with the airport or handling companies
and other general circumstances.

A. Go & No-Go Factors

The primary factors can be named in a simplified language
as “Go & No-Go factors. There are static information and
airport characteristics that are determining if the aircraft can
land on the airport, comprising the runway and taxiway charac-
teristics to withhold the aircraft and its weight, the sufficient
navigational equipment. These are to be assessed prior and
maintained in a static database, however in the operational
environment it is important to examine the dynamic infor-
mation (NOTAMs) to confirm that the airport characteristics
have not been compromised. An important part is also the
so-called minimum ground service equipment (GSE), that is
relative to the aircraft type. The primary dynamic factors have
been limited to:

• Airport technical characteristics – information obtained
from the NOTAM. Determining any downgrade to the
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state of the runway, available taxiways, and navigational
equipment.

• Current weather at the airport.
• Proximity of the airports (depending on the current live

position of the aircraft).
• Aircraft stand (there must be an available place to park

the aircraft at the airport).
• Minimum GSE – the minimum ground service equipment

list has been determined as follows:
– First it is assessed if a self-manoeuvring aircraft

stand can be allocated. If not there has to be either
a tractor and a towbar or a towbar-less tug able to
operate a given aircraft type.

– At least one stair suitable for the aircraft type (or a
jetway as an alternative).

The minimum GSE list can be altered in case there are
additional downgrades to the aircraft system. An inoperative
APU can result in the necessity of having a suitable GPU
and the air-starter, etc. A non-availability of any of the above-
mentioned factor results is the un-usability of the airport and
the airport is to be considered only in a case of emergency as
the likelihood of the recovery of an aircraft from the airport
(continuation of the flight) is unguaranteeable [11].

B. Operationanly Significant Factors

Based on the current availability of the variables as defined
in the set of operationally significant factors is to determine
a possible risk of additional delay in the provision of the
basic handling and fuelling services and furthermore the
passenger services. Following the expert assessment, it has
been confirmed, that the operationally significant factors are:

• ATC capacity – this determines if the runway through
put is allowing a direct landing of the aircraft without the
expectation of prolonged holding to get into the landing
sequence.

• Fuel availability – determined as the sufficient capacity of
the fuel stock at the airport and the ability of a fuel truck
or the hydro trucks to refuel the aircraft. It is described by
the number of the currently available refueling machinery.

• Advanced GSE availability – the list of ground service
equipment suitable for the aircraft type available at the
airport and its count. (greater number of available GSE
can be directly linked with their allocation to the diverted
aircraft).

• De-icing capability and availability.

C. Other Factors

After evaluating the primary factors, the Go, No-Go and
secondary factors there are tertiary factors or other factors.
Based on their nature it is also possible to determine the
suitability of the airport for landing, however, are of a lesser
significance than the aforementioned factors. Tertiary factors
mostly come from business side of aircraft operator. One of
them is flight operator’s infrastructure. If an airline is operating
other flight to this location, selected as the alternate, it can be
considered as a more suitable due to higher level of familiarity

Fig. 2. Decision making algorithm for a selection of the most appropriate
alternate location following the adverse event that triggered the need to reroute
an aircraft.

and possible presence of the contractual links with the service
provider. It can be named Location familiarity. Different to
company’s business factors are passengers’ requirements. This
creates a demand on carrier to maintain the level of service
even if there is a disruption of flight – level of airport
infrastructure – hence the greater ability for the provision of
the passenger supplies in case there will be prolonged waiting
times, the general traffic situation and ability of the alternative
means of transport, the hotels availability in the nearest area.
The significancy of these vary with the nature of the diversion,
however for the use case as described in the model situation,
when for most of the flights a “Fuel and Go” diversion scenario
is desired.

The detailed information, once collected and provided to
the decision operational authority of the aircraft (crew or
the OCC) resulting decision-making algorithm is represented
on the Fig. 2, where the flow of actions shall assure the
selection of the most appropriate diversion location in the
given situation.

D. Database Prototype

Based on the aforementioned factors and needs, a database
prototype is being developed, which will be used for the
collection of airport data. This is in the sense of gaining
awareness of the current occupancy of all necessary entities
of the airport. The data model therefore includes data item
for evaluating the occupancy of the airport area in terms of
stand occupancy. Furthermore, data item for determining the
workload of ground handling staff and, independently, the
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availability of ground equipment (GSE). A low occupancy
mark does not necessarily indicate the availability of the
necessary GSE for a specific aircraft type. Another item in
the data model is Fueler. In most cases, Fueler and Handling
are two different companies, so it is necessary to know this
entity as well.

After uploading the data to the data model, the Diversion
Risk Index is calculated for each monitored airport. Those DRI
are then represented on the User Dashboard.

E. Data Model

A specific data model has been developed for the purposes
of the database prototype. The data model has been developed
in the software PhpMyAdmin and it’s based as a relational
SQL database, bearing the factors as listed in the previous
sections. The data model enables a dynamic update of the
information with the inheritance logic, interlinking the values
with the e.g. contact details of the handler, these could become
useful for possible verification of the situation and information
and quality check.

IV. DISCUSSION

Usage of the static data and expert assessment methodology
is limited due to several constraints [12]. The scope of experts
could have been broader and covering more aircraft operators,
which would possibly result in further refinements of the
discussed data items. Similarly, due to the non-existing data
platform momentarily allowing the additional determination of
benefits or limitations the expert assessment was conducted in
non-operational or simulated environment, rather than via the
static presentations. A further development of the Enhanced
Diversion Airport Selection Methodology requires the testing
of the data collection feasibility to fulfil our factors as the
data items. Another testing requirement is a computational
simulation testbed, enabling the dynamic testing of the aircraft
distribution in a diversion scenario, based on the dynamic
availability and diversion suitability of the alternate locations.

The authors of the thesis have decided to prepare a simula-
tion platform in the AnyLogic simulation software, enabling
the dynamic simulation of the air traffic distribution of the
massive diversion scenario (see Fig. 1) with the possibility
of automated alternate airport selection of the aircraft into
the diversion location as per following logic: The aircraft
will be choosing the diversion locations based on the most
optimal Diversion Risk Index that will include the availability
of the factors coming into the Diversion Risk equation (see
Fig. 2). With more incoming aircraft the available resources
will be spent, and the airports indexes are about to change
accordingly, steering the traffic into more suitable location.
The data sources for the simulation testbed are planned to
be simplified. Aircraft data model shall be bearing the ICAO
aircraft type and dimensions (as the width of the aircraft can
differ in case the winglets are installed), the aircraft code (with
the reference to the ICAO Aerodrome Reference Code); it’s
position (from where the time to alternate destination shall be
computed) and the aircraft pre-set preference for the diversion

location, for further testing scenarios. The airport data model
shall bear the data items as defined by the methodology as
described in this paper, in a simplified manner. The default
values of the airport factors will be pre-set with the potential of
their dynamic changes within the course of the simulation. The
simulation software shall enable the input and modification
of the basic scenarios, the air traffic and the airport situation
in order to compare them with the real traffic data and a
consequent comparison of the simulated behaviour using the
Enhanced Diversion Airport Methodology with the real-life
situations.

V. CONCLUSION

It can be concluded, that following the expert’s assessment
of The Enhanced Diversion Airport Selection Methodology,
its comparison with the other research in the area of the
aircraft diversions and the diversion impacts assessment, there
is a potential of the methodology to dampen the negative
impact of the flight irregularities on the aircraft operators,
passengers and other concerned entities. A further testing of
usage of the database prototype shall confirm the ability of
the data collection in the airport operational environment.
The simulation testbed shall show the benefits and further
limitations of the proposed methodology. The simulation and
comparison with the real-life diversion occurrences shall also
estimate the dependency of the Diversion Risk Index (DRI)
on the time delay and further evaluate the hypotheses about
the influence of the DRI on the flight operations economics.
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Abstract—Airports plan their resources well in advance based
on anticipated traffic. Currently, the only traffic information
accessible in the pre-tactical phase are the flight schedules and
historical data. In practice, however, flights do not always depart
or arrive on time for a variety of reasons, such as air traffic flow
management or reactionary delay. Because neither air traffic
flow management regulations nor aircraft rotations are known
during the pre-tactical phase, predicting the precise arrival and
departure delay of individual flights is challenging given current
technologies. As a result, probabilistic flight delay predictions are
more plausible. This paper presents a machine learning model
trained on historical data that learned the various quantiles
of the departure and arrival delay distributions of individual
flights. The model makes use of input features available during
the pre-tactical phase, such as the airline, aircraft type, or
expected number of passengers, to provide predictions of the
delay distribution several days before operations. The perfor-
mance of the model trained on operational data from Geneva
airport is compared to a statistical baseline, providing evidence
that machine learning is superior. Furthermore, the contribution
of the various input features is quantified using the Shapely
method, stressing the importance of the expected number of
passengers. Finally, some examples are presented to illustrate
how such a model could be applied in the pre-tactical phase.

