
G E N E E X P R E S S I O N I N F E R E N C E U S I N G A RT I F I C I A L N E U R A L
N E T W O R K S

Mgr. Ing. Vladimír Kunc

Doctoral Thesis
Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Study Programme: Electrical Engineering and Information Technology (P2612)
Field of Study/Specialization: Artificial Intelligence and Biocybernetics (3902V035)

Supervisor: doc. Ing. Jiří Kléma, Ph.D.

Prague, February 2024

https://cs.fel.cvut.cz/
https://fel.cvut.cz/
https://www.cvut.cz/
https://intranet.fel.cvut.cz/en/education/phd/obory.html
https://intranet.fel.cvut.cz/en/education/phd/obory.html
https://orcid.org/0000-0003-1753-9435

Vladimír Kunc: Gene expression inference using artificial neural networks, Doctoral
Thesis
Study Programme: Electrical Engineering and Information Technology (P2612)
Field of Study/Specialization: Artificial Intelligence and Biocybernetics (3902V035)

© February 2024

supervisor:
doc. Ing. Jiří Kléma, Ph.D.

location:
Prague

https://intranet.fel.cvut.cz/en/education/phd/obory.html
https://intranet.fel.cvut.cz/en/education/phd/obory.html
https://orcid.org/0000-0003-1753-9435

A B S T R A C T

Gene expression profiling is necessary for understanding cellular states
in different experimental conditions, which is needed in various fields of
biomedical research. Despite the significant progress in gene expression pro-
filing, large-scale genome-wide profiling is still expensive and challenging.
The introduction of the L1000 microarray platform made this analysis signif-
icantly cheaper by measuring the gene expression of only a few landmark
genes and using computational models to infer the gene expression levels of
the remaining genes. Initially, linear regression models were used but were
soon replaced by neural network (NN) models such as the D–GEX as they
are better suited for modeling the complex nonlinear relationships of the
expressions of individual genes.

This thesis introduces significant enhancements to the original D–GEX
model — primarily the introduction of transformative adaptive activation
functions (TAAFs), a novel class of adaptive activation functions. The TAAFs
introduce four adaptive parameters allowing for any horizontal and vertical
scaling and translation of any inner activation function. The TAAFs improve
the performance of the NNs for gene expression inference and also add
some robustness to the choice of the activation function. The performance
of NNs with TAAFs is shown on the task of gene expression inference
from the expressions of landmark genes of the L1000 microarray platform
and also using several artificially generated datasets to demonstrate their
applicability outside the omics domain. Additionally, we also show that the
improvements in the gene expression inference also translate to improvements
in the subsequent analyses, thus validating the practical impact of the usage
of the TAAFs.

A second important enhancement to the original NNs used for gene expres-
sion inference is the introduction of a tower and checkerboard architectures
that further improve the NNs with TAAFs and reach even better performance.
Notably, this improvement extends to subsequent analyses, demonstrating its
statistical significance in enhancing inferred data quality.

Although these improvements were demonstrated mainly on the gene
expression inference task, their scope is not confined to omics as they are
transferable to broader NNs applications. The TAAFs generalize various
activation functions already proposed in the literature and used for various
tasks, proving their versatility in multiple settings beyond gene expression
inference.

Additionally, this work provides an extensive list of activation functions,
serving as a reference to streamline future research and prevent redundant
proposals of activation functions already present in the literature.

Keywords: adaptive activation functions, deep learning, neural networks,
gene expression inference, tower architecture, checkerboard architecture,
transformative adaptive activation functions, L1000

v

A B S T R A K T

Měření genové exprese je nezbytné pro porozumění buněčným procesům a
stavům v rozličných experimentálních podmínkách, což je potřeba v různých
oblastech biomedicínského výzkumu. Navzdory významnému pokroku v
měření genové exprese jsou velkorozsahové studie stále velmi drahé a ná-
ročné. Nástup měřící platformy L1000 výrazně zlevnil podobné studie díky
měření jen vybraných klíčových genů a použití výpočetních modelů k rekon-
strukci úrovní genové exprese zbylých genů. Původně byly použity modely
využívající lineární regresi, ale brzy byly nahrazeny neuronovými sítěmi jako
je D–GEX, které jsou vhodnější pro modelování složitých nelineárních vztahů
mezi expresemi jednotlivých genů.

Tato disertační práce přináší významná vylepšení původního D–GEX mo-
delu — zejména představuje transformativní adaptivní aktivační funkce
(TAAF), novou třídu adaptivních aktivačních funkcí. TAAF zavádějí čtyři
adaptivní parametry umožňující libovolné horizontální a vertikální škálo-
vání a translaci libovolné vnitřní aktivační funkce. TAAF zlepšují kvalitu
inference genové exprese a také přidávají určitou robustnost vůči výběru
aktivační funkce. Lepší modelovací schopnosti neuronových sítí s TAAF jsou
ukázány na úloze inference genové exprese z exprese klíčových genů micro-
array platformy L1000 a také pomocí několika uměle vytvořených datasetů
za účelem prokázání jejich aplikovatelnosti mimo oblast biomedicíny. Dále je
ukázáno, že zpřesnění inference genové exprese se také promítá do zpřesnění
následných analýz, což demonstruje, že TAAF jsou vhodné pro použití v
praxi.

Druhým důležitým vylepšením původních neuronových sítí použitých pro
inferenci genové exprese je představení věžových a šachovnicových architek-
tur, které dále zlepšují neuronové sítě s TAAF a dosahují ještě lepší přesnosti
inference. Tato vylepšení se projevují i v následných analýzách dopočtených
dat, čímž je ukázáno, že TAAF mají statisticky význam dopad na zlepšení
kvality dopočtených dat.

I když byla tato zlepšení předvedena hlavně na úloze inference genové ex-
prese, jejich použití není omezeno na oblast biomedicíny, nebot’ tato zlepšení
jsou použitelná v mnoha jiných aplikací neuronových sítí. Jelikož TAAF zo-
becňují různé aktivační funkce, které již byly navrženy v literatuře a použity
na rozličných úlohách, tak i TAAF jsou vhodné nejen pro inferenci genové
exprese.

Dále tato práce poskytuje rozsáhlý seznam aktivačních funkcí, který slouží
jako reference k zjednodušení budoucího výzkumu a předcházení opakova-
ným návrhům aktivačních funkcí již přítomných v literatuře.

Klíčová slova: adaptivní aktivační funkce, hluboké učení, neuronové sítě,
inference genové exprese, věžová architektura, šachovnicová architektura,
transformativní adaptivní aktivační funkce

vi

P U B L I C AT I O N S

publications related to the topic of this thesis

The presented work is published in the following papers:12

Journal papers

[1] V. Kunc and J. Kléma. “On transformative adaptive activation func-
tions in neural networks for gene expression inference.” In: PLOS
ONE 16.1 (Jan. 2021). Ed. by H. Fröhlich, e0243915. doi: 10.1371/jou
rnal.pone.0243915. url: https://doi.org/10.1371/journal.pone
.0243915.
Journal metrics: IF: 3.7 (Q2), JCI: 0.91 (Q1), CiteScore: 6.0 (Q1)
Citations: WoS: 4, Scopus: 6, Google: 19,
Author statement: V.K.: Conceptualization, Formal analysis, Investi-
gation, Methodology, Software, Visualization, Writing – original draft,
Writing – review & editing; J.K.: Conceptualization, Methodology,
Supervision, Writing – original draft, Writing – review & editing.

[2] V. Kunc and J. Kléma. “On tower and checkerboard neural network
architectures for gene expression inference.” In: BMC Genomics 21.S5

(Dec. 2020). doi: 10.1186/s12864-020-06821-6. url: https://doi.o
rg/10.1186/s12864-020-06821-6.
Journal metrics: IF: 4.4 (Q1), JCI: 1.1 (Q1), CiteScore: 7.5 (Q1)
Citations: WoS: 0, Scopus: 0, Google: 2,
Author statement: V.K. designed the model and the computational
framework, carried out the implementation, performed the calcula-
tions. V.K. and J.K. conceived the study and analyzed the data and
wrote the manuscript. J.K. was in charge of overall direction and
planning.

Journal papers — submitted, under review or in press

[3] V. Kunc and J. Kléma. Three Decades of Activations: A Comprehensive
Survey of 400 Activation Functions for Neural Networks. 2024. doi: 10.4
8550/ARXIV.2402.09092. url: https://arxiv.org/abs/2402.09092.
Submitted.,
Author statement: V.K. conceived and carried out the survey and
wrote the manuscript. J.K. was in charge of overall direction and
planning.

1 Citation counts and journal metrics are as reported on February 16, 2024. Therefore, journal
metrics are the 2022 values since the 2023 update was not yet available.

2 Authorship Statements present in the original articles have been reused verbatim.

vii

https://doi.org/10.1371/journal.pone.0243915
https://doi.org/10.1371/journal.pone.0243915
https://doi.org/10.1371/journal.pone.0243915
https://doi.org/10.1371/journal.pone.0243915
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=PLOS%20ONE&year=2022
https://www.scopus.com/sourceid/10600153309
https://www.webofscience.com/wos/woscc/full-record/WOS:000609988100038
https://www.scopus.com/record/display.uri?eid=2-s2.0-85099882182&origin=resultslist
https://scholar.google.cz/scholar?cites=13453984721012064049
https://doi.org/10.1186/s12864-020-06821-6
https://doi.org/10.1186/s12864-020-06821-6
https://doi.org/10.1186/s12864-020-06821-6
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=BMC%20GENOMICS&year=2022
https://www.scopus.com/sourceid/21727
https://www.webofscience.com/wos/woscc/full-record/WOS:000601211700003
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85097603076
https://scholar.google.cz/scholar?cites=13645964468749440887&as_sdt=2005&sciodt=0,5&hl=cs
https://doi.org/10.48550/ARXIV.2402.09092
https://doi.org/10.48550/ARXIV.2402.09092
https://arxiv.org/abs/2402.09092

Conference papers

[4] V. Kunc and J. Kléma. “On functional annotation with gene co-
expression networks.” In: 2022 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM). IEEE, Dec. 2022. doi: 10.1109/bibm
55620.2022.9995542. url: https://doi.org/10.1109/bibm55620.2
022.9995542.
Citations: WoS: ∅, Scopus: 0, Google: 1

Author statement: V.K.: Conceptualization, Formal analysis, Investi-
gation, Methodology, Software, Visualization, Writing – original draft,
Writing – review & editing; J.K.: Conceptualization, Methodology,
Supervision, Writing – original draft, Writing – review & editing.

[5] V. Kunc. “On the importance of dropout for Checkerboard D-GEX
architectures.” In: Proceedings of the International Student Scientific
Conference Poster - 23/2019. ČVUT FEL, Středisko vědecko-technických
informací, May 2019. isbn: 978-80-01-06581-5. url: https://poster
.fel.cvut.cz/poster2019/.
Citations: WoS: ∅, Scopus: ∅, Google: ∅.

[6] V. Kunc. “The development of DNA microarrays.” In: Proceedings of
the International Student Scientific Conference Poster - 23/2019. ČVUT
FEL, Středisko vědecko-technických informací, May 2019. isbn: 978-
80-01-06581-5. url: https://poster.fel.cvut.cz/poster2019/.
Citations: WoS: ∅, Scopus: ∅, Google: ∅.

Other

[7] V. Kunc. Exploring the Relationship: Transformative Adaptive Activation
Functions in Comparison to Other Activation Functions. 2024. doi: 10.48
550/ARXIV.2402.09249. url: https://arxiv.org/abs/2402.09249.

other publications of the author

Journal papers

[8] M. Belbl, D. Kachlík, M. Beneš, V. Kunc, and V. Kunc. “Variations
of the lumbrical muscles of the hand: Systematic review and meta-
analysis.” In: Annals of Anatomy - Anatomischer Anzeiger 247 (Apr.
2023), p. 152065. doi: 10.1016/j.aanat.2023.152065. url: https:
//doi.org/10.1016/j.aanat.2023.152065.
Journal metrics: IF: 2.2 (Q2), JCI: 1.39 (Q1), CiteScore: 4.6 (Q2)
Citations: WoS: 0, Scopus: 0, Google: 0,
Author statement: MB: Manuscript writing, Data extraction, DK:
Manuscript editing, Project development, MB: Manuscript editing,
Data extraction, VlK: Statistical analysis, Manuscript editing, VoK:
Manuscript writing, Project development, Clinical correlations.

viii

https://doi.org/10.1109/bibm55620.2022.9995542
https://doi.org/10.1109/bibm55620.2022.9995542
https://doi.org/10.1109/bibm55620.2022.9995542
https://doi.org/10.1109/bibm55620.2022.9995542
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85146734316
https://scholar.google.cz/scholar?cites=5569285492629361397
https://poster.fel.cvut.cz/poster2019/
https://poster.fel.cvut.cz/poster2019/
https://poster.fel.cvut.cz/poster2019/
https://doi.org/10.48550/ARXIV.2402.09249
https://doi.org/10.48550/ARXIV.2402.09249
https://arxiv.org/abs/2402.09249
https://doi.org/10.1016/j.aanat.2023.152065
https://doi.org/10.1016/j.aanat.2023.152065
https://doi.org/10.1016/j.aanat.2023.152065
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=ANN%20ANAT&year=2022
https://www.scopus.com/sourceid/27472
https://www.webofscience.com/wos/woscc/full-record/WOS:000948470200001
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85149999328
https://scholar.google.cz/scholar?cites=11319399142604408289

[9] M. Beneš, D. Kachlík, M. Belbl, Š. Havlíková, V. Kunc, A. Whitley, R.
Kaiser, and V. Kunc. “A meta-analysis on the anatomical variability
of the brachial plexus: Part III – Branching of the infraclavicular
part.” In: Annals of Anatomy - Anatomischer Anzeiger 244 (Oct. 2022),
p. 151976. doi: 10.1016/j.aanat.2022.151976. url: https://doi.o
rg/10.1016/j.aanat.2022.151976.
Journal metrics: IF: 2.2 (Q2), JCI: 1.39 (Q1), CiteScore: 4.6 (Q2)
Citations: WoS: 5, Scopus: 6, Google: 6

Author statement: Michal Benes: Conceptualization, Methodology,
Investigation, Data curation, Figures, Writing – original draft. David
Kachlik: Conceptualization, Resources, Data curation, Writing – re-
view editing. Miroslav Belbl: Investigation, Data curation, Writing
– review & editing. Sarlota Havlikova: Investigation, Data curation,
Writing – review & editing. Vladimir Kunc: Software, Formal analy-
sis, Data management, Writing – review & editing. Adam Whitley:
Methodology, Writing – review & editing. Radek Kaiser: Visualiza-
tion, Writing – review & editing. Vojtech Kunc: Writing, Conceptu-
alization, Supervision, Project administration, Writing – review &
editing.

[10] E. H. Bergou, Y. Diouane, V. Kunc, V. Kungurtsev, and C. W. Royer.
“A Subsampling Line-Search Method with Second-Order Results.”
In: INFORMS Journal on Optimization 4.4 (Oct. 2022), pp. 403–425. doi:
10.1287/ijoo.2022.0072. url: https://doi.org/10.1287/ijoo.20
22.0072.
Journal metrics: IF: ∅, JCI: ∅, CiteScore: ∅
Citations: WoS: ∅, Scopus: ∅, Google: 24,
Author statement: E.B.,Y.D., Vy.K., C.R.: Conceptualization, Formal
analysis, Investigation, Methodology, Writing – original draft, Writing
– review & editing; Vl.K: Implementation, running experiments, data
analysis, visualization.

[11] V. Kunc, V. Kunc, K. Kuncová, D. Kachlík, and L. Kopp. “Ambiguity
of the radiographs around the elbow joint: Anatomical variant versus
degenerative changes.” In: Journal of the Anatomical Society of India
71.4 (2022), p. 303. doi: 10.4103/jasi.jasi_80_21. url: https://do
i.org/10.4103/jasi.jasi_80_21.
Journal metrics: IF: 0.4 (Q4), JCI: 0.11 (Q4), CiteScore: 0.3 (Q4)
Citations: WoS: 0, Scopus: 0, Google: 1,
Author statement: Vo.K. designed the study, collected the main data
and wrote the main part of the manuscript, Vl.K. performed all the
statistics, helped with analysis of the collected data and wrote a
significant part of the manuscript. K.K. reviewed the manuscript and
helped analyze the data. D.K and L.K. supervised the study, edited
the manuscript and helped to design the study.

ix

https://doi.org/10.1016/j.aanat.2022.151976
https://doi.org/10.1016/j.aanat.2022.151976
https://doi.org/10.1016/j.aanat.2022.151976
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=ANN%20ANAT&year=2022
https://www.scopus.com/sourceid/27472
https://www.webofscience.com/wos/woscc/full-record/WOS:000828539300001
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85133841036
https://scholar.google.cz/scholar?cites=10618880646289983842
https://doi.org/10.1287/ijoo.2022.0072
https://doi.org/10.1287/ijoo.2022.0072
https://doi.org/10.1287/ijoo.2022.0072
https://scholar.google.cz/scholar?cites=4526677906322732916
https://doi.org/10.4103/jasi.jasi_80_21
https://doi.org/10.4103/jasi.jasi_80_21
https://doi.org/10.4103/jasi.jasi_80_21
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=J%20ANAT%20SOC%20INDIA&year=2022
https://www.scopus.com/sourceid/13007
https://www.webofscience.com/wos/woscc/full-record/WOS:000896120300009
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85144942476
https://scholar.google.cz/scholar?cites=6203819269191008029

[12] M. Beneš, D. Kachlík, M. Belbl, V. Kunc, Š. Havlíková, A. Whitley,
and V. Kunc. “A meta-analysis on the anatomical variability of the
brachial plexus: Part I – Roots, trunks, divisions and cords.” In: An-
nals of Anatomy - Anatomischer Anzeiger 238 (Nov. 2021), p. 151751.
doi: 10.1016/j.aanat.2021.151751. url: https://doi.org/10.101
6/j.aanat.2021.151751.
Journal metrics: IF: 2.2 (Q2), JCI: 1.39 (Q1), CiteScore: 4.6 (Q2)
Citations: WoS: 14, Scopus: 16, Google: 31, Author statement: Michal
Benes: Conceptualization, Methodology, Investigation, Data curation,
Figures, Writing - original draft. David Kachlik: Conceptualization,
Resources, Data curation, Writing - review & editing. Miroslav Belbl:
Investigation, Data curation, Writing - review editing. Vladimir
Kunc: Software, Formal analysis, Data management, Writing - review
& editing. Sarlota Havlikova: Investigation, Data curation, Writing -
review & editing. Adam Whitley: Writing - review & editing, Method-
ology. Vojtech Kunc: Conceptualization, Writing - review & editing,
Supervision, Project administration.

[13] M. Beneš, D. Kachlík, M. Belbl, A. Whitley, Š. Havlíková, R. Kaiser,
V. Kunc, and V. Kunc. “A meta-analysis on the anatomical variability
of the brachial plexus: Part II — Branching of the supraclavicular
part.” In: Annals of Anatomy - Anatomischer Anzeiger 238 (Nov. 2021),
p. 151788. doi: 10.1016/j.aanat.2021.151788. url: https://doi.o
rg/10.1016/j.aanat.2021.151788.
Journal metrics: IF: 2.2 (Q2), JCI: 1.39 (Q1), CiteScore: 4.6 (Q2)
Citations: WoS: 7, Scopus: 8, Google: 12

Author statement: Michal Benes: Conceptualization, Methodology,
Investigation, Data curation, Figures, Writing – original draft. David
Kachlik: Conceptualization, Resources, Data curation, Writing – re-
view editing. Miroslav Belbl: Investigation, Data curation, Writing
– review & editing. Sarlota Havlikova: Investigation, Data curation,
Writing – review & editing. Vladimir Kunc: Software, Formal analy-
sis, Data management, Writing – review & editing. Adam Whitley:
Methodology, Writing – review & editing. Radek Kaiser: Visualiza-
tion, Writing – review & editing. Vojtech Kunc: Writing, Conceptu-
alization, Supervision, Project administration, Writing – review &
editing.

[14] M. Beneš, D. Kachlík, V. Kunc, and V. Kunc. “The arcade of Frohse:
a systematic review and meta-analysis.” In: Surgical and Radiologic
Anatomy 43.5 (Mar. 2021), pp. 703–711. doi: 10.1007/s00276-021-02
718-5. url: https://doi.org/10.1007/s00276-021-02718-5.
Journal metrics: IF: 1.4 , JCI: 0.54, CiteScore: 2.4 (Q2)
Citations: WoS: 7, Scopus: 7, Google: 14,
Author statement: MB: Project development, Data collection, Manuscript
writing/editing. DK: Data collection, Manuscript writing/editing.
VlK: Data analysis, Manuscript writing/editing. VK: Project develop-
ment, Manuscript writing/editing.

x

https://doi.org/10.1016/j.aanat.2021.151751
https://doi.org/10.1016/j.aanat.2021.151751
https://doi.org/10.1016/j.aanat.2021.151751
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=ANN%20ANAT&year=2022
https://www.scopus.com/sourceid/27472
https://www.webofscience.com/wos/woscc/full-record/WOS:000707738600008
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85107276161
https://scholar.google.cz/scholar?cites=15839925137058435440
https://doi.org/10.1016/j.aanat.2021.151788
https://doi.org/10.1016/j.aanat.2021.151788
https://doi.org/10.1016/j.aanat.2021.151788
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=ANN%20ANAT&year=2022
https://www.scopus.com/sourceid/27472
https://www.webofscience.com/wos/woscc/full-record/WOS:000707738600018
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85109451309
https://scholar.google.cz/scholar?cites=15371134165932972933
https://doi.org/10.1007/s00276-021-02718-5
https://doi.org/10.1007/s00276-021-02718-5
https://doi.org/10.1007/s00276-021-02718-5
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=SURG%20RADIOL%20ANAT&year=2022
https://www.scopus.com/sourceid/19588
https://www.webofscience.com/wos/woscc/full-record/WOS:000625745100001
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85102280800
https://scholar.google.cz/scholar?cites=12671484770292966881

[15] V. Kunc, K. Edelmann, V. Bába, M. Debnar, P. Kmet’, K. Kučera, V.
Kunc, R. Mišičko, and L. Kopp. “Retrospektivní analýza komplikací
po sutuře Achillovy šlachy metodou podle Kesslera.” In: Rozhledy v
chirurgii 100 (Oct. 2021). doi: https://doi.org/10.33699/PIS.2021
.100.8. url: https://perspinsurg.com/rvch/article/view/560.
Journal metrics: IF: ∅, JCI: ∅, CiteScore: 0.4 (Q4)
Citations: WoS: ∅, Scopus: 0, Google: 1.

[16] V. Kunc, V. Kunc, V. Černý, M. Polovinčák, and D. Kachlík. “Ac-
cessory bones of the elbow: Prevalence, localization and modified
classification.” In: Journal of Anatomy 237.4 (Aug. 2020), pp. 618–622.
doi: 10.1111/joa.13233. url: https://doi.org/10.1111/joa.1323
3.
Journal metrics: IF: 2.4 (Q2), JCI: 1.26 (Q1), CiteScore: 4.6 (Q2)
Citations: WoS: 9, Scopus: 11, Google: 12,
Author statement: Vo.K. designed the study, collected the main data
and wrote the main part of the manuscript, Vl.K. performed all the
statistics, helped with analysis of the collected data and wrote a
significant part of the manuscript. V.C collected a significant part of
the data, reviewed the manuscript and helped analyze the data. M.P
helped analyze all images as well as wrote the radiological part of
manuscript and reviewed the whole text. D.K supervised the study,
edited the manuscript and helped to design the study.

[17] V. Kunc, M. Štulpa, G. Feigl, C. Neblett, V. Kunc, and D. Kachlík.
“The superficial anatomical landmarks are not reliable for predicting
the recurrent branch of the median nerve.” In: Surgical and Radiologic
Anatomy 42.8 (Apr. 2020), pp. 939–943. doi: 10.1007/s00276-020-02
475-x. url: https://doi.org/10.1007/s00276-020-02475-x.
Journal metrics: IF: 1.4 (Q3), JCI: 0.54 (Q3), CiteScore: 2.4 (Q2)
Citations: WoS: 1, Scopus: 1, Google: 3,
Author statement: VoK Project development; Dissection; Manuscript
writing/editing. MS Photo documentation and its processing; Dissec-
tion; Manuscript writing/editing. GF Dissection supervision; Manuscript
writing/editing. CN Manuscript writing/editing and data process-
ing. VlK Statistical analysis of data, manuscript writing/editing. DK
Manuscript writing/editing and supervision.

Conference papers

[18] V. Kunc. “A Novel Aerial Dataset for Scene Classification Anno-
tated Using OSM for Learning Deep CNNs.” In: Proceedings of the
International Student Scientific Conference Poster - 22/2018. ČVUT FEL,
Středisko vědecko-technických informací, May 2018. isbn: 978-80-01-
06428-3. url: https://poster.fel.cvut.cz/poster2018/.
Citations: WoS: ∅, Scopus: ∅, Google: ∅.

xi

https://doi.org/https://doi.org/10.33699/PIS.2021.100.8
https://doi.org/https://doi.org/10.33699/PIS.2021.100.8
https://perspinsurg.com/rvch/article/view/560
https://www.scopus.com/sourceid/22246
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85118519504
https://scholar.google.cz/scholar?cites=13420785865663586969
https://doi.org/10.1111/joa.13233
https://doi.org/10.1111/joa.13233
https://doi.org/10.1111/joa.13233
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=J%20ANAT&year=2022
https://www.scopus.com/sourceid/29542
https://www.webofscience.com/wos/woscc/full-record/WOS:000561990500001
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85089730676
https://scholar.google.cz/scholar?cites=14990119136559386503
https://doi.org/10.1007/s00276-020-02475-x
https://doi.org/10.1007/s00276-020-02475-x
https://doi.org/10.1007/s00276-020-02475-x
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=SURG%20RADIOL%20ANAT&year=2022
https://www.scopus.com/sourceid/19588
https://www.webofscience.com/wos/woscc/full-record/WOS:000528425200001
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85083843730
https://scholar.google.cz/scholar?cites=10464673893855461259
https://poster.fel.cvut.cz/poster2018/

[19] V. Kunc, J. Kléma, and M. Anděl. “Increasing Weak Classifiers Diver-
sity by Omics Networks.” In: Proceedings of 2nd Workshop on Machine
Learning in Life Sciences. Wroclaw: ENGINE - European Research
Centre of Network Intelligence and Innovation, 2015, pp. 16–28. isbn:
978-83-943803-0-4. url: http://ida.felk.cvut.cz/klema/publicat
ions/Biotex/kunc_mlls2015.pdf.
Citations: WoS: ∅, Scopus: ∅, Google: 0

Author statement: V.K.: Conceptualization, Formal analysis, Inves-
tigation, Methodology, Software, Visualization, Writing – original
draft; J.K.: Conceptualization, Methodology, Supervision, Writing –
original draft, Writing – review & editing; M.A.: Conceptualization,
Software, Methodology, Writing – original draft, Writing – review &
editing.

The list includes Journal Impact Factor (JIF) and Journal Citation Indicator
(JCI) using items indexed in Web of Science (WoS) by Clarivate and CiteScore
using items indexed in Scopus by Elsevier including relative ranks in the
documents’s category.3

Any parts of the original papers reused verbatim in this thesis have been
included with the approval of the co-authors.

3 If a document is in more categories, highest rank is reported.

xii

http://ida.felk.cvut.cz/klema/publications/Biotex/kunc_mlls2015.pdf
http://ida.felk.cvut.cz/klema/publications/Biotex/kunc_mlls2015.pdf
https://scholar.google.cz/scholar?cites=14959680861165518588
https://clarivate.com/
https://www.scopus.com/
https://www.elsevier.com/

"Everyone you will ever meet knows something you don’t."

— Bill Nye

A C K N O W L E D G M E N T S

I would like to express my deepest gratitude to my supervisor, doc. Ing.
Jiří Kléma, Ph.D., whose invaluable guidance, unwavering support, and
immense patience have been instrumental throughout my PhD journey. Your
mentorship and insightful advice have been pivotal in shaping the direction
of my research and academic growth. I am profoundly grateful for your
dedication and encouragement.

I would also like to extend my heartfelt thanks to my family and friends
for their steadfast support, understanding, and encouragement during this
pursuit. Their belief in me has been a constant source of motivation and
strength.

xiii

https://orcid.org/0000-0003-1753-9435
https://orcid.org/0000-0003-1753-9435

C O N T E N T S

1 Introduction 1

1.1 Problem statement . 2

1.2 Main contributions . 2

1.3 Thesis organization . 3

2 Neural networks — a brief overview 9

2.1 Brief history of neural networks and deep learning 9

2.1.1 Early neural networks . 9

2.1.2 The ascent of backpropagation 10

2.1.3 Winning competitions . 12

2.2 Building blocks of neural networks 13

2.2.1 Basic unit — neuron . 14

2.2.2 Simple neural network . 15

2.2.3 Layers . 16

2.2.3.1 Fully connected layer 16

2.2.3.2 Dropout layer 17

2.2.3.3 Convolutional layer 18

2.2.3.4 Pooling layer . 22

2.2.4 Optimization . 24

2.2.4.1 Loss function . 24

2.2.4.2 Backpropagation 25

2.2.4.3 Gradient descent 25

3 DNA microarrays and gene expression measurement — another
brief overview 29

3.1 DNA and genetics . 29

3.2 Brief history of microarrays . 30

3.2.1 First arrays . 30

3.2.2 Increasing the density . 31

3.2.3 Mature microarrays . 32

3.2.3.1 Spotted arrays 32

3.2.3.2 In-situ synthesised arrays 32

3.2.3.3 Self assembled arrays 33

3.2.4 Future of microarrays . 33

3.3 DNA microarrays and measuring gene expression 33

3.3.1 Microrrary experiments 34

3.3.2 RNA-Seq . 36

3.3.3 L1000 gene expression profiling assay 38

3.3.3.1 Selection of landmark genes 38

3.3.3.2 L1000 comparison to RNA-Seq 39

4 Literature review 41

4.1 Artificial neural networks for gene expression inference and
classification . 41

4.1.1 D–GEX . 41

xv

xvi contents

4.1.2 Usage of neural networks for other gene expression
data tasks besides profile reconstruction from the L1000

assay . 42

4.1.2.1 Genetic neural network 42

4.1.2.2 Clustering, analysis, and generation of gene
expression data 43

4.1.2.3 Classification of gene expression data 47

4.2 Activation functions . 48

4.2.1 Binary activation function 50

4.2.2 Sigmoid family of activation functions 50

4.2.2.1 Shifted and scaled sigmoid (SSS) 51

4.2.2.2 Variant sigmoid function (VSF) 52

4.2.2.3 Scaled hyperbolic tangent 52

4.2.2.4 Arctan . 52

4.2.2.5 Sigmoid-Algebraic activation function 53

4.2.2.6 Triple-state sigmoid 53

4.2.2.7 Improved logistic sigmoid 53

4.2.2.8 Combination of the sigmoid and linear activa-
tion (SigLin) . 53

4.2.2.9 Penalized hyperbolic tangent 54

4.2.2.10 Soft-root-sign (SRS) 54

4.2.2.11 Soft clipping (SC) 54

4.2.2.12 Hexpo . 54

4.2.2.13 Softsign . 55

4.2.2.14 Smooth step . 55

4.2.2.15 Elliott activation function 55

4.2.2.16 Sinc-Sigmoid . 55

4.2.2.17 Sigmoid-Gumbel activation function 56

4.2.2.18 NewSigmoid . 56

4.2.2.19 Root2sigmoid . 56

4.2.2.20 LogLog . 56

4.2.2.21 Complementary Log-Log (cLogLog) 56

4.2.2.22 SechSig . 57

4.2.2.23 TanhSig . 57

4.2.2.24 Multistate activation function (MSAF) 57

4.2.2.25 Rootsig and others 57

4.2.2.26 Sigmoid and tanh combinations 58

4.2.3 Class of sigmoid-weighted linear units 58

4.2.3.1 Gaussian error linear unit (GELU) 59

4.2.3.2 Symmetrical Gaussian error linear unit (SGELU) 59

4.2.3.3 Cauchy linear unit (CaLU) 60

4.2.3.4 Laplace linear unit (LaLU) 60

4.2.3.5 Collapsing linear unit (LaLU) 60

4.2.3.6 Triple-state swish 60

4.2.3.7 Generalized swish 60

4.2.3.8 Exponential swish 61

4.2.3.9 Derivative of sigmoid function 61

4.2.3.10 Gish . 61

contents xvii

4.2.3.11 Logish . 61

4.2.3.12 LogLogish . 61

4.2.3.13 ExpExpish . 61

4.2.3.14 Self arctan . 61

4.2.3.15 Parametric logish 62

4.2.3.16 Phish . 62

4.2.3.17 Suish . 62

4.2.3.18 Tangent-sigmoid ReLU (TSReLU) 62

4.2.3.19 Tangent-bipolar-sigmoid ReLU (TBSReLU) . . 62

4.2.3.20 Log-sigmoid . 62

4.2.3.21 Derivative of sigmoid-weighted linear unit
(dSiLU) . 63

4.2.3.22 Double sigmoid-weighted linear unit (Double-
SiLU) . 63

4.2.3.23 Modified sigmoid-weighted linear unit (MSiLU) 63

4.2.3.24 Hyperbolic tangent sigmoid-weighted linear
unit (TSiLU) . 63

4.2.3.25 Arctan sigmoid-weighted linear unit (ASiLU) . 63

4.2.3.26 SwAT . 64

4.2.3.27 Rectified hyperbolic secant 64

4.2.3.28 Linearly scaled hyperbolic tangent (LiSHT) . . 64

4.2.3.29 Mish . 64

4.2.3.30 Smish . 65

4.2.3.31 TanhExp . 65

4.2.3.32 Serf . 65

4.2.3.33 Efficient asymmetric nonlinear activation func-
tion (EANAF) 65

4.2.3.34 SinSig . 66

4.2.3.35 Gaussian error linear unit with sigmoid acti-
vation function (SiELU) 66

4.2.4 Gated linear unit (GLU) 66

4.2.4.1 Gated tanh unit (GTU) 66

4.2.4.2 Gated ReLU (ReGLU) 67

4.2.4.3 Gated GELU (GEGLU) 67

4.2.4.4 Swish GELU (SwiGLU) 67

4.2.5 Softmax . 67

4.2.5.1 β-softmax . 67

4.2.6 Rectified linear function (ReLU) 68

4.2.6.1 Shifted ReLU . 68

4.2.6.2 Leaky ReLU (LReLU) 68

4.2.6.3 Randomized leaky ReLU (RReLU) 69

4.2.6.4 Softsign randomized leaky ReLU (S-RReLU) . 70

4.2.6.5 Sloped ReLU (SlReLU) 70

4.2.6.6 Noisy ReLU (NReLU) 70

4.2.6.7 SineReLU . 70

4.2.6.8 Minsin . 71

4.2.6.9 Variational linear unit (VLU) 71

4.2.6.10 Spatial context-aware activation (SCAA) 71

xviii contents

4.2.6.11 Randomly translational ReLU (RT-ReLU) . . . 71

4.2.6.12 Natural-Logarithm-ReLU (NLReLU) 71

4.2.6.13 Softplus linear unit (SLU) 72

4.2.6.14 Rectified softplus (ReSP) 72

4.2.6.15 Parametric rectified non-linear unit (PReNU) . 72

4.2.6.16 Bounded ReLU (BReLU) 73

4.2.6.17 Hard sigmoid 73

4.2.6.18 HardTanh . 73

4.2.6.19 Shifted HardTanh 74

4.2.6.20 Hard swish . 74

4.2.6.21 Truncated rectified (TRec) activation function . 75

4.2.6.22 Hardshrink . 75

4.2.6.23 Softshrink . 75

4.2.6.24 Bounded leaky ReLU (BLReLU) 75

4.2.6.25 V-shaped ReLU (vReLU) 76

4.2.6.26 Pan function . 76

4.2.6.27 Absolute linear unit (AbsLU) 76

4.2.6.28 Mirrorer rectified linear unit (mReLU) 76

4.2.6.29 Leaky single-peaked triangle linear unit (LSPTLU) 77

4.2.6.30 SoftModulusQ 77

4.2.6.31 SoftModulusT 77

4.2.6.32 SignReLU . 77

4.2.6.33 Li-ReLU . 78

4.2.6.34 Concatenated ReLU (CReLU) 78

4.2.6.35 Negative CReLU (NCReLU) 78

4.2.6.36 DualReLU . 79

4.2.6.37 Orthogonal permutation liner unit 79

4.2.6.38 Elastic ReLU (EReLU) 79

4.2.6.39 Power activation functions & rectified power
units (RePU) . 80

4.2.6.40 Approximate ReLU (AppReLU) 80

4.2.6.41 Power linear activation function (PLAF) 81

4.2.6.42 Average biased ReLU (ABReLU) 81

4.2.6.43 Delay ReLU (DRLU) 81

4.2.6.44 Displaced ReLU (DisReLU) 82

4.2.6.45 Modified LReLU 82

4.2.6.46 Flatted-T swish 82

4.2.6.47 Optimal activation function (OAF) 83

4.2.6.48 Exponential linear unit (ELU) 83

4.2.6.49 Rectified exponential unit (REU) 83

4.2.6.50 Apical dendrite activation (ADA) 83

4.2.6.51 Leaky apical dendrite activation (LADA) . . . 84

4.2.6.52 Sigmoid linear unit (SigLU) 84

4.2.6.53 Swish and ReLU activation (SaRa) 84

4.2.7 Maxsig . 84

4.2.7.1 Tanh linear unit (ThLU) 85

4.2.7.2 DualELU . 85

4.2.7.3 Difference ELU (DiffELU) 85

contents xix

4.2.7.4 Polynomial linear unit (PolyLU) 85

4.2.7.5 Inverse polynomial linear unit (IpLU) 86

4.2.7.6 Power linear unit (PoLU) 86

4.2.7.7 Power function linear unit (PFLU) 86

4.2.7.8 Faster power function linear unit (FPFLU) . . . 86

4.2.7.9 Elastic adaptively parametric compounded unit
(EACU) . 86

4.2.7.10 Lipschitz ReLU (L–ReLU) 87

4.2.7.11 Scaled exponential linear unit (SELU) 87

4.2.7.12 Leaky scaled exponential linear unit (LSELU) . 88

4.2.7.13 Scaled exponentially-regularized linear unit
(SERLU) . 88

4.2.7.14 Scaled scaled exponential linear unit (sSELU) . 88

4.2.7.15 RSigELU . 88

4.2.7.16 HardSReLUE . 89

4.2.7.17 Exponential linear sigmoid squashing (ELiSH) 89

4.2.7.18 Hard exponential linear sigmoid squashing
(HardELiSH) . 89

4.2.7.19 RSigELUD . 89

4.2.7.20 LS–ReLU . 90

4.2.8 Square-based activation functions 90

4.2.8.1 SQNL . 90

4.2.8.2 Square linear unit (SQLU) 91

4.2.8.3 Square swish (squish) 91

4.2.8.4 Square REU (SqREU) 91

4.2.8.5 Square softplus (SqSoftplus) 92

4.2.8.6 Square logistic sigmoid (LogSQNL) 92

4.2.8.7 Square softmax (SQMAX) 92

4.2.8.8 Linear quadratic activation 92

4.2.8.9 Inverse square root linear unit (ISRLU) 92

4.2.8.10 Inverse square root unit (ISRU) 93

4.2.8.11 Modified Elliott function (MEF) 93

4.2.9 Square-root-based activation function (SQRT) 93

4.2.10 Bent identity . 94

4.2.11 Mishra activation function 94

4.2.12 Saha-Bora activation function (SBAF) 94

4.2.13 Logarithmic activation function 94

4.2.14 Symexp . 94

4.2.15 Scaled polynomial constant unit (SPOCU) 95

4.2.16 Polynomial universal activation function (PUAF) 95

4.2.17 Softplus . 95

4.2.18 Parametric softplus (PSoftplus) 96

4.2.18.1 Soft++ . 96

4.2.19 Rand softplus (RSP) . 96

4.2.20 Aranda-Ordaz . 96

4.2.21 Bi-firing activation function (bfire) 97

4.2.22 Bounded bi-firing activation function (bbfire) 97

4.2.23 Piecewise Mexican-hat activation function (PMAF) . . . 97

xx contents

4.2.24 Piecewise radial basis function (PRBF) 98

4.2.25 Comb-H-sine . 98

4.2.26 Modified arcsinh . 98

4.2.27 hyper-sinh . 98

4.2.28 Arctid . 98

4.2.29 Sine . 99

4.2.30 Cosine . 99

4.2.31 Cosid . 99

4.2.32 Sinp . 99

4.2.33 Growing cosine unit (GCU) 99

4.2.34 Amplifying sine unit (ASU) 100

4.2.35 Sinc . 100

4.2.36 Decaying sine unit (DSU) 100

4.2.37 Hyperbolic cosine linearized squashing function (HcLSH)100

4.2.38 Polyexp . 100

4.2.39 Exponential . 100

4.2.40 E-Tanh . 101

4.2.40.1 Evolved combination of tanh and ReLU 101

4.2.41 Wave . 101

4.2.42 Non-monotonic cubic unit (NCU) 101

4.2.43 Triple . 101

4.2.44 Shifted quadratic unit (SQU) 102

4.2.45 Knowledge discovery activation function (KDAC) 102

4.2.46 K-winner-takes-all activation function (k-WTA) 103

4.2.47 Volatility-based activation function (VBAF) 103

4.2.48 Chaotic activation functions 103

4.2.48.1 Hybrid chaotic activation function 103

4.2.48.2 Fusion of chaotic activation function (FCAF) . 104

4.2.48.3 Cascade chaotic activation function (CCAF) . . 104

4.3 Adaptive activation functions . 105

4.3.1 The ReLU-based family of adaptive functions 105

4.3.1.1 Parametric rectified linear unit (PReLU) 105

4.3.1.2 Positive parametric rectified linear unit (PReLU+)106

4.3.1.3 Margin Relu . 106

4.3.1.4 Funnel parametric rectified linear unit (Fun-
PReLU) . 106

4.3.1.5 React-PReLU (RPReLU) 106

4.3.1.6 Smooth activation unit (SAU) 107

4.3.1.7 Smooth maximum unit (SMU) 107

4.3.1.8 Leaky Learnable ReLU (LeLeLU) 107

4.3.1.9 Parametric rectified exponential unit (PREU) . 108

4.3.1.10 Randomly translational PReLU (RT-PReLU) . . 108

4.3.1.11 Probabilistic activation (ProbAct) 108

4.3.1.12 Adaptive offset activation function (AOAF) . . 109

4.3.1.13 Dynamic leaky ReLU (DLReLU) 109

4.3.1.14 Dynamic ReLU (DReLU) 110

4.3.1.15 Flexible ReLU (FReLU) 110

4.3.1.16 Adaptive shifted ReLU (ShiLU) 110

contents xxi

4.3.1.17 StarReLU . 110

4.3.1.18 Adaptive HardTanh 111

4.3.1.19 Attention-based ReLU (AReLU) 111

4.3.1.20 Dual parametric ReLU (DPReLU) and Dual
Line activation function 111

4.3.1.21 Dual Line . 112

4.3.1.22 Piecewise linear unit (PiLU) 112

4.3.1.23 Dual parametric family of activation functions 112

4.3.1.24 Fully parameterized activation function (FPAF) 113

4.3.1.25 Elastic PReLU (EPReLU) 113

4.3.1.26 Paired ReLU . 113

4.3.1.27 Tent . 113

4.3.1.28 Hat . 114

4.3.1.29 ReLU memristor-like activation function (RMAF)114

4.3.1.30 Parametric tanh linear unit (PTELU) 114

4.3.1.31 Tangent linear unit (TaLU) 115

4.3.1.32 PTaLU . 115

4.3.1.33 TanhLU . 115

4.3.1.34 TeLU . 115

4.3.1.35 Tanh based ReLU (TReLU) 116

4.3.1.36 Rectified linear tanh (ReLTanh) 116

4.3.1.37 Bendable linear unit (BLU) 117

4.3.1.38 Rectified BLU (ReBLU) 117

4.3.1.39 DELU . 117

4.3.1.40 Soft clipping mish 118

4.3.1.41 Soft clipping swish 118

4.3.1.42 Parametric swish (p-swish) 118

4.3.1.43 Parametric exponential linear unit (PELU) . . . 118

4.3.1.44 Extended exponential linear unit (EDELU) . . 119

4.3.1.45 Adaptive combination of PELU and PReLU . . 119

4.3.1.46 Fast exponential linear unit (FELU) 120

4.3.1.47 P+FELU . 120

4.3.1.48 Multiple parametric exponential linear unit
(MPELU) . 120

4.3.1.49 P-E2-ReLU . 121

4.3.1.50 Soft exponential 121

4.3.1.51 Continuously differentiable ELU (CELU) . . . 121

4.3.1.52 Erf-based ReLU (ErfReLU) 122

4.3.1.53 Parametric scaled exponential linear unit (PSELU)122

4.3.1.54 Leaky parametric scaled exponential linear
unit (LPSELU) 122

4.3.1.55 Leaky parametric scaled exponential linear
unit with reposition parameter (LPSELU_RP) . 122

4.3.1.56 Shifted ELU family 123

4.3.1.57 Tunable swish (T-swish) 123

4.3.1.58 Rectified parametric sigmoid unit (RePSU) . . 124

4.3.1.59 Parametric deformable exponential linear unit
(PDELU) . 124

xxii contents

4.3.1.60 Elastic exponential linear unit (EELU) 125

4.3.1.61 Parametric first power linear unit with sign
(PFPLUS) . 125

4.3.1.62 Parametric variational linear unit (PVLU) . . . 126

4.3.2 Sigmoid-based adaptive functions 126

4.3.2.1 Generalized hyperbolic tangent 126

4.3.2.2 Trainable amplitude 126

4.3.2.3 Adaptive slope sigmoidal function (ASSF) . . . 127

4.3.2.4 Slope varying activation function (SVAF) . . . 127

4.3.2.5 TanhSoft . 127

4.3.2.6 Parametric sigmoid (psigmoid) 128

4.3.2.7 Parametric sigmoid function (PSF) 128

4.3.2.8 Slope and threshold adaptive activation func-
tion with tanh function (STAC-tanh) 128

4.3.2.9 Generalized Riccati activation (GRA) 128

4.3.3 Adaptive sigmoid-weighted linear units 129

4.3.3.1 Swish . 129

4.3.3.2 Adaptive hybrid activation function (AHAF) . 129

4.3.3.3 Parametric shifted SiLU (PSSiLU) 129

4.3.3.4 E-swish . 129

4.3.3.5 ACON-B . 130

4.3.3.6 ACON-C . 130

4.3.3.7 Parameterized self-circulating gating unit (PSGU)130

4.3.3.8 Tangent-bipolar-sigmoid ReLU learnable (TB-
SReLUl) . 131

4.3.3.9 PATS . 131

4.3.3.10 Adaptive quadratic linear unit (AQuLU) 131

4.3.3.11 Sinu-sigmoidal linear unit (SinLU) 132

4.3.3.12 ErfAct . 132

4.3.3.13 Parametric serf (pserf) 132

4.3.3.14 Swim . 132

4.3.4 Tuned softmax (tsoftmax) 132

4.3.5 Generalized Lehmer softmax (glsoftmax) 133

4.3.6 Generalized power softmax (gpsoftmax) 133

4.3.7 Adaptive radial basis function (ARBF) 134

4.3.8 Parametric Gaussian error linear unit (PGELU) 134

4.3.9 Parametric flatted-T swish (PFTS) 134

4.3.10 Parametric flatten-p mish (PFPM) 134

4.3.11 Gaussian error unit (GEU) 134

4.3.12 Scaled-gamma-tanh activation function (SGT) 135

4.3.13 RSign . 135

4.3.14 P-SIG-RAMP . 135

4.3.15 Locally adaptive activation function (LAAF) 135

4.3.15.1 Adaptive slope hyperbolic tangent 136

4.3.15.2 Parametric scaled hyperbolic tangent (PSTanh) 136

4.3.15.3 Scaled sine-hyperbolic function (SSinH) 136

4.3.15.4 Scaled exponential function (SExp) 137

4.3.15.5 Logmoid activation unit (LAU) 137

contents xxiii

4.3.15.6 Cosinu-sigmoidal linear unit (CosLU) 137

4.3.15.7 Adaptive Gumbel (AGumb) 137

4.3.16 Shape autotuning adaptive activation function (SAAAF) 138

4.3.17 Noisy activation functions 138

4.3.18 Fractional adaptive activation functions 139

4.3.18.1 Fractional ReLU 139

4.3.18.2 Fractional softplus 139

4.3.18.3 Fractional hyperbolic tangent 139

4.3.18.4 Fractional adaptive linear unit 140

4.3.18.5 Fractional leaky ReLU (FracLReLU) 140

4.3.18.6 Fractional parametric ReLU (FracPReLU) . . . 141

4.3.18.7 Fractional ELU (FracELU) 141

4.3.18.8 Fractional SiLU (FracSiLU) 141

4.3.18.9 Fractional GELU (FracGELU) 142

4.3.19 Scaled softsign . 143

4.3.20 Parameterized softplus (s+2L) 143

4.3.21 Universal activation function (UAF) 143

4.3.22 Learnable extended activation function (LEAF) 144

4.3.23 Generalized ReLU (GReLU) 144

4.3.24 Multiquadratic activation function (MAF) 144

4.3.25 EIS activation functions 144

4.3.25.1 Linear combination of parameterized softplus
and ELU (ELUs+2L) 145

4.3.26 Global-local neuron (GLN) 145

4.3.27 Neuron-adaptive activation function 146

4.3.27.1 Scaled logistic sigmoid 146

4.3.28 Adaptive piece-wise linear unit (APLU) 146

4.3.29 Simple piecewise linear and adaptive function with
symmetric hinges (SPLASH) 147

4.3.30 Multi-bias activation (MBA) 147

4.3.31 Mexican ReLU (MeLU) 148

4.3.31.1 Modified Mexican ReLU (MMeLU) 148

4.3.31.2 Gaussian ReLU (GaLU) 148

4.3.31.3 Hard-Swish . 148

4.3.32 S-shaped rectified linear activation unit (SReLU) 149

4.3.32.1 N-activation . 149

4.3.32.2 ALiSA . 150

4.3.33 Alternated left ReLU (All-ReLU) 150

4.3.34 Piecewise linear unit (PLU) 150

4.3.35 Adaptive linear unit (AdaLU) 151

4.3.36 Trapezoid-shaped activation function (TSAF) 151

4.3.37 Adaptive Richard’s curve weighted activation (ARiA) . 151

4.3.38 Modified Weibull function 152

4.3.39 Sincos . 152

4.3.40 Combination of sine and logistic sigmoid (CSS) 152

4.3.41 Catalytic activation function (CatAF) 152

4.3.42 Expcos . 153

4.3.43 Multi-bin trainable linear unit (MTLU) 153

xxiv contents

4.3.44 Continuous piecewise nonlinear activation function CPN154

4.3.45 Look-up table unit (LuTU) 154

4.3.46 Maxout unit . 155

4.3.47 Adaptive blending unit (ABU) 156

4.3.47.1 Trainable compound activation function (TCA) 157

4.3.47.2 Average of a pool of activation functions (APAF)157

4.3.47.3 Gating adaptive blending unit (GABU) 158

4.3.47.4 Deep Kronecker neural networks 158

4.3.47.5 Rowdy activation functions 158

4.3.47.6 Self-learnable activation function (SLAF) 159

4.3.47.7 Chebyshev polynomial-based activation func-
tion (ChPAF) . 159

4.3.47.8 Legendre polynomial-based activation func-
tion (LPAF) . 159

4.3.47.9 Hermite polynomial-based activation function
(HPAF) . 160

4.3.47.10 Mixture of Gaussian unit (MoGU) 160

4.3.47.11 Fourier series activation 160

4.3.48 Padé activation unit (PAU) 161

4.3.49 Randomized Padé activation unit (RPAU) 161

4.3.50 Enhanced rational activation (ERA) 161

4.3.51 Orthogonal Padé activation unit (OPAU) 162

4.3.52 Spline interpolating activation functions 162

4.3.53 Truncated Gaussian unit (TruG) 164

4.3.54 Mollified square root function (MSRF) family 164

4.3.54.1 SquarePlus . 164

4.3.54.2 StepPlus . 164

4.3.54.3 LReLUPlus . 165

4.3.54.4 vReLUPlus . 165

4.3.54.5 SoftshrinkPlus 165

4.3.54.6 PanPlus . 165

4.3.54.7 BReLUPlus . 165

4.3.54.8 SReLUPlus . 166

4.3.54.9 HardTanhPlus 166

4.3.54.10 HardshrinkPlus 166

4.3.54.11 MeLUPlus . 166

4.3.54.12 TSAFPlus . 166

4.3.54.13 ELUPlus . 167

4.3.54.14 SwishPlus . 167

4.3.54.15 MishPlus . 167

4.3.54.16 LogishPlus . 167

4.3.54.17 SoftsignPlus . 167

4.3.54.18 SignReLUPlus 167

4.3.55 Complex approaches . 168

4.3.55.1 Variable activation function (VAF) 168

4.3.55.2 Flexible activation bag (FAB) 169

4.3.55.3 Dynamic parameter ReLU (DY–ReLU) 169

4.3.55.4 Random NNs with trainable activation functions169

contents xxv

4.3.55.5 Kernel activation function (KAF) 170

4.3.56 SAVE-inspired activation functions 171

4.4 Neural Network architectures with parallel connections 171

4.5 Artificial data generation . 173

4.5.1 Neural networks with random weights 173

4.5.2 Synthetic data generation 179

4.5.3 Neural networks with random weights for data generation184

5 Methods 187

5.1 Preliminaries . 187

5.1.1 Data . 187

5.1.1.1 Heterogeneity–aware dataset 188

5.1.1.2 Data normalization 188

5.1.2 Experiments with artificial data 189

5.1.2.1 Methodology . 189

5.1.3 Baseline architectures and training procedure 190

5.1.4 Model evaluation . 190

5.1.4.1 Pairwise evaluation of relative performance . . 191

5.1.5 Evaluation of the practical impact 192

5.1.5.1 Differential gene expression analysis 192

5.1.5.2 Used phenotypes 192

5.1.5.3 Evaluation . 193

5.2 Transformative adaptive activation function 193

5.2.1 Motivation for individual parameters 194

5.2.1.1 Activations as special cases of TAAFs 195

5.2.1.2 Activations related to TAAFs 205

5.2.1.3 TAAF as output layer 221

5.2.2 Ensembles . 221

5.3 Tower and checkerboard architectures 222

5.3.1 Tower architecture (T–D–GEX) 222

5.3.2 Checkerboard architecture (C–D–GEX) 222

5.3.3 Skip connections . 223

5.4 Implementation . 225

5.4.1 Transformative adaptive activation function 225

5.4.1.1 Adaptive transformation unit 225

5.4.1.2 TAAF as the application of ATUs 226

6 Experimental evaluation 229

6.1 Establishing TAAF performance on the D-GEX microarray data 229

6.1.1 Experiment 1: Usage of TAAFs 229

6.1.2 Experiment 2: Replacing tanh with sigmoid activation
function . 230

6.1.3 Experiment 3: TAAFs for capacity adjusted NNs 230

6.1.4 Experiment 4: Importance of individual parameters . . . 232

6.1.5 Experiment 5: TAAF in the output layer 233

6.1.6 Experiment 6: heterogeneity-aware data sampling 233

6.1.7 Overall comparison . 235

6.2 Practical impact of TAAFs on differential gene expression anal-
ysis on the D-GEX microarray data 235

xxvi contents

6.2.1 Artificial phenotypes . 236

6.2.1.1 Impact on candidate rankings 238

6.2.2 Real phenotypes . 239

6.2.2.1 Impact on candidate rankings 245

6.3 Exploring TAAF performance using artificial data 245

6.3.1 The general performance comparison 246

6.3.2 Target noise variance’s impact on performance 249

6.3.3 Performance impact of layer configuration of the infer-
ence network . 251

6.3.4 Consistency of results over repetitions 257

6.3.5 Width of data generation networks 260

6.3.5.1 Results . 260

6.3.6 Depth of data generation networks 266

6.3.6.1 Results . 266

6.4 Establishing the architectural improvements using D–GEX mi-
croarray data . 266

6.4.1 Statistical evaluation . 267

6.4.2 Varying dropout rates in checkerboard architectures . . 268

6.5 Practical impact of the checkerboard architecture on differential
gene expression analysis . 270

7 Discussion 275

7.1 Transformative adaptive activation functions 275

7.1.1 TAAFs improve the performance 275

7.1.2 TAAF parameters . 276

7.1.3 Conceptual architectural simplification for regression
tasks . 279

7.1.4 Gene expression inference perspective 280

7.1.5 Practical impact of TAAFs 281

7.2 TAAFs for other tasks besides gene expression inference 282

7.2.1 Impact of initialization of the data generation network . 283

7.2.2 Depth and width of the data generation network 284

7.3 Tower and checkerboard architectures 284

7.3.1 Practical impact of checkerboard architecture 285

8 Conclusions 287

8.1 Future works . 288

8.1.1 Gaining insights into TAAFs 288

8.1.2 Analysis of redundancy 288

8.1.3 Simplification of usability 288

8.1.4 Extending applications . 288

8.1.5 Insights into tower and checkerboard architectures . . . 289

8.1.6 Generalization of the checkerboard architecture 289

8.1.7 Leaving the blocks behind 289

8.1.8 Dual transformative adaptive activation function 289

8.1.9 Generalized dual transformative adaptive activation
function . 290

8.1.10 GAN-based approaches for GE inference 290

8.1.11 TAAF initialization . 290

contents xxvii

Bibliography 291

Appendix
a Additional figures 425

a.1 Distributions of differences of various metrics using real phe-
notypes . 425

a.2 Performance impact of layer configuration of the inference
network . 456

Declaration 461

L I S T O F F I G U R E S

Figure 2.1 A simple feedforward NN 16

Figure 2.2 Visual comparison of dropout and DropConnect. . . . 19

Figure 2.3 Example of usage of convolutional and pooling layers . 22

Figure 3.1 Structure of a DNA molecule 31

Figure 3.2 Working of DNA microarrays 34

Figure 3.3 An example of scanned cDNA microarray 36

Figure 3.4 General overview of RNA-Seq experiment 37

Figure 3.5 Structure of an analysis of RNA-Seq experiment 38

Figure 5.1 Overview of used architectures 223

Figure 5.2 Dependence of neurons per tower on number of towers224

Figure 5.3 Total number of neurons by the number of towers . . . 224

Figure 5.4 Diagram comparing original D–GEX and the proposed
checkerboard architecture 225

Figure 6.1 MMDAE for different parameterizations 233

Figure 6.2 Wilcoxon rank test for different parameterizations . . . 234

Figure 6.3 Individual components of improvement 236

Figure 6.4 Individual components of improvement including TAAFo236

Figure 6.5 Distribution of F1 scores 237

Figure 6.6 Distribution of differences in F1 scores 238

Figure 6.7 Distribution of MAEs (first 100) 239

Figure 6.8 Distribution of differences in MAEs (first 100) 239

Figure 6.9 Distribution of MAEs (p-value based) 240

Figure 6.10 Distribution of differences in MAEs (p-value based) . . 240

Figure 6.11 Distributions of F1 score differences for the real phe-
notypes . 242

Figure 6.12 Results of the Wilcoxon test for individual tasks pairs . 244

Figure 6.13 Distributions of differences in MAEs (first 100) for the
real phenotype . 246

Figure 6.14 Distributions of differences in MAEs (p-value based)
for the real phenotype 249

Figure 6.15 TAAF dominance for individual noise levels 254

Figure 6.16 Absolute performance for individual noise levels . . . 254

Figure 6.17 Relative performance for individual noise levels 255

Figure 6.18 TAAF dominance broken by inner activation network . 256

Figure 6.19 TAAF dominance by layer configuration 258

Figure 6.20 Absolute performance by layer configuration without
target noise . 258

Figure 6.21 Absolute performance by layer configuration with tar-
get noise . 259

Figure 6.22 Consistency of results over initializations 260

Figure 6.23 TAAF dominance of last checkpoint on the test set . . . 262

Figure 6.24 Absolute performance by generative network width . . 263

xxviii

Figure 6.25 Absolute test performance of best checkpoint by acti-
vations and dropouts . 264

Figure 6.26 Absolute training performance by activations and dropouts264

Figure 6.27 Absolute test performance of last checkpoint by acti-
vations and dropouts . 265

Figure 6.28 TAAF dominance over generation network depths . . . 266

Figure 6.29 MMAE progression based by number of towers 268

Figure 6.30 Pairwise statistical comparison by towers 269

Figure 6.31 Pairwise statistical comparison by architectures 269

Figure 6.32 The development of MMAE for different dropout rates 270

Figure 6.33 Results of Wilcoxon tests by dropout rates 271

Figure 6.34 F1 scores by sample size 271

Figure 6.35 Pairwise F1 score differences by sample size 272

Figure 6.36 MCCs by sample size . 272

Figure 6.37 Pairwise MCC differences by sample size 273

Figure A.1 Distributions of F1 score differences for the real phe-
notypes . 426

Figure A.2 Distributions of F0.5 score differences for the real phe-
notypes . 432

Figure A.3 Distributions of F2 score differences for the real phe-
notypes . 438

Figure A.4 Distributions of MCC differences for the real pheno-
types . 444

Figure A.5 Distributions of accuracy differences for the real phe-
notypes . 450

Figure A.6 Absolute performance by layer configuration with tar-
get noise . 456

Figure A.7 Absolute performance by layer configuration with tar-
get noise . 456

Figure A.8 Absolute performance by layer configuration with tar-
get noise . 457

Figure A.9 Absolute performance by layer configuration with tar-
get noise . 458

Figure A.10 Absolute performance by layer configuration with tar-
get noise . 459

L I S T O F TA B L E S

Table 4.1 AF equivalent to LEAF parameterizations 144

Table 4.2 Polynomial bases used in OPAU 163

Table 4.3 SAVE-inspired activations 172

Table 5.1 Activation functions as special cases of TAAFs 204

Table 5.2 Activation functions related to TAAFs 220

Table 5.3 Number of parameters of used tower architectures . . . 223

xxix

Table 6.1 MMDAE summary TAAF tanh vs tanh 230

Table 6.2 MMDAE summary TAAF tanh vs TAAF sigmoid . . . 231

Table 6.3 MMDAE summary sigmoid vs tanh 231

Table 6.4 MMDAE summary TAAF sigmoid vs sigmoid 232

Table 6.5 MMDAE summary TAAF sigmoid (reduced) vs sigmoid232

Table 6.6 MMDAE summary TAAFo sigmoid vs TAAF sigmoid 234

Table 6.7 Comparison of MMDAE of TAAFo sigmoid vs sigmoid
and TAAFo tanh vs tanh 235

Table 6.8 10 best D–GEX architectures 237

Table 6.9 Overview of sample sizes of the GSE2109 series 241

Table 6.10 Parameterization of data generation networks 246

Table 6.11 Configurations of inference networks 252

Table 6.12 Summary of experiments with artificial data (test set,
best validation error) . 253

Table 6.13 Summary of experiments with artificial data (training
set, last epoch) . 253

Table 6.14 Summary of relative performance on the artificial data 261

Table 6.15 Test MMAE of column based architectures 267

L I S T O F L I S T I N G S

Listing 5.1 Core of implementation of the adaptive transformation
unit . 225

Listing 5.2 TAAF implemented using ATUs 226

Listing 5.3 TAAF implemented using ATUs 226

xxx

L I S T O F A C R O N Y M S

ϵ-HRVFLN RVFLN with ϵ-insensitive Huber loss function 174

π-ESN probabilistic ESN 178

A adenine 29, 30, 34, Glossary: adenine
AAF adaptive activation function v, xxxiv, xxxvi, xli, xliii, xlv, xlvii, xlix–li,

liii, 2–4, 105, 107, 114, 121–129, 132, 134, 135, 137, 138, 140, 143–145,
148, 151–154, 157, 158, 160, 168, 169, 193, 194, 197–199, 207, 229, 231,
233, 277–279, 287, 290, Glossary: adaptive activation function

ABReLU average biased ReLU, see Section 4.2.6.42; 81, 110, 196, 200, 289

AbsLU absolute linear unit, see Section 4.2.6.27; 76, 77

ABU adaptive blending unit, see Section 4.3.47; xxxv, 156–159, 210, 218

AC-GAN auxiliary classifier GAN 182

ACON activate or not activation function, see Section 4.3.3.1; xlv, xlix, 129, 130

ADA apical dendrite activation, see Section 4.2.6.50; xxxvi, 83, 84

AdaLU adaptive linear unit, see Section 4.3.35; 151, 209, 218

ADHKELM adaptive deep hybrid kernel extreme learning machine 176

AE autoencoder xxxiii, xli, xliv, 44–47, 181

AF activation function v, xxxi–xxxiii, xxxvi–xxxix, xli–liii, 2–6, 10, 14–17, 43,
48–68, 71–87, 89–103, 105–108, 110, 112–119, 121–124, 126–132, 135–
138, 143–148, 150–154, 156–159, 161–166, 168–172, 179, 184, 189, 190,
193–199, 204–211, 220–222, 225, 226, 229–236, 239, 245, 246, 252, 256,
257, 260–262, 264, 265, 275–279, 287–290

AGumb adaptive Gumbel, see Section 4.3.15.7; 137

AHAF adaptive hybrid activation function, see Section 4.3.3.2; 84, 129, 144,
198, 203

ALiSA adaptive linearized sigmoidal activation, see Section 4.3.32.2; 150

All-ReLU alternated left rectified linear unit, see Section 4.3.33; 78, 150, 217

AM-GAN fused GAN with attention mechanism 182

ANN artificial neural network, see Chapter 2; xlix, 2, 4, 9, 10, 13, 14, 22, 41, 42,
51, 173, 278, Glossary: artificial neural network

AOAF adaptive offset activation function, see Section 4.3.1.12; 109, 196, 200

APAF average of a pool of activation functions, see Section 4.3.47.2; 157, 210

APLU adaptive piece-wise linear unit, see Section 4.3.28; 48, 111, 113, 124,
146–150, 209, 217

AppReLU approximate ReLU, see Section 4.2.6.40; 80

AQuLU adaptive quadratic linear unit, see Section 4.3.3.10; 131

ARBF parametric radial basis function, see Section 4.3.7; 134

arctan arctangent, see Section 4.2.2.4; 52, 98, Glossary: arctangent
AReLU Attention-based ReLU, see Section 4.3.1.19; 80, 111, 207, 214

ARiA Adaptive Richard’s curve weighted activation, see Section 4.3.37; xlv,
151, 152

ARiA2 Adaptive Richard’s curve weighted activation 2, see Section 4.3.37; 151,
152, Glossary: ARiA2

xxxi

xxxii acronyms

ASELM daptive semi-supervised ELM 176

ASSF adaptive slope sigmoidal function, see Section 4.3.2.3; 127, 198, 202, 279

ASU amplifying sine unit, see Section 4.2.34; 100

ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing xli,
46

ATSiLU arctan sigmoid-weighted linear unit, see Section 4.2.3.25; 63

ATU adaptive transformative unit, see Section 5.4.1.1; 5, 225, 226, Glossary:
adaptive transformative unit

AutoGAN GAN with neural architecture search 182

AVAE autoencoder VAE 181

BAF bipolar activation function, see Section 4.2.6.35; 78

bbfire bounded bi-firing activation function, see Section 4.2.22; 97

BELM bayesian extreme learning machine 176

bfire bi-firing activation function, see Section 4.2.21; 97

BiLSTM bidirectional long short-term memory xlv, 88

binary AF binary activation function, see Section 4.2.1; 50

BLReLU bounded leaky ReLU, see Section 4.2.6.24; 75, 97, 149, 206, 213,
Glossary: bounded leaky ReLU

BLU bendable linear unit, see Section 4.3.1.37; xl, 94, 117, 208, 215

BP backpropagation 10, 11, 23–25, 50, 51, 111, 127, 174, Glossary: backpropa-
gation

BReLU bounded ReLU, see Section 4.2.6.16; xlv–xlvii, 3, 73, 75, 97, 165, Glossary:
bounded ReLU

BRNN bidirectional recurrent neural network 43, Glossary: bidirectional
recurrent neural network

BSCN bidirectional SCN 175

C cytosine 29, 30, 34, Glossary: cytosine
CAF chaotic activation function, see Section 4.2.48; xxxii, xxxiv, xxxvi, 103

CaLU Cauchy linear unit, see Section 4.2.3.3; 60

CatAF catalytic activation function, see Section 4.3.41; 152

CCAF cascade chaotic activation function, see Section 4.2.48.3; 104

CDBN convolutional deep belief network xxxvii, 181

CDF cumulative distribution function 59, 60, 134, 135, 137, 142, 164

cDNA copy DNA xlvi, xlviii, 35, 36, 46, Glossary: cDNA
CELU continuously differentiable exponential linear unit, see Section 4.3.1.51;

59, 111, 121, 208, 216

ChPAF Chebyshev polynomial-based activation function, see Section 4.3.47.7;
159, 160, 210, 219

CI confidence interval 191

CI-ELM convex incremental ELM 176

cLogLog complementary LogLog, see Section 4.2.2.21; xxxii, 56

cLogLogm modified cLogLog, see Section 4.2.2.21; 56

CMAFGAN cross-modal attention gusion based GAN 182

CML-GAN contrastive meta-learning GAN 182

CNCI Category Normalized Citation Impact xlviii, Glossary: Category Nor-
malized Citation Impact

acronyms xxxiii

CNN convolutional neural network 10–13, 17, 18, 23, 47, 78, 149, 152, 168, 179

CoLU Collapsing linear unit, see Section 4.2.3.5; 60

CosLU cosinu-sigmoidal linear unit, see Section 4.3.15.6; 137

CPN continuous piecewise nonlinear activation function, see Section 4.3.44;
153, 154

CPU central processing unit 171

CReLU concatenated ReLU, see Section 4.2.6.34; xxxviii, 78, 79, 113

cRNA copy RNA 35, Glossary: cRNA
CRRAGAN cascading residual–residual attention GAN 182

CRVFLN convolutional RVFLN 174

cscGAN conditional single-cell GAN 44

CSS combination of sine and logistic sigmoid, see Section 4.3.40; 152

CSSA-SCN chaotic sparrow search algorithm based SCN 175

CT computed tomography 182, 183

cWOB-ELM coiflet wavelet-based optimization method-based ELM 176

CycleGAN cycle-consistent GAN 39, 182

D-HELM densely connected D-HELM xxxiii, 176

D2GAN dual discriminator GAN 182

D2WMGAN dual discriminator weighted mixture GAN 182

DAE denoising autoencoder 44, 45

DAELM domain adaptation ELM 176

DBEN deep belief echo state network 178

DBM deep Boltzmann machine 44, 180

DBN deep belief network xxxii, 44, 157, 180, 181

DDPM denoising diffusion probabilistic model 183

DE differentially expressed 193, 238–240, 245–251, 285

DeepESN deep echo state network 177

DF-GAN deep fusion GAN 182

DGattGAN dual Generator attentional GAN 182

DGE analysis differential gene expression analysis 5–7, 45, 46, 192, 193,
235, 236, 239, 241, 245, 270, 281, 282, 285, Glossary: differential gene
expression analysis

DiffELU difference exponential linear unit, see Section 4.2.7.3; 85

DisReLU displaced ReLU, see Section 4.2.6.44; 82, 110, 195, 201

DKNN Deep Kronecker neural network 158, see NN
DL deep learning v, 9, 10

DLReLU dynamic leaky ReLU, see Section 4.3.1.13; 109, 205, 212

DM diffusion model 183, 184

DNA deoxyribonucleic acid xlv–xlvii, xlix, liii, 1, 4, 29–34, 46, Glossary: DNA
DNN deep neural network 179

DOS-ELM dynamic forgetting factor based OS-ELM algorithm xxxvii, 176

DoubleSiLU double sigmoid-weighted linear unit, see Section 4.2.3.22; 63

DP dynamic programming 10

DPAF dual parametric activation function, see Section 4.3.1.23; xlvii, 112, 113,
207, 215, Glossary: dual parametric activation function

DPGAN dual-stream GAN with phase awareness 182

xxxiv acronyms

DPReLU dual parametric ReLU, see Section 4.3.1.20; xlvi, 3, 106, 111, 112, 207,
215

DReLU dynamic ReLU, see Section 4.3.1.14; 81, 82, 109, 110, 169, 195, 200

DRESN double-reservoir ESN 178

DRLU delay ReLU, see Section 4.2.6.43; 81, 82, 195, 200

DSCN deep SCN 175

dSiLU derivative of sigmoid-weighted linear unit, see Section 4.2.3.21; 63

DSU decaying sine unit, see Section 4.2.36; 100

DTAAF dual transformative adaptive activation function xxxv, 290

DY–ReLU dynamic parameter ReLU, see Section 4.3.55.3; 169, 210, 218

EA-GAN example attention GAN 182

EACU elastic adaptively parametric compounded unit, see Section 4.2.7.9; 86

EANAF efficient asymmetric nonlinear activation function, see Section 4.2.3.33;
65, 66

EBM energy-based model 181, 184

EDELU extended exponential linear unit, see Section 4.3.1.44; 119

EELU elastic exponential linear unit, see Section 4.3.1.60; 125, 208, 217

EGAN edge adversarial GAN 182

ELiSH exponential linear sigmoid squashing, see Section 4.2.7.17; 89

ELM extreme learning machine xxxi–xxxix, 47, 175, 176

ELU exponential linear unit, see Section 4.2.6.48; xxxii–xxxv, xxxix, xl, xlii, xliii,
xlvi–xlviii, l, li, 54, 59, 61, 65, 82–89, 91–93, 108, 111, 114, 117–125,
140, 141, 145, 156, 159, 160, 167, 194, 197, 205, 208, 213, Glossary:
exponential linear unit

EM-ELM error minimized extreme learning machine 176

EPLAF even power linear activation function, see Section 4.2.6.41; 81

EPReLU Elastic PReLU, see Section 4.3.1.25; 113, 207, 215

ERA enhanced rational activation, see Section 4.3.50; 161, 162, 210

ERC external RNA control 35, Glossary: external RNA control
EReLU elastic ReLU, see Section 4.2.6.38; 79, 113, 125, 205, 213

ErfReLU Erf-based ReLU, see Section 4.3.1.52; 122

ES-ELM evolutionary optimized ELM 176

ESGNN echo state graph neural networks 178

ESN echo state network xxxi, xxxiii–xl, xlii, xliv, 177, 178, 185

ESN-DE differential evolution based ESN 178

EVWCA-MKRVFLN MK-RVFLN with evaporation-based water cycle based
parameter optimization 174

FAAF fractional adaptive activation function, see Section 4.3.18; 139

FAB flexible activation bag, see Section 4.3.55.2; 169

FALU fractional adaptive linear unit, see Section 4.3.18.4; 140

FCAF fusion of chaotic activation function, see Section 4.2.48.2; 104

FELU fast ELU, see Section 4.3.1.46; l, 120, 197, 202, 208, 216

FESN functional ESN 178

FFNN feed-forward neural network 11, 14, 16, 48, 158, 168, 174, 175, 177

FISH fluorescence in situ hybridization 30

FOS-ELM fuzziness-based OS-ELM algorithm 176

acronyms xxxv

FPAF fully parameterized activation function, see Section 4.3.1.24; 113, 207,
215, Glossary: fully parameterized activation function

FPFLU faster power function linear unit, see Section 4.2.7.8; 86

FPGA field-programmable gate array 18, 73, 175, 178

FPLUS first power linear unit with sign, see Section 4.2.7.4; 85

FracELU fractional ELU, see Section 4.3.18.7; 141

FracGELU fractional GELU, see Section 4.3.18.9; xxxv, 142

FracGELU1 FracGELU variant 1, see Section 4.3.18.9; 142

FracGELU2 FracGELU variant 2, see Section 4.3.18.9; 142, 143

FracLReLU fractional LReLU, see Section 4.3.18.5; 140

FracPReLU fractional PReLU, see Section 4.3.18.6; 141

FracReLU fractional ReLU, see Section 4.3.18.1; 139

FracSiLU fractional SiLU, see Section 4.3.18.8; xxxv, 141, 142

FracSiLU1 FracSiLU variant 1, see Section 4.3.18.8; 141, 142

FracSiLU2 FracSiLU variant 2, see Section 4.3.18.8; 141, 142

FracSoftplus fractional softplus, see Section 4.3.18.2; 139

FracTanh fractional tanh, see Section 4.3.18.3; 139

FReLU flexible ReLU, see Section 4.3.1.15; 82, 106, 110, 112, 122, 139, 196, 201

FSA Fourier series activation, see Section 4.3.47.11; 160, 211, 220

FSCN fast SCN xxxvi, 175

FSDESN fast subspace decomposition echo state network 178

FTS flatted-T swish, see Section 4.2.6.46; xxxix, li, 82, 134, 198

FunPReLU funnel parametric rectified linear unit, see Section 4.3.1.4; 106

FunReLU funnel rectified linear unit, see Section 4.3.1.4; 106

Fuzzy-ELM fuzzy ELM 176

G guanine 29, 30, 34, Glossary: guanine
G-BAPSO-SCN SCN with hybrid bat-particle swarm optimization 175

GA-SCN SCN based on genetic algorithms 175

GABU gating adaptive blending unit, see Section 4.3.47.3; 158, 210, 219

GAGAN geometry-aware GAN 182

GaLU Gaussian ReLU, see Section 4.3.31.2; 148

GAN generative adversarial network xxxi–xxxvi, xxxix–xliv, 4, 38, 42–47,
180–184, 276, 285, 290

GARBM Gaussian RBM with binary auxiliary units 181

GCD-GAN gradient-guided dual-branch GAN 182

GCN-RW graph convolutional networks with random weights 179

GCU growing cosine unit, see Section 4.2.33; 99, 100

GDTAAF generalized dual transformative adaptive activation function 290

GE gene expression v, xlvi–xlviii, li, 1–7, 9, 17, 29, 30, 33, 35, 36, 38, 39, 41–48,
175, 179, 181, 183, 192, 229, 270, 271, 275–277, 280–282, 284, 285, 287,
288, 290, Glossary: gene expression

GEGLU gated GELU, see Section 4.2.4.3; 67

GELU Gaussian error linear unit, see Section 4.2.3.1; xxxv, xxxix, xlii, l, 59, 60,
62, 65, 67, 89, 91, 111, 131, 134, 140, 142, 143, Glossary: GELU

GeNN genetic neural network xlviii, 42, 43, Glossary: genetic neural network
GEO Gene Expression Omnibus 38, 41, Glossary: Gene Expression Omnibus
GEU Gaussian error unit, see Section 4.3.11; 134, 135

xxxvi acronyms

GGAN graph GAN 182

GLN global-local neuron, see Section 4.3.26; 145

glsoftmax generalized Lehmer softmax, see Section 4.3.5; 133

GLU gated linear unit, see Section 4.2.4; 66, 67

GMDH group method of data handling 9, 10

GNN graph neural networks xxxiv, 42, 43, 161, 179, see NN
GO gene ontology 45

gpsoftmax generalized power softmax, see Section 4.3.6; 133

GPU graphics processing unit 3, 12, 41, 190, 222, 289, Glossary: GPU
GRA generalized Riccati activation, see Section 4.3.2.9; 128

GReLU generalized ReLU, see Section 4.3.23; 144

GRN gene regulatory network 43

GRNN gene regulatoryneural network 43

GTU gated tanh unit, see Section 4.2.4.1; 66, 130

H-ELM hierarchical extreme learning machine 176

HardELiSH hard exponential linear sigmoid squashing, see Section 4.2.7.18;
89

HCAF hybrid chaotic activation function, see Section 4.2.48.1; 103, 104

HcLSH hyperbolic cosine linearized squashing function, see Section 4.2.37;
100

HCR-ESN hybrid circle reservoir ESN 178

HGAN hyperbolic GAN 182

HPAF Hermite polynomial-based activation function, see Section 4.3.47.9; 160

I-ELM incremental ELM xxxii, 176

ILSVRC ImageNet Large-Scale Visual Recognition Challenge 12

IpLU polynomial linear unit, see Section 4.2.7.5; 86

ISRLU inverse square root linear unit, see Section 4.2.8.9; 92, 93

ISRU inverse square root unit, see Section 4.2.8.10; 65, 93, 145

ISSA-FSCN FSCN with an improved sparrow search algorithm 175

JCI Journal Citation Indicator xii, Glossary: Journal Citation Indicator
JIF Journal Impact Factor xii, Glossary: Journal Impact Factor

K-ELM kernel based ELM 176

K-RVFLN kernel RVFLN 174

k-WTA k-winner-take-all, see Section 4.2.46; 103, Glossary: k-winner-take-all
KAF kernel activation function, see Section 4.3.55.5; 140, 170, 171, 210, 219

KDAC knowledge discovery activation function, see Section 4.2.45; 102

KNN k–nearest neighbor 41, 47

L–ReLU Lipschitz ReLU, see Section 4.2.7.10; 87

LAAF locally adaptive activation function, see Section 4.3.15; 129, 135, 136,
202, 278, 279

LADA leaky apical dendrite activation, see Section 4.2.6.51; 84

LAF logarithmic activation function, see Section 4.2.13; 93, 94

LaLU Laplace linear unit, see Section 4.2.3.4; 60

LAU logmoid activation unit, see Section 4.3.15.5; liii, 94, 137

acronyms xxxvii

LEAF learnable extended activation function, see Section 4.3.22; 144

LeLeLU leaky learnable ReLU, see Section 4.3.1.8; 107, 196, 201

LinGeNN linear GeNN 43, Glossary: linear GeNN
LinQ linear quadratic activation, see Section 4.2.8.8; 92, 209, 217

LiSA linearized sigmoidal activation, see Section 4.3.32.2; xxxi, 150

LiSHT linearly scaled hyperbolic tangent, see Section 4.2.3.28; 64, 77, 130

LogSQNL square logistic sigmoid, see Section 4.2.8.6; 92

LP linear programming 43

LPAF Legendre polynomial-based activation function, see Section 4.3.47.8; 159,
160, 210, 219

LPSCN locality preserving SCN 175

LPSELU leaky parametric scaled exponential linear unit, see Section 4.3.1.54;
xxxvii, 122, 208, 216

LPSELU_RP leaky parametric scaled exponential linear unit with reposition
parameter, see Section 4.3.1.55; 122, 208, 216

LR linear regression v, xlviii, 2, 41, 177, 179, 185, 287

LReLU leaky ReLU, see Section 4.2.6.2; xxxv, xxxviii, xxxix, xliv, xlv, xlix, l,
52, 54, 61, 65, 68–70, 75, 82–84, 87, 88, 97, 105, 107, 109, 112, 117, 124,
136, 140, 143, 149, 155, 160, 165, 195, 196, 205, 206, 212, 290, Glossary:
leaky ReLU

LRTanh linearized hyperbolic tangent, see Section 4.2.2; 51

LRTLU leaky rectified triangle linear unit, see Section 4.2.6.29; 77

LSELU leaky scaled exponential linear unit, see Section 4.2.7.12; 88, 205, 214

LSPTLU leaky single-peaked triangle linear unit, see Section 4.2.6.29; 77

LSTM long short-term memory 18, 42, 64, 101, 103

LuTU look-up table unit, see Section 4.3.45; 154, 155, 160, 209

m-arcsinh modified arcsinh, see Section 4.2.26; 98

M-RVFLN M-estimation-based RVFLN 174

MAE mean absolute error xxxviii, 41, 190–192, 233–235, 238–240, 245–251,
261, 267–271, 275

MAF multiquadratic activation function, see Section 4.3.24; 144

MarReLU marginPReLU, see Section 4.3.1.3; 106

MBA multi-bias activation, see Section 4.3.30; 147, 197, 203

MCC Matthew’s correlation coefficient 193, 237, 241, 270, 272, 273, 282, 285,
444–455

MCDNN multi-column deep neural network 171

MDAE mean difference of absolute errors, see Eq. (5.3); xxxviii, 5

MEF modified Elliott function, see Section 4.2.8.11; 93

MeLU Mexican ReLU, see Section 4.3.31; xxxviii, xlix, 148, 166, 209

MI-CDBN mode isolation convolutional deep belief network 181

MI-ESN mutual information optimized ESN 178

MIN maxout-in-network 168

miRNA microRNA 1, 47, 48, Glossary: microRNA
MK-RVFLN multi-kernel RVFLN xxxiv, 174

ML machine learning li, 3, 11–13, 48

ML-DOS-ELM DOS-ELM 176

ML-ELM multi-layer extreme learning machine 176

xxxviii acronyms

ML-OCELM multilayer neural network based one-class classification with
ELM 176

MLP multi-layer perceptron 13, 43, 136

MLReLU modified LReLU, see Section 4.2.6.45; 82

MMAE mean mean absolute error 5, 191, 229, 235–237, 249, 254, 255, 257–259,
261, 266–268, 270, 275, 276, 280, 281, 284, 285, 456–459

MMDAE mean MDAE, see Eq. (5.4); 191, 229–235

MMeLU modified Mexican ReLU, see Section 4.3.31.1; 148

MNN mutual nearest neighbor 47

MoGL-SCN Bayesian robust SCN based on a mixture of the Gaussian and
Laplace distributions 175

MoGU mixture of Gaussian unit, see Section 4.3.47.10; 156, 160, 210, 219

MP max-pooling 10–12

MPELU multiple parametric exponential linear unit, see Section 4.3.1.48; 120,
124, 125, 208, 216

MR master regulator 42

MR-ESN multiple reservoirs echo state network 178

mReLU mirrored rectified linear unit, see Section 4.2.6.28; 76, 106

MRI magnetic resonance imaging xlii, 182, 183

mRNA messenger RNA xlvi, 1, 35, 37, 48, Glossary: messenger RNA
MSAF multistate activation function, see Section 4.2.2.24; xliii, 57, 211, 219

MSE mean squared error 25

MSiLU modified sigmoid-weighted linear unit, see Section 4.2.3.23; 63

MSRF mollified square root function, see Section 4.3.54; 164, 165

MTLU multi-bin trainable linear unit, see Section 4.3.43; 153, 154, 209, 218

MWF modified Weibull function, see Section 4.3.38; 152

N-PWLU non-uniform piecewise linear unit, see Section 4.3.43; 153

NAF neuron-adaptive activation function, see Section 4.3.27; 146, 199, 203, 209,
217

NCBI National Center for Biotechnology Information xlvii
NCReLU negative CReLU, see Section 4.2.6.35; 78

NCU non-monotonic cubic unit, see Section 4.2.42; 101

NFT non-fungible token 99

NGRC next generation reservoir computing 178

NGS next-generation sequencing li, 33

NIN network in network 113, 120, 131, 149, 168, 169

NLP natural language processing 54

NLReLU natural-logarithm-ReLU, see Section 4.2.6.12; 71

NN neural network, see Chapter 2; v, xxxiii, xxxiv, xxxvi, xxxviii, xl, xli, xlv–l,
2–4, 6, 9–18, 24–27, 39, 41–50, 56, 60, 64, 66, 68, 73, 79, 95, 96, 98, 103,
105, 111, 117, 120, 130, 150, 153, 161, 163, 168, 169, 171, 173, 174, 176,
177, 179–181, 184, 186, 193, 221, 222, 225, 229, 230, 232, 262, 264, 265,
276–284, 287–289, Glossary: neural network

NReLU noisy ReLU, see Section 4.2.6.6; 70, 108, 206, 213

nt nucleotide xlix, 35, 39

O-ESN particle swarm optimized ESN 178

acronyms xxxix

OAF Optimal Activation Functio, see Section 4.2.6.47; 83

OLReLU optimized leaky ReLU, see Section 4.2.6.2; 69, 205, 212

OPAU orthogonal Padé activation unit, see Section 4.3.51; 162, 163

OPLAF odd power linear activation function, see Section 4.2.6.41; 81

OPLU orthogonal permutation liner unit, see Section 4.2.6.37; 79

OS-ELM online sequential ELM xxxiii, xxxiv, xli, 176

OSCN orthogonal SCN 175

p-swish parametricswish, see Section 4.3.1.42; 118

parameterized softplus parametrized softplus, see Section 4.3.20; 143, 145, 199,
203

PAU Padé activation unit, see Section 4.3.48; xxxix, xli, 111, 161, 162, 210, 219

PC Parallel Circuit 171, 222

PCA principal component analysis 38, 44, Glossary: principal component
analysis

PDELU parametric deformable exponential linear unit, see Section 4.3.1.59;
124, 208, 216

PELU parametric exponential linear unit, see Section 4.3.1.43; xxxviii, 118–120,
123, 197, 208, 216

PESN polynomial ESN xli, 178

PFLU power function linear unit, see Section 4.2.7.7; xxxv, 86, 132

PFPLUS parametric first power linear unit with sign, see Section 4.3.1.61; 125

PFPM parametric flatten-p mish, see Section 4.3.10; 134

PFTS parametric flatted-T swish, see Section 4.3.9; 134, 198, 203

PGELU parametric Gaussian error linear unit, see Section 4.3.8; 134, 135

PiLU piecewise linear unit, see Section 4.3.1.22; 106, 112, 207, 215

PLAF power linear activation function, see Section 4.2.6.41; xxxiv, xxxix, 81

PLGAN panoptic layout GAN 182

pLogish parametric logish, see Section 4.2.3.15; 62, 196, 200

PLU piecewise linear unit, see Section 4.3.34; 149, 150, 209, 217

PMAF piecewise Mexican-hat activation function, see Section 4.2.23; 97

PoLU power linear unit, see Section 4.2.7.6; 86

PolyLU polynomial linear unit, see Section 4.2.7.4; 85

positive PReLU positive parametric rectified linear unit (PReLU), see Sec-
tion 4.3.1.2; 106, 196, 200

PPAF piecewise polynomial activation function, see Section 4.3.52; 163

PPGN Plug and Play generative networks 183

PRBF piecewise radial basis function, see Section 4.2.24; 98

PReLU parametric rectified linear unit, see Section 4.3.1.1; xxxiv, xxxv, xxxvii,
xxxix, xli, 54, 72, 82, 99, 105–108, 111–114, 118, 119, 124, 141, 148, 149,
201, 206, 214, Glossary: PReLU

PReNU parametric rectified non-linear unit, see Section 4.2.6.15; 72

PREU parametric rectified exponential unit, see Section 4.3.1.9; 83, 108, 206,
214

ProbAct probabilistic activation, see Section 4.3.1.11; 108, 138

pRPPSG p-recursive piecewise polynomial sigmoid generator, see Section 4.2.2;
51

PRSCN pruning regularization SCN 175

xl acronyms

pRVFLN parsimonious random vector functional link network 174

pSechSig parametric SechSig, see Section 4.2.2.22; 57

PSELU parametric scaled exponential linear unit, see Section 4.3.1.53; xxxvii,
122, 208, 216

pserf parametric serf, see Section 4.3.3.13; 132

PSF parametric sigmoid function, see Section 4.3.2.7; 128

PSGU Parameterized self-circulating gating unit, see Section 4.3.3.7; 130, 131

PShELU exponential linear unit with a trainable horizontal shift, see Sec-
tion 4.3.1.56; li, 197, 201, 289

psigmoid parametric sigmoid, see Section 4.3.2.6; 128, 198, 203

PSiLU parametric SiLU, see Section 4.3.3.1; 129, Glossary: PSiLU
PSoftplus parametric softplus, see Section 4.2.18; 96, 196, 201

PSSiLU parametric shifted SiLU, see Section 4.3.3.3; 129

PSTanh parametric scaled hyperbolic tangent, see Section 4.3.15.2; 136, 198,
203, 289

PSvELU exponential linear unit with a trainable vertical shift, see Section 4.3.1.56;
li, 197, 202

ptanh penalized hyperbolic tangent, see Section 4.2.2.9; 54

pTanhSig parametric TanhSig, see Section 4.2.2.23; 57

PTELU parametric tanh linear unit, see Section 4.3.1.30; 58, 114–116, 136, 207,
208, 215

PUAF polynomial universal activation function, see Section 4.2.16; 95

PuVAE purifying VAE 181

PVLU parametric variational linear unit, see Section 4.3.1.62; 126

PWLU piecewise linear unit, see Section 4.3.43; xxxviii, 153

QNN quadratic neural network 14

RBF radial basis function xxxi, xxxix, 176

RBM restricted Boltzmann machine xxxv, 44, 157, 180, 181

RC reservoir computing xxxviii, 177–179, 185

RCN random convolution node 176

ReBLU rectified BLU, see Section 4.3.1.38; 117

ReGLU gated ReLU, see Section 4.2.4.2; 67

ReLTanh rectified linear tanh, see Section 4.3.1.36; 71, 116

ReLU rectified linear unit, see Section 4.2.6; xxxi, xxxiii–xxxviii, xl–liii, 47–
50, 52, 54, 59, 61, 62, 64–66, 68–73, 75–85, 87–91, 93–95, 97–99, 101,
105, 106, 108–114, 117, 118, 120–122, 124, 125, 131, 135, 136, 138, 140,
143, 144, 146–149, 151, 153, 155, 156, 158–161, 163, 164, 168, 169, 184,
195–198, 209, 279, Glossary: ReLU

RePGAN GAN with residual partial modules 182

RePSHU rectified parametric sigmoid stretchage unit, see Section 4.3.1.58; 124

RePSKU rectified parametric sigmoid shrinkage unit, see Section 4.3.1.58; 124

RePSU rectified parametric sigmoid unit, see Section 4.3.1.58; 124

RePU rectified power unit, see Section 4.2.6.39; l, 3, 72, 80, 110

RESN robust echo state network 178

ReSP rectified softplus, see Section 4.2.6.14; 72, 206, 213

REU rectified exponential unit, see Section 4.2.6.49; 83, 91, 108

acronyms xli

RI-GAN GAN with residual inception modules 182

RMAF ReLU memristor-like activation function, see Section 4.3.1.29; 114, 196,
201

RMDL random multimodel deep learning 179

RMS root mean square 134, 135

RNA ribonucleic acid xlvi, xlix, li, 1, 30, 34–37, Glossary: RNA
RNA-Seq RNA sequencing xli, 1, 29, 33, 34, 36–39, 41–48, Glossary: RNA-Seq
RNN recurrent neural network xlv, 14, 17, 18, 43, 66, 126, 177, 179, Glossary:

recurrent neural network
RoCGAN robust conditional GAN 182

RPAU randomized Padé activation unit, see Section 4.3.49; 161

RPReLU react-PReLU, see Section 4.3.1.5; 106, 201

RReLU randomized leaky ReLU, see Section 4.2.6.3; lii, 65, 68–70, 79, 111, 161,
205, 213, Glossary: randomized leaky ReLU

rRNA ribosomal RNA 34, 35, Glossary: ribosomal RNA
RS-SCN SCN with rough set based attribute reduction 175

RSign react-sign, see Section 4.3.13; 135, 196, 201

RSP rand softplus, see Section 4.2.19; 96

RT–PReLU randomly translational PReLU, see Section 4.3.1.10; 108, 206, 214

RT–ReLU randomly translational ReLU, see Section 4.2.6.11; 71, 81, 108, 206,
213

RVFLN random vector functional link network xxxi, xxxiii, xxxvi, xxxvii, xl,
xlii, xliv, 174, 175

S-PESN simplified PESN 178

S-RReLU softsign randomized leaky ReLU, see Section 4.2.6.4; 70, Glossary:
softsign randomized leaky ReLU

SAAAF shape autotuning adaptive activation function, see Section 4.3.16; 138

SAAF smooth adaptive activation function, see Section 4.3.28; 138, 146

SAE sparse autoencoder 48

SAF spline interpolating activation function, see Section 4.3.52; 162, 163

SAGAN self-attention GAN 182

SAO-ELM structure-adjustable OS-ELM 176

SaRa swish and ReLU activation, see Section 4.2.6.53; 84

SAU smooth activation unit, see Section 4.3.1.6; 107

SAVE structured activation of vertex entropy 171, 172

SBAF Saha-Bora activation function, see Section 4.2.12; 94

SC soft clipping, see Section 4.2.2.11; 54

SC-mish soft clipping mish, see Section 4.3.1.40; 118

SC-swish soft clipping swish, see Section 4.3.1.41; 118

SCAA spatial context-aware activation, see Section 4.2.6.10; 71

scATAC-Seq single-cell ATAC-seq 45, 46

SCBNN stochastic configured Bayesian neural network 175

SCIBER single-cell integrator and batch effect remover 47

SCL-mish soft clipping learnable mish, see Section 4.3.1.40; 118

SCN stochastic configuration network xxxii–xxxv, xxxvii–xxxix, xli, 175

scRNA-Seq single-cell RNA-Seq 43–47

scVI single-cell variational inference 46

xlii acronyms

SE-DCGAN squeeze-excitation network-deep convolution GAN 182

SELU scaled ELU, see Section 4.2.7.11; 54, 59, 65, 87, 88, 111, 122, 140, 155, 205,
208, 213

SERLU scaled exponentially-regularized linear unit, see Section 4.2.7.13; xlv,
88

SESN sinusoidal ESN 178

SExp scaled exponential function, see Section 4.3.15.4; 137, 198, 203

SG Sigmoid-Gumbel, see Section 4.2.2.17; 56

SGD stochastic gradient descent xlv, 26, 27, Glossary: stochastic gradient
descent

SGELU symmetrical Gaussian error linear unit, see Section 4.2.3.2; 59, 60, 195,
201

SGT scaled-gamma-tanh, see Section 4.3.12; 135

SHAP Shapley additive explanations 47, Glossary: Shapley additive explana-
tions

ShELU exponential linear unit with a fixed horizontal shift, see Section 4.3.1.56;
li, 194, 197, 201

ShHardTanh HardTanh with a fixed horizontal shift, see Section 4.2.6.19; 74,
197, 202

ShiLU adaptive shifted ReLU, see Section 4.3.1.16; 110, 196, 201, Glossary:
ShiLU

SiELU Gaussian error linear unit with sigmoid activation function, see Sec-
tion 4.2.3.35; 66

SigLU sigmoid linear unit, see Section 4.2.6.52; 58, 84

SiLU sigmoid-weighted linear unit, see Section 4.2.3; xxxii–xxxv, xl, xliv,
xlvii–liii, 53, 58–64, 66, 117, 129–132, 141, 142, 144, 198

SinLU sinu-sigmoidal linear unit, see Section 4.3.3.11; 132, 210, 219

SLAF self-learnable activation function, see Section 4.3.47.6; 111, 159, 210, 219

SlReLU Sloped ReLU, see Section 4.2.6.5; 70, 106, 112, 195, 196, 200

SLS-SS scaled logistic sigmoid with scaled sine, see Section 4.3.27.1; 146, 209,
217

SLU softplus linear unit, see Section 4.2.6.13; 72

sMRI structural MRI 183

SMU smooth maximum unit, see Section 4.3.1.7; lii, 107

snmC-Seq single-nucleus methylcytosine sequencing 46

SNN self-normalizing neural network 87

SP-RVFLN sparse pre-trained RVFLN 174

SPECT single-photon emission computed tomography 183

SPLASH simple piecewise linear and adaptive function with symmetric
hinges, see Section 4.3.29; 147

SPOCU scaled polynomial constant unit, see Section 4.2.15; 95

SQLU square linear unit, see Section 4.2.8.2; 91

SQMAX square softmax, see Section 4.2.8.7; 92

SQRT square-root-based activation function, see Section 4.2.9; 93

SqSoftplus square softplus, see Section 4.2.8.5; 92

SQU shifted quadratic unit, see Section 4.2.44; 102

squish square swish, see Section 4.2.8.3; 91

acronyms xliii

SReLU S-shaped ReLU, see Section 4.3.32; lii, 65, 124, 149, 150, 153, 166, 209,
217

SRS soft-root-sign, see Section 4.2.2.10; 54

SSAF S-shaped activation function, see Section 4.2.9; 93

SSBS smooth sigmoid-based shrinkage, see Section 4.3.1.58; 124

SSE sum of squared errors 25

sSELU scaled scaled exponential linear unit, see Section 4.2.7.14; 88, 206, 214

SSinH scaled sine-hyperbolic function, see Section 4.3.15.3; 136, 137, 198, 203

SSS shifted and scaled sigmoid, see Section 4.2.2.1; 51, 195, 200

SSU shifted sine unit, see Section 4.2.35; 100

STAC-tanh slope and threshold adaptive activation function function with
tanh function, see Section 4.3.2.8; 128, 205, 212

stanh scaled hyperbolic tangent, see Section 4.2.2.3; 52, Glossary: scaled hyper-
bolic tangent

STGAN selective transfer GAN 182

STM short-term memory 177

SVAF slope varying activation function, see Section 4.3.2.4; 127, 198, 202, 279

SvELU exponential linear unit with a fixed vertical shift, see Section 4.3.1.56;
li, 123, 194, 197, 201

SVESM support vector echo-state vector machine 178

SvHardTanh HardTanh with a fixed vertical shift, see Section 4.2.6.19; 74, 197,
202

SVM support vector machine 47, 98, 177, 179

SwiGLU gated swish, see Section 4.2.4.4; 67

SymMSAF symmetrical MSAF, see Section 4.2.2.24; 57

T thymine 29, 30, 34, Glossary: thymine
T-swish arctan swish, see Section 4.3.1.57; 123, 208, 216

TAAF transformative adaptive activation function, see Section 5.2; v, vi, xxxiv,
xlv, 2–7, 173, 187–189, 192–199, 201, 203–212, 217, 220–222, 225, 226,
229–235, 237–251, 254–258, 260–262, 266–268, 270–273, 275–285, 287–
290, 426–455, Glossary: transformative adaptive activation function

TAF trainable activation function 105, 156, Glossary: trainable activation func-
tion

TaLU tanh linear unit, see Section 4.3.1.31; l, 115

tanh hyperbolic tangent, see Section 4.2.2; xxxv–xxxvii, xl, xlii–xliv, xlviii, xlix,
li–liii, 5, 6, 49, 51, 52, 54, 55, 58, 59, 62–65, 68, 73, 77, 79, 85, 87, 91–93,
98, 101, 108, 111, 114–116, 127, 131, 136, 138, 139, 143, 144, 149, 155,
156, 158, 164, 168, 169, 229–231, 233, 235–237, 239, 245, 252, 260, 261,
267, 275, 276, 280, 281, Glossary: hyperbolic tangent

TBSReLU tangent-bipolar-sigmoid ReLU, see Section 4.2.3.19; xliii, 62, 131

TBSReLUl TBSReLU learnable, see Section 4.3.3.8; 131

TCA trained compound activation function, see Section 4.3.47.1; xliii, 157, 211,
218

TCAv2 trained compound activation function variant 2, see Section 4.3.47.1;
157, 211, 218

TeLU tanh exponential linear unit, see Section 4.3.1.34; 115

ThLU tanh linear unit, see Section 4.2.7.1; 85, 114

xliv acronyms

TransGAN transformer based GAN 182

TRec truncated rectified, see Section 4.2.6.21; 3, 75

TReLU tanh based ReLU, see Section 4.3.1.35; xliv, 85, 116, 207, 215

TReLU2 TReLU variant 2, see Section 4.3.1.35; 116

TRN transcriptional regulatory network 43

TruG truncated gaussian unit, see Section 4.3.53; 164

TS-sigmoid triple-state sigmoid unit, see Section 4.2.2.6; 53, 60

TS-swish triple-state swish unit, see Section 4.2.3.6; 53, 60, 129

TSAF trapezoid-shaped activation function, see Section 4.3.36; liii, 151, 166

TSiLU hyperbolic tangent sigmoid-weighted linear unit, see Section 4.2.3.24;
63

tsoftmax tuned softmax, see Section 4.3.4; 132

TSP travelling salesman problem 184

TSReLU tangent-sigmoid ReLU, see Section 4.2.3.18; xliv, 62, 131

TSReLUl TSReLU learnable, see Section 4.3.3.7; 131

TWIESN time warp invariant echo state network 178

UAF universal activation function, see Section 4.3.21; xl, 95, 143, 144

VAE variational autoencoder xxxii, xl, 4, 43–46, 181–184

VAF variable activation function, see Section 4.3.55.1; 168, 169, 211, 220

VARGAN variance enforcing GAN 182

VBAF volatility-based activation function, see Section 4.2.47; 103

VLReLU very leaky ReLU, see Section 4.2.6.2; 68, 69, 155, 205, 212

VLU variational linear unit, see Section 4.2.6.9; xl, 71, 126

VML-ESN variable memory length ESN 178

vReLU V-shaped ReLU, see Section 4.2.6.25; lii, liii, 76, 77, 97, 165

VSF variant sigmoid function, see Section 4.2.2.2; 52, 195, 200

WCRVFLN wavelet-coupled RVFLN 174

WGAN-GP Wasserstein GAN with gradient penalty 44, 45, 182

WHE wide hidden expansion 168, 169

WiG weighted sigmoid gate unit, see Section 4.2.3; 59

WoS Web of Science xii, xlviii
WRN wide residual network 149, 177

WTA winner-take-all 10

https://www.webofscience.com/wos

G L O S S A RY

β-softmax an extension of the softmax activation function (AF), see Sec-
tion 4.2.5.1; 67

1Dmeta-ACON a MetaACON variant, see Section 4.3.3.6; 130

ACON-A an adaptive activation function from the ACON family; another
name for the swish, see Section 4.3.3.1; xlv, 129

ACON-B an adaptive activation function from the ACON family; extension
of the ACON-A, see Section 4.3.3.5; xlv, 130

ACON-C an adaptive activation function from the ACON family; extension
of the ACON-B, see Section 4.3.3.6; xlix, 130

Adam a popular variant of the SGD optimization algorithm; more in [291] 26,
27

adaptive activation function an activation function that can adapt to the data;
often, it has a parameter whose value is data-dependent v, xxxiv,
xxxvi, xli, xliii, xlv, xlvii, xlix–li, liii, 2–4, 105, 107, 114, 121–129, 132,
134, 135, 137–140, 143–146, 148, 151–154, 157, 158, 160, 168, 169, 193,
194, 197–199, 207, 229, 231, 233, 277–279, 287, 290

adaptive transformative unit a proposed unit, used for the implementation
of the proposed TAAF, see Section 5.4.1.1; 5, 225, 226

adenine a purine nucleobase. One of the four bases in the DNA. 29, 30, 34

Aranda-Ordaz an activation function, see Section 4.2.20; 96

arctangent the inverse of the tangent function, also used as an activation
function, see Section 4.2.2.4; 52, 98

arctid an activation function, see Section 4.2.28; 98

ARiA2 an activation function; special case of ARiA, see Section 4.3.37; 151, 152

artificial neural network a biologically inspired computational model, inter-
changeably used with the term neural network, see Chapter 2; xlix, 2,
4, 9, 10, 13, 14, 22, 41, 42, 51, 173, 278

ASERLU an activation function; an extension of the SERLU for BiLSTM
architectures, see Section 4.2.7.13; 88

backpropagation a method for calculation of the gradient of the loss function
w.r.t. the network’s weight 10, 11, 23–25, 50, 51, 111, 127, 174

bent identity an activation function, see Section 4.2.10; 94

bidirectional recurrent neural network a type of recurrent neural network
where the outputs can use information from both past and future
states, more in [447] 43

BipolarPlus an activation function proposed in [904], see Section 4.3.54.2; 164,
167

bounded leaky ReLU an activation function; ReLU variant combining BReLU
and LReLU, see Section 4.2.6.24; 75, 97, 149, 206, 213

bounded ReLU an activation function; ReLU variant with bounds, see Sec-
tion 4.2.6.16; xlv–xlvii, 3, 73, 75, 97, 165

xlv

xlvi glossary

BReLUPlus an activation function; a smoothed variant of BReLU, see Sec-
tion 4.3.54.7; 165

Category Normalized Citation Impact a document citation metric calculated
by Clarivate; it is equal to the number of a document’s citations nor-
malized by the expected number of citations for the same document
type, publication year, and subject area 4 xlviii

cDNA copy DNA, also called complementary DNA; synthetic DNA tran-
scribed from mRNA [381] using reverse transcriptase [379, p. 19] xlvi,
xlviii, 35, 36, 46

CiteScore a journal citation metric calculated by Elsevier using items indexed
in Scopus; it is equal to the average number of citations per document
published in the last four years 5 xii

comb-H-sine an activation function, see Section 4.2.25; 98, 195, 201

cosid an activation function, see Section 4.2.31; 99

cRNA copy RNA, transcribed from cDNA during amplification phase 35

cytosine a pyrimidine nucleobase. One of the four bases in the DNA. 29, 30,
34

D–GEX a neural network for gene expression inference [2], see Section 4.1.1;
v, 2–6, 38, 39, 41, 42, 47, 171, 187–190, 193, 221–225, 229–251, 266–268,
270–273, 275–277, 279–285, 287, 426–455

DELU an activation function proposed in [889]; not an abbreviation, see
Section 4.3.1.39; 85, 117, 119

differential gene expression analysis a commonly used computational ap-
proach for identifying genes whose expressions are significantly
different between two phenotypes [2112] 5, 192

DLU different name for SignReLU used in [904, 912], see Section 4.2.6.32; 77,
167

DNA an extended molecular structure for storing hereditary information
xlv–xlvii, xlix, liii, 1, 4, 29–34, 46

DNA microarray used for measuring DNA levels [384]; mainly for gene
expression analysis xlix, 3, 4, 29, 30, 32–34, 36, 37, 45

Dual Line an activation function; extension of DPReLU, see Section 4.3.1.21;
106, 112, 207, 215

dual parametric activation function an activation function inspired by
DPReLU, see Section 4.3.1.23; xlvii, 112, 113, 207, 215

DualELU an activation function; an ELU variant similar to DualReLU, see
Section 4.2.7.2; 85

DualReLU an activation function; a two-dimensional ReLU variant, see Sec-
tion 4.2.6.36; xlvi, 79, 85

E-swish an activation function based on the swish, see Section 4.3.3.4; 123, 129,
130

E-Tanh an activation function, see Section 4.2.40; 101, 195, 200

4 see https://incites.help.clarivate.com/Content/Indicators-Handbook/ih-normalize

d-indicators.htm

5 see https://service.elsevier.com/app/answers/detail/a_id/14880/supporthub/scopus/

https://clarivate.com/
https://www.elsevier.com/
https://www.scopus.com/
https://incites.help.clarivate.com/Content/Indicators-Handbook/ih-normalized-indicators.htm
https://incites.help.clarivate.com/Content/Indicators-Handbook/ih-normalized-indicators.htm
https://service.elsevier.com/app/answers/detail/a_id/14880/supporthub/scopus/

glossary xlvii

EIS a family of activation functions, not an abbreviation, see Section 4.3.25;
144, 145

Elliott an activation function, see Section 4.2.2.15; xxxvii, 55, 93

ELUPlus an activation function; a mollified variant of ELU, see Section 4.3.54.13;
167

ErfAct an adaptive activation function based on the swish, see Section 4.3.3.12;
132

expcos an activation function, see Section 4.3.42; 153

ExpExpish an activation function based on the SiLU, see Section 4.2.3.13; 61

exponential linear unit a popular activation function extending ReLU, see
Section 4.2.6.48; xxxii–xxxv, xxxvii–xl, xlii, xliii, xlvi–xlviii, l, li, 54, 59,
61, 65, 74, 82–89, 91–93, 108, 111, 114, 115, 117–125, 140, 141, 145, 156,
159, 160, 167, 194, 197, 205, 208, 213

exponential swish an activation function related to the sigmoid-weighted
linear unit (SiLU), see Section 4.2.3.8; 61, 129

external RNA control an approach for microarray performance assessment; see
[391] for more details 35

fully parameterized activation function an activation function similar to
DPAF, see Section 4.3.1.24; 113, 207, 215

GELU a popular activation function based on the cumulative distribution
function of the normal distribution, see Section 4.2.3.1; xxxv, xxxix,
xlii, l, 59, 60, 62, 65, 67, 89, 91, 111, 131, 134, 140, 142, 143

gene expression process of synthesizing gene product (e.g., a protein) using
information encoded in a gene v, xlvi–xlviii, li, 1–7, 9, 17, 29, 30, 33,
35, 36, 38, 39, 41–48, 175, 179, 181, 183, 192, 229, 270, 271, 275–277,
280–282, 284, 285, 287, 288, 290

Gene Expression Omnibus a central and public repository of high-throughput
gene expression data by NCBI, more in [430] 38, 41

generalized hyperbolic tangent an adaptive activation function, see Sec-
tion 4.3.2.1; 126, 128, 146, 198, 202

generalized swish an activation function related to the SiLU, see Section 4.2.3.7;
60, 129

genetic neural network a neural network architecture for gene expression
tasks presented in [439] xlviii, 42, 43

gish an activation function based on the SiLU, see Section 4.2.3.10; 61

GPU a specialized piece of hardware initially designed to accelerate image
processing and computer graphics in general; often used for acceler-
ation of training and inference of neural networks 3, 12, 41, 190, 222,
289

guanine a purine nucleobase. One of the four bases in the DNA. 29, 30, 34

Hard sigmoid an activation function similar to BReLU with sigmoid-like
shape, see Section 4.2.6.17; xlvii, xlviii, lii, 73, 75, 89, 148

Hard-Swish an activation function similar to Hard sigmoid related to the
swish function, see Section 4.3.31.3; 148, 149

Hardshrink an activation function similar to Hard sigmoid, see Section 4.2.6.22;
xlviii, 75, 166

xlviii glossary

HardshrinkPlus an activation function; a smoothed variant of Hardshrink,
see Section 4.3.54.10; 166

HardSReLUE an activation function; a parametric ELU, see Section 4.2.7.16; 89

HardTanh an activation function similar to Hard sigmoid with tanh-like
shape, see Section 4.2.6.18; xlii, xliii, xlviii, 73, 74, 111, 166, 197, 202

HardTanhPlus an activation function; a smoothed variant of HardTanh func-
tion, see Section 4.3.54.9; 166

hat an ReLU-based activation function, see Section 4.3.1.28; 114

Hexpo an activation function, see Section 4.2.2.12; 54, 55, 89, 205, 212

Hi-C high-throughput method for detection of chromatin interactions 46

hybridization a process in which a cDNA binds to the probes on the microar-
ray surface 29–31, 33–35

hyper-sinh an activation function, see Section 4.2.27; 98

hyperbolic tangent one of most common activation functions used in NNs,
see Section 4.2.2; xxxv–xxxvii, xl, xlii–xliv, xlviii, xlix, li–liii, 5, 6, 49,
51, 52, 54, 55, 58, 59, 62–66, 68, 73, 77, 79, 85, 87, 91–93, 98, 101, 108,
111, 114–116, 127, 128, 131, 135, 136, 138, 139, 143, 144, 149, 155, 156,
158, 164, 168, 169, 229–231, 233, 235–237, 239, 245, 252, 260, 261, 267,
275, 276, 280, 281

improved logistic sigmoid an activation function based on the logistic sig-
moid, see Section 4.2.2.7; 53, 128, 205, 206, 212

Journal Citation Indicator a journal citation metric calculated by Clarivate
using items indexed in WoS; it is equal to the average CNCI published
in the last three years xii

Journal Impact Factor a journal citation metric calculated by Clarivate using
items indexed in WoS; it is equal to the mean number of citations for
articles published in the last two years6 xii

k-winner-take-all an activation function based on the winner-take-all princi-
ple, see Section 4.2.46; 103

k-means a greedy clustering algorithm 39

L1000 a cost-efficient gene expression assay, see [1] v, 1, 2, 29, 37–39, 41, 42,
44, 47, 275, 281, 282, 287, 288, 290

lasso a linear regression variant with l1 regularization; more in [448] 43

leaky ReLU a popular ReLU based activation function; allows information
flow for negative inputs unlike ReLU, see Section 4.2.6.2; xxxv, xxxviii,
xxxix, xliv, xlv, xlix, l, 52, 54, 61, 65, 68–70, 75, 82–84, 87, 88, 97, 105,
107, 109, 112, 117, 124, 136, 140, 143, 149, 155, 160, 165, 195, 196, 205,
206, 212, 290

Li-ReLU an activation function; a combination of a linear function and ReLU
, see Section 4.2.6.33; 78

linear GeNN a variant of GeNN with linear activation function [439] 43

logish an activation function based on the SiLU, see Section 4.2.3.11; xxxix,
xlix, 61, 62, 167

6 see https://incites.help.clarivate.com/Content/Indicators-Handbook/ih-journal-c

itation-reports.htm

https://clarivate.com/
https://clarivate.com/
https://incites.help.clarivate.com/Content/Indicators-Handbook/ih-journal-citation-reports.htm
https://incites.help.clarivate.com/Content/Indicators-Handbook/ih-journal-citation-reports.htm

glossary xlix

LogishPlus an activation function; a mollified variant of logish, see Sec-
tion 4.3.54.16; 167

logistic sigmoid one of most common activation functions used in NNs, see
Section 4.2.2; xlviii, l–liii, 5, 6, 49–53, 55, 57, 58, 60–63, 65, 66, 73, 82,
84, 92, 95, 98, 103, 111, 117–119, 126–132, 135–140, 142–144, 146, 149,
151, 154, 156, 158, 164, 167, 169, 184, 195, 198, 205, 207, 209, 211, 221,
230–235, 237, 239, 245, 246, 252, 267, 268, 276, 277, 280, 281

LogLog an activation function, see Section 4.2.2.20; xxxii, xlix, 56, 61

LogLogish an activation function based on the SiLU and the LogLog, see
Section 4.2.3.12; 61

LReLUPlus an activation function; a smoothed variant of LReLU, see Sec-
tion 4.3.54.3; 165, 166

LS–ReLU an activation function inspired by rectified linear unit (ReLU); not
an abbreviation, see Section 4.2.7.20; 90

maxout unit an activation function returning the maximum of several linear
functions, see Section 4.3.46; 69, 113, 149, 155, 168, 210, 218

maxsig an activation function, see Section 4.2.7; 84

maxtanh an activation function, see Section 4.2.7.1; 85

MeLUPlus an activation function; a smoothed variant of MeLU, see Sec-
tion 4.3.54.11; 166

messenger RNA copied from DNA during transcription; used for protein
synthesis during translation xlvi, 1, 35, 37, 48

MetaACON an extension of the ACON family where the parameter ai is
determined by a small NN, see Section 4.3.3.6; xlv, 130

MetaACON-C an ACON-C variant where the parameter ai is determined by
a small NN, see Section 4.3.3.6; 130

microarray used for measuring, usually DNA or RNA levels [384]; called
DNA microarray when measuring DNA levels and RNA microarray
when measuring RNA levels [384]; see [376] for other types v, vi,
xlviii, 1, 4, 5, 9, 29, 32–37, 39, 42, 43, 45–47, 193, 282, 287

microRNA a small, non-coding RNAs containing 21 – 28 nucleotides 1, 47, 48

minsin an activation function, see Section 4.2.6.8; 71

mish an activation function; combination of tanh and softplus, see Sec-
tion 4.2.3.29; xxxix, xli, xlix, lii, 61, 62, 64–66, 99, 115, 118, 131, 134,
159

MishPlus an activation function; a mollified variant of mish, see Section 4.3.54.15;
167

Mishra an activation function; unnamed in the original paper, see Section 4.2.11;
94

N-activation an adaptive activation function resembling the letter N, see
Section 4.3.32.1; 149

n-sigmoid a sigmoid-based activation function, see Section 4.2.2; 51

neural network a biologically inspired computational model, interchangeably
used with the term artificial neural network, see Chapter 2; v, xxxiii,
xxxiv, xxxvi, xxxviii, xl, xli, xlv–l, 2–4, 6, 9–18, 24–27, 39, 41–50, 56,
60, 64, 66, 68, 73, 79, 95, 96, 98, 103, 105, 111, 117, 120, 130, 150, 153,

l glossary

158, 161, 163, 168, 169, 171, 173–177, 179–181, 184, 186, 193, 221, 222,
225, 229, 230, 232, 262, 264, 265, 276–284, 287–289

NewSigmoid an activation function similar to logistic sigmoid, see Sec-
tion 4.2.2.18; 56

NPF an adaptive activation function proposed in [1237]; based on Nonpara-
metric Fourier Basis Expansion, see Section 4.3.55; 168

P+FELU trainable FELU based AF, see Section 4.3.1.47; 120, 202

P-E2-Id an adaptive activation function based on P-E2-ReLU, see Section 4.3.1.49;
121

P-E2-ReLU an adaptive activation function combining two ELUs and ReLU,
see Section 4.3.1.49; l, 121

P-E2-ReLU-1 an adaptive activation function based on P-E2-ReLU, see Sec-
tion 4.3.1.49; 121

P-E2-XU family of adaptive activation functions, see Section 4.3.1.49; 121

P-SIG-RAMP an adaptive activation function combining logistic sigmoid
and ReLU, see Section 4.3.14; 135

paired ReLU paired ReLU, see Section 4.3.1.26; 113, 147, 196, 197, 201

pan a piecewise linear activation function, see Section 4.2.6.26; l, 76, 165

PanPlus an activation function; a smoothed variant of pan function, see
Section 4.3.54.6; 165

PATS an activation function; not an abbreviation, see Section 4.3.3.9; 131

phish an activation function based on the SiLU and GELU, see Section 4.2.3.16;
62

polyexp an activation function, see Section 4.2.38; 100, 101

power activation function an activation function; also known as RePU, see
Section 4.2.6.39; 80

PReLU a popular adaptive activation function; a LReLU variant with trainable
leakiness, see Section 4.3.1.1; xxxiv, xxxv, xxxvii, xxxix, xli, 54, 72, 82,
99, 105–108, 111–114, 118, 119, 124, 141, 148, 149, 201, 206, 214

principal component analysis a dimensionality reduction method by lin-
ear transformation into a new coordinate system that respects the
variance in the data 38, 44

probit another name for the cumulative standard distribution function when
used as activation function, see Section 4.2.2; 51

PSiLU another name for the swish AF, see Section 4.3.3.1; 129

PTaLU an AAF, TaLU variant with another parameter, see Section 4.3.1.32; 115

randomized leaky ReLU a LReLU based activation function with stochastic
leakiness during training, see Section 4.2.6.3; lii, 65, 68–70, 79, 111, 161,
205, 213

rectified hyperbolic secant an activation function based on the hyperbolic
secant, see Section 4.2.3.27; 59, 64

recurrent neural network a type of neural network that contains loop in the
information flow xlv, 14, 17, 18, 43, 66, 126, 177, 179

ReLU one of the most popular activation functions, see Section 4.2.6; xxxi,
xxxiii–xxxviii, xl–liii, 47–50, 52, 54, 59, 61, 62, 64–66, 68–73, 75–85,
87–91, 93–95, 97–99, 101, 105–114, 117, 118, 120–122, 124, 125, 131,

glossary li

135, 136, 138, 140, 143, 144, 146–151, 153, 155, 156, 158–161, 163, 164,
168, 169, 184, 195–198, 209, 279

ReLU-Swish an activation function; special case of FTS, see Section 4.2.6.46; 3,
82

ribosomal RNA a primary component of ribosomes; non-coding RNA 34, 35

RNA an extended molecular structure; stores hereditary information but also
can catalyze biological reactions and control gene expression among
other things xlvi, xlix, li, 1, 30, 34–37

RNA microarray used for measuring RNA levels [384] xlix
RNA-Seq a NGS RNA sequencing method; allows for measuring gene

expression levels xli, 1, 29, 33, 34, 36–39, 41–48

root2sigmoid an activation function similar to logistic sigmoid, see Sec-
tion 4.2.2.19; 56

rootsig an activation function, see Section 4.2.2.25; 57, 58

RSigELU an activation function; a parametric ELU, see Section 4.2.7.15; li, 88,
89, 171, 205, 212

RSigELUD an activation function; a variant of RSigELU with two parameters,
see Section 4.2.7.19; 89, 171, 206, 214

scaled hyperbolic tangent a scaled variant of hyperbolic tangent, see Sec-
tion 4.2.2.3; 52

scaled logistic sigmoid an activation function based on the logistic sigmoid,
see Section 4.3.27.1; 146, 199, 203

scaled softsign an adaptive activation function; an adaptive variant of , see
Section 4.3.19; 143, 209, 217

SechSig an activation function, see Section 4.2.2.22; xl, 57

self arctan an activation function based on the SiLU, see Section 4.2.3.14; 61

serf an activation function; combination of the Gauss error function and
softplus, see Section 4.2.3.32; xl, 65, 132

Shapley additive explanations a game theoretic approach for explaining the
output of a machine learning model 47

shifted exponential linear unit an activation function; an ELU with a vertical
shift (SvELU, PSvELU) or an ELU with ahorizontal shift (ShELU,
PShELU), see Section 4.3.1.56; 74, 123

Shifted ReLU an activation function; translated ReLU, see Section 4.2.6.1; li,
68, 82, 106, 110

ShiLU a ReLU based activation function; not to be confused with Shifted
ReLU, see Section 4.3.1.16; 110, 196, 201

SigLin an activation function; a combination of the logistic sigmoid and a
linear function, see Section 4.2.2.8; 53

sigmoid a mathematical function having S-shaped curve, logistic sigmoid is
the most known example xxxix, xl, xlii–xliv, xlvii, xlix, 6, 48, 50, 52,
53, 55, 56, 58, 59, 66, 87, 124, 128, 169, 279

Sigmoid-Algebraic an activation function similar to logistic sigmoid, see
Section 4.2.2.5; 53

SignReLU an activation function; a combination of ReLU and softsign, see
Section 4.2.6.32; xlvi, lii, 77, 167, 205, 213

lii glossary

SignReLUPlus an activation function; a smoothed variant of , see Section 4.3.54.18;
168

sinc an activation function, see Section 4.2.35; 100

Sinc-Sigmoid an activation function, see Section 4.2.2.16; 55

sincos an activation function, see Section 4.3.39; 152

SineReLU an activation function; extension of ReLU, see Section 4.2.6.7; 70

sinp an activation function based on the sine function, see Section 4.2.32; 99

SinSig an activation function; uses logistic sigmoid and is similar to mish
and swish, see Section 4.2.3.34; 66, 152

smish an activation function; combination of tanh, logarithm, and logistic
sigmoid, see Section 4.2.3.30; 61, 65

smooth step an activation function, see Section 4.2.2.14; 55

SMU-1 an activation function; a variant of the SMU using a different smooth-
ing approach, see Section 4.3.54.3; 165

soft exponential an activation function interpolating between logarithmic,
linear, and exponential functions, see Section 4.3.1.50; 48, 121

softmax a popular activation function for classification problems; outputs a
soft argmax of outputs of a given layer, see Section 4.2.5; xxxvi, xliv,
xlv, 67, 92, 132, 133, 156, 169

SoftModulusQ an activation function; a quadratic approximation of the
vReLU, see Section 4.2.6.30; 77

SoftModulusT an activation function; a tanh based approximation of the
vReLU, see Section 4.2.6.31; 64, 77, 206, 213

softplus an activation function, see Section 4.2.17; xxxv, xxxix, xlix, li, 54, 61,
62, 64, 65, 68, 72, 89, 92, 95, 96, 111, 127, 139, 143, 145, 160, 164, 194,
196, 206

Softshrink an activation function similar to Hard sigmoid, see Section 4.2.6.23;
lii, 75, 76, 165

SoftshrinkPlus an activation function; a smoothed variant of Softshrink, see
Section 4.3.54.5; 165

softsign an activation function, see Section 4.2.2.13; li, lii, 55, 70, 77, 88, 143,
156, 167

softsign randomized leaky ReLU a RReLU based activation function com-
bined with softsign, see Section 4.2.6.4; 70

SoftsignPlus an activation function; a mollified variant of softsign, see Sec-
tion 4.3.54.17; 167

SQNL an activation function; not an abbreviation, see Section 4.2.8.1; 90–92

SquarePlus an activation function proposed in [1234], see Section 4.3.54.1; 164,
167

SReLUPlus an activation function; a smoothed variant of SReLU, see Sec-
tion 4.3.54.8; 166

StarReLU an activation function; extension of ReLU, see Section 4.3.1.17; 110

StepPlus an activation function proposed in [904], see Section 4.3.54.2; 164

stochastic gradient descent a method for optimization of an objective func-
tion; it is a variant of gradient descent that uses stochastic batches of
data instead of the entire dataset to calculate the gradient xlv, 26, 27

suish an activation function; proposed as the alternative to the SiLU and
swish, see Section 4.2.3.17; 62

glossary liii

SwAT an activation function combining logistic sigmoid and arctan; not an
abbreviation, see Section 4.2.3.26; 64

swim an adaptive activation function similar to the swish, see Section 4.3.3.14;
132

swish an adaptive activation function; an adaptive variant of SiLU, see Sec-
tion 4.3.3.1; xxxix, xli, xliii–xlvii, l, lii, liii, 52, 54, 58, 60–62, 64–67, 74,
82–84, 88, 89, 91, 95, 108, 111, 114, 123, 129–131, 136, 140, 144, 145,
149, 151, 152, 156, 159, 167, 198, 203, 245, 246, 252, 257, 260, 261, 279

SwishPlus an activation function; a mollified variant of swish, see Sec-
tion 4.3.54.14; 167

symexp an activation function inverse of the LAU, see Section 4.2.14; 94

symlog an alternative name of the LAU, see Section 4.3.15.5; 94

TanhExp an activation function; combination of tanh and exponential func-
tion, see Section 4.2.3.29; 62, 65, 115

tanhLU an AAF, combination of tanh and a linear function, see Section 4.3.1.33;
115, 207, 214

TanhSig an activation function, see Section 4.2.2.23; xl, 57

TanhSoft a family of adaptive activation functions proposed in [1095], see
Section 4.3.2.5; 127

tent an ReLU-based activation function, see Section 4.3.1.27; 77, 113, 114

thymine a pyrimidine nucleobase. One of the four bases in the DNA. 29, 30,
34

trainable activation function an activation function; another name for the
adaptive activation function (AAF) 105, 156

transformative adaptive activation function a class of adaptive activation
functions allowing for translation and scaling of an activation func-
tion; proposed in this work, see Section 5.2; v, vi, xxxiv, xxxv, xlv,
2–7, 173, 187–189, 192–199, 201, 203–212, 217, 220–222, 225, 226, 229–
235, 237–251, 254–258, 260–262, 266–268, 270–273, 275–285, 287–290,
426–455

triple an adaptive activation function, see Section 4.2.43; 101

TSAFPlus an activation function; a smoothed variant of TSAF, see Sec-
tion 4.3.54.12; 166

vReLUPlus an activation function; a smoothed variant of vReLU, see Sec-
tion 4.3.54.4; 165

wave an activation function, see Section 4.2.41; 101

1
I N T R O D U C T I O N

Deciphering the intricate mechanisms that govern gene expression (GE) is a
challenging task in computational biology, as this fundamental process plays
a crucial role in the production of a variety of proteins and ribonucleic acids
(RNAs), each with distinct roles in cellular functions. Gene expression is the
process through which the genetic information encoded in deoxyribonucleic
acid (DNA) is transcribed into functional RNA molecules and then translated
into proteins within a cell. The regulation of gene expression is a complex
and dynamic process that involves various stages, ranging from transcrip-
tional initiation to RNA processing, splicing, transport, and translation. The
regulation of gene expression is tightly controlled by internal and external
signals, environmental stimuli, and developmental cues.

Understanding the mechanisms underlying gene expression is essential
to unraveling the fundamental principles that govern cellular function, con-
tribute to disease pathology, and drive organismal development. The study
of gene expression is of paramount importance in various scientific disci-
plines, from basic biological research to cutting-edge clinical applications.
Gene expression patterns provide valuable insights into cellular processes,
developmental biology, evolutionary dynamics, and cellular responses to
diverse environmental cues.

The emergence of high-throughput technologies such as microarray anal-
ysis and RNA sequencing (RNA-Seq) has revolutionized the collection of
transcriptomic datasets, enabling comprehensive exploration of gene expres-
sion profiles under different conditions, tissues, developmental stages, and
organisms. These technologies have also led to the discovery of various RNAs
that play crucial roles in regulating gene expression. For instance, microR-
NAs (miRNAs) are small non-coding RNAs that can bind to complementary
sequences in messenger RNA (mRNA) molecules and inhibit their translation
into proteins, thereby regulating gene expression. Similarly, long non-coding
RNAs have also been shown to regulate gene expression by interacting with
chromatin-modifying complexes and regulating the transcription of target
genes.

Despite a significant drop in price in recent years, gene expression profiling
is still relatively expensive for large-scale experiments, limiting its widespread
adoption. To facilitate such experiments, the LINCS program developed the
L1000 Luminex bead technology [1]. This technology measures the expression
profile of approximately 1,000 selected landmark genes and then reconstructs
the full gene profile of about 10,000 target genes [1] (see Section 3.3.3 for more
details). The L1000 assay is a cost-effective alternative to traditional gene
expression profiling methods, allowing researchers to study gene expression
in large-scale experiments.

1

2 introduction

1.1 problem statement

The emergence of the cost-effective L1000 platform (see Section 3.3.3) repre-
sents a milestone in the field of transcriptomics, as it enables researchers to
collect large datasets that capture diverse gene expression profiles encompass-
ing numerous biological conditions — the total size of the collected dataset
is over 1,300,000 gene expression profiles. To facilitate such a cost-effective
method of measuring GE, the L1000 relies on computational methods to infer
the full GE profile [1]. While the first approaches for inferring the full GE
profile relied on the linear regression (LR) [2], more advanced methods based
on an artificial neural network (ANN) emerged [2]. Artificial neural network
— or, for the purposes of this work, NN in short — is a biologically inspired
computational model that is able to model complex behavior through a com-
position of many simple operations (see Chapter 2 for a brief introduction
into NNs). NNs are comprised of interconnected nodes that are (usually)
organized into layers; these nodes are called neurons, and they aggregate a
number of input signals to produce a single output that might be an input
of a neuron in the following layer. Most commonly, the aggregation is an
application of a non-linear function, called AF, to a linear combination of the
input signals.

This work focuses on improving the full gene expression profile inference
from the GE profiles of the landmark genes of the L1000 platform via neural
networks. Specifically, it focuses on improving the performance inference
of the NN based model called D–GEX introduced in [2] primarily in two
ways — adaptive modification of AFs and modification of the original D–GEX
architecture to allow for more expressive models given the same resource
constraints. The full GE profile inference is a supervised task — it is a non-
linear multivariate regression task with many independent variables and even
more dependent variables. It is known that there are non-linear relationships
between expression of individual genes [3–8].

1.2 main contributions

The thesis makes significant contributions to the gene expression inference for
profile reconstruction for the L1000 platform by exploring novel architectural
and activation function improvements of the D–GEX neural network model.
It introduces two key enhancements to the D–GEX architecture, significantly
improving its performance.

The first innovation is a novel class of adaptive activation functions in
Section 5.2, which dynamically adjusts activations of individual neurons
based on input data during the training process, making the model more
adaptable to diverse gene expression patterns. The activation function is
called transformative adaptive activation function (TAAF) and introduces four
parameters that allow for any horizontal and vertical scaling and translation
of any inner activation function. Together with the introduction of TAAFs, an
empirical evaluation of several activation functions in the D–GEX architecture
was carried out and it was shown that the original D–GEX benefits from

1.3 thesis organization 3

usage of different AFs even without the TAAFs — albeit the TAAFs partially
alleviate the need for search of ideal activation function and improve the
performance even further. The performance of TAAFs is shown using both
DNA microarray and artificial data.

Furthermore, the thesis presents architectural refinements, specifically two
novel parallel architectures within the D–GEX framework in Section 5.3,
which enables more efficient use of resources, thereby significantly enhancing
the predictive power of the NN given the same resource constraints. These
two architectural improvements are the tower and checkerboard architectures
[9] and markedly enhance the capacity of the NN while keeping the number
of parameters unchanged — this leads to the identical memory profile as the
original D–GEX and, therefore, the model can be accelerated using the same
graphics processing unit s (GPUs) or other accelerators as the original NN.
Another architectural improvement to the original D–GEX architecture is the
introduction of skip connections in a ResNet manner.

While the focus of this thesis is on the GE profile reconstruction, both of the
aforementioned improvements of D–GEX architecture apply to a broad class
of NN models. The TAAFs [10] are a general class of activation functions that
can be used for various tasks as we believe that this formulation is especially
useful for a wider class of regression problems and show this using several
artificial datasets. Similarly, the architectural improvements are not limited to
the original D–GEX but can be used for any NN based model utilizing fully
connected or similar layers. Therefore, the presented findings are of interest
to a wider audience of NN researchers and machine learning (ML) engineers
as they might be utilized in various fields and applications.

In addition to the aforementioned architectural advancements and the in-
troduction of a new class of adaptive activation functions, the thesis provides
a comprehensive list of activation functions in neural networks. This list is
important, as even extensive surveys and reviews such as [11, 12] often omit
many activation functions that are present in the literature. This can lead
to cases where an activation function is redundantly proposed a few years
later as a novel activation function, even though the same or a very similar
activation function has already been introduced in the literature — e.g., recti-
fied power unit (RePU) (Section 4.2.6.39), dual parametric ReLU (DPReLU)
(Section 4.3.1.20), truncated rectified (TRec) (Section 4.2.6.21), ReLU-Swish
(Section 4.2.6.46), and bounded ReLU (BReLU) (Section 4.2.6.16). By provid-
ing a more extensive list of available activation functions, the thesis aims
to avoid such redundancy and promote faster advances of the research of
activation functions in neural networks.

1.3 thesis organization

After this introductory Chapter 1, where the task was introduced in Section 1.1
and the main contributions of this work summarized in Section 1.2, we
continue with two background chapters — Chapters 2 and 3.

First, an introduction to the realm of neural networks is provided in
Chapter 2, where we start with a brief overview of the development and

4 introduction

history of NNs in Section 2.1 and then continue with basics of NNs in
Section 2.2 describing building blocks of NNs: the basic unit — neuron —
(Section 2.2.1) with an example of a simple NN (Section 2.2.2), various layer
types (Section 2.2.3), and the training of NNs (Section 2.2.4).

Second, an introduction to the used biological terms and principles is
provided in Chapter 3 — starting with a very brief overview of DNA and
genetics in Section 3.1, continuing with the history of development of mi-
croarrays in Section 3.2, and slightly more detailed description of measuring
gene expression with focus on DNA microarray in Section 3.3 (as a more
detailed description would be out of the scope of this work, therefore many
links to more detailed literature are provided).

After these two introductory chapters, we can fully immerse into the
available literature in Chapter 4. We first review ANNs for GE inference and
classification in Section 4.1 with focus on the D–GEX NN architecture in
Section 4.1.1 as this architecture is the basis for our work. Moreover, other
tasks related to the GE inference are reviewed — most notably clustering,
analysis, and generation of GE data in Section 4.1.2.2 and classification of GE
data in Section 4.1.2.3.

As already mentioned in Section 1.2, one of the contributions of this work
is a literature review of available activation functions. First, regular activation
functions that are not adaptive or trainable, as these are still most commonly
used, are reviewed in Section 4.2. Then we focus on the adaptive activation
functions in Section 4.3 as they have been getting more attention recently and
become popular.

In Section 4.4, we briefly overview selected architectures of NNs with
parallel connections as the proposed tower and checkerboard architectures
use parallel blocks of neurons to increase a network’s capacity without
increasing the number of weights.

The last part of literature review, Section 4.5, focuses on neural networks
with random weights (Section 4.5.1) and neural networks for data gener-
ation (Section 4.5.2) to provide context for Section 5.1.2 where we use a
NN with random weights to generate several artificial datasets to show the
performance of TAAFs on other regression tasks besides the GE inference.
The overview of neural networks with random weights in Section 4.5.1 is
general and is not limited to NNs for data generation and other applications,
including various supervised classification and regression tasks such as load
forecasting and object recognition, are reviewed. Then we review NNs for
artificial data generation such as GANs and VAE in general in Section 4.5.2
— including listing applications that can be solved using these approaches
that are not limited to data generation such as anomaly detection and object
tracking. Finally, we review more in-depth the much narrower intersection of
the two previous sections — neural networks with random weights for data
generation — in Section 4.5.3 as this is most relevant for the artificial datasets
generated in Section 5.1.2.

After the two background Chapters 2 and 3 and the literature review in
Chapter 4 setting context to this work, we can finally dive into the practical
research in Chapter 5 Neural networks with random weights for data gen-
eration where we describe the proposed transformative adaptive activation

1.3 thesis organization 5

function, the tower and checkerboard architectures, and also the data, training
procedure, and the performance evaluation. First, we start with preliminaries
that are common for experiments of both concepts in Section 5.1. The datasets
used for experiments are described in Section 5.1.1 including the GEO- series
aware variant in Section 5.1.1.1 and the normalization in Section 5.1.1.2. While
most of the conducted experiments used real microarray data described in
Section 5.1.1, we have also done a few experiments with artificial data to
show the usability of the TAAFs outside the omics field — the creation of the
artificial datasets is described in Section 5.1.2.

The training procedure and the baseline architecture (reimplementation of
the D–GEX from [2]) are then described in Section 5.1.3. Then we describe
the metrics we have used for performance evaluation including the MMAE
and MDAE, describe the statistical tests used for comparison of two models
and their predictions in Section 5.1.4.1, and also focus on the evaluation of
the practical impact on a subsequent analysis — we opted for differential
gene expression (DGE) analysis — in Section 5.1.5 to show that the lowered
inference error has also practical benefits.

One of the main contributions of this work, the transformative adaptive
activation functions are described next in Section 5.2 where we first start with
the formulation of TAAFs (Eq. (5.5)) and continue with the motivation for the
used formula and the proposed parameters in Section 5.2.1. The motivation
of the parameters includes a discussion of the activation functions that the
TAAFs generalize in Section 5.2.1.1 Activations as special cases of TAAFs
and also the discussion of AFs that employ similar concepts as TAAFs in
Section 5.2.1.2 Activations as special cases of TAAFs. The TAAFs are also
useful for regression tasks as they can be used in the output layer instead
of the commonly used linear function, which we describe in Section 5.2.1.3.
Last, we briefly described the used ensembling approach in Section 5.2.2.

Another main contribution, besides the TAAFs from Section 5.2 and the
overview of activation functions in Sections 4.2 and 4.3, are the tower and
checkerboard architectures that are described in Section 5.3. We start the
description with the simpler tower architecture in Section 5.3.1, including the
motivation for such architecture, and subsequently we describe its extension
called checkerboard architecture in Section 5.3.2. Both of these architectures
can be extended using skip connections in a ResNet-like manner [13]; these
tower and checkerboard architecture variants are described in Section 5.3.3.

Then we move onto practical matters in Section 5.4 Implementation. We
describe the used libraries for the practical part of the work and also the
adaptive transformative unit (ATU) — the basic building block of a TAAF
that simplifies the implementation — in Section 5.4.1.1.

The Chapter 6 TAAF as the application of ATUs empirically evaluates the
methods introduced in Chapter 5. We start by evaluation of the TAAFs using
the microarray GE data provided by the authors of D–GEX [2] for empirical
evaluation in Section 6.1. We establish that the D–GEX equipped with TAAFs
leads to improved performance over the plain D–GEX in Section 6.1.1, then
we show that the performance can be further improved by using logistic
sigmoid AF instead of hyperbolic tangent (tanh) in the TAAFs and that this
can be seen only as a different initialization of parameters of a TAAF with

6 introduction

tanh in Section 6.1.2; we also show that even the original, plain D–GEX
benefits from using the logistic sigmoid AFs instead of the originally used
tanh AFs.

After establishing that the TAAFs improve the performance of the GE
inference in Sections 6.1.1 and 6.1.2, we proceed with the analysis of the
improvements. In Section 6.1.3, we show that the performance improvements
are not just due to the increased number of parameters of a NN but rather
to the TAAFs themselves. The TAAF formula is empirically analyzed in
Section 6.1.4 where we show that all four TAAF parameters are improving
the performance and that any subset of the trainable parameters leads to a
strictly worse performance using Wilcoxon sign rank test for evaluation.

The GE inference task is a regression problem and NNs commonly use a
linear activation function in the last layer to allow the output range reach any
value even if sigmoid AFs were used; however, this is no longer necessary
with TAAFs and we show that using TAAFs even the last layer leads to
further performance improvements in Section 6.1.5.

The previously described sections focus on establishing the individual
improvements by comparing identical models with a single change; however,
the Section 6.1.7 revisits the models from the previously described section
with a focus on the overall performance and provides the best-performing
models.

Unlike the works of [2, 14, 15], we also show that the established per-
formance improvements from Section 6.1 also have a practical impact on
the subsequent analyses of the inferred GE data in Section 6.2. We ran re-
peated differential gene expression analyses using either artificial phenotypes
(Section 6.2.1) or real phenotypes using a subset of the data (Section 6.2.2).

To show the application of TAAFs outside the field of omics, we proceed
with experiments using artificially generated data in Section 6.3. This in-
cludes again establishing the performance of TAAFs in Section 6.3.1 but also
various analyses — an analysis of the impact of noise to the targets on the
performance in Section 6.3.2, an analysis of the performance impact of the
inference network’s layer configurations in Section 6.3.3, a demonstration that
the results are consistent over various initialization of the data generation net-
works in Section 6.3.4, and analyses of the impact of the width (Section 6.3.5)
and depth (Section 6.3.6) of the data generation network.

After establishing that TAAFs indeed improve the performance of NNs
in the tested tasks, we show that another main contribution of this work
— tower and checkerboard architectures — improves the performance even
further in Section 6.4. The Section 6.4.1 contains statistical testing of the
significance of the observed improvements in performance. The Section 6.4.2
analyses the impact of dropout rates on the best-performing checkerboard
architecture.

Similarly as for TAAFs, once we establish that the architectural improve-
ments lower the inference error, we show that the architectural modifications
have a statistically significant practical impact on the subsequent analyses
with the inferred data in Section 6.5.

The results from the experiments from Chapter 6 are then discussed in
Chapter 7 which loosely follows the structure of previous chapter: we discuss

1.3 thesis organization 7

TAAFs for GE inference task in Section 7.1, where we first discuss the perfor-
mance improvements in Section 7.1.1, the TAAFs parameters in Section 7.1.2,
the conceptual simplification for regression tasks in Section 7.1.3, general
performance from the perspective of the GE inference task in Section 7.1.4,
and the practical impact of TAAFs in Section 7.1.5, then we continue with
discussion of the results on artificial data in Section 7.2, and finally we dis-
cuss the tower and checkerboard architectures in Section 7.3 including their
practical impact on the subsequent DGE analysis in Section 7.3.1.

At last, we conclude the work in Chapter 8 including possible future
research directions extending this work in Section 8.1. Additionally, supple-
mentary figures are provided in Appendix A.

2
N E U R A L N E T W O R K S — A B R I E F O V E RV I E W

This work focuses on improving the gene expression inference using deep
learning models introduced in [2]. Since this work is about an artificial neural
network model for gene expression inference, there might be readers that are
unfamiliar with one of the fields — the goal of the following two chapters
is to provide a basic introduction to both areas so the presented work is
somewhat understandable even by a reader unfamiliar with either of fields.

The basic concepts of deep learning are presented in this chapter, whereas
basic concepts of gene expression measuring and inference using microarrays
are shown in the following Chapter 3. The notation utilized in this work
may not always strictly conform to mathematical conventions; however, it is
prevalent within the field, and we have retained it for consistency and clarity.

2.1 brief history of neural networks and deep learning

The realm of neural networks (NNs) encompasses a vast expanse, having
existed for several decades, with a notable surge in the past two decades.
Consequently, this chapter offers a cursory exposition, focusing exclusively
on a sub-domain known as deep learning (DL) within neural networks. DL
gained prominence in recent years for its remarkable aptitude in resolving
intricate problems that were hitherto formidable to address. The goal of this
section is to provide a brief history of neural networks to provide context
for current trends; a more detailed history of deep learning is available in
[16–18].

2.1.1 Early neural networks

While it is difficult to say when the neural networks first appeared as they
gradually evolved from the linear regression methods that have been around
for a long time as the first works using linear regression appeared in the early
19th century [16]. The nascent NNs could not glean knowledge from data
[16, 19]; McCulloch initially introduced neural networks as a form of logical
calculus [19]. More details about the history of neuron models are available
in [17]. The seminal learnable network emerged in 1949 in [20] (reference
from [16]), where Hebb introduced the concept of unsupervised learning
for NNs. Subsequently, approaches to supervised learning in NNs emerged,
exemplified by the perceptron algorithm in 1958 [21], other examples in [16].

In the realm of deep learning history, the year 1965 saw the advent of
deep networks founded on the group method of data handling (GMDH)
[22–24]. These GMDH based networks represented a pioneering endeavor in
the development of Feedforward Multilayer Perceptron-type deep learning
systems [16]. While earlier neural networks with a single hidden layer existed

9

10 neural networks — a brief overview

(e.g., [25, 26]), GMDH based networks stood out by employing polynomial
activation functions, specifically implementing Kolmogorov–Gabor polyno-
mials, which offered greater generality than other contemporary activation
functions [16]. Furthermore, GMDH based networks were the first deeper
networks described in literature — an eight-layer deep GMDH network ap-
peared in 1971 in [22]. The GMDH network employed a hierarchical structure
where only elements whose performance exceeded the given threshold were
allowed to pass to the next layer [22]; it involved incremental growth and
training of layers through regression analysis with subsequent pruning facili-
tated by a validation set, akin to modern decision regularization techniques
[16]. The number of layers and units per layer were problem-dependent and
adaptable. This pioneering approach exemplified open-ended, hierarchical
representation learning in neural networks [16].

In 1979, Fukushima introduced the Neocognitron, a groundbreaking neural
network architecture that incorporated neurophysiological insights and is
often credited as one of the earliest deep artificial neural networks [16, 27]. The
Neocognitron introduced convolutional neural networks (CNNs or convnets),
featuring receptive fields that systematically traversed 2D arrays of input
data, such as image pixels. This mechanism, characterized by significant
weight replication, reduced the number of parameters required to describe
the convolutional layer’s behavior [16].

Despite its resemblance to modern supervised feedforward deep learn-
ing architectures with alternating convolutional and downsampling layers,
Fukushima’s Neocognitron employed local, winner-take-all (WTA) based
unsupervised learning rules [27] or pre-wired weights, rather than super-
vised backpropagation [16]. This difference from contemporary deep learning
practices shows that Fukushima did not address the problem of deep learning
despite his architecture’s considerable depth [16]. Notably, spatial averaging
was used for downsampling, in contrast to the now popular max-pooling
(MP) mechanism [16].

2.1.2 The ascent of backpropagation

In the realm of gradient-based error minimization within complex, nonlinear,
and differentiable multi-stage neural network related systems, the historical
trajectory dates back to the early 1960s [16]. According to Schmidhuber,
the methodology of steepest descent in the weight space was introduced in
[28–30], leveraging iterative applications of the chain rule using dynamic
programming (DP) concepts. A simplified derivation of this approach, termed
backpropagation (BP), relied solely on the chain rule, as elucidated in [31].

These approaches were efficient from the point of view of DP already in
the 1960s [16]. However, they propagated derivative information through
standard Jacobian matrix calculations between adjacent "layers" without
explicitly considering direct interlayer connections or potential efficiency
enhancements related to network sparsity. Surprisingly, despite the prior body
of work on learning in multilayer NN-like systems, including deep nonlinear
networks since 1965, a seminal book [32] in 1969 dampened enthusiasm for

2.1 brief history of neural networks and deep learning 11

further NN research, particularly in the context of simple linear perceptrons
[16].

The emergence of explicit, efficient error backpropagation (BP) in arbitrary,
discrete, and possibly sparsely connected NN-like networks can be traced
back to Linnainmaa’s 1970 master’s thesis [33], though it lacked reference
to neural networks at that time [16]. BP, also known as the reverse mode
of automatic differentiation, involved costs of forward activation spreading
nearly equivalent to the costs associated with backward derivative calculation
[16].

Efficient BP was swiftly employed to minimize cost functions by adapting
control parameters (weights), as demonstrated in [34] by Dreyfus in 1973 [16].
The use of BP in neural networks first appeared in 1981 [16] in [35]. The BP
became quite popular during the 1980s, e.g., [36–38], though it seemed that
BP was suitable only for shallow networks [16].

By the late 1980s, it became evident that backpropagation alone did not
provide a universal solution [16]. Most applications of feed-forward neural
networks predominantly utilized networks with few hidden layers, with
additional hidden layers often not yielding discernible empirical advantages
[16]. A theorem, as put forth in [39–41], offered solace for many researchers
by asserting that a single-layer neural network with a sufficient number
of hidden units could accurately approximate any multivariate continuous
function [16].

In summary, while backpropagation theoretically allows for deep problem-
solving, it appeared to excel primarily in shallow problem domains. The late
1980s and early 1990s witnessed the emergence of a few promising ideas
aimed at addressing this challenge [16].

Multiple optimization techniques have been proposed to improve the ef-
ficiency of BP for neural networks in following years [16]. These methods
include least-squares [42, 43] and quasi-Newton approaches, along with strate-
gies like momentum [38] and sign-only error derivatives BP variants such as
R-prop [44] event though the least-squares and quasi-Newton approaches
have been recognized as computationally too expensive for large neural net-
works [16]. Gradient normalization techniques and dynamic learning rate
adaptations have also been explored. Numerous additional enhancements
and tricks exist to further boost neural network performance, as documented
in the literature — see [16] for a general overview.

The first application of backpropagation to convolutional neural networks
occurred in 1989 when LeCun applied BP to a network LeNet similar to
Neocognitron to recognize handwritten digits of the MNIST dataset [16, 37].
This integration, combined with max-pooling and graphics card optimization,
has become a fundamental component of contemporary, high-performing,
feedforward visual Deep Learners [16]. These advancements have been in-
strumental in various competitions and benchmark records, including su-
perhuman vision performance, object detection, segmentation, and more.
Additionally, this work introduced the widely renowned MNIST dataset [45]
for handwritten digit recognition, which has become a prominent benchmark
in machine learning [16].

12 neural networks — a brief overview

However, during that period, the majority of utilized neural networks
remained shallow due to a prevalent issue known as the Fundamental Deep
Learning Problem [16, 46], characterized by vanishing or exploding gradients,
which was initially documented in [47] (ref. from [16]).

2.1.3 Winning competitions

ML competitions play a pivotal role in the discovery of superior algorithms
and approaches, with neural networks garnering increased attention as they
consistently achieve victories, particularly in the domain of pattern recogni-
tion.

Although neural networks had secured victories in several competitions
during the 1990s and beyond (see [16] for details), it was the advent of the
deep network known as AlexNet in 2012 that marked a significant break-
through. AlexNet triumphed in the 2012 ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) [48], achieving a top-5 test error rate of 15.3%, a
remarkable improvement over the second-best entry, which had an error rate
of 26.2% [49]. This achievement was especially noteworthy as AlexNet had
60 million parameters and 650,000 neurons distributed across eight layers,
pushing the limits of contemporary hardware and requiring training on 2

GPUs.
The success of convolutional neural networks (CNNs) was further affirmed

in the ILSVRC 2013, where ZF Net, a CNN based on the AlexNet architecture,
achieved an even lower error rate of 11.2%. While ZF Net retained the core
structure of AlexNet, the primary contribution of the paper introducing it was
a novel technique for visualizing feature maps and analyzing the network’s
responses to various input data transformations [50].

Deep CNNs have demonstrated a key advantage in their ability to deliver
exceptional performance while maintaining relative simplicity, provided
they possess sufficient depth. This was exemplified by the VGG networks
introduced in a study by Simonyan and Zisserman. VGG networks employed
compact 3 × 3 filters, the smallest size that captures positional information,
with a stride and padding of 1 [51]. Additionally, these networks incorporated
2 × 2 max-pooling layers after some of the convolutional layers, and the last
three layers were fully connected. The authors proposed multiple network
architectures within this framework, ranging from 11 to 19 layers [51]. This
approach represented a departure from previous networks that employed
larger convolutional layers, such as the 7 × 7 layers used in [50] or the
11× 11 layers in [49]. Simonyan and Zisserman demonstrated that comparable
performance could be achieved with 3 × 3 convolutional layers, offering the
added advantage of reduced parameter count.

Since then, neural networks started to dominate many ML competitions
and became one of the most used ML tools. A transformative idea was
introduced by Google’s deep learning group, featuring the split, transform,
and merge paradigm, embodied in the Inception unit in their architecture
GoogLeNet [52]. The GoogLeNet network contains parallel connections instead
of simply chaining all layers. Each Inception unit comprises multiple parallel

2.2 building blocks of neural networks 13

streams, and dimensionality reduction is applied to these streams; see [52]
for details. This dimensionality reduction is essential to manage a single
unit’s depth effectively. A notable aspect of this architecture is its emphasis
on computational efficiency. To achieve this, traditional dense layers are
replaced with average pooling layers. This modification results in a significant
reduction in the number of parameters, with the entire network having 12×
fewer parameters compared to the AlexNet [52]. This innovation pioneered
branching within layers, enabling the abstraction of features at varying spatial
scales [53].

In 2015, the concept of skip connections, initially proposed by ResNet,
gained widespread adoption for training deep CNNs. This concept has been
incorporated into subsequent networks such as Inception-ResNet [54], Wide
ResNet [55], [56], and others.

Architectural designs such as Wide ResNet [55], ResNeXt [56], Pyramidal
Net [57], Xception [58], PolyNet [59], and more have explored the impact of
multilevel transformations on CNNs’ learning capacity [53]. This exploration
has involved introducing cardinality or increasing network width [53].

Consequently, the research focus has shifted from parameter optimization
and connection adjustments to the enhancement of network architecture [53].
This shift has given rise to many innovative architectural ideas, including
channel boosting, spatial and feature-map-wise exploitation, and attention-
based information processing [53].

Nowadays, the neural networks dominates many ML tasks, and there are
various specialized architectures for individual tasks. It would be greatly
out of the scope of this work to list all notable recent achievements and
applications in the realm of neural networks. Books [46, 60] and reviews
about neural networks and deep learning in general [16, 53, 61–64] are
recommended to a curious reader. More specialized and narrowly focused
reviews of applications of neural network are available, for example, in [65–
118].

2.2 building blocks of neural networks

Artificial neural networks (ANNs), often referred to as simply neural net-
works (NNs) are a class of ML models inspired by the structure and function
of biological neural systems. They have garnered significant attention and
proven to be highly effective in various fields, including computer vision,
natural language processing, speech recognition, and data analysis. Most
neural networks are structured architectures that consist of well-defined
blocks that consist of individual neurons. Their complexity can vary from
very simple architectures such as the multi-layer perceptron (MLP) [38] to
very complicated architectures such as GoogLeNet [52], Inception-v4 and
Inception-ResNet [54], and transformer [119] based models such as BERT
[120] or LLaMMA [121]. This section aims to provide a cursory introduction
to the field of neural networks; a more detailed introduction to the field is
available in [46, 122–125].

14 neural networks — a brief overview

2.2.1 Basic unit — neuron

An artificial neural network is a biologically inspired computational model
consisting of individual neurons that are connected. It can be represented as
a weighted graph, where individual neurons are nodes and paths through
which signals flow are depicted as edges. Each neuron takes multiple inputs,
combining them into a single output signal, which is then distributed to all of
its output connections. Typically, these inputs are aggregated using weighted
summation, with the weights assigned to connections through which the
signals arrive at the neuron. There are two main types of neural networks
— feed-forward neural networkswith unidirectional flow of information (the
information flows in one direction from input to output layer) and recurrent
neural networks where the information flow forms a cycle [64]. Other com-
mon types of neural networks include radial basis function neural networks,
Kohonen neural networks (also called self-organizing maps) [64]. Since this work
focuses on real-valued feed-forward neural networks, recurrent neural net-
works and other types of networks are out of the scope of this brief overview;
for more about recurrent neural networks (RNNs) see, for example, reviews
[126–128].

More precisely in an usual real-valued feed-forward neural network,
the output yi of a single neuron i with inputs x0, x1, . . . , xn with weights
w0, w1, . . . , wn, and a bias term b is defined as

yi = f

(
bi +

n

∑
j=0

wi,jxj

)
, (2.1)

where f is an activation function1 [122, 130–132]. The Eq. (2.1) is simplified for
the case when the time indices are not important for clarity. If the processing
time is an issue and the time indices are needed, then the output the output
yi of a single neuron i with inputs x0, x1, . . . , xn with weights w0, w1, . . . , wn,
a bias term b, and activation function f at time t is defined as

yi[t] = f

(
bi +

n

∑
j=0

wi,jxj[t − 1]

)
(2.2)

based on [133, p. 7]. However, this work focuses on feed-forward networks
with uni-directional flow of information where the specific processing time is
not important; therefore, the time indices will be dropped for clarity as in
Eq. (2.1).

The Eq. 2.1 is often written in a matrix form:2

xi = f
(

wT
i x
)

, (2.3)

1 There are also element-wise activation functions that are applied directly to the xj and can be
thought of as nonlinear gating functions [129].

2 This type of neuron is used in the most common type of NNs; there are other types such as
the quadratic s (QNNs) [134–142] but these are not discussed in this work.

2.2 building blocks of neural networks 15

where

x =

1

x0
...

xn

 , (2.4)

and

wi =

bi

wi,0
...

wi,n

 . (2.5)

The activation function f is what differentiates neural networks from a
simple linear classifier and allows for meaningful stacking of neurons if
the activation function is non-linear as the output of arbitrarily deep neural
network with linear activation functions can still be expressed as a linear
combination of inputs which is precisely what a single neuron does [11].
Historically, the activation functions modeled the activation of the neuron in
the range between 0 and 1 [122] — the most straightforward activation is a
signum-like function which is used in perceptron:

y =

1 b + ∑n
j=0 wjxj > 0

0 otherwise
(2.6)

where b is the bias term, x0, . . . , xn are real valued inputs and w0, . . . , wn

are weights. However, historically, the most common activation function is
the logistic sigmoid (see Section 4.2.2), which produces a continuous output
in the range of 0 to 1 [122]. Activation functions are discused in depth in
Sections 4.2 and 4.3.

2.2.2 Simple neural network

While a single neuron can be considered as the simplest neural network,
typical neural network is a hierarchical model consisting of interconnected
neurons. A simple neural network is shown in Fig. 2.1.

The output y of the example network from Fig. 2.1 for given inputs
x0, . . . , x3 is:

y = σ

(
b7 + w4,7σ

(
b4 +

3

∑
j=0

wj,4xj

)
+ w5,7σ

(
b5 +

3

∑
j=0

wj,5xj

)
+

w6,7σ

(
b6 +

3

∑
j=0

wj,6xj

))
(2.7)

16 neural networks — a brief overview

0

1

2

3

4

5

6

7

w0,4
w0,5
w0,6

w1,4
w1,5
w1,6

w2,4
w2,5
w2,6

w3,4
w3,5
w3,6

w4,7

w5,7

w6,7

HiddenInput Output

Figure 2.1: An example of a simple feed-forward neural network with 4 input neu-
rons, 3 neurons in the hidden layer, and 1 output neuron.

where σ is the sigmoid activation function and wi,j describes the weight of
the connection between neurons i and j. Even though any feed-forward neural
network can be expressed as a single expression, usually the intermediary
results from individual blocks are reused to avoid unnecessary computation —
while only the inputs x0, . . . , x3 occur repeatedly in the example in Fig. 2.1 if
the network had more layers or more outputs, there would be more elements
in the formula that occur several times. These repeated elements are one of
the main reasons why neural network are usually organized into separate
layers, as it allows for simple and efficient evaluation of neural networks
using matrix-vector operations [122].

2.2.3 Layers

Neural networks are hierarchical models where the neurons are separated
into individual interconnected layers [122]. The neurons within a single
layer are usually considered to be of the same type with the same activation
function — a layer is a basic building block (this is the traditional terminology,
however, as there might be blocks that are connected in parallel, the term
layer might be slightly confusing as it usually represents only a layer within
a single block and not the set of all neurons that are in certain depth). This
section briefly overviews the most common layers utilized in neural networks.

2.2.3.1 Fully connected layer

Fully connected layers (FC) (also called dense layers) are the most basic type of
layers and historically the first used. Each neuron in a fully connected layer
is connected to every neuron in the preceding layer — hence the name. Fully
connected layers are used in the example in Fig. 2.1. Most of the early NNs
used this kind of layer. The main disadvantage of fully connected layers is
that they have a vast number of parameters even for layers with relatively
few neurons; this makes them unsuitable for many problems, such as the

2.2 building blocks of neural networks 17

image classification where a neuron is needed for each pixel (this issue is
addressed by weight replication in convolutional layers, see Section 2.2.3.3).

Additionally, training such networks can be challenging due to their suscep-
tibility to overfitting. Various techniques have been proposed to address this
issue, such as dropout [143], L1 and L2 regularization, or soft weight sharing
[144]. In modern image pattern recognition, dense layers are often employed
only as top layers, utilizing features extracted by other types of layers, e.g.,
[13, 51, 52]. However, fully connected layers are still very commonly used in
other domains; for example, the D–GEX for gene expression inference uses
only fully connected layers [2].

2.2.3.2 Dropout layer

As mentioned earlier in Section 2.2.3.1, dropout is a technique designed to
combat overfitting [145]. It efficiently approximates the simultaneous training
of numerous neural network architectures [143, 146]. This method randomly
turns off neurons during the training phase, including all incoming and
outgoing connections. Each neuron has a probability p of remaining active;
otherwise, it is dropped out during training. During the testing phase of the
original dropout from [143], all neurons are active; however, that requires
scaling down the outputs from the neurons to average the outputs and reach
similar values as in the training phase [143]. In most applications, however,
inverted dropout is used, which scales the outputs during training to avoid the
need for scaling during testing [122].

Regularization is a technique for addressing overfitting by enforcing a
preference for certain weight types over others [46, 147, 148]; dropout is a
form of regularization of the optimization [143, 149–152] as it tries to force
neurons to be robust and rely on population behavior [153]. Interestingly, it
was also shown that dropout reduces underfitting as it helps to reduce the
directional variance of gradients across mini-batches and, therefore, reduces
the influence of a single batch [154]. Dropout can also be seen as a form
of data augmentation [155] especially in the case of cutout [156] that drops
only input units and only in contiguous sections, which effectively modifies
the input data. Another view of dropout is to consider it as an approximate
Bayesian inference in deep Gaussian processes; see [157] for details.

A similar concept is DropConnect, which drops individual connections in-
stead of entire neurons. DropConnect has been found to achieve slightly better
results than classical dropout [158], and its modified version, Sparse DropCon-
nect [159], has demonstrated even better performance. Visual demonstration
of these approaches is shown in Fig. 2.2. There are other dropout variants
such as dropout modifications for RNNs [149] which takes into account the
time frames of RNNs instead of just randomly dropping neurons; max-drop
[160] aimed for CNNs that selectively drops activations with the maximum
value within each feature map, DropFilterR [161] also for CNNs that randomly
drops elements in convolution filters; Drop-Activation [162] which randomly
drops activation functions by replacing them with identity function; cutout
[156] that drops only input units and only in contiguous sections; stochastic
depth [163] which randomly drops subsets of layers; stochastic residual network

18 neural networks — a brief overview

[164] that randomly remove skip connections; standout [165] that overlies a
binary belief network on a NN to selectivelly setting the NN’s activations
to zero; jumpout [166] adapting the dropout rate; DropAll [167] combining
dropout and DropConnect; curriculum dropout [168] with adaptive scheduled
dropout rates; late dropout [154] that is active only in later epochs; DropMaps
[169] applying dropout on feature maps; LayerOut [170] which freezes random
layers; DropIn [171] that instead of setting activations to zero uses activations
from previous layer; fast dropout [172] improving the computation speed
of standard dropout; annealed dropout [173] with decreasing dropout rate;
variational dropout [174] with learned dropout rates; rnnDrop [175] for RNNs;
another variants of dropout for RNNs and long short-term memorys (LSTMs)
in particular in [176–178], max-pooling dropout [179]; SpatialDropout [180, 181]
for CNNs; evolutional dropout [182] computing sampling probabilities from
mini-batches; swapout [183] which is a generalization of standard dropout
and stochastic depth; dropout for network compression and acceleration
through sparsity [184–187]; concrete dropout [188] with automatic tuning of
dropout probabilities; dropout for Bayesian NNs [189]; adversarial dropouts
[190, 191] and its RNN variant [192]; fraternal dropout [193] that uses a pair
of identical RNNs with different dropout masks; information dropout [194]
automatically adapting to the data using information theory; spectral dropout
[152] using a decorrelation transform with fixed basis functions; hardware-
oriented dropout for field-programmable gate arrays (FPGAs) [195]; ranked
dropout [196] which masks active neurons; surrogate dropout [197] that drops
neurons based on their importance; tabu dropouts [198, 199] that give tem-
porary protection against dropping to a neuron that has been just dropped;
supervision dropout [200] using genetic algorithms for selection of dropped
neurons; iDropout [201] that gives higher probability of dropping to neurons
with lower relevance; Wasserstein dropout [202] for uncertainty estimation;
using dropout with diversity sampling for uncertainty estimation [203]; adap-
tive infinite dropout [204] for streams; Icing-dropout [205, 206] that adaptively
selects neurons to be dropped; and many others — see reviews [150, 207, 208]
for more dropout and regularization variants.

While dropout is a regularization technique, it is called dropout layer
throughout this work as it is often implemented using a special layer masking
individual neurons, which is the case of the used frameworks Keras [209]
and Tensorflow [210].

2.2.3.3 Convolutional layer

While not used in this work, convolutional layers are one of the most used
layers nowadays as they are crucial for image pattern recognition as they
allow the extraction of spatial features in images without incurring significant
computational costs. These layers are based on the principles of parameter
sharing, sparse interactions, and equivariant representations [46]. Convolu-
tional layers are widely employed in applications where the arrangement
of inputs encodes spatial or temporal information, such as images, videos,
audio, and time series. In this section, we focus on using 2D convolution

2.2 building blocks of neural networks 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Hidden
1

Hidden
2

Input Output

(a) without dropout

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Hidden
1

Hidden
2

Input Output

(b) with dropout

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Hidden
1

Hidden
2

Input Output

(c) with DropConnect

Figure 2.2: Visual comparison of dropout and DropConnect.

20 neural networks — a brief overview

for image processing as the 2D convolution is easy to visualize; 1D and 3D
convolution layers work similarly.

Convolutional layers apply filters to input data, which introduces an addi-
tional dimension to the data. Multiple convolutions are usually employed,
each resulting in a different feature map as shown in Fig. 2.3. The Fig. 2.3
shows a convolution layer with 9 filters being applied to an input image.
Note that the Fig. 2.3 also shows pooling layer (see Section 2.2.3.4) and also
another convolutional layer, this time with 36 filters.

The convolutional layer’s parameters include the kernel’s width w and
height h, the number of filters d, padding p, and stride s. These parameters
determine the size of the output volume. The width w and height h define
the receptive field [122] of the layer, whereas the parameter d determines the
number of filters that will be applied to each input and thus, it represents the
depth of the output volume, a single feature map at a certain depth is called
depth slice. The kernel dimensions determine the size of the matrix that defines
the kernel, with square kernels being common in image pattern recognition.
However, some architectures, such as Inception v3 [52], deviate from the
norm by using non-square kernels, such as 3 × 1 and 1 × 3 convolutions in
two layers instead of a single 3 × 3 convolution.

The parameter p controls the padding of the input volume with zeros, an
aspect that affects the dimensions of the output. The absence of padding
is often termed valid padding (e.g., [46, 209, 211]), which leads to output
dimensions that are smaller than the input’s due to the convolution operation;
such convolution is sometimes called the narrow convolution (e.g., [212]).
In contrast, padding is typically employed to maintain the output spatial
dimensions as those of the input. Common terms for this padding strategy are
same (e.g., [46, 209, 211, 213]) or half padding (e.g., [213]). Another padding
variant is called full [211], where the filters are applied to the input end-to-end
— every input pixel is used by every part of the filter.

The stride s parameter controls the frequency at which the filter is applied
to input pixels. For example, s = 1 applies the filter to every pixel, while s = 3
implies application to every third pixel. Convolution with s > 1 is called
strided convolution [123]. The stride also determines spatial downsampling
in the convolution process. It essentially combines regular convolution with
s = 1, followed by subsequent downsampling. However, this approach is less
computationally efficient compared to convolution with a stride [46, 213, 214].
An alternative to strided convolution is the space-to-depth convolution [215].

For example, if the layer had stride s = 1 and h = w, then the same padding
keeping the spatial dimensions would be p = w−1

2 . An extreme case is the
full padding, which pads the input with enough zeros such that every input
pixel is visited equally — the border pixels in the case of the same padding
are underrepresented in the model [46, 213].

Weight sharing is a critical feature of convolutional layers, as the same
filter is applied to different pixels — this is in contrast to the fully connected
layer (see Section 2.2.3.1) where each input has its own weight. This results
in a significant reduction in the number of parameters when the kernel size
is considerably smaller than the spatial dimensions of the input. Within the

2.2 building blocks of neural networks 21

convolutional layer, a single set of weights is assigned to each depth slice,
meaning that all neurons within that slice share the same weights [122].