Keywords—Flight delay; machine learning; quantile regres-
sion

I. INTRODUCTION

Flight delay is commonly defined as the difference between
actual and scheduled times of departure or arrival of a flight
from or to an airport, respectively1. As a result of the crisis
related to the COVID-19 pandemic, aviation activities drasti-
cally dropped in 2020 [1]. However, the last few months have
recorded a recovery of air traffic, characterised by increasing
flight delays. During the 3rd quarter of 2022, the average delay
per flight in the European Civil Aviation Conference (ECAC)
area was 23 min, the highest value recorded in the last 5
years [2]. Flight delay is one of the key performance indicator
of air transportation since it can impact negatively the airline
and airport management as well as the level of passengers’

1Throughout this paper, departure time refers to off-block time, whereas
arrival time refers to in-block time.

satisfaction [3]. Better prediction of flight delays could aid in
the implementation of mitigation measures before they occur.

Machine learning algorithms have proven to be effective in
predict flight delays during the tactical phase (i.e., during the
day of operations) [4], [5], when both aircraft rotations and
air traffic flow management (ATFM) measures are fully (or
partially) available to assist the models. A critical aspect when
developing machine learning models is the type and quality
of data that are available at the time horizon of interest. From
the Network Manager (NM) and airports point of view, the
only data available during the pre-tactical phase (i.e., several
days before operations) are the flight schedules, as aircraft
rotations and exact ATFM measures are still unknown. In such
an uncertain time horizon, it is more reasonable to approach
the flight delay prediction problem with probabilistic models
capable of providing not only the expected value of the delay
(arrival or departure) but also its probability distribution.

From the airline perspective, the duty manager in charge
of monitoring and manage the fleet decides whether a flight
should be cancelled or revised [6]. In order to perform this
task, he/she needs to access information about the costs of
different alternatives, which are non-linear with respect to the
(uncertain) delay values [7]. Capturing not only the expected
values of the flight delay but also its likelihood might improve
the decision-making process of the duty managers.

From the airport perspective, airport management implies
decision making under uncertainty, which becomes critical
especially for long look-ahead times [8]. As an example,
strategic airport capacity planning is typically not sufficiently
accurate because of the inherent uncertainty of weather fore-
casts [9]. Although flight schedules provide an indication on
when aircraft might depart from or arrive at an airport, this
information always carries a certain amount of uncertainty
which makes airport planning operations very challenging
(e.g., to decide where and when to allocate the ground
handling resources, or to efficiently plan the shifts for the
staff), especially several days before the day of operations.

This paper presents a probabilistic model that utilises
historical flight data to predict arrival and departure flight
delays several days in advance. The model is based on multi-



quantile regression, which is a method for estimating how
the different quantiles of a distribution (in this context, the
departure and arrival delay distribution) change as a function
of a set of predictors. It should be noted that all predictors
used in this paper (also known as features in the machine
learning jargon) are available during the pre-tactical phase.
The predictions in the test set, which includes observations
never seen by the model during training, are compared to a
dummy baseline that assumes flights will depart and arrive
on time, as well as a baseline based on standard statistics.

This paper is organised as follows: a literature review on
flight delay prediction, with a particular focus on probabilistic
models, is performed in Section II; Section III provides the
description of the generic multi-quantile regression model
that was tailored to the departure and arrival flight delay
prediction problem at Geneva Airport (GVA); the details of
the experiment and the results are presented in Sections IV
and V, respectively; Section VI provides a discussion of the
results and an overview of the implementation at GVA.

II. LITERATURE REVIEW

In recent years, along with the development of sophisticated
machine learning models, there has been a lot of interest
in probabilistic flight delay prediction. The emergence of
probabilistic flight delay prediction models is also likely due
to the fact that point predictions are not sufficiently accurate
given the uncertainty of the air transportation system, in which
many agents interact (passengers, ground handlers, air traffic
controllers, flight dispatchers, etc.) in addition to the weather.

For example, [10] used random forest (i.e., an ensemble of
decision trees trained with the bagging method) and clustering
algorithms to predict departure delays at US airports with a
look-ahead time up to 24 hours. Promising results revealed
that combining clustering and ensembles of decision trees is
effective at predicting flight delays several hours in advance.

The effectiveness of alternative machine learning models
has also been investigated. For instance, [11] compared the
performances of random forest and recurrent neural networks
(RNNs) when predicting the flight delay at Chinese airports.
The authors also approached the flight delay prediction prob-
lem as a classification task, in which the model learns the
probability of the delay falling into one of several predefined
categories rather than forecasting the precise delay in minutes.

RNNs were also used by [4] to predict the arrival delay
propagation along a sequence of flights (i.e., rotation) op-
erated by an aircraft along the day. Specifically, the model
was trained to predict the parameters of the arrival delay
distribution, which was modelled as a Gaussian function for
the sake of simplicity. The proposed model requires rotations
data to propagate the (predicted) delay, which, as previously
stated, are not available during the pre-tactical phase.

In parallel, [5] also addressed the probabilistic flight delay
prediction problem. The authors presented a machine learning
model to categorise flight departure times as early, on-time, or
delayed. Similar to [4], however, the proposed model requires
knowledge on the prior flight operated by the same aircraft,
and thus cannot be used during the pre-tactical phase.

Recently, [12] developed two probabilistic models for in-
dividual flight delay prediction model using mixture density
networks (MDN) and random forest, respectively. In reality,
however, the generic random forest model was designed to
perform point predictions, not probabilistic. In order to obtain
the flight delay distribution from a random forest, the predic-
tions of the individual decision trees of the ensemble were
not averaged, but collected, and a kernel density estimation
(KDE) was performed. Using this approach, however, the
model is still trained to minimise a loss function designed
for point predictions, like the mean absolute error (MAE).

Regarding the MDN proposed by [12], it comprises a
neural network that predicts the parameters for each Gaussian
component in the mixture. The parameters (i.e., weights and
biases) of the neural network are trained to minimise the
negative log-likelihood. Consequently, the MDN assumes that
the delay can be represented by a multi-modal Gaussian
distribution. On the other hand, the model proposed in this
paper does not make any specific assumptions regarding the
shape of the delay distribution. Furthermore, it is important
to note that neither the random forest nor the MDN proposed
by [12] could used several days before operations since
they rely on weather information at the destination or origin
airport, which is only available 24 hours before operations.

In a similar vein, [13] explored probabilistic flight delay
predictions using Bayesian artificial neural networks (ANNs)
to predict aggregate flight delays in the United States, broken
down by airport. Their study highlights the difficulty of
predicting even aggregate-level flight delays, underscoring the
importance of uncertainty quantification. Similar to [12], the
model requires weather features (e.g., visibility, temperature)
that are not available several days before operations.

Finally, [14] assessed the performance of various machine
learning models for probabilistic flight delay prediction, in-
cluding ANNs, random forest and gradient-boosted decision
trees (GBDTs). Like [4], the authors assumed a Gaussian
distribution that was fitted to the flight delays. The various
machine learning models were then trained on historical data
to predict the parameters of the distribution. For the GBDTs
instance, two models were trained: one to predict the mean
and the other to predict the standard deviation. Different
from [4], [12] and [13], the features used by the models are
available in the pre-tactical phase.

III. GENERIC MODEL

Unlike classical regression models, which estimates the
conditional mean of the target (i.e., the output) across features
(i.e., the inputs) using the least squares approach, quantile
regression determines the relationship between the features
and a quantile (or quantiles) of the target distribution. It
should be noted that, in contrast to previous works that pa-
rameterised the presumed delay distribution and then learned
its parameters using machine learning [4], [14], quantile
regression makes no assumptions about the distribution of
the target and is robust to the influence of outliers.

There are various machine learning models that can be
extended to quantile regression tasks. Gradient descent-based



learning algorithms, such as ANNs, can learn a specific quan-
tile by switching from the classical MAE or mean squared
error (MSE) loss to the mean pinball error (MPE):

MPE =
1

ntrain

ntrain∑

i=1

PE (yi, ŷi, α) , (1)

where ntrain is the number of training observations, yi and
ŷi are the actual and predicted target for the ith observation,
respectively, α ∈ [0, 1] is the quantile to be learned, and

PE (y, ŷ, α) = αmax(y− ŷ, 0)+ (1−α)max(ŷ− y, 0) (2)

is the pinball error (PE) for one observation.
In many practical applications, the goal is to determine

not just one, but several quantiles. There are two methods
for accomplishing this goal. The first approach involves
training a separate model for each quantile. Because the
models corresponding to the different quantiles are trained
independently, the consistency of the predictions cannot be
guaranteed [15]. Furthermore, this strategy necessitates the
development and maintenance of many models, making it a
time-consuming and inefficient option in practise.

The second approach consists of training just one model
with a outputs, each one associated to one quantile, to
minimise the mean multi-quantile pinball error (MMQPE):

MMQPE =
1

ntrain

ntrain∑

i=1

a∑

j=1

PE (yi, ŷi, αj) . (3)

Many machine learning models can be configured to handle
multi-quantile regression tasks. The generic model proposed
in this study is based on ensemble methods, which produce
a strong learner from a group of weak learners. Boosting is a
well-known ensemble method that involves training a series of
weak learners (e.g., rudimentary decision trees) sequentially.
The training observations for the next learner in traditional
adaptive boosting (AdaBoost) [16] are weighted based on how
well the previous learners performed, i.e., observations that
correspond to wrong predictions are assigned more weight in
order to concentrate the model’s attention on correcting them.
Gradient boosting differs from AdaBoost in that, instead of
assigning weights to observations based on performance, a
new learner is trained at each iteration to fit the residual errors
of the preceding learners. The ensemble is known as GBDTs
model when decision trees are used as weak learners.

GBDTs can outperform ANNs in many practical applica-
tions, notably on tabular datasets where each row corresponds
to one observation and each column represents a feature [17].
Furthermore, GBDTs are easier to interpret than ANNs and
have very attractive properties such as the ability to handle
missing data and categorical features with high cardinality.
The GBDTs model was chosen for the problem addressed in
this study because of the numerous benefits it provides.

Sections III-A and III-B list the features that compose the
observation vector x and define the target y of the generic
model developed during this research, respectively. It should
be emphasised that this generic model could be trained using

any of the traditional GBDTs algorithms (e.g., lightGBM,
CatBoost, XGBoost) on historical data gathered by any air-
port. Section IV will present the specific GBDTs algorithm
used to train the model as well as the dataset. Furthermore,
two independent GBDTs models were trained: one to predict
the quantiles of the arrival delay distribution and the other to
predict the quantiles of the departure delay distribution. The
set of features used by these models, however, is similar.

A. Input features

There are various limitations on the set of features that
can be incorporated when building a model for usage during
the pre-tactical phase. Predictions cannot, of course, be made
using information from the future. For example, the majority
of ATFM regulations are defined either the day before op-
erations (so-called pre-tactical regulations) or tactically the
same day. As a result, this information is unknown several
days or weeks in advance. Similarly, the sequence of flights
operated by each aircraft (i.e., registration number) must be
known in order to anticipate rotational reactionary delays. The
registration number that is going to operate a certain flight is
only known when the airline submits the flight plan to the
Network Manager (NM). Airlines, however, tend to wait for
the most accurate weather and network information before
submitting the flight plan. As a result, several days or weeks
in advance, only the aircraft type that will be used for a flight
can be speculated, but not which will be the inbound flight.

Based on the preceding discussion, it is understandable that
the set of (more or less certain) features available for making
predictions in the pre-tactical phase is rather limited. The
model proposed in this paper uses the following 14 features:
(1) airline, (2) handling agent who will process the flight, (3)
destination (resp. origin) airport for departures (resp. arrivals),
(4) aircraft type (e.g., A320), (5) flight service type, (6) type
of flight (e.g., scheduled), (7) whether or not is a Schengen
flight, (8) hour of the day, (9) day of the week, (10) month
of the year, (11) great circle distance (GCD), as well as (12)
the number of departures and (13) arrivals scheduled in the
same hour. The last feature of the model is the expected
number of passengers, which is estimated based on historical
load factors2 according to a model executed by the operations
performance & forecasting department of GVA.

It is worth noting that the notion that circular features, such
as the hour of the day, day of the week, or month of the year,
always require transformation using sine and cosine functions
is often misunderstood. While this transformation is com-
monly used in neural networks to capture periodicity, decision
tree-based algorithms, such as random forest and GBDTs,
can effectively handle circular features without the need for
explicit transformation. The authors conducted experiments
using both approaches and found that the categorical approach
generally yields superior results.

Furthermore, it may seem that GCD and airport are highly
correlated and provide duplicate information, but this is not
the case. Different airports may have different operating

2The load factor is an aviation industry indicator that represents the
proportion of available seating capacity that has been filled with passengers.



methods, leading to different contributions to the predictions.
Meanwhile, the GCD feature was included to allow the model
to learn the correlation between delay and the length or
duration of the flight. Additionally, observations with airports
that have few observations and are not representative in the
training set could benefit from the more generic GCD feature.

B. Output target

The departure (resp. arrival) delay prediction model outputs
multiple quantiles of the predicted departure (resp. arrival)
delay distribution. Specifically, the models were trained to
minimise the MMQPE and predict the 5th, 25th, 50th (i.e., the
median), 75th and 95th quantiles of their respective targets.
The quantiles were selected to represent the entire delay
distribution, including both regular and extreme events.

It should be noticed that during the training phase, the
model generates five values (one for each quantile) for each
training observation but only requires one ground truth y (the
actual delay) to compute the multi-quantile pinball error.

IV. EXPERIMENT

This section describes the experiment carried out in this
research to evaluate the performance of probabilistic models
in predicting departure and arrival delays during the pre-
tactical phase. Section IV-A describes the datasets used for the
experiment, while Section IV-B covers the specific GBDTs
algorithm as well as the hyper-parameters of the models.

A. Specific dataset

A dataset is a collection of n observations X := (x, y)
n

used to train a model and assess its performance. In this
work, two datasets were created: one for departures and one
for arrivals, with each observation belonging to one flight
departing from or arriving to GVA from the 28th of October
2018 to the 11th of December 2022, respectively. It should
be noted that the traffic from March, 1st 2020 to July, 1st

2021 was excluded from the dataset because it was strongly
affected by the COVID-19 pandemic. The raw data used to
generate the features and target of each observation were
kindly provided by GVA. A portion of the data, such as the
predicted number of passengers per flight, is confidential and
therefore cannot be publicly disclosed.

Table I lists and describes the features that compose the
observation vector x in the two datasets. The columns of this
table show basic statistics computed on the entire datasets,
including both train and test sets. For each categorical (i.e.,
discrete) feature, like the departure airport, Table I shows
the number of unique values, the most frequent value (Top)
as well as its frequency (Freq.). For each numerical (i.e.,
continuous) feature, like the great circle distance (GCD), three
quartiles are presented: 25th (Q1), median (Q2) and 75th (Q3).

It is worth noting that the model presented in this paper
does not incorporate weather features since it is designed to be
used several days before operations, when weather forecasts
are often inaccurate. However, a variant of this model could be
designed for use one day before operations, when Terminal
Area Forecasts (TAF) for the next 24 hours are available.
This variant could incorporate features such as visibility,

cloud ceiling, wind speed and direction, gusts, and significant
weather phenomena like thunderstorms, fog, and snow. With
these additional features, this variant could better capture the
effect of weather on departure and arrival delays.

Furthermore, The model does not incorporate features
related to reactionary delay because the sequence of flights
operated by each aircraft is only known on the day of
operations when airlines submit their flight plans to the NM.
Nonetheless, the authors of this paper encourage the air
traffic management (ATM) research community to explore
the possibility of developing a model that can predict the
rotations of a particular aircraft days in advance based on its
recent history. The predicted rotations could be incorporated
as additional information into the model presented herein,
likely improving the quality of the model’s predictions.

In many applications, dataset splitting is done randomly
by taking 80% of the data for training and using the rest
for assessing the performance on unseen data (i.e., testing).
When dealing with time-related and dynamically changing
environments, such as the air transportation system, it is
preferable to employ time-based splitting to provide statis-
tically robust model evaluation and better imitate real-life
scenarios. Accordingly, the first 80% of the flights (ordered
by time) where used for training, and the rest for testing.