The output volume of a convolutional layer Ho × Wo × Do is determined
by the parameters in following way [122]:

Ho =
Hi − h + 2p

s + 1
(2.8)

Wo =
Wi − w + 2p

s + 1
(2.9)

Do = d (2.10)

where h, w, p and s are defined above and Hi and Wi is the spatial dimension
of the input volume.

The concept of sparse interactions or sparse connectivity plays a crucial role
in convolutional layers. This idea is grounded in the size of the convolutional
layer’s kernel, such as when the kernel size is denoted as n × n. In this
scenario, each neuron within the layer possesses a receptive field of n × n,
meaning it is not linked to every neuron in the preceding layer but only to
n2 × di neurons, where di represents the depth of the input. Sparse connec-
tivity contributes to a significant reduction in the number of parameters for
each neuron. For instance, if the input volume measures 224 × 224 × 3 and
the filter size is 5 × 5, each neuron within the convolutional layer will have
5 × 5 × 3 + 1 = 76 parameters. In contrast, a neuron in a dense layer would
have 224 × 224 × 3 + 1 = 150, 529 parameters.

Another important concept for convolutional layers is the equivariance to
a translation [46] — the property that shifting the output of a convolutional
layer is essentially the same as shifting the input first and then applying the
convolution operation, with minor exceptions at the border regions. This
property is particularly desirable when our objective is to identify features
or patterns that may appear at various positions within the input data, a
common scenario in typical image applications (though not always, as certain
images may be perfectly centered) [46]. However, in cases where equivariance
to translation is not the desired characteristic, the convolutional layer can
be substituted with a locally-connected layer. This alternative layer functions
like a convolutional layer but doesn’t adhere to strict weight sharing [122,
211]. The tiled convolution [216] is in between the standard convolutional layer
and the locally-connected layer; instead of having all weight shared as in the
standard convolutional layers, it uses a tiled pattern of tied weights, therefore
immediately neighboring cells have different filters but cells k step aways will
share weights [216].

Besides the strided convolution and tiled convolution described above, there
are also other convolution variants. One such variant is dilated convolution
(also called atrous convolution [217]), which increases the filter’s receptive field
size by inserting zeros between filter elements [123]. According to [217], it
first appeared in [218]. It is often applied to problems that require longer
sequence information dependencies [219]. The dilated convolution gave rise
to popular dilated residual networks [220]. Dilated networks were used for,
e.g., image sharpening and denoising [221–225], semantic segmentation [226],

22 neural networks — a brief overview

learning optical flows [227], speech separation [228], image classification
[229–231], and speech emotion recognition [232].

Another variant is the transposed convolution [123, 213] (also called deconvo-
lution [123, 233, 234], fractionally strided convolution [123, 235], and convolutional
transpose [236]) proposed in [233, 234]. Whereas standard convolution con-
nects a single output activation to multiple input activations, transposed
convolution has multiple output activations for single input activation by
upsampling the input by a factor of the stride value with padding [123].

Examples of usage of transposed convolution include super-resolution
[237], semantic segmentation [238], feature visualization [239], deblurring
[240], and image generation [236].

2.2.3.4 Pooling layer

Even though the pooling layer is also not used in this work, it is one of the
most commonly used layers in ANNs. A pooling layer plays a crucial role
in decreasing the spatial dimensions of the input data and is frequently
employed alongside convolutional layers [46, 122]. Pooling layers downsam-
ple the feature maps by aggregating features from local regions [241]. The
fundamental concept behind pooling shares some common ground with
convolutional layers. However, in contrast to convolution, which involves the
convolution of neighboring pixels with a kernel, pooling employs a specific
pooling function to process nearby pixels.

Pooling increases the size of the receptive field of convolutional kernels
over layers, but it also reduces computational complexity and memory re-
quirements by reducing the resolution of the feature maps [241]. All the
while, it retains important features essential for processing by subsequent
layers [241]. Furthermore, as it reduces the number of parameters, it can also
serve to reduce overfitting. Not only that, it also introduces invariance to
small translations of the input [46].

Commonly used pooling layers share similar parametric attributes with
convolutional layers, including width w, height h, stride s, and the choice
of pooling function f . Width and height determine the neighborhood size

Input 224 × 224

224 × 224 × 1

218 × 218 × 9

114 × 114 × 9

110 × 110 × 36

Convolution
7 × 7
9 maps

Pooling
2 × 2
9 maps

Convolution
5 × 5
36 maps

Figure 2.3: Example of usage of convolutional and pooling layers. Note that this ex-
ample has no padding, and thus, the convolutions also reduce dimension.
More about pooling layers in Section 2.2.3.4.

2.2 building blocks of neural networks 23

considered for pooling, while stride regulates how frequently pooling is
applied. The pooling is usually applied to non-overlapping blocks; therefore,
the stride is used more often than in convolutional layers, e.g., a ubiquitous
pooling layer has w = 2 h = 2 (filter 2 × 2) together with s = 2 and max
pooling function [122] which results in downsampling and getting rid of 75 %
outputs [122] as every max operation takes a maximum over four numbers
(patches w × h = 2 × 2 in a depth slice). Larger pooling receptive fields are
usually too destructive [122].

The output volume of pooling layer Ho × Wo × Do is determined by the
parameters in a following way [122]:

Ho =
Hi − h
s + 1

(2.11)

Wo =
Wi − w

s + 1
(2.12)

Do = Di (2.13)

where h, w, and s are defined above and Hi, Wi, Di are the dimensions of the
input volume.

While pooling layers are widely used, they are not strictly necessary and
can be replaced efficiently with convolutional layers using appropriate stride
values [122, 242]. This substitution can be advantageous in cases where pool-
ing may not align with specific architectural or computational requirements.
For example, certain visualization tasks rely on the use of switches from
max pooling layers during the forward pass — this is actually also common
during the backward pass of the backpropagation. Substituting max pooling
layers with convolutional layers allows for unconditional visualization, not
reliant on the forward pass [242]. In fact, an architecture referred to as an all
convolutional network [242] that excludes pooling layers has shown strong per-
formance in image classification on datasets like CIFAR-10 [243], CIFAR-100

[243], and ImageNet [48].
There are many variants of pooling layers. There are two leading groups

regarding the type of pooling used — local pooling and global pooling [241].
The local pooling is described above; it performs pooling from small local
regions determined by the width and height. The global pooling is done over
the whole feature maps to get a single value for each of the features [241].

Historically, the two most common pooling layers are the max pooling
layer described above and the average pooling layer that produces the mean
value over the pooled region [244]. These two pooling approaches are used
due to their simplicity in many CNNs [241]. The max pooling layer selects
the highest value from the pooled region, and therefore, it does not degrade
found features [245]; however, the max operation complicates the backward
pass in backpropagation for optimization or visualization purposes [242].
The average pooling is also simple; however, it might reduce feature contrast if
there are small values in the considered region [245].

There are also many other pooling methods such as learned-norm pooling
[246], fractional max pooling [247–249], rank-based pooling [250], gated max average
pooling [251], mixed max average pooling [252, 253], dynamic correlation pooling

24 neural networks — a brief overview

[254], Log-Sum-Exp pooling [255], dynamic pooling [256], smooth-maximum pool-
ing [257], soft pooling [258], polynomial pooling [259], maxfun pooling [260], ordinal
pooling [261], regularized pooling [262], Root-Mean-Square pooling (termed sqrt
in the original paper) [263], global feature guided local pooling [264], stochas-
tic pooling [265], stochastic spatial sampling pooling (S3 pooling) [266], spatial
pyramid pooling [267], concentric circle pooling [268], polycentric circle pooling
[269], multi-pooling [270], second-order pooling [271], improved bilinear pooling
[272, 273], detail-preserving pooling [274], local importance based pooling [275],
generalized max pooling [276], transformation invariant pooling [277], kernelized
subspace pooling [278], region pooling learning [279], and random crop pooling
[280]. More about these and many other pooling approaches is available in
reviews [241, 245, 281, 282].

2.2.4 Optimization

Optimizing a neural network typically involves three key steps: forward propa-
gation, loss optimization, and error backpropagation with parameter update [46,
122],. During forward propagation, the neural network computes its output
for a given input. Loss optimization measures how well the network’s output
matches the ground truth as defined by a loss function, and this loss function
is what the training process aims to minimize. Finally, error backpropagation
with parameter update is where gradients are computed using the chain
rule, and the network’s parameters are updated using gradient-descent-based
approaches [46, 122, 283] as analytical solutions for parameter estimation are
often unattainable [284]. There are also other methods that do not involve
gradient-descent-based approaches; however, those are out of the scope of
this work as only gradient-descent-based approaches were used throughout
this work.

2.2.4.1 Loss function

The term loss function, often referred to as an objective function, is a mathemat-
ical construct that associates an event or one or more variables with a real
number, which intuitively represents a quantification of the "cost" or "error"
associated with that event [284]. In optimization problems, the objective is to
minimize this loss function [284].

In a neural network, loss functions assess the quality of a parameter
assignment after the forward pass [122]. In the forward pass, the neural
network generates scores for input data, and the loss function quantifies
how closely these scores align with the ground truth [122, 132]. Essentially, it
quantifies the quality of the network’s predictions by computing a numerical
score that reflects the degree of dissimilarity between the observed and
predicted values [284]. This process involves assessing the error between true
and predicted values and aggregating these errors across the entire dataset
to produce a singular metric that assesses the network’s performance relative
to the desired outcome [284].

2.2 building blocks of neural networks 25

Common loss functions include cross-entropy, mean squared error (MSE)
(or the unaveraged sum of squared errors (SSE)), hinge loss (and its squared
and cubed variants [285]), and others [209, 284, 285].

2.2.4.2 Backpropagation

Backpropagation (BP) is a method for computing gradients based on iterative
use of the chain rule of differentiation [46]. While it is often attributed to
Rumelhart, Hinton, and Williams [38], several research teams published the
algorithm independently around the same time [284].

For x ∈ R, f (x) : R → R, g(x) : R → R, y = g(x), and z = f (y) = f (g(x)),
then the chain rule is [46]:

dz
dx

=
dz
dy

dy
dx

(2.14)

In vector notation, let x ∈ Rm, y ∈ Rn, z ∈ R, g(x) : Rm → Rn, f (y) : Rn →
R, y = g(x), and z = f (y), then the chain rule is [46] is:

∂z
∂xi

=
n

∑
j=1

∂z
∂yj

∂yj

∂xi
(2.15)

Since the backpropagation in NNs is usually done with tensors, the tensor
notation might be more relevant — the tensor notation of the chain rule is
[46]:

∇X z = ∑
j

(
∇XYj

) ∂z
∂Yj

(2.16)

where X, Y are tensors, Y = g(X) and z = f (Y) and j is a tuple of indices
[46, p. 203].

For a comprehensive and numeric illustration of the backpropagation
process, a detailed example can be found in the work by López, López, and
Crossa, which offers a practical and specific insight into this fundamental
neural network training technique [284].

Backpropagation, a fundamental process in neural networks, systematically
applies the chain rule in an iterative manner [46]. This approach stems from
the conceptualization of neural networks as complex compound functions.
The practical implementation of backpropagation typically involves the use
of a computational graph, which serves as a descriptive framework for
this compound function. Within this graph, each node corresponds to an
operation that applies a function to a set of arguments, which are derived
from the values of preceding nodes [46]. For a more comprehensive and
detailed exploration of backpropagation and computational graphs, one can
refer to the in-depth discussions available in resources like [46, 122].

2.2.4.3 Gradient descent

Gradient descent stands as the prevailing approach for optimizing deep
neural networks [122, 132, 284]. This algorithm’s primary objective is to

26 neural networks — a brief overview

navigate the landscape of the loss function, systematically moving towards
local optima. The fundamental vanilla version of gradient descent computes
the gradient at the current point and follows a trajectory of fixed length,
known as the learning rate, in the direction of the steepest descent.

However, in the realm of neural networks, the traditional gradient descent
is frequently supplanted by alternative variants as neural networks often
have a large number of parameters, and they are trained using large datasets
and calculating the gradient with respect to all training samples might be
infeasible. These include online gradient descent [122], which factors in a single
example per iteration, or minibatch gradient descent, where small batches of
examples are considered for each weight update. These variants are collec-
tively referred to as stochastic gradient descent (SGD) even though SGD is
technically only a different name for the online gradient descent [122].

Moreover, enhancements to the gradient descent approach have been intro-
duced to address specific challenges. One such enhancement is momentum, a
technique designed to surmount local optima and expedite convergence, par-
ticularly when navigating prolonged and narrow valleys in the loss function
landscape [122, 286]. Momentum methods incorporate the history of descent,
whereby the negative gradient influences the particle’s velocity in relation to
its momentum. Subsequently, the new position is determined by taking into
account the current position and the velocity. A related concept, known as
Nesterov momentum, functions similarly to classical momentum but computes
the gradient after the momentum update.

The optimization of the learning rate, a critical component in gradient
descent, has also been a subject of exploration. Single formulas for dynam-
ically setting the learning rate have been proposed, including step decay,
exponential decay, or 1

t decay. Alternatively, tuning the learning rate on an indi-
vidual parameter basis, informed by the training history, has led to methods
such as adagrad [287], Adadelta [288], RMSprop [289], ESGD [290], Adam and
AdaMax[291], and Nadam (Adam with Nesterov momentum)[292]. In-depth
comparison of SGD and Adam is available in [293]; analysis of the Adam in
[294–299]. The SGD and its variants are first-order optimization methods as
they use a first derivative; higher-order methods such as [300–303] might con-
verge at a faster speed as they use the information about curvature; however,
these methods are more difficult to utilize compared to first-order methods
in NNs — usually due to the operation and storage of the inverse of the
Hessian matrix [286, 304, 305].

More recent improvements of these techniques include, for example, a
hybrid combination of Adam and AMSGrad called HN Adam [306], SGD with
warm restarts and regularization called SGDRE [307], SGD with fractional-
order momentum [308], projection Adam AdamP [309], Adam with quasi-
hyperbolic momentum QHAdam [310], Adam with partially adaptive momen-
tum PAdam [311–313], adaptive inertia optimizers [293], Adam with adaptive
variance reduction Adam+ [314], Adam with adaptive bilevel optimization
BiAdam [315], AdaGDA [316], AMSGrad [297], AdaBound and AMSBound with
learning rate clipping [317, 318], Adam with second-order momentum AdaXod
[319], AdaMod [320], WSAGrad [321], AdaLip estimating the Lipschitz constant
[322], AdaBelief [323], and AdaCB [324] limiting the learning rates, super-adam

2.2 building blocks of neural networks 27

[325] providing a generalizing framework, Adam with the Kalman filter
KAdam [326] ans its extension sKAdam [327], iAdam [328], diffMoment [329],
Nadax [330], AdaDrift [331], AdaSecant [332, 333], AdaHessian [334], NRMSProp
[335], and SGD with random learning rate mSGD [336]; these are only few
examples demonstrating how vast is the field of the optimizers, see reviews
mentioned below.3 Nevertheless, the vanilla Adam remains popular as it con-
verges well even in the vanilla form when tuning the Adam hyperparameters
[299].

More about optimization methods for NNs is available in reviews and
comparative studies [286, 304, 305, 337–345].

3 Also, an extensive list of optimizers is available in the supplementary material of [337] at
https://proceedings.mlr.press/v139/schmidt21a/schmidt21a-supp.pdf.

https://proceedings.mlr.press/v139/schmidt21a/schmidt21a-supp.pdf

3
D N A M I C R O A R R AY S A N D G E N E E X P R E S S I O N
M E A S U R E M E N T — A N O T H E R B R I E F O V E RV I E W

This chapter serves as a brief overview of DNA microarrays, an important
technology in genomics [346]. Microarrays entail the immobilization of thou-
sands of nucleic acids on a surface and are employed to gauge the relative
concentrations of nucleic acid sequences within a mixture to get an estimation
of gene expression levels [347] of thousands of genes simultaneously [348].
This quantification is achieved through the process of hybridization, followed
by the detection of the resultant hybridization events [347].

The last two decades in genomics were characterized by the massive use of
oligonucleotide and DNA microarrays, which allows for obtaining genome-
wide mRNA expression data [349]. While the very predecessor of DNA
microarrays was used already in 1975 [347, 349], the DNA microarrays are
still actively used for research even today (e.g., [350–357]). Other contem-
porary uses include DNA fingerprinting for forensic uses [358] and clinical
applications such as [359].

The Section 3.2 briefly describes the historical development of DNA mi-
croarrays; a brief overview of the function and types of DNA microarrays is
then provided in Section 3.3 together with a comparison to another popular
approach for measuring gene expression — RNA-Seq — in Section 3.3.2.
Finally, an L1000 microarray platform is introduced in Section 3.3.3 due to its
importance for the motivation of this work.

3.1 dna and genetics

Genes are the basic hereditary units through which living organisms in-
herit characteristics and attributes from their progenitors [360]. For instance,
children often exhibit physical resemblances to their parents due to the in-
heritance of their parents’ genes. Genetics delves into the intricate study of
genes, aiming to explain their composition and functionality.

Genes are stored in an extended molecular structure termed DNA, which
undergoes replication and is passed down through successive generations
[360, 361]. DNA comprises basic building blocks arranged in a specific se-
quence, holding genetic information. This genetic code, inherent to DNA,
provides the language that enables organisms to interpret the data contained
within genes. This information serves as the blueprint for the construction
and operation of a living organism [360, 361].

The genetic information encoded in DNA is stored as a code consisting of
four distinct chemical bases — adenine (A), guanine (G), cytosine (C), and
thymine (T) [361, 362]. The arrangement, or sequence, of these bases dictates
the data required for the construction and maintenance of an organism,

29

30 dna microarrays and gene expression measurement

similarly to the manner in which the alphabet’s letters are ordered to form
words and sentences [361].

DNA consists of two strands forming a double helix; the two strands of
DNA are polynucleotides, and they are constructed from simpler monomeric
units known as nucleotides [361]. Each nucleotide comprises one of four
nitrogen-containing bases (A, G, C, and T), a sugar molecule deoxyribose,
and a phosphate group [361]. A chain is formed by the linkage of deoxyribose
and a phosphate group, serving as the scaffold upon which nucleotides are
attached as shown in Fig. 3.1. Each DNA molecule is composed of two
complementary strands, and the orientation of the deoxyribose within each
strand dictates their direction. These strands are identified as the 3’ end
and 5’ end based on the bonds of the deoxyribose [361]. The complementary
strands align in reverse directions and are linked by peptide bonds connecting
the nucleotides. The nucleotides within these strands are not connected at
random; usually, adenine pairs with thymine, while cytosine forms a peptide
bond with guanine [361]; nevertheless, there are exceptions and other pairs
are formed, e.g. [363].

However, the DNA does not directly partake in protein synthesis. Instead,
an intermediary molecule, ribonucleic acid (RNA), serves as the courier,
shuttling the information encoded in DNA to ribosomes [361, 364]. At the
ribosomes, proteins are manufactured in alignment with the nucleotide
sequence. These nucleotides are read in triplets, termed codons, where each
of the 64 potential triplets codes for one of the 21 amino acids, a start codon,
or a stop codon [361]. This intricate process comprises two primary phases:
transcription, which is the initial step where a gene acts as a template for RNA
synthesis, and translation, the subsequent step involving ribosomal protein
synthesis [361]. This process of the flow of genetic information called GE is
often summarized in the so-called central dogma of molecular biology [365–369].

3.2 brief history of microarrays

The first description of the DNA in 1953 by Watson and Crick [370] led to
the emergency of genomics. The first steps towards the creation of the DNA
microarrays were presented in the late 60s when the way for locating the
position of specific sequences (in situ hybridization) was discovered [371].
The method became known as fluorescence in situ hybridization (FISH) after
the introduction of fluorescent probes [371]. The FISH uses fluorescent probes
that bind only sequences with a high degree of complementarity, which can
be observed using fluorescence microscopy.

3.2.1 First arrays

The development of the colony hybridization method led to the creation of
the first microarrays; the colony hybridization method randomly cloned the
probe DNA into E. coli plasmids, and then grown the colonies, thus replicating
the probe DNA. This was used for the first larger scale experiments where it
was used to screen thousands of colonies to identify clones with the DNA

3.2 brief history of microarrays 31

Phosphate-
deoxyribose
backbone

Adenine

CytosineGuanine

Thymine
O

O
P

O−O

O

−

OH

O

O
P

O−O

O

O

O
P

O−O

O

O

O
P

O−O

O

O

O O−

P
O

O

OH

−

O

O O−

P
O

O

O

O O−

P
O

O

O

O O−

P
O

O

NH2

N

N

N

N

H2N
N

N N

N

NH2

N

N

O

H2N

N
N

O

O

NH

N

O

O

HN
N

O

O

N

NH

N

N
NH2

O
N

HN N

N

H2N

3′ end

5′ end

3′ end

5′ end

Figure 3.1: Structure of a DNA molecule. By Madprime [CC0], via Wikimedia Com-
mons, https://commons.wikimedia.org/wiki/File:DNA_chemical_str
ucture.svg.

complement to the probe DNA [347]. The approach was later extended in
1979 by creating an array of 1728 colonies in a 26 × 38 cm region [347].
The extension was done by the creation of mechanical pin devices that
allowed it to operate simultaneously on 144 well microplates. The first and
simplest arrays were called the dot blots with simplified processing and better
reproducibility — they allowed for parallel hybridization and also for parallel
image processing [371]. The density of the first array was further increased
by replacing the manual work with robotic systems, which also removed the
human errors that inevitably occurred [371].

3.2.2 Increasing the density

The dot blot procedure used a porous support as it provided a larger surface
for binding, and also, the nucleic acid could be applied in relatively large
volumes because it soaked into the porous material, thus preventing excessive
lateral spreading [371]. The porous support came, however, with several
disadvantages — the boundaries and shapes of spots were poorly defined,
and it was difficult to control the amount of oligonucleotide deposited. The

https://commons.wikimedia.org/wiki/User:Madprime
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg
https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg

32 dna microarrays and gene expression measurement

porous support was an obstacle to increasing the density of spots, which
was necessary to increase the number of spots. Furthermore, the permeable
membranes tended to swell in solvent and to shrink and distort when dried,
and also the non-rigidness made spotting and reading their position more
difficult [371, 372].

The solution was to replace the porous support with an impermeable
material such as glass or silicon, which allowed the use of very small sample
volumes and high density of spots [372]. Furthermore, since the nucleic
acids form a monolayer that saturates the surfaces, the impermeable support
allowed for the consistency of attached amounts between regions of the array
[371]. Also, such supports increased the reaction speeds of the solution phase
as the molecules did not have to diffuse into and out of the spores [371]. The
impermeable supports allowed the technology to reach the high accuracy,
reliability, and reproducibility needed for larger-scale experiments.

3.2.3 Mature microarrays

After the introduction of impermeable supports, three major directions of
microarrays emerged — spotted arrays, in-situ synthesized arrays, and self-
assembled arrays [347].

3.2.3.1 Spotted arrays

The first method allowing high-density arrays on glass substrates was pub-
lished in 1996; the process used poly-lysine coated glass microscope slides
that provided good binding of DNA and also a robotic spotter that was
spotting multiple glass slide arrays from DNA stored in microtiter dishes
[347].

3.2.3.2 In-situ synthesised arrays

Another direction represented the in-situ synthesis of nucleic acid on the
surfaces, which brought multiple advantages over the deposition of presynthe-
sized probes [371]. One of the possible approaches was an ink-jet fabrication
that used ink-jet printers to fire a solution of nucleotide reagents at a glass
surface. Due to the similarity of ink-jet printing on paper, most of the engi-
neering work was already researched, which allowed a quick introduction of
the method as it required only the modification from printing four colors to
delivering precursors for four different bases [371]. This increased the flexi-
bility of DNA microarrays as it could synthesize any set of oligonucleotides
and place it at any position in the array [371].

A different approach is the light-directed fabrication (manufactured by
Affymetrix) that directed the synthesis of oligonucleotides by using patterned
photolithographic masks [347, 371]. A single mask was required for each base
addition; thus, to create a probe of 20 nucleotides, 80 masks were required
[371]. The biggest advantage of such an approach is the high density — there
are DNA microarrays that have 65,536 probes in 1.28 × 1.28 cm area [371].

3.3 dna microarrays and measuring gene expression 33

3.2.3.3 Self assembled arrays

Yet another method was introduced in 1998; it synthesizes DNA on small
polystyrene beads and then deposits the beads on the end of a fiber optic
array[371]. A randomly assembled array is then created by applying a mix-
ture of such beads to the optic fiber. The first versions of the technology
used optically encoded beads with different fluorophore combinations to
determine the position of the nucleotides. However, this rather limited the
number of unique beads that could be distinguished [371]. This was solved
in 2004 by decoding the beads using hybridization and detection of several
short and fluorescently labeled oligonucleotides, which allowed for a large
number of types of beads on a single array and for functionality tests of such
array prior to its use in a biological assay [371].

3.2.4 Future of microarrays

The DNA microarrays characterized a whole phase in the genomics research.
Even though they are still actively used in various research, a new competitor
has arisen recently — it is called the RNA-Seq [373]. It has one great advan-
tage compared to DNA microarrays as the microarrays need to know the
analyzed sequences a priori to the experiment [373]. The RNA-Seq represents
a whole transcriptome shotgun sequencing and, as such, produces reads of
sequences in the analyzed sample without the need to know the sequences
before the experiment — the measurement of the gene expression is done
by counting the reads during the transcriptome assembly. For more details,
see Section 3.3.2. Coppée predicted in 2008 that microarrays would have
been made obsolete by the sequencing platforms as over time more and
more applications would have migrated from microarrays to the sequencing
approaches [374]; while this prediction is partly true as, for example, the
RNA-Seq is more suitable for certain applications, the microarrays are still
very popular with new designs appearing in contemporary literature (e.g.,
[359, 375]) — furthermore, Aparna and Tetala stated in 2023 they expect
that biomolecule-based microarrays will flourish over the next five years
[376]. One of the reasons why microarrays might flourish in the near future
might be nanoarrays, which are part of next-generation sequencing (NGS)
approaches [377].

Furthermore, the microarrays are often preferred in certain applications
as they are often cheaper [378] (depending on the goals and scope of an
experiment). Also, there are microarray-based tests with proven clinical
utility, and they are easier to use for diagnosis. The economic and technical
aspects allow the use of microarrays outside the basic research directly in
clinical practice [379, p. 17] such as [359].

3.3 dna microarrays and measuring gene expression

DNA microarrays, sometimes also called nucleic acid arrays [347], are used
mainly for measurement of gene expression levels [347, 364] (there are also

34 dna microarrays and gene expression measurement

other popular approaches such as RNA-Seq, see Section 3.3.2). They are used
to assess, for example, DNA mutations, DNA methylation, single nucleotide
polymorphism, chromosomal fragments, microRNAs, and long noncoding
RNAs [379, p. 17]. A typical microarray is constructed by immobilizing
oligonucleotides [380], each comprising several dozen nucleotides, onto a
glass slide [381], a specialized cassette [379, p. 17] or other materials [382]. Em-
ploying photolithographic techniques [383] (there are also other approaches,
see [376]), one nucleotide (A, G, C, and T) is added at a time, enabling the
creation of a microarray containing hundreds of thousands of distinct oligonu-
cleotide sequences [381]. These sequences are designed to be complementary
to characteristic fragments of known DNA or RNA sequences [384] and are
organized into sets referred to as probes [381, 385].

When a sample containing DNA or RNA molecules is applied to the
microarray’s surface, these components specifically hybridize with their
corresponding probes, which are present in multiple copies throughout the
microarray [381] as shown in Fig. 3.2. A fluorescence-based method is then
employed to determine the amount of material hybridized to a particular
probe [381]. Although the relationship between fluorescence intensity and
the quantity of DNA or RNA is not linear, the fluorescence intensity serves
as an indicator of the amount of a specific gene’s DNA or RNA in the sample
[381]. This methodology facilitates the quantification of transcript levels for a
multitude of genes within a relatively short timeframe [381].

3.3.1 Microrrary experiments

The whole microarray experiment consists of several steps. The first step is
the RNA isolation, where the RNA is isolated from the cells. During this step,
the degradation of the sample is also measured; a high-quality RNA sample
should contain over 80 % of ribosomal RNA (rRNA) as its concentration is

Figure 3.2: Working of DNA microarrays by hybridization of the target to the probe.
By Squidonius [public domain], via Wikimedia Commons, https://comm
ons.wikimedia.org/wiki/File:NA_hybrid.svg.

https://en.wikipedia.org/wiki/User:Squidonius
https://commons.wikimedia.org/wiki/File:NA_hybrid.svg
https://commons.wikimedia.org/wiki/File:NA_hybrid.svg

3.3 dna microarrays and measuring gene expression 35

a good indicator of the overall RNA quality [381]. Nevertheless, the quality
of RNA can also be measured after the completion of the experiment by
evaluating results from a control probe-sets [381], often with the help of RNA
degradation plots [386] or mixed effect modeling [387].

The second step is the synthesis of copy DNA (cDNA) [381]; the RNA
is reverse transcripted into the first strand of cDNA using either oligo-dT
primer such as or random primers [381]. As oligo-dT primer works only
on mRNA and not on rRNA and therefore no cleansing of rRNA is needed
[381]. The second strand of cDNA is synthesized using the first strand as a
template.

The third step is the amplification and labeling [381]. The synthesized
cDNA is amplified (replicated); however, this step is crucial for the GE
experiment quality [381] and can introduce systematic errors [388] — which is
one of the reasons why amplification is optional and why there are microarray
protocols that omit it [381, 389]. The amplification process uses in vitro
transcription to produce copy RNA (cRNA) [381, 390]. To enable control of
the overall reaction yield and the sample’s purity, this step also includes
cleanup and quantification of the cRNA [381].

The fourth step is fragmentation when the cRNA targets are cut into
fragments 50–100 nucleotide (nt) long [381]. Before the next step, bacterial
RNAs are added to enable evaluation of the consistency of hybridization
condition and the overall performance [381]. These bacterial RNAs are called
bacterial spikes [381] and are one of the type of external RNA controls (ERCs)
[381, 391].

The fifth step, hybridization, is the most time-consuming; during hybridiza-
tion, the cRNA binds to the specific probes on the microarray chip [381].

The next, sixth, step is washing of all cRNAs that are non-specifically
bound to the microarray surface [381]; as the non-specifically bound cRNA is
washed with varying efficiency, the sensitivity and background level of the
entire microarray are affected [381].

The seventh step is the staining of the hybridized cRNA with fluorescent
dye [381, 392] so that probe-target hybridization might be detected during
the scanning process [392]. There are also approaches for labeling the targets
pre-hybridization [392]. There are also two-channel microarrays for comparing
two samples labeled with two different fluorescent dyes.

The eighth step is the scanning, where the bound fluorescent dye is excited
using a laser [381, 392]; the scanners measure the level of fluorescence,
which is assumed to be proportional to the amount of cRNA bound to the
corresponding probe [381]. An example of scanned two-channel microarray is
shown in Fig. 3.3.

The final step is the data pre-processing from the microarray image ob-
tained in the previous step [381]. Several pixels are tied to each probe in
the image; thus, the pre-processing of the image has to convert these pixels
into a single fluorescence intensity for each probe [381]. As there are many
factors influencing the measurement of the intensities, such as experimental
conditions and cRNA concentrations [381], a normalization is performed after
the scanning [381, 393]; however, the used normalization approach can have a

36 dna microarrays and gene expression measurement

Figure 3.3: An example of scanned two-channel mouse cDNA microarray. It shows
the gene expression differences of approx. 8,7000 genes between two
different mouse tissues. By Louis M. Staudt [public domain], via Wiki-
media Commons, https://commons.wikimedia.org/wiki/File:

Mouse_cdna_microarray.jpg.

huge impact on the results of the experiment — more detailed discussion and
examples of normalization approaches are available in [346, 348, 393–410].

More detailed description of microarray structure and the whole process
of measurement gene expression using microarrays from first step of RNA
isolation through amplification to scanning is available in [364, 376, 380–
383, 411]; detailed protocols are available in [379, pp. 18–32] and [382]. A
discussion of approaches for analyzing DNA microarray data is available in
[348, 412], and a tutorial is available in [413].

3.3.2 RNA-Seq

The RNA sequencing (RNA-Seq) [373, 414–416], a competitor DNA microar-
rays is a more recent method for measuring gene expression leves. RNA-Seq
boasts many advantages over the DNA microarrays.

First, RNA-Seq allows for the discovery of new genes and exons while
DNA microarrays require to know a priori the measured sequence [414, 417].
While there is a microarray variant called genome tiling array (or just tiling

https://commons.wikimedia.org/wiki/File:Mouse_cdna_microarray.jpg
https://commons.wikimedia.org/wiki/File:Mouse_cdna_microarray.jpg

3.3 dna microarrays and measuring gene expression 37

array) [418–421] that can discover new genes (e.g., [421]) and exons, it needs
a lot of input RNA and has several limitations affecting sensitivity, specificity,
and direct splice detection [414].

Second, DNA microarrays have a limited measurement range as they can-
not reliably detect transcripts with low abundance or alternative isoforms
[417]; this is not the case for the RNA-Seq [414, 417]. On the other hand,
RNA-Seq approaches also have several disadvantages compared to microar-
rays; they are costlier [417] and have higher data analysis requirements (see
Fig. 3.5 for individual steps of the data analysis) as there are no "gold stan-
dard" pipelines at the moment — unlike the DNA microarrays which have
standardized workflows and available user-friendly software for data process-
ing and analysis [417]. Also, microarray experiments have faster turnaround
times, especially for small studies, as RNA-Seq that requires a flow cell with
multiple lanes or a chip with multiple samples for cost-efficient operation
[417]. Also, RNA-Seq requires mRNA selection or removal of abundant
transcripts in order to avoid high sequencing costs [417].

An in-depth comparison of microarray and RNA-Seq technologies, together
with guidelines for the selection of the appropriate approach for an experi-
ment, is given in [417]. Further description of RNA-Seq is out of the scope of
this work as mainly DNA microarray data were used for the experiments and,
moreover, the task is motivated by inferring the full expression profile out of
the very cost-effective L1000 microarray platform (see Section 3.3.3). More
details about RNA-Seq is available in [422–427] and illustrative overview of
the RNA-Seq process is shown in Fig. 3.4 just to provide reader an idea about
the whole process; full description of the figure is available in [422].

Figure 3.4: General overview of RNA-Seq. By Griffith et al. [422] [CC BY 4.0], taken
from https://doi.org/10.1371/journal.pcbi.1004393.g002.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pcbi.1004393.g002

38 dna microarrays and gene expression measurement

Figure 3.5: Structure of an analysis of RNA-Seq experiment together with commonly
used tools. By Hong et al. [425] [CC BY 4.0], taken from https://jhoonl

ine.biomedcentral.com/articles/10.1186/s13045-020-01005-x.

3.3.3 L1000 gene expression profiling assay

The L1000 is a new low-cost and high-throughput gene expression profiling
assay introduced in [1] and a motivation for the task solved in this thesis. The
assay reaches its cost-effectiveness by directly measuring only 978 carefully
selected landmark genes, and the rest is computationally inferred [1]. Origi-
nally, the inference involved a linear regression model where the expression
of the inferred gene is computed as a linear combination of the expressions
of the measured landmark genes [2]. Later on, more advanced, non-linear
models such as the D–GEX were introduced [2]. The main advantage of
the L1000 profiling platform is its low cost while still being comparable to
RNA-Seq methods [1, 428], which allowed to create a huge dataset of over
1,300,000 gene expression profiles — this scale is unprecedented and would
be very costly to reach with other methods such as the RNA-Seq. The L1000

data can be used, for example, for drug discovery using GANs [429].

3.3.3.1 Selection of landmark genes

The L1000 is measuring selected landmark genes that are suitable foundations
for inference of the rest of the target genes [1]. The landmark genes were
selected using a large (in terms of usual sizes of GE datasets) and diverse col-
lection of 12,063 gene expression samples that were sampled using Affymetrix
HG-U133A microarrays from the Gene Expression Omnibus (GEO) repository
[430].

As this dataset contained a non-uniform representation of various bio-
logical aspects (e.g., disproportional representation of certain tumor types
was present), a principal component analysis (PCA) was applied in order
to reduce dimension and minimize bias towards any specific lineage or cel-
lular state [1]. This reduced the dimension to 386 components that were

https://creativecommons.org/licenses/by/4.0/
https://jhoonline.biomedcentral.com/articles/10.1186/s13045-020-01005-x
https://jhoonline.biomedcentral.com/articles/10.1186/s13045-020-01005-x

3.3 dna microarrays and measuring gene expression 39

able to explain 90 % of the variance. To identify commonly co-regulated
transcripts, Subramanian et al. applied a cluster analysis using an iterative
peel-of procedure for centroid selection [431] that repeatedly uses k-means
algorithm on 100 independent subsamples, each covering 75% of the data.
Based on the clustering analysis, Subramanian et al. created a sets of genes
that co-clustered in more than 80% of the trials [1]. Stable clusters were
then excluded from the data, and the procedure was repeated. This yielded
potential landmark candidates whose transcripts were then empirically tested
in order to evaluate their ability to measure the GE levels accurately [1]. For
each gene, a 40 nt long sequence was selected and then split into two 20-mers
that were then each coded on a probe in the L1000 assay [1].

3.3.3.2 L1000 comparison to RNA-Seq

As RNA-Seq is an emerging platform with many benefits (See Section 3.3.2),
Subramanian et al. also compared the gene expression profiles generated
using the L1000 assay with those generated using Affymetrix microarrays
and RNA-Seq. Subramanian et al. profiled 3,176 samples using both L1000

and Illumina TrueSeq RNA sequencing data on the same samples. After
normalization and batch corrections, Spearman rank correlations (sample
self-correlations) were calculated for the 970 landmark genes1 and the median
sample self-correlation was 0.84 [1]; furthermore, sample recall defined as
the fraction of reference similarity values that are lower than the similarity
between the designated samples was calculated in order to provide an as-
sessment of how well a particular pair of samples or genes match each other
relative to an appropriate null (see [1] for details on the used definition of
sample recall) [1]. The results were 98% of samples with sample recall > 0.99
and 99.84% samples with sample recall > 0.95 [1]. Moreover, a small subset
of these samples was also profiled using the Affymetrix platform to provide a
comparison to a microarray based gene expression profiling platform. The re-
sults from the analysis by Subramanian et al. is that the L1000 measured and
inferred GE values are "as similar with RNA-Seq as RNA-Seq is with Affymetrix"
[1].

Furthermore, the GE profiles obtained from the L1000 assay can be con-
verted to RNA-Seq-like profiles using the deep learning approaches presented
by Jeon et al. in [428]. Jeon et al. first use a modified cycle-consistent GAN
(CycleGAN) to map the microarray GE profiles of the 978 landmark genes
into a RNA-Seq-like profiles; these 978 landmark RNA-Seq-like GE profiles
are then extrapolated using a a fully-connected D–GEX-like neural network
into the full genome space [428]. For certain applications, this extrapolation
allows biologists to use usual RNA-Seq data processing pipelines on the vast
GE dataset obtained using the L1000 assay.

1 8 landmark genes from the L1000 were not included in the RNA-Seq data

4
L I T E R AT U R E R E V I E W

4.1 artificial neural networks for gene expression inference

and classification

ANNs represent a state-of-the-art approach in many fields (e. g. image
classification, segmentation or reconstruction, natural language processing,
and time-series forecasts), and biology is no exception (review e. g. [66, 67,
432–438]). The ANNs were used, for example, to analyze gene expression
relationships [439], for gene expression inference [2, 14, 15, 440], or for gene
classification [440]. While NN model can be used for various tasks in biology,
this work focuses mainly on NNs working with GE data; other modalities are
out of the scope of this work. One such application particularly important
for this thesis is D–GEX [2], which infers a full gene profile using only
∼1, 000 selected landmark genes measured by the L1000 microarray assay (see
Section 3.3.3).

4.1.1 D–GEX

The D–GEX family is made up of 9 different architectures. For technical
reasons, D–GEX consists of two separate feedforward NNs having from one to
three hidden layers — each having either 3,000, 6,000, or 9,000 neurons. Each
network predicts only half of the target genes (∼4, 760 genes) and is trained
on a separate GPU. The neural networks were trained using a standard back-
propagation algorithm with mini-batch gradient descent with momentum and
learning rate decay [2]. The initial weights were initialized using normalized
initialization [441]. The error metric used was mean absolute error (MAE).

The original D–GEX was evaluated using data from three different sources
— GEO expression data curated by the Broad Institute, GTEx expression data
consisting of 2,921 gene expression profiles obtained using the Illumina RNA-
Seq platform [442] and 1000 Genomes expression data consisting of 462 gene
expression profiles also obtained using the Illumina RNA-Seq platform [443].
The GEO expression data contained biological or technical replicates; the final
dataset contained ∼110, 000 samples after removing these replicates. All three
datasets were jointly quantile normalized and then standardized for each
gene individually.

The D–GEX neural networks were compared with linear regression and
k–nearest neighbor (KNN) regression. The linear regression builds a linear
model for each target gene, while the KNN regression finds k closest expres-
sion profiles in the available data and returns the mean of the appropriate
targets. The D–GEX neural networks were found to perform superiorly on
all three datasets. The L1 and L2 regularized linear regression performed
similarly to non-regularized linear regression.

41

42 literature review

Another approach for gene expression inference using the same data as D–
GEX appeared concurrently with our research [10, 444]— this approach uses
generative adversarial network (GAN) for estimating the joint distribution
of landmark and target genes [14, 15]. This approach resembles a two-player
minimax game between two neural networks – generative and discriminative
models. Another approach based on the D–GEX, called L–GEPM, was pre-
sented in [445], where LSTM units were used. Yet another approach, albeit
not based on neural networks, was presented in [446], where authors used
the XGBoost algorithms for gene expression inference.

As briefly discussed in Section 3.3.3, a D–GEX-like network similar to
the ones used throughout this work was used to obtain RNA-Seq-like gene
expression profiles from the microarray gene expression profiles from the
L1000 assay in [428]. The D–GEX-like network is very similar to the original
D–GEX both in terms of depth and width — it has three hidden layers and
2,048, 4,096, and 8,162 neurons in the hidden layers [428]. This is unlike the
original D–GEX, which has uniform width across the three hidden layers;
nevertheless, the dimensions are similar as the widest D–GEX had 9,000

neurons in each layer [2]. Furthermore, the original D–GEX predicted GE
only for 9,520 target genes [2] whereas this approach extrapolates the GE
profiles for 23,614 genes [428].

4.1.2 Usage of neural networks for other gene expression data tasks besides profile
reconstruction from the L1000 assay

While the GE profile reconstruction from the L1000 assay is a task that is of
particular interest for this work, there are other tasks in biology where NNs
and other machine learning methods can be used. For example, Eetemadi
and Tagkopoulos used an ANN to capture GE relationships [439]. They
used a NN architecture they called genetic neural network (GeNN)1 for
prediction of the genome-wide GE utilizing gene knockouts and master
regulator perturbations [439] — more in Section 4.1.2.1. Neural networks
can also be used for clustering and dimensionality reduction of the gene
expression data but also for analysis of functional patterns of the GE data and
even their generation (see Section 4.1.2.2). While the Section 4.1.2.2 mostly
focuses on unsupervised approaches deepening the understanding of the GE
data, there are also many applications of NNs for supervised tasks such as
the classification of GE microarray, RNA-Seq, and other kinds of data; these
tasks are briefly discussed in Section 4.1.2.3.

4.1.2.1 Genetic neural network

The GeNN incorporates existing gene regulatory information in its architec-
ture — the inputs are the expression levels of master regulator (MR) genes
and gene knockout information, the intermediary layers compute the expres-
sion levels of individual genes — every single layer computes the expression
level of a single gene — and the outputs are the predicted gene expression

1 Eetemadi and Tagkopoulos abbreviated genetic neural network as GNN but this abbreviation
is more commonly used for graph neural networks (GNN).

4.1 anns for ge inference and classification 43

levels [439]. This architectural framework is founded on the assumption that
the expression of a gene, regulated by d regulatory genes, can be estimated
using a nonlinear transformation of the weighted sum of expression levels
of the regulatory genes, i.e., by fθ (x), where x ∈ Rd

≥0 is the expression level
of the d regulatory genes, f is the activation function of the given node and
θ is the set of function parameters including p, t, b, and t0 (see Eq. (4.1) for
details) [439].

The activation f is defined as

fθ (x) =
t0 + ∑d

k=1 tk exp (pkxk)

1 + ∑d
k=1 bk exp (pkxk)

, (4.1)

where p ∈ Rd is the input weight vector, t ∈ Rd
≥0 is the numerator weight

vector, b ∈ Rd
≥0 is the denominator weight vector, and t0 ∈ R≥0 is the bias

[439].
Since the layers are tied with individual genes whose expression they

predict, these layers are in a topological order of the nodes of the regulatory
graph [439]. If there is a cycle detected, the feedback edges are moved before
the topological ordering of genes [439]. With such architecture, the expression
levels of individual genes can be calculated using a single forward pass if the
weights θ are known [439]. To obtain the weights θ for each layer, Eetemadi
and Tagkopoulos used a layer-wise training algorithm (more details in the
original work [439]) iteratively employing linear programming (LP).

The GeNN was empirically tested using the subset of transcriptional regu-
latory network (TRN) of Escherichia coli and gene expression levels from in
vivo microarray data and simulated data using a real biological network [439].
While the GeNN outperformed its competitors such as MLP, RNN, bidirec-
tional recurrent neural network (BRNN) [447], lasso [448], and another GeNN
variant called linear GeNN (LinGeNN)2 that used a linear function as the
activation function [439], its main limitation is that the topological ordering
of nodes is made in a way that ignore cycles in the TRN and as such cannot
take into account feedback loops [439]. Similarly, Somathilaka et al. used
a NN approach where gene-to-gene interaction dynamics is embedded in
gene regulatory network (GRN) was used to create gene regulatory (GRNN)
based on graph neural networks (GNN) in [449].

4.1.2.2 Clustering, analysis, and generation of gene expression data

Neural networks are often used in bioinformatics for the generation or
augmentation of data (see [450] for an overview); one such approach represent
GANs (see Section 4.5.2 for more details about GANs in general). GANs are
often used for the generation of gene expression data [451], and there are
various examples in the literature (more in reviews in [438, 451–453]).

A combination of variational autoencoder (VAE) and GAN was for data
generation of RNA-Seq data in [454] where Yu and Welch used three large
single-cell RNA-Seq (scRNA-Seq) (more about single-cell omics in [455])
datasets first to learn disentangled representations of RNA-Seq data using

2 Eetemadi and Tagkopoulos used abbreviation LinGNN, see Footnote 1.

44 literature review

a VAE and then used the representations to train a conditional GAN [454]
as Yu and Welch observe that GANs generate better samples than VAEs.
Similarly, a conditional single-cell GAN (cscGAN) was used to generate
realistic cell samples in [456] where Marouf et al. showed that augmenting
sparse cell populations with cscGAN improves robustness and reliability of
classifiers and downstream analyses including detection of marker genes,
thus possibly reducing the number of animal experiments required and in
turn reducing costs of research [456]. Another variant of GAN model was
used by Lall, Ray, and Bandyopadhyay in [457] for the generation of new
scRNA-Seq cell samples. A conditional GAN was used to generate GE data
of Escherichia coli and humans in [458]. Yet another GAN based model was
used by Park et al. for a generation of good and bad prognosis samples in
order to improve the prognosis classification [459]. Chaudhari, Agrawal, and
Kotecha used GAN based model for augmentation of GE data to improve
cancer classificaion in [460]. Similarly to the work by Park et al., Chaudhari,
Agrawal, and Kotecha, Xiao, Wu, and Lin used a GAN to generate samples
from a minority class to improve cancer diagnosis from RNA-Seq data in
[461]. A Wasserstein GAN with gradient penalty (WGAN-GP) was used
for GE data generation to improve the classification performance in [462].
A GAN with a semi-interpretable generator was used for a generation of
synthetic RNA-Seq dataset in [463]. Yet another GAN based model was used
for scRNA-Seq data augmentation in [464] and in [465], other examples of
NN based GE and other omics data augmentation or generation are [466–474].
However, the GANs and other NN based models are not the only successful
approaches for generation of GE data — e.g., Sun et al. used probabilistic
models based on copulas to generate scRNA-Seq GE data capturing gene
correlations in [475] and Dibaeinia and Sinha used models guided by gene
regulatory networks to generate single-cell gene expressions in [476]. The
NNs are also not limited to GE data; for example, Wan and Jones used a GAN
based method by generating synthetic feature samples to improve protein
function prediction [477], Méndez-Lucio et al. used NN to generate molecules
from L1000 GE profiles [478], and Yelmen et al. used GANs and restricted
Boltzmann machines (RBMs) to generate novel high-quality genomes [479].
An approach based on adversarial autoencoder was used in [480] for feature
extraction from high dimensional RNA-Seq GE data. The autoencoder (AE)
can also be used for denoising scRNA-Seq data as shown in [481, 482]. VAE
based model was used for inference of cellular dynamics from RNA-Seq
data in [483]. A NN model combining both unsupervised AE and supervised
classification layer was used for scRNA-Seq data clustering and annotation
in [484]. A reviews of the usage of NNs for analysis of RNA-Seq data are
available in [433, 452, 453, 485–489].

A VAE has been used for learning the infection responses that are cell-type
and species-specific from a single-cell gene expression data in [490]; this
was improved in a later work also by [491] in [491]. An approach similar to
VAEs based on denoising autoencoders (DAEs) and deep belief networks
(DBNs) was used in [492] for a generation of gene expression data and for
gene clustering. VAEs and deep Boltzmann machines (DBMs) were used for
genartion of synthetic scRNA-Seq data in [493]. Comparison of PCA and AE

4.1 anns for ge inference and classification 45

for learning latent feature representation for human gene expression data
is available in [494]. An approach combining VAEs with Bayesian Gaussian-
mixture models was used to analyze single-cell ATAC-seq (scATAC-Seq) data
(while not GE by themselves, they are also high dimensional and noisy) in
[495]. An autoencoder based method was used for clustering of scRNA-Seq
data in [496] where Tran et al. used 28 real scRNA-Seq datasets with more
than three million cells in total for the empirical evaluation of their approach.
A VAE based model was used for feature-level clustering in [497]. A pre-
trained AE was also used for clustering of scRNA-Seq data in [498]. VAE
using directly raw data from scRNA-Seq to avoid data preprocessing was
used in [499] for clustering of GE data. A NN based methods combining
gene ontology (GO) information with an AE model and fully-connected NN
were used for dimensionality reduction in [500]. Another approach using
external information in a NN model was proposed in [501], where He, Fan,
and Yu used a gene-interaction graph to guide the clustering by encouraging
adjacent genes to have similar weights in a NN model. A VAE aiming for
better interpretability used a decoder whose wiring mirrors user-provided
gene modules to provide direct interpretability in [502]. Walbech et al. used
an interpretable AEs to show that biological concepts can be associated with
specific nodes and can be interpreted in relation to biological pathways [503]
and AEs can be used to assist in the interpretation of new unseen data [503].
A variant of DAE was used for semi-supervised clustering of scRNA-Seq
data in [504]. Pati et al. used GAN for imputation of microarray data in
[505]. An AE based approach was also used on scRNA-Seq data for data
imputation and dimensionality reduction in [506] and [507]; other examples
of imputation of scRNA-Seq and similar GE data using AEs, GANs, and
other NN architectures include [508–527]; a review of NN based approach
for omics data imputation is available in [528] and a review of GANs for data
imputation in general in [529]. Pandey and Onkara used GAN to impute
GE data with a focus on downstream functional analysis and showed that
the GAN based approach outperforms other baseline methods in clustering,
visualization, classification, and DGE analysis using the imputed data. An-
other data imputation method was provided in [530], where Hausmann et al.
used a GAN model to reconstruct missing single-cell gene expressions. A
comparison of a standard GAN and WGAN-GP for augmentation of DNA
microarray and RNA-Seq data is available in [531]. Another example of DNA
microarray gene expression data augmentation using a GAN based model is
provided in [532] where Jahanyar, Tabatabaee, and Rowhanimanesh showed
that their approach is able to generate artificial samples that are close to the
original samples. A comparison of several GAN models on RNA-Seq data is
available in [533]. He et al. used a NN based model for prediction of tissue
gene expression profiles in [534].

Kinalis et al. used the deconvolution of AEs to learn biological regulatory
modules from scRNA-Seq data [535]; similarly, [536] used sparsely connected
AEs for functional-feature-based data reduction that could provide better
links among cell clusters [536]. An AE based model was used for inference
of a gene regulatory network in [537] and in [538]. A variant of a deep AE
was used for cell-type-specific gene analysis by constructing an interpretable

46 literature review

decoder in [539]. An interpretable decoder was also used in an AE model for
analysis of cell-free DNA in [540]. An ensemble of AEs was used for clustering
of scRNA-Seq data in [541]. A VAE extension using mutual information was
used to learn an efficient low-dimensional representation of several RNA-Seq
datasets leading to high clustering performance in [542]. Additional examples
of other studies using AEs for clustering and dimensionality reduction of
scRNA-Seq data are [543–572]. A graph-based AE model for integrating
spatial transcriptomic data with chromatin imaging data to identify molecular
and functional alterations in tissues in [573].

Neural network based model was used for assessing the importance of
genes as possible biomarkers of Hepatocellular carcinoma in [574]. Tasaki
et al. used a NN to predict differential expression in [575]. Fakhry, Khafagy,
and Ludl used a NN model with two parallel branches to detect gene–gene
interactions from GE data in [6].

The NN models can also be used for translation between individual do-
mains of data; for example, Yang et al. used AEs for translation between
several modalities including single-cell imagining, RNA-Seq, ATAC-seq, and
Hi-C data [576]. Another VAE model was used for unpaired multi-omics
integration of data sources such as scRNA-Seq, scATAC-Seq, and single-
nucleus methylcytosine sequencing (snmC-Seq) data using graph-guided
embeddings in [577]. Similarly, a deep generative model was used for integra-
tion of multimodal biological data in [578] allowing data imputation if some
modality is missing [578]; this model was built upon previously published
deep generative models for single-cell chromatin accessibility analysis [579],
single-cell variational inference (scVI) of gene expression data [580], and
single-cell multi-omic model called totalVI [581]. A comparison of various
scRNA-Seq imputation methods, including scVI, is available in [582]. A GAN
based model for the reconstruction of genome-wide gene expression profiles
from DNA methylation data was proposed in [583]. A heterogeneous graph
transformer NN model was used in [584] for biological network inference
from multiple modalities. An adversarial model was used for integration of
single-cell chromatin accessibility and gene expression data in an unsuper-
vised manner in [585] while a VAE based model was used for similar task
in [586]; additional examples of NN based data integration approaches are
available in [587–595]. Note, however, that there are successful approaches
for integration of multiple modalities of single-cell data that do not use NN
based models, for example [596]. Another model for dimensionality reduction
of ATAC-seq was introduced in [597] where Kopp, Akalin, and Ohler used a
VAE based model using batch adversarial training strategy. Liu et al. used a
pair of GANs to simultaneously learn the latent representation and infer cell
labels using scATAC-Seq data in [598].

Neural networks can also be used for data corrections; for example, Shaham
et al. and Wang, Liu, and Zhao used residual neural networks for removal of
batch effects in scRNA-Seq data in [599] and [600] while Lotfollahi, Wolf, and
Theis used model based on VAEs for the same task in [490] (performance
comparison of both approaches with several other methods is available in
[601]). Tarca and Cooke used a robust NN approach for spatial and intensity-
dependent normalization of cDNA microarray data in [408]. An approach

4.1 anns for ge inference and classification 47

combining and mutual nearest neighbor (MNN) and a neural network with
residual blocks was used for batch correction of scRNA-Seq data in [602];
other examples of usage of NNs for batch effect removal are [603–611]. The
removal of batch effects can also be solved by other approaches besides NNs;
e.g., SCIBER [612] and scBatch [613].

4.1.2.3 Classification of gene expression data

NNs are also often used for classification of GE data. One such example
is [614] where Lahmer, Oueslati, and Lachiri used a fully-connected net-
work similar to D–GEX (albeit with ReLU activations instead) for binary
classification of microarray data — the goal was the identification of cell
cycle-regulated genes. Interestingly, Lahmer, Oueslati, and Lachiri worked
directly with the scanned images of the microarray data directly (similarly
as in [615] where the authors used such data with support vector machine
(SVM) and KNN algorithms). Since the inputs were images, they also used a
CNN besides the D–GEX-like architecture; the CNN model indeed proved
advantageous over the D–GEX-like architecture when working with the im-
age inputs. Purba et al. used NNs to classify liver cancer using miRNA data
in [616].

Quite an interesting approach was proposed in [617], where Schmauch
et al. created a NN model to predict RNA-Seq gene expression profiles from
whole-slide images. Similarly, Levy-Jurgenson et al. used a CNN based model
to predict gene expressions from whole-slide images in [618], while Alsaafin
et al. used a NN with attention-based topology predicting the RNA-Seq
profiles from images in [619].

Yuan et al. used the gene expression profiles of the L1000 landmark genes
(see Section 3.3.3) to train a deep AE for feature extraction from the human
transcriptome and a second deep NN for cancer classification [620]. The AE
part was designed such that in each layer, there was a 30 – 50% reduction
in the number of neurons, leading to 30 output neurons that produced the
feature vector; the second NN then used these 30 features to for cancer
classification [620]. A NN based model for disease state classification using
RNA-Seq data was proposed in [621]; this model consisted of two parts; first
was a multitasking model classifying the disease state and tissue origin and
second model was for subtype classification [621]. A similar approach was
used in [622], where Azarkhalili et al. used an even smaller latent vector of
size 8 compared to the 30 elements in [620]. Yap et al. analyzed a NN for
tissue classification from RNA-Seq data using Shapley additive explanations
(SHAP) values to test the reliability of model explainability in [623] (more
about model explainability with respect to genomics, in particular, is available
in [624, 625]). Bayesian NN models were used for cancer classification from
RNA-Seq data in [626, 627].

As already mentioned in Section 4.1.2.2, Park et al. used a GAN-based
model to improve the accuracy of prediction of cancer outcomes in [459].
Zhang et al. used an extreme learning machine (ELM) for cancer classification
from microarray GE data in [628]. Another GAN based model together with
a deep multilayer NN was used to improve the prediction of the prognostic

48 literature review

outcome of cancer from multimodal data containing miRNA and mRNA
expressions and histopathological image data [629]; similarly, Duroux et al.
used both RNA-Seq data and histopathology whole-slide images to predict
cancer subtypes and severity in [630] where they compared their proposed
approach to a neural network model. Other examples of NN based model
for cell and tissue type and cancer and other disease classifications are
[328, 594, 595, 631–639]. A review of NN based models using GE data for
cancer diagnosis is available in [640] and more about general challenges in
incorporating ML models for in oncology and other medical fields is detailed
in [641–645]. The classification of cancer patients is not limited to the GE data
— for example, classification of cancer patients from the sequences from gut
microbiome of cancer patients in [646], or decoding mutational signatures
in human pan-cancers using a sparse autoencoder (SAE) in [647]. However,
these and other modalities are not the focus of this work.

4.2 activation functions

The activation function is employed to regulate the output behavior (firing)
of neurons. The activation function is a mathematical function applied to
the output of a neuron or a layer of neurons. It introduces non-linearity
to the network, enabling it to model complex relationships and make non-
linear transformations of the input data. The presence of non-linear functions
is what confers the usefulness of deep networks in addressing complex
problems. It can be demonstrated that a classical multilayer neural network
with a linear activation function is equivalent to a single-layer perceptron,
merely performing a linear combination of its input signals [46, p. 192]. By
applying a non-linear activation function, the network becomes capable of
representing complex patterns and relationships in the data.

The non-linearity exhibited by the activation function, previously referred
to as a "squashing function," underlies the theoretical representational power
of neural networks. It has been proven that any continuous function defined
on compact subsets of n-dimensional real space (Rn) can be approximated
by a feed-forward neural network with a single hidden layer. Initially, this
was established solely for the sigmoid function and subsequently for any
continuous, bounded, and non-constant activation function. However, this
theoretical representation power solely describes the network’s potential
and does not address its practical usability and trainability. Moreover, it
does not render deep learning obsolete, despite some researchers in the
1990s presenting this theorem as an argument against the necessity of deep
networks. It is noteworthy that not all activation functions are static in terms
of learning; certain functions may possess parameters that are learned during
network training, such as the soft exponential or the adaptive piece-wise
linear unit.

Activation functions can have different mathematical forms [11, 69], such
as sigmoid functions (e.g., logistic function), hyperbolic tangent, or recti-
fied linear unit. The selection of an activation function significantly impacts
the modeling capabilities of the network and the level of difficulty in train-

4.2 activation functions 49

ing the network. Each activation function has its own characteristics and
properties, influencing the network’s behavior and performance [11]. Activa-
tion function can be smooth (e.g., logistic sigmoid or tanh) or they may be
non-differentiable at specific points (e.g., ReLU); it was shown that smooth
activation functions provide deeper information propagation [648].

The choice of activation function depends on the specific task and the
network architecture. Different activation functions have different properties,
such as differentiability, smoothness, or sparsity. Additionally, certain acti-
vation functions may be more suitable for specific problems, such as binary
classification or regression tasks. Some authors use optimization approaches
to select the suitable activation function for a particular problem; e.g. an
evolutionary approach was used to evolve the optimal activation function
in [649–666] and grid search using artificial data was used in [667]. Another
search for the optimal activation functions was presented in [668] where
several simple activation functions were found to perform remarkably well.
These automatic approaches might be used for evolving the activation func-
tions (e.g., [649, 655]) or for selecting the optimal activation function for a
given neuron (e.g., [658, 669]). While evolved activation function may perform
well for a given problem, they also might be very complex — e.g., evolved
activation functions in [655]. The complexity of an activation function is
also important characteristic as it significantly influences the computational
efficiency of a neural network; however, this might be mitigated by efficient
implementations (including hardware implementations) of such activation
functions (e.g., [670–680]). An empirical analysis of computational efficiency
and power consumption of various AFs is available in [681]. Empirical com-
parison of various activation functions is available in [11, 616, 668, 682–735].3

Furthermore, mixing multiple activation functions might improve the perfor-
mance of a NN [720]. Multiple AFs can also be used in activation ensembles
where the used activation is selected randomly [719]; a different activation
ensemble was used in [736] where Nandi, Jana, and Das trained identical NNs
with different AFs and used majority voting to produce the final classificaiton.
It can be even beneficial to swap the activation functions during the training
as in [737]. An analysis of the initialization method with respect to activation
functions is available in [738]. Saha et al. developed a framework where an
AF is arising from a solution of differential equations in [739]; this framework
can be used to generate more AFs. More details about activation functions
available in reviews — e.g., [11, 12, 650, 682, 700, 713, 740–749].

The overview is limited to real-valued activation functions; complex-valued
neural networks (e.g., [750–763], brief overview available in [700, 764]),
bicomplex-valued neural networks (e.g., [765]), quaternion-valued neural
networks (e.g., [766–770]), photonic neural networks (e.g., [771]), fuzzy neural
networks (e.g., [772–777]), AFs for probabilistic boolean logic (e.g., [778]),
quantum AFs (e.g., [779]) and others are out of the scope of this work.4

3 Unfortunately, most works compare mainly only very small subsets of available AFs.
4 While these kinds of NNs are not discussed throughout this work, some of these approaches

will use AFs presented in this work.

50 literature review

4.2.1 Binary activation function

The binary activation function (binary AF) — also called a step function —
is a simple yet important activation function used in neural networks [780].
It assigns an output value of 1 if the input is positive or zero and an output
value of 0 if the input is negative [12]. Mathematically, it can be defined as
follows:

f (z) =

1, z ≥ 0,

0, z < 0.
(4.2)

Similar to binary activation function is the sign function, which produces
an output value of -1 if the input is negative and 1 if it is positive (and 0 for
outputs that are exactly zero) [12]. Since the sign and the binary activation
functions have nearly exact properties from the point of view of neural
networks, only the binary activation function is mentioned, but the points
hold similarly for the sign activation function.

The main advantage of the binary activation function is that it is straight-
forward and computationally efficient to implement. It does not involve
complex mathematical operations, making it suitable for networks with low
computational resources or for hardware implementations [781, 782]. How-
ever, the binary activation function has one glaring disadvantage - the lack
of differentiability. The binary activation function is not differentiable at the
point of discontinuity (x = 0) and is zero elsewhere. This poses challenges
for optimization algorithms that rely on gradients, such as BP, since the
gradient is noninformative [684, 780, 783]. Since the gradient-based methods
are used predominantly, the binary activation function is used very rarely
and is important mainly for historical reasons as it was used in the original
perceptron [21, 684].

4.2.2 Sigmoid family of activation functions

Various smoothed variants of the binary activation functions (sigmoids) are
commonly used; the most common is the logistic function — the standard
logistic sigmoid function was dominant in the field prior the introduction of
ReLU (see Section 4.2.6) [46], the logistic function is often called just sigmoid
in the literature which is also used throughout this work for brevity (unless
specified otherwise, sigmoid is equivalent to standard logistic function in the
text). Standard logistic function is defined as

f (z) = σ(z) =
1

1 + exp(−z)
. (4.3)

The logistic sigmoid was a popular choice since its output values can inter-
preted as the probability that a binary variable is 1 [46] since it squashes the
input to the interval (0, 1) [11]. The problem of sigmoid activation functions
is that they saturate — they saturate when their input z is either a large

4.2 activation functions 51

positive number or a large negative number, which makes gradient-based
learning difficult [11, 46]; therefore their use in feedforward networks is
usually discouraged [46]. Another option, albeit significantly less popular in
ANNs, is the probit AF [784], which is just the cumulative standard normal
distribution function used as an AF [784].

Another popular sigmod function is the tanh activation function which is
just scaled and shifted logistic sigmoid

tanh(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

= 2σ(2z)− 1. (4.4)

Similarly as the logistic sigmoid, the tanh also squashes the inputs; however,
it squashes them to the interval (−1, 1). The tanh function is often advanta-
geous over the logistic sigmoid function because it is centered around zero
and it is similar to the identity function near zero, which makes training
of a network easier if the activations are kept small [46]. Nevertheless, the
tanh function saturates similarly as does the logistic sigmoid and therefore
similarly suffers from the vanishing gradients [11]. Computationally efficient
approximation of the tanh activation functions based on splines were pro-
posed in [785] – tanh36 based on approximation relying on 36 equidistant
points and tanh3 using only 3 points. Scaled variant tanh

(z
2

)
was used in

[786]. The linearized unit (LRTanh) is a tanh variant used together with mod-
ified BP that substitutes a different activation function derivative proposed in
[787]. There are also approximations of the logistic sigmoid and tanh that are
meant to speed up the computations; e.g., pRPPSG [788] and other similar
piecewise approximations [789, 790].

A scaled version of the logistic sigmoid function was proposed in [791]
with the motivation to have the same linear regimes as the tanh and relu
activation functions when initialized with the popular normalized initialized
method proposed in [441]. The scaled version used fixed parameters

f (z) = 4σ(z)− 2. (4.5)

A more complicated variant named n-sigmoid was proposed in [792];
however, it seems that the formula presented in the paper is not as the
authors intended and, therefore, we omit this AF from the list.

4.2.2.1 Shifted and scaled sigmoid (SSS)

The shifted and scaled sigmoid (SSS) was used in [793]; it is the logistic
sigmoid with horizontal scaling and translation defined as

f (z) = σ (a (z − b)) =
1

1 + exp (−a (z − b))
, (4.6)

where a and b are predetermined parameters; Arai and Imamura used a =

0.02 and b = 600.

52 literature review

4.2.2.2 Variant sigmoid function (VSF)

The variant sigmoid function (VSF) is an older parametric variant of the
logistic sigmoid proposed in [794]. It is defined as

f (z) = aσ (bz)− c =
a

1 + exp (−bz)
− c, (4.7)

where a, b, and c are predetermined parameters [794].

4.2.2.3 Scaled hyperbolic tangent

A parametric version called scaled hyperbolic tangent (stanh) was used in
[795]:

f (z) = a tanh (b · z) , (4.8)

where a and b are fixed hyperparameters that control the scaling of the
function. Lecun et al. proposed using a = 1.7159 and b = 2

3
A similar concept was analyzed in [796] where sigmoids with bi-modal

derivatives were used as activation functions. An example of such a function
is

f (z) =
1
2

(
1

1 + exp(−z)
+

1
1 + exp(−z − b)

)
, (4.9)

where b is a hyperparameter [796]; similarly, additional three activation
functions with bi-modal derivates were proposed in [796].

4.2.2.4 Arctan

The arctangent (arctan) function and its variation were used as activation
functions in [797]:

f (z) = tan−1(z). (4.10)

The arctan resembles a logistic sigmoid activation, however, it covers wider
range

(
−π

2 , π
2

)
[797]. The arctan and several its variation were compared with

the tanh, ReLU, leaky ReLU (LReLU), logistic sigmoid activation, and swish
in [797]; the best-performing functions in the presented experiments were the
arctan and its variation arctanGR [797]. Interestingly, the arctan was used as
an AF twenty years earlier in [798]. The arctanGR is a scaled version of the
arctan and is defined as

f (z) =
tan−1(z)

1+
√

2
2

. (4.11)

Other scaling variants such as division by the π, 1+
√

5
2 , or the Euler number

are presented in [799].

4.2 activation functions 53

4.2.2.5 Sigmoid-Algebraic activation function

The Sigmoid-Algebraic is a sigmoid variant defined in [800]. It is defined as

f (z) =
1

1 + exp
(
− z(1+a|z|)

1+|z|(1+a|z|)

) , (4.12)

where a ≥ 0 is a parameter [800].

4.2.2.6 Triple-state sigmoid

The triple-state sigmoid unit (TS-sigmoid) is a cascaded AF similar to TS-
swish (see Section 4.2.3.6) [800]; it is defined as

f (z) =
1

1 + exp (−z)

(
1

1 + exp (−z)
+

1
1 + exp (−z + a)

+
1

1 + exp (−z + b)

)
,

(4.13)

where a and b are fixed parameters [800].

4.2.2.7 Improved logistic sigmoid

The improved logistic sigmoid is yet another sigmoid based activation func-
tion designed to deal with the vanishing gradient problem

f (z) =

a(z − b) + σ(b), z ≥ b,

σ(z), −b < z < b,

a(z + b) + σ(b), z ≤ −b,

(4.14)

where a and b are fixed parameters [801]; a controls the slope and b is
a thresholding parameter. The authors recommend a bound on the slope
parameter a:

a > amin =
exp(−b)

(1 + exp(−b))2 . (4.15)

Even though the parameters are fixed during the training of a network, a
procedure for preseting them based on the network and data was proposed in
[801]. The output range of the SiLU is (−∞, ∞) [11]. The authors Qin, Wang,
and Zou also showed that the improved logistic sigmoid AF has a higher
convergence speed than the logistic sigmoid AF [801].

4.2.2.8 Combination of the sigmoid and linear activation (SigLin)

A SigLin5 was used as an AF in [802]. The SigLin is defined as

f (z) = σ (z) + az, (4.16)

where σ(z) is the logistic sigmoid AF and a is a fixed parameter [802]; however,
this AF was used only in a modified optimization procedure [802]. Roodschild,
Gotay Sardiñas, and Will experimented with a ∈ {0, 0.05, 0.1, 0.15} [802].

5 This abbreviation is used only in this work; Roodschild, Gotay Sardiñas, and Will did not
name the function in [802].

54 literature review

4.2.2.9 Penalized hyperbolic tangent

A penalized hyperbolic tangent (ptanh) the LReLU (see Section 4.2.6) but
uses the tanh function instead of the linear function [791]:

f (z) =

tanh(z), z ≥ 0,
tanh(z)

a
, z < 0,

(4.17)

where a ∈ (1, ∞). This function has similar values near 0 as the LReLU with
identical parameter a as they both share the same Taylor expansion up to the
first order [791]; however this function saturates to − 1

a for z → −∞ and to 1

for z → ∞ [791]. The ptanh AF was found to perform consistently well for
various natural language processing (NLP) tasks compared to ReLU, LReLU
and several other activation functions [685].

4.2.2.10 Soft-root-sign (SRS)

A soft-root-sign (SRS) activation function is a parametric, smooth, non-
monotonic, and bounded activation function [803]. It is defined as

f (z) =
z

z
a + exp

(
− z

b

) , (4.18)

where a and b are predetermined parameters [803]; the authors Li and
Zhou propose using a = 2 and b = 3 whereas the parameters are said
to be learnable in [11]. The output range of SRS is

[
ab

b−ae , a
]

[11, 803]. The
performance of the SRS was demonstrated using hte CIFAR-10 and CIFAR-100

[243] task in comparison with the ReLU (see Section 4.2.6 for the description
of the ReLU family of AFs), LReLU, PReLU, softplus, exponential linear unit
(ELU), scaled ELU (SELU), and swish [803].

4.2.2.11 Soft clipping (SC)

The soft clipping (SC) [804, 805] AF is another bounded AF; it is approxi-
matelly piecewise linear in the range z ∈ (0, 1) and it is defined as

f (z) =
1
a

ln
(

1 + exp (az)
1 + exp (a(z − 1))

)
, (4.19)

where a is a fixed parameter [805].

4.2.2.12 Hexpo

The Hexpo activation function [806] was proposed in order to minimize the
problem of vanishing gradient [11]; it resembles a tanh activation function
with scaled gradients [11]:

f (z) =

−a
(
exp

(
− z

b

)
− 1
)

, z ≥ 0,

c
(
exp

(
− z

d

)
− 1
)

, z < 0,
(4.20)

4.2 activation functions 55

where a, b, c, and d are fixed parameters. While the parameters could be
trainable in theory, it is not recommended as it would lead to the vanishing
gradient problem [806]. The Hexpo functions allow for control over the
gradient by tunning the parameters a, b, c, and d and the ratios a

b and c
d —

with increasing the ratios a
b or c

d , the rate of gradient decay to zero decreases;
increasing only a and c scales the gradient around the origin up [806].

4.2.2.13 Softsign

A softsign activation function is a smooth activation function similar to the
tanh activation; however, it is less prone to vanishing gradients [683]. It is
defined as

f (z) =
z

1 + |z| , (4.21)

where |z| denotes the absolute value of z [683].

4.2.2.14 Smooth step

The smooth step is a sigmoid AF; it is defined as

f (z) =

1 z ≥ a

2 ,

− 2
a3 z3 + 3

2a z + 1
2 , − a

2 ≤ z ≤ a
2 ,

0 z ≤ − a
2 ,

(4.22)

where a is a fixed hyperparameter [807].

4.2.2.15 Elliott activation function

Elliott activation function is one of the earliest proposed activation functions
to replace to replace the logistic sigmoid or tanh activation functions [808];
the Elliott AF is a scaled and translated softsign AF. It is defined as [11, 740]

f (z) =
0.5z

1 + |z| + 0.5. (4.23)

The output of the Elliott activation functions is in range [0, 1] [11, 740]. The
main advantage of the Elliott AF is that it can be calculated much faster than
the logistic sigmoid [809].

4.2.2.16 Sinc-Sigmoid

The Sinc-Sigmoid is a sigmoid-based AF proposed in [800]. It is defined as

f (z) = sinc (σ (z)) , (4.24)

where sinc (x) is the unnormalized6 sinc function [800].

6 Koçak and Üstündağ Şiray did not specify whether it is the normalized or unnormalized
variant. Still, they provided the derivative of the Sinc-Sigmoid, which suggests that the
unnormalized variant was used.

56 literature review

4.2.2.17 Sigmoid-Gumbel activation function

The Sigmoid-Gumbel (SG) is a non-adaptive AF proposed recently in [810]; it
is defined as

f (z) =
1

1 + exp (−z)
exp (− exp (−z)) . (4.25)

4.2.2.18 NewSigmoid

The NewSigmoid is a sigmoid variant proposed in [811]. It is defined as

f (z) =
exp(z)− exp(−z)√

2 (exp(2z) + exp(−2z))
. (4.26)

4.2.2.19 Root2sigmoid

The root2sigmoid is another sigmoid variant proposed in [811]. It is defined7

as

f (z) =
√

2
z −

√
2
−z

2
√

2
√

2
(√

2
2z
+
√

2
−2z) . (4.27)

4.2.2.20 LogLog

The LogLog is a simple AF proposed in [784]; it is defined as

f (z) = exp (− exp (−z)) . (4.28)

The LogLog, cLogLog (see Section 4.2.2.21) were used in NNs for forecasting
financial time-series in [784].

4.2.2.21 Complementary Log-Log (cLogLog)

The complementary LogLog (cLogLog) is another simple AF proposed in
[784] complementing the LogLog (see Section 4.2.2.20); it is defined as

f (z) = 1 − exp (− exp (−z)) . (4.29)

The variant called modified cLogLog (cLogLogm) [784] was also proposed:

f (z) = 1 − 2 exp (−0.7 exp (−z)) . (4.30)

7 The author had probably a typo in the definition in the original paper [811]; we present the
formula we think Kumar and Sodhi intended to write — it resembles the NewSigmoid and
fits the numerical values given in the paper.

4.2 activation functions 57

4.2.2.22 SechSig

The SechSig [812] is another AF utilizing the logistic sigmoid in its definition;
it is defined as

f (z) = (z + sech (z)) σ (z) . (4.31)

Közkurt et al. also proposed a parametric version which we will call para-
metric SechSig (pSechSig):

f (z) = (z + a · sech (z + a)) σ (z) , (4.32)

where a is a fixed parameter [812].

4.2.2.23 TanhSig

The TanhSig [812] is an AF similar to SechSig; it is defined as

f (z) = (z + tanh (z)) σ (z) . (4.33)

Közkurt et al. also proposed a parametric version which we will call para-
metric TanhSig (pTanhSig):

f (z) = (z + a · tanh (z + a)) σ (z) , (4.34)

where a is a fixed parameter [812].

4.2.2.24 Multistate activation function (MSAF)

The multistate activation function (MSAF) is a logistic sigmoid based AF
proposed in [813]. The general MSAF is defined as

f (z) = a +
N

∑
k=1

1
1 + exp (−z + bk)

, (4.35)

where a and bk, k = 1, . . . , N are fixed parameters; a ∈ R, N ∈ N+, bk ∈ R+,
and b1 < b2 < . . . < bN [813]. If a = 0, it is named as N-order8 MSAF.

There is also a special case called symmetrical MSAF (SymMSAF) defined
as

f (z) = −1 +
1

1 + exp (−z)
+

1
1 + exp (−z − a)

, (4.36)

where a is required to be significantly smaller than 0 [813]

4.2.2.25 Rootsig and others

The rootsig is one of the activations listed in [814]. It is defined as

f (z) =
az

1 +
√

1 + a2z2
, (4.37)

8 This does not exactly fit into the exemplar MSAF of order two presented in [813]; it is possible
that authors intended another constraint b1 = 0 for such case.

58 literature review

where a is a parameter [814]. This function is called rootsig in [784] where
the authors list a variant with a = 1.

There are also several other unnamed sigmoids in [814]:

f (z) = z
sgn (z) z − a

z2 − a2 , (4.38)

f (z) =
az

1 + |az| , (4.39)

and

f (z) =
az√

1 + a2z2
. (4.40)

4.2.2.26 Sigmoid and tanh combinations

Guevraa et al. proposed several activations mostly combining the logistic
sigmoid, tanh, and linear function in [815]. The general approach is

f (z) =

g(z), z ≥ 0,

h(z), z < 0,
, (4.41)

where g(z) and h(z) are two different AFs [815]. The authors used the follow-
ing pairs {g(z), h(z)}: {σ2(z), tanh(z)}, {σ2(z), tanh(z)}, {σ2(z), 0}, {tanh(z), 0},
{σ2(z), az}, and {tanh(z), az}, where a > 0 is a fixed parameter and

σ2(z) =
2

1 + exp (−z)
− 1. (4.42)

Guevraa et al. also proposed an AF we termed SigLU (see Section 4.2.6.52)
and nonadaptive variant of PTELU.

4.2.3 Class of sigmoid-weighted linear units

The SiLU is the most common example of a larger class of sigmoidal units
defined as

f (z) = z · s(z), (4.43)

where s(z) is any sigmoidal function; it becomes the SiLU if the logistic
sigmoid function is used. The SiLU is thus defined as

f (z) = z · σ(z), (4.44)

where σ(z) is the logistic sigmoid [816]. The SiLU has the output range of
(−0.5, ∞) [11] and was first used [816] for reinforcement learning tasks such
as SZ-Tetris and Tetris. The SiLU was also found to work well for the CIFAR-
10/100 [243] and ImageNet [48, 817] tasks in [668]. The adaptive variant of
the SiLU is called swish (see Section 4.3.3.1) [668].

4.2 activation functions 59

For the purposes of this work, we also consider any squashing functions
s(z) and not necessarily only sigmoids — for example, we classify rectified
hyperbolic secant (see Section 4.2.3.27) as a member of this class. We also list
functions that are closely based on the SiLU and its variants.

A similar approach named weighted sigmoid gate unit (WiG) was proposed
in [818], where the AF was used only for gating each of the raw inputs:

f (x)i = xi · σ(z) = xi · σ(wT
i x + bi), (4.45)

where x denotes the vector of raw inputs, wi the weights of neuron i and bi
its bias [818]

4.2.3.1 Gaussian error linear unit (GELU)

Gaussian error linear unit (GELU) [819] is an activation function based on the
standard Gaussian cumulative distribution function, and it weights inputs by
their value rather than gating them as ReLUs do [819]. It is defined as

f (z) = z · Φ (z) = z · 1
2

(
1 + erf

(
z√
2

))
, (4.46)

where Φ (z) is the standard Gaussian cumulative distribution function (CDF)
and erf (x) is the Gauss error function [819]. It is similar to the SiLU but it
uses Φ (z) instead of the σ (z). However, due to the complicated formula, the
GELU can be approximated as

f (z) =
1
2

z

(
1 + tanh

(√
2
π

(
z + 0.044715z3))) (4.47)

or

f (z) = z · σ (1.702z) , (4.48)

if the performance gains are worth the loss of exactness [819]. The function is
similar to SiLU (see Section 4.2.3), it only uses Gaussian CDF Φ (z) instead of
the logistic distribution CDF σ(z) [819]. GELU was found to outperform many
competitors (e.g., ReLU, ELU, SELU, continuously differentiable exponential
linear unit (CELU), sigmoid, tanh) in [820]. Hendrycks and Gimpel also
proposed to parameterize the GELU by µ and σ2 — the parameters defining
mean and variance of the Gaussian distribution whose CDF is used in the
GELU [819], however, only the standard Gaussian distribution was used in
experiments in [819]. Replacing ReLUs with GELUs led to better performance
in [821]. More details about GELU are available in [820].

4.2.3.2 Symmetrical Gaussian error linear unit (SGELU)

A symmetric variant of GELU called symmetrical Gaussian error linear unit
(SGELU) was proposed in [822]. It is defined as

f (z) = a · z · erf
(

z√
2

)
, (4.49)

60 literature review

where a is a fixed hyperparameter [822]. The symmetrical nature of the
SGELU also leads to more symmetrically distributed weights of the neural
network compared to SGELU [822]; it is believed that normal distribution of
the weights can make the network more rational, accurate, and robust [822].

4.2.3.3 Cauchy linear unit (CaLU)

Another function related to the GELU and SiLU is the Cauchy linear unit
(CaLU) [823] which uses the CDF of the standard Cauchy distribution instead
of the Gaussian CDF in GELU and logistic sigmoid in SiLU. It is defined as

f (z) = z · ΦCauchy (z) = z ·
(

tan−1 (z)
π

+
1
2

)
, (4.50)

where ΦCauchy (z) is the CDF of the standard Cauchy distribution [823].

4.2.3.4 Laplace linear unit (LaLU)

Another function related to the GELU and SiLU is the Laplace linear unit
(LaLU) [823] which uses the CDF of the Laplace distribution; it is defined as

f (z) = z · ΦLaplace (z) = z ·

1 − 1
2 exp (−z) , z ≥ 0,

1
2 exp (z) , z < 0,

, (4.51)

where ΦLaplace (z) is the CDF of the Laplace distribution [823].

4.2.3.5 Collapsing linear unit (LaLU)

The Collapsing linear unit (CoLU) is an AF similar to the SiLU proposed in
[824]. It is defined as

f (z) = z · 1
1 − z exp (− (z + exp (z)))

. (4.52)

4.2.3.6 Triple-state swish

The triple-state swish unit (TS-swish)9 is a cascaded AF similar to TS-sigmoid
(see Section 4.2.2.6) [800]; it is defined as

f (z) =
z

1 + exp (−z)

(
1

1 + exp (−z)
+

1
1 + exp (−z + a)

+
1

1 + exp (−z + b)

)
,

(4.53)

where a and b are fixed parameters [800].

4.2.3.7 Generalized swish

A SiLU variant called generalized swish10 was proposed in [800]. It is defined
as

f (z) = z · σ (exp(−z)) . (4.54)
9 Koçak and Üstündağ Şiray called the function swish but it is actually based on the SiLU.

10 Also based on the SiLU instead of its adaptive variant swish.

4.2 activation functions 61

4.2.3.8 Exponential swish

Another SiLU variant called exponential swish11 was proposed in [800]. It is
defined as

f (z) = exp (−z) σ (z) . (4.55)

4.2.3.9 Derivative of sigmoid function

The derivative of logistic sigmoid was used as an AF in [800]. Koçak and
Üstündağ Şiray formulate the AF using the following form

f (z) = exp(−z) (σ (z))2 . (4.56)

4.2.3.10 Gish

Gish is another SiLU variant [825]; the gish is defined as

f (z) = z · ln (2 − exp (− exp (z))) . (4.57)

Kaytan, Aydilek, and Yeroğlu found that gish outperformed logistic sigmoid,
softplus, ReLU, LReLU, ELU, swish, mish, logish, and smish on the MNIST
[45] and CIFAR-10 [243] datasets [825].

4.2.3.11 Logish

Logish is yet another SiLU variant [826]; it is defined as

f (z) = z · ln (1 + σ (z)) . (4.58)

4.2.3.12 LogLogish

LogLogish is a SiLU variant based on the LogLog (see Section 4.2.2.20) [823];
it is defined as

f (z) = z · (1 − exp (− exp (z))) . (4.59)

4.2.3.13 ExpExpish

ExpExpish is a SiLU variant [823]; it is defined as

f (z) = z · exp (− exp (−z)) . (4.60)

4.2.3.14 Self arctan

The self arctan is an AF proposed in [799] whose formula resembles the SiLU.
The self arctan is defined as

f (z) = z · tan−1 (z) , (4.61)

where tan−1 (z) is the arctangent function [799].

11 Again, based on the SiLU instead of its adaptive variant swish.

62 literature review

4.2.3.15 Parametric logish

Zhu et al. also proposed a parametric variant of logish — we will call it
parametric logish (pLogish) in this work. It is defined as

f (zi) = aizi · ln (1 + σ (bizi)) , (4.62)

where a and b are fixed parameters [826]; Zhu et al. used a = 1 and b = 10 in
[826].

4.2.3.16 Phish

Phish is a SiLU variant combining GELU and tanh [827]; it is defined as

f (z) = z · tanh (GELU (z)) . (4.63)

The phish was found to outperform GELU, tanh, logistic sigmoid, and ReLU;
it performed similarly as the mish and swish in the experiments in [827].

4.2.3.17 Suish

The suish [733] was proposed as an alternative to the swish AF in [828]. It is
defined as

f (z) = max (z, z · exp (− |z|)) . (4.64)

4.2.3.18 Tangent-sigmoid ReLU (TSReLU)

The tangent-sigmoid ReLU (TSReLU) [829] is an AF very similar to phish,
mish, and TanhExp — it just uses the logistic sigmoid instead of the GELU in
phish, softplus in mish, and the exponential in TanhExp. It is defined as

f (z) = z · tanh (σ (z)) . (4.65)

4.2.3.19 Tangent-bipolar-sigmoid ReLU (TBSReLU)

The tangent-bipolar-sigmoid ReLU (TBSReLU) is a variant of TSReLU pro-
posed in [829]. It is defined as

f (z) = z · tanh
(

1 − exp (−z)
1 + exp (−z)

)
. (4.66)

4.2.3.20 Log-sigmoid

A logarithm of the logistic sigmoid is sometimes used as an activation func-
tion [738]. It is defined as

f (z) = ln (σ(z)) = ln
(

1
1 + exp(−z)

)
. (4.67)

4.2 activation functions 63

4.2.3.21 Derivative of sigmoid-weighted linear unit (dSiLU)

The derivative of sigmoid-weighted linear unit (dSiLU) can also be used as
an activation function resembling a sigmoid [816]. It is defined as

f (z) = σ(z) (1 + z (1 − σ(z))) , (4.68)

where σ(z) is the logistic sigmoid [816]. The dSiLU has a maximum value of
around 1.1, and the minimum is approximately -0.1 [816].

4.2.3.22 Double sigmoid-weighted linear unit (DoubleSiLU)

The double sigmoid-weighted linear unit (DoubleSiLU)12 is an AF proposed
in [830]. It is defined as

f (z) = z · 1

1 + exp
(
−z · 1

1+exp(−z)

) , (4.69)

where σ(z) is the logistic sigmoid [830].

4.2.3.23 Modified sigmoid-weighted linear unit (MSiLU)

A modified sigmoid-weighted linear unit (MSiLU) is a variant of the SiLU
that has faster convergence than the SiLU [831]. It is defined as

f (z) = z · σ(z) +
exp

(
−z2 − 1

)
4

, (4.70)

where σ(z) is the logistic sigmoid [831].

4.2.3.24 Hyperbolic tangent sigmoid-weighted linear unit (TSiLU)

Another SiLU variant is the hyperbolic tangent sigmoid-weighted linear unit
(TSiLU) [830], which combines the tanh and SiLU. It is defined13 as

f (z) =
exp

(
z

1+exp(−z)

)
− exp

(
− z

1+exp(−z)

)
exp

(
z

1+exp(−z)

)
+ exp

(
z

1+exp(−z)

) . (4.71)

4.2.3.25 Arctan sigmoid-weighted linear unit (ASiLU)

Arctan sigmoid-weighted linear unit (ATSiLU) is yet another SiLU variant
proposed in [830]; it is defined as

f (z) = tan−1
(

z · 1
1 + exp (−z)

)
. (4.72)

12 Verma, Chug, and Singh termed the unit as DSiLU but that would collide with the dSiLU (see
Section 4.2.3.21) proposed earlier by Elfwing, Uchibe, and Doya.

13 The formula in [830] was wrong as it evaluated to 2x
0 , we present the formula we think authors

intented.

64 literature review

4.2.3.26 SwAT

Verma, Chug, and Singh proposed an AF named SwAT combining the SiLU
and arctan in[830]. This function is defined as

f (z) = z · 1
1 + exp

(
− tan−1 |le f t(z)

) . (4.73)

4.2.3.27 Rectified hyperbolic secant

A rectified hyperbolic secant activation function was proposed in [832]. This
function is totally differentiable, symmetric about the origin, and is approach-
ing zero for inputs going to positive or negative infinity:

f (z) = z · sech(z), (4.74)

where sech(z) is the hyperbolic secant function [832].

4.2.3.28 Linearly scaled hyperbolic tangent (LiSHT)

A linearly scaled hyperbolic tangent (LiSHT) activation function was pro-
posed in [833] to address the problem of vanishing gradients and the non-
utilization of large negative input values. The LiSHT function is defined as

f (z) = z · tanh(z). (4.75)

The output range of LiSHT function is [0, ∞] [11].The output of LiSHT is
close to the ReLU (see Section 4.2.6) and swish for large positive values
[833]; however, unlike the aforementioned AFs, the output is symmetric, and,
therefore, it behaves identically for large negative values. While the LiSHT
is symmetric, the fact that its output is unbounded and non-negative could
be considered a disadvantage [11]. The effectiveness of the LiSHT activation
function was tested on several different architectures ranging from multilayer
perceptron (MLP) and residual neural networks to LSTM-based networks and
on various tasks — the Iris dataset, the MNIST [45], CIFAR-10 and CIFAR-
100 [243] and the sentiment140 dataset from Twitter [834, 835] for sentiment
analysis [833].

A parametric version of LiSHT named SoftModulusT (see Section 4.2.6.31)
was proposed in [836].

4.2.3.29 Mish

A popular activation function mish[837] is a combination of the tanh and
softplus activation function; the function resembles swish activation (see
Section 4.3.3.1). It is defined as

f (z) = z · tanh (softplus(z)) = z · tanh (ln (1 + exp (z))) . (4.76)

Mish was found to outperform swish; it performed similarly to f (z) =

z · ln (1 + tanh (exp (z))) but this activation function was found to often lead

4.2 activation functions 65

to unstable training [837]. The mish was found to outperform swish and ReLU
for many architectures such as various ResNet architectures [13], Inception
v3 [52], DenseNet-121 [838], and others [837]. Detailed comparison with
other activation functions was run using the Squeeze Net [839] where it
outperformed swish, GELU, ReLU, ELU, LReLU, SELU, softplus, S-shaped
ReLU (SReLU) , inverse square root unit (ISRU), tanh, and randomized leaky
ReLU (RReLU) [837]. The mish activation function was, for example, used in
the YOLOv4 [840] and its variant Scaled-YOLOv4 [841].

4.2.3.30 Smish

The smish [842] is a variant of the mish where the exponential function is
replaced by the logistic sigmoid. It is, therefore, defined as

f (z) = az · tanh (ln (1 + σ (bz))) , (4.77)

where a and b are parameters [842]; however, Wang, Ren, and Wang recom-
mend a = 1 and b = 1 based on a small parameter search in [842].

4.2.3.31 TanhExp

Similarly as the mish is the combination of tanh and softplus, the TanhExp
[843] is a combination of tanh and the exponential function [843, 844]. It is
defined as

f (z) = z · tanh (exp(z)) . (4.78)

4.2.3.32 Serf

The serf is an AF similar to the mish; however, it uses the error function
instead of the tanh [845]. It is defined as

f (z) = z erf (ln (1 + exp(z))) , (4.79)

where erf is the Gauss error function [845]. It was found to outperform mish,
GELU, and ReLU for various architectures on Multi30K [846], ImageNet [48,
817], the CIFAR-10, and CIFAR-100 [243] datasets; see [845] for details.

4.2.3.33 Efficient asymmetric nonlinear activation function (EANAF)

An activation function combining tanh and softplus called efficient asym-
metric nonlinear activation function (EANAF) was proposed in [847]. The
function is defined as

f (z) = z · g (h (z)) , (4.80)

where h(z) is the softplus function and g(z) = tanh
(z

2

)
, which can be

simplified to

f (z) =
z · exp (z)

exp (z) + 2
. (4.81)

66 literature review

The EANAF is continuously differentiable. The EANAF is very similar to
swish with similar amount of computation but Chai et al. found that it
performs better than swish and several other activation functions in RetinaNet
[848] and YOLOv4 [841] architectures on object detection tasks [847].

4.2.3.34 SinSig

SinSig [849] is a self-gated non-monotonic activation function defined as

f (z) = z · sin
(π

2
σ (z)

)
, (4.82)

where σ(z) is the logistic sigmoid function [849]. While SinSig is similar to
swish and mish, it outperformed them in experiments in [849] as the number
of layers in a neural network increased. It was also shown that the SinSig
converges faster. The SinSig outperformed ReLU and mish on several deep
architectures including ResNet 20 v2 [850], ResNet 110 v2 [850], SqueezeNet
[851], and ShuffleNet [852] among others on the CIFAR-100 task [243] in
experiments in [849].

4.2.3.35 Gaussian error linear unit with sigmoid activation function (SiELU)

The with sigmoid activation function (SiELU) was proposed in [853]; it is
defined as

f (z) = zσ

(
2

√
2
π

(
z + 0.044715z3)) . (4.83)

4.2.4 Gated linear unit (GLU)

A gated activation called gated linear unit (GLU) similar to SiLU (see Sec-
tion 4.2.3) for use in RNNs was proposed in [854]. The GLU is defined as

f (z, z′) = z ⊗ σ(z′), (4.84)

where ⊗ is the element-wise product and z and z′ are two learned linear
transformations of input vector x [855, 856].

4.2.4.1 Gated tanh unit (GTU)

A gated activation called gated tanh unit (GTU) similar to GLU (see Sec-
tion 4.2.4) for use in RNNs was proposed in [857]. The GTU is defined as

f (z, z′) = tanh(z)⊗ σ(z′), (4.85)

where ⊗ is the element-wise product and z and z′ are two learned linear
transformations of input vector x [855].

4.2 activation functions 67

4.2.4.2 Gated ReLU (ReGLU)

Another GLU extension is the gated (ReGLU) [854, 855]. The ReGLU is
defined as

f (z, z′) = z ⊗ ReLU(z′), (4.86)

where ⊗ is the element-wise product and z and z′ are two learned linear
transformations of input vector x [855].

4.2.4.3 Gated GELU (GEGLU)

A GELU-based GLU extension is the gated (GEGLU) [855]; it is defined as

f (z, z′) = z ⊗ GELU(z′), (4.87)

where ⊗ is the element-wise product and z and z′ are two learned linear
transformations of input vector x [855].

4.2.4.4 Swish GELU (SwiGLU)

A swish-based GLU extension is the gated swish (SwiGLU) [855]; it is defined
as

f (z, z′) = z ⊗ swish(z′), (4.88)

where ⊗ is the element-wise product, z and z′ are two learned linear trans-
formations of input vector x, and swish is the swish with its own trainable
parameter [855].

4.2.5 Softmax

The softmax is not a usual type of AF taking in a single value, but it takes all
the output value of the unit i and, also, the output values of other units in
order to compute a soft argmax of the values. It is defined as

f (zj) =
exp

(
zj
)

∑N
k=1 exp (zk)

, (4.89)

where f (zj) is the output of a neuron j in a softmax layer consisting of N
neurons [858, 859].

4.2.5.1 β-softmax

The β-softmax is a softmax extension proposed in [860]; it is defined as

f (zj) =

∫
exp

(
bzj
)

∑N
k=1
∫

exp (bzk)
, (4.90)

where f (zj) is the output of a neuron j in a softmax layer consisting of N
neurons and b takes random value from N+14[860].

14 No further specification was provided in [860].

68 literature review

4.2.6 Rectified linear function (ReLU)

The rectified linear unit (ReLU) [861] is widely regarded as the most popular
activation function in modern feedforward networks [46, 122, 862] due to its
simplicity and improved performance [11]. It has been observed that ReLUs
can significantly expedite the convergence of stochastic gradient descent
[49]. Additionally, traditional ReLUs are computationally less expensive
compared to activation functions like the logistic or tanh functions [122].
ReLUs often outperform sigmoidal activation functions [862]. However, a
drawback of ReLUs is the potential for neurons to become "dead" or "disabled"
during training. This means that they may never activate again for any input,
resulting in a permanently zero output gradient [122]. This issue can occur
after a weight update when a large gradient flows through the unit [122]. This
might happen after a weight update after a large gradient flows through the
unit [122]. However, ReLUs often lead to faster convergence than for sigmoid
activation, as shown in [863]. It can also be shown that ReLUs and rational
function efficiently approximate each other [864]. The ReLU was used as an
example of the more general class of piecewise affine AFs for neural network
verification15 using theorem provers in [865].

A ReLU is mathematically defined as the maximum of zero and the input
value [862, 866]:

f (z) = max (0, z) . (4.91)

ReLU is commonly recommended as the default choice for feedforward
networks due to its usually superior performance compared to sigmoidal
functions and its computational efficiency [122]; furthermore, it works com-
parably to its modifications [866]. Many popular NN models utilize ReLU as
the activation function of choice, e.g., [49, 867].

Many ReLU modification and derivations were proposed [866, 868] — e.g.
leaky ReLU (LReLU) [869], very leaky ReLU (VLReLU) [870], parametric
ReLU [871], randomized leaky ReLU (RReLU) [872] or S-shaped ReLU [873].
Smoothed modifications are, for example, exponential linear unit [874] and
softplus [862]. Most of the modifications solve the problem of dying out
neurons as they allow for gradient flows for any input.

4.2.6.1 Shifted ReLU

A Shifted ReLU [874] is a simple translation of a ReLU and is defined as

f (z) = max (−1, z) . (4.92)

4.2.6.2 Leaky ReLU (LReLU)

Leaky ReLU (LReLU) [869] is defined as

f (z) =

z, z ≥ 0,
z
a , z < 0,

(4.93)

15 More details are out of the scope of this work, see [865] for more details.

4.2 activation functions 69

where a ∈ (1, ∞) is set to large number;16 the recommended setting from
[869] is a = 100.

LReLU solves the problem of dying neurons when neurons have perma-
nently zero output gradient in classical ReLU by "leaking" the information
for z < 0 instead of outputting exact zero. Both ReLU and LReLU can be
considered to be a special case of the maxout unit (see Section 4.3.46) [11]. A
theoretical analysis of the ReLU and LReLU is available in [875].

Very leaky ReLU (VLReLU) [870] is almost identical to the LReLU but
has much higher slope when the z is negative for faster training [870] by
setting ai = 3. While it can be considered as a special case of LReLU, some
researchers consider it as a separate case, e.g., [868].

The so-called optimized leaky ReLU (OLReLU) [876] propose another
reformulation of LReLU and calculation of the slope parameter a that is
inspired by the RReLU (see Section 4.2.6.3):

f (z) =

z, z ≥ 0,

z · exp(−a), z < 0,
(4.94)

where

a =
u + l
u − l

, (4.95)

where u and l are hyperparameters of the bounds of the RReLU [876].

4.2.6.3 Randomized leaky ReLU (RReLU)

RReLU is a leaky ReLU where the leakiness is stochastic during the training
[872], i.e.:

f (zi) =

zi, zi ≥ 0,
z
ai

, zi < 0,
(4.96)

where ai is a sampled for each epoch and neuron i from the uniform distri-
bution: ai ∼ U(l, u) where l < u and l, u ∈ (0, ∞) [872]. Similarly as in the
dropout approach [143], an average over all ai over is taken during inference
phase — the ai is set to l+u

2 :

f (zi) =

zi, zi ≥ 0,
z

l+u
2

, zi < 0.
(4.97)

Recommended distribution is U(3, 8) for sampling the ai [872].

16 Depending on the source, researchers use either this form z
a or the inverted form az for the

negative inputs.

70 literature review

4.2.6.4 Softsign randomized leaky ReLU (S-RReLU)

The softsign randomized leaky ReLU (S-RReLU)17 is a RReLU combined with
the softsign proposed in [877, 878]. It is defined as

f (zi) =

1

(1+zi)
2 + zi, zi ≥ 0,

1
(1+zi)

2 + aizi, zi < 0,
(4.98)

where ai is a sampled for each epoch and neuron i from the uniform distri-
bution: ai ∼ U(l, u) where l < u and l, u ∈ (0, ∞) [877]. Elakkiya and Dejey
used l = 1

8 and u = 1
3 [877].

4.2.6.5 Sloped ReLU (SlReLU)

A Sloped ReLU (SlReLU) [879] is similar to the LReLU — whereas the LReLU
parameterizes the slope for negative inputs, the SlReLU parameterizes the
slope of ReLU for positive inputs. It is, therefore, defined as

f (z) =

az, z ≥ 0,

0, z < 0,
(4.99)

where a is a fixed, predetermined parameter [879]. Seo, Lee, and Kim recom-
mended a ∈ [1, 10] based on their experiments in [879].

4.2.6.6 Noisy ReLU (NReLU)

A stochastic variant of the ReLU called noisy ReLU (NReLU) was proposed
in [861]:

f (z) = max (0, z + a) , (4.100)

where a is a stochastic parameter a ∼ N (0, σ(z)), N
(
0, σ2) is the Gaussian

distribution with zero mean and variance σ2 and σ(z) is the standard de-
viation of the inputs z. The NReLU was designed for use with Restricted
Boltzmann machines [861]. More details about the NReLU is available in
[861].

4.2.6.7 SineReLU

The SineReLU [880, 881] is a ReLU based activation that uses trigonometric
functions for negative inputs. It is defined as

f (z) =

z, z ≥ 0,

a (sin (z)− cos (z)) , z < 0,
(4.101)

where a is a fixed parameter [880, 881].

17 Elakkiya and Dejey used S-RReLU as a name and not an abbreviation; however, since S-
RReLU is a combination of the softsign and RReLU, we feel that using it as an abbreviation is
appropriate.

4.2 activation functions 71

4.2.6.8 Minsin

The minsin is a ReLU-based AF used in [733]. It is defined as

f (z) = min (z, sin (z)) =

sin(z), z ≥ 0,

z, z < 0.
(4.102)

4.2.6.9 Variational linear unit (VLU)

The variational linear unit (VLU) is an AF combining the ReLU and sine
functions proposed in [880]. It is defined as

f (z) = ReLU (z) + a sin (bz) = max (0, z) + a sin (bz) , (4.103)

where a and b are fixed parameters [880].

4.2.6.10 Spatial context-aware activation (SCAA)

The spatial context-aware activation (SCAA) is a ReLU extension proposed
in [882]. The ReLU performs an element-wise max operation on the feature
map X:

ReLU (X) = max (X, 0) , (4.104)

where ReLU (X) is the ReLU in the matrix notation and 0 is a matrix of
zeroes with the same shape as X [882]. The SCAA first applies a depth-wise
convolution on X to produce spatial context aggregated feature map denoted
fDW (X) and then proceeds with the elementwise max operation [882]; the
SCAA is, therefore, defined as

f (X) = max (X, fDW (X)) . (4.105)

4.2.6.11 Randomly translational ReLU (RT-ReLU)

A randomly translational ReLU (RT–ReLU) is a ReLU with a randomly added
jitter during each iteration of the training process [883]. It is defined as

f (zi) =

zi + ai, zi + ai ≥ 0,

0, zi + ai < 0,
(4.106)

where ai is stochastic parameter for each neuron i randomly sampled from
the Gaussian distribution at each iteration, ai ∼ N

(
0, σ2), where σ2 is the

variance of the Gaussian distribution. The authors Cao et al. set the σ2 = 0.752

for their experiments [883]. The ai is set to 0 during the test phase [11].

4.2.6.12 Natural-Logarithm-ReLU (NLReLU)

The natural-logarithm-ReLU (NLReLU) introduces non-linearity to ReLU
similarly as rectified linear tanh (ReLTanh) (see Section 4.3.1.36) but only for
positive part of the activation function [11]:

f (z) = ln (a · max (0, z) + 1) , (4.107)

where a is a predefined constant [884].

72 literature review

4.2.6.13 Softplus linear unit (SLU)

An activation function softplus linear unit (SLU) combining the ReLU with
the softplus activation function was proposed in [885]; the function is based
around the assumption that zero mean activations improve learning perfor-
mance [885]. The SLU is defined as

f (z) =

az, z ≥ 0,

b ln (exp (z) + 1)− c, z < 0,
(4.108)

where ai, bi, and ci are predefined parameters; however, to ensure that the
function is continuous, differentiable at zero and to avoid vanishing or ex-
ploding gradients, its parameters are set to a = 1, b = 2, and c = 2 ln (2)
[885]. The SLU is therefore equal to

f (z) =

z, z ≥ 0,

2 ln exp(z)+1
2 , z < 0.

(4.109)

4.2.6.14 Rectified softplus (ReSP)

Another activation function combining ReLU and softplus called rectified
softplus (ReSP) [11] was proposed in [886]. The function is defined as

f (z) =

az + ln(2), z ≥ 0,

ln (1 + exp (z)) , z < 0,
(4.110)

where a is a fixed hyperparameter controlling the slope [886]. Larger values
of a between 1.4 and 2.0 were found to work well [886].

4.2.6.15 Parametric rectified non-linear unit (PReNU)

A ReLU variant called parametric rectified non-linear unit (PReNU) [887]
replaces the linear part of the ReLU for positive inputs by a non-linear
function similarly to RePU (see Section 4.2.6.39). It is defined as

f (z) =

z − a · ln (z + 1) , z ≥ 0,

0, z < 0,
(4.111)

where a is a fixed hyperparameter [887] — however, this parameter could
be adaptive similarly as in PReLU (see Section 4.3.1.1) that PReNU extends
since Jaafari, Ellahyani, and Charfi thought of the PReLU as non-adaptive
function for some reason [887].

4.2 activation functions 73

4.2.6.16 Bounded ReLU (BReLU)

A BReLU [888] is a variant of ReLU that limits the output as the unlimited
output of the original ReLU might lead to an instability [11]. It is defined as

f (z) = min (max (0, z) , a) =

0, z ≤ 0,

z, 0 < z < a,

a, z > a,

(4.112)

where a is a predefined parameter [888]. The BReLU appeared later in the
literature under the name ReLUN in [889], where it seems that it was inde-
pendently proposed.

4.2.6.17 Hard sigmoid

A Hard sigmoid is very similar to BReLU; it is a very crude approximation of
the logistic sigmoid and is commonly defined [651, 890] as

f (z) = max
(

0, min
(

z + 1
2

, 1
))

. (4.113)

Other definitions are sometimes used; e.g. variant from [891] is defined as

f (z) = max (0, min (0.2z + 0.5, 1)) . (4.114)

While the Hard sigmoid is not as commonly used as the logistic sigmoid,
it can be used, for example, in binarized neural network with stochastic
activation functions [890] — the binaryized neural networks can lead to
much faster inference than regular neural networks, e.g., Courbariaux et al.
reached up to 7× speed up without any loss in classification accuracy [890]
(however, even better speed-ups can be obtained using, for example, FPGA
implementations as in [892]).

4.2.6.18 HardTanh

The HardTanh is another piecewise linear function; it is very similar to Hard
sigmoid, but it approximates the tanh instead of the logistic sigmoid. It is
defined as

f (z) =

a, z < a,

z, a ≤ z ≤ b,

b, z > b,

(4.115)

where a and b are fixed parameters [893]; Liu et al. used a = −1 and b = 11
in [894]. NNs with HardTanhs are more suitable for linear predictive control
than NNs with ReLUs as they usually require less hidden layers and neurons
for representing identical min-max maps [893].

74 literature review

4.2.6.19 Shifted HardTanh

Kim et al. proposed HardTanh variants with vertical and horizontal shifts in
[895]. The SvHardTanh18 is defined as

f (z) =

−1 + a, z < −1,

z + a, −1 ≤ z ≤ 1,

1 + a, z > 1,

(4.116)

where a is a fixed parameter [895]. Kim et al. used HardTanh variant with
thresholds −1 and 1; a more general variant with parametric thresholds from
Eq. (4.115) could be defined similarly.

The SvHardTanh is defined as

f (z) =

−1 + a, z < −1,

z + a, −1 ≤ z ≤ 1,

1 + a, z > 1,

(4.117)

where a is a fixed parameter [895].
The ShHardTanh is defined as

f (z) =

−1, z < −1 − a,

z, −1 − a ≤ z ≤ 1 − a,

1, z > 1 − a,

(4.118)

where a is a fixed parameter [895].
Kim et al. used HardTanh variant with thresholds −1 and 1; more general

variants of SvHardTanh and ShHardTanh with parametric thresholds from
Eq. (4.115) could be defined similarly.

4.2.6.20 Hard swish

A linearized variant of the swish AF (see Section 4.3.3.1) was proposed in
[896]. It is defined as

f (z) = z ·

0, z ≤ −3,

1, z ≥ 3,
z
6 +

1
2 , −3 < z < 3.

(4.119)

The linearization allows for more efficient computation [896].

18 Both SvHardTanh and ShHardTanh are named using the same convention as shifted ELUs
(see Section 4.3.1.56) for the purposes of this work.

4.2 activation functions 75

4.2.6.21 Truncated rectified (TRec) activation function

The truncated rectified (TRec) AF is a truncated variant of the ReLU [897]. It
resembles onesided variant of the Hardshrink (see Section 4.2.6.22) — it is
defined as

f (z) =

z, z > a,

0, z ≤ a,
(4.120)

where a is a fixed parameter. Konda, Memisevic, and Krueger used a = 1 for
most of their experiments [897].

4.2.6.22 Hardshrink

The Hardshrink [703, 897–899] (named thresholded linear AF in [897]19) is very
similar to Hard sigmoid, TRec, and other piecewise linear functions; it is
defined as

f (z) =

z, z > a,

0, −a ≤ z ≤ a,

z, z < −a,

(4.121)

where a > 0 is a fixed parameter.

4.2.6.23 Softshrink

The Softshrink is an AF similar to the Hardshrink used in [661, 900]. It is
defined as

f (z) =

z − a, z > a,

0, −a ≤ z ≤ a,

z + a, z < −a,

(4.122)

where a > 0 is a fixed thresholding parameter [900].

4.2.6.24 Bounded leaky ReLU (BLReLU)

Similarly as the BReLU is a bounded variant of the ReLU, the bounded leaky
ReLU (BLReLU) is a bounded variant of LReLU (see Section 4.2.6.2) [888]. It
is defined as

f (z) =

az, z ≤ 0,

z, 0 < z < b,

az + c, z > b,

(4.123)

19 Konda, Memisevic, and Krueger proposed it as a novel AF but it was already proposed in
[898].

76 literature review

where a and b are predefined parameters and c is computed such that
b = ab + c [888], i.e. c = (1 − a)b. The parameter a controls the leakiness, the
parameter b is the threshold of saturation, and c is computed such that the
function is continuous.

4.2.6.25 V-shaped ReLU (vReLU)

A V-shaped variant of ReLU called V-shaped ReLU (vReLU) is proposed
in [901, 902] and tackles the problem of dying neurons that is present with
ReLUs [901]. The vReLU is identical to the absolute value function and is
defined as

f (z) =

z, z ≥ 0,

−z, z < 0.
(4.124)

The output range of vReLU is [0, ∞) [11]. The modulus activation function
later proposed in the literature by Vallés-Pérez et al. in [836] is identical to
the vReLU. The absolute value function was used as an AF also in [903].

4.2.6.26 Pan function

The pan function is an AF similar to the vReLU and Softshrink [904, 905]. It
is defined as

f (z) =

z − a, z ≥ a,

0, −a < z < a,

−z − a, z ≤ −a,

(4.125)

where a is a fixed boundary parameter [904].

4.2.6.27 Absolute linear unit (AbsLU)

The absolute linear unit (AbsLU) [906] is a ReLU-based AF similar to the
vReLU. It is defined as

f (z) =

z, z ≥ 0,

a · |z| , z < 0,
(4.126)

where a ∈ [0, 1] is a fixed hyperparameter [906].

4.2.6.28 Mirrorer rectified linear unit (mReLU)

The mirrored rectified linear unit (mReLU) is a bounded AF that suppresses
the output for unusual inputs [907]. It is defined as

f (z) = min (ReLU (1 − z) , ReLU (1 + z)) =

1 + z, −1 ≤ z ≤ 0,

1 − z, 0 < z ≤ 1,

0, otherwise .

(4.127)

4.2 activation functions 77

4.2.6.29 Leaky single-peaked triangle linear unit (LSPTLU)

An AF similar to vReLU, AbsLU, and tent activation named leaky single-
peaked triangle linear unit (LSPTLU) was proposed in [908]. It is defined as

f (z) =

0.2z, z < 0,

z, 0 ≤ z ≤ a,

2a − z, a < z ≤ 2a,

0, z ≥ 2a,

(4.128)

where a is a fixed parameter [908]. An identical AF was proposed under the
name leaky rectified triangle linear unit (LRTLU) in [909].

4.2.6.30 SoftModulusQ

The SoftModulusQ is a quadratic approximation of the vReLU proposed in
[836]. The SoftModulusQ is defined as

f (z) =

z2 (2 − |z|) , |z| ≥ 1,

|z| , |z| > 1.
(4.129)

4.2.6.31 SoftModulusT

While the SoftModulusQ (see Section 4.2.6.30) is a quadratic approximation
of the vReLU (see Section 4.2.6.25), the SoftModulusT [836] is a tanh based
approximation of the vReLU. It is basically a parametric version of the LiSHT
activation function (see Section 4.2.3.28):

f (z) = z · tanh
(z

a

)
, (4.130)

where a is a predetermined parameter; the authors Vallés-Pérez et al. used
a = 0.01 in their experiments [836]. When a = 1, the SoftModulusT becames
the LiSHT activation function.

4.2.6.32 SignReLU

The combination of ReLU and softsign resulted in SignReLU [910] that
improves the convergence rate and alleviates the vanishing gradient problem
[910]. The SignReLU is defined as

f (z) =

z, z ≥ 0,

a z
|z|+1 , z < 0,

(4.131)

where a is a fixed parameter [910, 911]; the SignReLU becomes ReLU for
a = 0. The SignReLU was independently proposed under the name DLU in
[912];20 this name is sometimes used in the literature — e.g., [904].

20 [912] is a preprint of [911].

78 literature review

4.2.6.33 Li-ReLU

Elakkiya and Dejey proposed a combination of a linear function and the
ReLU in [877]; they named the function Li-ReLU21 and it is defined as

f (z) =

az + z, zi ≥ 0,

az, zi < 0,
(4.132)

where ai is a fixed parameter [877].

4.2.6.34 Concatenated ReLU (CReLU)

A concatenated ReLU (CReLU) is an adaptation of the ReLU function pro-
posed based on the observation that filters in CNNs in the lower layers form
pairs consisting of filters with opposite phase [913]. The CReLU conserves
both negative and positive linear responses after convolution by concatenat-
ing the output of two ReLUs (hence the name) [913]. The CReLU is a function
R → R2 and is defined as [913]

f (z) =

[
ReLU(z)

ReLU(−z)

]
, (4.133)

with the output range of [0, ∞) for both output elements [11].

4.2.6.35 Negative CReLU (NCReLU)

A CReLU extension named negative CReLU (NCReLU) was proposed in
[914]; while it is very similar to CReLU, it multiplies the second element by
−1:

f (z) =

[
ReLU(z)

−ReLU(−z)

]
. (4.134)

Very similar AF was proposed concurrently in [915] under the name bipolar
activation function (BAF). Unlike the NCReLU, it does not produce a vector
output but is applied in an alternating manner similar to All-ReLU (see
Section 4.3.33) but for neurons instead of layers. It is defined for the i-th
neuron as

f (zi) =

g (zi) , i%2 = 0,

−g (−zi) , i%2 = 1,
(4.135)

where g (zi) is any ReLU family AF and % is the modulo operation.

21 Not an abbreviation.

4.2 activation functions 79

4.2.6.36 DualReLU

Where CReLU activation functions takes a single value and outputs a vector
of two values, the DualReLU [916] takes two values as an input and outputs
a single value. The DualReLU is a two-dimensional activation function meant
as a replacement of the tanh activation function for Quasi-Recurrent neural
networks [916]. It is defined as

f (z, z′) = max (0, z)− max
(
0, z′

)
=

0, z ≤ 0 ∧ z′ ≤ 0,

z, z > 0 ∧ z′ ≥ 0,

−b, z ≤ 0 ∧ z′ > 0,

a − b, z > 0 ∧ z′ > 0.

(4.136)

4.2.6.37 Orthogonal permutation liner unit

The orthogonal permutation liner unit (OPLU) is not applied to a single
neuron but always to a pair of neurons [917]. First, the neurons are grouped
into pairs of neurons {i, j} and the OPLU takes two inputs zi and zj of
neurons i and j and produces the output

f (zi, zj) = max
(
zi, zj

)
(4.137)

for neuron i and

f (zi, zj) = min
(
zi, zj

)
(4.138)

for neuron j [917].

4.2.6.38 Elastic ReLU (EReLU)

Another extension is the elastic ReLU (EReLU), which slightly randomly
changes the slope of the positive part of the ReLU during the training [918].
The EReLU is defined as

f (zi) =

kizi, zi ≥ 0,

0, zi < 0,
(4.139)

where ki is a sampled for each epoch and neuron i from the uniform dis-
tribution: ai ∼ U(1 − α, 1 + α) where α ∈ (0, 1) is a parameter controlling
the degree of response fluctuations [918]. The EReLU thus complements
the principle of RReLU, which randomly changes the leakiness during the
training while keeping the positive part fixed, while the EReLU changes the
positive part and keeps the output constantly zero for negative inputs. The
EReLU sets the ki its expected value E(ki) which is equal to one — the EReLU
becomes the ReLU during the test phase [918].

80 literature review

4.2.6.39 Power activation functions & rectified power units (RePU)

A power activation function extending ReLU together with a training scheme
for better generalization was proposed in [919]. This activation function was
later independently proposed under the name RePU in [920]. The RePU is
defined as

f (z) =

za, z ≥ 0,

0, z < 0,
(4.140)

where a is a fixed parameter [919, 921]. The RePU is a generalization of several
activation functions — it becomes the Heaviside step function for a = 0 and
ReLU for a = 1; the case a = 2 is called rectified quadratic unit (ReQU) in [920]
and squared ReLU in [922]; finally, the case a = 3 is called rectified cubic unit
(ReCU) [920]. The disadvantage of RePU is its unbounded and asymmetric
nature and that it is prone to vanishing gradient [11]. Theoretical analysis of
the RePU is available in [921].

However, Berradi recommends alternating using a = b and a = 1
b each

epoch; i.e.:

f1(z) =

zb, z ≥ 0,

0, z < 0,
(4.141)

and

f2(z) =

z
1
b , z ≥ 0,

0, z < 0.
(4.142)

Then the activation function f1(z) is used during odd epochs and f2(z) during
even epochs; their mean is used during the test phase [919]. The value b > 1
was used in the experiments in [919] - b ∈ {1.05, 1.1, 1.15, 1.20, 1.25}.

4.2.6.40 Approximate ReLU (AppReLU)

The approximate ReLU (AppReLU)22 [923, 924] is the RePU with aditional
scaling parameter; it is defined as

f (z) =

azb, z ≥ 0,

0, z < 0.
(4.143)

22 Saha et al. used the abbreviation AReLU but this is already used for the Attention-based
ReLU in this work.

4.2 activation functions 81

4.2.6.41 Power linear activation function (PLAF)

The power linear activation function (PLAF)23 is a class of two similar AFs
proposed in [925]. The first, even power linear activation function (EPLAF),
is defined as

f (z) =

z −

(
1 − 1

d

)
, z ≥ 1,

1
d |z|

d , −1 ≤ z < 1,

−z −
(
1 − 1

d

)
, z < −1,

(4.144)

where d is a fixed parameter [925]. Similarly, the second AF — odd power
linear activation function (OPLAF) — is defined as

f (z) =

z −
(
1 − 1

d

)
, z ≥ 1,

1
d |z|

d , 0 ≤ z < 1,

− 1
d |z|

d , −1 ≤ z < 0,

−z −
(
1 − 1

d

)
, z < −1,

(4.145)

where d is a fixed parameter [925]. Nasiri and Ghiasi-Shirazi focused on the
EPLAF in their work [925] and showed that EPLAF with d = 2 performed
similarly as the ReLU for some of the tasks but it performed significantly
better for other tasks; the OPLAF was not experimentally validated in [925].

4.2.6.42 Average biased ReLU (ABReLU)

Similarly as the RT–ReLU (see Section 4.2.6.11), the average biased ReLU
(ABReLU) [926] uses horizontal shifting in order to handle negative values
[11]. It is defined as

f (zi) =

zi − ai, zi − ai ≥ 0,

0, zi − ai < 0,
(4.146)

where ai is the average of input activation map to the neuron/filter i [11, 926],
which makes the function data dependent and adjusts the threshold based
on the positive and negative data dominance [926]. The output range is [0, ∞)

[11].

4.2.6.43 Delay ReLU (DRLU)

The delay ReLU (DRLU)24 is a function that also adds a horizontal shift to the
ReLU [927]; however, the DRLU uses a fixed, predetermined shift whereas
RT–ReLU uses stochastic shifts (see Section 4.2.6.11) and ABReLU computes

23 Originally, Nasiri and Ghiasi-Shirazi named PLAF as PowerLinear AF. Also, its variants EPLAF
and OPLAF were named as EvenPowLin and OddPowLin in [925].

24 Authors termed the function DRLU; however, the usual notation in this work would be DReLU.
Since such notation would collide with the dynamic ReLU, we will use the original notation
from [927] despite the inconsistency.

82 literature review

the shift as the average of input activation map (see Section 4.2.6.42). The
DRLU is defined as

f (z) =

z − a, z − a ≥ 0,

0, z − a < 0,
(4.147)

where a is a fixed, predetermined parameter [927]. Shan, Li, and Chen also
add a constraint a > 0 [927] and they used a ∈ {0.06, 0.08, 0.10} in their
experiments [927].

4.2.6.44 Displaced ReLU (DisReLU)

Very similar to the flexible ReLU (FReLU) (see Section 4.3.1.15) and dynamic
ReLU (DReLU) (see Section 4.3.1.14) is the displaced ReLU (DisReLU)25 as it
also shifts the ReLU [928]:

f (z) =

z, z + a ≥ 0,

−a, z + a < 0,
(4.148)

where a is a predefined hyperparameter [11, 928]. A Shifted ReLU (see
Section 4.2.6.1) is a special case of DisReLU with a = 1 [928]. The VGG-
19 [51] with DisReLUs outperform the ReLU, LReLU, PReLU, and ELU
activation functions with a statistically significant difference in performance
on the CIFAR-10 and CIFAR-100 datasets [243] as shown in [928].

4.2.6.45 Modified LReLU

Inspired by the DisReLU [928], Yang et al. proposed the modified LReLU
(MLReLU) in [929]. The MLReLU is a translated LReLU and is defined as

f (z) =

z, z + a > 0,

−az, z + a ≤ 0,
(4.149)

where a is a fixed parameter controlling both the slope and the threshold
[929].

4.2.6.46 Flatted-T swish

An activation function flatted-T swish (FTS) [930] combines ReLU and the
logistic sigmoid activation function; it is defined as

f (z) = ReLU(z) · σ(z) + T =

 z
1+exp(−z) + T, z ≥ 0,

T, z < 0,
(4.150)

where T is a predefined hyperparameter [930], the recommended value is T =

−0.20 [930]. The FTS is identical to a shifted swish for the positive z. The FTS
was shown to outperform ReLU, LReLU, swish, ELU, and FReLU activation
functions [930]. The special case with T = 0 was proposed independently
under the name of ReLU-Swish in [800].

25 Macêdo et al. originally abbreviated the displaced ReLU as DReLU but that is already taken
by dynamic ReLU from Section 4.3.1.14.

4.2 activation functions 83

4.2.6.47 Optimal activation function (OAF)

The so-called Optimal Activation Functio (OAF) is a combination of ReLU
and swish activations proposed in [931]. It is defined as

f (z) = ReLU(z) + z · σ(z) =

z + z · σ(z), z ≥ 0,

z · σ(z), z < 0.
(4.151)

4.2.6.48 Exponential linear unit (ELU)

An ELU is an extension of LReLU where the function employs an exponential
function for the negative inputs, which speeds up the learning process [874]:

f (z) =

z, z ≥ 0,
exp(z)−1

a , z < 0,
(4.152)

where a is a hyperparameter; the authors Clevert, Unterthiner, and Hochreiter
used a = 1 in their work [874]. The a determines the value to which an ELU
saturates for inputs going to negative infinity [874].

4.2.6.49 Rectified exponential unit (REU)

A rectified exponential unit (REU) [932] is an activation function inspired
by the ELU and swish (see Sections 4.2.6.48 and 4.3.3.1) and is based on the
assumption that the success of the swish activation functions is due to the
non-monotonic property in the negative quadrant [932]. The REU is defined
as

f (z) =

z, z ≥ 0,

z · exp(z), z < 0.
(4.153)

A parametric version called parametric rectified exponential unit (PREU) was
also proposed in [932]; see Section 4.3.1.9 for details.

4.2.6.50 Apical dendrite activation (ADA)

A biologically inspired AF named apical dendrite activation (ADA) was
proposed in [933]. It is similar to the ELU, but it applies an exponential
function for positive inputs. It is defined as

f (z) =

exp (−az + b) , z ≥ 0,

0, z < 0,
(4.154)

where a and b are fixed parameters [933].

84 literature review

4.2.6.51 Leaky apical dendrite activation (LADA)

As LReLU extends the ReLU, the leaky apical dendrite activation (LADA)
[933] extends the ADA.

f (z) =

exp (−az + b) , z ≥ 0,

cz, z < 0,
(4.155)

where a, b, and c ∈ [0, 1] are fixed parameters [933]. Georgescu et al. used
c = 0.01 in their experiments in [933].

4.2.6.52 Sigmoid linear unit (SigLU)

The sigmoid linear unit (SigLU)26 is an ELU alternative that uses a modified
logistic sigmoid instead of the exponential [815]. It is defined as

f (z) =

z, z ≥ 0,
1−exp(−2z)
1+exp(−2z) , z < 0.

(4.156)

4.2.6.53 Swish and ReLU activation (SaRa)

The swish and ReLU activation (SaRa) is an AF combining the swish and
ReLU AFs proposed in [934]. It is defined27 as

f (z) =

z, z ≥ 0,
z

1+a·exp(−bz) , z < 0,
(4.157)

where a and b are fixed parameters; Qureshi and Sarosh Umar recommend
a = 0.5 and b = 0.7 [934].

4.2.7 Maxsig

The maxsig is one of the AFs listed in [733]. The maxsig is similar to the
SigLU (see Section 4.2.6.52) and is defined as

f (z) = max (z, σ(z)) , (4.158)

where σ(z) is the logistic sigmoid [733].

26 The AF is unnamed in the original work [815].
27 The formula in [934] is malformed; we believe that this is the intended case. It is possible that

authors intended that the SaRa is actually only the part that is defined for the negative inputs
in Eq. (4.157) — however, we think that it is less likely as that would be only a swish (see
Section 4.3.3.1) AF with some fixed scaling of the output or the AHAF (see Section 4.3.3.2)
with fixed parameters.

4.2 activation functions 85

4.2.7.1 Tanh linear unit (ThLU)

The tanh linear unit (ThLU) [935]28 is an AF combining tanh and ReLU. It is
defined as

f (z) =

z, z ≥ 0,
2

1+exp(−z) − 1, z < 0,
=

z, z ≥ 0,

tanh
(z

2

)
, z < 0.

(4.159)

The ThLU is a special case of the tanh based ReLU (TReLU) with bi =
1
2 .

Similar AF was used under the name maxtanh in [733] — it just omitted the
scaling factor. The maxtanh can also be written as f (z) = max (z, tanh (z))
[733].

4.2.7.2 DualELU

The DualELU [916] is equivalent of DualReLU (see Section 4.2.6.36) for ELUs
and are defined as

f (z, z′) = fEL (z)− fEL
(
z′
)

, (4.160)

where fEL (z) is the ELU activation function applied to an input z.

4.2.7.3 Difference ELU (DiffELU)

An ELU variant named difference exponential linear unit (DiffELU)29 was
proposed in [936]. It is defined as

f (z) =

z, z ≥ 0,

a (z exp (z)− b exp (bz)) , z < 0,
(4.161)

where a and b ∈ (0, 1) are fixed parameters [936]. Hu et al. also tested setting
the parameters to be trainable but that led to worse performance [936]. The
recommended setting is a = 0.3 and b = 0.1 [936].

4.2.7.4 Polynomial linear unit (PolyLU)

The polynomial linear unit (PolyLU) is an AF similar to the ELU proposed in
[937]. It is defined as

f (z) =

z, z ≥ 0,
1

1−z − 1, z < 0.
(4.162)

Despite the similarity with the ELU, Feng and Yang have shown that the
PolyLU outperformed the ELU on the CIFAR-10/100 [243] and Dogs vs. Cats
[938, 939] datasets [937]. The PolyLU was also proposed under the name first
power linear unit with sign (FPLUS)30 in [940].

28 The ref [935] is not the original work with ThLUs; it references another work but that uses
pure tanh as the AFs.

29 Hu et al. used the abbreviation DELU but this name is used for the AF proposed by Pishchik
in [889] throughout this work.

30 Duan, Yang, and Dai used the equivalent definition f (z) = (sgn (z) · z + 1)sgn(z) − 1 in [940],
hence the name.

86 literature review

4.2.7.5 Inverse polynomial linear unit (IpLU)

The polynomial linear unit (IpLU) was proposed in [906]; it is defined as

f (z) =

z, z ≥ 0,
1

1+|z|a , z < 0,
(4.163)

where a > 0 is a fixed hyperparameter guaranteeing a small slope for negative
inputs [906].

4.2.7.6 Power linear unit (PoLU)

The power linear unit (PoLU) [941] is an AF similar to the ELU. It is defined
as

f (z) =

z, z ≥ 0,

(1 − z)−a − 1, z < 0,
(4.164)

where a is a fixed parameter [941]. Li, Ding, and Li used a ∈ {1, 1.5, 2} in
their experiments in [941].

4.2.7.7 Power function linear unit (PFLU)

The power function linear unit (PFLU) is an AF proposed in [942]; it is defined
as

f (z) = z · 1
2

(
1 +

z√
1 + z2

)
. (4.165)

4.2.7.8 Faster power function linear unit (FPFLU)

The faster power function linear unit (FPFLU) is an AF proposed in [942] that
resembles the IpLU (see Section 4.2.7.5) It is defined as

f (z) =

z, z ≥ 0,

z + z2
√

1+z2 , z < 0.
(4.166)

4.2.7.9 Elastic adaptively parametric compounded unit (EACU)

The elastic adaptively parametric compounded unit (EACU) [943] is a stochas-
tic AF. It is defined as

f (zi) =

bizi, zi ≥ 0,

aizi · tanh (ln (1 + exp (ai, zi))) , zi < 0,
(4.167)

where bi is stochastically sampled during training as

bi =

si, 0.5 < si < 1.5,

1, otherwise,
(4.168)

4.2 activation functions 87

si ∼ mathrmN (0, 0.01) , (4.169)

and ai is an adaptive parameter for each neuron or channel i [943].

4.2.7.10 Lipschitz ReLU (L–ReLU)

A L–ReLU [944] is a piecewise linear activation function. The slope of the
negative part is selected with respect to a data-dependent Lipschitz constant
[944]. It builds on a proposed piecewise function that treats the positive z > 0
and negative values (z ≤ 0) separately:

f (z) = p(z|z > 0) + n(z|z ≤ 0), (4.170)

where

p(z) = max (ϕ(z), 0) , (4.171)

and

n(z) = min(µ(z), 0), (4.172)

where ϕ(z) and µ(z) can be any function f : R → R [944]. This makes
the positive part of the piecewise lay in the first quadrant of the Cartesian
coordinate system and the negative part in the third quadrant [944].

4.2.7.11 Scaled exponential linear unit (SELU)

A SELU [945] was proposed in order to make the network self-normalize by
automatically converging towards zero mean and unit variance [11]. The ELU
was chosen as the basis for self-normalizing neural networks (SNNs) because
these cannot be derived with ReLUs, sigmoid, and tanh units or even LReLUs
[945] — the activation function has to have negative and positive values for
controlling the mean, saturation region where derivatives approach zero in
order to dampen the variance if it is too large, a slope larger than one in order
to increase the variance if it is too small, and a continuous curve to ensure a
fixed point where the variance dampening is balanced out by the variance
increasing [945]. The SELU is defined as

f (z) =

az, z ≥ 0,

ab (exp (z)− 1) , z < 0,
(4.173)

where a > 1 and b are predefined parameters [11, 945]; the recommended
values are a ≈ 1.05078 and b ≈ 1.6733 [945].

88 literature review

4.2.7.12 Leaky scaled exponential linear unit (LSELU)

A leaky variant of SELU called leaky scaled exponential linear unit (LSELU)
was proposed in [946] and is defined as

f (z) =

az, z ≥ 0,

ab (exp (z)− 1) + acz, z < 0,
(4.174)

where a > 1 and b are predefined parameters of the original SELU (see Sec-
tion 4.2.7.11), and c is a new, predefined parameter controlling the leakiness
of the unit [946].

4.2.7.13 Scaled exponentially-regularized linear unit (SERLU)

The scaled exponentially-regularized linear unit (SERLU) is a modification of
the SELU proposed in [947]; it is defined as

f (z) =

az, z ≥ 0,

abz exp (z) , z < 0,
(4.175)

where a > 0 and b > 0 are predefined parameters [947]. An extension of
this approach named ASERLU for bidirectional long short-term memory
(BiLSTM) architectures was proposed in [948].

4.2.7.14 Scaled scaled exponential linear unit (sSELU)

Additional scaling of the negative pre-activations was introduced in the scaled
scaled exponential linear unit (sSELU) [946]:

f (z) =

az, z ≥ 0,

ab (exp (cz)− 1) , z < 0,
(4.176)

where a > 1 and b are predefined parameters of the original SELU (see
Section 4.2.7.11), and c is a new, predefined parameter controlling the scaling
of the negative inputs to the unit [946].

4.2.7.15 RSigELU

A parametric ELU variant called RSigELU [949] is defined as

f (z) =

z
(

1
1+exp(−z)

)
a + z, 1 < z < ∞,

z, 0 ≥ z ≥ 1,

a (exp(z)− 1) , −∞ < z < 0,

(4.177)

where a is a predefined parameter, Kiliçarslan and Celik used 0 < a < 1
in their work [949]. For a = 0, the RSigELU becomes ReLU [949]. The
RSigELU was shown to outperform ReLU, LReLU, softsign, swish, ELU, SEU,

4.2 activation functions 89

GELU, LISA, Hexpo and softplus on the MNIST dataset [45], Fashion MNIST
[950] and the IMDB Movie dataset; it still outperformed these activation
functions on the CIFAR-10 dataset [243] but it was outperformed by its
variant RSigELUD [949].

4.2.7.16 HardSReLUE

Another AF proposed by Kiliçarslan is the HardSReLUE [951]. Kiliçarslan
defined the AF as

f (z) =

az
(
max

(
0, min

(
1, z+1

2

)))
+ z, z ≥ 0,

a (exp(z)− 1) , z < 0,
(4.178)

where a is a fixed slope parameter [951].

4.2.7.17 Exponential linear sigmoid squashing (ELiSH)

An activation function exponential linear sigmoid squashing (ELiSH) [651]
combines the swish (see Section 4.3.3.1) and the ELU function [11]. It is
defined as

f (z) =

z

1+exp(−z) , z ≥ 0,
exp(z)−1

1+exp(−z) , z < 0.
(4.179)

4.2.7.18 Hard exponential linear sigmoid squashing (HardELiSH)

As ELiSH (see Section 4.2.7.17) combines swish with ELU and linear function,
the hard exponential linear sigmoid squashing (HardELiSH) combines the
Hard sigmoid [890] with ELU and linear function [651]. It is defined as

f (z) =

z · max
(
0, min

(z+1
2 , 1

))
, z ≥ 0,

(1 + exp (−z)) · max
(
0, min

(z+1
2 , 1

))
, z < 0.

(4.180)

4.2.7.19 RSigELUD

The RSigELUD is a double parameter variant of the RSigELU (see Sec-
tion 4.2.7.15) [949] that is defined as

f (z) =

z
(

1
1+exp(−z)

)
a + z, 1 < z < ∞,

z, 0 ≤ z ≤ 1,

b (exp(z)− 1) , −∞ < z < 0,

(4.181)

where a and b are predefined parameters, Kiliçarslan and Celik used 0 < a <

1 and 0 < b < 1 in their work [949]. For a = b = 0, the RSigELUD becomes
the ReLU the same as the RSigELU; however, for a = 0 and positive b, the
function resembles the vanilla ELU [949].

90 literature review

4.2.7.20 LS–ReLU

The LS–ReLU31 is a ReLU-inspired AF proposed in [952]. It is defined as

f (z) =

z

1+|z| , z ≤ 0,

z, 0 ≤ z ≤ b,

log (az + 1) + |log (ab + 1)− b| , z ≥ b,

(4.182)

where a and b are fixed32 parameters [952].

4.2.8 Square-based activation functions

Several square-based activation functions were proposed in [953–955] for
better computational efficiency, especially on low-power devices [953]. The
approach uses the square function to replace the potentially costly exponential
function. These function leads to significantly more efficient computation
when there is no hardware implementation of the exponential function [953].
The efficiency gains can be further improved with a custom hardware operator

fh(x) = − |x| · x, (4.183)

which can be used for efficient hardware implementation of all of the activa-
tion functions of the square-based family [953]. The usage of the AFs from the
family can lead to performance gains of one order of magnitude compared
to traditional AFs [953] for both forward and backward passes (depends on
the particular activation function and the usage of fixed or floating point
representations) [953].

4.2.8.1 SQNL

A computationally efficient activation function was proposed in [954]; unlike
many other sigmoidal functions, it uses the square operator instead of the
exponential function in order to achieve better computational efficiency. The
derivative of the function is linear, which leads to a less computationally
costly computation of the gradient. The function is defined in [953] (the
original paper [954] had several mistakes in the definition) as

f (z) =

1, z > 2,

z − z2

4 , 0 ≤ z ≤ 2,

z + z2

4 , −2 ≤ z < 0,

−1, z < −2.

(4.184)

The SQNL33 has bounded range [−1, 1] [953]. The performance of the
SQNL was verified on several datasets from the UCI Machine Learning

31 Not an abbreviation.
32 Wang et al. do not specify whether the parameters are trainable or fixed.
33 SQNL is not an abbreviation but rather a name given by Wuraola and Patel.

4.2 activation functions 91

Repository [956] and on the MNIST dataset [45]; more details available in
[954].

4.2.8.2 Square linear unit (SQLU)

Similarly as the SQNL (see Section 4.2.8.1) uses square function to form
a sigmoidal function to approximate tanh, the square linear unit (SQLU)
[953] uses square function to form a ELU-like activation function that is
computationally efficient:

f (z) =

z, z > 0,

z + z2

4 , −2 ≤ z ≤ 0,

−1, z < −2.

(4.185)

The SQLU basically uses the negative part of the SQNL and replaces the
positive part with a linear function.

4.2.8.3 Square swish (squish)

Another example of the family of activation functions based on the square
operator is the square swish (squish) [953], which is an AF inspired by the
swish and GELU (see Section 4.2.3.1). It uses the square non-linearity in order
to achieve good computational efficiency:

f (z) =

z + z2

32 , z > 0,

z + z2

2 , −2 ≤ z ≤ 0,

0, z < −2.

(4.186)

While the squish was inspired by the swish and GELU activation functions,
it is an approximation of neither [953].

4.2.8.4 Square REU (SqREU)

Similarly as REU (see Section 4.2.6.49) is a combination of the ReLU and
swish activation functions, the square REU (SqREU) [953] is a combination of
ReLU and squish:

f (z) =

z, z > 0,

z + z2

2 , −2 ≤ z ≤ 0,

0, z < −2.

(4.187)

92 literature review

4.2.8.5 Square softplus (SqSoftplus)

A square softplus (SqSoftplus) is another square-based computationally effi-
cient replacement of an activation function — softplus [953]:

f (z) =

z, z > 1

2 ,

z + (z+ 1
2)

2

2 , − 1
2 ≤ z ≤ 1

2 ,

0, z < 1
2 .

(4.188)

4.2.8.6 Square logistic sigmoid (LogSQNL)

While the SQNL [954] replaces the tanh AF, the square logistic sigmoid
(LogSQNL) [953] is a square-based replacement for the logistic sigmoid:

f (z) =

1, z > 2,
1
2

(
z − z2

4

)
+ 1

2 , 0 ≤ z ≤ 2,

1
2

(
z + z2

4

)
+ 1

2 , −2 ≤ z < 0,

0, z < −2.

(4.189)

4.2.8.7 Square softmax (SQMAX)

The square softmax (SQMAX) is a square-based replacement for the softmax,
which is exponential-based. It is defined as

f (zj) =

(
zj + c

)2

∑N
k=1 (zk + c)2 , (4.190)

where f (zj) is the output of a neuron j in a softmax layer consisting of N
neurons and c = 4 is a predefined constant [953].

4.2.8.8 Linear quadratic activation

Another square-based AF called linear quadratic activation (LinQ) was pro-
posed in [955].

f (z) =

az +

(
1 − 2z + z2) , z ≥ 2 − 2a,

1
4 z (4 − |z|) , −2 + 2a < z < 2 − 2a,

az −
(
1 − 2z + z2) , z ≤ −2 + 2a,

(4.191)

where a is a fixed parameter controlling the slope of the function’s linear
parts [955].

4.2.8.9 Inverse square root linear unit (ISRLU)

Inverse square root linear unit (ISRLU) [957] is an activation function similar
to the ELU (see Section 4.2.6.48). It has similar properties and a shape as

4.2 activation functions 93

ELU; however, it is faster to compute, leading to more efficient training and
inference [957]. It is defined as

f (z) =

z, z ≥ 0,

z · 1√
1+az2 , z < 0,

(4.192)

where a is a hyperparameter controlling the value to which the ISRLU
saturates for negative inputs [957]. While the authors state that the hyperpa-
rameter a could be trainable for each neuron i, only the non-trainable variant
was analyzed [957]. Carlile et al. analysed ISRLU with a = 1 and a = 3 [957].

4.2.8.10 Inverse square root unit (ISRU)

ISRU [957] is an activation function meant to replace sigmoidal activation
functions. It is defined as

f (z) = z · 1√
1 + az2

, (4.193)

where a si a fixed hyperparameter controlling the saturation values; the
parameter could be trainable similarly as in the ISRLU (see Section 4.2.8.9)
but only the nonadaptive variant was used [957].

4.2.8.11 Modified Elliott function (MEF)

The modified Elliott function (MEF) [809] is an AF inspired by the Elliott
function (see Section 4.2.2.15); it can also be considered to be a translated
special case of the ISRU (see Section 4.2.8.10) with a = 1. It is defined as

f (z) = z · 1√
1 + z2

+
1
2

. (4.194)

4.2.9 Square-root-based activation function (SQRT)

A square-root-based activation function (SQRT) is a monotonically increasing,
unbounded activation function proposed in [958] with a similar structure as
the earlier proposed logarithmic activation function (LAF) but with the square
root function instead of the natural logarithm used in LAF. It is defined as

f (z) =

√

z, z ≥ 0,

−
√
−z, z < 0.

(4.195)

The SQRT activation function was found to outperform both tanh and ReLU
activation functions on the CIFAR-10 dataset [243] in experiments in [958].

A parametric variant of the SQRT called S-shaped activation function
(SSAF) was proposed independently in [959]. It is defined as

f (z) =

√

2az, z ≥ 0,

−
√
−2az, z < 0,

(4.196)

where a is a fixed parameter [959].

94 literature review

4.2.10 Bent identity

The bent identity [960] is an AF approximating the ReLU; it can be seen as
a fixed variant of the bendable linear unit (BLU) (see Section 4.3.1.37) with
ai =

1
2 . It is defined as

f (z) =
√

z2 + 1 − 1
2

+ z. (4.197)

4.2.11 Mishra activation function

The Mishra34 AF is defined as

f (z) =
1
2

(
z

1 + |z|

)2

+
1
2

z
1 + |z| . (4.198)

4.2.12 Saha-Bora activation function (SBAF)

A Saha-Bora activation function (SBAF) was proposed in [923, 962] to be used
for the habitability classification of exoplanets. It employs two non-trainable
parameters α and k, which were set to k = 0.98 and α = 0.5, where authors
determined a stable fixed point. It is defined as:

f (z) =
1

1 + kzα(1 − z)(1−α)
. (4.199)

4.2.13 Logarithmic activation function

The logarithmic activation function (LAF) was proposed in [963] (ref. from
[798]). According to [798], it is defined as

f (z) =

ln z + 1, z ≥ 0,

− ln−z + 1, z < 0.
(4.200)

The LAF was independently proposed under the name symlog in [964].

4.2.14 Symexp

The symexp [964] is an activation function that is inverse of the logmoid
activation unit (LAU). It is defined as

f (z) = sgn (z) (exp (|z|)− 1) . (4.201)

34 The AF was unnamed in the original papers [709, 961]; however, the work [707] named it
using the name of the original author. We keep the naming in this work.

4.2 activation functions 95

4.2.15 Scaled polynomial constant unit (SPOCU)

The scaled polynomial constant unit (SPOCU) is a polynomial-based AF
proposed in [965, 966]. It is defined as

f (z) = ah
(z

c
+ b
)
− ah (b) , (4.202)

where

h(x) =

r(d), x ≥ d,

r(x), 0 ≤ x < d,

x, x < 0,

(4.203)

r(x) = x3
(

x5 − 2x4 + 2
)

, (4.204)

and a > 0, b ∈ (0, 1), c > 0, and d ∈ [1, ∞) are fixed parameters satisfying
additional conditions listed in [965, 966].

4.2.16 Polynomial universal activation function (PUAF)

Similarly as the universal activation function (UAF) (see Section 4.3.21), the
polynomial (PUAF)35 is able to approximate popular AFs such as the logistic
sigmoid, ReLU, and swish [967]. It is defined as

f (z) =

za, z > c,

za (c+z)b

(c+z)b+(c−z)b , |z| ≤ c,

0, z < −c,

(4.205)

where a, b and c are fixed parameters [967]. The PUAF becomes the ReLU
with a = 1, b = 0, and c = 0; the logistic sigmoid is approximated with a = 0,
b = 5, and c = 10; finally, the swish is approximated using a = 1, b = 5, and
c = 10 [967].

4.2.17 Softplus

The softplus function was proposed in [969] and is defined as

f (z) = ln (exp (z) + 1) . (4.206)

The softplus was used as an activation function in [862] where it was used
alongside with a ReLU. The advantage of softplus over ReLU is that it is
smooth and it has a non-zero gradient for negative inputs; thus, it does
not suffer from the phenomenon of dying out neurons that is common in
networks with ReLU activations [970]. The softplus was found to outperform
ReLU for certain applications and architectures [970]. A noisy variant was
used for spiking neural networks in [971].

35 Hwang and Kim named the function only as the universal activation function but this name is
already taken by the UAF by Yuen et al. from [968].

96 literature review

4.2.18 Parametric softplus (PSoftplus)

Parametric softplus (PSoftplus) [972] is a softplus variant that allows for
scaling and shifting using two additional parameters. The PSoftplus is defined
as

f (z) = a (ln (exp (z) + 1)− b) , (4.207)

where a and b are fixed predetermined hyperparameters [972]. The creation
of the softplus was motivated by the assumption that activations with mean
outputs close to zero can improve the performance of a neural network;
since the output of the softplus is always positive, a shift parameter b was
introduced to shift the mean output closer to zero [972]. The slope controlling
parameter a is used to adjust the function and the gradient disappearance
or overflow during training [972]. The recommended values are a = 1.5 and
b = ln(2) [972].

4.2.18.1 Soft++

Another softplus extension Soft++ is a multiparametric nonsaturating nonlin-
ear activation function proposed in [973]. It is defined as

f (z) = ln (1 + exp (az)) +
z
b
− ln(2), (4.208)

where a and b are fixed predetermined hyperparameters [973]; however,
Ciuparu, Nagy-Dăbâcan, and Mureşan proposed they could be adaptable in
future works. Multiple values of the parameters were used in the experiments
in [973], but a = 1 and b = 2 were found to work well [973]; nevertheless, a
hyperparameter optimization is recommended [973].

4.2.19 Rand softplus (RSP)

A softplus variant rand softplus (RSP) [974] introduces a stochastic parameter
al that is determined by the noise level of the input data [974]. The RSP is
defined as

f (zl) = (1 − al)max (0, zl) + al · ln (1 + exp (zl)) , (4.209)

where al is adapting to the input noise levels of each layer l — the exact
procedure is described in [974].

4.2.20 Aranda-Ordaz

The Aranda-Ordaz AF[975, 976] was used in NNs in [975]. It is defined as

f (z) = 1 − (1 + a exp (z))−
1
a , (4.210)

where a > 0 is a fixed parameter [975]. Essai Ali, Abdel-Raman, and Badry
used a = 2 in their work [710].

4.2 activation functions 97

4.2.21 Bi-firing activation function (bfire)

A bi-firing activation function (bfire) was proposed in [977] and is defined as

f (z) =

z − a

2 , z > a,
z2

2a , −a ≥ z,≥ a

−z − a
2 , z < −a,

(4.211)

where a is a predefined smoothing hyperparameter [977]. The bfire is basically
a smoothed variant of the later proposed vReLU (see Section 4.2.6.25) as it
becomes vReLU as a → 0.

4.2.22 Bounded bi-firing activation function (bbfire)

A bounded variant of the bi-firing (bfire) activation function (see Section 4.2.21)
called bbfire was proposed in [888]; similarly as BReLU and BLReLU bounds
ReLU and LReLU respectively (see Sections 4.2.6.16 and 4.2.6.24), the bounded
bi-firing function (bbfire) is defined as

f (z) =

b, z < −b − a
2 ,

−z − a
2 , −b − a

2 ≥ z < −a,
z2

2a , −a ≥ z ≥ a,

z − a
2 , a < z ≥ b + a

2 ,

b, z > b + a
2 ,

(4.212)

where a and b are predefined hyperparameters [888]. The is symmetrical
about the origin and has a near inverse-bell-shaped activation curve [888].
While authors of the original bfire [977] solved potential numerical instabil-
ities caused by the unboundedness by imposing a small L1 penalty on the
hidden activation values [977], the bbfire alleviates this problem explicitly
without any need for such penalty.

4.2.23 Piecewise Mexican-hat activation function (PMAF)

The piecewise Mexican-hat activation function (PMAF) was used in [978]; it
is defined as

f (z) =

(

2√
3
π− 1

4

) (
1 − (z + a)2

)
exp

(
− (z+a)2

2

)
, z < 0,(

2√
3
π− 1

4

) (
1 − (z − a)2

)
exp

(
− (z−a)2

2

)
, z ≥ 0,

(4.213)

where a is a fixed parameter — Liu, Zeng, and Wang used a = 4 [978].

98 literature review

4.2.24 Piecewise radial basis function (PRBF)

The piecewise (PRBF) was used in [978]; it is defined as

f (z) =

exp

(
− (z−2a)2

b2

)
, z ≥ a

exp
(
− z2

b2

)
, −a < z < a

exp
(
− (z+2a)2

b2

)
, z ≤ −a

(4.214)

where a and b are fixed parameters [978] — Liu, Zeng, and Wang used a = 3
and b = 1 [978].

4.2.25 Comb-H-sine

A comb-H-sine is an activation function that was found using an evolutionary
approach in [659]. It is defined as

f (z) = sinh (az) + sinh−1 (az) , (4.215)

where sinh(x) is the hyperbolic sine, sinh−1(x) is its inverse, and a is a
predefined hyperparameter [659]. This function was found to outperform
ReLU, tanh, logistic sigmoid, and several other activation functions in LSTM
models in [659].

4.2.26 Modified arcsinh

The modified arcsinh (m-arcsinh) AF was proposed in [979] and is defined as

f (z) =
1
12

sinh−1 (z)
√
|z|. (4.216)

Interestingly, the m-arcsinh can be used either as an AF in a NN or as a
kernel function in the SVM [979].

4.2.27 hyper-sinh

The hyper-sinh is an AF that uses the sinh and cubic functions [980, 981]; it
is defined as

f (z) =

sinh(z)

3 , z > 0,
z3

4 , z ≤ 0.
(4.217)

4.2.28 Arctid

The arctid is an arctan-based AF used in [733]; it is defined as

f (z) =
(

tan−1 (z)
)2

− z. (4.218)

4.2 activation functions 99

4.2.29 Sine

The sine with inputs scaled by π was used as an activation in [982]:

f (z) = sin (πz) . (4.219)

It was, for example, used recently with a data-driven determination of a
network’s biases in [786]. Just the sine function without any scaling was used
as an activation in [983–988].

Scaled sine with vertical shift was used in [667]; the used AF is defined as

f (z) = 0.5 sin (az) + 0.3, (4.220)

where a is a fixed parameter; a ∈ {0.2, 0.8, 1.2, 1.8, 4} [667].

4.2.30 Cosine

A cosine activation was used in simulations in [989]; it was defined as

f (z) = 1 − cos (z) . (4.221)

4.2.31 Cosid

The cosid is one of the AFs listed in [733]. It is defined as

f (z) = cos (z)− z. (4.222)

4.2.32 Sinp

A parametric AF similar to the cosid was proposed in [990] under the name
sinp.36 It is defined as

f (z) = sin (z)− az, (4.223)

where a is a fixed parameter [990]. Chan et al. used a ∈ {1, 1.5, 2} [990].

4.2.33 Growing cosine unit (GCU)

Another cosine-based AF is the growing cosine unit (GCU) proposed in [991].
It is defined as

f (z) = z cos (z) . (4.224)

Empirical evaluation of the performance of GCU compared to ReLU, PReLU,
and mish is available in [992]; its brief evaluation with respect to the genera-
tion of NFTs is available in [993].

36 Technically, the full name used by Chan et al. is SinP[N] but we ommited the parameter from
the name of the AF.

100 literature review

4.2.34 Amplifying sine unit (ASU)

The amplifying sine unit (ASU) is the sine equivalent of the GCU [994, 995]

f (z) = z sin (z) . (4.225)

4.2.35 Sinc

The sinc is an older AF proposed in [996]. It is defined as

f (z) =

sin(πz)

πz , z ̸= 0,

1, z = 1.
(4.226)

A shifted variant was proposed under the name shifted sine unit (SSU) in
[997]. It is defined as

f (z) = πsinc (z − π) . (4.227)

4.2.36 Decaying sine unit (DSU)

The decaying sine unit (DSU) is a sinc based AF proposed in [997]. It is
defined as

f (z) =
π

2
(sinc (z − π)− sinc (z + π)) . (4.228)

4.2.37 Hyperbolic cosine linearized squashing function (HcLSH)

The hyperbolic cosine linearized squashing function (HcLSH) is an AF pro-
posed in [998]; it is defined as

f (z) =

ln
(
cosh (z) + z · cosh

(z
2

))
, z ≥ 0,

ln (cosh (z)) + z, z < 0.
(4.229)

4.2.38 Polyexp

The polyexp is an AF combining quadratic function and an exponential
function [996];37 it is defined as

f (z) =
(
az2 + bz + c

)
exp

(
−dz2) , (4.230)

where a, b, c, and d are fixed parameters [996].

4.2.39 Exponential

The exponential was used as an AF in [667]. The AF was defined as

f (z) = exp (−z) . (4.231)
37 The [982] is referenced as the origin of polyexp in [996] but we have not seen the definition

there.

4.2 activation functions 101

4.2.40 E-Tanh

An AF named E-Tanh combining the exponential and tanh functions was
proposed in [999]. It is defined as

f (z) = a · exp (z) tanh (z) , (4.232)

where a is a fixed scaling parameter [999, 1000].

4.2.40.1 Evolved combination of tanh and ReLU

The combination of tanh and ReLU was found using neuroevolution in [666]
— while Vijayaprabakaran and Sathiyamurthy also mentioned other AFs, this
combination led to the best performance on the HAR dataset using the LSTM
units. The best-performing recurrent AF was

f (z) = a
(
tanh

(
z2)+ ReLU (z)

)
(4.233)

and the regular AF was

f (z) = max (tanh (log (z)) , ReLU (z)) . (4.234)

See [666] for evaluation details and for other top AFs.

4.2.41 Wave

The wave is an AF combining quadratic function and an exponential function
[996];38 similarly as the polyexp but only with a single parameter; it is defined
as

f (z) =
(
1 − z2) exp

(
−az2) , (4.235)

where a is a fixed parameter [996].

4.2.42 Non-monotonic cubic unit (NCU)

A simple AF based on a third-degree polynomial was proposed in [997]. It is
named non-monotonic cubic unit (NCU) and is defined as

f (z) = z − z3. (4.236)

4.2.43 Triple

Another AF based on a third-degree polynomial called triple was proposed
in [1001]. It is defined as

f (z) = a · z3, (4.237)

where a is a fixed parameter [1001]. Chen et al. tested values of a ∈ {0.1, 0.5, 1, 2}
and observed that a = 1 reaches the best results [1001].

38 The [982] is referenced as the origin of wave in [996] but we have not seen the definition there.

102 literature review

4.2.44 Shifted quadratic unit (SQU)

The shifted quadratic unit (SQU) [997] is a simple non-monotonic AF defined
as

f (z) = z2 + z. (4.238)

4.2.45 Knowledge discovery activation function (KDAC)

Wang et al. proposed a special AF for knowledge discovery in [1002]. This
function named knowledge discovery activation function (KDAC) has two
adaptive parameters a > 0 and b > 0 and one fixed parameter c. It is defined39

as

f (z) = p · (1 − hmax (p, r))+ r ·h (p, r)+ khmax (p, r) (1 − hmax (p, r)) , (4.239)

where

hmax(x, y) = clip
(

1
2
− 1

2
x − y

c

)
, (4.240)

clip(x) =

0, x ≤ 0,

x, 0 < x < 1,

1, x ≥ 0,

(4.241)

p = az, (4.242)

q = hmin (bz, s) , (4.243)

r =

p, z > 0,

bz · (1 − q) + s · h (q, s) + kq (1 − q) , z ≤ 0,
(4.244)

s = tanh(z), (4.245)

and

hmin(x, y) = clip
(

1
2
+

1
2

x − y
c

)
. (4.246)

Wang et al. used fixed c = 0.01 [1002].

39 The original code by Wang et al. is available at https://github.com/pyy-copyto/KDAC/blob/
main/KDAC.py.

https://github.com/pyy-copyto/KDAC/blob/main/KDAC.py
https://github.com/pyy-copyto/KDAC/blob/main/KDAC.py

4.2 activation functions 103

4.2.46 K-winner-takes-all activation function (k-WTA)

The k-winner-take-all (k-WTA) AF was used to improve adversarial robust-
ness in [1003]. It is defined as

f (z)j =

zj, zj ∈ {k largest elements of z} ,

0, otherwise,
(4.247)

where f (z) : RN → RN is the k-WTA AF and f (z)j its j-th element, z is the
input to the AF, and k a fixed parameter [1003].

4.2.47 Volatility-based activation function (VBAF)

The volatility-based activation function (VBAF)40 is an AF with multiple
intputs proposed in [1004]. It is meant for time-series forecasting and was
used in a LSTM NN in [1004]. It is defined as

f (z1, . . . , zn) =

√
∑n

j=1
(
0̄z − zj

)
n

, (4.248)

where

0̄z =
∑n

j=1 zj

n
, (4.249)

n is the number of time-series samples in the given period [1004, 1005].
Unfortunately, no more details about the application of the VBAF were
provided in [1004]; thus, it remains unclear whether the VBAF was applied
only directly to the inputs, or it was used on intermediary representations of
a NN.

4.2.48 Chaotic activation functions

The chaotic activation functions (CAFs) listed in this work are AFs that use a
recursive definition to produce a chaotic behavior.

4.2.48.1 Hybrid chaotic activation function

The hybrid chaotic activation function (HCAF) is a multi-output type of
AF proposed in [1006]. Neuron i in layer l takes an input zl

i , applies the
logistic sigmoid AF and then maps the outputs using logistic map function
to individual outputs going to the neurons in layer l + 1 [1006]. Therefore, a
single neuron in layer l emits a different activation value to each neuron in
the layer l + 1 [1006].

For a neuron i, the HCAF first applies the logistic sigmoid function to
produce activation ai

ai = f (zi) = σ (zi) , (4.250)

40 Kayim and Yilmaz named the function originally only volatility activation function.

104 literature review

then the first value going to the neuron 1 in the following layer is calculated
as

ci,1 = rai (1 − ai) , (4.251)

and the output values going to the other neurons in the following layer are
calculated recursively as

ci,j = rci,j−1
(
1 − ci,j−1

)
, (4.252)

where j is the number of a neuron in a following layer and r represents an
excitatory rate in a neuron [1006]. Reid and Ferens used r = 4 as this value
produces a chaotic behavior of the logistic map [1006]; generally, values below
0 or above 4 lead to the output to become unbounded, values between 0

and 1 lead to convergence toward the zero, values between 1 and 3 lead to
convergence to a fixed number, values between 3 and 3.5 lead to a periodic
solution and only values between 3.5 and 4 produce chaotic behavior [1006].

4.2.48.2 Fusion of chaotic activation function (FCAF)

Similarly as HCAF, also the fusion of chaotic activation function (FCAF)
[1007] uses a recursive definition for computing the output of a neuron. The
FCAF is defined41 for hidden units as42

f (zi+1) = rzi (1 − zi) + zi + a − b
2π

sin (2πzi) (4.253)

and for the output units as

f (zi+1) = rzi (1 − zi) + zi + a − b
2π

sin (2πzi) + exp
(
−cz2

i
)
+ d, (4.254)

where r, a, b, c, and d are fixed parameters [1007]; the suitable values for the
parameter r are discussed in Section 4.2.48.1 where an equivalent parameter
is used.

4.2.48.3 Cascade chaotic activation function (CCAF)

The cascade chaotic activation function (CCAF) was introduced in [1008] and
is recursively defined for the neuron i + 1 in a given layer using the preceding
neuron i from the same layer as

f (zi+1) = a · sin (π · b · sin (πzi)) , (4.255)

where a and b are two fixed parameter from the interval [0, 1] [1008].

41 Kabir et al. did not explicitly defined what the index i denotes but most likely it denotes the
i-th neuron in a given layer.

42 The formula given in [1007] probably missed a minus sign after the parameter a.

4.3 adaptive activation functions 105

4.3 adaptive activation functions

The activation function introduces non-linearities to neural networks and is
crucial for network’s performance [46]. Even though it might be suboptimal,
the same activation function is usually used for the whole network or at
least for all neurons in a single layer. Over the last few decades, there have
been several attempts to use activation functions that might differ across
neurons (e.g., [871, 1009–1012]). The adaptive activation functions — i.e.,
functions that have a trainable parameter that changes their shape — have
been receiving more attention recently (e.g., [871, 1013–1015]) and might
become a new standard in the field. One of the first descriptions of the
general adaptive activation function (AAF) approach is available in [1009]
where Wu, Zhao, and Ding described an AF43 that has one or more trainable
parameters that are trained together with the rest of the network’s weights
[1009]. The simplest forms just add a parameter to a particular neural network
that controls one of its properties (e.g., slope), while the more complex ones
allow for the learning of a large number of activation functions (e.g., adaptive
spline activation functions in [1012]).

4.3.1 The ReLU-based family of adaptive functions

The are numerous ReLU extensions that are adaptive [11]. Some of the
adaptive activations have a non-adaptive counterpart — e.g., PReLU (see
Section 4.3.1.1), which is basically a LReLU with an adaptive parameter of
leakiness.

4.3.1.1 Parametric rectified linear unit (PReLU)

However, AAFs might be very useful even in the simplest form with a single
added parameter — an AAF called PReLU was used to obtain a state-of-
the-art result on the ImageNet Classification in 2015, the first surpassing
human-level performance [871]. The PReLU generalize the ReLU by adding
a parameter that controls the slope of the activation function for negative
inputs (the ReLU is constant at zero for negative inputs) that is learned with
other weights [1016]:

f (zi) =

zi, zi ≥ 0,
zi
ai

, zi < 0,
(4.256)

where ai is an optimized parameter for each neuron/filter i. The LReLU
[869] is essentially a PReLU but with the parameter ai fixed and not trainable
(see Section 4.2.6.2 for LReLU details). PReLUs are better than ReLUs for
verification-friendly NNs [1017].

43 The authors used the name trainable activation function (TAF) rather than the adaptive
activation function (AAF) that is used throughout this work.

106 literature review

4.3.1.2 Positive parametric rectified linear unit (PReLU+)

The positive PReLU is an adaptive variant of the SlReLU (see Section 4.2.6.5)
proposed in [1018]; it is also a special case of, for example, DPReLU, Dual
Line, and piecewise linear unit (PiLU). It is defined as

f (zi) =

aizi, zi ≥ 0,

0, zi < 0,
(4.257)

where ai is a trainable parameter [1018].

4.3.1.3 Margin Relu

The margin (MarReLU)44 is an adaptive variant of the Shifted ReLU where
the shift ai is determined as the channel-by-channel expectation value of the
negative response [1019]. It is defined as

f (zi) = max (z, ai) =

z, zi − ai ≥ 0,

ai, zi − ai < 0.
(4.258)

4.3.1.4 Funnel parametric rectified linear unit (FunPReLU)

The funnel rectified linear unit (FunReLU)45 and funnel (FunPReLU) are 2D
AFs proposed in [1020]. The FunReLU and FunPReLU introduce a spatial
context into the AF by comparing the input to a funnel condition instead
of the zero that is used as the threshold in ReLU and PReLU [1020]. The
FunReLU is defined as

f (zc,m,n) = max (zc,m,n, t (zc,m,n)) , (4.259)

where zc,m,n is the input on the c-th channel at the 2D spatial position m, n
and t (zc,m,n) is the spatial context from a 3 × 3 window46

t (zc,m,n) = ∑
m−1≤h≤m+1,n−1≤w≤n+1

zc,h,w · pc,h,w (4.260)

and pc,h,w denotes the coefficients on this window [1020]. The FunPReLU is
defined similarly. The FunReLU was, for example, used in [1021, 1022].

4.3.1.5 React-PReLU (RPReLU)

The react- (RPReLU) is an adaptive variant of the PReLU with vertical and
horizontal shifts; it is defined as

f (zi) =

zi − ac + bc, zi ≥ ac,

cc (zi − ac) + bc, zi < ac,
(4.261)

44 Heo et al. abbreviated it as MReLU, but this abbreviation is used for the mirrored rectified
linear unit (see Section 4.2.6.28) in this work.

45 Ma, Zhang, and Sun originally named the unit FReLU but its abbreviation would collide with
the flexible ReLU.

46 Other sizes were also tested in [1020] but Ma, Zhang, and Sun found 3 × 3 to work the best.

4.3 adaptive activation functions 107

where ac, bc, and cc are trainable parameters for each channel c and zi denotes
the input to the neuron i in the channel c [1023]; ac controls the horizontal
shift, bc controls the vertical shift, and cc is the slope parameter for negative
inputs as in the original PReLU.

4.3.1.6 Smooth activation unit (SAU)

The smooth activation unit (SAU) is a smoothed variant of the PReLU47 using
the convolution operation with the Gaussian function [1024]. It is defined as

f (zi) =
(
PReLUai ∗ ϕbi

)
(zi), (4.262)

where ∗ is the convolution operation, PReLUai is the PReLU48 parametrized
by ai

49 and ϕbi(x) is the Gaussian function parameterized by bi inversely
controlling the deviation of the function [1024]. The resulting AF is then

f (zi) =
1

2bi

√
2
π

exp
(
−

b2
i z2

i
2

)
+

1 + 1
ai

2
zi +

1 − 1
ai

2
zi · erf

(
bizi√

2

)
, (4.263)

where ai and bi are either fixed or trainable parameters [1024].

4.3.1.7 Smooth maximum unit (SMU)

The smooth maximum unit (SMU) [1025] is an AAF that uses a smooth
approximation of the absolute value function. The SMU is defined as

f (zi) =
(1 + ai) zi + (1 − ai) zi erf (bi (1 − ai) zi)

2
(4.264)

where ai and bi are learnable parameters [1025]. This smooth approximation
of the absolute value function using the Gaussian error function could be
used to create a whole class of AFs similarly as in Section 4.3.54.

4.3.1.8 Leaky Learnable ReLU (LeLeLU)

An adaptive LReLU variant named leaky learnable ReLU (LeLeLU) was
proposed in [1026]. It is a LReLU with learnable scaling parameter:

f (zi) =

aizi, zi ≥ 0,

0.01aizi, zi < 0,
(4.265)

where ai is a trainable parameter for each neuron i [1026].

47 The principle could be, however, applied to other AFs.
48 Biswas et al. used the LReLU in the definition of the SAU but since they consider the parameter

ai trainable, we stick to the usage of PReLU in the defintion.
49 To conform to the used definition of the PReLU unit, we will use the slope scaling by 1

ai
even

though authors originally used the ai for slope scaling of negative inputs.

108 literature review

4.3.1.9 Parametric rectified exponential unit (PREU)

Similarly as PReLU extends the ReLU (see Section 4.3.1.1), the PREU extends
the swish and ELU inspired REU [932]. It is defined as

f (zi) =

aizi, zi ≥ 0,

aizi · exp(bizi), zi < 0,
(4.266)

where ai and bi are trainable parameters for each neuron/filter i [932]. The
advantage of PREU is that it uses the negative information near zero [11] —
unlike the ReLU.

4.3.1.10 Randomly translational PReLU (RT-PReLU)

A randomly translational PReLU (RT–PReLU) an equivalent extension to
PReLU as is RT–ReLU to ReLU (see Section 4.2.6.11) [883]. It is defined as

f (zi) =

zi, zi + bi ≥ 0,
zi
ai

, zi + bi < 0,
(4.267)

where ai is a trainable parameter and bi is a stochastic parameter for each
neuron i randomly sampled from the Gaussian distribution at each iteration,
bi ∼ N

(
0, σ2), where σ2 is the variance of the Gaussian distribution. The

offset bi is set to zero during the test phase [11]. The authors Cao et al. set
the σ2 = 0.752 for their experiments [883]. It is also possible to have the
parameter bi sampled for each neuron i, but the ai is shared by all neurons in
a channel c [1027].