B. Specific algorithm

In this paper, the CatBoost implementation of the GBDTs
model by Yandex [18] was used. CatBoost has gained more
momentum than other GBDTs implementations (e.g., XG-
Boost and LightGBM) mainly because its native ability to
handle high-cardinality categorical features like the departure
and destination airports, as well as the use of ordered boosting
and symmetric trees, which help to overcome over-fitting.

Many hyper-parameters can be used to optimise the Cat-
Boost model, which allow to control the entire ensemble
(e.g., the number of decision trees) as well as individual
decision trees (e.g., the maximum depth). In the experiment
conducted in this study, only the maximum depth and the
number of decision trees were optimised because they were
found to have the most significant impact on the loss function.
The learning rate was determined automatically using the
CatBoost framework’s heuristic, which is dependent on the
dataset attributes and the number of decision trees.

A widely used procedure to assess the performance of a
model given a combination of hyper-parameters is the cross-
validation (CV). The most basic k-fold CV, for instance,
consists of splitting the train set into k subsets, also known
as folds. Then, the following procedure is applied to each of
the k folds: a copy of the model is trained using the other
k − 1 folds as train set, while the fold in hand is used as
test set to compute a performance score. The average of the
k scores is the CV score of the model using the combination
of hyper-parameters under consideration. In this paper, the
CV procedure was performed by respecting the temporal
order of the observations with a TimeSeriesSplit [19].
Specifically, this variation returns first (order by time) i folds
as train set and the (i + 1)th fold as validation set (with
i ∈ {1, k − 1}), and averages the resulting k − 1 scores.



TABLE I. Input features and statistics on the entire dataset (train & test)

Type Name Departures (170K observations) Arrivals (170K observations)
Unique Top Freq (%) Unique Top Freq (%)

Categorical

Airline 159 EZS 23 153 EZS 23
handling agent 2 SWISSPORT 74 2 SWISSPORT 74
Airport 266 LHR 6 267 LHR 6
Arctyp 68 A320 42 68 A320 42
Flight service type 14 J 97 14 J 97
Type of flight 7 S 55 5 S 54
Schengen flight 2 Y 66 2 Y 66
Dayofweek 7 6 15 7 4 15
Hour 19 9 8 20 8 7
Month 12 12 10 12 12 10

Q1 Q2 Q3 Q1 Q2 Q3

Numerical

Pax total (#) 82 123 155 83 123 156
Hourly arrivals (#) 6 10 13 8 11 15
Hourly departures (#) 9 12 15 7 10 14
Great Circle Distance, GCD (km) 532 754 1309 532 754 1309

There exist several methods to search the hyper-parameter
space for the best CV score. The most popular method
is the GridSearchCV [19], which consists of exhaus-
tively evaluating all the possible candidates (i.e., combi-
nations of hyper-parameter) and returning that minimis-
ing the CV score. In this study, a more refined method
called HalvingGridSearchCV [19] was used. The
HalvingGridSearchCV consists of evaluating all pos-
sible candidates with a small amount of resources at the
first iteration. In the second iteration, only some of these
candidates are selected for the next iteration, which will be
allocated more resources, and so on. In this paper, the number
of decision trees in the ensemble was used as resource. The
reader should keep in mind that when using the number of
decision trees (also known as estimators) as resource, this
hyper-parameter cannot be included in the search grid. It
is optimised intrinsically by the HalvingGridSearchCV
method, and including it in the search grid (which would be
incorrect) will result in an exception being thrown.

For both departure and arrival delay prediction models, the
best maximum depth and number of decision trees were found
to be 9 and 1K, respectively.

V. RESULTS

This section presents the results of the experiment de-
scribed in Section IV. Specifically, Section V-A compares the
performance metrics of the model with those of two baselines.
Then, Section V-B unravels the attribution of the features
according to the Shapley values computed with the trained
models. Finally, Section V-C shows illustrative examples.

A. Performance

The performance of the proposed models must be compared
to some reference values, i.e., the baseline. The simplest base-
line is to assume that all flights will depart and arrive on time
at their scheduled departure and arrival time, respectively.
That is, regardless of the values in the observation vector
x, the predicted quantiles are zero for all observations in the
test set. For the remainder of the paper, this baseline will
be referred to as the ‘zero delay’. This baseline is practical

because it is extremely simple, and it also nearly replicates
the current system when delays are completely disregarded.

A more principled baseline consists of predicting the
quantiles of the delay distribution based on historical data.
In this paper, flights in the train set were grouped by sea-
son (winter, spring, summer or autumn), period of the day
(morning, afternoon, evening, late or late night) as well as
airport (departure or destination depending on the model).
For each one of these groups, the various quantiles of the
departure and arrival delay distributions were computed, and
these quantiles were used as predictions for the observations
in the test set belonging to the same group. It is worth
mentioning that groups with fewer than 250 observations
were declared underrepresented, implying that the predicted
quantiles are not statistically significant. Observations in the
test set that were missing predictions because their group was
underrepresented in the train set were assigned the quantiles
of the delay distribution resulting from grouping by season
and period of year, omitting the airport. For the remainder of
the paper, this baseline will be referred to as the ‘statistics’.

The authors selected these two rather naive baselines be-
cause, to the best of their knowledge, none of the models
proposed in the literature, except for [14] - who also used
a GBDTs model, but assumed a Gaussian distribution - are
able to perform probabilistic predictions several days before
operations due to the need for weather data, information about
aircraft rotations, and/or ATFM regulations.

Table II shows the performance metrics on the test set for
the two baselines and the machine learning models. Results
indicate that the statistics baseline outperforms the zero delay
baseline, particularly for the high quantiles. It reduces the 95th

quantile’s MPE of the departure and arrival delay distributions
by 11.1 min (64%) and 9.6 min (63%), respectively. However,
the performance is very similar at the low quantiles. The
statistics baseline reduces the MMQPE of the zero delay
baseline by 15.9 min (33%) and 15 min (31%) for the
departure and arrival delay predictions, respectively.



TABLE II. Performance metrics on the test set (min)

Operation Model MPE for the various quantiles MMQPE
5th 25th Median 75th 95th

Departures
Zero delay 1.9 5.3 9.6 13.9 17.4 48.1
Statistics 1.3 5.3 8.9 10.3 6.3 32.2
CatBoost 1.2 4.9 7.9 8.7 5.2 28.0

Arrivals
Zero delay 4.2 6.6 9.7 12.8 15.3 48.6
Statistics 1.8 6.3 9.7 10.2 5.7 33.6
CatBoost 1.6 5.8 8.8 9.2 5.0 30.3

The machine learning models proposed herein perform
even better. It should be noted, however, that the performance
gap between the statistics and zero delay baselines is higher
than the performance gap between the CatBoost regressor
and the statistics baseline, indicating that relatively simple
statistical methods can indeed deliver decent predictions.

Specifically, the CatBoost model reduces the MMQPE of
the zero delay baseline by 20.1 min (42%) and 18 min (38%)
for the departure and arrival delay prediction tasks, respec-
tively. The relative benefit in comparison to the statistical
baseline, however, is not that extraordinary: the MMQPE
for the departure delay prediction task improves by 4.2 min
(13%), whereas the improvement is about 3.3 min (11%) for
the arrival delay prediction task. In any instance, the machine
learning approach yields more reasonable estimates for all
individual quantiles, particularly for the high quantiles.

The reader should be aware that the interpretation of the
MMQPE may be misleading, since it is simply the sum over
all the individual quantile’s MPE. Adding more quantiles
would increase each of the MMQPE values accordingly, (po-
tentially) leading to more dramatic differences across models.

B. Feature attribution

Principles from game theory can be used to interpret the
prediction of a model for a given observation vector x,
assuming that each one of the d features is a player and the
model output ŷ is the payout. Let us consider the following
scenario: all features participate in the game (i.e., contribute
to the model output), and the features enter the room where
the game is played in a random order. The contribution of
a feature could be calculated as the average change in the
payout received by the coalition already in the room when the
corresponding player (feature) joins them. This contribution
measure is commonly known in the literature as the Shapley
value. Specifically, the Shapley value ϕi(x) of the feature i for
a given observation vector x represents the average marginal
contribution of i on the output of the model across all possible
combinations of features. It can be proven that the Shapley
value is the only contribution measure that simultaneously
satisfy local accuracy, consistency, and missingness [17].