4.3.1.11 Probabilistic activation (ProbAct)

A probabilistic class of activation functions ProbAct that adds a random noise
to any activation function [1028]. It is defined as

f (z) = g(z) + σe, (4.268)

where g(z) is any function (either fixed or trainable) defining the mean of
the probabilistic activation, e ∼ N(0, 1) is a random value sampled from a
standard normal distribution, and σ is either fixed or learnable parameter
controlling the range of the perturbation [1028]. σ can be either a global
learnable parameter or different for each neuron i [1028]. The ProbAct used
in [1028] is a ReLU based ProbAct defined as

f (z) = max(0, z) + σe, (4.269)

which resembles NReLU (see Section 4.2.6.6) that adds random noise for
output values for the positive inputs z [861]. A similar concept for sigmoid
and tanh activation was used in [1029] (see Section 4.3.17).

The chaotic injections presented in [1030] represent a similar approach;
however, the injections are not stochastic but rather defined using the chaos

4.3 adaptive activation functions 109

theory. Furthermore, Reid, Ferens, and Kinsner discuss several approaches
for injections of a chaotic value sn into a ReLU: ReLU (z + sn), ReLU (z · sn),
ReLU (z + z · sn), ReLU (z)+ sn, ReLU (z) · sn, ReLU (z)+ zsn, and ReLU (z)+
ReLU (z) · sn [1030].

4.3.1.12 Adaptive offset activation function (AOAF)

Another ReLU variant with adaptive shift termed adaptive offset activation
function (AOAF) was defined in [1031]. The AOAF introduces two hyper-
parameters and one data-dependent adaptive parameter; it is defined as

f (zi) = max (0, zi − bai) + cai, (4.270)

where b and c are predefined, fixed parameters and ai is the mean value of
the inputs of neuron i [1031]. The recommended values for the parameters b
and c are b = c = 0.17 as it yielded the best image classification accuracy in
the experiments [1031].

4.3.1.13 Dynamic leaky ReLU (DLReLU)

An error based dynamic leaky ReLU (DLReLU) was proposed in [1032] (under
the name of Dynamic ReLU — DReLU — but this naming collides with
DReLU established in [1033, 1034]; see Section 4.3.1.14 and Section 4.3.55.3).
The DLReLU is a LReLU where the leakiness depends on the test error from
the previous epoch [11]

f (z) =

z, z ≥ 0,

abtz, z < 0,
(4.271)

where a ∈ (0, 1) is a predefined parameter controlling the leakiness similarly
as in LReLU (see Section 4.2.6.2) and bt is a dynamic parameter computed
for current training epoch t as the test erroch from the previous epoch t − 1,
i.e., bt = MSEt−1 [1032].

A version exp–DLReLU was proposed to deal with deeper networks with
more than seven hidden layers in order to avoid too large error values causing
the training to fail [1032]:

f (z) =

z, z ≥ 0,

actz, z < 0,
(4.272)

where ct = exp(−bt) = exp (MSEt−1) [1032].
The advantage of DLReLU and exp–DLReLU is that the changes in leak-

iness are big at the beginning of the training due to higher test error and
diminish towards the end [1032]. A similar effect could be obtained by a
schedule of the leakiness parameter in the LReLU.

110 literature review

4.3.1.14 Dynamic ReLU (DReLU)

Similar approach to the ABReLU is presented by the DReLU [1033] (not to be
confused with identically named activations in [1032, 1034]),

f (zi) =

zi, zi − ai ≥ 0,

ai, zi − ai < 0,
(4.273)

where ai is a threshold value that is computed as the midpoint of the range
of input values for each batch; e.g., if the values range from -4 to 8, then
ai = −4+8

2 = 2 [1033]. The DReLU can be considered to be a variant of
DisReLU (see Section 4.2.6.44) with data-dependent determination of the
shifting point.

4.3.1.15 Flexible ReLU (FReLU)

The FReLU is a ReLU extension with zero-like property and the ability to
capture negative information [1035]. The zero-like property is the ability to
push activation means closer to zero [1035] as this might speed up learning
[874]. The FReLU builds on the ability to shift the AF

f (zi) = ReLU (zi + ai) + bi, (4.274)

where ai and bi would be optimized parameters [1035]. However, since the
parameter ai can be learned by the bias term of the neuron to whose output
is the activation function applied, the authors Qiu, Xu, and Cai formulate the
FReLU as

f (zi) = ReLU (zi) + bi =

zi + bi, zi ≥ 0,

bi, zi < 0,
, (4.275)

where bi is a trainable parameter [1035].

4.3.1.16 Adaptive shifted ReLU (ShiLU)

An adaptive shifted ReLU (ShiLU) [889] is another adaptive variant of the
ReLU activation; it is a variant that adds a trainable slope and a vertical shift:

f (zi) = aiReLU (zi) + bi = ai · max (0, z) + bi, (4.276)

where ai and bi are trainable parameters for each neuron i [889]. They used
the name shifted ReLU, but that name is already taken by the non-adaptive
Shifted ReLU; hence, the full name is adaptive shifted ReLU throughout this
work to avoid confusion.

4.3.1.17 StarReLU

The StarReLU [1036] is an adaptive version of the RePU of power 2 using a
similar approach as the ShiLU; it is defined as

4.3 adaptive activation functions 111

f (zi) = ai (ReLU (z))2 + bi, (4.277)

where ai and bi are trainable parameters for each neuron i [1036]. If the
parameters are not used in an adaptive manner, Yu et al. recommend setting
ai = 0.8944 and bi = −0.4472 [1036].

4.3.1.18 Adaptive HardTanh

An adaptive variant of HardTanh was used in [894]; it is defined as

f (z) = HardTanh (at (z − b)) , (4.278)

where at is a scale factor for each epoch t such that 1 ≤ a1 ≤ a2 ≤ . . . ≤
at ≤ . . . ≤ aT, T is the total number of training epochs and b is an adaptive
parameter trained using BP with other parameters of the NN [894]. The
parameters at are set such that the function starts in a similar shape as a
regular HardTanh (see Section 4.2.6.18) and gradually approaches the sign
function [894]. This allows for training a network that will gradually become
a binary NN where each activation is the sign function which can be used
for speeding the inference [894].

4.3.1.19 Attention-based ReLU (AReLU)

Attention-based ReLU (AReLU) [1037] is a adaptive ReLU variant that uses
ELSA — element-wise attention mechanism proposed in [1037]. It is defined
as

f (zl) =

(1 + σ(bl)) zl , zl ≥ 0,

C(al)zl , zl < 0,
, (4.279)

where al and bl are learnable parameters for each layer l, σ(x) is the logistic
sigmoid function, C(x) is a function that clips the input into [0.01, 0.99] [1037].
The derivative of C(al) is handled by just not using the BP when al < 0.01 or
al > 0.99 [1037]. While Chen, Li, and Xu observe that the parameters al and bl
are insensitive to the initialization, they recommend initializing al = 0.9 and
bl = 2.0 as a larger initial value of bl can speed up the convergence [1037]. The
AReLU was found to outperform CELU, ELU, GELU, LReLU, Maxout, Relu,
RReLU, SELU, sigmoid, softplus, swish, tanh, adaptive piece-wise linear unit
(APLU), Padé activation unit (PAU), PReLU, and self-learnable activation
function (SLAF) in experiments with various learning rates in [1037]. The
performance of AReLU was validated under different settings in [698, 821,
1038].

4.3.1.20 Dual parametric ReLU (DPReLU) and Dual Line activation function

A DPReLU [1039] extends the concept of PReLU even further:

f (zi) =

aizi, zi ≥ 0,

bizi, zi < 0,
(4.280)

112 literature review

where ai and bi are trainable parameters for each neuron i; these are initialized
the same as PReLU — ai = 1, bi = 0.01 [1039]. The DPReLU was also later
proposed independently in [1040] under the name fully parametric ReLU and
the abbreviation FReLU (which is already used in the literature for the flexible
ReLU; see Section 4.3.1.15).

4.3.1.21 Dual Line

The DPReLU was further extended into a Dual Line activation function that
adds a shift parameter

f (zi) =

aizi + mi, zi ≥ 0,

bizi + mi, zi < 0,
(4.281)

where ai and bi are trainable parameters for each neuron i the same as in
DPReLU and mi is an additional trainable shift parameter for each neuron or
filter i; mi was initialized to mi = −0.22 [1039].

4.3.1.22 Piecewise linear unit (PiLU)

An AF very similar to the Dual Line is the piecewise linear unit (PiLU)
proposed in [1041]; it just extends the Dual Line concept by adding horizontal
shifts. It is defined as

f (zi) =

aizi + ci(1 − ai), zi ≥ ci,

bizi + ci(1 − bi), zi < ci,
(4.282)

where ai, bi, and ci are adaptive parameters for each neuron i [1041]. The
PiLU geneneralizes, for example, ReLU, LReLU, PReLU, SlReLU, DPReLU,
and Dual Line.

4.3.1.23 Dual parametric family of activation functions

The DPReLU approach (see Section 4.3.1.20) can be extended to a general
concept transforming any activation function g(z):

f (zi) =

aig(zi) + mi, zi ≥ 0,

g(zi) + mi, zi < 0,
(4.283)

where g(zi) is any activation function and ai and mi are trainable parame-
ters for each neuron i [1039]. The functions of this family are called dual
parametric activation functions (DPAFs) throughout this text.

4.3 adaptive activation functions 113

4.3.1.24 Fully parameterized activation function (FPAF)

Similar approach to DPAF (see Section 4.3.1.23) was proposed under the
name of fully parameterized activation function (FPAF) in [1040]; the FPAF is
defined as

f (zi) =

aig1(zi), zi ≥ 0,

big2(zi), zi < 0,
(4.284)

where ai and bi are trainable parameters for each neuron i and g1(zi) and
g2(zi) can be any function [1040]. The FPAF, in contrast to the family of
DPAFs, has no trainable shift but allows for learnable slopes for both parts of
the piecewise function.

4.3.1.25 Elastic PReLU (EPReLU)

The same as EReLU extends the concept of ReLU (see Section 4.2.6) [918], the
Elastic (EPReLU) extends the PReLU — it adds a varying coefficient to the
positive part of the PReLU [918]:

f (zi) =

kizi, zi ≥ 0,
zi
ai

, zi < 0,
(4.285)

where ai is the optimized parameter, ki is a sampled for each epoch and
neuron i from the uniform distribution: ai ∼ U(1 − α, 1 + α) where α ∈ (0, 1)
[918]. A modified training procedure for EPReLU is also proposed — the
neuron weights and the trainable parameter ai are updated with ki = 1 in odd
epochs, while in even epochs, the ai is kept fixed, the parameter ki is sampled
from the uniform distribution, and only the neuron weights are updated
[918]. It was shown that the EPReLU leads to improved performance over the
ReLU, PReLU, EReLU, APLU, network in network (NIN), and maxout unit
networks on several datasets [918].

4.3.1.26 Paired ReLU

A paired ReLU [1042] is a concept similar to CReLU (see Section 4.2.6.34),
but it introduces four trainable parameters. It is defined as

f (z) =

[
max (aizi − bi, 0)

max (cizi − di, 0)

]
, (4.286)

where ai, bi, ci, and di are trainable parameters for each neuron i [11, 1042].
The parameters ai and ci are scale parameters and bi and di are trainable
thresholds; the inital values of scale parameters are ai = 0.5 and ci = −0.5
[1042].

4.3.1.27 Tent

The tent is a ReLU-based AF proposed in [1043]; it is defined as

f (zi) = max (0, ai − |zi|) , (4.287)

114 literature review

where ai is a trainable parameter [1043]. Rozsa and Boult recommend using
batch normalization and initializing ai = 1 [1043]. Also, having a weight
decay on the parameter ai during training proved beneficial for certain tasks
[1043].

4.3.1.28 Hat

The hat [1044] is an AAF very similar to the tent AF — the only difference
is that the tent AF is centered around zero while the hat is positive only for
positive inputs. The hat AF is defined as

f (zi) =

0, zi < 0,

zi, 0 ≤ zi ≤ ai
2 ,

zi,
ai
2 ≤ zi ≤ ai,

0, zi > ai,

(4.288)

where ai is can be either fixed or trainable parameter [1044]. Wang, Xu, and
Zhu used ai = 2 for the fixed variant in [1044]; this value was also used in
[1045].

4.3.1.29 ReLU memristor-like activation function (RMAF)

The ReLU memristor-like activation function (RMAF) is an activation function
similar to the swish AF (see Section 4.3.3.1) and it also attempts to leverage
the negative values [1046]. It is defined as

f (zi) =

[
b

1
(0.25 (1 + exp(−zi)) + 0.75)c

]
aizi, (4.289)

where ai is a trainable parameter initialized ai = 1 for each neuron i or it is a
fixed hyperparameter and b and c are fixed hyperparameters [1046].

4.3.1.30 Parametric tanh linear unit (PTELU)

A parametric tanh linear unit (PTELU) [1047] is an adaptive function that, for
positive inputs, behaves just as a ReLU; however, the negative part is parame-
terized tanh function [11]. It can also be seen as an extension of the PReLU
(see Section 4.3.1.1). It is an adaptive variant of ThLU (see Section 4.2.7.1). It
is defined as

f (zi) =

zi, zi ≥ 0,

ai tanh (bizi) , zi < 0,
(4.290)

where ai and bi are trainable parameters for each neuron i; ai ≥ 0 and
bi ≥ 0 [1047]. It has output range of [−ai, ∞) [11]. The parameter ai controls
the saturation value, and the parameter bi controls the convergence rate
[1047]. While the AF resembles an adaptive extension of an ELU activation
functions, the author Gupta and Duggal decided to use tanh function for the

4.3 adaptive activation functions 115

negative inputs because it gives a higher gradient for small negative inputs
and saturates earlier than exp(z)− 1 and thus the noise-robust deactivation
state earlier and faster [1047]. The nonadaptive variant of PTELU with ai = 1
and bi = 1 was proposed in [815].

4.3.1.31 Tangent linear unit (TaLU)

The tanh linear unit (TaLU) [1048] is an AF similar to the PTELU. The TaLU
is defined as

f (zi) =

zi, zi ≥ 0,

tanh (zi) ai < zi < 0,

tanh (ai) zi ≤ ai,

(4.291)

where ai < 0 is either a learnable50 or fixed parameter [1048].

4.3.1.32 PTaLU

The PTaLU51 is a variant of TaLU with another learnable parameter [1048]. It
is defined as

f (zi) =

zi, zi ≥ bi,

tanh (zi) ai < zi < bi,

tanh (ai) zi ≤ ai,

(4.292)

where ai and bi are trainable parameters [1048]. Mercioni and Holban used
initial values ai = −0.75 and bi = 1 in [1048].

4.3.1.33 TanhLU

The tanhLU52 is a parametric combination of the tanh and a linear function
proposed in [1049]. It is defined as

f (zi) = ai · tanh (bizi) + cizi, (4.293)

where ai, bi, and ci are trainable parameters for each neuron i [1049].

4.3.1.34 TeLU

Despite the similar name, the tanh exponential linear unit (TeLU)53 [844]
is quite different from the PTELU. The TeLU is closely related to the mish
and TanhExp activations, but, unlike these two AFs, it also has an additional
adaptive parameter. It is defined as

f (zi) = zi · tanh (ELU (aizi)) , (4.294)

where ai is either learnable or fixed scaling parameter [844].

50 The variant with the adaptive parameter was named TaLU learnable by the authors.
51 Not an abbreviation but a name given by Mercioni and Holban in [1048].
52 Not an abbreviation but a name given by Shen et al. in [1049].
53 [844] used the TeLU as the name and not as an abbreviation; nevertheless, the long name tanh

exponential linear unit fits the usual naming convention and, therefore, it is used in this work.

116 literature review

4.3.1.35 Tanh based ReLU (TReLU)

A TReLU was proposed in [1050]; however, it is is only a special case of
previously proposed PTELU (see Section 4.3.1.30). It is defined as

f (zi) =

zi, zi ≥ 0,

tanh (bizi) , zi < 0,
(4.295)

where bi is a trainable parameter for each neuron i[1050]. This function is
identical to the PTELU with its parameter ai fixed to ai = 1. Another special
case of PTELU was proposed in [1051] also under the name of TReLU — this
time, the parameter ai becomes a predefined fixed parameter, and bi becomes
fixed to bi = 1. This function is denoted TReLU variant 2 (TReLU2) in this
work and is defined as

f (z) =

z, z ≥ 0,

a tanh (z) , z < 0,
(4.296)

where a is fixed54 parameter [1051].

4.3.1.36 Rectified linear tanh (ReLTanh)

A ReLTanh is a piecewise adaptive activation function that improves tradi-
tional tanh activation function [1052] — it replaces the positive and negative
saturated regions of the tanh activation functions with straight lines whose
slopes are identical to the slope of the tanh at the thresholds [1052]. It is
defined as

f (zi) =

tanh′(ai)(zi − ai) + tanh(ai), zi ≤ ai,

tanh(zi), ai < zi < bi,

tanh′(bi)(zi − bi) + tanh(bi), zi ≥ bi,

(4.297)

where tanh′(x) is the derivative of the tanh function

tanh′(x) =
4

(exp(x) + exp(−x))2 , (4.298)

and ai ∈ [alow, ahigh] and bi ∈ [blow, bhigh] are two trainable parameters that
may be defined for each neuron i but are rather recommended to be shared by
a whole layer l [1052] in order to decrease computational burden. The limits
alow, ahigh, blow, and bhigh for the parameters are to constraint the learnable
range and are predefined hyperparameters. Wang et al. used alow = −∞,
ahigh = −1.5, blow = 0, and bhigh = 0.5 in their work [1052]. The initial values
were set to ai = −1.5 and bi = 0 for all layers (the parameters were shared
layer-wise) in order to speed up the training process in early stages by the
larger gradients [1052].

54 While Nakhua et al. used the parameter fixed during their experiments, they also speculated
that making it learnable might improve the performance.

4.3 adaptive activation functions 117

4.3.1.37 Bendable linear unit (BLU)

A BLU [1053] is an adaptive function that allows for any interpolation between
the identity function and a rectifier [11, 1053]. It is defined as

f (zi) = ai

(√
z2

i + 1 − 1
)
+ zi, (4.299)

where ai ∈ [−1, 1] is a trainable parameter for each neuron or filter [1053].
One of the main advantages of the BLU is that it can model an identity
function; the identity function is useful because its gradient cannot vanish
or explode, and it also allows for a layer to be "skipped" [1053] — it is one
of the reasons of why ResNets [13] became so popular [1053] as it is rather
hard to learn an identity transformation using conventional neural network
and the architecture with skip connections allows for easy learning of the
identity mapping [13]. Unless the magnitude |ai| is exactly 1, the derivative
of BLU is non-zero for both positive and negative inputs (similarly to LReLU
and in contrast to vanilla ReLU and ELU) [1053]. BLU has a slope higher
than 1 for positive inputs for ai approaching 1 (or for negative inputs for
ai approaching -1) [1053]; this property helps to avoid vanishing gradient
problems [945, 1053]. Another useful benefit is that BLU are C∞ continuous
[1053], which can be theoretically exploited for speeding up the optimization
[1053], e.g., [1054–1057]. It was also shown that smooth activation functions
provide better signal propagation [648].

4.3.1.38 Rectified BLU (ReBLU)

A variant of the BLU (see Section 4.3.1.37) was proposed in [1018] under the
name rectified BLU (ReBLU). It is defined as

f (zi) =

BLU (zi) , zi > 0,

0, zi ≤ 0,
=

ai

(√
z2

i + 1 − 1
)
+ zi, zi > 0,

0, zi ≤ 0,
(4.300)

, where ai is a trainable parameter [1018].

4.3.1.39 DELU

The DELU55 activation function [889] is a ReLU variation that utilizes the
SiLU function (see Section 4.2.3). It is defined as

f (zi) =

(ai + 0.5)zi + |exp (−zi)− 1| , zi ≥ 0,

ziσ (zi) , zi < 0,
(4.301)

where ai is a trainable parameter for each neuron i and σ(zi) is the logistic
sigmoid function [889].

55 DELU is not an abbreviation but rather a name given by Pishchik.

118 literature review

4.3.1.40 Soft clipping mish

A ReLU variant called soft clipping mish (SC-mish) was proposed in [1058].
It adds soft clipping to the positive inputs using the mish AF; it is defined as

f (zi) = max (0, zi · tanh (softplus(aizi))) , (4.302)

where ai is a fixed parameter [1058]; Mercioni and Holban used ai = 1. It also
has a variant where the parameter ai is trainable. Such a variant is called soft
clipping learnable mish (SCL-mish). When using the SCL-mish, Mercioni and
Holban initalized the parameter ai = 0.25 [1058].

4.3.1.41 Soft clipping swish

Yet another AF proposed by Mercioni and Holban is the soft clipping swish
(SC-swish) [1059–1061]. This function is very similar to SC-mish and is defined
as

f (z) = max (0, z · σ (z)) , (4.303)

where σ(z) is the logistic sigmoid [1059].

4.3.1.42 Parametric swish (p-swish)

The parametric swish (p-swish) [1062] is another AF proposed by Mercioni
and Holban. It is defined as

f (zi) =

aiziσ (bizi) , zi ≤ ci,

zi, zi > ci,
(4.304)

where ai, bi, and ci are either trainable or fixed parameters (or combination
thereof) [1062]. The parameters were initialized to ai = 1, bi = 1 and ci = 0
in experiments in [1062]. An AF named R_S similar to the p-swish was
independently proposed in [1063]; it is equivalent to a p-swish with fixed
ai = 1.

4.3.1.43 Parametric exponential linear unit (PELU)

Similarly as PReLU extends the concept of ReLU, the parametric exponential
linear unit (PELU) [1064] extends the concept of ELU (see Section 4.2.6.48).
The PELU builds on a parameterization that separately controls the saturation
point, the decay, and the slope:

f (zi) =

cizi, zi ≥ 0,

ai

(
exp

(
zi
bi

)
− 1
)

, zi < 0,
(4.305)

where ai, bi, and ci are trainable parameter for each neuron i [1064]. However,
the PELU introduces only two new parameters — ai controlling the saturation
point, and bi controlling the decay — to control the shape of the activation
function; the slope is not controlled separately through another parameter as

4.3 adaptive activation functions 119

it could lead to non-differentiability at zi = 0; therefore the slope is set such
that the derivatives on both sides of zero are equal which leads to ci =

ai
bi

[1064] and therefore the PELU is defined as

f (zi) =

ai
bi

zi, zi ≥ 0,

ai

(
exp

(
zi
bi

)
− 1
)

, zi < 0.
(4.306)

The PELU combined with mixing different activation functions which
use an adaptive linear combination or hierarchical gated combination of
activation function was shown to perform well [1065] — see Section 4.3.1.45.

4.3.1.44 Extended exponential linear unit (EDELU)

An adaptive function called extended exponential linear unit (EDELU)56

was proposed in [1066]. This function is the same as the PELU, but it omits
the vertical scaling for positive inputs, adds a parameter controlling the
threshold, and uses inverse definitions of the parameters present in the PELU.
It is defined as

f (zi) =

zi, zi ≥ ci,
(exp(aizi)−1)

bi
, zi < ci,

(4.307)

where ai ≥ 057 and bi ≥ 058 are trainable PELU parameters and ci ≥ 0
is the novel parameter for controlling the threshold that has to satisfy the
relationship

bici = exp (aici)− 1; (4.308)

while the ci = 0 is always a solution of the equation, there are other solutions
for bi > ai > 0 [1066].

4.3.1.45 Adaptive combination of PELU and PReLU

Two different activation functions can be mixed together, as shown in [1065].
One such example of mixed activation function is

f (zi) = ai · LReLU(zi) + (1 − ai)ELU(zi), (4.309)

where ai is a combination coefficient that might be learned from the data
[1065]. Another mixing approach was shown for combining PReLU and
PELU:

f (zi) = σ(aizi)PReLU(zi) + (1 − σ (aizi))PELU(zi), (4.310)

where σ(x) is the logistic sigmoid [1065]. Qian et al. also proposed other
mixing schemes such as hierarchical activation, winner-take-all selection
whose performance were shown on the MNIST [45], CIFAR-10 and CIFAR-
100 [243] datasets; see [1065] for details.

56 Authors called the function extendeD ELU resulting in an abbreviation DELU but that name is
already taken by an AF proposed a few months earlier in [889].

57 The PELU equivalent would be 1
bi

.
58 The PELU equivalent would be 1

ai
.

120 literature review

4.3.1.46 Fast exponential linear unit (FELU)

An ELU variant called fast exponential linear unit (FELU) aiming at efficient
training and network inference was proposed in [1067] — it is inspired by
fast approximation of the exponential function proposed in [1068] to replace
the exponential in the ELU:

f (zi) =

zi, zi ≥ 0,

ai

(
2

zi
ln(2) − 1

)
, zi < 0,

(4.311)

where ai is a trainable parameter controlling the soft saturation region [1067].

4.3.1.47 P+FELU

Adem proposed variant of the FELU function named P+FELU; this variant
has an added parameter and is defined as

f (zi) =

zi + b, zi ≥ 0,

ai

(
2

zi
ln(2) − 1

)
+ b, zi < 0,

(4.312)

where ai is a trainable parameter same as the original FELU and b is the
added trainable parameter [1069].

4.3.1.48 Multiple parametric exponential linear unit (MPELU)

A PELU extension, multiple parametric exponential linear unit (MPELU)
[1070], uses two trainable parameters to allow for a combination of a ReLU
and ELU [11]. The multiple parametric exponential linear unit (MPELU) is
defined as

f (zi) =

zi, zi ≥ 0,

ai (exp (bizi)− 1) , zi < 0,
(4.313)

where ai and bi are trainable parameters for each neuron i [11, 1070]. The
ReLU, certain parameterizations of PELU, and ELU are special cases of the
MPELU [1070]. A special method for weight initialization of neurons with
MPELU units was also proposed; depending on a particular initialization, the
method can become the initialization for ELU networks or for ReLU networks
[1070]. The MSRA59 filler approach [871] can be considered as a special
case of the MPELU initialization [1070]. The MPLU initialization is a similar
approach to LSUV initialization [868], but unlike the LSUV initialization,
it provides an analytic solution for ELU and MPELU and therefore it has
lower computational costs [1070]. It was also shown that the MPELU works
better with batch normalization compared to the vanilla ELU [1070]. The
performance of the MPELU was empirically shown on the CIFAR-10 and
CIFAR-100 datasets [243] using multiple neural network architectures [1070],
e.g. nine-layer deep NIN [1072] or even a ResNet with 1001 layers [13].

59 The initialization method was unnamed in the original paper [871] but was later named
Microsoft Research Asia (MSRA) filler [1071].

4.3 adaptive activation functions 121

4.3.1.49 P-E2-ReLU

The AAF named P-E2-ReLU is combining two ELUs and a ReLU using two
adaptive parameters [1073]. It is defined as

f (zi) = ai ·ReLU (zi) + bi ·ELU (zi) + (1 − ai − bi) · (−ELU (−zi)) , (4.314)

where ai and bi are trainable parameters for each neuron i [1073]. The param-
eters were initialized to ai = 0.4 and bi = 0.3 in experiments in [1073]. Jie
et al. mentioned that other combinations could be considered and called this
family P-E2-XU. One such combination is denoted P-E2-Id and is defined as

f (zi) = aizi + (1 − ai) · (mathrmELU (zi)− ELU (−zi)) , (4.315)

and another is named P-E2-ReLU-1

f (zi) = ai ·ReLU (zi) + (1 − ai) · (mathrmELU (zi)− ELU (−zi)) , (4.316)

whera ai is a trainable parameter in both AAFs [1073]. The parameter was
initialized to ai = 0.5 in experiments in [1073].

4.3.1.50 Soft exponential

The soft exponential activation function is an adaptive activation function that
is able to interpolate between logarithmic, linear, and exponential functions
[1074]. It is defined as

f (zi) =

exp(zi)−1

ai
+ ai, ai > 0,

zi, ai = 0,

− ln(1−ai(zi+ai))
ai

, ai < 0,

(4.317)

where ai is a trainable parameter [1074]. The soft exponential activation
functions is continuously differentiable with respect to zi and also with
respect to ai [1074]; furthermore, for any constant ai, the function is monotonic
[1074]. When ai = −1, the function becomes f (zi) = ln(zi), while for ai = 0
it becomes linear function f (zi) = zi and for ai = 1, it is the exponential
function f (zi) = exp(zi) [1074].

4.3.1.51 Continuously differentiable ELU (CELU)

A CELU was proposed in [1075]; CELU is very similar to the original param-
eterization of ELU [11] but reformulated such that the derivative at zi = 0 is
1 for all values of ai [1075]. CELU is defined as

f (zi) =

zi, zi ≥ 0,

ai

(
exp

(
zi
ai

)
− 1
)

, zi < 0,
(4.318)

where ai is a learnable parameter for each neuron i. Its main advantages are
that its derivative with respect to zi is bounded and that it contains both the
linear transfer function and ReLU [1075].

122 literature review

4.3.1.52 Erf-based ReLU (ErfReLU)

The Erf-based ReLU (ErfReLU) [1076] is an AAF similar to the ELU. It is
defined as

f (zi) =

zi, zi ≥ 0,

aierf (zi) , zi < 0,
(4.319)

where ai is a learnable parameter for each neuron i and erf (zi) is the Gauss
error function [1076].

4.3.1.53 Parametric scaled exponential linear unit (PSELU)

A parametric scaled exponential linear unit (PSELU) [1077] is basically a
SELU (see Section 4.2.7.11) where the parameters a and b controlling the
behavior are trainable. It is defined as

f (zi) =

aizi, zi ≥ 0,

aibi (exp (zi)− 1) , zi < 0,
(4.320)

where ai and bi are trainable parameters for each neuron i.

4.3.1.54 Leaky parametric scaled exponential linear unit (LPSELU)

A leaky parametric scaled exponential linear unit (LPSELU) [1077] is a leaky
extension of the PSELU (see Section 4.3.1.53) to avoid small gradients hinder-
ing the learning process [1077]:

f (zi) =

aizi, zi ≥ 0,

aibi (exp (zi)− 1) + cizi, zi < 0,
(4.321)

where ai and bi are trainable parameters for each neuron i and ci is either a
predefined constant or a trainable parameter [1077].

4.3.1.55 Leaky parametric scaled exponential linear unit with reposition parameter
(LPSELU_RP)

The LPSELU can be extended by a reposition parameter similarly as FReLU
extends ReLU (see Section 4.3.1.15) [1077]; such function is called LPSELU_RP
and is defined as

f (zi) =

aizi + mi, zi ≥ 0,

aibi (exp (zi)− 1) + cizi + mi, zi < 0,
(4.322)

where ai and bi are trainable parameters for each neuron i, and ci is either
a predefined constant or a trainable parameter the same as for LPSELU
(see Section 4.3.1.54) and mi is a trainable reposition parameter [1077]. It
was empirically observed that the shift parameter mi converges to a small
negative value, which supports the hypothesis that the negative output of
activation functions is important [1077].

4.3 adaptive activation functions 123

4.3.1.56 Shifted ELU family

A family of several activation functions, shifted exponential linear unit, was
proposed in [1078]; functions in this family have either vertical or horizontal
shift of an ELU activation function that can be either constant or trainable.
An ELU with fixed horizontal shift is ShELU, with fixed vertical SvELU and
PELU (see Section 4.3.1.43) with trainable horizontal shift is PShELU [1078].
The ShELU is defined as

f (z) =

z + b, z + b ≥ 0,

a (exp (z + b)− 1) , z + b < 0,
(4.323)

where a is a fixed parameter similarly as in the vanilla ELU and b is novel,
preset parameter controlling the horizontal shift [1078]. The SvELU is defined
similarly:

f (z) =

z + b, z ≥ 0,

a (exp (z)− 1) + b, z < 0,
(4.324)

where a is a fixed parameter similarly as in the vanilla ELU and b is novel,
preset parameter controlling the vertical shift [1078]. Grelsson and Felsberg
define also a variant of PELU with horizontal shift called PSheLU:

f (zi) =

ai
bi
(zi + ci) , zi + ci ≥ 0,

ai

(
exp

(
zi+ci

bi

)
− 1
)

, zi + ci < 0,
(4.325)

where ai and bi are trainable parameters of the original PELU, and ci is a
novel trainable parameter controlling the horizontal shift for each neuron i
[1078]. For some reason, Grelsson and Felsberg did not propose a PELU with
vertical shift (PSvELU), but it could be defined in a similar manner

f (zi) =

ai
bi

zi + ci, zi ≥ 0,

ai

(
exp

(
zi
bi

)
− 1
)
+ ci, zi < 0,

(4.326)

where ai, bi are trainable parameters of the original PELU and ci is a novel
trainable parameter controlling the vertical shift. Note that the shifted activa-
tion functions with horizontal shifts are equivalent to non-shifted variants
with biases that are individual for each neuron and not shared in the same
tiling pattern as the convolutional kernel [1078].

4.3.1.57 Tunable swish (T-swish)

The tunable swish (T-swish) proposed in [1079] is an AAF combining the
ELU, E-swish (see Section 4.3.3.4) and swish (see Section 4.3.3.1) as it has
trainable parameters for both horizontal and vertical scaling for negative
inputs. It is defined as

f (zi) =

zi, zi ≥ ci,

aizi · σ(bizi), zi < ci,
(4.327)

124 literature review

where ai, bi, and ci are either fixed or trainable parameters for each neuron i
[1079].

4.3.1.58 Rectified parametric sigmoid unit (RePSU)

The rectified parametric sigmoid unit (RePSU) is an AAF proposed in [1080];
it consists of a linear combination of two components — rectified parametric
sigmoid shrinkage unit (RePSKU) and rectified parametric sigmoid stretchage
unit (RePSHU). It is defined as

f (zi) = aiRePSKUbi ,ci ,di ,ei (zi) + (1 − ai)RePSHUbi, ci, di, ei (zi) , (4.328)

where

RePSKUbi ,ci ,di ,ei (zi) =

zi−bi

1+exp
(
−sgn(zi−ci)

(
|zi−ci |

di

)ei
) , zi ≥ bi,

0, zi < bi,

(4.329)

RePSHUbi ,ci ,di ,ei (zi) =

2zi − RePSKUbi ,ci ,di ,ei (zi) zi ≥ bi,

0, zi < bi,
(4.330)

and ai, bi, ci, di, and ei are parameters (common for both RePSKUbi ,ci ,di ,ei (zi)
and RePSHUbi, ci, di, ei (zi)) [1080]. The RePSU is a generalization of the
smooth sigmoid-based shrinkage (SSBS) function [1081] used for image
denoising [1080].

4.3.1.59 Parametric deformable exponential linear unit (PDELU)

An adaptive activation function parametric deformable exponential linear
unit (PDELU) [1082] is based on the premise that shifting the mean value
of the output closer to zero speeds up the learning [1082]. The PDELU is
defined as

f (zi) =

zi, zi ≥ 0,

ai

(
[1 + (1 − b) zi]

1
1−b − 1

)
, zi < 0,

(4.331)

where ai is a trainable parameter for each neuron i and b is a fixed hyper-
parameter controlling the degree of deformation [1082]. The Cheng et al.
recommend setting b = 0.9 [1082]. The authors found that the MSRA initial-
ization method [871] is consistent with PDELU [1082]. The performance of
PDELU was empirically shown on the CIFAR-10 and CIFAR-100 datasets
[243] and on the ImageNet dataset [48] where it outperformed ReLU, APLU,
LReLU, PReLU, SReLU, ELU, MPELU (and other) activation functions [1082].

4.3 adaptive activation functions 125

4.3.1.60 Elastic exponential linear unit (EELU)

An adaptive variant of the ELU function that has a stochastic component was
proposed in [1027] — the elastic exponential linear unit (EELU). The EELU
combines EReLU (see Section 4.2.6.38) and MPELU (see Section 4.3.1.48) and
is defined as

f (zc
i) =

kc
i zc

i , zc
i ≥ 0,

ac (exp
(
bczc

i
)
− 1
)

, zc
i < 0,

(4.332)

where ac and bc are trainable parameters shared among all neurons of a
channel c and kc

i is a randomly sampled noise parameter for each neuron i
in channel c during the training stage [1027] and set to 1 during the testing
stage. The kc

i is sampled coefficient from Gaussian distribution with a random
standard deviation that is truncated from 0 to 2; kc

i is therefore sampled as

kc
i = max (0, min (sc

i , 2)) (4.333)

where

sc
i ∼ N

(
1, σ2) , (4.334)

σ ∼ U(0, ϵ), ϵ ∈ (0, 1], (4.335)

where N
(
1, σ2) is Gaussian distribution with mean 1 and variance σ2, U

denotes the uniform distribution [1027]. The ϵ is a hyperparameter; the
authors recommend smaller values, e.g., 0.1 or 0.2 [1027].

The training algorithm is also modified and works in two steps — first,
the EELU parameter and the weights are updated with fixed kc

i = 1, and
then weights are updated with random kc

i and fixed EELU parameters [1027].
The authors also recommend using the MPELU initialization [1070] method
[1027].

4.3.1.61 Parametric first power linear unit with sign (PFPLUS)

The parametric first power linear unit with sign (PFPLUS) is an AAF proposed
in [940, 1083]. It is defined as

f (zi) = aizi · (1 − bizi)
H(zi)−1 , (4.336)

where H(zi) is Heaviside step function (see Section 4.2.1)

H(zi) =

1, zi ≥ 0,

0, zi < 0.
(4.337)

and ai > 0 and bi > 0 are trainable parameters for each neuron i [940]. For
example, the PFPLUS is similar to the ReLU when ai = 0.2 and bi = 10 and
similar to a linear mapping when ai = 5 and bi = 0.1 [940].

126 literature review

4.3.1.62 Parametric variational linear unit (PVLU)

The parametric variational linear unit (PVLU) is an adaptive variant of the
VLU proposed [880]. It is defined as

f (zi) = ReLU (zi) + ai sin (bizi) = max (0, zi) + ai sin (bizi) , (4.338)

where ai and bi are trainable parameters [880].

4.3.2 Sigmoid-based adaptive functions

Many different adaptive activation functions based on the sigmoid family
were proposed in the literature [11], one of the earliest examples is a logistic
sigmoid activation function with shape autotuning [1084]. The function
proposed by Yamada and Yabuta uses a single parameter controlling both the
amplitude and the slope of the activation function [691, 1084]. The proposed
adaptive function is defined as

f (z) = 2
1 − exp (−az)

a (1 + exp (−az))
, (4.339)

where a ∈ (0, ∞) is a learnable parameter [691].

4.3.2.1 Generalized hyperbolic tangent

The generalized hyperbolic tangent [1085] introduces two trainable parame-
ters that control the scale of the activation function:

f (zi) =
ai (1 − exp(−bizi))

1 + exp(−bizi)
, (4.340)

where ai and bi are trainable parameters for each neuron i [1084]. A non-
adaptive version with fixed parameters was used for document recognition in
[795] in order to improve convergence toward the end of the learning session
[795] (see Section 4.2.2.3).

4.3.2.2 Trainable amplitude

A more general approach was introduced in [1086], which used networks with
a trainable amplitude of activation functions; the same approach was later
used for recurrent neural networks [1087]. The class of adaptive functions
with a trainable amplitude is defined as

f (zi) = aig(zi) + bi, (4.341)

where ai and bi are trainable parameters for each neuron i. The ai determines
the trainable amplitude and the bi trainable offset. These parameters can be
either different for each neuron or may be shared by a whole layer or even a
whole network [1086].

4.3 adaptive activation functions 127

4.3.2.3 Adaptive slope sigmoidal function (ASSF)

A adaptive slope sigmoidal function (ASSF) based on the work of Yamada
and Yabuta, Yamada and Yabuta was used in [1089, 1090]. It is defined as

f (z) = σ (a · z) , (4.342)

where σ is the logistic sigmoid and a is a global trainable parameter [1090].
The ASSF was also rediscovered by Mercioni, Tiron, and Holban in [1091].

4.3.2.4 Slope varying activation function (SVAF)

A slope varying activation function (SVAF) was proposed in [1092]

f (z) = tanh (a · z) , (4.343)

where a is a global trainable parameter. The slope varying activation function
was proposed together with a BP modification that has two different learning
rates [1092]. The slope varying activation function was implemented as a
modification of the BP algorithm rather; a different example of modification
of the BP algorithm resulting in an adaptive activation function is presented
in [1093].

4.3.2.5 TanhSoft

The TanhSoft is a family of AAFs proposed in [1094] that combine the softplus
and tanh that contains three notable cases — TanhSoft-1, TanhSoft-2, and
TanhSoft-3 [1094, 1095].

The general TanhSoft is defined as

f (zi) = tanh (aizi + bi exp (cizi)) ln (di + exp (zi)) , (4.344)

where ai, bi, ci, and di are either trainable or fixed parameters [1094]; ai ∈
(−∞, 1], bi ∈ [0, ∞), ci ∈ (0, ∞), and di ∈ [0, 1] [1094].

The first AF, named TanhSoft-1, is defined as

f (zi) = tanh (aizi) ln (1 + exp (zi)) , (4.345)

where ai is a trainable parameter [1094, 1095]; it can be obtained from the
general TanhSoft by setting bi = 0 and di = 1 [1094]. The second AF from
[1095], TanhSoft-2, is defined as

f (zi) = zi tanh (bi exp (cizi)) , (4.346)

where bi and ci are trainable parameters [1094, 1095]. The TanhSoft-2 can be
obtained from the general TanhSoft by setting ai = 0 and di = 0 [1094]. The
last AF from [1095], TanhSoft-3, is defined as

f (zi) = ln (1 + exp (zi) tanh (aizi)) , (4.347)

where ai is a trainable parameter [1095]. It can be obtained from the general
TanhSoft by setting bi = 0 and di = 1.

128 literature review

4.3.2.6 Parametric sigmoid (psigmoid)

An adaptive variant of logistic sigmoid named parametric sigmoid (psig-
moid)60 was proposed in [1096, 1097].61 Similarly as in generalized hyperbolic
tangent, it introduces two scaling parameters to a logistic sigmoid:

f (zi) = aiσ (b · zi) , (4.348)

where ai is a trainable parameter for each neuron or channel i and b is a
global trainable parameter [1096].

4.3.2.7 Parametric sigmoid function (PSF)

A parametric sigmoid function (PSF) is a continuous, differentiable, and
bounded function proposed in [1098, 1099]62 and is defined as

PSF(z) =
1

(1 + exp(−z))m , (4.349)

where m is a global trainable parameter [11, 1100]. The parameter m controls
the slope of the sigmoid and the position of the maximum derivative; the
envelope of the relevant derivatives for different values of m is also a sigmoid
function [1098]. The larger values of m improve the gradient flow [11]. The
PSF is only one instance of a larger class of activation functions proposed in
[1101].

4.3.2.8 Slope and threshold adaptive activation function with tanh function (STAC-
tanh)

The slope and threshold adaptive activation function function with tanh
function (STAC-tanh) was proposed in [1102]. It is basically a tanh based
equivalent of the improved logistic sigmoid with adaptive parameters. It is
defined as

f (zi) =

tanh−ai + bi (zi + ai) , zi < −ai,

tanh zi, −ai ≤ zi ≤ ai,

tanh ai + bi (zi − ai) , zi > ai,

(4.350)

where ai and bi are trainable parameters [1102].

4.3.2.9 Generalized Riccati activation (GRA)

The generalized Riccati activation (GRA) is an adaptive variant of a sigmoid
AF proposed in [1103]. It is defined as

f (zi) = 1 − ai

ai + (1 + bizi)
ci

, (4.351)

where ai, bi, and ci are adaptive parameters — bi > 0 and ci > 0 [1103].

60 Not to be confused with parametric sigmoid function (PSF) from Section 4.3.2.7.
61 It seems that this AAF was first proposed in 2010 in [1097] and then independently in 2021 in

[1096].
62 [1099] contains the definition equivalent to f (z) = PSF

(z
2
)
.

4.3 adaptive activation functions 129

4.3.3 Adaptive sigmoid-weighted linear units

There are several AFs that are based on the SiLU but have an adaptive
parameter; the most common example is the swish AF, but there are also
other popular functions based on the same principle.

4.3.3.1 Swish

A swish activation function [668] is an adaptive variant of the SiLU [816] (see
Section 4.2.3); it is also the member of the LAAF class (see Section 4.3.15):

f (zi) = zi · σ(aizi), (4.352)

where σ(z) is the logistic sigmoid, ai is either a fixed hyperparameter or a
trainable parameter [668]. The swish has an output range of (−∞, ∞) [11].
The parameter ai controls the amount of non-linearity the swish activation has
[11]. The swish might also be considered a member of the family of activate
or not activation functions (ACONs) [1104]; it is then named ACON-A. The
parametric SiLU (PSiLU) is another name for the swish activation used in
[1018].

4.3.3.2 Adaptive hybrid activation function (AHAF)

A swish variant with vertical scaling was proposed in [1105] under the name
adaptive hybrid activation function (AHAF). It is defined as

f (zi) = aizi · σ(bizi), (4.353)

where ai and bi are trainable parameters [1105].

4.3.3.3 Parametric shifted SiLU (PSSiLU)

The parametric shifted SiLU (PSSiLU) is a swish based AAF proposed in
[1018]. It is defined as

f (zi) =
zi · (σ(aizi)− bi)

1 − bi
, (4.354)

where ai and bi are trainable parameters [1018].

4.3.3.4 E-swish

E-swish [1106] is an AAF inspired by the swish [668] activation function (see
Section 4.3.3.1); the E-swish has a scaling parameter that allows for vertical
scaling of the activation function [1106]. The name of the activation function is
not chosen well as the E-swish is rather extending the SiLU (see Section 4.2.3)
and not swish which is its adaptive variant.63 The function is defined as

f (z) = az · σ(z), (4.355)

63 Calling the SiLU as swish is quite common in the literature, e.g., exponential swish, generalized
swish, and TS-swish.

130 literature review

where σ(z) is the logistic sigmoid and a is a preset parameter [1106] — how-
ever, the parameter a is considered to be trainable in review [11]. Alcaide
recommends setting a ∈ [1, 2] to avoid exploding gradients that are hypoth-
esized to more likely occur for higher values of a [1106]. The E-swish was
found to outperform the SiLU (called swish in the paper) on the the MNIST
[45], CIFAR-10 and CIFAR-100 [243] datasets using the Wide ResNet (WRN)
[55] architecture [1106].

4.3.3.5 ACON-B

The ACON family conists of swish AF and several extensions; one is named
ACON-B and is defined as

f (zi) = (1 − bi) zi · σ (ai (1 − bi) zi) + bizi, (4.356)

where ai and bi are trainable parameters [1104]. The bi is initalized to 0.25

and ai to 1.64

4.3.3.6 ACON-C

The ACON-C is another member of the ACON family from [1104]. It is
defined as

f (zi) = (ci − bi) zi · σ (ai (ci − bi) zi) + bizi, (4.357)

where ai, bi, and ci are trainable parameters [1104, 1107]. Ma et al. used initial
values ai = 1, bi = 0, and ci = 1 in [1104].

Ma et al. also proposed a general extension to the ACON family named
MetaACON which uses a small NN to determine the value of the parameter
ai; they used the variant ACON-C for the experiments with MetaACON
resulting in MetaACON-C65 [1104]. The MetaACON was used to improve
YOLOv7 [1108] in [1109]. Kan et al. extented the ACON AFs into an AF they
named CBAC66 [1110]. The ACONs were used, for example, in [1104, 1107,
1109, 1111–1123]. The 1Dmeta-ACON is a MetaACON extension proposed in
[1124].

4.3.3.7 Parameterized self-circulating gating unit (PSGU)

The Parameterized self-circulating gating unit (PSGU) [1125] is related to the
LiSHT and GTU activation functions as it is basically a LiSHT with gated
input with learnable scaling parameter. It is defined as

f (zi) = zi · tanh (aiσ (zi)) , (4.358)

where ai is a learnable parameter and σ(z) is the logistic sigmoid function
[1125]. Li et al. also propose a novel initialization method for NNs with the

64 There is no initial value for ai in ACON-B mentioned explicitly in [1104]; however, there is
one for its extension ACON-C.

65 The implementation of MetaACON-C and other AFs from the ACON family is available at
https://github.com/nmaac/acon.

66 No further description is provided in [1110].

https://github.com/nmaac/acon

4.3 adaptive activation functions 131

PSGU AF and show that it is more suitable for the use with PSGU than other
common methods [1125]. The PSGU is shown to outperform ReLU, mish,
swish, PATS and GELU using various NIN and ResNet architectures [1125].
The PSGU was also proposed in [829] under the name TSReLU learnable
(TSReLUl) as the adaptive variant of TSReLU. Mercioni, Tat, and Holban
used ai = 0.5 as the initial value [829].

4.3.3.8 Tangent-bipolar-sigmoid ReLU learnable (TBSReLUl)

Similarly as TSReLUl is an adaptive variant of TSReLU, the TBSReLU learn-
able (TBSReLUl) [829] is an adaptive variant of TBSReLU. This variant is
defined as

f (z) = zi · tanh
(

ai
1 − exp (−zi)

1 + exp (−zi)

)
. (4.359)

where ai is a trainable parameter [829]. Mercioni, Tat, and Holban used
ai = 0.5 as the initial value [829].

4.3.3.9 PATS

The AF named PATS67 [1126] is very similar to PSGU, but it uses arctan and
a random scaling parameter instead of the tanh and the adaptive parameter
in PSGU. It is defined as

f (zi) = zi tan−1 (aiπσ (zi)) , (4.360)

where σ(z) is the logistic sigmoid function and

ai ∼ U (l, u) , (4.361)

is sampled during training68 from the uniform distribution with bounds l
and u such that 0 < l < u < 1 [1126]. The authors experimented with fixed,
deterministic values of ai ∈ { 1

4 , 1
2 , 5

8 , 3
4} — the value 5

8 led to lowest test error
on the CIFAR-10 [243]; they also deemed that suitable values for l and u are
1
2 and 34 respectively [1126]. However, only fixed variant with ai =

5
8 was

used in the follow-up works such as [679].

4.3.3.10 Adaptive quadratic linear unit (AQuLU)

The adaptive quadratic linear unit (AQuLU) is an adaptive SiLU variant
proposed in [823]; it is defined as

f (zi) =

zi, zi ≥ 1−bi

ai
,

aiz2
i + bizi, − bi

ai
≥ zi <

1−bi
ai

,

0, zi < − bi
ai

,

(4.362)

where ai and bi are trainable parameters for each neuron i [823].

67 Not an abbreviation.
68 Unfortunately, the author did not specify what happens during the test phase in [1126], one

can only assume that the expected value is used.

132 literature review

4.3.3.11 Sinu-sigmoidal linear unit (SinLU)

Another adaptive SiLU variant is the sinu-sigmoidal linear unit (SinLU),
which adds an adaptive term using the sine function to the linear part of the
SiLU [1127]. The SinLU is defined as

f (zi) = (zi + ai sin (bizi)) · σ(zi), (4.363)

where σ(zi) is the logistic sigmoid function and ai and bi are trainable param-
eters for each neuron i [1127].

4.3.3.12 ErfAct

An AAF based on the Gauss error function was proposed in [1128]. The AAF
is named ErfAct and is defined as

f (zi) = zi · erf (ai exp (bizi)) , (4.364)

where ai and bi are trainable parameters for each neuron i and erf(x) is the
Gauss error function [1128].

4.3.3.13 Parametric serf (pserf)

An adaptive version of the serf AF named parametric serf (pserf) was pro-
posed in [1128]. It is defined as

f (zi) = zi · erf (ai ln (1 + exp (bizi))) , (4.365)

where ai and bi are trainable parameters for each neuron i and erf(x) is the
Gauss error function [1128].

4.3.3.14 Swim

The swim is an adaptive variant of the PFLU (see Section 4.2.7.7) indepen-
dently proposed in [1129]. It is defined as

f (zi) = zi ·
1
2

(
1 +

aizi√
1 + zi

2

)
, (4.366)

where ai is either fixed or trainable parameter for each neuron i [1129]. Abdool
and Dear used fixed ai = 0.5 in their experiments in [1129].

4.3.4 Tuned softmax (tsoftmax)

A softmax (see Section 4.2.5) variant named tuned softmax (tsoftmax) was
proposed in [860]; it is defined as

f (zj) =

∫
exp

(
zj
)

∑N
k=1
∫

exp (zk)
+ c, (4.367)

where f (zj) is the output of a neuron j in a softmax layer consisting of N
neurons and c is an adaptive parameter [860].

4.3 adaptive activation functions 133

4.3.5 Generalized Lehmer softmax (glsoftmax)

The generalized Lehmer softmax (glsoftmax) is a softmax variant proposed
in [1130]. It is defined as

f (zj) =
exp

(
LNORM

(
zj
))

∑N
k=1 exp (LNORM (zk))

, (4.368)

where LNORM
(
zj
)

is a generalized Lehmer-based Z-score-like normalization
with four trainable parameters ai, bi, ci, and di defined in [1130]:

LNORM (zi) =
zi − Mai ,bi

GLMci ,di

(
z − Mai ,bi

) , (4.369)

Mai ,bi = GLMai ,bi (z) , (4.370)

GLMα,β (x) =
ln
(

∑N
k=1 α(β+1)xk

∑N
k=1 αβxk

)
ln (α)

, (4.371)

x is a vector of elements xk, k = 1, . . . , N and z − Mai ,bi represents a vector
with elements zk − Mai ,bi , k = 1, . . . , N [1130].

4.3.6 Generalized power softmax (gpsoftmax)

The generalized power softmax (gpsoftmax) is another softmax variant pro-
posed in [1130]. It is defined as

f (zj) =
exp

(
PNORM

(
zj
))

∑N
k=1 exp (PNORM (zk))

, (4.372)

where PNORM
(
zj
)

is a generalized power-based Z-score-like normalization
with four trainable parameters ai, bi, ci, and di defined in [1130]:

PNORM (zi) =
zi − Mai ,bi

GPMci ,di

(
z − Mai ,bi

) , (4.373)

Mai ,bi = GPMai ,bi (z) , (4.374)

GPMα,β (x) =
ln
(

∑N
k=1 αβxk

)
− ln (N)

β ln (α)
, (4.375)

x is a vector of elements xk, k = 1, . . . , N and z − Mai ,bi represents a vector
with elements zk − Mai ,bi , k = 1, . . . , N [1130].

134 literature review

4.3.7 Adaptive radial basis function (ARBF)

The adaptive (ARBF) was used in [1131]. It is defined as

f (zi) exp

(
− (zi − ai)

2

2b2
i

)
, (4.376)

where ai and bi are adaptive parameters for each neuron i [1131]. The pa-
rameter ai controls the center while the parameter bi controls the width
[1131].

4.3.8 Parametric Gaussian error linear unit (PGELU)

The AAF named parametric Gaussian error linear unit (PGELU) was proposed
in [1132] as the result of noise injection. It is an GELU (see Section 4.2.3.1)
adaptive variant defined as

f (zi) = z · Φ
(z

a

)
, (4.377)

where Φ (z) is the standard Gaussian CDF and a is a global learnable param-
eter representing the root mean square (RMS) noise [1132].

4.3.9 Parametric flatted-T swish (PFTS)

A parametric flatted-T swish (PFTS) [1133] is an adaptive extension of the FTS
(see Section 4.2.6.46); PFTS is identical to FTS except for that the parameter T
is adaptive — i.e.:

f (zi) = ReLU(zi) · σ(zi) + Ti =

zi

1+exp(−zi)
+ Ti, zi ≥ 0,

Ti, zi < 0,
(4.378)

where Ti is a trainable parameter for each neuron i [1133]; the parameter Ti is
initialized to the value -0.20 [1133].

4.3.10 Parametric flatten-p mish (PFPM)

The parametric flatten-p mish (PFPM) is an AAF proposed in [1134]; it is
defined as

f (zi) =

zi tanh (ln (1 + exp (zi))) + pi, zi ≥ 0,

pi, zi < 0,
(4.379)

where pi is a trainable parameter [1134].

4.3.11 Gaussian error unit (GEU)

The AAF named Gaussian error unit (GEU) was proposed in [1132] as the
result of noise injection. It is defined as

f (zi) = Φ
(z

a

)
, (4.380)

4.3 adaptive activation functions 135

where Φ (z) is the standard Gaussian CDF and a is a global learnable param-
eter representing the RMS noise [1132]. The GEU multiplied by z becomes
the PGELU (see Section 4.3.8).

4.3.12 Scaled-gamma-tanh activation function (SGT)

The scaled-gamma-tanh (SGT) AF is a piecewise polynomial function pro-
posed in [1135]. It is defined as

f (zi) =

azbi
i , zi ≥ 0,

czdi
i , zi < 0,

(4.381)

where a and c are fixed, predefined parameters and bi and ci are trainable
parameters for each neuron or filter i [1135].

4.3.13 RSign

An adaptive variant of the sign function was used in [1023]. It is called
react-sign (RSign) and is defined as

f (zi) =

1, zi ≥ ac,

−1, zi < ac,
(4.382)

where ac is an adaptive threshold for each channel [1023]. An extension was
used in [1136], where Ding, Liu, and Zhou used multiple RSign functions for
each channel.

4.3.14 P-SIG-RAMP

An AAF combining the logistic sigmoid and ReLU was proposed in [1073]
under the name P-SIG-RAMP. The P-SIG-RAMP is defined as

f (zi) = aiσ (zi) + (1 − ai) ·

1, zi ≥ 1

2bi
,

bizi +
1
2 , − 1

2bi
< zi <

1
2bi

,

0, zi ≤ − 1
2bi

,

(4.383)

where ai ∈ [0, 1] and bi are trainable parameters [1073].

4.3.15 Locally adaptive activation function (LAAF)

A general class of slope varying functions called locally adaptive activation
function (LAAF) was proposed in [1137, 1138]:

f (zi) = g(ai · zi), (4.384)

where ai is a trainable parameter for each neuron i and g is any activa-
tion function; Jagtap, Kawaguchi, and Karniadakis used logistic sigmoid,

136 literature review

tanh, ReLU, and LReLU as g in their LAAFs in [1137]. The corresponding
activations are thus given by

f (zi) = σ(aizi) =
1

1 + exp (−aizi)
, (4.385)

f (zi) = tanh(aizi) =
exp (aizi)− exp (−aizi)

exp (aizi) + exp (−aizi)
, (4.386)

f (zi) = ReLU(aizi) = max (0, aizi) , (4.387)

and

f (zi) = LReLU(aizi) = max (0, aizi)− b max (0,−aizi) , (4.388)

where b is the LReLU leakiness parameter [1137]. To accelerate the conver-
gence, Jagtap, Kawaguchi, and Karniadakis add additional fixed parameter
to the expression:

f (zi) = g(naizi), (4.389)

where n > 1 is a fixed parameter [1137]. It was found that this additional
parameter improves both the convergence rate and the solution accuracy
[1137].

4.3.15.1 Adaptive slope hyperbolic tangent

A tanh activation function with adaptive slope was used in an MLP architec-
ture in [1139]. The used activation function is defined as

f (zi) = tanh (aizi) , (4.390)

where ai is a trainable parameter for each neuron i.

4.3.15.2 Parametric scaled hyperbolic tangent (PSTanh)

A parametric activation function similar to the swish but based on the tanh
function instead of the logistic sigmoid called parametric scaled hyperbolic
tangent (PSTanh) was proposed in [688]. It is defined as

f (zi) = zi · ai (1 + tanh (bizi)) , (4.391)

where ai and bi are trainable parameters for each neuron i [688]. The function
is also very similar to the PTELU (see Section 4.3.1.30) as for zi > 0 and ai ≈ 1,
the output is close to zi [688] (the exact distance depends on the parameters
ai and bi).

4.3.15.3 Scaled sine-hyperbolic function (SSinH)

An AF similar to PSTanh is the scaled sine-hyperbolic function (SSinH) [1140];
it is defined as

f (zi) = ai sinh (bizi) , (4.392)

where ai and bi are trainable scaling parameters and sinh is the hyperbolic
sine [1140].

4.3 adaptive activation functions 137

4.3.15.4 Scaled exponential function (SExp)

Husain, Ong, and Bober also proposed scaled exponential function (SExp)
along with the SSinH in [1140]. It is defined as

f (zi) = ai (exp (bizi)− 1) , (4.393)

where ai and bi are trainable scaling parameters and sinh is the hyperbolic
sine [1140].

4.3.15.5 Logmoid activation unit (LAU)

A learnable LAU was proposed in [1141, 1142]; which utilise two learnable
parameters al and bl for each network layer l

f (zi,l) = z ln (1 + alσ (bl · zi,l)) , (4.394)

where zi,l is the output of the neuron i in layer l without the activation
function and σ is the logistic sigmoid [1142]. The author used initial values
of the parameters al = bl = 1 for each network’s layer l and trained these
parameters together with the rest of the network’s weights [1142].

4.3.15.6 Cosinu-sigmoidal linear unit (CosLU)

The cosinu-sigmoidal linear unit (CosLU) is an adaptive activation function
proposed in [889] that is based on the logistic sigmoid. It is defined as

f (zi) = (z + ai cos (bizi)) σ (zi) , (4.395)

where ai and bi are trainable parameters for neuron i and σ(zi) is the logistic
sigmoid function [889]. The cosine amplitude is controlled by the parameter
ai, whereas its frequency is controlled by the parameter bi.

4.3.15.7 Adaptive Gumbel (AGumb)

An activation function adaptive Gumbel (AGumb) is based approach of
viewing activation functions as a combination of unbounded and bounded
components where the bounded component is based upon a cumulative
distribution function of a continuous distribution [1143]. While the logistic
sigmoid activation is a CDF of the symmetric logistic distribution, the AGumb
is based on the Gumbel distribution [1143]. It is defined as

f (zi) = 1 − (1 + ai · exp (zi))
− 1

ai , (4.396)

where ai ∈ R+ is trainable parameter for each neuron i [1143].

138 literature review

4.3.16 Shape autotuning adaptive activation function (SAAAF)

The shape autotuning adaptive activation function (SAAAF)69 is an AAF
proposed in [1144]. It is defined as

f (zi) =
zi

zi
ai
+ exp (− f raczibi)

, (4.397)

where ai ≥ 0 and bi ≥ 0 are trainable parameters for neuron i and 0 < bi
ai
< e

[1144].

4.3.17 Noisy activation functions

Stochastic variants of saturing activation functions such as the logistic sigmoid
or hyperbolic tangent were proposed in [1029] where an additional noise is
injected to the activation function when it operates in the saturation regimes
[1029]. The noisy activation function is defined as

f (zi) = ah(zi)+ (1 − a)u(zi)− sgn(zi)sgn(1− a)c
(

σ
(

pi (h(zi)− u(zi))
))2

ϵ,

(4.398)

where h(zi) is any saturating activation function such as hard-tanh or hard-
sigmoid, u(zi) is its linearization using first-order Taylor expansion around
zero, c is a hyperparameter changing the scale of the standard deviation of
the noise, pi is a trainable parameter adjusting the magnitude of the noise for
each neuron i, a is a hyperparameter influencing the mean of the added term,
and σ(x) is the logistic sigmoid function [1029]. ϵ is the added noise; it is
defined as ϵ = |ξ| if the noise term ξ is sampled from half-normal distribution
and as ϵ = ξ if the noise term ξ is sampled from normal distribution with
mean 0 and variance 1 [1029].

Gulcehre et al. also experimented with adding noise to the input of the
activation function, resulting in an activation function defined as

f (zi) = h (zi + s(zi)ϵ) , (4.399)

where s(zi) is either fixed parameter s(zi) = b or it is a trainable term

s(zi) = c (σ (pi (h(zi)− u(zi))))
2 , (4.400)

where the meaning of c, σ, pi, h(zi), and u(zi) is same as in Eq. (4.398) [1029].
A similar concept in ReLU settings is the ProbAct activation function (see

Section 4.3.1.11).

69 Zhou et al. named the function as shape autotuning activation function but the resulting abbrevi-
ation SAAF is already taken by smooth adaptive activation function (see Section 4.3.28). Since
the proposed function is an AAF, we term it as such to avoid the abbreviation collision.

4.3 adaptive activation functions 139

4.3.18 Fractional adaptive activation functions

Fractional adaptive activation functions (FAAFs) were proposed in [1145–
1149] as a generalization of several activation functions using the fractional
calculus (see [1150] for a general introduction to the fractional calculus).
Generally, for any activation function f (z), its generalization g(z) using
fractional derivatives is defined as the a − th fractional derivative of f :

g(z) = Da f (z), (4.401)

where a can be a learnable70 parameter [1145]. The FAAFs proposed in [1147]
were further evaluated in [1148].

4.3.18.1 Fractional ReLU

The fractional ReLU (FracReLU) is defined as

f (zi) =
z1−ai

i
Γ (2 − ai)

, (4.402)

where Γ (x) is the Gamma function and ai is a trainable parameter [1145].
The FracReLU was later independently proposed in [1147] under the name
FReLU (but this abbreviation is already taken by flexible ReLU).

4.3.18.2 Fractional softplus

The fractional softplus (FracSoftplus) is using the softplus function to general-
ize sigmoid-like functions through fractional derivatives [1145]. It is defined
as

f (zi) = Dai ln (1 + exp(zi)) , (4.403)

which is then computed as

f (zi) = lim
h→0

1
hai

∞

∑
n=0

(−1)n Γ(ai + 1) ln (1 + exp(zi − nh))
Γ(n + 1)Γ(1 − n + ai)

, (4.404)

where ai is a trainable parameter [1145]. Particularly interesting cases are
when ai = 0 as it is the softplus function, ai = 1 logistic sigmoid, and ai = 2
which leads to a bell-like shape [1145].

4.3.18.3 Fractional hyperbolic tangent

The fractional tanh (FracTanh) is another fractional generalization proposed
in [1145]; it is defined as

f (zi) = Dai tanh (zi) , (4.405)

which is then computed as

f (zi) = lim
h→0

1
hai

∞

∑
n=0

(−1)n Γ(ai + 1) tanh (zi − n · h)
Γ(n + 1)Γ(1 − n + ai)

, (4.406)

where ai is a trainable parameter [1145]. The function becomes the tanh for
ai = 0 and the quadratic hyperbolic secant function for ai = 1.

70 [1147] did not specified whether the parameter is trainable but [1145] explicitly uses a trainable
a.

140 literature review

4.3.18.4 Fractional adaptive linear unit

The fractional adaptive linear unit (FALU) [1146] is yet another AAF based
on fractional calculus71 It can be seen as the fractional generalization using
the ai − th fractional derivative of the swish function:

f (zi) = Dai ziσ (bizi) , (4.407)

where ai and bi are trainable parameters and σ is the logistic sigmoid function
[1146]. The fractional derivative is then calculated as

f (zi) = lim
h→0

1
hai

∞

∑
n=0

(−1)n Γ(ai + 1)ziσ (bizi)

Γ(n + 1)Γ(1 − n + ai)
. (4.408)

However, as this calculation is not practical, Zamora-Esquivel, Rhodes, and
Nachman use following approximation for ai ∈ [0, 2] and bi ∈ [1, 10]:

f (zi) ≈

g(zi, bi) + aiσ(bizi) (1 − g(zi, bi)) , ai ∈ [0, 1],

g(zi, bi) + aiσ(bizi) (1 − 2h(zi, bi)) , ai ∈ (1, 2],
(4.409)

where

g(zi, bi) = ziσ (bizi) , (4.410)

h(zi, bi) = g(zi, bi) + σ(zi) (1 − g(zi, bi)) , (4.411)

and ai and bi are the two previously mentioned trainable parameters [1146].
The FALU was shown to outperform ReLU, GELU, ELU, SELU, and kernel
activation function (KAF) on the MNIST [45], CIFAR-10 [243], ImageNet [48,
817], and Fashion MNIST [950] datasets for several tested architectures [1146].

4.3.18.5 Fractional leaky ReLU (FracLReLU)

The fractional LReLU (FracLReLU) is the fractional variant of the LReLU (see
Section 4.2.6.2) proposed in [1147]. It is defined using fractional calculus as

f (zi) =

Dai zi, zi ≥ 0,

Dai 0.1zi, zi < 0,
(4.412)

where ai ∈ (0, 1) is a fixed parameter [1147]. The fractional derivative is then
calculated as

f (zi) =

1

Γ(2−ai)
z1−ai

i , zi ≥ 0,

b
Γ(2−ai)

z1−ai
i , zi < 0.

(4.413)

71 The FALU was published in [1146] without any links to [1145] even though it was proposed
by the same first author and it uses the same principles.

4.3 adaptive activation functions 141

4.3.18.6 Fractional parametric ReLU (FracPReLU)

The fractional PReLU (FracPReLU) is the fractional variant of the PReLU (see
Section 4.3.1.1) proposed in [1147]. It is defined using fractional calculus as

f (zi) =

Dai zi, zi ≥ 0,

Dai bizi, zi < 0,
(4.414)

where ai ∈ (0, 1) is a fixed parameter and bi is a trainable parameter [1147].
The fractional derivative is then calculated as

f (zi) =

1

Γ(2−ai)
z1−ai

i , zi ≥ 0,

bi
Γ(2−ai)

z1−ai
i , zi < 0.

(4.415)

4.3.18.7 Fractional ELU (FracELU)

The fractional ELU (FracELU) is the fractional variant of the ELU (see Sec-
tion 4.2.6.48) proposed in [1147]. It is defined using fractional calculus as

f (zi) =

Dai zi, zi ≥ 0,

Dai b (exp(zi − 1)) , zi < 0,
(4.416)

where ai ∈ (0, 1) and b are fixed parameters [1147]. The fractional derivative
is then calculated as

f (zi) =

1

Γ(2−ai)
z1−ai

i , zi ≥ 0,

b ∑∞
k=0

(
1
k! ·

Γ(k+1)
Γ(k+1−ai)

zk−ai
i

)
− b 1

Γ(1−ai)
z−ai

i , zi < 0.
(4.417)

4.3.18.8 Fractional SiLU (FracSiLU)

The fractional SiLU (FracSiLU) is the fractional variant of the SiLU (see
Section 4.2.3) proposed in [1147]. It is defined using fractional calculus as

While Job et al. intended the fractional SiLU (FracSiLU) to be the fractional
variant of the SiLU (see Section 4.2.3), they used a wrong definition of the
SiLU. Here we present both the FracSiLU from the [1147] and the FracSiLU
that fit the definition of SiLU — the definition from [1147] will be denoted as
FracSiLU variant 1 (FracSiLU1) whereas the variant we derived as FracSiLU
variant 1 (FracSiLU2). The Job et al. used this definition72 of SiLU:

f (zi) =

Dai zi, zi ≥ 0,

Dai ziσ (zi) , zi < 0.
(4.418)

72 Job et al. referenced [742, 1065] for their definition of SiLU; however, the [742] contains the
SiLU definition from Section 4.2.3 and [1065] does not mention SiLU at all.

142 literature review

Then the FracSiLU1 is defined as

f (zi) =

Dai zi, zi ≥ 0,

Dai ziσ (zi) , zi < 0,
(4.419)

where σ (zi) is the logistic sigmoid [1147]. The fractional derivative is then
calculated as

f (zi) =

1

Γ(2−ai)
z1−ai

i , zi ≥ 0,

∑∞
k=0

(
(−1)k +

(2k+1−1)Bk+1Γ(k+2)
Γ(k+2−ai)(k+1)!

)
zk+1−ai

i , zi < 0,
(4.420)

where Bn is n-th Bernoulli’s number [1147].
When using the SiLU definition from Section 4.2.3, the FracSiLU2 is then

defined as

f (zi) = Dai ziσ (zi) . (4.421)

Since Job et al. made no assumption about the sign of zi, the fractional
derivative of FracSiLU2 is computed as

f (zi) = sum∞
k=0

(
(−1)k +

(
2k+1 − 1

)
Bk+1Γ (k + 2)

Γ (k + 2 − ai) (k + 1)!

)
zk+1−ai

i , (4.422)

where Bn is n-th Bernoulli’s number.

4.3.18.9 Fractional GELU (FracGELU)

Similarly as for FracSiLU, Job et al. intended the fractional GELU (FracGELU)
to be the fractional variant of the GELU (see Section 4.2.3.1), but they used
a wrong definition of the GELU. Here we present both the FracGELU from
the [1147] and the FracGELU that fit the definition of GELU — the definition
from [1147] will be denoted as FracGELU variant 1 (FracGELU1) whereas the
variant we derived as FracGELU variant 1 (FracGELU2). The Job et al. used
this definition73 of GELU:

f (z) =

z, z ≥ 0,

z · Φ (z) , z < 0,
(4.423)

where Φ (z) is the standard Gaussian CDF [1147]. Then the FracGELU1 is
defined as

f (zi) =

Dai zi, zi ≥ 0,

Dai zi · Φ (zi) , zi < 0.
(4.424)

The fractional derivative of FracGELU1 is then calculated as

f (zi) =

1

Γ(2−ai)
z1−ai

i , zi ≥ 0,

0.5 z
1−ai
i

Γ(2−ai)
− 1√

2π
∑∞

k=0
1
k!

(
− 1

2

)k z
2(k+1)−ai
i
2k+1

Γ(2k+3)
Γ(2k+3−ai)

, zi < 0.
(4.425)

73 Job et al. referenced [742, 1065] for their definition of SiLU; however, neither [742] nor [1065]
contains a definition of GELU.

4.3 adaptive activation functions 143

When using the GELU definition from Section 4.2.3.1, the FracGELU2 is
then defined as

f (zi) = Dai zi · Φ (zi) . (4.426)

Since Job et al. made no assumption about the sign of zi, the fractional
derivative of FracGELU2 is computed as

f (zi) = 0.5
z1−ai

i
Γ (2 − ai)

− 1√
2π

∞

∑
k=0

1
k!

(
−1

2

)k z2(k+1)−ai
i
2k + 1

Γ (2k + 3)
Γ (2k + 3 − ai)

. (4.427)

4.3.19 Scaled softsign

An activation function called scaled softsign [889] is an adaptive variant of
the softsign activation (see Section 4.2.2.13) with variable amplitude. It is
defined as

f (zi) =
aizi

bi + |zi|
, (4.428)

where ai and bi are trainable parameters for each neuron i [889]. The param-
eter ai controls the range of the output while the parameter bi controls the
rate of transition between signs [889].

4.3.20 Parameterized softplus (s+2L)

Parameterized softplus is an adaptive variant of a softplus activation function
that allows for vertical shifts [699]. It is defined as

f (zi) = ln (1 + exp(zi))− ai, (4.429)

where ai ∈ [0, 1] is a trainable parameter for each neuron i [699]. Vargas et al.
also proposed a non-adaptive variant with fixed ai that is denoted as s+2
[699].

4.3.21 Universal activation function (UAF)

The so-called universal activation function (UAF) is a softplus based AAF
proposed in [968]. It is defined as

f (zi) = ln
(
1 + exp

(
ai (zi + bi) + ciz2

i
))

− ln (1 + exp (di (zi − bi))) + ei,

(4.430)

where ai, bi, ci, di, and ei are trainable parameter for each neuron i [968].
For example, the UAF is able to well approximate the step function, logistic
sigmoid, tanh, ReLU, LReLU, and Gaussian function [968].

144 literature review

4.3.22 Learnable extended activation function (LEAF)

The learnable extended activation function (LEAF) is an AAF proposed in
[1151] that is able to replace several existing AFs. It is defined as

f (zi) = (aizi + bi) σ (cizi) + di, (4.431)

where σ(x) is the logistic sigmoid and ai, bi, ci, and di are trainable parameters
for each neuron i [1151]. The Table 4.1 contains a list of AFs that are equivalent
to a particular LEAF parameterization.

equiv. AF ai bi ci di

ReLU 1 0 +∞ 0

SiLU 1 0 1 0

tanh 0 2 2 -1

logistic sigmoid 0 0 1 0

swish 1 0 ai 0

AHAF ai 0 bi 0

Table 4.1: AF equivalent to LEAF parameterizations
The list of AFs that have an equivalent LEAF parameterization.

4.3.23 Generalized ReLU (GReLU)

Theb generalized ReLU (GReLU) is an AF based on the UAF (see Sec-
tion 4.3.21) [1130]. It is defined as

f (zi) =
1
bi

logai

(
1 + abizi

i

)
=

ln
(

1 + abizi
i

)
bi ln (ai)

, (4.432)

where ai and bi are trainable parameters [1130].

4.3.24 Multiquadratic activation function (MAF)

The multiquadratic activation function (MAF) was used in [1152, 1153]. It is
defined as

f (zi) =
√
||zi − ai||2 + b2

i , (4.433)

where ai and bi are trainable parameters [1153] ai is the slope coefficient and
bi is the bias coefficient [1153].

4.3.25 EIS activation functions

The EIS74 is a family of AAFs proposed in [1155] with three notable examples
EIS-1, EIS-2, and EIS-3 [1154, 1155].

74 The EIS is a name given by Biswas et al.; it is not an abbreviation.

4.3 adaptive activation functions 145

The general EIS is defined as

f (zi) =
zi (ln (1 + exp (zi)))

ai√
bi + ciz2

i + di exp (−eizi)
, (4.434)

where ai, bi, ci, di, and ei are either trainable parameters or fixed hyperparam-
eters; ai ∈ [0, 1], bi ∈ [0, ∞), ci ∈ [0, ∞), di ∈ [0, ∞), ei ∈ [0, ∞) and bi, ci, and
di cannot be equal to zero at the same time [1155].

The EIS-1 is defined as

f (zi) =
zi ln (1 + exp (zi))

zi + di exp (−eizi)
, (4.435)

where di and ei are trainable parameters [1154, 1155]. It can be obtained from
the general EIS by setting ai = 1, bi = 0, ci = 1 [1155].

The EIS-2 is defined as

f (zi) =
zi ln (1 + exp (zi))√

bi + ciz2
i

, (4.436)

where bi is a trainable parameter [1155]. It can be obtained from the general
EIS by setting ai = 1, di = 0 [1155]; however, the EIS-2 from [1154] also fixes
ci = 1.

And finally, the EIS-3 is defined as

f (zi) =
zi

1 + di exp (−eizi)
, (4.437)

where di and ei are trainable parameters [1154, 1155]; it can be obtained from
the general EIS by setting ai = 0, bi = 1, ci = 0 [1155].

The EIS family contains the softplus, swish, and ISRU as special cases
[1155].

4.3.25.1 Linear combination of parameterized softplus and ELU (ELUs+2L)

A linear combination of parameterized softplus and ELU (ELUs+2L) [699] is
an adaptive activation function combining ELUs and parameterized softplus
activation functions. It is defined as

f (zi) = biELU(zi) + (1 − bi)s+2L(zi), (4.438)

where bi is a trainable parameter for each neuron i, ELU(zi) is the ELU
activation function and s+2L(zi) is the parameterized softplus activation
function [699]. The variant with non-adaptive parameterized softplus is
denoted as ELUs+2 [699].

4.3.26 Global-local neuron (GLN)

The global-local neuron (GLN) is an AAF that is a convex combination of
two AFs proposed in [1156]. It is defined as

f (zl) = σ (a) · global(zl) + (1 − σ (a)) · local(zl)− b, (4.439)

146 literature review

where al and bl are trainable weights for each layer l and global(zl) and
local(zl) are AFs capable of identifying the global and local characteristics
respectively [1156, 1157]; the authors used global(zl) sin (zl) and local(zl) =

tanh(zl) in [1156, 1157].

4.3.27 Neuron-adaptive activation function

A similar approach to trainable amplitude and generalized hyperbolic tangent
is the so-called neuron-adaptive activation function (NAF) [1158–1160], which
comprises of a linear combination of two activation functions with scalable
amplitude:

f (z) = a exp
(
−b · (z)2

)
+

c
1 + exp (−d · z)

, (4.440)

where a, b, c, and d are trainable parameters that are shared by the whole net-
work [1158]. The NAF was shown to perform superiorly on a few regression
tasks [1158].

4.3.27.1 Scaled logistic sigmoid

A scaling variant of logistic sigmoid called scaled logistic sigmoid was pro-
posed in [1161]. The function is defined as

f (zi) =
ai

1 + exp (−bizi)
, (4.441)

where ai and bi are trainable parameters for each neuron i [1161]. Note that
this activation is identical to the second part of the previously proposed NAF
(see Section 4.3.27).

A variant combining scaled logistic sigmoid with scaled sine (SLS-SS) was
also used in [1161]; it has four trainable parameters and is defined as

f (zi) = ai · sin (bizi) +
ci

1 + exp (−dizi)
, (4.442)

where ai, bi, ci, and di are trainable parameters [1161]. This activation function
is a special case of another variant of NAF [1162]:

f (zi) = ai · sin (bizi) + ci exp
(
−di · (z)2

)
+

ei

1 + exp (− fizi)
, (4.443)

where ai, bi, ci, di, ei and fi are trainable parameters [1162].

4.3.28 Adaptive piece-wise linear unit (APLU)

Another generalization of ReLU is the adaptive piece-wise linear unit (APLU),
which uses the sum of hinge-shaped functions as the activation function
[1163]. An approach extending APLU is smooth adaptive activation function
(SAAF) with piece-wise polynomial form and was specifically designed for
regression and allows for bias–variance trade-off using a regularization term
[1014].

4.3 adaptive activation functions 147

APLU is defined as

f (zi) = max (0, zi) +
S

∑
s=1

as
i max (0,−zi + bs

i) , (4.444)

where S is the number of hinges, i is the number of neurons, and as
i , bs

i ,
s ∈ 1, . . . , S are trainable parameters per unit [873]. However, the optimizer
might choose very large values of as

i and balance them by very small weights,
which could lead to numerical instabilities; therefore, an L2 penalty is added
to the parameters as

i , bs
i scaled by 0.001 [1163]. Another adaptive piecewise

linear function was proposed in [1164], where a weighted combination of
ReLUs with additional parameters was used.

4.3.29 Simple piecewise linear and adaptive function with symmetric hinges (SPLASH)

The simple piecewise linear and adaptive function with symmetric hinges
(SPLASH) [1165] is an approach similar to the APLU. It is defined as

f (zl) =

S+1
2

∑
s=1

a+l,s max (0, z − bl,s) +

S+1
2

∑
s=1

a−l,s max (0,−z − bl,s) , (4.445)

where S is an odd number, bl,s and −bl,s are hinge parameters and a+l,s and
a−l,s are scaling parameters for each layer l [1165] ; these max functions form
S + 1 continuous line segments with hinges at bl,s and −bl,s [1165]. While
Tavakoli, Agostinelli, and Baldi tried different values for S, they found that
using S = 7 usually works well [1165].

4.3.30 Multi-bias activation (MBA)

An approach similar to APLU and paired ReLU (see Section 4.3.1.26) termed
multi-bias activation (MBA) [1166] uses the same activation but with multiple
biases, which allows to learn more complex activations; in this it resembles
paired ReLU as one input map leads to several output maps with activation
with different biases [1166]. The weights that will be given to the output
maps in the next layer are similar to the weights in the APLU; however, the
MBA is able to provide cross-channel information due to multiple outputs
for each activation [1166]. The MBA is defined as

f (zi) =

g(zi + bi,1)

g(zi + bi,2)

. . .

g(zi + bi,k)

. . .

g(zi + bi,K)

, (4.446)

where bi,k, k = 1, 2, . . . , K are trainable biases and g(x) is any non-linear
activation function [1166]; Li, Ouyang, and Wang used ReLU as the activation
function g(x) [1166].

148 literature review

4.3.31 Mexican ReLU (MeLU)

A Mexican ReLU (MeLU) is an activation function with a similar approach as
the APLU, but it does not need any L2 penalty [1167]. The MeLU is defined
as

f (zi) = PReLU(zi) +
k−1

∑
j

ai,jϕbjcj (zi) , (4.447)

where ai,j are trainable parameters for each neuron/filter i, and k is the total
number of trainable parameters (k − 1 for the sum and one for the PReLU), bj
and cj are fixed constants that are chosen recursively (more details in [1167]);
ϕbjcj (zi) is defined as

ϕbjcj (zi) = max
(
cj −

∣∣zi − bj
∣∣ , 0
)

. (4.448)

Maguolo, Nanni, and Ghidoni used k = 4 and k = 8 for their experiments; the
trainable parameters ai,j were all initialized to zero which helps the training
at the early stages by exploiting the properties of the ReLU (e.g., the MeLU
is convex for many iterations at the beginning)[1167]. The advantage of the
MeLU over the APLU is that it needs only half of the parameters while
retaining the same representation power when the parameters are jointly
optimized with the network’s weights and biases [1167].

4.3.31.1 Modified Mexican ReLU (MMeLU)

The modified Mexican ReLU (MMeLU) is an MeLU inspired AF proposed in
[1168]. It is defined as

f (zi) = ai · max (bi − |zi − ci| , 0) + (1 − ai)ReLU (zi) , (4.449)

where ai, bi, and ci are adaptive parameters estimated using Bayesian proce-
dure outlined in [1168]; ai ∈ [0, 1], bi ∈ R+ in , and ci ∈ R [1168].

4.3.31.2 Gaussian ReLU (GaLU)

The Gaussian ReLU (GaLU) is a MeLU-inspired AAF proposed in [1169]. It
uses the same basic form as MeLU has in Eq. (4.447) but it uses following
ϕbjcj (zi):

ϕbjcj (zi) = max
(
cj −

∣∣zi − bj
∣∣ , 0
)
+ min

(∣∣z − bj − 2cj
∣∣− cj, 0

)
, (4.450)

where bj and cj are similar parameters is in the original MeLU; more details
about the parameters is available in [1169].

4.3.31.3 Hard-Swish

The Hard-Swish is an adaptive variant of a scaled Hard sigmoid activation
[891]. It is defined as

f (zi) = 2zi · max (0, min (0.2bizi + 0.5, 1)) , (4.451)

4.3 adaptive activation functions 149

where bi is either trainable or fixed parameter [891]. For bi → ∞, the Hard-
Swish approaches the ReLU [891]. The Hard-Swish outperformed the logistic
sigmoid, tanh, ReLU, LReLU, and swish on the MNIST dataset [45] in [891].
The ResNet [13], wide residual network (WRN) [55], and DenseNet [838]
with glshardswish outperformed their variants with ReLU and swish on the
CIFAR-10 [243] dataset [891].

4.3.32 S-shaped rectified linear activation unit (SReLU)

A S-shaped ReLU (SReLU) [873] consists of three piecewise linear functions
that are controlled by four trainable parameters that are learned jointly with
the whole network. The SReLU is able to learn both convex and non-convex
functions; in particular, it is able to learn both ReLU and also sigmoidlike
functions. It is similar to APLU (see Section 4.3.28), but APLU approximates
non-convex functions, and it requires the rightmost linear function to have a
unit slope and bias of zero [873]. SReLU is defined as

f (zi) =

tr
i + ar

i (zi − tr
i), zi ≥ tr

i ,

zi, tr
i > zi > tl

i ,

tl
i + al

i(zi − tl
i), zi ≤ tl

i ,

(4.452)

where tr
i , tl

i , ar
i , and al

i are trainable parameters for each neuron i (or channel
i in case of convolutional neural networks) [873]. The parameters tr

i and tl
i

determine thresholds of an interval outside which the slope of the linear parts
is controlled by parameters ar

i and al
i , respectively. The authors Jin et al. show

that the SReLU outperformed the ReLU, LReLU, PReLU, APLU, maxout
unit and plain NIN on several visual tasks. The authors also recommend to
initialize the parameters of SReLU to ti ∈ R, ar

i := 1, tl
i := 0, and al

i ∈ (0, 1)
which degenerates the SReLU into a LReLU and then keep these parameter
fixed during several initial training epochs [873]. The SReLU can be seen as a
more general concept to the later proposed piecewise linear unit (PLU) (see
Section 4.3.34) and to the BLReLU [888] (see Section 4.2.6.24).

4.3.32.1 N-activation

The N-activation is activation very similar to a special case of SReLU75

proposed in [1170]. The N-activation with trainable parameters ai, and bi is
defined as

f (zi) =

zi − 2ti,min, zi < ti,min,

−zi, ti,min ≤ zi ≤ ti,max,

zi − 2ti,max, zi > ti,max,

(4.453)

where

ti,min = min (ai, bi) (4.454)

75 It would be a special case of SReLU if the the thresholds were directly trainable and not
determined using the min and max functions.

150 literature review

and

ti,max = max (ai, bi) . (4.455)

4.3.32.2 ALiSA

A special case of SReLU was later proposed under the name adaptive LiSA
(ALiSA) in [1171]; it can be obtained by setting tr

i := 1 and tl
i :== 0:

f (zi) =

ar

i zi − ar
i + 1, zi ≥ 1,

zi, tr
i > zi > tl

i ,

al
izi, zi ≤ 0,

(4.456)

where ar
i and al

i are adaptive parameters [1171]. Its nonadaptive variant is
called simply linearized sigmoidal activation (LiSA) and has parameters ar

i
and al

i fixed [1171].

4.3.33 Alternated left ReLU (All-ReLU)

The alternated left ReLU (All-ReLU) was proposed in [1172] for usage in
sparse neural networks. It is inspired by the SReLU [1172]. It is defined as

f (zi) =

−azi, zi ≤ 0 and l%2 = 0,

azi, zi ≤ 0 and l%2 = 1,

zi, zi > 0,

(4.457)

where a is a fixed parameter controlling the slope for negative inputs, l is the
number of layers, and % is the modulo operation [1172].

4.3.34 Piecewise linear unit (PLU)

A PLU [1173] resembles two earlier proposed activation functions — the
SReLU (see Section 4.3.32) and adaptive piece-wise linear unit (see Sec-
tion 4.3.28); it can be even seen as a special case of the SReLU.

f (zi) = max (ai (zi + b)− b, min (ai (zi − b) + b, zi)) , (4.458)

where ai is either a trainable parameter or a predefined constant [11] and b is
a predefined constant [1173]; a variant with a = 0.1 and b = 1 was shown in
[1173]. The advantage of the PLU compared to the SReLU is that it produces
an invertible function (which is not always the case for the more general
SReLU) [1173].

4.3 adaptive activation functions 151

4.3.35 Adaptive linear unit (AdaLU)

The adaptive linear unit (AdaLU) [1174] is yet another piecewise linear AAF.
It is defined as

f (zi) =

ci (zi − ai) + bi, (zi − ai) > 0 and ci (zi − ai) > ei,

di (zi − ai) + bi, (zi − ai) ≤ 0 and di (zi − ai) > ei,

ei + bi, otherwise,

(4.459)

where ai, bi, ci, di, and ei are trainable parameters for each neuron i [1174].
The parameters ai and bi control the offsets; ci and di control the slope of each
linear part, and ei is the saturation value [1174].

4.3.36 Trapezoid-shaped activation function (TSAF)

The trapezoid-shaped activation function (TSAF) [1175] (ref. from [904]) is an
AF consisting of four ReLUs. It is defined as

f (zi) =
1
ci

(
ReLU (zi − ai + ci) + ReLU (zi − ai) + ReLU (zi + bi − ci)−

ReLU (zi − bi)
)
, (4.460)

where ai, bi, and ci are parameters76 such that ai < bi and ci ∈ (0, 1] [904].

4.3.37 Adaptive Richard’s curve weighted activation (ARiA)

Another function motivated by the swish activation function is the Adaptive
Richard’s curve weighted activation (ARiA) [1176], which replaces the logistic
sigmoid in the swish by Richard’s curve [11]. Richard’s curve [1177] is a gener-
alization of the logistic sigmoid that is controlled by several hyperparameters.
The Richard’s curve is defined as [1176]:

σR(x) = A +
K − A

(C + Q · exp (−Bx))
1
υ

, (4.461)

where A is the lower asymptote, K is the upper asymptote, C is a constant
(typically equal to 1 [1176]), υ > 0 controls the direction of growth and B is
the exponential growth rate, Q controls the initial value of the function. The
ARiA is defined as

f (z) = z · σR(x), (4.462)

where σR(x) is the Richard’s curve from Eq. (4.461) [1176]. As such, the ARiA
has five hyperparameters controlling its behavior. To reduce the number of
the hyperparameters, Adaptive Richard’s curve weighted activation 2 (ARiA2)
was also proposed [1176] that is defined by only two hyperparameters a and
b

f (z) = z · (1 + exp (−bz))−a . (4.463)

76 Pan et al. do not state whether they are used in trainable or fixed form.

152 literature review

The swish activation function is a special case of ARiA with A = 1, K = 0,
B = 1, υ = 1, C = 1, and Q = ai, where ai is the parameter of the swish
activation function (see Section 4.3.3.1 for details) [1176]. The ARiA2 is a
special case of ARiA with K = 0, B = 1, υ = 1, C = 1

a , and Q = b, where a
and b are the ARiA2 hyperparameters [1176]. Patwardhan, Ingalhalikar, and
Walambe reached best accuracy on the MNIST [45] dataset with a custom
CNN using ARiA2 with a = 1.5 and b = 2; the best parameters for the
DenseNet [838] were a = 1.75 and b = 1 [1176]. While the parameters were
fixed in the experiments in [1176], they can also be trainable as is in the
special case of the swish activation function.

4.3.38 Modified Weibull function

A modified Weibull function (MWF) is an Weibull-function-based AF pro-
posed in [1140]. It is defined as

f (zi) =

(
zi

ai

)bi−1

exp

(
−
(

zi

ci

)di
)

, (4.464)

where ai, bi, ci, and di are trainable parameters [1140]. The parameter bi
determines the location of the peak of the AF [1140]. The polynomial term
dominates for small input values while the exponential starts to dominate
with larger values which reduces the output value as the input value further
increases [1140].

4.3.39 Sincos

The sincos is another older AF proposed in [996]. It is defined as

f (z) = a · sin (bz) + c · cos (dz) , (4.465)

where a, b, c, and d are adaptive parameters [996].

4.3.40 Combination of sine and logistic sigmoid (CSS)

The combination of sine and logistic sigmoid (CSS)77 is an AAF proposed in
[1097]. It is defined as

f (z) = a · sin (bz) + c · σ (dz) , (4.466)

where a, b, c, and d are adaptive parameters [1097].

4.3.41 Catalytic activation function (CatAF)

The catalytic activation function (CatAF) is an AAF that uses sinusoidal
mixing of any AF and the identity to produce the final activation [1178]. It is
defined as

f (zi) = zi sin (ai) + g(zi) cos ai, (4.467)

77 The function was unnamed in [1097]; we used this abbreviation to distinguish it from SinSig.

4.3 adaptive activation functions 153

where ai is a trainable parameter and g(zi) is any AF such as the ReLU [1178].

4.3.42 Expcos

An AAF combining an exponential function with the cosine was proposed in
[1097]. It is called expcos in this work78 and is defined as

f (z) = exp
(
−az2) · cos (bz) , (4.468)

where a and b are adaptive parameters [1097].

4.3.43 Multi-bin trainable linear unit (MTLU)

The multi-bin trainable linear unit (MTLU) can be seen as a conceptual
extension of the SReLU (see Section 4.3.32) into more than three segments
[11]:

f (zi) =

ai,0z + bi,0, zi ≥ ci,0,

ai,1z + bi,1, ci,0 < zi ≥ ci,1,

. . .

ai,kz + bi,k, ci,k−1 < zi ≥ ci,k,

. . .

ai,Kz + bi,K, ci,K−1 < zi,

(4.469)

where ai,0, . . . , ai,K, and bi,0, . . . , bi,K are trainable parameters for each neu-
ron/filter and K and ci,0, . . . , ci,K−1 are predefined hyperparameters [1179].
The authors used unifromly distributed anchors ci,0, . . . , ci,K−1 [1179]. The
main disadvantage besides the higher number of additional parameters is the
higher number of non-differentiable points [11]. The MTLU was also named
continuous piecewise nonlinear activation function (CPN)m in [1180]. The
CPNmc is a MTLU variant with continuity constraint proposed in [1180].

An AF with the same form as the MTLU with only minor differences was
proposed in [1181, 1182] under the name piecewise linear unit (PWLU); Zhu
et al. also proposed its 2D extension in [1182]. Unlike the MTLU, it uses
a uniformly spaced demarcation points ci,k [1181]. Another PWLU variant
named non-uniform piecewise linear unit (N-PWLU) allows for learnable
intervals on which the function is piecewise linear, and also it leverages
cumulative definition for efficient learning [1183]. Multistability analysis of
such piecewise linear AFs is analyzed in [1184]. An analysis of a number of
regions of piecewise linear NNs is available in [1185].

78 The function was originally unnamed in [1097].

154 literature review

4.3.44 Continuous piecewise nonlinear activation function CPN

A variant of the MTLU named CPN where the ci,k was used in [1180]. It is
defined as

f (zi) =

ai,0z + bi,0 + ci,0g(zi), zi ≥ di,0,

ai,1z + bi,1 + ci,1g(zi), di,0 < zi ≥ di,1,

. . .

ai,kz + bi,k + ci,kg(zi), di,k−1 < zi ≥ di,k,

. . .

ai,Kz + bi,K + ci,Kg(zi), di,K−1 < zi,

(4.470)

where ai,0, . . . , ai,K, bi,0, . . . , bi,K, ci,0, . . . , di,K−1 are trainable parameters for
each neuron/filter, g(zi) is a non-linear function such as the logistic sigmoid
and K and ci,0, . . . , di,K−1 are predefined hyperparameters [1180].

Gao et al. also proposed a variant named CPNnl, which introduces a non-
linear term for each small interval and does not enforce the uniform division
of the activation space [1180]. It is defined as

f (zi) = max {pi,0(z), p1,0(z), . . . , pi,k(z), . . . , pi,K(z)} , (4.471)

where

pk(z) = ai,kzi + bi,kSiLU(zi) + ci, k = 0, 1, . . . , K, (4.472)

where K is the number of functions and ai,k, bi,k, and ci,k are learnable coeffi-
cients for k = 0, 1, . . . , K [1180].

4.3.45 Look-up table unit (LuTU)

A piecewise activation function look-up table unit (LuTU) [1186–1188] is
a learnable activation function that consists of several points defining the
function; the values between the points are obtained using either linear
interpolation or smoothing with single period cosine mask function [1186].
Similar adaptive activation function using linear interpolation was used in
[1189, 1190]. A look-up table of anchor points {ai,j, bi,j}, j = 0, 1, . . . , n that
are uniformly spaced with step s, ai,j = a0 + s · j, controls the shape of the
activation functions. The step s, anchor points a0, and n are predetermined
hyperparameters, and therefore ai,j are predetermined values for which
the output values bi,j are learnable parameters. Linear-interpolation-based
function is defined as

f (zi) =
1
s
(
bi,j
(
ai,j+1 − zi

)
+ bi,j+1

(
zi − ai,j

))
, ai,j ≥ z ≥ ai,j+1, (4.473)

where ai,j are hyperparameters defined by the step s and initial point a0

shared for all points and bi,j are trainable parameters for each neuron i [1186].

4.3 adaptive activation functions 155

Wang, Liu, and Foroosh used a0 = −12, step s = 0.1 and n = 240 to cover
the interval [−12, 12] using 241 anchor poiints for each neuron. Therefore,
for any input value between ai,j and ai,j+1, the output is linearly interpolated
from bi,j and bi,j+1 [1186]. However, such a definition might lead to unstable
gradients [1186]; therefore, a variant of LuTU with cosine smoothing was
also proposed. The smoothing function is defined as

r(x, τ) =

 1
2τ

(
1 + cos

(
π
τ x
))

, −τ ≥ x ≥ τ,

0, otherwise,
(4.474)

where τ is a hyperparameter controlling the period (2τ) of the cosine function
[1186]. The smoothed variant of the LuTU is then defined as

f (zi) =
n

∑
j=0

yjr
(
zi − ai,j, ts

)
, (4.475)

where t is an integer defining the ration between τ and s [1186]. The formula
in Eq. (4.475) can be further simplified as it is not necessary to sum over all
j ∈ {0, 1, . . . , n} as the smoothing function has a truncated input domain,
more details in [1186].

4.3.46 Maxout unit

Maxout unit returns the maximum of multiple linear functions per each unit
i [1191]:

f (zi) = max
k∈{1,...,K}

wk
i zi + bk

i (4.476)

where K is the number of linear functions. The maxout unit can also be used
directly on inputs of the neuron as shown in [1191] (by replacing wk

i zi with
xT

i wk
i where xi ∈ Rd is the vector of individual inputs to a neuron i and

w ∈ Rd are trainable weights [1191]) but the equation presented here uses
only the hidden state for simplicity. The advantage of maxout unit is that it is
a universal approximator of a convex function [873, 1191]; however, it cannot
learn non-convex functions [873] and introduces a high number of additional
parameters per neuron [873, 1191]. While some works show that maxout unit
perform superiorly [1191, 1192], other experiments show that ReLU, which
is a special case of maxout, performs better [1193]. Furthermore, since the
maxout unit is more complex than regular ReLU, the training is relatively
slower [1193].

Empirical comparison of the maxout unit with ReLU, LReLU, SELU and
tanh is available in [1193]; with ReLU, tanh, sigmoid and VLReLU in [868].

156 literature review

4.3.47 Adaptive blending unit (ABU)

An approach mixing several activation functions was described in [1194]
where adaptive blending unit (ABU) was introduced. The ABU is a weighted
sum of several predefined activations [1194]. It is defined as

f (zl) =
n

∑
j=0

aj,l gj(zl), (4.477)

where gj(zl) is an activation function from a pool of n activation functions
and aj,l is a weighting parameter that is trained for each layer l and activation
function gj(zl). The ABU was first proposed as a special case of a general
framework called TAF already in 1997 [1009]. The blending weights aj,l
are initialized to 1

n but are then trained alongside the weights of the NN
[1194]. Sütfeld et al. used tanh, ELU, ReLU, swish, and the identity as the
pool of activation functions gj but they admit that no exhaustive search was
performed to select this set and that there might be other pools that perform
better [1194]. This approach was also used in [889] where ReLU, logistic
sigmoid, tanh, and softsign activation functions were used.

However, similar approach was already proposed in [1186] where Wang,
Liu, and Foroosh inspired by the mixture of Gaussian unit (MoGU) (see Sec-
tion 4.3.47.10) generalized the concept to mixing several different activation
functions

f (zi) =
n

∑
j=0

ai,jgj(zi − bi,j), (4.478)

where gj(zi) is an activation function from a pool of n activation functions, ai,j
is a trainable weighting parameter of the function gj(zi) and bi,j is a trainable
parameter controlling the vertical shift of the function gj(zi) for each neuron
i [1186]. Furthermore, if gj(zi) already contains a way for controlling its scale
or shift, the parameters ai,j and bi,j can be discarded [1186]. This approach is
identical to the ABU from [1194] if bi,j = 0 and the parameters are shared by
all neurons in the same layer and not learned for each neuron separately.

A very similar approach was proposed in [1195], where Manessi and Rozza
use a linear combination of activation functions from a selected pool as the
final activation function. The difference from the ABU is that the weights
are constrained such that they sum up to 1 [1194, 1195]. Manessi and Rozza
uses analyses the linear combination of identity, ReLU, and tanh activation
functions [1195]. Sütfeld et al. analyzed the performance of unconstrained
ABUs and ABUs with various constraints such as ∑n

j=0 aj,l = 1, ∑n
j=0
∣∣aj,l
∣∣ = 1,

and two approaches enforcing ∑n
j=0 aj,l = 1 and aj,l > 0 — clipping of

negative values aj,l before normalization and softmax normalization [1194].
It was found that the unconstrained ABU works the best on average on the
selected tasks; however, some of the constrained variants performed better
than the unconstrained ABU for particular tasks [1194].

Another variant of ABU (called by Klabjan and Harmon activation ensemble)
was proposed in [1196] — the final activation is a weighted sum of activation
functions; the weighting coefficients has to sum-up to 1 (similarly to [1195]).

4.3 adaptive activation functions 157

However, unlike in the work [1195], the individual activation functions are
scaled before the weighting to the interval [0, 1] using min–max scaling [1196]:

hj(z) =
gj(z)− mink

(
gj (zk)

)
maxk

(
gj (zk)

)
− mink

(
gj (zk)

)
+ ϵ

, (4.479)

where gj are individual activation functions, ϵ is a small number and k goes
through all training samples in a minibatch.The final output is

f (zi) =
n

∑
j=0

aj,ihj(zi), (4.480)

where aj,i is a weight for each neuron i and activation function j, n is the
total number of the individual activation functions in the ABU; the weights
aj,i ∈ [0, 1] are constrained such that

n

∑
j=0

aj,i = 1. (4.481)

4.3.47.1 Trainable compound activation function (TCA)

The trained compound activation function (TCA) [1197] is an AAF similar
to the ABU [1194] and especially to its variant with the bias (see Eq. (4.478))
[1186]; however, unlike the form from Eq. (4.478) it uses horizontal scaling
instead of the vertical. It was defined in [1197] as

f (zi) =
1
k

k

∑
j=1

f j
(
exp

(
ai,j
)

zi + bi,j
)

, (4.482)

where k is the number of mixed functions and ai,j and bi,j, j = 1, . . . , k, are
scaling and translation trainable parameters for each neuron i and function j
[1197]. The TCA was found to improve the performance of RBMs and DBNs
[1197].

Later, Baggenstoss introduced a TCA also with vertical scaling parameters
in [1198]. This slightly different variant is denoted as trained compound
activation function variant 2 (TCAv2) throughout this work. TCAv2 is defined
as

f (zi) =
∑k

j=1 exp
(
ai,j
)

f j
(
exp

(
bi,j
)

zi + ci,j
)

∑k
j=1 exp

(
ai,j
) , (4.483)

where k is the number of mixed functions and ai,j, bi,j and ci,j, j = 1, . . . , k, are
scaling and translation trainable parameters for each neuron i and function j
[1198].

4.3.47.2 Average of a pool of activation functions (APAF)

An average of a pool of activation functions (APAF) was used in [1199]; the
output is defined as

f (zi) =
∑n

j=0 aj,ihj(zi)

∑n
j=0 aj,i

. (4.484)

158 literature review

Liao used the ReLU, logistic sigmoid, tanh, and the linear functions as the
candidate functions in the pool [1199]. This approach was also used in [889].

4.3.47.3 Gating adaptive blending unit (GABU)

Yet another approach previously proposed employs a gated linear combina-
tion of activation functions for each neuron [1013] — the variant is called
gating adaptive blending unit (GABU) throughout this work. This allows
each neuron to choose which activation function (from an existing pool) it
may use to minimize the error [1013]. A similar method uses just binary
indicators instead of the gates [1200]. The gating variant of ABU from [1013]
is defined as

f (zi) =
n

∑
j=0

σ
(
aj,i
)

gj(zi), (4.485)

where σ
(
aj,i
)

is the logistic sigmoid function acting as gating function and
aj,i is a trainable parameter controlling the weight of the activation function
gj for each neuron i.

4.3.47.4 Deep Kronecker neural networks

The concept of ABUs was further generalized in the framework of Deep
Kronecker neural networks (DKNNs) [1201], which provides an efficient
way of constructing wide networks with adaptive activation functions while
keeping the number of parameters low [1201]. DKNNs are equivalent to the
feed-forward neural networks with an adaptive activation function f defined
as

f (zl) =
n

∑
j=0

al,jgj(bl,jzl), (4.486)

where zl is a preactivation of a neuron from a layer l, al,j and bl,j are either
trainable or fixed parameters and gj, j = 1, . . . , n are fixed activation functions
[1201].

4.3.47.5 Rowdy activation functions

Rowdy activation functions are a general class of activation functions that is a
special case of DKNNs (see Section 4.3.47.4). A rowdy activation function is a
DKNNs with any activation function (e.g., ReLU) that is the function g0 from
Eq. (4.486) and n other functions that are defined as

gj(zl) = c · sin (jczl) , (4.487)

or

gj(zl) = c · cos (jczl) , (4.488)

where c ≥ 1 is a fixed scaling factor and j = 1, . . . , n [1201]. The rowdy
activation functions introduce highly fluctuating, non-monotonic terms that
remove saturation regions from the output of each layer in the network [1201]
similarly as does the stochastic noise in [1029].

4.3 adaptive activation functions 159

4.3.47.6 Self-learnable activation function (SLAF)

The SLAF [1202] can be considered to be a special case of the ABU where the
function gj(zi) are increasing powers of zi:

f (zi) =
k−1

∑
j=0

ai,jz
j
i , (4.489)

where ai,j are learnable parameters for each neuron i and k is a hyperparame-
ter defining the number of elements in the polynomial expression [11, 1202].
However, since the gradient is proportional to zi and its powers, Goyal, Goyal,
and Lall used mean-variance normalization over the training sample to avoid
exploding or vanishing gradients [1202]. A similar concept was analyzed in
[1203], where it was applied to the output neuron only. A similar approach
was used independently in [1204], where authors used the equivalent of
SLAF with k = 6. A quadratic variant (i.e., SLAF with k = 2) was used in
[1205].

4.3.47.7 Chebyshev polynomial-based activation function (ChPAF)

A Chebyshev polynomial-based activation function (ChPAF) was proposed
in [1206]. The function is defined as

f (z) =
k

∑
j=0

ajCj(z), (4.490)

where aj, j = 0, . . . , k are learnable parameters shared by a whole network, k
is a fixed hyperparameter denoting the maximum order of used Chebyshev
polynomials, and Cj(z) is a Chebyshev polynomial of order j defined as

Cj+1(z) = 2zCj(z)− Cj−1(z) (4.491)

with starting values C0(z) = 1 and C1(z) = z [1206]. Deepthi, Vikram, and
Venkatappareddy used polynomials of a maximum order of 3 in their experi-
ments [1206]. The Chebyshev activation function was found to outperform
several activation functions including ReLU, ELU, mish and swish while
retaining fast convergence using the CIFAR-10 dataset [243] as shown in
experiments [1206].

4.3.47.8 Legendre polynomial-based activation function (LPAF)

A Legendre polynomial-based activation function (LPAF) was used for the
study of approximations of several non-linearities in [1207]. The activation is
a linear combination of Legendre polynomials and is defined as

f (z) =
k

∑
j=0

ajGj(z), (4.492)

where aj, j = 0, . . . , k are learnable parameters shared by a whole network, k
is a fixed hyperparameter denoting the maximum order of used Legendre
polynomials, and Gj(z) is a Legendre polynomial of order j defined as

Gj+1(z) =
2k + 1
k + 1

zGk(z)−
k

k + 1
Gk−1(zi), (4.493)

160 literature review

with starting values G0(z) = 1 and G1(z) = z [1207]. The LPAF was found to
outperform ELU, ReLU, LReLU, and softplus on the MNIST [45] and Fashion
MNIST [950] datasets [1207].

4.3.47.9 Hermite polynomial-based activation function (HPAF)

The Hermite polynomial-based activation function (HPAF) [1208] is an AAF
similar to ChPAF and LPAF but it used the Hermite polynomials instead. It
is defined as

f (z) =
k

∑
j=0

ajHj(z), (4.494)

where aj is a trainable parameter and Hj(z) is the Hermite polynomial

Hj(z) = (−1)j exp
(
z2) dj

dzj

(
exp

(
−z2)) , j > 0 (4.495)

and

H0(z) = 1. (4.496)

4.3.47.10 Mixture of Gaussian unit (MoGU)

The mixture of Gaussian unit (MoGU) was proposed in [1186] as a byproduct
of analysis of the behavior of the LuTU unit (see Section 4.3.45) as the shape
of learned activation units with the cosine smoothing mostly composed of a
few peaks and valleys [1186]. The MoGU is defined as

f (zi) =
n

∑
j=0

ai,j√
2πσ2

i,j

exp

(
−
(
zi − µi,j

)2

2σ2
i,j

)
, (4.497)

where ai,j, σi,j, and µi,j are trainable parameters for each neuron i and Gaussian
j from the mixture [1186]. The parameter ai,j controls the scale, σi,j controls the
standard deviation, and µi,j controls the mean of the Gaussian j for neuron i
[1186].

4.3.47.11 Fourier series activation

The Fourier series activation (FSA) was proposed in [1199]. It is defined as

f (zi) = ai +
r

∑
j=1

(
bi,j cos (jdizi) + ci,j sin (jdizi)

)
, (4.498)

where ai, bi,j, ci,j, di are trainable parameters for each neuron i, and r is a
fixed hyperparameter denoting the rank of the Fourier series [1199]; Liao
used r = 5 throughout his experiments.

4.3 adaptive activation functions 161

4.3.48 Padé activation unit (PAU)

Padé activation units (PAUs) [1209] are adaptive activations based on the
Padé approximant [1210, 1211]. The PAU is defined as

f (z) =
∑m

j=0 ajzj

1 + ∑n
k=1 bkzk , (4.499)

where m and n are hyperparameters denoting the order of the polynomials
and aj, j = 0, . . . , m and bk, k = 1, . . . , n are trainable parameters that are
globaly shared by all units [1209]. While the Padé approximation could be
used to approximate particular activation function, the parameters aj and
bk are optimized freely with other weights of the neural network [1209].
This PAU variant was for reinforcement learning in [1212] where Delfosse
et al. observed that rational functions might replace some of the residual
blocks in ResNets. To avoid numerical instabilities, a safe PAU ensures that
the polynomial in the denominator cannot be zero [1209]; it is defined as

f (z) =
∑m

j=0 ajzj

1 + |∑n
k=1 bkzk|

. (4.500)

The hyperparameters were set to m = 5 and n = 4 in experiments in [1209].
The notion of using rational functions in activations was further analyzed
in [1213] where authors used activation function equivalent to Eq. (4.499)
with distinct parameters for each layer to learn rational neural networks; the
safe variant of PAU (Eq. (4.500)) was not used as it results in non-smooth
activation function and expensive calculation of gradient during training
[1213]. Boulle, Nakatsukasa, and Townsend used low degrees m = 3 and
n = 2 in their work [1213]; this is in contrast to [1214] where rational functions
of higher orders were used in a graph neural networkss.

4.3.49 Randomized Padé activation unit (RPAU)

The PAU can be extended similarly as RReLU extends ReLU, resulting in ran-
domized Padé activation unit (RPAU) [1209]. Let C = {a0, . . . , am, b0, . . . , bn}
be coefficients of PAU activation (see Section 4.3.48). Then an additive noise is
introduced into each coefficient cj ∈ C during training for every input zk such
that cj,k = cj + zj,k, where zj,k ∼ U(lj, uj), lj = (1 − a)cj and uj = (1 + a)cj
[1209]. This results in RPAU:

f (zk) =
c0,k + c1,kzk + c2,kz2

k + . . . + cm,kzm
k

1 +
∣∣cm+1,kzk + cm+2,kz2

k + . . . + cm+n,kzn
k

∣∣ , (4.501)

where zk is output of a unit for training input k [1209].

4.3.50 Enhanced rational activation (ERA)

The enhanced rational activation (ERA) [1215] function is very similar to the
original PAU (see Section 4.3.48); however, Trimmel et al. note similarly as

162 literature review

Boulle, Nakatsukasa, and Townsend that the safe version of PAU is costly to
compute whereas the original PAU has undefined values on poles (values of
z where the denominator in PAU is equal to zero). To avoid both the poles
and the use of absolute value, a modified rational function without the poles
is used [1215]. The ERA is defined as

f (z) =
P(z)

QC(z)
=

∑m
j=0 ajzj

ϵ + Πn
k=1

(
(z − ck)

2 + d2
k

) , (4.502)

where aj, j = 0, . . . , m, ck, and dk, k = 1, . . . , n are trainable parameters for
each layer and ϵ > 0 is a small number helping to avoid numerical instabilities
when dk are small [1215]. In practice, Trimmel et al. used ϵ = 10−6 [1215].
The ERA in Eq. (4.502) can be rewritten using partial fractions, which reduces
the number of operations and, therefore, leads to more efficient computation
[1215]. Trimmel et al. used m = 5 and n = 4 for their experiments.

4.3.51 Orthogonal Padé activation unit (OPAU)

The orthogonal Padé activation unit (OPAU) is an extension of the PAU
proposed in [1216]. It is defined as

f (z) =
∑m

j=0 ajri(z)
1 + ∑n

k=1 bkrk(x)
, (4.503)

where aj, j = 0, . . . , m and bk, k = 1, . . . , n are trainable weights, m and n are
fixed parameters, and rj(z) belongs to a set of orthogonal polynomials [1216].
The sage OPAU is defined79 as

f (z) =
∑m

j=0 ajri(z)
1 + ∑n

k=1 |bk| |rk(x)| , (4.504)

with identical parameters as the OPAU from Eq. (4.503) [1216]. Biswas, Baner-
jee, and Pandey used six bases for orthogonal polynomials — Chebyshev
polynomials (two variants), Hermite polynomials (also two variants), La-
guerre, and Legendre polynomials — as shown in Table 4.2.

4.3.52 Spline interpolating activation functions

More complex approaches include spline interpolating activation functions
(SAFs) [653, 1012, 1015, 1217–1228], which facilitate the training of a wide
variety of activation functions using interpolation. One common example is
the cubic spline interpolation that was used in [1015]. The SAFs are controlled
by a vector q ∈ Rk of internal parameters called knots, which are a sampling
of the AF over k representative points [1015]. The output is computed using
a spline interpolation using the closest knot and its p rightmost neighbors;
p = 3 results in cubic interpolation [1015]. Spline-based activation functions
were also used in the ExSpliNet — an interpretable approach combining

79 Using notation as described in the original article by Biswas, Banerjee, and Pandey [1216].

4.3 adaptive activation functions 163

polynomial definition

Chebyshev (first kind) r0(z) = 1, r1(z) = z, rn+1(z) = 2zrn(z)−
rn−1(z)

Chebyshev (second
kind)

r0(z) = 1, r1(z) = 2z, rn+1(z) = 2zrn(z)−
rn−1(z)

Laguerre r0(z) = 1, r1(z) = 1 − z, rn+1(z) =
(2n+1−z)rn(z)−nrn−1(z)

n+1

Legendre rn(z) = ∑
[n

2]
k=0 (−1)k (2n−2k)!

2nk!(n−2k)!(n−k)zn−2k

Probabilist’s Hermite rn(z) = (−1)n exp
(

z2

2

)
dn

dzn

(
exp

(
− z2

2

))
Physicist’s Hermite rn(z) = (−1)n exp

(
z2) dn

dzn

(
exp

(
−z2))

Table 4.2: Polynomial bases used in OPAU
List of polynomial bases used in the OPAU taken [1216]. The Cheby-
shev polynomials and the Laguerre polynomial have recurrent definitions;
whereas the Legendre and the Hermite polynomials are defined by a single
expression.

neural networks and ensembles of probabilistic trees [1229]. A set of fixed but
highly redundant knots for spline interpolation was used in [1220], where
the authors then relied on the sparsifying effect of L1 regularization to nullify
the coefficients that are not needed [1220]. Spline flexible activation functions
were used for sound synthesis in [1230]. The usage of splines led to the
creation of b-spline-based neural networks, e.g., [1231].

Similar to the SAF is the piecewise polynomial activation function (PPAF)
[1232] that is also defined by a number of points where the function switches
from one polynomial to another [1232]. López-Rubio et al. used zeroth-order,
first-order, and third-order polynomials for the piecewise function [1232]; for
example, zeroth-order PPAF uses step function and is defined as

f (zi) =

0, zi < qi,1,
k
m , qi,k ≤ zi < qi,k+1,

1, zi ≥ qi,m,

(4.505)

where m − 1 is the number of controlling points qi,k of a neuron i, k ∈
{1, 2, . . . , m − 1} [1232]. The position of control points is determined using
the learning procedure outlined in [1232].

If there are no constrains and the AF is limited to linear splines, the AF can
be also defined using one hidden layer with ReLUs [1226]:

f (zi) =
K

∑
k=1

ai,kReLU (bi,kzi + ci,k) , (4.506)

where K ∈ N and ai,k, bi,k, and ci,k are trainable parameters [1226].

164 literature review

4.3.53 Truncated Gaussian unit (TruG)

A truncated gaussian unit (TruG) [1233] is a unit in a probabilistic framework
that is able to well approximate sigmoid, tanh, and ReLU. It is controlled by
truncation points ξ1 and ξ2 and under the probabilistic framework described
in [1233] is defined as

E(h|z, ξ1, ξ2) = z + σ
ϕ
(

ξ1−z
σ

)
− ϕ

(
ξ2−z

σ

)
Φ
(

ξ1−z
σ

)
− Φ

(
ξ2−z

σ

) , (4.507)

where ϕ(x) is the probability density function (PDF) of a univariate Gaussian
distribution with mean z and variance σ2 and Φ(x) its CDF [1233]. The
truncation points can be either selected manually or tuned with the rest of
the weights [1233].

4.3.54 Mollified square root function (MSRF) family

Pan et al. used a smoothing approach on piecewise linear AFs to create a
whole new family of AFs in [904]. The approach is based on the mollified
square root function (MSRF) method. This smoothing approach was first
used in [905] and then in the SquarePlus AF in [1234], which inspired Pan
et al. in the creation of the MSRF family of AFs.

For example, the absolute value |x| is not differentiable at x = 0, but it can
be regularized by mollification as

|x|ϵ =
√

x2 + ϵ, (4.508)

where ϵ is a small positive parameter and limϵ→0+ |x|ϵ = |x| [904].

4.3.54.1 SquarePlus

The SquarePlus [1234] is the first AF that used the mollification procedure
described in Section 4.3.54 above. It is defined as

f (z) =
1
2
(z + |z|ϵ) =

1
2

(
z +

√
z2 + ϵ

)
. (4.509)

The SquarePlus is very similar to the softplus (see Section 4.2.17) for ϵ =

4 (ln (2))2 and they produce identical outputs at z = 0 [904].

4.3.54.2 StepPlus

As the SquarePlus approximates the ReLU, the StepPlus approximates the
step function (see Section 4.2.1) similarly as the logistic sigmoid does [904]. It
is defined as

f (z) =
1
2

(
1 +

z
|z|ϵ

)
. (4.510)

The sign function is smoothed into the BipolarPlus AF [904]

f (z) =
z
|z|ϵ

. (4.511)

4.3 adaptive activation functions 165

4.3.54.3 LReLUPlus

A smoothed variant of the LReLU called LReLUPlus is defined as

f (zi) =
1
2
(zi + aizi + |(1 − ai) zi|ϵ) , (4.512)

where |x|ϵ is the MSRF procedure [904] described in Section 4.3.54 and ai is a
fixed or trainable parameter.

A function equivalent to the LReLUPlus was independently proposed in
[1025] under the name SMU-1. The only difference was that Biswas et al. used
parameter µ that is the square root of ϵ from Section 4.3.54: ϵ = µ2.

4.3.54.4 vReLUPlus

The vReLUPlus [904] is a MSRF smoothed variant of the vReLU (see Sec-
tion 4.2.6.25); it is defined as

f (z) = |z|ϵ . (4.513)

4.3.54.5 SoftshrinkPlus

The smoothed variant of the Softshrink (see Section 4.2.6.23) is named Soft-
shrinkPlus80 [904] and is defined as

f (z) = z +
1
2

(√
(z − a)2 + ϵ −

√
(z + a)2 + ϵ

)
, (4.514)

where a is a fixed parameter similar to the original Softshrink’s thresholding
parameter [904].

4.3.54.6 PanPlus

The MSRF procedure can be also used to smooth the pan AF (see Sec-
tion 4.2.6.26) [904]; the resulting PanPlus [904] is defined as

f (z) = −a +
1
2

(√
(z − a)2 + ϵ +

√
(z + a)2 + ϵ

)
, (4.515)

where a is a fixed thresholding parameter of the pan function [904].

4.3.54.7 BReLUPlus

The BReLUPlus [904] is a MSRF smoothed variant of the BReLU (see Sec-
tion 4.2.6.16) defined as

f (z) =
1
2
(1 + |z|ϵ − |z − 1|ϵ) . (4.516)

80 Pan et al. named the function STFPlus originally [904].

166 literature review

4.3.54.8 SReLUPlus

Another smoothed AF is the SReLUPlus which is the smoothed variant of
the SReLU (see Section 4.3.32) [904]; it is defined as

f (zi) = aizi +
1
2
(ai − 1) (|zi − ti|ϵ − |zi + ti|ϵ) , (4.517)

where ai has similar role as in the original SReLU and ti is a parameter for
symmetric variant of SReLU with ti = tr

i = tl
i [904].

4.3.54.9 HardTanhPlus

Similarly, the smoothed variant of the HardTanh (see Section 4.2.6.18) named
HardTanhPlus [904] is defined as

f (z) =
1
2
(|z + 1|ϵ − |z − 1|ϵ) . (4.518)

4.3.54.10 HardshrinkPlus

The smoothed variant of the Hardshrink (see Section 4.2.6.22) is named
HardshrinkPlus81 [904]; it is defined as

f (z) = z

1 +
1
2

 z − a√
(z − a)2 + ϵ

− z + a√
(z + a)2 + ϵ

 , (4.519)

where a is a fixed parameter with a similar function as in the Hardshrink
[904].

4.3.54.11 MeLUPlus

Pan et al. also provided a smoothed variant of the MeLU (see Section 4.3.31);
however, the formula written in [904] is not the MeLU AF but rather its
single component ϕbjcj (zi). Nevertheless, the full smoothed MeLUPlus can
be obtained easily as the combination of the LReLUPlus and the smoothed
ϕPlus

bjcj
(zi) defined as

ϕbjcj Plus (zi) =
1
2

(
cj −

∣∣zi − bj
∣∣
ϵ
+

√(
cj −

∣∣zi − bj
∣∣
ϵ

)2
+ ϵ

)
, (4.520)

where bj and cj are the same parameters as in the MeLU.

4.3.54.12 TSAFPlus

The smoothed variant of the TSAF (see Section 4.3.36) named TSAFPlus [904]
is defined as

f (zi) =
1
ci
(|zi − ai + ci|ϵ + |zi − ai|+ |zi + bi − ci| − |zi − bi|) , (4.521)

where ai, bi, and ci have a similar role as in the original TSAF [904].

81 Pan et al. named the function HTFPlus originally [904].

4.3 adaptive activation functions 167

4.3.54.13 ELUPlus

Even the ELU (see Section 4.2.6.48) can be mollified into a "smoothed" variant
named ELUPlus [904]. The smoothed variant is defined as

f (z) =
1
2
(z + |z|ϵ) +

1
2

(
exp (z)− 1

a
+

∣∣∣∣exp (z)− 1
a

∣∣∣∣
ϵ

)
, (4.522)

where a is a fixed parameter82 with a similar function as in the ELU [904].

4.3.54.14 SwishPlus

The mollified variant of the swish (see Section 4.3.3.1) named SwishPlus [904]
is defined using the smoothed step function instead of the logistic sigmoid; it
is, therefore, defined as

f (z) = z · StepPlus (z) =
1
2

(
z +

z2

|z|ϵ

)
. (4.523)

4.3.54.15 MishPlus

The mollified variant of the swish (see Section 4.2.3.29) named MishPlus [904]
is defined using the BipolarPlus and SquarePlus as

f (z) = z · BipolarPlus (BipolarPlus (z)) . (4.524)

4.3.54.16 LogishPlus

The mollified variant of the logish (see Section 4.2.3.11) named LogishPlus
[904] is defined as

f (z) = z · ln (1 + StepPlus (z)) . (4.525)

4.3.54.17 SoftsignPlus

The mollified variant of the softsign (see Section 4.2.2.13) named SoftsignPlus
[904] is defined as

f (z) =
z

1 + |z|ϵ
. (4.526)

4.3.54.18 SignReLUPlus

Pan et al. provide a mollified version for an approximation of the SignReLU83

(see Section 4.2.6.32) in [904]. They approximate the SignReLU as

SignReLU(z) =
1
2
(z + |z|) + z − |z|

2 |1 − z|ϵ
. (4.527)

82 Pan et al. used variant with inverse parameter 1
a ; we have used the same parameter variant as

in the original ELU.
83 Pan et al. call it DLU throughout their work [904].

168 literature review

Using the approximation, they then define the SignReLUPlus as

SignReLU(z) =
1
2
(z + |z|ϵ) +

z − |z|ϵ
2 |1 − z|ϵ

. (4.528)

4.3.55 Complex approaches

The network in network (NIN) [1072], which uses a micro neural network
as an adaptive activation function, represents a different approach. A combi-
nation of the NIN and maxout units called maxout-in-network (MIN) was
shown to have good performance in [1235]. A similar approach is the wide
hidden expansion (WHE) layer [1236], which is a sparselly connected layer
with several activation functions that is used in place of a traditional activation
function [1236].

Adaptive activation functions called NPF that are learned nonparametri-
cally were proposed in [1237] where a Fourier series basis expansion is used
for nonparametric estimation. Only one NPF is learned per filter in CNNs
while different activation is learned in each neuron of a fully connected layer
[1237]; the learning is in two stages where the network is first learned with
ReLUs in the convolution layers and NPF in all others and only then the
network is learned with all activation functions being the NPF [1237].

Yet another approach is learning activation functions using hypernetworks
[1238] resting in hyperactivations. The hyperactivation consists of two parts
— a shallow feed-forward neural network called activation network and a
hypernetwork, which is a type of neural network that produces weights for
another network [1238]. The hypernetwork is used for the normalization of
the activation network. A single hyperactivation is learned for each layer
in the neural network [1238]. A NN with a combination of more activation
functions was used in [1239].

The adaptive activation function might also be trained in a semi–supervised
manner [1240–1242].

4.3.55.1 Variable activation function (VAF)

Similarly to NIN, the variable activation function (VAF) subnetwork approach
uses simple activation functions to produce more complex behavior [1243];
the activation is replaced by a small subnetwork with one hidden layer with k
neurons and only one input and one output neuron [1243]. Specifically, VAF
is defined as

f (zl) =
k

∑
j=1

al,jg
(
bl,jzl + cl,j

)
+ al,0, (4.529)

where al,0, al,j, bl,j, and cl,j, j = 1, . . . , k, are trainable parameters for each layer
l and g(x) is an activation function such as tanh or ReLU that were used in
experiments with VAF in [1243]. The same concept of using subnetwork to
learn the activation function was also proposed under the name of activation
function unit (AFU) in [1244].

4.3 adaptive activation functions 169

4.3.55.2 Flexible activation bag (FAB)

The flexible activation bag (FAB) [1245] is an approach similar to NIN and
VAF as it uses a subnetwork to learn the AF for each layer l using a pool of
K activations fk (zl , al,k). It uses a shallow network with double head with
ReLU activation in the first layer; then there are two separate heads[1245].
The first head predicts the parameters al,k of the individual AFs fk (zl , al,k)
in the bag squashed by a sigmoid AF, then the parameters are mapped
into a valid range of each of the parameters [1245]. The second head is a
selective head for selecting an appropriate AF by producing a score sl,k — it
can be either discrete or continuous resulting in soft or hard selection [1245].
Klopries and Schwung used five selection methods — all of the functions are
used (sl,k = 1), hard selection, soft selection using logistic sigmoids, softmax
selection, and Gumber-Softmax [1246] selection [1245]. The bag of activations
used in the FAB consists of a constant function, linear function, exponential
function, step function, ReLU, step function, sine function, tanh, logistic
sigmoid, and Gaussian function (see [1245] for exact definitions with the
adaptive parameters). Then the output of FAB is assembled as

f (zl) =
K

∑
k=1

sl,k fk (zl , al,k) , (4.530)

where sl,k are the selection scores of fk; the al,k consists of parameters of the
function fk (the used AFs have from one to three parameters) and the fk are
the individual AFs from the bag of K functions [1245].

4.3.55.3 Dynamic parameter ReLU (DY–ReLU)

The dynamic parameter ReLU (DY–ReLU) (proposed under the name of
dynamic ReLU in [1034] but that collides with previously proposed DReLUs
in [1032, 1033]) is an activation function whose parameters are input depen-
dent [1034]. The concept of DY–ReLU is similar to the WHE in [1236] and
hyperactivations in [1238] as the DY–ReLU is an example of a hyperactivation.
The dynamic activation function has two components — hyperfunction that
computes parameters for the activation function and the activation function
itself [1034]. The DY–ReLU piecewise linear function is computed as the
maximum of multiple linear functions [11]. It is defined as

f (zi) = max
1≤k≤K

(ai,kzi + bi,k) , (4.531)

where K is a hyperparameter and ai,k and bi,k are coefficients determined by
the hyper function θ(z) using all inputs zi [1034]. The hyperfunction θ(z)
is a light-weight neural network [1034]. The parameters generated by the
hyperfunction θ(z) can be different for each filter i, or they can be shared in
the whole layer [1034]. The DY–ReLU can be considered as a dynamic and
efficient variant of Maxout (see Section 4.3.46) [1034].

4.3.55.4 Random NNs with trainable activation functions

A very different approach based on adaptive activation functions is presented
in [1247] where a neural network with random weights is initialized, and

170 literature review

the weights are not trained, but the activation functions are trained instead.
The activation functions in [1247] are polynomial activation functions and are
trained separately for each hidden neuron with random weights first; only
then the weights of the output layer are estimated [1247]. Ertuğrul used five
different adaptive variants of activation functions:

f (zi) =
1

1 + exp (−aizi − bi)
, (4.532)

f (zi) = sin (aizi + bi) , (4.533)

f (zi) = exp (−ai||zi − bi||) , (4.534)

f (zi) =

1, aizi + bi ≤ 0,

0, otherwise,
(4.535)

and

f (zi) =
√
||zi − ai||2 + b2

i , (4.536)

where ai and bi are trainable parameters [1247].

4.3.55.5 Kernel activation function (KAF)

A kernel activation function (KAF) [1248] is a non-parametric function that
uses kernel expansion together with a dictionary to make the activation
flexible [11]. The KAF uses a weighted sum of kernel terms:

f (zi) =
D

∑
j=1

ai,jκ
(
zi, dj

)
, (4.537)

where D is a fixed hyperparameter, ai,j are mixing coefficients and dj, j =
1, . . . , D are called dictionary elements and κ(zi, dj) : R × R → R is 1D kernel
function — Scardapane et al. consider only ai,j trainable and the dictionary
elements dj are uniformly spaced around zero [1248]. This has the advan-
tage that the resulting model is linear in its parameters and, therefore, can
efficiently optimized [1248].

The kernel function κ(z, dj) used in [1248] is the 1D Gaussian kernel defined
as

κ(z, dj) = exp
(
−γ

(
z − dj

)2
)

, (4.538)

where γ ∈ R is a fixed parameter called the kernel bandwith [1248]. Scardapane
et al. recommend setting the kernel bandwidth to

γ =
1

6∆2 , (4.539)

4.4 neural network architectures with parallel connections 171

where ∆ is the distance betwen the grid points as adapting γ through back-
propagation did not yield any gain in accuracy [1248]. The mixing coefficients
ai,j can be initialized either randomly from a normal distribution — this
provided good diversity for the optimization process [1248] — or using
kernel ridge regression to approximate an activation function of choice [1248].
Scardapane et al. also proposed 2D-KAF that works over all possible pairs of
incoming values and uses 2D Gaussian kernel [1248].

An extension of the KAF approach was presented in [1249] where activation
function used was the sum of the KAF and RSigELU (see Section 4.2.7.15)
or KAF and RSigELUD (see Section 4.2.7.19). Kernel methods are becoming
more common in deep learning — e.g., fully kernected layers are replacing
fully connected layers with a kernel-based approach in [1250].

4.3.56 SAVE-inspired activation functions

Brad produced several AF that are, supposedly, motivated by human behavior
in [1251]. These AFs were created using the SAVE method [1252] and are
mostly variations of the AFs listed above. For completeness’ sake, a list
of these AFs is included in our work in Table 4.3 also with the real-life
motivations listed in [1251] — however, no deeper analysis or objective
evaluation of these AFs was not provided in [1251].

4.4 neural network architectures with parallel connections

Neural networks are often not as homogeneous as the D–GEX networks
and often include multiple parallel connections or units that are not directly
connected [69]. One of the simplest parallel architectures is the so-called
multi-column deep neural network (MCDNN) [1253, 1254], which is actually
an ensemble of individual "columns" which are separately trained NNs. Other
approaches include adding units that are composed of several parallel tracks,
which might even differ in the number of layers — e.g., the Inception modules
and their variants [52] for image classification. An important architecture with
parallel connection is represented by the ResNet family of networks [13] with
a residual skip connection, which adds the output of a layer to the output
of the layer above. Both described approaches are still being researched and
have resulted in networks such as Inception-ResNet [54] and DenseNet [838].

An approach similar to MCDNN is represented by Parallel Circuits (PCs)
[1255, 1256], which partitions a network into several parallel columns of
hidden layers that are not connected to each other. The PCs were developed
mainly to reach weight reduction for speeding up the computations. Since
PCs share an input and an output layer, the weight reduction occurs only
when the network has two or more hidden layers [1256]. The networks with
PCs were tested on five datasets from the UCI machine learning repository
[956]; however, the experiments were done using only a CPU, and thus only
small networks were tested — namely with 100 and 1,000 neurons. The
sparsity introduced by the PCs acted as a regularizer and helped to reduce
overfitting [1256].

1
7

2
l

i
t

e
r

a
t

u
r

e
r

e
v

i
e

w

formula parameters principle from [1251]

a sin (bz + c) a, b, c activation of resonance

a tanh (bz + c) a, b, c activation of resonance

z + a a introduction of neutral elements

a (ReLU (z))b a, b action against the wolf-pack spirit

a exp (bz) a, b activation of centrifugal forces

a1ReLU (f1(z)) + . . . + anReLU (fn(z)) a1, . . . , an,
f1(z), . . . , fn(z)

application of multi-level connections

ReLU (z − a) a application of asymmetry

a1ReLU (z) + . . . + anReLU (z) a1, . . . , an harmonization of individual goals with
collective goal

az1−b a , b transformation for value-added

a (1 − exp (−bz)) a , b transformation for value-added

ReLU (f (z)g(z)) f (z), g(z) application of prisoner paradox

ReLU
(

exp(z)
1

1+exp(−az)

)
a application of prisoner paradox

ReLU
(

az+b
cz+d

)
a, b, c, d application of shipwrecked paradox

Table 4.3: SAVE-inspired activations
The list of SAVE-inspired AFs from [1251].

4.5 artificial data generation 173

4.5 artificial data generation

Part of the presented experiments uses artificial data as those allow for
controllable scenarios and are therefore well suited for exploration of the
presented transformative adaptive activation function (TAAF). There are
many ways to generate artificial data — from the simple addition of random
noise to existing samples and thus enlarging the datasets or definition of the
sample distribution explicitly to the creation of highly nonlinear and complex
data patterns using artificial neural networks. This work will focus only on
the artificial data generated using neural networks since this is the method
that was used throughout this work.

4.5.1 Neural networks with random weights

Most commonly, one encounters neural networks with random weights
during initialization before training a neural network. The initial weights
need to be set to some value before training, and random initialization is
a common choice. This is because initializing all weights to the same value
(e.g., zero) can cause problems such as weight symmetry that could never
be broken during training, and therefore, it would result in getting stuck in
local optima during training [1257]; it can also be shown that random weight
initialization often gives a good starting point for optimization [1258]. More
thorough overviews of initialization approaches are available in [1257, 1259,
1260].

However, usage of random weights is not limited to the initialization phase;
neural networks with some random weights can often work as well (or
even better) than the trained networks or be less costly to train [1261, 1262].
Deep learning models can take a long time to train because of their complex
structure and large number of parameters. One solution is to use distributed
training and powerful accelerators [1263–1265]. Another solution is to train
only parts of the models and keep the rest fixed — either pretrained through
transfer learning [1266–1268] or with random weights [1261, 1269, 1270].
Neural networks with random aspects are also used for energy-constrained
devices, e.g., [1271].

In the cerebellum, which holds 80 % of all neurons in the human brain and
plays a crucial role in the learning of precise movements, the granular layer
receives and transforms various input signals to serve as the basis to generate
responses helping to control the muscles [1272, 1273]. Researchers suggest
that the mechanism of the transformation can be modeled using a random
recurrent network that can generate necessary signal transformation as long
as it operates in a state close to chaotic behavior [1272].

There are approaches where only a very small fraction of the weights
is random, as in [1274], where the only randomness comes from a mixing
weight a that is sampled from the interval [0, 1] and is used for stochastically
mixing two branches of a neural network which works as a regularization
approach.

174 literature review

Neural networks with random weights are one possibility for nonlinear
data generation as even random weights lead to meaningful patterns or
extract good features [1275]. Neural networkss with random weights are
sometimes used when training the whole network would be too computa-
tionally costly and it has been shown random weights extract good features
as only retraining some of the top layers leads to comparative performances
to fully trained neural networks [1276–1286]. The usage of random weights
leads to a competitive performance and much faster training times compared
to networks that are fully trained, and it is sometimes used for processing
large-scale datasets [1281]. Reservoir computing is another name for similar
approaches where a reservoir is generated randomly, and the so-called readout
is then trained [1287]. There is also some evidence that a similar principle
might exist in the brain [1288–1290].

The random vector functional link networks (RVFLNs) are one such case
— they are a special class of a single hidden layer feed-forward neural net-
works that have the input layer connected both to the hidden layer and the
output layer [1270, 1279, 1291–1294]. The RVFLNs are one of the first exam-
ples found in the literature that researched the usage of random weights in
neural networks [1279, 1284]. The RVFLNs also represent one of the first
examples of skip-connections since the input layer is connected both to the
hidden layer and the output layer directly in a similar manner as ResNets
[13, 54] — the impact of skip-connections in RVFLNs is researched in [1295]
and was found to significant and positive. These networks can also be con-
sidered universal approximators under certain conditions [1293, 1294] and
also leverage the random weights to avoid the somewhat resource-costly BP
and gradient descents methods of feed-forward neural networks [1279, 1296].
While being less common than the feed-forward neural networks (FFNNs),
these networks are still being utilized — for example, for thermal environ-
mental prediction in [1296] — for their simplicity. They are being used for
semi–supervised learning [1297–1299] or distributed learning [1300] and their
applications include, for example, time-series classification [988], direction-of-
arrival estimation [1299], conditional probability densities prediction [1301],
biomedical classification [1302, 1303], effective solar power prediction [1304],
short-term electric load forecasting [1305], COVID-19 spread forecasting
[1306], face recognition [1303], handwritten digit recognition [1303], object
recognition [1303], text classification [1303], visual tracking [1307], modelling
thermal processes [1308], soft sensor modelling for sintering processes [1309],
molten iron quality [1310] and word recognition [1311]; more application
examples are available in [1280, 1295]. Few extensions of RVFLNs were pro-
posed; for example, parsimonious random vector functional link network
(pRVFLN) [1312], robust M-estimation-based RVFLN (M-RVFLN) [1310],
RVFLN with ϵ-insensitive Huber loss function (ϵ-HRVFLN) [1302], multi-
kernel RVFLN (MK-RVFLN) [1304], kernel RVFLN (K-RVFLN) [1308], MK-
RVFLN with evaporation-based water cycle based parameter optimization
(EVWCA-MKRVFLN) [1304], wavelet-coupled RVFLN (WCRVFLN) [1306],
ensemble incremental learning [1305], sparse pre-trained RVFLN (SP-RVFLN)
[1303], convolutional RVFLN (CRVFLN) [1307], and ensemble RVFLN based
on negative correlation learning [1309, 1313].

4.5 artificial data generation 175

A similar approach was used by Cao et al. in their variant of FFNNs with
random weights [1315], which resemble RVFLNs but are missing the direct
link from the input layer to the output layer [1314].

Stochastic configuration networks (SCNs) are an approach building up
on the RVFLNs [1316] that builds up the network incrementally by adding
hidden nodes and allows for fast convergence and good generalization perfor-
mance. The first SCNs were based on least square optimization that suffered
from scalability issues [1317], which resulted in so-called fast SCNs (FSCNs)
[1317] that use incremental method for fitting the weights of the output nodes
based on matrix decomposition and therefore have better performance when
the hidden layer has a significant number of nodes [1317]. SCNs are often
used in industrial applications — SCNs were, for example, used for prediction
of component concentrations [1318], intrusion signal recognition [1319], soft
sensor modeling [1320] of ammonia nitrogen concentration [1321], seawater
ammonia nitrogen concentration [1322], sulfur dioxide and hydrogen sulfide
concentration [1323], self-blast state detection [1324, 1325], industrial data
classification [1326], modeling submergence depth of a pumping well [1327],
fault diagnosis of power transformers [1328], and forecasting student learning
performance [1329].

Extensions of SCNs include locality preserving SCN (LPSCN) [1320], SCN
with rough set based attribute reduction (RS-SCN) [1322], SCN based on
genetic algorithms (GA-SCN) [1321], broad SCNs [1330], ensemble SCN
[1329], ensemble SCN based on negative correlation learning [1331] (similar
to [1313] but with SCNs instead of RVFLNs), SCN with self-attention learning
features [1326], SCN with hybrid bat-particle swarm optimization (G-BAPSO-
SCN) [1332], Bayesian robust SCN based on a mixture of the Gaussian
and Laplace distributions (MoGL-SCN) [1333], orthogonal SCN (OSCN)
for filtering low-quality hidden nodes [1334], robust SCN for dealing with
outliers or uncertainty [1335–1337], FSCN with an improved sparrow search
algorithm (ISSA-FSCN) [1338], SCN with dropout [1319], bidirectional SCN
(BSCN) [1339], chaotic sparrow search algorithm based SCN (CSSA-SCN)
[1340], deep SCN (DSCN) [1341], AdaBoost based DSCN [1342], adaptive
pruning regularization SCN (PRSCN) [1323], stochastic configured Bayesian
neural network (SCBNN) [1343], and FPGA implementation of SCNs that
was presented in [1344].

The ELMs are similar to RVFLNs; the hidden nodes are fixed and often
randomly initialized and not trained [1152]; only the output layer is trained,
and the ELM can be therefore thought of as linear models with nonlinear
features [1278, 1345]. Even from a theoretical point of view, single-hidden-
layer feedforward networks with random weights in the hidden layer are,
under certain conditions, also universal approximators the same as networks
with trainable weights as shown in [1346, 1347]. ELMs are also applicable in
semi-supervised and unsupervised contexts [1348]. ELMs can be used, for
example, image classification [1153, 1349, 1350], face recognition [1351–1355],
3D object recognition [1356], activity recognition [1357–1359], human gesture
recognition [1360, 1361], stock market forecasting [1362], sales forecasting
[1363], robot control [1364, 1365], location estimation [1366], wind speed
forecasting [1367], question subjectivity identification [1368], gene expression

176 literature review

based classification [628], river suspended sediment load prediction [1369,
1370], fault diagnosis [1371, 1372], and compound classification [692].

The performance of an ELM variant on various benchmark datasets from
UCI repository [1373] is available in [1374]. ELM framework can be extended
for cross-domain learing through domain adaptation ELMs (DAELMs) [1375]
or to a multilayer neural network based one-class classification with ELM
(ML-OCELM) [1376]; other extensions include daptive semi-supervised ELM
(ASELM) [1368], kernel based ELM (K-ELM) [1377], online sequential ELM
(OS-ELM) [1378–1380], online sequential fuzzy ELM (Fuzzy-ELM) [1378],
structure-adjustable OS-ELM (SAO-ELM) [1379], dynamic forgetting factor
based OS-ELM algorithm (DOS-ELM) [1381] and its multilayer variant (ML-
DOS-ELM) [1381], fuzziness-based OS-ELM algorithm (FOS-ELM) [1382],
adaptive deep hybrid kernel extreme learning machine (ADHKELM) [1372],
hybrid radial basis function (RBF)-ELM NN [1153], incremental ELM (I-
ELM) [1383] and convex incremental ELM (CI-ELM) [1383], coiflet wavelet-
based optimization method-based ELM (cWOB-ELM) [1369, 1370], multi-layer
extreme learning machine (ML-ELM), hierarchical extreme learning machine
(H-ELM), densely connected (D-HELM) [1374], evolutionary optimized
ELM (ES-ELM) [1384], error minimized extreme learning machine (EM-ELM)
[1385], and bayesian extreme learning machine (BELM) [1386]. Wang et
al. proposed random convolution nodes (RCNs) in [1387] and used NNs
with RCNs for online sequential learning of respiratory motions; the output
weights were computed analytically using the ELM approach [1387].

More details about ELMs, their extensions, and applications are available
in reviews [1278, 1345, 1377].

The networks with random weights contain meaningful patterns, and it
is possible to extract subnetworks that have comparative performance as
networks of similar size but specifically trained for the task [1275, 1388];
therefore, the training might consist of selection of suitable subnetwork from
a larger, randomly initialized network instead of weight training using, for
example, some gradient descent method. In [1275], the authors show that
they are able to find a subnetwork of Wide ResNet-50 [55] with randomly
initialized weights that has a comparable performance to a smaller network,
ResNet-34 [13] while also having slightly lower number of parameters — the
work builds on top of [1389] where there are selected suitable subnetworks
but those are still trained to reach sufficient accuracy.

The No-Prop algorithm for training neural networks is presented in [1283],
and it is basically just using non-trainable, random weights of hidden neurons
and training the top-layer using the steepest descent method. The authors
show that such an approach is simpler and faster, and it often leads to
performance identical to complete optimization using the back-propagation
algorithm with gradient descent.

Not only does the last layer of a network or all of the layers have to be
trainable, but it can be shown that many other variants work well — for
example, also tunning a layer in the middle together with the last layer leads
to better performance than just tunning the last layer [1277]. Furthermore, if
one had selected only one block/layer for training, sometimes it is better to
train other parts than the last layer as well as shown in [1277] where authors

4.5 artificial data generation 177

compared training reported a network’s performance with respect to training
only certain blocks (DenseNet [838] and WRNs [55] were used). Another
possibility is to set the top layer to a fixed but not-random pattern as shown
in [1390] where the top layer was kept fixed, but other layers were trained
without significant impact on a network’s performance.

Since recurrent neural networks (RNNs) are harder to train than classical
FFNNs (e.g., due to the vanishing/exploding gradient [1391]), there are
approaches that introduce some randomness also to this particular class of
networks [1285, 1287]. The aforementioned reservoir computing (RC) [1290,
1392, 1393] is one such approach; a recurrent neural network called reservoir
is randomly weighted and remains unchanged during training. Then the
desired output signal is trained using the signals from the reservoir — the
simplest approach, echo state networks (ESNs) [1394–1398], models the target
signal as a linear combination of the signals from the reservoir using linear
regression with least-square objective [1287] while more complex approaches
might use quadratic programming to maximize margin in an SVM-like
manner [1399]. Another example of RC is a liquid state machine [1400–1402],
which is an independently discovered variant of ESNs first proposed in [1403].
RC is also used to model actual brain [1396, 1404], e.g. reservoir computing
was used to model the granular layer in cerebellum in [1272, 1273, 1405] —
the granular layer is the reservoir and long-term depression of the parallel
fiber–Purkinje cell connections is the learning rule [1273]. The research of
RC and ESNs themselves is often biologically motivated (e.g., [1406, 1407])
as it can offer insights into the brain [1396, 1404]. RC is also used to model
short-term memory (STM) [1397, 1408–1414] that is hypothesised to be due
to transient network activity [1408]. Nevertheless, it was found that NNs
optimized for memory tasks might differ significantly from NNs optimized
for prediction tasks [1415].

The effect of a deeply layered organization of RC models, an efficient RNN
architecture, was investigated in terms of both occurrence of multiple time-
scales and the increasing richness of the dynamics in [1416, 1417] and lead to
onset of deep echo state network (DeepESN) [1417–1420]. The deep layering
of recurrent models allows diversification of temporal representations in the
layers of the hierarchy, leading to an increase in short-term memory capacity
[1417] even though such layer stacking is just an architectural constraint — it
is equivalent to fully connected architecture, where some connections were
removed [1417]. The Deep ESNs have also less computational complexity
and better predictive performance than shallow, single-layer ESNs [1421].
The inter-layer connectivity in DeepESNs plays a significant role in an ESN
performance [1422]. The dynamical behavior of ESNs model is studied in
[1423–1426] for shallow ESNs and in [1427] for DeepESNs; the hyperparame-
ter optimization for ESNs models is studied in [1428]. A common usage of
RC, ESNs and DeepESNs is regression, timeseries prediction and sequence
processing [1429], e.g., [707, 1430–1452], but also classification [1453, 1454],
e.g. emotion recognition [1455], word recognition [1402], room classification
based on power consumption [1456], time series classification [1457–1461],
graph classification [1462], and reconstruction of missing data [1463]. Another
example is system modeling [1464] and identification [1465]. The more gen-

178 literature review

eral RC models can be used, for example, for noisy image recognition [1466],
reconstruction of unmeasured dynamical system variables [1467], emulation
of chaotic systems with cryptography applications [1468], phoneme recogni-
tion [1469] and speech recognition [1470–1472], detection of epileptic seizures
[1473, 1474], continuous digit recognition in audio [1475], robot control [1476],
image classification [1471, 1477–1479], human action recognition in videos
[1480], attack detection in smart grids [1481],

Few extensions of the ESN approach are the polynomial ESNs (PESNs)
and their simplified variant (S-PESNs) [1431], variable memory length ESNs
(VML-ESNs) [1482], double-reservoir ESNs (DRESNs) [1432], ESNs opti-
mized using mutual information (MI-ESNs) [1483], deep belief echo state
networks (DBENs) [1434], multiple reservoirs echo state networks (MR-ESNs)
[1436], ESNs using differential evolution (ESN-DEs) [1437], particle swarm
optimized ESNs (O-ESNs) [1484], probabilistic ESNs (π-ESNs) for density
estimation [1455], leaky-integrator ESNs [1395, 1485], hybrid circle reser-
voir ESNs (HCR-ESNs) [1486], robust ESNs with correntropy induced loss
function [1487], sinusoidal ESNs (SESNs) [1488] for periodic source signals,
fast subspace decomposition echo state networks (FSDESNs) [1440], robust
echo state networks (RESNs) based on Bayesian framework [1441], functional
ESNs (FESNs) for time series classification [1457], time warp invariant echo
state networks (TWIESNs) [1489], support vector echo-state vector machines
(SVESMs) [1443], echo state graph neural networkss (ESGNNs) [1462, 1490].
There are also quantum reservoir computing extensions, e.g., [1491–1493].

Interestingly, RC can be efficiently implemented with a specialized hard-
ware based on optical and optoelectronical systems, which can accomplish
fast information processing with low energy consumption [1414], more exam-
ples and details are available in [1281, 1445, 1447, 1452, 1470, 1472, 1477, 1480,
1494–1520]. There are also integrated circuits and FPGA implementations
(or simulations of such approaches) of RC models, e.g., [1407, 1446, 1478,
1518, 1521–1526]; and atomic switch network implementations [1527]; another
approach to hardware implementation of RC is based on memristors [1528,
1529], which were shown to have good properties for a reservoir [1530], e.g.,
[1462, 1530–1537]. There are physical reservoirs [1538, 1539], for example,
electrolytes and ion-based liquids [1479, 1540–1544], other physical reservoirs
include nanomaterials [1281, 1545–1547], superconductors [1491, 1548–1550],
semiconductor-based memristors [1535–1537, 1551, 1552] Brief review of hard-
ware and physical implementations of RC is available in [1538] and in [1553]
where an intelligent matter is discussed as one of the goals of neuromorphic
computing.

The RC is well established from a theoretical point-of-view and works on
two main principles — the reservoir does a conversion of spatiotemporal
information into a spatial representation only, and it can be considered as
a short-term memory as the inputs’ influence will fade from the reservoir
state over time [1290, 1554, 1555]. It was also shown that there are classes of
RCs that are universal approximators [1556, 1557]. The RC approach can also
be formulated as nonlinear vector autoregression [1558] without the need
for an explicit reservoir with random weights resulting in next generation

4.5 artificial data generation 179

reservoir computing (NGRC) [1559]. More details about RC is available in
reviews [1285, 1290, 1560–1562].

A similar approach is also used for graph neural networkss [1563], which
utilizes random filters and adjusts the learning objective with regularized least
square loss in order to speed up the training and facilitate the training even
for very large graphs [1563]. Such an approach is called graph convolutional
networks with random weights (GCN-RW) [1563] and was first proposed for
node classification.

Another approach is the random weight NNs with trained activation func-
tion [1247], where the weights are kept random but the activation functions
in the hidden layers are trained using linear regression from a selected pool
of parameterized activation functions [1247].

Yet another application of random weights lies in ensemble learning. The
Kowsari et al. introduces a new method, called random multimodel deep
learning (RMDL), for selecting the best deep learning approach to solve classi-
fication problems [1269]. RMDL combines different deep learning techniques,
such as deep neural networks (DNNs), RNNs, and CNNs, using parallel
learning architecture to produce multiple random classification models. The
method is evaluated on various datasets, including both text and image
classification, and the results show that RMDL consistently outperforms
conventional approaches like naïve Bayes, SVM, or a single deep learning
model.

Neural networks with random weights are also helpful from a theoretical
point of view as it is quite hard to create a theoretical framework explaining
why neural networks work so well in practice [1262]. Neural networks with
random weights are set to the random matrix framework in [1564] and also
described in the context of other methods such as ridge regression.

4.5.2 Synthetic data generation

Neural networks can be used for generation of synthetic data as was already
briefly discussed in Section 4.1.2.2 where a NNs were used for generation or
augmentation of gene expression data. There are various reasons for gener-
ating data — from the need for data with known theoretical properties for
demonstration learning algorithms (e.g., [1565]), enlarging smaller datasets
through data augmentation [1566] to facilitate better learning and gener-
alization to a generation of entirely fake data [1567, 1568] for aesthetic or
other purposes [1569]. The line between data generation and other tasks such
as translation between domains (e.g., image-to-image [1570–1572] or text-
to-image [1573–1575] translation) is somewhat blurry since the translation
task can be thought of as conditional data generation on some input. There-
fore, there is no clear distinction between conditional data generation and
transforming or mapping tasks, as the same tasks can be solved by models
that are not primarily generative in the sense of allowing multiple different
samples generated conditionally on a single input and by models that allow
for unlimited sampling from the domain. A few examples of the former class
include style transfer using feed-forward CNNs [1576], style transfer using

180 literature review

perceptual loss [1577], style transfer using generative adversarial network
(GAN) [1578, 1579],

The most important reasons for synthetic data generation/augmentation
are:

controllable complexity and properties
Most common examples of synthetic data are usually textbook examples
where the data are generated such that they exhibit simple, controllable
properties that are required for a demonstration of a principle and
usually nothing more, e.g., [1580]. Such data can be either simple points
on a plane or quite complex datasets with texts and images.

scarcity
Synthetic data are often used because real data are scarce (e.g., due to
costly manual annotation) and cannot be obtained in sufficient amount
necessary for solving a problem in a sufficient quality [1581–1584]. The
data can be either fully synthetic (e.g., [1583, 1585, 1586]) or augmented
(e.g., [1584]) — the data can include real samples or be modifications
of real samples [1584, 1587]. Data augmentation is often used to limit
overfitting by producing more samples that are similar to the existing
data [1587] or when the class distribution is imbalanced, and the sam-
ples of minority class synthesized instead of oversampled (e.g., [1588,
1589]).

privacy
The data are often hard to obtain due to privacy considerations [1581,
1590] — the data exist but cannot be released. This can be solved by
fully synthetic datasets with similar properties or data anonymization
techniques that often include synthetic data (the simplest example is
the replacement of a person’s name by a made-up name). Data privacy
is important because even a learned model can leak private information
even if the original dataset is very closely controlled. The leaks through
the trained model might include data extractions, model inversions [1591,
1592] which falls under attribute inference [1593] (e.g., [1594–1597]),
membership inference attacks [1593, 1594, 1596, 1598–1604] and are closely
connected to concepts of differential privacy [1605–1609] and differentially
private learning [1610–1619]. However, even synthetic data generation
might lead to privacy leaks through an attack for disclosing whether the
data from certain target individuals were used in the data generation
[1620–1626]; therefore the protocol used for synthetic data generation
has to be carefully designed if the process uses real data that are very
confidential.

There are many domains that utilize synthetic or augmented data for
machine learning purposes.

There are a lot of approaches that use neural network for synthetic data
generation. Restricted Boltzmann machines (RBMs) [1627–1631] and deep
belief networks (DBNs) [1632–1635] are one of the earliest methods [1636] and
are followed by deep Boltzmann machines (DBMs) [1637] that can be seen as

4.5 artificial data generation 181

their extension. DBNs can also be used for extracting low-level features and
dimensionality reduction [1638, 1639]. There are few extensions of DBNs —
e.g., convolutional deep belief networks (CDBNs) [1635, 1640], mode isolation
s (MI-CDBNs) [1641]. RBMs are a member of more general class [1642] —
energy-based models (EBMs) (e.g., [1643, 1644]). An example of extension
of RBMs are energy-based dropout [1645], stream-based RBMs [1646], FE-
RBMs for classification [1647], Gaussian RBMs with binary auxiliary units
(GARBMs) [1648], and parallel ensemble of RBMs [1649].

The autoregressive models [1650–1656] explicitly estimate distribution
using modified autoencoder (AE) or recurrent architecture. An AE has two
parts — an encoder and a decoder. The encoder maps the input to a latent
variable z, and then the decoder maps the latent variable z back to the original
space [1657, 1658].

Variational autoencoders (VAEs) [291, 1659, 1660] extend the idea of gener-
ative autoregressive or autoencoder models even further. While the AEs are
learned to compress the input to a latent space, which then can be used for
sampling new samples, the latent variable is not regularized, and therefore,
it is hard to sample meaningful samples as there might not be parts of the
latent space that do not correspond to any data point. It is possible to use
the training data to estimate the distribution of samples in the latent space to
facilitate sampling of meaningful points, but this can be elegantly solved by
VAEs — the VAEs add constraint to the latent representation to regularize
the latent space. The VAEs impose a constraint that the latent distribution of
the inputs must follow a known, usually normal, distribution. Thanks to this
constraint, the VAEs are able to learn smooth latent representations of the
input data [1657, 1661]. Since the latent space follows such a distribution, the
sampling of new data points is easy. However, even VAEs have a shortcoming
— a sample generated by a VAE cannot often be consistently encoded [1662,
1663]. This issue was addressed by autoencoder VAEs (AVAEs) in which the
encoder part of a VAE is trained using a notion of self-consistency leading
to robust representations [1662]. There are also other VAE extensions, e.g.
S3VAE [1664], C-DSVAE [1665], VQ-VAE [293, 1666, 1667], S-VAE [1565],
VaDE [1668], NVISA [1669], InfoVAE [1670], β-VAE [1671], DRAW [1672],
NVAE [1673], purifying VAE (PuVAE) [1674], VT-STOWER [1675], and CE-
VAE [1580]. The VAEs can also be used to generate out-of-distribution data
that are not present in the original training data using style transfer [491].

VAEs were used, for example, for image generation [1666, 1667, 1670–1673,
1676], video generation [1664, 1666], audio generation [1666], gesture genera-
tion from audio [1677], image clustering [1668, 1669], image feature extraction
[1678], text clustering [1668], molecule clustering [1679], text style transfer
[1675], analysis of biological data [1680], and generating gene expression
samples [490, 491].

One of the well-known neural network techniques for synthetic data gener-
ation is a generative adversarial network (GAN) [1681]. GANs represent an
approach where a generative model is trained together with the discrimina-
tive model using real data in a competitive manner — the generative model
produces a synthetic sample, and the discriminative model then decides

182 literature review

whether the sample is real or generated [1681]. More thorough reviews of
GANs, their extensions and applications are available in [451, 1682–1686].

GANs extensions include VAEGAN (combining VAEs and GANs) [1676],
Zero-VAE-GAN [1687], F-VAEGAN-D2 [1688], f-CLSWGAN [1689], Cycle-
GAN [1578, 1690], bicycle GAN [1691], edge adversarial GAN (EGAN) [1692],
StackGAN [1693] and its extension StackGAN++ [1694], GAWWN [1695],
SinGAN [1696, 1697], S2–GAN [1698], RDCGAN [1699], WGAN-GP [1589],
auxiliary classifier GAN (AC-GAN) [1700], transformer based GAN (Trans-
GAN) [1701], self-attention GAN (SAGAN) [1702], coupled GANs [1703],
selective transfer GAN (STGAN) [1579], gradient-guided dual-branch GAN
(GCD-GAN) [1704], GAN with residual inception modules (RI-GAN) [1705],
LeicaGAN [1574] utilising prior knowledge, attentional GAN [1706], GAN
with neural architecture search (AutoGAN)[1707], panoptic layout GAN (PL-
GAN) [1708], deep fusion GAN (DF-GAN) [1709–1711], CRPGAN [1712],
cross-modal attention gusion based GAN (CMAFGAN) [1713], graph GAN
(GGAN) [1714], fused GAN with attention mechanism (AM-GAN) [1715],
dual Generator attentional GAN (DGattGAN) [1716], ML-CGAN [1717], con-
trastive meta-learning GAN (CML-GAN) [1718], dual discriminator GAN
(D2GAN) [1719], dual discriminator weighted mixture GAN (D2WMGAN)
[1720], robust conditional GAN (RoCGAN) [1721], variance enforcing GAN
(VARGAN) [1722], dual-stream GAN with phase awareness (DPGAN) [1723],
geometry-aware GAN (GAGAN) [1724], GAN with residual partial mod-
ules (RePGAN) [1725], squeeze-excitation network-deep convolution GAN
(SE-DCGAN) [1726], example attention GAN (EA-GAN) [1727], hyperbolic
GAN (HGAN) [1728], partition-guided GAN [1729], and cascading residual–
residual attention GAN (CRRAGAN) [1730].

The common tasks for GANs are image generation [1569, 1636, 1676, 1684,
1697, 1699–1701, 1717–1720, 1724, 1731–1748], image generation from text
[1571, 1573, 1574, 1693–1695, 1706, 1709–1711, 1713, 1716, 1737, 1749–1765],
semantic image synthesis [1766], text-guided image editing [1758, 1767–1769],
image generation from embeddings [1688], image feature generation [1689],
single image animation [1696], novel view synthesis [1770], audio enhance-
ment [1723], audio-to-video [1771], image translation and editing [1578, 1691,
1712, 1726, 1768, 1772–1780] such as paint-to-image [1696], day-to-night [1571],
sketch-to-image [1571, 1737, 1765, 1781], RGB to hyperspectral image [1782],
image inpainting [1725, 1783–1789], restoration of ancient artworks, murals
and texts [1727, 1790–1796], medical image translation and enhancement
(fresh frozen samples to formalin-fixed, paraffin-embedding processed sam-
ples [1797], mapping one contrast to another in magnetic resonance imaging
(MRI) [1798, 1799], contrast computed tomography (CT) images to non-
contrast [1800], MRI-to-CT [1801], CT-to-MRI [1802], retinal images from
vessel trees [1780, 1803], tumor segmentation [1804–1808]) [1809–1813], sketch
extraction [1691, 1704], unsupervised image translation [1814] (more details
in review [1815]), image editing [1579, 1696, 1816], super-resolution [1730,
1791, 1792, 1811, 1813, 1817–1835], generation high-quality images with high
dynamic range [1836], image segmentation [1715], deblurring [1690, 1692,
1837–1842] and image haze removal [1705, 1782], and video editing [1778];
however, GANs can be also used password cracking [1843] (extended version

4.5 artificial data generation 183

[1844]), gene expression inference [14], improving fault diagnosis [1845, 1846],
defense against adversarial attacks [1847], learning data priors of 3D LiDAR
data [1848], 3D model generation and manipulation [1849–1854], Alzheimer’s
disease staging using structural MRI (sMRI) [1855], generation of gene expres-
sion data [454], data imputation [1856, 1857], solving jigsaw puzzles [1858],
texture generation [1714], image watermarking [1859], anomaly detection in
medical images [1860–1863], medical image fusion [1864], anomaly detection
in medical images [1865], object tracking [1866], and graph generation [1867].
It is also possible to translate networks learned for one task into networks
solving other tasks — e.g., an approach that uses unconditional GANs or
VAEs and uses them in conditional settings in [1868].

GANs are sometimes used for augmentation of the data and enlarging the
training dataset for other methods [1588, 1589, 1846, 1869–1874]. For example,
a GAN was used to augment simulated data that were used to supplement the
real measured data in [1869], to enlarge small datasets in [1875], to generate
synthetic samples for a minority class [1588, 1589, 1846, 1873, 1876–1878],
mammographic images [1863, 1879], and brain tumor images [459, 1880,
1881]. The data augmentation and image generation are especially useful in
medical fields [1874] where large datasets are often either costly to obtain or
the observed characteristic is rare; furthermore, the generated data are often
indistinguishable from data from real patients - e.g., generated SPECTs of
cerebral ischemia were shown to be very faithful [1882]. Another example of
dataset generation/augmentation in case there are only smaller datasets was
presented in [1748], where authors used GANs to generate more samples to
create an insulator image dataset.

There are other generative models, such as Plug and Play generative
networkss (PPGNs) [1883] that describe a more general framework where
there is a single generative network and a replaceable network that conditions
the generative network what to draw [1883].

A slightly different generative approach is represented by diffusion mod-
els (DMs) [1884, 1885], also called denoising diffusion probabilistic models
(DDPMs) [1575], that recently started to achieve state-of-the-art performance
on several tasks [1886]. Diffusion models work by gradual denoising process
[1886, 1887] — they first progressively destroy data by adding more and
more noise and then learn to reverse this process [1887]. Sampling of a new
sample is done by progressively denoising pure noise. Similarly to other
generative models, the DMs can be used for image synthesis [1569, 1886,
1888–1909], video synthesis [1910–1923], text-to-image generation [1763, 1769,
1894, 1898, 1907, 1908, 1923–1953], text-to-video generation [1912, 1919, 1922,
1954–1956], motion synthesis [1957], text-to-motion [1918, 1958–1962], image-
to-video [1963, 1964], image translation and editing [1892, 1894, 1901, 1908,
1911, 1926, 1928, 1943, 1944, 1949, 1951, 1965–1978], medical image translation
and enhancement (MRI-to-CT [1979], accelerated MRI [1980, 1981], vessel
segmentation [1982], brain tumor inpainting [1983]) [1874, 1965, 1984–1990],
video translation and editing [1956, 1991], JPEG artifact correction [1992],
semantic segmentation [1893, 1985, 1986, 1993–2000], text generation [1890,
2001], image-to-text [1905, 1907, 1908, 2002–2004], 3D image generation [1854,
1929, 2005–2013], text-to-3D [2007, 2008, 2014–2016], point cloud generation

184 literature review

and reconstruction [1904, 2017–2019], novel-view synthesis [2011, 2020, 2021],
3D reconstruction [2011, 2021], scene synthesis [2022], vectorized sketch gen-
eration [2023], text and language generation [1907, 1942, 2024–2026], sentence
completion [2024], super-resolution [1970, 1971, 1987, 1988, 2027–2029], in-
painting [1967, 1970, 1971, 1988, 2030], sound-guided video editing [2031],
sound-guided gesture synthesis [2032], audio synthesis [1910, 2033, 2034],
text-to-speech [1942, 2035–2042] and text-to-audio [2043], audio enhancement
[2035, 2044, 2045], time-series forecasting [2046–2049], time-series generation
and imputation [2048, 2050, 2051], anomaly and out-of-distribution detection
[2052, 2053], anomaly detection in medical images [2054, 2055], and change
detection [2056] but also travelling salesman problem (TSP) [1893], combina-
torial optimization [2057], height estimation [2058], Rickrolling [1930], image
watermarking [2059], molecule and protein generation [2060–2075], mate-
rial design [2076, 2077], and defense against adversarial attacks (adversarial
purification) [2078–2087].

The DM principle can also be used together with other generative models
[1887] such as combinations with autoregressive models [2049, 2088, 2089],
VAEs [2090–2092], GANs [1965, 1982, 2000, 2093, 2094], NF models [2095–
2099] and with energy-based models (EBMs) [2024, 2100]. There are also
variants that produce images directly from the noise instead of gradual
denoising, e.g., [1891]. More details about DMs and their usages are available
in reviews [1769, 1887, 1923, 1984, 2025, 2035, 2046, 2060–2062, 2101–2103].

Generative models and generative artificial intelligence, in general, are a
broad topic that was only superficially touched on in this work; for more
details, see, for example, reviews [1682, 1760, 1874, 1887, 1942, 2104, 2105].

4.5.3 Neural networks with random weights for data generation

While the literature on neural networks with random weights and neural
network for data synthesis is numerous (see Section 4.5.1 and Section 4.5.2
respectively), the usage of neural network with random weights for data
synthesis is much rarer, this is partly due to the popularity of supervised
data synthesis in recent years where the generators are trained to resemble
particular domains and partly due to the lower need for data with a pattern
generated at random. Some of the research focused on generative networks
that have only partially random weights or are using other approaches that
utilize some sort of randomness in the structure — as opposed to common
generative networks for data generation where the only randomness comes
from the random input to the network and from the random initialization of
weights before the training process.

Two neural networks with random weights were used in [1143] to create
simulated data for assessing the performance of proposed adaptive active
functions. Farhadi, Nia, and Lodi used shallow networks with ten neurons
in either one or eight fully connected hidden layers. The used activation
functions in the data generation networks were ReLU and logistic sigmoid.
Farhadi, Nia, and Lodi generated 10,000 samples with ten features and a
binary target for each experiment with simulated data.