In practical applications, however, Shapley values can only
be approximated because computing them precisely is an
NP-hard problem. TreeExplainer is a novel explanation
method for tree-based models (including GBDTs) that allows
for the tractable computation of Shapley values in polynomial
time [17]. The TreeExplainer was used in this paper.

Figures 1 and 2 aggregate Shapley values for all the fea-
tures and observations in the test sets, which were computed

by using the TreeExplainer with the trained models.
Because each model produces five outputs (the various quan-
tiles of the predicted delay distribution), Shapley values can
be computed independently for each quantile. Only the 5th,
median and 95th quantiles are examined for the sake of clarity.

In Figs. 1 and 2, the vertical axis indicates the name of the
features, in order of importance from the top to the bottom
in terms of mean absolute Shapley value. Each dot in the
horizontal axis shows the Shapley value of the associated
feature on the prediction for one observation, and the colour
indicates the magnitude of that feature: red indicates high,
while blue indicates low. Note that colour has no meaning for
categorical features such as the airline or the aircraft type.

According to Fig. 1a, the most influencing feature when
predicting the 5th quantile of the departure delay distribution,
in terms of mean absolute Shapley value, is the (expected)
number of passengers. Results indicate that the higher the
number of passengers, the greater the output of the model. It
is important to remember that the expected value (i.e., mean)
of the target in the train set plus the Shapley values of the
individual features equals the model’s output. As a result,
a positive Shapley value indicates that the corresponding
feature is influencing the model’s output to be greater than
the expected value in the train set. The month of the year and
the aircraft type are closely followed by the airline, hour of
the day and airport in the list of the most relevant features.

Figure 1b shows how the feature ranking changes when
predicting the median. The findings indicate that calendar
features are extremely important for higher quantiles.

The preceding statement is further supported by Fig. 1c,
which shows that the most important features when predicting
extreme departure delays are the hour, the month and the
airline. Figure 1 reveals that there is no dominant feature
(also known as golden feature) in the model, and that multiple
features contribute to the output with about the same impact.

Another conclusion that can be derived from Fig. 1 is that,
as expected, the higher the number of hourly departure opera-
tions (a proxy for airport congestion), the greater the predicted
departure delay, albeit with a relatively minor contribution.

Curiously, Fig. 2 shows that the most important features
of the arrival delay prediction model are ranked differently.
Specifically, Fig. 1a indicates that the departure airport plays
the most important role when predicting the 5th quantile of the
arrival delay distribution, while the number of passengers is
placed 3rd in terms of mean absolute Shapley value. Similar to
Fig. 1, Fig. 2 indicates that calendar features are increasingly
crucial at higher quantiles, and that the higher the number of
arrival operations, the greater the predicted arrival delay.

Last but not least, Figs. 1 and 2 show that the absolute
value of the Shapley value increases with the GCD. This
indicates that, for long-haul flights, the delay strongly depends
on the distance - according to the data used for training
the models. The results presented in this section are only
applicable to GVA, and other airports or countries may exhibit
different figures. For example, in the United States, delays on
connected short-haul flights are often more uncertain as the
domino effect can grow from one leg to the next.



(a) 5th quantile (b) Median (c) 95th quantile

Figure 1: Feature attribution distribution for departure delay prediction model. It should be noted that the x-axes of the figures
are represented with different scales to enable a visual assessment of the trends

(a) 5th quantile (b) Median (c) 95th quantile

Figure 2: Feature attribution distribution for arrival delay prediction model. It should be noted that the x-axes of the figures
are represented with different scales to enable a visual assessment of the trends

The reader should keep in mind that each point in Figs. 1
and 2 corresponds to a single observation, i.e., flight. Accord-
ingly, these figures represent the global interpretation of the
departure and arrival delay prediction models, respectively,
based on local feature attributions. Figures 3 and 4, on
the other hand, illustrate the Shapley value of the expected
number of passengers feature as a function of its value for the
departure and arrival delay prediction models, respectively. As
in the previous figures, each point represents one observation.

Figure 3a shows that, for the 5th quantile of the departure
delay distribution, the relationship between the number of
passenger and its Shapley value is linear. The results also
show that when the number of passengers is below (roughly)
100, the Shapley value corresponding to this feature is nega-
tive (i.e., this feature contributes to predicting early departure
when compared to the expected value in the training set),
whereas it is positive when the number of passengers is above.
A similar pattern can be observed for the median in Fig. 3b.
For the 95th quantile (see Fig. 3c), however, the relationship
is linear only when the number of passengers is below 200.
The attribution of this feature is similar for the arrival delay
prediction model, according to Fig. 4.

Figures 5 and 6 show the Shapley value of the hourly
departures and arrival features as a function of their value
for the departure and arrival delay prediction models, respec-
tively. As expected, Figs. 5 and 6 indicate that the higher
the number of hourly departures and arrivals, the higher the

quantiles of the predicted departure and delay distribution,
respectively. For instance, Figs. 5b shows that when the
number of hourly departures is lower than around 10, the
contribution of this feature is null or negative, whereas higher
values tend to increase the median of the predicted delay
distribution. Similar conclusions can be derived for the arrival
delay prediction as well as for the rest of quantiles.

The dispersion of Shapley values for a specific value of a
feature in Figs. 3 to 6 is due to the fact that the Shapley value
depends on the value of the other features.

C. Illustrative applications

This section presents some illustrative examples of how
the departure and arrival delay prediction models covered
in previous sections could be used in real operations. In
hierarchical order, Sections V-C1 to V-C3 show how to
pinpoint flights that are likely to not depart or arrive on time
starting for an aggregated prediction over the next months.

1) Detection of problematic days: Let us start with the
most basic use case, in which airport operators plan their
resources (like number of staff and handling agents, stand
and gate allocation, etc.) several days in advance. Figure 7
(resp. 8) shows the mean absolute hourly mismatch between
scheduled and potential number of departures (resp. arrivals).
For instance, a date marked with the number 3 means that,
in average during that day (considering the 24 hours), the
absolute difference (positive or negative) between the number
of scheduled and potential hourly operations is 3.



(a) 5th quantile (b) Median (c) 95th quantile

Figure 3: Attribution of the total pax. feature for departure delay prediction model as a function of its value. It should be noted
that the y-axes of the figures are represented with different scales to enable a visual assessment of the trends

(a) 5th quantile (b) Median (c) 95th quantile

Figure 4: Attribution of the total pax. feature for arrival delay prediction model as a function of its value. It should be noted
that the y-axes of the figures are represented with different scales to enable a visual assessment of the trends

(a) 5th quantile (b) Median (c) 95th quantile

Figure 5: Attribution of the hourly departures feature for departure delay prediction model as a function of its value. It should
be noted that the y-axes of the figures are represented with different scales to enable a visual assessment of the trends

Each cell within Figs. 7 and 8 shows the mismatch consid-
ering that flights could arrive at any time within a predicted
quantile range. For example, a flight with a scheduled depar-
ture time of 10:30 and which 5th and 95th quantiles of the
predicted departure delay distribution are -45 and 60 min,
respectively, may depart at any time between 9:45 and 11:30,
and thus should be considered when computing counts for
the windows [9:00,10:00), [10:00,11:00), and [11:00,12:00).
Accordingly, depending on the quantile range under consid-
eration, a single flight could be counted in several windows.

Figures 7a and 8a show, respectively, the mismatch when
flights depart and arrive as late (or early) as the median of the

predicted delay distribution. It should be noted that because
the median is a single value rather than a range, flights
are counted only in one window. In this situation, Figs. 7a
and 8a show that the mean absolute hourly mismatch never
exceeds two operations (either departures or arrivals), and,
as expected, dates across the whole summer season and on
weekends are the most uncertain, particularly for the arrivals.

When considering that flights could depart or arrive at any
time between the 25th and 75th quantiles of the predicted delay
distribution, the discrepancy between the scheduled number
of hourly operations and the potential number of operations
begins to increase (see Figs. 7b and 8b). Obviously, the most



(a) 5th quantile (b) Median (c) 95th quantile

Figure 6: Attribution of the hourly arrivals feature for arrival delay prediction model as a function of its value. It should be
noted that the y-axes of the figures are represented with different scales to enable a visual assessment of the trends

extreme difference is observed when considering that flights
could depart or arrive at any time between the 5th and 95th

quantiles of the predicted delay distribution. In that situation,
which is shown in Figs. 7c and 8c, the mean absolute hourly
mismatch could be as high as 8 departures and 9 arrivals,
respectively.

Airport operators could use this simple calendar view to
identify dates with potential pitfalls caused by a difference
between the number of scheduled and potential operations
per hour. It is worth noting that because all of the model’s
features are accessible during the pre-tactical phase, airports
might do this assessment months in advance. Once the most
critical days have been found, operators could zoom in and
identify the hours with the most (predicted) disparities.

(a) Median

(b) Any time between the 25th and 75th quantiles

(c) Any time between the 5th and 95th quantiles

Figure 7: Mean absolute hourly mismatch between scheduled
and potential number of departures in the test set

2) Detection of problematic hours: Based on Figs. 7c
and 8c, the 30th of July has been selected to illustrate how
problematic hours could be identified. This day showed the
highest mean absolute hourly mismatch between scheduled

(a) Median

(b) Any time between the 25th and 75th quantiles

(c) Any time between the 5th and 95th quantiles

Figure 8: Mean absolute hourly mismatch between scheduled
and potential number of arrivals in the test set

and potential number of operations. Figures 9a and 9b show
the detailed hourly departures (resp. arrivals), considering that
flights depart (resp. arrive) at the scheduled departure (resp.
arrival) time, that realise the median delay, and that depart
(resp. arrive) at any time between the 25th and 75th quantiles
as well as between the 5th and 95th quantiles.

In Figure 9, the extension of the bar showing the number of
probable events included by the 5th and 95th quantile values
may be of particular interest (i.e., red bar) when conservative
decisions might be taken by the user. Even more interesting
could be to detect the most critical periods of a day by looking
at the difference between the planned and predicted amount
of operations (i.e., difference between the extension of the
grey and red bars). However, the user might decide to plan
an action without considering any uncertainty. In this case,
the count provided by the median predictions (i.e., the black
bar) should be adopted. An intermediate approach could be to
consider a more likely range of predictions that are provided



(a) Departures

(b) Arrivals

Figure 9: Potential number of departure and arrival operations
at GVA during the 30th of July 2022

by the 25-75th quantile values (i.e., blue bar).
3) Detection of problematic flights: Once a critical period

of the day has been identified, it might be desired to detect
which flights require more attention since their arrivals or de-
partures predictions incorporate more uncertainty and present
higher mismatched with the scheduled in-block and off-block
times. As an example in Figure 10, on a day characterised
by high delays such as the 30th of July 2022, flights D10,
D09, D07, D06, D04, D02 are very likely to depart later than
scheduled since their planned time does not even fall within
the red bar (5-95th quantile) which covers 90% of possible
occurrences (Figure 10a). On the contrary, it is possible to
observe that the mismatch between planned and predicted
arrival times is lower since the grey lines fall within or are
in close proximity to the blue bars (Figure 10b) for most of
the represented flights. An intuitive indication of criticality is
the distance between the schedule time (grey lines) and both,
the ends of the red bar (5-95th quantile) and the median value
(black lines). An undesired scenario is represented indeed by
flights scheduled much earlier than these two values. With
these ad hoc predictions the assignment of airport resources
for each single flight could be more efficient.

VI. DISCUSSION & CONCLUSIONS

Once a machine learning model is trained, specific metrics,
such as the average error between predicted and actual
realisations of the target variable, can be computed accounting
for both aleatory and epistemic uncertainty [20]. However,
while these averaged statistics of the error can be used to
assess the overall quality of the model, they do not provide
a quantification of the uncertainty of a single prediction.

There are various models and methodologies for predicting
flight delays in the literature. However, some of them provide
punctual predictions, leaving to the user the assessment of

(a) Departures

(b) Arrivals

Figure 10: Predicted quantiles of the flights scheduled to
depart or arrive at GVA during the 30th of July 2022 from
14:00 to 15:00

possible deviations from the predicted values that might
derive from the complex and uncertain environment in which
flights are operated. Other approaches have been suggested
in the literature to estimate the uncertainty of the individual
predictions, such as sensitivity analyses [21], bootstrapping
methods [22], Bayesian methods [23] and Gaussian pro-
cesses [12]. Most of these methods provide an estimation of
the variance of the error but they are not able to provide a
range of probabilistic occurrences of predicted values.

In this paper, the uncertainty of individual predictions
can be quantified by the quantile values provided by the
model’s outcomes. As an example, the difference between
two (predicted) quantiles, one relatively high and another
relatively low (e.g., 95th and 5th, respectively), represents
the extension of the time domain over which departures and
arrivals are predicted to take place. This quantification allows
to assess the criticality (or miss-match between plan and
prediction) of specific periods of the year at an aggregated
level (see Figs. 8 and 7) and, more in detail, of specific days
of the year (see Fig. 9) and of individual flights (see Fig. 10)

An important methodology to quantify the contributions of
each single input feature to the predictions is the Shapley
analysis, which results are shown in Section V. As a main



outcome of this analysis, it has been observed that the number
of passenger highly affects the predictions. Specifically, the
higher the number of passengers (Pax total in Figs. 1 and 2’),
the higher the arrival and departure delays, showing that
particular attention should be paid to operations involving
passengers, such as boarding and de-boarding. For a flight
showing high positive Shapley values of the total passenger
input feature, further analysis and sets of data might allow
to identify the operations involving passengers that are more
likely to cause delays.

This study has been developed in response to a proposal
of the operations performance & forecasting department of
Geneva airport (GVA) within one of the EUROCONTROL
Air Transport Innovation Network (EATIN) initiative (https:
//www.eurocontrol.int/project/eatin). As such, it is of partic-
ular interest to understand how this probabilistic approach
can satisfy the needs of already complex and demanding
airport operations. The model is currently under trial at GVA,
and in the following months a survey will be conducted to
study the impact that the model is making on the planning
of the operations at GVA. As a result of the survey, a
suitable human-machine interface might be developed and
implemented. Alternatively, the schedule arrival and departure
values could be replaced in the systems (planning, demand
& capacity balance in the land side as well as in the air side,
etc.) by the model values. This approach could be extended
to other airports and adjusted to serve the needs of any other
ATM stakeholder.

In future work, the performance improvement of incor-
porating weather features into the model, such as visibility,
cloud ceiling, or wind speed, could be assessed. However,
this variant would only be usable when weather forecasts for
the airport are available, which is typically 24 hours before
operations. A similar discussion applies to aircraft rotations
and ATFM regulations.
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Abstract—Efficient airport operations are vital for ensuring
the seamless flow of aircraft and passengers. However, real-
world airport operations often deviate from meticulously crafted
plans, necessitating dynamic resource allocation. These challenges
become particularly pronounced during peak operational periods
when buffer capacity is limited. To address these issues, we
conducted an analysis utilizing operational data from the airport,
along with Filed Tactical Flight Model and Current Tactical
Flight Model data, as well as meteorological information. Our
study primarily focuses on incoming flights at Prague Airport,
where we employed regression analysis, forward parameter
selection, and a brute-force approach to identify key parameters.
These parameters significantly enhance the predictability of in-
block time deviations and delay caused in individual phases of
the flight. Our model successfully explains up to 96 % of the
variability in the data. In summary, this research aims to optimize
airport operations by bridging the gap between planned and
actual in-block times, ultimately enhancing airport efficiency. The
comprehensive analysis of various data elements offers valuable
insights for airport management and decision-makers.

Index Terms—prediction, regression, in-block time, delay, air-
line operations

I. INTRODUCTION

The efficient operation of airports is a critical component of
the global aviation network, ensuring the smooth movement
of aircraft and passengers. However, the reality of airport
operations often deviates from carefully laid out plans, neces-
sitating on-the-fly adjustments to resource allocation. These
adjustments become particularly challenging during peak op-
erational periods, where buffer capacity is often nonexistent.
This predicament is exacerbated by the limited ability of
airports to predict deviations in pre-tactical and tactical block
time (gate slots) for long-haul routes, hampering their ability
to optimize their resource planning.

The primary reason for this limitation is that substantial
insight into flight progress becomes available only once the

flight plan is activated. This leaves airports with a very narrow
window of opportunity to react, considering the uncertainties
associated with the execution of the flight trajectory and the
limited radar coverage along long-haul routes. For instance, a
significant portion of the trajectory for inbound flights from
far east regions, like those approaching e.g. Prague Airport
(LKPR), remains devoid of real-time positional reporting for
much of the journey. Any deviations resulting from velocity
conditions along this trajectory can pose challenges for ground
handlers and airline operators, ultimately leading to a deteri-
oration in the level of service provided to airline operations
centers (APOC) and their passengers.