4.5 artificial data generation 185

Another example of data generation networks with some random weights
is represented by RCs (see Section 4.5.1 for more details) [2106, 2107]. It was
first shown in a tutorial [2106] where an ESN was trained to be a sinewave
generator; the network had a reservoir of 20 neurons whose internal weights
were set to random values and were not changed during the training and a
single readout unit that was connected with trainable weights to the reservoir.
The trainable weights were fitted using linear regression instead of any
gradient method as the readout is a linear combination of reservoir outputs
and the sample size was small [2106]. There was also a variant with 100

neurons that allowed for tunable frequency of the sinewave generator.
A different example of data generation using RC is the limit cycle genera-

tion in [2107], where RC was used to simulate robot control using a recurrent
network of spring and masses. First, the authors demonstrated the RC ap-
proach by generating three limit cycles — two defined by simple differential
equations and the third being a Lissajous curve — and successfully generating
them using a reservoir that simulated recurrent network of spring and masses
with two linear readout units, one for each coordinate. Since the reservoir
is not trained and fixed with random weights, the authors showed that a
single reservoir could be used for all three tasks, which further supports their
premise that even a robot’s body could be a suitable physical reservoir for
morphological computation [2107]. The generated limit cycles using RC were
accurate and stable; to further show the stability of such systems, the author
experimented with adding perturbations to the inputs. The first experiment
replaced a single output with a constant that was fed to the system for 10s̃
instead of the actual value; it was shown that after the correct value was fed
to the system once again, the system was able to return back to the desired
trajectory after the disturbance disappeared [2107]. The second experiment
introduced quite a strong constant horizontal force during the same time
window as in the first experiment; this force was applied to all the nodes of
the network and led the trajectories very far from the desired trajectory while
being applied. Nevertheless, the system was also able to recover to the desired
trajectory after the application of the force was stopped. The third experiment
added perturbances in the form of white noise (more details in [2107]), and
while the trajectory was quite off while the noise was applied, the trajectory
fairly quickly returned back to the desired trajectory once the noise was
removed. Therefore, it was shown that stable outputs can be produced even
with randomly weighted reservoirs whose weights are not fitted during the
training procedure [2107]. Similarly as in the first experiment with three limit
cycles, the authors showed in another experiment that a single reservoir with
fixed weights can be used for more tasks where different walking patterns
(taken from [2108]) were generated only by refitting the readout unit [2107].

Another example of data generation with random weights is style transfer
and natural texture synthesis in [1262], where authors present three popular
inversion tasks for visualization. The inversions are applied on an untrained
VGG [51] with random weights, and the authors show that they were able
to reconstruct images with high perceptual quality and that the results were
even better than using pre-trained VGG with the same architecture [1262].
The VGG with random weights was also used to synthesize natural textures.

186 literature review

While Gatys, Ecker, and Bethge failed at natural texture synthesis [2109],
He, Wang, and Hopcroft hypothesized that it might have been due to their
inappropriate scale of the weighting factors [1262]. He, Wang, and Hopcroft
were able to synthesize natural textures of similar quality as had a trained
VGG network in [2109] with VGG with random weights with automatic
normalization to scale the squared correlation loss for different activation
layers [1262].

The first experiment present in [1262] is an inversion of deep representation
where He, Wang, and Hopcroft selected a few source images from the ILSVRC
2012 challenge [48] to be the examples for the inversion task; a monkey image
was selected as the reference image. The VGG with stacked random weights
(ranVGG) had 19 layers of random weights — 16 convolutional layers and
three dense, fully connected layers — and five pooling layers with average
pooling. He, Wang, and Hopcroft compares the performance of ranVGG,
VGG with purely random weights, trained VGG, and the work [2110] of
Mahendran and Vedaldi based on the AlexNet [49]. Both ranVGG and VGG
with purely random weights showed lower reconstruction distances with
lower variations than the trained VGG; furthermore, ranVGG had lower
variations and lower reconstruction distances than the VGG with purely
random weights and demonstrated a more stable and high performance
[1262]. He, Wang, and Hopcroft also compared the perceptive quality of the
reconstruction and noted that the ranVGG shows higher perceptive quality
than the AlexNet from [2110].

The second experiment of He, Wang, and Hopcroft is texture synthesis
where textures generated by the inversion task using an increasing number
of convolutional layers are compared to the original image and the results
obtained using pre-trained VGG from [2109]. It is shown that increasing the
number of used convolutional layers improves the reconstruction up to the
point where it is very similar to the pre-trained model; nevertheless, the
pre-trained VGG outperforms the ranVGG when the original texture is neatly
arranged [1262].

The last experiment present in [1262] is artistic style transfer; He, Wang,
and Hopcroft selected one convolutional layer as the content layer and used
the combination of a few other convolutional layers as the style. The results
obtained using the ranVGG on several famous artworks were comparable to
the work of Gatys, Ecker, and Bethge who used trained VGG [2111] — albeit
the trained VGG resulted in slightly smoother lines and textures [1262]. The
authors further complement the experiments by demonstrating an artistic
style transfer from Chinese paintings to selected photographs.

While the work [1262] does not use the network with random weights in a
feed-forward fashion for data generation but rather through inversion tasks,
it still shows that random weights may be useful for several reasons. First,
it is hard to develop theoretical foundations of deep learning with trained
weights, but it might be easier with random weights (as is, for example,
done in [1564]). Second, training deep neural networks is a very resource-
intensive process; the ability to investigate network architectures without
actually training them may speed up and smoothen the process of finding a
suitable architecture [1262].

5
M E T H O D S

The main improvements — transformative adaptive activation functions and
checkerboard architectures — to the original D–GEX are described in this
chapter. First, however, preliminaries such as the description of data (Sec-
tion 5.1.1), data normalization (Section 5.1.1.2), and performance evaluation
(Section 5.1.4) are described in Section 5.1. After such preliminaries, the main
improvements are described. First, the transformative adaptive activation
function is described in Section 5.2, and then the architectural improvements
to the original D–GEX in the form of tower and checkerboard architectures
are described in Section 5.3. Finally, technical and implementation details of
the TAAFs are described in Section 5.4.

5.1 preliminaries

There are several common properties of most of the experiments that were
run, and these are described in this section. In order to examine whether our
novel transformative adaptive activation function in D–GEX model could lead
to lower error, we have used the very same data as in [2]. Therefore, the data
and their origin are briefly discussed in Section 5.1.1; the heterogeneity–aware
dataset that is aiming at reducing bias due to the uninformed random data
split present in the original paper is described in Section 5.1.1.1. While a
similar experiment setup as in the original D–GEX paper was used, a different
data normalization approach was used to reduce the influence of genes whose
expression is near the noise levels; this normalization is described in more
detail in Section 5.1.1.2.

The experiments on the same dataset as the original D–GEX are supple-
mented with experiments using artificially generated data that are similar to
the microarray gene expression data that were used in the original D–GEX as
the original data did not have perfectly independent samples and the sample
independence is easy to ensure with artificially generated data. The process
of the data generation is described more in-depth in Section 5.1.2. First, an
overall methodology is described in Section 5.1.2.1

Furthermore, we have re-implemented the D–GEX and retrained it on the
same data as the models with the novel TAAFs to ensure that the performance
comparison (see Section 5.1.4) indeed reflects only the influence of the usage
of the novel transformative adaptive activation functions and nothing else.

5.1.1 Data

We have used mainly gene expression data from the Affymetrix microarray
platform curated by the Broad Institute. It was provided by the authors of the
original D–GEX [2] and contains 129,158 profiles, each consisting of 22,268

187

188 methods

probes. The data are also available at https://cbcl.ics.uci.edu/public_da
ta/D-GEX/. We have replicated the data pre–processing process presented in
[2] — we have removed the biological and technical replicates and have used
the same set of target and landmark genes. We have used 942 landmark genes
to reconstruct the expression of 9,518 genes. This data was split into two
datasets: the first dataset called full dataset and the second heterogeneity–aware
dataset. The full dataset contains all data after preprocessing (126,102 samples)
and was split into a training, validation, and testing set (the training set
has 88,256 samples, while the validation set has 18,895 samples, and the
testing set has 18,951 samples). The validation dataset was used for model
selection and parameter optimization, while the testing set was used for
reporting the performance of selected models based on out-of-sample data.
The Heterogeneity–aware dataset contains a subset of the full dataset and
was used for testing to determine whether the performance of the models on
the full dataset might have been due to possible information leakage between
training and testing splits.

5.1.1.1 Heterogeneity–aware dataset

As in the original D–GEX paper [2], the data for most experiments were split
into training and evaluation sets randomly; however, the data used contains
different sets of samples that originated in the same experiment; thus such
a split might have introduced bias to the reported results. To show that
such bias, if present, is insignificant for our comparison, we have also run
an experiment comparing our D–GEX reimplementation with D–GEX with
TAAFs on a dataset, where the split was GEO- series aware (heterogeneity–
aware dataset). We grouped the available samples from the full dataset by
their GEO- series if such a grouping was obtainable from the sample ID. Then,
we performed the split such that no group would have a sample in more
than one split, which removed the potential information leakage between the
splits. This resulted in a subset of the normalized data used consisting of
87,345 samples (the series information was not obtainable from the sample
ID for some samples) split into training (52,407 samples), testing (17,469

samples), and validation (17,469 samples) sets with no series overlaps. Since
the lower amount of samples available for training might negatively influence
the training and the resulting model performance and since it resembles the
approach of [2], most of the experiments were done using the full dataset
and the heterogeneity–aware dataset was used only to verify that the model
performance is not due to the bias caused by information leakage between
the sets.

5.1.1.2 Data normalization

The data were preprocessed in the same manner as in [2] except for the last
step — the scaling to a zero mean and unit standard deviation. Scaling each
variable separately as in [2], however, removes the absolute differences in
expression between individual genes. Moreover, it gives the same importance
to all genes, including those whose expression is near noise levels, from the

https://cbcl.ics.uci.edu/public_data/D-GEX/
https://cbcl.ics.uci.edu/public_data/D-GEX/

5.1 preliminaries 189

point of view of the error metrics. To keep the information about differences
in expression levels, we scaled the data by transforming the whole data
matrix to have zero mean and unit standard deviation without taking into
account that there are different genes — thus, the more expressed genes will
be proportionately more expressed even after the scaling. We believe that
such scaling is more suitable in this case as the minimization of the error
metrics during the fitting phase gives relatively higher importance to more
expressed genes and less to the genes whose expression is near the noise
level.

5.1.2 Experiments with artificial data

To further show the capabilities of TAAFs, we have run several experiments
with artificial data as those are fully controllable, similarly as Farhadi, Nia,
and Lodi generated artificial data for evaluation of their proposed activation
function in [1143]. In general, a generative neural network was used to create
the artificial dataset. These generative networks were randomly initialized,
and their main purpose was to create a non-linear relationship between the
input features in a fashion distantly similar to biological data.

5.1.2.1 Methodology

The experiments focus on a regression task from many features to many
targets (e.g., 1,000 input features to predict 5,000 related targets for a single
sample) — unlike the work of Farhadi, Nia, and Lodi where samples with
ten features and a single binary target were generated [1143] as this would
be insufficient in our case. The artificial data simulates data similar to gene
expression data, which is what our work is mainly focused on. To achieve
this, a densely connected neural network with L layers and Nl , l = 1, . . . , L
neurons was initialized with random weights. This network was then used
to process randomly generated data to produce a dataset with non-linear
relationships between the features and targets — samples are sampled from
a given distribution with dimensionality equal to the number of inputs of
the data generation network and then processed by the data generation
network to get the samples with non-linear relationships between individual
components similarly gene expression data have. We have also added some
white noise to the targets, as data are rarely noiseless in practice. The exact
layer configurations and parameters of the data generation process of the
individual experiments are described in Section 6.3 — the common shared
properties of the experiments are that the input dimension was 1,000 (similar
dimension to the L1000 Luminex bead microarrays that are the targets of the
D–GEX inference [2]), the data that were processed by the data generation
networks were sampled from a normal distributions with zero mean (different
standard deviations were used in different experiments), the white noise
added to the samples after they were processed by the data generation
network was also sampled from a normal distribution with zero mean, the
output dimension was 5,000 (similar to the size of the D–GEX networks)

190 methods

In most experiments, three data splits were used — train split for training
the networks, validation for selection of a model checkpoint, and test for
evaluation independent of the checkpoint selection process. The networks
were usually trained for a fixed number of epochs, and the model was
evaluated on the validation set after each epoch; the weights from the epoch
with the lowest loss on the validation set and the last epoch were kept and are
called as model checkpoints loss and last respectively.

5.1.3 Baseline architectures and training procedure

D–GEX, as proposed in [2], is a feedforward neural network consisting of
one to three fully connected hidden layers, each having the same number
of neurons. The output layer consists of one neuron per target with a linear
activation function. Since we directly build upon the D–GEX architecture,
we have used the same architecture as the baseline — only with varying
number of layers and number of neurons in each layer. As in the original
D–GEX, we have split the set G of 9,518 genes into two random subsets, each
containing half of the genes to enable learning on GPUs with smaller memory.
A separate network was then trained using each of the sets, and the final
reconstruction consisted of outputs from both networks. The original D–GEX
used dropout [143] as a regularization technique to improve the generalization
of the network with three different dropout rates — 0%, 10%, and 25%. Since
the D–GEX with the 25% dropout rate had the best generalization [2], we have
used only this rate for our experiments. We have used the standard dropout
and not one of its variants (see Section 2.2.3.2) as the standard dropout to keep
the architecture similar to the original D–GEX and also because the standard
dropout is very simple to interpret. All models were trained for 600 epochs
(no improvement was observed near the end of the training). The performance
of the model from each epoch was evaluated on the validation data, and only
the best model from all epochs was used for further evaluation. The model
optimization was done using the Nadam optimizer [292] (see Section 2.2.4.3
for a brief overview of the optimization process) with optimizer-specific
parameters β1 = 0.9, β2 = 0.999, and schedule decay η = 0.004; the batch
size was set to 256 profiles. A fixed learning rate µ = 0.0005 was used for
experiments in Section 6.1 and the following schedule for experiments in
Section 6.4 — the learning rate was set to 5× 10−4 for epochs 1 – 400, 5× 10−5

for epochs 401 – 475, 5 × 10−6 for epochs 476 –550, 5 × 10−7 for epochs 551 –
575, and 2.5 × 10−7 for epochs 576 – 600.

5.1.4 Model evaluation

To evaluate the model, we used the absolute error — first, we computed the
mean absolute error (MAE) of prediction MAEm(s) of model m for sample
s ∈ S over individual genes g ∈ G as in Eq 5.1 where y(g, s) is the expression

5.1 preliminaries 191

of gene g for sample s and ŷ(g, s)m is the prediction of model m for the same
target.

MAEm(s) =
1
|G| ∑

g∈G

∣∣∣y(g, s)− ŷ(g, s)m

∣∣∣ . (5.1)

For further evaluation, we treat individual samples as independent (which
is close enough to reality — our dataset probably contains small groups
of samples that might be somewhat dependent, for example, having the
same treatment, but it should be negligible for our size of dataset). Thus, for
pairwise comparison, we compare error metrics over individual samples and
not over individual genes that have ties to each other. The overall performance
of model m is called mean mean absolute error (MMAE) and is defined as:

MMAEm =
1
|S| ∑

s∈S
MAEm(s). (5.2)

To estimate the distribution of the MMAE, we employ bootstrap over MAEm(s),
i.e., we resample the set of samples with a replacement to get a new set S ′

which is then used for MMAE calculation in each bootstrap iteration. Pairs of
models are not compared only in terms of MMAEs but also using pairwise
differences. The mean difference of absolute errors MDAEm1,m2(s) for models
m1 and m2 and sample s is defined as:

MDAEm1,m2(s) =
1
|G| ∑

g∈G

(∣∣∣y(g, s)− ŷ(g, s)m1

∣∣∣− ∣∣∣y(g, s)− ŷ(g, s)m2

∣∣∣) .

(5.3)

The MMDAEm1,m2 is defined as:

MMDAEm1,m2 =
1
|S| ∑

s∈S
MDAEm1,m2(s). (5.4)

The pairwise nature of MMDAEm1,m2 and its distribution allow for an
accurate comparison of two models even though their MMAEs are very close,
and their confidence intervals (CIs) estimated using bootstrap on MAEs are
overlapping. The distribution is estimated using bootstrap on MDAEm1,m2(s)
in a similar manner as distribution of MMAEm is estimated using MAEm(s).

To complement the model comparison based on mean MDAEs (MMDAEs),
we have used the Student’s paired t-test and the paired Wilcoxon rank test on
MAEs of individual samples. These tests were used to test the hypothesis that
the differences in MAEs for individual samples over all genes are significantly
different.

5.1.4.1 Pairwise evaluation of relative performance

The evaluation focuses on determining whether the improved networks lead
to better performance compared to the baseline networks. To answer this
question, the prediction of improved and baseline with otherwise identical
hyperparameters are compared on the level of MAEs of individual samples.

192 methods

A MAE for each sample is calculated, and then using the Wilcoxon–signer
rank test, it is determined whether the prediction of the network with TAAF
has lower MAE in general compared to the prediction from the baseline
network. It is considered a win if the Wilcoxon signed–rank test shows that
the prediction of improved network has statistically significantly lower MAEs
at the significance level α = 0.001 and a loss if the baseline prediction has
statistically significantly lower MAEs at the same significance level — we
consider it a tie if it is neither.

5.1.5 Evaluation of the practical impact

Most of the evaluation of the models introduced focuses directly on the
error of the gene expression inference; however, it is not entirely clear how
lowering the error improves the accuracy of analyses applied to inferred data.
To help clarify this, we show that the increased accuracy of the inference has
both a statistically and practically significant impact on the accuracy of the
differential gene expression (DGE) analysis.

5.1.5.1 Differential gene expression analysis

The differential gene expression (DGE) analysis is an analysis whose goal is
to identify genes whose expressions are significantly different between two
phenotypes [2112]. Usually, the DGE analysis is associated with statistical
testing, and each gene has an associated p-value that is usually thresholded to
identify the differentially expressed genes. The tests used for DGE analysis in
this work are based on parametric empirical Bayes from the limma R package
[2113, 2114], which borrows information between genes in a dynamic way
[2113, 2115]. It uses a linear model that is fitted to each gene, which is used for
moderating the residual variances [2113, 2116]. The procedures in the limma
package allow for more reliable results for small data samples compared to
other methods [2113]; more details are available in [2113].

5.1.5.2 Used phenotypes

There is no uniform phenotype annotation available for all of the samples.
Therefore, we employed two distinct procedures to introduce a meaningful
annotation for at least a limited sample subset. For the models trained on
the full dataset, we ran hierarchical clustering on 2,000 samples randomly
sampled from the test data of the full dataset (i.e., unseen during the training
of the model), then we selected two large and relatively distinct clusters, each
with more than 300 samples. In this way, we introduced two classes with
naturally distinct expression profiles with a reasonable set of differentially
expressed genes. Further in the text, we refer to these phenotypes as artificial.
For the models trained on the heterogeneity–aware dataset, the phenotype
information is available; therefore, we took the largest GEO- series (GSE2109

1)
and made sure it was in the test data of the heterogeneity-aware dataset.
We used the original classes from this series as phenotype information for

1 Available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2109.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2109

5.2 transformative adaptive activation function 193

another set of DGE analyses. Further in the text, we refer to these phenotypes
as real.

5.1.5.3 Evaluation

Since obtaining microarray data for DGE analysis is often very costly, we also
show that the novel TAAFs improve performance even when using a low
number of samples. We repeatedly sampled smaller datasets for different
sample sizes where each half of the samples was from the same cluster and
ran differential gene expression analysis using parametric empirical Bayes
from the limma R package [2113, 2114] on the ground truth data (the actual
gene expression) and the gene expressions inferred by the evaluated models.
The threshold α = 0.01 for the adjusted p–value was used to determine the
differentially expressed (DE) genes. For each model and each sampled dataset
of a given size, we calculated the F1 score of the prediction of the DE genes
compared to the DE genes from the ground truth data found for the same
sample. Then we calculated the pairwise differences in the F0.5, F1, F2 scores,
accuracy, and Matthew’s correlation coefficient (MCC) for compared models.
The differences of all scores (F0.5, F1, F2 scores, accuracy, and MCC) were
tested using the Wilcoxon signed-rank test.

5.2 transformative adaptive activation function

We propose a novel adaptive activation function to further improve the origi-
nal D–GEX that serves as our baseline. This proposal is based on an adaptive
transformation of existing activation functions. The novel transformative
adaptive activation function (TAAF) g(f , z) [10] introduces four new parame-
ters α, β, γ, δ ∈ R per neuron, which transform the original activation function
f (z) (called inner activation function in the context of the TAAF):

g(f , z) = α · f (β · z + γ) + δ. (5.5)

The output of a neuron with TAAF with inputs xi is:

α · f

(
β ·

n

∑
i=1

wixi + γ

)
+ δ, (5.6)

where xi are individual inputs, wi are its weights, and n is the number of
incoming connections. If there is no unit xi (i. e. unit constant), then the
parameter γ is equivalent to the bias term of the neuron. The parameters are
treated the same as other weights in the neural networks and are learned
using back-propagation and gradient descent — the only difference is that
parameters α and β are initialized to one and γ and δ are initialized to zero
in every neuron.

The motivation for the added parameters is that they allow arbitrary trans-
lation and scaling of the original activation function, and this transformation
may be different for each neuron (i. e., each neuron has four additional param-
eters that define the TAAF for that neuron). Furthermore, such an adaptive
activation function removes the need to have a linear activation function

194 methods

in the last layer for regression tasks as is usually done. The usage of the
linear function in the last layer requires a full set of weights for the incoming
connections just for the ability to scale the output to an arbitrary range, while
the proposed TAAF can do it with only four additional parameters.

The TAAF can also be viewed as a generalization of several existing adap-
tive activation functions — for example, the slope varying activation function
[1092] is the TAAF with adaptive parameter β, and frozen α = 1, and γ, δ = 0,
or the trainable amplitude [1086] is the TAAF with adaptive parameter α,
and frozen β = 1, and γ, δ = 0 (see Section 5.2.1.1 for full list). Other similar
approaches also include parameters controlling slope but are focused only on
a special, predefined function [1085, 1158] instead of allowing any activation
function to be used as the inner function in the TAAF.

Loni et al. used an approach that is very similar to the TAAF in 2023; they
tuned AFs by adding horizontal and vertical scaling parameters (equivalents
to the TAAF’s α and β) in [2117]. However, unlike the TAAF approach, they
did not optimize the weights together with other weights in the network
but rather used separate hyperparameter optimization regimes [2117]. More
than a year after the publication of the preprint [444] proposing the TAAFs, a
similar approach was proposed in [2118], where Liu et al. also used adaptive
parameters for scaling and translating an AF.

5.2.1 Motivation for individual parameters

The TAAF parameters allow for arbitrary vertical and horizontal scaling
and also arbitrary vertical and horizontal translations of the inner activation
function f (z).

Vertical and horizontal translation of the ELU activations were found to
improve the learning in [1078], where Grelsson and Felsberg proposed ShELU
activation with horizontal translation and SvELU activation with vertical
translation (see Section 4.3.1.56); both activations have an additional fixed
parameter controlling the translation that is not tuned. However, Grelsson
and Felsberg also show that allowing the parameter to be adaptive further
improves the learning performance together with an additional parameter
for controlling the slope of the activation function.

The parameter α for vertical scaling of the inner activation function is
quite often used in other activation functions (described in Section 5.2.1.1).
Manual tuning of the parameter α can be used for controlling the gradient
disappearance or overflow [972] if the inner activation function might be
prone to it — e.g., Sun et al. used it with softplus as the inner activation
function f . The parameter β can improve the convergence speed as shown in
the concurrently published work [1138].

The parameter δ also allows for controlling the mean value of the activation
as activations with mean outputs close to zero can improve the performance
of a neural network [972] as they can speed up learning [1082].

5.2 transformative adaptive activation function 195

5.2.1.1 Activations as special cases of TAAFs

As already mentioned above, the TAAF generalizes several other activation
functions — while the individual parameters were often proposed individ-
ually in the literature, the TAAF provides a unique combination achieving
better performance than if only some subset of parameters was used (see
Section 6.1.4 for experimental results).

The scaled hyperbolic tangent [795] (see Section 4.2.2.3) can be considered
as a special case of nonadaptive variant of TAAF if the TAAF is parametrized
as α = a, β = b, γ = 0, δ = 0 and f (z) = tanh(z). Another case of nonadap-
tive TAAF is the E-Tanh (see Section 4.2.40) that uses a fixed parameter a
for vertical scaling of the function; the TAAF equivalent is, therefore, α = a,
β = 1, γ = 0, δ = 0 and f (z) = exp(z) tanh(z).

The SSS (see Section 4.2.2.1) is also a special case of a nonadaptive TAAF
as it is only a logistic sigmoid with horizontal scaling and translation; the
TAAF equivalent is therefore α = 1, β = a, γ = −ab, δ = 0 and f (z) = σ(z).
Similarly, the VSF (see Section 4.2.2.2) is also a translated and scaled logistic
sigmoid; its nonadaptive TAAF equivalent is α = a, β = b, γ = 0, δ = −c and
f (z) = σ(z). Also, the Sloped ReLU (SlReLU; see Section 4.2.6.5) has a slope
controlling parameter in a similar manner as the LReLU (and its variants)
but for positive inputs. Its TAAF equivalent is α = a, β = 1, γ = 0, δ = 0 and
f (z) = ReLU(z). There are several activation functions that use a parameter
that modifies the range of the output of an activation function. One of them
is the E-swish [1106] (see Section 4.3.3.4) which adds a parameter a that is
the equivalent of the TAAF’s parameter α — the E-swish is a special case
of TAAF if α = a, β = 1, γ = 0, δ = 0 and f (z) = z · σ(z). The SGELU (see
Section 4.2.3.2) also uses a parameter a for vertical scaling that controls the
slope of the activation. While the parameter is fixed and nonadaptive, it can
be tuned to reach better performance[822]. The SGELU can be considered as
a special case of TAAF with fixed parameters: α = a, β = 1, γ = 0, δ = 0, and
f (z) = z · erf

(
z√
2

)
, where erf (x) is the Gauss error function.

The comb-H-sine activation (see Section 4.2.25) uses a fixed parameter a
for input scaling; it can be considered as a special case of TAAFs with α = 1,
β = a, γ = 0, δ = 0, and f (z) = sinh (z) + sinh−1 (z).

The DRLU adds a parameter for horizontal shifting but this time it is a fixed
predefined parameter a; therefore, it can be considered to be nontrainable
equivalent of TAAF with α = 1, β = 1, γ = a, δ = 0, and f (z) = ReLU(z).

The DReLU (see Section 4.3.1.14) has a parameter a that shifts the basic
ReLU both horizontally and vertically; it is TAAF equivalent for α = 1, β = 1,
γ = −a, δ = a, and f (z) = ReLU(z). The only difference is the calculation
of the value of a as the midpoint of the range of input values for each batch
instead of optimizing it with the rest of a network’s parameters. On the other
hand, the DisReLU (see Section 4.2.6.44) employs the identical concept with a
fixed, predefined parameter a instead of input dependent value — the other
difference is that the parameter is defined with a negative sign. The DisReLU
with parameter a is a special case of TAAF with α = 1, β = 1, γ = a, δ = −a,
and f (z) = ReLU(z).

196 methods

While the Flatted-T Swish (see Section 4.2.6.46) is a bit more complicated
than a ReLU with additional parameters, it can also be considered as a special
case of a TAAF but with more complicated function f — α = 1, β = 1, γ = 0,
δ = T, and f (z) = ReLU(z) · σ(z), where T is the only parameter of the
Flatted-T Swish.

The PSoftplus activation function (see Section 4.2.18) has two fixed param-
eters a and b for scaling and translation; it can be considered as a special case
of the TAAF with α = a, β = 1, γ = 0, δ = −ab, and the function f is the
softplus activation (see Section 4.2.17) — f (z) = ln (exp (z) + 1).

The functions listed above are equivalent to TAAFs during the test phase
or TAAFs with frozen, nonadaptive parameters. More Interestingly, many
functions can be considered as a special case of TAAFs, including the property
of adaptive parameters. One such function is the FReLU (see Section 4.3.1.15),
which introduces parameters ai and bi for controlling the vertical and hori-
zontal translation — the TAAF equivalent is with α = 1, β = 1, γ = ai, δ = bi,
and f (z) = ReLU(z). The ShiLU (see Section 4.3.1.16) is adaptive variant
of ReLU that has adaptive vertical scaling using parameter ai and vertical
translation using parameter bi; the TAAF equivalent is α = ai, β = 1, γ = 0,
δ = bi, and f (z) = ReLU(z).

The ABReLU [926] (see Section 4.2.6.42) has a parameter ai for horizontal
shifting of the function; it has the same function as the γ in TAAFs but
its value is not optimized using gradient descent as in TAAFs but rather
is calculated as the average of input activation map for each neuron i. The
ABReLU is TAAF equivalent for α = 1, β = 1, γ = −ai, δ = 0, and f (z) =
ReLU(z). The positive PReLU (see Section 4.3.1.2) is an adaptive variant of
the SlReLU. Similarly, the pLogish [826] is a special case of nonadaptive
TAAFs; the equivalent parameterization is α = a

b , β = b, γ = 0, δ = 0 and
f (z) = z · ln (1 + σ (z)).

The AOAF (see Section 4.3.1.12) has three parameters, fixed b and c and
adaptive parameter ai that is calculated as the mean value of the inputs of
neuron i; these parameters are used for translation of the activation function.
The AOAF can be considered as a special case of TAAF but with a different
scheme for updating the value of its parameters — α = 1, β = 1, γ = −bai,
δ = cai, and f (z) = ReLU(z).

The LeLeLU (see Section 4.3.1.8) is a LReLU with an added trainable
parameter for scaling, thus its TAAF parameter is simply α = ai, β = 1, γ = 0,
δ = 1, and f (z) = LReLU(z).

The RMAF (see Section 4.3.1.29) is a bit more complicated activation
function that has one adaptive parameter ai for vertical scaling and two fixed
parameters b and c. Since the parameters b and c are fixed, the RMAF can be
formulated using the TAAF framework — α = ai, β = 1, γ = 0, δ = 0, and
f (z) =

[
b 1
(0.25(1+exp(−z))+0.75)c

]
· z.

The RSign (see Section 4.3.13) is a sign function with horizontal shift;
its TAAF formulation is therefore α = 1, β = 1, γ = −ac, δ = 0, and
f (z) = sgn(z).

The paired ReLU (see Section 4.3.1.26) is a vector activation function that
outputs two values instead of one; however, the same result can be obtained

5.2 transformative adaptive activation function 197

using two TAAFs that takes the same preactivation as the input and whose
output values are then concatenated. The paired ReLU has four parameters
ai, bi, ci, and di, — one pair for each output value. In each pair, there is one
parameter for horizontal scaling and one for horizontal translation. The TAAF
based equivalent is α1 = 1, β1 = ai, γ1 = −bi, δ1 = 0, and f1(z) = ReLU(z)
for the first TAAF and α2 = 1, β2 = ci, γ2 = −di, δ2 = 0, and f2(z) = ReLU(z)
for the second TAAF.

Similar approach to the paired ReLU is the MBA (see Section 4.3.30) which
can be seen as multiple TAAFs applied to the same preactivation; in that case,
each of K TAAFs would be defined as α = 1, β = 1, γ = bi,k, k = 1, . . . , K,
δ = 0 and f (z) can be any activation function — authors used the ReLU
activation.

The SvELU and ShELU and its parametric variants (see Section 4.3.1.56),
as briefly discussed in Section 5.2.1, introduce an additional parameter to the
ELU activation controlling the translation. The ShELU introduces horizontal
translation controlled by a fixed hyperparameter b; it is a TAAF equivalent
with α = 1 (the ELU, however, has its own parameter a for vertical scaling
of the function for negative inputs), β = 1, γ = b, δ = 0, and f (z) = ELU(z).
The SvELU introduces vertical translation instead of horizontal, it is a TAAF
equivalent with α = 1, β = 1, γ = 0, δ = b, and f (z) = ELU(z). The
parametric variant PShELU combines the ShELU with the PELU and, as
such, introduces two additional parameters controlling the slope ai and bi;
these parameters, together with the ShELU’s translation parameter ci are
adaptive. The exact TAAF equivalent is α = ai, β = 1

bi
, γ = ci

bi
, δ = 0,

and f (z) = ELU(z). While Grelsson and Felsberg did not formulate the
parameteric equivalent of the SvELU; it was formulated as the PSvELU
in Section 4.3.1.56 in Eq. (4.326) — the TAAF equivalent parameterization
is α = ai, β = 1

bi
, γ = 0, δ = ci, and f (z) = ELU(z). Similar AFs were

proposed as variants of the HardTanh AF - the SvHardTanh introduces a
fixed parameter for vertical shifts while the ShHardTanh introduces a fixed
parameter for horizontal shifts. Their TAAF equivalents are α = 1, β = 1,
γ = −a, δ = 0, and f (z) = HardTanh(z) for ShHardTanh and α = 1, β = 1,
γ = 0, δ = a, and f (z) = HardTanh(z) for SvHardTanh.

Adem proposed a novel variant of the FELU by just adding a trainable
parameter for vertical translation to the original AF; this is exactly what
the TAAF does. Note that the original FELU is also adaptive and has its
own scaling parameter ai and its relation to the TAAFs is discussed in
Section 5.2.1.2.

There is also an adaptive variant of HardTanh (see Section 4.3.1.18) that can
be considered as a special case of TAAFs but with only parameter adaptive
and the other is epoch dependent with a predefined schedule; the TAAF
equivalent is α = 1, β = at, γ = −atb, δ = 0, and f (z) = HardTanh(z) where
at is the fixed parameter scheduled for each epoch t and b is optimized along
with other parameters as is usual for TAAFs.

One of the adaptive activation function proposed earliest is the sigmoid
function with shape autotuning (see Section 4.3.2, Eq. (4.339)). This function
uses a single adaptive parameter a ∈ (0, ∞) for controlling both the output
range and the vertical scaling of the function; its equivalent within the TAAF

198 methods

framework is α = a, β = −a, γ = 0, δ = 0, and f (z) = 2 1−exp(−z)
(1+exp(−z)) . This

approach was further extended into a generalized hyperbolic tangent (see
Section 4.3.2.1), which separates the parameters for controlling the amplitude
and the vertical scaling into ai and bi, which are adaptive parameters for
each neuron i. The TAAF equivalent is α = ai, β = −bi, γ = 0, δ = 0, and
f (z) = 1−exp(−z)

(1+exp(−z)) .
A predecessor of TAAFs called trainable amplitude (see Section 4.3.2,

Eq. (4.341)) introduces two additional adaptive parameters to any inner
activation function g(z); these two parameters ai and bi control vertical scaling
and translation for each neuron i. Another general class of transformation
of any activation functions was published in [1137] concurrently with our
research [444] — the class of slope varying activation functions. This class
adds a single adaptive parameter a to any activation function g(z) allowing
for horizontal scaling of the function; it is equivalent to a TAAF with α = 1,
β = a, γ = 0, δ = 0, and f (z) = g(z). This general approach was preceded by
a special cases called SVAF (see Section 4.3.2.4) that uses hyperbolic tangent
function as the inner activation f (z) and ASSF (see Section 4.3.2.3) that uses
logistic sigmoid as the inner activation. The psigmoid (see Section 4.3.2.6)
is another AAF with scaling parameters. Unlike the SVAF, the psigmoid
has both vertical and horizontal scaling parameters. Interestingly, only the
vertical scaling parameter ai is local for each neuron or channel — the
horizontal scaling parameter b is global. It can be considered as a special
case of TAAFs with some parameters shared and α = ai, β = b, γ = 0, δ = 0,
and f (zi) = σ(zi). Another special case is the swish (see Section 4.3.3.1),
an adaptive variant of the later proposed SiLU activation. The swish uses
parameter ai for horizontal scaling; its TAAF equivalent is α = 1, β = ai,
γ = 0, δ = 0, and f (z) = z · σ(z). Another adaptive SiLU variant is the AHAF
that employs both vertical and horizontal scaling; its TAAF equivalent is,
therefore, α = ai, β = bi, γ = 0, δ = 0, and f (z) = z · σ(z). The adaptive
slope hyperbolic tangent (see Section 4.3.15.1) is an adaptive function with
horizontal scaling using parameter ai with the TAAF parameterization α = 1,
β =a i, γ = 1, δ = 1, f (z) = tanh(z). The PSTanh (see Section 4.3.15.2) is
an adaptive activation function that is a cross between the adaptive slope
hyperbolic tangent and the slope hyperbolic tangent. The PSTanh has two
scaling parameters — ai for vertical scaling, bi for horizontal scaling; the
TAAF equivalent parameterization is α = ai, β = bi, γ = 0, δ = 0, and f (z) =
z · (1 + tanh (z)). Similarly, the simpler SSinH (see Section 4.3.15.3) has also
two scaling parameters ai and bi and its equivalent TAAF parameterization
is α = ai, β = bi, γ = 0, δ = 0, and f (z) = sinh (z). Another scaled AF
is the SExp which uses exponential instead of the sinh function; its TAAF
equivalent is α = ai, β = bi, γ = 0, δ = 0, and f (z) = exp (z)− 1.

Another sigmoid-based adaptive function that can be formulated within
the TAAF framework is the PFTS (see Section 4.3.9) that is the combination
of a ReLU and sigmoid activation with an adaptive parameter Ti for vertical
translation — it is an adaptive variant of the FTS (see Section 4.2.6.46). The
TAAF equivalent of PFTS is α = 1, β = 1, γ = 1, δ = Ti, and f (z) =

ReLU(z) · σ(z).

5.2 transformative adaptive activation function 199

The parameterized softplus (see Section 4.3.20) has a parameter ai for
controlling vertical shift of the activation function; it is defined as α = 1, β = 1,
γ = 0, δ = −ai, and f (z) = ln (1 + exp(z)) within the TAAF framework
albeit with the limiation of δ ∈ [−1, 0]. The summary of activation functions
found in the literature that can be formulated as special cases of TAAFs is in
Table 5.1.

The scaled logistic sigmoid (see Section 4.3.27.1) is an adaptive function
that is a special case of previously proposed NAF (see Section 4.3.27) that
has parameters ai and bi for controlling the vertical and horizontal scale
of the function; its TAAF equivalent is α = ai, β = bi, γ = 0, δ = 0, and
f (z) = 1

1+exp(−z) .
A different approach where only the activation functions are trained, and

the networks are kept randomly initialized is presented in [1247] where
five different adaptive activation functions with two parameters ai and bi
each were used. Four of these activation can be formulated within the TAAF
framework. The activation from Eq. (4.532) is equivalent to TAAF with α = 1,
β = ai, γ = bi, δ = 0, and f (z) = 1

1+exp(−z) . The activation from Eq. (4.533) is
equivalent to TAAF with α = 1, β = ai, γ = bi, δ = 0, and f (z) = sin(z). And
finally, the activation from Eq. (4.534) is equivalent to TAAF with α = 1, β = ai,
γ = −aibi, δ = 0, and f (z) = exp (−||z||). The activation from Eq. (4.535)
could also be formulated within the TAAF framework even though it is only a
step function with a variable threshold that is determined by two parameters
— α = 1, β = ai, γ = bi, δ = 0, and

f (z) =

1, z ≤ 0,

0, otherwise.
(5.7)

The final activation from [1247] shown in Eq. (4.536) cannot be formulated
within the TAAF framework as only the parameter ai has an equivalent
parameter within the TAAF framework.

2
0

0
m

e
t

h
o

d
s

activation year section source adap. param. α β γ δ f (z) note

scaled hyper-
bolic tangent

1998 4.2.2.3 [795] ✗ a, b a b 0 0 tanh(z)

E-Tanh 2022 4.2.40 [999] ✗ a a 1 0 0 exp(z) tanh(z)

SSS 2018 4.2.2.1 [793] ✗ a, b 1 a −ab 0 σ(z)

VSF 1995 4.2.2.2 [794] ✗ a, b, c a b 0 −c σ(z)

SlReLU 2017 4.2.6.5 [879] ✗ a a 1 0 0 ReLU(z)

pLogish 2021 4.2.3.15 [826] ✗ a, b a
b b 0 0 z · ln (1 + σ (z))

E-Swish 2018 4.3.3.4 [1106] ✗ a a 1 0 0 z · σ(z)

ABReLU 2021 4.2.6.42 [926] ✓ ai 1 1 −ai 0 ReLU(z) ai calculated as the av-
erage of a neuron’s in-
put map

positive
PReLU

2022 4.3.1.2 [1018] ✓ a a 1 0 0 ReLU(z)

DRLU 2022 4.2.6.43 [927] ✗ a 1 1 a 0 ReLU(z)

AOAF 2022 4.3.1.12 [1031] ✓ ai, b, c 1 1 −bai cai ReLU(z) ai calculated as the av-
erage of a neuron’s in-
put map

DReLU 2018 4.3.1.14 [1033] ✓ a 1 1 −a a ReLU(z) a calculated as the
midpoint of range of
input values for each
batch

5.
2

t
r

a
n

s
f

o
r

m
a

t
i
v

e
a

d
a

p
t

i
v

e
a

c
t

i
v

a
t

i
o

n
f

u
n

c
t

i
o

n
2

0
1

DisReLU 2019 4.2.6.44 [928] ✗ a 1 1 a −a ReLU(z)

Flatted-T
Swish

2018 4.2.6.46 [930] ✗ T 1 1 0 T ReLU(z) · σ(z)

PSoftplus 2019 4.2.18 [972] ✗ a, b a 1 0 −ab ln (exp (z) + 1)

SGELU 2019 4.2.3.2 [822] ✗ a a 1 0 0 z · erf
(

z√
2

)
comb-H-sine 2022 4.2.25 [659] ✗ a 1 a 0 0 sinh (z) + sinh−1 (z)

FReLU 2018 4.3.1.15 [1035] ✓ ai, bi 1 1 ai bi ReLU(z)

ShiLU 2023 4.3.1.16 [889] ✓ ai, bi ai 1 0 bi ReLU(z)

LeLeLU 2021 4.3.1.8 [1026] ✓ ai ai 1 0 0 LReLU(z)

paired ReLU 2018 4.3.1.26 [1042] ✓ ai, bi, ci, di 1 ai, ci bi, di 0 ReLU(z) concatenation of two
TAAFs

RMAF 2020 4.3.1.29 [1046] ✓ ai, b, c ai 1 0 0
[

b·z
(0.25(1+exp(−z))+0.75)c

]
b and c are fixed

RSign 2020 4.3.13 [1023] ✓ ac 1 1 −ac 0 sgn(z)

RPReLU 2020 4.3.1.5 [1023] ✓ ac, bc, cc 1 1 −ac bc PReLU(z) cc is the parameter
from PReLU

ShELU 2018 4.3.1.56 [1078] ✗ a, b 1 1 b 0 ELU(z) a is fixed parameter of
the inner function f

SvELU 2018 4.3.1.56 [1078] ✗ a, b 1 1 0 b ELU(z) a is fixed parameter of
the inner function f

PShELU 2018 4.3.1.56 [1078] ✓ ai, bi, ci ai
1
bi

ci
bi

0 ELU(z)

2
0

2
m

e
t

h
o

d
s

PSvELU — 4.3.1.56 — ✓ ai, bi, ci ai
1
bi

0 ci ELU(z) proposed in Sec-
tion 4.3.1.56

ShHardTanh 2021 4.2.6.19 [895] ✗ a 1 1 −a 0 HardTanh(z)

SvHardTanh 2021 4.2.6.19 [895] ✗ a 1 1 0 a HardTanh(z)

P+FELU 2022 4.3.1.47 [1069] ✓ b 1 1 0 b FELU(z) The FELU is adaptive
and has its own pa-
rameter a

Adaptive
HardTanh

2021 4.3.1.18 [894] ✓ at, b 1 at −atb 0 HardTanh(z)

sigmoid
with shape
autotuning

1992 4.3.2 [1084] ✓ a a −a 0 0 2 1−exp(−z)
(1+exp(−z))

generalized
hyperbolic
tangent

1996 4.3.2.1 [1085] ✓ ai, bi ai −bi 0 0 1−exp(−z)
(1+exp(−z))

trainable am-
plitude

2001 4.3.2.2 [1086] ✓ ai, bi ai 1 0 bi g(z) general approach al-
lowing for any inner
function

LAAF 2020 4.3.15 [1137] ✓ a 1 a 0 0 g(z) general approach al-
lowing for any inner
function

SVAF 2009 4.3.2.4 [1092] ✓ a 1 a 0 0 tanh(z)

ASSF 2009 4.3.2.3 [1089] ✓ a 1 a 0 0 σ(z)

5.
2

t
r

a
n

s
f

o
r

m
a

t
i
v

e
a

d
a

p
t

i
v

e
a

c
t

i
v

a
t

i
o

n
f

u
n

c
t

i
o

n
2

0
3

psigmoid 2021 4.3.2.6 [1096] ✓ ai, b ai b 0 0 σ(z) b is a global parameter

swish 2017 4.3.3.1 [668] ✓ ai 1 ai 0 0 z · σ(z)

AHAF 2022 4.3.3.2 [1105] ✓ ai, bi ai bi 0 0 z · σ(z)

PFTS 2020 4.3.9 [1133] ✓ Ti 1 1 0 Ti ReLU(z) · σ(z)

Adaptive
slope hy-
perbolic
tangent

2021 4.3.15.1 [1139] ✓ ai 1 ai 0 0 tanh(z)

PSTanh 2021 4.3.15.2 [688] ✓ ai, bi ai bi 0 0 z · (1 + tanh (z))

SSinH 2021 4.3.15.3 [1140] ✓ ai, bi ai bi 0 0 sinh (z)

SExp 2021 4.3.15.4 [1140] ✓ ai, bi ai bi 0 0 exp (z)− 1

parameterized
softplus

2023 4.3.20 [699] ✓ ai 1 1 0 −ai ln (1 + exp(z)) δ ∈ [−1, 0]

scaled logis-
tic sigmoid

2007 4.3.27.1 [1161] ✓ ai, bi ai bi 0 0 1
1+exp(−z) special case of NAF

MBA 2016 4.3.30 [1166] ✓ bi,k, k =

1, . . . , K
1 1 bi,k 0 g(z) general approach al-

lowing for any inner
function; K TAAFs ap-
plied to same preacti-
vation

Eq. (4.532) 2018 4.3.55.4 [1247] ✓ ai, bi 1 −ai bi 0 1
1+exp(−z) unnamed AF

Eq. (4.533) 2018 4.3.55.4 [1247] ✓ ai, bi 1 ai bi 0 sin(z) unnamed AF

2
0

4
m

e
t

h
o

d
s

Eq. (4.534) 2018 4.3.55.4 [1247] ✓ ai, bi 1 ai −aibi 0 exp (−||z||) unnamed AF

Eq. (4.535) 2018 4.3.55.4 [1247] ✓ ai, bi 1 ai bi 0

1, z ≤ 0,

0, otherwise,
unnamed AF

Table 5.1: Activation functions as special cases of TAAFs
Activation functionsthat can be formulated within the TAAF framework. The columns α, β, γ, δ and f (z) show the equivalent formulation within
the TAAF framework.

5.2 transformative adaptive activation function 205

5.2.1.2 Activations related to TAAFs

Some of the activation functions proposed in literature employ similar con-
cepts as the TAAFs but cannot be considered to be a special case of the TAAFs.
Nevertheless, the motivation for the concepts remains similar as for TAAFs.
One such example is the improved logistic sigmoid (see Section 4.2.2.7) that
uses a fixed parameter a for controlling the slope of the outermost pieces
of the piecewise function. However, since the central part of the piecewise
function is not subjected to the controllable slope, it cannot be formulated as
a special case of a TAAF. An AF very similar to the improved logistic sigmoid
is the STAC-tanh (see Section 4.3.2.8) — the only difference is that it uses
tanh instead of logistic sigmoid and its parameters ai and bi are adaptive.
While it has a different shape, the RSigELU (see Section 4.2.7.15) also has
parameter a for controlling the slope of the outermost components of the
function. Similarly, the penalized hyperbolic tangent (see Section 4.2.2.9) has
a fixed, slope-controlling parameter but only for negative inputs. The Hexpo
(see Section 4.2.2.12) is an activation function with four fixed parameters
that have similar functions as parameters α and β in TAAFs. The Hexpo is a
piecewise function that is defined separately for positive and negative inputs
— the parameter a is the equivalent of TAAFs α for positive inputs, and the
parameter c is the equivalent for negative inputs; similarly, parameters b and
b are equivalents of 1

β .
Fixed slope controlling parameter in a piecewise function is also used in

the LReLU, VLReLU, and OLReLU (see Section 4.2.6.2) where the parameter
controls the slope of the "leaky" part of the activation function for negative
inputs. Similarly, the SignReLU (see Section 4.2.6.32) uses a parameter a
for controlling the slope for negative inputs; however, unlike the LReLU
and its variant, the function is not linear for negative inputs. The DLReLU
(see Section 4.3.1.13) also has a fixed parameter for controlling the slope
for negative inputs as LReLU has, but it also has an additional parameter
that scales the slope of the negative inputs further using the test error from
the previous epoch. The RReLU (see Section 4.2.6.3) uses a stochastic slope
controlling parameter during training and a fixed for inference when it
becomes the LReLU. The EReLU (see Section 4.2.6.38) is similar to RReLU,
but it uses stochastic parameters for controlling the slope for positive inputs
instead of negative inputs.

The ELU (see Section 4.2.6.48) also has a parameter that linearly scales
the function for negative inputs — albeit since the function is controlled by
an exponential, the main reason for the parameter is to control to which
value the ELU converges for inputs going to negative infinity. The SELU (see
Section 4.2.7.11) has two parameters a and b controlling the slope — one
(a) for the whole function and the other only for negative inputs (b). Since
these parameters are fixed, it could be considered as a special case of TAAFs
with the first parameter equivalent to TAAF’s α that is fixed and with the
TAAF’s inner activation f (z) being parameterized with another parameter
b. Similarly, its extension LSELU (see Section 4.2.7.12) has one parameter
for controlling the slope for all inputs; however, the LSELU is a sum of an
ELU and linear function for negative inputs and slope of each component is

206 methods

controlled separately by parameters b and c. The sSELU (see Section 4.2.7.14)
has two parameters a and b for vertically scaling the function separately for
negative and positive inputs; it also has a parameter c for horizontally scaling
the function for negative inputs similarly as does β in TAAFs. The RSigELUD
(see Section 4.2.7.19) also has two parameters for controlling the slope of
individual components of the function; it has parameter a for controlling the
slope of the exponential component for inputs above one, and parameter b for
controlling the slope for negative inputs. However, since it has no parameter
for controlling the slope for inputs in the interval [0, 1], where it is defined as
a linear function, and since the parameter a does not control the slope of the
whole function for inputs above one but rather only weights one component
of the function, it cannot be considered as a special case of a TAAF but with
different parameterization for positive and negative inputs as many other
functions can.

The SoftModulusT (see Section 4.2.6.31) uses a fixed, predefined parameter
a for scaling the input of the function similarly as the TAAF’s parameter β

albeit in an inverse form — β ∼ 1
a — and only for the input going to the

hyperbolic tangent function.
The NReLU (see Section 4.2.6.6) introduces a stochastic variant of the shift

parameter γ — the mean value of the parameter is 0, and, therefore, it only
introduces additive noise during training. The motivation behind NReLU is
different from the motivation of the TAAFs, but nevertheless, the concept of
the additive parameter to specific inputs resembles the TAAF’s parameter γ.
The RT–ReLU (see Section 4.2.6.11) also introduces stochastic translational
parameter as the NReLU but samples the parameters from different distribu-
tions. The ReSP (see Section 4.2.6.14) also has a fixed parameter controlling
the slope of the function for positive inputs only. On the other hand, the
BLReLU (see Section 4.2.6.24) has a fixed parameter controlling the slope
for the negative inputs and also for inputs above a threshold predefined by
another parameter similar to the improved logistic sigmoid.

The Soft++ activation function (see Section 4.2.18.1) is a composition of a
horizontally scaled softplus activation using parameter a and vertically scaled
linear function using parameter b with an additional fixed offset. While it
cannot be considered as a special case of the TAAF due to the composition of
the two functions, the parameter a has an identical role as the parameter β in
TAAFs, the parameter b scales the linear component similarly as parameter 1

α

and the linear offset can be defined as δ = − ln(2).
While the activation function above do not have the parameters trainable —

some of them use different adaptive schemes — there are also other activation
functions that uses adaptive, trainable parameters similarly to TAAFs. One
of them is the PReLU (see Section 4.3.1.1) that is basically a LReLU, but the
parameter a is adaptive. The TAAF’s parameter α is the equivalent of PReLU’s
parameter 1

a but only for negative inputs; there is no adaptive scaling for
positive inputs. The RT–PReLU (see Section 4.3.1.10) is the PReLU but with
additional stochastic parameter b that is randomly sampled and that controls
the threshold of the piecewise function.

The PREU (see Section 4.3.1.9) has vertical scaling for the whole function,
and, therefore, its parameter a is the direct equivalent of TAAF’s parameter α.

5.2 transformative adaptive activation function 207

However, it also introduces an equivalent for TAAF’s parameter β but only
for negative inputs; therefore, it cannot be considered a special case of the
TAAF.

The AReLU (see Section 4.3.1.19) has two adaptive scaling parameters al
and bl as it has separate scaling of positive and negative inputs. However,
its difference from the TAAF is much larger — the parameter bl scaling
positive inputs is transformed using the logistic sigmoid into interval [1, 2] by
(1 + σ(bl)) and the parameter al for scaling negative inputs is clipped into
interval [0.01, 0.99].

The tanhLU (see Section 4.3.1.33) uses both vertical and horizontal scaling;
however, since it has two components, it uses a separate parameterization for
each of the components. The tanh component has a parameter ai for vertical
scaling and a parameter bi for horizontal scaling, whereas the linear function
has only a single parameter ci for scaling as there is no difference between
vertical and horizontal scaling of linear functions.

Separate adaptive parameters for controlling the slope are used in several
adaptive activation functions. One of the simplest examples is the DPReLU
(see Section 4.3.1.20), which is a piecewise linear function with one parameter
controlling the slope for positive inputs and the other for negative inputs.
The DPReLU is extended by an adaptive parameter mi controlling vertical
translation into the Dual Line activation function (see Section 4.3.1.21). Since
the translation parameter mi is shared by both piecewise components of the
function, it is a direct equivalent of TAAF’s parameter δ.

The PiLU (see Section 4.3.1.22) is another DPReLU extension; it generalizes
the Dual Line by adding any horizontal shift — it has two parameters for
vertical scaling (one for inputs below the threshold and one for inputs above
the threshold) with similar function as the TAAF’s α and one single parameter
for the threshold which allows for the horizontal shift similarly as does the γ

in TAAFs.
Similarly as TAAFs accept any inner activation function, the DPAFs (see

Section 4.3.1.23) extends the Dual Line concept to use any suitable inner
activation function; the DPAF uses an inner activation function g(zi) instead
of the linear function from the Dual Line. It closely resembles the TAAF with
α applied only for positive inputs, β = 1, γ = 0 and δ = mi. The FPAF (see
Section 4.3.1.24) is very similar to DPAF, but it allows for two different inner
functions, one for positive inputs and the other for negative inputs. Each of
the inner functions has its own adaptive parameter for vertical scaling, but
unlike DPAF, there is no adaptive translation parameter.

The EPReLU (see Section 4.3.1.25) also has two separate parameters for
positive and negative inputs that control the vertical scaling; however, only
the parameter ai scaling the negative inputs is trainable; the parameter scaling
the function for positive inputs is stochastic and sampled from a uniform
distribution centered around 1 in each training epoch.

The PTELU (see Section 4.3.1.30) behaves as linear function for positive
inputs and as a special case of TAAF for negative inputs with α = ai, β = bi,
γ = 0, δ = 0, and f (z) = tanh(z) where ai and bi are trainable parameters
for each neuron i. The later proposed TReLU (see Section 4.3.1.35) is identical

208 methods

to PTELU but with fixed α = ai = 1 as it only has horizontal scaling for
negative inputs.

The BLU (see Section 4.3.1.37) is an activation function that has two compo-
nents — nonlinear function with adaptive scaling parameter ai and a linear
component. While the scaling parameter has a similar role as the TAAF’s
parameter α, its values are limited to the range [−1, 1].

The PELU (see Section 4.3.1.43) extends the ELU by two parameters ai
and ai

bi
controlling the slope — separate parameters for positive and negative

inputs — but it also has a horizontal scaling parameter 1
bi

for the exponential
part of the PELU for negative inputs. The parameters ai and bi are formulated
such that there is no non-differentiability at input z = 0. Another ELU
extension FELU (see Section 4.3.1.46) uses adaptive scaling parameter ai
to control the soft saturation region for negative inputs. The MPELU (see
Section 4.3.1.48) outputs identity for positive inputs, but it outputs non-
linearly transformed input for negative values that can be formulated within
the TAAF framework — with α = ai, β = bi, γ = 0, δ = 0, and f (z) =

exp(z)− 1 where ai and bi are MPELU’s scaling parameters. The CELU (see
Section 4.3.1.51) is similar to MPELU but it is reparameterized using a single
parameter ai such that its derivative at z = 0 is 1 — the only difference from
the MPELU is that its TAAF reformulation for negative part is α = ai and
β = 1

ai
.

The PSELU (see Section 4.3.1.53), which is the adaptive variant of SELU,
has two trainable scaling parameters ai and bi that allow for vertical scaling
of the function; the parameter ai is scaling the whole function and as such
is the exact equivalent of the parameter α while the parameter bi scales
the function only for negative inputs. The LPSELU (see Section 4.3.1.54)
is identical to PSELU, but it adds a linear function for negative inputs to
avoid small gradients — this linear function has slope controlled by another
parameter ci; i.e., the function has two parameters that control the slope only
for negative inputs, bi for the exponential part and ci for the linear part, the
parameter ai controls the slope of the whole function. The LPSELU_RP (see
Section 4.3.1.55) extends the LPSELU by the additional parameter mi that
controls the vertical translation of the whole function; this trainable parameter
represents an exact equivalent of the TAAF’s parameter δ.

The PDELU (see Section 4.3.1.59) introduces two parameters ai and b;
while ai is an adaptive parameter that controls the scaling of the function
for negative inputs, parameter b is a fixed hyperparameter controlling the
shape of the nonlinear part of the activation. Similarly, the T-swish (see
Section 4.3.1.57) has parameters ai and bi for vertical and horizontal scaling
only for negative inputs.

The EELU (see Section 4.3.1.60) is an activation function with a stochastic
component for positive inputs and function scaling for negative inputs. The
function is scaled using parameter ki for positive inputs, which is stochastic
and is sampled from a Gaussian distribution with random variance (sampled
from a uniform distribution) and is clipped into interval [0, 2]. Adaptive
parameters ac and bc are used for vertical and horizontal scaling of the
function for negative inputs and are shared by all neurons in channel c; the

5.2 transformative adaptive activation function 209

function for negative inputs can be formulated within TAAF framework using
α = ac, β = bc, γ = 0, δ = 0, and f (z) = exp(z)− 1.

The scaled softsign (see Section 4.3.19) is controlled by two adaptive pa-
rameters ai and bi; however, only the ai has an equivalent within the TAAF
framework — the parameter ai controls the vertical scale of the function and
thus it is the equivalent of the parameter α of the TAAF framework. The
parameter bi controls the rate of transition between signs, and as such, it does
not have an equivalent within the TAAF framework.

The NAF (see Section 4.3.27) consists of parts; each one has one parameter
for controlling its vertical scale. The parts also have two additional parameters
for controlling the horizontal scale similarly as does β in the TAAFs — the
first part has parameter b β2 while the second uses parameter d that has
the same function as β without any non-linear transformation. Function
similar to NAF is the combination of scaled logistic sigmoid with scaled sine
(SLS-SS; see Section 4.3.27.1) uses four parameters, one pair for controlling
the horizontal and vertical scale of the logistic sigmoid and the other pair
controlling the horizontal and vertical scale of the sine function; the function
can be seen also as the combination of two TAAF based functions — the first
with α = ai, β = bi, γ = 0, δ = 0, f (z) = sin(z) and the second with α = ci,
β = di, γ = 0, δ = 0, and f (z) = 1

1+exp(−z) .
The APLU (see Section 4.3.28) can be seen as sum of S + 1 TAAF based

functions where the first function is just plain ReLU(z) while the others can
be defined as TAAF equvialents with α = as

i , β = 1, γ = −bs
i , δ = 0, and

fs(z) = ReLU(−z).
The MeLU (see Section 4.3.31) is an approach with the same representation

power as the APLU but with a lower number of parameters; it consists of a
sum of functions, each having its own trainable parameter for vertical scaling
ai,j.

Function combining sigmoid-like and ReLU functions is the SReLU (see
Section 4.3.32); it is a piecewise function with linear function in the middle
and with two trainable determining thresholds limiting the middle identity
segment; it also has two trainable parameters controlling the slope of the
outermost segments. Similarly, the LinQ (see Section 4.2.8.8) has one non-
adaptive parameter for scaling the slope of the function but only for the parts
that are outside the interval [−2, 2]. The PLU (see Section 4.3.34) can be con-
sidered as a special case of the SReLU enforcing invertibility of the function;
it has only one trainable parameter ai that determines the slope of two linear
segments similarly as α does in TAAFs. The AdaLU (see Section 4.3.35) is a
piecewise linear function with adaptive parameters for controlling the slope
and shifts of individual components.

The MTLU (see Section 4.3.43) extends the SReLU approach into more
than three segments; each of the K segments has a parameter ai,k, k = 0, . . . , K
that controls the slope of the respective segment (a local equivalent of α)and
parameter bi,k, k = 0, . . . , K that controls its translation (a local equivalent
of δ); the segments are determined by parameters ci,0, . . . , ci,K−1. The LuTU
(see Section 4.3.45) is also a piecewise linear activation function where each
segment has adaptive slope and bias — however, the function is defined by

210 methods

several anchor points instead of using direct equivalents of α and δ for each
segment.

The maxout unit (see Section 4.3.46) returns a maximum of multiple linear
functions; it can also be seen as returning maximum of K TAAFs; each with
α = wk

i , β = 1, γ = 0, δ = bk
i , and f (z) = z, k = 1, . . . , K.

The DY–ReLU (see Section 4.3.55.3) is a different approach compared to
most of the adaptive functions in this list — it uses a hyperfunction for
computing the parameters of the activation function. The activation function
itself is a piecewise linear function that is defined as the maximum of multiple
linear functions — it is a maximum of multiple independent TAAFs, each
with two parameters that are equivalent to the TAAF parameters α and δ.

A similar approach to the maxout unit is the ABU and its variants (see
Section 4.3.47) — using a weighted sum of activation functions instead of
the maximum. This can be seen as a sum of TAAF based functions when the
weight aj, l is equivalent to the scaling parameter α for the relevant TAAF
with any inner activation gj(z). The formulation of ABU as a sum of TAAF
is beneficial for the extended variant with additional bias parameter (see
Eq. (4.478)) — this ABU is a sum of n TAAF based functions with αj = ai,j,
β j = 1, γj = −bi,j, deltaj = 0 for any inner activation function. There are
other ABU variants whose weights of individual inner activation functions
have to sum up to 1 [1195, 1196] or that are employing min–max scaling
[1196]. Another ABU variant called APAF divides the output by the sum
of the weighting coefficients — the output is the weighted average of the
inner activation functions. The GABU (see Section 4.3.47.3) is an ABU variant
that uses gating functions for obtaining the scaling parameters of individual
inner activation functions. The SLAF (see Section 4.3.47.6) is a special case of
ABU that utilizes the increasing powers of the input as the individual inner
activation functions. Similarly, the ChPAF (see Section 4.3.47.7) and LPAF
(see Section 4.3.47.8) can be considered as ABU, but the inner functions are
Chebyshev and Legendre polynomials instead.

The SinLU (see Section 4.3.3.11) uses vertical and horizontal scaling param-
eters ai and bi only for a single term in its definition that adds a sine function
to the base linear function.

The KAF (see Section 4.3.55.5) is an activation function that uses kernel
expansion with a dictionary; however, since Scardapane et al. used D fixed
dictionary points, it can also be viewed as a sum of individually scaled
functions with parameters ai,j, j = 1, . . . , D.

The PAU (see Section 4.3.48) extends the ABU concept even further; a PAU
is basically a division of two SLAFs — i.e., the PAU is the division of two
sums of individually transformed functions that are polynomials of increasing
power. The ERA (see Section 4.3.50) is a function that is very similar to the
PAU; however, the ERA is parameterized in such way that it can be rewritten
using partial fractions reducing the number of operations — this formulation
however holds even less similarities with the TAAF parameterization.

The MoGU (see Section 4.3.47.10) is, similarly to the ABU, also a sum
of individually transformed functions. However, unlike ABU, the MoGU
uses more TAAF parameters than just the α. It can be defined as a sum

5.2 transformative adaptive activation function 211

of n TAAF based functions with αj =
ai,j
σi,j

, β j =
1

σi,j
, γj =

−µi,j
σi,j

, δ = 0, and

f j(z) = 1√
2π

exp
(
− 1

2 (z)
2
)

, j = 1, . . . , n. Similarly, the TCA and TCAv2 (see
Section 4.3.47.1) can be seen as a sum (TCA) or a weighted average (TCAv2)
of k TAAF based functions. The TAAF based functions are using parameters
βi, j = exp

(
ai,j
)

and γi, j = exp
(
bi,j
)

in TCA and αi, j = exp
(
ai,j
)
, βi, j =

exp
(
bi,j
)
, and γi, j = exp

(
ci,j
)
in TCAv2. Note that the sum of the functions

in TCAv2 is divided by ∑k
j=1 exp

(
ai,j
)

to obtain the weighted average of the
functions.

The MSAF (see Section 4.2.2.24 is a sum of individually translated logistic
sigmoids); it has a parameter for vertical translation a and each logistic
sigmoid has another translation parameter bk for horizontal translation. These
translations, however, seem to be predefined and nonadaptive.

Similarly, the FSA (see Section 4.3.47.11) is also a sum of individually
transformed functions; however, there are two different functions this time,
and they are transformed using equivalents of both α and β — i.e., they have
parameters for both horizontal and vertical scaling. Furthermore, there is also
a single parameter ai that controls the vertical translation similarly to the
parameter δ in TAAFs.

The VAF (see Section 4.3.55.1) approach, published parallelly with the
TAAFs, uses a specially defined subnetwork instead of a simple activation
function; the resulting activation function from the subnetwork is equivalent
to the sum of TAAFs in the most general sense — it has all four TAAF
parameters in equivalent formulation and also allows for usage of any inner
function. While the VAF is more general than TAAF, it also has significantly
more parameters proportional to the size of the subnetwork.

The Table 5.2 summarizes the activation functions that uses concepts that
are related to those used in TAAFs.

2
1

2
m

e
t

h
o

d
s

activation year details source adapt. parameters TAAF equiv. note

improved logistic
sigmoid

2019 Section 4.2.2.7 [801] ✗ a, b α controllable slope only for cer-
tain inputs

STAC-tanh 2021 Section 4.3.2.8 [1102] ✓ ai, bi α controllable slope only for
certain inputs determined by
adaptive thresholds

RSigELU 2021 Section 4.2.7.15 [949] ✗ a α controllable slope only for cer-
tain inputs

penalized hyper-
bolic tangent

2016 Section 4.2.2.9 [791] ✗ a α controllable slope only for cer-
tain inputs

Hexpo 2017 Section 4.2.2.12 [806] ✗ a, c; b, d α; β different parameters for nega-
tive and positive inputs

LReLU 2013 Section 4.2.6.2 [869] ✗ a α controllable slope only for cer-
tain inputs

VLReLU 2014 Section 4.2.6.2 [870] ✗ a α controllable slope only for cer-
tain inputs

OLReLU 2021 Section 4.2.6.2 [876] ✗ a α controllable slope only for cer-
tain inputs

DLReLU 2019 Section 4.3.1.13 [1032] ✗ abt α controllable slope only for cer-
tain inputs; slope controlled
by a fixed parameter (a) but
also using the test error from
previous epoch (bt)

5.
2

t
r

a
n

s
f

o
r

m
a

t
i
v

e
a

d
a

p
t

i
v

e
a

c
t

i
v

a
t

i
o

n
f

u
n

c
t

i
o

n
2

1
3

SoftModulusT 2023 Section 4.2.6.31 [836] ✗ a β horizontal scaling only of the
tanh component

SignReLU 2018 Section 4.2.6.32 [910] ✗ a α controllable slope only for cer-
tain inputs

RReLU 2015 Section 4.2.6.3 [872] ✗ a α controllable slope only for cer-
tain inputs, stochastic

EReLU 2018 Section 4.2.6.38 [918] ✗ a α controllable slope only for cer-
tain inputs

NReLU 2010 Section 4.2.6.6 [861] ✗ a γ stochastic parameter with
zero mean

RT–ReLU 2018 Section 4.2.6.11 [883] ✗ a γ stochastic parameter with
zero mean

ReSP 2018 Section 4.2.6.14 [886] ✗ a α controllable slope only for cer-
tain inputs

BLReLU 2016 Section 4.2.6.24 [888] ✗ a α controllable slope only for cer-
tain inputs

ELU 2016 Section 4.2.6.48 [874] ✗ a α controllable slope only for cer-
tain inputs

SELU 2017 Section 4.2.7.11 [945] ✗ a, b α separately controllable slope
for positive and negative in-
puts

2
1

4
m

e
t

h
o

d
s

LSELU 2021 Section 4.2.7.12 [946] ✗ a, b, c α individual components has
separate parameters for con-
trolling the slope

sSELU 2021 Section 4.2.7.14 [946] ✗ a, b, c α, β individual components have
separate parameters for con-
trolling the slope

RSigELUD 2021 Section 4.2.7.19 [949] ✗ a, b α individual components have
separate parameters for con-
trolling the slope

Soft++ 2020 Section 4.2.18.1 [973] ✗ a, b α, β one component is vertically
scaled, the other horizontally
scaled

PReLU 2015 Section 4.3.1.1 [871] ✓ a α controllable slope only for cer-
tain inputs

RT–PReLU 2018 Section 4.3.1.10 [883] ✓ a α controllable slope only for cer-
tain inputs; stochastic thresh-
olding

PREU 2019 Section 4.3.1.9 [932] ✓ a, b α, β horizontal scaling only for
negative inputs

AReLU 2020 Section 4.3.1.19 [1037] ✓ al , bl α separate scaling for negative
and positive inputs; parame-
ter transformation

tanhLU 2022 Section 4.3.1.33 [1049] ✓ ai, bi, ci α, β separate scaling for each com-
ponent

5.
2

t
r

a
n

s
f

o
r

m
a

t
i
v

e
a

d
a

p
t

i
v

e
a

c
t

i
v

a
t

i
o

n
f

u
n

c
t

i
o

n
2

1
5

DPReLU 2020, 2021 Section 4.3.1.20 [1039, 1040] ✓ ai, bi α proposed independently in
[1039] and [1040]

Dual Line 2020 Section 4.3.1.21 [1039] ✓ ai, bi, mi α, δ separate scaling for negative
and positive inputs; common
vertical translation

PiLU 2021 Section 4.3.1.22 [1041] ✓ ai, bi, ci α, γ separate scaling for negative
and positive inputs; common
horizontal translation

DPAF 2020 Section 4.3.1.23 [1039] ✓ ai, mi α, δ slope scaling only for posi-
tive inputs; common vertical
translation

FPAF 2021 Section 4.3.1.24 [1040] ✓ v α separate scaling for negative
and positive inputs

EPReLU 2018 Section 4.3.1.25 [918] ✓ ai, ki α separate scaling for negative
and positive inputs, stochastic
scaling for positive inputs

PTELU 2017 Section 4.3.1.30 [1047] ✓ ai, bi α, β scaling for negative inputs
only

TReLU 2019 Section 4.3.1.35 [1050] ✓ bi β scaling for negative inputs
only

BLU 2019 Section 4.3.1.37 [1053] ✓ ai α scaling only the nonlinear
component

2
1

6
m

e
t

h
o

d
s

PELU 2016 Section 4.3.1.43 [1064] ✓ ai, bi α, β separate vertical scaling for
positive and negative inputs,
horizontal scaling only for
negative inputs

FELU 2019 Section 4.3.1.46 [1067] ✓ ai α scaling only for negative in-
puts

MPELU 2018 Section 4.3.1.48 [1070] ✓ ai, bi α, β scaling only for negative in-
puts

CELU 2017 Section 4.3.1.51 [1075] ✓ ai α, β scaling only for negative in-
puts, continuously diff.

PSELU 2020 Section 4.3.1.53 [1077] ✓ ai, bi α separate vertical scaling for
positive and negative inputs

LPSELU 2020 Section 4.3.1.54 [1077] ✓ ai, bi, ci α individual components have
separate parameters for con-
trolling the slope

LPSELU_RP 2020 Section 4.3.1.55 [1077] ✓ ai, bi, ci, mi α, δ individual components have
separate parameters for con-
trolling the slope

PDELU 2020 Section 4.3.1.59 [1082] ✓ ai, b α scaling only for negative in-
puts, fixed b for shape control

T-swish 2022 Section 4.3.1.57 [1079] ✓ ai, bi, ci α, β scaling only for negative in-
puts, ci for threshold determi-
nation

5.
2

t
r

a
n

s
f

o
r

m
a

t
i
v

e
a

d
a

p
t

i
v

e
a

c
t

i
v

a
t

i
o

n
f

u
n

c
t

i
o

n
2

1
7

EELU 2020 Section 4.3.1.60 [1027] ✓ ac, bc, kc
i α, β vertical and horizontal scal-

ing for negative inputs; verti-
cal stochastic scaling for posi-
tive inputs

scaled softsign 2023 Section 4.3.19 [889] ✓ ai, bi α additional adaptive parame-
ter

NAF 2000 Section 4.3.27 [1158] ✓ a, b, c, d α, β each component has its own
scaling

SLS-SS 2007 Section 4.3.27.1 [1161] ✓ ai, bi, ci, di α, β each component has its own
scaling

APLU 2017 Section 4.3.28 [1014] ✓ as
i , bs

i , s =

1, . . . , S
α, γ sum of S TAAFs

SReLU 2016 Section 4.3.32 [873] ✓ tr
i , ar

i , tl
i , al

i α slope controllable only for the
outermost segments

LinQ 2016 Section 4.2.8.8 [955] ✓ a α slope controllable only for the
outermost segments outside
the interval [−2, 2]

All-ReLU 2021 Section 4.3.33 [1172] ✗ a α slope controllable only for
negative inputs, alternating
between layers

PLU 2018 Section 4.3.34 [1173] ✓ ai, b α b fixed; slope controllable
only for the outermost seg-
ments

2
1

8
m

e
t

h
o

d
s

AdaLU 2022 Section 4.3.35 [1174] ✓ ai, bi, ci, di,
ei

α, γ, δ b controllable slopes and off-
sets for individual compo-
nents

MTLU 2019 Section 4.3.43 [1179] ✓ ai,0, . . . , ai,K,
bi,0, . . . , bi,K,
ci,0, . . . , ci,K−1

α, δ separate parameters for indiv.
segments

maxout unit 2013 Section 4.3.46 [1191] ✓ wk
i , bk

i , k =

1, . . . , K
α, δ maximum of individually

transformed functions

DY–ReLU 2020 Section 4.3.55.3 [1034] ✓ ai,k, bi,k, k =

1, . . . , K
α, δ maximum of individually

transformed functions; hyper-
function for parameter opti-
mization

ABU 2020 Section 4.3.47 [1194] ✓ ai,j α sum of individually trans-
formed functions

ABU with bias 2018 Section 4.3.47 [1186] ✓ ai,j, bi,j α, β sum of individually trans-
formed functions

ABU (con-
strained)

2018 Section 4.3.47 [1195] ✓ ai,j α sum of individually trans-
formed functions; their scal-
ing parameter sum up to 1

TCA 2022 Section 4.3.47.1 [1197] ✓ ai,j, bi,j β, γ sum of individually trans-
formed functions

TCAv2 2023 Section 4.3.47.1 [1198] ✓ ai,j, bi,j, ci,j α, β, γ sum of individually trans-
formed functions

5.
2

t
r

a
n

s
f

o
r

m
a

t
i
v

e
a

d
a

p
t

i
v

e
a

c
t

i
v

a
t

i
o

n
f

u
n

c
t

i
o

n
2

1
9

activation ensem-
ble

2019 Section 4.3.47 [1196] ✓ ai,j α sum of individually trans-
formed functions; their scal-
ing parameter sum up to 1;
min–max scaling

SinLU 2017 Section 4.3.3.11 [1127] ✓ ai, bi α, β scaling only of a single term

GABU 2016 Section 4.3.47.3 [1013] ✓ ai,j α sum of individually trans-
formed functions; gated

SLAF 2019 Section 4.3.47.6 [1202] ✓ ai,j α sum of individually trans-
formed functions

ChPAF 2023 Section 4.3.47.7 [1206] ✓ aj,
j = 0, . . . , k

α sum of individually trans-
formed functions

LPAF 2021 Section 4.3.47.8 [1207] ✓ aj,
j = 0, . . . , k

α sum of individually trans-
formed functions

KAF 2019 Section 4.3.55.5 [1248] ✓ ai,j, dj, j =

1, . . . , D
α dj fixed; sum of individually

transformed functions

PAU 2020 Section 4.3.48 [1209] ✓ aj, j =

0, . . . , m, bk,
k = 1, . . . , n

α division of two sums of sum
of individually transformed
functions

MoGU 2018 Section 4.3.47.10 [1186] ✓ ai,j, σi,j, µi,j,
j = 1, . . . , n

α, β, γ sum of individually trans-
formed functions

MSAF 2015 Section 4.2.2.24 [813] ✗ a, bk, k =

1, . . . , N
γ, δ sum of individually trans-

lated functions

2
2

0
m

e
t

h
o

d
s

FSA 2020 Section 4.3.47.11 [1199] ✓ ai, bi,j,
ci,j, di,
j = 0, . . . , r

α, β, δ sum of individually trans-
formed functions

VAF 2019 Section 4.3.55.1 [1243] ✓ al,0, al,j,
bl,j, cl,j,
j = 1, . . . , k

α, β, γ, δ sum of TAAFs

Table 5.2: Activation functions related to TAAFs
Activation functions that employs the same or similar concepts as TAAFs. The column TAAF equiv. lists the TAAF’s parameters whose function
the activation also employs in any manner.

5.2 transformative adaptive activation function 221

5.2.1.3 TAAF as output layer

It is standard practice to use an output layer with a linear activation function
as the sigmoidal activation functions such as hyperbolic tangent and logistic
sigmoid have limited ranges. The original D–GEX architecture is no exception
and uses a linear output layer. This, however, is no longer necessary with
the use of TAAF as the scaling and translation allow for an arbitrary range.
The modified network architectures with TAAFs in the output layer (denoted
TAAFo) enable better performance than those with a linear activation in the
output layer by increasing the network capacity. The need for a linear layer for
some regression task could be, of course, solved by other approaches — e.g.,
another custom activation with only a single scaling parameter such as the
activation function with trainable amplitude [1086] but the TAAF provides
higher flexibility thanks to the added parameters. The usage of TAAFs in all
layers is beneficial for two reasons:

architecture simplification When TAAFs are used in all layers, the
architecture is less complex and easier to understand and analyze than
if different activation functions are used in different components of
the neural network. Simpler and more coherent architectures are also
simpler to debug.

efficient usage of parameters Usage of a linear activation function
in the output layer for purposes of output scaling introduces many
unnecessary parameters — the linear layer needs (N + 1)× M weights
where N is the number of neurons in the previous layer, and M is
the number of outputs of current layers. While a linear layer might
be beneficial if the regression task naturally yields a solution as a
linear combination of some nonlinear function, it introduces too many
additional parameters if only output scaling is needed. Using TAAFs in
the output layer instead of a linear activation functions often provides
network capacity more similar to a network with D + 1 layers with
nonlinear activations in hidden layers and a linear activation in the
output layer while keeping the number of parameters similar to the
original network with D layers.

5.2.2 Ensembles

Integrating multiple neural networks (or other learners) into an ensemble
very often leads to a better performance level than that of every single learner
from the ensemble [2119–2122]. It is common practice to build ensembles of
neural networks even for quite complex neural networks (e. g. [2123, 2124]).
Ensemble usage is also a common practice when working with microarray
data [2125] (e. g. an ensemble of support vector machines was used in [2126]).
Further description of ensembles is out of the scope of this work; reviews are
available in [2121, 2122, 2127, 2128].

We have evaluated ensembles consisting of different D–GEX architectures
as the evaluation was without any significant computational overhead. Our
ensemble selects a single D–GEX architecture as an expert for each gene based

222 methods

on one-half of the validation data; then only this expert is used to predict
the expression of the given gene — this leads to better performance if some
neural networks learned better prediction for some genes than the others.
We have evaluated ensembles consisting of a maximum of four different
architectures (a total of 984 ensembles for each activation function) based on
models from Experiments 1 – 5 and selected those that performed best based
on the second half of the validation data.

5.3 tower and checkerboard architectures

One of the contributions of this work is the introduction of a novel architec-
ture (published in [9]) for gene expression inference, which leads to significant
improvements in the quality of the inference. The baseline model is a modifi-
cation of D–GEX with TAAFs [10] which consists of three hidden, densely
connected layers with 10,000 neurons in each layer — the largest D–GEX
architecture consisted of only 9,000 neurons in each layer [2] but adding more
neurons has proved beneficial — and an output layer. Each neuron contains
the TAAF with a sigmoid as the inner activation function as in [10]; each
hidden layer is with 25% dropout.

5.3.1 Tower architecture (T–D–GEX)

Since the baseline model consists of three densely connected layers, a further
increase in the number of neurons in each layer is difficult as the number of
connections (weights) increases quadratically, and even the baseline model
was near the memory limitations of the used GPU. Thus, similarly to PCs,
we introduce towers of dense layers that are not connected to each other,
which allows for a significant increase in the number of neurons without the
increase in the number of weights. Unlike the PCs [1255, 1256], the output
layer is not densely connected to all the towers, but rather the outputs of
individual towers are first averaged, and only then an output layer is added
— otherwise, the gains from the tower architecture would be much smaller as
the number of connections between last hidden layer and the output layer
would not change. The D–GEX with the tower architecture is denoted T–D–
GEX, the number of neurons in a single layer of a tower was determined
such that networks with more columns have strictly fewer weights (yet more
neurons) as shown in Table 5.3 and Figs. 5.2 and 5.3.

5.3.2 Checkerboard architecture (C–D–GEX)

The checkerboard architecture can be seen as an extension of the tower
architecture. The tower architecture consists of towers of densely connected
layers where each layer is connected to the layer that precedes it; there is no
information flow between the towers — the towers share the input layer, and
then their outputs are averaged before the output layer. The checkerboard
architecture addresses this issue and divides each layer of a tower into halves
— each half is connected to the same half of the same tower of the preceding

5.3 tower and checkerboard architectures 223

towers neurons/tower neurons parameters

1 10,000 34,759 257,149,036

2 7,227 48,121 257,119,561

3 5,941 58,228 257,068,283

4 5,157 66,643 256,997,503

5 4,615 73,984 256,977,621

6 4,211 80,557 256,953,201

8 3,637 92,047 256,729,407

10 3,242 102,019 256,587,674

12 2,948 110,887 256,374,168

Table 5.3: Number of parameters of used tower architectures
The summary of the parameterization of used architectures — C–D–GEX,
CR–D–GEX, T–D–GEX, and TR–D–GEX do not differ in number of pa-
rameters and neurons. Note that the total number of parameters remains
approximately the same across architectures.

layer; however, it is connected to the other half of the same tower only
every odd layer while every even layer it is connected to the other half of
the neighboring tower resulting in a checkerboard-like pattern of densely
connected blocks. Both checkerboard architectures used in this paper have
the first hidden layer without a dropout. The D–GEX with the checkerboard
architecture is denoted C–D–GEX.

5.3.3 Skip connections

Another improvement was the addition of a skip connection in a ResNet-like
manner [13] — we have added a residual skip connection from first to second
hidden layer to each tower; the output of the first hidden layer is added to the
output of second hidden layer before proceeding to the third hidden layer. The
whole architecture with skip connections compared to the original D–GEX is
shown in Fig. 5.4 where a checkerboard variant (see Section 5.3.2) was used.
The tower architecture (see Section 5.3.1) with skip connections is equivalent.
Such networks are denoted TR–D–GEX and CR–D–GEX, respectively.

D-GEX T-D-GEX C-D-GEX

Input Dense TAAFs AVG + Dense TAAFs

Figure 5.1: Overview of used architectures
The original D–GEX architectures and the novel architectures proposed
in this paper. The outputs of the towers (or halves for C–D–GEX) are
averaged before the output layer.

224 methods

0 2 4 6 8 10 12

towers

3000

4000

5000

6000

7000

8000

9000

10000

ne
ur

on
s

p
er

to
w

er

Figure 5.2: Dependence of neurons per tower on number of towers
The relationship between neurons per tower and number of towers when
the number of weights is limited by the number of weights of a single
tower with 10,000 neurons. The dashed line represents the number of
neurons in the output layer, and the shaded region denotes the number
of towers, for which the number of neurons in each layer of each tower is
most similar to the number of output neurons.

0 2 4 6 8 10 12

towers

0

20000

40000

60000

80000

100000

ne
ur

on
s

Figure 5.3: Total number of neurons by the number of towers
The relationship between the total number of neurons and the number
of towers when the number of weights is limited by the number of
weights of an architecture with a single tower with 10,000 neurons (i.e.,
the equivalent of the original D–GEX). The dashed line represents the
number of neurons in the output layer, and the shaded region denotes
the number of towers, for which the number of neurons in each layer of
each tower is most similar to the number of output neurons.

5.4 implementation 225

D–GEX Checkerboard

Input Dense TAAFs AVG + Dense TAAFs

Figure 5.4: Diagram comparing the original D–GEX architectures and the checker-
board D–GEX architecture. The outputs of the towers are averaged before
the output layer. Black arrows represent dense connections between
blocks; purple dashed arrows represent skip connections.

5.4 implementation

The work was implemented in python 3, the neural networks were imple-
mented using the NN library Keras [209] and the computational framework
Tensorflow [210]. Other packages used include SciPy [2129], scikit-learn [2130],
pandas [2131], and NumPy [2132] for data manipulation and Matplotlib [2133]
and seaborn [2134] for visualizations. The original implementation used in
[10] is available at https://github.com/kunc/TAAF-D-GEX.

5.4.1 Transformative adaptive activation function

The TAAF was implemented by extending the Keras class Layer2 as it allowed
for seamless usage of the activation functions. To simplify the implementation,
the TAAF split into several building blocks — two applications of a simpler
linear transformation block called adaptive transformative unit (ATU) and a
single application of the inner activation.

5.4.1.1 Adaptive transformation unit

The ATU is a basic building block of the TAAF. It has two adaptive parameters
— a for linear scaling of the input and bias term b for translation:

ATU(x) = a · x + b. (5.8)

The main part of the code of the ATU unit is then simple as:

1 c l a s s ATU(Layer) :
2 . . .
3 def c a l l (s e l f , inputs) :
4 outputs = s e l f . alpha * inputs + s e l f . beta
5 re turn outputs

Listing 5.1: Core of implementation of the adaptive transformation unit

2 See the documentation at https://keras.io/api/layers/base_layer/.

https://github.com/kunc/TAAF-D-GEX
https://keras.io/api/layers/base_layer/

226 methods

5.4.1.2 TAAF as the application of ATUs

The TAAF itself can be formulated as one application of the ATU followed by
an application of the inner activation function and finally followed by another
ATU application. Using the functional API of Keras, it can be defined as

1 def t a a f (x , a c t i v a t i o n , name=" ") :
2 " " " Transformative Adaptive Act iva t ion Function .
3 I t fo l lows :
4 ‘ f (x) = alpha * f (beta * x + gamma) + del ta ‘ ,
5 where f i s a given a c t i v a t i o n funct ion .
6 " " "
7

8 x = ATU(name=name + " TAAF_Bottom ") (x)
9 x = Act iva t ion (a c t i v a t i o n) (x)

10 x = ATU(name=name + "TAAF_Top") (x)
11

12 re turn x

Listing 5.2: TAAF implemented using ATUs

However, the implementation of TAAF using ATUs directly in a single
function is a bit cumbersome to work with as it is not an extension of the Keras
base Layer class. However, it is a similar concept but with more boilerplate
code. The code below summarizes the implementation; some parts were
omitted to highlight the core of the implementation; full code is available at
https://github.com/kunc/TAAF-keras.

1 c l a s s TAAF(Layer) :
2 def _ _ i n i t _ _ (
3 s e l f ,
4 a c t i v a t i o n =" tanh " ,
5 a l p h a _ i n i t i a l i z e r =" ones " ,
6 b e t a _ i n i t i a l i z e r =" ones " ,
7 gamma_ini t ia l izer=" zeros " ,
8 d e l t a _ i n i t i a l i z e r =" zeros " ,
9 . . .

10 * * kwargs
11) :
12 . . .
13

14 s e l f . atu_bottom = ATU(
15 a l p h a _ i n i t i a l i z e r = b e t a _ i n i t i a l i z e r ,
16 b e t a _ i n i t i a l i z e r =gamma_ini t ia l izer ,
17 . . .
18)
19 s e l f . a c t i v a t i o n _ l a y e r = a c t i v a t i o n s . get (a c t i v a t i o n)
20 s e l f . atu_top= ATU(
21 a l p h a _ i n i t i a l i z e r = a l p h a _ i n i t i a l i z e r ,
22 b e t a _ i n i t i a l i z e r = d e l t a _ i n i t i a l i z e r ,
23 . . .
24)
25

26 super (TAAF, s e l f) . _ _ i n i t _ _ (* * kwargs)
27 . . .
28 def c a l l (s e l f , inputs) :
29 x = s e l f . atu_bottom (x)
30 x = s e l f . a c t i v a t i o n _ l a y e r (x)

https://github.com/kunc/TAAF-keras

5.4 implementation 227

31 x = s e l f . atu_top (x)
32 re turn x

Listing 5.3: TAAF implemented using ATUs

6
E X P E R I M E N TA L E VA L UAT I O N

After introducing TAAFs and tower and checkerboard architectures in previ-
ous Chapter 5, the goal of this chapter is to provide an empirical evaluation.
First, we establish that TAAFs indeed improve the performance of the original
D–GEX in Section 6.1, then we show that it has a practical measurable impact
on subsequent analyses in Section 6.2, and then we show that TAAFs are also
applicable outside the task of GE inference on several artificially generated
multivariate regression datasets in Section 6.3. After establishing the perfor-
mance of TAAFs, we show that the tower and checkerboard architectures
further improve the performance of GE inference in Section 6.4 and that
these improvements also have a practical impact on subsequent analyses in
Section 6.5.

6.1 establishing taaf performance on the d-gex microarray

data

This set of experiments shows that the TAAFs improve the performance of
the original NN model [2] for GE inference (see Section 5.1 for details about
the task). We start by Section 6.1.1 Experiment 1: Usage of TAAFs where
we show that just replacing the originally used tanh AFs by TAAFs also
with tanh as the inner AF improves the performance of the NN without any
further changes. Then, we further analyze the performance gains and show
that additional modifications, such as replacing the activations in the last
layer, improve the performance even further and that the same performance
cannot be achieved by TAAFs without some of the parameters.

6.1.1 Experiment 1: Usage of TAAFs

The goal of this and the following experiments is to establish the improve-
ment as a result of using the novel TAAFs in models trained on the full
dataset. First, we compare the original D–GEX architectures equipped with
the hyperbolic tangent (tanh) activation function to architectures equipped
with the novel TAAF with hyperbolic tangent as the inner activation function.
The results are shown in Tab 6.1, where the models are compared using the
MMDAEs. The table shows the signed difference in absolute errors between
the traditional hyperbolic tangent activation function and the adaptive acti-
vation function based on it — the novel transformative adaptive activation
function was superior to the hyperbolic tangent activation function for all
D–GEX architectures. Furthermore, the means (medians) of MMAEs for both
models were significantly different using the paired Student’s t-test (the
Wilcoxon rank test) with p < 0.0001 for all D–GEX architectures tested.

229

230 experimental evaluation

TAAF tanh – tanh

neurons layers MMDAE 95 % CI

3,000

1 -0.016960 -0.017064 -0.016855

2 -0.008421 -0.008472 -0.008370

3 -0.015788 -0.015867 -0.015710

6,000

1 -0.018504 -0.018640 -0.018366

2 -0.027463 -0.027548 -0.027376

3 -0.041951 -0.042331 -0.041683

9,000

1 -0.020829 -0.021007 -0.020649

2 -0.049515 -0.049631 -0.049394

3 -0.063431 -0.063633 -0.063228

Table 6.1: MMDAE summary TAAF tanh vs tanh
The MMDAE and its 95 % CI estimated using bootstrap on samplewise
MDAEs for the TAAF with tanh as inner activation function and classic
tanh activation function for D–GEX with 25% dropout on the test data of
the full dataset.

6.1.2 Experiment 2: Replacing tanh with sigmoid activation function

The performance of D–GEX with TAAF can be further improved by replacing
the inner tanh activation function with a logistic sigmoid activation function.
The comparison is shown in Tab 6.2. Since tanh is just a simple transformation
of the logistic sigmoid, this can be thought of as a different initialization of
the TAAF parameters, namely α := 1

2 , β := 1
2 , and δ := 1

2 . The original D–GEX
benefited from the sigmoid activation more compared to the D–GEX with
TAAFs (as shown in Tab 6.3), which shows that it is much more sensitive to
the activation function used and that using the TAAFs adds some robustness
to the model over different parameterizations. Furthermore, even the version
of D–GEX with sigmoid activation function benefited significantly from the
use of TAAFs, as presented in Tab 6.4.

6.1.3 Experiment 3: TAAFs for capacity adjusted NNs

The TAAFs introduce four additional parameters per neuron, which increase
the capacity of the neural network, and the improvement might possibly
be caused by the increase in the capacity. Indeed, it seems that increased
capacity helps D–GEX as the architectures with more neurons have a lower
prediction error for the same number of layers. We have reduced the number
of neurons in each layer in the D–GEX with TAAFs such that the total
number of parameters is the same as in the original D–GEX with the same
architecture. The number of removed neurons was always lower than 30

as the number of added weights per neuron is insignificant compared to
the number of weights of incoming connections. The improvement of the
reduced D–GEX with TAAFs was from 0.0034 to 0.0068 across different D–

6.1 taaf performance on the microarray data 231

TAAF sigmoid – TAAF tanh

neurons layers MMDAE 95 % CI

3,000

1 -0.005025 -0.005120 -0.004943

2 -0.017574 -0.017725 -0.017420

3 -0.010628 -0.010732 -0.010522

6,000

1 -0.004390 0-.004550 -0.004256

2 -0.009468 -0.009560 -0.009376

3 -0.002024 -0.002214 -0.001706

9,000

1 -0.004043 -0.004281 -0.003853

2 -0.010392 -0.010511 -0.010271

3 -0.001712 -0.001803 -0.001615

Table 6.2: MMDAE summary TAAF tanh vs TAAF sigmoid
The MMDAE and its 95 % CI estimated using bootstrap on samplewise
MDAEs for the TAAF with tanh and sigmoid as inner activation functions
for D–GEX with 25% dropout on the test data of the full dataset.

sigmoid – tanh

neurons layers MMDAE 95 % CI

3,000

1 -0.018551 -0.018781 -0.018345

2 -0.022399 -0.022543 -0.022253

3 -0.021952 -0.022112 -0.021786

6,000

1 -0.018294 -0.018676 -0.017980

2 -0.033569 -0.033709 -0.033429

3 -0.038359 -0.038547 -0.038164

9,000

1 -0.019727 -0.020284 -0.019274

2 -0.055361 -0.055534 -0.055192

3 -0.058344 -0.058559 -0.058129

Table 6.3: MMDAE summary sigmoid vs tanh
The MMDAE and its 95 % CI estimated using bootstrap on samplewise
MDAEs for the sigmoid and tanh activation functions for D–GEX with
25% dropout on the test data of the full dataset.

GEX architectures. The complete comparison of the reduced D–GEXs with
the adaptive activation function based on sigmoid and the original D-GEXs is
shown in Tab 6.5. We can observe that the reduction in the number of neurons
had, as expected, only a small effect and that the network with TAAFs still
significantly outperforms the original D–GEX. As this effect is negligible,
most of the experiments throughout this work use identical architectures
regarding the number of neurons, omitting this correction based on the
number of trainable weights.

232 experimental evaluation

TAAF sigmoid – sigmoid

neurons layers MMDAE 95 % CI

3,000

1 -0.003434 -0.003523 -0.003330

2 -0.003595 -0.003636 -0.003555

3 -0.004464 -0.004508 -0.004419

6,000

1 -0.004600 -0.004748 -0.004401

2 -0.003362 -0.003407 -0.003315

3 -0.005617 -0.005674 -0.005563

9,000

1 -0.005145 -0.005360 -0.004860

2 -0.004546 -0.004598 -0.004491

3 -0.006799 -0.006876 -0.006724

Table 6.4: MMDAE summary TAAF sigmoid vs sigmoid
The MMDAE and its 95 % CI estimated using bootstrap on samplewise
MDAEs for the TAAF with sigmoid as inner activation function and
sigmoid activation function for D–GEX with 25% dropout on the test data.

TAAF sigmoid (reduced) – sigmoid

neurons layers reduced MMDAE 95 % CI

3,000

1 2990 -0.003384 -0.003476 -0.003279

2 2,997 -0.003503 -0.003543 -0.003464

3 2,997 -0.004452 -0.004493 -0.004410

6,000

1 5980 -0.004599 -0.004746 -0.004409

2 5,997 -0.003685 -0.003732 -0.003637

3 5,997 -0.005680 -0.005734 -0.005627

9000

1 8971 -0.005130 -0.005346 -0.004849

2 8,997 -0.004139 -0.004199 -0.004077

3 8,997 -0.006811 -0.006882 -0.006740

Table 6.5: MMDAE summary TAAF sigmoid (reduced) vs sigmoid
The MMDAE and its 95 % CI estimated using bootstrap on samplewise
MDAEs for the TAAF with sigmoid as inner activation function and
sigmoid activation function for D–GEX with 25% dropout on the test data
of the full dataset. The network with TAAF had a reduced number of
neurons such that both networks had the same number of parameters —
the final number of neurons in each layer is shown in the column reduced.

6.1.4 Experiment 4: Importance of individual parameters

To verify that all TAAF parameters improve performance, we trained neural
networks with constrained TAAFs that had some of the parameters removed.
We evaluated all 16 subsets of TAAF parameters (from the reduced TAAF
equivalent to traditional sigmoid activation function to full TAAF with all
four adaptive parameters) using three-layered D–GEX architecture with 6000

6.1 taaf performance on the microarray data 233

neurons in each layer. The networks with different subsets of TAAF parame-
ters were pairwise evaluated based on MMDAE. Fig 6.1 shows the MMDAEs
between all model pairs while Fig 6.2 shows whether model A (row) is sig-
nificantly better than model B (column) based on the paired Wilcoxon rank
test on samplewise MAEs at significance level α = 0.001. The full TAAF is
significantly better than all other combinations of parameters. This shows
that the proposed TAAF with four parameters is the correct choice and that
it outperforms the other adaptive activation functions it generalizes.

0.004

0.002

0.000

0.002

0.004

Figure 6.1: MMDAE for different parameterizations
The average mean difference in absolute errors for different model pairs.
The model labels specify which adaptive parameters were used in the
TAAF (e.g., αβ means adaptive parameters α and δ were used).

6.1.5 Experiment 5: TAAF in the output layer

The networks with TAAF do not require the output layer to contain a linear
activation function for regression tasks as the TAAF allows for scaling and
translation. Using TAAFs in the output layer might lead to better performance,
as shown in Tab 6.6, where networks with TAAFs in the output layer are
compared with networks with a linear output layer. The usage of TAAFs in
the output layer was beneficial for all architectures tested.

6.1.6 Experiment 6: heterogeneity-aware data sampling

We have also run an experiment comparing plain D–GEX and D–GEX with
TAAFs (TAAFo) on the heterogeneity-aware data splits. The main focus of
this experiment was to verify whether the possible bias due to information
leakage between training and testing sets due to random splits in Experiments
1 – 5 is significant (if present at all).

Tab 6.7 shows the relative comparison of plain D–GEX and D–GEX with
TAAFs (TAAFo) for networks with sigmoid and hyperbolic tangent inner

234 experimental evaluation

Figure 6.2: Wilcoxon rank test for different parameterizations
Testing for significant differences in samplewise errors — a cell is black
if the model on the y-axis has a significantly lower MAE based on the
paired Wilcoxon rank test at significance level 0.001 than a model on the
x-axis. The model labels specify which adaptive parameters were used in
the TAAF (e.g., αβ means adaptive parameters α and δ were used).

TAAFo sigmoid – TAAF sigmoid

neurons layers MMDAE 95 % CI

3,000

1 -0.000401 -0.000472 -0.000308

2 -0.001015 -0.001091 -0.000945

3 -0.001896 -0.001951 -0.001843

6,000

1 -0.000679 -0.000789 -0.000531

2 -0.001654 -0.001718 -0.001591

3 -0.002474 -0.002521 -0.002428

9,000

1 -0.000919 -0.001075 -0.000711

2 -0.001864 -0.001935 -0.001796

3 -0.001426 -0.001477 -0.001377

Table 6.6: MMDAE summary TAAFo sigmoid vs TAAF sigmoid
The MMDAE and its 95 % CI estimated using bootstrap on samplewise
MDAEs for the TAAF with sigmoid as inner activation function and 25%
dropout on the test data. TAAFo sigmoid denotes a network that contains
TAAFs in the output layer while TAAF sigmoid uses a linear activation in
the output layer.

activation functions. The networks with TAAFs performed statistically sig-
nificantly better than the plain D–GEX even on this dataset, which had only

6.2 practical impact of taafs on dge analysis 235

≈ 60% of the training samples compared to the whole dataset (some samples
from the originally provided data were missing the GEO- id and could not
be used). This result demonstrates that the above-mentioned bias does not
affect the comparative analyses in our manuscript.

TAAFo sigmoid – sigmoid TAAFo tanh – tanh

neurons layers MMDAE 95 % CI MMDAE 95 % CI

3,000

1 -0.005339 -0.005449 -0.005221 -0.005927 -0.006007 -0.005847

2 -0.006263 -0.006329 -0.006198 -0.021192 -0.021282 -0.021103

3 -0.009114 -0.009185 -0.009042 -0.019252 -0.019341 -0.019160

6,000

1 -0.007214 -0.007338 -0.007082 -0.005080 -0.005174 -0.004990

2 -0.005941 -0.006012 -0.005870 -0.005400 -0.005474 -0.005326

3 -0.011624 -0.011709 -0.011539 -0.010166 -0.010256 -0.010071

9,000

1 -0.006664 -0.006785 -0.006539 -0.005402 -0.005515 -0.005293

2 -0.006514 -0.006589 -0.006439 -0.007455 -0.007538 -0.007368

3 -0.011349 -0.011446 -0.011250 -0.011921 -0.012038 -0.011806

Table 6.7: Comparison of MMDAE of TAAFo sigmoid vs sigmoid and TAAFo
tanh vs tanh
The MMDAE and its 95 % CI estimated using bootstrap on samplewise
MDAEs for the TAAF with sigmoid/tanh as inner activation function and
sigmoid/tanh activation function for D–GEX with 25% dropout on the test
set of the heterogeneity-aware sampled data.

6.1.7 Overall comparison

The best single network performs much better than our reimplementation of
the original D–GEX — the MMAE of the best network (3× 9, 000 TAAFo with
sigmoid) is 0.1340 (the 95% CI estimated over samples is [0.13316, 0.13486])
compared to D–GEX with tanh activation function with an MMAE of 0.1637

(95% CI [0.16279, 0.16458]). Our proposed network performs better in 18,849

(99.75%) samples while worse in only 2 (0.001%) samples when the MAEs
over genes for individual samples are compared using the paired Wilcoxon
rank test at significance level α = 0.0001.

All improvements to the original D–GEX are depicted in Fig 6.3, which
shows the improvement of individual modifications. Fig 6.4 summarizes the
individual improvements over the basic D–GEX with our proposed activation
function. Tab 6.8 shows the absolute performance of the top ten D–GEXs.

6.2 practical impact of taafs on differential gene expression

analysis on the d-gex microarray data

To demonstrate that lowering the inference error established in Section 6.1
has a practical impact on applied tasks, we ran differential gene expression
analyses as described in Section 5.1.5.1. We started with the artificial pheno-

236 experimental evaluation

0.1409 0.13720.1354

0.1627

0.1406 0.1371
0.1352

sigmoid TAAF

ensemble

baseline: 0.1637 (tanh)

Figure 6.3: Individual components of improvement
A diagram depicting the performance for individual improvements over
the standard D–GEX baseline with tanh activation function. The diagram
shows the best MMAE over all D–GEX architectures for a given approach
trained on the full dataset.

0.1354 0.13610.1340

0.1371

0.1352 0.1360
0.1339

sigmoid TAAFo

ensemble

baseline: 0.1372 (TAAF tanh)

Figure 6.4: Individual components of improvement including TAAFo
A diagram depicting the performance for individual improvements over
the D–GEX baseline already equipped with transformative adaptive
activation functions. The diagram shows the best MMAE over all D–GEX
architectures for a given approach trained on the full dataset.

types introduced by clustering; then, we continued with the real phenotypes
taken from the original annotation available for a particular data series.

6.2.1 Artificial phenotypes

First, we ran the DGE analysis using the best model from Experiment 1, which
contained models trained on the full dataset, using the artificial phenotypes.
The randomly sampled balanced datasets had sizes ranging from 12 to 600,
which is the usual sample size range for DGE analyses. The distribution

6.2 practical impact of taafs on dge analysis 237

rank MMAE neurons layers type activation

1 0.134015 9,000 3 TAAFo sigmoid

2 0.134503 9,000 2 TAAFo sigmoid

3 0.135430 8,997 3 TAAF (reduced) sigmoid

4 0.135442 9,000 3 TAAF sigmoid

5 0.136064 9,000 2 TAAFo tanh

6 0.136367 9,000 2 TAAF sigmoid

7 0.136774 8,997 2 TAAF (reduced) sigmoid

8 0.136883 9,000 3 TAAFo tanh

9 0.137154 9,000 3 TAAF sigmoid

10 0.137189 6,000 3 TAAFo sigmoid

Table 6.8: 10 best D–GEX architectures
The 10 best D–GEX architectures in terms of MMAE on the test data of
the full dataset. 25% dropout was used.

of values and the pairwise differences of F1 score is shown in Fig 6.5 and
Fig 6.6 for 5,000 repetitions for each sample size. The differences in all scores
(F0.5, F1 – F10 scores, accuracy, and MCC) were statistically significant for
all sample sizes tested when using the Wilcoxon signed-rank test as all the
p–values were < 10−8.

12 16 20 24 28 32 36 40 50 60 80100120140160200300400500600
sample size

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 sc

or
e

Architecture
D-GEX
TAAF

Figure 6.5: Distribution of F1 scores
Distribution of the F1 scores obtained by the D–GEX with TAAFs and
the plain D–GEX of 5,000 repetitions for each sample size. The whiskers
show the 10th and 90th percentiles.

238 experimental evaluation

12 16 20 24 28 32 36 40 50 60 80 100120140160200300400500600
sample size

0.00

0.05

0.10

0.15

0.20

F 1
 d

iff
er

en
ce

Figure 6.6: Distribution of differences in F1 scores
Distribution of pairwise differences in the F1 score obtained by the D–
GEX with TAAFs and the plain D–GEX of 5,000 repetitions for each
sample size. The whiskers show the 10th and 90th percentiles.

6.2.1.1 Impact on candidate rankings

We also analyzed how the candidates’ ranking for differentially expressed
genes differs between the ground truth data and the inferred data using both
methods. For the second part of the analysis, we selected 100 candidates for
differentially expressed genes (i.e., genes ranked 1 – 100 by their statistical
significance) and compared their ranks when using the inferred data by both
methods. The MAE of the rankings for both methods is shown in Fig 6.7, and
the pairwise difference in Fig 6.8. The difference was statistically significant
for all sample sizes tested when using the Wilcoxon signed-rank test with
significance level α = 10−8. Both rankings were becoming more similar to
the ground truth candidate ranking with increasing sample sizes in general
(the selections of the first 100 candidates are becoming more and more
conservative with increasing sample size). However, the candidate rankings
produced using data inferred by D–GEX with TAAFs were closer to the
ground truth rankings.

For the third part of the analysis, we selected candidates for differentially
expressed genes as those genes for whose the p–value was lower than the
significance level α = 0.05. The MAE of the rankings for both methods is
shown in Fig 6.9 and the pairwise difference in Fig 6.10. The MAE here
is generally higher than in the case of the selection of only the first 100

candidates, but that is because the number of candidates selected with the
threshold α = 0.05 is higher and increases with the sample size. The increased
accuracy of the D–GEX with TAAFs impacts the ranking for larger sizes as
it obviously represents the expression data more faithfully, and thus, the
rankings are more similar to the ground truth data compared to the plain
D–GEX.

6.2 practical impact of taafs on dge analysis 239

12 16 20 24 28 32 36 40 50 60 80 100120140160200300400500600
sample size

50

100

150

200

250

ra
nk

 M
AE

Method
DGEX
TAAF

Figure 6.7: Distribution of MAEs (first 100)
Distribution of the MAE on rankings obtained by the D–GEX with TAAFs
and the plain D–GEX of 5,000 repetitions for each sample size for the first
100 candidates for DE genes selected on the sampled ground truth data.
The whiskers show the 10th and 90th percentiles.

12 16 20 24 28 32 36 40 50 60 80 100120140160200300400500600
sample size

80

60

40

20

0

ra
nk

 M
AE

 d
iff

er
en

ce

Figure 6.8: Distribution of differences in MAEs (first 100)
Distribution of pairwise differences of the MAE on rankings obtained
by the D–GEX with TAAFs and the plain D–GEX of 5,000 repetitions for
each sample size for the first 100 candidates for DE genes selected on
the sampled ground truth data. The whiskers show the 10th and 90th
percentiles.

6.2.2 Real phenotypes

We ran the DGE analyses as in the previous experiment again; however, this
time using real phenotypes and model trained on the heterogeneity-aware
dataset (the same as in Experiment 6: heterogeneity-aware data sampling
in Section 6.1.6) to show that the performance difference is not due to any
potential information leakage to the test set and that the DGE analysis
performance difference is present even for actual phenotypes. We used 3 ×
9, 000 architectures with hyperbolic tangent and sigmoid inner activation
functions for both the plain D–GEX and D–GEX with TAAFs. During the
sampling procedure, we ensured that the GSE2109 series was present in its

240 experimental evaluation

12 16 20 24 28 32 36 40 50 60 80 100120140160200300400500600
sample size

0

100

200

300

400

500

600

700

ra
nk

 M
AE

Method
DGEX
TAAF

Figure 6.9: Distribution of MAEs (p-value based)
Distribution of the MAE on rankings obtained by the D–GEX with TAAFs
and the plain D–GEX of 5,000 repetitions for each sample size for the
DE candidates selected on the sampled ground truth data at significance
level α = 0.05. The whiskers show the 10th and 90th percentiles.

12 16 20 24 28 32 36 40 50 60 80 100120140160200300400500600
sample size

160

140

120

100

80

60

40

20

0

ra
nk

 M
AE

 d
iff

er
en

ce

Figure 6.10: Distribution of differences in MAEs (p-value based)
Distribution of pairwise differences of the MAE on rankings obtained
by the D–GEX with TAAFs and the plain D–GEX of 5,000 repetitions for
each sample size for the DE candidates selected on the sampled ground
truth data at significance level α = 0.05. The whiskers show the 10th
and 90th percentiles.

6.2 practical impact of taafs on dge analysis 241

entirety in the test data and used it for the DGE analysess. The GSE2109

series consists of samples from different tissues; these tissues were used for
phenotype classes for the DGE analyses. We selected classes that had more
than 100 samples and ended up with six classes, as shown in Tab. 6.9. We then
ran a DGE analysis for every pair combination, resulting in 15 analyses. The
sampled balanced dataset sizes ranged from 12 to 200 – 400 depending on the
class size for the tissue; the actual maximum sample size for a particular class
is shown in Tab. 6.9. The sampled datasets were balanced; thus, the smaller
maximum sample size limit was used as the limit for the pair of classes.

The distributions the pairwise differences of the F1 score are shown in
Fig 6.11, larger plots are available in the appendix in Fig. A.1 together with
plots of distributions of the pairwise differences of other metrics — F0.5 in
Fig. A.2, F2 in Fig. A.3, MCC in Fig. A.4, and accuracy in Fig. A.5. The
differences in the accuracy, F1, F0.5, F2, and MCC scores were also tested using
the Wilcoxon signed-rank test with significance level α = 10−8. The D–GEX
with TAAFs statistically significantly outperformed the plain D–GEX for most
of the tasks and sample sizes, detailed results are shown in Fig 6.12 — the
only exception is the Ovary × Uterus task, where both models performed very
similarly for small sample sizes and no statistically significant performance
difference was observed at the given significance level.

tissue # samples max sample size

Breast 351 200

Colon 292 200

Kidney 279 200

Ovary 198 150

Uterus 136 100

Lung 132 100

Table 6.9: Overview of sample sizes of the GSE2109 series
The number of samples for each tissue in the GSE2109 series.

242 experimental evaluation

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.000

0.025

0.050

0.075

0.100

F 1
 d

iff
er

en
ce

(a) Breast × Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 1
 d

iff
er

en
ce

(b) Breast × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.0

0.1

0.2

F 1
 d

iff
er

en
ce

(c) Breast × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.05

0.10

0.15

0.20

F 1
 d

iff
er

en
ce

(d) Breast × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

0.15

F 1
 d

iff
er

en
ce

(e) Breast × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.02

0.04

0.06

F 1
 d

iff
er

en
ce

(f) Colon × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.05

0.10

F 1
 d

iff
er

en
ce

(g) Colon × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.000

0.025

0.050

0.075

0.100

F 1
 d

iff
er

en
ce

(h) Colon × Ovary
Figure 6.11: Distributions of F1 score differences for the real phenotypes

Distributions of the F1 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.

6.2 practical impact of taafs on dge analysis 243

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.025

0.050

0.075

0.100

F 1
 d

iff
er

en
ce

(i) Colon × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.025

0.050

0.075

0.100

F 1
 d

iff
er

en
ce

(j) Kidney × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 1
 d

iff
er

en
ce

(k) Kidney × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08

F 1
 d

iff
er

en
ce

(l) Kidney × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.05

0.10

0.15

F 1
 d

iff
er

en
ce

(m) Lung × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

F 1
 d

iff
er

en
ce

(n) Lung × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.05

0.10

F 1
 d

iff
er

en
ce

(o) Ovary × Uterus
Figure 6.11: (cont.) Distributions of F1 score differences for the real phenotypes

Distributions of the F1 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. 6.11.

2
4

4
e

x
p

e
r

i
m

e
n

t
a

l
e

v
a

l
u

a
t

i
o

n

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

F1

F2

F0.5

ACC
MCC

Breast x Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

F1

F2

F0.5

ACC
MCC

Breast x Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Breast x Lung
12 16 20 24 28 32 36 40 50 60 80 10

0
12

0
14

0
16

0
20

0
30

0

F1

F2

F0.5

ACC
MCC

Breast x Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Breast x Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

F1

F2

F0.5

ACC
MCC

Colon x Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Colon x Lung
12 16 20 24 28 32 36 40 50 60 80 10

0
12

0
14

0
16

0
20

0
30

0

F1

F2

F0.5

ACC
MCC

Colon x Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Colon x Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Kidney x Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

F1

F2

F0.5

ACC
MCC

Kidney x Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Kidney x Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Lung x Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Lung x Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

F1

F2

F0.5

ACC
MCC

Ovary x Uterus

Figure 6.12: Results of the
Wilcoxon test for individual
tasks pairs
The results of the metrics
pairwise comparison using
the Wilcoxon signed-rank test
with significance level α =
10−8. The cell is colored black
if the D–GEX with TAAFs
performance for the metric
was statistically significantly
better than the plain D–GEX,
white if the plain D–GEX per-
formed better, and grey if no
statistically significant differ-
ence was found.

6.3 exploring taaf performance using artificial data 245

6.2.2.1 Impact on candidate rankings

The analysis of the impact on candidate rankings for the differentially ex-
pressed genes was also run for all 15 tissue pairs. First, we analyzed the
difference in the rankings of the first 100 candidate genes selected by the
DGE analysis using ground truth data. The results for individual tasks and
sample sizes are shown in Fig. 6.13. Second, we analyzed the difference in
the rankings of the candidate genes whose p-value from the DGE analysis
on the ground truth data (for the particular sample) was above α = 0.05
(leading to non-constant sizes of the candidate sets); the results are shown in
Fig 6.14. The differences in MAE of the rank differences were tested using
the Wilcoxon signed-rank test with significance level α = 10−8. The D–GEX
with TAAFs was statistically significantly better for both candidate selection
methods, all tasks, and all sample sizes with p-value < 10−8. Therefore, it is
safe to conclude that if there is some bias in the performance of the models
on the full dataset, it is not significant for the model comparison, and the
experiments and models trained on the full dataset are valid.

6.3 exploring taaf performance using artificial data

This set of experiments shows that networks with TAAFs generally outper-
form the baseline for various architecture variants and parameterizations
of D–GEX like networks. We have run four similar experiments using dif-
ferent parameterizations of the data generation networks as summarized in
Table 6.10 (see Section 5.1.2 for a more general overview of data generation).
The other parameters were the same for all of the data generation setups —
the input dimension was 1,000, and the data were sampled from a normal
distribution with zero mean and standard deviation as denoted in Table 6.10

(either 1 or 2). The output dimension was 5,000, and 50,000 samples were
generated for each of the data sets (train, validation, and test). A noise was
added to the resulting outputs from the network — depending on the variant,
a normal noise with zero mean and standard deviation 0, 0.1, 0.5, 1.0, or
2.0 was used. Used generative networks were initialized using the Glorot
initializer for weights and zeros for the bias term.

The experiments focused on the differences between networks with TAAFs
and the baseline with respect to different activation functions of the inference
network, different sizes, and also the sensitivity of learning due to the amount
of noise applied to the dependent variable. Due to limited computational
resources, not all of the subexperiments evaluated the same set of parameters
but rather focused on slightly different ranges of parameters. Regarding the
sizes of the inference networks, networks either with one or two hidden
layers with 3,000 neurons or networks with one to three hidden layers with
1,000 neurons were used for subexperiments NN1 and NN2; the subexperi-
ments NN3 and NN4 were also run with larger inference networks — one
to three hidden layers either with 1,000, 3,000 or 6,000 neurons each. The
inference networks in all four subexperiments used all either sigmoid, swish
or hyperbolic tangent activation function and were without dropout or with

246 experimental evaluation

25 % dropout. The used values of individual parameterization of inference
networks for each task are summarized in Table 6.11.

subexp. code input std. AF hidden l. config.

NN1 1.0 sigmoid 1000-1000-1000

NN2 1.0 sigmoid 3000-5000-5000-5000

NN3 2.0 swish 1000-1000-1000

NN4 2.0 swish 3000-5000-5000-5000

Table 6.10: Parameterization of data generation networks
Used distinct parameterizations of data generation networks in experi-
ments with artificial data.

6.3.1 The general performance comparison

The networks with TAAFs generally performed better over the evaluated
parameterizations. The OOS performance on the test set with the model
checkpoint that has the lowest loss is shown in Table 6.12 while Table 6.13

shows the performance on the training data with the model from the last
epoch.

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

60

40

20

0

 d
iff

er
en

ce

(a) Breast × Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

60

40

20

0

 d
iff

er
en

ce

(b) Breast × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

150

100

50

0

 d
iff

er
en

ce

(c) Breast × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

150

100

50

0

 d
iff

er
en

ce

(d) Breast × Ovary
Figure 6.13: Distributions of differences in MAEs (first 100) for the real phenotype

Distributions of pairwise differences of the MAE on rankings obtained
by the D–GEX with TAAFs and the plain D–GEX of 5,000 repetitions for
each sample size for the first 100 candidates for DE genes selected on
the sampled ground truth data for different tissues. The whiskers show
the 10th and 90th percentiles.

6.3 exploring taaf performance using artificial data 247

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

150

100

50

0

 d
iff

er
en

ce

(e) Breast × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

40

20

0

 d
iff

er
en

ce

(f) Colon × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

100

75

50

25

0

25

 d
iff

er
en

ce

(g) Colon × Lung
12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

100

50

0

 d
iff

er
en

ce

(h) Colon × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

100

50

0

 d
iff

er
en

ce

(i) Colon × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

80

60

40

20

0

20

 d
iff

er
en

ce

(j) Kidney × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

80

60

40

20

0

 d
iff

er
en

ce

(k) Kidney × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

100

75

50

25

0

 d
iff

er
en

ce

(l) Kidney × Uterus
Figure 6.13: (cont.) Distributions of differences in MAEs (first 100) for the real

phenotype
Distributions of pairwise differences of the MAE on rankings obtained
by the D–GEX with TAAFs and the plain D–GEX of 5,000 repetitions for
each sample size for the first 100 candidates for DE genes selected on
the sampled ground truth data for different tissues. The whiskers show
the 10th and 90th percentiles. Continuation of Fig. 6.13.

248 experimental evaluation

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

200

150

100

50

0

 d
iff

er
en

ce

(m) Lung × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

200

150

100

50

0

 d
iff

er
en

ce

(n) Lung × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

500

400

300

200

100

0

 d
iff

er
en

ce

(o) Ovary × Uterus
Figure 6.13: (cont.) Distributions of differences in MAEs (first 100) for the real

phenotype
Distributions of pairwise differences of the MAE on rankings obtained
by the D–GEX with TAAFs and the plain D–GEX of 5,000 repetitions for
each sample size for the first 100 candidates for DE genes selected on
the sampled ground truth data for different tissues. The whiskers show
the 10th and 90th percentiles. Continuation of Fig. 6.13.

The networks with TAAFs are generally better in terms of statistically
significantly lower MAEs of individual predictions when compared with the
baseline. However, the usage of the TAAFs increases the learning capabilities
of the network, and as such, these networks are more prone to overfitting
as shown in Table 6.13 where the relative performance on the train set of
the model checkpoint from the last epoch is shown — the networks with
TAAFs perform similarly or slightly worse compared to the baseline on the
noiseless targets as they were fitted to the noisy targets for which they show
significantly better performance (due to overfitting). This phenomenon is also
clear when the relative performance is broken by individual noise levels of
the target as shown in Fig. 6.15 where the network with TAAFs performs
consistently on the test set when the model checkpoint is selected on the
validation set but the TAAFs dominance tend to decrease with increasing
the noise levels on the training set with model from the last epoch when the
performance is evaluated using the noiseless targets (i.e., the networks were
trained using the noisy targets but evaluated using the noiseless targets) but
there is no noteworthy degradation over the noisy targets as the networks
with TAAFs overfitted more to the noisy targets compared to the baseline.

6.3 exploring taaf performance using artificial data 249

6.3.2 Target noise variance’s impact on performance

As shown in Fig. 6.15, the dominance of the networks with TAAFs over the
baseline is not much influenced by the amount of the noise added to the
target prior the training — with the exception the quality of prediction of the
noiseless targets when learned on the noisy targets as TAAFs tend to overfit
more than the baseline due to their higher learning capacity and as such
increasing noise lead to significant drops in relative performance compared
to the baseline. Nevertheless, the OOS performance on the test data of the
networks with TAAFs is consistently better than the baseline, and therefore,
the overfitting is not an issue when selecting the checkpoint performing
the best on the validation set. The comparison of absolute performance of
networks with TAAFs and the baseline is shown in Fig. 6.16, which shows
the mean MMAE over relevant parameterization evaluated on the noiseless
targets. The Fig. 6.17 shows the same information for the Noiseless target as
Fig. 6.16 but since it shows the mean MMAE relative to the training error of
the baseline, it shows the relationship not distorted by the MMAE component
due to the noise which would make the plot unreadable. The error, in general,
rises with higher amounts of noise of the targets as overfitting occurs (the
in-sample error of the noiseless targets is higher than the unbiased oos error

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

60

40

20

0

20

ra
nk

 M
AE

 d
iff

er
en

ce

(a) Breast × Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

80

60

40

20

0

20

ra
nk

 M
AE

 d
iff

er
en

ce

(b) Breast × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

150

100

50

0

ra
nk

 M
AE

 d
iff

er
en

ce

(c) Breast × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

75

50

25

0

25

ra
nk

 M
AE

 d
iff

er
en

ce

(d) Breast × Ovary
Figure 6.14: Distributions of differences in MAEs (p-value based) for the real

phenotype
Distributions of pairwise differences of the MAE on rankings obtained
by the D–GEX with TAAFs and the plain D–GEX of 5,000 repetitions
for each sample size for the DE candidates selected on the sampled
ground truth data at significance level α = 0.05 for different tissues. The
whiskers show the 10th and 90th percentiles.

250 experimental evaluation

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

150

100

50

0

50
ra

nk
 M

AE
 d

iff
er

en
ce

(e) Breast × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

60

40

20

0

ra
nk

 M
AE

 d
iff

er
en

ce

(f) Colon × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

100

50

0

ra
nk

 M
AE

 d
iff

er
en

ce

(g) Colon × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

60

40

20

0

20

40

ra
nk

 M
AE

 d
iff

er
en

ce

(h) Colon × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

100

50

0

ra
nk

 M
AE

 d
iff

er
en

ce

(i) Colon × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

75

50

25

0

25

ra
nk

 M
AE

 d
iff

er
en

ce

(j) Kidney × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

60

40

20

0

20

ra
nk

 M
AE

 d
iff

er
en

ce

(k) Kidney × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

125

100

75

50

25

0

ra
nk

 M
AE

 d
iff

er
en

ce

(l) Kidney × Uterus
Figure 6.14: (cont.) Distributions of differences in MAEs (p-value based) for the

real phenotype
Distributions of pairwise differences of the MAE on rankings obtained
by the D–GEX with TAAFs and the plain D–GEX of 5,000 repetitions
for each sample size for the DE candidates selected on the sampled
ground truth data at significance level α = 0.05 for different tissues. The
whiskers show the 10th and 90th percentiles. Continuation of Fig. 6.14.

6.3 exploring taaf performance using artificial data 251

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

300

200

100

0

ra
nk

 M
AE

 d
iff

er
en

ce

(m) Lung × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

200

100

0

ra
nk

 M
AE

 d
iff

er
en

ce

(n) Lung × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

1000

750

500

250

0

250

ra
nk

 M
AE

 d
iff

er
en

ce

(o) Ovary × Uterus
Figure 6.14: (cont.) Distributions of differences in MAEs (p-value based) for the

real phenotype
Distributions of pairwise differences of the MAE on rankings obtained
by the D–GEX with TAAFs and the plain D–GEX of 5,000 repetitions
for each sample size for the DE candidates selected on the sampled
ground truth data at significance level α = 0.05 for different tissues. The
whiskers show the 10th and 90th percentiles. Continuation of Fig. 6.14.

while being lower for the noisy targets that were used for training as shown
in Fig. 6.17) for both baseline and TAAF-based networks and the task gets
harder as more of the information required for training is overlaid by the
white noise (the noiseless error is increasing with higher amounts of noise as
shown in Fig. 6.16).

6.3.3 Performance impact of layer configuration of the inference network

The inference networks consist, similarly to the DGEX [2], of several densely
connected hidden layers. Due to computational constraints, the experiments
were limited to one to three hidden layers, all with 1,000, 3,000, or 6,000

neurons each. The network with TAAFs generally performs better than the
baseline for most layer configurations when evaluated both on the noisy
targets that were used for training and the real, noiseless targets as shown in
Fig. 6.19. The networks with TAAfs performed similarly to the baseline only
for the training data when using the model from the last epoch of training
and evaluating using the noiseless data — even though the performance
on the noisy targets that were used during training was significantly better
than the baselines’. The dominance of the networks with TAAFs was slightly
diminishing with larger networks for the experiment NN4, while experiments

252 experimental evaluation

task

parameter NN1 NN2 NN3 NN4

hidden l. config.

1×1000 1×1000 1×1000 1×1000

2×1000 2×1000 2×1000 2×1000

3×1000 3×1000 3×1000 3×1000

1×3000 1×3000 1×3000 1×3000

2×3000 2×3000 2×3000 2×3000

3×3000 3×3000

1×6000 1×6000

2×6000 2×6000

3×6000 3×6000

dropout
0 % 0 % 0 % 0 %

25 % 25 % 25 % 25 %

AF
sigmoid sigmoid sigmoid sigmoid

swish swish swish swish

tanh tanh tanh tanh

target noise

0 0 0 0

0.1

0.25 0.25 0.25 0.25

0.5 0.5 0.5 0.5

1.0

2.0 2.0 2.0 2.0

total number of variants 120 120 216 324

Table 6.11: Configurations of inference networks
Used distinct configurations of inference networks and noise variants for
individual tasks. Note that the amount of target noise is not a property
of the inference networks but rather a variant of the given task; however,
since it influences the number of evaluated variants for each task, it is
listed with the configurations of inference networks.

6.3 exploring taaf performance using artificial data 253

subexperiment noiseless target noisy target

code win loss tie win [%] win loss tie win [%]

NN1 99 20 1 83.2 95 25 0 79.2

NN2 95 25 0 79.2 83 37 0 69.2

NN3 151 64 1 70.2 151 62 3 70.9

NN4 228 96 0 70.4 224 92 8 70.9

Table 6.12: Summary of experiments with artificial data (test set, best validation
error)
The pairwise performance comparison of identical configurations using
Wilcoxon signed–rank test on individual predictions evaluated on the
test dataset with the network checkpoint with lowest error on the valida-
tion set. The comparison shows the performance evaluated both on the
noiseless targets and the noisy targets.

subexperiment noiseless target noisy target

code win loss tie win [%] win loss tie win [%]

NN1 41 79 0 34.2 111 9 0 92.5

NN2 41 79 0 34.2 110 9 1 92.4

NN3 111 105 0 51.4 194 22 0 89.8

NN4 147 177 0 45.4 244 80 0 75.3

Table 6.13: Summary of experiments with artificial data (training set, last
epoch)The pairwise performance comparison of identical configurations
using Wilcoxon signed–rank test on individual predictions evaluated on
the train split with the network checkpoint from the last epoch. The com-
parison shows the performance evaluated both on the noiseless targets
and the noisy targets used for training.

2
5

4
e

x
p

e
r

i
m

e
n

t
a

l
e

v
a

l
u

a
t

i
o

n

0.0 0.25 0.5 2.0
Noise

0.0

0.2

0.4

0.6

0.8

1.0

TA
AF

 b
et

te
r [

%
]

Experiment = NN1

0.0 0.25 0.5 2.0
Noise

Experiment = NN2

0.0 0.25 0.5 2.0
Noise

Experiment = NN3

0.0 0.1 0.25 0.5 1.0 2.0
Noise

Experiment = NN4 Data Var.
test loss
train last
Target
Noiseless
Noisy

Figure 6.15: TAAF dominance for individual noise levels
The relative performance of TAAFs and baseline for different values of the noise added to the target prior the training. Only the OOS
performance of the best model on the validation set and the in-sample performance of the model trained on the training set till the last epoch is
shown. Shows the fraction of networks whose predictions were statistically significantly better than the baseline with identical parameterization.

0.0 0.25 0.5 2.0
Noise

0.0

0.1

0.2

0.3

0.4

0.5

m
ea

n
M

M
AE

Experiment = NN1

0.0 0.25 0.5 2.0
Noise

Experiment = NN2

0.0 0.25 0.5 2.0
Noise

Experiment = NN3

0.0 0.1 0.25 0.5 1.0 2.0
Noise

Experiment = NN4 Variant
TAAF
baseline
Data Var.
test loss
train last

Figure 6.16: Absolute performance for individual noise levels
The absolute performance of TAAFs and baseline for different values of the noise added to the target prior to the training. Only the OOS
performance of the best model on the validation set and the in-sample performance of models trained on the training set till the last epoch is
shown. It shows the mean MMAE over all relevant parameterizations for models trained on noisy data but evaluated on noiseless targets.

6.
3

e
x

p
l

o
r

i
n

g
t

a
a

f
p

e
r

f
o

r
m

a
n

c
e

u
s

i
n

g
a

r
t

i
f

i
c

i
a

l
d

a
t

a
2

5
5

0.0 0.25 0.5 2.0

0.25

0.20

0.15

0.10

0.05

0.00

0.05

m
ea

n
M

M
AE

 d
iff

.

Target = Noiseless | Experiment = NN1

0.0 0.25 0.5 2.0
0.25

0.20

0.15

0.10

0.05

0.00

Target = Noiseless | Experiment = NN2

0.0 0.25 0.5 2.0
0.25

0.20

0.15

0.10

0.05

0.00

0.05
Target = Noiseless | Experiment = NN3

0.0 0.1 0.25 0.5 1.0 2.0
0.30

0.25

0.20

0.15

0.10

0.05

0.00

Target = Noiseless | Experiment = NN4

0.0 0.25 0.5 2.0
Noise

0.02

0.00

0.02

0.04

0.06

0.08

m
ea

n
M

M
AE

 d
iff

.

Target = Noisy | Experiment = NN1

0.0 0.25 0.5 2.0
Noise

0.00

0.02

0.04

0.06

Target = Noisy | Experiment = NN2

0.0 0.25 0.5 2.0
Noise

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Target = Noisy | Experiment = NN3

0.0 0.1 0.25 0.5 1.0 2.0
Noise

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Target = Noisy | Experiment = NN4

Variant
TAAF
baseline
Data Var.
test loss
train last

Figure 6.17: Relative performance for individual noise levels
The performance of TAAFs and baseline for different values of the noise added to the target prior to the training. It shows the difference of the
mean MMAE for each data variant and network variant and the mean in-sample MMAE of the baselines with checkpoints from the last epoch
computed for each noise level. Only the OOS performance of the best model on the validation set and the in-sample performance of models
trained on the training set till the last epoch is shown.

2
5

6
e

x
p

e
r

i
m

e
n

t
a

l
e

v
a

l
u

a
t

i
o

n

sigmoid swish tanh
Activation function of inference network

0.0

0.2

0.4

0.6

0.8

1.0

TA
AF

 b
et

te
r [

%
]

Experiment = NN1

sigmoid swish tanh
Activation function of inference network

Experiment = NN2

sigmoid swish tanh
Activation function of inference network

Experiment = NN3

sigmoid swish tanh
Activation function of inference network

Experiment = NN4 Data Var.
test loss
train last
Target
Noiseless
Noisy

Figure 6.18: TAAF dominance broken by inner activation network
The relative performance of TAAFs and baseline for activations functions of the inference networks. Only the OOS performance of the best
model on the validation set and the in-sample performance of models trained on the training set till the last epoch is shown. Shows the fraction
of networks whose predictions were statistically significantly better than the baseline with identical parameterization. The points are connected
only for better readability of the plots; there is no inherent order of the activation functions.

6.3 exploring taaf performance using artificial data 257

NN1 – NN3 do not show significant differences in relative performance
between the networks with TAAFs and the baseline with respect to the layer
configuration. The absolute performance for targets without noise is shown
in Fig. 6.20 and for targets with noise with standard deviation 2.0 in Fig. 6.21;
complete set of variants with and without target noise for all tested noise
levels is shown in Appendix A.2 in Figs. A.6 to A.10.

6.3.4 Consistency of results over repetitions

While the previous experiments compared the baseline and the networks with
TAAFs over different parameterizations, only a single initialization for each
generative network variant was used — resulting in four different generative
networks. To show that the performance difference was not due to a particular
initialization of the weights and therefore due to a chance, a single network
variant was selected and run with 19 repetitions1 with different initializations.
The used data generation parameterization for the network experiment is
the same as the NN3 network from the previous experiment — three hidden
layers with 1,000 neurons each and the swish activation function, 1,000 input
neurons and 5,000 output neurons. The results are shown in the Table 6.14,
where the mean error of the samples for each relevant pair of baseline network
with TAAFs were compared using Wilcoxon signed rank test at significance
level α = 0.001. The table also shows the median of differences of MMAEs
between the baseline and the network with TAAFs (all the differences were
also statistically significant using Wilcoxon signed rank test at significance
level α = 0.001). The actual MMAEs are shown in Fig. 6.22 for each network
in the experiment (broken by the data split, model checkpoint, and usage of
dropout). The networks with TAAFs outperformed the baseline in all cases
for the test data set when the selected model was the one with the lowest loss
over the test dataset and also in all cases on the training dataset if the model
from the last epoch was used. The baseline tended to perform better on the
test dataset when the last model from the epoch was used and also for the
variant with 25% dropout on the training data set when the model with the
lowest loss on the test data set was used.

However, the consistency of the results is more important as it shows that
the performance differences are not just due to a realization of the random
initialization of the weights of the data generation network. The initialization
of the generative network influences the difficulty of the task and leads to
the MMAE varying between the individual repetitions; however, the relative
performance of the baseline and the network with TAAFs is consistent and
without significant variance. This experiment shows that the results from the
experiment from Section 6.3 are not weakened by the single initialization
of the generative networks and that a single initialization is sufficient to
draw results from — this is built upon also in the following experiments as
doing multiple repetitions of the initialization in addition to an examined
characteristic for each experiment would be very computationally costly.

1 Originally, 20 repetitions were planned, but results from one run got corrupted due to technical
issues.

2
5

8
e

x
p

e
r

i
m

e
n

t
a

l
e

v
a

l
u

a
t

i
o

n

1×
10

00

1×
30

00

2×
10

00

2×
30

00

3×
10

00

Layers

0.0

0.2

0.4

0.6

0.8

1.0

TA
AF

 b
et

te
r [

%
]

Experiment = NN1

1×
10

00

1×
30

00

2×
10

00

2×
30

00

3×
10

00

Layers

Experiment = NN2

1×
10

00
1×

30
00

1×
60

00
2×

10
00

2×
30

00
2×

60
00

3×
10

00
3×

30
00

3×
60

00

Layers

Experiment = NN3

1×
10

00
1×

30
00

1×
60

00
2×

10
00

2×
30

00
2×

60
00

3×
10

00
3×

30
00

3×
60

00

Layers

Experiment = NN4 Data Var.
test loss
train last
Target
Noiseless
Noisy

Figure 6.19: TAAF dominance by layer configuration
The relative performance of TAAFs and baseline for different configurations of hidden layers of the inference network. Only the OOS
performance of the best model on the validation set and the in-sample performance of models trained on the training set till the last epoch is
shown. Shows the fraction of networks whose predictions were statistically significantly better than the baseline with identical parameterization.

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

Layers

0.0010

0.0015

0.0020

0.0025

m
ea

n
M

M
AE

Target = Noiseless | Experiment = NN1
1×

10
00

2×
10

00

3×
10

00

1×
30

00

2×
30

00
Layers

0.00025

0.00050

0.00075

0.00100

0.00125

Target = Noiseless | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

0.06

0.08

0.10

0.12

0.14

Target = Noiseless | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

0.020

0.025

0.030

Target = Noiseless | Experiment = NN4

Target noise variance: 0.0 Variant
TAAF
baseline
Data Var.
test loss
train last

Figure 6.20: Absolute performance by layer configuration without target noise
The absolute performance different configuration of hidden layers of the inference network. Only the OOS performance of the best model on
the validation set and the in-sample performance of models trained on the training set till the last epoch is shown. It shows the mean MMAE
over all relevant parameterizations for models trained on noiseless targets.

6.
3

e
x

p
l

o
r

i
n

g
t

a
a

f
p

e
r

f
o

r
m

a
n

c
e

u
s

i
n

g
a

r
t

i
f

i
c

i
a

l
d

a
t

a
2

5
9

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

0.1

0.2

0.3

0.4

0.5

m
ea

n
M

M
AE

Target = Noiseless | Experiment = NN1

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

0.1

0.2

0.3

0.4

0.5

Target = Noiseless | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.2

0.3

0.4

0.5

0.6

0.7

Target = Noiseless | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.1

0.2

0.3

0.4

0.5

0.6
Target = Noiseless | Experiment = NN4

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

Layers

1.45

1.50

1.55

1.60

m
ea

n
M

M
AE

Target = Noisy | Experiment = NN1
1×

10
00

2×
10

00

3×
10

00

1×
30

00

2×
30

00
Layers

1.45

1.50

1.55

1.60

Target = Noisy | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

1.3

1.4

1.5

1.6

Target = Noisy | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

1.35

1.40

1.45

1.50

1.55

1.60

Target = Noisy | Experiment = NN4

Target noise variance: 2.0 Variant
TAAF
baseline
Data Var.
test loss
train last

Figure 6.21: Absolute performance by layer configuration with target noise
The absolute performance different configuration of hidden layers of the inference network. Only the OOS performance of the best model on
the validation set and the in-sample performance of models trained on the training set till the last epoch is shown. It shows the mean MMAE
over all relevant parameterizations for models trained on targets with noise with a standard deviation of 2.0.

260 experimental evaluation

Furthermore, the results from the Fig. 6.22 show that there are no significant
differences between the results from the validation and test set as the process of
selection of the best-performing network weight checkpoint introduces only
a very negligible bias as the validation set is sufficiently large. Nevertheless,
the test is used throughout most of the evaluation as the data are artificially
generated and therefore not costly to obtain, and usage of independent
validation and test set removes possible doubts about the results.

6.3.5 Width of data generation networks

This experiment focuses on the influence of the data generation setup on
the relative performance of the baseline and TAAF networks, namely on
the influence of the width of hidden layers in the data generation network.
This setup is the same as in the previous experiment except for the size of
the hidden layers. Each hidden layer had n neurons for each variant; n ∈
{250, 500, 750, 1000, 1500, 2000, 2500, . . . , 9500}. Four networks were trained
for each data variant — each network had either the tanh or swish activation
function and was with 25% dropout or without any dropout.

6.3.5.1 Results

The overall error for each of the networks is shown in Fig. 6.24 — the difficulty
of the task changes nonlinearly with the width of the generation network.
The easiest task is when the generation network is very small (250 or 500

neurons in three hidden layers), but the difficulty peaks very quickly around
a width of 1,000 to 3,000 neurons and slowly diminishes afterward as this
pattern is present regardless of the inference network parameterization and
on both train a test datasets. While the peak in difficulty coincides with the

0.075

0.100

0.125

0.150

M
M

AE

model checkpoint = last
 datasplit = test

model checkpoint = last
 datasplit = validation

model checkpoint = last
 datasplit = train

5 10 15
data repetition

0.075

0.100

0.125

0.150

M
M

AE

model checkpoint = loss
 datasplit = test

5 10 15
data repetition

model checkpoint = loss
 datasplit = validation

5 10 15
data repetition

model checkpoint = loss
 datasplit = train

variant: TAAF baseline dropout: d-0.0 d-0.25

Figure 6.22: Consistency of results over initializations
The consistency of results over independent individual random initial-
izations of the data generation network and input data samplings.

6.3 exploring taaf performance using artificial data 261

data
set

model
checkpoint

TAAF better
(no dropout)

TAAF better
(25% dropout)

med. MMAE
difference

(no dropout)

med. MMAE
difference

(25% dropout)

test last 0/19 0/19 0.000929 0.001220

test loss 19/19 19/19 -0.007395 -0.001559

train last 19/19 19/19 -0.010781 -0.007428

train loss 19/19 0/19 -0.009022 0.012887

Table 6.14: Summary of relative performance on the artificial data
Relative performance summary over independent individual random ini-
tializations of the data generation network and input data samplings. The
relative performance is measured as the median of MMAE differences.

width of the inference networks used in the experiments, the behavior was
not further analyzed.

The networks with the TAAFs dominated over the baseline in all cases
on the test set when the network checkpoint was selected by the lowest
loss over the test set and in all cases where the checkpoint from the last
epoch was used on the train set. This is important as these are the two most
interesting combinations; the rest of the combinations are less interesting. The
loss checkpoint with the test data split shows the unbiased performance of a
model selected under ideal conditions as the model checkpoint is selected
independently from the training performance in order to reduce overfitting.
On the other hand, the last checkpoint on the training data split shows the
model’s learning ability — how well it is able to fit the data. The comparison
of the MMAEs of individual parameterizations of the baseline and the TAAF
variant is shown in Fig. 6.25 for the loss checkpoint on the test set and in
Fig. 6.26 for the last checkpoint for the train set; all shown pairwise differences
in MAEs over samples were statistically significant when using Wilcoxon
signed rank test.

The networks with TAAFs seem to be more prone to overfitting as when
optimized till the last epoch, they reach better performance than the baseline
on the training set used for the optimization, but they have worse performance
on the test, and this effect is much more significant for variants without
dropout as shown in Fig. 6.27. The networks with TAAFs with dropout do
not show such behavior — the variant with swish network is always better.
A detailed look at the relative performance of the tested variants on the test
set with checkpoint from the last epoch is shown in Fig. 6.23. The network
with swish activation function and the 25% dropout always performed better
with TAAFs for all of the widths; however, it seems that the variant with
tanh activation function and without dropout might have overfitted more
than the baseline as it performed worse for nearly all of the widths — the
25% dropout helped and from a certain width, the TAAF based networks
dominated (and thus performed worse only for widths 750, 1,000, 1,500, and
2,000 neurons).

262 experimental evaluation

0 2000 4000 6000 8000
width

0

1

TA

AF
 b

et
te

r t
ha

n
ba

se
lin

e
(b

in
ar

y)

Test set with checkpoint from the last epoch

act
tanh
swish

dropout
d-0.0
d-0.25

Figure 6.23: TAAF dominance of last checkpoint on the test set
The TAAF dominance on the test set for the model checkpoint from
the last epoch based on the width of the generative network broken
by different activation functions and dropouts of the inference neural
network.

6.
3

e
x

p
l

o
r

i
n

g
t

a
a

f
p

e
r

f
o

r
m

a
n

c
e

u
s

i
n

g
a

r
t

i
f

i
c

i
a

l
d

a
t

a
2

6
3

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
M

AE
model checkpoint = last | datasplit = test model checkpoint = last | datasplit = validation model checkpoint = last | datasplit = train

0 2000 4000 6000 8000
width

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
M

AE

model checkpoint = loss | datasplit = test

0 2000 4000 6000 8000
width

model checkpoint = loss | datasplit = validation

0 2000 4000 6000 8000
width

model checkpoint = loss | datasplit = train

parameterization: tanh d-0.0 tanh d-0.25 swish d-0.0 swish d-0.25 variant: TAAF baseline

Figure 6.24: Absolute performance by generative network width
The absolute performance based on the width of the generative networks broken by data split and model checkpoint.

2
6

4
e

x
p

e
r

i
m

e
n

t
a

l
e

v
a

l
u

a
t

i
o

n

0 2000 4000 6000 8000
width

0.08

0.10

0.12

0.14

M
M

AE

parameterization = tanh d-0.0

0 2000 4000 6000 8000
width

parameterization = tanh d-0.25

0 2000 4000 6000 8000
width

parameterization = swish d-0.0

0 2000 4000 6000 8000
width

parameterization = swish d-0.25

datasplit: test, model checkpoint: loss

parameterization: tanh d-0.0 tanh d-0.25 swish d-0.0 swish d-0.25 variant: TAAF baseline

Figure 6.25: Absolute test performance of best checkpoint by activations and dropouts
The absolute performance on the test dataset for the model checkpoint with minimal loss on the validation dataset based on the width of the
generative network broken by different activation functions and dropouts of the inference neural network.

0 2000 4000 6000 8000
width

0.025

0.050

0.075

0.100

M
M

AE

parameterization = tanh d-0.0

0 2000 4000 6000 8000
width

parameterization = tanh d-0.25

0 2000 4000 6000 8000
width

parameterization = swish d-0.0

0 2000 4000 6000 8000
width

parameterization = swish d-0.25

datasplit: train, model checkpoint: last

parameterization: tanh d-0.0 tanh d-0.25 swish d-0.0 swish d-0.25 variant: TAAF baseline

Figure 6.26: Absolute training performance of last checkpoint by activations and dropouts
The absolute performance on the training set for the model checkpoint from the last epoch based on the width of the generative network
broken by different activation functions and dropouts of the inference neural network.

6.
3

e
x

p
l

o
r

i
n

g
t

a
a

f
p

e
r

f
o

r
m

a
n

c
e

u
s

i
n

g
a

r
t

i
f

i
c

i
a

l
d

a
t

a
2

6
5

0 2000 4000 6000 8000
width

0.075

0.100

0.125

0.150

0.175

M
M

AE

parameterization = tanh d-0.0

0 2000 4000 6000 8000
width

parameterization = tanh d-0.25

0 2000 4000 6000 8000
width

parameterization = swish d-0.0

0 2000 4000 6000 8000
width

parameterization = swish d-0.25

datasplit: test, model checkpoint: last

parameterization: tanh d-0.0 tanh d-0.25 swish d-0.0 swish d-0.25 variant: TAAF baseline

Figure 6.27: Absolute test performance of last checkpoint by activations and dropouts
The absolute performance on the test set for the model checkpoint from the last epoch based on the width of the generative network broken by
different activation functions and dropouts of the inference neural network.

266 experimental evaluation

6.3.6 Depth of data generation networks

While the previous experiment focused on the width of the data generation
network, this one focused on the depth of the data generation network. A
similar setup was used with the exception that the width of hidden layers
was fixed to 5,000 neurons, the depth was from the range 0, 1, 2, . . . , 20, and
the output noise variance was 1.0.

6.3.6.1 Results

The networks with TAAFs performed better in at least half of the cases
for each of the data set and model checkpoint combination; however, no
dependence of the relative performance on the depth of the data generation
network was observed as shown in Fig. 6.28.

6.4 establishing the architectural improvements using d–gex

microarray data

We have evaluated both modifications of the baseline D–GEX architectures for
nine different tower configurations. The configurations differ in the number
of towers; their parameters are shown in Table 5.3, and the relationship
between them is shown in Figs. 5.2 and 5.3. For each configuration, we have
compared both possibilities for both configurations — tower or checkerboard
architectures with or without the skip connection — resulting in a comparison
of 2 × 2 × 8 = 32 different pairs of networks. The detailed results for all four
architectures and different numbers of towers are shown in Table 6.15. The
relationship of MMAE and the number of towers for different architectures is
shown in Fig. 6.29 — we can observe that the MMAE drops quickly and then
starts to rise again slowly. The drop in MMAE at the beginning is due to an
increase in the total number of neurons, which then increases the capacity
of the network, making it able to better learn the relationships between
the landmark and target genes. The relationship between MMAE and the

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
depth

0

1

2

3

4

TA

AF
 b

et
te

r t
ha

n
ba

se
lin

e
(o

ut
 o

f 4
 v

ar
ia

nt
s)

target_set
test
train

model_checkpoint
last
loss

Figure 6.28: TAAF dominance over generation network depths
The TAAF dominance for various depths of the data generation network.

6.4 architectural improvements on the microarray data 267

number of towers seems to slightly differ across the architectures — e.g., the
TR–D–GEX reaches the minimum MMAE for the lowest number of towers
compared to other architectures — and thus further research is needed.

The networks with five or more towers actually introduce a compressed
representation as the layers in individual towers contain fewer neurons than
the output layer — the last layer has to infer the gene expression from a lower
number of inputs than the number of inferred genes. The number of towers
for which the number of neurons is closest to the number of target genes is
shown as a shaded region in Figs. 5.2, 5.3 and 6.29.

The baseline is the equivalent of the original D–GEX but with more neurons
in each layer as the original D–GEX had at most 9,000 neurons in each layer,
and the tested architectures are based on T–D–GEX with 10,000 neurons. The
increase in the number of neurons, together with the learning rate schedule
and increase in the number of training epochs, led to the improvement of
the single tower D–GEX’s MMAE from 0.134 to 0.131 even without the main
architectural modifications. However, the proposed architectural changes,
namely the CR–D–GEX (a checkerboard architecture with a skip connection
from the first to the second layer), led to MMAE of 0.128 without any increase
in the number of parameters of the network and only a slight increase in
the running time which is due to more neurons (more operations to be
performed).

6.4.1 Statistical evaluation

A Wilcoxon signed-rank test was used for pairwise comparison of individ-
ual models. The test was used to compare the means of MAEs of individ-
ual samples (which are assumed to be independent) at a significance level
α = 10−4. The results for comparing different tower configurations are shown

Towers T–D–GEX C–D–GEX TR–D–GEX CR–D–GEX

2 0.130187 0.130281 0.128623 0.128437

3 0.129839 0.129969 0.128548 0.128187

4 0.129735 0.129872 0.128568 0.128078

5 0.129729 0.129883 0.128617 0.128053

6 0.129707 0.129799 0.128677 0.128053

8 0.129760 0.129874 0.128864 0.128095

10 0.129804 0.129881 0.129078 0.128218

12 0.129889 0.129891 0.129291 0.128353

baseline (3 × 10, 000) 0.131301

D–GEX (1 × 9, 000, tanh) [2, 10] 0.163684

D–GEX with TAAFs (3 × 9, 000, TAAFo sigmoid) [10] 0.134015

Table 6.15: The MMAE of column based architectures on the test data. Architecture
similar to the D–GEX with TAAFs [10] is the T–D–GEX with one tower,
the overall best model is shown in bold.

268 experimental evaluation

2 4 6 8 10 12
towers

0.1280

0.1285

0.1290

0.1295

0.1300

0.1305

0.1310
M

M
AE

 (t
es

t)

CR-D-GEX
TR-D-GEX
C-D-GEX
T-D-GEX
baseline

Figure 6.29: MMAE progression based by number of towers
The development of MMAE based on the number of towers for individ-
ual architectures. The shaded region denotes the number of towers for
which the number of neurons in each tower is the most similar to the
number of output neurons. The baseline is a single tower D–GEX with
10,000 neurons in each layer.

in Fig. 6.30 and generally confirm the U-shape of the model performance
shown in Fig. 6.29. The comparison of different architectures for fixed tower
configuration is shown in Fig. 6.31 — the checkerboard architecture CR–D–
GEX is statistically significantly better for most configurations and not worse
in all configurations. All of the tested architectures were also statistically
significantly better than the baseline. We have also compared the best archi-
tecture (CR–D–GEX with five towers) with the best D–GEX with TAAFs from
[10] (3 × 9, 000, TAAFo sigmoid) using the Wilcoxon signed-rank test and
t-test on MAEs of individual samples and found that the CR–D–GEX has
significantly lower MMAE with p–value < 10−6. The 95% confidence interval
for MMAE determined using bootstrap on samples’ MAEs with 105 iterations
was [0.12717, 0.12891] for the CR–D–GEX with 5 towers and [0.13317, 0.13487]
for the D–GEX with TAAFs [10].

6.4.2 Varying dropout rates in checkerboard architectures

The previous experiments used a fixed value of dropout; however, this
dropout value might not be optimal for the improved architecture even
though it was performing well for the original D–GEX. These experiments
show the performance evolution with respect to several chosen dropout
values. The used architecture is the checkerboard architecture with five inter-
connected towers, each with 4,615 neurons in each layer.

We have evaluated nine different dropout rates from the interval [0, 0.4]
with a step of 0.05. The relationship between the MMAE on the test data and
the dropout rate is shown in Fig. 6.32. We can observe a U-shaped curve; the
networks were overfitting without a dropout; however, too high dropout rates

6.4 architectural improvements on the microarray data 269

2 3 4 5 6 8 10 12

2
3

4
5

6
8

10
12

(a) T–D–GEX

2 3 4 5 6 8 10 12

2
3

4
5

6
8

10
12

(b) C–D–GEX

2 3 4 5 6 8 10 12

2
3

4
5

6
8

10
12

(c) TR–D–GEX

2 3 4 5 6 8 10 12

2
3

4
5

6
8

10
12

(d) CR–D–GEX

Figure 6.30: Pairwise statistical comparison by towers
Results of pairwise Wilcoxon signed–rank test on the MAEs for individ-
ual samples for different number of towers. A cell in row r and column
c is black if the model with r towers is statistically significantly better
than the model with c towers, white if worse, and grey if no statistically
significant difference was observed.

T C TRCR

T
C

T
R

C
R

(a) 2

T C TRCR

T
C

T
R

C
R

(b) 3

T C TRCR

T
C

T
R

C
R

(c) 4

T C TRCR

T
C

T
R

C
R

(d) 5

T C TRCR

T
C

T
R

C
R

(e) 6

T C TRCR

T
C

T
R

C
R

(f) 8

T C TRCR

T
C

T
R

C
R

(g) 10

T C TRCR

T
C

T
R

C
R

(h) 12

Figure 6.31: Pairwise statistical comparison by architectures
Results of pairwise Wilcoxon signed–rank test on the MAEs for indi-
vidual samples for different architectures for fixed tower configuration.
A cell in row r and column c is black if the model with architecture
r-D–GEX is statistically significantly better than the model with archi-
tecture c-D–GEX, white if worse, and grey if no statistically significant
difference was observed.

270 experimental evaluation

are also harmful as those increase redundancy. The pairwise comparison
using Wilcoxon signed–rank test on the MAEs for individual samples for
networks with different dropout rates with significance level α = 10−5 is
shown in Fig. 6.33. The lowest MMAE was 0.1278 when the dropout rate was
set to 0.15, and this improvement in MMAE is statistically significant at the
significance level α = 10−5.

6.5 practical impact of the checkerboard architecture on

differential gene expression analysis

While the checkerboard architecture has statistically significantly lower pre-
diction error than the D–GEX with TAAFs (see Section 6.1), the practical
impact of this improvement remains unclear. We decided to demonstrate
this impact on the frequent task of detection of differential gene expression
similarly as in Section 6.2.1. The artificial phenotypes (see Section 5.1.5) were
used to show the practical impact of the checkerboard architecture.

We have repeatedly sampled smaller datasets for different sample sizes
(12–160) where each half of the samples was from the same cluster and have
run differential gene expression analysis using parametric empirical Bayes
from the limma R package [2113, 2114] on the ground truth data (the actual
gene expression) and on the gene expressions inferred by the CR–D–GEX
with five towers and the default D–GEX (TAAFo) [10] (see Section 6.4). We
have used 10,000 repetitions for each sample size in this experiment.

The distribution of values and the pairwise differences of F1 and MCC
is shown in Figs. 6.34 to 6.37 for 10,000 repetitions for each sample size.
The differences of all scores (F0.5, F1, F2 scores, accuracy, and MCC) were
statistically significant for all tested sample sizes when using the Wilcoxon
signed-rank test as all the p–values were < 10−8. Obviously, the advanced ar-
chitectures can reasonably improve differential gene expression analysis and
better approximate the gene sets reached with the original gene expression
data. The improvement most strongly manifests for small sample sets, where

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Dropout

0.128

0.130

0.132

0.134

0.136

0.138

M
M

A
E

(t
es

t)

Figure 6.32: The development of MMAE for different dropout rates.

6.5 practical impact of the checkerboard architecture 271

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Figure 6.33: Results of pairwise Wilcoxon signed–rank test on the MAEs for individ-
ual samples for different dropout rates. A cell in row r and column c is
black if the model with dropout r is statistically significantly better than
the model with dropout c, white if worse, and grey if no statistically
significant difference was observed.

even small changes in gene expression values may result in significant gene
set changes.

12 16 20 24 28 32 36 40 50 60 80 100 120 140 160
sample size

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 sc

or
e

Architecture
D-GEX TAAF
CR-D-GEX

Figure 6.34: F1 scores by sample size
Distribution of the F1 scores obtained by the CR-D-GEX with 5 towers
and the D–GEX with TAAF of 10,000 repetitions for each sample size.
The whiskers show the 10th and 90th percentiles.

272 experimental evaluation

12 16 20 24 28 32 36 40 50 60 80 100120140160
sample size

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150
F 1

 d
iff

er
en

ce

Figure 6.35: Pairwise F1 score differences by sample size
Distribution of pairwise differences of the F1 score obtained by the CR-
D-GEX with 5 towers and the D–GEX with TAAF of 10,000 repetitions
for each sample size. The whiskers show the 10th and 90th percentiles.

12 16 20 24 28 32 36 40 50 60 80 100 120 140 160
sample size

0.0

0.2

0.4

0.6

0.8

1.0

M
CC Architecture

D-GEX TAAF
CR-D-GEX

Figure 6.36: MCCs scores by sample size
Distribution of the MCCs obtained by the CR-D-GEX with 5 towers and
the D–GEX with TAAF of 10,000 repetitions for each sample size. The
whiskers show the 10th and 90th percentiles.

6.5 practical impact of the checkerboard architecture 273

12 16 20 24 28 32 36 40 50 60 80 100120140160
sample size

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
CC

 d
iff

er
en

ce

Figure 6.37: Pairwise MCC differences by sample size
Distribution of pairwise differences of the MCCs obtained by the CR-D-
GEX with 5 towers and the D–GEX with TAAF of 10,000 repetitions for
each sample size. The whiskers show the 10th and 90th percentiles

.

7
D I S C U S S I O N

As shown in the previous chapter, the TAAFs and tower and checkerboard
architectures improve the performance of GE inference from L1000 landmark
genes. We first discuss the TAAFs themselves for the task of GE inference in
Section 7.1 and for the artificial regression tasks in Section 7.2 and then we
focus on the further improvements of the GE inference performance using
the tower and checkerboard architectures in Section 7.3.

7.1 transformative adaptive activation functions

The experimental results show that the proposed transformative adaptive
activation functions lead to significant improvements in the gene expres-
sion inference for the L1000 platform in Section 6.1 and in the multivariate
regression tasks using several artificially generated datasets in Section 6.3.

7.1.1 TAAFs improve the performance

The TAAFs can serve as a drop-in improvement for various architectures as
shown by improving the D–GEX architecture for the GE inference task as
was shown in Section 6.1.1 where we reimplemented the original D–GEX
and used with the tanh AF that was originally used by Chen et al. in [2]
and shown that TAAFs also with the tanh as the inner activation function f
(see Section 5.2 for definition) lead to statistically significant improvement
in the error metric MAE. We have re-implemented the D–GEX and did our
own experiments instead of just comparing the error values from the original
paper [2] for several reasons. One, the reimplementation allowed us total
control over the experiments and limited any potential reporting bias by
the authors of the original D–GEX. Two, the authors of the original D–GEX
Chen et al. normalized all genes separately, which, we believe, is not suitable
for the gene expression inference task from the L1000 profiles as it gives
equal importance in the error metric to highly expressed genes and genes
whose expressions are near noise levels which biases the inference model
in unwanted direction (see Section 5.1.1.2 Data normalization). And three,
the reimplementation allows us perfect control over technical details of the
training procedure, and therefore, we can show that the performance gains
are solely due to the usage of the TAAFs and not to any other changes in
the training procedure (e.g., different schedule of the learning rates or batch
size).

Our reimplementation of the original D–GEX has an MMAE 0.1637 while
the best performing D–GEX with TAAFs as drop-in modification (i.e., only
adding the TAAFs to the architecture and keeping the tanh as the inner AF
of the TAAFs) has MMAE 0.1361 leading to 1 − 0.1361

0.1637 ≈ 17%. As the authors

275

276 discussion

of the concurrent works [14, 15] used identical normalization as Chen et al.,
which is not as suitable for the GE inference task as our normalization, it is
not possible to directly compare our results with the much more complex
approaches presented in [14, 15]. Nevertheless, we can provide a rough es-
timate of the D–GEX with TAAFs relative performance to the GAN based
approaches used in [14, 15] by comparing the performance gains over the
original vanilla D–GEX — the D–GEX with TAAFs provides ≈ 18% improve-
ment in the MMAE while the presented improvements using complex GAN
approach have 1 − 0.2997

0.3204 ≈ 6.5% improvement [15] and 1 − 0.2897
0.3204 ≈ 9.6% in

[14]. Even though this approximate comparison can be arbitrarily biased due
to the normalization differences, it should be fairly unbiased unless the ap-
proaches presented in [14, 15] have performance significantly skewed toward
particular genes based on their mean expression levels. On the other hand,
both TAAFs and GANs from [14, 15] are not mutually exclusive and can
potentially be used together to achieve even better performance. Furthermore,
the TAAF approach is conceptually much more straightforward than the
usage of GANs while reaching, at the very least, comparable performance.

After establishing the performance of TAAFs as drop-in modifications of
the original D–GEX in Section 6.1.1, we further analyze the usage of TAAFs
for the GE inference tasks. The usage of TAAFs in a NN leads to higher
robustness in terms of sensitivity to the choice of the inner AF as shown
in Section 6.1.2, where we have shown that the original D–GEX benefits
highly from replacing the original tanh activation with the logistic sigmoid
sigmoid activation. In contrast, the D–GEX with TAAFs is able to reach similar
performance even with the original tanh as the inner activation — the choice
of tanh and logistic sigmoid as the inner AFs can be seen as merely different
initialization of the TAAFs. Initilization of the TAAFs with parameters α := 1

2 ,
β := 1

2 , and δ := 1
2 and tanh as the inner AF f is equivalent to using the

default initialization with the logistic sigmoid as the inner AF.
Nevertheless, the initialization of the TAAFs does play a role in the perfor-

mance as the usage of the logistic sigmoid as the inner AF leads to improved
performance over the tanh as the inner AF even for the architectures with
TAAFs as shown in Table 6.2 even though, as discussed above, the relative
performance gain is less noteworthy compared to AF replacement in the
original D–GEX as can be seen from comparison of Table 6.2 and Table 6.3.
Not surprisingly, the usage of TAAFs in the D–GEX variant with logistic
sigmoids leads to performance gains similarly as in the previous experi-
ment Section 6.1.1 Experiment 1: Usage of TAAFs with tanh AF as shown in
Table 6.4.

7.1.2 TAAF parameters

While showing that TAAFs as drop-in modification can increase inference
performance without any architecture modification was necessary to illus-
trate that TAAFs can be used easily in an existing setup, it also has some
limitations. The most severe is that the TAAFs introduce four additional pa-
rameters, and the compared networks have a different number of parameters.

7.1 transformative adaptive activation functions 277

This is problematic as NNs with more parameters usually have higher capac-
ity, and this could lead to higher performance in general. NNs with more
parameters usually reach higher performance on the training data (under
certain circumstances, the NNs can even memorize the dataset to have perfect
performance but poor generalizability [2135–2138]); increased capacity can
help the network if it is underfitting and thus increase its performance also
on the test data [2136]. This also happens for the original D–GEX where the
architectures with more neurons in each layer generally performed better
than the NNs with fewer layers or neurons as shown in Fig. 1 in [2]. Therefore,
the reported performance gains from experiments in Sections 6.1.1 and 6.1.2
could be, in theory, solely due to this increased capacity and not due to the
better expressivity of the novel TAAFs; theoretically, it could be even worse
and just using larger vanilla D–GEX with the same number of parameters as
the D–GEX with TAAFs could have higher performance gain and the TAAFs
would be actually harmful to the model.

To show that this is not the case and that TAAFs improve the performance
of the GE inference due to more efficient parameter usage and not just
because of the capacity increase that is solely due to the higher parameter
count, the Experiment 3: TAAFs for capacity adjusted NNs was conducted.
In this experiment, the TAAFs are not used as a drop-in modification of an
existing architecture but are rather used in a slightly smaller neural network
that has the same or lower number of parameters as the D–GEX variant it
is compared to. To obtain the reduced architecture, neurons were uniformly
removed from all hidden layers until the total parameter count was not higher
than the parameter count of the respective D–GEX variant. The final size of
the hidden layers is shown in Table 6.5 in the second column. Even the NNs
with adjusted numbers of parameters by decreasing the width of hidden
layers always outperformed the respective D–GEX variant that had the same
or higher number of parameters (see Table 6.5); therefore the performance
gains are due to the TAAFs themselves and not just due to the additional
parameters introduced by the TAAFs.

As already briefly discussed in Section 6.1.3, the size reduction of the
hidden layers was negligible as TAAFs introduce four parameters per neuron,
but each additional neuron in a hidden layer introduces a weight for each in-
coming connection. Therefore, the performance drop of D–GEX variants with
TAAFs due to the adjustment of a total number of parameters is negligible,
and it is not surprising that the results from Sections 6.1.1 and 6.1.2 hold, and
the variants with TAAFs still significantly outperform the original D–GEX ar-
chitecture. Since the parameter reduction had only an insignificant effect, the
rest of the comparisons of the two architectures are as drop-in modifications
the same as in Sections 6.1.1 and 6.1.2 for clarity, easier analysis, and simpler
running of experiments instead of comparing the original variant with the
reduced TAAFs based architectures with adjusted number of parameters.

The proposed TAAF introduces four additional parameters, and so far, the
importance of individual parameters has not been established. Since the TAAF
can be viewed as a generalization of several previously established AAFs, the
performance increase compared to the sigmoid activation function might be
due only to those parameters that were already established as beneficial (e.g.,

278 discussion

trainable amplitude [1086]; see Section 5.2.1.1 and Table 5.1) and there might
not be synergies from combining multiple already established parameters.
Furthermore, since the proposed adaptive activation function is applied to the
weighted sum of inputs in the neuron, parameter β might seem redundant:

g(f , x) = α · f

(
β ·

n

∑
i=1

wixi + γ

)
+ δ, (7.1)

where n is the number of inputs in the neuron, xi are individual inputs and
wi are associated weights. This can be expressed without parameter β if we
define ui = βwi:

g(f , x) = α · f

(
n

∑
i=1

uixi + γ

)
+ δ. (7.2)

While parameter β seems to be redundant, redundancy by itself does not
mean uselessness — in some cases, it can even improve the performance as
shown in [2139–2141], where the authors introduced additional redundancy
to neural networks to increase its performance, and in [2142] where the
authors discuss redundancy in a biological context with a connection to
the artificial neural network architecture ResNet [13]. Another example of
apparent redundancy can be found in overspecified neural networks — it was
shown that overspecified wide networks simplify the optimization surface
for optimizers in the sense that it is easier to reach good optima [2143–2145].
However, redundancy does not always improve the performance; e.g., Lee
et al. showed that the redundancy in the rank of NN parameters slows the
training and that a regularization method reducing this redundancy improves
both performance and training speed [2146].

Even though the redundancy represented by the β parameter is different
from some of the referenced examples, we empirically show that it improves
performance, and the improvement is statistically significant. The intuition
behind redundancy in the form of additional parameters or overspecified
networks is that "higher dimensions also mean more potential directions of
descent, so perhaps the gradient descent procedures used in practice are
more unlikely to get stuck in poor local minima and plateaus" [2143], which
might be one of the reasons that the inclusion of the redundant parameter
β was empirically shown to be beneficial in our work. Furthermore, Jagtap,
Kawaguchi, and Karniadakis used the horizontal scaling parameter as the
only adaptive parameter in their LAAFs that were concurrently1 published to
our work, and they show that it improves the speed of convergence in [1137].
Jie et al. consider AFs to be expressively independent if such form of redundancy
is not present (see [1073] for definition) and assume that an AF that is not
expressively independent is not a good choice [1073]; however, this is not the
case as there are many AAFs that are not expressively independent and yet

1 The TAAF preprint [444] was publicly available in March 2019 while the LAAF preprint [2147]
only in June; however the full work [1138] was published in a journal in March 2020 whereas
TAAFs [10] only in December 2020.

7.1 transformative adaptive activation functions 279

improve the performance — e.g. SVAF, ASSF, swish, and LAAFs. Also, our
findings show that the parameter β contributes to a better performance of
TAAFs, and, therefore, the assumption of Jie et al. does not hold in practice.

We have empirically shown that all four TAAF parameters are beneficial
in Section 6.1.4 Experiment 4: Importance of individual parameters, where
all 16 subsets of trainable parameters were evaluated, and the full TAAF
with all four parameters trainable statistically significantly outperformed
other TAAF variants. This empirical evidence shows that the full TAAF is
the correct choice, and the reported performance gain is not solely due to
a component that was reported previously in the literature, such as the
vertical scaling parameter α whose equivalents are present in many adaptive
activation functions such as the trainable amplitude [1086] (see Section 4.3.2)
and swish [668] (see Section 4.3.3.1) or the horizontal scaling parameter β

present in, e.g., SVAF [1092] (see Section 4.3.2) or Adaptive slope hyperbolic
tangent [1139] (see Section 4.3.15.1).

7.1.3 Conceptual architectural simplification for regression tasks

The first two experiments established the benefits of TAAFs and the second
two experiments dealt with some of the limitations of the first two by showing
that the increased performance of NNs with TAAFs is due to the AAFs
themselves and not just due to the parameter increase, that the TAAFs
provide an efficient way of increasing expressivity of NNs, and that all four
introduced parameters are necessary and therefore the formulation of TAAFs
is correct and cannot be reduced further without performance costs. The
fifth experiment shows another benefit of the TAAFs in NNs for regression
problems where the last layer usually has no activation to allow for any
output range as most sigmoids, ReLUs and similar AFs have limited range.
The TAAFs can be used in the last layer even for regression problems as
their range is not limited thanks to the vertical scaling parameter α. This
is shown in Section 6.1.5 Experiment 5: TAAF in the output layer, where a
D–GEX model with TAAFs in hidden layers and no activation in last layer
is compared to a D–GEX with TAAFs in all layers (denoted as TAAFo). The
TAAFo variant leads to statistically significantly higher performance for all
tested depths and widths of the D–GEX network. Another benefit introduced
by TAAFs besides the improved performance is the conceptual simplification
of the neural network as all layers have identical activation functions and
there is no need for special treatment of the last layer even for regression
problems.

Similarly as in the original D–GEX work [2], we used a random division
of the data into the training, testing, and validation sets (see Section 5.1.1
for more details). While this approach has the benefit of simplicity, it has
one potential issue — since the data consists of several different biologi-
cal datasets, there might be introduced a bias into our results as samples
from one biological dataset might be in in both the training and testing set
and the reported test performance might not translate well to unseen data.
Nevertheless, we show that it is not the case in Section 6.1.6 Experiment 6:

280 discussion

heterogeneity-aware data sampling, where we used the heterogeneity-aware
dataset (see Section 5.1.1.1) where the data splits conform to the known
GEO- series and all samples from a single GEO- series are in a single split
(either training, testing, or validation). As shown in Table 6.7, the D–GEX
with TAAFs outperformed statistically significantly the original D–GEX even
on this heterogeneity-aware dataset; this shows that the potential bias men-
tioned above does not significantly affect (if present at all) the results of the
presented comparative analyses. Since not all samples from the data provided
originally were missing the GEO- id and therefore could not be matched to an
existing GEO- series and thus were omitted, the heterogeneity-aware dataset
had only ≈ 60% of the training samples compared to the whole dataset, the
full dataset containing the same samples as in [2] was used for most of the
experiments rather than this reduced dataset since the potential bias does not
significantly influences the results.

7.1.4 Gene expression inference perspective

So far, we have discussed the results regarding individual improvements to
the NN architecture and established that the observed performance increases
are valid. However, we have not looked at the results from the perspective of
the gene expression task itself — which architecture has the best performance.
This is done in Section 6.1.7 where all results from the previous experiments
are compared, and 10 best-performing architectures are listed in Table 6.8.
While the previously reported results focused on the pairwise differences
to see that the modifications help all tested NN variants, Table 6.8 contains
the absolute performance metric MMAE and lists the best models with the
lowest test error irrespective of the underlying architecture. Generally, the
best-performing models are the largest tested architectures with 9,000 neurons
in either two or three hidden layers with the logistic sigmoid as the inner
activation function of the TAAFs. The overall best-performing architecture
with MMAE was the NN with three hidden layers, each with 9,000 neurons
with TAAFs with the logistic sigmoid and the last layer contained the TAAFs
instead of the linear activation present in the original D–GEX. This network
was even better than the one from the Section 6.1.1 Experiment 1: Usage
of TAAFs, where the TAAFs were used only as a drop-in modification of
the original D–GEX — MMAE 0.1340 (CI [0.13316, 0.13487]) compared to
0.1637 (95% CI [0.16279, 0.16458]), or, relative to the D–GEX reimplementation,
1 − 0.1340

0.1637 ≈ 18% improvement compared to 1 − 0.1361
0.1637 ≈ 17% improvement

over the D–GEX performance. It can be seen that the major improvement
to the original D–GEX architecture is the usage of TAAFs; a more detailed
breakout of the impact of individual improvements is shown in Figs. 6.3
and 6.4. Figure 6.3 shows the improvement to the regular D–GEX architecture
(showed as a baseline) including switching the inner activation function from
tanh to the logistic sigmoid, using TAAFs, and using an ensemble of several
NNs (more about the ensembling in Section 5.2.2) while Fig. 6.4 builds on
the D–GEX variant already equipped with TAAFs and its goal is to depict
other improvements besides TAAFs. As already briefly discussed above,

7.1 transformative adaptive activation functions 281

we can observe that the NNs TAAFs are much more robust with respect
to their parameterization compared to the plain D–GEX as there is only a
small difference between using TAAFs with the logistic sigmoid and the
hyperbolic tangent functions. In contrast, this difference is very large for the
plain D–GEX, as shown in Fig 6.3 — MMAE 0.1409 for D–GEX with logistic
sigmoid activation and 0.1637 with tanh activation compared to the TAAF
based networks where NN with logistic sigmoid activation has MMAE 0.1354

and 0.1372 when tanh activation is used instead. This robustness is important
because the training of the networks is computationally costly, and thus, the
parameter search possibilities are limited.

The impact of the different initialization of TAAFs is similar to the impact
of the usage of TAAFs in the output layer — MMAE 0.1354 for using logistic
sigmoid instead of tanh compared to 0.1361 for using TAAFs in the output
layer; the baseline was 0.1372; furthermore both of these changes worked
well together resulting in MMAE 0.1340. On the one hand, the impact of
the used ensemble scheme resulted only in minor MMAE improvements;
on the other hand, these improvements were present on the test data and
were for free in the sense that the ensembles are from already trained models
and no extra costly training process was necessary to obtain these ensembles.
Nevertheless, the GE inference is more costly using this type of ensembling,
and therefore, we believe that it is most suitable to use only a single model for
most tasks instead of this kind of ensembling. These observations are limited
to the used ensembling in this work; this work touched the ensembles only
superficially, and only because they were available without any significant
costs, there might be ensembling schemes that would lead to significantly
better performances compared to a single model.

7.1.5 Practical impact of TAAFs

So far, we have focused on the error of the GE inference from the L1000

landmark genes. The limitation of the hitherto reported results was that the
improvements in the inference errors are rather abstract, and it is unclear
whether they have any practical significance. The practical significance of
the reported improvements is shown in Section 6.2 where several differential
gene expression analyses were run on the inferred data — specifically, we
have run a DGE analysis on the data inferred by plain D–GEX and D–GEX
with TAAFs for several sample sizes. We have run two sets of experiments,
differential gene expression analyses with artificial phenotypes that arose
from hierarchical clustering of the data and with real phenotypes belonging
to the largest GEO- series present in the data (see Section 5.1.5 for more
details). As most biological experiments suffer from rather small data sizes
as obtaining data is usually costly, we have focused on sample sizes ranging
from 12 to 600 samples for the artificial phenotypes and to 400 samples for
the real phenotypes as those were limited by the available data of each class
(see Table 6.9 for actual maximum sample sizes). To limit the influence of
variance arising from the admittedly small sample sizes that are often present
in biological data, each sample size was sampled with 5,000 repetitions. The

282 discussion

results from the differential gene expression analyses can be considered as a
classification task; therefore we have opted for accuracy, F1, F0.5, F2, and MCC
metrics to show the practical impact of the TAAFs on the GE inference task
in Sections 6.2.1 and 6.2.2. This was complemented by analysis of candidate
rankings in Sections 6.2.1.1 and 6.2.2.1 where the rankings of candidate genes
from the DGE analysis on the ground truth data were compared to the
rankings from differential gene expression analyses on the inferred data.

The results in Section 6.2 show that the NNs with TAAFs outperform the
plain D–GEX in practical tasks and that the difference in the metrics on the
practical tasks are statistically significant for all sample sizes for the artificial
phenotype and for all sample sizes of all but one combination of classes
where the D–GEX with TAAFs performed similarly as the plain D–GEX for
smaller sizes (see Fig. 6.12). The empirical evaluation of the practical impact
of the presented improvements is one of the important results of this work as
no evaluation of practical impact was done in other works in the literature [2,
14, 15] where it was only assumed that the presented improvements would
have any practical importance on the tasks faced by biologists and medical
experts.

7.2 taafs for other tasks besides gene expression inference

Up until now, the TAAFs were evaluated on the GE microarray data on the
GE inference tasks from the L1000 landmark genes; however, the concept of
TAAFs is general, and they can be used in many settings. In Section 6.3, the
TAAFs are used for regression tasks with artificially generated data. We have
chosen to show the performance of TAAFs using artificially generated data
for several reasons — they are the usual reasons why researchers use artificial
data that are discussed in Section 4.5.2 Synthetic data generation: control
over the properties of the data and scarcity of data. By using the artificial
data, the real, noiseless targets are available, and therefore, we know how
much white noise is added to the data that is not predictable. For example,
reaching a lower inference error than is due to the added white noise is a clear
symptom of overfitting, as we can guarantee in artificially generated data
that the present noise is indeed independent. Furthermore, we were looking
for a sufficiently complex multivariate regression task outside the omics but
there were datasets similarly large as the dataset used by the D–GEX that
would have several hundreds of independent and dependent variables; there
were smaller datasets such as, for example, Wine Quality [2148] or Breast
Cancer Wisconsin [2149] from the UCI Machine Learning Repository [1373]
but they were too small both in terms of number of features and number of
samples. There are larger regression multivariate time-series datasets, but
the time-series aspect would add too much complexity for the analyses, and
we still would not have control over the dataset and would not know the
properties of the noise and what would be the best achievable error; therefore,
the usage of TAAFs for time-series prediction is left for future works. Four
different regression datasets were generated; details about the generation

7.2 taafs for other tasks besides gene expression inference 283

process are available in Section 5.1.2.1. We have shown that the NNs with
TAAFs, on average, outperform the vanilla variants in several experiments.

First, we have established that NNs with TAAFs generally improve the
performance in Section 6.3.1. The results also show that the model from the
training procedure that has the lowest error on the validation set should be
generally used as otherwise NNs with TAAFs are more prone to overfitting,
as can be seen from comparing the results on the test data with a model that
has the lowest validation loss in Table 6.12 with the results on the training set
with a model from the last training epoch in Table 6.13.

Second, the impact of the amount of noise in the target variables was
analyzed in Section 6.3.2. The NNs with TAAFs are better in general for
all amounts of noise when evaluated on the noisy targets used for training
for both training (model from last epoch) and testing (model with best
validation loss) data and also better when evaluated on the test data with
model with best validation loss on the noiseless targets — they, however,
perform generally worse on the training data with model from last epoch
when evaluated on the noiseless targets while trained with the noisy targets;
this suggests that the models are overfitting to the present noise. This in line
with the observations from Fig. 6.22 in Section 6.3.4 where variants without
dropout perform better on the training data when the model from last epoch
is used and NNs with TAAFs even have much lower error than the variants
without TAAFs while the models’ error on the validation and test datasets
have higher error without dropout regularization. We conclude from Fig. 6.22

that some form of regularization is recommended as the used 25% dropout
improved the performance on the test data (this is not surprising as dropout
improved performance even in the original D–GEX in [2]). Dropout is also
discussed later in the context of TAAFs and the checkerboard architecture
(see Sections 5.3.2 and 6.4.2).

We have also analyzed whether there is a noteworthy difference in the
relative performance based on the layer configuration of the inference network
in Section 6.3.3. No noteworthy changes in the pairwise comparison were
observed for the tasks NN1 — NN3 while slightly diminishing tendency in
the dominance of TAAFs with increasing number of weights or depth was
observed for the task NN4; nevertheless, the NNs with TAAFs dominated
the non-TAAF baseline variants in most of the cases even for the task NN4 as
shown in Fig. 6.20.

7.2.1 Impact of initialization of the data generation network

Previously discussed results only focused on the tasks NN1 — NN4, where a
single random initialization was used for each task; we show that the observed
results are not due to a particular random initialization of the generative
network but rather apply to the general class of tasks in Section 6.3.4 where
multiple initializations of the generative network used in task NN3 were
created and used for data generation. The results are consistent with only
negligible variants across all the initialization, and the NNs with TAAFs
always outperformed the non-TAAF variants in all repetitions when evaluated

284 discussion

on the test data set when the selected model was the one with the lowest loss
over the test dataset and when evaluated on the training dataset if the model
from the last epoch was used.

7.2.2 Depth and width of the data generation network

We have also evaluated how changing the width and depth of the data
generation network influences the relative performance of the NNs with
TAAFs and the baselines in Section 6.3.5. Most importantly, the NNs with
TAAFs dominated the baselines for all tested widths on the test set when the
network checkpoint was selected by the lowest loss over the test set and also
for all tested widths where the checkpoint from the last epoch was used on the
train set as shown in Figs. 6.25 and 6.26. Other less important combinations
of the model checkpoint and the data split are discussed in Section 6.3.5. The
depth of the data generation network has almost no noteworthy impact on
the relative performance of the TAAFs and baselines as shown in Section 6.3.6
with possibly small diminishing of TAAF dominance for tasks generated
using deeper networks; nevertheless, the NNs with TAAFs in at least half of
the tested variants for all evaluated depths of the data generation network.

7.3 tower and checkerboard architectures

So far, we have discussed only the improvement in the activation functions to
the original D–GEX, namely the transformative adaptive activation functions;
however, we have also improved the architecture by using tower or checker-
board patterns for connecting blocks of neurons (see Section 5.3) instead of
fully-connected layers as in the original D–GEX [2]. The tower and checker-
board architectures use interconnected blocks of fully connected layers to
allow for a higher number of neurons while not increasing the overall number
of trainable parameters as shown in Table 5.3 and Figs. 5.2 and 5.3. We have
empirically shown that such patterns increase the performance of the network
in Section 6.4. We have also introduced skip-connections in a ResNet manner
(see Fig. 5.1 for a depiction of used architectures), which further improved the
performance of the GE inference without introducing significant overhead.

The evaluated architectures had each 10,000 neurons with TAAFs in three
hidden layers, which were split into 2 – 12 towers either with or without
skip-connections. The skip-connections uniformly help as shown in Table 6.15

and Fig. 6.29 where all tested configurations with skip-connections outper-
formed all of the other configurations without skip-connections. The optimal
number of towers differed slightly between the four tested architectures — the
checkerboard and tower architectures without the skip connections plateaued
after reaching four towers with only a slight decrease in performance with
an increasing number of towers, whereas the variants with skip connections
showed much more significant U-shaped performance curve. The tower archi-
tecture with skip-connections reached the lowest MMAE with three towers
with statistically significantly better performance when compared to all other
numbers of towers. The checkerboard with skip connections was the best-

7.3 tower and checkerboard architectures 285

performing architecture and reached the lowest test error with five towers in
a checkerboard pattern. This difference was also statistically significant for
all tested numbers of towers, but this time with the exception of four and
six towers where the dominance was not statistically significant as shown in
Fig. 6.30. For the shown configurations with 2 – 12 towers, the checkerboard
architecture was statistically significantly better for most of the configurations,
while the difference was not statistically significant for two configurations
as shown in Fig. 6.31. While direct comparison with GAN based models
that were proposed concurrently with our work is not possible due to a
different normalization (see Section 5.1.1.2 for details), the best overall model
with TAAFs and checkerboard architecture reaches MMAE of 0.1278 which
represents 1 − 0.1278

0.1637 ≈ 21.9% improvement over the reimplementation of the
original D–GEX from [2], while the more complex GAN based approaches
show 1 − 0.2997

0.3204 ≈ 6.5% improvement [15] and 1 − 0.2897
0.3204 ≈ 9.6% in [14] over

the baseline D–GEX (note that these relative improvements are only rough
estimates — see Section 7.1.1 for explanation). It was shown that the com-
bination of skip-connection and the checkerboard architecture significantly
improves the GE inference while being more conceptually simpler than its
GAN based competitors [14, 15].

Additionally, we have run a small dropout analysis with the best-performing
checkerboard model from Section 6.4 in Section 6.4.2 as the dropout rates
were kept fixed throughout the previous experiments. The dropout of 25%
that was used in most experiments was shown as sufficiently good, but the
inference can be further improved by using a slightly lower value of 15% as
shown in Fig. 6.32; the improvements are statistically significant as shown in
Fig. 6.33.

7.3.1 Practical impact of checkerboard architecture

The same as for TAAFs, we have also shown that the improved inference
performance has a practical impact on the DGE analysis in Section 6.5. The
DGE analysis was run using the artificial phenotypes as described in Sec-
tion 5.1.5 for sample sizes of 12 – 160 samples, which are realistic sample
sizes for commonly run differential gene expression analyses. The checker-
board architecture with 5 towers and skip-connections significantly outper-
formed the D–GEX with TAAFo from Section 6.1, which was so far the
best-performing model. The differences of all scores (F0.5, F1, F2 scores, ac-
curacy, and MCC) were statistically significant for all tested sample sizes
when using the Wilcoxon signed-rank test as all the p–values were < 10−8.
To provide interpretation for the observed pairwise differences in F1 score,
the typical scenario was that CR–D–GEX with five towers reported much
fewer false positive differentially expressed genes than TAAFo, sometimes at
the cost of a very small increase in false negatives. The performance improve-
ments were most noteworthy for smaller sample sizes, which is useful as
these sample sizes are common in biological experiments and make running
differential gene expression analyses and similar analyses difficult.

8
C O N C L U S I O N S

The analysis of gene expression is necessary for understanding cellular
processes, disease mechanisms, and developmental pathways. The analysis
was made significantly cheaper by the introduction of L1000 microarray
platform that, instead of measuring the gene expression of all genes, measures
the gene expression of only a handful of landmark genes and relies on
computational models to infer the gene expression of the rest of the genes
(see Section 3.3.3). In the beginnings, these computational models relied on
linear regression [2] but were soon replaced by the neural network called
D–GEX in [2].

This thesis presents several significant improvements to the original D–GEX
that are conceptually simple and yet have a significant impact on the gene
expression inference. The main innovation is the introduction of a novel class
of adaptive activation functions called TAAF (see Section 5.2). The TAAFs
introduce four adaptive parameters allowing for any horizontal and vertical
scaling and translation of any inner activation function. The TAAFs improve
the performance of the NNs for GE inference and also add some robustness
to the choice of the activation function. Furthermore, The TAAFs generalize
over 50 AFs proposed in the literature that can be considered special cases
of the TAAFs (see Section 5.2.1.1). We have analyzed the TAAFs on both
real microarray data of the GE inference task for the L1000 platform in
Section 6.1 and several artificial regression datasets in Section 6.3 to show
that TAAFs are applicable outside the omics field. Furthermore, it was shown
in Section 6.2 that the improvement to the gene expression inference translates
to the improvement of subsequent analyses and has, therefore, a statistically
significant practical impact.

The second important improvement to the original neural network used for
the GE inference was the introduction of tower and checkerboard architectures
(Section 5.3) with skip-connections in a ResNet-like manner that further
improve the NN with TAAFs and reach even better performance (Section 6.4);
this improvement also translates to a statistical significant improvement in
the subsequent analyses using the inferred data (Section 6.5).

While these improvements were shown on the gene expression inference
task, they are not limited to the omics field and are applicable to more
general classes of neural networks. The TAAFs generalize several activation
functions that were proposed in the literature (see Section 5.2.1.1), and most
of these special cases were shown in many different settings outside the
gene expression inference and omics in general. Last but not least, we have
presented a comprehensive list of 400 activation functions to simplify further
research in the area and to help avoid repeated proposals of the activation
functions already present in the literature.

287

288 conclusions

8.1 future works

Despite the scope of the presented work, there are many areas in which the
work might be expanded in the future. While the overview of activation
functions present in the literature (see Sections 4.2 and 4.3) can be updated
indefinitely as new activation functions are proposed, there are many other
directions in which the presented findings will be explored in the future.

8.1.1 Gaining insights into TAAFs

While this work demonstrated empirically that the TAAFs lead to improved
performance for the GE inference and other methods, further theoretical
insights explaining the performance gains are needed. A method to visually
demonstrate the benefits of skip connections by visualizing low dimensional
representation of the optimization landscape was presented in [2150]; at-
tempts to use it for the evaluation of the NNs with and without TAAFs were
presented in [2151]; nevertheless, the experimental evaluations of the hypoth-
esis that TAAFs also simplify the optimization landscape remain inconclusive.
Therefore, further research is needed into the effects the usage of TAAFs has
on a neural network.

8.1.2 Analysis of redundancy

The TAAF parameter β is redundant in the sense that it does not add anything
to the expressivity of the AF; nevertheless, it was shown that its inclusion
statistically significantly improves the performance in Section 6.1.4 — some
perceived redundancy might therefore be beneficial for the optimization. One
future direction, therefore, includes the analysis of why the redundancy helps
and whether there are other similar cases that could improve the optimization
process.

8.1.3 Simplification of usability

While we have published the codes of the TAAFs in a public repository, usage
of the presented models might still be difficult for researchers from other
fields. Therefore, future works also include either a runnable application or
an online inference tool where a researcher might just drop measured L1000

profiles, and the full inferred profiles will be returned.

8.1.4 Extending applications

The previous points focused on further improving the GE inference aspect of
the presented work; however, there are many areas in which the presented
TAAFs and checkerboard architectures might be applied inside and also
outside the omics field. While results outside of the omics field were already
presented in Section 6.3 Exploring TAAF performance using artificial data,
there might be many other applications where the presented findings might

8.1 future works 289

improve the performance of currently used models. The TAAFs generalize
many AFs present in the literature; therefore the simplest direction would
be to evaluate the TAAFs on the same data as its special cases — e.g., the
ABReLU (Section 4.2.6.42) was used to improve face retrieval using datasets
PaSC [2152], LFW [2153], PubFig [2154], FERET [2155, 2156], AR [2157, 2158],
ExYaleB [2159, 2160] and PolyU-NIRFD [2161], PShELU (Section 4.3.1.56)
was used on the CIFAR-100 [243] dataset in [1078], and the PSTanh (Sec-
tion 4.3.15.2) in Capsule networks [2162] for brain tumor classification dataset
[2163] in [688] but also used MNIST dataset [45], Fashion MNIST [950] and
the CIFAR-10 and CIFAR-100 datasets [243].

8.1.5 Insights into tower and checkerboard architectures

The number of towers in tower and checkerboard architectures influences the
performance of the neural network as empirically demonstrated in Section 6.4.
It is highly likely that the optimal number of towers is problem-dependent
and also architecture-dependent. It is likely that the number of optimal
towers would be different if a different number of neurons were used or if the
number of targets were different. Moreover, the optimal number of towers
also differs between the used architectures (see Fig. 6.29). Further analysis
is needed to provide general recommendations on the number of towers to
avoid costly grid searches.

8.1.6 Generalization of the checkerboard architecture

Other directions include a generalization of the checkerboard architecture —
the checkerboard architecture divided each layer in each tower into halves
and reconnected those in a certain pattern; however, dividing the layers into
multiple folds and using more complex reconnection patterns might lead
to networks with better performance and thus further improving the gene
expression inference.

8.1.7 Leaving the blocks behind

The tower and checkerboard architectures use larger interconnected blocks
of neurons to be able to use existing accelerators such as GPUs and libraries
for efficient computation; however, there are also approaches that allow for
efficient computation even with sparse matrices such as Sparse Tensor Cores
by Nvidia [2164] or the WASAP-SGD optimization approach in [1172]. These
could be used to extend the concept behind checkerboard architecture even
further by no longer requiring that neurons be grouped in sufficiently large
blocks for efficient computations.

8.1.8 Dual transformative adaptive activation function

While the TAAFs generalize many existing activation functions, there is a class
of activation functions that cannot be generalized by the TAAFs and yet it is

290 conclusions

simple enough — these functions usually have different scaling for positive
inputs (e.g., LReLU), see Section 5.2.1.2 for discussion of these functions.
The TAAFs could be extended in dual transformative adaptive activation
functions (DTAAFs) that would have the scaling parameters different for
positive and negative inputs or, more generally, for inputs below and above
a certain threshold. While the final formulation of DTAAFs would still be
sufficiently simple, it might lead to even better performance as this concept
works well for many existing activation functions.

8.1.9 Generalized dual transformative adaptive activation function

The DTAAF concept can be further generalized by allowing different inner
functions for each piecewise definition, resulting in generalized dual trans-
formative adaptive activation function (GDTAAF). While the resulting AAF
would not be a simple encapsulation of the inner activation function, the
resulting AAF would be able to generalize more AFs present in the literature
and could have even higher performance. The GDTAAF would extend the
approach presented in [815] where the authors use different AFs for positive
and negative inputs.

8.1.10 GAN-based approaches for GE inference

Dizaji, Wang, and Huang used GAN-based approaches to improve the gene
expression inference from the L1000 data in their works [14, 15]. As already
discussed in Section 7.1, their results are not directly comparable with the re-
sults presented in this work; nevertheless, the rough estimate of performance
shows inferior performance to TAAFs and checkerboard architectures. How-
ever, the presented approaches are not mutually exclusive with the methods
used in [14, 15]. Therefore, one future direction is to use both TAAFs and
maybe checkerboard architectures in the GAN based approaches from [14,
15] to see whether synergies are possible and such combination will improve
the GE inference performance even further.

8.1.11 TAAF initialization

The initialization of the TAAF parameters has a significant influence on
the overall performance, as shown in Sections 6.1.2 and 7.1.1. While the
Section 6.1.2 has shown that even a different fixed initialization, where the
same TAAF parameters are set to the same value for all neurons, can improve
the performance, it is very likely that the performance can be improved even
further by sampling the initial values of parameters from some distribution
similarly as is done for the weights of the connections between neurons.
Therefore, future work should evaluate various initialization of the TAAF
parameters as it will most likely lead to an improved performance.

B I B L I O G R A P H Y

[1] A. Subramanian et al. “A Next Generation Connectivity Map: L1000 Platform and the First 1,
000, 000 Profiles.” In: Cell 171.6 (Nov. 2017), 1437–1452.e17. doi: 10.1016/j.cell.2017.10.049.
url: https://doi.org/10.1016/j.cell.2017.10.049 (cit. on pp. xlviii, 1, 2, 38, 39).

[2] Y. Chen, Y. Li, R. Narayan, A. Subramanian, and X. Xie. “Gene expression inference with deep
learning.” In: Bioinformatics 32.12 (Feb. 2016), pp. 1832–1839. doi: 10.1093/bioinformatics/b
tw074. url: https://doi.org/10.1093/bioinformatics/btw074 (cit. on pp. xlvi, 2, 5, 6, 9, 17,
38, 41, 42, 187–190, 222, 229, 251, 267, 275–277, 279, 280, 282–285, 287).

[3] H.-C. Kuo, C.-T. Yao, B.-Y. Liao, M.-P. Weng, F. Dong, Y.-C. Hsu, and C.-M. Hung. “Weak
gene–gene interaction facilitates the evolution of gene expression plasticity.” In: BMC Biology
21.1 (Mar. 2023). issn: 1741-7007. doi: 10.1186/s12915-023-01558-6. url: http://dx.doi.or
g/10.1186/s12915-023-01558-6 (cit. on p. 2).

[4] E. B. Josephs, S. I. Wright, J. R. Stinchcombe, and D. J. Schoen. “The Relationship between
Selection, Network Connectivity, and Regulatory Variation within a Population of Capsella
grandiflora.” In: Genome Biology and Evolution 9.4 (Apr. 2017), pp. 1099–1109. issn: 1759-6653.
doi: 10.1093/gbe/evx068. url: http://dx.doi.org/10.1093/gbe/evx068 (cit. on p. 2).

[5] N. Mähler, J. Wang, B. K. Terebieniec, P. K. Ingvarsson, N. R. Street, and T. R. Hvidsten.
“Gene co-expression network connectivity is an important determinant of selective constraint.”
In: PLOS Genetics 13.4 (Apr. 2017). Ed. by N. M. Springer, e1006402. issn: 1553-7404. doi:
10.1371/journal.pgen.1006402. url: http://dx.doi.org/10.1371/journal.pgen.1006402
(cit. on p. 2).

[6] A. Fakhry, R. Khafagy, and A.-A. Ludl. GENER: A Parallel Layer Deep Learning Network To Detect
Gene-Gene Interactions From Gene Expression Data. 2023. doi: 10.48550/ARXIV.2310.03611. url:
https://arxiv.org/abs/2310.03611 (cit. on pp. 2, 46).

[7] F. Emmert-Streib, M. Dehmer, and B. Haibe-Kains. “Gene regulatory networks and their
applications: understanding biological and medical problems in terms of networks.” In:
Frontiers in Cell and Developmental Biology 2 (Aug. 2014). issn: 2296-634X. doi: 10.3389/fcell
.2014.00038. url: http://dx.doi.org/10.3389/fcell.2014.00038 (cit. on p. 2).

[8] K. Van Steen. “Travelling the world of gene-gene interactions.” In: Briefings in Bioinformatics
13.1 (Mar. 2011), pp. 1–19. issn: 1477-4054. doi: 10.1093/bib/bbr012. url: http://dx.doi.or
g/10.1093/bib/bbr012 (cit. on p. 2).

[9] V. Kunc and J. Kléma. “On tower and checkerboard neural network architectures for gene
expression inference.” In: BMC Genomics 21.S5 (Dec. 2020). doi: 10.1186/s12864-020-06821-6.
url: https://doi.org/10.1186/s12864-020-06821-6 (cit. on pp. 3, 222).

[10] V. Kunc and J. Kléma. “On transformative adaptive activation functions in neural networks for
gene expression inference.” In: PLOS ONE 16.1 (Jan. 2021). Ed. by H. Fröhlich, e0243915. doi:
10.1371/journal.pone.0243915. url: https://doi.org/10.1371/journal.pone.0243915
(cit. on pp. 3, 42, 193, 222, 225, 267, 268, 270, 278).

[11] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri. “Activation functions in deep learning: A
comprehensive survey and benchmark.” In: Neurocomputing 503 (Sept. 2022), pp. 92–108. doi:
10.1016/j.neucom.2022.06.111. url: https://doi.org/10.1016/j.neucom.2022.06.111
(cit. on pp. 3, 15, 48–51, 53–55, 58, 64, 68, 69, 71–73, 76, 78, 80–82, 87, 89, 105, 108, 109, 113, 114,
117, 120, 121, 126, 128–130, 150, 151, 153, 159, 169, 170).

[12] A. Apicella, F. Donnarumma, F. Isgrò, and R. Prevete. “A survey on modern trainable activation
functions.” In: Neural Networks 138 (June 2021), pp. 14–32. doi: 10.1016/j.neunet.2021.01.0
26. url: https://doi.org/10.1016/j.neunet.2021.01.026 (cit. on pp. 3, 49, 50).

[13] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition.” In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016. doi:
10.1109/cvpr.2016.90. url: https://doi.org/10.1109/cvpr.2016.90 (cit. on pp. 5, 17, 65,
117, 120, 149, 171, 174, 176, 223, 278).

[14] X. Wang, K. G. Dizaji, and H. Huang. “Conditional generative adversarial network for gene
expression inference.” In: Bioinformatics 34.17 (Sept. 2018), pp. i603–i611. doi: 10.1093/bioinf
ormatics/bty563. url: https://doi.org/10.1093/bioinformatics/bty563 (cit. on pp. 6, 41,
42, 183, 276, 282, 285, 290).

291

https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1186/s12915-023-01558-6
http://dx.doi.org/10.1186/s12915-023-01558-6
http://dx.doi.org/10.1186/s12915-023-01558-6
https://doi.org/10.1093/gbe/evx068
http://dx.doi.org/10.1093/gbe/evx068
https://doi.org/10.1371/journal.pgen.1006402
http://dx.doi.org/10.1371/journal.pgen.1006402
https://doi.org/10.48550/ARXIV.2310.03611
https://arxiv.org/abs/2310.03611
https://doi.org/10.3389/fcell.2014.00038
https://doi.org/10.3389/fcell.2014.00038
http://dx.doi.org/10.3389/fcell.2014.00038
https://doi.org/10.1093/bib/bbr012
http://dx.doi.org/10.1093/bib/bbr012
http://dx.doi.org/10.1093/bib/bbr012
https://doi.org/10.1186/s12864-020-06821-6
https://doi.org/10.1186/s12864-020-06821-6
https://doi.org/10.1371/journal.pone.0243915
https://doi.org/10.1371/journal.pone.0243915
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neunet.2021.01.026
https://doi.org/10.1016/j.neunet.2021.01.026
https://doi.org/10.1016/j.neunet.2021.01.026
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1093/bioinformatics/bty563
https://doi.org/10.1093/bioinformatics/bty563
https://doi.org/10.1093/bioinformatics/bty563

292 bibliography

[15] K. G. Dizaji, X. Wang, and H. Huang. “Semi-Supervised Generative Adversarial Network for
Gene Expression Inference.” In: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining - KDD’18. New York: ACM Press, 2018. doi: 10.1145/3
219819.3220114. url: https://doi.org/10.1145/3219819.3220114 (cit. on pp. 6, 41, 42, 276,
282, 285, 290).

[16] J. Schmidhuber. “Deep learning in neural networks: An overview.” In: Neural Networks 61 (Jan.
2015), pp. 85–117. doi: 10.1016/j.neunet.2014.09.003. url: https://doi.org/10.1016/j.n
eunet.2014.09.003 (cit. on pp. 9–13).

[17] K. J. Cios. “Deep Neural Networks—A Brief History.” In: Advances in Data Analysis with
Computational Intelligence Methods. Springer International Publishing, Sept. 2017, pp. 183–200.
doi: 10.1007/978-3-319-67946-4_7. url: https://doi.org/10.1007/978-3-319-67946-4_7
(cit. on p. 9).

[18] J. Schmidhuber. “Deep Learning.” In: Encyclopedia of Machine Learning and Data Mining. Springer
US, 2016, pp. 1–11. doi: 10.1007/978-1-4899-7502-7_909-1. url: https://doi.org/10.1007
/978-1-4899-7502-7_909-1 (cit. on p. 9).

[19] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activity.”
In: The Bulletin of Mathematical Biophysics 5.4 (Dec. 1943), pp. 115–133. doi: 10.1007/bf02478259.
url: https://doi.org/10.1007%2Fbf02478259 (cit. on p. 9).

[20] D. Hebb. The Organization of Behavior. New York: Wiley, 1949 (cit. on p. 9).

[21] F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization
in the brain.” In: Psychological Review 65.6 (1958), pp. 386–408. doi: 10.1037/h0042519. url:
https://doi.org/10.1037/h0042519 (cit. on pp. 9, 50).

[22] A. G. Ivakhnenko. “Polynomial Theory of Complex Systems.” In: IEEE Transactions on Systems,
Man, and Cybernetics SMC-1.4 (Oct. 1971), pp. 364–378. doi: 10.1109/tsmc.1971.4308320. url:
https://doi.org/10.1109%2Ftsmc.1971.4308320 (cit. on pp. 9, 10).

[23] A. Ivakhnenko. “Heuristic self-organization in problems of engineering cybernetics.” In:
Automatica 6.2 (Mar. 1970), pp. 207–219. doi: 10.1016/0005-1098(70)90092-0. url: https://d
oi.org/10.1016/0005-1098(70)90092-0 (cit. on p. 9).

[24] R. Mehra. “Group method of data handling (GMDH): Review and experience.” In: 1977 IEEE
Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A
Special Symposium on Fuzzy Set Theory and Applications. IEEE, Dec. 1977. doi: 10.1109/cdc.197
7.271540. url: https://doi.org/10.1109/cdc.1977.271540 (cit. on p. 9).

[25] R. D. Joseph. “Contribution to Perceptron Theory.” PhD thesis. University of Cornell, 1961

(cit. on p. 10).

[26] S. Viglione. “4 Applications of Pattern Recognition Technology.” In: Mathematics in Science
and Engineering. Elsevier, 1970, pp. 115–162. doi: 10.1016/s0076- 5392(08)60492- 0. url:
https://doi.org/10.1016/s0076-5392(08)60492-0 (cit. on p. 10).

[27] K. Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position.” In: Biological Cybernetics 36.4 (Apr. 1980),
pp. 193–202. doi: 10.1007/bf00344251. url: https://doi.org/10.1007/bf00344251 (cit. on
p. 10).

[28] A. E. Bryson. “A gradient method for optimizing multi-stage allocation processes.” In: Proc.
Harvard Univ. Symposium on digital computers and their applications. Vol. 72. 1961, p. 22 (cit. on
p. 10).

[29] A. E. Bryson, Y.-C. Ho, and G. M. Siouris. “Applied Optimal Control: Optimization, Estimation,
and Control.” In: IEEE Transactions on Systems, Man, and Cybernetics 9.6 (1979), pp. 366–367. doi:
10.1109/tsmc.1979.4310229. url: https://doi.org/10.1109/tsmc.1979.4310229 (cit. on
p. 10).

[30] H. J. Kelley. “Gradient Theory of Optimal Flight Paths.” In: ARS Journal 30.10 (Oct. 1960),
pp. 947–954. doi: 10.2514/8.5282. url: https://doi.org/10.2514/8.5282 (cit. on p. 10).

[31] S. Dreyfus. “The numerical solution of variational problems.” In: Journal of Mathematical
Analysis and Applications 5.1 (Aug. 1962), pp. 30–45. doi: 10.1016/0022-247x(62)90004-5. url:
https://doi.org/10.1016/0022-247x(62)90004-5 (cit. on p. 10).

[32] M. Minsky and S. A. Papert. Perceptrons. Cambridge: MIT press, 1969 (cit. on p. 10).

[33] S. Linnainmaa. “The representation of the cumulative rounding error of an algorithm as a
Taylor expansion of the local rounding errors.” PhD thesis. Master’s Thesis (in Finnish), Univ.
Helsinki, 1970 (cit. on p. 11).

[34] S. Dreyfus. “The computational solution of optimal control problems with time lag.” In: IEEE
Transactions on Automatic Control 18.4 (Aug. 1973), pp. 383–385. doi: 10.1109/tac.1973.11003
30. url: https://doi.org/10.1109/tac.1973.1100330 (cit. on p. 11).

https://doi.org/10.1145/3219819.3220114
https://doi.org/10.1145/3219819.3220114
https://doi.org/10.1145/3219819.3220114
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1007/978-3-319-67946-4_7
https://doi.org/10.1007/978-3-319-67946-4_7
https://doi.org/10.1007/978-1-4899-7502-7_909-1
https://doi.org/10.1007/978-1-4899-7502-7_909-1
https://doi.org/10.1007/978-1-4899-7502-7_909-1
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007%2Fbf02478259
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1109/tsmc.1971.4308320
https://doi.org/10.1109%2Ftsmc.1971.4308320
https://doi.org/10.1016/0005-1098(70)90092-0
https://doi.org/10.1016/0005-1098(70)90092-0
https://doi.org/10.1016/0005-1098(70)90092-0
https://doi.org/10.1109/cdc.1977.271540
https://doi.org/10.1109/cdc.1977.271540
https://doi.org/10.1109/cdc.1977.271540
https://doi.org/10.1016/s0076-5392(08)60492-0
https://doi.org/10.1016/s0076-5392(08)60492-0
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251
https://doi.org/10.1109/tsmc.1979.4310229
https://doi.org/10.1109/tsmc.1979.4310229
https://doi.org/10.2514/8.5282
https://doi.org/10.2514/8.5282
https://doi.org/10.1016/0022-247x(62)90004-5
https://doi.org/10.1016/0022-247x(62)90004-5
https://doi.org/10.1109/tac.1973.1100330
https://doi.org/10.1109/tac.1973.1100330
https://doi.org/10.1109/tac.1973.1100330

bibliography 293

[35] P. J. Werbos. “Applications of advances in nonlinear sensitivity analysis.” In: System Modeling
and Optimization. Springer-Verlag, 1981, pp. 762–770. doi: 10.1007/bfb0006203. url: https:
//doi.org/10.1007/bfb0006203 (cit. on p. 11).

[36] Y. Lecun. “A theoretical framework for back-propagation.” In: Proceedings of the 1988 Con-
nectionist Models Summer School, CMU, Pittsburg, PA. Ed. by D. Touretzky, G. Hinton, and
T. Sejnowski. Morgan Kaufmann, 1988, pp. 21–28. url: http://yann.lecun.com/exdb/publis
/pdf/lecun-88.pdf (cit. on p. 11).

[37] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
“Backpropagation Applied to Handwritten Zip Code Recognition.” In: Neural Computation 1.4
(Dec. 1989), pp. 541–551. doi: 10.1162/neco.1989.1.4.541. url: https://doi.org/10.1162
/neco.1989.1.4.541 (cit. on p. 11).

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1.” In: ed. by D. E. Rumelhart, J. L. McClelland, and
C. PDP Research Group. Cambridge, MA, USA: MIT Press, 1986. Chap. Learning Internal
Representations by Error Propagation, pp. 318–362. isbn: 0-262-68053-X. url: http://www.cnb
c.cmu.edu/~plaut/IntroPDP/papers/RumelhartETAL86.backprop.pdf (cit. on pp. 11, 13, 25).

[39] A. N. Kolmogorov. “On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition.” In: Doklady Akademii
Nauk. Vol. 114. 5. Russian Academy of Sciences. 1957, pp. 953–956 (cit. on p. 11).

[40] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks are universal
approximators.” In: Neural Networks 2.5 (Jan. 1989), pp. 359–366. doi: 10.1016/0893-6080(89
)90020-8. url: https://doi.org/10.1016/0893-6080(89)90020-8 (cit. on p. 11).

[41] R. Hecht-Nielsen. “Theory of the backpropagation neural network.” In: International Joint
Conference on Neural Networks. IEEE, 1989. doi: 10.1109/ijcnn.1989.118638. url: https://do
i.org/10.1109/ijcnn.1989.118638 (cit. on p. 11).

[42] K. Levenberg. “A method for the solution of certain non-linear problems in least squares.”
In: Quarterly of Applied Mathematics 2.2 (1944), pp. 164–168. doi: 10.1090/qam/10666. url:
https://doi.org/10.1090/qam/10666 (cit. on p. 11).

[43] D. W. Marquardt. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” In:
Journal of the Society for Industrial and Applied Mathematics 11.2 (June 1963), pp. 431–441. doi:
10.1137/0111030. url: https://doi.org/10.1137/0111030 (cit. on p. 11).

[44] M. Riedmiller and H. Braun. “A direct adaptive method for faster backpropagation learning:
the RPROP algorithm.” In: IEEE International Conference on Neural Networks. IEEE, 1993. doi:
10.1109/icnn.1993.298623. url: https://doi.org/10.1109/icnn.1993.298623 (cit. on
p. 11).

[45] L. Deng. “The MNIST Database of Handwritten Digit Images for Machine Learning Research
[Best of the Web].” In: IEEE Signal Processing Magazine 29.6 (Nov. 2012), pp. 141–142. doi:
10.1109/msp.2012.2211477. url: https://doi.org/10.1109/msp.2012.2211477 (cit. on
pp. 11, 61, 64, 89, 91, 119, 130, 140, 149, 152, 160, 289).

[46] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.org.
MIT Press, 2016 (cit. on pp. 12, 13, 17, 18, 20–22, 24, 25, 48, 50, 51, 68, 105).

[47] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für
Informatik, Lehrstuhl Prof. Brauer, Technische Universität München. 1991 (cit. on p. 12).

[48] O. Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge.” In: International
Journal of Computer Vision 115.3 (Apr. 2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.
url: https://doi.org/10.1007/s11263-015-0816-y (cit. on pp. 12, 23, 58, 65, 124, 140, 186).

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Convo-
lutional Neural Networks.” In: Advances in Neural Information Processing Systems. Ed. by F.
Pereira, C. Burges, L. Bottou, and K. Weinberger. Vol. 25. Curran Associates, Inc., 2012. url:
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436

e924a68c45b-Paper.pdf (cit. on pp. 12, 68, 186).

[50] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Networks.” In:
CoRR abs/1311.2901 (2013). url: http://arxiv.org/abs/1311.2901 (cit. on p. 12).

[51] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image
Recognition.” In: CoRR abs/1409.1556 (2014). url: http://arxiv.org/abs/1409.1556 (cit. on
pp. 12, 17, 82, 185).

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. “Going deeper with convolutions.” In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, June 2015. doi: 10.1109/cvpr.2015.7298594. url:
https://doi.org/10.1109/cvpr.2015.7298594 (cit. on pp. 12, 13, 17, 20, 65, 171).

https://doi.org/10.1007/bfb0006203
https://doi.org/10.1007/bfb0006203
https://doi.org/10.1007/bfb0006203
http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
http://www.cnbc.cmu.edu/~plaut/IntroPDP/papers/RumelhartETAL86.backprop.pdf
http://www.cnbc.cmu.edu/~plaut/IntroPDP/papers/RumelhartETAL86.backprop.pdf
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/ijcnn.1989.118638
https://doi.org/10.1109/ijcnn.1989.118638
https://doi.org/10.1109/ijcnn.1989.118638
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1109/icnn.1993.298623
https://doi.org/10.1109/icnn.1993.298623
https://doi.org/10.1109/msp.2012.2211477
https://doi.org/10.1109/msp.2012.2211477
http://www.deeplearningbook.org
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2015.7298594

294 bibliography

[53] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. “A survey of the recent architectures of deep
convolutional neural networks.” In: Artificial Intelligence Review 53.8 (Apr. 2020), pp. 5455–5516.
doi: 10.1007/s10462-020-09825-6. url: https://doi.org/10.1007/s10462-020-09825-6
(cit. on p. 13).

[54] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. “Inception-v4, Inception-ResNet and the
Impact of Residual Connections on Learning.” In: Proceedings of the AAAI Conference on Artificial
Intelligence 31.1 (Feb. 2017). doi: 10.1609/aaai.v31i1.11231. url: https://doi.org/10.1609
/aaai.v31i1.11231 (cit. on pp. 13, 171, 174).

[55] S. Zagoruyko and N. Komodakis. “Wide Residual Networks.” In: Procedings of the British
Machine Vision Conference 2016. British Machine Vision Association, 2016. doi: 10.5244/c.30.8
7. url: https://doi.org/10.5244/c.30.87 (cit. on pp. 13, 130, 149, 176, 177).

[56] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. “Aggregated Residual Transformations for
Deep Neural Networks.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, July 2017. doi: 10.1109/cvpr.2017.634. url: https://doi.org/10.1109/cvpr
.2017.634 (cit. on p. 13).

[57] D. Han, J. Kim, and J. Kim. “Deep Pyramidal Residual Networks.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). July 2017. url: https://openacc
ess.thecvf.com/content_cvpr_2017/papers/Han_Deep_Pyramidal_Residual_CVPR_2017_pa

per.pdf (cit. on p. 13).

[58] F. Chollet. “Xception: Deep Learning with Depthwise Separable Convolutions.” In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017. doi:
10.1109/cvpr.2017.195. url: https://doi.org/10.1109/cvpr.2017.195 (cit. on p. 13).

[59] X. Zhang, Z. Li, C. C. Loy, and D. Lin. “PolyNet: A Pursuit of Structural Diversity in Very Deep
Networks.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
July 2017. doi: 10.1109/cvpr.2017.415. url: https://doi.org/10.1109/cvpr.2017.415
(cit. on p. 13).

[60] C. C. Aggarwal. Neural Networks and Deep Learning. Springer International Publishing, 2023.
doi: 10.1007/978-3-031-29642-0. url: https://doi.org/10.1007/978-3-031-29642-0
(cit. on p. 13).

[61] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C. Chen, and S. S.
Iyengar. “A Survey on Deep Learning.” In: ACM Computing Surveys 51.5 (Sept. 2018), pp. 1–36.
doi: 10.1145/3234150. url: https://doi.org/10.1145/3234150 (cit. on p. 13).

[62] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” In: Nature 521.7553 (May 2015), pp. 436–
444. doi: 10.1038/nature14539. url: https://doi.org/10.1038/nature14539 (cit. on p. 13).

[63] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew. “Deep learning for visual
understanding: A review.” In: Neurocomputing 187 (Apr. 2016), pp. 27–48. doi: 10.1016/j.neu
com.2015.09.116. url: https://doi.org/10.1016/j.neucom.2015.09.116 (cit. on p. 13).

[64] A. Shrestha and A. Mahmood. “Review of Deep Learning Algorithms and Architectures.” In:
IEEE Access 7 (2019), pp. 53040–53065. doi: 10.1109/access.2019.2912200. url: https://doi
.org/10.1109/access.2019.2912200 (cit. on pp. 13, 14).

[65] W. Rawat and Z. Wang. “Deep Convolutional Neural Networks for Image Classification:
A Comprehensive Review.” In: Neural Computation 29.9 (Sept. 2017), pp. 2352–2449. doi:
10.1162/neco_a_00990. url: https://doi.org/10.1162/neco_a_00990 (cit. on p. 13).

[66] S. Min et al. “Deep learning in bioinformatics.” In: Briefings in Bioinformatics (July 2016),
bbw068. doi: 10.1093/bib/bbw068. url: https://doi.org/10.1093/bib/bbw068 (cit. on
pp. 13, 41).

[67] C. Angermueller et al. “Deep learning for computational biology.” In: Molecular Systems Biology
12.7 (July 2016), p. 878. doi: 10.15252/msb.20156651. url: https://doi.org/10.15252/msb.2
0156651 (cit. on pp. 13, 41).

[68] M. Zamani and S. C. Kremer. “Neural Networks in Bioinformatics.” In: Intelligent Systems
Reference Library. Springer Berlin Heidelberg, 2013, pp. 505–525. doi: 10.1007/978-3-642-366
57-4_15. url: https://doi.org/10.1007/978-3-642-36657-4_15 (cit. on p. 13).

[69] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan, B. C. V.
Essen, A. A. S. Awwal, and V. K. Asari. “A State-of-the-Art Survey on Deep Learning Theory
and Architectures.” In: Electronics 8.3 (Mar. 2019), p. 292. doi: 10.3390/electronics8030292.
url: https://doi.org/10.3390/electronics8030292 (cit. on pp. 13, 48, 171).

[70] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. “Graph
neural networks: A review of methods and applications.” In: AI Open 1 (2020), pp. 57–81. doi:
10.1016/j.aiopen.2021.01.001. url: https://doi.org/10.1016/j.aiopen.2021.01.001
(cit. on p. 13).

https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.5244/c.30.87
https://doi.org/10.5244/c.30.87
https://doi.org/10.5244/c.30.87
https://doi.org/10.1109/cvpr.2017.634
https://doi.org/10.1109/cvpr.2017.634
https://doi.org/10.1109/cvpr.2017.634
https://openaccess.thecvf.com/content_cvpr_2017/papers/Han_Deep_Pyramidal_Residual_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Han_Deep_Pyramidal_Residual_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Han_Deep_Pyramidal_Residual_CVPR_2017_paper.pdf
https://doi.org/10.1109/cvpr.2017.195
https://doi.org/10.1109/cvpr.2017.195
https://doi.org/10.1109/cvpr.2017.415
https://doi.org/10.1109/cvpr.2017.415
https://doi.org/10.1007/978-3-031-29642-0
https://doi.org/10.1007/978-3-031-29642-0
https://doi.org/10.1145/3234150
https://doi.org/10.1145/3234150
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1109/access.2019.2912200
https://doi.org/10.1109/access.2019.2912200
https://doi.org/10.1109/access.2019.2912200
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.15252/msb.20156651
https://doi.org/10.15252/msb.20156651
https://doi.org/10.15252/msb.20156651
https://doi.org/10.1007/978-3-642-36657-4_15
https://doi.org/10.1007/978-3-642-36657-4_15
https://doi.org/10.1007/978-3-642-36657-4_15
https://doi.org/10.3390/electronics8030292
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001

bibliography 295

[71] D. Bacciu, F. Errica, A. Micheli, and M. Podda. “A gentle introduction to deep learning for
graphs.” In: Neural Networks 129 (Sept. 2020), pp. 203–221. doi: 10.1016/j.neunet.2020.06.0
06. url: https://doi.org/10.1016/j.neunet.2020.06.006 (cit. on p. 13).

[72] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. “Deep Learning for 3D Point
Clouds: A Survey.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 43.12 (Dec.
2021), pp. 4338–4364. doi: 10.1109/tpami.2020.3005434. url: https://doi.org/10.1109/tp
ami.2020.3005434 (cit. on p. 13).

[73] Z. Wang, J. Chen, and S. C. H. Hoi. “Deep Learning for Image Super-Resolution: A Survey.” In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 43.10 (Oct. 2021), pp. 3365–3387.
doi: 10.1109/tpami.2020.2982166. url: https://doi.org/10.1109/tpami.2020.2982166
(cit. on p. 13).

[74] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin. “Deep learning on image denoising:
An overview.” In: Neural Networks 131 (Nov. 2020), pp. 251–275. doi: 10.1016/j.neunet.2020
.07.025. url: https://doi.org/10.1016/j.neunet.2020.07.025 (cit. on p. 13).

[75] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak,
B. van Ginneken, and C. I. Sánchez. “A survey on deep learning in medical image analysis.”
In: Medical Image Analysis 42 (Dec. 2017), pp. 60–88. doi: 10.1016/j.media.2017.07.005. url:
https://doi.org/10.1016/j.media.2017.07.005 (cit. on p. 13).

[76] A. Fourcade and R. Khonsari. “Deep learning in medical image analysis: A third eye for
doctors.” In: Journal of Stomatology, Oral and Maxillofacial Surgery 120.4 (Sept. 2019), pp. 279–288.
doi: 10.1016/j.jormas.2019.06.002. url: https://doi.org/10.1016/j.jormas.2019.06.00
2 (cit. on p. 13).

[77] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu. “Object Detection With Deep Learning: A Review.”
In: IEEE Transactions on Neural Networks and Learning Systems 30.11 (Nov. 2019), pp. 3212–3232.
doi: 10.1109/tnnls.2018.2876865. url: https://doi.org/10.1109/tnnls.2018.2876865
(cit. on p. 13).

[78] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. “Efficient Processing of Deep Neural Networks:
A Tutorial and Survey.” In: Proceedings of the IEEE 105.12 (Dec. 2017), pp. 2295–2329. doi:
10.1109/jproc.2017.2761740. url: https://doi.org/10.1109/jproc.2017.2761740 (cit. on
p. 13).

[79] A. Kamilaris and F. X. Prenafeta-Boldú. “Deep learning in agriculture: A survey.” In: Computers
and Electronics in Agriculture 147 (Apr. 2018), pp. 70–90. doi: 10.1016/j.compag.2018.02.016.
url: https://doi.org/10.1016/j.compag.2018.02.016 (cit. on p. 13).

[80] Q. Zhang, L. T. Yang, Z. Chen, and P. Li. “A survey on deep learning for big data.” In:
Information Fusion 42 (July 2018), pp. 146–157. doi: 10.1016/j.inffus.2017.10.006. url:
https://doi.org/10.1016/j.inffus.2017.10.006 (cit. on p. 13).

[81] P. Meyer, V. Noblet, C. Mazzara, and A. Lallement. “Survey on deep learning for radiotherapy.”
In: Computers in Biology and Medicine 98 (July 2018), pp. 126–146. doi: 10.1016/j.compbiomed
.2018.05.018. url: https://doi.org/10.1016/j.compbiomed.2018.05.018 (cit. on p. 13).

[82] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi. “Convolutional neural networks: an
overview and application in radiology.” In: Insights into Imaging 9.4 (June 2018), pp. 611–629.
doi: 10.1007/s13244-018-0639-9. url: https://doi.org/10.1007/s13244-018-0639-9
(cit. on p. 13).

[83] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. “Geometric Deep
Learning: Going beyond Euclidean data.” In: IEEE Signal Processing Magazine 34.4 (July 2017),
pp. 18–42. doi: 10.1109/msp.2017.2693418. url: https://doi.org/10.1109/msp.2017.26934
18 (cit. on p. 13).

[84] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. “Deep Learning for
Computer Vision: A Brief Review.” In: Computational Intelligence and Neuroscience 2018 (2018),
pp. 1–13. doi: 10.1155/2018/7068349. url: https://doi.org/10.1155/2018/7068349 (cit. on
p. 13).

[85] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. “Deep Reinforcement
Learning: A Brief Survey.” In: IEEE Signal Processing Magazine 34.6 (Nov. 2017), pp. 26–38.
doi: 10.1109/msp.2017.2743240. url: https://doi.org/10.1109/msp.2017.2743240 (cit. on
p. 13).

[86] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad. “State-
of-the-art in artificial neural network applications: A survey.” In: Heliyon 4.11 (Nov. 2018),
e00938. doi: 10.1016/j.heliyon.2018.e00938. url: https://doi.org/10.1016/j.heliyon.2
018.e00938 (cit. on p. 13).

[87] A. Tealab. “Time series forecasting using artificial neural networks methodologies: A systematic
review.” In: Future Computing and Informatics Journal 3.2 (Dec. 2018), pp. 334–340. doi: 10.1016
/j.fcij.2018.10.003. url: https://doi.org/10.1016/j.fcij.2018.10.003 (cit. on p. 13).

https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1109/tpami.2020.3005434
https://doi.org/10.1109/tpami.2020.3005434
https://doi.org/10.1109/tpami.2020.3005434
https://doi.org/10.1109/tpami.2020.2982166
https://doi.org/10.1109/tpami.2020.2982166
https://doi.org/10.1016/j.neunet.2020.07.025
https://doi.org/10.1016/j.neunet.2020.07.025
https://doi.org/10.1016/j.neunet.2020.07.025
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.jormas.2019.06.002
https://doi.org/10.1016/j.jormas.2019.06.002
https://doi.org/10.1016/j.jormas.2019.06.002
https://doi.org/10.1109/tnnls.2018.2876865
https://doi.org/10.1109/tnnls.2018.2876865
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.inffus.2017.10.006
https://doi.org/10.1016/j.inffus.2017.10.006
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1109/msp.2017.2743240
https://doi.org/10.1109/msp.2017.2743240
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.fcij.2018.10.003
https://doi.org/10.1016/j.fcij.2018.10.003
https://doi.org/10.1016/j.fcij.2018.10.003

296 bibliography

[88] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. “Physics-
informed machine learning.” In: Nature Reviews Physics 3.6 (May 2021), pp. 422–440. doi:
10.1038/s42254-021-00314-5. url: https://doi.org/10.1038/s42254-021-00314-5 (cit. on
p. 13).

[89] A. S. Lundervold and A. Lundervold. “An overview of deep learning in medical imaging
focusing on MRI.” In: Zeitschrift für Medizinische Physik 29.2 (May 2019), pp. 102–127. doi:
10.1016/j.zemedi.2018.11.002. url: https://doi.org/10.1016/j.zemedi.2018.11.002
(cit. on p. 13).

[90] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke. “The rise of deep learning in
drug discovery.” In: Drug Discovery Today 23.6 (June 2018), pp. 1241–1250. doi: 10.1016/j.dru
dis.2018.01.039. url: https://doi.org/10.1016/j.drudis.2018.01.039 (cit. on p. 13).

[91] J.-G. Lee, S. Jun, Y.-W. Cho, H. Lee, G. B. Kim, J. B. Seo, and N. Kim. “Deep Learning in
Medical Imaging: General Overview.” In: Korean Journal of Radiology 18.4 (2017), p. 570. doi:
10.3348/kjr.2017.18.4.570. url: https://doi.org/10.3348/kjr.2017.18.4.570 (cit. on
p. 13).

[92] Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson. “Deep Learning for
Brain MRI Segmentation: State of the Art and Future Directions.” In: Journal of Digital Imaging
30.4 (June 2017), pp. 449–459. doi: 10.1007/s10278-017-9983-4. url: https://doi.org/10.1
007/s10278-017-9983-4 (cit. on p. 13).

[93] J. Chen and X. Ran. “Deep Learning With Edge Computing: A Review.” In: Proceedings of the
IEEE 107.8 (Aug. 2019), pp. 1655–1674. doi: 10.1109/jproc.2019.2921977. url: https://doi
.org/10.1109/jproc.2019.2921977 (cit. on p. 13).

[94] S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan. “Medical Image
Analysis using Convolutional Neural Networks: A Review.” In: Journal of Medical Systems 42.11

(Oct. 2018). doi: 10.1007/s10916-018-1088-1. url: https://doi.org/10.1007/s10916-018-
1088-1 (cit. on p. 13).

[95] J. Amin, M. Sharif, A. Haldorai, M. Yasmin, and R. S. Nayak. “Brain tumor detection and
classification using machine learning: a comprehensive survey.” In: Complex & Intelligent
Systems 8.4 (Nov. 2021), pp. 3161–3183. doi: 10.1007/s40747-021-00563-y. url: https://doi
.org/10.1007/s40747-021-00563-y (cit. on p. 13).

[96] M. I. Razzak, S. Naz, and A. Zaib. “Deep Learning for Medical Image Processing: Overview,
Challenges and the Future.” In: Lecture Notes in Computational Vision and Biomechanics. Springer
International Publishing, Nov. 2017, pp. 323–350. doi: 10.1007/978-3-319-65981-7_12. url:
https://doi.org/10.1007/978-3-319-65981-7_12 (cit. on p. 13).

[97] S. Suganyadevi, V. Seethalakshmi, and K. Balasamy. “A review on deep learning in medical
image analysis.” In: International Journal of Multimedia Information Retrieval 11.1 (Sept. 2021),
pp. 19–38. doi: 10.1007/s13735-021-00218-1. url: https://doi.org/10.1007/s13735-021-
00218-1 (cit. on p. 13).

[98] H. A. Helaly, M. Badawy, and A. Y. Haikal. “A review of deep learning approaches in clinical
and healthcare systems based on medical image analysis.” In: Multimedia Tools and Applications
(Sept. 2023). doi: 10.1007/s11042-023-16605-1. url: https://doi.org/10.1007/s11042-02
3-16605-1 (cit. on p. 13).

[99] E. S. Kumar and C. S. Bindu. “Medical Image Analysis Using Deep Learning: A Systematic
Literature Review.” In: Emerging Technologies in Computer Engineering: Microservices in Big Data
Analytics. Springer Singapore, 2019, pp. 81–97. doi: 10.1007/978-981-13-8300-7_8. url:
https://doi.org/10.1007/978-981-13-8300-7_8 (cit. on p. 13).

[100] A. M. Hafiz and G. M. Bhat. “A Survey of Deep Learning Techniques for Medical Diagnosis.”
In: Information and Communication Technology for Sustainable Development. Springer Singapore,
June 2019, pp. 161–170. doi: 10.1007/978-981-13-7166-0_16. url: https://doi.org/10.100
7/978-981-13-7166-0_16 (cit. on p. 13).

[101] Z. Liu, L. Tong, L. Chen, Z. Jiang, F. Zhou, Q. Zhang, X. Zhang, Y. Jin, and H. Zhou. “Deep
learning based brain tumor segmentation: a survey.” In: Complex & Intelligent Systems 9.1 (July
2022), pp. 1001–1026. doi: 10.1007/s40747-022-00815-5. url: https://doi.org/10.1007/s4
0747-022-00815-5 (cit. on p. 13).

[102] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang. “Pre-trained models for natural language
processing: A survey.” In: Science China Technological Sciences 63.10 (Sept. 2020), pp. 1872–1897.
doi: 10.1007/s11431-020-1647-3. url: https://doi.org/10.1007/s11431-020-1647-3
(cit. on p. 13).

[103] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and D. V. Valen. “Deep learning for cellular
image analysis.” In: Nature Methods 16.12 (May 2019), pp. 1233–1246. doi: 10.1038/s41592-01
9-0403-1. url: https://doi.org/10.1038/s41592-019-0403-1 (cit. on p. 13).

https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.zemedi.2018.11.002
https://doi.org/10.1016/j.zemedi.2018.11.002
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.3348/kjr.2017.18.4.570
https://doi.org/10.3348/kjr.2017.18.4.570
https://doi.org/10.1007/s10278-017-9983-4
https://doi.org/10.1007/s10278-017-9983-4
https://doi.org/10.1007/s10278-017-9983-4
https://doi.org/10.1109/jproc.2019.2921977
https://doi.org/10.1109/jproc.2019.2921977
https://doi.org/10.1109/jproc.2019.2921977
https://doi.org/10.1007/s10916-018-1088-1
https://doi.org/10.1007/s10916-018-1088-1
https://doi.org/10.1007/s10916-018-1088-1
https://doi.org/10.1007/s40747-021-00563-y
https://doi.org/10.1007/s40747-021-00563-y
https://doi.org/10.1007/s40747-021-00563-y
https://doi.org/10.1007/978-3-319-65981-7_12
https://doi.org/10.1007/978-3-319-65981-7_12
https://doi.org/10.1007/s13735-021-00218-1
https://doi.org/10.1007/s13735-021-00218-1
https://doi.org/10.1007/s13735-021-00218-1
https://doi.org/10.1007/s11042-023-16605-1
https://doi.org/10.1007/s11042-023-16605-1
https://doi.org/10.1007/s11042-023-16605-1
https://doi.org/10.1007/978-981-13-8300-7_8
https://doi.org/10.1007/978-981-13-8300-7_8
https://doi.org/10.1007/978-981-13-7166-0_16
https://doi.org/10.1007/978-981-13-7166-0_16
https://doi.org/10.1007/978-981-13-7166-0_16
https://doi.org/10.1007/s40747-022-00815-5
https://doi.org/10.1007/s40747-022-00815-5
https://doi.org/10.1007/s40747-022-00815-5
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1038/s41592-019-0403-1

bibliography 297

[104] L. Jing and Y. Tian. “Self-Supervised Visual Feature Learning With Deep Neural Networks:
A Survey.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 43.11 (Nov. 2021),
pp. 4037–4058. doi: 10.1109/tpami.2020.2992393. url: https://doi.org/10.1109/tpami.20
20.2992393 (cit. on p. 13).

[105] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao. “Deep Learning for Single
Image Super-Resolution: A Brief Review.” In: IEEE Transactions on Multimedia 21.12 (Dec. 2019),
pp. 3106–3121. doi: 10.1109/tmm.2019.2919431. url: https://doi.org/10.1109/tmm.2019.2
919431 (cit. on p. 13).

[106] G. Eraslan, Ž. Avsec, J. Gagneur, and F. J. Theis. “Deep learning: new computational modelling
techniques for genomics.” In: Nature Reviews Genetics 20.7 (Apr. 2019), pp. 389–403. doi:
10.1038/s41576-019-0122-6. url: https://doi.org/10.1038/s41576-019-0122-6 (cit. on
p. 13).

[107] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida. “Deep learning in
spiking neural networks.” In: Neural Networks 111 (Mar. 2019), pp. 47–63. doi: 10.1016/j.neun
et.2018.12.002. url: https://doi.org/10.1016/j.neunet.2018.12.002 (cit. on p. 13).

[108] H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng. “A review of deep learning for renewable
energy forecasting.” In: Energy Conversion and Management 198 (Oct. 2019), p. 111799. doi: 10
.1016/j.enconman.2019.111799. url: https://doi.org/10.1016/j.enconman.2019.111799
(cit. on p. 13).

[109] G. B. Goh, N. O. Hodas, and A. Vishnu. “Deep learning for computational chemistry.” In:
Journal of Computational Chemistry 38.16 (Mar. 2017), pp. 1291–1307. doi: 10.1002/jcc.24764.
url: https://doi.org/10.1002/jcc.24764 (cit. on p. 13).

[110] J. E. Ball, D. T. Anderson, and C. S. Chan. “Comprehensive survey of deep learning in remote
sensing: theories, tools, and challenges for the community.” In: Journal of Applied Remote Sensing
11.04 (Sept. 2017), p. 1. doi: 10.1117/1.jrs.11.042609. url: https://doi.org/10.1117/1.jr
s.11.042609 (cit. on p. 13).

[111] T. van Klompenburg, A. Kassahun, and C. Catal. “Crop yield prediction using machine
learning: A systematic literature review.” In: Computers and Electronics in Agriculture 177 (Oct.
2020), p. 105709. doi: 10.1016/j.compag.2020.105709. url: https://doi.org/10.1016/j.co
mpag.2020.105709 (cit. on p. 13).

[112] B. Sahiner, A. Pezeshk, L. M. Hadjiiski, X. Wang, K. Drukker, K. H. Cha, R. M. Summers, and
M. L. Giger. “Deep learning in medical imaging and radiation therapy.” In: Medical Physics
46.1 (Nov. 2018). doi: 10.1002/mp.13264. url: https://doi.org/10.1002/mp.13264 (cit. on
p. 13).

[113] J. F. Torres, D. Hadjout, A. Sebaa, F. Martínez-Álvarez, and A. Troncoso. “Deep Learning for
Time Series Forecasting: A Survey.” In: Big Data 9.1 (Feb. 2021), pp. 3–21. issn: 2167-647X. doi:
10.1089/big.2020.0159. url: http://dx.doi.org/10.1089/big.2020.0159 (cit. on p. 13).

[114] M. Zhou, N. Duan, S. Liu, and H.-Y. Shum. “Progress in Neural NLP: Modeling, Learning,
and Reasoning.” In: Engineering 6.3 (Mar. 2020), pp. 275–290. issn: 2095-8099. doi: 10.1016/j
.eng.2019.12.014. url: http://dx.doi.org/10.1016/j.eng.2019.12.014 (cit. on p. 13).

[115] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao. “Review of Image Classification Algorithms
Based on Convolutional Neural Networks.” In: Remote Sensing 13.22 (Nov. 2021), p. 4712. issn:
2072-4292. doi: 10.3390/rs13224712. url: http://dx.doi.org/10.3390/rs13224712 (cit. on
p. 13).

[116] J. Maurício, I. Domingues, and J. Bernardino. “Comparing Vision Transformers and Convolu-
tional Neural Networks for Image Classification: A Literature Review.” In: Applied Sciences
13.9 (Apr. 2023), p. 5521. issn: 2076-3417. doi: 10.3390/app13095521. url: http://dx.doi.org
/10.3390/app13095521 (cit. on p. 13).

[117] I. Santos, L. Castro, N. Rodriguez-Fernandez, Á. Torrente-Patiño, and A. Carballal. “Artificial
Neural Networks and Deep Learning in the Visual Arts: a review.” In: Neural Computing and
Applications 33.1 (Jan. 2021), pp. 121–157. issn: 1433-3058. doi: 10.1007/s00521-020-05565-4.
url: http://dx.doi.org/10.1007/s00521-020-05565-4 (cit. on p. 13).

[118] A.-S. Maerten and D. Soydaner. From paintbrush to pixel: A review of deep neural networks in
AI-generated art. 2023. doi: 10.48550/ARXIV.2302.10913. url: https://arxiv.org/abs/2302
.10913 (cit. on p. 13).

[119] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.
Polosukhin. “Attention is All you Need.” In: Advances in Neural Information Processing Systems.
Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett. Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper
_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (cit. on p. 13).

https://doi.org/10.1109/tpami.2020.2992393
https://doi.org/10.1109/tpami.2020.2992393
https://doi.org/10.1109/tpami.2020.2992393
https://doi.org/10.1109/tmm.2019.2919431
https://doi.org/10.1109/tmm.2019.2919431
https://doi.org/10.1109/tmm.2019.2919431
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/j.enconman.2019.111799
https://doi.org/10.1016/j.enconman.2019.111799
https://doi.org/10.1016/j.enconman.2019.111799
https://doi.org/10.1002/jcc.24764
https://doi.org/10.1002/jcc.24764
https://doi.org/10.1117/1.jrs.11.042609
https://doi.org/10.1117/1.jrs.11.042609
https://doi.org/10.1117/1.jrs.11.042609
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1002/mp.13264
https://doi.org/10.1002/mp.13264
https://doi.org/10.1089/big.2020.0159
http://dx.doi.org/10.1089/big.2020.0159
https://doi.org/10.1016/j.eng.2019.12.014
https://doi.org/10.1016/j.eng.2019.12.014
http://dx.doi.org/10.1016/j.eng.2019.12.014
https://doi.org/10.3390/rs13224712
http://dx.doi.org/10.3390/rs13224712
https://doi.org/10.3390/app13095521
http://dx.doi.org/10.3390/app13095521
http://dx.doi.org/10.3390/app13095521
https://doi.org/10.1007/s00521-020-05565-4
http://dx.doi.org/10.1007/s00521-020-05565-4
https://doi.org/10.48550/ARXIV.2302.10913
https://arxiv.org/abs/2302.10913
https://arxiv.org/abs/2302.10913
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

298 bibliography

[120] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.” In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational
Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url: https://aclantholo
gy.org/N19-1423 (cit. on p. 13).

[121] H. Touvron et al. LLaMA: Open and Efficient Foundation Language Models. 2023. doi: 10.48550
/ARXIV.2302.13971. url: https://arxiv.org/abs/2302.13971 (cit. on p. 13).

[122] A. Karpathy. CS231n: Convolutional Neural Networks for Visual Recognition — Module 2: Convolu-
tional Neural Networks. 2023. url: https://cs231n.github.io/ (visited on 10/11/2023) (cit. on
pp. 13–17, 20–26, 68).

[123] J. Gu et al. “Recent advances in convolutional neural networks.” In: Pattern Recognition 77

(May 2018), pp. 354–377. doi: 10.1016/j.patcog.2017.10.013. url: https://doi.org/10.10
16/j.patcog.2017.10.013 (cit. on pp. 13, 20–22).

[124] I. H. Sarker. “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Appli-
cations and Research Directions.” In: SN Computer Science 2.6 (Aug. 2021). issn: 2661-8907.
doi: 10.1007/s42979-021-00815-1. url: http://dx.doi.org/10.1007/s42979-021-00815-1
(cit. on p. 13).

[125] M. Krichen. “Convolutional Neural Networks: A Survey.” In: Computers 12.8 (July 2023), p. 151.
issn: 2073-431X. doi: 10.3390/computers12080151. url: http://dx.doi.org/10.3390/comput
ers12080151 (cit. on p. 13).

[126] A. Sherstinsky. “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM) network.” In: Physica D: Nonlinear Phenomena 404 (Mar. 2020), p. 132306.
doi: 10.1016/j.physd.2019.132306. url: https://doi.org/10.1016/j.physd.2019.132306
(cit. on p. 14).

[127] M. Kaur and A. Mohta. “A Review of Deep Learning with Recurrent Neural Network.” In:
2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE, Nov.
2019. doi: 10.1109/icssit46314.2019.8987837. url: https://doi.org/10.1109/icssit4631
4.2019.8987837 (cit. on p. 14).

[128] Y. Yu, X. Si, C. Hu, and J. Zhang. “A Review of Recurrent Neural Networks: LSTM Cells
and Network Architectures.” In: Neural Computation 31.7 (July 2019), pp. 1235–1270. doi:
10.1162/neco_a_01199. url: https://doi.org/10.1162/neco_a_01199 (cit. on p. 14).

[129] I. Kligvasser, T. R. Shaham, and T. Michaeli. “xUnit: Learning a Spatial Activation Function
for Efficient Image Restoration.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, June 2018. doi: 10.1109/cvpr.2018.00258. url: http://dx.doi.org/10.11
09/CVPR.2018.00258 (cit. on p. 14).

[130] A. Zemmari and J. Benois-Pineau. “Deep Neural Networks: Models and Methods.” In: Multi-
faceted Deep Learning. Springer International Publishing, Feb. 2012, pp. 5–38. doi: 10.1007/978
-3-030-74478-6_2. url: https://doi.org/10.1007/978-3-030-74478-6_2 (cit. on p. 14).

[131] M. Aggarwal and M. N. Murty. “Deep Learning.” In: Machine Learning in Social Networks.
Springer Singapore, Nov. 2020, pp. 35–66. doi: 10 . 1007 / 978 - 981 - 33 - 4022 - 0 _ 3. url:
https://doi.org/10.1007/978-981-33-4022-0_3 (cit. on p. 14).

[132] V. Liermann, S. Li, and N. Schaudinnus. “Deep Learning: An Introduction.” In: The Impact of
Digital Transformation and FinTech on the Finance Professional. Springer International Publishing,
2019, pp. 305–340. doi: 10.1007/978-3-030-23719-6_17. url: https://doi.org/10.1007/97
8-3-030-23719-6_17 (cit. on pp. 14, 24, 25).

[133] M. L. Forcada. Neural Networks: Automata and Formal Models of Computation. 2000. url: https:
//www.dlsi.ua.es/~mlf/nnafmc/pbook.pdf (visited on 10/11/2023) (cit. on p. 14).

[134] P. Mantini and S. K. Shah. “CQNN: Convolutional Quadratic Neural Networks.” In: 2020 25th
International Conference on Pattern Recognition (ICPR). IEEE, Jan. 2021. doi: 10.1109/icpr48806
.2021.9413207. url: http://dx.doi.org/10.1109/ICPR48806.2021.9413207 (cit. on p. 14).

[135] G. Zoumpourlis, A. Doumanoglou, N. Vretos, and P. Daras. “Non-linear Convolution Filters for
CNN-Based Learning.” In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE,
Oct. 2017. doi: 10.1109/iccv.2017.510. url: http://dx.doi.org/10.1109/ICCV.2017.510
(cit. on p. 14).

[136] Z. Xu, F. Yu, J. Xiong, and X. Chen. QuadraLib: A Performant Quadratic Neural Network Library
for Architecture Optimization and Design Exploration. 2022. doi: 10.48550/ARXIV.2204.01701.
url: https://arxiv.org/abs/2204.01701 (cit. on p. 14).

[137] M. M. Noel and V. Muthiah-Nakarajan. Computationally Efficient Quadratic Neural Networks.
2023. doi: 10.48550/ARXIV.2310.02901. url: https://arxiv.org/abs/2310.02901 (cit. on
p. 14).

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://arxiv.org/abs/2302.13971
https://cs231n.github.io/
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1007/s42979-021-00815-1
http://dx.doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.3390/computers12080151
http://dx.doi.org/10.3390/computers12080151
http://dx.doi.org/10.3390/computers12080151
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1109/icssit46314.2019.8987837
https://doi.org/10.1109/icssit46314.2019.8987837
https://doi.org/10.1109/icssit46314.2019.8987837
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1109/cvpr.2018.00258
http://dx.doi.org/10.1109/CVPR.2018.00258
http://dx.doi.org/10.1109/CVPR.2018.00258
https://doi.org/10.1007/978-3-030-74478-6_2
https://doi.org/10.1007/978-3-030-74478-6_2
https://doi.org/10.1007/978-3-030-74478-6_2
https://doi.org/10.1007/978-981-33-4022-0_3
https://doi.org/10.1007/978-981-33-4022-0_3
https://doi.org/10.1007/978-3-030-23719-6_17
https://doi.org/10.1007/978-3-030-23719-6_17
https://doi.org/10.1007/978-3-030-23719-6_17
https://www.dlsi.ua.es/~mlf/nnafmc/pbook.pdf
https://www.dlsi.ua.es/~mlf/nnafmc/pbook.pdf
https://doi.org/10.1109/icpr48806.2021.9413207
https://doi.org/10.1109/icpr48806.2021.9413207
http://dx.doi.org/10.1109/ICPR48806.2021.9413207
https://doi.org/10.1109/iccv.2017.510
http://dx.doi.org/10.1109/ICCV.2017.510
https://doi.org/10.48550/ARXIV.2204.01701
https://arxiv.org/abs/2204.01701
https://doi.org/10.48550/ARXIV.2310.02901
https://arxiv.org/abs/2310.02901

bibliography 299

[138] C. Chen, G. L. Zhang, X. Yin, C. Zhuo, U. Schlichtmann, and B. Li. Computational and Storage
Efficient Quadratic Neurons for Deep Neural Networks. 2023. doi: 10.48550/ARXIV.2306.07294.
url: https://arxiv.org/abs/2306.07294 (cit. on p. 14).

[139] F. Fan, J. Xiong, and G. Wang. “Universal approximation with quadratic deep networks.” In:
Neural Networks 124 (Apr. 2020), pp. 383–392. issn: 0893-6080. doi: 10.1016/j.neunet.2020.0
1.007. url: http://dx.doi.org/10.1016/j.neunet.2020.01.007 (cit. on p. 14).

[140] M. U. Demirezen. “Quadratic Residual Multiplicative Filter Neural Networks for Efficient
Approximation of Complex Sensor Signals.” In: IEEE Access 11 (2023), pp. 75236–75268. issn:
2169-3536. doi: 10.1109/access.2023.3297724. url: http://dx.doi.org/10.1109/ACCESS.2
023.3297724 (cit. on p. 14).

[141] T. Qi and G. Wang. “Superiority of quadratic over conventional neural networks for classifica-
tion of gaussian mixture data.” In: Visual Computing for Industry, Biomedicine, and Art 5.1 (Sept.
2022). issn: 2524-4442. doi: 10.1186/s42492-022-00118-z. url: http://dx.doi.org/10.1186
/s42492-022-00118-z (cit. on p. 14).

[142] R. Rodriguez, O. O. Vergara Villegas, V. G. Cruz Sanchez, J. Bila, and A. Mexicano. “Arrhythmia
disease classification using a higher-order neural unit.” In: 2015 Fourth International Conference
on Future Generation Communication Technology (FGCT). IEEE, July 2015. doi: 10.1109/fgct.20
15.7300253. url: http://dx.doi.org/10.1109/FGCT.2015.7300253 (cit. on p. 14).

[143] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.”
In: J. Mach. Learn. Res. 15.1 (Jan. 2014), pp. 1929–1958. issn: 1532-4435. url: https://www.cs.t
oronto.edu/~hinton/absps/JMLRdropout.pdf (cit. on pp. 17, 69, 190).

[144] S. J. Nowlan and G. E. Hinton. “Simplifying Neural Networks by Soft Weight-Sharing.” In:
Neural Computation 4.4 (July 1992), pp. 473–493. doi: 10.1162/neco.1992.4.4.473. url:
https://doi.org/10.1162/neco.1992.4.4.473 (cit. on p. 17).

[145] H.-i. Lim. “A Study on Dropout Techniques to Reduce Overfitting in Deep Neural Networks.”
In: Lecture Notes in Electrical Engineering. Springer Singapore, Dec. 2020, pp. 133–139. doi:
10.1007/978-981-15-9309-3_20. url: https://doi.org/10.1007/978-981-15-9309-3_20
(cit. on p. 17).

[146] D. Warde-Farley, I. J. Goodfellow, A. Courville, and Y. Bengio. An empirical analysis of dropout
in piecewise linear networks. 2013. doi: 10.48550/ARXIV.1312.6197. url: https://arxiv.org/a
bs/1312.6197 (cit. on p. 17).

[147] H. Zhang, S. Li, Y. Ma, M. Li, Y. Xie, and Q. Zhang. “Interpreting and Boosting Dropout from
a Game-Theoretic View.” In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=Jacdvfjicf7 (cit. on p. 17).

[148] M. M. Bejani and M. Ghatee. “A systematic review on overfitting control in shallow and
deep neural networks.” In: Artificial Intelligence Review 54.8 (Mar. 2021), pp. 6391–6438. doi:
10.1007/s10462-021-09975-1. url: https://doi.org/10.1007/s10462-021-09975-1 (cit. on
p. 17).

[149] Y. Gal and Z. Ghahramani. “A Theoretically Grounded Application of Dropout in Recurrent
Neural Networks.” In: Advances in Neural Information Processing Systems. Ed. by D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc., 2016. url:
https://proceedings.neurips.cc/paper_files/paper/2016/file/076a0c97d09cf1a0ec3e1

9c7f2529f2b-Paper.pdf (cit. on p. 17).

[150] R. Moradi, R. Berangi, and B. Minaei. “A survey of regularization strategies for deep models.”
In: Artificial Intelligence Review 53.6 (Dec. 2019), pp. 3947–3986. doi: 10.1007/s10462-019-0978
4-7. url: https://doi.org/10.1007/s10462-019-09784-7 (cit. on pp. 17, 18).

[151] S. Wager, S. Wang, and P. S. Liang. “Dropout Training as Adaptive Regularization.” In: Advances
in Neural Information Processing Systems. Ed. by C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.neurips
.cc/paper_files/paper/2013/file/38db3aed920cf82ab059bfccbd02be6a-Paper.pdf (cit. on
p. 17).

[152] S. H. Khan, M. Hayat, and F. Porikli. “Regularization of deep neural networks with spectral
dropout.” In: Neural Networks 110 (Feb. 2019), pp. 82–90. doi: 10.1016/j.neunet.2018.09.009.
url: https://doi.org/10.1016/j.neunet.2018.09.009 (cit. on pp. 17, 18).

[153] P. Baldi and P. J. Sadowski. “Understanding Dropout.” In: Advances in Neural Information
Processing Systems. Ed. by C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger.
Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.neurips.cc/paper_files/p
aper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf (cit. on p. 17).

https://doi.org/10.48550/ARXIV.2306.07294
https://arxiv.org/abs/2306.07294
https://doi.org/10.1016/j.neunet.2020.01.007
https://doi.org/10.1016/j.neunet.2020.01.007
http://dx.doi.org/10.1016/j.neunet.2020.01.007
https://doi.org/10.1109/access.2023.3297724
http://dx.doi.org/10.1109/ACCESS.2023.3297724
http://dx.doi.org/10.1109/ACCESS.2023.3297724
https://doi.org/10.1186/s42492-022-00118-z
http://dx.doi.org/10.1186/s42492-022-00118-z
http://dx.doi.org/10.1186/s42492-022-00118-z
https://doi.org/10.1109/fgct.2015.7300253
https://doi.org/10.1109/fgct.2015.7300253
http://dx.doi.org/10.1109/FGCT.2015.7300253
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://doi.org/10.1162/neco.1992.4.4.473
https://doi.org/10.1162/neco.1992.4.4.473
https://doi.org/10.1007/978-981-15-9309-3_20
https://doi.org/10.1007/978-981-15-9309-3_20
https://doi.org/10.48550/ARXIV.1312.6197
https://arxiv.org/abs/1312.6197
https://arxiv.org/abs/1312.6197
https://openreview.net/forum?id=Jacdvfjicf7
https://doi.org/10.1007/s10462-021-09975-1
https://doi.org/10.1007/s10462-021-09975-1
https://proceedings.neurips.cc/paper_files/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf
https://doi.org/10.1007/s10462-019-09784-7
https://doi.org/10.1007/s10462-019-09784-7
https://doi.org/10.1007/s10462-019-09784-7
https://proceedings.neurips.cc/paper_files/paper/2013/file/38db3aed920cf82ab059bfccbd02be6a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/38db3aed920cf82ab059bfccbd02be6a-Paper.pdf
https://doi.org/10.1016/j.neunet.2018.09.009
https://doi.org/10.1016/j.neunet.2018.09.009
https://proceedings.neurips.cc/paper_files/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf

300 bibliography

[154] Z. Liu, Z. Xu, J. Jin, Z. Shen, and T. Darrell. “Dropout Reduces Underfitting.” In: Proceedings of
the 40th International Conference on Machine Learning. Ed. by A. Krause, E. Brunskill, K. Cho,
B. Engelhardt, S. Sabato, and J. Scarlett. Vol. 202. Proceedings of Machine Learning Research.
PMLR, 23–29 Jul 2023, pp. 22233–22248. url: https://proceedings.mlr.press/v202/liu23a
q.html (cit. on pp. 17, 18).

[155] X. Bouthillier, K. Konda, P. Vincent, and R. Memisevic. Dropout as data augmentation. 2015. doi:
10.48550/ARXIV.1506.08700. url: https://arxiv.org/abs/1506.08700 (cit. on p. 17).

[156] T. DeVries and G. W. Taylor. Improved Regularization of Convolutional Neural Networks with
Cutout. 2017. doi: 10.48550/ARXIV.1708.04552. url: https://arxiv.org/abs/1708.04552
(cit. on p. 17).

[157] Y. Gal and Z. Ghahramani. “Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning.” In: Proceedings of The 33rd International Conference on Machine
Learning. Ed. by M. F. Balcan and K. Q. Weinberger. Vol. 48. Proceedings of Machine Learning
Research. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1050–1059. url: https://pr
oceedings.mlr.press/v48/gal16.html (cit. on p. 17).

[158] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. “Regularization of Neural Networks
using DropConnect.” In: Proceedings of the 30th International Conference on Machine Learning.
Ed. by S. Dasgupta and D. McAllester. Vol. 28. Proceedings of Machine Learning Research 3.
Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1058–1066. url: https://proceedings.mlr
.press/v28/wan13.html (cit. on p. 17).

[159] Z. Lian, X. Jing, X. Wang, H. Huang, Y. Tan, and Y. Cui. “DropConnect Regularization Method
with Sparsity Constraint for Neural Networks.” In: Chinese Journal of Electronics 25.1 (Jan. 2016),
pp. 152–158. doi: 10.1049/cje.2016.01.023. url: https://doi.org/10.1049/cje.2016.01.0
23 (cit. on p. 17).

[160] S. Park and N. Kwak. “Analysis on the Dropout Effect in Convolutional Neural Networks.”
In: Computer Vision – ACCV 2016. Springer International Publishing, 2017, pp. 189–204. doi:
10.1007/978-3-319-54184-6_12. url: https://doi.org/10.1007/978-3-319-54184-6_12
(cit. on p. 17).

[161] H. Pan, X. Niu, R. Li, S. Shen, and Y. Dou. “DropFilterR: A Novel Regularization Method
for Learning Convolutional Neural Networks.” In: Neural Processing Letters 51.2 (Nov. 2019),
pp. 1285–1298. doi: 10.1007/s11063-019-10147-0. url: https://doi.org/10.1007/s11063-
019-10147-0 (cit. on p. 17).

[162] S. Liang, Y. Khoo, and H. Yang. “Drop-Activation: Implicit Parameter Reduction and Harmo-
nious Regularization.” In: Communications on Applied Mathematics and Computation 3.2 (Oct.
2020), pp. 293–311. doi: 10.1007/s42967-020-00085-3. url: https://doi.org/10.1007/s429
67-020-00085-3 (cit. on p. 17).

[163] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. “Deep Networks with Stochastic
Depth.” In: Computer Vision – ECCV 2016. Springer International Publishing, 2016, pp. 646–661.
doi: 10.1007/978-3-319-46493-0_39. url: https://doi.org/10.1007/978-3-319-46493-0
_39 (cit. on p. 17).

[164] O. K. Oyedotun, A. E. R. Shabayek, D. Aouada, and B. Ottersten. “Training Very Deep
Networks via Residual Learning with Stochastic Input Shortcut Connections.” In: Neural
Information Processing. Springer International Publishing, 2017, pp. 23–33. doi: 10.1007/978-3-
319-70096-0_3. url: https://doi.org/10.1007/978-3-319-70096-0_3 (cit. on p. 18).

[165] J. Ba and B. Frey. “Adaptive dropout for training deep neural networks.” In: Advances in Neural
Information Processing Systems. Ed. by C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.neurips.c
c/paper_files/paper/2013/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf (cit. on
p. 18).

[166] S. Wang, T. Zhou, and J. Bilmes. “Jumpout: Improved Dropout for Deep Neural Networks
with ReLUs.” In: Proceedings of the 36th International Conference on Machine Learning. Ed. by
K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, Sept. 2019, pp. 6668–6676. url: https://proceedings.mlr.press/v97/wang19q.html
(cit. on p. 18).

[167] X. Frazão and L. A. Alexandre. “DropAll: Generalization of Two Convolutional Neural
Network Regularization Methods.” In: Lecture Notes in Computer Science. Springer International
Publishing, 2014, pp. 282–289. doi: 10.1007/978-3-319-11758-4_31. url: https://doi.org
/10.1007/978-3-319-11758-4_31 (cit. on p. 18).

[168] P. Morerio, J. Cavazza, R. Volpi, R. Vidal, and V. Murino. Curriculum Dropout. 2017. doi:
10.48550/ARXIV.1703.06229. url: https://arxiv.org/abs/1703.06229 (cit. on p. 18).

https://proceedings.mlr.press/v202/liu23aq.html
https://proceedings.mlr.press/v202/liu23aq.html
https://doi.org/10.48550/ARXIV.1506.08700
https://arxiv.org/abs/1506.08700
https://doi.org/10.48550/ARXIV.1708.04552
https://arxiv.org/abs/1708.04552
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v28/wan13.html
https://proceedings.mlr.press/v28/wan13.html
https://doi.org/10.1049/cje.2016.01.023
https://doi.org/10.1049/cje.2016.01.023
https://doi.org/10.1049/cje.2016.01.023
https://doi.org/10.1007/978-3-319-54184-6_12
https://doi.org/10.1007/978-3-319-54184-6_12
https://doi.org/10.1007/s11063-019-10147-0
https://doi.org/10.1007/s11063-019-10147-0
https://doi.org/10.1007/s11063-019-10147-0
https://doi.org/10.1007/s42967-020-00085-3
https://doi.org/10.1007/s42967-020-00085-3
https://doi.org/10.1007/s42967-020-00085-3
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1007/978-3-319-70096-0_3
https://doi.org/10.1007/978-3-319-70096-0_3
https://doi.org/10.1007/978-3-319-70096-0_3
https://proceedings.neurips.cc/paper_files/paper/2013/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://proceedings.mlr.press/v97/wang19q.html
https://doi.org/10.1007/978-3-319-11758-4_31
https://doi.org/10.1007/978-3-319-11758-4_31
https://doi.org/10.1007/978-3-319-11758-4_31
https://doi.org/10.48550/ARXIV.1703.06229
https://arxiv.org/abs/1703.06229

bibliography 301

[169] R. Moradi, R. Berangi, and B. Minaei. “SparseMaps: Convolutional networks with sparse
feature maps for tiny image classification.” In: Expert Systems with Applications 119 (Apr. 2019),
pp. 142–154. doi: 10.1016/j.eswa.2018.10.012. url: https://doi.org/10.1016/j.eswa.201
8.10.012 (cit. on p. 18).

[170] K. Goutam, S. Balasubramanian, D. Gera, and R. R. Sarma. “LayerOut: Freezing Layers in Deep
Neural Networks.” In: SN Computer Science 1.5 (Sept. 2020). doi: 10.1007/s42979-020-00312-x.
url: https://doi.org/10.1007/s42979-020-00312-x (cit. on p. 18).

[171] L. N. Smith, E. M. Hand, and T. Doster. “Gradual DropIn of Layers to Train Very Deep Neural
Networks.” In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
June 2016. doi: 10.1109/cvpr.2016.515. url: https://doi.org/10.1109/cvpr.2016.515
(cit. on p. 18).

[172] S. Wang and C. Manning. “Fast dropout training.” In: Proceedings of the 30th International
Conference on Machine Learning. Ed. by S. Dasgupta and D. McAllester. Vol. 28. Proceedings
of Machine Learning Research 2. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 118–126.
url: https://proceedings.mlr.press/v28/wang13a.html (cit. on p. 18).

[173] S. J. Rennie, V. Goel, and S. Thomas. “Annealed dropout training of deep networks.” In: 2014
IEEE Spoken Language Technology Workshop (SLT). IEEE, Dec. 2014. doi: 10.1109/slt.2014.707
8567. url: https://doi.org/10.1109/slt.2014.7078567 (cit. on p. 18).

[174] D. P. Kingma, T. Salimans, and M. Welling. “Variational Dropout and the Local Reparame-
terization Trick.” In: Advances in Neural Information Processing Systems. Ed. by C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc., 2015. url:
https://proceedings.neurips.cc/paper_files/paper/2015/file/bc7316929fe1545bf0b98

d114ee3ecb8-Paper.pdf (cit. on p. 18).

[175] T. Moon, H. Choi, H. Lee, and I. Song. “RNNDROP: A novel dropout for RNNS in ASR.”
In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE, Dec.
2015. doi: 10.1109/asru.2015.7404775. url: https://doi.org/10.1109/asru.2015.7404775
(cit. on p. 18).

[176] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent Neural Network Regularization. 2014. doi:
10.48550/ARXIV.1409.2329. url: https://arxiv.org/abs/1409.2329 (cit. on p. 18).

[177] S. Semeniuta, A. Severyn, and E. Barth. “Recurrent Dropout without Memory Loss.” In:
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, Dec. 2016, pp. 1757–
1766. url: https://aclanthology.org/C16-1165 (cit. on p. 18).

[178] S. Merity, N. S. Keskar, and R. Socher. “Regularizing and Optimizing LSTM Language
Models.” In: International Conference on Learning Representations. 2018. url: https://openrevie
w.net/forum?id=SyyGPP0TZ (cit. on p. 18).

[179] H. Wu and X. Gu. “Towards dropout training for convolutional neural networks.” In: Neural
Networks 71 (Nov. 2015), pp. 1–10. doi: 10.1016/j.neunet.2015.07.007. url: https://doi.or
g/10.1016/j.neunet.2015.07.007 (cit. on p. 18).

[180] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. “Efficient object localization using
Convolutional Networks.” In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2015. doi: 10.1109/cvpr.2015.7298664. url: https://doi.org/10.1109
/cvpr.2015.7298664 (cit. on p. 18).

[181] S. Lee and C. Lee. “Revisiting spatial dropout for regularizing convolutional neural networks.”
In: Multimedia Tools and Applications 79.45-46 (June 2020), pp. 34195–34207. doi: 10.1007/s1104
2-020-09054-7. url: https://doi.org/10.1007/s11042-020-09054-7 (cit. on p. 18).

[182] Z. Li, B. Gong, and T. Yang. “Improved Dropout for Shallow and Deep Learning.” In: Advances
in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett. Vol. 29. Curran Associates, Inc., 2016. url: https://proceedings.neurips
.cc/paper_files/paper/2016/file/7bb060764a818184ebb1cc0d43d382aa-Paper.pdf (cit. on
p. 18).

[183] S. Singh, D. Hoiem, and D. Forsyth. “Swapout: Learning an ensemble of deep architectures.”
In: Advances in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc., 2016. url: https://proceedings.n
eurips.cc/paper_files/paper/2016/file/c51ce410c124a10e0db5e4b97fc2af39-Paper.pdf

(cit. on p. 18).

[184] D. Molchanov, A. Ashukha, and D. Vetrov. “Variational Dropout Sparsifies Deep Neural
Networks.” In: Proceedings of the 34th International Conference on Machine Learning. Ed. by D.
Precup and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017,
pp. 2498–2507. url: https://proceedings.mlr.press/v70/molchanov17a.html (cit. on p. 18).

https://doi.org/10.1016/j.eswa.2018.10.012
https://doi.org/10.1016/j.eswa.2018.10.012
https://doi.org/10.1016/j.eswa.2018.10.012
https://doi.org/10.1007/s42979-020-00312-x
https://doi.org/10.1007/s42979-020-00312-x
https://doi.org/10.1109/cvpr.2016.515
https://doi.org/10.1109/cvpr.2016.515
https://proceedings.mlr.press/v28/wang13a.html
https://doi.org/10.1109/slt.2014.7078567
https://doi.org/10.1109/slt.2014.7078567
https://doi.org/10.1109/slt.2014.7078567
https://proceedings.neurips.cc/paper_files/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
https://doi.org/10.1109/asru.2015.7404775
https://doi.org/10.1109/asru.2015.7404775
https://doi.org/10.48550/ARXIV.1409.2329
https://arxiv.org/abs/1409.2329
https://aclanthology.org/C16-1165
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://doi.org/10.1016/j.neunet.2015.07.007
https://doi.org/10.1016/j.neunet.2015.07.007
https://doi.org/10.1016/j.neunet.2015.07.007
https://doi.org/10.1109/cvpr.2015.7298664
https://doi.org/10.1109/cvpr.2015.7298664
https://doi.org/10.1109/cvpr.2015.7298664
https://doi.org/10.1007/s11042-020-09054-7
https://doi.org/10.1007/s11042-020-09054-7
https://doi.org/10.1007/s11042-020-09054-7
https://proceedings.neurips.cc/paper_files/paper/2016/file/7bb060764a818184ebb1cc0d43d382aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/7bb060764a818184ebb1cc0d43d382aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c51ce410c124a10e0db5e4b97fc2af39-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c51ce410c124a10e0db5e4b97fc2af39-Paper.pdf
https://proceedings.mlr.press/v70/molchanov17a.html

302 bibliography

[185] K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov. “Structured Bayesian Pruning via
Log-Normal Multiplicative Noise.” In: Advances in Neural Information Processing Systems. Ed. by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper_files/p
aper/2017/file/dab49080d80c724aad5ebf158d63df41-Paper.pdf (cit. on p. 18).

[186] A. N. Gomez, I. Zhang, Y. Gal, and G. E. Hinton. “Targeted Dropout.” In: 2018 CDNNRIA
Workshop at the 32nd Conference on Neural Information Processing Systems. 2018. url: https://op
enreview.net/forum?id=HkghWScuoQ (cit. on p. 18).

[187] A. N. Gomez, I. Zhang, S. R. Kamalakara, D. Madaan, K. Swersky, Y. Gal, and G. E. Hinton.
Learning Sparse Networks Using Targeted Dropout. 2019. doi: 10.48550/ARXIV.1905.13678. url:
https://arxiv.org/abs/1905.13678 (cit. on p. 18).

[188] Y. Gal, J. Hron, and A. Kendall. “Concrete Dropout.” In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. url: https://proceedin
gs.neurips.cc/paper_files/paper/2017/file/84ddfb34126fc3a48ee38d7044e87276-Paper

.pdf (cit. on p. 18).

[189] Y. Li and Y. Gal. “Dropout Inference in Bayesian Neural Networks with Alpha-divergences.”
In: Proceedings of the 34th International Conference on Machine Learning. Ed. by D. Precup and
Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017, pp. 2052–2061.
url: https://proceedings.mlr.press/v70/li17a.html (cit. on p. 18).

[190] K. Saito, Y. Ushiku, T. Harada, and K. Saenko. “Adversarial Dropout Regularization.” In:
International Conference on Learning Representations. 2018. url: https://openreview.net/forum
?id=HJIoJWZCZ (cit. on p. 18).

[191] S. Park, J. Park, S.-J. Shin, and I.-C. Moon. “Adversarial Dropout for Supervised and Semi-
Supervised Learning.” In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1 (Apr.
2018). doi: 10.1609/aaai.v32i1.11634. url: https://doi.org/10.1609/aaai.v32i1.11634
(cit. on p. 18).

[192] S. Park, K. Song, M. Ji, W. Lee, and I.-C. Moon. “Adversarial Dropout for Recurrent Neural
Networks.” In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (July 2019),
pp. 4699–4706. doi: 10.1609/aaai.v33i01.33014699. url: https://doi.org/10.1609/aaai.v
33i01.33014699 (cit. on p. 18).

[193] K. Zolna, D. Arpit, D. Suhubdy, and Y. Bengio. “Fraternal Dropout.” In: International Conference
on Learning Representations. 2018. url: https://openreview.net/forum?id=SJyVzQ-C- (cit. on
p. 18).

[194] A. Achille and S. Soatto. “Information Dropout: Learning Optimal Representations Through
Noisy Computation.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40.12

(Dec. 2018), pp. 2897–2905. doi: 10.1109/tpami.2017.2784440. url: https://doi.org/10.11
09/tpami.2017.2784440 (cit. on p. 18).

[195] Y. Yeoh, T. Morie, and H. Tamukoh. “An efficient hardware-oriented dropout algorithm.”
In: Neurocomputing 427 (Feb. 2021), pp. 191–200. doi: 10.1016/j.neucom.2020.11.055. url:
https://doi.org/10.1016/j.neucom.2020.11.055 (cit. on p. 18).

[196] Y. Tang, Z. Liang, H. Shi, P. Fu, and Q. Sun. “Ranked dropout for handwritten digit recogni-
tion.” In: Twelfth International Conference on Graphics and Image Processing (ICGIP 2020). Ed. by
Z. Pan and X. Hei. SPIE, Jan. 2021. doi: 10.1117/12.2589394. url: https://doi.org/10.1117
/12.2589394 (cit. on p. 18).

[197] J. Hu, Y. Chen, L. Zhang, and Z. Yi. “Surrogate dropout: Learning optimal drop rate through
proxy.” In: Knowledge-Based Systems 206 (Oct. 2020), p. 106340. doi: 10.1016/j.knosys.2020.1
06340. url: https://doi.org/10.1016/j.knosys.2020.106340 (cit. on p. 18).

[198] Z. Ma, A. Sattar, J. Zhou, Q. Chen, and K. Su. “Dropout with Tabu Strategy for Regularizing
Deep Neural Networks.” In: The Computer Journal 63.7 (Aug. 2019), pp. 1031–1038. doi: 10.109
3/comjnl/bxz062. url: https://doi.org/10.1093/comjnl/bxz062 (cit. on p. 18).

[199] M. T. Hasan, A. Akter, M. N. Shamael, M. A. E. Hossain, H. M. M. Billah, S. Islam, and S.
Shatabda. “Adaptive Tabu Dropout for Regularization of Deep Neural Networks.” In: Neural
Information Processing. Springer International Publishing, 2023, pp. 355–366. doi: 10.1007/978-
3-031-30105-6_30. url: https://doi.org/10.1007/978-3-031-30105-6_30 (cit. on p. 18).

[200] L. Zeng, H. Zhang, Y. Li, M. Li, and S. Wang. “Supervision dropout: guidance learning in
deep neural network.” In: Multimedia Tools and Applications 82.12 (Dec. 2022), pp. 18831–18850.
doi: 10.1007/s11042-022-14274-0. url: https://doi.org/10.1007/s11042-022-14274-0
(cit. on p. 18).

https://proceedings.neurips.cc/paper_files/paper/2017/file/dab49080d80c724aad5ebf158d63df41-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/dab49080d80c724aad5ebf158d63df41-Paper.pdf
https://openreview.net/forum?id=HkghWScuoQ
https://openreview.net/forum?id=HkghWScuoQ
https://doi.org/10.48550/ARXIV.1905.13678
https://arxiv.org/abs/1905.13678
https://proceedings.neurips.cc/paper_files/paper/2017/file/84ddfb34126fc3a48ee38d7044e87276-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/84ddfb34126fc3a48ee38d7044e87276-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/84ddfb34126fc3a48ee38d7044e87276-Paper.pdf
https://proceedings.mlr.press/v70/li17a.html
https://openreview.net/forum?id=HJIoJWZCZ
https://openreview.net/forum?id=HJIoJWZCZ
https://doi.org/10.1609/aaai.v32i1.11634
https://doi.org/10.1609/aaai.v32i1.11634
https://doi.org/10.1609/aaai.v33i01.33014699
https://doi.org/10.1609/aaai.v33i01.33014699
https://doi.org/10.1609/aaai.v33i01.33014699
https://openreview.net/forum?id=SJyVzQ-C-
https://doi.org/10.1109/tpami.2017.2784440
https://doi.org/10.1109/tpami.2017.2784440
https://doi.org/10.1109/tpami.2017.2784440
https://doi.org/10.1016/j.neucom.2020.11.055
https://doi.org/10.1016/j.neucom.2020.11.055
https://doi.org/10.1117/12.2589394
https://doi.org/10.1117/12.2589394
https://doi.org/10.1117/12.2589394
https://doi.org/10.1016/j.knosys.2020.106340
https://doi.org/10.1016/j.knosys.2020.106340
https://doi.org/10.1016/j.knosys.2020.106340
https://doi.org/10.1093/comjnl/bxz062
https://doi.org/10.1093/comjnl/bxz062
https://doi.org/10.1093/comjnl/bxz062
https://doi.org/10.1007/978-3-031-30105-6_30
https://doi.org/10.1007/978-3-031-30105-6_30
https://doi.org/10.1007/978-3-031-30105-6_30
https://doi.org/10.1007/s11042-022-14274-0
https://doi.org/10.1007/s11042-022-14274-0

bibliography 303

[201] C. Schreckenberger, C. Bartelt, and H. Stuckenschmidt. “iDropout: Leveraging Deep Taylor
Decomposition for the Robustness of Deep Neural Networks.” In: Lecture Notes in Computer
Science. Springer International Publishing, 2019, pp. 113–126. doi: 10.1007/978-3-030-33246-
4_7. url: https://doi.org/10.1007/978-3-030-33246-4_7 (cit. on p. 18).

[202] J. Sicking, M. Akila, M. Pintz, T. Wirtz, S. Wrobel, and A. Fischer. “Wasserstein dropout.” In:
Machine Learning (Sept. 2022). doi: 10.1007/s10994-022-06230-8. url: https://doi.org/10
.1007/s10994-022-06230-8 (cit. on p. 18).

[203] K. Fedyanin, E. Tsymbalov, and M. Panov. “Dropout Strikes Back: Improved Uncertainty
Estimation via Diversity Sampling.” In: Communications in Computer and Information Science.
Springer International Publishing, 2022, pp. 125–137. doi: 10.1007/978-3-031-15168-2_11.
url: https://doi.org/10.1007/978-3-031-15168-2_11 (cit. on p. 18).

[204] H. Nguyen, H. Pham, S. Nguyen, N. V. Linh, and K. Than. “Adaptive infinite dropout for
noisy and sparse data streams.” In: Machine Learning 111.8 (Apr. 2022), pp. 3025–3060. doi:
10.1007/s10994-022-06169-w. url: https://doi.org/10.1007/s10994-022-06169-w (cit. on
p. 18).

[205] H. Salehinejad and S. Valaee. “Ising-dropout: A Regularization Method for Training and
Compression of Deep Neural Networks.” In: ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, May 2019. doi: 10.1109/icassp.201
9.8682914. url: https://doi.org/10.1109/icassp.2019.8682914 (cit. on p. 18).

[206] H. Salehinejad, Z. Wang, and S. Valaee. “Ising Dropout with Node Grouping for Training
and Compression of Deep Neural Networks.” In: 2019 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). IEEE, Nov. 2019. doi: 10.1109/globalsip45357.2019.89691
21. url: https://doi.org/10.1109/globalsip45357.2019.8969121 (cit. on p. 18).

[207] Y. Li, W. Ma, C. Chen, M. Zhang, Y. Liu, S. Ma, and Y. Yang. “A Survey on Dropout Methods
and Experimental Verification in Recommendation.” In: IEEE Transactions on Knowledge and
Data Engineering (2022), pp. 1–20. doi: 10.1109/tkde.2022.3187013. url: https://doi.org/1
0.1109/tkde.2022.3187013 (cit. on p. 18).

[208] Y. Tian and Y. Zhang. “A comprehensive survey on regularization strategies in machine
learning.” In: Information Fusion 80 (Apr. 2022), pp. 146–166. doi: 10.1016/j.inffus.2021.11
.005. url: https://doi.org/10.1016/j.inffus.2021.11.005 (cit. on p. 18).

[209] F. Chollet et al. Keras. 2015. url: https://keras.io (cit. on pp. 18, 20, 25, 225).

[210] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software
available from tensorflow.org. 2015. url: http://tensorflow.org/ (cit. on pp. 18, 225).

[211] A. Amidi and S. Amidi. Convolutional Neural Networks cheatsheet. 2020. url: https://stanfor
d.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks (visited
on 10/13/2023) (cit. on pp. 20, 21).

[212] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. “A Convolutional Neural Network for
Modelling Sentences.” In: Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2014. doi:
10.3115/v1/p14-1062. url: https://doi.org/10.3115/v1/p14-1062 (cit. on p. 20).

[213] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. 2016. doi: 10.48550
/ARXIV.1603.07285. url: https://arxiv.org/abs/1603.07285 (cit. on pp. 20, 22).

[214] C. F. G. dos Santos, T. P. Moreira, D. Colombo, and J. P. Papa. “Does Removing Pooling Layers
from Convolutional Neural Networks Improve Results?” In: SN Computer Science 1.5 (Aug.
2020). doi: 10.1007/s42979-020-00295-9. url: https://doi.org/10.1007/s42979-020-0029
5-9 (cit. on p. 20).

[215] R. Sunkara and T. Luo. “No More Strided Convolutions or Pooling: A New CNN Building
Block for Low-Resolution Images and Small Objects.” In: Machine Learning and Knowledge
Discovery in Databases. Springer Nature Switzerland, 2023, pp. 443–459. doi: 10.1007/978-3-0
31-26409-2_27. url: https://doi.org/10.1007/978-3-031-26409-2_27 (cit. on p. 20).

[216] J. Ngiam, Z. Chen, D. Chia, P. Koh, Q. Le, and A. Ng. “Tiled convolutional neural networks.” In:
Advances in Neural Information Processing Systems. Ed. by J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta. Vol. 23. Curran Associates, Inc., 2010. url: https://proceedings.n
eurips.cc/paper_files/paper/2010/file/01f78be6f7cad02658508fe4616098a9-Paper.pdf

(cit. on p. 21).

[217] M. Sun, G. Zhang, H. Dang, X. Qi, X. Zhou, and Q. Chang. “Accurate Gastric Cancer Segmen-
tation in Digital Pathology Images Using Deformable Convolution and Multi-Scale Embedding
Networks.” In: IEEE Access 7 (2019), pp. 75530–75541. doi: 10.1109/access.2019.2918800.
url: https://doi.org/10.1109/access.2019.2918800 (cit. on p. 21).

https://doi.org/10.1007/978-3-030-33246-4_7
https://doi.org/10.1007/978-3-030-33246-4_7
https://doi.org/10.1007/978-3-030-33246-4_7
https://doi.org/10.1007/s10994-022-06230-8
https://doi.org/10.1007/s10994-022-06230-8
https://doi.org/10.1007/s10994-022-06230-8
https://doi.org/10.1007/978-3-031-15168-2_11
https://doi.org/10.1007/978-3-031-15168-2_11
https://doi.org/10.1007/s10994-022-06169-w
https://doi.org/10.1007/s10994-022-06169-w
https://doi.org/10.1109/icassp.2019.8682914
https://doi.org/10.1109/icassp.2019.8682914
https://doi.org/10.1109/icassp.2019.8682914
https://doi.org/10.1109/globalsip45357.2019.8969121
https://doi.org/10.1109/globalsip45357.2019.8969121
https://doi.org/10.1109/globalsip45357.2019.8969121
https://doi.org/10.1109/tkde.2022.3187013
https://doi.org/10.1109/tkde.2022.3187013
https://doi.org/10.1109/tkde.2022.3187013
https://doi.org/10.1016/j.inffus.2021.11.005
https://doi.org/10.1016/j.inffus.2021.11.005
https://doi.org/10.1016/j.inffus.2021.11.005
https://keras.io
http://tensorflow.org/
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://doi.org/10.3115/v1/p14-1062
https://doi.org/10.3115/v1/p14-1062
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
https://arxiv.org/abs/1603.07285
https://doi.org/10.1007/s42979-020-00295-9
https://doi.org/10.1007/s42979-020-00295-9
https://doi.org/10.1007/s42979-020-00295-9
https://doi.org/10.1007/978-3-031-26409-2_27
https://doi.org/10.1007/978-3-031-26409-2_27
https://doi.org/10.1007/978-3-031-26409-2_27
https://proceedings.neurips.cc/paper_files/paper/2010/file/01f78be6f7cad02658508fe4616098a9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/01f78be6f7cad02658508fe4616098a9-Paper.pdf
https://doi.org/10.1109/access.2019.2918800
https://doi.org/10.1109/access.2019.2918800

304 bibliography

[218] M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian. “A Real-Time Algo-
rithm for Signal Analysis with the Help of the Wavelet Transform.” In: inverse problems and
theoretical imaging. Springer Berlin Heidelberg, 1990, pp. 286–297. doi: 10.1007/978-3-642-75
988-8_28. url: https://doi.org/10.1007/978-3-642-75988-8_28 (cit. on p. 21).

[219] Y. Lin and J. Wu. “A Novel Multichannel Dilated Convolution Neural Network for Human
Activity Recognition.” In: Mathematical Problems in Engineering 2020 (July 2020), pp. 1–10. doi:
10.1155/2020/5426532. url: https://doi.org/10.1155/2020/5426532 (cit. on p. 21).

[220] F. Yu, V. Koltun, and T. Funkhouser. “Dilated Residual Networks.” In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017. doi: 10.1109/cvpr.2017.75.
url: https://doi.org/10.1109/cvpr.2017.75 (cit. on p. 21).

[221] N. Lin, G. Chen, Q. Zhou, and C. Liu. “Dilated Residual Shrinkage Network for SAR Image
Despeckling.” In: 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP).
IEEE, Oct. 2021. doi: 10.1109/icsip52628.2021.9689024. url: https://doi.org/10.1109/ic
sip52628.2021.9689024 (cit. on p. 21).

[222] C. Orhei and R. Vasiu. “An Analysis of Extended and Dilated Filters in Sharpening Algo-
rithms.” In: IEEE Access 11 (2023), pp. 81449–81465. doi: 10.1109/access.2023.3301453. url:
https://doi.org/10.1109/access.2023.3301453 (cit. on p. 21).

[223] T. Wang, M. Sun, and K. Hu. “Dilated Deep Residual Network for Image Denoising.” In: 2017
IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, Nov. 2017.
doi: 10.1109/ictai.2017.00192. url: https://doi.org/10.1109/ictai.2017.00192 (cit. on
p. 21).

[224] N. T. Trung, D.-H. Trinh, N. L. Trung, T. T. T. Quynh, and M.-H. Luu. “Dilated Residual
Convolutional Neural Networks for Low-Dose CT Image Denoising.” In: 2020 IEEE Asia Pacific
Conference on Circuits and Systems (APCCAS). IEEE, Dec. 2020. doi: 10.1109/apccas50809.202
0.9301693. url: https://doi.org/10.1109/apccas50809.2020.9301693 (cit. on p. 21).

[225] M. Gholizadeh-Ansari, J. Alirezaie, and P. Babyn. “Low-dose CT Denoising with Dilated
Residual Network.” In: 2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE, July 2018. doi: 10.1109/embc.2018.8513453. url:
https://doi.org/10.1109/embc.2018.8513453 (cit. on p. 21).

[226] J. Liu, X. Xiong, J. Li, C. Wu, and R. Song. “Dilated Residual Network Based on Dual
Expectation Maximization Attention for Semantic Segmentation of Remote Sensing Images.”
In: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Sept.
2020. doi: 10.1109/igarss39084.2020.9324423. url: https://doi.org/10.1109/igarss3908
4.2020.9324423 (cit. on p. 21).

[227] M. Zhai, X. Xiang, R. Zhang, N. Lv, and A. E. Saddik. “Learning Optical Flow Using Deep
Dilated Residual Networks.” In: IEEE Access 7 (2019), pp. 22566–22578. doi: 10.1109/access
.2019.2898988. url: https://doi.org/10.1109/access.2019.2898988 (cit. on p. 22).

[228] K. Tan, J. Chen, and D. Wang. “Gated Residual Networks with Dilated Convolutions for
Supervised Speech Separation.” In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, Apr. 2018. doi: 10.1109/icassp.2018.8461819. url:
https://doi.org/10.1109/icassp.2018.8461819 (cit. on p. 22).

[229] D. Shafique, M. U. Akram, T. Hassan, T. Anwar, and A. A. Salam. “Dilated Convolution
and Residual Network based Convolutional Neural Network for Recognition of Disastrous
Events.” In: 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE).
IEEE, Nov. 2022. doi: 10.1109/rose56499.2022.9977424. url: https://doi.org/10.1109/ro
se56499.2022.9977424 (cit. on p. 22).

[230] K. Pooja, R. R. Nidamanuri, and D. Mishra. “Multi-Scale Dilated Residual Convolutional Neu-
ral Network for Hyperspectral Image Classification.” In: 2019 10th Workshop on Hyperspectral
Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, Sept. 2019. doi:
10.1109/whispers.2019.8921284. url: https://doi.org/10.1109/whispers.2019.8921284
(cit. on p. 22).

[231] X. Chen, J. Wu, L. Lin, D. Liang, H. Hu, Q. Zhang, Y. Iwamoto, X.-H. Han, Y.-W. Chen, and
R. Tong. “A Dual-Attention Dilated Residual Network for Liver Lesion Classification and
Localization on CT Images.” In: 2019 IEEE International Conference on Image Processing (ICIP).
IEEE, Sept. 2019. doi: 10.1109/icip.2019.8803009. url: https://doi.org/10.1109/icip.20
19.8803009 (cit. on p. 22).

[232] R. Li, Z. Wu, J. Jia, S. Zhao, and H. Meng. “Dilated Residual Network with Multi-head
Self-attention for Speech Emotion Recognition.” In: ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, May 2019. doi: 10.1109/i
cassp.2019.8682154. url: https://doi.org/10.1109/icassp.2019.8682154 (cit. on p. 22).

https://doi.org/10.1007/978-3-642-75988-8_28
https://doi.org/10.1007/978-3-642-75988-8_28
https://doi.org/10.1007/978-3-642-75988-8_28
https://doi.org/10.1155/2020/5426532
https://doi.org/10.1155/2020/5426532
https://doi.org/10.1109/cvpr.2017.75
https://doi.org/10.1109/cvpr.2017.75
https://doi.org/10.1109/icsip52628.2021.9689024
https://doi.org/10.1109/icsip52628.2021.9689024
https://doi.org/10.1109/icsip52628.2021.9689024
https://doi.org/10.1109/access.2023.3301453
https://doi.org/10.1109/access.2023.3301453
https://doi.org/10.1109/ictai.2017.00192
https://doi.org/10.1109/ictai.2017.00192
https://doi.org/10.1109/apccas50809.2020.9301693
https://doi.org/10.1109/apccas50809.2020.9301693
https://doi.org/10.1109/apccas50809.2020.9301693
https://doi.org/10.1109/embc.2018.8513453
https://doi.org/10.1109/embc.2018.8513453
https://doi.org/10.1109/igarss39084.2020.9324423
https://doi.org/10.1109/igarss39084.2020.9324423
https://doi.org/10.1109/igarss39084.2020.9324423
https://doi.org/10.1109/access.2019.2898988
https://doi.org/10.1109/access.2019.2898988
https://doi.org/10.1109/access.2019.2898988
https://doi.org/10.1109/icassp.2018.8461819
https://doi.org/10.1109/icassp.2018.8461819
https://doi.org/10.1109/rose56499.2022.9977424
https://doi.org/10.1109/rose56499.2022.9977424
https://doi.org/10.1109/rose56499.2022.9977424
https://doi.org/10.1109/whispers.2019.8921284
https://doi.org/10.1109/whispers.2019.8921284
https://doi.org/10.1109/icip.2019.8803009
https://doi.org/10.1109/icip.2019.8803009
https://doi.org/10.1109/icip.2019.8803009
https://doi.org/10.1109/icassp.2019.8682154
https://doi.org/10.1109/icassp.2019.8682154
https://doi.org/10.1109/icassp.2019.8682154

bibliography 305

[233] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. “Deconvolutional networks.” In: 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, June 2010.
doi: 10.1109/cvpr.2010.5539957. url: https://doi.org/10.1109/cvpr.2010.5539957
(cit. on p. 22).

[234] M. D. Zeiler, G. W. Taylor, and R. Fergus. “Adaptive deconvolutional networks for mid and
high level feature learning.” In: 2011 International Conference on Computer Vision. IEEE, Nov.
2011. doi: 10.1109/iccv.2011.6126474. url: https://doi.org/10.1109/iccv.2011.6126474
(cit. on p. 22).

[235] F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Matteucci, and A. Courville.
“ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation.” In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. June 2016. url:
http://arxiv.org/pdf/1511.07053 (cit. on p. 22).

[236] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. Generating images with recurrent adversarial
networks. 2016. doi: 10.48550/ARXIV.1602.05110. url: https://arxiv.org/abs/1602.05110
(cit. on p. 22).

[237] X. Chen, Y. Wu, T. Lu, Q. Kong, J. Wang, and Y. Wang. “Remote Sensing Image Super-
Resolution With Residual Split Attention Mechanism.” In: IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 16 (2023), pp. 1–13. doi: 10.1109/jstars.2023.3
287894. url: https://doi.org/10.1109/jstars.2023.3287894 (cit. on p. 22).

[238] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic segmenta-
tion.” In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June
2015. doi: 10.1109/cvpr.2015.7298965. url: https://doi.org/10.1109/cvpr.2015.7298965
(cit. on p. 22).

[239] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Networks.” In:
Computer Vision – ECCV 2014. Springer International Publishing, 2014, pp. 818–833. doi:
10.1007/978-3-319-10590-1_53. url: https://doi.org/10.1007/978-3-319-10590-1_53
(cit. on p. 22).

[240] Y. Choi, H. Jang, and J. Baek. “Chest tomosynthesis deblurring using CNN with deconvolution
layer for vertebrae segmentation.” In: Medical Physics (July 2023). doi: 10.1002/mp.16576. url:
https://doi.org/10.1002/mp.16576 (cit. on p. 22).

[241] R. Nirthika, S. Manivannan, A. Ramanan, and R. Wang. “Pooling in convolutional neural
networks for medical image analysis: a survey and an empirical study.” In: Neural Computing
and Applications 34.7 (Feb. 2022), pp. 5321–5347. doi: 10.1007/s00521-022-06953-8. url:
https://doi.org/10.1007/s00521-022-06953-8 (cit. on pp. 22–24).

[242] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for Simplicity: The All
Convolutional Net. 2014. doi: 10.48550/ARXIV.1412.6806. url: https://arxiv.org/abs/1412
.6806 (cit. on p. 23).

[243] A. Krizhevsky. “Learning multiple layers of features from tiny images.” MA thesis. Department
of Computer Science, University of Toronto, 2009 (cit. on pp. 23, 54, 58, 61, 64–66, 82, 85, 89,
93, 119, 120, 124, 130, 131, 140, 149, 159, 289).

[244] Y.-L. Boureau, J. Ponce, and Y. LeCun. “A Theoretical Analysis of Feature Pooling in Visual
Recognition.” In: Proceedings of the 27th International Conference on International Conference on
Machine Learning. ICML’10. Haifa, Israel: Omnipress, 2010, pp. 111–118. isbn: 9781605589077

(cit. on p. 23).

[245] A. Zafar, M. Aamir, N. M. Nawi, A. Arshad, S. Riaz, A. Alruban, A. K. Dutta, and S. Almotairi.
“A Comparison of Pooling Methods for Convolutional Neural Networks.” In: Applied Sciences
12.17 (Aug. 2022), p. 8643. doi: 10.3390/app12178643. url: https://doi.org/10.3390/app12
178643 (cit. on pp. 23, 24).

[246] C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio. “Learned-Norm Pooling for Deep Feedforward
and Recurrent Neural Networks.” In: Machine Learning and Knowledge Discovery in Databases.
Springer Berlin Heidelberg, 2014, pp. 530–546. doi: 10.1007/978-3-662-44848-9_34. url:
https://doi.org/10.1007/978-3-662-44848-9_34 (cit. on p. 23).

[247] B. Graham. Fractional Max-Pooling. 2014. doi: 10.48550/ARXIV.1412.6071. url: https://arxi
v.org/abs/1412.6071 (cit. on p. 23).

[248] S.-H. Wang, S. C. Satapathy, D. Anderson, S.-X. Chen, and Y.-D. Zhang. “Deep Fractional
Max Pooling Neural Network for COVID-19 Recognition.” In: Frontiers in Public Health 9 (Aug.
2021). doi: 10.3389/fpubh.2021.726144. url: https://doi.org/10.3389/fpubh.2021.726144
(cit. on p. 23).

[249] K. Yue, F. Xu, and J. Yu. “Shallow and wide fractional max-pooling network for image
classification.” In: Neural Computing and Applications 31.2 (July 2017), pp. 409–419. doi: 10.100
7/s00521-017-3073-x. url: https://doi.org/10.1007/s00521-017-3073-x (cit. on p. 23).

https://doi.org/10.1109/cvpr.2010.5539957
https://doi.org/10.1109/cvpr.2010.5539957
https://doi.org/10.1109/iccv.2011.6126474
https://doi.org/10.1109/iccv.2011.6126474
http://arxiv.org/pdf/1511.07053
https://doi.org/10.48550/ARXIV.1602.05110
https://arxiv.org/abs/1602.05110
https://doi.org/10.1109/jstars.2023.3287894
https://doi.org/10.1109/jstars.2023.3287894
https://doi.org/10.1109/jstars.2023.3287894
https://doi.org/10.1109/cvpr.2015.7298965
https://doi.org/10.1109/cvpr.2015.7298965
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1002/mp.16576
https://doi.org/10.1002/mp.16576
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.48550/ARXIV.1412.6806
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://doi.org/10.3390/app12178643
https://doi.org/10.3390/app12178643
https://doi.org/10.3390/app12178643
https://doi.org/10.1007/978-3-662-44848-9_34
https://doi.org/10.1007/978-3-662-44848-9_34
https://doi.org/10.48550/ARXIV.1412.6071
https://arxiv.org/abs/1412.6071
https://arxiv.org/abs/1412.6071
https://doi.org/10.3389/fpubh.2021.726144
https://doi.org/10.3389/fpubh.2021.726144
https://doi.org/10.1007/s00521-017-3073-x
https://doi.org/10.1007/s00521-017-3073-x
https://doi.org/10.1007/s00521-017-3073-x

306 bibliography

[250] Z. Shi, Y. Ye, and Y. Wu. “Rank-based pooling for deep convolutional neural networks.”
In: Neural Networks 83 (Nov. 2016), pp. 21–31. doi: 10.1016/j.neunet.2016.07.003. url:
https://doi.org/10.1016/j.neunet.2016.07.003 (cit. on p. 23).

[251] Q. Xu, M. Zhang, Z. Gu, and G. Pan. “Overfitting remedy by sparsifying regularization
on fully-connected layers of CNNs.” In: Neurocomputing 328 (Feb. 2019), pp. 69–74. doi:
10.1016/j.neucom.2018.03.080. url: https://doi.org/10.1016/j.neucom.2018.03.080
(cit. on p. 23).

[252] Y. Chen, D. Ming, and X. Lv. “Superpixel based land cover classification of VHR satellite image
combining multi-scale CNN and scale parameter estimation.” In: Earth Science Informatics 12.3
(Apr. 2019), pp. 341–363. doi: 10.1007/s12145-019-00383-2. url: https://doi.org/10.1007
/s12145-019-00383-2 (cit. on p. 23).

[253] C.-Y. Lee, P. Gallagher, and Z. Tu. “Generalizing Pooling Functions in CNNs: Mixed, Gated,
and Tree.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40.4 (Apr. 2018),
pp. 863–875. doi: 10.1109/tpami.2017.2703082. url: https://doi.org/10.1109/tpami.2017
.2703082 (cit. on p. 23).

[254] J. Chen, Z. Hua, J. Wang, and S. Cheng. “A Convolutional Neural Network with Dynamic
Correlation Pooling.” In: 2017 13th International Conference on Computational Intelligence and
Security (CIS). IEEE, Dec. 2017. doi: 10.1109/cis.2017.00115. url: https://doi.org/10.110
9/cis.2017.00115 (cit. on p. 24).

[255] A. Jiménez-Sánchez, A. Kazi, S. Albarqouni, S. Kirchhoff, A. Sträter, P. Biberthaler, D. Mateus,
and N. Navab. Weakly-Supervised Localization and Classification of Proximal Femur Fractures. 2018.
doi: 10.48550/ARXIV.1809.10692. url: https://arxiv.org/abs/1809.10692 (cit. on p. 24).

[256] B. Navaneeth and M. Suchetha. “A dynamic pooling based convolutional neural network
approach to detect chronic kidney disease.” In: Biomedical Signal Processing and Control 62 (Sept.
2020), p. 102068. doi: 10.1016/j.bspc.2020.102068. url: https://doi.org/10.1016/j.bspc
.2020.102068 (cit. on p. 24).

[257] F. Bieder, R. Sandkühler, and P. C. Cattin. Comparison of Methods Generalizing Max- and Average-
Pooling. 2021. doi: 10.48550/ARXIV.2103.01746. url: https://arxiv.org/abs/2103.01746
(cit. on p. 24).

[258] A. Stergiou, R. Poppe, and G. Kalliatakis. “Refining activation downsampling with SoftPool.”
In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct. 2021. doi:
10.1109/iccv48922.2021.01019. url: https://doi.org/10.1109/iccv48922.2021.01019
(cit. on p. 24).

[259] Z. Wei, J. Zhang, L. Liu, F. Zhu, F. Shen, Y. Zhou, S. Liu, Y. Sun, and L. Shao. “Building Detail-
Sensitive Semantic Segmentation Networks With Polynomial Pooling.” In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2019. doi: 10.1109/c
vpr.2019.00728. url: https://doi.org/10.1109/cvpr.2019.00728 (cit. on p. 24).

[260] W. Czaja, W. Li, Y. Li, and M. Pekala. Maximal function pooling with applications. 2021. doi:
10.48550/ARXIV.2103.01292. url: https://arxiv.org/abs/2103.01292 (cit. on p. 24).

[261] A. Kumar. Ordinal Pooling Networks: For Preserving Information over Shrinking Feature Maps. 2018.
doi: 10.48550/ARXIV.1804.02702. url: https://arxiv.org/abs/1804.02702 (cit. on p. 24).

[262] T. Otsuzuki, H. Hayashi, Y. Zheng, and S. Uchida. “Regularized Pooling.” In: Artificial Neural
Networks and Machine Learning – ICANN 2020. Springer International Publishing, 2020, pp. 241–
254. doi: 10.1007/978-3-030-61616-8_20. url: https://doi.org/10.1007/978-3-030-6161
6-8_20 (cit. on p. 24).

[263] J. Yang, K. Yu, Y. Gong, and T. Huang. “Linear spatial pyramid matching using sparse coding
for image classification.” In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, June 2009. doi: 10.1109/cvpr.2009.5206757. url: https://doi.org/10.1109/cvpr.20
09.5206757 (cit. on p. 24).

[264] T. Kobayashi. “Global Feature Guided Local Pooling.” In: 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV). IEEE, Oct. 2019. doi: 10.1109/iccv.2019.00346. url:
https://doi.org/10.1109/iccv.2019.00346 (cit. on p. 24).

[265] M. D. Zeiler and R. Fergus. Stochastic Pooling for Regularization of Deep Convolutional Neural
Networks. 2013. doi: 10.48550/ARXIV.1301.3557. url: https://arxiv.org/abs/1301.3557
(cit. on p. 24).

[266] S. Zhai, H. Wu, A. Kumar, Y. Cheng, Y. Lu, Z. Zhang, and R. Feris. “S3Pool: Pooling with
Stochastic Spatial Sampling.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, July 2017. doi: 10.1109/cvpr.2017.426. url: https://doi.org/10.1109/cvpr
.2017.426 (cit. on p. 24).

https://doi.org/10.1016/j.neunet.2016.07.003
https://doi.org/10.1016/j.neunet.2016.07.003
https://doi.org/10.1016/j.neucom.2018.03.080
https://doi.org/10.1016/j.neucom.2018.03.080
https://doi.org/10.1007/s12145-019-00383-2
https://doi.org/10.1007/s12145-019-00383-2
https://doi.org/10.1007/s12145-019-00383-2
https://doi.org/10.1109/tpami.2017.2703082
https://doi.org/10.1109/tpami.2017.2703082
https://doi.org/10.1109/tpami.2017.2703082
https://doi.org/10.1109/cis.2017.00115
https://doi.org/10.1109/cis.2017.00115
https://doi.org/10.1109/cis.2017.00115
https://doi.org/10.48550/ARXIV.1809.10692
https://arxiv.org/abs/1809.10692
https://doi.org/10.1016/j.bspc.2020.102068
https://doi.org/10.1016/j.bspc.2020.102068
https://doi.org/10.1016/j.bspc.2020.102068
https://doi.org/10.48550/ARXIV.2103.01746
https://arxiv.org/abs/2103.01746
https://doi.org/10.1109/iccv48922.2021.01019
https://doi.org/10.1109/iccv48922.2021.01019
https://doi.org/10.1109/cvpr.2019.00728
https://doi.org/10.1109/cvpr.2019.00728
https://doi.org/10.1109/cvpr.2019.00728
https://doi.org/10.48550/ARXIV.2103.01292
https://arxiv.org/abs/2103.01292
https://doi.org/10.48550/ARXIV.1804.02702
https://arxiv.org/abs/1804.02702
https://doi.org/10.1007/978-3-030-61616-8_20
https://doi.org/10.1007/978-3-030-61616-8_20
https://doi.org/10.1007/978-3-030-61616-8_20
https://doi.org/10.1109/cvpr.2009.5206757
https://doi.org/10.1109/cvpr.2009.5206757
https://doi.org/10.1109/cvpr.2009.5206757
https://doi.org/10.1109/iccv.2019.00346
https://doi.org/10.1109/iccv.2019.00346
https://doi.org/10.48550/ARXIV.1301.3557
https://arxiv.org/abs/1301.3557
https://doi.org/10.1109/cvpr.2017.426
https://doi.org/10.1109/cvpr.2017.426
https://doi.org/10.1109/cvpr.2017.426

bibliography 307

[267] K. He, X. Zhang, S. Ren, and J. Sun. “Spatial Pyramid Pooling in Deep Convolutional Networks
for Visual Recognition.” In: Computer Vision – ECCV 2014. Springer International Publishing,
2014, pp. 346–361. doi: 10.1007/978-3-319-10578-9_23. url: https://doi.org/10.1007/97
8-3-319-10578-9_23 (cit. on p. 24).

[268] K. Qi, Q. Guan, C. Yang, F. Peng, S. Shen, and H. Wu. “Concentric Circle Pooling in Deep
Convolutional Networks for Remote Sensing Scene Classification.” In: Remote Sensing 10.6
(June 2018), p. 934. doi: 10.3390/rs10060934. url: https://doi.org/10.3390/rs10060934
(cit. on p. 24).

[269] K. Qi, C. Yang, C. Hu, Q. Guan, W. Tian, S. Shen, and F. Peng. “Polycentric Circle Pooling
in Deep Convolutional Networks for High-Resolution Remote Sensing Image Recognition.”
In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13 (2020),
pp. 632–641. doi: 10.1109/jstars.2020.2968564. url: https://doi.org/10.1109/jstars.20
20.2968564 (cit. on p. 24).

[270] F. Wang, S. Huang, L. Shi, and W. Fan. “The application of series multi-pooling convolutional
neural networks for medical image segmentation.” In: International Journal of Distributed
Sensor Networks 13.12 (Dec. 2017), p. 155014771774889. doi: 10.1177/1550147717748899. url:
https://doi.org/10.1177/1550147717748899 (cit. on p. 24).

[271] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. “Semantic Segmentation with Second-
Order Pooling.” In: Computer Vision – ECCV 2012. Springer Berlin Heidelberg, 2012, pp. 430–
443. doi: 10.1007/978-3-642-33786-4_32. url: https://doi.org/10.1007/978-3-642-3378
6-4_32 (cit. on p. 24).

[272] T.-Y. Lin and S. Maji. Improved Bilinear Pooling with CNNs. 2017. doi: 10.48550/ARXIV.1707.06
772. url: https://arxiv.org/abs/1707.06772 (cit. on p. 24).

[273] E. Li, A. Samat, P. Du, W. Liu, and J. Hu. “Improved Bilinear CNN Model for Remote Sensing
Scene Classification.” In: IEEE Geoscience and Remote Sensing Letters 19 (2022), pp. 1–5. doi:
10.1109/lgrs.2020.3040153. url: https://doi.org/10.1109/lgrs.2020.3040153 (cit. on
p. 24).

[274] F. Saeedan, N. Weber, M. Goesele, and S. Roth. “Detail-Preserving Pooling in Deep Networks.”
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June 2018. doi:
10.1109/cvpr.2018.00949. url: https://doi.org/10.1109/cvpr.2018.00949 (cit. on p. 24).

[275] Z. Gao, L. Wang, and G. Wu. “LIP: Local Importance-Based Pooling.” In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). IEEE, Oct. 2019. doi: 10.1109/iccv.2019.0
0345. url: https://doi.org/10.1109/iccv.2019.00345 (cit. on p. 24).

[276] N. Murray and F. Perronnin. “Generalized Max Pooling.” In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, June 2014. doi: 10.1109/cvpr.2014.317. url: https://do
i.org/10.1109/cvpr.2014.317 (cit. on p. 24).

[277] D. Laptev, N. Savinov, J. M. Buhmann, and M. Pollefeys. “TI-POOLING: Transformation-
Invariant Pooling for Feature Learning in Convolutional Neural Networks.” In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016. doi: 10.1109/c
vpr.2016.38. url: https://doi.org/10.1109/cvpr.2016.38 (cit. on p. 24).

[278] X. Wei, Y. Zhang, Y. Gong, and N. Zheng. “Kernelized Subspace Pooling for Deep Local
Descriptors.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE,
June 2018. doi: 10.1109/cvpr.2018.00200. url: https://doi.org/10.1109/cvpr.2018.00200
(cit. on p. 24).

[279] J. A. C. Vargas, J. Z. Esquivel, and O. Tickoo. “Introducing Region Pooling Learning.” In: Pattern
Recognition. ICPR International Workshops and Challenges. Springer International Publishing,
2021, pp. 714–724. doi: 10.1007/978-3-030-68763-2_54. url: https://doi.org/10.1007/97
8-3-030-68763-2_54 (cit. on p. 24).

[280] Y. Lee, J. Kim, M. Jung, and J. Kim. “Making a More Reliable Classifier via Random Crop
Pooling.” In: Advances in Intelligent Systems and Computing. Springer International Publishing,
July 2016, pp. 309–318. doi: 10.1007/978-3-319-31293-4_25. url: https://doi.org/10.100
7/978-3-319-31293-4_25 (cit. on p. 24).

[281] N. Akhtar and U. Ragavendran. “Interpretation of intelligence in CNN-pooling processes: a
methodological survey.” In: Neural Computing and Applications 32.3 (July 2019), pp. 879–898.
doi: 10.1007/s00521-019-04296-5. url: https://doi.org/10.1007/s00521-019-04296-5
(cit. on p. 24).

[282] Z. Tao, C. XiaoYu, L. HuiLing, Y. XinYu, L. YunCan, and Z. XiaoMin. “Pooling Operations in
Deep Learning: From “Invariable” to “Variable”.” In: BioMed Research International 2022 (June
2022). Ed. by C. Li, pp. 1–17. doi: 10.1155/2022/4067581. url: https://doi.org/10.1155/20
22/4067581 (cit. on p. 24).

https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.3390/rs10060934
https://doi.org/10.3390/rs10060934
https://doi.org/10.1109/jstars.2020.2968564
https://doi.org/10.1109/jstars.2020.2968564
https://doi.org/10.1109/jstars.2020.2968564
https://doi.org/10.1177/1550147717748899
https://doi.org/10.1177/1550147717748899
https://doi.org/10.1007/978-3-642-33786-4_32
https://doi.org/10.1007/978-3-642-33786-4_32
https://doi.org/10.1007/978-3-642-33786-4_32
https://doi.org/10.48550/ARXIV.1707.06772
https://doi.org/10.48550/ARXIV.1707.06772
https://arxiv.org/abs/1707.06772
https://doi.org/10.1109/lgrs.2020.3040153
https://doi.org/10.1109/lgrs.2020.3040153
https://doi.org/10.1109/cvpr.2018.00949
https://doi.org/10.1109/cvpr.2018.00949
https://doi.org/10.1109/iccv.2019.00345
https://doi.org/10.1109/iccv.2019.00345
https://doi.org/10.1109/iccv.2019.00345
https://doi.org/10.1109/cvpr.2014.317
https://doi.org/10.1109/cvpr.2014.317
https://doi.org/10.1109/cvpr.2014.317
https://doi.org/10.1109/cvpr.2016.38
https://doi.org/10.1109/cvpr.2016.38
https://doi.org/10.1109/cvpr.2016.38
https://doi.org/10.1109/cvpr.2018.00200
https://doi.org/10.1109/cvpr.2018.00200
https://doi.org/10.1007/978-3-030-68763-2_54
https://doi.org/10.1007/978-3-030-68763-2_54
https://doi.org/10.1007/978-3-030-68763-2_54
https://doi.org/10.1007/978-3-319-31293-4_25
https://doi.org/10.1007/978-3-319-31293-4_25
https://doi.org/10.1007/978-3-319-31293-4_25
https://doi.org/10.1007/s00521-019-04296-5
https://doi.org/10.1007/s00521-019-04296-5
https://doi.org/10.1155/2022/4067581
https://doi.org/10.1155/2022/4067581
https://doi.org/10.1155/2022/4067581

308 bibliography

[283] Y. Bengio. “Practical Recommendations for Gradient-Based Training of Deep Architectures.”
In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 437–478. doi:
10.1007/978-3-642-35289-8_26. url: https://doi.org/10.1007/978-3-642-35289-8_26
(cit. on p. 24).

[284] O. A. M. López, A. M. López, and J. Crossa. “Fundamentals of Artificial Neural Networks
and Deep Learning.” In: Multivariate Statistical Machine Learning Methods for Genomic Prediction.
Springer International Publishing, 2022, pp. 379–425. doi: 10.1007/978-3-030-89010-0_10.
url: https://doi.org/10.1007/978-3-030-89010-0_10 (cit. on pp. 24, 25).

[285] K. Janocha and W. M. Czarnecki. On Loss Functions for Deep Neural Networks in Classification.
2017. doi: 10.48550/ARXIV.1702.05659. url: https://arxiv.org/abs/1702.05659 (cit. on
p. 25).

[286] R. Abdulkadirov, P. Lyakhov, and N. Nagornov. “Survey of Optimization Algorithms in
Modern Neural Networks.” In: Mathematics 11.11 (May 2023), p. 2466. doi: 10.3390/math1111
2466. url: https://doi.org/10.3390/math11112466 (cit. on pp. 26, 27).

[287] J. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization.” In: J. Mach. Learn. Res. 12 (July 2011), pp. 2121–2159. issn: 1532-4435.
url: http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf (cit. on p. 26).

[288] M. D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 2012. doi: 10.48550/ARXIV.1212
.5701. url: https://arxiv.org/abs/1212.5701 (cit. on p. 26).

[289] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning. 2012. url: http://www
.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (cit. on p. 26).

[290] Y. Dauphin, H. de Vries, and Y. Bengio. “Equilibrated adaptive learning rates for non-convex
optimization.” In: Advances in Neural Information Processing Systems. Ed. by C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc., 2015. url:
https://proceedings.neurips.cc/paper_files/paper/2015/file/430c3626b879b4005d41b

8a46172e0c0-Paper.pdf (cit. on p. 26).

[291] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes.” In: 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings. Ed. by Y. Bengio and Y. LeCun. 2014. url: http://arxiv.org/abs/1312.6114
(cit. on pp. xlv, 26, 181).

[292] T. Dozat. “Incorporating Nesterov Momentum into Adam.” In: Proceedings of the 4th Interna-
tional Conference on Learning Representations. 2016, pp. 1–4. url: https://openreview.net/pdf
?id=OM0jvwB8jIp57ZJjtNEZ (cit. on pp. 26, 190).

[293] H. Xie, J. Ni, J. Zhang, W. Zhang, and J. Huang. “Evading generated-image detectors: A deep
dithering approach.” In: Signal Processing 197 (Aug. 2022), p. 108558. doi: 10.1016/j.sigpro
.2022.108558. url: https://doi.org/10.1016/j.sigpro.2022.108558 (cit. on pp. 26, 181).

[294] A. Défossez, L. Bottou, F. Bach, and N. Usunier. “A Simple Convergence Proof of Adam
and Adagrad.” In: Transactions on Machine Learning Research (2022). issn: 2835-8856. url:
https://openreview.net/forum?id=ZPQhzTSWA7 (cit. on p. 26).

[295] Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. A Novel Convergence Analysis for Algorithms of the
Adam Family and Beyond. 2021. doi: 10.48550/ARXIV.2104.14840. url: https://arxiv.org/ab
s/2104.14840 (cit. on p. 26).

[296] Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. A Novel Convergence Analysis for Algorithms of the Adam
Family. 2021. doi: 10.48550/ARXIV.2112.03459. url: https://arxiv.org/abs/2112.03459
(cit. on p. 26).

[297] S. J. Reddi, S. Kale, and S. Kumar. “On the Convergence of Adam and Beyond.” In: International
Conference on Learning Representations. 2018. url: https://openreview.net/forum?id=ryQu7f-
RZ (cit. on p. 26).

[298] H. Iiduka. “Theoretical analysis of Adam using hyperparameters close to one without Lipschitz
smoothness.” In: Numerical Algorithms (July 2023). doi: 10.1007/s11075-023-01575-0. url:
https://doi.org/10.1007/s11075-023-01575-0 (cit. on p. 26).

[299] Y. Zhang, C. Chen, N. Shi, R. Sun, and Z.-Q. Luo. “Adam Can Converge Without Any
Modification On Update Rules.” In: Advances in Neural Information Processing Systems. Ed. by S.
Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran Associates,
Inc., 2022, pp. 28386–28399. url: https://proceedings.neurips.cc/paper_files/paper/202
2/file/b6260ae5566442da053e5ab5d691067a-Paper-Conference.pdf (cit. on pp. 26, 27).

[300] S. Osowski, P. Bojarczak, and M. Stodolski. “Fast Second Order Learning Algorithm for
Feedforward Multilayer Neural Networks and its Applications.” In: Neural Networks 9.9 (Dec.
1996), pp. 1583–1596. doi: 10.1016/s0893-6080(96)00029-9. url: https://doi.org/10.1016
/s0893-6080(96)00029-9 (cit. on p. 26).

https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-030-89010-0_10
https://doi.org/10.1007/978-3-030-89010-0_10
https://doi.org/10.48550/ARXIV.1702.05659
https://arxiv.org/abs/1702.05659
https://doi.org/10.3390/math11112466
https://doi.org/10.3390/math11112466
https://doi.org/10.3390/math11112466
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://doi.org/10.48550/ARXIV.1212.5701
https://doi.org/10.48550/ARXIV.1212.5701
https://arxiv.org/abs/1212.5701
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/430c3626b879b4005d41b8a46172e0c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/430c3626b879b4005d41b8a46172e0c0-Paper.pdf
http://arxiv.org/abs/1312.6114
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://doi.org/10.1016/j.sigpro.2022.108558
https://doi.org/10.1016/j.sigpro.2022.108558
https://doi.org/10.1016/j.sigpro.2022.108558
https://openreview.net/forum?id=ZPQhzTSWA7
https://doi.org/10.48550/ARXIV.2104.14840
https://arxiv.org/abs/2104.14840
https://arxiv.org/abs/2104.14840
https://doi.org/10.48550/ARXIV.2112.03459
https://arxiv.org/abs/2112.03459
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://doi.org/10.1007/s11075-023-01575-0
https://doi.org/10.1007/s11075-023-01575-0
https://proceedings.neurips.cc/paper_files/paper/2022/file/b6260ae5566442da053e5ab5d691067a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b6260ae5566442da053e5ab5d691067a-Paper-Conference.pdf
https://doi.org/10.1016/s0893-6080(96)00029-9
https://doi.org/10.1016/s0893-6080(96)00029-9
https://doi.org/10.1016/s0893-6080(96)00029-9

bibliography 309

[301] K. Tyagi, C. Rane, B. Irie, and M. Manry. “Multistage Newton’s Approach for Training Radial
Basis Function Neural Networks.” In: SN Computer Science 2.5 (July 2021). doi: 10.1007/s4297
9-021-00757-8. url: https://doi.org/10.1007/s42979-021-00757-8 (cit. on p. 26).

[302] A. Likas and A. Stafylopatis. “Training the random neural network using quasi-Newton
methods.” In: European Journal of Operational Research 126.2 (Oct. 2000), pp. 331–339. doi:
10.1016/s0377-2217(99)00482-8. url: https://doi.org/10.1016/s0377-2217(99)00482-8
(cit. on p. 26).

[303] M. Chen. “Stochastic Gradient Descent Combines Second-Order Information for Training
Neural Network.” In: Proceedings of the 2018 1st International Conference on Mathematics and
Statistics. ACM, July 2018. doi: 10.1145/3274250.3274262. url: https://doi.org/10.1145/3
274250.3274262 (cit. on p. 26).

[304] S. Sun, Z. Cao, H. Zhu, and J. Zhao. A Survey of Optimization Methods from a Machine Learning
Perspective. 2019. doi: 10.48550/ARXIV.1906.06821. url: https://arxiv.org/abs/1906.06821
(cit. on pp. 26, 27).

[305] H. H. Tan and K. H. Lim. “Review of second-order optimization techniques in artificial neural
networks backpropagation.” In: IOP Conference Series: Materials Science and Engineering 495

(June 2019), p. 012003. doi: 10.1088/1757-899x/495/1/012003. url: https://doi.org/10.10
88/1757-899x/495/1/012003 (cit. on pp. 26, 27).

[306] M. Reyad, A. M. Sarhan, and M. Arafa. “A modified Adam algorithm for deep neural network
optimization.” In: Neural Computing and Applications 35.23 (Apr. 2023), pp. 17095–17112. doi:
10.1007/s00521-023-08568-z. url: https://doi.org/10.1007/s00521-023-08568-z (cit. on
p. 26).

[307] G. Vrbančič and V. Podgorelec. “Efficient ensemble for image-based identification of Pneumo-
nia utilizing deep CNN and SGD with warm restarts.” In: Expert Systems with Applications 187

(Jan. 2022), p. 115834. doi: 10.1016/j.eswa.2021.115834. url: https://doi.org/10.1016/j
.eswa.2021.115834 (cit. on p. 26).

[308] Z. Yu, G. Sun, and J. Lv. “A fractional-order momentum optimization approach of deep
neural networks.” In: Neural Computing and Applications 34.9 (Jan. 2022), pp. 7091–7111. doi:
10.1007/s00521-021-06765-2. url: https://doi.org/10.1007/s00521-021-06765-2 (cit. on
p. 26).

[309] B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, G. Kim, Y. Uh, and J.-W. Ha. “AdamP: Slowing
Down the Slowdown for Momentum Optimizers on Scale-invariant Weights.” In: International
Conference on Learning Representations. 2021. url: https://openreview.net/forum?id=Iz3zU3
M316D (cit. on p. 26).

[310] J. Ma and D. Yarats. “Quasi-hyperbolic momentum and Adam for deep learning.” In: Interna-
tional Conference on Learning Representations. 2019. url: https://openreview.net/forum?id=S1
fUpoR5FQ (cit. on p. 26).

[311] J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. Closing the Generalization Gap of Adaptive
Gradient Methods in Training Deep Neural Networks. 2018. doi: 10.48550/ARXIV.1806.06763.
url: https://arxiv.org/abs/1806.06763 (cit. on p. 26).

[312] J. Chen and Q. Gu. Padam: Closing the Generalization Gap of Adaptive Gradient Methods in Training
Deep Neural Networks. 2019. url: https://openreview.net/forum?id=BJll6o09tm (cit. on
p. 26).

[313] J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. Training Deep Neural Networks with
Partially Adaptive Momentum. 2020. url: https://openreview.net/forum?id=HklWsREKwr
(cit. on p. 26).

[314] M. Liu, W. Zhang, F. Orabona, and T. Yang. Adam+: A Stochastic Method with Adaptive Variance
Reduction. 2020. doi: 10.48550/ARXIV.2011.11985. url: https://arxiv.org/abs/2011.11985
(cit. on p. 26).

[315] F. Huang, J. Li, and S. Gao. BiAdam: Fast Adaptive Bilevel Optimization Methods. 2021. doi:
10.48550/ARXIV.2106.11396. url: https://arxiv.org/abs/2106.11396 (cit. on p. 26).

[316] F. Huang, X. Wu, and Z. Hu. AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for
Minimax Optimization. 2021. doi: 10.48550/ARXIV.2106.16101. url: https://arxiv.org/abs
/2106.16101 (cit. on p. 26).

[317] L. Luo, Y. Xiong, and Y. Liu. “Adaptive Gradient Methods with Dynamic Bound of Learning
Rate.” In: International Conference on Learning Representations. 2019. url: https://openreview
.net/forum?id=Bkg3g2R9FX (cit. on p. 26).

[318] J. Liu, J. Kong, D. Xu, M. Qi, and Y. Lu. “Convergence analysis of AdaBound with relaxed
bound functions for non-convex optimization.” In: Neural Networks 145 (Jan. 2022), pp. 300–307.
doi: 10.1016/j.neunet.2021.10.026. url: https://doi.org/10.1016/j.neunet.2021.10.02
6 (cit. on p. 26).

https://doi.org/10.1007/s42979-021-00757-8
https://doi.org/10.1007/s42979-021-00757-8
https://doi.org/10.1007/s42979-021-00757-8
https://doi.org/10.1016/s0377-2217(99)00482-8
https://doi.org/10.1016/s0377-2217(99)00482-8
https://doi.org/10.1145/3274250.3274262
https://doi.org/10.1145/3274250.3274262
https://doi.org/10.1145/3274250.3274262
https://doi.org/10.48550/ARXIV.1906.06821
https://arxiv.org/abs/1906.06821
https://doi.org/10.1088/1757-899x/495/1/012003
https://doi.org/10.1088/1757-899x/495/1/012003
https://doi.org/10.1088/1757-899x/495/1/012003
https://doi.org/10.1007/s00521-023-08568-z
https://doi.org/10.1007/s00521-023-08568-z
https://doi.org/10.1016/j.eswa.2021.115834
https://doi.org/10.1016/j.eswa.2021.115834
https://doi.org/10.1016/j.eswa.2021.115834
https://doi.org/10.1007/s00521-021-06765-2
https://doi.org/10.1007/s00521-021-06765-2
https://openreview.net/forum?id=Iz3zU3M316D
https://openreview.net/forum?id=Iz3zU3M316D
https://openreview.net/forum?id=S1fUpoR5FQ
https://openreview.net/forum?id=S1fUpoR5FQ
https://doi.org/10.48550/ARXIV.1806.06763
https://arxiv.org/abs/1806.06763
https://openreview.net/forum?id=BJll6o09tm
https://openreview.net/forum?id=HklWsREKwr
https://doi.org/10.48550/ARXIV.2011.11985
https://arxiv.org/abs/2011.11985
https://doi.org/10.48550/ARXIV.2106.11396
https://arxiv.org/abs/2106.11396
https://doi.org/10.48550/ARXIV.2106.16101
https://arxiv.org/abs/2106.16101
https://arxiv.org/abs/2106.16101
https://openreview.net/forum?id=Bkg3g2R9FX
https://openreview.net/forum?id=Bkg3g2R9FX
https://doi.org/10.1016/j.neunet.2021.10.026
https://doi.org/10.1016/j.neunet.2021.10.026
https://doi.org/10.1016/j.neunet.2021.10.026

310 bibliography

[319] Y. Liu and D. Li. “AdaXod: a new adaptive and momental bound algorithm for training deep
neural networks.” In: The Journal of Supercomputing 79.15 (May 2023), pp. 17691–17715. doi:
10.1007/s11227-023-05338-5. url: https://doi.org/10.1007/s11227-023-05338-5 (cit. on
p. 26).

[320] J. Ding, X. Ren, R. Luo, and X. Sun. An Adaptive and Momental Bound Method for Stochastic
Learning. 2019. doi: 10.48550/ARXIV.1910.12249. url: https://arxiv.org/abs/1910.12249
(cit. on p. 26).

[321] K. Verma and A. Maiti. “WSAGrad: a novel adaptive gradient based method.” In: Applied
Intelligence 53.11 (Oct. 2022), pp. 14383–14399. doi: 10.1007/s10489- 022- 04205- 9. url:
https://doi.org/10.1007/s10489-022-04205-9 (cit. on p. 26).

[322] G. Ioannou, T. Tagaris, and A. Stafylopatis. “AdaLip: An Adaptive Learning Rate Method per
Layer for Stochastic Optimization.” In: Neural Processing Letters 55.5 (Jan. 2023), pp. 6311–6338.
doi: 10.1007/s11063-022-11140-w. url: https://doi.org/10.1007/s11063-022-11140-w
(cit. on p. 26).

[323] J. Zhuang, T. Tang, Y. Ding, S. C. Tatikonda, N. Dvornek, X. Papademetris, and J. Duncan.
“AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients.” In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 18795–18806. url: https://proceedin
gs.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper

.pdf (cit. on p. 26).

[324] X. Liao, S. Sahran, A. Abdullah, and S. A. Shukor. “AdaCB: An Adaptive Gradient Method
with Convergence Range Bound of Learning Rate.” In: Applied Sciences 12.18 (Sept. 2022),
p. 9389. doi: 10.3390/app12189389. url: https://doi.org/10.3390/app12189389 (cit. on
p. 26).

[325] F. Huang, J. Li, and H. Huang. “SUPER-ADAM: Faster and Universal Framework of Adaptive
Gradients.” In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato, A.
Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran Associates, Inc., 2021,
pp. 9074–9085. url: https://proceedings.neurips.cc/paper_files/paper/2021/file/4be5
a36cbaca8ab9d2066debfe4e65c1-Paper.pdf (cit. on p. 27).

[326] J. D. Camacho, C. Villaseñor, A. Y. Alanis, C. Lopez-Franco, and N. Arana-Daniel. “KAdam:
Using the Kalman Filter to Improve Adam algorithm.” In: Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications. Springer International Publishing, 2019, pp. 429–438.
doi: 10.1007/978-3-030-33904-3_40. url: https://doi.org/10.1007/978-3-030-33904-3
_40 (cit. on p. 27).

[327] J. Camacho, C. Villaseñor, A. Y. Alanis, C. Lopez-Franco, and N. Arana-Daniel. “sKAdam: An
improved scalar extension of KAdam for function optimization.” In: Intelligent Data Analysis
24 (Dec. 2020), pp. 87–104. doi: 10.3233/ida-200010. url: https://doi.org/10.3233/ida-20
0010 (cit. on p. 27).

[328] U. M. Khaire and R. Dhanalakshmi. “High-dimensional microarray dataset classification
using an improved adam optimizer (iAdam).” In: Journal of Ambient Intelligence and Humanized
Computing 11.11 (Mar. 2020), pp. 5187–5204. doi: 10.1007/s12652-020-01832-3. url: https:
//doi.org/10.1007/s12652-020-01832-3 (cit. on pp. 27, 48).

[329] S. Bhakta, U. Nandi, T. Si, S. K. Ghosal, C. Changdar, and R. K. Pal. “DiffMoment: an adaptive
optimization technique for convolutional neural network.” In: Applied Intelligence 53.13 (Dec.
2022), pp. 16844–16858. doi: 10.1007/s10489-022-04382-7. url: https://doi.org/10.1007
/s10489-022-04382-7 (cit. on p. 27).

[330] Y. Gui, D. Li, and R. Fang. “A fast adaptive algorithm for training deep neural networks.” In:
Applied Intelligence 53.4 (June 2022), pp. 4099–4108. doi: 10.1007/s10489-022-03629-7. url:
https://doi.org/10.1007/s10489-022-03629-7 (cit. on p. 27).

[331] E. F. Jose, F. Enembreck, and J. P. Barddal. “ADADRIFT: An Adaptive Learning Technique for
Long-history Stream-based Recommender Systems.” In: 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE, Oct. 2020. doi: 10.1109/smc42975.2020.9282922.
url: https://doi.org/10.1109/smc42975.2020.9282922 (cit. on p. 27).

[332] C. Gulcehre, M. Moczulski, and Y. Bengio. ADASECANT: Robust Adaptive Secant Method for
Stochastic Gradient. 2014. doi: 10.48550/ARXIV.1412.7419. url: https://arxiv.org/abs/1412
.7419 (cit. on p. 27).

[333] C. Gulcehre, J. Sotelo, M. Moczulski, and Y. Bengio. “A robust adaptive stochastic gradient
method for deep learning.” In: 2017 International Joint Conference on Neural Networks (IJCNN).
IEEE, May 2017. doi: 10.1109/ijcnn.2017.7965845. url: https://doi.org/10.1109/ijcnn
.2017.7965845 (cit. on p. 27).

https://doi.org/10.1007/s11227-023-05338-5
https://doi.org/10.1007/s11227-023-05338-5
https://doi.org/10.48550/ARXIV.1910.12249
https://arxiv.org/abs/1910.12249
https://doi.org/10.1007/s10489-022-04205-9
https://doi.org/10.1007/s10489-022-04205-9
https://doi.org/10.1007/s11063-022-11140-w
https://doi.org/10.1007/s11063-022-11140-w
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://doi.org/10.3390/app12189389
https://doi.org/10.3390/app12189389
https://proceedings.neurips.cc/paper_files/paper/2021/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://doi.org/10.1007/978-3-030-33904-3_40
https://doi.org/10.1007/978-3-030-33904-3_40
https://doi.org/10.1007/978-3-030-33904-3_40
https://doi.org/10.3233/ida-200010
https://doi.org/10.3233/ida-200010
https://doi.org/10.3233/ida-200010
https://doi.org/10.1007/s12652-020-01832-3
https://doi.org/10.1007/s12652-020-01832-3
https://doi.org/10.1007/s12652-020-01832-3
https://doi.org/10.1007/s10489-022-04382-7
https://doi.org/10.1007/s10489-022-04382-7
https://doi.org/10.1007/s10489-022-04382-7
https://doi.org/10.1007/s10489-022-03629-7
https://doi.org/10.1007/s10489-022-03629-7
https://doi.org/10.1109/smc42975.2020.9282922
https://doi.org/10.1109/smc42975.2020.9282922
https://doi.org/10.48550/ARXIV.1412.7419
https://arxiv.org/abs/1412.7419
https://arxiv.org/abs/1412.7419
https://doi.org/10.1109/ijcnn.2017.7965845
https://doi.org/10.1109/ijcnn.2017.7965845
https://doi.org/10.1109/ijcnn.2017.7965845

bibliography 311

[334] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney. “AdaHessian: An
Adaptive Second Order Optimizer for Machine Learning.” In: Proceedings of the AAAI Conference
on Artificial Intelligence 35.12 (May 2021), pp. 10665–10673. issn: 2159-5399. doi: 10.1609/aaai
.v35i12.17275. url: http://dx.doi.org/10.1609/aaai.v35i12.17275 (cit. on p. 27).

[335] R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S. Elmougy. “Improving the efficiency of
RMSProp optimizer by utilizing Nestrove in deep learning.” In: Scientific Reports 13.1 (May
2023). doi: 10.1038/s41598-023-35663-x. url: https://doi.org/10.1038/s41598-023-3566
3-x (cit. on p. 27).

[336] D.-S. Shim and J. Shim. “A Modified Stochastic Gradient Descent Optimization Algorithm
With Random Learning Rate for Machine Learning and Deep Learning.” In: International
Journal of Control, Automation and Systems (Aug. 2023). doi: 10.1007/s12555-022-0947-1. url:
https://doi.org/10.1007/s12555-022-0947-1 (cit. on p. 27).

[337] R. M. Schmidt, F. Schneider, and P. Hennig. “Descending through a Crowded Valley - Bench-
marking Deep Learning Optimizers.” In: Proceedings of the 38th International Conference on
Machine Learning. Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning
Research. PMLR, 18–24 Jul 2021, pp. 9367–9376. url: https://proceedings.mlr.press/v139
/schmidt21a.html (cit. on p. 27).

[338] X. Li, G. Wu, L. Yang, W. Wang, R. Song, and J. Yang. A Survey of Historical Learning: Learning
Models with Learning History. 2023. doi: 10.48550/ARXIV.2303.12992. url: https://arxiv.or
g/abs/2303.12992 (cit. on p. 27).

[339] G. Habib and S. Qureshi. “Optimization and acceleration of convolutional neural networks: A
survey.” In: Journal of King Saud University - Computer and Information Sciences 34.7 (July 2022),
pp. 4244–4268. doi: 10.1016/j.jksuci.2020.10.004. url: https://doi.org/10.1016/j.jksu
ci.2020.10.004 (cit. on p. 27).

[340] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl. On Empirical Comparisons
of Optimizers for Deep Learning. 2019. doi: 10.48550/ARXIV.1910.05446. url: https://arxiv.o
rg/abs/1910.05446 (cit. on p. 27).

[341] E. Hassan, M. Y. Shams, N. A. Hikal, and S. Elmougy. “The effect of choosing optimizer
algorithms to improve computer vision tasks: a comparative study.” In: Multimedia Tools and
Applications 82.11 (Sept. 2022), pp. 16591–16633. doi: 10.1007/s11042-022-13820-0. url:
https://doi.org/10.1007/s11042-022-13820-0 (cit. on p. 27).

[342] A. Kalra, S. Kumar, and S. S. Walia. “ANN training: A survey of classical & soft computing
approaches.” In: International Journal of Control Theory and Applications 9.34 (2016). Cited by: 2,
p. 83 104. url: https://serialsjournals.com/abstract/30973_67.pdf (cit. on p. 27).

[343] M. Magris and A. Iosifidis. “Bayesian learning for neural networks: an algorithmic survey.” In:
Artificial Intelligence Review 56.10 (Mar. 2023), pp. 11773–11823. doi: 10.1007/s10462-023-104
43-1. url: https://doi.org/10.1007/s10462-023-10443-1 (cit. on p. 27).

[344] S. Ruder. An overview of gradient descent optimization algorithms. 2016. doi: 10.48550/ARXIV.160
9.04747. url: https://arxiv.org/abs/1609.04747 (cit. on p. 27).

[345] E. M. Dogo, O. J. Afolabi, and B. Twala. “On the Relative Impact of Optimizers on Convolu-
tional Neural Networks with Varying Depth and Width for Image Classification.” In: Applied
Sciences 12.23 (Nov. 2022), p. 11976. doi: 10.3390/app122311976. url: https://doi.org/10.3
390/app122311976 (cit. on p. 27).

[346] A. L. Tarca, R. Romero, and S. Draghici. “Analysis of microarray experiments of gene expres-
sion profiling.” In: American Journal of Obstetrics and Gynecology 195.2 (Aug. 2006), pp. 373–388.
doi: 10.1016/j.ajog.2006.07.001. url: https://doi.org/10.1016/j.ajog.2006.07.001
(cit. on pp. 29, 36).

[347] R. Bumgarner. “Overview of DNA Microarrays: Types, Applications, and Their Future.” In:
Current Protocols in Molecular Biology 101.1 (Jan. 2013). doi: 10.1002/0471142727.mb2201s101.
url: https://doi.org/10.1002/0471142727.mb2201s101 (cit. on pp. 29, 31–33).

[348] C. Walsh, P. Hu, J. Batt, and C. Santos. “Microarray Meta-Analysis and Cross-Platform
Normalization: Integrative Genomics for Robust Biomarker Discovery.” In: Microarrays 4.3
(Aug. 2015), pp. 389–406. doi: 10.3390/microarrays4030389. url: https://doi.org/10.3390
/microarrays4030389 (cit. on pp. 29, 36).

[349] A. A. Ewis, Z. Zhelev, R. Bakalova, S. Fukuoka, Y. Shinohara, M. Ishikawa, and Y. Baba. “A
history of microarrays in biomedicine.” In: Expert Review of Molecular Diagnostics 5.3 (May
2005), pp. 315–328. doi: 10.1586/14737159.5.3.315. url: https://doi.org/10.1586/147371
59.5.3.315 (cit. on p. 29).

[350] A. J. V. Asselt and E. A. Ehli. “Whole-Genome Genotyping Using DNA Microarrays for
Population Genetics.” In: Methods in Molecular Biology. Springer US, 2022, pp. 269–287. doi:
10.1007/978-1-0716-1920-9_16. url: https://doi.org/10.1007/978-1-0716-1920-9_16
(cit. on p. 29).

https://doi.org/10.1609/aaai.v35i12.17275
https://doi.org/10.1609/aaai.v35i12.17275
http://dx.doi.org/10.1609/aaai.v35i12.17275
https://doi.org/10.1038/s41598-023-35663-x
https://doi.org/10.1038/s41598-023-35663-x
https://doi.org/10.1038/s41598-023-35663-x
https://doi.org/10.1007/s12555-022-0947-1
https://doi.org/10.1007/s12555-022-0947-1
https://proceedings.mlr.press/v139/schmidt21a.html
https://proceedings.mlr.press/v139/schmidt21a.html
https://doi.org/10.48550/ARXIV.2303.12992
https://arxiv.org/abs/2303.12992
https://arxiv.org/abs/2303.12992
https://doi.org/10.1016/j.jksuci.2020.10.004
https://doi.org/10.1016/j.jksuci.2020.10.004
https://doi.org/10.1016/j.jksuci.2020.10.004
https://doi.org/10.48550/ARXIV.1910.05446
https://arxiv.org/abs/1910.05446
https://arxiv.org/abs/1910.05446
https://doi.org/10.1007/s11042-022-13820-0
https://doi.org/10.1007/s11042-022-13820-0
https://serialsjournals.com/abstract/30973_67.pdf
https://doi.org/10.1007/s10462-023-10443-1
https://doi.org/10.1007/s10462-023-10443-1
https://doi.org/10.1007/s10462-023-10443-1
https://doi.org/10.48550/ARXIV.1609.04747
https://doi.org/10.48550/ARXIV.1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.3390/app122311976
https://doi.org/10.3390/app122311976
https://doi.org/10.3390/app122311976
https://doi.org/10.1016/j.ajog.2006.07.001
https://doi.org/10.1016/j.ajog.2006.07.001
https://doi.org/10.1002/0471142727.mb2201s101
https://doi.org/10.1002/0471142727.mb2201s101
https://doi.org/10.3390/microarrays4030389
https://doi.org/10.3390/microarrays4030389
https://doi.org/10.3390/microarrays4030389
https://doi.org/10.1586/14737159.5.3.315
https://doi.org/10.1586/14737159.5.3.315
https://doi.org/10.1586/14737159.5.3.315
https://doi.org/10.1007/978-1-0716-1920-9_16
https://doi.org/10.1007/978-1-0716-1920-9_16

312 bibliography

[351] H. M. U. Aslam, H. Riaz, N. Killiny, X.-G. Zhou, L. S. Thomashow, N. T. Peters, and A. K.
Chanda. “Microarray Technology for Detection of Plant Diseases.” In: Trends in Plant Disease
Assessment. Springer Nature Singapore, 2022, pp. 203–223. doi: 10.1007/978-981-19-5896-0
_11. url: https://doi.org/10.1007/978-981-19-5896-0_11 (cit. on p. 29).

[352] L. Anastasiia and B. Ilia. “Prospects of DNA microarray application in management of chronic
obstructive pulmonary disease: A systematic review.” In: Frigid Zone Medicine 3.1 (Jan. 2023),
pp. 5–12. doi: 10.2478/fzm-2023-0002. url: https://doi.org/10.2478/fzm-2023-0002
(cit. on p. 29).