As highlighted by previous research [1], [2], flight delays
have far-reaching economic and operational implications for
airlines, passengers, network connectivity, and, importantly,
airports themselves. Consequently, any measures taken to
reduce the impact of these delays hold the promise of making
air travel more efficient and effective. As suggested, the path
forward involves improving flight predictability, and this can
be achieved by reinforcing pre-tactical planning using prin-
ciples guided by the total airport management concept, with
APOC and airline operations planners working in tandem [3],
[4].

A substantial body of research has already been dedicated to
the study of flight predictability and delay analysis. Scholars
have employed various prediction techniques, including statis-
tical methods, probability models [5]–[7], and network-based
approaches [8]–[10]. Some have ventured into operational
methods [11], [12], while others have harnessed the power of
machine learning [13]–[17]. This diverse research landscape
underscores the significance of improving delay prediction
and control, given that flight delays are rarely arbitrary and
can be attributed to a multitude of factors, including weather
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conditions, airport congestion, aircraft mechanical issues, and
airline scheduling [18].

Of particular interest is the role of airline scheduling, espe-
cially when dealing with flights arriving ahead of or after their
scheduled slots. A noteworthy study by Deepudev et al. [19]
delved into this matter by using supervised machine learning
and data mining techniques to improve the predictability of
actual landing times for scheduled flights. The study identified
historical data as a valuable resource for predicting arrival
delays and employed a multi-linear regression (MLR) model to
forecast variations based on departure-time information. The
study also shed light on the root causes of early arrivals, with
flight duration being a crucial factor in the MLR equation.

Additionally, research has been conducted to evaluate the
impact of delays on the turnaround process [20]. Authors
found that the scheduled turnaround process is consistently
disrupted when aircraft fail to arrive at their designated gates
or apron positions on time. To address this issue, they rec-
ommended the integration of time buffers during the gate
allocation planning phase, as these buffers enhance system
reliability. This study highlighted the absence of a systematic
buffer concept and the reliance on empirical experiences to
initiate buffer allocation. Therefore, it aimed to develop a
model that optimizes time buffer size based on expected
average delays, ultimately contributing to more efficient airport
operations.

Considering these challenges, this paper presents an initial
solution and ongoing discussion focused on elevating oper-
ational performance through the application of mathematical
modeling. The primary goal of this modeling is to improve the
predictability of in-block time deviations. Broadly speaking,
such approaches hold promise in enhancing visibility for
APOC or comparable operational setups, thereby providing
crucial support at both pre-tactical and tactical stages, regard-
less of whether flights are currently underway.

II. METHODS

This article is dedicated to the evaluation of factors in-
fluencing the predictability of flight delays. To achieve this
objective, the analysis focuses primarily on incoming flights
and their in-block times at Prague Airport (LKPR) during the
period spanning from June 1, 2019, to August 31, 2019. This
particular time frame was chosen due to the availability of a
comprehensive and intricate dataset, specifically suited for the
intended investigation.

A. Data Acquisition and Description

To achieve our research objectives, we obtained three dis-
tinct datasets. The first dataset contained operational data, en-
compassing details such as flight numbers, departure dates, or
flight call signs. However, the most pivotal information within
this dataset pertained to the actual in-block time (AIBT),
signifying the moment when an aircraft came to a halt at its
designated stand. This data was provided by the airport.

Another dataset comprised information related to a Filed
Tactical Flight Model (FTFM), which included a point-by-

point and airspace volume profile generated within the En-
hanced Tactical Flow Management System. This profile is
generated when flight plan details and any subsequent updates
are received from the APOC. These data essentially provide
a description of the anticipated flight path prior to take-off.
Consequently, they include details about the planned way-
points, identified by their latitude and longitude coordinates,
the intended flight altitude at these waypoints, the projected
times of arrival at these points, and related information such
as planned in-block time.

The Current Tactical Flight Model (CTFM) was also avail-
able as a complement to the FTFM. CTFM also containing
information about point and airspace volume profile but for a
flight which has been activated.

The comparison of FTFM and CTFM flight profiles helps
understand deviations between what is filed as the planned
trajectory and what is flown during the flight. As mentioned
above, the filed trajectory represents the flight plan that the
airline representative submits before the flight, detailing the
intended route, waypoints, altitudes, and estimated times. On
the other hand, the flown trajectory represents the actual path
taken by the aircraft during the flight, which may differ due to
various factors such as weather conditions, air traffic control
instructions, and pilot decisions.

Eurocontrol supplied both the FTFM and CTFM data for
the investigated time period.

The last dataset used was meteorological data provided by
the Czech Hydrometeorological Institute for the period June
1, 2019, to August 31, 2019. The data covers a geographical
region spanning from 120°W to 120°E and from 80°N to
20°S. The grid is divided into increments of 1.25 degrees,
following the specifications outlined in ICAO Annex 3. Within
this dataset, there are 17 flight levels: 050, 080, 100, 140, 180,
210, 240, 270, 300, 320, 340, 360, 390, 410, 450, 480, and
530.

For each point defined within this coordinate system, wind
direction and speed predictions are provided in 3-hour inter-
vals, with a time step of 3 hours. The predictive interval ranges
from 6 to 36 hours, and the data was refreshed four times a
day at the following times: 00:00, 06:00, 12:00, and 18:00.

B. Data Preprocessing

Datasets, i.e. operational data, FTFM/CTFM and meteo-
rological data, were merged to form a consolidated dataset.
Before the actual merging of the data, it was important to
clean and prepare the data to ensure that it is consistent and
free from errors. This involved removing duplicate records,
standardizing data formats, and correcting any missing or
incorrect data.

The primary focus was on merging operational data with
FTFM/CTFM data, primarily using the departure time as a
key criterion. Operational data and FTFM/CTFM data un-
fortunately did not share the same unique flight identifier.
FTFM/CTFM data included a time-dependent flight descrip-
tion, with each flight having multiple waypoints associated
with latitude, longitude coordinates, and flight-over times,



among other details. By associating operational data with
FTFM/CTFM data, variables with a constant nature for a given
flight were created. For instance, the Scheduled In-block Time
(SIBT) or AIBT remains constant across all waypoints for a
single flight. In addition to the mentioned data integration,
meteorological conditions were associated with each waypoint,
derived from meteorological data. This included information
about wind direction and speed. Subsequently, the wind speed
and direction were recalculated to represent the wind speed
along the direction of flight, where positive values indicated a
tailwind and negative values indicated a headwind.

Taking into account the calculation of delay as δ = AIBT−
SIBT , this would result in δ being an dependent variable in
sequential data. In other words, sequence dependence within
one flight (dependent on the number of waypoints described
by independent variables) would address a single overall delay.
Although it is possible to employ a recurrent neural network
for such a problem, we believe that a comprehensive explana-
tion of such modeling is beyond the scope of a conference
paper. Therefore, a different type of analysis was chosen,
namely regression.

However, to create a linear regression model, it was nec-
essary to redefine the concept of delay. The purpose of this
process was to align the time points from two flight datasets,
FTFM and CTFM by generating linearly spaced time vectors
of same number of samples. This step allowed understanding
delay along the flown CTFM trajectory in comparison to
planned FTFM trajectory from the moment of flight departure
until its arrival. FTFM and CTFM times were compared at
same phase of fligth, i.e. if FTFM time stamp was at 20 %
of planned flight time then corresponding CTFM time stamp
reflected 20 % of actually flown time.

Firstly, time stamps in both FTFM and CTFM dataset
were converted from datetime format to Unix time. This
conversion ensured that timestamp was presented in seconds
as Unix time represents seconds elapsed since January 1, 1970.
Therefore, converted vectors TimeC and TimeF representing
time stamps in Unix time for CTFM and FTMF, respectively,
were created. The total FTFM time was then crucial for
TimeC vector resampling. Total FTFM time TimeFtotal was
calculated as:

TimeFtotal = TimeF (NF )− TimeF (1) + 1 (1)

where TimeF is the FTFM time vector (in seconds) and NF

is a total number of TimeF samples. After that, the CTFM
time vector was resampled in the way that:

TimeCr(1) = TimeC(1), and (2)
TimeCr(TimeFtotal) = TimeC(NC) (3)

where TimeCr has NF number of samples and represent
resampled vector TimeC. The NC is then number of samples
in TimeC vector. Also TimeF vector was resampled in the
same way, therefore

TimeFr(1) = TimeF (1), and (4)
TimeFr(TimeFtotal) = TimeC(NF ) (5)

represents vector in which each data point represents one
second of FTFM flight time (planned flight time). The indexes
of vector TimeFr (idx) of data points that are common to both
vectors TimeF and TimeFr was then identified as

{idx|1 ≤ idx ≤ TimeFtotal, idx ∈ TimeF, i ∈ TimeFr}.
(6)

Vector of time differences (FCdelay) between CTFM
(flown) and corresponding FTFM (planned) time was then
calculated and at the same time, delays were converted to
minutes. This way FCdelay vector was calculated as

FCdelay =
TimeCr(idx)–TimeFr(idx)

60
. (7)

Described process ensured, that FCdelay contains time delay
for each time stamp in original FTFM dataset.