[353] E. Schaudy, J. Lietard, and M. M. Somoza. “Enzymatic Synthesis of High-Density RNA
Microarrays.” In: Current Protocols 3.2 (Feb. 2023). doi: 10.1002/cpz1.667. url: https://doi
.org/10.1002/cpz1.667 (cit. on p. 29).

[354] A. Y. Higashi, B. J. Aronow, and G. R. Dressler. “Expression Profiling of Fibroblasts in Chronic
and Acute Disease Models Reveals Novel Pathways in Kidney Fibrosis.” In: Journal of the
American Society of Nephrology 30.1 (Dec. 2018), pp. 80–94. doi: 10.1681/asn.2018060644. url:
https://doi.org/10.1681/asn.2018060644 (cit. on p. 29).

[355] M. Hao, B. Barlogie, G. Tricot, L. Liu, L. Qiu, J. D. Shaughnessy, and F. Zhan. “Gene Expres-
sion Profiling Reveals Aberrant T-cell Marker Expression on Tumor Cells of Waldenström’s
Macroglobulinemia.” In: Clinical Cancer Research 25.1 (Jan. 2019), pp. 201–209. doi: 10.1158
/1078-0432.ccr-18-1435. url: https://doi.org/10.1158/1078-0432.ccr-18-1435 (cit. on
p. 29).

[356] D. Edsgärd et al. “Identification of spatial expression trends in single-cell gene expression
data.” In: Nature Methods 15.5 (Mar. 2018), pp. 339–342. doi: 10.1038/nmeth.4634. url:
https://doi.org/10.1038/nmeth.4634 (cit. on p. 29).

[357] J. B. Nielsen et al. “Biobank-driven genomic discovery yields new insight into atrial fibrillation
biology.” In: Nature Genetics 50.9 (July 2018), pp. 1234–1239. doi: 10.1038/s41588-018-0171-3.
url: https://doi.org/10.1038/s41588-018-0171-3 (cit. on p. 29).

[358] N. H. Lents. Current and Future Uses of DNA Microarrays in Forensic Science. Nov. 2011. doi:
10.1002/9781118062241.ch10. url: https://doi.org/10.1002/9781118062241.ch10 (cit. on
p. 29).

[359] H. Okamura, H. Yamano, T. Tsuda, J. Morihiro, K. Hirayama, and H. Nagano. “Development
of a clinical microarray system for genetic analysis screening.” In: Practical Laboratory Medicine
33 (Jan. 2023), e00306. doi: 10.1016/j.plabm.2022.e00306. url: https://doi.org/10.1016/j
.plabm.2022.e00306 (cit. on pp. 29, 33).

[360] N. L. of Medicine. What is a gene? Mar. 2021. url: https://medlineplus.gov/genetics/under
standing/basics/gene/ (visited on 10/15/2023) (cit. on p. 29).

[361] D. P. Snustad and M. J. Simmons. Principles of genetics. en. 7th ed. Nashville, TN: John Wiley &
Sons, Nov. 2015 (cit. on pp. 29, 30).

[362] N. L. of Medicine. What is DNA? Jan. 2021. url: https://medlineplus.gov/genetics/unders
tanding/basics/dna/ (visited on 10/15/2023) (cit. on p. 29).

[363] W. N. Hunter, T. Brown, N. N. Anand, and O. Kennard. “Structure of an adenine·cytosine
base pair in DNA and its implications for mismatch repair.” In: Nature 320.6062 (Apr. 1986),
pp. 552–555. doi: 10.1038/320552a0. url: https://doi.org/10.1038/320552a0 (cit. on p. 30).

[364] T. K. Karakach, R. M. Flight, S. E. Douglas, and P. D. Wentzell. “An introduction to DNA
microarrays for gene expression analysis.” In: Chemometrics and Intelligent Laboratory Systems
104.1 (Nov. 2010), pp. 28–52. doi: 10.1016/j.chemolab.2010.04.003. url: https://doi.org
/10.1016/j.chemolab.2010.04.003 (cit. on pp. 30, 33, 36).

[365] F. Crick. “On Protein Synthesis.” In: The Symposia of the Society for Experimental Biology 12 (1958).
url: https://profiles.nlm.nih.gov/101584582X404 (cit. on p. 30).

[366] F. Crick. “Central Dogma of Molecular Biology.” In: Nature 227.5258 (Aug. 1970), pp. 561–563.
doi: 10.1038/227561a0. url: https://doi.org/10.1038/227561a0 (cit. on p. 30).

[367] R. Olby. “Francis Crick, DNA, and the Central Dogma.” In: Daedalus 99.4 (1970), pp. 938–987.
issn: 00115266. url: http://www.jstor.org/stable/20023978 (visited on 10/15/2023) (cit. on
p. 30).

[368] P. Šustar. “Crick’s notion of genetic information and the ‘central dogma’ of molecular biology.”
In: The British Journal for the Philosophy of Science 58.1 (Mar. 2007), pp. 13–24. doi: 10.1093/bjp
s/axl018. url: https://doi.org/10.1093/bjps/axl018 (cit. on p. 30).

[369] M. Cobb. “60 years ago, Francis Crick changed the logic of biology.” In: PLOS Biology 15.9
(Sept. 2017), e2003243. doi: 10.1371/journal.pbio.2003243. url: https://doi.org/10.1371
/journal.pbio.2003243 (cit. on p. 30).

https://doi.org/10.1007/978-981-19-5896-0_11
https://doi.org/10.1007/978-981-19-5896-0_11
https://doi.org/10.1007/978-981-19-5896-0_11
https://doi.org/10.2478/fzm-2023-0002
https://doi.org/10.2478/fzm-2023-0002
https://doi.org/10.1002/cpz1.667
https://doi.org/10.1002/cpz1.667
https://doi.org/10.1002/cpz1.667
https://doi.org/10.1681/asn.2018060644
https://doi.org/10.1681/asn.2018060644
https://doi.org/10.1158/1078-0432.ccr-18-1435
https://doi.org/10.1158/1078-0432.ccr-18-1435
https://doi.org/10.1158/1078-0432.ccr-18-1435
https://doi.org/10.1038/nmeth.4634
https://doi.org/10.1038/nmeth.4634
https://doi.org/10.1038/s41588-018-0171-3
https://doi.org/10.1038/s41588-018-0171-3
https://doi.org/10.1002/9781118062241.ch10
https://doi.org/10.1002/9781118062241.ch10
https://doi.org/10.1016/j.plabm.2022.e00306
https://doi.org/10.1016/j.plabm.2022.e00306
https://doi.org/10.1016/j.plabm.2022.e00306
https://medlineplus.gov/genetics/understanding/basics/gene/
https://medlineplus.gov/genetics/understanding/basics/gene/
https://medlineplus.gov/genetics/understanding/basics/dna/
https://medlineplus.gov/genetics/understanding/basics/dna/
https://doi.org/10.1038/320552a0
https://doi.org/10.1038/320552a0
https://doi.org/10.1016/j.chemolab.2010.04.003
https://doi.org/10.1016/j.chemolab.2010.04.003
https://doi.org/10.1016/j.chemolab.2010.04.003
https://profiles.nlm.nih.gov/101584582X404
https://doi.org/10.1038/227561a0
https://doi.org/10.1038/227561a0
http://www.jstor.org/stable/20023978
https://doi.org/10.1093/bjps/axl018
https://doi.org/10.1093/bjps/axl018
https://doi.org/10.1093/bjps/axl018
https://doi.org/10.1371/journal.pbio.2003243
https://doi.org/10.1371/journal.pbio.2003243
https://doi.org/10.1371/journal.pbio.2003243

bibliography 313

[370] J. D. Watson and F. H. C. Crick. “Molecular Structure of Nucleic Acids: A Structure for
Deoxyribose Nucleic Acid.” In: Nature 171.4356 (Apr. 1953), pp. 737–738. doi: 10.1038/171737
a0. url: https://doi.org/10.1038/171737a0 (cit. on p. 30).

[371] E. M. Southern. “DNA Microarrays: History and Overview.” In: DNA Arrays. Humana Press,
2001, pp. 1–15. doi: 10.1385/1-59259-234-1:1. url: https://doi.org/10.1385/1-59259-23
4-1:1 (cit. on pp. 30–33).

[372] T. Lenoir and E. Giannella. “The emergence and diffusion of DNA microarray technology.” In:
Journal of Biomedical Discovery and Collaboration 1.1 (2006), p. 11. doi: 10.1186/1747-5333-1-11.
url: https://doi.org/10.1186/1747-5333-1-11 (cit. on p. 32).

[373] Z. Wang, M. Gerstein, and M. Snyder. “RNA-Seq: a revolutionary tool for transcriptomics.” In:
Nature Reviews Genetics 10.1 (Jan. 2009), pp. 57–63. doi: 10.1038/nrg2484. url: https://doi.o
rg/10.1038/nrg2484 (cit. on pp. 33, 36).

[374] J.-Y. Coppée. “Do DNA microarrays have their future behind them?” In: Microbes and Infection
10.9 (July 2008), pp. 1067–1071. doi: 10.1016/j.micinf.2008.07.003. url: https://doi.org
/10.1016/j.micinf.2008.07.003 (cit. on p. 33).

[375] K. Dichtl, A. Osterman, R. Barry, and J. Wagener. “A novel microarray-based PCR assay for
the detection of HSV-1, HSV-2, and VZV skin infections: A retrospective analysis.” In: Journal
of Virological Methods 312 (Feb. 2023), p. 114650. doi: 10.1016/j.jviromet.2022.114650. url:
https://doi.org/10.1016/j.jviromet.2022.114650 (cit. on p. 33).

[376] G. M. Aparna and K. K. R. Tetala. “Recent Progress in Development and Application of DNA,
Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays.” In: Biomolecules 13.4 (Mar.
2023), p. 602. doi: 10.3390/biom13040602. url: https://doi.org/10.3390/biom13040602
(cit. on pp. xlix, 33, 34, 36).

[377] A. G. Bracamonte. “Microarrays towards nanoarrays and the future Next Generation of Se-
quencing methodologies (NGS).” In: Sensing and Bio-Sensing Research 37 (Aug. 2022), p. 100503.
doi: 10.1016/j.sbsr.2022.100503. url: https://doi.org/10.1016/j.sbsr.2022.100503
(cit. on p. 33).

[378] L. Fahmideh, E. Khodadadi, E. Khodadadi, E. Zeinalzadeh, S. Dao, Ş. Köse, and H. S. K. 7.
“Transcriptome Analysis Methods: From the Serial Analysis of Gene Expression and Microarray
to Sequencing new Generation Methods.” In: Biointerface Research in Applied Chemistry (2023).
url: https://biointerfaceresearch.com/wp-content/uploads/2023/02/BRIAC136.543.pdf
(cit. on p. 33).

[379] V. Bolón-Canedo and A. Alonso-Betanzos, eds. Microarray Bioinformatics. Springer New York,
2019. doi: 10.1007/978-1-4939-9442-7. url: https://doi.org/10.1007/978-1-4939-9442-
7 (cit. on pp. xlvi, 33, 34, 36).

[380] A. J. Trachtenberg et al. “A Primer on the Current State of Microarray Technologies.” In: Next
Generation Microarray Bioinformatics. Humana Press, Nov. 2011, pp. 3–17. doi: 10.1007/978-1-
61779-400-1_1. url: https://doi.org/10.1007/978-1-61779-400-1_1 (cit. on pp. 34, 36).

[381] R. Jaksik, M. Iwanaszko, J. Rzeszowska-Wolny, and M. Kimmel. “Microarray experiments and
factors which affect their reliability.” In: Biology Direct 10.1 (Sept. 2015). doi: 10.1186/s13062-
015-0077-2. url: https://doi.org/10.1186/s13062-015-0077-2 (cit. on pp. xlvi, 34–36).

[382] S. Hamlet, E. Petcu, and S. Ivanovski. “Genomic Microarray Analysis.” In: Handbook of Vascular
Biology Techniques. Springer Netherlands, 2015, pp. 391–405. doi: 10.1007/978-94-017-9716-
0_30. url: https://doi.org/10.1007/978-94-017-9716-0_30 (cit. on pp. 34, 36).

[383] P. P. Dubey and D. Kumar. “Microarray Technology: Basic Concept, Protocols, and Applica-
tions.” In: Springer Protocols Handbooks. Springer Berlin Heidelberg, Dec. 2012, pp. 261–279. doi:
10.1007/978-3-642-34410-7_17. url: https://doi.org/10.1007/978-3-642-34410-7_17
(cit. on pp. 34, 36).

[384] S. C. Sealfon and T. T. Chu. “RNA and DNA Microarrays.” In: Methods in Molecular Biology.
Humana Press, Sept. 2010, pp. 3–34. doi: 10.1007/978-1-59745-551-0_1. url: https://doi
.org/10.1007/978-1-59745-551-0_1 (cit. on pp. xlvi, xlix, li, 34).

[385] A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor. “Light-
generated oligonucleotide arrays for rapid DNA sequence analysis.” In: Proceedings of the
National Academy of Sciences 91.11 (May 1994), pp. 5022–5026. doi: 10.1073/pnas.91.11.5022.
url: https://doi.org/10.1073/pnas.91.11.5022 (cit. on p. 34).

[386] L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry. “affy—analysis of Affymetrix GeneChip
data at the probe level.” In: Bioinformatics 20.3 (Feb. 2004), pp. 307–315. doi: 10.1093/bioinfo
rmatics/btg405. url: https://doi.org/10.1093/bioinformatics/btg405 (cit. on p. 35).

[387] K. J. Archer and T. Guennel. “An application for assessing quality of RNA hybridized to
Affymetrix GeneChips.” In: Bioinformatics 22.21 (Aug. 2006), pp. 2699–2701. doi: 10.1093/bioi
nformatics/btl459. url: https://doi.org/10.1093/bioinformatics/btl459 (cit. on p. 35).

https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1385/1-59259-234-1:1
https://doi.org/10.1385/1-59259-234-1:1
https://doi.org/10.1385/1-59259-234-1:1
https://doi.org/10.1186/1747-5333-1-11
https://doi.org/10.1186/1747-5333-1-11
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nrg2484
https://doi.org/10.1016/j.micinf.2008.07.003
https://doi.org/10.1016/j.micinf.2008.07.003
https://doi.org/10.1016/j.micinf.2008.07.003
https://doi.org/10.1016/j.jviromet.2022.114650
https://doi.org/10.1016/j.jviromet.2022.114650
https://doi.org/10.3390/biom13040602
https://doi.org/10.3390/biom13040602
https://doi.org/10.1016/j.sbsr.2022.100503
https://doi.org/10.1016/j.sbsr.2022.100503
https://biointerfaceresearch.com/wp-content/uploads/2023/02/BRIAC136.543.pdf
https://doi.org/10.1007/978-1-4939-9442-7
https://doi.org/10.1007/978-1-4939-9442-7
https://doi.org/10.1007/978-1-4939-9442-7
https://doi.org/10.1007/978-1-61779-400-1_1
https://doi.org/10.1007/978-1-61779-400-1_1
https://doi.org/10.1007/978-1-61779-400-1_1
https://doi.org/10.1186/s13062-015-0077-2
https://doi.org/10.1186/s13062-015-0077-2
https://doi.org/10.1186/s13062-015-0077-2
https://doi.org/10.1007/978-94-017-9716-0_30
https://doi.org/10.1007/978-94-017-9716-0_30
https://doi.org/10.1007/978-94-017-9716-0_30
https://doi.org/10.1007/978-3-642-34410-7_17
https://doi.org/10.1007/978-3-642-34410-7_17
https://doi.org/10.1007/978-1-59745-551-0_1
https://doi.org/10.1007/978-1-59745-551-0_1
https://doi.org/10.1007/978-1-59745-551-0_1
https://doi.org/10.1073/pnas.91.11.5022
https://doi.org/10.1073/pnas.91.11.5022
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btl459
https://doi.org/10.1093/bioinformatics/btl459
https://doi.org/10.1093/bioinformatics/btl459

314 bibliography

[388] C. L. Wilson, S. D. Pepper, Y. Hey, and C. J. Miller. “Amplification protocols introduce
systematic but reproducible errors into gene expression studies.” In: BioTechniques 36.3 (Mar.
2004), pp. 498–506. doi: 10.2144/04363rn05. url: https://doi.org/10.2144/04363rn05
(cit. on p. 35).

[389] H. Sudo, A. Mizoguchi, J. Kawauchi, H. Akiyama, and S. Takizawa. “Use of Non-Amplified
RNA Samples for Microarray Analysis of Gene Expression.” In: PLoS ONE 7.2 (Feb. 2012).
Ed. by S. Huang, e31397. doi: 10.1371/journal.pone.0031397. url: https://doi.org/10.13
71/journal.pone.0031397 (cit. on p. 35).

[390] H. Schindler, A. Wiese, J. Auer, and H. Burtscher. “cRNA target preparation for microarrays:
Comparison of gene expression profiles generated with different amplification procedures.”
In: Analytical Biochemistry 344.1 (Sept. 2005), pp. 92–101. doi: 10.1016/j.ab.2005.06.006. url:
https://doi.org/10.1016/j.ab.2005.06.006 (cit. on p. 35).

[391] W. Tong et al. “Evaluation of external RNA controls for the assessment of microarray perfor-
mance.” In: Nature Biotechnology 24.9 (Aug. 2006), pp. 1132–1139. doi: 10.1038/nbt1237. url:
https://doi.org/10.1038/nbt1237 (cit. on pp. xlvii, 35).

[392] M. Dufva. “Introduction to Microarray Technology.” In: Methods in Molecular Biology. Humana
Press, 2009, pp. 1–22. doi: 10.1007/978-1-59745-538-1_1. url: https://doi.org/10.1007/9
78-1-59745-538-1_1 (cit. on p. 35).

[393] B. Bolstad, R. Irizarry, M. Åstrand, and T. Speed. “A comparison of normalization methods
for high density oligonucleotide array data based on variance and bias.” In: Bioinformatics 19.2
(Jan. 2003), pp. 185–193. doi: 10.1093/bioinformatics/19.2.185. url: https://doi.org/10
.1093/bioinformatics/19.2.185 (cit. on pp. 35, 36).

[394] G. K. Smyth and T. Speed. “Normalization of cDNA microarray data.” In: Methods 31.4 (Dec.
2003), pp. 265–273. doi: 10.1016/s1046-2023(03)00155-5. url: https://doi.org/10.1016/s
1046-2023(03)00155-5 (cit. on p. 36).

[395] F. E. Ahmed. “Microarray RNA transcriptional profiling: Part II. Analytical considerations
and annotation.” In: Expert Review of Molecular Diagnostics 6.5 (Sept. 2006), pp. 703–715. doi:
10.1586/14737159.6.5.703. url: https://doi.org/10.1586/14737159.6.5.703 (cit. on
p. 36).

[396] G. Pandey, L. N. Ramakrishnan, M. Steinbach, and V. Kumar. “Systematic Evaluation of Scaling
Methods for Gene Expression Data.” In: 2008 IEEE International Conference on Bioinformatics
and Biomedicine. IEEE, 2008. doi: 10.1109/bibm.2008.33. url: https://doi.org/10.1109/bib
m.2008.33 (cit. on p. 36).

[397] X. Qiu, R. Hu, and Z. Wu. “Evaluation of Bias-Variance Trade-Off for Commonly Used
Post-Summarizing Normalization Procedures in Large-Scale Gene Expression Studies.” In:
PLoS ONE 9.6 (June 2014). Ed. by Z. Wei, e99380. doi: 10.1371/journal.pone.0099380. url:
https://doi.org/10.1371/journal.pone.0099380 (cit. on p. 36).

[398] Y. Ding and D. Wilkins. “The Effect of Normalization on Microarray Data Analysis.” In:
DNA and Cell Biology 23.10 (Oct. 2004), pp. 635–642. doi: 10.1089/dna.2004.23.635. url:
https://doi.org/10.1089/dna.2004.23.635 (cit. on p. 36).

[399] Y. Larriba, C. Rueda, M. A. Fernández, and S. D. Peddada. “Microarray Data Normalization
and Robust Detection of Rhythmic Features.” In: Methods in Molecular Biology. Springer New
York, 2019, pp. 207–225. doi: 10.1007/978-1-4939-9442-7_9. url: https://doi.org/10.100
7/978-1-4939-9442-7_9 (cit. on p. 36).

[400] T. Park, S.-G. Yi, S.-H. Kang, S. Lee, Y.-S. Lee, and R. Simon. “Evaluation of normalization
methods for microarray data.” In: BMC Bioinformatics 4.1 (2003), p. 33. doi: 10.1186/1471-210
5-4-33. url: https://doi.org/10.1186/1471-2105-4-33 (cit. on p. 36).

[401] W. Wu, N. Dave, G. C. Tseng, T. Richards, E. P. Xing, and N. Kaminski. “Comparison of
normalization methods for CodeLink Bioarray data.” In: BMC Bioinformatics 6.1 (Dec. 2005).
doi: 10.1186/1471-2105-6-309. url: https://doi.org/10.1186/1471-2105-6-309 (cit. on
p. 36).

[402] G. C. Tseng. “Issues in cDNA microarray analysis: quality filtering, channel normalization,
models of variations and assessment of gene effects.” In: Nucleic Acids Research 29.12 (June
2001), pp. 2549–2557. doi: 10.1093/nar/29.12.2549. url: https://doi.org/10.1093/nar/29
.12.2549 (cit. on p. 36).

[403] C. Cheadle, M. P. Vawter, W. J. Freed, and K. G. Becker. “Analysis of Microarray Data Using Z
Score Transformation.” In: The Journal of Molecular Diagnostics 5.2 (May 2003), pp. 73–81. doi:
10.1016/s1525-1578(10)60455-2. url: https://doi.org/10.1016/s1525-1578(10)60455-2
(cit. on p. 36).

https://doi.org/10.2144/04363rn05
https://doi.org/10.2144/04363rn05
https://doi.org/10.1371/journal.pone.0031397
https://doi.org/10.1371/journal.pone.0031397
https://doi.org/10.1371/journal.pone.0031397
https://doi.org/10.1016/j.ab.2005.06.006
https://doi.org/10.1016/j.ab.2005.06.006
https://doi.org/10.1038/nbt1237
https://doi.org/10.1038/nbt1237
https://doi.org/10.1007/978-1-59745-538-1_1
https://doi.org/10.1007/978-1-59745-538-1_1
https://doi.org/10.1007/978-1-59745-538-1_1
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1016/s1046-2023(03)00155-5
https://doi.org/10.1016/s1046-2023(03)00155-5
https://doi.org/10.1016/s1046-2023(03)00155-5
https://doi.org/10.1586/14737159.6.5.703
https://doi.org/10.1586/14737159.6.5.703
https://doi.org/10.1109/bibm.2008.33
https://doi.org/10.1109/bibm.2008.33
https://doi.org/10.1109/bibm.2008.33
https://doi.org/10.1371/journal.pone.0099380
https://doi.org/10.1371/journal.pone.0099380
https://doi.org/10.1089/dna.2004.23.635
https://doi.org/10.1089/dna.2004.23.635
https://doi.org/10.1007/978-1-4939-9442-7_9
https://doi.org/10.1007/978-1-4939-9442-7_9
https://doi.org/10.1007/978-1-4939-9442-7_9
https://doi.org/10.1186/1471-2105-4-33
https://doi.org/10.1186/1471-2105-4-33
https://doi.org/10.1186/1471-2105-4-33
https://doi.org/10.1186/1471-2105-6-309
https://doi.org/10.1186/1471-2105-6-309
https://doi.org/10.1093/nar/29.12.2549
https://doi.org/10.1093/nar/29.12.2549
https://doi.org/10.1093/nar/29.12.2549
https://doi.org/10.1016/s1525-1578(10)60455-2
https://doi.org/10.1016/s1525-1578(10)60455-2

bibliography 315

[404] A. E. Teschendorff, F. Marabita, M. Lechner, T. Bartlett, J. Tegner, D. Gomez-Cabrero, and
S. Beck. “A beta-mixture quantile normalization method for correcting probe design bias in
Illumina Infinium 450 k DNA methylation data.” In: Bioinformatics 29.2 (Nov. 2012), pp. 189–
196. doi: 10.1093/bioinformatics/bts680. url: https://doi.org/10.1093/bioinformatics
/bts680 (cit. on p. 36).

[405] J. Maksimovic, L. Gordon, and A. Oshlack. “SWAN: Subset-quantile Within Array Normaliza-
tion for Illumina Infinium HumanMethylation450 BeadChips.” In: Genome Biology 13.6 (2012),
R44. doi: 10.1186/gb-2012-13-6-r44. url: https://doi.org/10.1186/gb-2012-13-6-r44
(cit. on p. 36).

[406] J. A. Berger, S. Hautaniemi, A.-K. Järvinen, H. Edgren, S. K. Mitra, and J. Astola. “Optimized
LOWESS normalization parameter selection for DNA microarray data.” In: BMC Bioinformatics
5.1 (2004), p. 194. doi: 10.1186/1471-2105-5-194. url: https://doi.org/10.1186/1471-210
5-5-194 (cit. on p. 36).

[407] K. Fundel, R. Küffner, T. Aigner, and R. Zimmer. “Normalization and Gene p-Value Estimation:
Issues in Microarray Data Processing.” In: Bioinformatics and Biology Insights 2 (Jan. 2008),
BBI.S441. doi: 10.4137/bbi.s441. url: https://doi.org/10.4137/bbi.s441 (cit. on p. 36).

[408] A. L. Tarca and J. E. K. Cooke. “A robust neural networks approach for spatial and intensity-
dependent normalization of cDNA microarray data.” In: Bioinformatics 21.11 (Mar. 2005),
pp. 2674–2683. doi: 10.1093/bioinformatics/bti397. url: https://doi.org/10.1093/bioin
formatics/bti397 (cit. on pp. 36, 46).

[409] N. L. Dawes and J. Glassey. “Normalisation of Multicondition cDNA Macroarray Data.” In:
Comparative and Functional Genomics 2007 (2007), pp. 1–12. doi: 10.1155/2007/90578. url:
https://doi.org/10.1155/2007/90578 (cit. on p. 36).

[410] Q. Meng, D. Catchpoole, D. Skillicorn, and P. J. Kennedy. “DBNorm: normalizing high-density
oligonucleotide microarray data based on distributions.” In: BMC Bioinformatics 18.1 (Nov.
2017). doi: 10.1186/s12859-017-1912-5. url: https://doi.org/10.1186/s12859-017-1912-
5 (cit. on p. 36).

[411] T. Majtán, G. Bukovská, and J. Timko. “DNA microarrays — techniques and applications in
microbial systems.” In: Folia Microbiologica 49.6 (Nov. 2004). doi: 10.1007/bf02931546. url:
https://doi.org/10.1007/bf02931546 (cit. on p. 36).

[412] R. Simon. “Analysis of DNA microarray expression data.” In: Best Practice & Research Clinical
Haematology 22.2 (June 2009), pp. 271–282. doi: 10.1016/j.beha.2009.07.001. url: https://d
oi.org/10.1016/j.beha.2009.07.001 (cit. on p. 36).

[413] R. G. Sanz and A. Sánchez-Pla. “Statistical Analysis of Microarray Data.” In: Methods in
Molecular Biology. Springer New York, 2019, pp. 87–121. doi: 10.1007/978-1-4939-9442-7_5.
url: https://doi.org/10.1007/978-1-4939-9442-7_5 (cit. on p. 36).

[414] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. “Mapping and quantifying
mammalian transcriptomes by RNA-Seq.” In: Nature Methods 5.7 (May 2008), pp. 621–628. doi:
10.1038/nmeth.1226. url: https://doi.org/10.1038/nmeth.1226 (cit. on pp. 36, 37).

[415] U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein, and M. Snyder. “The
Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing.” In: Science
320.5881 (June 2008), pp. 1344–1349. doi: 10.1126/science.1158441. url: https://doi.org/1
0.1126/science.1158441 (cit. on p. 36).

[416] B. T. Wilhelm, S. Marguerat, S. Watt, F. Schubert, V. Wood, I. Goodhead, C. J. Penkett, J. Rogers,
and J. Bähler. “Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide
resolution.” In: Nature 453.7199 (May 2008), pp. 1239–1243. doi: 10.1038/nature07002. url:
https://doi.org/10.1038/nature07002 (cit. on p. 36).

[417] J. Minnier, N. D. Pennock, Q. Guo, P. Schedin, and C. A. Harrington. “RNA-Seq and Expression
Arrays: Selection Guidelines for Genome-Wide Expression Profiling.” In: Methods in Molecular
Biology. Springer New York, 2018, pp. 7–33. doi: 10.1007/978- 1- 4939- 7834- 2_2. url:
https://doi.org/10.1007/978-1-4939-7834-2_2 (cit. on pp. 36, 37).

[418] P. Bertone et al. “Global Identification of Human Transcribed Sequences with Genome Tiling
Arrays.” In: Science 306.5705 (Dec. 2004), pp. 2242–2246. doi: 10.1126/science.1103388. url:
https://doi.org/10.1126/science.1103388 (cit. on p. 37).

[419] T. E. Royce, J. S. Rozowsky, P. Bertone, M. Samanta, V. Stolc, S. Weissman, M. Snyder, and M.
Gerstein. “Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping.”
In: Trends in Genetics 21.8 (Aug. 2005), pp. 466–475. doi: 10.1016/j.tig.2005.06.007. url:
https://doi.org/10.1016/j.tig.2005.06.007 (cit. on p. 37).

[420] P. Kapranov, A. T. Willingham, and T. R. Gingeras. “Genome-wide transcription and the
implications for genomic organization.” In: Nature Reviews Genetics 8.6 (May 2007), pp. 413–423.
doi: 10.1038/nrg2083. url: https://doi.org/10.1038/nrg2083 (cit. on p. 37).

https://doi.org/10.1093/bioinformatics/bts680
https://doi.org/10.1093/bioinformatics/bts680
https://doi.org/10.1093/bioinformatics/bts680
https://doi.org/10.1186/gb-2012-13-6-r44
https://doi.org/10.1186/gb-2012-13-6-r44
https://doi.org/10.1186/1471-2105-5-194
https://doi.org/10.1186/1471-2105-5-194
https://doi.org/10.1186/1471-2105-5-194
https://doi.org/10.4137/bbi.s441
https://doi.org/10.4137/bbi.s441
https://doi.org/10.1093/bioinformatics/bti397
https://doi.org/10.1093/bioinformatics/bti397
https://doi.org/10.1093/bioinformatics/bti397
https://doi.org/10.1155/2007/90578
https://doi.org/10.1155/2007/90578
https://doi.org/10.1186/s12859-017-1912-5
https://doi.org/10.1186/s12859-017-1912-5
https://doi.org/10.1186/s12859-017-1912-5
https://doi.org/10.1007/bf02931546
https://doi.org/10.1007/bf02931546
https://doi.org/10.1016/j.beha.2009.07.001
https://doi.org/10.1016/j.beha.2009.07.001
https://doi.org/10.1016/j.beha.2009.07.001
https://doi.org/10.1007/978-1-4939-9442-7_5
https://doi.org/10.1007/978-1-4939-9442-7_5
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1126/science.1158441
https://doi.org/10.1126/science.1158441
https://doi.org/10.1126/science.1158441
https://doi.org/10.1038/nature07002
https://doi.org/10.1038/nature07002
https://doi.org/10.1007/978-1-4939-7834-2_2
https://doi.org/10.1007/978-1-4939-7834-2_2
https://doi.org/10.1126/science.1103388
https://doi.org/10.1126/science.1103388
https://doi.org/10.1016/j.tig.2005.06.007
https://doi.org/10.1016/j.tig.2005.06.007
https://doi.org/10.1038/nrg2083
https://doi.org/10.1038/nrg2083

316 bibliography

[421] H. Ishida, T. Yagi, M. Tanaka, Y. Tokuda, K. Kamoi, F. Hongo, A. Kawauchi, M. Nakano,
T. Miki, and K. Tashiro. “Identification of a novel gene by whole human genome tiling
array.” In: Gene 516.1 (Mar. 2013), pp. 33–38. doi: 10.1016/j.gene.2012.11.076. url:
https://doi.org/10.1016/j.gene.2012.11.076 (cit. on p. 37).

[422] M. Griffith, J. R. Walker, N. C. Spies, B. J. Ainscough, and O. L. Griffith. “Informatics for
RNA Sequencing: A Web Resource for Analysis on the Cloud.” In: PLOS Computational Biology
11.8 (Aug. 2015). Ed. by F. Ouellette, e1004393. doi: 10.1371/journal.pcbi.1004393. url:
https://doi.org/10.1371/journal.pcbi.1004393 (cit. on p. 37).

[423] D. Deshpande et al. “RNA-seq data science: From raw data to effective interpretation.” In:
Frontiers in Genetics 14 (Mar. 2023). doi: 10.3389/fgene.2023.997383. url: https://doi.org
/10.3389/fgene.2023.997383 (cit. on p. 37).

[424] A. Conesa et al. “A survey of best practices for RNA-seq data analysis.” In: Genome Biology
17.1 (Jan. 2016). doi: 10.1186/s13059-016-0881-8. url: https://doi.org/10.1186/s13059-0
16-0881-8 (cit. on p. 37).

[425] M. Hong, S. Tao, L. Zhang, L.-T. Diao, X. Huang, S. Huang, S.-J. Xie, Z.-D. Xiao, and H.
Zhang. “RNA sequencing: new technologies and applications in cancer research.” In: Journal
of Hematology & Oncology 13.1 (Dec. 2020). doi: 10.1186/s13045- 020- 01005- x. url:
https://doi.org/10.1186/s13045-020-01005-x (cit. on pp. 37, 38).

[426] J. Costa-Silva, D. Domingues, and F. M. Lopes. “RNA-Seq differential expression analysis:
An extended review and a software tool.” In: PLOS ONE 12.12 (Dec. 2017). Ed. by Z. Wei,
e0190152. doi: 10.1371/journal.pone.0190152. url: https://doi.org/10.1371/journal.po
ne.0190152 (cit. on p. 37).

[427] C. M. Koch, S. F. Chiu, M. Akbarpour, A. Bharat, K. M. Ridge, E. T. Bartom, and D. R. Winter.
“A Beginner’s Guide to Analysis of RNA Sequencing Data.” In: American Journal of Respiratory
Cell and Molecular Biology 59.2 (Aug. 2018), pp. 145–157. doi: 10.1165/rcmb.2017-0430tr. url:
https://doi.org/10.1165/rcmb.2017-0430tr (cit. on p. 37).

[428] M. Jeon, Z. Xie, J. E. Evangelista, M. L. Wojciechowicz, D. J. B. Clarke, and A. Ma’ayan. “Trans-
forming L1000 profiles to RNA-seq-like profiles with deep learning.” In: BMC Bioinformatics
23.1 (Sept. 2022). doi: 10.1186/s12859-022-04895-5. url: https://doi.org/10.1186/s12859
-022-04895-5 (cit. on pp. 38, 39, 42).

[429] M. Amodio, D. Shung, D. B. Burkhardt, P. Wong, M. Simonov, Y. Yamamoto, D. van Dijk,
F. P. Wilson, A. Iwasaki, and S. Krishnaswamy. “Generating hard-to-obtain information from
easy-to-obtain information: Applications in drug discovery and clinical inference.” In: Patterns
2.7 (July 2021), p. 100288. doi: 10.1016/j.patter.2021.100288. url: https://doi.org/10.10
16/j.patter.2021.100288 (cit. on p. 38).

[430] R. Edgar. “Gene Expression Omnibus: NCBI gene expression and hybridization array data
repository.” In: Nucleic Acids Research 30.1 (Jan. 2002), pp. 207–210. doi: 10.1093/nar/30.1.207.
url: https://doi.org/10.1093/nar/30.1.207 (cit. on pp. xlvii, 38).

[431] G. C. Tseng and W. H. Wong. “Tight Clustering: A Resampling-Based Approach for Identifying
Stable and Tight Patterns in Data.” In: Biometrics 61.1 (Feb. 2005), pp. 10–16. doi: 10.1111/j
.0006-341x.2005.031032.x. url: https://doi.org/10.1111/j.0006-341x.2005.031032.x
(cit. on p. 39).

[432] L. J. Lancashire et al. “An introduction to artificial neural networks in bioinformatics–
application to complex microarray and mass spectrometry datasets in cancer studies.” In:
Briefings in Bioinformatics 10.3 (Dec. 2008), pp. 315–329. doi: 10 . 1093 / bib / bbp012. url:
https://doi.org/10.1093/bib/bbp012 (cit. on p. 41).

[433] N. Erfanian et al. “Deep learning applications in single-cell genomics and transcriptomics data
analysis.” In: Biomedicine & Pharmacotherapy 165 (Sept. 2023), p. 115077. doi: 10.1016/j.b
iopha.2023.115077. url: https://doi.org/10.1016/j.biopha.2023.115077 (cit. on pp. 41,
44).

[434] J. Liu, J. Li, H. Wang, and J. Yan. “Application of deep learning in genomics.” In: Science
China Life Sciences 63.12 (Oct. 2020), pp. 1860–1878. doi: 10.1007/s11427-020-1804-5. url:
https://doi.org/10.1007/s11427-020-1804-5 (cit. on p. 41).

[435] W. S. Alharbi and M. Rashid. “A review of deep learning applications in human genomics
using next-generation sequencing data.” In: Human Genomics 16.1 (July 2022). doi: 10.1186/s4
0246-022-00396-x. url: https://doi.org/10.1186/s40246-022-00396-x (cit. on p. 41).

[436] C. Caudai, A. Galizia, F. Geraci, L. L. Pera, V. Morea, E. Salerno, A. Via, and T. Colombo. “AI
applications in functional genomics.” In: Computational and Structural Biotechnology Journal 19

(2021), pp. 5762–5790. doi: 10.1016/j.csbj.2021.10.009. url: https://doi.org/10.1016/j
.csbj.2021.10.009 (cit. on p. 41).

https://doi.org/10.1016/j.gene.2012.11.076
https://doi.org/10.1016/j.gene.2012.11.076
https://doi.org/10.1371/journal.pcbi.1004393
https://doi.org/10.1371/journal.pcbi.1004393
https://doi.org/10.3389/fgene.2023.997383
https://doi.org/10.3389/fgene.2023.997383
https://doi.org/10.3389/fgene.2023.997383
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1186/s13045-020-01005-x
https://doi.org/10.1186/s13045-020-01005-x
https://doi.org/10.1371/journal.pone.0190152
https://doi.org/10.1371/journal.pone.0190152
https://doi.org/10.1371/journal.pone.0190152
https://doi.org/10.1165/rcmb.2017-0430tr
https://doi.org/10.1165/rcmb.2017-0430tr
https://doi.org/10.1186/s12859-022-04895-5
https://doi.org/10.1186/s12859-022-04895-5
https://doi.org/10.1186/s12859-022-04895-5
https://doi.org/10.1016/j.patter.2021.100288
https://doi.org/10.1016/j.patter.2021.100288
https://doi.org/10.1016/j.patter.2021.100288
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1111/j.0006-341x.2005.031032.x
https://doi.org/10.1111/j.0006-341x.2005.031032.x
https://doi.org/10.1111/j.0006-341x.2005.031032.x
https://doi.org/10.1093/bib/bbp012
https://doi.org/10.1093/bib/bbp012
https://doi.org/10.1016/j.biopha.2023.115077
https://doi.org/10.1016/j.biopha.2023.115077
https://doi.org/10.1016/j.biopha.2023.115077
https://doi.org/10.1007/s11427-020-1804-5
https://doi.org/10.1007/s11427-020-1804-5
https://doi.org/10.1186/s40246-022-00396-x
https://doi.org/10.1186/s40246-022-00396-x
https://doi.org/10.1186/s40246-022-00396-x
https://doi.org/10.1016/j.csbj.2021.10.009
https://doi.org/10.1016/j.csbj.2021.10.009
https://doi.org/10.1016/j.csbj.2021.10.009

bibliography 317

[437] M. Mahmud, M. S. Kaiser, T. M. McGinnity, and A. Hussain. “Deep Learning in Mining
Biological Data.” In: Cognitive Computation 13.1 (Jan. 2021), pp. 1–33. doi: 10.1007/s12559-02
0-09773-x. url: https://doi.org/10.1007/s12559-020-09773-x (cit. on p. 41).

[438] R. Lopez, A. Gayoso, and N. Yosef. “Enhancing scientific discoveries in molecular biology
with deep generative models.” In: Molecular Systems Biology 16.9 (Sept. 2020). doi: 10.15252/m
sb.20199198. url: https://doi.org/10.15252/msb.20199198 (cit. on pp. 41, 43).

[439] A. Eetemadi and I. Tagkopoulos. “Genetic Neural Networks: an artificial neural network
architecture for capturing gene expression relationships.” In: Bioinformatics (Nov. 2018). Ed. by
B. Berger. doi: 10.1093/bioinformatics/bty945. url: https://doi.org/10.1093/bioinform
atics/bty945 (cit. on pp. xlvii, xlviii, 41–43).

[440] T. D. de Bernonville, E. A. Stander, G. D. de Bernonville, S. Besseau, and V. Courdavault.
“Predicting Monoterpene Indole Alkaloid-Related Genes from Expression Data with Artificial
Neural Networks.” In: Methods in Molecular Biology. Springer US, 2022, pp. 131–140. doi:
10.1007/978-1-0716-2349-7_10. url: https://doi.org/10.1007/978-1-0716-2349-7_10
(cit. on p. 41).

[441] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward neural
networks.” In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics. Ed. by Y. W. Teh and M. Titterington. Vol. 9. Proceedings of Machine Learning
Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256. url:
http://proceedings.mlr.press/v9/glorot10a.html (cit. on pp. 41, 51).

[442] G. Consortium. “The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene
regulation in humans.” In: Science 348.6235 (May 2015), pp. 648–660. doi: 10.1126/science.1
262110. url: https://doi.org/10.1126/science.1262110 (cit. on p. 41).

[443] T. Lappalainen et al. “Transcriptome and genome sequencing uncovers functional variation
in humans.” In: Nature 501.7468 (Sept. 2013), pp. 506–511. doi: 10.1038/nature12531. url:
https://doi.org/10.1038/nature12531 (cit. on p. 41).

[444] V. Kunc and J. Klema. “On Transformative Adaptive Activation Functions in Neural Networks
for Gene Expression Inference.” In: bioRxiv (2019). doi: 10.1101/587287. eprint: https://www
.biorxiv.org/content/early/2019/03/24/587287.full.pdf. url: https://www.biorxiv.or
g/content/early/2019/03/24/587287 (cit. on pp. 42, 194, 198, 278).

[445] H. Wang, C. Li, J. Zhang, J. Wang, Y. Ma, and Y. Lian. “A new LSTM-based gene expression
prediction model: L-GEPM.” In: Journal of Bioinformatics and Computational Biology 17.04 (Aug.
2019), p. 1950022. doi: 10.1142/s0219720019500227. url: https://doi.org/10.1142/s02197
20019500227 (cit. on p. 42).

[446] W. Li, Y. Yin, X. Quan, and H. Zhang. “Gene Expression Value Prediction Based on XGBoost
Algorithm.” In: Frontiers in Genetics 10 (Nov. 2019). doi: 10.3389/fgene.2019.01077. url:
https://doi.org/10.3389/fgene.2019.01077 (cit. on p. 42).

[447] M. Schuster and K. Paliwal. “Bidirectional recurrent neural networks.” In: IEEE Transactions on
Signal Processing 45.11 (1997), pp. 2673–2681. doi: 10.1109/78.650093. url: https://doi.org
/10.1109/78.650093 (cit. on pp. xlv, 43).

[448] R. Tibshirani. “Regression Shrinkage and Selection Via the Lasso.” In: Journal of the Royal
Statistical Society: Series B (Methodological) 58.1 (Jan. 1996), pp. 267–288. doi: 10.1111/j.2517-6
161.1996.tb02080.x. url: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x (cit. on
pp. xlviii, 43).

[449] S. S. Somathilaka, S. Balasubramaniam, D. P. Martins, and X. Li. “Revealing gene regulation-
based neural network computing in bacteria.” In: Biophysical Reports 3.3 (Sept. 2023), p. 100118.
issn: 2667-0747. doi: 10.1016/j.bpr.2023.100118. url: http://dx.doi.org/10.1016/j.bpr
.2023.100118 (cit. on p. 43).

[450] R. Li, L. Li, Y. Xu, and J. Yang. “Machine learning meets omics: applications and perspectives.”
In: Briefings in Bioinformatics 23.1 (Nov. 2021). doi: 10.1093/bib/bbab460. url: https://doi.o
rg/10.1093/bib/bbab460 (cit. on p. 43).

[451] M. Lee. “Recent Advances in Generative Adversarial Networks for Gene Expression Data: A
Comprehensive Review.” In: Mathematics 11.14 (July 2023), p. 3055. doi: 10.3390/math1114305
5. url: https://doi.org/10.3390/math11143055 (cit. on pp. 43, 182).

[452] B. Yelmen and F. Jay. “An Overview of Deep Generative Models in Functional and Evolutionary
Genomics.” In: Annual Review of Biomedical Data Science 6.1 (Aug. 2023), pp. 173–189. doi:
10.1146/annurev-biodatasci-020722-115651. url: https://doi.org/10.1146/annurev-bi
odatasci-020722-115651 (cit. on pp. 43, 44).

[453] X. Ai, M. C. Smith, and F. A. Feltus. “Generative adversarial networks applied to gene
expression analysis: An interdisciplinary perspective.” In: Computational and Systems Oncology
3.3 (Aug. 2023). doi: 10.1002/cso2.1050. url: https://doi.org/10.1002/cso2.1050 (cit. on
pp. 43, 44).

https://doi.org/10.1007/s12559-020-09773-x
https://doi.org/10.1007/s12559-020-09773-x
https://doi.org/10.1007/s12559-020-09773-x
https://doi.org/10.15252/msb.20199198
https://doi.org/10.15252/msb.20199198
https://doi.org/10.15252/msb.20199198
https://doi.org/10.1093/bioinformatics/bty945
https://doi.org/10.1093/bioinformatics/bty945
https://doi.org/10.1093/bioinformatics/bty945
https://doi.org/10.1007/978-1-0716-2349-7_10
https://doi.org/10.1007/978-1-0716-2349-7_10
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1126/science.1262110
https://doi.org/10.1126/science.1262110
https://doi.org/10.1126/science.1262110
https://doi.org/10.1038/nature12531
https://doi.org/10.1038/nature12531
https://doi.org/10.1101/587287
https://www.biorxiv.org/content/early/2019/03/24/587287.full.pdf
https://www.biorxiv.org/content/early/2019/03/24/587287.full.pdf
https://www.biorxiv.org/content/early/2019/03/24/587287
https://www.biorxiv.org/content/early/2019/03/24/587287
https://doi.org/10.1142/s0219720019500227
https://doi.org/10.1142/s0219720019500227
https://doi.org/10.1142/s0219720019500227
https://doi.org/10.3389/fgene.2019.01077
https://doi.org/10.3389/fgene.2019.01077
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.bpr.2023.100118
http://dx.doi.org/10.1016/j.bpr.2023.100118
http://dx.doi.org/10.1016/j.bpr.2023.100118
https://doi.org/10.1093/bib/bbab460
https://doi.org/10.1093/bib/bbab460
https://doi.org/10.1093/bib/bbab460
https://doi.org/10.3390/math11143055
https://doi.org/10.3390/math11143055
https://doi.org/10.3390/math11143055
https://doi.org/10.1146/annurev-biodatasci-020722-115651
https://doi.org/10.1146/annurev-biodatasci-020722-115651
https://doi.org/10.1146/annurev-biodatasci-020722-115651
https://doi.org/10.1002/cso2.1050
https://doi.org/10.1002/cso2.1050

318 bibliography

[454] H. Yu and J. D. Welch. “MichiGAN: sampling from disentangled representations of single-
cell data using generative adversarial networks.” In: Genome Biology 22.1 (May 2021). doi:
10.1186/s13059-021-02373-4. url: https://doi.org/10.1186/s13059-021-02373-4 (cit. on
pp. 43, 44, 183).

[455] M. Massimino, F. Martorana, S. Stella, S. R. Vitale, C. Tomarchio, L. Manzella, and P. Vigneri.
“Single-Cell Analysis in the Omics Era: Technologies and Applications in Cancer.” In: Genes
14.7 (June 2023), p. 1330. issn: 2073-4425. doi: 10.3390/genes14071330. url: http://dx.doi.o
rg/10.3390/genes14071330 (cit. on p. 43).

[456] M. Marouf, P. Machart, V. Bansal, C. Kilian, D. S. Magruder, C. F. Krebs, and S. Bonn. “Realistic
in silico generation and augmentation of single-cell RNA-seq data using generative adversarial
networks.” In: Nature Communications 11.1 (Jan. 2020). doi: 10.1038/s41467-019-14018-z.
url: https://doi.org/10.1038/s41467-019-14018-z (cit. on p. 44).

[457] S. Lall, S. Ray, and S. Bandyopadhyay. “LSH-GAN enables in-silico generation of cells for
small sample high dimensional scRNA-seq data.” In: Communications Biology 5.1 (June 2022).
doi: 10.1038/s42003-022-03473-y. url: https://doi.org/10.1038/s42003-022-03473-y
(cit. on p. 44).

[458] R. Viñas, H. Andrés-Terré, P. Liò, and K. Bryson. “Adversarial generation of gene expression
data.” In: Bioinformatics 38.3 (Jan. 2021). Ed. by P. L. Martelli, pp. 730–737. issn: 1367-4811. doi:
10.1093/bioinformatics/btab035. url: http://dx.doi.org/10.1093/bioinformatics/btab
035 (cit. on p. 44).

[459] J. E. Park, D. Eun, H. S. Kim, D. H. Lee, R. W. Jang, and N. Kim. “Generative adversarial
network for glioblastoma ensures morphologic variations and improves diagnostic model for
isocitrate dehydrogenase mutant type.” In: Scientific Reports 11.1 (May 2021). doi: 10.1038/s41
598-021-89477-w. url: https://doi.org/10.1038/s41598-021-89477-w (cit. on pp. 44, 47,
183).

[460] P. Chaudhari, H. Agrawal, and K. Kotecha. “Data augmentation using MG-GAN for improved
cancer classification on gene expression data.” In: Soft Computing 24.15 (Dec. 2019), pp. 11381–
11391. issn: 1433-7479. doi: 10.1007/s00500-019-04602-2. url: http://dx.doi.org/10.1007
/s00500-019-04602-2 (cit. on p. 44).

[461] Y. Xiao, J. Wu, and Z. Lin. “Cancer diagnosis using generative adversarial networks based on
deep learning from imbalanced data.” In: Computers in Biology and Medicine 135 (Aug. 2021),
p. 104540. doi: 10.1016/j.compbiomed.2021.104540. url: https://doi.org/10.1016/j.comp
biomed.2021.104540 (cit. on p. 44).

[462] S. Zhu and F. Han. “A Data Enhancement Method for Gene Expression Profile Based on
Improved WGAN-GP.” In: Communications in Computer and Information Science. Springer
Singapore, 2021, pp. 242–254. isbn: 9789811651885. doi: 10.1007/978-981-16-5188-5_18. url:
http://dx.doi.org/10.1007/978-981-16-5188-5_18 (cit. on p. 44).

[463] A. Tsourtis, G. Papoutsoglou, and Y. Pantazis. “GAN-Based Training of Semi-Interpretable
Generators for Biological Data Interpolation and Augmentation.” In: Applied Sciences 12.11

(May 2022), p. 5434. doi: 10.3390/app12115434. url: https://doi.org/10.3390/app12115434
(cit. on p. 44).

[464] H. Wang and X. Ma. “Learning discriminative and structural samples for rare cell types with
deep generative model.” In: Briefings in Bioinformatics 23.5 (Aug. 2022). doi: 10.1093/bib/bbac
317. url: https://doi.org/10.1093/bib/bbac317 (cit. on p. 44).

[465] M. Oh and L. Zhang. “Generalizing predictions to unseen sequencing profiles via deep
generative models.” In: Scientific Reports 12.1 (May 2022). doi: 10.1038/s41598-022-11363-w.
url: https://doi.org/10.1038/s41598-022-11363-w (cit. on p. 44).

[466] F. J. Moreno-Barea, J. M. Jerez, and L. Franco. “GAN-Based Data Augmentation for Prediction
Improvement Using Gene Expression Data in Cancer.” In: Lecture Notes in Computer Science.
Springer International Publishing, 2022, pp. 28–42. isbn: 9783031087578. doi: 10.1007/978-3-
031-08757-8_3. url: http://dx.doi.org/10.1007/978-3-031-08757-8_3 (cit. on p. 44).

[467] F. Han, S. Zhu, Q. Ling, H. Han, H. Li, X. Guo, and J. Cao. “Gene-CWGAN: a data enhancement
method for gene expression profile based on improved CWGAN-GP.” In: Neural Computing
and Applications 34.19 (June 2022), pp. 16325–16339. issn: 1433-3058. doi: 10.1007/s00521-022
-07417-9. url: http://dx.doi.org/10.1007/s00521-022-07417-9 (cit. on p. 44).

[468] R. Li, J. Wu, G. Li, J. Liu, J. Xuan, and Q. Zhu. “Mdwgan-gp: data augmentation for gene
expression data based on multiple discriminator WGAN-GP.” In: BMC Bioinformatics 24.1
(Nov. 2023). issn: 1471-2105. doi: 10.1186/s12859-023-05558-9. url: http://dx.doi.org/10
.1186/s12859-023-05558-9 (cit. on p. 44).

[469] S. Fang, F. Han, W.-Y. Liang, and J. Jiang. “An Improved Conditional Generative Adversarial
Network for Microarray Data.” In: Lecture Notes in Computer Science. Springer International
Publishing, 2020, pp. 105–114. isbn: 9783030607999. doi: 10.1007/978-3-030-60799-9_9. url:
http://dx.doi.org/10.1007/978-3-030-60799-9_9 (cit. on p. 44).

https://doi.org/10.1186/s13059-021-02373-4
https://doi.org/10.1186/s13059-021-02373-4
https://doi.org/10.3390/genes14071330
http://dx.doi.org/10.3390/genes14071330
http://dx.doi.org/10.3390/genes14071330
https://doi.org/10.1038/s41467-019-14018-z
https://doi.org/10.1038/s41467-019-14018-z
https://doi.org/10.1038/s42003-022-03473-y
https://doi.org/10.1038/s42003-022-03473-y
https://doi.org/10.1093/bioinformatics/btab035
http://dx.doi.org/10.1093/bioinformatics/btab035
http://dx.doi.org/10.1093/bioinformatics/btab035
https://doi.org/10.1038/s41598-021-89477-w
https://doi.org/10.1038/s41598-021-89477-w
https://doi.org/10.1038/s41598-021-89477-w
https://doi.org/10.1007/s00500-019-04602-2
http://dx.doi.org/10.1007/s00500-019-04602-2
http://dx.doi.org/10.1007/s00500-019-04602-2
https://doi.org/10.1016/j.compbiomed.2021.104540
https://doi.org/10.1016/j.compbiomed.2021.104540
https://doi.org/10.1016/j.compbiomed.2021.104540
https://doi.org/10.1007/978-981-16-5188-5_18
http://dx.doi.org/10.1007/978-981-16-5188-5_18
https://doi.org/10.3390/app12115434
https://doi.org/10.3390/app12115434
https://doi.org/10.1093/bib/bbac317
https://doi.org/10.1093/bib/bbac317
https://doi.org/10.1093/bib/bbac317
https://doi.org/10.1038/s41598-022-11363-w
https://doi.org/10.1038/s41598-022-11363-w
https://doi.org/10.1007/978-3-031-08757-8_3
https://doi.org/10.1007/978-3-031-08757-8_3
http://dx.doi.org/10.1007/978-3-031-08757-8_3
https://doi.org/10.1007/s00521-022-07417-9
https://doi.org/10.1007/s00521-022-07417-9
http://dx.doi.org/10.1007/s00521-022-07417-9
https://doi.org/10.1186/s12859-023-05558-9
http://dx.doi.org/10.1186/s12859-023-05558-9
http://dx.doi.org/10.1186/s12859-023-05558-9
https://doi.org/10.1007/978-3-030-60799-9_9
http://dx.doi.org/10.1007/978-3-030-60799-9_9

bibliography 319

[470] K. Wei, T. Li, F. Huang, J. Chen, and Z. He. “Cancer classification with data augmentation
based on generative adversarial networks.” In: Frontiers of Computer Science 16.2 (Sept. 2021).
issn: 2095-2236. doi: 10.1007/s11704-020-0025-x. url: http://dx.doi.org/10.1007/s1170
4-020-0025-x (cit. on p. 44).

[471] C. Kwon, S. Park, S. Ko, and J. Ahn. “Increasing prediction accuracy of pathogenic staging
by sample augmentation with a GAN.” In: PLOS ONE 16.4 (Apr. 2021). Ed. by P. Pławiak,
e0250458. issn: 1932-6203. doi: 10.1371/journal.pone.0250458. url: http://dx.doi.org/10
.1371/journal.pone.0250458 (cit. on p. 44).

[472] H. Ravaee, M. H. Manshaei, M. Safayani, and J. S. Sartakhti. “Intelligent Phenotype-detection
and Gene expression profile Generation with Generative adversarial networks.” In: Journal of
Theoretical Biology (Nov. 2023), p. 111636. issn: 0022-5193. doi: 10.1016/j.jtbi.2023.111636.
url: http://dx.doi.org/10.1016/j.jtbi.2023.111636 (cit. on p. 44).

[473] Y. Chung and H. Lee. “Joint triplet loss with semi-hard constraint for data augmentation and
disease prediction using gene expression data.” In: Scientific Reports 13.1 (Oct. 2023). issn:
2045-2322. doi: 10.1038/s41598-023-45467-8. url: http://dx.doi.org/10.1038/s41598-02
3-45467-8 (cit. on p. 44).

[474] X. Chen, R. Roberts, W. Tong, and Z. Liu. “Tox-GAN: An Artificial Intelligence Approach
Alternative to Animal Studies—A Case Study With Toxicogenomics.” In: Toxicological Sciences
186.2 (Dec. 2021), pp. 242–259. issn: 1096-0929. doi: 10.1093/toxsci/kfab157. url: http://dx
.doi.org/10.1093/toxsci/kfab157 (cit. on p. 44).

[475] T. Sun, D. Song, W. V. Li, and J. J. Li. “scDesign2: a transparent simulator that generates high-
fidelity single-cell gene expression count data with gene correlations captured.” In: Genome
Biology 22.1 (May 2021). doi: 10.1186/s13059-021-02367-2. url: https://doi.org/10.1186
/s13059-021-02367-2 (cit. on p. 44).

[476] P. Dibaeinia and S. Sinha. “SERGIO: A Single-Cell Expression Simulator Guided by Gene
Regulatory Networks.” In: Cell Systems 11.3 (Sept. 2020), 252–271.e11. doi: 10.1016/j.cels.20
20.08.003. url: https://doi.org/10.1016/j.cels.2020.08.003 (cit. on p. 44).

[477] C. Wan and D. T. Jones. “Protein function prediction is improved by creating synthetic feature
samples with generative adversarial networks.” In: Nature Machine Intelligence 2.9 (Aug. 2020),
pp. 540–550. doi: 10.1038/s42256-020-0222-1. url: https://doi.org/10.1038/s42256-020-
0222-1 (cit. on p. 44).

[478] O. Méndez-Lucio, B. Baillif, D.-A. Clevert, D. Rouquié, and J. Wichard. “De novo generation
of hit-like molecules from gene expression signatures using artificial intelligence.” In: Nature
Communications 11.1 (Jan. 2020). issn: 2041-1723. doi: 10.1038/s41467-019-13807-w. url:
http://dx.doi.org/10.1038/s41467-019-13807-w (cit. on p. 44).

[479] B. Yelmen, A. Decelle, L. Ongaro, D. Marnetto, C. Tallec, F. Montinaro, C. Furtlehner, L. Pagani,
and F. Jay. “Creating artificial human genomes using generative neural networks.” In: PLOS
Genetics 17.2 (Feb. 2021). Ed. by S. Mathieson, e1009303. issn: 1553-7404. doi: 10.1371/journa
l.pgen.1009303. url: http://dx.doi.org/10.1371/journal.pgen.1009303 (cit. on p. 44).

[480] R. K. Mondol, N. D. Truong, M. Reza, S. Ippolito, E. Ebrahimie, and O. Kavehei. “AFExNet: An
Adversarial Autoencoder for Differentiating Breast Cancer Sub-Types and Extracting Biologi-
cally Relevant Genes.” In: IEEE/ACM Transactions on Computational Biology and Bioinformatics
19.4 (July 2022), pp. 2060–2070. doi: 10.1109/tcbb.2021.3066086. url: https://doi.org/10
.1109/tcbb.2021.3066086 (cit. on p. 44).

[481] G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis. “Single-cell RNA-seq
denoising using a deep count autoencoder.” In: Nature Communications 10.1 (Jan. 2019). doi:
10.1038/s41467-018-07931-2. url: https://doi.org/10.1038/s41467-018-07931-2 (cit. on
p. 44).

[482] J. Wang, D. Agarwal, M. Huang, G. Hu, Z. Zhou, C. Ye, and N. R. Zhang. “Data denoising
with transfer learning in single-cell transcriptomics.” In: Nature Methods 16.9 (Aug. 2019),
pp. 875–878. issn: 1548-7105. doi: 10.1038/s41592-019-0537-1. url: http://dx.doi.org/10
.1038/s41592-019-0537-1 (cit. on p. 44).

[483] Q. Li. “scTour: a deep learning architecture for robust inference and accurate prediction of
cellular dynamics.” In: Genome Biology 24.1 (June 2023). doi: 10.1186/s13059-023-02988-9.
url: https://doi.org/10.1186/s13059-023-02988-9 (cit. on p. 44).

[484] L. Chen, Y. Zhai, Q. He, W. Wang, and M. Deng. “Integrating Deep Supervised, Self-Supervised
and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.” In: Genes
11.7 (July 2020), p. 792. doi: 10.3390/genes11070792. url: https://doi.org/10.3390/genes1
1070792 (cit. on p. 44).

[485] D. Pandey and P. O. Perumal. “A scoping review on deep learning for next-generation
RNA-Seq. data analysis.” In: Functional & Integrative Genomics 23.2 (Apr. 2023). doi:
10.1007/s10142-023-01064-6. url: https://doi.org/10.1007/s10142-023-01064-6 (cit. on
p. 44).

https://doi.org/10.1007/s11704-020-0025-x
http://dx.doi.org/10.1007/s11704-020-0025-x
http://dx.doi.org/10.1007/s11704-020-0025-x
https://doi.org/10.1371/journal.pone.0250458
http://dx.doi.org/10.1371/journal.pone.0250458
http://dx.doi.org/10.1371/journal.pone.0250458
https://doi.org/10.1016/j.jtbi.2023.111636
http://dx.doi.org/10.1016/j.jtbi.2023.111636
https://doi.org/10.1038/s41598-023-45467-8
http://dx.doi.org/10.1038/s41598-023-45467-8
http://dx.doi.org/10.1038/s41598-023-45467-8
https://doi.org/10.1093/toxsci/kfab157
http://dx.doi.org/10.1093/toxsci/kfab157
http://dx.doi.org/10.1093/toxsci/kfab157
https://doi.org/10.1186/s13059-021-02367-2
https://doi.org/10.1186/s13059-021-02367-2
https://doi.org/10.1186/s13059-021-02367-2
https://doi.org/10.1016/j.cels.2020.08.003
https://doi.org/10.1016/j.cels.2020.08.003
https://doi.org/10.1016/j.cels.2020.08.003
https://doi.org/10.1038/s42256-020-0222-1
https://doi.org/10.1038/s42256-020-0222-1
https://doi.org/10.1038/s42256-020-0222-1
https://doi.org/10.1038/s41467-019-13807-w
http://dx.doi.org/10.1038/s41467-019-13807-w
https://doi.org/10.1371/journal.pgen.1009303
https://doi.org/10.1371/journal.pgen.1009303
http://dx.doi.org/10.1371/journal.pgen.1009303
https://doi.org/10.1109/tcbb.2021.3066086
https://doi.org/10.1109/tcbb.2021.3066086
https://doi.org/10.1109/tcbb.2021.3066086
https://doi.org/10.1038/s41467-018-07931-2
https://doi.org/10.1038/s41467-018-07931-2
https://doi.org/10.1038/s41592-019-0537-1
http://dx.doi.org/10.1038/s41592-019-0537-1
http://dx.doi.org/10.1038/s41592-019-0537-1
https://doi.org/10.1186/s13059-023-02988-9
https://doi.org/10.1186/s13059-023-02988-9
https://doi.org/10.3390/genes11070792
https://doi.org/10.3390/genes11070792
https://doi.org/10.3390/genes11070792
https://doi.org/10.1007/s10142-023-01064-6
https://doi.org/10.1007/s10142-023-01064-6

320 bibliography

[486] M. Brendel, C. Su, Z. Bai, H. Zhang, O. Elemento, and F. Wang. “Application of Deep
Learning on Single-cell RNA Sequencing Data Analysis: A Review.” In: Genomics, Proteomics &
Bioinformatics 20.5 (Oct. 2022), pp. 814–835. issn: 1672-0229. doi: 10.1016/j.gpb.2022.11.011.
url: http://dx.doi.org/10.1016/j.gpb.2022.11.011 (cit. on p. 44).

[487] J. Wang, Q. Zou, and C. Lin. “A comparison of deep learning-based pre-processing and
clustering approaches for single-cell RNA sequencing data.” In: Briefings in Bioinformatics 23.1
(Sept. 2021). doi: 10.1093/bib/bbab345. url: https://doi.org/10.1093/bib/bbab345 (cit. on
p. 44).

[488] M. Flores et al. “Deep learning tackles single-cell analysis—a survey of deep learning for
scRNA-seq analysis.” In: Briefings in Bioinformatics 23.1 (Dec. 2021). doi: 10.1093/bib/bbab531.
url: https://doi.org/10.1093/bib/bbab531 (cit. on p. 44).

[489] A. A. Heydari and S. S. Sindi. “Deep learning in spatial transcriptomics: Learning from the next
next-generation sequencing.” In: Biophysics Reviews 4.1 (Feb. 2023). doi: 10.1063/5.0091135.
url: https://doi.org/10.1063/5.0091135 (cit. on p. 44).

[490] M. Lotfollahi, F. A. Wolf, and F. J. Theis. “scGen predicts single-cell perturbation responses.”
In: Nature Methods 16.8 (July 2019), pp. 715–721. doi: 10.1038/s41592-019-0494-8. url:
https://doi.org/10.1038/s41592-019-0494-8 (cit. on pp. 44, 46, 181).

[491] M. Lotfollahi, M. Naghipourfar, F. J. Theis, and F. A. Wolf. “Conditional out-of-distribution
generation for unpaired data using transfer VAE.” In: Bioinformatics 36.Supplement_2 (Dec.
2020), pp. i610–i617. doi: 10.1093/bioinformatics/btaa800. url: https://doi.org/10.1093
/bioinformatics/btaa800 (cit. on pp. 44, 181).

[492] A. Gupta, H. Wang, and M. Ganapathiraju. “Learning structure in gene expression data
using deep architectures, with an application to gene clustering.” In: 2015 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, Nov. 2015. doi: 10.1109/bibm.2015
.7359871. url: https://doi.org/10.1109/bibm.2015.7359871 (cit. on p. 44).

[493] M. Treppner, A. Salas-Bastos, M. Hess, S. Lenz, T. Vogel, and H. Binder. “Synthetic single cell
RNA sequencing data from small pilot studies using deep generative models.” In: Scientific
Reports 11.1 (Apr. 2021). doi: 10.1038/s41598-021-88875-4. url: https://doi.org/10.1038
/s41598-021-88875-4 (cit. on p. 44).

[494] Y. Pantazis, C. Tselas, K. Lakiotaki, V. Lagani, and I. Tsamardinos. “Latent Feature Represen-
tations for Human Gene Expression Data Improve Phenotypic Predictions.” In: 2020 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, Dec. 2020. doi: 10.1109
/bibm49941.2020.9313286. url: https://doi.org/10.1109/bibm49941.2020.9313286 (cit. on
p. 45).

[495] H. Duan, F. Li, J. Shang, J. Liu, Y. Li, and X. Liu. “scVAEBGM: Clustering Analysis of
Single-Cell ATAC-seq Data Using a Deep Generative Model.” In: Interdisciplinary Sciences:
Computational Life Sciences 14.4 (Aug. 2022), pp. 917–928. doi: 10.1007/s12539-022-00536-w.
url: https://doi.org/10.1007/s12539-022-00536-w (cit. on p. 45).

[496] B. Tran, D. Tran, H. Nguyen, S. Ro, and T. Nguyen. “scCAN: single-cell clustering using
autoencoder and network fusion.” In: Scientific Reports 12.1 (June 2022). doi: 10.1038/s41598-
022-14218-6. url: https://doi.org/10.1038/s41598-022-14218-6 (cit. on p. 45).

[497] K. Märtens and C. Yau. “BasisVAE: Translation-invariant feature-level clustering with Varia-
tional Autoencoders.” In: Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics. Ed. by S. Chiappa and R. Calandra. Vol. 108. Proceedings of Machine
Learning Research. PMLR, 26–28 Aug 2020, pp. 2928–2937. url: https://proceedings.mlr.p
ress/v108/martens20b.html (cit. on p. 45).

[498] Y. Zeng, Z. Wei, F. Zhong, Z. Pan, Y. Lu, and Y. Yang. “A parameter-free deep embedded
clustering method for single-cell RNA-seq data.” In: Briefings in Bioinformatics 23.5 (May 2022).
doi: 10.1093/bib/bbac172. url: https://doi.org/10.1093/bib/bbac172 (cit. on p. 45).

[499] C. H. Grønbech, M. F. Vording, P. N. Timshel, C. K. Sønderby, T. H. Pers, and O. Winther.
“scVAE: variational auto-encoders for single-cell gene expression data.” In: Bioinformatics 36.16

(May 2020). Ed. by B. Berger, pp. 4415–4422. doi: 10.1093/bioinformatics/btaa293. url:
https://doi.org/10.1093/bioinformatics/btaa293 (cit. on p. 45).

[500] J. Peng, X. Wang, and X. Shang. “Combining gene ontology with deep neural networks to
enhance the clustering of single cell RNA-Seq data.” In: BMC Bioinformatics 20.S8 (June 2019).
doi: 10.1186/s12859-019-2769-6. url: https://doi.org/10.1186/s12859-019-2769-6
(cit. on p. 45).

[501] S. He, J. Fan, and T. Yu. “G3DC: a Gene-Graph-Guided selective Deep Clustering method for
single cell RNA-seq data.” In: (Jan. 2023). doi: 10.1101/2023.01.15.524109. url: https://do
i.org/10.1101/2023.01.15.524109 (cit. on p. 45).

https://doi.org/10.1016/j.gpb.2022.11.011
http://dx.doi.org/10.1016/j.gpb.2022.11.011
https://doi.org/10.1093/bib/bbab345
https://doi.org/10.1093/bib/bbab345
https://doi.org/10.1093/bib/bbab531
https://doi.org/10.1093/bib/bbab531
https://doi.org/10.1063/5.0091135
https://doi.org/10.1063/5.0091135
https://doi.org/10.1038/s41592-019-0494-8
https://doi.org/10.1038/s41592-019-0494-8
https://doi.org/10.1093/bioinformatics/btaa800
https://doi.org/10.1093/bioinformatics/btaa800
https://doi.org/10.1093/bioinformatics/btaa800
https://doi.org/10.1109/bibm.2015.7359871
https://doi.org/10.1109/bibm.2015.7359871
https://doi.org/10.1109/bibm.2015.7359871
https://doi.org/10.1038/s41598-021-88875-4
https://doi.org/10.1038/s41598-021-88875-4
https://doi.org/10.1038/s41598-021-88875-4
https://doi.org/10.1109/bibm49941.2020.9313286
https://doi.org/10.1109/bibm49941.2020.9313286
https://doi.org/10.1109/bibm49941.2020.9313286
https://doi.org/10.1007/s12539-022-00536-w
https://doi.org/10.1007/s12539-022-00536-w
https://doi.org/10.1038/s41598-022-14218-6
https://doi.org/10.1038/s41598-022-14218-6
https://doi.org/10.1038/s41598-022-14218-6
https://proceedings.mlr.press/v108/martens20b.html
https://proceedings.mlr.press/v108/martens20b.html
https://doi.org/10.1093/bib/bbac172
https://doi.org/10.1093/bib/bbac172
https://doi.org/10.1093/bioinformatics/btaa293
https://doi.org/10.1093/bioinformatics/btaa293
https://doi.org/10.1186/s12859-019-2769-6
https://doi.org/10.1186/s12859-019-2769-6
https://doi.org/10.1101/2023.01.15.524109
https://doi.org/10.1101/2023.01.15.524109
https://doi.org/10.1101/2023.01.15.524109

bibliography 321

[502] L. Seninge, I. Anastopoulos, H. Ding, and J. Stuart. “VEGA is an interpretable generative
model for inferring biological network activity in single-cell transcriptomics.” In: Nature
Communications 12.1 (Sept. 2021). issn: 2041-1723. doi: 10.1038/s41467-021-26017-0. url:
http://dx.doi.org/10.1038/s41467-021-26017-0 (cit. on p. 45).

[503] J. S. Walbech, S. Kinalis, O. Winther, F. C. Nielsen, and F. O. Bagger. “Interpretable Autoen-
coders Trained on Single Cell Sequencing Data Can Transfer Directly to Data from Unseen
Tissues.” In: Cells 11.1 (Dec. 2021), p. 85. issn: 2073-4409. doi: 10.3390/cells11010085. url:
http://dx.doi.org/10.3390/cells11010085 (cit. on p. 45).

[504] Z. Wang, H. Wang, J. Zhao, and C. Zheng. “scSemiAAE: a semi-supervised clustering model
for single-cell RNA-seq data.” In: BMC Bioinformatics 24.1 (May 2023). doi: 10.1186/s12859-0
23-05339-4. url: https://doi.org/10.1186/s12859-023-05339-4 (cit. on p. 45).

[505] S. K. Pati, M. K. Gupta, R. Shai, A. Banerjee, and A. Ghosh. “Missing value estimation of
microarray data using Sim-GAN.” In: Knowledge and Information Systems 64.10 (July 2022),
pp. 2661–2687. issn: 0219-3116. doi: 10.1007/s10115-022-01718-0. url: http://dx.doi.org
/10.1007/s10115-022-01718-0 (cit. on p. 45).

[506] S. Zhao, L. Zhang, and X. Liu. “AE-TPGG: a novel autoencoder-based approach for single-cell
RNA-seq data imputation and dimensionality reduction.” In: Frontiers of Computer Science 17.3
(Oct. 2022). doi: 10.1007/s11704-022-2011-y. url: https://doi.org/10.1007/s11704-022-
2011-y (cit. on p. 45).

[507] A. B. Dincer, J. D. Janizek, and S.-I. Lee. “Adversarial deconfounding autoencoder for learning
robust gene expression embeddings.” In: Bioinformatics 36.Supplement_2 (Dec. 2020), pp. i573–
i582. doi: 10.1093/bioinformatics/btaa796. url: https://doi.org/10.1093/bioinformati
cs/btaa796 (cit. on p. 45).

[508] M. B. Badsha, R. Li, B. Liu, Y. I. Li, M. Xian, N. E. Banovich, and A. Q. Fu. “Imputation of
single-cell gene expression with an autoencoder neural network.” In: Quantitative Biology 8.1
(Jan. 2020), pp. 78–94. doi: 10.1007/s40484-019-0192-7. url: https://doi.org/10.1007/s40
484-019-0192-7 (cit. on p. 45).

[509] C. Arisdakessian, O. Poirion, B. Yunits, X. Zhu, and L. X. Garmire. “DeepImpute: an accurate,
fast, and scalable deep neural network method to impute single-cell RNA-seq data.” In: Genome
Biology 20.1 (Oct. 2019). doi: 10.1186/s13059-019-1837-6. url: https://doi.org/10.1186/s
13059-019-1837-6 (cit. on p. 45).

[510] D. Talwar, A. Mongia, D. Sengupta, and A. Majumdar. “AutoImpute: Autoencoder based
imputation of single-cell RNA-seq data.” In: Scientific Reports 8.1 (Nov. 2018). doi: 10.1038/s4
1598-018-34688-x. url: https://doi.org/10.1038/s41598-018-34688-x (cit. on p. 45).

[511] D. Pandey and P. P. Onkara. “Improved downstream functional analysis of single-cell RNA-
sequence data using DGAN.” In: Scientific Reports 13.1 (Jan. 2023). doi: 10.1038/s41598-023-
28952-y. url: https://doi.org/10.1038/s41598-023-28952-y (cit. on p. 45).

[512] Y. He, H. Yuan, C. Wu, and Z. Xie. “DISC: a highly scalable and accurate inference of gene
expression and structure for single-cell transcriptomes using semi-supervised deep learning.”
In: Genome Biology 21.1 (July 2020). doi: 10.1186/s13059-020-02083-3. url: https://doi.or
g/10.1186/s13059-020-02083-3 (cit. on p. 45).

[513] D. Tran, F. C. Harris, B. Tran, N. S. Vo, H. Nguyen, and T. Nguyen. “Single-Cell RNA
Sequencing Data Imputation Using Deep Neural Network.” In: Advances in Intelligent Systems
and Computing. Springer International Publishing, 2021, pp. 403–410. doi: 10.1007/978-3-030
-70416-2_52. url: https://doi.org/10.1007/978-3-030-70416-2_52 (cit. on p. 45).

[514] R. Viñas, T. Azevedo, E. R. Gamazon, and P. Liò. “Deep Learning Enables Fast and Accurate
Imputation of Gene Expression.” In: Frontiers in Genetics 12 (Apr. 2021). doi: 10.3389/fgene.2
021.624128. url: https://doi.org/10.3389/fgene.2021.624128 (cit. on p. 45).

[515] Y. Xu, Z. Zhang, L. You, J. Liu, Z. Fan, and X. Zhou. “scIGANs: single-cell RNA-seq imputation
using generative adversarial networks.” In: Nucleic Acids Research 48.15 (June 2020), e85–e85.
doi: 10.1093/nar/gkaa506. url: https://doi.org/10.1093/nar/gkaa506 (cit. on p. 45).

[516] M. K. Gunady, J. Kancherla, H. C. Bravo, and S. Feizi. “scGAIN: Single Cell RNA-seq Data
Imputation using Generative Adversarial Networks.” In: (Nov. 2019). doi: 10.1101/837302.
url: https://doi.org/10.1101/837302 (cit. on p. 45).

[517] Y. Deng, F. Bao, Q. Dai, L. F. Wu, and S. J. Altschuler. “Scalable analysis of cell-type composition
from single-cell transcriptomics using deep recurrent learning.” In: Nature Methods 16.4 (Mar.
2019), pp. 311–314. doi: 10.1038/s41592-019-0353-7. url: https://doi.org/10.1038/s4159
2-019-0353-7 (cit. on p. 45).

[518] M. Amodio et al. “Exploring single-cell data with deep multitasking neural networks.” In:
Nature Methods 16.11 (Oct. 2019), pp. 1139–1145. doi: 10.1038/s41592- 019- 0576- 7. url:
https://doi.org/10.1038/s41592-019-0576-7 (cit. on p. 45).

https://doi.org/10.1038/s41467-021-26017-0
http://dx.doi.org/10.1038/s41467-021-26017-0
https://doi.org/10.3390/cells11010085
http://dx.doi.org/10.3390/cells11010085
https://doi.org/10.1186/s12859-023-05339-4
https://doi.org/10.1186/s12859-023-05339-4
https://doi.org/10.1186/s12859-023-05339-4
https://doi.org/10.1007/s10115-022-01718-0
http://dx.doi.org/10.1007/s10115-022-01718-0
http://dx.doi.org/10.1007/s10115-022-01718-0
https://doi.org/10.1007/s11704-022-2011-y
https://doi.org/10.1007/s11704-022-2011-y
https://doi.org/10.1007/s11704-022-2011-y
https://doi.org/10.1093/bioinformatics/btaa796
https://doi.org/10.1093/bioinformatics/btaa796
https://doi.org/10.1093/bioinformatics/btaa796
https://doi.org/10.1007/s40484-019-0192-7
https://doi.org/10.1007/s40484-019-0192-7
https://doi.org/10.1007/s40484-019-0192-7
https://doi.org/10.1186/s13059-019-1837-6
https://doi.org/10.1186/s13059-019-1837-6
https://doi.org/10.1186/s13059-019-1837-6
https://doi.org/10.1038/s41598-018-34688-x
https://doi.org/10.1038/s41598-018-34688-x
https://doi.org/10.1038/s41598-018-34688-x
https://doi.org/10.1038/s41598-023-28952-y
https://doi.org/10.1038/s41598-023-28952-y
https://doi.org/10.1038/s41598-023-28952-y
https://doi.org/10.1186/s13059-020-02083-3
https://doi.org/10.1186/s13059-020-02083-3
https://doi.org/10.1186/s13059-020-02083-3
https://doi.org/10.1007/978-3-030-70416-2_52
https://doi.org/10.1007/978-3-030-70416-2_52
https://doi.org/10.1007/978-3-030-70416-2_52
https://doi.org/10.3389/fgene.2021.624128
https://doi.org/10.3389/fgene.2021.624128
https://doi.org/10.3389/fgene.2021.624128
https://doi.org/10.1093/nar/gkaa506
https://doi.org/10.1093/nar/gkaa506
https://doi.org/10.1101/837302
https://doi.org/10.1101/837302
https://doi.org/10.1038/s41592-019-0353-7
https://doi.org/10.1038/s41592-019-0353-7
https://doi.org/10.1038/s41592-019-0353-7
https://doi.org/10.1038/s41592-019-0576-7
https://doi.org/10.1038/s41592-019-0576-7

322 bibliography

[519] D. Tran, H. Nguyen, B. Tran, C. L. Vecchia, H. N. Luu, and T. Nguyen. “Fast and precise single-
cell data analysis using a hierarchical autoencoder.” In: Nature Communications 12.1 (Feb. 2021).
doi: 10.1038/s41467-021-21312-2. url: https://doi.org/10.1038/s41467-021-21312-2
(cit. on p. 45).

[520] M. Huang, Z. Zhang, and N. R. Zhang. “Dimension reduction and denoising of single-cell
RNA sequencing data in the presence of observed confounding variables.” In: (Aug. 2020).
doi: 10.1101/2020.08.03.234765. url: http://dx.doi.org/10.1101/2020.08.03.234765
(cit. on p. 45).

[521] X. Li, S. Li, L. Huang, S. Zhang, and K.-c. Wong. “High-throughput single-cell RNA-seq
data imputation and characterization with surrogate-assisted automated deep learning.” In:
Briefings in Bioinformatics 23.1 (Sept. 2021). issn: 1477-4054. doi: 10.1093/bib/bbab368. url:
http://dx.doi.org/10.1093/bib/bbab368 (cit. on p. 45).

[522] T. Tian, M. R. Min, and Z. Wei. “Model-based autoencoders for imputing discrete single-cell
RNA-seq data.” In: Methods 192 (Aug. 2021), pp. 112–119. issn: 1046-2023. doi: 10.1016/j.yme
th.2020.09.010. url: http://dx.doi.org/10.1016/j.ymeth.2020.09.010 (cit. on p. 45).

[523] W. Chi and M. Deng. “Sparsity-Penalized Stacked Denoising Autoencoders for Imputing
Single-Cell RNA-seq Data.” In: Genes 11.5 (May 2020), p. 532. issn: 2073-4425. doi: 10.3390/ge
nes11050532. url: http://dx.doi.org/10.3390/genes11050532 (cit. on p. 45).

[524] J. Rao, X. Zhou, Y. Lu, H. Zhao, and Y. Yang. “Imputing single-cell RNA-seq data by combining
graph convolution and autoencoder neural networks.” In: iScience 24.5 (May 2021), p. 102393.
issn: 2589-0042. doi: 10.1016/j.isci.2021.102393. url: http://dx.doi.org/10.1016/j.isc
i.2021.102393 (cit. on p. 45).

[525] L. Xu, Y. Xu, T. Xue, X. Zhang, and J. Li. “AdImpute: An Imputation Method for Single-Cell
RNA-Seq Data Based on Semi-Supervised Autoencoders.” In: Frontiers in Genetics 12 (Sept.
2021). issn: 1664-8021. doi: 10.3389/fgene.2021.739677. url: http://dx.doi.org/10.3389
/fgene.2021.739677 (cit. on p. 45).

[526] C. Xu, L. Cai, and J. Gao. “An efficient scRNA-seq dropout imputation method using graph
attention network.” In: BMC Bioinformatics 22.1 (Dec. 2021). issn: 1471-2105. doi: 10.1186/s12
859-021-04493-x. url: http://dx.doi.org/10.1186/s12859-021-04493-x (cit. on p. 45).

[527] X. Zhang, Z. Chen, R. Bhadani, S. Cao, M. Lu, N. Lytal, Y. Chen, and L. An. “NISC: Neural
Network-Imputation for Single-Cell RNA Sequencing and Cell Type Clustering.” In: Frontiers
in Genetics 13 (May 2022). issn: 1664-8021. doi: 10.3389/fgene.2022.847112. url: http://dx
.doi.org/10.3389/fgene.2022.847112 (cit. on p. 45).

[528] L. Huang, M. Song, H. Shen, H. Hong, P. Gong, H.-W. Deng, and C. Zhang. “Deep Learning
Methods for Omics Data Imputation.” In: Biology 12.10 (Oct. 2023), p. 1313. doi: 10.3390/biol
ogy12101313. url: https://doi.org/10.3390/biology12101313 (cit. on p. 45).

[529] R. Shahbazian and S. Greco. “Generative Adversarial Networks Assist Missing Data Imputa-
tion: A Comprehensive Survey and Evaluation.” In: IEEE Access 11 (2023), pp. 88908–88928.
issn: 2169-3536. doi: 10.1109/access.2023.3306721. url: http://dx.doi.org/10.1109
/ACCESS.2023.3306721 (cit. on p. 45).

[530] F. Hausmann, C. Ergen, R. Khatri, M. Marouf, S. Hänzelmann, N. Gagliani, S. Huber, P.
Machart, and S. Bonn. “DISCERN: deep single-cell expression reconstruction for improved
cell clustering and cell subtype and state detection.” In: Genome Biology 24.1 (Sept. 2023). doi:
10.1186/s13059-023-03049-x. url: https://doi.org/10.1186/s13059-023-03049-x (cit. on
p. 45).

[531] M. Kircher, E. Chludzinski, J. Krepel, B. Saremi, A. Beineke, and K. Jung. “Augmentation
of Transcriptomic Data for Improved Classification of Patients with Respiratory Diseases
of Viral Origin.” In: International Journal of Molecular Sciences 23.5 (Feb. 2022), p. 2481. doi:
10.3390/ijms23052481. url: https://doi.org/10.3390/ijms23052481 (cit. on p. 45).

[532] B. Jahanyar, H. Tabatabaee, and A. Rowhanimanesh. “MS-ACGAN: A modified auxiliary
classifier generative adversarial network for schizophrenia’s samples augmentation based
on microarray gene expression data.” In: Computers in Biology and Medicine 162 (Aug. 2023),
p. 107024. doi: 10.1016/j.compbiomed.2023.107024. url: https://doi.org/10.1016/j.comp
biomed.2023.107024 (cit. on p. 45).

[533] A. Lacan, M. Sebag, and B. Hanczar. “GAN-based data augmentation for transcriptomics:
survey and comparative assessment.” In: Bioinformatics 39.Supplement_1 (June 2023), pp. i111–
i120. doi: 10.1093/bioinformatics/btad239. url: https://doi.org/10.1093/bioinformati
cs/btad239 (cit. on p. 45).

[534] G. He, M. Chen, Y. Bian, and E. Yang. “MTM: a multi-task learning framework to predict
individualized tissue gene expression profiles.” In: Bioinformatics 39.6 (June 2023). Ed. by I.
Birol. doi: 10.1093/bioinformatics/btad363. url: https://doi.org/10.1093/bioinformati
cs/btad363 (cit. on p. 45).

https://doi.org/10.1038/s41467-021-21312-2
https://doi.org/10.1038/s41467-021-21312-2
https://doi.org/10.1101/2020.08.03.234765
http://dx.doi.org/10.1101/2020.08.03.234765
https://doi.org/10.1093/bib/bbab368
http://dx.doi.org/10.1093/bib/bbab368
https://doi.org/10.1016/j.ymeth.2020.09.010
https://doi.org/10.1016/j.ymeth.2020.09.010
http://dx.doi.org/10.1016/j.ymeth.2020.09.010
https://doi.org/10.3390/genes11050532
https://doi.org/10.3390/genes11050532
http://dx.doi.org/10.3390/genes11050532
https://doi.org/10.1016/j.isci.2021.102393
http://dx.doi.org/10.1016/j.isci.2021.102393
http://dx.doi.org/10.1016/j.isci.2021.102393
https://doi.org/10.3389/fgene.2021.739677
http://dx.doi.org/10.3389/fgene.2021.739677
http://dx.doi.org/10.3389/fgene.2021.739677
https://doi.org/10.1186/s12859-021-04493-x
https://doi.org/10.1186/s12859-021-04493-x
http://dx.doi.org/10.1186/s12859-021-04493-x
https://doi.org/10.3389/fgene.2022.847112
http://dx.doi.org/10.3389/fgene.2022.847112
http://dx.doi.org/10.3389/fgene.2022.847112
https://doi.org/10.3390/biology12101313
https://doi.org/10.3390/biology12101313
https://doi.org/10.3390/biology12101313
https://doi.org/10.1109/access.2023.3306721
http://dx.doi.org/10.1109/ACCESS.2023.3306721
http://dx.doi.org/10.1109/ACCESS.2023.3306721
https://doi.org/10.1186/s13059-023-03049-x
https://doi.org/10.1186/s13059-023-03049-x
https://doi.org/10.3390/ijms23052481
https://doi.org/10.3390/ijms23052481
https://doi.org/10.1016/j.compbiomed.2023.107024
https://doi.org/10.1016/j.compbiomed.2023.107024
https://doi.org/10.1016/j.compbiomed.2023.107024
https://doi.org/10.1093/bioinformatics/btad239
https://doi.org/10.1093/bioinformatics/btad239
https://doi.org/10.1093/bioinformatics/btad239
https://doi.org/10.1093/bioinformatics/btad363
https://doi.org/10.1093/bioinformatics/btad363
https://doi.org/10.1093/bioinformatics/btad363

bibliography 323

[535] S. Kinalis, F. C. Nielsen, O. Winther, and F. O. Bagger. “Deconvolution of autoencoders to learn
biological regulatory modules from single cell mRNA sequencing data.” In: BMC Bioinformatics
20.1 (July 2019). doi: 10.1186/s12859-019-2952-9. url: https://doi.org/10.1186/s12859-
019-2952-9 (cit. on p. 45).

[536] L. Alessandri and R. A. Calogero. “Functional-Feature-Based Data Reduction Using Sparsely
Connected Autoencoders.” In: Methods in Molecular Biology. Springer US, Dec. 2022, pp. 231–
240. doi: 10.1007/978-1-0716-2756-3_11. url: https://doi.org/10.1007/978-1-0716-275
6-3_11 (cit. on p. 45).

[537] J. Ding. “A versatile model for single-cell data analysis.” In: Nature Computational Science 1.7
(July 2021), pp. 460–461. doi: 10.1038/s43588-021-00103-1. url: https://doi.org/10.1038
/s43588-021-00103-1 (cit. on p. 45).

[538] H. Shu, J. Zhou, Q. Lian, H. Li, D. Zhao, J. Zeng, and J. Ma. “Modeling gene regulatory
networks using neural network architectures.” In: Nature Computational Science 1.7 (July 2021),
pp. 491–501. doi: 10.1038/s43588-021-00099-8. url: https://doi.org/10.1038/s43588-02
1-00099-8 (cit. on p. 45).

[539] Y. Chen, Y. Wang, Y. Chen, Y. Cheng, Y. Wei, Y. Li, J. Wang, Y. Wei, T.-F. Chan, and Y. Li.
“Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene
analysis.” In: Nature Communications 13.1 (Nov. 2022). doi: 10.1038/s41467-022-34550-9. url:
https://doi.org/10.1038/s41467-022-34550-9 (cit. on p. 46).

[540] F. Jackson and T. Lukasiewicz. “Deconvolution of cell-free DNA in cancer liquid biopsy using
a deep AutoEncoder.” In: Proceedings of the 14th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics. ACM, Sept. 2023. doi: 10.1145/3584371.3612976.
url: https://doi.org/10.1145/3584371.3612976 (cit. on p. 46).

[541] T. A. Geddes, T. Kim, L. Nan, J. G. Burchfield, J. Y. H. Yang, D. Tao, and P. Yang. “Autoencoder-
based cluster ensembles for single-cell RNA-seq data analysis.” In: BMC Bioinformatics 20.S19

(Dec. 2019). doi: 10.1186/s12859-019-3179-5. url: https://doi.org/10.1186/s12859-019-
3179-5 (cit. on p. 46).

[542] W. Pan, F. Long, and J. Pan. “ScInfoVAE: interpretable dimensional reduction of single cell
transcription data with variational autoencoders and extended mutual information regulariza-
tion.” In: BioData Mining 16.1 (June 2023). issn: 1756-0381. doi: 10.1186/s13040-023-00333-1.
url: http://dx.doi.org/10.1186/s13040-023-00333-1 (cit. on p. 46).

[543] T. Nguyen, Y. Wei, Y. Nakada, J. Y. Chen, Y. Zhou, G. Walcott, and J. Zhang. “Analysis of
cardiac single-cell RNA-sequencing data can be improved by the use of artificial-intelligence-
based tools.” In: Scientific Reports 13.1 (Apr. 2023). doi: 10.1038/s41598-023-32293-1. url:
https://doi.org/10.1038/s41598-023-32293-1 (cit. on p. 46).

[544] J. D. Janizek, A. Spiro, S. Celik, B. W. Blue, J. C. Russell, T.-I. Lee, M. Kaeberlin, and S.-I. Lee.
“PAUSE: principled feature attribution for unsupervised gene expression analysis.” In: Genome
Biology 24.1 (Apr. 2023). doi: 10.1186/s13059-023-02901-4. url: https://doi.org/10.1186
/s13059-023-02901-4 (cit. on p. 46).

[545] J. Ding and A. Regev. “Deep generative model embedding of single-cell RNA-Seq profiles
on hyperspheres and hyperbolic spaces.” In: Nature Communications 12.1 (May 2021). issn:
2041-1723. doi: 10.1038/s41467-021-22851-4. url: http://dx.doi.org/10.1038/s41467-02
1-22851-4 (cit. on p. 46).

[546] B. Mieth, J. R. F. Hockley, N. Görnitz, M. M.-C. Vidovic, K.-R. Müller, A. Gutteridge, and
D. Ziemek. “Using transfer learning from prior reference knowledge to improve the clustering
of single-cell RNA-Seq data.” In: Scientific Reports 9.1 (Dec. 2019). issn: 2045-2322. doi: 10.1
038/s41598-019-56911-z. url: http://dx.doi.org/10.1038/s41598-019-56911-z (cit. on
p. 46).

[547] L. Yu, C. Liu, J. Y. H. Yang, and P. Yang. “Ensemble deep learning of embeddings for clustering
multimodal single-cell omics data.” In: Bioinformatics 39.6 (June 2023). Ed. by M. Nikolski. issn:
1367-4811. doi: 10.1093/bioinformatics/btad382. url: http://dx.doi.org/10.1093/bioinf
ormatics/btad382 (cit. on p. 46).

[548] T. Zhang, A. Amirsoleimani, J. K. Eshraghian, M. R. Azghadi, R. Genov, and Y. Xia. “SSCAE:
A Neuromorphic SNN Autoencoder for sc-RNA-seq Dimensionality Reduction.” In: 2023 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, May 2023. doi: 10.1109/iscas4
6773.2023.10181994. url: http://dx.doi.org/10.1109/ISCAS46773.2023.10181994 (cit. on
p. 46).

[549] E. Lin, S. Mukherjee, and S. Kannan. “A deep adversarial variational autoencoder model for
dimensionality reduction in single-cell RNA sequencing analysis.” In: BMC Bioinformatics 21.1
(Feb. 2020). issn: 1471-2105. doi: 10.1186/s12859-020-3401-5. url: http://dx.doi.org/10
.1186/s12859-020-3401-5 (cit. on p. 46).

https://doi.org/10.1186/s12859-019-2952-9
https://doi.org/10.1186/s12859-019-2952-9
https://doi.org/10.1186/s12859-019-2952-9
https://doi.org/10.1007/978-1-0716-2756-3_11
https://doi.org/10.1007/978-1-0716-2756-3_11
https://doi.org/10.1007/978-1-0716-2756-3_11
https://doi.org/10.1038/s43588-021-00103-1
https://doi.org/10.1038/s43588-021-00103-1
https://doi.org/10.1038/s43588-021-00103-1
https://doi.org/10.1038/s43588-021-00099-8
https://doi.org/10.1038/s43588-021-00099-8
https://doi.org/10.1038/s43588-021-00099-8
https://doi.org/10.1038/s41467-022-34550-9
https://doi.org/10.1038/s41467-022-34550-9
https://doi.org/10.1145/3584371.3612976
https://doi.org/10.1145/3584371.3612976
https://doi.org/10.1186/s12859-019-3179-5
https://doi.org/10.1186/s12859-019-3179-5
https://doi.org/10.1186/s12859-019-3179-5
https://doi.org/10.1186/s13040-023-00333-1
http://dx.doi.org/10.1186/s13040-023-00333-1
https://doi.org/10.1038/s41598-023-32293-1
https://doi.org/10.1038/s41598-023-32293-1
https://doi.org/10.1186/s13059-023-02901-4
https://doi.org/10.1186/s13059-023-02901-4
https://doi.org/10.1186/s13059-023-02901-4
https://doi.org/10.1038/s41467-021-22851-4
http://dx.doi.org/10.1038/s41467-021-22851-4
http://dx.doi.org/10.1038/s41467-021-22851-4
https://doi.org/10.1038/s41598-019-56911-z
https://doi.org/10.1038/s41598-019-56911-z
http://dx.doi.org/10.1038/s41598-019-56911-z
https://doi.org/10.1093/bioinformatics/btad382
http://dx.doi.org/10.1093/bioinformatics/btad382
http://dx.doi.org/10.1093/bioinformatics/btad382
https://doi.org/10.1109/iscas46773.2023.10181994
https://doi.org/10.1109/iscas46773.2023.10181994
http://dx.doi.org/10.1109/ISCAS46773.2023.10181994
https://doi.org/10.1186/s12859-020-3401-5
http://dx.doi.org/10.1186/s12859-020-3401-5
http://dx.doi.org/10.1186/s12859-020-3401-5

324 bibliography

[550] C. Zhang. “Single-Cell Data Analysis Using MMD Variational Autoencoder for a More
Informative Latent Representation.” In: (Apr. 2019). doi: 10.1101/613414. url: http://dx.do
i.org/10.1101/613414 (cit. on p. 46).

[551] J. C. Kimmel. “Disentangling latent representations of single cell RNA-seq experiments.” In:
(Mar. 2020). doi: 10.1101/2020.03.04.972166. url: http://dx.doi.org/10.1101/2020.03.0
4.972166 (cit. on p. 46).

[552] E. Prince and T. C. Hankinson. “HD Spot: Interpretable Deep Learning Classification of Single
Cell Transcript Data.” In: (Oct. 2019). doi: 10.1101/822759. url: http://dx.doi.org/10.1101
/822759 (cit. on p. 46).

[553] S. Rybakov, M. Lotfollahi, F. J. Theis, and F. A. Wolf. “Learning interpretable latent autoencoder
representations with annotations of feature sets.” In: (Dec. 2020). doi: 10.1101/2020.12.02.4
01182. url: http://dx.doi.org/10.1101/2020.12.02.401182 (cit. on p. 46).

[554] S. Lukassen, F. W. Ten, L. Adam, R. Eils, and C. Conrad. “Gene set inference from single-cell
sequencing data using a hybrid of matrix factorization and variational autoencoders.” In:
Nature Machine Intelligence 2.12 (Dec. 2020), pp. 800–809. issn: 2522-5839. doi: 10.1038/s42256
-020-00269-9. url: http://dx.doi.org/10.1038/s42256-020-00269-9 (cit. on p. 46).

[555] A. K. Mondal, H. Asnani, P. Singla, and P. AP. “scRAE: Deterministic Regularized Autoen-
coders With Flexible Priors for Clustering Single-Cell Gene Expression Data.” In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics 19.5 (Sept. 2022), pp. 2996–3007. issn:
2374-0043. doi: 10.1109/tcbb.2021.3098394. url: http://dx.doi.org/10.1109/tcbb.2021
.3098394 (cit. on p. 46).

[556] B. Yu, C. Chen, R. Qi, R. Zheng, P. J. Skillman-Lawrence, X. Wang, A. Ma, and H. Gu. “scGMAI:
a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder.”
In: Briefings in Bioinformatics (Dec. 2020). issn: 1477-4054. doi: 10.1093/bib/bbaa316. url:
http://dx.doi.org/10.1093/bib/bbaa316 (cit. on p. 46).

[557] D. Buterez, I. Bica, I. Tariq, H. Andrés-Terré, and P. Liò. “CellVGAE: an unsupervised scRNA-
seq analysis workflow with graph attention networks.” In: Bioinformatics 38.5 (Dec. 2021).
Ed. by V. Boeva, pp. 1277–1286. issn: 1367-4811. doi: 10.1093/bioinformatics/btab804. url:
http://dx.doi.org/10.1093/bioinformatics/btab804 (cit. on p. 46).

[558] H. Cho, B. Berger, and J. Peng. “Generalizable and Scalable Visualization of Single-Cell Data
Using Neural Networks.” In: Cell Systems 7.2 (Aug. 2018), 185–191.e4. issn: 2405-4712. doi:
10.1016/j.cels.2018.05.017. url: http://dx.doi.org/10.1016/j.cels.2018.05.017
(cit. on p. 46).

[559] D. Wang and J. Gu. “VASC: Dimension Reduction and Visualization of Single-cell RNA-seq
Data by Deep Variational Autoencoder.” In: Genomics, Proteomics & Bioinformatics 16.5 (Oct.
2018), pp. 320–331. issn: 1672-0229. doi: 10.1016/j.gpb.2018.08.003. url: http://dx.doi.o
rg/10.1016/j.gpb.2018.08.003 (cit. on p. 46).

[560] J. Li, W. Jiang, H. Han, J. Liu, B. Liu, and Y. Wang. “ScGSLC: An unsupervised graph similarity
learning framework for single-cell RNA-seq data clustering.” In: Computational Biology and
Chemistry 90 (Feb. 2021), p. 107415. issn: 1476-9271. doi: 10.1016/j.compbiolchem.2020.1074
15. url: http://dx.doi.org/10.1016/j.compbiolchem.2020.107415 (cit. on p. 46).

[561] I. Bica, H. Andrés-Terré, A. Cvejic, and P. Liò. “Unsupervised generative and graph represen-
tation learning for modelling cell differentiation.” In: Scientific Reports 10.1 (June 2020). issn:
2045-2322. doi: 10.1038/s41598-020-66166-8. url: http://dx.doi.org/10.1038/s41598-02
0-66166-8 (cit. on p. 46).

[562] S. Zhang, X. Li, Q. Lin, J. Lin, and K.-C. Wong. “Uncovering the key dimensions of high-
throughput biomolecular data using deep learning.” In: Nucleic Acids Research 48.10 (Mar.
2020), e56–e56. issn: 1362-4962. doi: 10.1093/nar/gkaa191. url: http://dx.doi.org/10.1093
/nar/gkaa191 (cit. on p. 46).

[563] G. Gut, S. G. Stark, G. Rätsch, and N. R. Davidson. “pmVAE: Learning Interpretable Single-Cell
Representations with Pathway Modules.” In: (Jan. 2021). doi: 10.1101/2021.01.28.428664.
url: http://dx.doi.org/10.1101/2021.01.28.428664 (cit. on p. 46).

[564] V. Svensson, A. Gayoso, N. Yosef, and L. Pachter. “Interpretable factor models of single-cell
RNA-seq via variational autoencoders.” In: Bioinformatics 36.11 (Mar. 2020). Ed. by A. Mathelier,
pp. 3418–3421. issn: 1367-4811. doi: 10.1093/bioinformatics/btaa169. url: http://dx.doi
.org/10.1093/bioinformatics/btaa169 (cit. on p. 46).

[565] J. Zhao, N. Wang, H. Wang, C. Zheng, and Y. Su. “SCDRHA: A scRNA-Seq Data Dimensionality
Reduction Algorithm Based on Hierarchical Autoencoder.” In: Frontiers in Genetics 12 (Aug.
2021). issn: 1664-8021. doi: 10.3389/fgene.2021.733906. url: http://dx.doi.org/10.3389
/fgene.2021.733906 (cit. on p. 46).

https://doi.org/10.1101/613414
http://dx.doi.org/10.1101/613414
http://dx.doi.org/10.1101/613414
https://doi.org/10.1101/2020.03.04.972166
http://dx.doi.org/10.1101/2020.03.04.972166
http://dx.doi.org/10.1101/2020.03.04.972166
https://doi.org/10.1101/822759
http://dx.doi.org/10.1101/822759
http://dx.doi.org/10.1101/822759
https://doi.org/10.1101/2020.12.02.401182
https://doi.org/10.1101/2020.12.02.401182
http://dx.doi.org/10.1101/2020.12.02.401182
https://doi.org/10.1038/s42256-020-00269-9
https://doi.org/10.1038/s42256-020-00269-9
http://dx.doi.org/10.1038/s42256-020-00269-9
https://doi.org/10.1109/tcbb.2021.3098394
http://dx.doi.org/10.1109/tcbb.2021.3098394
http://dx.doi.org/10.1109/tcbb.2021.3098394
https://doi.org/10.1093/bib/bbaa316
http://dx.doi.org/10.1093/bib/bbaa316
https://doi.org/10.1093/bioinformatics/btab804
http://dx.doi.org/10.1093/bioinformatics/btab804
https://doi.org/10.1016/j.cels.2018.05.017
http://dx.doi.org/10.1016/j.cels.2018.05.017
https://doi.org/10.1016/j.gpb.2018.08.003
http://dx.doi.org/10.1016/j.gpb.2018.08.003
http://dx.doi.org/10.1016/j.gpb.2018.08.003
https://doi.org/10.1016/j.compbiolchem.2020.107415
https://doi.org/10.1016/j.compbiolchem.2020.107415
http://dx.doi.org/10.1016/j.compbiolchem.2020.107415
https://doi.org/10.1038/s41598-020-66166-8
http://dx.doi.org/10.1038/s41598-020-66166-8
http://dx.doi.org/10.1038/s41598-020-66166-8
https://doi.org/10.1093/nar/gkaa191
http://dx.doi.org/10.1093/nar/gkaa191
http://dx.doi.org/10.1093/nar/gkaa191
https://doi.org/10.1101/2021.01.28.428664
http://dx.doi.org/10.1101/2021.01.28.428664
https://doi.org/10.1093/bioinformatics/btaa169
http://dx.doi.org/10.1093/bioinformatics/btaa169
http://dx.doi.org/10.1093/bioinformatics/btaa169
https://doi.org/10.3389/fgene.2021.733906
http://dx.doi.org/10.3389/fgene.2021.733906
http://dx.doi.org/10.3389/fgene.2021.733906

bibliography 325

[566] H. Wang, J. Zhao, Y. Su, and C.-H. Zheng. “scCDG: A Method based on DAE and GCN for
scRNA-seq data Analysis.” In: IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics (2021), pp. 1–1. issn: 2374-0043. doi: 10.1109/tcbb.2021.3126641. url: http://dx.doi.or
g/10.1109/TCBB.2021.3126641 (cit. on p. 46).

[567] M. Ciortan and M. Defrance. “GNN-based embedding for clustering scRNA-seq data.” In:
Bioinformatics 38.4 (Nov. 2021). Ed. by V. Boeva, pp. 1037–1044. issn: 1367-4811. doi: 10.10
93/bioinformatics/btab787. url: http://dx.doi.org/10.1093/bioinformatics/btab787
(cit. on p. 46).

[568] M. Ciortan and M. Defrance. “Contrastive self-supervised clustering of scRNA-seq data.” In:
BMC Bioinformatics 22.1 (May 2021). issn: 1471-2105. doi: 10.1186/s12859-021-04210-8. url:
http://dx.doi.org/10.1186/s12859-021-04210-8 (cit. on p. 46).

[569] N. Fortelny and C. Bock. “Knowledge-primed neural networks enable biologically interpretable
deep learning on single-cell sequencing data.” In: Genome Biology 21.1 (Aug. 2020). issn: 1474-
760X. doi: 10.1186/s13059-020-02100-5. url: http://dx.doi.org/10.1186/s13059-020-02
100-5 (cit. on p. 46).

[570] M. Bahrami, M. Maitra, C. Nagy, G. Turecki, H. R. Rabiee, and Y. Li. “Deep feature extraction
of single-cell transcriptomes by generative adversarial network.” In: Bioinformatics 37.10 (Dec.
2020). Ed. by I. Birol, pp. 1345–1351. issn: 1460-2059. doi: 10.1093/bioinformatics/btaa976.
url: http://dx.doi.org/10.1093/bioinformatics/btaa976 (cit. on p. 46).

[571] Y. Choi, R. Li, and G. Quon. “siVAE: interpretable deep generative models for single-cell
transcriptomes.” In: Genome Biology 24.1 (Feb. 2023). issn: 1474-760X. doi: 10.1186/s13059-02
3-02850-y. url: http://dx.doi.org/10.1186/s13059-023-02850-y (cit. on p. 46).

[572] F. W. Ten, D. Yuan, N. Jabareen, Y. J. Phua, R. Eils, S. Lukassen, and C. Conrad. “resVAE
ensemble: Unsupervised identification of gene sets in multi-modal single-cell sequencing data
using deep ensembles.” In: Frontiers in Cell and Developmental Biology 11 (Feb. 2023). issn:
2296-634X. doi: 10.3389/fcell.2023.1091047. url: http://dx.doi.org/10.3389/fcell.202
3.1091047 (cit. on p. 46).

[573] X. Zhang, X. Wang, G. V. Shivashankar, and C. Uhler. “Graph-based autoencoder integrates
spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s
disease.” In: Nature Communications 13.1 (Dec. 2022). doi: 10.1038/s41467-022-35233-1. url:
https://doi.org/10.1038/s41467-022-35233-1 (cit. on p. 46).

[574] C. Yan, M. Li, Z. Suo, J. Zhang, J. Wang, G. Zhang, W. Liang, and H. Luo. “Biomarkers
Identification of Hepatocellular Carcinoma Based on Multiomics Data Integration and Graph-
embedded Deep Neural Network.” In: Current Bioinformatics 18.6 (July 2023), pp. 459–471. doi:
10.2174/1574893618666230227122331. url: https://doi.org/10.2174/157489361866623022
7122331 (cit. on p. 46).

[575] S. Tasaki, C. Gaiteri, S. Mostafavi, and Y. Wang. “Deep learning decodes the principles of
differential gene expression.” In: Nature Machine Intelligence 2.7 (July 2020), pp. 376–386. issn:
2522-5839. doi: 10.1038/s42256-020-0201-6. url: http://dx.doi.org/10.1038/s42256-020
-0201-6 (cit. on p. 46).

[576] K. D. Yang, A. Belyaeva, S. Venkatachalapathy, K. Damodaran, A. Katcoff, A. Radhakrishnan,
G. V. Shivashankar, and C. Uhler. “Multi-domain translation between single-cell imaging
and sequencing data using autoencoders.” In: Nature Communications 12.1 (Jan. 2021). doi:
10.1038/s41467-020-20249-2. url: https://doi.org/10.1038/s41467-020-20249-2 (cit. on
p. 46).

[577] Z.-J. Cao and G. Gao. “Multi-omics single-cell data integration and regulatory inference with
graph-linked embedding.” In: Nature Biotechnology 40.10 (May 2022), pp. 1458–1466. issn:
1546-1696. doi: 10.1038/s41587-022-01284-4. url: http://dx.doi.org/10.1038/s41587-02
2-01284-4 (cit. on p. 46).

[578] T. Ashuach, M. I. Gabitto, R. V. Koodli, G.-A. Saldi, M. I. Jordan, and N. Yosef. “MultiVI: deep
generative model for the integration of multimodal data.” In: Nature Methods 20.8 (June 2023),
pp. 1222–1231. doi: 10.1038/s41592-023-01909-9. url: https://doi.org/10.1038/s41592-
023-01909-9 (cit. on p. 46).

[579] T. Ashuach, D. A. Reidenbach, A. Gayoso, and N. Yosef. “PeakVI: A deep generative model for
single-cell chromatin accessibility analysis.” In: Cell Reports Methods 2.3 (Mar. 2022), p. 100182.
doi: 10.1016/j.crmeth.2022.100182. url: https://doi.org/10.1016/j.crmeth.2022.10018
2 (cit. on p. 46).

[580] R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, and N. Yosef. “Deep generative modeling
for single-cell transcriptomics.” In: Nature Methods 15.12 (Nov. 2018), pp. 1053–1058. doi:
10.1038/s41592-018-0229-2. url: https://doi.org/10.1038/s41592-018-0229-2 (cit. on
p. 46).

https://doi.org/10.1109/tcbb.2021.3126641
http://dx.doi.org/10.1109/TCBB.2021.3126641
http://dx.doi.org/10.1109/TCBB.2021.3126641
https://doi.org/10.1093/bioinformatics/btab787
https://doi.org/10.1093/bioinformatics/btab787
http://dx.doi.org/10.1093/bioinformatics/btab787
https://doi.org/10.1186/s12859-021-04210-8
http://dx.doi.org/10.1186/s12859-021-04210-8
https://doi.org/10.1186/s13059-020-02100-5
http://dx.doi.org/10.1186/s13059-020-02100-5
http://dx.doi.org/10.1186/s13059-020-02100-5
https://doi.org/10.1093/bioinformatics/btaa976
http://dx.doi.org/10.1093/bioinformatics/btaa976
https://doi.org/10.1186/s13059-023-02850-y
https://doi.org/10.1186/s13059-023-02850-y
http://dx.doi.org/10.1186/s13059-023-02850-y
https://doi.org/10.3389/fcell.2023.1091047
http://dx.doi.org/10.3389/fcell.2023.1091047
http://dx.doi.org/10.3389/fcell.2023.1091047
https://doi.org/10.1038/s41467-022-35233-1
https://doi.org/10.1038/s41467-022-35233-1
https://doi.org/10.2174/1574893618666230227122331
https://doi.org/10.2174/1574893618666230227122331
https://doi.org/10.2174/1574893618666230227122331
https://doi.org/10.1038/s42256-020-0201-6
http://dx.doi.org/10.1038/s42256-020-0201-6
http://dx.doi.org/10.1038/s42256-020-0201-6
https://doi.org/10.1038/s41467-020-20249-2
https://doi.org/10.1038/s41467-020-20249-2
https://doi.org/10.1038/s41587-022-01284-4
http://dx.doi.org/10.1038/s41587-022-01284-4
http://dx.doi.org/10.1038/s41587-022-01284-4
https://doi.org/10.1038/s41592-023-01909-9
https://doi.org/10.1038/s41592-023-01909-9
https://doi.org/10.1038/s41592-023-01909-9
https://doi.org/10.1016/j.crmeth.2022.100182
https://doi.org/10.1016/j.crmeth.2022.100182
https://doi.org/10.1016/j.crmeth.2022.100182
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41592-018-0229-2

326 bibliography

[581] A. Gayoso, Z. Steier, R. Lopez, J. Regier, K. L. Nazor, A. Streets, and N. Yosef. “Joint prob-
abilistic modeling of single-cell multi-omic data with totalVI.” In: Nature Methods 18.3 (Feb.
2021), pp. 272–282. doi: 10.1038/s41592-020-01050-x. url: https://doi.org/10.1038/s415
92-020-01050-x (cit. on p. 46).

[582] Y. Cheng, X. Ma, L. Yuan, Z. Sun, and P. Wang. “Evaluating imputation methods for single-cell
RNA-seq data.” In: BMC Bioinformatics 24.1 (July 2023). doi: 10.1186/s12859-023-05417-7.
url: https://doi.org/10.1186/s12859-023-05417-7 (cit. on p. 46).

[583] X. Zhang and Y. Guo. “OmiTrans: Generative Adversarial Networks Based Omics-to-omics
Translation Framework.” In: 2022 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, Dec. 2022. doi: 10.1109/bibm55620.2022.9995537. url: https://doi.org/10.1
109/bibm55620.2022.9995537 (cit. on p. 46).

[584] A. Ma et al. “Single-cell biological network inference using a heterogeneous graph trans-
former.” In: Nature Communications 14.1 (Feb. 2023). doi: 10.1038/s41467-023-36559-0. url:
https://doi.org/10.1038/s41467-023-36559-0 (cit. on p. 46).

[585] Y. Xu, E. Begoli, and R. P. McCord. “sciCAN: single-cell chromatin accessibility and gene
expression data integration via cycle-consistent adversarial network.” In: npj Systems Biology
and Applications 8.1 (Sept. 2022). doi: 10.1038/s41540-022-00245-6. url: https://doi.org/1
0.1038/s41540-022-00245-6 (cit. on p. 46).

[586] C. Zuo and L. Chen. “Deep-joint-learning analysis model of single cell transcriptome and
open chromatin accessibility data.” In: Briefings in Bioinformatics 22.4 (Nov. 2020). doi: 10.1093
/bib/bbaa287. url: https://doi.org/10.1093/bib/bbaa287 (cit. on p. 46).

[587] C. Zuo, H. Dai, and L. Chen. “Deep cross-omics cycle attention model for joint analysis of
single-cell multi-omics data.” In: Bioinformatics 37.22 (May 2021). Ed. by A. Mathelier, pp. 4091–
4099. doi: 10.1093/bioinformatics/btab403. url: https://doi.org/10.1093/bioinformati
cs/btab403 (cit. on p. 46).

[588] K. E. Wu, K. E. Yost, H. Y. Chang, and J. Zou. “BABEL enables cross-modality translation
between multiomic profiles at single-cell resolution.” In: Proceedings of the National Academy of
Sciences 118.15 (Apr. 2021). doi: 10.1073/pnas.2023070118. url: https://doi.org/10.1073/p
nas.2023070118 (cit. on p. 46).

[589] M. Lotfollahi et al. “Mapping single-cell data to reference atlases by transfer learning.” In:
Nature Biotechnology 40.1 (Aug. 2021), pp. 121–130. doi: 10.1038/s41587-021-01001-7. url:
https://doi.org/10.1038/s41587-021-01001-7 (cit. on p. 46).

[590] F. Maseda, Z. Cang, and Q. Nie. “DEEPsc: A Deep Learning-Based Map Connecting Single-
Cell Transcriptomics and Spatial Imaging Data.” In: Frontiers in Genetics 12 (Mar. 2021). doi:
10.3389/fgene.2021.636743. url: https://doi.org/10.3389/fgene.2021.636743 (cit. on
p. 46).

[591] Y. Xu, P. Das, and R. P. McCord. “SMILE: mutual information learning for integration of
single-cell omics data.” In: Bioinformatics 38.2 (Oct. 2021). Ed. by J. Xu, pp. 476–486. issn:
1367-4811. doi: 10.1093/bioinformatics/btab706. url: http://dx.doi.org/10.1093/bioinf
ormatics/btab706 (cit. on p. 46).

[592] K. T. Ahmed, J. Sun, S. Cheng, J. Yong, and W. Zhang. “Multi-omics data integration by
generative adversarial network.” In: Bioinformatics 38.1 (Aug. 2021). Ed. by P. Robinson,
pp. 179–186. issn: 1367-4811. doi: 10.1093/bioinformatics/btab608. url: http://dx.doi.or
g/10.1093/bioinformatics/btab608 (cit. on p. 46).

[593] T. Wang, W. Shao, Z. Huang, H. Tang, J. Zhang, Z. Ding, and K. Huang. “MOGONET
integrates multi-omics data using graph convolutional networks allowing patient classification
and biomarker identification.” In: Nature Communications 12.1 (June 2021). issn: 2041-1723.
doi: 10.1038/s41467-021-23774-w. url: http://dx.doi.org/10.1038/s41467-021-23774-w
(cit. on p. 46).

[594] Y. Zhong, Y. Peng, Y. Lin, D. Chen, H. Zhang, W. Zheng, Y. Chen, and C. Wu. “MODILM:
towards better complex diseases classification using a novel multi-omics data integration
learning model.” In: BMC Medical Informatics and Decision Making 23.1 (May 2023). issn: 1472-
6947. doi: 10.1186/s12911-023-02173-9. url: http://dx.doi.org/10.1186/s12911-023-02
173-9 (cit. on pp. 46, 48).

[595] J. M. Choi and H. Chae. “moBRCA-net: a breast cancer subtype classification framework
based on multi-omics attention neural networks.” In: BMC Bioinformatics 24.1 (Apr. 2023). issn:
1471-2105. doi: 10.1186/s12859-023-05273-5. url: http://dx.doi.org/10.1186/s12859-02
3-05273-5 (cit. on pp. 46, 48).

[596] T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, Y. Hao, M. Stoeckius,
P. Smibert, and R. Satija. “Comprehensive Integration of Single-Cell Data.” In: Cell 177.7 (June
2019), 1888–1902.e21. doi: 10.1016/j.cell.2019.05.031. url: https://doi.org/10.1016/j
.cell.2019.05.031 (cit. on p. 46).

https://doi.org/10.1038/s41592-020-01050-x
https://doi.org/10.1038/s41592-020-01050-x
https://doi.org/10.1038/s41592-020-01050-x
https://doi.org/10.1186/s12859-023-05417-7
https://doi.org/10.1186/s12859-023-05417-7
https://doi.org/10.1109/bibm55620.2022.9995537
https://doi.org/10.1109/bibm55620.2022.9995537
https://doi.org/10.1109/bibm55620.2022.9995537
https://doi.org/10.1038/s41467-023-36559-0
https://doi.org/10.1038/s41467-023-36559-0
https://doi.org/10.1038/s41540-022-00245-6
https://doi.org/10.1038/s41540-022-00245-6
https://doi.org/10.1038/s41540-022-00245-6
https://doi.org/10.1093/bib/bbaa287
https://doi.org/10.1093/bib/bbaa287
https://doi.org/10.1093/bib/bbaa287
https://doi.org/10.1093/bioinformatics/btab403
https://doi.org/10.1093/bioinformatics/btab403
https://doi.org/10.1093/bioinformatics/btab403
https://doi.org/10.1073/pnas.2023070118
https://doi.org/10.1073/pnas.2023070118
https://doi.org/10.1073/pnas.2023070118
https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.3389/fgene.2021.636743
https://doi.org/10.3389/fgene.2021.636743
https://doi.org/10.1093/bioinformatics/btab706
http://dx.doi.org/10.1093/bioinformatics/btab706
http://dx.doi.org/10.1093/bioinformatics/btab706
https://doi.org/10.1093/bioinformatics/btab608
http://dx.doi.org/10.1093/bioinformatics/btab608
http://dx.doi.org/10.1093/bioinformatics/btab608
https://doi.org/10.1038/s41467-021-23774-w
http://dx.doi.org/10.1038/s41467-021-23774-w
https://doi.org/10.1186/s12911-023-02173-9
http://dx.doi.org/10.1186/s12911-023-02173-9
http://dx.doi.org/10.1186/s12911-023-02173-9
https://doi.org/10.1186/s12859-023-05273-5
http://dx.doi.org/10.1186/s12859-023-05273-5
http://dx.doi.org/10.1186/s12859-023-05273-5
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031

bibliography 327

[597] W. Kopp, A. Akalin, and U. Ohler. “Simultaneous dimensionality reduction and integration
for single-cell ATAC-seq data using deep learning.” In: Nature Machine Intelligence 4.2 (Feb.
2022), pp. 162–168. doi: 10.1038/s42256-022-00443-1. url: https://doi.org/10.1038/s422
56-022-00443-1 (cit. on p. 46).

[598] Q. Liu, S. Chen, R. Jiang, and W. H. Wong. “Simultaneous deep generative modelling and
clustering of single-cell genomic data.” In: Nature Machine Intelligence 3.6 (May 2021), pp. 536–
544. doi: 10.1038/s42256-021-00333-y. url: https://doi.org/10.1038/s42256-021-00333-
y (cit. on p. 46).

[599] U. Shaham, K. P. Stanton, J. Zhao, H. Li, K. Raddassi, R. Montgomery, and Y. Kluger. “Removal
of batch effects using distribution-matching residual networks.” In: Bioinformatics 33.16 (Apr.
2017). Ed. by J. Wren, pp. 2539–2546. doi: 10.1093/bioinformatics/btx196. url: https://do
i.org/10.1093/bioinformatics/btx196 (cit. on p. 46).

[600] Y. Wang, T. Liu, and H. Zhao. “ResPAN: a powerful batch correction model for scRNA-seq
data through residual adversarial networks.” In: Bioinformatics 38.16 (June 2022). Ed. by V.
Boeva, pp. 3942–3949. doi: 10.1093/bioinformatics/btac427. url: https://doi.org/10.109
3/bioinformatics/btac427 (cit. on p. 46).

[601] H. T. N. Tran, K. S. Ang, M. Chevrier, X. Zhang, N. Y. S. Lee, M. Goh, and J. Chen. “A
benchmark of batch-effect correction methods for single-cell RNA sequencing data.” In:
Genome Biology 21.1 (Jan. 2020). doi: 10.1186/s13059-019-1850-9. url: https://doi.org/10
.1186/s13059-019-1850-9 (cit. on p. 46).

[602] B. Zou, T. Zhang, R. Zhou, X. Jiang, H. Yang, X. Jin, and Y. Bai. “deepMNN: Deep Learning-
Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors.”
In: Frontiers in Genetics 12 (Aug. 2021). doi: 10.3389/fgene.2021.708981. url: https://doi.o
rg/10.3389/fgene.2021.708981 (cit. on p. 47).

[603] J. Hu, Y. Zhong, and X. Shang. “Efficient and scalable integration of single-cell data using
domain-adversarial and variational approximation.” In: (Apr. 2021). doi: 10.1101/2021.04.06
.438733. url: http://dx.doi.org/10.1101/2021.04.06.438733 (cit. on p. 47).

[604] L. Xiong, K. Tian, Y. Li, W. Ning, X. Gao, and Q. C. Zhang. “Online single-cell data integration
through projecting heterogeneous datasets into a common cell-embedding space.” In: Nature
Communications 13.1 (Oct. 2022). issn: 2041-1723. doi: 10.1038/s41467-022-33758-z. url:
http://dx.doi.org/10.1038/s41467-022-33758-z (cit. on p. 47).

[605] X. Wang, J. Wang, H. Zhang, S. Huang, and Y. Yin. “HDMC: a novel deep learning-based
framework for removing batch effects in single-cell RNA-seq data.” In: Bioinformatics 38.5 (Dec.
2021). Ed. by V. Boeva, pp. 1295–1303. issn: 1367-4811. doi: 10.1093/bioinformatics/btab821.
url: http://dx.doi.org/10.1093/bioinformatics/btab821 (cit. on p. 47).

[606] S. Ge, H. Wang, A. Alavi, E. Xing, and Z. Bar-joseph. “Supervised Adversarial Alignment of
Single-Cell RNA-seq Data.” In: Journal of Computational Biology 28.5 (May 2021), pp. 501–513.
issn: 1557-8666. doi: 10.1089/cmb.2020.0439. url: http://dx.doi.org/10.1089/cmb.2020.0
439 (cit. on p. 47).

[607] Y. Zhao, H. Cai, Z. Zhang, J. Tang, and Y. Li. “Learning interpretable cellular and gene
signature embeddings from single-cell transcriptomic data.” In: Nature Communications 12.1
(Sept. 2021). issn: 2041-1723. doi: 10.1038/s41467-021-25534-2. url: http://dx.doi.org/10
.1038/s41467-021-25534-2 (cit. on p. 47).

[608] D. Wang, S. Hou, L. Zhang, X. Wang, B. Liu, and Z. Zhang. “iMAP: integration of multiple
single-cell datasets by adversarial paired transfer networks.” In: Genome Biology 22.1 (Feb.
2021). issn: 1474-760X. doi: 10.1186/s13059-021-02280-8. url: http://dx.doi.org/10.1186
/s13059-021-02280-8 (cit. on p. 47).

[609] T. Wang, T. S. Johnson, W. Shao, Z. Lu, B. R. Helm, J. Zhang, and K. Huang. “BERMUDA: a
novel deep transfer learning method for single-cell RNA sequencing batch correction reveals
hidden high-resolution cellular subtypes.” In: Genome Biology 20.1 (Aug. 2019). issn: 1474-760X.
doi: 10.1186/s13059-019-1764-6. url: http://dx.doi.org/10.1186/s13059-019-1764-6
(cit. on p. 47).

[610] W. Yu, A. Mahfouz, and M. J. T. Reinders. “CBA: Cluster-Guided Batch Alignment for Single
Cell RNA-seq.” In: Frontiers in Genetics 12 (Apr. 2021). issn: 1664-8021. doi: 10.3389/fgene.20
21.644211. url: http://dx.doi.org/10.3389/fgene.2021.644211 (cit. on p. 47).

[611] S. G. Riva, P. Cazzaniga, and A. Tangherloni. “Integration of Multiple scRNA-Seq Datasets
on the Autoencoder Latent Space.” In: 2021 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). IEEE, Dec. 2021. doi: 10.1109/bibm52615.2021.9669807. url: http://dx
.doi.org/10.1109/BIBM52615.2021.9669807 (cit. on p. 47).

[612] D. Gan and J. Li. “SCIBER: a simple method for removing batch effects from single-cell
RNA-sequencing data.” In: Bioinformatics 39.1 (Dec. 2022). Ed. by V. Boeva. doi: 10.1093/b
ioinformatics/btac819. url: https://doi.org/10.1093/bioinformatics/btac819 (cit. on
p. 47).

https://doi.org/10.1038/s42256-022-00443-1
https://doi.org/10.1038/s42256-022-00443-1
https://doi.org/10.1038/s42256-022-00443-1
https://doi.org/10.1038/s42256-021-00333-y
https://doi.org/10.1038/s42256-021-00333-y
https://doi.org/10.1038/s42256-021-00333-y
https://doi.org/10.1093/bioinformatics/btx196
https://doi.org/10.1093/bioinformatics/btx196
https://doi.org/10.1093/bioinformatics/btx196
https://doi.org/10.1093/bioinformatics/btac427
https://doi.org/10.1093/bioinformatics/btac427
https://doi.org/10.1093/bioinformatics/btac427
https://doi.org/10.1186/s13059-019-1850-9
https://doi.org/10.1186/s13059-019-1850-9
https://doi.org/10.1186/s13059-019-1850-9
https://doi.org/10.3389/fgene.2021.708981
https://doi.org/10.3389/fgene.2021.708981
https://doi.org/10.3389/fgene.2021.708981
https://doi.org/10.1101/2021.04.06.438733
https://doi.org/10.1101/2021.04.06.438733
http://dx.doi.org/10.1101/2021.04.06.438733
https://doi.org/10.1038/s41467-022-33758-z
http://dx.doi.org/10.1038/s41467-022-33758-z
https://doi.org/10.1093/bioinformatics/btab821
http://dx.doi.org/10.1093/bioinformatics/btab821
https://doi.org/10.1089/cmb.2020.0439
http://dx.doi.org/10.1089/cmb.2020.0439
http://dx.doi.org/10.1089/cmb.2020.0439
https://doi.org/10.1038/s41467-021-25534-2
http://dx.doi.org/10.1038/s41467-021-25534-2
http://dx.doi.org/10.1038/s41467-021-25534-2
https://doi.org/10.1186/s13059-021-02280-8
http://dx.doi.org/10.1186/s13059-021-02280-8
http://dx.doi.org/10.1186/s13059-021-02280-8
https://doi.org/10.1186/s13059-019-1764-6
http://dx.doi.org/10.1186/s13059-019-1764-6
https://doi.org/10.3389/fgene.2021.644211
https://doi.org/10.3389/fgene.2021.644211
http://dx.doi.org/10.3389/fgene.2021.644211
https://doi.org/10.1109/bibm52615.2021.9669807
http://dx.doi.org/10.1109/BIBM52615.2021.9669807
http://dx.doi.org/10.1109/BIBM52615.2021.9669807
https://doi.org/10.1093/bioinformatics/btac819
https://doi.org/10.1093/bioinformatics/btac819
https://doi.org/10.1093/bioinformatics/btac819

328 bibliography

[613] T. Fei and T. Yu. “scBatch: batch-effect correction of RNA-seq data through sample distance
matrix adjustment.” In: Bioinformatics 36.10 (Feb. 2020). Ed. by J. Wren, pp. 3115–3123. doi: 10
.1093/bioinformatics/btaa097. url: https://doi.org/10.1093/bioinformatics/btaa097
(cit. on p. 47).

[614] H. Lahmer, A. E. Oueslati, and Z. Lachiri. “Classification of DNA Microarrays Using Deep
Learning to identify Cell Cycle Regulated Genes.” In: 2020 5th International Conference on
Advanced Technologies for Signal and Image Processing (ATSIP). IEEE, Sept. 2020. doi: 10.1109/at
sip49331.2020.9231888. url: https://doi.org/10.1109/atsip49331.2020.9231888 (cit. on
p. 47).

[615] H. Lahmer, A. E. Oueslati, and Z. Lachiri. “DNA Microarray Analysis Using Machine Learn-
ing to Recognize Cell Cycle Regulated Genes.” In: 2019 International Conference on Control,
Automation and Diagnosis (ICCAD). IEEE, July 2019. doi: 10.1109/iccad46983.2019.9037868.
url: https://doi.org/10.1109/iccad46983.2019.9037868 (cit. on p. 47).

[616] O. H. Purba, E. A. Sarwoko, Khadijah, Suhartono, and A. Wibowo. “Classification of liver
cancer with microrna data using the deep neural network (DNN) method.” In: Journal of
Physics: Conference Series 1524.1 (Apr. 2020), p. 012129. issn: 1742-6596. doi: 10.1088/1742-6
596/1524/1/012129. url: http://dx.doi.org/10.1088/1742-6596/1524/1/012129 (cit. on
pp. 47, 49).

[617] B. Schmauch et al. “A deep learning model to predict RNA-Seq expression of tumours
from whole slide images.” In: Nature Communications 11.1 (Aug. 2020). issn: 2041-1723. doi:
10.1038/s41467-020-17678-4. url: http://dx.doi.org/10.1038/s41467-020-17678-4
(cit. on p. 47).

[618] A. Levy-Jurgenson, X. Tekpli, V. N. Kristensen, and Z. Yakhini. “Spatial transcriptomics
inferred from pathology whole-slide images links tumor heterogeneity to survival in breast
and lung cancer.” In: Scientific Reports 10.1 (Nov. 2020). issn: 2045-2322. doi: 10.1038/s41598-
020-75708-z. url: http://dx.doi.org/10.1038/s41598-020-75708-z (cit. on p. 47).

[619] A. Alsaafin, A. Safarpoor, M. Sikaroudi, J. D. Hipp, and H. R. Tizhoosh. “Learning to predict
RNA sequence expressions from whole slide images with applications for search and classifi-
cation.” In: Communications Biology 6.1 (Mar. 2023). issn: 2399-3642. doi: 10.1038/s42003-023-
04583-x. url: http://dx.doi.org/10.1038/s42003-023-04583-x (cit. on p. 47).

[620] B. Yuan, D. Yang, B. E. G. Rothberg, H. Chang, and T. Xu. “Unsupervised and supervised
learning with neural network for human transcriptome analysis and cancer diagnosis.” In:
Scientific Reports 10.1 (Nov. 2020). issn: 2045-2322. doi: 10.1038/s41598-020-75715-0. url:
http://dx.doi.org/10.1038/s41598-020-75715-0 (cit. on p. 47).

[621] J. Hong, L. D. Hachem, and M. G. Fehlings. “A deep learning model to classify neoplastic
state and tissue origin from transcriptomic data.” In: Scientific Reports 12.1 (June 2022). issn:
2045-2322. doi: 10.1038/s41598-022-13665-5. url: http://dx.doi.org/10.1038/s41598-02
2-13665-5 (cit. on p. 47).

[622] B. Azarkhalili, A. Saberi, H. Chitsaz, and A. Sharifi-Zarchi. “DeePathology: Deep Multi-Task
Learning for Inferring Molecular Pathology from Cancer Transcriptome.” In: Scientific Reports
9.1 (Nov. 2019). issn: 2045-2322. doi: 10.1038/s41598-019-52937-5. url: http://dx.doi.org
/10.1038/s41598-019-52937-5 (cit. on p. 47).

[623] M. Yap et al. “Verifying explainability of a deep learning tissue classifier trained on RNA-seq
data.” In: Scientific Reports 11.1 (Jan. 2021). issn: 2045-2322. doi: 10.1038/s41598-021-81773-9.
url: http://dx.doi.org/10.1038/s41598-021-81773-9 (cit. on p. 47).

[624] D. S. Watson. “Interpretable machine learning for genomics.” In: Human Genetics 141.9 (Oct.
2021), pp. 1499–1513. issn: 1432-1203. doi: 10.1007/s00439-021-02387-9. url: http://dx.do
i.org/10.1007/s00439-021-02387-9 (cit. on p. 47).

[625] M. Wysocka, O. Wysocki, M. Zufferey, D. Landers, and A. Freitas. “A systematic review of
biologically-informed deep learning models for cancer: fundamental trends for encoding and
interpreting oncology data.” In: BMC Bioinformatics 24.1 (May 2023). issn: 1471-2105. doi:
10.1186/s12859-023-05262-8. url: http://dx.doi.org/10.1186/s12859-023-05262-8
(cit. on p. 47).

[626] S. MacDonald et al. “Generalising uncertainty improves accuracy and safety of deep learning
analytics applied to oncology.” In: Scientific Reports 13.1 (May 2023). issn: 2045-2322. doi:
10.1038/s41598-023-31126-5. url: http://dx.doi.org/10.1038/s41598-023-31126-5
(cit. on p. 47).

[627] C. Luchini, A. Pea, and A. Scarpa. “Artificial intelligence in oncology: current applications
and future perspectives.” In: British Journal of Cancer 126.1 (Nov. 2021), pp. 4–9. issn: 1532-1827.
doi: 10.1038/s41416-021-01633-1. url: http://dx.doi.org/10.1038/s41416-021-01633-1
(cit. on p. 47).

https://doi.org/10.1093/bioinformatics/btaa097
https://doi.org/10.1093/bioinformatics/btaa097
https://doi.org/10.1093/bioinformatics/btaa097
https://doi.org/10.1109/atsip49331.2020.9231888
https://doi.org/10.1109/atsip49331.2020.9231888
https://doi.org/10.1109/atsip49331.2020.9231888
https://doi.org/10.1109/iccad46983.2019.9037868
https://doi.org/10.1109/iccad46983.2019.9037868
https://doi.org/10.1088/1742-6596/1524/1/012129
https://doi.org/10.1088/1742-6596/1524/1/012129
http://dx.doi.org/10.1088/1742-6596/1524/1/012129
https://doi.org/10.1038/s41467-020-17678-4
http://dx.doi.org/10.1038/s41467-020-17678-4
https://doi.org/10.1038/s41598-020-75708-z
https://doi.org/10.1038/s41598-020-75708-z
http://dx.doi.org/10.1038/s41598-020-75708-z
https://doi.org/10.1038/s42003-023-04583-x
https://doi.org/10.1038/s42003-023-04583-x
http://dx.doi.org/10.1038/s42003-023-04583-x
https://doi.org/10.1038/s41598-020-75715-0
http://dx.doi.org/10.1038/s41598-020-75715-0
https://doi.org/10.1038/s41598-022-13665-5
http://dx.doi.org/10.1038/s41598-022-13665-5
http://dx.doi.org/10.1038/s41598-022-13665-5
https://doi.org/10.1038/s41598-019-52937-5
http://dx.doi.org/10.1038/s41598-019-52937-5
http://dx.doi.org/10.1038/s41598-019-52937-5
https://doi.org/10.1038/s41598-021-81773-9
http://dx.doi.org/10.1038/s41598-021-81773-9
https://doi.org/10.1007/s00439-021-02387-9
http://dx.doi.org/10.1007/s00439-021-02387-9
http://dx.doi.org/10.1007/s00439-021-02387-9
https://doi.org/10.1186/s12859-023-05262-8
http://dx.doi.org/10.1186/s12859-023-05262-8
https://doi.org/10.1038/s41598-023-31126-5
http://dx.doi.org/10.1038/s41598-023-31126-5
https://doi.org/10.1038/s41416-021-01633-1
http://dx.doi.org/10.1038/s41416-021-01633-1

bibliography 329

[628] R. Zhang, G.-B. Huang, N. Sundararajan, and P. Saratchandran. “Multicategory Classification
Using An Extreme Learning Machine for Microarray Gene Expression Cancer Diagnosis.” In:
IEEE/ACM Transactions on Computational Biology and Bioinformatics 4.3 (July 2007), pp. 485–495.
doi: 10.1109/tcbb.2007.1012. url: https://doi.org/10.1109/tcbb.2007.1012 (cit. on
pp. 47, 176).

[629] M. Shi, X. Li, M. Li, and Y. Si. “Attention-based generative adversarial networks improve
prognostic outcome prediction of cancer from multimodal data.” In: Briefings in Bioinformatics
24.6 (Sept. 2023). doi: 10.1093/bib/bbad329. url: https://doi.org/10.1093/bib/bbad329
(cit. on p. 48).

[630] D. Duroux, C. Wohlfart, K. Van Steen, A. Vladimirova, and M. King. “Graph-based multi-
modality integration for prediction of cancer subtype and severity.” In: Scientific Reports 13.1
(Nov. 2023). issn: 2045-2322. doi: 10.1038/s41598-023-46392-6. url: http://dx.doi.org/10
.1038/s41598-023-46392-6 (cit. on p. 48).

[631] F. Yan, L. Jiang, F. Ye, J. Ping, T. Y. Bowley, S. A. Ness, C.-I. Li, D. Marchetti, J. Tang, and Y. Guo.
“Deep neural network based tissue deconvolution of circulating tumor cell RNA.” In: Journal
of Translational Medicine 21.1 (Nov. 2023). issn: 1479-5876. doi: 10.1186/s12967-023-04663-w.
url: http://dx.doi.org/10.1186/s12967-023-04663-w (cit. on p. 48).

[632] F. Gao, W. Wang, M. Tan, L. Zhu, Y. Zhang, E. Fessler, L. Vermeulen, and X. Wang. “DeepCC:
a novel deep learning-based framework for cancer molecular subtype classification.” In:
Oncogenesis 8.9 (Aug. 2019). issn: 2157-9024. doi: 10.1038/s41389-019-0157-8. url: http://d
x.doi.org/10.1038/s41389-019-0157-8 (cit. on p. 48).

[633] H. A. Elmarakeby et al. “Biologically informed deep neural network for prostate cancer
discovery.” In: Nature 598.7880 (Sept. 2021), pp. 348–352. issn: 1476-4687. doi: 10.1038/s4158
6-021-03922-4. url: http://dx.doi.org/10.1038/s41586-021-03922-4 (cit. on p. 48).

[634] W. Jiao et al. “A deep learning system accurately classifies primary and metastatic cancers
using passenger mutation patterns.” In: Nature Communications 11.1 (Feb. 2020). issn: 2041-1723.
doi: 10.1038/s41467-019-13825-8. url: http://dx.doi.org/10.1038/s41467-019-13825-8
(cit. on p. 48).

[635] R. Mahdi-Esferizi, B. Haji Molla Hoseyni, A. Mehrpanah, Y. Golzade, A. Najafi, F. Elahian,
A. Zadeh Shirazi, G. A. Gomez, and S. Tahmasebian. “DeeP4med: deep learning for P4

medicine to predict normal and cancer transcriptome in multiple human tissues.” In: BMC
Bioinformatics 24.1 (July 2023). issn: 1471-2105. doi: 10.1186/s12859- 023- 05400- 2. url:
http://dx.doi.org/10.1186/s12859-023-05400-2 (cit. on p. 48).

[636] R. Lupat, R. Perera, S. Loi, and J. Li. “Moanna: Multi-Omics Autoencoder-Based Neural Net-
work Algorithm for Predicting Breast Cancer Subtypes.” In: IEEE Access 11 (2023), pp. 10912–
10924. issn: 2169-3536. doi: 10.1109/access.2023.3240515. url: http://dx.doi.org/10.110
9/ACCESS.2023.3240515 (cit. on p. 48).

[637] R. Qi, C.-H. Zheng, C.-M. Ji, N. Yu, J.-C. Ni, and Y.-T. Wang. “Cell Classification Based on
Stacked Autoencoder for Single-Cell RNA Sequencing.” In: Lecture Notes in Computer Science.
Springer International Publishing, 2022, pp. 245–259. isbn: 9783031138294. doi: 10.1007/978-
3-031-13829-4_20. url: http://dx.doi.org/10.1007/978-3-031-13829-4_20 (cit. on p. 48).

[638] C. Guttà, C. Morhard, and M. Rehm. “Applying a GAN-based classifier to improve transcriptome-
based prognostication in breast cancer.” In: PLOS Computational Biology 19.4 (Apr. 2023). Ed. by
Z. Zhang, e1011035. issn: 1553-7358. doi: 10.1371/journal.pcbi.1011035. url: http://dx.d
oi.org/10.1371/journal.pcbi.1011035 (cit. on p. 48).

[639] A. K. Dwivedi. “Artificial neural network model for effective cancer classification using
microarray gene expression data.” In: Neural Computing and Applications 29.12 (Nov. 2016),
pp. 1545–1554. issn: 1433-3058. doi: 10.1007/s00521-016-2701-1. url: http://dx.doi.org/1
0.1007/s00521-016-2701-1 (cit. on p. 48).

[640] U. Ravindran and C. Gunavathi. “A survey on gene expression data analysis using deep
learning methods for cancer diagnosis.” In: Progress in Biophysics and Molecular Biology 177 (Jan.
2023), pp. 1–13. doi: 10.1016/j.pbiomolbio.2022.08.004. url: https://doi.org/10.1016/j
.pbiomolbio.2022.08.004 (cit. on p. 48).

[641] F. Azuaje. “Artificial intelligence for precision oncology: beyond patient stratification.” In: npj
Precision Oncology 3.1 (Feb. 2019). issn: 2397-768X. doi: 10.1038/s41698-019-0078-1. url:
http://dx.doi.org/10.1038/s41698-019-0078-1 (cit. on p. 48).

[642] I. El Naqa, A. Karolak, Y. Luo, L. Folio, A. A. Tarhini, D. Rollison, and K. Parodi. “Translation
of AI into oncology clinical practice.” In: Oncogene 42.42 (Sept. 2023), pp. 3089–3097. issn:
1476-5594. doi: 10.1038/s41388-023-02826-z. url: http://dx.doi.org/10.1038/s41388-02
3-02826-z (cit. on p. 48).

https://doi.org/10.1109/tcbb.2007.1012
https://doi.org/10.1109/tcbb.2007.1012
https://doi.org/10.1093/bib/bbad329
https://doi.org/10.1093/bib/bbad329
https://doi.org/10.1038/s41598-023-46392-6
http://dx.doi.org/10.1038/s41598-023-46392-6
http://dx.doi.org/10.1038/s41598-023-46392-6
https://doi.org/10.1186/s12967-023-04663-w
http://dx.doi.org/10.1186/s12967-023-04663-w
https://doi.org/10.1038/s41389-019-0157-8
http://dx.doi.org/10.1038/s41389-019-0157-8
http://dx.doi.org/10.1038/s41389-019-0157-8
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1038/s41586-021-03922-4
http://dx.doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1038/s41467-019-13825-8
http://dx.doi.org/10.1038/s41467-019-13825-8
https://doi.org/10.1186/s12859-023-05400-2
http://dx.doi.org/10.1186/s12859-023-05400-2
https://doi.org/10.1109/access.2023.3240515
http://dx.doi.org/10.1109/ACCESS.2023.3240515
http://dx.doi.org/10.1109/ACCESS.2023.3240515
https://doi.org/10.1007/978-3-031-13829-4_20
https://doi.org/10.1007/978-3-031-13829-4_20
http://dx.doi.org/10.1007/978-3-031-13829-4_20
https://doi.org/10.1371/journal.pcbi.1011035
http://dx.doi.org/10.1371/journal.pcbi.1011035
http://dx.doi.org/10.1371/journal.pcbi.1011035
https://doi.org/10.1007/s00521-016-2701-1
http://dx.doi.org/10.1007/s00521-016-2701-1
http://dx.doi.org/10.1007/s00521-016-2701-1
https://doi.org/10.1016/j.pbiomolbio.2022.08.004
https://doi.org/10.1016/j.pbiomolbio.2022.08.004
https://doi.org/10.1016/j.pbiomolbio.2022.08.004
https://doi.org/10.1038/s41698-019-0078-1
http://dx.doi.org/10.1038/s41698-019-0078-1
https://doi.org/10.1038/s41388-023-02826-z
http://dx.doi.org/10.1038/s41388-023-02826-z
http://dx.doi.org/10.1038/s41388-023-02826-z

330 bibliography

[643] E. Capobianco. “High-dimensional role of AI and machine learning in cancer research.” In:
British Journal of Cancer 126.4 (Jan. 2022), pp. 523–532. issn: 1532-1827. doi: 10.1038/s41416-0
21-01689-z. url: http://dx.doi.org/10.1038/s41416-021-01689-z (cit. on p. 48).

[644] K. Badal, C. M. Lee, and L. J. Esserman. “Guiding principles for the responsible development
of artificial intelligence tools for healthcare.” In: Communications Medicine 3.1 (Apr. 2023). issn:
2730-664X. doi: 10.1038/s43856-023-00279-9. url: http://dx.doi.org/10.1038/s43856-02
3-00279-9 (cit. on p. 48).

[645] J. Guo, J. Hu, Y. Zheng, S. Zhao, and J. Ma. “Artificial intelligence: opportunities and challenges
in the clinical applications of triple-negative breast cancer.” In: British Journal of Cancer 128.12

(Mar. 2023), pp. 2141–2149. issn: 1532-1827. doi: 10.1038/s41416-023-02215-z. url: http:
//dx.doi.org/10.1038/s41416-023-02215-z (cit. on p. 48).

[646] A. Danilevsky and N. Shomron. “Deep Learning Applied on Next Generation Sequencing
Data Analysis.” In: Methods in Molecular Biology. Springer US, 2021, pp. 169–182. doi: 10.10
07/978-1-0716-1103-6_9. url: https://doi.org/10.1007/978-1-0716-1103-6_9 (cit. on
p. 48).

[647] G. Pei, R. Hu, Y. Dai, Z. Zhao, and P. Jia. “Decoding whole-genome mutational signatures
in 37 human pan-cancers by denoising sparse autoencoder neural network.” In: Oncogene
39.27 (June 2020), pp. 5031–5041. issn: 1476-5594. doi: 10.1038/s41388-020-1343-z. url:
http://dx.doi.org/10.1038/s41388-020-1343-z (cit. on p. 48).

[648] S. Hayou, A. Doucet, and J. Rousseau. “On the Impact of the Activation function on Deep
Neural Networks Training.” In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. PMLR, Sept. 2019, pp. 2672–2680. url: https://proceedings.mlr.press/v97/hayo
u19a.html (cit. on pp. 49, 117).

[649] A. Nader and D. Azar. “Evolution of Activation Functions: An Empirical Investigation.” In:
ACM Transactions on Evolutionary Learning and Optimization 1.2 (June 2021), pp. 1–36. doi:
10.1145/3464384. url: https://doi.org/10.1145/3464384 (cit. on p. 49).

[650] G. Bingham and R. Miikkulainen. “Discovering Parametric Activation Functions.” In: Neural
Networks 148 (Apr. 2022), pp. 48–65. doi: 10.1016/j.neunet.2022.01.001. url: https://doi
.org/10.1016/j.neunet.2022.01.001 (cit. on p. 49).

[651] M. Basirat and P. M. Roth. The Quest for the Golden Activation Function. 2018. doi: 10.48550
/ARXIV.1808.00783. url: https://arxiv.org/abs/1808.00783 (cit. on pp. 49, 73, 89).

[652] Basirat, Mina, Jammer, Alexandra, and Roth, Peter M. “The Quest for the Golden Activation
Function.” In: Proceedings of ARW & OAGM Workshop 2019. Verlag der Technischen Universität
Graz, 2019. doi: 10.3217/978-3-85125-663-5-41. url: https://openlib.tugraz.at/downlo
ad.php?id=5d09dba127371&location=medra (cit. on p. 49).

[653] H. A. Mayer and R. Schwaiger. “Differentiation of neuron types by evolving activation function
templates for artificial neural networks.” In: Proceedings of the 2002 International Joint Conference
on Neural Networks. IJCNN’02 (Cat. No.02CH37290). IEEE, 2002. doi: 10.1109/ijcnn.2002.100
7787. url: https://doi.org/10.1109/ijcnn.2002.1007787 (cit. on pp. 49, 162).

[654] A. Hagg, M. Mensing, and A. Asteroth. “Evolving parsimonious networks by mixing activation
functions.” In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM, July
2017. doi: 10.1145/3071178.3071275. url: https://doi.org/10.1145/3071178.3071275
(cit. on p. 49).

[655] K. Knezevic, J. Fulir, D. Jakobovic, S. Picek, and M. Durasevic. “NeuroSCA: Evolving Activation
Functions for Side-Channel Analysis.” In: IEEE Access 11 (2023), pp. 284–299. doi: 10.1109/ac
cess.2022.3232064. url: https://doi.org/10.1109/access.2022.3232064 (cit. on p. 49).

[656] Y. Liu and X. Yao. “Evolutionary design of artificial neural networks with different nodes.”
In: Proceedings of IEEE International Conference on Evolutionary Computation. IEEE, 1996. doi:
10.1109/icec.1996.542681. url: https://doi.org/10.1109/icec.1996.542681 (cit. on
p. 49).

[657] P. Cui and K. C. Wiese. “EvoDNN - Evolving Weights, Biases, and Activation Functions in a
Deep Neural Network.” In: 2022 IEEE Conference on Computational Intelligence in Bioinformatics
and Computational Biology (CIBCB). IEEE, Aug. 2022. doi: 10.1109/cibcb55180.2022.9863054.
url: https://doi.org/10.1109/cibcb55180.2022.9863054 (cit. on p. 49).

[658] P. Cui, B. Shabash, and K. C. Wiese. “EvoDNN - An Evolutionary Deep Neural Network
with Heterogeneous Activation Functions.” In: 2019 IEEE Congress on Evolutionary Computation
(CEC). IEEE, June 2019. doi: 10.1109/cec.2019.8789964. url: https://doi.org/10.1109/cec
.2019.8789964 (cit. on p. 49).

https://doi.org/10.1038/s41416-021-01689-z
https://doi.org/10.1038/s41416-021-01689-z
http://dx.doi.org/10.1038/s41416-021-01689-z
https://doi.org/10.1038/s43856-023-00279-9
http://dx.doi.org/10.1038/s43856-023-00279-9
http://dx.doi.org/10.1038/s43856-023-00279-9
https://doi.org/10.1038/s41416-023-02215-z
http://dx.doi.org/10.1038/s41416-023-02215-z
http://dx.doi.org/10.1038/s41416-023-02215-z
https://doi.org/10.1007/978-1-0716-1103-6_9
https://doi.org/10.1007/978-1-0716-1103-6_9
https://doi.org/10.1007/978-1-0716-1103-6_9
https://doi.org/10.1038/s41388-020-1343-z
http://dx.doi.org/10.1038/s41388-020-1343-z
https://proceedings.mlr.press/v97/hayou19a.html
https://proceedings.mlr.press/v97/hayou19a.html
https://doi.org/10.1145/3464384
https://doi.org/10.1145/3464384
https://doi.org/10.1016/j.neunet.2022.01.001
https://doi.org/10.1016/j.neunet.2022.01.001
https://doi.org/10.1016/j.neunet.2022.01.001
https://doi.org/10.48550/ARXIV.1808.00783
https://doi.org/10.48550/ARXIV.1808.00783
https://arxiv.org/abs/1808.00783
https://doi.org/10.3217/978-3-85125-663-5-41
https://openlib.tugraz.at/download.php?id=5d09dba127371&location=medra
https://openlib.tugraz.at/download.php?id=5d09dba127371&location=medra
https://doi.org/10.1109/ijcnn.2002.1007787
https://doi.org/10.1109/ijcnn.2002.1007787
https://doi.org/10.1109/ijcnn.2002.1007787
https://doi.org/10.1145/3071178.3071275
https://doi.org/10.1145/3071178.3071275
https://doi.org/10.1109/access.2022.3232064
https://doi.org/10.1109/access.2022.3232064
https://doi.org/10.1109/access.2022.3232064
https://doi.org/10.1109/icec.1996.542681
https://doi.org/10.1109/icec.1996.542681
https://doi.org/10.1109/cibcb55180.2022.9863054
https://doi.org/10.1109/cibcb55180.2022.9863054
https://doi.org/10.1109/cec.2019.8789964
https://doi.org/10.1109/cec.2019.8789964
https://doi.org/10.1109/cec.2019.8789964

bibliography 331

[659] K. Vijayaprabakaran and K. Sathiyamurthy. “Towards activation function search for long
short-term model network: A differential evolution based approach.” In: Journal of King Saud
University - Computer and Information Sciences 34.6 (June 2022), pp. 2637–2650. doi: 10.1016/j
.jksuci.2020.04.015. url: https://doi.org/10.1016/j.jksuci.2020.04.015 (cit. on pp. 49,
98, 201).

[660] D. O’Neill, B. Xue, and M. Zhang. “Co-evolution of Novel Tree-Like ANNs and Activation
Functions: An Observational Study.” In: AI 2018: Advances in Artificial Intelligence. Springer
International Publishing, 2018, pp. 616–629. doi: 10.1007/978- 3- 030- 03991- 2_56. url:
https://doi.org/10.1007/978-3-030-03991-2_56 (cit. on p. 49).

[661] M. Sipper. “Neural Networks with À La Carte Selection of Activation Functions.” In: SN
Computer Science 2.6 (Sept. 2021). issn: 2661-8907. doi: 10.1007/s42979-021-00885-1. url:
http://dx.doi.org/10.1007/s42979-021-00885-1 (cit. on pp. 49, 75).

[662] M. Salimi, M. Loni, and M. Sirjani. “Learning Activation Functions for Adversarial Attack
Resilience in CNNs.” In: Lecture Notes in Computer Science. Springer Nature Switzerland, 2023,
pp. 203–214. isbn: 9783031425059. doi: 10.1007/978-3-031-42505-9_18. url: http://dx.doi
.org/10.1007/978-3-031-42505-9_18 (cit. on p. 49).

[663] M. Salimi, M. Loni, M. Sirjani, A. Cicchetti, and S. Abbaspour Asadollah. “SARAF: Searching
for Adversarial Robust Activation Functions.” In: Proceedings of the 2023 6th International
Conference on Machine Vision and Applications. ICMVA 2023. ACM, Mar. 2023. doi: 10.1145/358
9572.3589598. url: http://dx.doi.org/10.1145/3589572.3589598 (cit. on p. 49).

[664] Y. Li, T. Geng, S. Stein, A. Li, and H. Yu. “GAAF: Searching Activation Functions for Binary
Neural Networks Through Genetic Algorithm.” In: Tsinghua Science and Technology 28.1 (Feb.
2023), pp. 207–220. issn: 1007-0214. doi: 10.26599/tst.2021.9010084. url: http://dx.doi.o
rg/10.26599/TST.2021.9010084 (cit. on p. 49).

[665] J. Chen. Combinatorially Generated Piecewise Activation Functions. 2016. doi: 10.48550/ARXIV.16
05.05216. url: https://arxiv.org/abs/1605.05216 (cit. on p. 49).

[666] K. Vijayaprabakaran and K. Sathiyamurthy. “Neuroevolution based hierarchical activation
function for long short-term model network.” In: Journal of Ambient Intelligence and Humanized
Computing 12.12 (Jan. 2021), pp. 10757–10768. issn: 1868-5145. doi: 10.1007/s12652-020-0288
9-w. url: http://dx.doi.org/10.1007/s12652-020-02889-w (cit. on pp. 49, 101).

[667] Y. Pan, Y. Wang, P. Zhou, Y. Yan, and D. Guo. “Activation functions selection for BP neural
network model of ground surface roughness.” In: Journal of Intelligent Manufacturing 31.8 (Jan.
2020), pp. 1825–1836. doi: 10.1007/s10845-020-01538-5. url: https://doi.org/10.1007/s1
0845-020-01538-5 (cit. on pp. 49, 99, 100).

[668] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for Activation Functions. 2017. doi: 10.4855
0/ARXIV.1710.05941. url: https://arxiv.org/abs/1710.05941 (cit. on pp. 49, 58, 129, 203,
279).

[669] A. Marchisio, M. A. Hanif, S. Rehman, M. Martina, and M. Shafique. A Methodology for
Automatic Selection of Activation Functions to Design Hybrid Deep Neural Networks. 2018. doi:
10.48550/ARXIV.1811.03980. url: https://arxiv.org/abs/1811.03980 (cit. on p. 49).

[670] R. P. Tripathi, M. Tiwari, A. Dhawan, A. Sharma, and S. K. Jha. “A Survey on Efficient
Realization of Activation Functions of Artificial Neural Network.” In: 2021 Asian Conference on
Innovation in Technology (ASIANCON). IEEE, Aug. 2021. doi: 10.1109/asiancon51346.2021.95
44754. url: https://doi.org/10.1109/asiancon51346.2021.9544754 (cit. on p. 49).

[671] S. Bouguezzi, H. Faiedh, and C. Souani. “Hardware Implementation of Tanh Exponential
Activation Function using FPGA.” In: 2021 18th International Multi-Conference on Systems,
Signals & Devices (SSD). IEEE, Mar. 2021. doi: 10.1109/ssd52085.2021.9429506. url: https:
//doi.org/10.1109/ssd52085.2021.9429506 (cit. on p. 49).

[672] L. Li, S. Zhang, and J. Wu. “An Efficient Hardware Architecture for Activation Function
in Deep Learning Processor.” In: 2018 IEEE 3rd International Conference on Image, Vision and
Computing (ICIVC). IEEE, June 2018. doi: 10.1109/icivc.2018.8492754. url: https://doi.or
g/10.1109/icivc.2018.8492754 (cit. on p. 49).

[673] C.-H. Tsai, Y.-T. Chih, W. H. Wong, and C.-Y. Lee. “A Hardware-Efficient Sigmoid Function
With Adjustable Precision for a Neural Network System.” In: IEEE Transactions on Circuits and
Systems II: Express Briefs 62.11 (Nov. 2015), pp. 1073–1077. doi: 10.1109/tcsii.2015.2456531.
url: https://doi.org/10.1109/tcsii.2015.2456531 (cit. on p. 49).

[674] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi. “Efficient hardware imple-
mentation of the hyperbolic tangent sigmoid function.” In: 2009 IEEE International Symposium
on Circuits and Systems. IEEE, May 2009. doi: 10.1109/iscas.2009.5118213. url: https://do
i.org/10.1109/iscas.2009.5118213 (cit. on p. 49).

https://doi.org/10.1016/j.jksuci.2020.04.015
https://doi.org/10.1016/j.jksuci.2020.04.015
https://doi.org/10.1016/j.jksuci.2020.04.015
https://doi.org/10.1007/978-3-030-03991-2_56
https://doi.org/10.1007/978-3-030-03991-2_56
https://doi.org/10.1007/s42979-021-00885-1
http://dx.doi.org/10.1007/s42979-021-00885-1
https://doi.org/10.1007/978-3-031-42505-9_18
http://dx.doi.org/10.1007/978-3-031-42505-9_18
http://dx.doi.org/10.1007/978-3-031-42505-9_18
https://doi.org/10.1145/3589572.3589598
https://doi.org/10.1145/3589572.3589598
http://dx.doi.org/10.1145/3589572.3589598
https://doi.org/10.26599/tst.2021.9010084
http://dx.doi.org/10.26599/TST.2021.9010084
http://dx.doi.org/10.26599/TST.2021.9010084
https://doi.org/10.48550/ARXIV.1605.05216
https://doi.org/10.48550/ARXIV.1605.05216
https://arxiv.org/abs/1605.05216
https://doi.org/10.1007/s12652-020-02889-w
https://doi.org/10.1007/s12652-020-02889-w
http://dx.doi.org/10.1007/s12652-020-02889-w
https://doi.org/10.1007/s10845-020-01538-5
https://doi.org/10.1007/s10845-020-01538-5
https://doi.org/10.1007/s10845-020-01538-5
https://doi.org/10.48550/ARXIV.1710.05941
https://doi.org/10.48550/ARXIV.1710.05941
https://arxiv.org/abs/1710.05941
https://doi.org/10.48550/ARXIV.1811.03980
https://arxiv.org/abs/1811.03980
https://doi.org/10.1109/asiancon51346.2021.9544754
https://doi.org/10.1109/asiancon51346.2021.9544754
https://doi.org/10.1109/asiancon51346.2021.9544754
https://doi.org/10.1109/ssd52085.2021.9429506
https://doi.org/10.1109/ssd52085.2021.9429506
https://doi.org/10.1109/ssd52085.2021.9429506
https://doi.org/10.1109/icivc.2018.8492754
https://doi.org/10.1109/icivc.2018.8492754
https://doi.org/10.1109/icivc.2018.8492754
https://doi.org/10.1109/tcsii.2015.2456531
https://doi.org/10.1109/tcsii.2015.2456531
https://doi.org/10.1109/iscas.2009.5118213
https://doi.org/10.1109/iscas.2009.5118213
https://doi.org/10.1109/iscas.2009.5118213

332 bibliography

[675] R. Pogiri, S. Ari, and K. K. Mahapatra. “Design and FPGA Implementation of the LUT
based Sigmoid Function for DNN Applications.” In: 2022 IEEE International Symposium on
Smart Electronic Systems (iSES). IEEE, Dec. 2022. doi: 10.1109/ises54909.2022.00090. url:
https://doi.org/10.1109/ises54909.2022.00090 (cit. on p. 49).

[676] F. M. Shakiba and M. Zhou. “Novel Analog Implementation of a Hyperbolic Tangent Neuron
in Artificial Neural Networks.” In: IEEE Transactions on Industrial Electronics 68.11 (Nov. 2021),
pp. 10856–10867. doi: 10.1109/tie.2020.3034856. url: https://doi.org/10.1109/tie.2020
.3034856 (cit. on p. 49).

[677] Y. Xie, A. N. J. Raj, Z. Hu, S. Huang, Z. Fan, and M. Joler. “A Twofold Lookup Table
Architecture for Efficient Approximation of Activation Functions.” In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 28.12 (Dec. 2020), pp. 2540–2550. doi: 10.1109/tvls
i.2020.3015391. url: https://doi.org/10.1109/tvlsi.2020.3015391 (cit. on p. 49).

[678] P. Priyanka, G. K. Nisarga, and S. Raghuram. “CMOS Implementations of Rectified Linear
Activation Function.” In: VLSI Design and Test. Springer Singapore, 2019, pp. 121–129. isbn:
9789811359507. doi: 10.1007/978-981-13-5950-7_11. url: http://dx.doi.org/10.1007/978
-981-13-5950-7_11 (cit. on p. 49).

[679] S.-Y. Lin and J.-C. Chiang. “Low-area architecture design of multi-mode activation functions
with controllable maximum absolute error for neural network applications.” In: Microprocessors
and Microsystems 103 (Nov. 2023), p. 104952. issn: 0141-9331. doi: 10.1016/j.micpro.2023.10
4952. url: http://dx.doi.org/10.1016/j.micpro.2023.104952 (cit. on pp. 49, 131).

[680] V. Shatravin, D. Shashev, and S. Shidlovskiy. “Sigmoid Activation Implementation for Neural
Networks Hardware Accelerators Based on Reconfigurable Computing Environments for
Low-Power Intelligent Systems.” In: Applied Sciences 12.10 (May 2022), p. 5216. issn: 2076-3417.
doi: 10.3390/app12105216. url: http://dx.doi.org/10.3390/app12105216 (cit. on p. 49).

[681] L. Derczynski. Power Consumption Variation over Activation Functions. 2020. doi: 10.48550
/ARXIV.2006.07237. url: https://arxiv.org/abs/2006.07237 (cit. on p. 49).

[682] A. D. Jagtap and G. E. Karniadakis. How important are activation functions in regression and
classification? A survey, performance comparison, and future directions. 2022. doi: 10.48550/ARXIV.2
209.02681. url: https://arxiv.org/abs/2209.02681 (cit. on p. 49).

[683] G. K. Pandey and S. Srivastava. “ResNet-18 comparative analysis of various activation functions
for image classification.” In: 2023 International Conference on Inventive Computation Technologies
(ICICT). IEEE, Apr. 2023. doi: 10.1109/icict57646.2023.10134464. url: https://doi.org/1
0.1109/icict57646.2023.10134464 (cit. on pp. 49, 55).

[684] M. M. Noel, S. Bharadwaj, V. Muthiah-Nakarajan, P. Dutta, and G. B. Amali. Biologically Inspired
Oscillating Activation Functions Can Bridge the Performance Gap between Biological and Artificial
Neurons. 2021. doi: 10.48550/ARXIV.2111.04020. url: https://arxiv.org/abs/2111.04020
(cit. on pp. 49, 50).

[685] S. Eger, P. Youssef, and I. Gurevych. “Is it Time to Swish? Comparing Deep Learning Activation
Functions Across NLP tasks.” In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2018. doi: 10.18653/v
1/d18-1472. url: https://doi.org/10.18653/v1/d18-1472 (cit. on pp. 49, 54).

[686] L. Nanni, S. Brahnam, M. Paci, and S. Ghidoni. “Comparison of Different Convolutional
Neural Network Activation Functions and Methods for Building Ensembles for Small to
Midsize Medical Data Sets.” In: Sensors 22.16 (Aug. 2022), p. 6129. doi: 10.3390/s22166129.
url: https://doi.org/10.3390/s22166129 (cit. on p. 49).

[687] K. Adem. “Impact of activation functions and number of layers on detection of exudates
using circular Hough transform and convolutional neural networks.” In: Expert Systems with
Applications 203 (Oct. 2022), p. 117583. doi: 10.1016/j.eswa.2022.117583. url: https://doi
.org/10.1016/j.eswa.2022.117583 (cit. on p. 49).

[688] K. Adu, Y. Yu, J. Cai, I. Asare, and J. Quahin. “The influence of the activation function in a
capsule network for brain tumor type classification.” In: International Journal of Imaging Systems
and Technology 32.1 (Aug. 2021), pp. 123–143. doi: 10.1002/ima.22638. url: https://doi.org
/10.1002/ima.22638 (cit. on pp. 49, 136, 203, 289).

[689] Z. A. Haq and Z. A. Jaffery. “Impact of activation functions and number of layers on the
classification of fruits using CNN.” In: Proceedings of the 2021 8th International Conference on
Computing for Sustainable Global Development, INDIACom 2021. IEEE, 2021, pp. 227–231. doi: 10
.1109/INDIACom51348.2021.00040. url: https://ieeexplore.ieee.org/document/9441246
(cit. on p. 49).

[690] A. Nguyen, K. Pham, D. Ngo, T. Ngo, and L. Pham. “An Analysis of State-of-the-art Activation
Functions For Supervised Deep Neural Network.” In: 2021 International Conference on System
Science and Engineering (ICSSE). IEEE, Aug. 2021. doi: 10.1109/icsse52999.2021.9538437.
url: https://doi.org/10.1109/icsse52999.2021.9538437 (cit. on p. 49).

https://doi.org/10.1109/ises54909.2022.00090
https://doi.org/10.1109/ises54909.2022.00090
https://doi.org/10.1109/tie.2020.3034856
https://doi.org/10.1109/tie.2020.3034856
https://doi.org/10.1109/tie.2020.3034856
https://doi.org/10.1109/tvlsi.2020.3015391
https://doi.org/10.1109/tvlsi.2020.3015391
https://doi.org/10.1109/tvlsi.2020.3015391
https://doi.org/10.1007/978-981-13-5950-7_11
http://dx.doi.org/10.1007/978-981-13-5950-7_11
http://dx.doi.org/10.1007/978-981-13-5950-7_11
https://doi.org/10.1016/j.micpro.2023.104952
https://doi.org/10.1016/j.micpro.2023.104952
http://dx.doi.org/10.1016/j.micpro.2023.104952
https://doi.org/10.3390/app12105216
http://dx.doi.org/10.3390/app12105216
https://doi.org/10.48550/ARXIV.2006.07237
https://doi.org/10.48550/ARXIV.2006.07237
https://arxiv.org/abs/2006.07237
https://doi.org/10.48550/ARXIV.2209.02681
https://doi.org/10.48550/ARXIV.2209.02681
https://arxiv.org/abs/2209.02681
https://doi.org/10.1109/icict57646.2023.10134464
https://doi.org/10.1109/icict57646.2023.10134464
https://doi.org/10.1109/icict57646.2023.10134464
https://doi.org/10.48550/ARXIV.2111.04020
https://arxiv.org/abs/2111.04020
https://doi.org/10.18653/v1/d18-1472
https://doi.org/10.18653/v1/d18-1472
https://doi.org/10.18653/v1/d18-1472
https://doi.org/10.3390/s22166129
https://doi.org/10.3390/s22166129
https://doi.org/10.1016/j.eswa.2022.117583
https://doi.org/10.1016/j.eswa.2022.117583
https://doi.org/10.1016/j.eswa.2022.117583
https://doi.org/10.1002/ima.22638
https://doi.org/10.1002/ima.22638
https://doi.org/10.1002/ima.22638
https://doi.org/10.1109/INDIACom51348.2021.00040
https://doi.org/10.1109/INDIACom51348.2021.00040
https://ieeexplore.ieee.org/document/9441246
https://doi.org/10.1109/icsse52999.2021.9538437
https://doi.org/10.1109/icsse52999.2021.9538437

bibliography 333

[691] A. Mishra, P. Chandra, U. Ghose, and S. S. Sodhi. “Bi-modal derivative adaptive activation
function sigmoidal feedforward artificial neural networks.” In: Applied Soft Computing 61 (Dec.
2017), pp. 983–994. doi: 10.1016/j.asoc.2017.09.002. url: https://doi.org/10.1016/j.as
oc.2017.09.002 (cit. on pp. 49, 126).