The final dataset than consisted of 45 features and one
dependent variable, i.e FCdelay. In total, the dataset included
1 730 flights, and these flights, considering the waypoints con-
tained within them, provided a total of 122 158 observations.

C. Data Analysis

As previously mentioned, the data analysis conducted in this
study is primarily focused on regression analysis, wherein an
dependent variable represents the delay at all waypoints. The
aim of this analysis was to determine whether it is feasible
to predict delays or delay increments relative to the scheduled
in-block time (SIBT) based on available parameters.

A fundamental assumption underlying this analysis was that
delays would naturally be influenced by differences in timing
between the anticipated and actual departure from the gate
(referred to as LOBT - flight plan off-block time and AOBT
- actual off-block time) and the actual takeoff time (ATOT).
Naturally, this could logically affect the aircraft’s arrival time
at its destination.

In any case, the objective was to ascertain whether this
relationship is linear, whether it can be generalized, and
whether additional features (known and available before or
during the flight) could potentially mitigate prediction errors
based on a linear model.

For the purpose of this study’s data analysis the stepwise
regression approach [21] was employed to evaluate the signif-
icance of predictors within the regression model. Stepwise re-
gression hinges on specific criteria that gauge enhancements in
model fitness, predominantly leveraging statistical measures.
The process entails two core phases: forward selection and
backward elimination.

In the forward selection phase of stepwise regression,
predictors are introduced into the model one at a time.
Conversely, the backward elimination phase systematically
removes predictors one by one. The basis for adding/removing
predictors revolves around the evaluation of their influence
on the model’s fit. At each step of this process, a p-value is
calculated for the F-statistic, comparing the models with and
without a candidate term.

This method allows for a step-by-step refinement of the re-
gression model, progressively selecting or excluding predictors
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Fig. 1. Relationship between predicted and actual delays for two regression models. Model (A) utilizes the predictors airport of departure, actual take-off
time, and flight plan off-block time, while the model (B) incorporates all selected predictors.

to enhance the model’s overall accuracy and suitability. The
primary objective was to enhance the model’s predictive power
while maintaining simplicity.

To create the final model based on predictors selected,
70 % of the data was utilized. These data were selected using
stratified shuffle split [22]. The remaining 30 % of the data
was used for model testing. The process was repeated over 50
iterations, enabling the computation of standard model metrics,
which include mean squared error (MSE), root mean squared
error (RMSE), mean absolute error (MAE), and R2 [23]. These
metrics are, therefore, the average performance indicators
derived from the 50 iterations. This was done to describe
the model in a generalized manner, ensuring that the model’s
performance does not solely depend on a single random
selection of test and training data.

III. RESULTS

Forward selection identified parameters, along with their
regression coefficients, which are presented in Table I. A more
in-depth analysis was then conducted to determine the key
parameters responsible for the majority of the variability in
the regression model. For this purpose, a brute-force [24]
approach was used, involving iterative removal and addition
of parameters from the model. This approach revealed that
the fundamental model could be defined using LOBT, ATOT,
and SIBT. This model is capable of explaining 0.89 % of the
variability in the data, with metrics of MSE = 73.46 minutes,
RMSE = 8.57 minutes, and MAE = 6.63 minutes. The
graphical representation of this model’s prediction capability
is illustrated in Fig. 1A.

The selected additional parameters modify the model in
a way that leads to significantly improved predictability of
FCdelay. Therefore, the model incorporating all the selected
parameters can account for up to 96 % of the variability
present in the data, with metrics of MSE = 25.84 minutes,
RMSE = 5.08 minutes, and MAE = 3.47 minutes (refer to
Fig. 1B).

TABLE I
IDENTIFIED IMPORTANT PARAMETERS ALONG WITH THEIR

CORRESPONDING REGRESSION COEFFICIENTS AS THE RESULTS OF
FORWARD SELECTION FOR REGRESSION.

Parameter Coefficient
intercept 72.8089
ADEP=CYUL -3.8545
ADEP=KEWR -12.1494
ADEP=KJFK -17.8268
ADEP=KPHL -6.50698
ADEP=LHBP 2.97733
ADEP=LSZH -3.72442
ADEP=OMDB 5.62139
ADEP=OTHH 2.03308
ADEP=RKSI 12.88
ADEP=ZBAA 9.00089
ADEP=ZLXY 7.937
ADEP=ZSPD 4.16353
ADEP=ZUUU -0.599828
Terminal=T1 -0.650553
Terminal=T2 -1.36129
Terminal=T3 1.40549
Terminal=T4 10.54
Terminal=TC1 -0.960873
Terminal=TC2 -8.70814
FLT ATOT 0.016525
LOBT -0.0163966
WindComponent C -0.00421778
SIBT -0.00012843
ADEP - airport of departure; FLT ATOT - actual take-off time, LOBT
- flight plan off-block time; Terminal - the identifier of the aircraft
parking stand terminal; SIBT - scheduled in-block time; WindCom-
ponent C - the wind speed recalculated into the flight direction.

IV. DISCUSSION

The study shows that LOBT, ATOT, and SIBT values are
important when applying predictive modelling in effort to
anticipate in-block time deviations.

Interestingly, these parameters provide some information
about the potential for delays, which may be linked to var-
ious reasons such as operational patterns of airlines and air
navigation services, to airport layout complexity or to a state
of weather along the route within given time period.



Selecting airport of departure (ADEP) as a predictive ele-
ment indicates that distance plays also its role when investing
efforts in prediction accuracy. Furthermore, if model works
with a gate or terminal information, impact of variable taxing
times is also evident and generates an added value as it reduces
prediction error.

Syntetic variable called wind component that encapsulates
velocity in relation to flight heading was also used to enrich
the modelling phase. Although, no signifact improvement was
manifested, there is a potential to continue studying impact
of the meteorological conditions along the route on flight
duration, and in-block time deviations as such.

There are strong assumptions made, that availability of addi-
tional information f.e. cost indices or schedule buffering could
also shed more light on causes for in-block time deviations.
This remains to be a primary objective for continued research
in this region.

V. CONCLUSION

Real-world airport operations often deviate from meticu-
lously crafted plans due to a variety of factors, including
weather, congestion, and aircraft issues. These deviations be-
come particularly problematic during peak operational periods
when buffer capacity is limited. The issue lies in the limited
ability of airports to predict deviations in pre-tactical and
tactical block times for long-haul routes. This unpredictability
hampers resource planning and operational optimization.

The root cause of this limitation is the delayed availabil-
ity of flight progress information, particularly for long-haul
flights, where real-time positional data is sparse for significant
portions of the journey. One intriguing aspect is the impact
of delays on the turnaround process. Studies have shown that
scheduled turnaround processes are disrupted when aircraft fail
to arrive on time at their designated gates. Recommendations
include integrating time buffers into gate allocation planning
to enhance system reliability. This underscores the need for
a systematic approach to buffer allocation based on expected
average delays, which can contribute to more efficient airport
operations.

In response to these challenges, the paper proposes a
predictive model to improve the predictability of in-block time
deviations. This model aims to provide crucial pre-tactical and
tactical support to operational planning and management. By
studying various data elements, the model seeks to anticipate
differences between scheduled and actual in-block times.

Our study narrows its focus to incoming flights and their in-
block times at Prague Airport during a specific timeframe. The
analysis primarily employs regression analysis to determine
if it’s feasible to predict delays or delay increments relative
to the scheduled in-block time based on available parameters
linked to meteorological information, trajectory data as well as
post operational airport data. In result, the study underscores
the significance of LOBT, ATOT, and SIBT as fundamental
determinants of flight delay increments. Furthermore, the
incorporation of additional parameters has shown the potential
to refine and improve predictive accuracy. Although the results

are positive, the future research focusing on exploration of ad-
vanced modeling techniques such as recurrent neural networks,
might be considered.
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