[692] D. E. Ratnawati, Marjono, Widodo, and S. Anam. “Comparison of activation function on
extreme learning machine (ELM) performance for classifying the active compound.” In:
SYMPOSIUM ON BIOMATHEMATICS 2019 (SYMOMATH 2019). AIP Publishing, 2020. doi:
10.1063/5.0023872. url: https://doi.org/10.1063/5.0023872 (cit. on pp. 49, 176).

[693] A. Dureja and P. Pahwa. “Analysis of Nonlinear Activation Functions for Classification Tasks
Using Convolutional Neural Networks.” In: Lecture Notes in Electrical Engineering. Springer
Singapore, 2019, pp. 1179–1190. doi: 10.1007/978-981-13-6772-4_103. url: https://doi.or
g/10.1007/978-981-13-6772-4_103 (cit. on p. 49).

[694] V. M. Vargas, D. Guijo-Rubio, P. A. Gutiérrez, and C. Hervás-Martínez. “ReLU-Based Activa-
tions: Analysis and Experimental Study for Deep Learning.” In: Advances in Artificial Intelligence.
Springer International Publishing, 2021, pp. 33–43. doi: 10.1007/978-3-030-85713-4_4. url:
https://doi.org/10.1007/978-3-030-85713-4_4 (cit. on p. 49).

[695] Y. Singh, M. Saini, and Savita. “Impact and Performance Analysis of Various Activation
Functions for Classification Problems.” In: 2023 IEEE International Conference on Contemporary
Computing and Communications (InC4). IEEE, Apr. 2023. doi: 10.1109/inc457730.2023.102631
29. url: http://dx.doi.org/10.1109/InC457730.2023.10263129 (cit. on p. 49).

[696] D. K.-H. Lai, E. S.-W. Cheng, B. P.-H. So, Y.-J. Mao, S. M.-Y. Cheung, D. S. K. Cheung, D. W.-C.
Wong, and J. C.-W. Cheung. “Transformer Models and Convolutional Networks with Different
Activation Functions for Swallow Classification Using Depth Video Data.” In: Mathematics
11.14 (July 2023), p. 3081. doi: 10.3390/math11143081. url: https://doi.org/10.3390/math1
1143081 (cit. on p. 49).

[697] E. Papavasileiou and B. Jansen. “The importance of the activation function in NeuroEvolution
with FS-NEAT and FD-NEAT.” In: 2017 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, Nov. 2017. doi: 10.1109/ssci.2017.8285328. url: https://doi.org/10.1109/s
sci.2017.8285328 (cit. on p. 49).

[698] W. H. Kang, J. Alam, and A. Fathan. “Investigation on activation functions for robust end-to-
end spoofing attack detection system.” In: 2021 Edition of the Automatic Speaker Verification and
Spoofing Countermeasures Challenge. ISCA, Sept. 2021. doi: 10.21437/asvspoof.2021-13. url:
https://doi.org/10.21437/asvspoof.2021-13 (cit. on pp. 49, 111).

[699] V. M. Vargas, P. A. Gutiérrez, J. Barbero-Gómez, and C. Hervás-Martínez. “Activation Functions
for Convolutional Neural Networks: Proposals and Experimental Study.” In: IEEE Transactions
on Neural Networks and Learning Systems 34.3 (Mar. 2023), pp. 1478–1488. doi: 10.1109/tnnls
.2021.3105444. url: https://doi.org/10.1109/tnnls.2021.3105444 (cit. on pp. 49, 143, 145,
203).

[700] A. D. Jagtap and G. E. Karniadakis. “How Important Are Activation Functions in Regression
and Classification? A Survey, Performance Comparison, and Future Directions.” In: Journal of
Machine Learning for Modeling and Computing 4.1 (2023), pp. 21–75. doi: 10.1615/jmachlearnmod
elcomput.2023047367. url: https://doi.org/10.1615/jmachlearnmodelcomput.2023047367
(cit. on p. 49).

[701] R. H. K. Emanuel, P. D. Docherty, H. Lunt, and K. Möller. “The effect of activation functions
on accuracy, convergence speed, and misclassification confidence in CNN text classification: a
comprehensive exploration.” In: The Journal of Supercomputing 80.1 (June 2023), pp. 292–312.
issn: 1573-0484. doi: 10.1007/s11227-023-05441-7. url: http://dx.doi.org/10.1007/s112
27-023-05441-7 (cit. on p. 49).

[702] Z. Zhang, X. Li, Y. Yang, and Z. Shi. “Enhancing Deep Learning Models for Image Classification
using Hybrid Activation Functions.” In: (Nov. 2023). doi: 10.21203/rs.3.rs-3574353/v1. url:
http://dx.doi.org/10.21203/rs.3.rs-3574353/v1 (cit. on p. 49).

[703] B. Singh, S. Patel, A. Vijayvargiya, and R. Kumar. “Analyzing the impact of activation functions
on the performance of the data-driven gait model.” In: Results in Engineering 18 (June 2023),
p. 101029. issn: 2590-1230. doi: 10.1016/j.rineng.2023.101029. url: http://dx.doi.org/10
.1016/j.rineng.2023.101029 (cit. on pp. 49, 75).

[704] K.-C. Lin, C.-H. Hu, and K.-C. Wang. “Innovative deep energy method for piezoelectricity
problems.” In: Applied Mathematical Modelling 126 (Feb. 2024), pp. 405–419. issn: 0307-904X.
doi: 10.1016/j.apm.2023.11.006. url: http://dx.doi.org/10.1016/j.apm.2023.11.006
(cit. on p. 49).

https://doi.org/10.1016/j.asoc.2017.09.002
https://doi.org/10.1016/j.asoc.2017.09.002
https://doi.org/10.1016/j.asoc.2017.09.002
https://doi.org/10.1063/5.0023872
https://doi.org/10.1063/5.0023872
https://doi.org/10.1007/978-981-13-6772-4_103
https://doi.org/10.1007/978-981-13-6772-4_103
https://doi.org/10.1007/978-981-13-6772-4_103
https://doi.org/10.1007/978-3-030-85713-4_4
https://doi.org/10.1007/978-3-030-85713-4_4
https://doi.org/10.1109/inc457730.2023.10263129
https://doi.org/10.1109/inc457730.2023.10263129
http://dx.doi.org/10.1109/InC457730.2023.10263129
https://doi.org/10.3390/math11143081
https://doi.org/10.3390/math11143081
https://doi.org/10.3390/math11143081
https://doi.org/10.1109/ssci.2017.8285328
https://doi.org/10.1109/ssci.2017.8285328
https://doi.org/10.1109/ssci.2017.8285328
https://doi.org/10.21437/asvspoof.2021-13
https://doi.org/10.21437/asvspoof.2021-13
https://doi.org/10.1109/tnnls.2021.3105444
https://doi.org/10.1109/tnnls.2021.3105444
https://doi.org/10.1109/tnnls.2021.3105444
https://doi.org/10.1615/jmachlearnmodelcomput.2023047367
https://doi.org/10.1615/jmachlearnmodelcomput.2023047367
https://doi.org/10.1615/jmachlearnmodelcomput.2023047367
https://doi.org/10.1007/s11227-023-05441-7
http://dx.doi.org/10.1007/s11227-023-05441-7
http://dx.doi.org/10.1007/s11227-023-05441-7
https://doi.org/10.21203/rs.3.rs-3574353/v1
http://dx.doi.org/10.21203/rs.3.rs-3574353/v1
https://doi.org/10.1016/j.rineng.2023.101029
http://dx.doi.org/10.1016/j.rineng.2023.101029
http://dx.doi.org/10.1016/j.rineng.2023.101029
https://doi.org/10.1016/j.apm.2023.11.006
http://dx.doi.org/10.1016/j.apm.2023.11.006

334 bibliography

[705] N. T. Koh, A. Sharma, J. Xiao, X. Peng, and W. L. Woo. “Solar Irradiance Forecast using Long
Short-Term Memory: A Comparative Analysis of Different Activation Functions.” In: 2022
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Dec. 2022. doi: 10.1109/ssci
51031.2022.10022163. url: http://dx.doi.org/10.1109/SSCI51031.2022.10022163 (cit. on
p. 49).

[706] S. H. Bhojani and N. Bhatt. “Performance Analysis of Activation Functions for Wheat Crop
Yield Prediction.” In: IOP Conference Series: Materials Science and Engineering 1042.1 (Jan. 2021),
p. 012015. issn: 1757-899X. doi: 10.1088/1757-899x/1042/1/012015. url: http://dx.doi.org
/10.1088/1757-899X/1042/1/012015 (cit. on p. 49).

[707] L. A. Hurley, J. G. Restrepo, and S. E. Shaheen. Tuning the activation function to optimize the
forecast horizon of a reservoir computer. 2023. doi: 10.48550/ARXIV.2312.13151. url: https://a
rxiv.org/abs/2312.13151 (cit. on pp. 49, 94, 177).

[708] F. Makhrus. “The effect of amplitude modification in S-shaped activation functions on neural
network regression.” In: Neural Network World 33.4 (2023), pp. 245–269. issn: 2336-4335. doi:
10.14311/nnw.2023.33.015. url: http://dx.doi.org/10.14311/nnw.2023.33.015 (cit. on
p. 49).

[709] A. Mishra, P. Chandra, and U. Ghose. “A Non-monotonic Activation Function for Neural
Networks Validated on Benchmark Tasks.” In: Modern Approaches in Machine Learning and
Cognitive Science: A Walkthrough. Springer International Publishing, 2021, pp. 319–327. isbn:
9783030682910. doi: 10.1007/978-3-030-68291-0_25. url: http://dx.doi.org/10.1007/978
-3-030-68291-0_25 (cit. on pp. 49, 94).

[710] M. H. Essai Ali, A. B. Abdel-Raman, and E. A. Badry. “Developing Novel Activation Functions
Based Deep Learning LSTM for Classification.” In: IEEE Access 10 (2022), pp. 97259–97275.
issn: 2169-3536. doi: 10.1109/access.2022.3205774. url: http://dx.doi.org/10.1109
/ACCESS.2022.3205774 (cit. on pp. 49, 96).

[711] D. J. Rumala, E. M. Yuniarno, R. F. Rachmadi, S. M. S. Nugroho, H. P. A. Tjahyaningtijas,
Y. Adrianto, A. D. Sensusiati, and I. K. E. Purnama. “Activation Functions Evaluation to
Improve Performance of Convolutional Neural Network in Brain Disease Classification Based
on Magnetic Resonance Images.” In: 2020 International Conference on Computer Engineering,
Network, and Intelligent Multimedia (CENIM). IEEE, Nov. 2020. doi: 10.1109/cenim51130.2020
.9297862. url: http://dx.doi.org/10.1109/CENIM51130.2020.9297862 (cit. on p. 49).

[712] L. Suciningtyas, R. Alfatikarani, M. B. F. Alan, F. M. Maimunir, and H. P. A. Tjahyaningtijas.
“Activation Function Comparison On Potato Leaf Disease Classification Performance.” In:
2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE).
IEEE, Oct. 2023. doi: 10.1109/icvee59738.2023.10348283. url: http://dx.doi.org/10.1109
/ICVEE59738.2023.10348283 (cit. on p. 49).

[713] M. A. Mercioni and S. Holban. “A Brief Review of the Most Recent Activation Functions
for Neural Networks.” In: 2023 17th International Conference on Engineering of Modern Electric
Systems (EMES). IEEE, June 2023. doi: 10.1109/emes58375.2023.10171705. url: http://dx.d
oi.org/10.1109/EMES58375.2023.10171705 (cit. on p. 49).

[714] H. Wang, L. Lu, S. S. null, and G. Huang. “Learning Specialized Activation Functions for
Physics-Informed Neural Networks.” In: Communications in Computational Physics 34.4 (June
2023), pp. 869–906. issn: 1991-7120. doi: 10.4208/cicp.oa-2023-0058. url: http://dx.doi.o
rg/10.4208/cicp.OA-2023-0058 (cit. on p. 49).

[715] O. Pantalé. “Comparing Activation Functions in Machine Learning for Finite Element Simula-
tions in Thermomechanical Forming.” In: Algorithms 16.12 (Nov. 2023), p. 537. issn: 1999-4893.
doi: 10.3390/a16120537. url: http://dx.doi.org/10.3390/a16120537 (cit. on p. 49).

[716] D. V. Dung, N. D. Song, P. S. Palar, and L. R. Zuhal. “On The Choice of Activation Functions
in Physics-Informed Neural Network for Solving Incompressible Fluid Flows.” In: AIAA
SCITECH 2023 Forum. American Institute of Aeronautics and Astronautics, Jan. 2023. doi:
10.2514/6.2023-1803. url: http://dx.doi.org/10.2514/6.2023-1803 (cit. on p. 49).

[717] X. Liu, J. Zhou, and H. Qian. “Comparison and Evaluation of Activation Functions in Term of
Gradient Instability in Deep Neural Networks.” In: 2019 Chinese Control And Decision Conference
(CCDC). IEEE, June 2019. doi: 10.1109/ccdc.2019.8832578. url: http://dx.doi.org/10.110
9/CCDC.2019.8832578 (cit. on p. 49).

[718] K. Ingole and N. Patil. “Performance Analysis of Various Activation Function on a Shallow
Neural Network.” In: International Journal of Emerging Technologies and Innovative Research 7.6
(June 2020), pp. 269–276. issn: 2349-5162. url: http://www.jetir.org/papers/JETIR2006041
.pdf (cit. on p. 49).

https://doi.org/10.1109/ssci51031.2022.10022163
https://doi.org/10.1109/ssci51031.2022.10022163
http://dx.doi.org/10.1109/SSCI51031.2022.10022163
https://doi.org/10.1088/1757-899x/1042/1/012015
http://dx.doi.org/10.1088/1757-899X/1042/1/012015
http://dx.doi.org/10.1088/1757-899X/1042/1/012015
https://doi.org/10.48550/ARXIV.2312.13151
https://arxiv.org/abs/2312.13151
https://arxiv.org/abs/2312.13151
https://doi.org/10.14311/nnw.2023.33.015
http://dx.doi.org/10.14311/nnw.2023.33.015
https://doi.org/10.1007/978-3-030-68291-0_25
http://dx.doi.org/10.1007/978-3-030-68291-0_25
http://dx.doi.org/10.1007/978-3-030-68291-0_25
https://doi.org/10.1109/access.2022.3205774
http://dx.doi.org/10.1109/ACCESS.2022.3205774
http://dx.doi.org/10.1109/ACCESS.2022.3205774
https://doi.org/10.1109/cenim51130.2020.9297862
https://doi.org/10.1109/cenim51130.2020.9297862
http://dx.doi.org/10.1109/CENIM51130.2020.9297862
https://doi.org/10.1109/icvee59738.2023.10348283
http://dx.doi.org/10.1109/ICVEE59738.2023.10348283
http://dx.doi.org/10.1109/ICVEE59738.2023.10348283
https://doi.org/10.1109/emes58375.2023.10171705
http://dx.doi.org/10.1109/EMES58375.2023.10171705
http://dx.doi.org/10.1109/EMES58375.2023.10171705
https://doi.org/10.4208/cicp.oa-2023-0058
http://dx.doi.org/10.4208/cicp.OA-2023-0058
http://dx.doi.org/10.4208/cicp.OA-2023-0058
https://doi.org/10.3390/a16120537
http://dx.doi.org/10.3390/a16120537
https://doi.org/10.2514/6.2023-1803
http://dx.doi.org/10.2514/6.2023-1803
https://doi.org/10.1109/ccdc.2019.8832578
http://dx.doi.org/10.1109/CCDC.2019.8832578
http://dx.doi.org/10.1109/CCDC.2019.8832578
http://www.jetir.org/papers/JETIR2006041.pdf
http://www.jetir.org/papers/JETIR2006041.pdf

bibliography 335

[719] L. Nanni, A. Lumini, S. Ghidoni, and G. Maguolo. “Comparisons among different stochastic
selections of activation layers for convolutional neural networks for health care.” In: Cognitive
and Soft Computing Techniques for the Analysis of Healthcare Data. Elsevier, 2022, pp. 151–164. doi:
10.1016/b978-0-323-85751-2.00003-7. url: http://dx.doi.org/10.1016/b978-0-323-857
51-2.00003-7 (cit. on p. 49).

[720] R. Zhang, Y. Zhu, Z. Ge, H. Mu, D. Qi, and H. Ni. “Transfer Learning for Leaf Small Dataset
Using Improved ResNet50 Network with Mixed Activation Functions.” In: Forests 13.12 (Dec.
2022), p. 2072. issn: 1999-4907. doi: 10.3390/f13122072. url: http://dx.doi.org/10.3390/f
13122072 (cit. on p. 49).

[721] A. Chaturvedi, N. Apoorva, M. S. Awasthi, S. Jyoti, D. P. Akarsha, S. Brunda, and C. S. Soumya.
“Analyzing the Performance of Novel Activation Functions on Deep Learning Architectures.”
In: Lecture Notes in Electrical Engineering. Springer Nature Singapore, Dec. 2022, pp. 903–915.
isbn: 9789811954825. doi: 10.1007/978-981-19-5482-5_76. url: http://dx.doi.org/10.100
7/978-981-19-5482-5_76 (cit. on p. 49).

[722] D. Pedamonti. Comparison of non-linear activation functions for deep neural networks on MNIST
classification task. 2018. doi: 10.48550/ARXIV.1804.02763. url: https://arxiv.org/abs/1804
.02763 (cit. on p. 49).

[723] Y. Bai. “RELU-Function and Derived Function Review.” In: SHS Web of Conferences 144 (2022).
Ed. by A. Luqman, Q. Zhang, and W. Liu, p. 02006. issn: 2261-2424. doi: 10.1051/shsconf/20
2214402006. url: http://dx.doi.org/10.1051/shsconf/202214402006 (cit. on p. 49).

[724] F. Kamalov, A. Nazir, M. Safaraliev, A. K. Cherukuri, and R. Zgheib. “Comparative analysis
of activation functions in neural networks.” In: 2021 28th IEEE International Conference on
Electronics, Circuits, and Systems (ICECS). IEEE, Nov. 2021. doi: 10.1109/icecs53924.2021.966
5646. url: http://dx.doi.org/10.1109/ICECS53924.2021.9665646 (cit. on p. 49).

[725] M. M. Lau and K. Hann Lim. “Review of Adaptive Activation Function in Deep Neural
Network.” In: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES).
IEEE, Dec. 2018. doi: 10.1109/iecbes.2018.8626714. url: http://dx.doi.org/10.1109
/IECBES.2018.8626714 (cit. on p. 49).

[726] A. Dubowski. Activation function impact on Sparse Neural Networks. 2020. doi: 10.48550/ARXIV.2
010.05943. url: https://arxiv.org/abs/2010.05943 (cit. on p. 49).

[727] I. A. Kandhro, M. Uddin, S. Hussain, T. J. Chaudhery, M. Shorfuzzaman, H. Meshref, M.
Albalhaq, R. Alsaqour, and O. I. Khalaf. “Impact of Activation, Optimization, and Regulariza-
tion Methods on the Facial Expression Model Using CNN.” In: Computational Intelligence and
Neuroscience 2022 (June 2022). Ed. by M. Z. Asghar, pp. 1–9. issn: 1687-5265. doi: 10.1155/202
2/3098604. url: http://dx.doi.org/10.1155/2022/3098604 (cit. on p. 49).

[728] E. C. Seyrek and M. Uysal. “A comparative analysis of various activation functions and
optimizers in a convolutional neural network for hyperspectral image classification.” In:
Multimedia Tools and Applications (Nov. 2023). issn: 1573-7721. doi: 10.1007/s11042-023-1754
6-5. url: http://dx.doi.org/10.1007/s11042-023-17546-5 (cit. on p. 49).

[729] C. Bircanoglu and N. Arica. “A comparison of activation functions in artificial neural net-
works.” In: 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE,
May 2018. doi: 10.1109/siu.2018.8404724. url: http://dx.doi.org/10.1109/SIU.2018.840
4724 (cit. on p. 49).

[730] P. Tatraiya, H. Priyadarshi, K. Singh, D. Mishra, and A. Shrivastava. “Applicative Analysis Of
Activation Functions For Pneumonia Detection Using Convolutional Neural Networks.” In:
2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET). IEEE, May 2023. doi:
10.1109/globconet56651.2023.10149937. url: http://dx.doi.org/10.1109/GlobConET5665
1.2023.10149937 (cit. on p. 49).

[731] W. Qiu, C. He, G. Zheng, Q. Yi, and G. Chen. “Activation Function Dependence of Data-Driven
Spectra Prediction of Nanostructures.” In: Advanced Theory and Simulations 6.5 (Feb. 2023). issn:
2513-0390. doi: 10.1002/adts.202200867. url: http://dx.doi.org/10.1002/adts.202200867
(cit. on p. 49).

[732] V. K. Kayala and P. Kodali. “Performance Analysis of Activation Functions on Convolutional
Neural Networks Using Cloud GPU.” In: Advances in Communications, Signal Processing, and
VLSI. Springer Singapore, 2021, pp. 35–48. isbn: 9789813340589. doi: 10.1007/978-981-33-40
58-9_4. url: http://dx.doi.org/10.1007/978-981-33-4058-9_4 (cit. on p. 49).

[733] L. Xu and C. L. Philip Chen. “Comparison and Combination of Activation Functions in Broad
Learning System.” In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
IEEE, Oct. 2020. doi: 10.1109/smc42975.2020.9282871. url: http://dx.doi.org/10.1109
/SMC42975.2020.9282871 (cit. on pp. 49, 62, 71, 84, 85, 98, 99).

https://doi.org/10.1016/b978-0-323-85751-2.00003-7
http://dx.doi.org/10.1016/b978-0-323-85751-2.00003-7
http://dx.doi.org/10.1016/b978-0-323-85751-2.00003-7
https://doi.org/10.3390/f13122072
http://dx.doi.org/10.3390/f13122072
http://dx.doi.org/10.3390/f13122072
https://doi.org/10.1007/978-981-19-5482-5_76
http://dx.doi.org/10.1007/978-981-19-5482-5_76
http://dx.doi.org/10.1007/978-981-19-5482-5_76
https://doi.org/10.48550/ARXIV.1804.02763
https://arxiv.org/abs/1804.02763
https://arxiv.org/abs/1804.02763
https://doi.org/10.1051/shsconf/202214402006
https://doi.org/10.1051/shsconf/202214402006
http://dx.doi.org/10.1051/shsconf/202214402006
https://doi.org/10.1109/icecs53924.2021.9665646
https://doi.org/10.1109/icecs53924.2021.9665646
http://dx.doi.org/10.1109/ICECS53924.2021.9665646
https://doi.org/10.1109/iecbes.2018.8626714
http://dx.doi.org/10.1109/IECBES.2018.8626714
http://dx.doi.org/10.1109/IECBES.2018.8626714
https://doi.org/10.48550/ARXIV.2010.05943
https://doi.org/10.48550/ARXIV.2010.05943
https://arxiv.org/abs/2010.05943
https://doi.org/10.1155/2022/3098604
https://doi.org/10.1155/2022/3098604
http://dx.doi.org/10.1155/2022/3098604
https://doi.org/10.1007/s11042-023-17546-5
https://doi.org/10.1007/s11042-023-17546-5
http://dx.doi.org/10.1007/s11042-023-17546-5
https://doi.org/10.1109/siu.2018.8404724
http://dx.doi.org/10.1109/SIU.2018.8404724
http://dx.doi.org/10.1109/SIU.2018.8404724
https://doi.org/10.1109/globconet56651.2023.10149937
http://dx.doi.org/10.1109/GlobConET56651.2023.10149937
http://dx.doi.org/10.1109/GlobConET56651.2023.10149937
https://doi.org/10.1002/adts.202200867
http://dx.doi.org/10.1002/adts.202200867
https://doi.org/10.1007/978-981-33-4058-9_4
https://doi.org/10.1007/978-981-33-4058-9_4
http://dx.doi.org/10.1007/978-981-33-4058-9_4
https://doi.org/10.1109/smc42975.2020.9282871
http://dx.doi.org/10.1109/SMC42975.2020.9282871
http://dx.doi.org/10.1109/SMC42975.2020.9282871

336 bibliography

[734] A. Salam, A. E. Hibaoui, and A. Saif. “A comparison of activation functions in multilayer
neural network for predicting the production and consumption of electricity power.” In:
International Journal of Electrical and Computer Engineering (IJECE) 11.1 (Feb. 2021), p. 163. issn:
2088-8708. doi: 10.11591/ijece.v11i1.pp163-170. url: http://dx.doi.org/10.11591/ijec
e.v11i1.pp163-170 (cit. on p. 49).

[735] A. S. Lutakamale and Y. Z. Manyesela. “The Influence of Non-learnable Activation Functions
on the Positioning Performance of Deep Learning-Based Fingerprinting Models Trained
with Small CSI Sample Sizes.” In: Transactions of the Indian National Academy of Engineering
7.3 (July 2022), pp. 1059–1067. issn: 2662-5423. doi: 10.1007/s41403- 022- 00347- x. url:
http://dx.doi.org/10.1007/s41403-022-00347-x (cit. on p. 49).

[736] A. Nandi, N. D. Jana, and S. Das. “Improving the Performance of Neural Networks with an
Ensemble of Activation Functions.” In: 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE, July 2020. doi: 10.1109/ijcnn48605.2020.9207277. url: http://dx.doi.org
/10.1109/IJCNN48605.2020.9207277 (cit. on p. 49).

[737] J. M. Locke, D. Paradice, and R. K. Rainer. “Mitigating bias through random activation
function selection.” In: Neural Computing and Applications (Nov. 2023). issn: 1433-3058. doi:
10.1007/s00521-023-09178-5. url: http://dx.doi.org/10.1007/s00521-023-09178-5
(cit. on p. 49).

[738] K. Wong, R. Dornberger, and T. Hanne. “An analysis of weight initialization methods in con-
nection with different activation functions for feedforward neural networks.” In: Evolutionary
Intelligence (Nov. 2022). doi: 10.1007/s12065-022-00795-y. url: https://doi.org/10.1007
/s12065-022-00795-y (cit. on pp. 49, 62).

[739] S. Saha, A. Mathur, A. Pandey, and H. Arun Kumar. “DiffAct: A Unifying Framework for
Activation Functions.” In: 2021 International Joint Conference on Neural Networks (IJCNN). IEEE,
July 2021. doi: 10.1109/ijcnn52387.2021.9534391. url: http://dx.doi.org/10.1109
/IJCNN52387.2021.9534391 (cit. on p. 49).

[740] A. Farzad, H. Mashayekhi, and H. Hassanpour. “A comparative performance analysis of
different activation functions in LSTM networks for classification.” In: Neural Computing
and Applications 31.7 (Oct. 2017), pp. 2507–2521. doi: 10.1007/s00521- 017- 3210- 6. url:
https://doi.org/10.1007/s00521-017-3210-6 (cit. on pp. 49, 55).

[741] M. Badiger and J. A. Mathew. “Retrospective Review of Activation Functions in Artificial
Neural Networks.” In: Proceedings of Third International Conference on Communication, Computing
and Electronics Systems. Springer Singapore, 2022, pp. 905–919. doi: 10.1007/978-981-16-886
2-1_59. url: https://doi.org/10.1007/978-981-16-8862-1_59 (cit. on p. 49).

[742] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation Functions: Comparison of
trends in Practice and Research for Deep Learning. 2018. doi: 10.48550/ARXIV.1811.03378. url:
https://arxiv.org/abs/1811.03378 (cit. on pp. 49, 141, 142).

[743] W. Duch and N. Jankowski. “Taxonomy of neural transfer functions.” In: Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing:
New Challenges and Perspectives for the New Millennium. IEEE, 2000. doi: 10.1109/ijcnn.2000
.861353. url: http://dx.doi.org/10.1109/IJCNN.2000.861353 (cit. on p. 49).

[744] B. Raitani. “Survey on recent activation functions with emphasis on oscillating activation
functions.” In: (June 2022). doi: 10.31224/2429. url: http://dx.doi.org/10.31224/2429
(cit. on p. 49).

[745] L. Datta. A Survey on Activation Functions and their relation with Xavier and He Normal Initialization.
2020. doi: 10.48550/ARXIV.2004.06632. url: https://arxiv.org/abs/2004.06632 (cit. on
p. 49).

[746] A. D. Rasamoelina, F. Adjailia, and P. Sincak. “A Review of Activation Function for Artificial
Neural Network.” In: 2020 IEEE 18th World Symposium on Applied Machine Intelligence and
Informatics (SAMI). IEEE, Jan. 2020. doi: 10.1109/sami48414.2020.9108717. url: http://dx
.doi.org/10.1109/SAMI48414.2020.9108717 (cit. on p. 49).

[747] M. A. Mercioni and S. Holban. “The Most Used Activation Functions: Classic Versus Current.”
In: 2020 International Conference on Development and Application Systems (DAS). IEEE, May 2020.
doi: 10.1109/das49615.2020.9108942. url: http://dx.doi.org/10.1109/DAS49615.2020.91
08942 (cit. on p. 49).

[748] K. Liu. “Analysis of Features of Different Activation Functions.” In: 2021 2nd International
Conference on Computing and Data Science (CDS). IEEE, Jan. 2021. doi: 10.1109/cds52072.2021
.00078. url: http://dx.doi.org/10.1109/CDS52072.2021.00078 (cit. on p. 49).

[749] S. Serhat Kiliçarslan, K. Adem, and M. Çelik. “An overview of the activation functions used in
deep learning algorithms.” In: Journal of New Results in Science 10.3 (Dec. 2021), pp. 75–88. issn:
1304-7981. doi: 10.54187/jnrs.1011739. url: http://dx.doi.org/10.54187/jnrs.1011739
(cit. on p. 49).

https://doi.org/10.11591/ijece.v11i1.pp163-170
http://dx.doi.org/10.11591/ijece.v11i1.pp163-170
http://dx.doi.org/10.11591/ijece.v11i1.pp163-170
https://doi.org/10.1007/s41403-022-00347-x
http://dx.doi.org/10.1007/s41403-022-00347-x
https://doi.org/10.1109/ijcnn48605.2020.9207277
http://dx.doi.org/10.1109/IJCNN48605.2020.9207277
http://dx.doi.org/10.1109/IJCNN48605.2020.9207277
https://doi.org/10.1007/s00521-023-09178-5
http://dx.doi.org/10.1007/s00521-023-09178-5
https://doi.org/10.1007/s12065-022-00795-y
https://doi.org/10.1007/s12065-022-00795-y
https://doi.org/10.1007/s12065-022-00795-y
https://doi.org/10.1109/ijcnn52387.2021.9534391
http://dx.doi.org/10.1109/IJCNN52387.2021.9534391
http://dx.doi.org/10.1109/IJCNN52387.2021.9534391
https://doi.org/10.1007/s00521-017-3210-6
https://doi.org/10.1007/s00521-017-3210-6
https://doi.org/10.1007/978-981-16-8862-1_59
https://doi.org/10.1007/978-981-16-8862-1_59
https://doi.org/10.1007/978-981-16-8862-1_59
https://doi.org/10.48550/ARXIV.1811.03378
https://arxiv.org/abs/1811.03378
https://doi.org/10.1109/ijcnn.2000.861353
https://doi.org/10.1109/ijcnn.2000.861353
http://dx.doi.org/10.1109/IJCNN.2000.861353
https://doi.org/10.31224/2429
http://dx.doi.org/10.31224/2429
https://doi.org/10.48550/ARXIV.2004.06632
https://arxiv.org/abs/2004.06632
https://doi.org/10.1109/sami48414.2020.9108717
http://dx.doi.org/10.1109/SAMI48414.2020.9108717
http://dx.doi.org/10.1109/SAMI48414.2020.9108717
https://doi.org/10.1109/das49615.2020.9108942
http://dx.doi.org/10.1109/DAS49615.2020.9108942
http://dx.doi.org/10.1109/DAS49615.2020.9108942
https://doi.org/10.1109/cds52072.2021.00078
https://doi.org/10.1109/cds52072.2021.00078
http://dx.doi.org/10.1109/CDS52072.2021.00078
https://doi.org/10.54187/jnrs.1011739
http://dx.doi.org/10.54187/jnrs.1011739

bibliography 337

[750] M. Çelebi and M. Ceylan. “The New Activation Function for Complex Valued Neural Net-
works: Complex Swish Function.” In: 4th International Symposium on Innovative Approaches in
Engineering and Natural Sciences Proceedings. SETSCI, July 2019. doi: 10.36287/setsci.4.6.050.
url: https://doi.org/10.36287/setsci.4.6.050 (cit. on p. 49).

[751] Y. Zhang, Q. Hua, H. Wang, Z. Ji, and Y. Wang. “Gaussian-type activation function with
learnable parameters in complex-valued convolutional neural network and its application for
PolSAR classification.” In: Neurocomputing 518 (Jan. 2023), pp. 95–110. doi: 10.1016/j.neucom
.2022.10.082. url: https://doi.org/10.1016/j.neucom.2022.10.082 (cit. on p. 49).

[752] S. Scardapane, S. V. Vaerenbergh, A. Hussain, and A. Uncini. “Complex-Valued Neural
Networks With Nonparametric Activation Functions.” In: IEEE Transactions on Emerging Topics
in Computational Intelligence 4.2 (Apr. 2020), pp. 140–150. doi: 10.1109/tetci.2018.2872600.
url: https://doi.org/10.1109/tetci.2018.2872600 (cit. on p. 49).

[753] B. N. Örnek, S. B. Aydemir, T. Düzenli, and B. Özak. “Some remarks on activation function
design in complex extreme learning using Schwarz lemma.” In: Neurocomputing 492 (July
2022), pp. 23–33. doi: 10.1016/j.neucom.2022.04.010. url: https://doi.org/10.1016/j.ne
ucom.2022.04.010 (cit. on p. 49).

[754] Q. Hua, Y. Zhang, Y. Jiang, and H. Mu. “Gaussian-type activation function for complex-valued
CNN and its application in polar-SAR image classification.” In: Journal of Applied Remote
Sensing 15.02 (May 2021). doi: 10.1117/1.jrs.15.026510. url: https://doi.org/10.1117/1
.jrs.15.026510 (cit. on p. 49).

[755] T. Kim and T. Adali. “Fully Complex Multi-Layer Perceptron Network for Nonlinear Signal
Processing.” In: The Journal of VLSI Signal Processing 32.1/2 (2002), pp. 29–43. doi: 10.1023/a:
1016359216961. url: https://doi.org/10.1023/a:1016359216961 (cit. on p. 49).

[756] R. Savitha, S. Suresh, N. Sundararajan, and P. Saratchandran. “A new learning algorithm
with logarithmic performance index for complex-valued neural networks.” In: Neurocomputing
72.16-18 (Oct. 2009), pp. 3771–3781. doi: 10.1016/j.neucom.2009.06.004. url: https://doi
.org/10.1016/j.neucom.2009.06.004 (cit. on p. 49).

[757] G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew. “Incremental extreme learning machine
with fully complex hidden nodes.” In: Neurocomputing 71.4-6 (Jan. 2008), pp. 576–583. doi:
10.1016/j.neucom.2007.07.025. url: https://doi.org/10.1016/j.neucom.2007.07.025
(cit. on p. 49).

[758] R. Savitha, S. Suresh, N. Sundararajan, and H. Kim. “A fully complex-valued radial basis
function classifier for real-valued classification problems.” In: Neurocomputing 78.1 (Feb. 2012),
pp. 104–110. doi: 10.1016/j.neucom.2011.05.036. url: https://doi.org/10.1016/j.neucom
.2011.05.036 (cit. on p. 49).

[759] J. Hu, H. Tan, and C. Zeng. “Global exponential stability of delayed complex-valued neural
networks with discontinuous activation functions.” In: Neurocomputing 416 (Nov. 2020), pp. 1–
11. doi: 10.1016/j.neucom.2020.02.006. url: https://doi.org/10.1016/j.neucom.2020.02
.006 (cit. on p. 49).

[760] M. Tan and D. Xu. “Multiple µ-stability analysis for memristor-based complex-valued neural
networks with nonmonotonic piecewise nonlinear activation functions and unbounded time-
varying delays.” In: Neurocomputing 275 (Jan. 2018), pp. 2681–2701. doi: 10.1016/j.neucom.20
17.11.047. url: https://doi.org/10.1016/j.neucom.2017.11.047 (cit. on p. 49).

[761] Y. Kuroe, M. Yoshid, and T. Mori. “On Activation Functions for Complex-Valued Neural
Networks — Existence of Energy Functions.” In: Artificial Neural Networks and Neural Information
Processing — ICANN/ICONIP 2003. Springer Berlin Heidelberg, 2003, pp. 985–992. doi: 10.100
7/3-540-44989-2_117. url: https://doi.org/10.1007/3-540-44989-2_117 (cit. on p. 49).

[762] N. Özdemir, B. B. İskender, and N. Y. Özgür. “Complex valued neural network with Möbius
activation function.” In: Communications in Nonlinear Science and Numerical Simulation 16.12

(Dec. 2011), pp. 4698–4703. doi: 10.1016/j.cnsns.2011.03.005. url: https://doi.org/10.1
016/j.cnsns.2011.03.005 (cit. on p. 49).

[763] J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li. “Enhanced Radar Imaging Using a Complex-
Valued Convolutional Neural Network.” In: IEEE Geoscience and Remote Sensing Letters 16.1
(Jan. 2019), pp. 35–39. issn: 1558-0571. doi: 10.1109/lgrs.2018.2866567. url: http://dx.doi
.org/10.1109/LGRS.2018.2866567 (cit. on p. 49).

[764] C. Lee, H. Hasegawa, and S. Gao. “Complex-Valued Neural Networks: A Comprehensive
Survey.” In: IEEE/CAA Journal of Automatica Sinica 9.8 (Aug. 2022), pp. 1406–1426. doi: 10.110
9/jas.2022.105743. url: https://doi.org/10.1109/jas.2022.105743 (cit. on p. 49).

[765] N. Vieira. “Bicomplex Neural Networks with Hypergeometric Activation Functions.” In:
Advances in Applied Clifford Algebras 33.2 (Mar. 2023). issn: 1661-4909. doi: 10.1007/s00006-02
3-01268-w. url: http://dx.doi.org/10.1007/s00006-023-01268-w (cit. on p. 49).

https://doi.org/10.36287/setsci.4.6.050
https://doi.org/10.36287/setsci.4.6.050
https://doi.org/10.1016/j.neucom.2022.10.082
https://doi.org/10.1016/j.neucom.2022.10.082
https://doi.org/10.1016/j.neucom.2022.10.082
https://doi.org/10.1109/tetci.2018.2872600
https://doi.org/10.1109/tetci.2018.2872600
https://doi.org/10.1016/j.neucom.2022.04.010
https://doi.org/10.1016/j.neucom.2022.04.010
https://doi.org/10.1016/j.neucom.2022.04.010
https://doi.org/10.1117/1.jrs.15.026510
https://doi.org/10.1117/1.jrs.15.026510
https://doi.org/10.1117/1.jrs.15.026510
https://doi.org/10.1023/a:1016359216961
https://doi.org/10.1023/a:1016359216961
https://doi.org/10.1023/a:1016359216961
https://doi.org/10.1016/j.neucom.2009.06.004
https://doi.org/10.1016/j.neucom.2009.06.004
https://doi.org/10.1016/j.neucom.2009.06.004
https://doi.org/10.1016/j.neucom.2007.07.025
https://doi.org/10.1016/j.neucom.2007.07.025
https://doi.org/10.1016/j.neucom.2011.05.036
https://doi.org/10.1016/j.neucom.2011.05.036
https://doi.org/10.1016/j.neucom.2011.05.036
https://doi.org/10.1016/j.neucom.2020.02.006
https://doi.org/10.1016/j.neucom.2020.02.006
https://doi.org/10.1016/j.neucom.2020.02.006
https://doi.org/10.1016/j.neucom.2017.11.047
https://doi.org/10.1016/j.neucom.2017.11.047
https://doi.org/10.1016/j.neucom.2017.11.047
https://doi.org/10.1007/3-540-44989-2_117
https://doi.org/10.1007/3-540-44989-2_117
https://doi.org/10.1007/3-540-44989-2_117
https://doi.org/10.1016/j.cnsns.2011.03.005
https://doi.org/10.1016/j.cnsns.2011.03.005
https://doi.org/10.1016/j.cnsns.2011.03.005
https://doi.org/10.1109/lgrs.2018.2866567
http://dx.doi.org/10.1109/LGRS.2018.2866567
http://dx.doi.org/10.1109/LGRS.2018.2866567
https://doi.org/10.1109/jas.2022.105743
https://doi.org/10.1109/jas.2022.105743
https://doi.org/10.1109/jas.2022.105743
https://doi.org/10.1007/s00006-023-01268-w
https://doi.org/10.1007/s00006-023-01268-w
http://dx.doi.org/10.1007/s00006-023-01268-w

338 bibliography

[766] D. García-Retuerta, R. Casado-Vara, A. Martin-del Rey, F. De la Prieta, J. Prieto, and J. M.
Corchado. “Quaternion Neural Networks: State-of-the-Art and Research Challenges.” In:
Intelligent Data Engineering and Automated Learning – IDEAL 2020. Springer International
Publishing, 2020, pp. 456–467. isbn: 9783030623654. doi: 10.1007/978-3-030-62365-4_43.
url: http://dx.doi.org/10.1007/978-3-030-62365-4_43 (cit. on p. 49).

[767] X. Zhu, Y. Xu, H. Xu, and C. Chen. “Quaternion Convolutional Neural Networks.” In: Proceed-
ings of the European Conference on Computer Vision (ECCV). Sept. 2018. url: https://openacces
s.thecvf.com/content_ECCV_2018/papers/Xuanyu_Zhu_Quaternion_Convolutional_Neural
_ECCV_2018_paper.pdf (cit. on p. 49).

[768] C.-A. Popa. “Scaled Conjugate Gradient Learning for Quaternion-Valued Neural Networks.”
In: Lecture Notes in Computer Science. Springer International Publishing, 2016, pp. 243–252. isbn:
9783319466750. doi: 10.1007/978-3-319-46675-0_27. url: http://dx.doi.org/10.1007/978
-3-319-46675-0_27 (cit. on p. 49).

[769] C.-A. Popa. “Learning Algorithms for Quaternion-Valued Neural Networks.” In: Neural
Processing Letters 47.3 (Sept. 2017), pp. 949–973. issn: 1573-773X. doi: 10.1007/s11063-017-97
16-1. url: http://dx.doi.org/10.1007/s11063-017-9716-1 (cit. on p. 49).

[770] S. Yu, H. Li, X. Chen, and D. Lin. “Multistability analysis of quaternion-valued neural networks
with cosine activation functions.” In: Applied Mathematics and Computation 445 (May 2023),
p. 127849. issn: 0096-3003. doi: 10.1016/j.amc.2023.127849. url: http://dx.doi.org/10.10
16/j.amc.2023.127849 (cit. on p. 49).

[771] Z. Xu, B. Tang, X. Zhang, J. F. Leong, J. Pan, S. Hooda, E. Zamburg, and A. V.-Y. Thean.
“Reconfigurable nonlinear photonic activation function for photonic neural network based on
non-volatile opto-resistive RAM switch.” In: Light: Science & Applications 11.1 (Oct. 2022). issn:
2047-7538. doi: 10.1038/s41377-022-00976-5. url: http://dx.doi.org/10.1038/s41377-02
2-00976-5 (cit. on p. 49).

[772] P. V. de Campos Souza. “Fuzzy neural networks and neuro-fuzzy networks: A review the
main techniques and applications used in the literature.” In: Applied Soft Computing 92 (July
2020), p. 106275. issn: 1568-4946. doi: 10.1016/j.asoc.2020.106275. url: http://dx.doi.or
g/10.1016/j.asoc.2020.106275 (cit. on p. 49).

[773] R. Das, S. Sen, and U. Maulik. “A Survey on Fuzzy Deep Neural Networks.” In: ACM
Computing Surveys 53.3 (May 2020), pp. 1–25. issn: 1557-7341. doi: 10.1145/3369798. url:
http://dx.doi.org/10.1145/3369798 (cit. on p. 49).

[774] S. L. Bangare. “Classification of optimal brain tissue using dynamic region growing and fuzzy
min-max neural network in brain magnetic resonance images.” In: Neuroscience Informatics 2.3
(Sept. 2022), p. 100019. issn: 2772-5286. doi: 10.1016/j.neuri.2021.100019. url: http://dx
.doi.org/10.1016/j.neuri.2021.100019 (cit. on p. 49).

[775] M. Malcangi and G. Nano. “Biofeedback: e-health prediction based on evolving fuzzy neural
network and wearable technologies.” In: Evolving Systems 12.3 (Mar. 2021), pp. 645–653. issn:
1868-6486. doi: 10.1007/s12530-021-09374-5. url: http://dx.doi.org/10.1007/s12530-02
1-09374-5 (cit. on p. 49).

[776] J. Fei, Z. Wang, X. Liang, Z. Feng, and Y. Xue. “Fractional Sliding-Mode Control for Microgy-
roscope Based on Multilayer Recurrent Fuzzy Neural Network.” In: IEEE Transactions on Fuzzy
Systems 30.6 (June 2022), pp. 1712–1721. issn: 1941-0034. doi: 10.1109/tfuzz.2021.3064704.
url: http://dx.doi.org/10.1109/TFUZZ.2021.3064704 (cit. on p. 49).

[777] X.-h. Liu, D. Zhang, J. Zhang, T. Zhang, and H. Zhu. “A path planning method based on the
particle swarm optimization trained fuzzy neural network algorithm.” In: Cluster Computing
24.3 (Jan. 2021), pp. 1901–1915. issn: 1573-7543. doi: 10.1007/s10586-021-03235-1. url:
http://dx.doi.org/10.1007/s10586-021-03235-1 (cit. on p. 49).

[778] J. A. Duersch, T. A. Catanach, and N. Das. Adaptive n-ary Activation Functions for Probabilistic
Boolean Logic. 2022. doi: 10.48550/ARXIV.2203.08977. url: https://arxiv.org/abs/2203.08
977 (cit. on p. 49).

[779] L. Parisi, D. Neagu, R. Ma, and F. Campean. “Quantum ReLU activation for Convolutional
Neural Networks to improve diagnosis of Parkinson’s disease and COVID-19.” In: Expert
Systems with Applications 187 (Jan. 2022), p. 115892. issn: 0957-4174. doi: 10.1016/j.eswa.2021
.115892. url: http://dx.doi.org/10.1016/j.eswa.2021.115892 (cit. on p. 49).

[780] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. “Efficient Neural Network
Robustness Certification with General Activation Functions.” In: Advances in Neural Information
Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett. Vol. 31. Curran Associates, Inc., 2018. url: https://proceedings.neurips
.cc/paper_files/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf (cit. on
p. 50).

https://doi.org/10.1007/978-3-030-62365-4_43
http://dx.doi.org/10.1007/978-3-030-62365-4_43
https://openaccess.thecvf.com/content_ECCV_2018/papers/Xuanyu_Zhu_Quaternion_Convolutional_Neural_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Xuanyu_Zhu_Quaternion_Convolutional_Neural_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Xuanyu_Zhu_Quaternion_Convolutional_Neural_ECCV_2018_paper.pdf
https://doi.org/10.1007/978-3-319-46675-0_27
http://dx.doi.org/10.1007/978-3-319-46675-0_27
http://dx.doi.org/10.1007/978-3-319-46675-0_27
https://doi.org/10.1007/s11063-017-9716-1
https://doi.org/10.1007/s11063-017-9716-1
http://dx.doi.org/10.1007/s11063-017-9716-1
https://doi.org/10.1016/j.amc.2023.127849
http://dx.doi.org/10.1016/j.amc.2023.127849
http://dx.doi.org/10.1016/j.amc.2023.127849
https://doi.org/10.1038/s41377-022-00976-5
http://dx.doi.org/10.1038/s41377-022-00976-5
http://dx.doi.org/10.1038/s41377-022-00976-5
https://doi.org/10.1016/j.asoc.2020.106275
http://dx.doi.org/10.1016/j.asoc.2020.106275
http://dx.doi.org/10.1016/j.asoc.2020.106275
https://doi.org/10.1145/3369798
http://dx.doi.org/10.1145/3369798
https://doi.org/10.1016/j.neuri.2021.100019
http://dx.doi.org/10.1016/j.neuri.2021.100019
http://dx.doi.org/10.1016/j.neuri.2021.100019
https://doi.org/10.1007/s12530-021-09374-5
http://dx.doi.org/10.1007/s12530-021-09374-5
http://dx.doi.org/10.1007/s12530-021-09374-5
https://doi.org/10.1109/tfuzz.2021.3064704
http://dx.doi.org/10.1109/TFUZZ.2021.3064704
https://doi.org/10.1007/s10586-021-03235-1
http://dx.doi.org/10.1007/s10586-021-03235-1
https://doi.org/10.48550/ARXIV.2203.08977
https://arxiv.org/abs/2203.08977
https://arxiv.org/abs/2203.08977
https://doi.org/10.1016/j.eswa.2021.115892
https://doi.org/10.1016/j.eswa.2021.115892
http://dx.doi.org/10.1016/j.eswa.2021.115892
https://proceedings.neurips.cc/paper_files/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf

bibliography 339

[781] A. Dinu and M. Cirstea. “A Digital Neural Network FPGA Direct Hardware Implementation
Algorithm.” In: 2007 IEEE International Symposium on Industrial Electronics. IEEE, June 2007. doi:
10.1109/isie.2007.4374572. url: https://doi.org/10.1109/isie.2007.4374572 (cit. on
p. 50).

[782] A. Dinu, M. N. Cirstea, and S. E. Cirstea. “Direct Neural-Network Hardware-Implementation
Algorithm.” In: IEEE Transactions on Industrial Electronics 57.5 (May 2010), pp. 1845–1848. doi:
10.1109/tie.2009.2033097. url: https://doi.org/10.1109/tie.2009.2033097 (cit. on
p. 50).

[783] J. Chen and Z. Pan. Saturated Non-Monotonic Activation Functions. 2023. doi: 10.48550/ARXIV.2
305.07537. url: https://arxiv.org/abs/2305.07537 (cit. on p. 50).

[784] G. S. da S. Gomes, T. B. Ludermir, and L. M. M. R. Lima. “Comparison of new activation
functions in neural network for forecasting financial time series.” In: Neural Computing and
Applications 20.3 (June 2010), pp. 417–439. issn: 1433-3058. doi: 10.1007/s00521-010-0407-3.
url: http://dx.doi.org/10.1007/s00521-010-0407-3 (cit. on pp. 51, 56, 58).

[785] T. E. Simos and C. Tsitouras. “Efficiently inaccurate approximation of hyperbolic tangent used
as transfer function in artificial neural networks.” In: Neural Computing and Applications 33.16

(Mar. 2021), pp. 10227–10233. doi: 10.1007/s00521-021-05787-0. url: https://doi.org/10
.1007/s00521-021-05787-0 (cit. on p. 51).

[786] G. Dudek. “Data-Driven Learning of Feedforward Neural Networks with Different Activation
Functions.” In: Lecture Notes in Computer Science. Springer International Publishing, 2021,
pp. 66–77. isbn: 9783030879860. doi: 10.1007/978-3-030-87986-0_6. url: http://dx.doi.or
g/10.1007/978-3-030-87986-0_6 (cit. on pp. 51, 99).

[787] D. W. Edwards and I. Dinc. “LRTanH: Substitution for the Activation Function Derivative
during Back Propagation.” In: 2019 SoutheastCon. IEEE, Apr. 2019. doi: 10.1109/southeastco
n42311.2019.9020655. url: http://dx.doi.org/10.1109/SoutheastCon42311.2019.9020655
(cit. on p. 51).

[788] K. Sunat, C. Lursinsap, and C.-H. H. Chu. “The p-recursive piecewise polynomial sigmoid
generators and first-order algorithms for multilayer tanh-like neurons.” In: Neural Computing
and Applications 16.1 (Apr. 2006), pp. 33–47. issn: 1433-3058. doi: 10.1007/s00521-006-0046-x.
url: http://dx.doi.org/10.1007/s00521-006-0046-x (cit. on p. 51).

[789] H. Kwan. “Simple sigmoid-like activation function suitable for digital hardware implementa-
tion.” In: Electronics Letters 28.15 (1992), p. 1379. issn: 0013-5194. doi: 10.1049/el:19920877.
url: http://dx.doi.org/10.1049/el:19920877 (cit. on p. 51).

[790] M. Zhang, S. Vassiliadis, and J. Delgado-Frias. “Sigmoid generators for neural computing
using piecewise approximations.” In: IEEE Transactions on Computers 45.9 (1996), pp. 1045–1049.
issn: 0018-9340. doi: 10.1109/12.537127. url: http://dx.doi.org/10.1109/12.537127
(cit. on p. 51).

[791] B. Xu, R. Huang, and M. Li. Revise Saturated Activation Functions. 2016. doi: 10.48550/ARXIV.1
602.05980. url: https://arxiv.org/abs/1602.05980 (cit. on pp. 51, 54, 212).

[792] D. B. Mulindwa and S. Du. “An n-Sigmoid Activation Function to Improve the Squeeze-
and-Excitation for 2D and 3D Deep Networks.” In: Electronics 12.4 (Feb. 2023), p. 911. issn:
2079-9292. doi: 10.3390/electronics12040911. url: http://dx.doi.org/10.3390/electron
ics12040911 (cit. on p. 51).

[793] H. Arai and H. Imamura. “Spin-wave coupled spin torque oscillators for artificial neural
network.” In: Journal of Applied Physics 124.15 (Oct. 2018). issn: 1089-7550. doi: 10.1063/1.504
0020. url: http://dx.doi.org/10.1063/1.5040020 (cit. on pp. 51, 200).

[794] J. Han and C. Moraga. “The influence of the sigmoid function parameters on the speed of
backpropagation learning.” In: From Natural to Artificial Neural Computation. Springer Berlin
Heidelberg, 1995, pp. 195–201. isbn: 9783540492887. doi: 10.1007/3-540-59497-3_175. url:
http://dx.doi.org/10.1007/3-540-59497-3_175 (cit. on pp. 52, 200).

[795] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document
recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.
url: https://doi.org/10.1109/5.726791 (cit. on pp. 52, 126, 195, 200).

[796] S. S. Sodhi and P. Chandra. “Bi-modal derivative activation function for sigmoidal feedforward
networks.” In: Neurocomputing 143 (Nov. 2014), pp. 182–196. doi: 10.1016/j.neucom.2014.06
.007. url: https://doi.org/10.1016/j.neucom.2014.06.007 (cit. on p. 52).

[797] T. T. Sivri, N. P. Akman, and A. Berkol. “Multiclass Classification Using Arctangent Activation
Function and Its Variations.” In: 2022 14th International Conference on Electronics, Computers
and Artificial Intelligence (ECAI). IEEE, June 2022. doi: 10.1109/ecai54874.2022.9847486. url:
https://doi.org/10.1109/ecai54874.2022.9847486 (cit. on p. 52).

https://doi.org/10.1109/isie.2007.4374572
https://doi.org/10.1109/isie.2007.4374572
https://doi.org/10.1109/tie.2009.2033097
https://doi.org/10.1109/tie.2009.2033097
https://doi.org/10.48550/ARXIV.2305.07537
https://doi.org/10.48550/ARXIV.2305.07537
https://arxiv.org/abs/2305.07537
https://doi.org/10.1007/s00521-010-0407-3
http://dx.doi.org/10.1007/s00521-010-0407-3
https://doi.org/10.1007/s00521-021-05787-0
https://doi.org/10.1007/s00521-021-05787-0
https://doi.org/10.1007/s00521-021-05787-0
https://doi.org/10.1007/978-3-030-87986-0_6
http://dx.doi.org/10.1007/978-3-030-87986-0_6
http://dx.doi.org/10.1007/978-3-030-87986-0_6
https://doi.org/10.1109/southeastcon42311.2019.9020655
https://doi.org/10.1109/southeastcon42311.2019.9020655
http://dx.doi.org/10.1109/SoutheastCon42311.2019.9020655
https://doi.org/10.1007/s00521-006-0046-x
http://dx.doi.org/10.1007/s00521-006-0046-x
https://doi.org/10.1049/el:19920877
http://dx.doi.org/10.1049/el:19920877
https://doi.org/10.1109/12.537127
http://dx.doi.org/10.1109/12.537127
https://doi.org/10.48550/ARXIV.1602.05980
https://doi.org/10.48550/ARXIV.1602.05980
https://arxiv.org/abs/1602.05980
https://doi.org/10.3390/electronics12040911
http://dx.doi.org/10.3390/electronics12040911
http://dx.doi.org/10.3390/electronics12040911
https://doi.org/10.1063/1.5040020
https://doi.org/10.1063/1.5040020
http://dx.doi.org/10.1063/1.5040020
https://doi.org/10.1007/3-540-59497-3_175
http://dx.doi.org/10.1007/3-540-59497-3_175
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.neucom.2014.06.007
https://doi.org/10.1016/j.neucom.2014.06.007
https://doi.org/10.1016/j.neucom.2014.06.007
https://doi.org/10.1109/ecai54874.2022.9847486
https://doi.org/10.1109/ecai54874.2022.9847486

340 bibliography

[798] J. Kamruzzaman and S. Aziz. “A note on activation function in multilayer feedforward
learning.” In: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02
(Cat. No.02CH37290). IJCNN-02. IEEE, 2002. doi: 10.1109/ijcnn.2002.1005526. url: http:
//dx.doi.org/10.1109/IJCNN.2002.1005526 (cit. on pp. 52, 94).

[799] T. Tümer-Sivri, N. Pervan-Akman, and A. Berkol. “The Impact of Irrationals on the Range of
Arctan Activation Function for Deep Learning Models.” In: (May 2023). doi: 10.20944/prepri
nts202305.1245.v1. url: http://dx.doi.org/10.20944/preprints202305.1245.v1 (cit. on
pp. 52, 61).

[800] Y. Koçak and G. Üstündağ Şiray. “New activation functions for single layer feedforward neural
network.” In: Expert Systems with Applications 164 (Feb. 2021), p. 113977. issn: 0957-4174. doi:
10.1016/j.eswa.2020.113977. url: http://dx.doi.org/10.1016/j.eswa.2020.113977
(cit. on pp. 53, 55, 60, 61, 82).

[801] Y. Qin, X. Wang, and J. Zou. “The Optimized Deep Belief Networks With Improved Logistic
Sigmoid Units and Their Application in Fault Diagnosis for Planetary Gearboxes of Wind
Turbines.” In: IEEE Transactions on Industrial Electronics 66.5 (May 2019), pp. 3814–3824. doi:
10.1109/tie.2018.2856205. url: https://doi.org/10.1109/tie.2018.2856205 (cit. on
pp. 53, 212).

[802] M. Roodschild, J. Gotay Sardiñas, and A. Will. “A new approach for the vanishing gradient
problem on sigmoid activation.” In: Progress in Artificial Intelligence 9.4 (Oct. 2020), pp. 351–360.
issn: 2192-6360. doi: 10.1007/s13748-020-00218-y. url: http://dx.doi.org/10.1007/s137
48-020-00218-y (cit. on p. 53).

[803] D. Li and Y. Zhou. “Soft-Root-Sign: A New Bounded Neural Activation Function.” In: Pattern
Recognition and Computer Vision. Springer International Publishing, 2020, pp. 310–319. doi:
10.1007/978-3-030-60636-7_26. url: https://doi.org/10.1007/978-3-030-60636-7_26
(cit. on p. 54).

[804] I. Ohn and Y. Kim. “Smooth Function Approximation by Deep Neural Networks with General
Activation Functions.” In: Entropy 21.7 (June 2019), p. 627. issn: 1099-4300. doi: 10.3390/e210
70627. url: http://dx.doi.org/10.3390/e21070627 (cit. on p. 54).

[805] M. Klimek and M. Perelstein. “Neural network-based approach to phase space integration.”
In: SciPost Physics 9.4 (Oct. 2020). issn: 2542-4653. doi: 10.21468/scipostphys.9.4.053. url:
http://dx.doi.org/10.21468/SciPostPhys.9.4.053 (cit. on p. 54).

[806] S. Kong and M. Takatsuka. “Hexpo: A vanishing-proof activation function.” In: 2017 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, May 2017. doi: 10.1109/ijcnn.2017
.7966168. url: https://doi.org/10.1109/ijcnn.2017.7966168 (cit. on pp. 54, 55, 212).

[807] H. Hazimeh, N. Ponomareva, P. Mol, Z. Tan, and R. Mazumder. “The tree ensemble layer: dif-
ferentiability meets conditional computation.” In: Proceedings of the 37th International Conference
on Machine Learning. ICML’20. JMLR.org, 2020. url: http://proceedings.mlr.press/v119/ha
zimeh20a/hazimeh20a.pdf (cit. on p. 55).

[808] D. L. Elliott. A better Activation Function for Artificial Neural Networks. Tech. rep. 1993. url:
https://www.researchgate.net/publication/277299531 (cit. on p. 55).

[809] H. Burhani, W. Feng, and G. Hu. “Denoising AutoEncoder in Neural Networks with Modified
Elliott Activation Function and Sparsity-Favoring Cost Function.” In: 2015 3rd International
Conference on Applied Computing and Information Technology/2nd International Conference on
Computational Science and Intelligence. IEEE, July 2015. doi: 10.1109/acit-csi.2015.67. url:
http://dx.doi.org/10.1109/ACIT-CSI.2015.67 (cit. on pp. 55, 93).

[810] M. Kaytan, İ. B. Aydilek, C. Yeroglu, and A. Karci. “Sigmoid-Gumbel: Yeni Bir Hibrit Akti-
vasyon Fonksiyonu.” In: Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 11.1 (Mar. 2022), pp. 29–45.
issn: 2147-3129. doi: 10.17798/bitlisfen.990508. url: http://dx.doi.org/10.17798/bitli
sfen.990508 (cit. on p. 56).

[811] A. Kumar and S. S. Sodhi. “Image Segmentation on Convolutional Neural Network (CNN)
using Some New Activation Functions.” In: Communications in Mathematics and Applications
14.2 (Sept. 2023), pp. 949–968. issn: 0975-8607. doi: 10.26713/cma.v14i2.2152. url: http://d
x.doi.org/10.26713/cma.v14i2.2152 (cit. on p. 56).

[812] C. Közkurt, S. Kiliçarslan, S. Baş, and A. Elen. “SechSig and TanhSig: two novel non-monotonic
activation functions.” In: Soft Computing 27.24 (Oct. 2023), pp. 18451–18467. issn: 1433-7479.
doi: 10.1007/s00500-023-09279-2. url: http://dx.doi.org/10.1007/s00500-023-09279-2
(cit. on p. 57).

[813] C. Cai, Y. Xu, D. Ke, and K. Su. “Deep Neural Networks with Multistate Activation Functions.”
In: Computational Intelligence and Neuroscience 2015 (2015), pp. 1–10. issn: 1687-5273. doi:
10.1155/2015/721367. url: http://dx.doi.org/10.1155/2015/721367 (cit. on pp. 57, 219).

[814] W. Duch and N. Jankowski. Survey of Neural Transfer Functions. 1999 (cit. on pp. 57, 58).

https://doi.org/10.1109/ijcnn.2002.1005526
http://dx.doi.org/10.1109/IJCNN.2002.1005526
http://dx.doi.org/10.1109/IJCNN.2002.1005526
https://doi.org/10.20944/preprints202305.1245.v1
https://doi.org/10.20944/preprints202305.1245.v1
http://dx.doi.org/10.20944/preprints202305.1245.v1
https://doi.org/10.1016/j.eswa.2020.113977
http://dx.doi.org/10.1016/j.eswa.2020.113977
https://doi.org/10.1109/tie.2018.2856205
https://doi.org/10.1109/tie.2018.2856205
https://doi.org/10.1007/s13748-020-00218-y
http://dx.doi.org/10.1007/s13748-020-00218-y
http://dx.doi.org/10.1007/s13748-020-00218-y
https://doi.org/10.1007/978-3-030-60636-7_26
https://doi.org/10.1007/978-3-030-60636-7_26
https://doi.org/10.3390/e21070627
https://doi.org/10.3390/e21070627
http://dx.doi.org/10.3390/e21070627
https://doi.org/10.21468/scipostphys.9.4.053
http://dx.doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.1109/ijcnn.2017.7966168
https://doi.org/10.1109/ijcnn.2017.7966168
https://doi.org/10.1109/ijcnn.2017.7966168
http://proceedings.mlr.press/v119/hazimeh20a/hazimeh20a.pdf
http://proceedings.mlr.press/v119/hazimeh20a/hazimeh20a.pdf
https://www.researchgate.net/publication/277299531
https://doi.org/10.1109/acit-csi.2015.67
http://dx.doi.org/10.1109/ACIT-CSI.2015.67
https://doi.org/10.17798/bitlisfen.990508
http://dx.doi.org/10.17798/bitlisfen.990508
http://dx.doi.org/10.17798/bitlisfen.990508
https://doi.org/10.26713/cma.v14i2.2152
http://dx.doi.org/10.26713/cma.v14i2.2152
http://dx.doi.org/10.26713/cma.v14i2.2152
https://doi.org/10.1007/s00500-023-09279-2
http://dx.doi.org/10.1007/s00500-023-09279-2
https://doi.org/10.1155/2015/721367
http://dx.doi.org/10.1155/2015/721367

bibliography 341

[815] M. C. N. Guevraa, V. G. S. Cruz, O. O. V. Vergara, M. Nandayapa, H. d. J. D. Ochoa, and H. J. A.
Sossa. “Study of the Effect of Combining Activation Functions in a Convolutional Neural
Network.” In: IEEE Latin America Transactions 19.5 (May 2021), pp. 844–852. issn: 1548-0992.
doi: 10.1109/tla.2021.9448319. url: http://dx.doi.org/10.1109/TLA.2021.9448319
(cit. on pp. 58, 84, 115, 290).

[816] S. Elfwing, E. Uchibe, and K. Doya. “Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning.” In: Neural Networks 107 (Nov. 2018), pp. 3–11. doi:
10.1016/j.neunet.2017.12.012. url: https://doi.org/10.1016/j.neunet.2017.12.012
(cit. on pp. 58, 63, 129).

[817] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A large-scale hierarchical
image database.” In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, June
2009. doi: 10.1109/cvpr.2009.5206848. url: https://doi.org/10.1109/cvpr.2009.5206848
(cit. on pp. 58, 65, 140).

[818] M. Tanaka. “Weighted sigmoid gate unit for an activation function of deep neural network.”
In: Pattern Recognition Letters 135 (July 2020), pp. 354–359. issn: 0167-8655. doi: 10.1016/j.pat
rec.2020.05.017. url: http://dx.doi.org/10.1016/j.patrec.2020.05.017 (cit. on p. 59).

[819] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). 2016. doi: 10.48550
/ARXIV.1606.08415. url: https://arxiv.org/abs/1606.08415 (cit. on p. 59).

[820] M. Lee. GELU Activation Function in Deep Learning: A Comprehensive Mathematical Analysis and
Performance. 2023. doi: 10.48550/ARXIV.2305.12073. url: https://arxiv.org/abs/2305.120
73 (cit. on p. 59).

[821] J. Kang, R. Liu, Y. Li, Q. Liu, P. Wang, Q. Zhang, and D. Zhou. “An Improved 3D Human
Pose Estimation Model Based on Temporal Convolution with Gaussian Error Linear Units.”
In: 2022 8th International Conference on Virtual Reality (ICVR). IEEE, May 2022. doi: 10.1109/i
cvr55215.2022.9848068. url: https://doi.org/10.1109/icvr55215.2022.9848068 (cit. on
pp. 59, 111).

[822] C. Yu and Z. Su. Symmetrical Gaussian Error Linear Units (SGELUs). 2019. doi: 10.48550
/ARXIV.1911.03925. url: https://arxiv.org/abs/1911.03925 (cit. on pp. 59, 60, 195, 201).

[823] Z. Wu, H. Yu, L. Zhang, and Y. Sui. “The Adaptive Quadratic Linear Unit (AQuLU): Adaptive
Non Monotonic Piecewise Activation Function.” In: Tehnicki vjesnik - Technical Gazette 30.5 (Oct.
2023). issn: 1848-6339. doi: 10.17559/tv-20230614000735. url: http://dx.doi.org/10.1755
9/TV-20230614000735 (cit. on pp. 60, 61, 131).

[824] A. Vagerwal. Deeper Learning with CoLU Activation. 2021. doi: 10.48550/ARXIV.2112.12078.
url: https://arxiv.org/abs/2112.12078 (cit. on p. 60).

[825] M. Kaytan, İ. B. Aydilek, and C. Yeroğlu. “Gish: a novel activation function for image classifica-
tion.” In: Neural Computing and Applications 35.34 (Sept. 2023), pp. 24259–24281. issn: 1433-3058.
doi: 10.1007/s00521-023-09035-5. url: http://dx.doi.org/10.1007/s00521-023-09035-5
(cit. on p. 61).

[826] H. Zhu, H. Zeng, J. Liu, and X. Zhang. “Logish: A new nonlinear nonmonotonic activation
function for convolutional neural network.” In: Neurocomputing 458 (Oct. 2021), pp. 490–499.
issn: 0925-2312. doi: 10.1016/j.neucom.2021.06.067. url: http://dx.doi.org/10.1016/j.n
eucom.2021.06.067 (cit. on pp. 61, 62, 196, 200).

[827] P. Naveen. “Phish: A Novel Hyper-Optimizable Activation Function.” In: (Jan. 2022). doi: 10
.36227/techrxiv.17283824.v2. url: http://dx.doi.org/10.36227/techrxiv.17283824.v2
(cit. on p. 62).

[828] S. Jianlin. A brief discussion on the design of activation functions in neural networks. 2017. url:
https://spaces.ac.cn/archives/4647 (visited on 01/28/2024) (cit. on p. 62).

[829] M. A. Mercioni, A. M. Tat, and S. Holban. “Improving the Accuracy of Deep Neural Networks
Through Developing New Activation Functions.” In: 2020 IEEE 16th International Conference on
Intelligent Computer Communication and Processing (ICCP). IEEE, Sept. 2020. doi: 10.1109/icc
p51029.2020.9266162. url: http://dx.doi.org/10.1109/ICCP51029.2020.9266162 (cit. on
pp. 62, 131).

[830] S. Verma, A. Chug, and A. P. Singh. “Revisiting activation functions: empirical evaluation for
image understanding and classification.” In: Multimedia Tools and Applications (July 2023). issn:
1573-7721. doi: 10.1007/s11042-023-16159-2. url: http://dx.doi.org/10.1007/s11042-02
3-16159-2 (cit. on pp. 63, 64).

[831] S. Hayou, A. Doucet, and J. Rousseau. On the Selection of Initialization and Activation Function
for Deep Neural Networks. 2018. doi: 10.48550/ARXIV.1805.08266. url: https://arxiv.org/a
bs/1805.08266 (cit. on p. 63).

https://doi.org/10.1109/tla.2021.9448319
http://dx.doi.org/10.1109/TLA.2021.9448319
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1016/j.patrec.2020.05.017
https://doi.org/10.1016/j.patrec.2020.05.017
http://dx.doi.org/10.1016/j.patrec.2020.05.017
https://doi.org/10.48550/ARXIV.1606.08415
https://doi.org/10.48550/ARXIV.1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.48550/ARXIV.2305.12073
https://arxiv.org/abs/2305.12073
https://arxiv.org/abs/2305.12073
https://doi.org/10.1109/icvr55215.2022.9848068
https://doi.org/10.1109/icvr55215.2022.9848068
https://doi.org/10.1109/icvr55215.2022.9848068
https://doi.org/10.48550/ARXIV.1911.03925
https://doi.org/10.48550/ARXIV.1911.03925
https://arxiv.org/abs/1911.03925
https://doi.org/10.17559/tv-20230614000735
http://dx.doi.org/10.17559/TV-20230614000735
http://dx.doi.org/10.17559/TV-20230614000735
https://doi.org/10.48550/ARXIV.2112.12078
https://arxiv.org/abs/2112.12078
https://doi.org/10.1007/s00521-023-09035-5
http://dx.doi.org/10.1007/s00521-023-09035-5
https://doi.org/10.1016/j.neucom.2021.06.067
http://dx.doi.org/10.1016/j.neucom.2021.06.067
http://dx.doi.org/10.1016/j.neucom.2021.06.067
https://doi.org/10.36227/techrxiv.17283824.v2
https://doi.org/10.36227/techrxiv.17283824.v2
http://dx.doi.org/10.36227/techrxiv.17283824.v2
https://spaces.ac.cn/archives/4647
https://doi.org/10.1109/iccp51029.2020.9266162
https://doi.org/10.1109/iccp51029.2020.9266162
http://dx.doi.org/10.1109/ICCP51029.2020.9266162
https://doi.org/10.1007/s11042-023-16159-2
http://dx.doi.org/10.1007/s11042-023-16159-2
http://dx.doi.org/10.1007/s11042-023-16159-2
https://doi.org/10.48550/ARXIV.1805.08266
https://arxiv.org/abs/1805.08266
https://arxiv.org/abs/1805.08266

342 bibliography

[832] A. N. S. Njikam and H. Zhao. “A novel activation function for multilayer feed-forward neural
networks.” In: Applied Intelligence 45.1 (Jan. 2016), pp. 75–82. doi: 10.1007/s10489-015-0744-0.
url: https://doi.org/10.1007/s10489-015-0744-0 (cit. on p. 64).

[833] S. K. Roy, S. Manna, S. R. Dubey, and B. B. Chaudhuri. “LiSHT: Non-parametric Linearly
Scaled Hyperbolic Tangent Activation Function for Neural Networks.” In: Communications
in Computer and Information Science. Springer Nature Switzerland, 2023, pp. 462–476. doi:
10.1007/978-3-031-31407-0_35. url: https://doi.org/10.1007/978-3-031-31407-0_35
(cit. on p. 64).

[834] A. Go, R. Bhayani, and L. Huang. Twitter Sentiment Classification using Distant Supervision.
Tech. rep. 2009. url: https://www-cs.stanford.edu/people/alecmgo/papers/TwitterDista
ntSupervision09.pdf (cit. on p. 64).

[835] T. Sahni, C. Chandak, N. R. Chedeti, and M. Singh. “Efficient Twitter sentiment classification
using subjective distant supervision.” In: 2017 9th International Conference on Communication
Systems and Networks (COMSNETS). IEEE, Jan. 2017. doi: 10.1109/comsnets.2017.7945451.
url: https://doi.org/10.1109/comsnets.2017.7945451 (cit. on p. 64).

[836] I. Vallés-Pérez, E. Soria-Olivas, M. Martínez-Sober, A. J. Serrano-López, J. Vila-Francés, and
J. Gómez-Sanchís. “Empirical study of the modulus as activation function in computer vision
applications.” In: Engineering Applications of Artificial Intelligence 120 (Apr. 2023), p. 105863. doi:
10.1016/j.engappai.2023.105863. url: https://doi.org/10.1016/j.engappai.2023.10586
3 (cit. on pp. 64, 76, 77, 213).

[837] D. Misra. “Mish: A Self Regularized Non-Monotonic Activation Function.” In: The 31st British
Machine Vision Conference. BMVC, Sept. 2020. url: https://www.bmvc2020-conference.com/c
onference/papers/paper_0928.html (cit. on pp. 64, 65).

[838] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. “Densely Connected Convolutional
Networks.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
July 2017. doi: 10.1109/cvpr.2017.243. url: https://doi.org/10.1109/cvpr.2017.243
(cit. on pp. 65, 149, 152, 171, 177).

[839] J. Hu, L. Shen, and G. Sun. “Squeeze-and-Excitation Networks.” In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. IEEE, June 2018. doi: 10.1109/cvpr.2018.00745.
url: https://doi.org/10.1109/cvpr.2018.00745 (cit. on p. 65).

[840] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. YOLOv4: Optimal Speed and Accuracy of Object
Detection. 2020. doi: 10.48550/ARXIV.2004.10934. url: https://arxiv.org/abs/2004.10934
(cit. on p. 65).

[841] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. “Scaled-YOLOv4: Scaling Cross Stage Partial
Network.” In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2021. doi: 10.1109/cvpr46437.2021.01283. url: https://doi.org/10.1109/cvpr
46437.2021.01283 (cit. on pp. 65, 66).

[842] X. Wang, H. Ren, and A. Wang. “Smish: A Novel Activation Function for Deep Learning
Methods.” In: Electronics 11.4 (Feb. 2022), p. 540. issn: 2079-9292. doi: 10.3390/electronics11
040540. url: http://dx.doi.org/10.3390/electronics11040540 (cit. on p. 65).

[843] X. Liu and X. Di. “TanhExp: A smooth activation function with high convergence speed for
lightweight neural networks.” In: IET Computer Vision 15.2 (Feb. 2021), pp. 136–150. issn:
1751-9640. doi: 10.1049/cvi2.12020. url: http://dx.doi.org/10.1049/cvi2.12020 (cit. on
p. 65).

[844] M. A. Mercioni and S. Holban. “TeLU: A New Activation Function for Deep Learning.” In:
2020 International Symposium on Electronics and Telecommunications (ISETC). IEEE, Nov. 2020.
doi: 10.1109/isetc50328.2020.9301084. url: http://dx.doi.org/10.1109/ISETC50328.202
0.9301084 (cit. on pp. 65, 115).

[845] S. Nag, M. Bhattacharyya, A. Mukherjee, and R. Kundu. “Serf: Towards better training of
deep neural networks using log-Softplus ERror activation Function.” In: 2023 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV). IEEE, Jan. 2023. doi: 10.1109/wacv56688
.2023.00529. url: http://dx.doi.org/10.1109/WACV56688.2023.00529 (cit. on p. 65).

[846] D. Elliott, S. Frank, K. Sima’an, and L. Specia. “Multi30K: Multilingual English-German
Image Descriptions.” In: Proceedings of the 5th Workshop on Vision and Language. Association for
Computational Linguistics, 2016. doi: 10.18653/v1/w16-3210. url: http://dx.doi.org/10.1
8653/v1/W16-3210 (cit. on p. 65).

[847] E. Chai, W. Yu, T. Cui, J. Ren, and S. Ding. “An Efficient Asymmetric Nonlinear Activation
Function for Deep Neural Networks.” In: Symmetry 14.5 (May 2022), p. 1027. doi: 10.3390/sy
m14051027. url: https://doi.org/10.3390/sym14051027 (cit. on pp. 65, 66).

https://doi.org/10.1007/s10489-015-0744-0
https://doi.org/10.1007/s10489-015-0744-0
https://doi.org/10.1007/978-3-031-31407-0_35
https://doi.org/10.1007/978-3-031-31407-0_35
https://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
https://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
https://doi.org/10.1109/comsnets.2017.7945451
https://doi.org/10.1109/comsnets.2017.7945451
https://doi.org/10.1016/j.engappai.2023.105863
https://doi.org/10.1016/j.engappai.2023.105863
https://doi.org/10.1016/j.engappai.2023.105863
https://www.bmvc2020-conference.com/conference/papers/paper_0928.html
https://www.bmvc2020-conference.com/conference/papers/paper_0928.html
https://doi.org/10.1109/cvpr.2017.243
https://doi.org/10.1109/cvpr.2017.243
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.48550/ARXIV.2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/cvpr46437.2021.01283
https://doi.org/10.1109/cvpr46437.2021.01283
https://doi.org/10.1109/cvpr46437.2021.01283
https://doi.org/10.3390/electronics11040540
https://doi.org/10.3390/electronics11040540
http://dx.doi.org/10.3390/electronics11040540
https://doi.org/10.1049/cvi2.12020
http://dx.doi.org/10.1049/cvi2.12020
https://doi.org/10.1109/isetc50328.2020.9301084
http://dx.doi.org/10.1109/ISETC50328.2020.9301084
http://dx.doi.org/10.1109/ISETC50328.2020.9301084
https://doi.org/10.1109/wacv56688.2023.00529
https://doi.org/10.1109/wacv56688.2023.00529
http://dx.doi.org/10.1109/WACV56688.2023.00529
https://doi.org/10.18653/v1/w16-3210
http://dx.doi.org/10.18653/v1/W16-3210
http://dx.doi.org/10.18653/v1/W16-3210
https://doi.org/10.3390/sym14051027
https://doi.org/10.3390/sym14051027
https://doi.org/10.3390/sym14051027

bibliography 343

[848] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. “Focal Loss for Dense Object Detection.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 42.2 (Feb. 2020), pp. 318–327.
doi: 10.1109/tpami.2018.2858826. url: https://doi.org/10.1109/tpami.2018.2858826
(cit. on p. 66).

[849] K. Douge, A. Berrahou, Y. T. Alaoui, and M. T. Alaoui. “A Self-gated Activation Function
SINSIG Based on the Sine Trigonometric for Neural Network Models.” In: Machine Learning
for Networking. Springer International Publishing, 2021, pp. 237–244. doi: 10.1007/978-3-030-
70866-5_15. url: https://doi.org/10.1007/978-3-030-70866-5_15 (cit. on p. 66).

[850] K. He, X. Zhang, S. Ren, and J. Sun. “Identity Mappings in Deep Residual Networks.” In:
Computer Vision – ECCV 2016. Springer International Publishing, 2016, pp. 630–645. doi:
10.1007/978-3-319-46493-0_38. url: https://doi.org/10.1007/978-3-319-46493-0_38
(cit. on p. 66).

[851] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. 2016. doi: 10.48550
/ARXIV.1602.07360. url: https://arxiv.org/abs/1602.07360 (cit. on p. 66).

[852] X. Zhang, X. Zhou, M. Lin, and J. Sun. “ShuffleNet: An Extremely Efficient Convolutional
Neural Network for Mobile Devices.” In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. IEEE, June 2018. doi: 10.1109/cvpr.2018.00716. url: https://doi.org/1
0.1109/cvpr.2018.00716 (cit. on p. 66).

[853] B. Ahmed, M. A. Haque, M. A. Iquebal, S. Jaiswal, U. B. Angadi, D. Kumar, and A. Rai.
“DeepAProt: Deep learning based abiotic stress protein sequence classification and iden-
tification tool in cereals.” In: Frontiers in Plant Science 13 (Jan. 2023). issn: 1664-462X. doi:
10.3389/fpls.2022.1008756. url: http://dx.doi.org/10.3389/fpls.2022.1008756 (cit. on
p. 66).

[854] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. “Language Modeling with Gated Convolu-
tional Networks.” In: Proceedings of the 34th International Conference on Machine Learning. Ed. by
D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017,
pp. 933–941. url: https://proceedings.mlr.press/v70/dauphin17a.html (cit. on pp. 66, 67).

[855] N. Shazeer. GLU Variants Improve Transformer. 2020. doi: 10.48550/ARXIV.2002.05202. url:
https://arxiv.org/abs/2002.05202 (cit. on pp. 66, 67).

[856] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. “Convolutional Sequence to
Sequence Learning.” In: Proceedings of the 34th International Conference on Machine Learning.
Ed. by D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
June 2017, pp. 1243–1252. url: https://proceedings.mlr.press/v70/gehring17a.html
(cit. on p. 66).

[857] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu.
“Conditional Image Generation with PixelCNN Decoders.” In: Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems. NIPS’16. Barcelona, Spain: Curran
Associates Inc., 2016, pp. 4797–4805. isbn: 9781510838819. url: https://dl.acm.org/doi/10
.5555/3157382.3157633 (cit. on p. 66).

[858] J. Bridle. “Training Stochastic Model Recognition Algorithms as Networks can Lead to Max-
imum Mutual Information Estimation of Parameters.” In: Advances in Neural Information
Processing Systems. Ed. by D. Touretzky. Vol. 2. Morgan-Kaufmann, 1989. url: https://procee
dings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Pa

per.pdf (cit. on p. 67).

[859] T. Pearce, A. Brintrup, and J. Zhu. Understanding Softmax Confidence and Uncertainty. 2021. doi:
10.48550/ARXIV.2106.04972. url: https://arxiv.org/abs/2106.04972 (cit. on p. 67).

[860] M. Bhuvaneshwari and E. G. M. Kanaga. “Convolutional Neural Network for Addiction De-
tection using Improved Activation Function.” In: 2021 5th International Conference on Computing
Methodologies and Communication (ICCMC). IEEE, Apr. 2021. doi: 10.1109/iccmc51019.2021.9
418022. url: http://dx.doi.org/10.1109/ICCMC51019.2021.9418022 (cit. on pp. 67, 132).

[861] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann Machines.”
In: Proceedings of the 27th International Conference on Machine Learning (ICML-10). Ed. by J.
Fürnkranz and T. Joachims. Omnipress, 2010, pp. 807–814. url: http://www.cs.toronto.edu
/~fritz/absps/reluICML.pdf (cit. on pp. 68, 70, 108, 213).

[862] X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse Rectifier Neural Networks.” In: Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics. Ed. by G. Gordon, D.
Dunson, and M. Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort Lauderdale,
FL, USA: PMLR, Apr. 2011, pp. 315–323. url: http://proceedings.mlr.press/v15/glorot11
a.html (cit. on pp. 68, 95).

https://doi.org/10.1109/tpami.2018.2858826
https://doi.org/10.1109/tpami.2018.2858826
https://doi.org/10.1007/978-3-030-70866-5_15
https://doi.org/10.1007/978-3-030-70866-5_15
https://doi.org/10.1007/978-3-030-70866-5_15
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.48550/ARXIV.1602.07360
https://doi.org/10.48550/ARXIV.1602.07360
https://arxiv.org/abs/1602.07360
https://doi.org/10.1109/cvpr.2018.00716
https://doi.org/10.1109/cvpr.2018.00716
https://doi.org/10.1109/cvpr.2018.00716
https://doi.org/10.3389/fpls.2022.1008756
http://dx.doi.org/10.3389/fpls.2022.1008756
https://proceedings.mlr.press/v70/dauphin17a.html
https://doi.org/10.48550/ARXIV.2002.05202
https://arxiv.org/abs/2002.05202
https://proceedings.mlr.press/v70/gehring17a.html
https://dl.acm.org/doi/10.5555/3157382.3157633
https://dl.acm.org/doi/10.5555/3157382.3157633
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://doi.org/10.48550/ARXIV.2106.04972
https://arxiv.org/abs/2106.04972
https://doi.org/10.1109/iccmc51019.2021.9418022
https://doi.org/10.1109/iccmc51019.2021.9418022
http://dx.doi.org/10.1109/ICCMC51019.2021.9418022
http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html

344 bibliography

[863] K. Hara, D. Saito, and H. Shouno. “Analysis of function of rectified linear unit used in deep
learning.” In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2015.
doi: 10.1109/ijcnn.2015.7280578. url: https://doi.org/10.1109/ijcnn.2015.7280578
(cit. on p. 68).

[864] M. Telgarsky. “Neural Networks and Rational Functions.” In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, June 2017, pp. 3387–3393. url: https://proceedings.mlr.press
/v70/telgarsky17a.html (cit. on p. 68).

[865] A. Aleksandrov and K. Völlinger. “Formalizing Piecewise Affine Activation Functions of
Neural Networks in Coq.” In: NASA Formal Methods. Springer Nature Switzerland, 2023,
pp. 62–78. isbn: 9783031331701. doi: 10.1007/978-3-031-33170-1_4. url: http://dx.doi.or
g/10.1007/978-3-031-33170-1_4 (cit. on p. 68).

[866] D. Mishkin, N. Sergievskiy, and J. Matas. “Systematic evaluation of convolution neural network
advances on the Imagenet.” In: Computer Vision and Image Understanding 161 (Aug. 2017), pp. 11–
19. doi: 10.1016/j.cviu.2017.05.007. url: https://doi.org/10.1016/j.cviu.2017.05.007
(cit. on p. 68).

[867] W. Wang, X. Yang, B. C. Ooi, D. Zhang, and Y. Zhuang. “Effective deep learning-based multi-
modal retrieval.” In: The VLDB Journal 25.1 (July 2015), pp. 79–101. doi: 10.1007/s00778-015-
0391-4. url: https://doi.org/10.1007/s00778-015-0391-4 (cit. on p. 68).

[868] D. Mishkin and J. Matas. “All you need is a good init.” In: 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings. Ed. by Y. Bengio and Y. LeCun. 2016. url: http://arxiv.org/abs/1511.06422
(cit. on pp. 68, 69, 120, 155).

[869] A. L. Maas, A. Y. Hannun, and A. Y. Ng. “Rectifier nonlinearities improve neural network
acoustic models.” In: Proceedings of the International Conference on Machine Learning (ICML). 2013.
url: https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf (cit. on
pp. 68, 69, 105, 212).

[870] B. Graham. Spatially-sparse convolutional neural networks. 2014. doi: 10.48550/ARXIV.1409.6070.
url: https://arxiv.org/abs/1409.6070 (cit. on pp. 68, 69, 212).

[871] K. He, X. Zhang, S. Ren, and J. Sun. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification.” In: 2015 IEEE International Conference on Computer
Vision (ICCV). IEEE, Dec. 2015. doi: 10.1109/iccv.2015.123. url: https://doi.org/10.1109
/iccv.2015.123 (cit. on pp. 68, 105, 120, 124, 214).

[872] B. Xu, N. Wang, T. Chen, and M. Li. Empirical Evaluation of Rectified Activations in Convolutional
Network. 2015. doi: 10.48550/ARXIV.1505.00853. url: https://arxiv.org/abs/1505.00853
(cit. on pp. 68, 69, 213).

[873] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan. “Deep Learning with S-Shaped Rectified
Linear Activation Units.” In: Proceedings of the AAAI Conference on Artificial Intelligence 30.1 (Feb.
2016). doi: 10.1609/aaai.v30i1.10287. url: https://doi.org/10.1609/aaai.v30i1.10287
(cit. on pp. 68, 147, 149, 155, 217).

[874] D. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs).” In: 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Y. Bengio
and Y. LeCun. 2016. url: http://arxiv.org/abs/1511.07289 (cit. on pp. 68, 83, 110, 213).

[875] R. Parhi and R. D. Nowak. “The Role of Neural Network Activation Functions.” In: IEEE
Signal Processing Letters 27 (2020), pp. 1779–1783. doi: 10.1109/lsp.2020.3027517. url:
https://doi.org/10.1109/lsp.2020.3027517 (cit. on p. 69).

[876] B. H. Nayef, S. N. H. S. Abdullah, R. Sulaiman, and Z. A. A. Alyasseri. “Optimized leaky
ReLU for handwritten Arabic character recognition using convolution neural networks.” In:
Multimedia Tools and Applications 81.2 (Oct. 2021), pp. 2065–2094. doi: 10.1007/s11042-021-11
593-6. url: https://doi.org/10.1007/s11042-021-11593-6 (cit. on pp. 69, 212).

[877] M. K. Elakkiya and Dejey. “Novel deep learning models with novel integrated activation
functions for autism screening: AutiNet and MinAutiNet.” In: Expert Systems with Applications
238 (Mar. 2024), p. 122102. issn: 0957-4174. doi: 10.1016/j.eswa.2023.122102. url: http://d
x.doi.org/10.1016/j.eswa.2023.122102 (cit. on pp. 70, 78).

[878] M. K. Elakkiya and Dejey. “Stacked autoencoder with novel integrated activation functions
for the diagnosis of autism spectrum disorder.” In: Neural Computing and Applications 35.23

(Apr. 2023), pp. 17043–17075. issn: 1433-3058. doi: 10.1007/s00521- 023- 08565- 2. url:
http://dx.doi.org/10.1007/s00521-023-08565-2 (cit. on p. 70).

https://doi.org/10.1109/ijcnn.2015.7280578
https://doi.org/10.1109/ijcnn.2015.7280578
https://proceedings.mlr.press/v70/telgarsky17a.html
https://proceedings.mlr.press/v70/telgarsky17a.html
https://doi.org/10.1007/978-3-031-33170-1_4
http://dx.doi.org/10.1007/978-3-031-33170-1_4
http://dx.doi.org/10.1007/978-3-031-33170-1_4
https://doi.org/10.1016/j.cviu.2017.05.007
https://doi.org/10.1016/j.cviu.2017.05.007
https://doi.org/10.1007/s00778-015-0391-4
https://doi.org/10.1007/s00778-015-0391-4
https://doi.org/10.1007/s00778-015-0391-4
http://arxiv.org/abs/1511.06422
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://doi.org/10.48550/ARXIV.1409.6070
https://arxiv.org/abs/1409.6070
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.48550/ARXIV.1505.00853
https://arxiv.org/abs/1505.00853
https://doi.org/10.1609/aaai.v30i1.10287
https://doi.org/10.1609/aaai.v30i1.10287
http://arxiv.org/abs/1511.07289
https://doi.org/10.1109/lsp.2020.3027517
https://doi.org/10.1109/lsp.2020.3027517
https://doi.org/10.1007/s11042-021-11593-6
https://doi.org/10.1007/s11042-021-11593-6
https://doi.org/10.1007/s11042-021-11593-6
https://doi.org/10.1016/j.eswa.2023.122102
http://dx.doi.org/10.1016/j.eswa.2023.122102
http://dx.doi.org/10.1016/j.eswa.2023.122102
https://doi.org/10.1007/s00521-023-08565-2
http://dx.doi.org/10.1007/s00521-023-08565-2

bibliography 345

[879] J. Seo, J. Lee, and K. Kim. “Activation functions of deep neural networks for polar decoding
applications.” In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC). IEEE, Oct. 2017. doi: 10.1109/pimrc.2017.8292678. url:
https://doi.org/10.1109/pimrc.2017.8292678 (cit. on pp. 70, 200).

[880] A. Gupta and S. Ahuja. Parametric Variational Linear Units (PVLUs) in Deep Convolutional
Networks. 2021. doi: 10.48550/ARXIV.2110.12246. url: https://arxiv.org/abs/2110.12246
(cit. on pp. 70, 71, 126).

[881] W. Rodrigues. SineReLU — An Alternative to the ReLU Activation Function. 2018. url: https:
//wilder-rodrigues.medium.com/sinerelu-an-alternative-to-the-relu-activation-fu

nction-e46a6199997d (visited on 01/28/2024) (cit. on p. 70).

[882] K. Yamamichi and X.-H. Han. “Lightweight Multi-Scale Context Aggregation Deraining
Network With Artifact-Attenuating Pooling and Activation Functions.” In: IEEE Access 9

(2021), pp. 146948–146958. issn: 2169-3536. doi: 10.1109/access.2021.3122450. url: http:
//dx.doi.org/10.1109/ACCESS.2021.3122450 (cit. on p. 71).

[883] J. Cao, Y. Pang, X. Li, and J. Liang. “Randomly translational activation inspired by the input
distributions of ReLU.” In: Neurocomputing 275 (Jan. 2018), pp. 859–868. doi: 10.1016/j.neuco
m.2017.09.031. url: https://doi.org/10.1016/j.neucom.2017.09.031 (cit. on pp. 71, 108,
213, 214).

[884] Y. Liu, J. Zhang, C. Gao, J. Qu, and L. Ji. “Natural-Logarithm-Rectified Activation Function
in Convolutional Neural Networks.” In: 2019 IEEE 5th International Conference on Computer
and Communications (ICCC). IEEE, Dec. 2019. doi: 10.1109/iccc47050.2019.9064398. url:
https://doi.org/10.1109/iccc47050.2019.9064398 (cit. on p. 71).

[885] H. Zhao, F. Liu, L. Li, and C. Luo. “A novel softplus linear unit for deep convolutional neural
networks.” In: Applied Intelligence 48.7 (Sept. 2017), pp. 1707–1720. doi: 10.1007/s10489-017-
1028-7. url: https://doi.org/10.1007/s10489-017-1028-7 (cit. on p. 72).

[886] C. Xu, J. Huang, S.-p. Wang, and A.-q. Hu. “A Novel Parameterized Activation Function in
Visual Geometry Group.” In: 2018 2nd International Conference on Data Science and Business
Analytics (ICDSBA). IEEE, Sept. 2018. doi: 10.1109/icdsba.2018.00079. url: https://doi.or
g/10.1109/icdsba.2018.00079 (cit. on pp. 72, 213).

[887] I. E. Jaafari, A. Ellahyani, and S. Charfi. “Parametric rectified nonlinear unit (PRenu) for
convolution neural networks.” In: Signal, Image and Video Processing 15.2 (July 2020), pp. 241–
246. doi: 10.1007/s11760-020-01746-9. url: https://doi.org/10.1007/s11760-020-01746-
9 (cit. on p. 72).

[888] S. S. Liew, M. Khalil-Hani, and R. Bakhteri. “Bounded activation functions for enhanced
training stability of deep neural networks on visual pattern recognition problems.” In: Neuro-
computing 216 (Dec. 2016), pp. 718–734. doi: 10.1016/j.neucom.2016.08.037. url: https://d
oi.org/10.1016/j.neucom.2016.08.037 (cit. on pp. 73, 75, 76, 97, 149, 213).

[889] E. Pishchik. “Trainable Activations for Image Classification.” In: (Jan. 2023). doi: 10.20944/pr
eprints202301.0463.v1. url: https://doi.org/10.20944/preprints202301.0463.v1 (cit. on
pp. xlvi, 73, 85, 110, 117, 119, 137, 143, 156, 158, 201, 217).

[890] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized Neural Networks:
Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. 2016. doi:
10.48550/ARXIV.1602.02830. url: https://arxiv.org/abs/1602.02830 (cit. on pp. 73, 89).

[891] R. Avenash and P. Viswanath. “Semantic Segmentation of Satellite Images using a Mod-
ified CNN with Hard-Swish Activation Function.” In: Proceedings of the 14th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
SCITEPRESS - Science and Technology Publications, 2019. doi: 10.5220/0007469604130420.
url: http://dx.doi.org/10.5220/0007469604130420 (cit. on pp. 73, 148, 149).

[892] S. M. Waseem, A. V. Suraj, and S. K. Roy. “Accelerating the Activation Function Selection for
Hybrid Deep Neural Networks – FPGA Implementation.” In: 2021 IEEE Region 10 Symposium
(TENSYMP). IEEE, Aug. 2021. doi: 10.1109/tensymp52854.2021.9551000. url: https://doi
.org/10.1109/tensymp52854.2021.9551000 (cit. on p. 73).

[893] D. Lupu and I. Necoara. “Exact Representation and Efficient Approximations of Linear
Model Predictive Control Laws Via Hardtanh Type Deep Neural Networks.” In: (2023). doi:
10.2139/ssrn.4516044. url: http://dx.doi.org/10.2139/ssrn.4516044 (cit. on p. 73).

[894] Z. Liu, H. Zhang, Z. Su, and X. Zhu. “Adaptive Binarization Method for Binary Neural
Network.” In: 2021 40th Chinese Control Conference (CCC). IEEE, July 2021. doi: 10.23919/cc
c52363.2021.9549344. url: http://dx.doi.org/10.23919/CCC52363.2021.9549344 (cit. on
pp. 73, 111, 202).

https://doi.org/10.1109/pimrc.2017.8292678
https://doi.org/10.1109/pimrc.2017.8292678
https://doi.org/10.48550/ARXIV.2110.12246
https://arxiv.org/abs/2110.12246
https://wilder-rodrigues.medium.com/sinerelu-an-alternative-to-the-relu-activation-function-e46a6199997d
https://wilder-rodrigues.medium.com/sinerelu-an-alternative-to-the-relu-activation-function-e46a6199997d
https://wilder-rodrigues.medium.com/sinerelu-an-alternative-to-the-relu-activation-function-e46a6199997d
https://doi.org/10.1109/access.2021.3122450
http://dx.doi.org/10.1109/ACCESS.2021.3122450
http://dx.doi.org/10.1109/ACCESS.2021.3122450
https://doi.org/10.1016/j.neucom.2017.09.031
https://doi.org/10.1016/j.neucom.2017.09.031
https://doi.org/10.1016/j.neucom.2017.09.031
https://doi.org/10.1109/iccc47050.2019.9064398
https://doi.org/10.1109/iccc47050.2019.9064398
https://doi.org/10.1007/s10489-017-1028-7
https://doi.org/10.1007/s10489-017-1028-7
https://doi.org/10.1007/s10489-017-1028-7
https://doi.org/10.1109/icdsba.2018.00079
https://doi.org/10.1109/icdsba.2018.00079
https://doi.org/10.1109/icdsba.2018.00079
https://doi.org/10.1007/s11760-020-01746-9
https://doi.org/10.1007/s11760-020-01746-9
https://doi.org/10.1007/s11760-020-01746-9
https://doi.org/10.1016/j.neucom.2016.08.037
https://doi.org/10.1016/j.neucom.2016.08.037
https://doi.org/10.1016/j.neucom.2016.08.037
https://doi.org/10.20944/preprints202301.0463.v1
https://doi.org/10.20944/preprints202301.0463.v1
https://doi.org/10.20944/preprints202301.0463.v1
https://doi.org/10.48550/ARXIV.1602.02830
https://arxiv.org/abs/1602.02830
https://doi.org/10.5220/0007469604130420
http://dx.doi.org/10.5220/0007469604130420
https://doi.org/10.1109/tensymp52854.2021.9551000
https://doi.org/10.1109/tensymp52854.2021.9551000
https://doi.org/10.1109/tensymp52854.2021.9551000
https://doi.org/10.2139/ssrn.4516044
http://dx.doi.org/10.2139/ssrn.4516044
https://doi.org/10.23919/ccc52363.2021.9549344
https://doi.org/10.23919/ccc52363.2021.9549344
http://dx.doi.org/10.23919/CCC52363.2021.9549344

346 bibliography

[895] H. Kim, J. Park, C. Lee, and J.-J. Kim. “Improving Accuracy of Binary Neural Networks
using Unbalanced Activation Distribution.” In: 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, June 2021. doi: 10.1109/cvpr46437.2021.00777. url:
http://dx.doi.org/10.1109/CVPR46437.2021.00777 (cit. on pp. 74, 202).

[896] A. Howard et al. “Searching for MobileNetV3.” In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). IEEE, Oct. 2019. doi: 10.1109/iccv.2019.00140. url: http://dx.doi
.org/10.1109/ICCV.2019.00140 (cit. on p. 74).

[897] K. R. Konda, R. Memisevic, and D. Krueger. “Zero-bias autoencoders and the benefits of
co-adapting features.” In: 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun.
2015. url: http://arxiv.org/abs/1402.3337 (cit. on p. 75).

[898] R. Goroshin and Y. LeCun. Saturating Auto-Encoders. 2013. doi: 10.48550/ARXIV.1301.3577.
url: https://arxiv.org/abs/1301.3577 (cit. on p. 75).

[899] N. A. Golilarz and H. Demirel. “Thresholding neural network (TNN) based noise reduction
with a new improved thresholding function.” In: Computational Research Progress in Applied
Science & Engineering 3.2 (2017), pp. 81–84. url: https://jms.procedia.org/archive/CRPASE
_169/CRPASE_procedia_2017_3_2_3.pdf (cit. on p. 75).

[900] R. Zhang, J. Yi, H. Tang, J. Xiang, and Y. Ren. “Fault Diagnosis Method of Waterproof Valves
in Engineering Mixing Machinery Based on a New Adaptive Feature Extraction Model.” In:
Energies 15.8 (Apr. 2022), p. 2796. issn: 1996-1073. doi: 10.3390/en15082796. url: http://dx
.doi.org/10.3390/en15082796 (cit. on p. 75).

[901] H. Hu. “vReLU Activation Functions for Artificial Neural Networks.” In: 2018 14th International
Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE,
July 2018. doi: 10.1109/fskd.2018.8687140. url: https://doi.org/10.1109/fskd.2018.868
7140 (cit. on p. 76).

[902] H. Hu. “Symmetric Rectified Linear Units for Fully Connected Deep Models.” In: Lecture Notes
in Computer Science. Springer International Publishing, 2018, pp. 291–298. isbn: 9783319992471.
doi: 10.1007/978-3-319-99247-1_26. url: http://dx.doi.org/10.1007/978-3-319-99247-
1_26 (cit. on p. 76).

[903] O. I. Berngardt. Improving Classification Neural Networks by using Absolute activation function
(MNIST/LeNET-5 example). 2023. doi: 10.48550/ARXIV.2304.11758. url: https://arxiv.org
/abs/2304.11758 (cit. on p. 76).

[904] T. Y. Pan, G. Yang, J. Zhao, and J. Ding. “Smoothing piecewise linear activation functions
based on mollified square root functions.” In: Mathematical Foundations of Computing (2023).
issn: 2577-8838. doi: 10.3934/mfc.2023032. url: http://dx.doi.org/10.3934/mfc.2023032
(cit. on pp. xlv, xlvi, lii, 76, 77, 151, 164–167).

[905] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J.-P. Thiran, and S. Osher. “Fast Global Minimization
of the Active Contour/Snake Model.” In: Journal of Mathematical Imaging and Vision 28.2 (July
2007), pp. 151–167. issn: 1573-7683. doi: 10.1007/s10851-007-0002-0. url: http://dx.doi.o
rg/10.1007/s10851-007-0002-0 (cit. on pp. 76, 164).

[906] A. A. Alkhouly, A. Mohammed, and H. A. Hefny. “Improving the Performance of Deep Neural
Networks Using Two Proposed Activation Functions.” In: IEEE Access 9 (2021), pp. 82249–
82271. issn: 2169-3536. doi: 10.1109/access.2021.3085855. url: http://dx.doi.org/10.110
9/ACCESS.2021.3085855 (cit. on pp. 76, 86).

[907] Q. Zhao and L. D. Griffin. Suppressing the Unusual: towards Robust CNNs using Symmetric
Activation Functions. 2016. doi: 10.48550/ARXIV.1603.05145. url: https://arxiv.org/abs/1
603.05145 (cit. on p. 76).

[908] C.-H. Shan, X.-R. Guo, and J. Ou. “Deep Leaky Single-peaked Triangle Neural Networks.” In:
International Journal of Control, Automation and Systems 17.10 (Aug. 2019), pp. 2693–2701. issn:
2005-4092. doi: 10.1007/s12555-018-0796-0. url: http://dx.doi.org/10.1007/s12555-018
-0796-0 (cit. on p. 77).

[909] A. S. D. Desabathula and S. Eluri. “A novel Leaky Rectified Triangle Linear Unit based
Deep Convolutional Neural Network for facial emotion recognition.” In: Multimedia Tools and
Applications 82.12 (Nov. 2022), pp. 18669–18689. issn: 1573-7721. doi: 10.1007/s11042-022-14
186-z. url: http://dx.doi.org/10.1007/s11042-022-14186-z (cit. on p. 77).

[910] G. Lin and W. Shen. “Research on convolutional neural network based on improved Relu
piecewise activation function.” In: Procedia Computer Science 131 (2018), pp. 977–984. doi:
10.1016/j.procs.2018.04.239. url: https://doi.org/10.1016/j.procs.2018.04.239
(cit. on pp. 77, 213).

https://doi.org/10.1109/cvpr46437.2021.00777
http://dx.doi.org/10.1109/CVPR46437.2021.00777
https://doi.org/10.1109/iccv.2019.00140
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.1109/ICCV.2019.00140
http://arxiv.org/abs/1402.3337
https://doi.org/10.48550/ARXIV.1301.3577
https://arxiv.org/abs/1301.3577
https://jms.procedia.org/archive/CRPASE_169/CRPASE_procedia_2017_3_2_3.pdf
https://jms.procedia.org/archive/CRPASE_169/CRPASE_procedia_2017_3_2_3.pdf
https://doi.org/10.3390/en15082796
http://dx.doi.org/10.3390/en15082796
http://dx.doi.org/10.3390/en15082796
https://doi.org/10.1109/fskd.2018.8687140
https://doi.org/10.1109/fskd.2018.8687140
https://doi.org/10.1109/fskd.2018.8687140
https://doi.org/10.1007/978-3-319-99247-1_26
http://dx.doi.org/10.1007/978-3-319-99247-1_26
http://dx.doi.org/10.1007/978-3-319-99247-1_26
https://doi.org/10.48550/ARXIV.2304.11758
https://arxiv.org/abs/2304.11758
https://arxiv.org/abs/2304.11758
https://doi.org/10.3934/mfc.2023032
http://dx.doi.org/10.3934/mfc.2023032
https://doi.org/10.1007/s10851-007-0002-0
http://dx.doi.org/10.1007/s10851-007-0002-0
http://dx.doi.org/10.1007/s10851-007-0002-0
https://doi.org/10.1109/access.2021.3085855
http://dx.doi.org/10.1109/ACCESS.2021.3085855
http://dx.doi.org/10.1109/ACCESS.2021.3085855
https://doi.org/10.48550/ARXIV.1603.05145
https://arxiv.org/abs/1603.05145
https://arxiv.org/abs/1603.05145
https://doi.org/10.1007/s12555-018-0796-0
http://dx.doi.org/10.1007/s12555-018-0796-0
http://dx.doi.org/10.1007/s12555-018-0796-0
https://doi.org/10.1007/s11042-022-14186-z
https://doi.org/10.1007/s11042-022-14186-z
http://dx.doi.org/10.1007/s11042-022-14186-z
https://doi.org/10.1016/j.procs.2018.04.239
https://doi.org/10.1016/j.procs.2018.04.239

bibliography 347

[911] J. Li, H. Feng, and D.-X. Zhou. “SignReLU neural network and its approximation ability.” In:
Journal of Computational and Applied Mathematics 440 (Apr. 2024), p. 115551. issn: 0377-0427.
doi: 10.1016/j.cam.2023.115551. url: http://dx.doi.org/10.1016/j.cam.2023.115551
(cit. on p. 77).

[912] J. Li, H. Feng, and D.-X. Zhou. A new activation for neural networks and its approximation. 2022.
url: https://arxiv.org/abs/2210.10264v1 (cit. on pp. xlvi, 77).

[913] W. Shang, K. Sohn, D. Almeida, and H. Lee. “Understanding and Improving Convolutional
Neural Networks via Concatenated Rectified Linear Units.” In: Proceedings of The 33rd Inter-
national Conference on Machine Learning. Ed. by M. F. Balcan and K. Q. Weinberger. Vol. 48.
Proceedings of Machine Learning Research. New York, New York, USA: PMLR, 20–22 Jun
2016, pp. 2217–2225. url: https://proceedings.mlr.press/v48/shang16.html (cit. on p. 78).

[914] S. Zagoruyko and N. Komodakis. DiracNets: Training Very Deep Neural Networks Without Skip-
Connections. 2017. doi: 10.48550/ARXIV.1706.00388. url: https://arxiv.org/abs/1706.003
88 (cit. on p. 78).

[915] L. Eidnes and A. Nøkland. Shifting Mean Activation Towards Zero with Bipolar Activation Functions.
2017. doi: 10.48550/ARXIV.1709.04054. url: https://arxiv.org/abs/1709.04054 (cit. on
p. 78).

[916] F. Godin, J. Degrave, J. Dambre, and W. D. Neve. “Dual Rectified Linear Units (DReLUs): A
replacement for tanh activation functions in Quasi-Recurrent Neural Networks.” In: Pattern
Recognition Letters 116 (Dec. 2018), pp. 8–14. doi: 10.1016/j.patrec.2018.09.006. url:
https://doi.org/10.1016/j.patrec.2018.09.006 (cit. on pp. 79, 85).

[917] A. Chernodub and D. Nowicki. Norm-preserving Orthogonal Permutation Linear Unit Activation
Functions (OPLU). 2016. doi: 10.48550/ARXIV.1604.02313. url: https://arxiv.org/abs/160
4.02313 (cit. on p. 79).

[918] X. Jiang, Y. Pang, X. Li, J. Pan, and Y. Xie. “Deep neural networks with Elastic Rectified
Linear Units for object recognition.” In: Neurocomputing 275 (Jan. 2018), pp. 1132–1139. doi:
10.1016/j.neucom.2017.09.056. url: https://doi.org/10.1016/j.neucom.2017.09.056
(cit. on pp. 79, 113, 213, 215).

[919] Y. Berradi. “Symmetric Power Activation Functions for Deep Neural Networks.” In: Proceedings
of the International Conference on Learning and Optimization Algorithms: Theory and Applications.
ACM, May 2018. doi: 10.1145/3230905.3230956. url: https://doi.org/10.1145/3230905.3
230956 (cit. on p. 80).

[920] B. Li, S. Tang, and H. Yu. “PowerNet: Efficient Representations of Polynomials and Smooth
Functions by Deep Neural Networks with Rectified Power Units.” In: (2019). doi: 10.48550
/ARXIV.1909.05136. url: https://arxiv.org/abs/1909.05136 (cit. on p. 80).

[921] T. J. Heeringa, L. Spek, F. Schwenninger, and C. Brune. Embeddings between Barron spaces with
higher order activation functions. 2023. doi: 10.48550/ARXIV.2305.15839. url: https://arxiv
.org/abs/2305.15839 (cit. on p. 80).

[922] D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le. Primer: Searching for Efficient
Transformers for Language Modeling. 2021. doi: 10.48550/ARXIV.2109.08668. url: https://arx
iv.org/abs/2109.08668 (cit. on p. 80).

[923] S. Saha, N. Nagaraj, A. Mathur, R. Yedida, and S. H. R. “Evolution of novel activation functions
in neural network training for astronomy data: habitability classification of exoplanets.” In:
The European Physical Journal Special Topics 229.16 (Nov. 2020), pp. 2629–2738. doi: 10.1140/epj
st/e2020-000098-9. url: https://doi.org/10.1140/epjst/e2020-000098-9 (cit. on pp. 80,
94).

[924] I. Mediratta, S. Saha, and S. Mathur. “LipARELU: ARELU Networks aided by Lipschitz
Acceleration.” In: 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, July
2021. doi: 10.1109/ijcnn52387.2021.9533853. url: http://dx.doi.org/10.1109/IJCNN5238
7.2021.9533853 (cit. on p. 80).

[925] K. Nasiri and K. Ghiasi-Shirazi. “PowerLinear Activation Functions with application to the first
layer of CNNs.” In: 2021 11th International Conference on Computer Engineering and Knowledge
(ICCKE). IEEE, Oct. 2021. doi: 10.1109/iccke54056.2021.9721450. url: http://dx.doi.org
/10.1109/ICCKE54056.2021.9721450 (cit. on p. 81).

[926] S. R. Dubey and S. Chakraborty. “Average biased ReLU based CNN descriptor for improved
face retrieval.” In: Multimedia Tools and Applications 80.15 (Jan. 2021), pp. 23181–23206. doi:
10.1007/s11042-020-10269-x. url: https://doi.org/10.1007/s11042-020-10269-x (cit. on
pp. 81, 196, 200).

[927] C. Shan, A. Li, and X. Chen. “Deep delay rectified neural networks.” In: The Journal of
Supercomputing 79.1 (July 2022), pp. 880–896. issn: 1573-0484. doi: 10.1007/s11227-022-0470
4-z. url: http://dx.doi.org/10.1007/s11227-022-04704-z (cit. on pp. 81, 82, 200).

https://doi.org/10.1016/j.cam.2023.115551
http://dx.doi.org/10.1016/j.cam.2023.115551
https://arxiv.org/abs/2210.10264v1
https://proceedings.mlr.press/v48/shang16.html
https://doi.org/10.48550/ARXIV.1706.00388
https://arxiv.org/abs/1706.00388
https://arxiv.org/abs/1706.00388
https://doi.org/10.48550/ARXIV.1709.04054
https://arxiv.org/abs/1709.04054
https://doi.org/10.1016/j.patrec.2018.09.006
https://doi.org/10.1016/j.patrec.2018.09.006
https://doi.org/10.48550/ARXIV.1604.02313
https://arxiv.org/abs/1604.02313
https://arxiv.org/abs/1604.02313
https://doi.org/10.1016/j.neucom.2017.09.056
https://doi.org/10.1016/j.neucom.2017.09.056
https://doi.org/10.1145/3230905.3230956
https://doi.org/10.1145/3230905.3230956
https://doi.org/10.1145/3230905.3230956
https://doi.org/10.48550/ARXIV.1909.05136
https://doi.org/10.48550/ARXIV.1909.05136
https://arxiv.org/abs/1909.05136
https://doi.org/10.48550/ARXIV.2305.15839
https://arxiv.org/abs/2305.15839
https://arxiv.org/abs/2305.15839
https://doi.org/10.48550/ARXIV.2109.08668
https://arxiv.org/abs/2109.08668
https://arxiv.org/abs/2109.08668
https://doi.org/10.1140/epjst/e2020-000098-9
https://doi.org/10.1140/epjst/e2020-000098-9
https://doi.org/10.1140/epjst/e2020-000098-9
https://doi.org/10.1109/ijcnn52387.2021.9533853
http://dx.doi.org/10.1109/IJCNN52387.2021.9533853
http://dx.doi.org/10.1109/IJCNN52387.2021.9533853
https://doi.org/10.1109/iccke54056.2021.9721450
http://dx.doi.org/10.1109/ICCKE54056.2021.9721450
http://dx.doi.org/10.1109/ICCKE54056.2021.9721450
https://doi.org/10.1007/s11042-020-10269-x
https://doi.org/10.1007/s11042-020-10269-x
https://doi.org/10.1007/s11227-022-04704-z
https://doi.org/10.1007/s11227-022-04704-z
http://dx.doi.org/10.1007/s11227-022-04704-z

348 bibliography

[928] D. Macêdo, C. Zanchettin, A. L. Oliveira, and T. Ludermir. “Enhancing batch normalized
convolutional networks using displaced rectifier linear units: A systematic comparative study.”
In: Expert Systems with Applications 124 (June 2019), pp. 271–281. doi: 10.1016/j.eswa.2019.0
1.066. url: https://doi.org/10.1016/j.eswa.2019.01.066 (cit. on pp. 82, 201).

[929] H. Yang, A. Alsadoon, P. W. C. Prasad, T. Al-Dala’in, T. A. Rashid, A. Maag, and O. H.
Alsadoon. “Deep learning neural networks for emotion classification from text: enhanced
leaky rectified linear unit activation and weighted loss.” In: Multimedia Tools and Applications
81.11 (Feb. 2022), pp. 15439–15468. issn: 1573-7721. doi: 10.1007/s11042-022-12629-1. url:
http://dx.doi.org/10.1007/s11042-022-12629-1 (cit. on p. 82).

[930] H. H. Chieng, N. Wahid, O. Pauline, and S. R. K. Perla. “Flatten-T Swish: a thresholded
ReLU-Swish-like activation function for deep learning.” In: International Journal of Advances in
Intelligent Informatics 4.2 (July 2018), p. 76. doi: 10.26555/ijain.v4i2.249. url: https://doi
.org/10.26555/ijain.v4i2.249 (cit. on pp. 82, 201).

[931] O. Sharma. “A Novel Activation Function in Convolutional Neural Network for Image
Classification in Deep Learning.” In: Data Science and Analytics. Springer Singapore, 2020,
pp. 120–130. doi: 10.1007/978-981-15-5827-6_10. url: https://doi.org/10.1007/978-981-
15-5827-6_10 (cit. on p. 83).

[932] Y. Ying, J. Su, P. Shan, L. Miao, X. Wang, and S. Peng. “Rectified Exponential Units for
Convolutional Neural Networks.” In: IEEE Access 7 (2019), pp. 101633–101640. doi: 10.1109/a
ccess.2019.2928442. url: https://doi.org/10.1109/access.2019.2928442 (cit. on pp. 83,
108, 214).

[933] M.-I. Georgescu, R. T. Ionescu, N.-C. Ristea, and N. Sebe. “Nonlinear neurons with human-like
apical dendrite activations.” In: Applied Intelligence 53.21 (Aug. 2023), pp. 25984–26007. issn:
1573-7497. doi: 10.1007/s10489-023-04921-w. url: http://dx.doi.org/10.1007/s10489-02
3-04921-w (cit. on pp. 83, 84).

[934] M. N. Qureshi and M. Sarosh Umar. “SaRa: A Novel Activation Function with Application to
Melanoma Image Classification.” In: 2022 International Conference on Automation, Computing
and Renewable Systems (ICACRS). IEEE, Dec. 2022. doi: 10.1109/icacrs55517.2022.10029161.
url: http://dx.doi.org/10.1109/ICACRS55517.2022.10029161 (cit. on p. 84).

[935] H. Fu, H. Shi, Y. Xu, and J. Shao. “Research on Gas Outburst Prediction Model Based on Mul-
tiple Strategy Fusion Improved Snake Optimization Algorithm With Temporal Convolutional
Network.” In: IEEE Access 10 (2022), pp. 117973–117984. issn: 2169-3536. doi: 10.1109/access
.2022.3220765. url: http://dx.doi.org/10.1109/ACCESS.2022.3220765 (cit. on p. 85).

[936] Z. Hu, H. Huang, Q. Ran, and M. Yuan. “Improving Convolutional Neural Network Expression
via Difference Exponentially Linear Units.” In: Journal of Physics: Conference Series 1651.1 (Nov.
2020), p. 012163. issn: 1742-6596. doi: 10.1088/1742-6596/1651/1/012163. url: http://dx.d
oi.org/10.1088/1742-6596/1651/1/012163 (cit. on p. 85).

[937] H.-S. Feng and C.-H. Yang. “PolyLU: A Simple and Robust Polynomial-Based Linear Unit
Activation Function for Deep Learning.” In: IEEE Access 11 (2023), pp. 101347–101358. issn:
2169-3536. doi: 10.1109/access.2023.3315308. url: http://dx.doi.org/10.1109/ACCESS.2
023.3315308 (cit. on p. 85).

[938] Kaggle. Dogs vs. Cats. 2013. url: https://www.kaggle.com/c/dogs-vs-cats/data (visited on
01/12/2024) (cit. on p. 85).

[939] J. Elson, J. R. Douceur, J. Howell, and J. Saul. “Asirra: A CAPTCHA that Exploits Interest-
Aligned Manual Image Categorization.” In: Proceedings of the 14th ACM conference on Computer
and communications security. CCS07. ACM, Oct. 2007. doi: 10.1145/1315245.1315291. url:
http://dx.doi.org/10.1145/1315245.1315291 (cit. on p. 85).

[940] B. Duan, Y. Yang, and X. Dai. “Activation by Switch Unit of Opposite First Powers.” In: 2022
IEEE 8th International Conference on Computer and Communications (ICCC). IEEE, Dec. 2022. doi:
10.1109/iccc56324.2022.10065932. url: http://dx.doi.org/10.1109/ICCC56324.2022.100
65932 (cit. on pp. 85, 125).

[941] Y. Li, P. L. K. Ding, and B. Li. Training Neural Networks by Using Power Linear Units (PoLUs).
2018. doi: 10.48550/ARXIV.1802.00212. url: https://arxiv.org/abs/1802.00212 (cit. on
p. 86).

[942] M. Zhu, W. Min, Q. Wang, S. Zou, and X. Chen. “PFLU and FPFLU: Two novel non-monotonic
activation functions in convolutional neural networks.” In: Neurocomputing 429 (Mar. 2021),
pp. 110–117. issn: 0925-2312. doi: 10.1016/j.neucom.2020.11.068. url: http://dx.doi.org
/10.1016/j.neucom.2020.11.068 (cit. on p. 86).

[943] C. Zhang, Y. Xu, and Z. Sheng. “Elastic Adaptively Parametric Compounded Units for
Convolutional Neural Network.” In: Journal of Advanced Computational Intelligence and Intelligent
Informatics 27.4 (July 2023), pp. 576–584. issn: 1343-0130. doi: 10.20965/jaciii.2023.p0576.
url: http://dx.doi.org/10.20965/jaciii.2023.p0576 (cit. on pp. 86, 87).

https://doi.org/10.1016/j.eswa.2019.01.066
https://doi.org/10.1016/j.eswa.2019.01.066
https://doi.org/10.1016/j.eswa.2019.01.066
https://doi.org/10.1007/s11042-022-12629-1
http://dx.doi.org/10.1007/s11042-022-12629-1
https://doi.org/10.26555/ijain.v4i2.249
https://doi.org/10.26555/ijain.v4i2.249
https://doi.org/10.26555/ijain.v4i2.249
https://doi.org/10.1007/978-981-15-5827-6_10
https://doi.org/10.1007/978-981-15-5827-6_10
https://doi.org/10.1007/978-981-15-5827-6_10
https://doi.org/10.1109/access.2019.2928442
https://doi.org/10.1109/access.2019.2928442
https://doi.org/10.1109/access.2019.2928442
https://doi.org/10.1007/s10489-023-04921-w
http://dx.doi.org/10.1007/s10489-023-04921-w
http://dx.doi.org/10.1007/s10489-023-04921-w
https://doi.org/10.1109/icacrs55517.2022.10029161
http://dx.doi.org/10.1109/ICACRS55517.2022.10029161
https://doi.org/10.1109/access.2022.3220765
https://doi.org/10.1109/access.2022.3220765
http://dx.doi.org/10.1109/ACCESS.2022.3220765
https://doi.org/10.1088/1742-6596/1651/1/012163
http://dx.doi.org/10.1088/1742-6596/1651/1/012163
http://dx.doi.org/10.1088/1742-6596/1651/1/012163
https://doi.org/10.1109/access.2023.3315308
http://dx.doi.org/10.1109/ACCESS.2023.3315308
http://dx.doi.org/10.1109/ACCESS.2023.3315308
https://www.kaggle.com/c/dogs-vs-cats/data
https://doi.org/10.1145/1315245.1315291
http://dx.doi.org/10.1145/1315245.1315291
https://doi.org/10.1109/iccc56324.2022.10065932
http://dx.doi.org/10.1109/ICCC56324.2022.10065932
http://dx.doi.org/10.1109/ICCC56324.2022.10065932
https://doi.org/10.48550/ARXIV.1802.00212
https://arxiv.org/abs/1802.00212
https://doi.org/10.1016/j.neucom.2020.11.068
http://dx.doi.org/10.1016/j.neucom.2020.11.068
http://dx.doi.org/10.1016/j.neucom.2020.11.068
https://doi.org/10.20965/jaciii.2023.p0576
http://dx.doi.org/10.20965/jaciii.2023.p0576

bibliography 349

[944] M. Basirat and P. M. Roth. “L*ReLU: Piece-wise Linear Activation Functions for Deep Fine-
grained Visual Categorization.” In: 2020 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, Mar. 2020. doi: 10.1109/wacv45572.2020.9093485. url: https://doi.o
rg/10.1109/wacv45572.2020.9093485 (cit. on p. 87).

[945] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. “Self-Normalizing Neural Net-
works.” In: Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates,
Inc., 2017. url: https://proceedings.neurips.cc/paper_files/paper/2017/file/5d44ee6f
2c3f71b73125876103c8f6c4-Paper.pdf (cit. on pp. 87, 117, 213).

[946] Z. Chen, Z. WeiQin, L. Deng, G. Li, and Y. Xie. Redefining The Self-Normalization Property. 2021.
url: https://openreview.net/forum?id=gfwfOskyzSx (cit. on pp. 88, 214).

[947] G. Zhang and H. Li. Effectiveness of Scaled Exponentially-Regularized Linear Units (SERLUs). 2018.
doi: 10.48550/ARXIV.1807.10117. url: https://arxiv.org/abs/1807.10117 (cit. on p. 88).

[948] S. Hermawan and R. Mandala. “Improving Accuracy using The ASERLU layer in CNN-
BiLSTM Architecture on Sentiment Analysis.” In: Jurnal RESTI (Rekayasa Sistem dan Teknologi
Informasi) 5.5 (Oct. 2021), pp. 1001–1007. issn: 2580-0760. doi: 10.29207/resti.v5i5.3534.
url: http://dx.doi.org/10.29207/resti.v5i5.3534 (cit. on p. 88).

[949] S. Kiliçarslan and M. Celik. “RSigELU: A nonlinear activation function for deep neural
networks.” In: Expert Systems with Applications 174 (July 2021), p. 114805. doi: 10.1016/j.eswa
.2021.114805. url: https://doi.org/10.1016/j.eswa.2021.114805 (cit. on pp. 88, 89, 212,
214).

[950] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. 2017. doi: 10.48550/ARXIV.1708.07747. url: https://arxiv.or
g/abs/1708.07747 (cit. on pp. 89, 140, 160, 289).

[951] S. Kiliçarslan. “A novel nonlinear hybrid HardSReLUE activation function in transfer learning
architectures for hemorrhage classification.” In: Multimedia Tools and Applications 82.4 (Dec.
2022), pp. 6345–6365. issn: 1573-7721. doi: 10.1007/s11042-022-14313-w. url: http://dx.do
i.org/10.1007/s11042-022-14313-w (cit. on p. 89).

[952] Y. Wang, Y. Li, Y. Song, and X. Rong. “The Influence of the Activation Function in a Convolution
Neural Network Model of Facial Expression Recognition.” In: Applied Sciences 10.5 (Mar. 2020),
p. 1897. issn: 2076-3417. doi: 10.3390/app10051897. url: http://dx.doi.org/10.3390/app10
051897 (cit. on p. 90).

[953] A. Wuraola, N. Patel, and S. K. Nguang. “Efficient activation functions for embedded inference
engines.” In: Neurocomputing 442 (June 2021), pp. 73–88. doi: 10.1016/j.neucom.2021.02.030.
url: https://doi.org/10.1016/j.neucom.2021.02.030 (cit. on pp. 90–92).

[954] A. Wuraola and N. Patel. “SQNL: A New Computationally Efficient Activation Function.” In:
2018 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2018. doi: 10.1109/ij
cnn.2018.8489043. url: https://doi.org/10.1109/ijcnn.2018.8489043 (cit. on pp. 90–92).

[955] J. Bilski and A. I. Galushkin. “A New Proposition of the Activation Function for Significant
Improvement of Neural Networks Performance.” In: Lecture Notes in Computer Science. Springer
International Publishing, 2016, pp. 35–45. isbn: 9783319393780. doi: 10.1007/978-3-319-3937
8-0_4. url: http://dx.doi.org/10.1007/978-3-319-39378-0_4 (cit. on pp. 90, 92, 217).

[956] D. Dua and E. Karra Taniskidou. UCI Machine Learning Repository. 2017. url: http://archive
.ics.uci.edu/ml (cit. on pp. 91, 171).

[957] B. Carlile, G. Delamarter, P. Kinney, A. Marti, and B. Whitney. Improving Deep Learning
by Inverse Square Root Linear Units (ISRLUs). 2017. doi: 10.48550/ARXIV.1710.09967. url:
https://arxiv.org/abs/1710.09967 (cit. on pp. 92, 93).

[958] X. Yang, Y. Chen, and H. Liang. “Square Root Based Activation Function in Neural Networks.”
In: 2018 International Conference on Audio, Language and Image Processing (ICALIP). IEEE, July
2018. doi: 10.1109/icalip.2018.8455590. url: https://doi.org/10.1109/icalip.2018.845
5590 (cit. on p. 93).

[959] M. Khachumov, Y. Emelyanova, and V. Khachumov. “Parabola-Based Artificial Neural Network
Activation Functions.” In: 2023 International Russian Automation Conference (RusAutoCon). IEEE,
Sept. 2023. doi: 10.1109/rusautocon58002.2023.10272855. url: http://dx.doi.org/10.110
9/RusAutoCon58002.2023.10272855 (cit. on p. 93).

[960] Mate Labs. Secret Sauce behind the beauty of Deep Learning: Beginners guide to Activation Functions.
2017. url: https://towardsdatascience.com/secret- sauce- behind- the- beauty- of-
deep- learning- beginners- guide- to- activation- functions- a8e23a57d046 (visited on
01/28/2024) (cit. on p. 94).

https://doi.org/10.1109/wacv45572.2020.9093485
https://doi.org/10.1109/wacv45572.2020.9093485
https://doi.org/10.1109/wacv45572.2020.9093485
https://proceedings.neurips.cc/paper_files/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://openreview.net/forum?id=gfwfOskyzSx
https://doi.org/10.48550/ARXIV.1807.10117
https://arxiv.org/abs/1807.10117
https://doi.org/10.29207/resti.v5i5.3534
http://dx.doi.org/10.29207/resti.v5i5.3534
https://doi.org/10.1016/j.eswa.2021.114805
https://doi.org/10.1016/j.eswa.2021.114805
https://doi.org/10.1016/j.eswa.2021.114805
https://doi.org/10.48550/ARXIV.1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://doi.org/10.1007/s11042-022-14313-w
http://dx.doi.org/10.1007/s11042-022-14313-w
http://dx.doi.org/10.1007/s11042-022-14313-w
https://doi.org/10.3390/app10051897
http://dx.doi.org/10.3390/app10051897
http://dx.doi.org/10.3390/app10051897
https://doi.org/10.1016/j.neucom.2021.02.030
https://doi.org/10.1016/j.neucom.2021.02.030
https://doi.org/10.1109/ijcnn.2018.8489043
https://doi.org/10.1109/ijcnn.2018.8489043
https://doi.org/10.1109/ijcnn.2018.8489043
https://doi.org/10.1007/978-3-319-39378-0_4
https://doi.org/10.1007/978-3-319-39378-0_4
http://dx.doi.org/10.1007/978-3-319-39378-0_4
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.48550/ARXIV.1710.09967
https://arxiv.org/abs/1710.09967
https://doi.org/10.1109/icalip.2018.8455590
https://doi.org/10.1109/icalip.2018.8455590
https://doi.org/10.1109/icalip.2018.8455590
https://doi.org/10.1109/rusautocon58002.2023.10272855
http://dx.doi.org/10.1109/RusAutoCon58002.2023.10272855
http://dx.doi.org/10.1109/RusAutoCon58002.2023.10272855
https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-learning-beginners-guide-to-activation-functions-a8e23a57d046
https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-learning-beginners-guide-to-activation-functions-a8e23a57d046

350 bibliography

[961] A. Mishra, P. Chandra, and U. Ghose. “A New Activation Function Validated on Function
Approximation Tasks.” In: Proceedings of 3rd International Conference on Computing Informatics
and Networks. Springer Singapore, 2021, pp. 311–321. isbn: 9789811597121. doi: 10.1007/978-
981-15-9712-1_26. url: http://dx.doi.org/10.1007/978-981-15-9712-1_26 (cit. on p. 94).

[962] S. Saha, A. Mathur, K. Bora, S. Basak, and S. Agrawal. “A New Activation Function for
Artificial Neural Net Based Habitability Classification.” In: 2018 International Conference on
Advances in Computing, Communications and Informatics (ICACCI). IEEE, Sept. 2018. doi: 10.11
09/icacci.2018.8554460. url: http://dx.doi.org/10.1109/ICACCI.2018.8554460 (cit. on
p. 94).

[963] J. Bilski. “The Backpropagation learning with logarithmic transfer function.” In: Proc. 5th Conf.
On Neural Networks and Soft Computing. 2000, pp. 71–76 (cit. on p. 94).

[964] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering Diverse Domains through World Models.
2023. doi: 10.48550/ARXIV.2301.04104. url: https://arxiv.org/abs/2301.04104 (cit. on
p. 94).

[965] J. Kisel’ák, Y. Lu, J. Švihra, P. Szépe, and M. Stehlík. “"SPOCU": scaled polynomial constant
unit activation function.” In: Neural Computing and Applications 33.8 (July 2020), pp. 3385–3401.
issn: 1433-3058. doi: 10.1007/s00521-020-05182-1. url: http://dx.doi.org/10.1007/s005
21-020-05182-1 (cit. on p. 95).

[966] J. Kisel’ák, Y. Lu, J. Švihra, P. Szépe, and M. Stehlík. “Correction to: "SPOCU": scaled polynomial
constant unit activation function.” In: Neural Computing and Applications 33.5 (Nov. 2020),
pp. 1749–1750. issn: 1433-3058. doi: 10.1007/s00521-020-05412-6. url: http://dx.doi.org
/10.1007/s00521-020-05412-6 (cit. on p. 95).

[967] S.-Y. Hwang and J.-J. Kim. “A Universal Activation Function for Deep Learning.” In: Computers,
Materials & Continua 75.2 (2023), pp. 3553–3569. issn: 1546-2226. doi: 10.32604/cmc.2023.037
028. url: http://dx.doi.org/10.32604/cmc.2023.037028 (cit. on p. 95).

[968] B. Yuen, M. T. Hoang, X. Dong, and T. Lu. “Universal activation function for machine learning.”
In: Scientific Reports 11.1 (Sept. 2021). issn: 2045-2322. doi: 10.1038/s41598-021-96723-8. url:
http://dx.doi.org/10.1038/s41598-021-96723-8 (cit. on pp. 95, 143).

[969] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. “Incorporating Second-Order
Functional Knowledge for Better Option Pricing.” In: Advances in Neural Information Processing
Systems. Ed. by T. Leen, T. Dietterich, and V. Tresp. Vol. 13. MIT Press, 2000. url: https://pro
ceedings.neurips.cc/paper_files/paper/2000/file/44968aece94f667e4095002d140b5896

-Paper.pdf (cit. on p. 95).

[970] H. Zheng, Z. Yang, W. Liu, J. Liang, and Y. Li. “Improving deep neural networks using softplus
units.” In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2015. doi:
10.1109/ijcnn.2015.7280459. url: https://doi.org/10.1109/ijcnn.2015.7280459 (cit. on
p. 95).

[971] Q. Liu and S. Furber. “Noisy Softplus: A Biology Inspired Activation Function.” In: Neural
Information Processing. Springer International Publishing, 2016, pp. 405–412. doi: 10.1007/978-
3-319-46681-1_49. url: https://doi.org/10.1007/978-3-319-46681-1_49 (cit. on p. 95).

[972] K. Sun, J. Yu, L. Zhang, and Z. Dong. “A Convolutional Neural Network Model Based on
Improved Softplus Activation Function.” In: Advances in Intelligent Systems and Computing.
Springer International Publishing, July 2019, pp. 1326–1335. doi: 10.1007/978-3-030-25128-
4_164. url: https://doi.org/10.1007/978-3-030-25128-4_164 (cit. on pp. 96, 194, 201).

[973] A. Ciuparu, A. Nagy-Dăbâcan, and R. C. Mureşan. “Soft++, a multi-parametric non-saturating
non-linearity that improves convergence in deep neural architectures.” In: Neurocomputing 384

(Apr. 2020), pp. 376–388. doi: 10.1016/j.neucom.2019.12.014. url: https://doi.org/10.10
16/j.neucom.2019.12.014 (cit. on pp. 96, 214).

[974] Y. Chen, Y. Mai, J. Xiao, and L. Zhang. “Improving the Antinoise Ability of DNNs via a
Bio-Inspired Noise Adaptive Activation Function Rand Softplus.” In: Neural Computation 31.6
(June 2019), pp. 1215–1233. doi: 10.1162/neco_a_01192. url: https://doi.org/10.1162/nec
o_a_01192 (cit. on p. 96).

[975] G. S. da S. Gomes and T. B. Ludermir. “Optimization of the weights and asymmetric activation
function family of neural network for time series forecasting.” In: Expert Systems with Appli-
cations 40.16 (Nov. 2013), pp. 6438–6446. issn: 0957-4174. doi: 10.1016/j.eswa.2013.05.053.
url: http://dx.doi.org/10.1016/j.eswa.2013.05.053 (cit. on p. 96).

[976] F. J. Aranda-Ordaz. “On two families of transformations to additivity for binary response
data.” In: Biometrika 68.2 (1981), pp. 357–363. issn: 1464-3510. doi: 10.1093/biomet/68.2.357.
url: http://dx.doi.org/10.1093/biomet/68.2.357 (cit. on p. 96).

https://doi.org/10.1007/978-981-15-9712-1_26
https://doi.org/10.1007/978-981-15-9712-1_26
http://dx.doi.org/10.1007/978-981-15-9712-1_26
https://doi.org/10.1109/icacci.2018.8554460
https://doi.org/10.1109/icacci.2018.8554460
http://dx.doi.org/10.1109/ICACCI.2018.8554460
https://doi.org/10.48550/ARXIV.2301.04104
https://arxiv.org/abs/2301.04104
https://doi.org/10.1007/s00521-020-05182-1
http://dx.doi.org/10.1007/s00521-020-05182-1
http://dx.doi.org/10.1007/s00521-020-05182-1
https://doi.org/10.1007/s00521-020-05412-6
http://dx.doi.org/10.1007/s00521-020-05412-6
http://dx.doi.org/10.1007/s00521-020-05412-6
https://doi.org/10.32604/cmc.2023.037028
https://doi.org/10.32604/cmc.2023.037028
http://dx.doi.org/10.32604/cmc.2023.037028
https://doi.org/10.1038/s41598-021-96723-8
http://dx.doi.org/10.1038/s41598-021-96723-8
https://proceedings.neurips.cc/paper_files/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf
https://doi.org/10.1109/ijcnn.2015.7280459
https://doi.org/10.1109/ijcnn.2015.7280459
https://doi.org/10.1007/978-3-319-46681-1_49
https://doi.org/10.1007/978-3-319-46681-1_49
https://doi.org/10.1007/978-3-319-46681-1_49
https://doi.org/10.1007/978-3-030-25128-4_164
https://doi.org/10.1007/978-3-030-25128-4_164
https://doi.org/10.1007/978-3-030-25128-4_164
https://doi.org/10.1016/j.neucom.2019.12.014
https://doi.org/10.1016/j.neucom.2019.12.014
https://doi.org/10.1016/j.neucom.2019.12.014
https://doi.org/10.1162/neco_a_01192
https://doi.org/10.1162/neco_a_01192
https://doi.org/10.1162/neco_a_01192
https://doi.org/10.1016/j.eswa.2013.05.053
http://dx.doi.org/10.1016/j.eswa.2013.05.053
https://doi.org/10.1093/biomet/68.2.357
http://dx.doi.org/10.1093/biomet/68.2.357

bibliography 351

[977] J.-C. Li, W. W. Y. Ng, D. S. Yeung, and P. P. K. Chan. “Bi-firing deep neural networks.”
In: International Journal of Machine Learning and Cybernetics 5.1 (Sept. 2013), pp. 73–83. doi:
10.1007/s13042-013-0198-9. url: https://doi.org/10.1007/s13042-013-0198-9 (cit. on
p. 97).

[978] P. Liu, Z. Zeng, and J. Wang. “Multistability analysis of a general class of recurrent neural
networks with non-monotonic activation functions and time-varying delays.” In: Neural
Networks 79 (July 2016), pp. 117–127. issn: 0893-6080. doi: 10.1016/j.neunet.2016.03.010.
url: http://dx.doi.org/10.1016/j.neunet.2016.03.010 (cit. on pp. 97, 98).

[979] L. Parisi. m-arcsinh: An Efficient and Reliable Function for SVM and MLP in scikit-learn. 2020. doi:
10.48550/ARXIV.2009.07530. url: https://arxiv.org/abs/2009.07530 (cit. on p. 98).

[980] L. Parisi, R. Ma, N. RaviChandran, and M. Lanzillotta. “hyper-sinh: An accurate and reliable
function from shallow to deep learning in TensorFlow and Keras.” In: Machine Learning with
Applications 6 (Dec. 2021), p. 100112. issn: 2666-8270. doi: 10.1016/j.mlwa.2021.100112. url:
http://dx.doi.org/10.1016/j.mlwa.2021.100112 (cit. on p. 98).

[981] L. Parisi, A. Zaernia, R. Ma, and M. Youseffi. “Hyper-sinh-Convolutional Neural Network for
Early Detection of Parkinson’s Disease from Spiral Drawings.” In: WSEAS TRANSACTIONS
ON COMPUTER RESEARCH 9 (Mar. 2021), pp. 1–7. issn: 1991-8755. doi: 10.37394/232018.2
021.9.1. url: http://dx.doi.org/10.37394/232018.2021.9.1 (cit. on p. 98).

[982] K. Hara and K. Nakayamma. “Comparison of activation functions in multilayer neural network
for pattern classification.” In: Proceedings of 1994 IEEE International Conference on Neural Networks
(ICNN’94). ICNN-94. IEEE, 1994. doi: 10.1109/icnn.1994.374710. url: http://dx.doi.org
/10.1109/ICNN.1994.374710 (cit. on pp. 99–101).

[983] M. S. Gashler and S. C. Ashmore. “Training Deep Fourier Neural Networks to Fit Time-Series
Data.” In: Lecture Notes in Computer Science. Springer International Publishing, 2014, pp. 48–55.
isbn: 9783319093307. doi: 10.1007/978-3-319-09330-7_7. url: http://dx.doi.org/10.1007
/978-3-319-09330-7_7 (cit. on p. 99).

[984] Y. Zhang, L. Qu, J. Liu, D. Guo, and M. Li. “Sine neural network (SNN) with double-stage
weights and structure determination (DS-WASD).” In: Soft Computing 20.1 (Oct. 2014), pp. 211–
221. issn: 1433-7479. doi: 10.1007/s00500-014-1491-6. url: http://dx.doi.org/10.1007/s0
0500-014-1491-6 (cit. on p. 99).

[985] J. Sopena. “Neural networks with periodic and monotonic activation functions: a comparative
study in classification problems.” In: 9th International Conference on Artificial Neural Networks:
ICANN ’99. IEE, 1999. doi: 10.1049/cp:19991129. url: http://dx.doi.org/10.1049/cp:1999
1129 (cit. on p. 99).

[986] S. A. Faroughi, R. Soltanmohammadi, P. Datta, S. K. Mahjour, and S. Faroughi. “Physics-
Informed Neural Networks with Periodic Activation Functions for Solute Transport in Het-
erogeneous Porous Media.” In: Mathematics 12.1 (Dec. 2023), p. 63. issn: 2227-7390. doi:
10.3390/math12010063. url: http://dx.doi.org/10.3390/math12010063 (cit. on p. 99).

[987] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. “Implicit Neural Repre-
sentations with Periodic Activation Functions.” In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran
Associates, Inc., 2020, pp. 7462–7473. url: https://proceedings.neurips.cc/paper_files/p
aper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf (cit. on p. 99).

[988] W. X. Cheng, P. Suganthan, and R. Katuwal. “Time series classification using diversified
Ensemble Deep Random Vector Functional Link and Resnet features.” In: Applied Soft Com-
puting 112 (Nov. 2021), p. 107826. issn: 1568-4946. doi: 10.1016/j.asoc.2021.107826. url:
http://dx.doi.org/10.1016/j.asoc.2021.107826 (cit. on pp. 99, 174).

[989] A. Daskin. “A Simple Quantum Neural Net with a Periodic Activation Function.” In: 2018
IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, Oct. 2018. doi:
10.1109/smc.2018.00491. url: http://dx.doi.org/10.1109/SMC.2018.00491 (cit. on p. 99).

[990] K.-H. Chan, S.-K. Im, W. Ke, and N.-L. Lei. “SinP[N]: A Fast Convergence Activation Function
for Convolutional Neural Networks.” In: 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion). IEEE, Dec. 2018. doi: 10.1109/ucc-companion
.2018.00082. url: http://dx.doi.org/10.1109/UCC-Companion.2018.00082 (cit. on p. 99).

[991] M. M. Noel, A. L, A. Trivedi, and P. Dutta. Growing Cosine Unit: A Novel Oscillatory Activation
Function That Can Speedup Training and Reduce Parameters in Convolutional Neural Networks. 2021.
doi: 10.48550/ARXIV.2108.12943. url: https://arxiv.org/abs/2108.12943 (cit. on p. 99).

[992] J. Sharma. Evaluating CNN with Oscillatory Activation Function. 2022. doi: 10.48550/ARXIV.221
1.06878. url: https://arxiv.org/abs/2211.06878 (cit. on p. 99).

[993] P. Sharma, A. R. Sahoo, S. Sinha, and S. Bharadwaj. “NFT artwork generation using oscillatory
activation functions in GANs.” In: (Mar. 2022). doi: 10.31224/2225. url: http://dx.doi.org
/10.31224/2225 (cit. on p. 99).

https://doi.org/10.1007/s13042-013-0198-9
https://doi.org/10.1007/s13042-013-0198-9
https://doi.org/10.1016/j.neunet.2016.03.010
http://dx.doi.org/10.1016/j.neunet.2016.03.010
https://doi.org/10.48550/ARXIV.2009.07530
https://arxiv.org/abs/2009.07530
https://doi.org/10.1016/j.mlwa.2021.100112
http://dx.doi.org/10.1016/j.mlwa.2021.100112
https://doi.org/10.37394/232018.2021.9.1
https://doi.org/10.37394/232018.2021.9.1
http://dx.doi.org/10.37394/232018.2021.9.1
https://doi.org/10.1109/icnn.1994.374710
http://dx.doi.org/10.1109/ICNN.1994.374710
http://dx.doi.org/10.1109/ICNN.1994.374710
https://doi.org/10.1007/978-3-319-09330-7_7
http://dx.doi.org/10.1007/978-3-319-09330-7_7
http://dx.doi.org/10.1007/978-3-319-09330-7_7
https://doi.org/10.1007/s00500-014-1491-6
http://dx.doi.org/10.1007/s00500-014-1491-6
http://dx.doi.org/10.1007/s00500-014-1491-6
https://doi.org/10.1049/cp:19991129
http://dx.doi.org/10.1049/cp:19991129
http://dx.doi.org/10.1049/cp:19991129
https://doi.org/10.3390/math12010063
http://dx.doi.org/10.3390/math12010063
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://doi.org/10.1016/j.asoc.2021.107826
http://dx.doi.org/10.1016/j.asoc.2021.107826
https://doi.org/10.1109/smc.2018.00491
http://dx.doi.org/10.1109/SMC.2018.00491
https://doi.org/10.1109/ucc-companion.2018.00082
https://doi.org/10.1109/ucc-companion.2018.00082
http://dx.doi.org/10.1109/UCC-Companion.2018.00082
https://doi.org/10.48550/ARXIV.2108.12943
https://arxiv.org/abs/2108.12943
https://doi.org/10.48550/ARXIV.2211.06878
https://doi.org/10.48550/ARXIV.2211.06878
https://arxiv.org/abs/2211.06878
https://doi.org/10.31224/2225
http://dx.doi.org/10.31224/2225
http://dx.doi.org/10.31224/2225

352 bibliography

[994] J. U. Rahman, F. Makhdoom, and D. Lu. Amplifying Sine Unit: An Oscillatory Activation Function
for Deep Neural Networks to Recover Nonlinear Oscillations Efficiently. 2023. doi: 10.48550/ARXIV.2
304.09759. url: https://arxiv.org/abs/2304.09759 (cit. on p. 100).

[995] J. U. Rahman, F. Makhdoom, and D. Lu. ASU-CNN: An Efficient Deep Architecture for Image
Classification and Feature Visualizations. 2023. doi: 10.48550/ARXIV.2305.19146. url: https:
//arxiv.org/abs/2305.19146 (cit. on p. 100).

[996] M. Ö. Efe. “Novel Neuronal Activation Functions for Feedforward Neural Networks.” In:
Neural Processing Letters 28.2 (Aug. 2008), pp. 63–79. issn: 1573-773X. doi: 10.1007/s11063-00
8-9082-0. url: http://dx.doi.org/10.1007/s11063-008-9082-0 (cit. on pp. 100, 101, 152).

[997] M. Gustineli. A survey on recently proposed activation functions for Deep Learning. 2022. doi:
10.48550/ARXIV.2204.02921. url: https://arxiv.org/abs/2204.02921 (cit. on pp. 100–102).

[998] H. Abdel-Nabi, G. Al-Naymat, M. Z. Ali, and A. Awajan. “HcLSH: A Novel Non-Linear
Monotonic Activation Function for Deep Learning Methods.” In: IEEE Access 11 (2023),
pp. 47794–47815. issn: 2169-3536. doi: 10.1109/access.2023.3276298. url: http://dx.doi.o
rg/10.1109/ACCESS.2023.3276298 (cit. on p. 100).

[999] T. Kalaiselvi, S. T. Padmapriya, K. Somasundaram, and S. Praveenkumar. “E-Tanh: a novel
activation function for image processing neural network models.” In: Neural Computing and
Applications 34.19 (June 2022), pp. 16563–16575. issn: 1433-3058. doi: 10.1007/s00521-022-07
245-x. url: http://dx.doi.org/10.1007/s00521-022-07245-x (cit. on pp. 101, 200).

[1000] M. Afshari Nia, F. Panahi, and M. Ehteram. “Convolutional Neural Network- ANN- E (Tanh):
A New Deep Learning Model for Predicting Rainfall.” In: Water Resources Management 37.4
(Feb. 2023), pp. 1785–1810. issn: 1573-1650. doi: 10.1007/s11269-023-03454-8. url: http:
//dx.doi.org/10.1007/s11269-023-03454-8 (cit. on p. 101).

[1001] G. Chen, Q. Wang, X. Li, and Y. Zhang. “Target detection based on a new triple activation
function.” In: Systems Science & Control Engineering 10.1 (June 2022), pp. 629–635. issn: 2164-
2583. doi: 10.1080/21642583.2022.2091060. url: http://dx.doi.org/10.1080/21642583.20
22.2091060 (cit. on p. 101).

[1002] Z. Wang, H. Liu, F. Liu, and D. Gao. “Why KDAC? A general activation function for knowledge
discovery.” In: Neurocomputing 501 (Aug. 2022), pp. 343–358. issn: 0925-2312. doi: 10.1016
/j.neucom.2022.06.019. url: http://dx.doi.org/10.1016/j.neucom.2022.06.019 (cit. on
p. 102).

[1003] C. Xiao, P. Zhong, and C. Zheng. “Enhancing Adversarial Defense by k-Winners-Take-All.” In:
International Conference on Learning Representations. 2020. url: https://openreview.net/forum
?id=Skgvy64tvr (cit. on p. 103).

[1004] F. Kayim and A. Yilmaz. “Time Series Forecasting With Volatility Activation Function.” In:
IEEE Access 10 (2022), pp. 104000–104010. issn: 2169-3536. doi: 10.1109/access.2022.3211312.
url: http://dx.doi.org/10.1109/ACCESS.2022.3211312 (cit. on p. 103).

[1005] N. Xin, J. Su, and M. M. Hasan. “Multivariate Time Series Spatial Extreme Clustering with
Voformer-Ec Neural Networks.” In: (2023). doi: 10.2139/ssrn.4502409. url: http://dx.doi
.org/10.2139/ssrn.4502409 (cit. on p. 103).

[1006] S. Reid and K. Ferens. “A Hybrid Chaotic Activation Function for Artificial Neural Networks.”
In: Advances in Artificial Intelligence and Applied Cognitive Computing. Springer International
Publishing, 2021, pp. 1097–1105. isbn: 9783030702960. doi: 10.1007/978-3-030-70296-0_87.
url: http://dx.doi.org/10.1007/978-3-030-70296-0_87 (cit. on pp. 103, 104).

[1007] A. N. M. E. Kabir, A. F. M. N. uddin, M. Asaduzzaman, M. F. Hasan, M. I. Hasan, and
M. Shahjahan. “Fusion of Chaotic Activation Functions in training neural network.” In:
2012 7th International Conference on Electrical and Computer Engineering. IEEE, Dec. 2012. doi:
10.1109/icece.2012.6471592. url: http://dx.doi.org/10.1109/ICECE.2012.6471592
(cit. on p. 104).

[1008] H. Abbasi, M. Yaghoobi, M. Teshnehlab, and A. Sharifi. “Cascade chaotic neural network
(CCNN): a new model.” In: Neural Computing and Applications 34.11 (Jan. 2022), pp. 8897–8917.
issn: 1433-3058. doi: 10.1007/s00521-022-06912-3. url: http://dx.doi.org/10.1007/s005
21-022-06912-3 (cit. on p. 104).

[1009] Y. Wu, M. Zhao, and X. Ding. “Beyond weights adaptation: a new neuron model with trainable
activation function and its supervised learning.” In: Proceedings of International Conference
on Neural Networks (ICNN’97). ICNN-97. IEEE, 1997. doi: 10.1109/icnn.1997.616194. url:
http://dx.doi.org/10.1109/ICNN.1997.616194 (cit. on pp. 105, 156).

[1010] Y. Wu and M. Zhao. “A neuron model with trainable activation function (TAF) and its MFNN
supervised learning.” In: Science in China Series F Information Sciences 44.5 (Oct. 2001), pp. 366–
375. issn: 1862-2836. doi: 10.1007/bf02714739. url: http://dx.doi.org/10.1007/BF02714739
(cit. on p. 105).

https://doi.org/10.48550/ARXIV.2304.09759
https://doi.org/10.48550/ARXIV.2304.09759
https://arxiv.org/abs/2304.09759
https://doi.org/10.48550/ARXIV.2305.19146
https://arxiv.org/abs/2305.19146
https://arxiv.org/abs/2305.19146
https://doi.org/10.1007/s11063-008-9082-0
https://doi.org/10.1007/s11063-008-9082-0
http://dx.doi.org/10.1007/s11063-008-9082-0
https://doi.org/10.48550/ARXIV.2204.02921
https://arxiv.org/abs/2204.02921
https://doi.org/10.1109/access.2023.3276298
http://dx.doi.org/10.1109/ACCESS.2023.3276298
http://dx.doi.org/10.1109/ACCESS.2023.3276298
https://doi.org/10.1007/s00521-022-07245-x
https://doi.org/10.1007/s00521-022-07245-x
http://dx.doi.org/10.1007/s00521-022-07245-x
https://doi.org/10.1007/s11269-023-03454-8
http://dx.doi.org/10.1007/s11269-023-03454-8
http://dx.doi.org/10.1007/s11269-023-03454-8
https://doi.org/10.1080/21642583.2022.2091060
http://dx.doi.org/10.1080/21642583.2022.2091060
http://dx.doi.org/10.1080/21642583.2022.2091060
https://doi.org/10.1016/j.neucom.2022.06.019
https://doi.org/10.1016/j.neucom.2022.06.019
http://dx.doi.org/10.1016/j.neucom.2022.06.019
https://openreview.net/forum?id=Skgvy64tvr
https://openreview.net/forum?id=Skgvy64tvr
https://doi.org/10.1109/access.2022.3211312
http://dx.doi.org/10.1109/ACCESS.2022.3211312
https://doi.org/10.2139/ssrn.4502409
http://dx.doi.org/10.2139/ssrn.4502409
http://dx.doi.org/10.2139/ssrn.4502409
https://doi.org/10.1007/978-3-030-70296-0_87
http://dx.doi.org/10.1007/978-3-030-70296-0_87
https://doi.org/10.1109/icece.2012.6471592
http://dx.doi.org/10.1109/ICECE.2012.6471592
https://doi.org/10.1007/s00521-022-06912-3
http://dx.doi.org/10.1007/s00521-022-06912-3
http://dx.doi.org/10.1007/s00521-022-06912-3
https://doi.org/10.1109/icnn.1997.616194
http://dx.doi.org/10.1109/ICNN.1997.616194
https://doi.org/10.1007/bf02714739
http://dx.doi.org/10.1007/BF02714739

bibliography 353

[1011] S. Flennerhag et al. “Breaking the Activation Function Bottleneck through Adaptive Parame-
terization.” In: CoRR abs/1805.08574 (2018). arXiv: 1805.08574. url: http://arxiv.org/abs
/1805.08574 (cit. on p. 105).

[1012] L. Vecci et al. “Learning and Approximation Capabilities of Adaptive Spline Activation
Function Neural Networks.” In: Neural Networks 11.2 (1998), pp. 259–270. doi: 10.1016/S0893-
6080(97)00118-4. url: https://doi.org/10.1016/S0893-6080(97)00118-4 (cit. on pp. 105,
162).

[1013] M. Dushkoff and R. Ptucha. “Adaptive Activation Functions for Deep Networks.” In: Electronic
Imaging 2016.19 (Feb. 2016), pp. 1–5. doi: 10.2352/issn.2470-1173.2016.19.coimg-149. url:
https://doi.org/10.2352/issn.2470-1173.2016.19.coimg-149 (cit. on pp. 105, 158, 219).

[1014] L. Hou et al. “ConvNets with Smooth Adaptive Activation Functions for Regression.” In:
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Ed. by A.
Singh and J. Zhu. Vol. 54. Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA: PMLR, 20–22 Apr 2017, pp. 430–439. url: http://proceedings.mlr.press/v54/hou17a
.html (cit. on pp. 105, 146, 217).

[1015] S. Scardapane et al. “Learning Activation Functions from Data Using Cubic Spline Interpo-
lation.” In: Neural Advances in Processing Nonlinear Dynamic Signals. Springer International
Publishing, July 2018, pp. 73–83. doi: 10.1007/978-3-319-95098-3_7. url: https://doi.org
/10.1007/978-3-319-95098-3_7 (cit. on pp. 105, 162).

[1016] Y.-D. Zhang, C. Pan, J. Sun, and C. Tang. “Multiple sclerosis identification by convolutional
neural network with dropout and parametric ReLU.” In: Journal of Computational Science 28

(Sept. 2018), pp. 1–10. doi: 10.1016/j.jocs.2018.07.003. url: https://doi.org/10.1016/j
.jocs.2018.07.003 (cit. on p. 105).

[1017] F. Leofante, P. Henriksen, and A. Lomuscio. “Verification-friendly Networks: the Case for
Parametric ReLUs.” In: 2023 International Joint Conference on Neural Networks (IJCNN). IEEE,
June 2023. doi: 10.1109/ijcnn54540.2023.10191169. url: http://dx.doi.org/10.1109
/IJCNN54540.2023.10191169 (cit. on p. 105).

[1018] S. Dai, S. Mahloujifar, and P. Mittal. “Parameterizing Activation Functions for Adversarial
Robustness.” In: 2022 IEEE Security and Privacy Workshops (SPW). IEEE, May 2022. doi: 10
.1109/spw54247.2022.9833884. url: http://dx.doi.org/10.1109/SPW54247.2022.9833884
(cit. on pp. 106, 117, 129, 200).

[1019] B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, and J. Y. Choi. “A Comprehensive Overhaul of Feature
Distillation.” In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct.
2019. doi: 10.1109/iccv.2019.00201. url: http://dx.doi.org/10.1109/ICCV.2019.00201
(cit. on p. 106).

[1020] N. Ma, X. Zhang, and J. Sun. “Funnel Activation for Visual Recognition.” In: Lecture Notes in
Computer Science. Springer International Publishing, 2020, pp. 351–368. isbn: 9783030586218.
doi: 10.1007/978-3-030-58621-8_21. url: http://dx.doi.org/10.1007/978-3-030-58621-
8_21 (cit. on p. 106).

[1021] J. Gao, J. Yi, and Y. L. Murphey. “Self-Supervised Learning for Driving Maneuver Prediction
from Multivariate Temporal Signals.” In: 2020 Chinese Automation Congress (CAC). IEEE, Nov.
2020. doi: 10.1109/cac51589.2020.9327088. url: http://dx.doi.org/10.1109/CAC51589.20
20.9327088 (cit. on p. 106).

[1022] S. Bogoi and A. Udrea. “A Lightweight Deep Learning Approach for Liver Segmentation.”
In: Mathematics 11.1 (Dec. 2022), p. 95. issn: 2227-7390. doi: 10.3390/math11010095. url:
http://dx.doi.org/10.3390/math11010095 (cit. on p. 106).

[1023] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng. “ReActNet: Towards Precise Binary Neural
Network with Generalized Activation Functions.” In: Lecture Notes in Computer Science. Springer
International Publishing, 2020, pp. 143–159. isbn: 9783030585686. doi: 10.1007/978-3-030-58
568-6_9. url: http://dx.doi.org/10.1007/978-3-030-58568-6_9 (cit. on pp. 107, 135, 201).

[1024] K. Biswas, S. Kumar, S. Banerjee, and A. Kumar Pandey. “SAU: Smooth Activation Function
Using Convolution with Approximate Identities.” In: Computer Vision – ECCV 2022. Springer
Nature Switzerland, 2022, pp. 313–329. isbn: 9783031198038. doi: 10.1007/978-3-031-19803-
8_19. url: http://dx.doi.org/10.1007/978-3-031-19803-8_19 (cit. on p. 107).

[1025] K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey. “Smooth Maximum Unit: Smooth
Activation Function for Deep Networks using Smoothing Maximum Technique.” In: 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2022. doi:
10.1109/cvpr52688.2022.00087. url: http://dx.doi.org/10.1109/CVPR52688.2022.00087
(cit. on pp. 107, 165).

[1026] A. Maniatopoulos and N. Mitianoudis. “Learnable Leaky ReLU (LeLeLU): An Alternative
Accuracy-Optimized Activation Function.” In: Information 12.12 (Dec. 2021), p. 513. issn: 2078-
2489. doi: 10.3390/info12120513. url: http://dx.doi.org/10.3390/info12120513 (cit. on
pp. 107, 201).

https://arxiv.org/abs/1805.08574
http://arxiv.org/abs/1805.08574
http://arxiv.org/abs/1805.08574
https://doi.org/10.1016/S0893-6080(97)00118-4
https://doi.org/10.1016/S0893-6080(97)00118-4
https://doi.org/10.1016/S0893-6080(97)00118-4
https://doi.org/10.2352/issn.2470-1173.2016.19.coimg-149
https://doi.org/10.2352/issn.2470-1173.2016.19.coimg-149
http://proceedings.mlr.press/v54/hou17a.html
http://proceedings.mlr.press/v54/hou17a.html
https://doi.org/10.1007/978-3-319-95098-3_7
https://doi.org/10.1007/978-3-319-95098-3_7
https://doi.org/10.1007/978-3-319-95098-3_7
https://doi.org/10.1016/j.jocs.2018.07.003
https://doi.org/10.1016/j.jocs.2018.07.003
https://doi.org/10.1016/j.jocs.2018.07.003
https://doi.org/10.1109/ijcnn54540.2023.10191169
http://dx.doi.org/10.1109/IJCNN54540.2023.10191169
http://dx.doi.org/10.1109/IJCNN54540.2023.10191169
https://doi.org/10.1109/spw54247.2022.9833884
https://doi.org/10.1109/spw54247.2022.9833884
http://dx.doi.org/10.1109/SPW54247.2022.9833884
https://doi.org/10.1109/iccv.2019.00201
http://dx.doi.org/10.1109/ICCV.2019.00201
https://doi.org/10.1007/978-3-030-58621-8_21
http://dx.doi.org/10.1007/978-3-030-58621-8_21
http://dx.doi.org/10.1007/978-3-030-58621-8_21
https://doi.org/10.1109/cac51589.2020.9327088
http://dx.doi.org/10.1109/CAC51589.2020.9327088
http://dx.doi.org/10.1109/CAC51589.2020.9327088
https://doi.org/10.3390/math11010095
http://dx.doi.org/10.3390/math11010095
https://doi.org/10.1007/978-3-030-58568-6_9
https://doi.org/10.1007/978-3-030-58568-6_9
http://dx.doi.org/10.1007/978-3-030-58568-6_9
https://doi.org/10.1007/978-3-031-19803-8_19
https://doi.org/10.1007/978-3-031-19803-8_19
http://dx.doi.org/10.1007/978-3-031-19803-8_19
https://doi.org/10.1109/cvpr52688.2022.00087
http://dx.doi.org/10.1109/CVPR52688.2022.00087
https://doi.org/10.3390/info12120513
http://dx.doi.org/10.3390/info12120513

354 bibliography

[1027] D. Kim, J. Kim, and J. Kim. “Elastic exponential linear units for convolutional neural networks.”
In: Neurocomputing 406 (Sept. 2020), pp. 253–266. doi: 10.1016/j.neucom.2020.03.051. url:
https://doi.org/10.1016/j.neucom.2020.03.051 (cit. on pp. 108, 125, 217).

[1028] K. Shridhar, J. Lee, H. Hayashi, P. Mehta, B. K. Iwana, S. Kang, S. Uchida, S. Ahmed, and
A. Dengel. ProbAct: A Probabilistic Activation Function for Deep Neural Networks. 2019. doi:
10.48550/ARXIV.1905.10761. url: https://arxiv.org/abs/1905.10761 (cit. on p. 108).

[1029] C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio. “Noisy Activation Functions.” In: Pro-
ceedings of The 33rd International Conference on Machine Learning. Ed. by M. F. Balcan and K. Q.
Weinberger. Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA:
PMLR, 20–22 Jun 2016, pp. 3059–3068. url: https://proceedings.mlr.press/v48/gulcehre1
6.html (cit. on pp. 108, 138, 158).

[1030] S. Reid, K. Ferens, and W. Kinsner. “Adaptive Chaotic Injection to Reduce Overfitting in
Artificial Neural Networks.” In: 2022 IEEE 21st International Conference on Cognitive Informatics
& Cognitive Computing (ICCI*CC). IEEE, Dec. 2022. doi: 10.1109/iccicc57084.2022.10101500.
url: http://dx.doi.org/10.1109/ICCICC57084.2022.10101500 (cit. on pp. 108, 109).

[1031] Y. Jiang, J. Xie, and D. Zhang. “An Adaptive Offset Activation Function for CNN Image
Classification Tasks.” In: Electronics 11.22 (Nov. 2022), p. 3799. doi: 10.3390/electronics1122
3799. url: https://doi.org/10.3390/electronics11223799 (cit. on pp. 109, 200).

[1032] X. Hu, P. Niu, J. Wang, and X. Zhang. “A Dynamic Rectified Linear Activation Units.” In: IEEE
Access 7 (2019), pp. 180409–180416. doi: 10.1109/access.2019.2959036. url: https://doi.or
g/10.1109/access.2019.2959036 (cit. on pp. 109, 110, 169, 212).

[1033] J. Si, S. L. Harris, and E. Yfantis. “A Dynamic ReLU on Neural Network.” In: 2018 IEEE 13th
Dallas Circuits and Systems Conference (DCAS). IEEE, Nov. 2018. doi: 10.1109/dcas.2018.8620
116. url: https://doi.org/10.1109/dcas.2018.8620116 (cit. on pp. 109, 110, 169, 200).

[1034] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu. Dynamic ReLU. 2020. doi: 10.48550
/ARXIV.2003.10027. url: https://arxiv.org/abs/2003.10027 (cit. on pp. 109, 110, 169, 218).

[1035] S. Qiu, X. Xu, and B. Cai. “FReLU: Flexible Rectified Linear Units for Improving Convolutional
Neural Networks.” In: 2018 24th International Conference on Pattern Recognition (ICPR). IEEE,
Aug. 2018. doi: 10.1109/icpr.2018.8546022. url: https://doi.org/10.1109/icpr.2018.85
46022 (cit. on pp. 110, 201).

[1036] W. Yu, C. Si, P. Zhou, M. Luo, Y. Zhou, J. Feng, S. Yan, and X. Wang. “MetaFormer Baselines
for Vision.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 46.2 (Feb. 2024),
pp. 896–912. issn: 1939-3539. doi: 10.1109/tpami.2023.3329173. url: http://dx.doi.org/10
.1109/TPAMI.2023.3329173 (cit. on pp. 110, 111).

[1037] D. Chen, J. Li, and K. Xu. AReLU: Attention-based Rectified Linear Unit. 2020. doi: 10.48550
/ARXIV.2006.13858. url: https://arxiv.org/abs/2006.13858 (cit. on pp. 111, 214).

[1038] P. Gupta, H. Siebert, M. P. Heinrich, and K. T. Rajamani. “DA-AR-Net: an attentive activation
based Deformable auto-encoder for group-wise registration.” In: Medical Imaging 2021: Image
Processing. Ed. by B. A. Landman and I. Išgum. SPIE, Feb. 2021. doi: 10.1117/12.2582176.
url: https://doi.org/10.1117/12.2582176 (cit. on p. 111).

[1039] S. Balaji, T. Kavya, and N. Sebastian. “Learn-Able Parameter Guided Activation Functions.”
In: Advances in Intelligent Systems and Computing. Springer International Publishing, Aug. 2020,
pp. 583–597. doi: 10.1007/978-3-030-55180-3_43. url: https://doi.org/10.1007/978-3-0
30-55180-3_43 (cit. on pp. 111, 112, 215).

[1040] M. Varshney and P. Singh. “Optimizing nonlinear activation function for convolutional neural
networks.” In: Signal, Image and Video Processing 15.6 (Feb. 2021), pp. 1323–1330. doi: 10.1007
/s11760-021-01863-z. url: https://doi.org/10.1007/s11760-021-01863-z (cit. on pp. 112,
113, 215).

[1041] J. Inturrisi, S. Y. Khoo, A. Kouzani, and R. Pagliarella. Piecewise Linear Units Improve Deep Neural
Networks. 2021. doi: 10.48550/ARXIV.2108.00700. url: https://arxiv.org/abs/2108.00700
(cit. on pp. 112, 215).

[1042] Z. Tang, L. Luo, H. Peng, and S. Li. “A joint residual network with paired ReLUs activation for
image super-resolution.” In: Neurocomputing 273 (Jan. 2018), pp. 37–46. doi: 10.1016/j.neuco
m.2017.07.061. url: https://doi.org/10.1016/j.neucom.2017.07.061 (cit. on pp. 113, 201).

[1043] A. Rozsa and T. E. Boult. Improved Adversarial Robustness by Reducing Open Space Risk via Tent
Activations. 2019. doi: 10.48550/ARXIV.1908.02435. url: https://arxiv.org/abs/1908.02435
(cit. on pp. 113, 114).

[1044] J. Wang, J. Xu, and J. Zhu. “CNNs with Compact Activation Function.” In: Lecture Notes in
Computer Science. Springer International Publishing, 2022, pp. 319–327. isbn: 9783031087547.
doi: 10.1007/978-3-031-08754-7_40. url: http://dx.doi.org/10.1007/978-3-031-08754-
7_40 (cit. on p. 114).

https://doi.org/10.1016/j.neucom.2020.03.051
https://doi.org/10.1016/j.neucom.2020.03.051
https://doi.org/10.48550/ARXIV.1905.10761
https://arxiv.org/abs/1905.10761
https://proceedings.mlr.press/v48/gulcehre16.html
https://proceedings.mlr.press/v48/gulcehre16.html
https://doi.org/10.1109/iccicc57084.2022.10101500
http://dx.doi.org/10.1109/ICCICC57084.2022.10101500
https://doi.org/10.3390/electronics11223799
https://doi.org/10.3390/electronics11223799
https://doi.org/10.3390/electronics11223799
https://doi.org/10.1109/access.2019.2959036
https://doi.org/10.1109/access.2019.2959036
https://doi.org/10.1109/access.2019.2959036
https://doi.org/10.1109/dcas.2018.8620116
https://doi.org/10.1109/dcas.2018.8620116
https://doi.org/10.1109/dcas.2018.8620116
https://doi.org/10.48550/ARXIV.2003.10027
https://doi.org/10.48550/ARXIV.2003.10027
https://arxiv.org/abs/2003.10027
https://doi.org/10.1109/icpr.2018.8546022
https://doi.org/10.1109/icpr.2018.8546022
https://doi.org/10.1109/icpr.2018.8546022
https://doi.org/10.1109/tpami.2023.3329173
http://dx.doi.org/10.1109/TPAMI.2023.3329173
http://dx.doi.org/10.1109/TPAMI.2023.3329173
https://doi.org/10.48550/ARXIV.2006.13858
https://doi.org/10.48550/ARXIV.2006.13858
https://arxiv.org/abs/2006.13858
https://doi.org/10.1117/12.2582176
https://doi.org/10.1117/12.2582176
https://doi.org/10.1007/978-3-030-55180-3_43
https://doi.org/10.1007/978-3-030-55180-3_43
https://doi.org/10.1007/978-3-030-55180-3_43
https://doi.org/10.1007/s11760-021-01863-z
https://doi.org/10.1007/s11760-021-01863-z
https://doi.org/10.1007/s11760-021-01863-z
https://doi.org/10.48550/ARXIV.2108.00700
https://arxiv.org/abs/2108.00700
https://doi.org/10.1016/j.neucom.2017.07.061
https://doi.org/10.1016/j.neucom.2017.07.061
https://doi.org/10.1016/j.neucom.2017.07.061
https://doi.org/10.48550/ARXIV.1908.02435
https://arxiv.org/abs/1908.02435
https://doi.org/10.1007/978-3-031-08754-7_40
http://dx.doi.org/10.1007/978-3-031-08754-7_40
http://dx.doi.org/10.1007/978-3-031-08754-7_40

bibliography 355

[1045] Q. Hong, J. W. Siegel, Q. Tan, and J. Xu. On the Activation Function Dependence of the Spectral
Bias of Neural Networks. 2022. doi: 10.48550/ARXIV.2208.04924. url: https://arxiv.org/abs
/2208.04924 (cit. on p. 114).

[1046] Y. Yu, K. Adu, N. Tashi, P. Anokye, X. Wang, and M. A. Ayidzoe. “RMAF: Relu-Memristor-
Like Activation Function for Deep Learning.” In: IEEE Access 8 (2020), pp. 72727–72741. doi:
10.1109/access.2020.2987829. url: https://doi.org/10.1109/access.2020.2987829
(cit. on pp. 114, 201).

[1047] A. Gupta and R. Duggal. “P-TELU: Parametric Tan Hyperbolic Linear Unit Activation for
Deep Neural Networks.” In: 2017 IEEE International Conference on Computer Vision Workshops
(ICCVW). IEEE, Oct. 2017. doi: 10.1109/iccvw.2017.119. url: https://doi.org/10.1109/ic
cvw.2017.119 (cit. on pp. 114, 115, 215, 219).

[1048] M. A. Mercioni and S. Holban. “Developing Novel Activation Functions in Time Series
Anomaly Detection with LSTM Autoencoder.” In: 2021 IEEE 15th International Symposium on
Applied Computational Intelligence and Informatics (SACI). IEEE, May 2021. doi: 10.1109/sac
i51354.2021.9465604. url: http://dx.doi.org/10.1109/SACI51354.2021.9465604 (cit. on
p. 115).

[1049] S.-L. Shen, N. Zhang, A. Zhou, and Z.-Y. Yin. “Enhancement of neural networks with an
alternative activation function tanhLU.” In: Expert Systems with Applications 199 (Aug. 2022),
p. 117181. issn: 0957-4174. doi: 10.1016/j.eswa.2022.117181. url: http://dx.doi.org/10.1
016/j.eswa.2022.117181 (cit. on pp. 115, 214).

[1050] T. Zhang, J. Yang, W.-a. Song, and C.-f. Song. “Research on Improved Activation Function
TReLU.” In: Journal of Chinese Computer Systems 40.1, 58 (2019), pp. 58–63. url: http://xwxt.s
ict.ac.cn/EN/Y2019/V40/I1/58 (cit. on pp. 116, 215).

[1051] M. Nakhua, D. Bavishi, S. Tikoo, and S. Khedkar. “TReLU: A Novel Activation Function
for Modern Day Intrusion Detection System Using Deep Neural Networks.” In: 2023 14th
International Conference on Computing Communication and Networking Technologies (ICCCNT).
IEEE, July 2023. doi: 10.1109/icccnt56998.2023.10306887. url: http://dx.doi.org/10.110
9/ICCCNT56998.2023.10306887 (cit. on p. 116).

[1052] X. Wang, Y. Qin, Y. Wang, S. Xiang, and H. Chen. “ReLTanh: An activation function with
vanishing gradient resistance for SAE-based DNNs and its application to rotating machinery
fault diagnosis.” In: Neurocomputing 363 (Oct. 2019), pp. 88–98. doi: 10.1016/j.neucom.2019
.07.017. url: https://doi.org/10.1016/j.neucom.2019.07.017 (cit. on p. 116).

[1053] L. B. Godfrey. “An Evaluation of Parametric Activation Functions for Deep Learning.” In:
2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, Oct. 2019. doi:
10.1109/smc.2019.8913972. url: https://doi.org/10.1109/smc.2019.8913972 (cit. on
pp. 117, 215).

[1054] L. Zhang, T. Yang, R. Jin, and X. He. “O(logT) Projections for Stochastic Optimization of
Smooth and Strongly Convex Functions.” In: Proceedings of the 30th International Conference
on Machine Learning. Ed. by S. Dasgupta and D. McAllester. Vol. 28. Proceedings of Machine
Learning Research 3. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1121–1129. url:
https://proceedings.mlr.press/v28/zhang13e.html (cit. on p. 117).

[1055] T. Yang. “Trading Computation for Communication: Distributed Stochastic Dual Coordinate
Ascent.” In: Advances in Neural Information Processing Systems. Ed. by C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Weinberger. Vol. 26. Curran Associates, Inc., 2013. url:
https://proceedings.neurips.cc/paper_files/paper/2013/file/dc912a253d1e9ba40e2c5

97ed2376640-Paper.pdf (cit. on p. 117).

[1056] E. H. Bergou, Y. Diouane, V. Kunc, V. Kungurtsev, and C. W. Royer. “A Subsampling Line-
Search Method with Second-Order Results.” In: INFORMS Journal on Optimization 4.4 (Oct.
2022), pp. 403–425. doi: 10.1287/ijoo.2022.0072. url: https://doi.org/10.1287/ijoo.202
2.0072 (cit. on p. 117).

[1057] M. Mahdavi, L. Zhang, and R. Jin. “Mixed Optimization for Smooth Functions.” In: Advances in
Neural Information Processing Systems. Ed. by C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.neurips
.cc/paper_files/paper/2013/file/f73b76ce8949fe29bf2a537cfa420e8f-Paper.pdf (cit. on
p. 117).

[1058] M. A. Mercioni and S. Holban. “Soft Clipping Mish - A Novel Activation Function for Deep
Learning.” In: 2021 4th International Conference on Information and Computer Technologies (ICICT).
IEEE, Mar. 2021. doi: 10.1109/icict52872.2021.00010. url: http://dx.doi.org/10.1109
/ICICT52872.2021.00010 (cit. on p. 118).

[1059] M. A. Mercioni and S. Holban. “Prediction of Machine Temperature System Failure Using a
Novel Activation Function.” In: 2022 International Symposium on Electronics and Telecommunica-
tions (ISETC). IEEE, Nov. 2022. doi: 10.1109/isetc56213.2022.10010046. url: http://dx.do
i.org/10.1109/ISETC56213.2022.10010046 (cit. on p. 118).

https://doi.org/10.48550/ARXIV.2208.04924
https://arxiv.org/abs/2208.04924
https://arxiv.org/abs/2208.04924
https://doi.org/10.1109/access.2020.2987829
https://doi.org/10.1109/access.2020.2987829
https://doi.org/10.1109/iccvw.2017.119
https://doi.org/10.1109/iccvw.2017.119
https://doi.org/10.1109/iccvw.2017.119
https://doi.org/10.1109/saci51354.2021.9465604
https://doi.org/10.1109/saci51354.2021.9465604
http://dx.doi.org/10.1109/SACI51354.2021.9465604
https://doi.org/10.1016/j.eswa.2022.117181
http://dx.doi.org/10.1016/j.eswa.2022.117181
http://dx.doi.org/10.1016/j.eswa.2022.117181
http://xwxt.sict.ac.cn/EN/Y2019/V40/I1/58
http://xwxt.sict.ac.cn/EN/Y2019/V40/I1/58
https://doi.org/10.1109/icccnt56998.2023.10306887
http://dx.doi.org/10.1109/ICCCNT56998.2023.10306887
http://dx.doi.org/10.1109/ICCCNT56998.2023.10306887
https://doi.org/10.1016/j.neucom.2019.07.017
https://doi.org/10.1016/j.neucom.2019.07.017
https://doi.org/10.1016/j.neucom.2019.07.017
https://doi.org/10.1109/smc.2019.8913972
https://doi.org/10.1109/smc.2019.8913972
https://proceedings.mlr.press/v28/zhang13e.html
https://proceedings.neurips.cc/paper_files/paper/2013/file/dc912a253d1e9ba40e2c597ed2376640-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/dc912a253d1e9ba40e2c597ed2376640-Paper.pdf
https://doi.org/10.1287/ijoo.2022.0072
https://doi.org/10.1287/ijoo.2022.0072
https://doi.org/10.1287/ijoo.2022.0072
https://proceedings.neurips.cc/paper_files/paper/2013/file/f73b76ce8949fe29bf2a537cfa420e8f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/f73b76ce8949fe29bf2a537cfa420e8f-Paper.pdf
https://doi.org/10.1109/icict52872.2021.00010
http://dx.doi.org/10.1109/ICICT52872.2021.00010
http://dx.doi.org/10.1109/ICICT52872.2021.00010
https://doi.org/10.1109/isetc56213.2022.10010046
http://dx.doi.org/10.1109/ISETC56213.2022.10010046
http://dx.doi.org/10.1109/ISETC56213.2022.10010046

356 bibliography

[1060] M.-A. Mercioni and S. Holban. “Weather Forecasting Modeling Using Soft-Clipping Swish
Activation Function.” In: 2022 IEEE 16th International Symposium on Applied Computational
Intelligence and Informatics (SACI). IEEE, May 2022. doi: 10.1109/saci55618.2022.9919575.
url: http://dx.doi.org/10.1109/SACI55618.2022.9919575 (cit. on p. 118).

[1061] M. A. Mercioni and S. Holban. “Soft-Clipping Swish: A Novel Activation Function for Deep
Learning.” In: 2021 IEEE 15th International Symposium on Applied Computational Intelligence and
Informatics (SACI). IEEE, May 2021. doi: 10.1109/saci51354.2021.9465622. url: http://dx
.doi.org/10.1109/SACI51354.2021.9465622 (cit. on p. 118).

[1062] M. A. Mercioni and S. Holban. “P-Swish: Activation Function with Learnable Parameters Based
on Swish Activation Function in Deep Learning.” In: 2020 International Symposium on Electronics
and Telecommunications (ISETC). IEEE, Nov. 2020. doi: 10.1109/isetc50328.2020.9301059.
url: http://dx.doi.org/10.1109/ISETC50328.2020.9301059 (cit. on p. 118).

[1063] L. Shi and X. Xie. “Image Segmentation Method for Maize Ear Using Self-defined Activation
Function.” In: Procedia Computer Science 208 (2022), pp. 162–169. issn: 1877-0509. doi: 10.10
16/j.procs.2022.10.024. url: http://dx.doi.org/10.1016/j.procs.2022.10.024 (cit. on
p. 118).

[1064] L. Trottier, P. Giguère, and B. Chaib-draa. Parametric Exponential Linear Unit for Deep Convolu-
tional Neural Networks. 2016. doi: 10.48550/ARXIV.1605.09332. url: https://arxiv.org/abs
/1605.09332 (cit. on pp. 118, 119, 216).

[1065] S. Qian et al. “Adaptive activation functions in convolutional neural networks.” In: Neurocom-
puting 272 (Jan. 2018), pp. 204–212. doi: 10.1016/j.neucom.2017.06.070. url: https://doi.o
rg/10.1016/j.neucom.2017.06.070 (cit. on pp. 119, 141, 142).

[1066] B. Çatalbaş and Ö. Morgül. “Deep learning with ExtendeD Exponential Linear Unit (DELU).”
In: Neural Computing and Applications 35.30 (Aug. 2023), pp. 22705–22724. issn: 1433-3058. doi:
10.1007/s00521-023-08932-z. url: http://dx.doi.org/10.1007/s00521-023-08932-z
(cit. on p. 119).

[1067] Z. Qiumei, T. Dan, and W. Fenghua. “Improved Convolutional Neural Network Based on Fast
Exponentially Linear Unit Activation Function.” In: IEEE Access 7 (2019), pp. 151359–151367.
doi: 10.1109/access.2019.2948112. url: https://doi.org/10.1109/access.2019.2948112
(cit. on pp. 120, 216).

[1068] N. N. Schraudolph. “A Fast, Compact Approximation of the Exponential Function.” In:
Neural Computation 11.4 (May 1999), pp. 853–862. doi: 10.1162/089976699300016467. url:
https://doi.org/10.1162/089976699300016467 (cit. on p. 120).

[1069] K. Adem. “P+FELU: Flexible and trainable fast exponential linear unit for deep learning
architectures.” In: Neural Computing and Applications 34.24 (July 2022), pp. 21729–21740. issn:
1433-3058. doi: 10.1007/s00521-022-07625-3. url: http://dx.doi.org/10.1007/s00521-02
2-07625-3 (cit. on pp. 120, 197, 202).

[1070] Y. Li, C. Fan, Y. Li, Q. Wu, and Y. Ming. “Improving deep neural network with Multiple
Parametric Exponential Linear Units.” In: Neurocomputing 301 (Aug. 2018), pp. 11–24. doi:
10.1016/j.neucom.2018.01.084. url: https://doi.org/10.1016/j.neucom.2018.01.084
(cit. on pp. 120, 125, 216).

[1071] C.-H. Pham, C. Tor-Díez, H. Meunier, N. Bednarek, R. Fablet, N. Passat, and F. Rousseau.
“Multiscale brain MRI super-resolution using deep 3D convolutional networks.” In: Computer-
ized Medical Imaging and Graphics 77 (Oct. 2019), p. 101647. doi: 10.1016/j.compmedimag.2019
.101647. url: https://doi.org/10.1016/j.compmedimag.2019.101647 (cit. on p. 120).

[1072] M. Lin et al. “Network In Network.” In: CoRR abs/1312.4400 (2013). arXiv: 1312.4400. url:
http://arxiv.org/abs/1312.4400 (cit. on pp. 120, 168).

[1073] R. Jie, J. Gao, A. Vasnev, and M.-n. Tran. “Regularized Flexible Activation Function Combina-
tion for Deep Neural Networks.” In: 2020 25th International Conference on Pattern Recognition
(ICPR). IEEE, Jan. 2021. doi: 10.1109/icpr48806.2021.9412370. url: http://dx.doi.org/10
.1109/ICPR48806.2021.9412370 (cit. on pp. 121, 135, 278, 279).

[1074] L. B. Godfrey and M. S. Gashler. “A continuum among logarithmic, linear, and exponential
functions, and its potential to improve generalization in neural networks.” In: 2015 7th
International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K). Los Alamitos, CA, USA: IEEE Computer Society, Nov. 2015, pp. 481–486.
isbn: 978-9-8975-8164-9. url: https://ieeexplore.ieee.org/document/7526959/ (cit. on
p. 121).

[1075] J. T. Barron. Continuously Differentiable Exponential Linear Units. 2017. doi: 10.48550/ARXIV.170
4.07483. url: https://arxiv.org/abs/1704.07483 (cit. on pp. 121, 216).

[1076] A. Rajanand and P. Singh. ErfReLU: Adaptive Activation Function for Deep Neural Network. 2023.
doi: 10.48550/ARXIV.2306.01822. url: https://arxiv.org/abs/2306.01822 (cit. on p. 122).

https://doi.org/10.1109/saci55618.2022.9919575
http://dx.doi.org/10.1109/SACI55618.2022.9919575
https://doi.org/10.1109/saci51354.2021.9465622
http://dx.doi.org/10.1109/SACI51354.2021.9465622
http://dx.doi.org/10.1109/SACI51354.2021.9465622
https://doi.org/10.1109/isetc50328.2020.9301059
http://dx.doi.org/10.1109/ISETC50328.2020.9301059
https://doi.org/10.1016/j.procs.2022.10.024
https://doi.org/10.1016/j.procs.2022.10.024
http://dx.doi.org/10.1016/j.procs.2022.10.024
https://doi.org/10.48550/ARXIV.1605.09332
https://arxiv.org/abs/1605.09332
https://arxiv.org/abs/1605.09332
https://doi.org/10.1016/j.neucom.2017.06.070
https://doi.org/10.1016/j.neucom.2017.06.070
https://doi.org/10.1016/j.neucom.2017.06.070
https://doi.org/10.1007/s00521-023-08932-z
http://dx.doi.org/10.1007/s00521-023-08932-z
https://doi.org/10.1109/access.2019.2948112
https://doi.org/10.1109/access.2019.2948112
https://doi.org/10.1162/089976699300016467
https://doi.org/10.1162/089976699300016467
https://doi.org/10.1007/s00521-022-07625-3
http://dx.doi.org/10.1007/s00521-022-07625-3
http://dx.doi.org/10.1007/s00521-022-07625-3
https://doi.org/10.1016/j.neucom.2018.01.084
https://doi.org/10.1016/j.neucom.2018.01.084
https://doi.org/10.1016/j.compmedimag.2019.101647
https://doi.org/10.1016/j.compmedimag.2019.101647
https://doi.org/10.1016/j.compmedimag.2019.101647
https://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
https://doi.org/10.1109/icpr48806.2021.9412370
http://dx.doi.org/10.1109/ICPR48806.2021.9412370
http://dx.doi.org/10.1109/ICPR48806.2021.9412370
https://ieeexplore.ieee.org/document/7526959/
https://doi.org/10.48550/ARXIV.1704.07483
https://doi.org/10.48550/ARXIV.1704.07483
https://arxiv.org/abs/1704.07483
https://doi.org/10.48550/ARXIV.2306.01822
https://arxiv.org/abs/2306.01822

bibliography 357

[1077] K. Pratama and D.-K. Kang. “Trainable activation function with differentiable negative side
and adaptable rectified point.” In: Applied Intelligence 51.3 (Oct. 2020), pp. 1784–1801. doi:
10.1007/s10489-020-01885-z. url: https://doi.org/10.1007/s10489-020-01885-z (cit. on
pp. 122, 216).

[1078] B. Grelsson and M. Felsberg. “Improved Learning in Convolutional Neural Networks with
Shifted Exponential Linear Units (ShELUs).” In: 2018 24th International Conference on Pattern
Recognition (ICPR). IEEE, Aug. 2018. doi: 10.1109/icpr.2018.8545104. url: https://doi.org
/10.1109/icpr.2018.8545104 (cit. on pp. 123, 194, 197, 201, 289).

[1079] I. Javid, R. Ghazali, I. Syed, N. A. Husaini, and M. Zulqarnain. “Developing Novel T-Swish
Activation Function in Deep Learning.” In: 2022 International Conference on IT and Industrial
Technologies (ICIT). IEEE, Oct. 2022. doi: 10.1109/icit56493.2022.9989151. url: http://dx.d
oi.org/10.1109/ICIT56493.2022.9989151 (cit. on pp. 123, 124, 216).

[1080] A. M. Atto, S. Galichet, D. Pastor, and N. Méger. “On joint parameterizations of linear and
nonlinear functionals in neural networks.” In: Neural Networks 160 (Mar. 2023), pp. 12–21. issn:
0893-6080. doi: 10.1016/j.neunet.2022.12.019. url: http://dx.doi.org/10.1016/j.neune
t.2022.12.019 (cit. on p. 124).

[1081] A. M. Atto, D. Pastor, and G. Mercier. “Smooth sigmoid wavelet shrinkage for non-parametric
estimation.” In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
IEEE, Mar. 2008. doi: 10.1109/icassp.2008.4518347. url: http://dx.doi.org/10.1109
/ICASSP.2008.4518347 (cit. on p. 124).

[1082] Q. Cheng, H. Li, Q. Wu, L. Ma, and K. N. Ngan. “Parametric Deformable Exponential Linear
Units for deep neural networks.” In: Neural Networks 125 (May 2020), pp. 281–289. doi:
10.1016/j.neunet.2020.02.012. url: https://doi.org/10.1016/j.neunet.2020.02.012
(cit. on pp. 124, 194, 216).

[1083] B. Duan, Y. Yang, and X. Dai. “Feature Activation through First Power Linear Unit with Sign.”
In: Electronics 11.13 (June 2022), p. 1980. issn: 2079-9292. doi: 10.3390/electronics11131980.
url: http://dx.doi.org/10.3390/electronics11131980 (cit. on p. 125).

[1084] T. Yamada and T. Yabuta. “Neural network controller using autotuning method for nonlinear
functions.” In: IEEE Transactions on Neural Networks 3.4 (July 1992), pp. 595–601. doi: 10.1109
/72.143373. url: https://doi.org/10.1109/72.143373 (cit. on pp. 126, 127, 202).

[1085] C.-T. Chen and W.-D. Chang. “A feedforward neural network with function shape autotuning.”
In: Neural Networks 9.4 (June 1996), pp. 627–641. doi: 10.1016/0893-6080(96)00006-8. url:
https://doi.org/10.1016/0893-6080(96)00006-8 (cit. on pp. 126, 194, 202).

[1086] E. Trentin. “Networks with trainable amplitude of activation functions.” In: Neural Networks
14.4-5 (May 2001), pp. 471–493. doi: 10.1016/s0893-6080(01)00028-4. url: https://doi.org
/10.1016/s0893-6080(01)00028-4 (cit. on pp. 126, 194, 202, 221, 278, 279).

[1087] S. L. Goh and D. P. Mandic. “Recurrent neural networks with trainable amplitude of activation
functions.” In: Neural Networks 16.8 (Oct. 2003), pp. 1095–1100. doi: 10.1016/s0893-6080(03
)00139-4. url: https://doi.org/10.1016/s0893-6080(03)00139-4 (cit. on p. 126).

[1088] T. Yamada and T. Yabuta. “Remarks on a neural network controller which uses an auto-tuning
method for nonlinear functions.” In: [Proceedings 1992] IJCNN International Joint Conference on
Neural Networks. IEEE, 1992. doi: 10.1109/ijcnn.1992.226893. url: http://dx.doi.org/10
.1109/IJCNN.1992.226893 (cit. on p. 127).

[1089] N. M. Nawi, R. Ransing, M. N. M. Salleh, R. Ghazali, and N. A. Hamid. “The effect of gain
variation in improving learning speed of back propagation neural network algorithm on
classification problems.” In: Symposium on Progress in Information & Communication Technology.
2009 (cit. on pp. 127, 202).

[1090] S. K. Sharma and P. Chandra. “An Adaptive Sigmoidal Activation Function Cascading Neu-
ral Networks.” In: Soft Computing Models in Industrial and Environmental Applications, 6th
International Conference SOCO 2011. Springer Berlin Heidelberg, 2011, pp. 105–116. isbn:
9783642196447. doi: 10.1007/978-3-642-19644-7_12. url: http://dx.doi.org/10.1007/978
-3-642-19644-7_12 (cit. on p. 127).

[1091] M. A. Mercioni, A. Tiron, and S. Holban. “Dynamic Modification of Activation Function using
the Backpropagation Algorithm in the Artificial Neural Networks.” In: International Journal of
Advanced Computer Science and Applications 10.4 (2019). issn: 2158-107X. doi: 10.14569/ijacsa
.2019.0100406. url: http://dx.doi.org/10.14569/IJACSA.2019.0100406 (cit. on p. 127).

[1092] Y. Bai et al. “The performance of the backpropagation algorithm with varying slope of the
activation function.” In: Chaos, Solitons & Fractals 40.1 (Apr. 2009), pp. 69–77. doi: 10.1016/j
.chaos.2007.07.033. url: https://doi.org/10.1016/j.chaos.2007.07.033 (cit. on pp. 127,
194, 202, 279).

https://doi.org/10.1007/s10489-020-01885-z
https://doi.org/10.1007/s10489-020-01885-z
https://doi.org/10.1109/icpr.2018.8545104
https://doi.org/10.1109/icpr.2018.8545104
https://doi.org/10.1109/icpr.2018.8545104
https://doi.org/10.1109/icit56493.2022.9989151
http://dx.doi.org/10.1109/ICIT56493.2022.9989151
http://dx.doi.org/10.1109/ICIT56493.2022.9989151
https://doi.org/10.1016/j.neunet.2022.12.019
http://dx.doi.org/10.1016/j.neunet.2022.12.019
http://dx.doi.org/10.1016/j.neunet.2022.12.019
https://doi.org/10.1109/icassp.2008.4518347
http://dx.doi.org/10.1109/ICASSP.2008.4518347
http://dx.doi.org/10.1109/ICASSP.2008.4518347
https://doi.org/10.1016/j.neunet.2020.02.012
https://doi.org/10.1016/j.neunet.2020.02.012
https://doi.org/10.3390/electronics11131980
http://dx.doi.org/10.3390/electronics11131980
https://doi.org/10.1109/72.143373
https://doi.org/10.1109/72.143373
https://doi.org/10.1109/72.143373
https://doi.org/10.1016/0893-6080(96)00006-8
https://doi.org/10.1016/0893-6080(96)00006-8
https://doi.org/10.1016/s0893-6080(01)00028-4
https://doi.org/10.1016/s0893-6080(01)00028-4
https://doi.org/10.1016/s0893-6080(01)00028-4
https://doi.org/10.1016/s0893-6080(03)00139-4
https://doi.org/10.1016/s0893-6080(03)00139-4
https://doi.org/10.1016/s0893-6080(03)00139-4
https://doi.org/10.1109/ijcnn.1992.226893
http://dx.doi.org/10.1109/IJCNN.1992.226893
http://dx.doi.org/10.1109/IJCNN.1992.226893
https://doi.org/10.1007/978-3-642-19644-7_12
http://dx.doi.org/10.1007/978-3-642-19644-7_12
http://dx.doi.org/10.1007/978-3-642-19644-7_12
https://doi.org/10.14569/ijacsa.2019.0100406
https://doi.org/10.14569/ijacsa.2019.0100406
http://dx.doi.org/10.14569/IJACSA.2019.0100406
https://doi.org/10.1016/j.chaos.2007.07.033
https://doi.org/10.1016/j.chaos.2007.07.033
https://doi.org/10.1016/j.chaos.2007.07.033

358 bibliography

[1093] C.-C. Yu et al. “An adaptive activation function for multilayer feedforward neural networks.”
In: 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering.
TENCOM ’02. Proceedings. IEEE, 2002. doi: 10.1109/tencon.2002.1181357. url: https://doi
.org/10.1109/tencon.2002.1181357 (cit. on p. 127).

[1094] K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey. TanhSoft – a family of activation functions
combining Tanh and Softplus. 2020. doi: 10.48550/ARXIV.2009.03863. url: https://arxiv.org
/abs/2009.03863 (cit. on p. 127).

[1095] K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey. “TanhSoft—Dynamic Trainable Activation
Functions for Faster Learning and Better Performance.” In: IEEE Access 9 (2021), pp. 120613–
120623. issn: 2169-3536. doi: 10.1109/access.2021.3105355. url: http://dx.doi.org/10.11
09/ACCESS.2021.3105355 (cit. on pp. liii, 127).

[1096] Y. Ying, N. Zhang, P. Shan, L. Miao, P. Sun, and S. Peng. “PSigmoid: Improving squeeze-and-
excitation block with parametric sigmoid.” In: Applied Intelligence 51.10 (Mar. 2021), pp. 7427–
7439. issn: 1573-7497. doi: 10.1007/s10489-021-02247-z. url: http://dx.doi.org/10.1007
/s10489-021-02247-z (cit. on pp. 128, 203).

[1097] Y. Özbay and G. Tezel. “A new method for classification of ECG arrhythmias using neural
network with adaptive activation function.” In: Digital Signal Processing 20.4 (July 2010),
pp. 1040–1049. issn: 1051-2004. doi: 10.1016/j.dsp.2009.10.016. url: http://dx.doi.org/1
0.1016/j.dsp.2009.10.016 (cit. on pp. 128, 152, 153).

[1098] P. Chandra and Y. Singh. “An activation function adapting training algorithm for sigmoidal
feedforward networks.” In: Neurocomputing 61 (Oct. 2004), pp. 429–437. doi: 10.1016/j.neuco
m.2004.04.001. url: https://doi.org/10.1016/j.neucom.2004.04.001 (cit. on p. 128).

[1099] Y. Singh and P. Chandra. “A class +1 sigmoidal activation functions for FFANNs.” In: Journal
of Economic Dynamics and Control 28.1 (Oct. 2003), pp. 183–187. issn: 0165-1889. doi: 10.1016/s
0165-1889(02)00157-4. url: http://dx.doi.org/10.1016/S0165-1889(02)00157-4 (cit. on
p. 128).

[1100] P. Chandra and Y. Singh. “A case for the self-adaptation of activation functions in FFANNs.”
In: Neurocomputing 56 (Jan. 2004), pp. 447–454. doi: 10.1016/j.neucom.2003.08.005. url:
https://doi.org/10.1016/j.neucom.2003.08.005 (cit. on p. 128).

[1101] P. Chandra. “Sigmoidal Function Classes for Feedforward Artificial Neural Networks.” In:
Neural Processing Letters 18.3 (Dec. 2003), pp. 205–215. doi: 10.1023/b:nepl.0000011137.0422
1.96. url: https://doi.org/10.1023/b:nepl.0000011137.04221.96 (cit. on p. 128).

[1102] T. Zhang, S. Liu, Y. Wei, and H. Zhang. “A novel feature adaptive extraction method based on
deep learning for bearing fault diagnosis.” In: Measurement 185 (Nov. 2021), p. 110030. issn:
0263-2241. doi: 10.1016/j.measurement.2021.110030. url: http://dx.doi.org/10.1016/j
.measurement.2021.110030 (cit. on pp. 128, 212).

[1103] N. E. Protonotarios, A. S. Fokas, G. A. Kastis, and N. Dikaios. “Sigmoid and Beyond: Algebraic
Activation Functions for Artificial Neural Networks Based on Solutions of a Riccati Equation.”
In: IT Professional 24.5 (Sept. 2022), pp. 30–36. issn: 1941-045X. doi: 10.1109/mitp.2022.32049
04. url: http://dx.doi.org/10.1109/MITP.2022.3204904 (cit. on p. 128).

[1104] N. Ma, X. Zhang, M. Liu, and J. Sun. “Activate or Not: Learning Customized Activation.” In:
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2021.
doi: 10.1109/cvpr46437.2021.00794. url: http://dx.doi.org/10.1109/CVPR46437.2021.00
794 (cit. on pp. 129, 130).

[1105] Y. Bodyanskiy and S. Kostiuk. “Adaptive hybrid activation function for deep neural networks.”
In: System research and information technologies 1 (Apr. 2022), pp. 87–96. issn: 1681-6048. doi:
10.20535/srit.2308-8893.2022.1.07. url: http://dx.doi.org/10.20535/SRIT.2308-8893
.2022.1.07 (cit. on pp. 129, 203).

[1106] E. Alcaide. E-swish: Adjusting Activations to Different Network Depths. 2018. doi: 10.48550
/ARXIV.1801.07145. url: https://arxiv.org/abs/1801.07145 (cit. on pp. 129, 130, 195, 200).

[1107] R. Zhang, K. Zheng, P. Shi, Y. Mei, H. Li, and T. Qiu. “Traffic Sign Detection Based on the
Improved YOLOv5.” In: Applied Sciences 13.17 (Aug. 2023), p. 9748. issn: 2076-3417. doi:
10.3390/app13179748. url: http://dx.doi.org/10.3390/app13179748 (cit. on p. 130).

[1108] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. “YOLOv7: Trainable Bag-of-Freebies Sets New
State-of-the-Art for Real-Time Object Detectors.” In: 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, June 2023. doi: 10.1109/cvpr52729.2023.00721.
url: http://dx.doi.org/10.1109/CVPR52729.2023.00721 (cit. on p. 130).

[1109] Y. Ye, Q. Liu, L. Li, Z. Zhang, L. Xu, J. Chu, and B. Wen. “Improving insulator fault detection
with effective-YOLOv7 network.” In: Journal of Electronic Imaging 32.06 (Nov. 2023). issn: 1017-
9909. doi: 10.1117/1.jei.32.6.063021. url: http://dx.doi.org/10.1117/1.JEI.32.6.0630
21 (cit. on p. 130).

https://doi.org/10.1109/tencon.2002.1181357
https://doi.org/10.1109/tencon.2002.1181357
https://doi.org/10.1109/tencon.2002.1181357
https://doi.org/10.48550/ARXIV.2009.03863
https://arxiv.org/abs/2009.03863
https://arxiv.org/abs/2009.03863
https://doi.org/10.1109/access.2021.3105355
http://dx.doi.org/10.1109/ACCESS.2021.3105355
http://dx.doi.org/10.1109/ACCESS.2021.3105355
https://doi.org/10.1007/s10489-021-02247-z
http://dx.doi.org/10.1007/s10489-021-02247-z
http://dx.doi.org/10.1007/s10489-021-02247-z
https://doi.org/10.1016/j.dsp.2009.10.016
http://dx.doi.org/10.1016/j.dsp.2009.10.016
http://dx.doi.org/10.1016/j.dsp.2009.10.016
https://doi.org/10.1016/j.neucom.2004.04.001
https://doi.org/10.1016/j.neucom.2004.04.001
https://doi.org/10.1016/j.neucom.2004.04.001
https://doi.org/10.1016/s0165-1889(02)00157-4
https://doi.org/10.1016/s0165-1889(02)00157-4
http://dx.doi.org/10.1016/S0165-1889(02)00157-4
https://doi.org/10.1016/j.neucom.2003.08.005
https://doi.org/10.1016/j.neucom.2003.08.005
https://doi.org/10.1023/b:nepl.0000011137.04221.96
https://doi.org/10.1023/b:nepl.0000011137.04221.96
https://doi.org/10.1023/b:nepl.0000011137.04221.96
https://doi.org/10.1016/j.measurement.2021.110030
http://dx.doi.org/10.1016/j.measurement.2021.110030
http://dx.doi.org/10.1016/j.measurement.2021.110030
https://doi.org/10.1109/mitp.2022.3204904
https://doi.org/10.1109/mitp.2022.3204904
http://dx.doi.org/10.1109/MITP.2022.3204904
https://doi.org/10.1109/cvpr46437.2021.00794
http://dx.doi.org/10.1109/CVPR46437.2021.00794
http://dx.doi.org/10.1109/CVPR46437.2021.00794
https://doi.org/10.20535/srit.2308-8893.2022.1.07
http://dx.doi.org/10.20535/SRIT.2308-8893.2022.1.07
http://dx.doi.org/10.20535/SRIT.2308-8893.2022.1.07
https://doi.org/10.48550/ARXIV.1801.07145
https://doi.org/10.48550/ARXIV.1801.07145
https://arxiv.org/abs/1801.07145
https://doi.org/10.3390/app13179748
http://dx.doi.org/10.3390/app13179748
https://doi.org/10.1109/cvpr52729.2023.00721
http://dx.doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1117/1.jei.32.6.063021
http://dx.doi.org/10.1117/1.JEI.32.6.063021
http://dx.doi.org/10.1117/1.JEI.32.6.063021

bibliography 359

[1110] S. Kan, W. Fang, J. Wu, and V. S. Sheng. “Real-Time Domestic Garbage Detection Method
Based on Improved YOLOv5.” In: Communications in Computer and Information Science. Springer
International Publishing, 2022, pp. 62–74. isbn: 9783031067679. doi: 10.1007/978-3-031-0676
7-9_5. url: http://dx.doi.org/10.1007/978-3-031-06767-9_5 (cit. on p. 130).

[1111] G. Tu, J. Qin, and N. Xiong. “Algorithm of Computer Mainboard Quality Detection for Real-
Time Based on QD-YOLO.” In: Electronics 11.15 (Aug. 2022), p. 2424. issn: 2079-9292. doi:
10.3390/electronics11152424. url: http://dx.doi.org/10.3390/electronics11152424
(cit. on p. 130).

[1112] X. Xi, Y. Wu, C. Xia, and S. He. “Feature fusion for object detection at one map.” In: Image and
Vision Computing 123 (July 2022), p. 104466. issn: 0262-8856. doi: 10.1016/j.imavis.2022.104
466. url: http://dx.doi.org/10.1016/j.imavis.2022.104466 (cit. on p. 130).

[1113] H. Li, L. Wang, and S. Cheng. “HARNU-Net: Hierarchical Attention Residual Nested U-Net
for Change Detection in Remote Sensing Images.” In: Sensors 22.12 (June 2022), p. 4626. issn:
1424-8220. doi: 10.3390/s22124626. url: http://dx.doi.org/10.3390/s22124626 (cit. on
p. 130).

[1114] J. Wu, J. Li, R. Li, X. Xi, D. Gui, and J. Yin. “A Fast Maritime Target Identification Algorithm
for Offshore Ship Detection.” In: Applied Sciences 12.10 (May 2022), p. 4938. issn: 2076-3417.
doi: 10.3390/app12104938. url: http://dx.doi.org/10.3390/app12104938 (cit. on p. 130).

[1115] Q. Niu, Y. Wang, S. Yuan, K. Li, and X. Wang. “An Indoor Pool Drowning Risk Detection
Method Based on Improved YOLOv4.” In: 2022 IEEE 5th Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, Dec. 2022. doi:
10.1109/imcec55388.2022.10020040. url: http://dx.doi.org/10.1109/IMCEC55388.2022.1
0020040 (cit. on p. 130).

[1116] B. Zhang, W. Chen, X. Wang, and C. Zhao. “A Lightweight Detection Method of Smartphone
Assembly Parts.” In: Lecture Notes in Computer Science. Springer Nature Switzerland, 2022,
pp. 330–342. isbn: 9783031204975. doi: 10.1007/978-3-031-20497-5_27. url: http://dx.doi
.org/10.1007/978-3-031-20497-5_27 (cit. on p. 130).

[1117] K.-Y. Cao, X. Cui, and J.-C. Piao. “Smaller Target Detection Algorithms Based on YOLOv5

in Safety Helmet Wearing Detection.” In: 2022 4th International Conference on Robotics and
Computer Vision (ICRCV). IEEE, Sept. 2022. doi: 10.1109/icrcv55858.2022.9953233. url:
http://dx.doi.org/10.1109/ICRCV55858.2022.9953233 (cit. on p. 130).

[1118] Y. Jia, J. Zhao, and L. Yu. “AADH-YOLOv5: improved YOLOv5 based on adaptive activate
decoupled head for garbage detection.” In: Journal of Electronic Imaging 32.04 (July 2023). issn:
1017-9909. doi: 10.1117/1.jei.32.4.043017. url: http://dx.doi.org/10.1117/1.JEI.32.4
.043017 (cit. on p. 130).

[1119] H. Xu, W. Zheng, F. Liu, P. Li, and R. Wang. “Unmanned Aerial Vehicle Perspective Small
Target Recognition Algorithm Based on Improved YOLOv5.” In: Remote Sensing 15.14 (July
2023), p. 3583. issn: 2072-4292. doi: 10.3390/rs15143583. url: http://dx.doi.org/10.3390
/rs15143583 (cit. on p. 130).

[1120] J. He, J. Duan, Z. Yang, J. Ou, X. Ou, S. Yu, M. Xie, Y. Luo, H. Wang, and Q. Jiang. “Method
for Segmentation of Banana Crown Based on Improved DeepLabv3+.” In: Agronomy 13.7 (July
2023), p. 1838. issn: 2073-4395. doi: 10.3390/agronomy13071838. url: http://dx.doi.org/10
.3390/agronomy13071838 (cit. on p. 130).

[1121] H. Qin, J. Pan, J. Li, and F. Huang. “Fault Diagnosis Method of Rolling Bearing Based on
CBAM_ResNet and ACON Activation Function.” In: Applied Sciences 13.13 (June 2023), p. 7593.
issn: 2076-3417. doi: 10.3390/app13137593. url: http://dx.doi.org/10.3390/app13137593
(cit. on p. 130).

[1122] N. Chen, Y. Li, Z. Yang, Z. Lu, S. Wang, and J. Wang. “LODNU: lightweight object detection
network in UAV vision.” In: The Journal of Supercomputing 79.9 (Feb. 2023), pp. 10117–10138.
issn: 1573-0484. doi: 10.1007/s11227-023-05065-x. url: http://dx.doi.org/10.1007/s112
27-023-05065-x (cit. on p. 130).

[1123] Y. Zhao, L. Lu, W. Yang, Q. Li, and X. Zhang. “Lightweight Tennis Ball Detection Algorithm
Based on Robomaster EP.” In: Applied Sciences 13.6 (Mar. 2023), p. 3461. issn: 2076-3417. doi:
10.3390/app13063461. url: http://dx.doi.org/10.3390/app13063461 (cit. on p. 130).

[1124] J. Liu, X. Wang, S. Wu, L. Wan, and F. Xie. “Wind turbine fault detection based on deep residual
networks.” In: Expert Systems with Applications 213 (Mar. 2023), p. 119102. issn: 0957-4174.
doi: 10.1016/j.eswa.2022.119102. url: http://dx.doi.org/10.1016/j.eswa.2022.119102
(cit. on p. 130).

[1125] Z. Li, X. Yang, K. Shen, F. Jiang, J. Jiang, H. Ren, and Y. Li. “PSGU: Parametric self-circulation
gating unit for deep neural networks.” In: Journal of Visual Communication and Image Repre-
sentation 80 (Oct. 2021), p. 103294. issn: 1047-3203. doi: 10.1016/j.jvcir.2021.103294. url:
http://dx.doi.org/10.1016/j.jvcir.2021.103294 (cit. on pp. 130, 131).

https://doi.org/10.1007/978-3-031-06767-9_5
https://doi.org/10.1007/978-3-031-06767-9_5
http://dx.doi.org/10.1007/978-3-031-06767-9_5
https://doi.org/10.3390/electronics11152424
http://dx.doi.org/10.3390/electronics11152424
https://doi.org/10.1016/j.imavis.2022.104466
https://doi.org/10.1016/j.imavis.2022.104466
http://dx.doi.org/10.1016/j.imavis.2022.104466
https://doi.org/10.3390/s22124626
http://dx.doi.org/10.3390/s22124626
https://doi.org/10.3390/app12104938
http://dx.doi.org/10.3390/app12104938
https://doi.org/10.1109/imcec55388.2022.10020040
http://dx.doi.org/10.1109/IMCEC55388.2022.10020040
http://dx.doi.org/10.1109/IMCEC55388.2022.10020040
https://doi.org/10.1007/978-3-031-20497-5_27
http://dx.doi.org/10.1007/978-3-031-20497-5_27
http://dx.doi.org/10.1007/978-3-031-20497-5_27
https://doi.org/10.1109/icrcv55858.2022.9953233
http://dx.doi.org/10.1109/ICRCV55858.2022.9953233
https://doi.org/10.1117/1.jei.32.4.043017
http://dx.doi.org/10.1117/1.JEI.32.4.043017
http://dx.doi.org/10.1117/1.JEI.32.4.043017
https://doi.org/10.3390/rs15143583
http://dx.doi.org/10.3390/rs15143583
http://dx.doi.org/10.3390/rs15143583
https://doi.org/10.3390/agronomy13071838
http://dx.doi.org/10.3390/agronomy13071838
http://dx.doi.org/10.3390/agronomy13071838
https://doi.org/10.3390/app13137593
http://dx.doi.org/10.3390/app13137593
https://doi.org/10.1007/s11227-023-05065-x
http://dx.doi.org/10.1007/s11227-023-05065-x
http://dx.doi.org/10.1007/s11227-023-05065-x
https://doi.org/10.3390/app13063461
http://dx.doi.org/10.3390/app13063461
https://doi.org/10.1016/j.eswa.2022.119102
http://dx.doi.org/10.1016/j.eswa.2022.119102
https://doi.org/10.1016/j.jvcir.2021.103294
http://dx.doi.org/10.1016/j.jvcir.2021.103294

360 bibliography

[1126] B. Zheng and Z. Wang. “PATS: A New Neural Network Activation Function with Parameter.”
In: 2020 5th International Conference on Computer and Communication Systems (ICCCS). IEEE, May
2020. doi: 10.1109/icccs49078.2020.9118471. url: http://dx.doi.org/10.1109/ICCCS4907
8.2020.9118471 (cit. on p. 131).

[1127] A. Paul, R. Bandyopadhyay, J. H. Yoon, Z. W. Geem, and R. Sarkar. “SinLU: Sinu-Sigmoidal
Linear Unit.” In: Mathematics 10.3 (Jan. 2022), p. 337. issn: 2227-7390. doi: 10.3390/math10030
337. url: http://dx.doi.org/10.3390/math10030337 (cit. on pp. 132, 219).

[1128] K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey. “ErfAct and Pserf: Non-monotonic
Smooth Trainable Activation Functions.” In: Proceedings of the AAAI Conference on Artificial
Intelligence 36.6 (June 2022), pp. 6097–6105. issn: 2159-5399. doi: 10.1609/aaai.v36i6.20557.
url: http://dx.doi.org/10.1609/aaai.v36i6.20557 (cit. on p. 132).

[1129] M. Abdool and T. Dear. Swim: A General-Purpose, High-Performing, and Efficient Activation
Function for Locomotion Control Tasks. 2023. doi: 10.48550/ARXIV.2303.02640. url: https://ar
xiv.org/abs/2303.02640 (cit. on p. 132).

[1130] V. Terziyan, D. Malyk, M. Golovianko, and V. Branytskyi. “Hyper-flexible Convolutional
Neural Networks based on Generalized Lehmer and Power Means.” In: Neural Networks
155 (Nov. 2022), pp. 177–203. issn: 0893-6080. doi: 10.1016/j.neunet.2022.08.017. url:
http://dx.doi.org/10.1016/j.neunet.2022.08.017 (cit. on pp. 133, 144).

[1131] Q. Jiang, L. Zhu, C. Shu, and V. Sekar. “Multilayer perceptron neural network activated by
adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow.”
In: Acta Mechanica Sinica 37.12 (Dec. 2021), pp. 1757–1772. issn: 1614-3116. doi: 10.1007/s1040
9-021-01144-5. url: http://dx.doi.org/10.1007/s10409-021-01144-5 (cit. on p. 134).

[1132] F. Duan, F. Chapeau-Blondeau, and D. Abbott. “Optimized injection of noise in activation
functions to improve generalization of neural networks.” In: Chaos, Solitons & Fractals 178 (Jan.
2024), p. 114363. issn: 0960-0779. doi: 10.1016/j.chaos.2023.114363. url: http://dx.doi.o
rg/10.1016/j.chaos.2023.114363 (cit. on pp. 134, 135).

[1133] H. H. Chieng, N. Wahid, and P. Ong. “Parametric Flatten-T swish: an adaptive nonlinear
activation function for deep learning.” In: Journal of Information and Communication Technology
20 (2020). doi: 10.32890/jict.20.1.2021.9267. url: https://doi.org/10.32890/jict.20.1
.2021.9267 (cit. on pp. 134, 203).

[1134] A. Mondal and V. K. Shrivastava. “A novel Parametric Flatten-p Mish activation function
based deep CNN model for brain tumor classification.” In: Computers in Biology and Medicine
150 (Nov. 2022), p. 106183. issn: 0010-4825. doi: 10.1016/j.compbiomed.2022.106183. url:
http://dx.doi.org/10.1016/j.compbiomed.2022.106183 (cit. on p. 134).

[1135] B. Khagi and G.-R. Kwon. “A novel scaled-gamma-tanh (SGT) activation function in 3D CNN
applied for MRI classification.” In: Scientific Reports 12.1 (Sept. 2022). issn: 2045-2322. doi:
10.1038/s41598-022-19020-y. url: http://dx.doi.org/10.1038/s41598-022-19020-y
(cit. on p. 135).

[1136] R. Ding, H. Liu, and X. Zhou. “IE-Net: Information-Enhanced Binary Neural Networks for
Accurate Classification.” In: Electronics 11.6 (Mar. 2022), p. 937. issn: 2079-9292. doi: 10.33
90/electronics11060937. url: http://dx.doi.org/10.3390/electronics11060937 (cit. on
p. 135).

[1137] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis. “Adaptive activation functions accelerate
convergence in deep and physics-informed neural networks.” In: Journal of Computational
Physics 404 (Mar. 2020), p. 109136. doi: 10.1016/j.jcp.2019.109136. url: https://doi.org/1
0.1016/j.jcp.2019.109136 (cit. on pp. 135, 136, 198, 202, 278).

[1138] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis. “Locally adaptive activation functions with
slope recovery for deep and physics-informed neural networks.” In: Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 476.2239 (July 2020), p. 20200334. doi:
10.1098/rspa.2020.0334. url: https://doi.org/10.1098/rspa.2020.0334 (cit. on pp. 135,
194, 278).

[1139] D. S. Kapoor and A. K. Kohli. “Adaptive-Slope Squashing-Function-Based ANN for CSI
Estimation and Symbol Detection in SFBC-OFDM System.” In: Arabian Journal for Science
and Engineering 46.10 (Jan. 2021), pp. 9451–9464. doi: 10.1007/s13369-020-05207-w. url:
https://doi.org/10.1007/s13369-020-05207-w (cit. on pp. 136, 203, 279).

[1140] S. S. Husain, E.-J. Ong, and M. Bober. “ACTNET: End-to-End Learning of Feature Activations
and Multi-stream Aggregation for Effective Instance Image Retrieval.” In: International Journal
of Computer Vision 129.5 (Feb. 2021), pp. 1432–1450. issn: 1573-1405. doi: 10.1007/s11263-021-
01444-0. url: http://dx.doi.org/10.1007/s11263-021-01444-0 (cit. on pp. 136, 137, 152,
203).

[1141] X.-M. Zhou, L.-F. Li, X.-Z. Zheng, and M. Luo. LAU: A novel two-parameter learnable Logmoid
Activation Unit. 2023. url: https://openreview.net/forum?id=uwBUzlm0GS (cit. on p. 137).

https://doi.org/10.1109/icccs49078.2020.9118471
http://dx.doi.org/10.1109/ICCCS49078.2020.9118471
http://dx.doi.org/10.1109/ICCCS49078.2020.9118471
https://doi.org/10.3390/math10030337
https://doi.org/10.3390/math10030337
http://dx.doi.org/10.3390/math10030337
https://doi.org/10.1609/aaai.v36i6.20557
http://dx.doi.org/10.1609/aaai.v36i6.20557
https://doi.org/10.48550/ARXIV.2303.02640
https://arxiv.org/abs/2303.02640
https://arxiv.org/abs/2303.02640
https://doi.org/10.1016/j.neunet.2022.08.017
http://dx.doi.org/10.1016/j.neunet.2022.08.017
https://doi.org/10.1007/s10409-021-01144-5
https://doi.org/10.1007/s10409-021-01144-5
http://dx.doi.org/10.1007/s10409-021-01144-5
https://doi.org/10.1016/j.chaos.2023.114363
http://dx.doi.org/10.1016/j.chaos.2023.114363
http://dx.doi.org/10.1016/j.chaos.2023.114363
https://doi.org/10.32890/jict.20.1.2021.9267
https://doi.org/10.32890/jict.20.1.2021.9267
https://doi.org/10.32890/jict.20.1.2021.9267
https://doi.org/10.1016/j.compbiomed.2022.106183
http://dx.doi.org/10.1016/j.compbiomed.2022.106183
https://doi.org/10.1038/s41598-022-19020-y
http://dx.doi.org/10.1038/s41598-022-19020-y
https://doi.org/10.3390/electronics11060937
https://doi.org/10.3390/electronics11060937
http://dx.doi.org/10.3390/electronics11060937
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1098/rspa.2020.0334
https://doi.org/10.1098/rspa.2020.0334
https://doi.org/10.1007/s13369-020-05207-w
https://doi.org/10.1007/s13369-020-05207-w
https://doi.org/10.1007/s11263-021-01444-0
https://doi.org/10.1007/s11263-021-01444-0
http://dx.doi.org/10.1007/s11263-021-01444-0
https://openreview.net/forum?id=uwBUzlm0GS

bibliography 361

[1142] X.-M. Zhou, L.-F. Li, X.-Z. Zheng, and M. Luo. A two-parameter learnable Logmoid Activation
Unit. 2023. url: https://openreview.net/forum?id=LcXWYmA8Ek (cit. on p. 137).

[1143] F. Farhadi, V. P. Nia, and A. Lodi. Activation Adaptation in Neural Networks. 2019. doi: 10.48550
/ARXIV.1901.09849. url: https://arxiv.org/abs/1901.09849 (cit. on pp. 137, 184, 189).

[1144] Y. Zhou, D. Li, S. Huo, and S.-Y. Kung. “Shape autotuning activation function.” In: Expert
Systems with Applications 171 (June 2021), p. 114534. issn: 0957-4174. doi: 10.1016/j.eswa.202
0.114534. url: http://dx.doi.org/10.1016/j.eswa.2020.114534 (cit. on p. 138).

[1145] J. Z. Zamora-Esquivel, J. A. Cruz Vargas, and P. Lopez-Meyer. “Fractional Adaptation of
Activation Functions In Neural Networks.” In: 2020 25th International Conference on Pattern
Recognition (ICPR). IEEE, Jan. 2021. doi: 10.1109/icpr48806.2021.9413338. url: http://dx.d
oi.org/10.1109/ICPR48806.2021.9413338 (cit. on pp. 139, 140).

[1146] J. Zamora-Esquivel, A. D. Rhodes, and L. Nachman. “Fractional Adaptive Linear Units.” In:
Proceedings of the AAAI Conference on Artificial Intelligence 36.8 (June 2022), pp. 8988–8996. issn:
2159-5399. doi: 10.1609/aaai.v36i8.20882. url: http://dx.doi.org/10.1609/aaai.v36i8
.20882 (cit. on pp. 139, 140).

[1147] M. S. Job, P. H. Bhateja, M. Gupta, K. Bingi, and B. R. Prusty. “Fractional Rectified Linear Unit
Activation Function and Its Variants.” In: Mathematical Problems in Engineering 2022 (June 2022).
Ed. by X. Li, pp. 1–15. issn: 1024-123X. doi: 10.1155/2022/1860779. url: http://dx.doi.org
/10.1155/2022/1860779 (cit. on pp. 139–143).

[1148] B. Ramadevi, V. R. Kasi, and K. Bingi. “Fractional ordering of activation functions for neural
networks: A case study on Texas wind turbine.” In: Engineering Applications of Artificial
Intelligence 127 (Jan. 2024), p. 107308. issn: 0952-1976. doi: 10.1016/j.engappai.2023.107308.
url: http://dx.doi.org/10.1016/j.engappai.2023.107308 (cit. on p. 139).

[1149] J. Zamora-Esquivel, A. Cruz Vargas, R. Camacho Perez, P. Lopez Meyer, H. Cordourier, and
O. Tickoo. “Adaptive Activation Functions Using Fractional Calculus.” In: 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW). IEEE, Oct. 2019. doi: 10.1109/i
ccvw.2019.00250. url: http://dx.doi.org/10.1109/ICCVW.2019.00250 (cit. on p. 139).

[1150] M. D. Ortigueira. Fractional Calculus for Scientists and Engineers. Springer Netherlands, 2011.
isbn: 9789400707474. doi: 10.1007/978-94-007-0747-4. url: http://dx.doi.org/10.1007/9
78-94-007-0747-4 (cit. on p. 139).

[1151] Y. Bodyanskiy and S. Kostiuk. “Learnable Extended Activation Function for Deep Neural
Networks.” In: International Journal of Computing (Oct. 2023), pp. 311–318. issn: 1727-6209. doi:
10.47839/ijc.22.3.3225. url: http://dx.doi.org/10.47839/ijc.22.3.3225 (cit. on p. 144).

[1152] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang. “Extreme Learning Machine for Regression
and Multiclass Classification.” In: IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 42.2 (Apr. 2012), pp. 513–529. issn: 1941-0492. doi: 10.1109/tsmcb.2011.2168604.
url: http://dx.doi.org/10.1109/TSMCB.2011.2168604 (cit. on pp. 144, 175).

[1153] R. Siouda, M. Nemissi, and H. Seridi. “Diverse activation functions based-hybrid RBF-ELM
neural network for medical classification.” In: Evolutionary Intelligence (July 2022). issn: 1864-
5917. doi: 10.1007/s12065-022-00758-3. url: http://dx.doi.org/10.1007/s12065-022-00
758-3 (cit. on pp. 144, 175, 176).

[1154] K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey. “EIS - Efficient and Trainable Acti-
vation Functions for Better Accuracy and Performance.” In: Artificial Neural Networks and
Machine Learning – ICANN 2021. Springer International Publishing, 2021, pp. 260–272. isbn:
9783030863401. doi: 10.1007/978-3-030-86340-1_21. url: http://dx.doi.org/10.1007/978
-3-030-86340-1_21 (cit. on pp. 144, 145).

[1155] K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey. EIS – a family of activation functions
combining Exponential, ISRU, and Softplus. 2020. doi: 10 . 48550 / ARXIV . 2009 . 13501. url:
https://arxiv.org/abs/2009.13501 (cit. on pp. 144, 145).

[1156] T. A. E. Ferreira, M. Mattheakis, and P. Protopapas. A New Artificial Neuron Proposal with
Trainable Simultaneous Local and Global Activation Function. 2021. doi: 10.48550/ARXIV.2101.06
100. url: https://arxiv.org/abs/2101.06100 (cit. on pp. 145, 146).

[1157] J. H. De Medeiros Delgado and T. A. E. Ferreira. “Autoencoder performance analysis with
adaptive and trainable activation function to compress images.” In: 2022 IEEE Latin American
Conference on Computational Intelligence (LA-CCI). IEEE, Nov. 2022. doi: 10.1109/la-cci544
02.2022.9981644. url: http://dx.doi.org/10.1109/LA-CCI54402.2022.9981644 (cit. on
p. 146).

[1158] S. Xu and M. Zhang. “Justification of a neuron-adaptive activation function.” In: Proceedings
of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural
Computing: New Challenges and Perspectives for the New Millennium. IEEE, 2000. doi: 10.1109/ij
cnn.2000.861351. url: https://doi.org/10.1109/ijcnn.2000.861351 (cit. on pp. 146, 194,
217).

https://openreview.net/forum?id=LcXWYmA8Ek
https://doi.org/10.48550/ARXIV.1901.09849
https://doi.org/10.48550/ARXIV.1901.09849
https://arxiv.org/abs/1901.09849
https://doi.org/10.1016/j.eswa.2020.114534
https://doi.org/10.1016/j.eswa.2020.114534
http://dx.doi.org/10.1016/j.eswa.2020.114534
https://doi.org/10.1109/icpr48806.2021.9413338
http://dx.doi.org/10.1109/ICPR48806.2021.9413338
http://dx.doi.org/10.1109/ICPR48806.2021.9413338
https://doi.org/10.1609/aaai.v36i8.20882
http://dx.doi.org/10.1609/aaai.v36i8.20882
http://dx.doi.org/10.1609/aaai.v36i8.20882
https://doi.org/10.1155/2022/1860779
http://dx.doi.org/10.1155/2022/1860779
http://dx.doi.org/10.1155/2022/1860779
https://doi.org/10.1016/j.engappai.2023.107308
http://dx.doi.org/10.1016/j.engappai.2023.107308
https://doi.org/10.1109/iccvw.2019.00250
https://doi.org/10.1109/iccvw.2019.00250
http://dx.doi.org/10.1109/ICCVW.2019.00250
https://doi.org/10.1007/978-94-007-0747-4
http://dx.doi.org/10.1007/978-94-007-0747-4
http://dx.doi.org/10.1007/978-94-007-0747-4
https://doi.org/10.47839/ijc.22.3.3225
http://dx.doi.org/10.47839/ijc.22.3.3225
https://doi.org/10.1109/tsmcb.2011.2168604
http://dx.doi.org/10.1109/TSMCB.2011.2168604
https://doi.org/10.1007/s12065-022-00758-3
http://dx.doi.org/10.1007/s12065-022-00758-3
http://dx.doi.org/10.1007/s12065-022-00758-3
https://doi.org/10.1007/978-3-030-86340-1_21
http://dx.doi.org/10.1007/978-3-030-86340-1_21
http://dx.doi.org/10.1007/978-3-030-86340-1_21
https://doi.org/10.48550/ARXIV.2009.13501
https://arxiv.org/abs/2009.13501
https://doi.org/10.48550/ARXIV.2101.06100
https://doi.org/10.48550/ARXIV.2101.06100
https://arxiv.org/abs/2101.06100
https://doi.org/10.1109/la-cci54402.2022.9981644
https://doi.org/10.1109/la-cci54402.2022.9981644
http://dx.doi.org/10.1109/LA-CCI54402.2022.9981644
https://doi.org/10.1109/ijcnn.2000.861351
https://doi.org/10.1109/ijcnn.2000.861351
https://doi.org/10.1109/ijcnn.2000.861351

362 bibliography

[1159] S. Xu and M. Zhang. “Data Mining — An Adaptive Neural Network Model for Financial
Analysis.” In: Third International Conference on Information Technology and Applications (ICITA’05).
IEEE, 2005. doi: 10.1109/icita.2005.109. url: https://doi.org/10.1109/icita.2005.109
(cit. on p. 146).

[1160] S. Xu and M. Zhang. “A New Adaptive Neural Network Model for Financial Data Mining.” In:
Advances in Neural Networks – ISNN 2007. Springer Berlin Heidelberg, 2007, pp. 1265–1273. doi:
10.1007/978-3-540-72383-7_147. url: https://doi.org/10.1007/978-3-540-72383-7_147
(cit. on p. 146).

[1161] G. Tezel and Y. Özbay. “A New Neural Network with Adaptive Activation Function for
Classification of ECG Arrhythmias.” In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2007, pp. 1–8. doi: 10.1007/978-3-540-74819-9_1. url: https://doi.org/10.10
07/978-3-540-74819-9_1 (cit. on pp. 146, 203, 217).

[1162] S. Xu and M. Zhang. “An Adaptive Activation Function for Higher Order Neural Networks.”
In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002, pp. 356–362. doi:
10.1007/3-540-36187-1_31. url: https://doi.org/10.1007/3-540-36187-1_31 (cit. on
p. 146).

[1163] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi. Learning Activation Functions to Improve
Deep Neural Networks. 2014. doi: 10.48550/ARXIV.1412.6830. url: https://arxiv.org/abs/1
412.6830 (cit. on pp. 146, 147).

[1164] S. Aziznejad, H. Gupta, J. Campos, and M. Unser. “Deep Neural Networks With Trainable
Activations and Controlled Lipschitz Constant.” In: IEEE Transactions on Signal Processing 68

(2020), pp. 4688–4699. doi: 10.1109/tsp.2020.3014611. url: https://doi.org/10.1109/tsp
.2020.3014611 (cit. on p. 147).

[1165] M. Tavakoli, F. Agostinelli, and P. Baldi. “SPLASH: Learnable activation functions for improv-
ing accuracy and adversarial robustness.” In: Neural Networks 140 (Aug. 2021), pp. 1–12. issn:
0893-6080. doi: 10.1016/j.neunet.2021.02.023. url: http://dx.doi.org/10.1016/j.neune
t.2021.02.023 (cit. on p. 147).

[1166] H. Li, W. Ouyang, and X. Wang. “Multi-Bias Non-linear Activation in Deep Neural Networks.”
In: Proceedings of The 33rd International Conference on Machine Learning. Ed. by M. F. Balcan and
K. Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research. New York, New York,
USA: PMLR, 20–22 Jun 2016, pp. 221–229. url: https://proceedings.mlr.press/v48/lia16
.html (cit. on pp. 147, 203).

[1167] G. Maguolo, L. Nanni, and S. Ghidoni. “Ensemble of convolutional neural networks trained
with different activation functions.” In: Expert Systems with Applications 166 (Mar. 2021),
p. 114048. doi: 10.1016/j.eswa.2020.114048. url: https://doi.org/10.1016/j.eswa.2020
.114048 (cit. on p. 148).

[1168] M. Fakhfakh and L. Chaari. Bayesian optimization for sparse neural networks with trainable activation
functions. 2023. doi: 10.48550/ARXIV.2304.04455. url: https://arxiv.org/abs/2304.04455
(cit. on p. 148).

[1169] L. Nanni, A. Lumini, S. Ghidoni, and G. Maguolo. “Stochastic Selection of Activation Layers
for Convolutional Neural Networks.” In: Sensors 20.6 (Mar. 2020), p. 1626. issn: 1424-8220. doi:
10.3390/s20061626. url: http://dx.doi.org/10.3390/s20061626 (cit. on p. 148).

[1170] B. Prach and C. H. Lampert. 1-Lipschitz Neural Networks are more expressive with N-Activations.
2023. doi: 10.48550/ARXIV.2311.06103. url: https://arxiv.org/abs/2311.06103 (cit. on
p. 149).

[1171] V. S. Bawa and V. Kumar. “Linearized sigmoidal activation: A novel activation function with
tractable non-linear characteristics to boost representation capability.” In: Expert Systems with
Applications 120 (Apr. 2019), pp. 346–356. issn: 0957-4174. doi: 10.1016/j.eswa.2018.11.042.
url: http://dx.doi.org/10.1016/j.eswa.2018.11.042 (cit. on p. 150).

[1172] S. Curci, D. C. Mocanu, and M. Pechenizkiyi. Truly Sparse Neural Networks at Scale. 2021. doi:
10.48550/ARXIV.2102.01732. url: https://arxiv.org/abs/2102.01732 (cit. on pp. 150, 217,
289).

[1173] A. Nicolae. PLU: The Piecewise Linear Unit Activation Function. 2018. doi: 10.48550/ARXIV.1809
.09534. url: https://arxiv.org/abs/1809.09534 (cit. on pp. 150, 217).

[1174] R. Mo, K. Xu, L. Liu, L. Liu, and D. Wang. “Adaptive Linear Unit for Accurate Binary Neural
Networks.” In: 2022 16th IEEE International Conference on Signal Processing (ICSP). IEEE, Oct.
2022. doi: 10.1109/icsp56322.2022.9965306. url: http://dx.doi.org/10.1109/ICSP56322
.2022.9965306 (cit. on pp. 151, 218).

[1175] T. Mao, Z. Shi, and D.-X. Zhou. “Approximating functions with multi-features by deep
convolutional neural networks.” In: Analysis and Applications 21.01 (Nov. 2022), pp. 93–125.
issn: 1793-6861. doi: 10.1142/s0219530522400085. url: http://dx.doi.org/10.1142/S02195
30522400085 (cit. on p. 151).

https://doi.org/10.1109/icita.2005.109
https://doi.org/10.1109/icita.2005.109
https://doi.org/10.1007/978-3-540-72383-7_147
https://doi.org/10.1007/978-3-540-72383-7_147
https://doi.org/10.1007/978-3-540-74819-9_1
https://doi.org/10.1007/978-3-540-74819-9_1
https://doi.org/10.1007/978-3-540-74819-9_1
https://doi.org/10.1007/3-540-36187-1_31
https://doi.org/10.1007/3-540-36187-1_31
https://doi.org/10.48550/ARXIV.1412.6830
https://arxiv.org/abs/1412.6830
https://arxiv.org/abs/1412.6830
https://doi.org/10.1109/tsp.2020.3014611
https://doi.org/10.1109/tsp.2020.3014611
https://doi.org/10.1109/tsp.2020.3014611
https://doi.org/10.1016/j.neunet.2021.02.023
http://dx.doi.org/10.1016/j.neunet.2021.02.023
http://dx.doi.org/10.1016/j.neunet.2021.02.023
https://proceedings.mlr.press/v48/lia16.html
https://proceedings.mlr.press/v48/lia16.html
https://doi.org/10.1016/j.eswa.2020.114048
https://doi.org/10.1016/j.eswa.2020.114048
https://doi.org/10.1016/j.eswa.2020.114048
https://doi.org/10.48550/ARXIV.2304.04455
https://arxiv.org/abs/2304.04455
https://doi.org/10.3390/s20061626
http://dx.doi.org/10.3390/s20061626
https://doi.org/10.48550/ARXIV.2311.06103
https://arxiv.org/abs/2311.06103
https://doi.org/10.1016/j.eswa.2018.11.042
http://dx.doi.org/10.1016/j.eswa.2018.11.042
https://doi.org/10.48550/ARXIV.2102.01732
https://arxiv.org/abs/2102.01732
https://doi.org/10.48550/ARXIV.1809.09534
https://doi.org/10.48550/ARXIV.1809.09534
https://arxiv.org/abs/1809.09534
https://doi.org/10.1109/icsp56322.2022.9965306
http://dx.doi.org/10.1109/ICSP56322.2022.9965306
http://dx.doi.org/10.1109/ICSP56322.2022.9965306
https://doi.org/10.1142/s0219530522400085
http://dx.doi.org/10.1142/S0219530522400085
http://dx.doi.org/10.1142/S0219530522400085

bibliography 363

[1176] N. Patwardhan, M. Ingalhalikar, and R. Walambe. ARiA: Utilizing Richard’s Curve for Controlling
the Non-monotonicity of the Activation Function in Deep Neural Nets. 2018. doi: 10.48550/ARXIV.1
805.08878. url: https://arxiv.org/abs/1805.08878 (cit. on pp. 151, 152).

[1177] F. J. Richards. “A Flexible Growth Function for Empirical Use.” In: Journal of Experimental
Botany 10.2 (1959), pp. 290–301. doi: 10.1093/jxb/10.2.290. url: https://doi.org/10.1093
/jxb/10.2.290 (cit. on p. 151).

[1178] S. Sarkar, S. Agrawal, T. Baker, P. K. R. Maddikunta, and T. R. Gadekallu. “Catalysis of neural
activation functions: Adaptive feed-forward training for big data applications.” In: Applied
Intelligence 52.12 (Mar. 2022), pp. 13364–13383. issn: 1573-7497. doi: 10.1007/s10489-021-030
82-y. url: http://dx.doi.org/10.1007/s10489-021-03082-y (cit. on pp. 152, 153).

[1179] S. Gu, W. Li, L. V. Gool, and R. Timofte. “Fast Image Restoration With Multi-Bin Trainable
Linear Units.” In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct.
2019. doi: 10.1109/iccv.2019.00429. url: https://doi.org/10.1109/iccv.2019.00429
(cit. on pp. 153, 218).

[1180] X. Gao, Y. Li, W. Li, L. Duan, L. Van Gool, L. Benini, and M. Magno. “Learning continuous
piecewise non-linear activation functions for deep neural networks.” In: 2023 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, July 2023. doi: 10.1109/icme55011.2023.003
15. url: http://dx.doi.org/10.1109/ICME55011.2023.00315 (cit. on pp. 153, 154).

[1181] Y. Zhou, Z. Zhu, and Z. Zhong. “Learning specialized activation functions with the Piecewise
Linear Unit.” In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct.
2021. doi: 10.1109/iccv48922.2021.01188. url: http://dx.doi.org/10.1109/ICCV48922.20
21.01188 (cit. on p. 153).

[1182] Z. Zhu, Y. Zhou, Y. Dong, and Z. Zhong. “PWLU: Learning Specialized Activation Functions
with the Piecewise Linear Unit.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2023), pp. 1–19. issn: 1939-3539. doi: 10.1109/tpami.2023.3286109. url: http://dx.doi.org
/10.1109/TPAMI.2023.3286109 (cit. on p. 153).

[1183] Z. Zhu and Y. Dong. “Non-uniform Piecewise Linear Activation Functions in Deep Neural
Networks.” In: 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, Aug. 2022.
doi: 10.1109/icpr56361.2022.9956345. url: http://dx.doi.org/10.1109/ICPR56361.2022
.9956345 (cit. on p. 153).

[1184] J. Zhang, S. Zhu, N. Lu, and S. Wen. “Multistability of state-dependent switching neural
networks with discontinuous nonmonotonic piecewise linear activation functions.” In: Neuro-
computing 437 (May 2021), pp. 300–311. issn: 0925-2312. doi: 10.1016/j.neucom.2021.01.046.
url: http://dx.doi.org/10.1016/j.neucom.2021.01.046 (cit. on p. 153).

[1185] A. Goujon, A. Etemadi, and M. Unser. “On the number of regions of piecewise linear neural
networks.” In: Journal of Computational and Applied Mathematics 441 (May 2024), p. 115667. issn:
0377-0427. doi: 10.1016/j.cam.2023.115667. url: http://dx.doi.org/10.1016/j.cam.2023
.115667 (cit. on p. 153).

[1186] M. Wang, B. Liu, and H. Foroosh. “Look-Up Table Unit Activation Function for Deep Convo-
lutional Neural Networks.” In: 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE, Mar. 2018. doi: 10.1109/wacv.2018.00139. url: https://doi.org/10.1109/wa
cv.2018.00139 (cit. on pp. 154–157, 160, 218, 219).

[1187] F. Piazza, A. Uncini, and M. Zenobi. “Neural networks with digital LUT activation functions.”
In: Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan). IEEE,
1993. doi: 10.1109/ijcnn.1993.716806. url: https://doi.org/10.1109/ijcnn.1993.716806
(cit. on p. 154).

[1188] S. Fiori. “Hybrid independent component analysis by adaptive LUT activation function
neurons.” In: Neural Networks 15.1 (Jan. 2002), pp. 85–94. doi: 10.1016/s0893-6080(01)00105-
8. url: https://doi.org/10.1016/s0893-6080(01)00105-8 (cit. on p. 154).

[1189] M. Kang and D. Palmer-Brown. “An Adaptive Function Neural Network (ADFUNN) Classi-
fier.” In: 2005 International Conference on Neural Networks and Brain. IEEE, 2005. doi: 10.1109/i
cnnb.2005.1614681. url: https://doi.org/10.1109/icnnb.2005.1614681 (cit. on p. 154).

[1190] M. Kang and D. Palmer-Brown. “A Multi-layer ADaptive FUnction Neural Network (MAD-
FUNN) for Letter Image Recognition.” In: 2007 International Joint Conference on Neural Networks.
IEEE, Aug. 2007. doi: 10.1109/ijcnn.2007.4371406. url: https://doi.org/10.1109/ijcnn
.2007.4371406 (cit. on p. 154).

[1191] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. “Maxout Networks.”
In: Proceedings of the 30th International Conference on Machine Learning. Ed. by S. Dasgupta and
D. McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, Georgia, USA:
PMLR, 17–19 Jun 2013, pp. 1319–1327. url: https://proceedings.mlr.press/v28/goodfello
w13.html (cit. on pp. 155, 218).

https://doi.org/10.48550/ARXIV.1805.08878
https://doi.org/10.48550/ARXIV.1805.08878
https://arxiv.org/abs/1805.08878
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.1007/s10489-021-03082-y
https://doi.org/10.1007/s10489-021-03082-y
http://dx.doi.org/10.1007/s10489-021-03082-y
https://doi.org/10.1109/iccv.2019.00429
https://doi.org/10.1109/iccv.2019.00429
https://doi.org/10.1109/icme55011.2023.00315
https://doi.org/10.1109/icme55011.2023.00315
http://dx.doi.org/10.1109/ICME55011.2023.00315
https://doi.org/10.1109/iccv48922.2021.01188
http://dx.doi.org/10.1109/ICCV48922.2021.01188
http://dx.doi.org/10.1109/ICCV48922.2021.01188
https://doi.org/10.1109/tpami.2023.3286109
http://dx.doi.org/10.1109/TPAMI.2023.3286109
http://dx.doi.org/10.1109/TPAMI.2023.3286109
https://doi.org/10.1109/icpr56361.2022.9956345
http://dx.doi.org/10.1109/ICPR56361.2022.9956345
http://dx.doi.org/10.1109/ICPR56361.2022.9956345
https://doi.org/10.1016/j.neucom.2021.01.046
http://dx.doi.org/10.1016/j.neucom.2021.01.046
https://doi.org/10.1016/j.cam.2023.115667
http://dx.doi.org/10.1016/j.cam.2023.115667
http://dx.doi.org/10.1016/j.cam.2023.115667
https://doi.org/10.1109/wacv.2018.00139
https://doi.org/10.1109/wacv.2018.00139
https://doi.org/10.1109/wacv.2018.00139
https://doi.org/10.1109/ijcnn.1993.716806
https://doi.org/10.1109/ijcnn.1993.716806
https://doi.org/10.1016/s0893-6080(01)00105-8
https://doi.org/10.1016/s0893-6080(01)00105-8
https://doi.org/10.1016/s0893-6080(01)00105-8
https://doi.org/10.1109/icnnb.2005.1614681
https://doi.org/10.1109/icnnb.2005.1614681
https://doi.org/10.1109/icnnb.2005.1614681
https://doi.org/10.1109/ijcnn.2007.4371406
https://doi.org/10.1109/ijcnn.2007.4371406
https://doi.org/10.1109/ijcnn.2007.4371406
https://proceedings.mlr.press/v28/goodfellow13.html
https://proceedings.mlr.press/v28/goodfellow13.html

364 bibliography

[1192] M. S. Hanif and M. Bilal. “Competitive residual neural network for image classification.” In:
ICT Express 6.1 (Mar. 2020), pp. 28–37. doi: 10.1016/j.icte.2019.06.001. url: https://doi
.org/10.1016/j.icte.2019.06.001 (cit. on p. 155).

[1193] G. Castaneda, P. Morris, and T. M. Khoshgoftaar. “Evaluation of maxout activations in deep
learning across several big data domains.” In: Journal of Big Data 6.1 (Aug. 2019). doi: 10.1186
/s40537-019-0233-0. url: https://doi.org/10.1186/s40537-019-0233-0 (cit. on p. 155).

[1194] L. R. Sütfeld, F. Brieger, H. Finger, S. Füllhase, and G. Pipa. “Adaptive Blending Units:
Trainable Activation Functions for Deep Neural Networks.” In: Advances in Intelligent Systems
and Computing. Springer International Publishing, 2020, pp. 37–50. doi: 10.1007/978-3-030-5
2243-8_4. url: https://doi.org/10.1007/978-3-030-52243-8_4 (cit. on pp. 156, 157, 218).

[1195] F. Manessi and A. Rozza. “Learning Combinations of Activation Functions.” In: 2018 24th
International Conference on Pattern Recognition (ICPR). IEEE, Aug. 2018. doi: 10.1109/icpr.2018
.8545362. url: https://doi.org/10.1109/icpr.2018.8545362 (cit. on pp. 156, 157, 210, 218).

[1196] D. Klabjan and M. Harmon. “Activation Ensembles for Deep Neural Networks.” In: 2019 IEEE
International Conference on Big Data (Big Data). IEEE, Dec. 2019. doi: 10.1109/bigdata47090.2
019.9006069. url: https://doi.org/10.1109/bigdata47090.2019.9006069 (cit. on pp. 156,
157, 210, 219).

[1197] P. M. Baggenstoss. “Trainable Compound Activation Functions for Machine Learning.” In:
2022 30th European Signal Processing Conference (EUSIPCO). IEEE, Aug. 2022. doi: 10.23919/eu
sipco55093.2022.9909774. url: http://dx.doi.org/10.23919/EUSIPCO55093.2022.9909774
(cit. on pp. 157, 218).

[1198] P. M. Baggenstoss. “Improved Auto-Encoding Using Deterministic Projected Belief Networks
and Compound Activation Functions.” In: 2023 31st European Signal Processing Conference
(EUSIPCO). IEEE, Sept. 2023. doi: 10.23919/eusipco58844.2023.10290080. url: http://dx.d
oi.org/10.23919/EUSIPCO58844.2023.10290080 (cit. on pp. 157, 218).

[1199] Z. Liao. Trainable Activation Function in Image Classification. 2020. doi: 10.48550/ARXIV.2004.1
3271. url: https://arxiv.org/abs/2004.13271 (cit. on pp. 157, 158, 160, 220).

[1200] A. Ismail et al. “Predictions of bridge scour: Application of a feed-forward neural network
with an adaptive activation function.” In: Engineering Applications of Artificial Intelligence 26.5-6
(May 2013), pp. 1540–1549. doi: 10.1016/j.engappai.2012.12.011. url: https://doi.org/1
0.1016/j.engappai.2012.12.011 (cit. on p. 158).

[1201] A. D. Jagtap, Y. Shin, K. Kawaguchi, and G. E. Karniadakis. “Deep Kronecker neural net-
works: A general framework for neural networks with adaptive activation functions.” In:
Neurocomputing 468 (Jan. 2022), pp. 165–180. doi: 10.1016/j.neucom.2021.10.036. url:
https://doi.org/10.1016/j.neucom.2021.10.036 (cit. on p. 158).

[1202] M. Goyal, R. Goyal, and B. Lall. Learning Activation Functions: A new paradigm for understanding
Neural Networks. 2019. doi: 10.48550/ARXIV.1906.09529. url: https://arxiv.org/abs/1906
.09529 (cit. on pp. 159, 219).

[1203] F. Piazza et al. “Artificial Neural Networks With Adaptive Polynomial Activation Function.”
In: Proceedings of the International Joint Conference on Neural Networks.IJCNN. 1992 (cit. on p. 159).

[1204] K.-C. J. Chen and J.-W. Liang. “A Two-stage Training Mechanism for the CNN with Trainable
Activation Function.” In: 2020 International SoC Design Conference (ISOCC). IEEE, Oct. 2020.
doi: 10.1109/isocc50952.2020.9333116. url: http://dx.doi.org/10.1109/ISOCC50952.202
0.9333116 (cit. on p. 159).

[1205] T. L. Fonseca and L. Goliatt. “Extreme Learning Machine Based Model Improved with
Adaptive Activation Functions.” In: Computational Intelligence in Information Systems. Springer
International Publishing, 2021, pp. 119–128. isbn: 9783030681333. doi: 10.1007/978-3-030-68
133-3_12. url: http://dx.doi.org/10.1007/978-3-030-68133-3_12 (cit. on p. 159).

[1206] M. Deepthi, G. N. V. R. Vikram, and P. Venkatappareddy. “Development of a novel activation
function based on Chebyshev polynomials: an aid for classification and denoising of images.”
In: The Journal of Supercomputing (June 2023). doi: 10.1007/s11227- 023- 05466- y. url:
https://doi.org/10.1007/s11227-023-05466-y (cit. on pp. 159, 219).

[1207] P. Venkatappareddy, J. Culli, S. Srivastava, and B. Lall. “A Legendre polynomial based
activation function: An aid for modeling of max pooling.” In: Digital Signal Processing 115

(Aug. 2021), p. 103093. doi: 10.1016/j.dsp.2021.103093. url: https://doi.org/10.1016/j
.dsp.2021.103093 (cit. on pp. 159, 160, 219).

[1208] V. S. Lokhande, S. Tasneeyapant, A. Venkatesh, S. N. Ravi, and V. Singh. “Generating Accurate
Pseudo-Labels in Semi-Supervised Learning and Avoiding Overconfident Predictions via
Hermite Polynomial Activations.” In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, June 2020. doi: 10.1109/cvpr42600.2020.01145. url: http://dx.d
oi.org/10.1109/cvpr42600.2020.01145 (cit. on p. 160).

https://doi.org/10.1016/j.icte.2019.06.001
https://doi.org/10.1016/j.icte.2019.06.001
https://doi.org/10.1016/j.icte.2019.06.001
https://doi.org/10.1186/s40537-019-0233-0
https://doi.org/10.1186/s40537-019-0233-0
https://doi.org/10.1186/s40537-019-0233-0
https://doi.org/10.1007/978-3-030-52243-8_4
https://doi.org/10.1007/978-3-030-52243-8_4
https://doi.org/10.1007/978-3-030-52243-8_4
https://doi.org/10.1109/icpr.2018.8545362
https://doi.org/10.1109/icpr.2018.8545362
https://doi.org/10.1109/icpr.2018.8545362
https://doi.org/10.1109/bigdata47090.2019.9006069
https://doi.org/10.1109/bigdata47090.2019.9006069
https://doi.org/10.1109/bigdata47090.2019.9006069
https://doi.org/10.23919/eusipco55093.2022.9909774
https://doi.org/10.23919/eusipco55093.2022.9909774
http://dx.doi.org/10.23919/EUSIPCO55093.2022.9909774
https://doi.org/10.23919/eusipco58844.2023.10290080
http://dx.doi.org/10.23919/EUSIPCO58844.2023.10290080
http://dx.doi.org/10.23919/EUSIPCO58844.2023.10290080
https://doi.org/10.48550/ARXIV.2004.13271
https://doi.org/10.48550/ARXIV.2004.13271
https://arxiv.org/abs/2004.13271
https://doi.org/10.1016/j.engappai.2012.12.011
https://doi.org/10.1016/j.engappai.2012.12.011
https://doi.org/10.1016/j.engappai.2012.12.011
https://doi.org/10.1016/j.neucom.2021.10.036
https://doi.org/10.1016/j.neucom.2021.10.036
https://doi.org/10.48550/ARXIV.1906.09529
https://arxiv.org/abs/1906.09529
https://arxiv.org/abs/1906.09529
https://doi.org/10.1109/isocc50952.2020.9333116
http://dx.doi.org/10.1109/ISOCC50952.2020.9333116
http://dx.doi.org/10.1109/ISOCC50952.2020.9333116
https://doi.org/10.1007/978-3-030-68133-3_12
https://doi.org/10.1007/978-3-030-68133-3_12
http://dx.doi.org/10.1007/978-3-030-68133-3_12
https://doi.org/10.1007/s11227-023-05466-y
https://doi.org/10.1007/s11227-023-05466-y
https://doi.org/10.1016/j.dsp.2021.103093
https://doi.org/10.1016/j.dsp.2021.103093
https://doi.org/10.1016/j.dsp.2021.103093
https://doi.org/10.1109/cvpr42600.2020.01145
http://dx.doi.org/10.1109/cvpr42600.2020.01145
http://dx.doi.org/10.1109/cvpr42600.2020.01145

bibliography 365

[1209] A. Molina, P. Schramowski, and K. Kersting. “Padé Activation Units: End-to-end Learning
of Flexible Activation Functions in Deep Networks.” In: International Conference on Learning
Representations. 2020. url: https://openreview.net/forum?id=BJlBSkHtDS (cit. on pp. 161,
219).

[1210] C. Brezinski. “Padé Approximations.” In: Computational Aspects of Linear Control. Springer US,
2002, pp. 87–134. doi: 10.1007/978-1-4613-0261-2_4. url: https://doi.org/10.1007/978-
1-4613-0261-2_4 (cit. on p. 161).

[1211] C. Brezinski. “Extrapolation algorithms and Padé approximations: a historical survey.” In:
Applied Numerical Mathematics 20.3 (Mar. 1996), pp. 299–318. doi: 10.1016/0168-9274(95)0011
0-7. url: https://doi.org/10.1016/0168-9274(95)00110-7 (cit. on p. 161).

[1212] Q. Delfosse, P. Schramowski, M. Mundt, A. Molina, and K. Kersting. Adaptive Rational Ac-
tivations to Boost Deep Reinforcement Learning. 2021. doi: 10.48550/ARXIV.2102.09407. url:
https://arxiv.org/abs/2102.09407 (cit. on p. 161).

[1213] N. Boulle, Y. Nakatsukasa, and A. Townsend. “Rational neural networks.” In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 14243–14253. url: https://proceedings.n
eurips.cc/paper_files/paper/2020/file/a3f390d88e4c41f2747bfa2f1b5f87db-Paper.pdf

(cit. on pp. 161, 162).

[1214] Z. Chen, F. Chen, R. Lai, X. Zhang, and C.-T. Lu. “Rational Neural Networks for Approximating
Graph Convolution Operator on Jump Discontinuities.” In: 2018 IEEE International Conference
on Data Mining (ICDM). IEEE, Nov. 2018. doi: 10.1109/icdm.2018.00021. url: https://doi.o
rg/10.1109/icdm.2018.00021 (cit. on p. 161).

[1215] M. Trimmel, M. Zanfir, R. Hartley, and C. Sminchisescu. “ERA: Enhanced Rational Activations.”
In: Lecture Notes in Computer Science. Springer Nature Switzerland, 2022, pp. 722–738. doi:
10.1007/978-3-031-20044-1_41. url: https://doi.org/10.1007/978-3-031-20044-1_41
(cit. on pp. 161, 162).

[1216] K. Biswas, S. Banerjee, and A. K. Pandey. Orthogonal-Padé Activation Functions: Trainable
Activation functions for smooth and faster convergence in deep networks. 2021. doi: 10.48550
/ARXIV.2106.09693. url: https://arxiv.org/abs/2106.09693 (cit. on pp. 162, 163).

[1217] S. Guarnieri et al. “Multilayer feedforward networks with adaptive spline activation function.”
In: IEEE Transactions on Neural Networks 10.3 (May 1999), pp. 672–683. doi: 10.1109/72.761726.
url: https://doi.org/10.1109/72.761726 (cit. on p. 162).

[1218] M. Solazzi and A. Uncini. “Artificial neural networks with adaptive multidimensional spline
activation functions.” In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New
Millennium. IEEE, 2000. doi: 10.1109/ijcnn.2000.861352. url: https://doi.org/10.1109/i
jcnn.2000.861352 (cit. on p. 162).

[1219] P. Campolucci, F. Capperelli, S. Guarnieri, F. Piazza, and A. Uncini. “Neural networks with
adaptive spline activation function.” In: Proceedings of 8th Mediterranean Electrotechnical Con-
ference on Industrial Applications in Power Systems, Computer Science and Telecommunications
(MELECON 96). IEEE, 1996. doi: 10.1109/melcon.1996.551220. url: https://doi.org/10.11
09/melcon.1996.551220 (cit. on p. 162).

[1220] P. Bohra, J. Campos, H. Gupta, S. Aziznejad, and M. Unser. “Learning Activation Functions in
Deep (Spline) Neural Networks.” In: IEEE Open Journal of Signal Processing 1 (2020), pp. 295–
309. doi: 10.1109/ojsp.2020.3039379. url: https://doi.org/10.1109/ojsp.2020.3039379
(cit. on pp. 162, 163).

[1221] S. Lane, M. Flax, D. Handelman, and J. Gelfand. “Multi-Layer Perceptrons with B-Spline
Receptive Field Functions.” In: Advances in Neural Information Processing Systems. Ed. by R.
Lippmann, J. Moody, and D. Touretzky. Vol. 3. Morgan-Kaufmann, 1990. url: https://proc
eedings.neurips.cc/paper_files/paper/1990/file/94f6d7e04a4d452035300f18b984988c-

Paper.pdf (cit. on p. 162).

[1222] A. Vaicaitis and J. Dooley. “Segmented Spline Curve Neural Network for Low Latency Digital
Predistortion of RF Power Amplifiers.” In: IEEE Transactions on Microwave Theory and Techniques
70.11 (Nov. 2022), pp. 4910–4915. doi: 10.1109/tmtt.2022.3210034. url: https://doi.org/1
0.1109/tmtt.2022.3210034 (cit. on p. 162).

[1223] R. G. Kumar and Y. Kumaraswamy. “Spline Activated Neural Network for Classifying Cardiac
Arrhythmia.” In: International Journal of Soft Computing 9.6 (2014), pp. 377–385. doi: 10.36478
/ijscomp.2014.377.385. url: https://medwelljournals.com/abstract/?doi=ijscomp.2014
.377.385 (cit. on p. 162).

[1224] H. A. Mayer and R. Schwaiger. “Evolution of Cubic Spline Activation Functions for Artificial
Neural Networks.” In: Progress in Artificial Intelligence. Springer Berlin Heidelberg, 2001, pp. 63–
73. doi: 10.1007/3-540-45329-6_10. url: https://doi.org/10.1007/3-540-45329-6_10
(cit. on p. 162).

https://openreview.net/forum?id=BJlBSkHtDS
https://doi.org/10.1007/978-1-4613-0261-2_4
https://doi.org/10.1007/978-1-4613-0261-2_4
https://doi.org/10.1007/978-1-4613-0261-2_4
https://doi.org/10.1016/0168-9274(95)00110-7
https://doi.org/10.1016/0168-9274(95)00110-7
https://doi.org/10.1016/0168-9274(95)00110-7
https://doi.org/10.48550/ARXIV.2102.09407
https://arxiv.org/abs/2102.09407
https://proceedings.neurips.cc/paper_files/paper/2020/file/a3f390d88e4c41f2747bfa2f1b5f87db-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a3f390d88e4c41f2747bfa2f1b5f87db-Paper.pdf
https://doi.org/10.1109/icdm.2018.00021
https://doi.org/10.1109/icdm.2018.00021
https://doi.org/10.1109/icdm.2018.00021
https://doi.org/10.1007/978-3-031-20044-1_41
https://doi.org/10.1007/978-3-031-20044-1_41
https://doi.org/10.48550/ARXIV.2106.09693
https://doi.org/10.48550/ARXIV.2106.09693
https://arxiv.org/abs/2106.09693
https://doi.org/10.1109/72.761726
https://doi.org/10.1109/72.761726
https://doi.org/10.1109/ijcnn.2000.861352
https://doi.org/10.1109/ijcnn.2000.861352
https://doi.org/10.1109/ijcnn.2000.861352
https://doi.org/10.1109/melcon.1996.551220
https://doi.org/10.1109/melcon.1996.551220
https://doi.org/10.1109/melcon.1996.551220
https://doi.org/10.1109/ojsp.2020.3039379
https://doi.org/10.1109/ojsp.2020.3039379
https://proceedings.neurips.cc/paper_files/paper/1990/file/94f6d7e04a4d452035300f18b984988c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1990/file/94f6d7e04a4d452035300f18b984988c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1990/file/94f6d7e04a4d452035300f18b984988c-Paper.pdf
https://doi.org/10.1109/tmtt.2022.3210034
https://doi.org/10.1109/tmtt.2022.3210034
https://doi.org/10.1109/tmtt.2022.3210034
https://doi.org/10.36478/ijscomp.2014.377.385
https://doi.org/10.36478/ijscomp.2014.377.385
https://medwelljournals.com/abstract/?doi=ijscomp.2014.377.385
https://medwelljournals.com/abstract/?doi=ijscomp.2014.377.385
https://doi.org/10.1007/3-540-45329-6_10
https://doi.org/10.1007/3-540-45329-6_10

366 bibliography

[1225] M. Solazzi, A. Uncini, and F. Piazza. “Neural equalizer with adaptive multidimensional spline
activation functions.” In: 2000 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Proceedings (Cat. No.00CH37100). IEEE, 2000. doi: 10.1109/icassp.2000.860155.
url: https://doi.org/10.1109/icassp.2000.860155 (cit. on p. 162).

[1226] S. Neumayer, A. Goujon, P. Bohra, and M. Unser. “Approximation of Lipschitz Functions
Using Deep Spline Neural Networks.” In: SIAM Journal on Mathematics of Data Science 5.2 (May
2023), pp. 306–322. issn: 2577-0187. doi: 10.1137/22m1504573. url: http://dx.doi.org/10.1
137/22M1504573 (cit. on pp. 162, 163).

[1227] S. Ducotterd, A. Goujon, P. Bohra, D. Perdios, S. Neumayer, and M. Unser. Improving Lipschitz-
Constrained Neural Networks by Learning Activation Functions. 2022. doi: 10.48550/ARXIV.2210
.16222. url: https://arxiv.org/abs/2210.16222 (cit. on p. 162).

[1228] S. Aziznejad and M. Unser. “Deep Spline Networks with Control of Lipschitz Regularity.”
In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, May 2019. doi: 10.1109/icassp.2019.8682547. url: http://dx.doi.org/10
.1109/ICASSP.2019.8682547 (cit. on p. 162).

[1229] D. Fakhoury, E. Fakhoury, and H. Speleers. “ExSpliNet: An interpretable and expressive
spline-based neural network.” In: Neural Networks 152 (Aug. 2022), pp. 332–346. doi: 10.10
16/j.neunet.2022.04.029. url: https://doi.org/10.1016/j.neunet.2022.04.029 (cit. on
p. 163).

[1230] A. Uncini. “Sound Synthesis by Flexible Activation Function Recurrent Neural Networks.” In:
Neural Nets. Springer Berlin Heidelberg, 2002, pp. 168–177. doi: 10.1007/3-540-45808-5_19.
url: https://doi.org/10.1007/3-540-45808-5_19 (cit. on p. 163).

[1231] N. Kuzuya and T. Nagao. “Designing B-spline-based Highly Efficient Neural Networks
for IoT Applications on Edge Platforms.” In: 2022 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, Oct. 2022. doi: 10.1109/smc53654.2022.9945478. url:
https://doi.org/10.1109/smc53654.2022.9945478 (cit. on p. 163).

[1232] E. López-Rubio, F. Ortega-Zamorano, E. Domínguez, and J. Muñoz-Pérez. “Piecewise Polyno-
mial Activation Functions for Feedforward Neural Networks.” In: Neural Processing Letters 50.1
(Jan. 2019), pp. 121–147. doi: 10.1007/s11063-018-09974-4. url: https://doi.org/10.1007
/s11063-018-09974-4 (cit. on p. 163).

[1233] Q. Su, x. Liao, and L. Carin. “A Probabilistic Framework for Nonlinearities in Stochastic
Neural Networks.” In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30.
Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper_files/paper/2
017/file/35936504a37d53e03abdfbc7318d9ec7-Paper.pdf (cit. on p. 164).

[1234] J. T. Barron. Squareplus: A Softplus-Like Algebraic Rectifier. 2021. doi: 10.48550/ARXIV.2112.116
87. url: https://arxiv.org/abs/2112.11687 (cit. on pp. lii, 164).

[1235] J.-R. Chang and Y.-S. Chen. Batch-normalized Maxout Network in Network. 2015. doi: 10.48550
/ARXIV.1511.02583. url: https://arxiv.org/abs/1511.02583 (cit. on p. 168).

[1236] M. Wang, B. Liu, and H. Foroosh. “Wide Hidden Expansion Layer for Deep Convolutional
Neural Networks.” In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).
IEEE, Mar. 2020. doi: 10.1109/wacv45572.2020.9093436. url: https://doi.org/10.1109/wa
cv45572.2020.9093436 (cit. on pp. 168, 169).

[1237] C. Eisenach, Z. Wang, and H. Liu. “Nonparametrically Learning Activation Functions in Deep
Neural Nets.” In: International Conference on Learning Representations Workshops. 2017. url:
https://openreview.net/forum?id=H1wgawqxl (cit. on pp. l, 168).

[1238] C. J. Vercellino and W. Y. Wang. “Hyperactivations for Activation Function Exploration.” In:
Proceedings of the 3st International Conference on Neural Information Processing Systems. NIPS’17.
Long Beach, California, USA, 2017. url: http://metalearning.ml/2017/papers/metalearn1
7_vercellino.pdf (cit. on pp. 168, 169).

[1239] S. Zhang, Q. Liu, X. Wu, and W. Chen. “A Self-Adaptive and Multiple Activation Function
Neural Network for Facial Expression Recognition.” In: Proceedings of the 2021 5th International
Conference on Electronic Information Technology and Computer Engineering. EITCE 2021. ACM, Oct.
2021. doi: 10.1145/3501409.3501605. url: http://dx.doi.org/10.1145/3501409.3501605
(cit. on p. 168).

[1240] I. Castelli and E. Trentin. “Semi-unsupervised Weighted Maximum-Likelihood Estimation
of Joint Densities for the Co-training of Adaptive Activation Functions.” In: Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pp. 62–71. doi: 10.1007/978-3-642-28258
-4_7. url: https://doi.org/10.1007/978-3-642-28258-4_7 (cit. on p. 168).

https://doi.org/10.1109/icassp.2000.860155
https://doi.org/10.1109/icassp.2000.860155
https://doi.org/10.1137/22m1504573
http://dx.doi.org/10.1137/22M1504573
http://dx.doi.org/10.1137/22M1504573
https://doi.org/10.48550/ARXIV.2210.16222
https://doi.org/10.48550/ARXIV.2210.16222
https://arxiv.org/abs/2210.16222
https://doi.org/10.1109/icassp.2019.8682547
http://dx.doi.org/10.1109/ICASSP.2019.8682547
http://dx.doi.org/10.1109/ICASSP.2019.8682547
https://doi.org/10.1016/j.neunet.2022.04.029
https://doi.org/10.1016/j.neunet.2022.04.029
https://doi.org/10.1016/j.neunet.2022.04.029
https://doi.org/10.1007/3-540-45808-5_19
https://doi.org/10.1007/3-540-45808-5_19
https://doi.org/10.1109/smc53654.2022.9945478
https://doi.org/10.1109/smc53654.2022.9945478
https://doi.org/10.1007/s11063-018-09974-4
https://doi.org/10.1007/s11063-018-09974-4
https://doi.org/10.1007/s11063-018-09974-4
https://proceedings.neurips.cc/paper_files/paper/2017/file/35936504a37d53e03abdfbc7318d9ec7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/35936504a37d53e03abdfbc7318d9ec7-Paper.pdf
https://doi.org/10.48550/ARXIV.2112.11687
https://doi.org/10.48550/ARXIV.2112.11687
https://arxiv.org/abs/2112.11687
https://doi.org/10.48550/ARXIV.1511.02583
https://doi.org/10.48550/ARXIV.1511.02583
https://arxiv.org/abs/1511.02583
https://doi.org/10.1109/wacv45572.2020.9093436
https://doi.org/10.1109/wacv45572.2020.9093436
https://doi.org/10.1109/wacv45572.2020.9093436
https://openreview.net/forum?id=H1wgawqxl
http://metalearning.ml/2017/papers/metalearn17_vercellino.pdf
http://metalearning.ml/2017/papers/metalearn17_vercellino.pdf
https://doi.org/10.1145/3501409.3501605
http://dx.doi.org/10.1145/3501409.3501605
https://doi.org/10.1007/978-3-642-28258-4_7
https://doi.org/10.1007/978-3-642-28258-4_7
https://doi.org/10.1007/978-3-642-28258-4_7

bibliography 367

[1241] I. Castelli and E. Trentin. “Supervised and Unsupervised Co-training of Adaptive Activation
Functions in Neural Nets.” In: Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 52–61. doi: 10.1007/978-3-642-28258-4_6. url: https://doi.org/10.1007/978-3-
642-28258-4_6 (cit. on p. 168).

[1242] I. Castelli and E. Trentin. “Combination of supervised and unsupervised learning for training
the activation functions of neural networks.” In: Pattern Recognition Letters 37 (Feb. 2014),
pp. 178–191. doi: 10.1016/j.patrec.2013.06.013. url: https://doi.org/10.1016/j.patrec
.2013.06.013 (cit. on p. 168).

[1243] A. Apicella, F. Isgrò, and R. Prevete. “A simple and efficient architecture for trainable activation
functions.” In: Neurocomputing 370 (Dec. 2019), pp. 1–15. doi: 10.1016/j.neucom.2019.08.065.
url: https://doi.org/10.1016/j.neucom.2019.08.065 (cit. on pp. 168, 220).

[1244] F. u. A. A. Minhas and A. Asif. Learning Neural Activations. 2019. doi: 10.48550/ARXIV.1912.1
2187. url: https://arxiv.org/abs/1912.12187 (cit. on p. 168).

[1245] H. Klopries and A. Schwung. “Flexible Activation Bag: Learning Activation Functions in
Autoencoder Networks.” In: 2023 IEEE International Conference on Industrial Technology (ICIT).
IEEE, Apr. 2023. doi: 10.1109/icit58465.2023.10143113. url: http://dx.doi.org/10.1109
/ICIT58465.2023.10143113 (cit. on p. 169).

[1246] E. Jang, S. Gu, and B. Poole. “Categorical Reparameterization with Gumbel-Softmax.” In:
International Conference on Learning Representations. 2017. url: https://openreview.net/forum
?id=rkE3y85ee (cit. on p. 169).

[1247] Ö. F. Ertuğrul. “A novel type of activation function in artificial neural networks: Trained
activation function.” In: Neural Networks 99 (Mar. 2018), pp. 148–157. doi: 10.1016/j.neunet
.2018.01.007. url: https://doi.org/10.1016/j.neunet.2018.01.007 (cit. on pp. 169, 170,
179, 199, 203, 204).

[1248] S. Scardapane, S. V. Vaerenbergh, S. Totaro, and A. Uncini. “Kafnets: Kernel-based non-
parametric activation functions for neural networks.” In: Neural Networks 110 (Feb. 2019),
pp. 19–32. doi: 10.1016/j.neunet.2018.11.002. url: https://doi.org/10.1016/j.neunet.2
018.11.002 (cit. on pp. 170, 171, 210, 219).

[1249] S. Kiliçarslan and M. Celik. “KAF+RSigELU: a nonlinear and kernel-based activation function
for deep neural networks.” In: Neural Computing and Applications 34.16 (Apr. 2022), pp. 13909–
13923. doi: 10.1007/s00521-022-07211-7. url: https://doi.org/10.1007/s00521-022-072
11-7 (cit. on p. 171).

[1250] W. Zhang, Z. Han, X. Chen, B. Liu, H. Jia, and Y. Tang. “Fully Kernected Neural Networks.”
In: Journal of Mathematics 2023 (June 2023). Ed. by Q. Wu, pp. 1–9. doi: 10.1155/2023/1539436.
url: https://doi.org/10.1155/2023/1539436 (cit. on p. 171).

[1251] S. Brad. “Enhancing Creativity in Deep Learning Models with SAVE-Inspired Activation
Functions.” In: Towards AI-Aided Invention and Innovation. Springer Nature Switzerland, 2023,
pp. 147–171. isbn: 9783031425325. doi: 10.1007/978-3-031-42532-5_12. url: http://dx.doi
.org/10.1007/978-3-031-42532-5_12 (cit. on pp. 171, 172).

[1252] S. Brad and E. S, tetco. “An Interactive Artificial Intelligence System for Inventive Problem-
Solving.” In: Systematic Innovation Partnerships with Artificial Intelligence and Information Technol-
ogy. Springer International Publishing, 2022, pp. 165–177. isbn: 9783031172885. doi: 10.1007
/978-3-031-17288-5_15. url: http://dx.doi.org/10.1007/978-3-031-17288-5_15 (cit. on
p. 171).

[1253] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber. “Multi-column deep neural network for
traffic sign classification.” In: Neural Networks 32 (Aug. 2012), pp. 333–338. doi: 10.1016/j.neu
net.2012.02.023. url: https://doi.org/10.1016/j.neunet.2012.02.023 (cit. on p. 171).

[1254] S. Kum, C. Oh, and J. Nam. “Melody Extraction on Vocal Segments Using Multi-Column Deep
Neural Networks.” In: ISMIR 2016. 2016 (cit. on p. 171).

[1255] K. T. Phan, T. H. Maul, and T. T. Vu. “A parallel circuit approach for improving the speed and
generalization properties of neural networks.” In: 2015 11th International Conference on Natural
Computation (ICNC). IEEE, Aug. 2015. doi: 10.1109/icnc.2015.7377956. url: https://doi.o
rg/10.1109/icnc.2015.7377956 (cit. on pp. 171, 222).

[1256] K. T. Phan, T. H. Maul, and T. T. Vu. “An Empirical Study on Improving the Speed and
Generalization of Neural Networks Using a Parallel Circuit Approach.” In: International Journal
of Parallel Programming 45.4 (May 2016), pp. 780–796. doi: 10.1007/s10766-016-0435-4. url:
https://doi.org/10.1007/s10766-016-0435-4 (cit. on pp. 171, 222).

[1257] M. V. Narkhede, P. P. Bartakke, and M. S. Sutaone. “A review on weight initialization strategies
for neural networks.” In: Artificial Intelligence Review 55.1 (June 2021), pp. 291–322. issn: 1573-
7462. doi: 10.1007/s10462-021-10033-z. url: http://dx.doi.org/10.1007/s10462-021-10
033-z (cit. on p. 173).

https://doi.org/10.1007/978-3-642-28258-4_6
https://doi.org/10.1007/978-3-642-28258-4_6
https://doi.org/10.1007/978-3-642-28258-4_6
https://doi.org/10.1016/j.patrec.2013.06.013
https://doi.org/10.1016/j.patrec.2013.06.013
https://doi.org/10.1016/j.patrec.2013.06.013
https://doi.org/10.1016/j.neucom.2019.08.065
https://doi.org/10.1016/j.neucom.2019.08.065
https://doi.org/10.48550/ARXIV.1912.12187
https://doi.org/10.48550/ARXIV.1912.12187
https://arxiv.org/abs/1912.12187
https://doi.org/10.1109/icit58465.2023.10143113
http://dx.doi.org/10.1109/ICIT58465.2023.10143113
http://dx.doi.org/10.1109/ICIT58465.2023.10143113
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.1016/j.neunet.2018.01.007
https://doi.org/10.1016/j.neunet.2018.01.007
https://doi.org/10.1016/j.neunet.2018.01.007
https://doi.org/10.1016/j.neunet.2018.11.002
https://doi.org/10.1016/j.neunet.2018.11.002
https://doi.org/10.1016/j.neunet.2018.11.002
https://doi.org/10.1007/s00521-022-07211-7
https://doi.org/10.1007/s00521-022-07211-7
https://doi.org/10.1007/s00521-022-07211-7
https://doi.org/10.1155/2023/1539436
https://doi.org/10.1155/2023/1539436
https://doi.org/10.1007/978-3-031-42532-5_12
http://dx.doi.org/10.1007/978-3-031-42532-5_12
http://dx.doi.org/10.1007/978-3-031-42532-5_12
https://doi.org/10.1007/978-3-031-17288-5_15
https://doi.org/10.1007/978-3-031-17288-5_15
http://dx.doi.org/10.1007/978-3-031-17288-5_15
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1109/icnc.2015.7377956
https://doi.org/10.1109/icnc.2015.7377956
https://doi.org/10.1109/icnc.2015.7377956
https://doi.org/10.1007/s10766-016-0435-4
https://doi.org/10.1007/s10766-016-0435-4
https://doi.org/10.1007/s10462-021-10033-z
http://dx.doi.org/10.1007/s10462-021-10033-z
http://dx.doi.org/10.1007/s10462-021-10033-z

368 bibliography

[1258] A. Daniely, R. Frostig, and Y. Singer. “Toward Deeper Understanding of Neural Networks: The
Power of Initialization and a Dual View on Expressivity.” In: Advances in Neural Information
Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29.
Curran Associates, Inc., 2016. url: https://proceedings.neurips.cc/paper_files/paper/2
016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf (cit. on p. 173).

[1259] C. A. R. de Sousa. “An overview on weight initialization methods for feedforward neural
networks.” In: 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2016.
doi: 10.1109/ijcnn.2016.7727180. url: http://dx.doi.org/10.1109/IJCNN.2016.7727180
(cit. on p. 173).

[1260] M. Skorski, A. Temperoni, and M. Theobald. “Revisiting Weight Initialization of Deep Neural
Networks.” In: Proceedings of The 13th Asian Conference on Machine Learning. Ed. by V. N.
Balasubramanian and I. Tsang. Vol. 157. Proceedings of Machine Learning Research. PMLR, 17–
19 Nov 2021, pp. 1192–1207. url: https://proceedings.mlr.press/v157/skorski21a.html
(cit. on p. 173).

[1261] H. F. Langroudi, C. Merkel, H. Syed, and D. Kudithipudi. “Exploiting Randomness in Deep
Learning Algorithms.” In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE,
July 2019. doi: 10.1109/ijcnn.2019.8852192. url: https://doi.org/10.1109/ijcnn.2019.8
852192 (cit. on p. 173).

[1262] K. He, Y. Wang, and J. Hopcroft. “A Powerful Generative Model Using Random Weights
for the Deep Image Representation.” In: Proceedings of the 30th International Conference on
Neural Information Processing Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc., 2016,
pp. 631–639. isbn: 9781510838819 (cit. on pp. 173, 179, 185, 186).

[1263] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang. “A Survey of Accelerator Architectures for
Deep Neural Networks.” In: Engineering 6.3 (Mar. 2020), pp. 264–274. issn: 2095-8099. doi:
10.1016/j.eng.2020.01.007. url: http://dx.doi.org/10.1016/j.eng.2020.01.007 (cit. on
p. 173).

[1264] Z. Li, Y. Wang, T. Zhi, and T. Chen. “A survey of neural network accelerators.” In: Frontiers of
Computer Science 11.5 (May 2017), pp. 746–761. issn: 2095-2236. doi: 10.1007/s11704-016-615
9-1. url: http://dx.doi.org/10.1007/s11704-016-6159-1 (cit. on p. 173).

[1265] S. Mittal. “A survey of FPGA-based accelerators for convolutional neural networks.” In: Neural
Computing and Applications 32.4 (Oct. 2018), pp. 1109–1139. issn: 1433-3058. doi: 10.1007/s005
21-018-3761-1. url: http://dx.doi.org/10.1007/s00521-018-3761-1 (cit. on p. 173).

[1266] R. Ribani and M. Marengoni. “A Survey of Transfer Learning for Convolutional Neural
Networks.” In: 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials
(SIBGRAPI-T). IEEE, Oct. 2019. doi: 10.1109/sibgrapi-t.2019.00010. url: http://dx.doi.o
rg/10.1109/SIBGRAPI-T.2019.00010 (cit. on p. 173).

[1267] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A Comprehensive Survey
on Transfer Learning. 2019. doi: 10.48550/ARXIV.1911.02685. url: https://arxiv.org/abs/19
11.02685 (cit. on p. 173).

[1268] L. Chato and E. Regentova. “Survey of Transfer Learning Approaches in the Machine Learning
of Digital Health Sensing Data.” In: Journal of Personalized Medicine 13.12 (Dec. 2023), p. 1703.
issn: 2075-4426. doi: 10.3390/jpm13121703. url: http://dx.doi.org/10.3390/jpm13121703
(cit. on p. 173).

[1269] K. Kowsari, M. Heidarysafa, D. E. Brown, K. J. Meimandi, and L. E. Barnes. “RMDL: Random
Multimodel Deep Learning for Classification.” In: Proceedings of the 2nd International Conference
on Information System and Data Mining. ACM, Apr. 2018. doi: 10.1145/3206098.3206111. url:
https://doi.org/10.1145/3206098.3206111 (cit. on pp. 173, 179).

[1270] L. Zhang and P. Suganthan. “A survey of randomized algorithms for training neural networks.”
In: Information Sciences 364-365 (Oct. 2016), pp. 146–155. doi: 10.1016/j.ins.2016.01.039.
url: https://doi.org/10.1016/j.ins.2016.01.039 (cit. on pp. 173, 174).

[1271] E. Ragusa, C. Gianoglio, R. Zunino, and P. Gastaldo. “An approximate randomization-based
neural network with dedicated digital architecture for energy-constrained devices.” In: Neural
Computing and Applications 35.9 (Nov. 2022), pp. 6753–6766. doi: 10.1007/s00521-022-08034-2.
url: https://doi.org/10.1007/s00521-022-08034-2 (cit. on p. 173).

[1272] C. Rössert, P. Dean, and J. Porrill. “At the Edge of Chaos: How Cerebellar Granular Layer
Network Dynamics Can Provide the Basis for Temporal Filters.” In: PLOS Computational Biology
11.10 (Oct. 2015). Ed. by L. J. Graham, e1004515. doi: 10.1371/journal.pcbi.1004515. url:
https://doi.org/10.1371/journal.pcbi.1004515 (cit. on pp. 173, 177).

[1273] K. Tokuda, N. Fujiwara, A. Sudo, and Y. Katori. “Chaos may enhance expressivity in cerebellar
granular layer.” In: Neural Networks 136 (Apr. 2021), pp. 72–86. doi: 10.1016/j.neunet.2020
.12.020. url: https://doi.org/10.1016/j.neunet.2020.12.020 (cit. on pp. 173, 177).

https://proceedings.neurips.cc/paper_files/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://doi.org/10.1109/ijcnn.2016.7727180
http://dx.doi.org/10.1109/IJCNN.2016.7727180
https://proceedings.mlr.press/v157/skorski21a.html
https://doi.org/10.1109/ijcnn.2019.8852192
https://doi.org/10.1109/ijcnn.2019.8852192
https://doi.org/10.1109/ijcnn.2019.8852192
https://doi.org/10.1016/j.eng.2020.01.007
http://dx.doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1007/s11704-016-6159-1
https://doi.org/10.1007/s11704-016-6159-1
http://dx.doi.org/10.1007/s11704-016-6159-1
https://doi.org/10.1007/s00521-018-3761-1
https://doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.1007/s00521-018-3761-1
https://doi.org/10.1109/sibgrapi-t.2019.00010
http://dx.doi.org/10.1109/SIBGRAPI-T.2019.00010
http://dx.doi.org/10.1109/SIBGRAPI-T.2019.00010
https://doi.org/10.48550/ARXIV.1911.02685
https://arxiv.org/abs/1911.02685
https://arxiv.org/abs/1911.02685
https://doi.org/10.3390/jpm13121703
http://dx.doi.org/10.3390/jpm13121703
https://doi.org/10.1145/3206098.3206111
https://doi.org/10.1145/3206098.3206111
https://doi.org/10.1016/j.ins.2016.01.039
https://doi.org/10.1016/j.ins.2016.01.039
https://doi.org/10.1007/s00521-022-08034-2
https://doi.org/10.1007/s00521-022-08034-2
https://doi.org/10.1371/journal.pcbi.1004515
https://doi.org/10.1371/journal.pcbi.1004515
https://doi.org/10.1016/j.neunet.2020.12.020
https://doi.org/10.1016/j.neunet.2020.12.020
https://doi.org/10.1016/j.neunet.2020.12.020

bibliography 369

[1274] B. Swiderski, S. Osowski, P. Olszewski, L. Gielata, M. Slowinska, and I. Lugowska. “Random
Deep Neural Network for Melanoma Recognition.” In: 2021 International Joint Conference on
Neural Networks (IJCNN). IEEE, July 2021. doi: 10.1109/ijcnn52387.2021.9533468. url:
http://dx.doi.org/10.1109/IJCNN52387.2021.9533468 (cit. on p. 173).

[1275] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari. “What’s Hidden
in a Randomly Weighted Neural Network?” In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, June 2020. doi: 10.1109/cvpr42600.2020.01191. url:
https://doi.org/10.1109/cvpr42600.2020.01191 (cit. on pp. 174, 176).

[1276] E. Cambria et al. “Extreme Learning Machines [Trends & Controversies].” In: IEEE Intelligent
Systems 28.6 (Nov. 2013), pp. 30–59. doi: 10.1109/mis.2013.140. url: https://doi.org/10.1
109/mis.2013.140 (cit. on p. 174).

[1277] A. Rosenfeld and J. K. Tsotsos. “Intriguing Properties of Randomly Weighted Networks:
Generalizing While Learning Next to Nothing.” In: 2019 16th Conference on Computer and Robot
Vision (CRV). IEEE, May 2019. doi: 10.1109/crv.2019.00010. url: https://doi.org/10.1109
/crv.2019.00010 (cit. on pp. 174, 176).

[1278] G. Huang, G.-B. Huang, S. Song, and K. You. “Trends in extreme learning machines: A
review.” In: Neural Networks 61 (Jan. 2015), pp. 32–48. doi: 10.1016/j.neunet.2014.10.001.
url: https://doi.org/10.1016/j.neunet.2014.10.001 (cit. on pp. 174–176).

[1279] W. Cao, X. Wang, Z. Ming, and J. Gao. “A review on neural networks with random weights.”
In: Neurocomputing 275 (Jan. 2018), pp. 278–287. doi: 10.1016/j.neucom.2017.08.040. url:
https://doi.org/10.1016/j.neucom.2017.08.040 (cit. on p. 174).

[1280] A. M. Durán-Rosal, A. Durán-Fernández, F. Fernández-Navarro, and M. Carbonero-Ruz.
“A multi-class classification model with parametrized target outputs for randomized-based
feedforward neural networks.” In: Applied Soft Computing 133 (Jan. 2023), p. 109914. doi:
10.1016/j.asoc.2022.109914. url: https://doi.org/10.1016/j.asoc.2022.109914 (cit. on
p. 174).

[1281] Z. Zhang, F. Feng, and T. Huang. “FNNS: An Effective Feedforward Neural Network Scheme
with Random Weights for Processing Large-Scale Datasets.” In: Applied Sciences 12.23 (Dec.
2022), p. 12478. doi: 10.3390/app122312478. url: https://doi.org/10.3390/app122312478
(cit. on pp. 174, 178).

[1282] G. Dudek. “Generating random weights and biases in feedforward neural networks with
random hidden nodes.” In: Information Sciences 481 (May 2019), pp. 33–56. doi: 10.1016/j.ins
.2018.12.063. url: https://doi.org/10.1016/j.ins.2018.12.063 (cit. on p. 174).

[1283] B. Widrow, A. Greenblatt, Y. Kim, and D. Park. “The No-Prop algorithm: A new learning
algorithm for multilayer neural networks.” In: Neural Networks 37 (Jan. 2013), pp. 182–188. doi:
10.1016/j.neunet.2012.09.020. url: https://doi.org/10.1016/j.neunet.2012.09.020
(cit. on pp. 174, 176).

[1284] J. Brauer. “Important Milestones in the Study of Neural Networks with Random Weights.” In:
(Nov. 2021). doi: 10.36227/techrxiv.16903219.v1. url: https://doi.org/10.36227/techrx
iv.16903219.v1 (cit. on p. 174).

[1285] S. Scardapane and D. Wang. “Randomness in neural networks: an overview.” In: Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7.2 (Feb. 2017), e1200. doi:
10.1002/widm.1200. url: https://doi.org/10.1002/widm.1200 (cit. on pp. 174, 177, 179).

[1286] C. Gallicchio and S. Scardapane. “Deep Randomized Neural Networks.” In: Recent Trends in
Learning From Data. Springer International Publishing, 2020, pp. 43–68. doi: 10.1007/978-3-0
30-43883-8_3. url: https://doi.org/10.1007/978-3-030-43883-8_3 (cit. on p. 174).

[1287] M. Lukoševičius and H. Jaeger. “Reservoir computing approaches to recurrent neural network
training.” In: Computer Science Review 3.3 (Aug. 2009), pp. 127–149. doi: 10.1016/j.cosrev.20
09.03.005. url: https://doi.org/10.1016/j.cosrev.2009.03.005 (cit. on pp. 174, 177).

[1288] J. Tapson and A. van Schaik. “Learning the pseudoinverse solution to network weights.”
In: Neural Networks 45 (Sept. 2013), pp. 94–100. doi: 10.1016/j.neunet.2013.02.008. url:
https://doi.org/10.1016/j.neunet.2013.02.008 (cit. on p. 174).

[1289] M. Rigotti. “Internal representation of task rules by recurrent dynamics: the importance of
the diversity of neural responses.” In: Frontiers in Computational Neuroscience 4 (2010). doi:
10.3389/fncom.2010.00024. url: https://doi.org/10.3389/fncom.2010.00024 (cit. on
p. 174).

[1290] A. Goudarzi and C. Teuscher. “Reservoir Computing.” In: Proceedings of the 3rd ACM Interna-
tional Conference on Nanoscale Computing and Communication. ACM, Sept. 2016. doi: 10.1145/29
67446.2967448. url: https://doi.org/10.1145/2967446.2967448 (cit. on pp. 174, 177–179).

https://doi.org/10.1109/ijcnn52387.2021.9533468
http://dx.doi.org/10.1109/IJCNN52387.2021.9533468
https://doi.org/10.1109/cvpr42600.2020.01191
https://doi.org/10.1109/cvpr42600.2020.01191
https://doi.org/10.1109/mis.2013.140
https://doi.org/10.1109/mis.2013.140
https://doi.org/10.1109/mis.2013.140
https://doi.org/10.1109/crv.2019.00010
https://doi.org/10.1109/crv.2019.00010
https://doi.org/10.1109/crv.2019.00010
https://doi.org/10.1016/j.neunet.2014.10.001
https://doi.org/10.1016/j.neunet.2014.10.001
https://doi.org/10.1016/j.neucom.2017.08.040
https://doi.org/10.1016/j.neucom.2017.08.040
https://doi.org/10.1016/j.asoc.2022.109914
https://doi.org/10.1016/j.asoc.2022.109914
https://doi.org/10.3390/app122312478
https://doi.org/10.3390/app122312478
https://doi.org/10.1016/j.ins.2018.12.063
https://doi.org/10.1016/j.ins.2018.12.063
https://doi.org/10.1016/j.ins.2018.12.063
https://doi.org/10.1016/j.neunet.2012.09.020
https://doi.org/10.1016/j.neunet.2012.09.020
https://doi.org/10.36227/techrxiv.16903219.v1
https://doi.org/10.36227/techrxiv.16903219.v1
https://doi.org/10.36227/techrxiv.16903219.v1
https://doi.org/10.1002/widm.1200
https://doi.org/10.1002/widm.1200
https://doi.org/10.1007/978-3-030-43883-8_3
https://doi.org/10.1007/978-3-030-43883-8_3
https://doi.org/10.1007/978-3-030-43883-8_3
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.neunet.2013.02.008
https://doi.org/10.1016/j.neunet.2013.02.008
https://doi.org/10.3389/fncom.2010.00024
https://doi.org/10.3389/fncom.2010.00024
https://doi.org/10.1145/2967446.2967448
https://doi.org/10.1145/2967446.2967448
https://doi.org/10.1145/2967446.2967448

370 bibliography

[1291] Y.-H. Pao and Y. Takefuji. “Functional-link net computing: theory, system architecture, and
functionalities.” In: Computer 25.5 (May 1992), pp. 76–79. doi: 10 . 1109 / 2 . 144401. url:
https://doi.org/10.1109/2.144401 (cit. on p. 174).

[1292] B. Igelnik and Y.-H. Pao. “Stochastic choice of basis functions in adaptive function approxima-
tion and the functional-link net.” In: IEEE Transactions on Neural Networks 6.6 (1995), pp. 1320–
1329. doi: 10.1109/72.471375. url: https://doi.org/10.1109/72.471375 (cit. on p. 174).

[1293] Y.-H. Pao, G.-H. Park, and D. J. Sobajic. “Learning and generalization characteristics of the
random vector functional-link net.” In: Neurocomputing 6.2 (Apr. 1994), pp. 163–180. doi:
10.1016/0925-2312(94)90053-1. url: https://doi.org/10.1016/0925-2312(94)90053-1
(cit. on p. 174).

[1294] Y.-H. Pao and S. M. Phillips. “The functional link net and learning optimal control.” In:
Neurocomputing 9.2 (Oct. 1995), pp. 149–164. doi: 10.1016/0925- 2312(95)00066- f. url:
https://doi.org/10.1016/0925-2312(95)00066-f (cit. on p. 174).

[1295] L. Zhang and P. Suganthan. “A comprehensive evaluation of random vector functional link
networks.” In: Information Sciences 367-368 (Nov. 2016), pp. 1094–1105. doi: 10.1016/j.ins.20
15.09.025. url: https://doi.org/10.1016/j.ins.2015.09.025 (cit. on p. 174).

[1296] Q. Tian, W. Zhao, Y. Wei, and L. Pang. “Thermal Environment Prediction for Metro Stations
Based on an RVFL Neural Network.” In: Algorithms 11.4 (Apr. 2018), p. 49. doi: 10.3390/a110
40049. url: https://doi.org/10.3390/a11040049 (cit. on p. 174).

[1297] S. Scardapane, D. Comminiello, M. Scarpiniti, and A. Uncini. “A semi-supervised random
vector functional-link network based on the transductive framework.” In: Information Sciences
364-365 (Oct. 2016), pp. 156–166. doi: 10.1016/j.ins.2015.07.060. url: https://doi.org/10
.1016/j.ins.2015.07.060 (cit. on p. 174).

[1298] Q. Shi, P. N. Suganthan, and J. D. Ser. “Jointly optimized ensemble deep random vector
functional link network for semi-supervised classification.” In: Engineering Applications of
Artificial Intelligence 115 (Oct. 2022), p. 105214. doi: 10.1016/j.engappai.2022.105214. url:
https://doi.org/10.1016/j.engappai.2022.105214 (cit. on p. 174).

[1299] J. He, X. Li, P. Liu, L. Wang, H. Zhou, J. Wang, and R. Tang. “Ensemble deep random vector
functional link for self-supervised direction-of-arrival estimation.” In: Engineering Applications
of Artificial Intelligence 120 (Apr. 2023), p. 105831. doi: 10.1016/j.engappai.2023.105831. url:
https://doi.org/10.1016/j.engappai.2023.105831 (cit. on p. 174).

[1300] S. Scardapane, D. Wang, M. Panella, and A. Uncini. “Distributed learning for Random Vector
Functional-Link networks.” In: Information Sciences 301 (Apr. 2015), pp. 271–284. doi: 10.1016
/j.ins.2015.01.007. url: https://doi.org/10.1016/j.ins.2015.01.007 (cit. on p. 174).

[1301] D. Husmeier and J. G. Taylor. “Neural Networks for Predicting Conditional Probability
Densities: Improved Training Scheme Combining EM and RVFL.” In: Neural Networks 11.1
(Jan. 1998), pp. 89–116. doi: 10.1016/s0893-6080(97)00089-0. url: https://doi.org/10.101
6/s0893-6080(97)00089-0 (cit. on p. 174).

[1302] B. B. Hazarika and D. Gupta. “Random vector functional link with ϵ-insensitive Huber loss
function for biomedical data classification.” In: Computer Methods and Programs in Biomedicine
215 (Mar. 2022), p. 106622. doi: 10.1016/j.cmpb.2022.106622. url: https://doi.org/10.101
6/j.cmpb.2022.106622 (cit. on p. 174).

[1303] Y. Zhang, J. Wu, Z. Cai, B. Du, and P. S. Yu. “An unsupervised parameter learning model for
RVFL neural network.” In: Neural Networks 112 (Apr. 2019), pp. 85–97. doi: 10.1016/j.neunet
.2019.01.007. url: https://doi.org/10.1016/j.neunet.2019.01.007 (cit. on p. 174).

[1304] I. Majumder, P. K. Dash, and R. Bisoi. “Short-term solar power prediction using multi-
kernel-based random vector functional link with water cycle algorithm-based parameter
optimization.” In: Neural Computing and Applications 32.12 (June 2019), pp. 8011–8029. doi:
10.1007/s00521-019-04290-x. url: https://doi.org/10.1007/s00521-019-04290-x (cit. on
p. 174).

[1305] X. Qiu, P. N. Suganthan, and G. A. Amaratunga. “Ensemble incremental learning Random
Vector Functional Link network for short-term electric load forecasting.” In: Knowledge-Based
Systems 145 (Apr. 2018), pp. 182–196. doi: 10.1016/j.knosys.2018.01.015. url: https://doi
.org/10.1016/j.knosys.2018.01.015 (cit. on p. 174).

[1306] B. B. Hazarika and D. Gupta. “Modelling and forecasting of COVID-19 spread using wavelet-
coupled random vector functional link networks.” In: Applied Soft Computing 96 (Nov. 2020),
p. 106626. doi: 10.1016/j.asoc.2020.106626. url: https://doi.org/10.1016/j.asoc.2020
.106626 (cit. on p. 174).

[1307] L. Zhang and P. N. Suganthan. “Visual Tracking With Convolutional Random Vector Functional
Link Network.” In: IEEE Transactions on Cybernetics 47.10 (Oct. 2017), pp. 3243–3253. doi: 10.1
109/tcyb.2016.2588526. url: https://doi.org/10.1109/tcyb.2016.2588526 (cit. on p. 174).

https://doi.org/10.1109/2.144401
https://doi.org/10.1109/2.144401
https://doi.org/10.1109/72.471375
https://doi.org/10.1109/72.471375
https://doi.org/10.1016/0925-2312(94)90053-1
https://doi.org/10.1016/0925-2312(94)90053-1
https://doi.org/10.1016/0925-2312(95)00066-f
https://doi.org/10.1016/0925-2312(95)00066-f
https://doi.org/10.1016/j.ins.2015.09.025
https://doi.org/10.1016/j.ins.2015.09.025
https://doi.org/10.1016/j.ins.2015.09.025
https://doi.org/10.3390/a11040049
https://doi.org/10.3390/a11040049
https://doi.org/10.3390/a11040049
https://doi.org/10.1016/j.ins.2015.07.060
https://doi.org/10.1016/j.ins.2015.07.060
https://doi.org/10.1016/j.ins.2015.07.060
https://doi.org/10.1016/j.engappai.2022.105214
https://doi.org/10.1016/j.engappai.2022.105214
https://doi.org/10.1016/j.engappai.2023.105831
https://doi.org/10.1016/j.engappai.2023.105831
https://doi.org/10.1016/j.ins.2015.01.007
https://doi.org/10.1016/j.ins.2015.01.007
https://doi.org/10.1016/j.ins.2015.01.007
https://doi.org/10.1016/s0893-6080(97)00089-0
https://doi.org/10.1016/s0893-6080(97)00089-0
https://doi.org/10.1016/s0893-6080(97)00089-0
https://doi.org/10.1016/j.cmpb.2022.106622
https://doi.org/10.1016/j.cmpb.2022.106622
https://doi.org/10.1016/j.cmpb.2022.106622
https://doi.org/10.1016/j.neunet.2019.01.007
https://doi.org/10.1016/j.neunet.2019.01.007
https://doi.org/10.1016/j.neunet.2019.01.007
https://doi.org/10.1007/s00521-019-04290-x
https://doi.org/10.1007/s00521-019-04290-x
https://doi.org/10.1016/j.knosys.2018.01.015
https://doi.org/10.1016/j.knosys.2018.01.015
https://doi.org/10.1016/j.knosys.2018.01.015
https://doi.org/10.1016/j.asoc.2020.106626
https://doi.org/10.1016/j.asoc.2020.106626
https://doi.org/10.1016/j.asoc.2020.106626
https://doi.org/10.1109/tcyb.2016.2588526
https://doi.org/10.1109/tcyb.2016.2588526
https://doi.org/10.1109/tcyb.2016.2588526

bibliography 371

[1308] K.-K. Xu, H.-X. Li, and H.-D. Yang. “Kernel-Based Random Vector Functional-Link Network
for Fast Learning of Spatiotemporal Dynamic Processes.” In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 49.5 (May 2019), pp. 1016–1026. doi: 10.1109/tsmc.2017.2694018.
url: https://doi.org/10.1109/tsmc.2017.2694018 (cit. on p. 174).

[1309] W. Li, D. Wang, and T. Chai. “Multisource Data Ensemble Modeling for Clinker Free Lime
Content Estimate in Rotary Kiln Sintering Processes.” In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 45.2 (Feb. 2015), pp. 303–314. doi: 10.1109/tsmc.2014.2332305. url:
https://doi.org/10.1109/tsmc.2014.2332305 (cit. on p. 174).

[1310] P. Zhou, Y. Lv, H. Wang, and T. Chai. “Data-Driven Robust RVFLNs Modeling of a Blast
Furnace Iron-Making Process Using Cauchy Distribution Weighted M-Estimation.” In: IEEE
Transactions on Industrial Electronics 64.9 (Sept. 2017), pp. 7141–7151. doi: 10.1109/tie.2017.2
686369. url: https://doi.org/10.1109/tie.2017.2686369 (cit. on p. 174).

[1311] G. H. Park and Y. H. Pao. “Unconstrained word-based approach for off-line script recognition
using density-based random-vector functional-link net.” In: Neurocomputing 31.1-4 (Mar. 2000),
pp. 45–65. doi: 10.1016/s0925-2312(99)00149-6. url: https://doi.org/10.1016/s0925-23
12(99)00149-6 (cit. on p. 174).

[1312] M. Pratama, P. P. Angelov, E. Lughofer, and M. J. Er. “Parsimonious random vector functional
link network for data streams.” In: Information Sciences 430-431 (Mar. 2018), pp. 519–537. doi:
10.1016/j.ins.2017.11.050. url: https://doi.org/10.1016/j.ins.2017.11.050 (cit. on
p. 174).

[1313] M. Alhamdoosh and D. Wang. “Fast decorrelated neural network ensembles with random
weights.” In: Information Sciences 264 (Apr. 2014), pp. 104–117. doi: 10.1016/j.ins.2013.12.0
16. url: https://doi.org/10.1016/j.ins.2013.12.016 (cit. on pp. 174, 175).

[1314] F. Cao, D. Wang, H. Zhu, and Y. Wang. “An iterative learning algorithm for feedforward
neural networks with random weights.” In: Information Sciences 328 (Jan. 2016), pp. 546–557.
doi: 10.1016/j.ins.2015.09.002. url: https://doi.org/10.1016/j.ins.2015.09.002
(cit. on p. 175).

[1315] W. Schmidt, M. Kraaijveld, and R. Duin. “Feedforward neural networks with random weights.”
In: Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B:
Pattern Recognition Methodology and Systems. IEEE Comput. Soc. Press, 1992. doi: 10.1109/icp
r.1992.201708. url: http://dx.doi.org/10.1109/ICPR.1992.201708 (cit. on p. 175).

[1316] D. Wang and M. Li. “Stochastic Configuration Networks: Fundamentals and Algorithms.” In:
IEEE Transactions on Cybernetics 47.10 (Oct. 2017), pp. 3466–3479. doi: 10.1109/tcyb.2017.273
4043. url: https://doi.org/10.1109/tcyb.2017.2734043 (cit. on p. 175).

[1317] Z. Tian and H. Zhang. “Stochastic configuration networks with fast implementations.” In:
Review of Scientific Instruments 92.12 (Dec. 2021), p. 125109. doi: 10.1063/5.0077044. url:
https://doi.org/10.1063/5.0077044 (cit. on p. 175).

[1318] W. Wang and D. Wang. “Prediction of component concentrations in sodium aluminate liquor
using stochastic configuration networks.” In: Neural Computing and Applications 32.17 (Feb.
2020), pp. 13625–13638. doi: 10.1007/s00521-020-04771-4. url: https://doi.org/10.1007
/s00521-020-04771-4 (cit. on p. 175).

[1319] W. Li, Z. Zeng, H. Qu, and C. Sun. “A Novel Fiber Intrusion Signal Recognition Method
for OFPS Based on SCN With Dropout.” In: Journal of Lightwave Technology 37.20 (Oct. 2019),
pp. 5221–5230. doi: 10.1109/jlt.2019.2930624. url: https://doi.org/10.1109/jlt.2019.2
930624 (cit. on p. 175).

[1320] Y. Zhao, X. Deng, and S. Li. “A nonlinear industrial soft sensor modeling method based on
locality preserving stochastic configuration network with utilizing unlabeled samples.” In: ISA
Transactions (Apr. 2023). doi: 10.1016/j.isatra.2023.04.012. url: https://doi.org/10.101
6/j.isatra.2023.04.012 (cit. on p. 175).

[1321] K. Li, W. Wang, and S. Lin. “Soft measurement of ammonia nitrogen concentration based on
GA-SCN.” In: 2018 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN). IEEE,
Dec. 2018. doi: 10.1109/ispce-cn.2018.8805767. url: https://doi.org/10.1109/ispce-cn
.2018.8805767 (cit. on p. 175).

[1322] W. Wang, K. Li, and G. Guo. “Seawater Ammonia Nitrogen Concentration Modelling via
RS-SCN.” In: 2019 Chinese Automation Congress (CAC). IEEE, Nov. 2019. doi: 10.1109/cac4863
3.2019.8996654. url: https://doi.org/10.1109/cac48633.2019.8996654 (cit. on p. 175).

[1323] S. Li, X. Deng, P. Wang, and Y. Cao. “A Pruning Regularization Stochastic Configuration
Network Algorithm Based on Node Contribution and Its Application in Soft Sensor Develop-
ment.” In: 2022 34th Chinese Control and Decision Conference (CCDC). IEEE, Aug. 2022. doi: 10.1
109/ccdc55256.2022.10033864. url: https://doi.org/10.1109/ccdc55256.2022.10033864
(cit. on p. 175).

https://doi.org/10.1109/tsmc.2017.2694018
https://doi.org/10.1109/tsmc.2017.2694018
https://doi.org/10.1109/tsmc.2014.2332305
https://doi.org/10.1109/tsmc.2014.2332305
https://doi.org/10.1109/tie.2017.2686369
https://doi.org/10.1109/tie.2017.2686369
https://doi.org/10.1109/tie.2017.2686369
https://doi.org/10.1016/s0925-2312(99)00149-6
https://doi.org/10.1016/s0925-2312(99)00149-6
https://doi.org/10.1016/s0925-2312(99)00149-6
https://doi.org/10.1016/j.ins.2017.11.050
https://doi.org/10.1016/j.ins.2017.11.050
https://doi.org/10.1016/j.ins.2013.12.016
https://doi.org/10.1016/j.ins.2013.12.016
https://doi.org/10.1016/j.ins.2013.12.016
https://doi.org/10.1016/j.ins.2015.09.002
https://doi.org/10.1016/j.ins.2015.09.002
https://doi.org/10.1109/icpr.1992.201708
https://doi.org/10.1109/icpr.1992.201708
http://dx.doi.org/10.1109/ICPR.1992.201708
https://doi.org/10.1109/tcyb.2017.2734043
https://doi.org/10.1109/tcyb.2017.2734043
https://doi.org/10.1109/tcyb.2017.2734043
https://doi.org/10.1063/5.0077044
https://doi.org/10.1063/5.0077044
https://doi.org/10.1007/s00521-020-04771-4
https://doi.org/10.1007/s00521-020-04771-4
https://doi.org/10.1007/s00521-020-04771-4
https://doi.org/10.1109/jlt.2019.2930624
https://doi.org/10.1109/jlt.2019.2930624
https://doi.org/10.1109/jlt.2019.2930624
https://doi.org/10.1016/j.isatra.2023.04.012
https://doi.org/10.1016/j.isatra.2023.04.012
https://doi.org/10.1016/j.isatra.2023.04.012
https://doi.org/10.1109/ispce-cn.2018.8805767
https://doi.org/10.1109/ispce-cn.2018.8805767
https://doi.org/10.1109/ispce-cn.2018.8805767
https://doi.org/10.1109/cac48633.2019.8996654
https://doi.org/10.1109/cac48633.2019.8996654
https://doi.org/10.1109/cac48633.2019.8996654
https://doi.org/10.1109/ccdc55256.2022.10033864
https://doi.org/10.1109/ccdc55256.2022.10033864
https://doi.org/10.1109/ccdc55256.2022.10033864

372 bibliography

[1324] Q. Zhang, W. Li, H. Li, and J. Wang. “Self-blast state detection of glass insulators based on
stochastic configuration networks and a feedback transfer learning mechanism.” In: Information
Sciences 522 (June 2020), pp. 259–274. doi: 10.1016/j.ins.2020.02.058. url: https://doi.or
g/10.1016/j.ins.2020.02.058 (cit. on p. 175).

[1325] W. Li, Q. Zhang, D. Wang, W. Sun, and Q. Li. “Stochastic configuration networks for self-blast
state recognition of glass insulators with adaptive depth and multi-scale representation.”
In: Information Sciences 604 (Aug. 2022), pp. 61–79. doi: 10.1016/j.ins.2022.04.061. url:
https://doi.org/10.1016/j.ins.2022.04.061 (cit. on p. 175).

[1326] W. Li, Y. Deng, M. Ding, D. Wang, W. Sun, and Q. Li. “Industrial data classification using
stochastic configuration networks with self-attention learning features.” In: Neural Computing
and Applications 34.24 (Aug. 2022), pp. 22047–22069. doi: 10.1007/s00521-022-07657-9. url:
https://doi.org/10.1007/s00521-022-07657-9 (cit. on p. 175).

[1327] Y. Han, X. Song, K. Li, and X. Yan. “Hybrid modeling for submergence depth of the pumping
well using stochastic configuration networks with random sampling.” In: Journal of Petroleum
Science and Engineering 208 (Jan. 2022), p. 109423. doi: 10.1016/j.petrol.2021.109423. url:
https://doi.org/10.1016/j.petrol.2021.109423 (cit. on p. 175).

[1328] F. Chen, W. Tian, L. Zhang, J. Li, C. Ding, D. Chen, W. Wang, F. Wu, and B. Wang. “Fault
Diagnosis of Power Transformer Based on Time-Shift Multiscale Bubble Entropy and Stochastic
Configuration Network.” In: Entropy 24.8 (Aug. 2022), p. 1135. doi: 10.3390/e24081135. url:
https://doi.org/10.3390/e24081135 (cit. on p. 175).

[1329] C. Huang, M. Li, and D. Wang. “Stochastic configuration network ensembles with selective
base models.” In: Neural Networks 137 (May 2021), pp. 106–118. doi: 10.1016/j.neunet.2021
.01.011. url: https://doi.org/10.1016/j.neunet.2021.01.011 (cit. on p. 175).

[1330] C. Zhang, S. Ding, and W. Du. “Broad stochastic configuration network for regression.” In:
Knowledge-Based Systems 243 (May 2022), p. 108403. doi: 10.1016/j.knosys.2022.108403. url:
https://doi.org/10.1016/j.knosys.2022.108403 (cit. on p. 175).

[1331] D. Wang and C. Cui. “Stochastic configuration networks ensemble with heterogeneous features
for large-scale data analytics.” In: Information Sciences 417 (Nov. 2017), pp. 55–71. doi: 10.1016
/j.ins.2017.07.003. url: https://doi.org/10.1016/j.ins.2017.07.003 (cit. on p. 175).

[1332] J. Liu, Y. Liu, and Q. Zhang. “A Gradient-Based Particle-Bat Algorithm for Stochastic Configu-
ration Network.” In: Applied Sciences 13.5 (Feb. 2023), p. 2878. doi: 10.3390/app13052878. url:
https://doi.org/10.3390/app13052878 (cit. on p. 175).

[1333] J. Lu and J. Ding. “Mixed-Distribution-Based Robust Stochastic Configuration Networks for
Prediction Interval Construction.” In: IEEE Transactions on Industrial Informatics 16.8 (Aug.
2020), pp. 5099–5109. doi: 10.1109/tii.2019.2954351. url: https://doi.org/10.1109/tii
.2019.2954351 (cit. on p. 175).

[1334] W. Dai, C. Ning, S. Pei, S. Zhu, and X. Wang. “Orthogonal stochastic configuration networks
with adaptive construction parameter for data analytics.” In: Industrial Artificial Intelligence 1.1
(Mar. 2023). doi: 10.1007/s44244-023-00004-4. url: https://doi.org/10.1007/s44244-023
-00004-4 (cit. on p. 175).

[1335] J. Guo, A. Yan, and J. Tang. “A robust transfer deep stochastic configuration network for
industrial data modeling.” In: Industrial Artificial Intelligence 1.1 (Mar. 2023). doi: 10.1007/s44
244-023-00003-5. url: https://doi.org/10.1007/s44244-023-00003-5 (cit. on p. 175).

[1336] M. Li, C. Huang, and D. Wang. “Robust stochastic configuration networks with maximum
correntropy criterion for uncertain data regression.” In: Information Sciences 473 (Jan. 2019),
pp. 73–86. doi: 10.1016/j.ins.2018.09.026. url: https://doi.org/10.1016/j.ins.2018.09
.026 (cit. on p. 175).

[1337] D. Wang and M. Li. “Robust stochastic configuration networks with kernel density estimation
for uncertain data regression.” In: Information Sciences 412-413 (Oct. 2017), pp. 210–222. doi:
10.1016/j.ins.2017.05.047. url: https://doi.org/10.1016/j.ins.2017.05.047 (cit. on
p. 175).

[1338] H. Wu, A. Zhang, Y. Han, J. Nan, and K. Li. “Fast stochastic configuration network based on
an improved sparrow search algorithm for fire flame recognition.” In: Knowledge-Based Systems
245 (June 2022), p. 108626. doi: 10.1016/j.knosys.2022.108626. url: https://doi.org/10.1
016/j.knosys.2022.108626 (cit. on p. 175).

[1339] W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, and X. Wang. “Bidirectional stochastic configuration
network for regression problems.” In: Neural Networks 140 (Aug. 2021), pp. 237–246. doi:
10.1016/j.neunet.2021.03.016. url: https://doi.org/10.1016/j.neunet.2021.03.016
(cit. on p. 175).

[1340] C. Zhang and S. Ding. “A stochastic configuration network based on chaotic sparrow search
algorithm.” In: Knowledge-Based Systems 220 (May 2021), p. 106924. doi: 10.1016/j.knosys.20
21.106924. url: https://doi.org/10.1016/j.knosys.2021.106924 (cit. on p. 175).

https://doi.org/10.1016/j.ins.2020.02.058
https://doi.org/10.1016/j.ins.2020.02.058
https://doi.org/10.1016/j.ins.2020.02.058
https://doi.org/10.1016/j.ins.2022.04.061
https://doi.org/10.1016/j.ins.2022.04.061
https://doi.org/10.1007/s00521-022-07657-9
https://doi.org/10.1007/s00521-022-07657-9
https://doi.org/10.1016/j.petrol.2021.109423
https://doi.org/10.1016/j.petrol.2021.109423
https://doi.org/10.3390/e24081135
https://doi.org/10.3390/e24081135
https://doi.org/10.1016/j.neunet.2021.01.011
https://doi.org/10.1016/j.neunet.2021.01.011
https://doi.org/10.1016/j.neunet.2021.01.011
https://doi.org/10.1016/j.knosys.2022.108403
https://doi.org/10.1016/j.knosys.2022.108403
https://doi.org/10.1016/j.ins.2017.07.003
https://doi.org/10.1016/j.ins.2017.07.003
https://doi.org/10.1016/j.ins.2017.07.003
https://doi.org/10.3390/app13052878
https://doi.org/10.3390/app13052878
https://doi.org/10.1109/tii.2019.2954351
https://doi.org/10.1109/tii.2019.2954351
https://doi.org/10.1109/tii.2019.2954351
https://doi.org/10.1007/s44244-023-00004-4
https://doi.org/10.1007/s44244-023-00004-4
https://doi.org/10.1007/s44244-023-00004-4
https://doi.org/10.1007/s44244-023-00003-5
https://doi.org/10.1007/s44244-023-00003-5
https://doi.org/10.1007/s44244-023-00003-5
https://doi.org/10.1016/j.ins.2018.09.026
https://doi.org/10.1016/j.ins.2018.09.026
https://doi.org/10.1016/j.ins.2018.09.026
https://doi.org/10.1016/j.ins.2017.05.047
https://doi.org/10.1016/j.ins.2017.05.047
https://doi.org/10.1016/j.knosys.2022.108626
https://doi.org/10.1016/j.knosys.2022.108626
https://doi.org/10.1016/j.knosys.2022.108626
https://doi.org/10.1016/j.neunet.2021.03.016
https://doi.org/10.1016/j.neunet.2021.03.016
https://doi.org/10.1016/j.knosys.2021.106924
https://doi.org/10.1016/j.knosys.2021.106924
https://doi.org/10.1016/j.knosys.2021.106924

bibliography 373

[1341] D. Wang and M. Li. “Deep Stochastic Configuration Networks with Universal Approximation
Property.” In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2018.
doi: 10.1109/ijcnn.2018.8489695. url: https://doi.org/10.1109/ijcnn.2018.8489695
(cit. on p. 175).

[1342] C. Zhang, S. Ding, and L. Ding. “An AdaBoost Based - Deep Stochastic Configuration
Network.” In: IFIP Advances in Information and Communication Technology. Springer International
Publishing, 2022, pp. 3–14. doi: 10.1007/978-3-031-03948-5_1. url: https://doi.org/10.1
007/978-3-031-03948-5_1 (cit. on p. 175).

[1343] H. Zheng, D. Wang, and W. Zhou. “A modified Bayesian neural network integrating stochastic
configuration network and ensemble learning strategy.” In: 2021 8th International Conference on
Information, Cybernetics, and Computational Social Systems (ICCSS). IEEE, Dec. 2021. doi: 10.1
109/iccss53909.2021.9721995. url: https://doi.org/10.1109/iccss53909.2021.9721995
(cit. on p. 175).

[1344] Y. Gao, F. Luan, J. Pan, X. Li, and Y. He. “FPGA-Based Implementation of Stochastic Con-
figuration Networks for Regression Prediction.” In: Sensors 20.15 (July 2020), p. 4191. doi:
10.3390/s20154191. url: https://doi.org/10.3390/s20154191 (cit. on p. 175).

[1345] P. A. Alaba, S. I. Popoola, L. Olatomiwa, M. B. Akanle, O. S. Ohunakin, E. Adetiba, O. D. Alex,
A. A. Atayero, and W. M. A. W. Daud. “Towards a more efficient and cost-sensitive extreme
learning machine: A state-of-the-art review of recent trend.” In: Neurocomputing 350 (July 2019),
pp. 70–90. doi: 10.1016/j.neucom.2019.03.086. url: https://doi.org/10.1016/j.neucom.2
019.03.086 (cit. on pp. 175, 176).

[1346] G.-B. Huang, L. Chen, and C.-K. Siew. “Universal Approximation Using Incremental Construc-
tive Feedforward Networks With Random Hidden Nodes.” In: IEEE Transactions on Neural
Networks 17.4 (July 2006), pp. 879–892. doi: 10.1109/tnn.2006.875977. url: https://doi.org
/10.1109/tnn.2006.875977 (cit. on p. 175).

[1347] R. Zhang, Y. Lan, G.-B. Huang, and Z.-B. Xu. “Universal Approximation of Extreme Learning
Machine With Adaptive Growth of Hidden Nodes.” In: IEEE Transactions on Neural Networks
and Learning Systems 23.2 (Feb. 2012), pp. 365–371. doi: 10.1109/tnnls.2011.2178124. url:
https://doi.org/10.1109/tnnls.2011.2178124 (cit. on p. 175).

[1348] G. Huang, S. Song, J. N. D. Gupta, and C. Wu. “Semi-Supervised and Unsupervised Extreme
Learning Machines.” In: IEEE Transactions on Cybernetics 44.12 (Dec. 2014), pp. 2405–2417. doi:
10.1109/tcyb.2014.2307349. url: https://doi.org/10.1109/tcyb.2014.2307349 (cit. on
p. 175).

[1349] E. Malar, A. Kandaswamy, D. Chakravarthy, and A. G. Dharan. “A novel approach for
detection and classification of mammographic microcalcifications using wavelet analysis and
extreme learning machine.” In: Computers in Biology and Medicine 42.9 (Sept. 2012), pp. 898–905.
doi: 10.1016/j.compbiomed.2012.07.001. url: https://doi.org/10.1016/j.compbiomed.20
12.07.001 (cit. on p. 175).

[1350] W. Jun, W. Shitong, and F.-l. Chung. “Positive and negative fuzzy rule system, extreme learning
machine and image classification.” In: International Journal of Machine Learning and Cybernetics
2.4 (June 2011), pp. 261–271. doi: 10.1007/s13042-011-0024-1. url: https://doi.org/10.10
07/s13042-011-0024-1 (cit. on p. 175).

[1351] W. Zong and G.-B. Huang. “Face recognition based on extreme learning machine.” In: Neu-
rocomputing 74.16 (Sept. 2011), pp. 2541–2551. doi: 10.1016/j.neucom.2010.12.041. url:
https://doi.org/10.1016/j.neucom.2010.12.041 (cit. on p. 175).

[1352] A. Baradarani, Q. J. Wu, and M. Ahmadi. “An efficient illumination invariant face recognition
framework via illumination enhancement and DD-DTWT filtering.” In: Pattern Recognition 46.1
(Jan. 2013), pp. 57–72. doi: 10.1016/j.patcog.2012.06.007. url: https://doi.org/10.1016
/j.patcog.2012.06.007 (cit. on p. 175).

[1353] K. Choi, K.-A. Toh, and H. Byun. “Incremental face recognition for large-scale social network
services.” In: Pattern Recognition 45.8 (Aug. 2012), pp. 2868–2883. doi: 10.1016/j.patcog.2012
.02.002. url: https://doi.org/10.1016/j.patcog.2012.02.002 (cit. on p. 175).

[1354] B. He, D. Xu, R. Nian, M. van Heeswijk, Q. Yu, Y. Miche, and A. Lendasse. “Fast Face
Recognition Via Sparse Coding and Extreme Learning Machine.” In: Cognitive Computation
(July 2013). doi: 10.1007/s12559-013-9224-1. url: https://doi.org/10.1007/s12559-013-
9224-1 (cit. on p. 175).

[1355] I. Marqués and M. Graña. “Fusion of lattice independent and linear features improving face
identification.” In: Neurocomputing 114 (Aug. 2013), pp. 80–85. doi: 10.1016/j.neucom.2012.0
6.045. url: https://doi.org/10.1016/j.neucom.2012.06.045 (cit. on p. 175).

[1356] R. Nian, B. He, and A. Lendasse. “3D object recognition based on a geometrical topology
model and extreme learning machine.” In: Neural Computing and Applications 22.3-4 (Mar. 2012),
pp. 427–433. doi: 10.1007/s00521-012-0892-7. url: https://doi.org/10.1007/s00521-012-
0892-7 (cit. on p. 175).

https://doi.org/10.1109/ijcnn.2018.8489695
https://doi.org/10.1109/ijcnn.2018.8489695
https://doi.org/10.1007/978-3-031-03948-5_1
https://doi.org/10.1007/978-3-031-03948-5_1
https://doi.org/10.1007/978-3-031-03948-5_1
https://doi.org/10.1109/iccss53909.2021.9721995
https://doi.org/10.1109/iccss53909.2021.9721995
https://doi.org/10.1109/iccss53909.2021.9721995
https://doi.org/10.3390/s20154191
https://doi.org/10.3390/s20154191
https://doi.org/10.1016/j.neucom.2019.03.086
https://doi.org/10.1016/j.neucom.2019.03.086
https://doi.org/10.1016/j.neucom.2019.03.086
https://doi.org/10.1109/tnn.2006.875977
https://doi.org/10.1109/tnn.2006.875977
https://doi.org/10.1109/tnn.2006.875977
https://doi.org/10.1109/tnnls.2011.2178124
https://doi.org/10.1109/tnnls.2011.2178124
https://doi.org/10.1109/tcyb.2014.2307349
https://doi.org/10.1109/tcyb.2014.2307349
https://doi.org/10.1016/j.compbiomed.2012.07.001
https://doi.org/10.1016/j.compbiomed.2012.07.001
https://doi.org/10.1016/j.compbiomed.2012.07.001
https://doi.org/10.1007/s13042-011-0024-1
https://doi.org/10.1007/s13042-011-0024-1
https://doi.org/10.1007/s13042-011-0024-1
https://doi.org/10.1016/j.neucom.2010.12.041
https://doi.org/10.1016/j.neucom.2010.12.041
https://doi.org/10.1016/j.patcog.2012.06.007
https://doi.org/10.1016/j.patcog.2012.06.007
https://doi.org/10.1016/j.patcog.2012.06.007
https://doi.org/10.1016/j.patcog.2012.02.002
https://doi.org/10.1016/j.patcog.2012.02.002
https://doi.org/10.1016/j.patcog.2012.02.002
https://doi.org/10.1007/s12559-013-9224-1
https://doi.org/10.1007/s12559-013-9224-1
https://doi.org/10.1007/s12559-013-9224-1
https://doi.org/10.1016/j.neucom.2012.06.045
https://doi.org/10.1016/j.neucom.2012.06.045
https://doi.org/10.1016/j.neucom.2012.06.045
https://doi.org/10.1007/s00521-012-0892-7
https://doi.org/10.1007/s00521-012-0892-7
https://doi.org/10.1007/s00521-012-0892-7

374 bibliography

[1357] Y. Chen, Z. Zhao, S. Wang, and Z. Chen. “Extreme learning machine-based device displacement
free activity recognition model.” In: Soft Computing 16.9 (Feb. 2012), pp. 1617–1625. doi: 10.10
07/s00500-012-0822-8. url: https://doi.org/10.1007/s00500-012-0822-8 (cit. on p. 175).

[1358] R. Minhas, A. Baradarani, S. Seifzadeh, and Q. M. J. Wu. “Human action recognition using
extreme learning machine based on visual vocabularies.” In: Neurocomputing 73.10-12 (June
2010), pp. 1906–1917. doi: 10.1016/j.neucom.2010.01.020. url: https://doi.org/10.1016
/j.neucom.2010.01.020 (cit. on p. 175).

[1359] R. Minhas, A. A. Mohammed, and Q. M. J. Wu. “Incremental Learning in Human Action
Recognition Based on Snippets.” In: IEEE Transactions on Circuits and Systems for Video Technology
22.11 (Nov. 2012), pp. 1529–1541. doi: 10.1109/tcsvt.2011.2177182. url: https://doi.org
/10.1109/tcsvt.2011.2177182 (cit. on p. 175).

[1360] D. Lu, Y. Yu, and H. Liu. “Gesture recognition using data glove: An extreme learning machine
method.” In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, Dec.
2016. doi: 10.1109/robio.2016.7866514. url: http://dx.doi.org/10.1109/ROBIO.2016.786
6514 (cit. on p. 175).

[1361] F. Peng, C. Chen, D. Lv, N. Zhang, X. Wang, X. Zhang, and Z. Wang. “Gesture Recognition
by Ensemble Extreme Learning Machine Based on Surface Electromyography Signals.” In:
Frontiers in Human Neuroscience 16 (June 2022). issn: 1662-5161. doi: 10.3389/fnhum.2022.911
204. url: http://dx.doi.org/10.3389/fnhum.2022.911204 (cit. on p. 175).

[1362] S. Das, T. P. Sahu, and R. R. Janghel. “Stock market forecasting using intrinsic time-scale
decomposition in fusion with cluster based modified CSA optimized ELM.” In: Journal of
King Saud University - Computer and Information Sciences 34.10 (Nov. 2022), pp. 8777–8793. issn:
1319-1578. doi: 10.1016/j.jksuci.2021.10.004. url: http://dx.doi.org/10.1016/j.jksuci
.2021.10.004 (cit. on p. 175).

[1363] F. Chen and T. Ou. “Sales forecasting system based on Gray extreme learning machine with
Taguchi method in retail industry.” In: Expert Systems with Applications 38.3 (Mar. 2011),
pp. 1336–1345. doi: 10.1016/j.eswa.2010.07.014. url: https://doi.org/10.1016/j.eswa.2
010.07.014 (cit. on p. 175).

[1364] Y. Feng, W. Yao-nan, and Y. Yi-min. “Inverse Kinematics Solution for Robot Manipulator based
on Neural Network under Joint Subspace.” In: International Journal of Computers Communications
& Control 7.3 (Sept. 2014), p. 459. doi: 10.15837/ijccc.2012.3.1387. url: https://doi.org
/10.15837/ijccc.2012.3.1387 (cit. on p. 175).

[1365] A. Lemme, A. Freire, G. Barreto, and J. Steil. “Kinesthetic teaching of visuomotor coordination
for pointing by the humanoid robot iCub.” In: Neurocomputing 112 (July 2013), pp. 179–188. doi:
10.1016/j.neucom.2012.12.040. url: https://doi.org/10.1016/j.neucom.2012.12.040
(cit. on p. 175).

[1366] E. M. Kan, M. H. Lim, Y. S. Ong, A. H. Tan, and S. P. Yeo. “Extreme learning machine terrain-
based navigation for unmanned aerial vehicles.” In: Neural Computing and Applications 22.3-4
(Feb. 2012), pp. 469–477. doi: 10.1007/s00521-012-0866-9. url: https://doi.org/10.1007
/s00521-012-0866-9 (cit. on p. 175).

[1367] W. Sun and M. Liu. “Wind speed forecasting using FEEMD echo state networks with RELM
in Hebei, China.” In: Energy Conversion and Management 114 (Apr. 2016), pp. 197–208. doi: 10
.1016/j.enconman.2016.02.022. url: https://doi.org/10.1016/j.enconman.2016.02.022
(cit. on p. 175).

[1368] H. Fu, Z. Niu, C. Zhang, H. Yu, J. Ma, J. Chen, Y. Chen, and J. Liu. “ASELM: Adaptive semi-
supervised ELM with application in question subjectivity identification.” In: Neurocomputing
207 (Sept. 2016), pp. 599–609. doi: 10.1016/j.neucom.2016.05.041. url: https://doi.org/1
0.1016/j.neucom.2016.05.041 (cit. on pp. 175, 176).

[1369] B. B. Hazarika, D. Gupta, and M. Berlin. “A coiflet LDMR and coiflet OB-ELM for river
suspended sediment load prediction.” In: International Journal of Environmental Science and
Technology 18.9 (Oct. 2020), pp. 2675–2692. doi: 10.1007/s13762-020-02967-8. url: https:
//doi.org/10.1007/s13762-020-02967-8 (cit. on p. 176).

[1370] B. B. Hazarika, D. Gupta, and M. Berlin. “Modeling suspended sediment load in a river using
extreme learning machine and twin support vector regression with wavelet conjunction.”
In: Environmental Earth Sciences 79.10 (May 2020). doi: 10.1007/s12665-020-08949-w. url:
https://doi.org/10.1007/s12665-020-08949-w (cit. on p. 176).

[1371] S. Haidong, J. Hongkai, L. Xingqiu, and W. Shuaipeng. “Intelligent fault diagnosis of rolling
bearing using deep wavelet auto-encoder with extreme learning machine.” In: Knowledge-Based
Systems 140 (Jan. 2018), pp. 1–14. doi: 10.1016/j.knosys.2017.10.024. url: https://doi.or
g/10.1016/j.knosys.2017.10.024 (cit. on p. 176).

https://doi.org/10.1007/s00500-012-0822-8
https://doi.org/10.1007/s00500-012-0822-8
https://doi.org/10.1007/s00500-012-0822-8
https://doi.org/10.1016/j.neucom.2010.01.020
https://doi.org/10.1016/j.neucom.2010.01.020
https://doi.org/10.1016/j.neucom.2010.01.020
https://doi.org/10.1109/tcsvt.2011.2177182
https://doi.org/10.1109/tcsvt.2011.2177182
https://doi.org/10.1109/tcsvt.2011.2177182
https://doi.org/10.1109/robio.2016.7866514
http://dx.doi.org/10.1109/ROBIO.2016.7866514
http://dx.doi.org/10.1109/ROBIO.2016.7866514
https://doi.org/10.3389/fnhum.2022.911204
https://doi.org/10.3389/fnhum.2022.911204
http://dx.doi.org/10.3389/fnhum.2022.911204
https://doi.org/10.1016/j.jksuci.2021.10.004
http://dx.doi.org/10.1016/j.jksuci.2021.10.004
http://dx.doi.org/10.1016/j.jksuci.2021.10.004
https://doi.org/10.1016/j.eswa.2010.07.014
https://doi.org/10.1016/j.eswa.2010.07.014
https://doi.org/10.1016/j.eswa.2010.07.014
https://doi.org/10.15837/ijccc.2012.3.1387
https://doi.org/10.15837/ijccc.2012.3.1387
https://doi.org/10.15837/ijccc.2012.3.1387
https://doi.org/10.1016/j.neucom.2012.12.040
https://doi.org/10.1016/j.neucom.2012.12.040
https://doi.org/10.1007/s00521-012-0866-9
https://doi.org/10.1007/s00521-012-0866-9
https://doi.org/10.1007/s00521-012-0866-9
https://doi.org/10.1016/j.enconman.2016.02.022
https://doi.org/10.1016/j.enconman.2016.02.022
https://doi.org/10.1016/j.enconman.2016.02.022
https://doi.org/10.1016/j.neucom.2016.05.041
https://doi.org/10.1016/j.neucom.2016.05.041
https://doi.org/10.1016/j.neucom.2016.05.041
https://doi.org/10.1007/s13762-020-02967-8
https://doi.org/10.1007/s13762-020-02967-8
https://doi.org/10.1007/s13762-020-02967-8
https://doi.org/10.1007/s12665-020-08949-w
https://doi.org/10.1007/s12665-020-08949-w
https://doi.org/10.1016/j.knosys.2017.10.024
https://doi.org/10.1016/j.knosys.2017.10.024
https://doi.org/10.1016/j.knosys.2017.10.024

bibliography 375

[1372] X. Li and W. Jin. “A method for diagnosing rolling bearing faults based on SDAE-ADHKELM.”
In: Measurement Science and Technology 34.2 (Nov. 2022), p. 025004. doi: 10.1088/1361-6501/ac
9709. url: https://doi.org/10.1088/1361-6501/ac9709 (cit. on p. 176).

[1373] D. Dua and C. Graff. UCI Machine Learning Repository. 2017. url: http://archive.ics.uci.ed
u/ml (cit. on pp. 176, 282).

[1374] X. W. Jiang, T. H. Yan, J. J. Zhu, B. He, W. H. Li, H. P. Du, and S. S. Sun. “Densely Connected
Deep Extreme Learning Machine Algorithm.” In: Cognitive Computation 12.5 (Aug. 2020),
pp. 979–990. doi: 10.1007/s12559-020-09752-2. url: https://doi.org/10.1007/s12559-02
0-09752-2 (cit. on p. 176).

[1375] L. Zhang and D. Zhang. “Domain Adaptation Extreme Learning Machines for Drift Compen-
sation in E-Nose Systems.” In: IEEE Transactions on Instrumentation and Measurement 64.7 (July
2015), pp. 1790–1801. doi: 10.1109/tim.2014.2367775. url: https://doi.org/10.1109/tim
.2014.2367775 (cit. on p. 176).

[1376] H. Dai, J. Cao, T. Wang, M. Deng, and Z. Yang. “Multilayer one-class extreme learning
machine.” In: Neural Networks 115 (July 2019), pp. 11–22. doi: 10.1016/j.neunet.2019.03.004.
url: https://doi.org/10.1016/j.neunet.2019.03.004 (cit. on p. 176).

[1377] S. Ding, H. Zhao, Y. Zhang, X. Xu, and R. Nie. “Extreme learning machine: algorithm,
theory and applications.” In: Artificial Intelligence Review 44.1 (Apr. 2013), pp. 103–115. doi:
10.1007/s10462-013-9405-z. url: https://doi.org/10.1007/s10462-013-9405-z (cit. on
p. 176).

[1378] G.-B. Huang, N. Liang, H.-J. Rong, P. Saratchandran, and N. Sundararajan. “On-Line Sequential
Extreme Learning Machine.” In: vol. 2005. Jan. 2005, pp. 232–237 (cit. on p. 176).

[1379] S. Zhang, W. Tan, and Y. Li. “A Survey of Online Sequential Extreme Learning Machine.” In:
2018 5th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE,
Apr. 2018. doi: 10.1109/codit.2018.8394791. url: https://doi.org/10.1109/codit.2018.8
394791 (cit. on p. 176).

[1380] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan. “A Fast and Accurate
Online Sequential Learning Algorithm for Feedforward Networks.” In: IEEE Transactions
on Neural Networks 17.6 (Nov. 2006), pp. 1411–1423. doi: 10.1109/tnn.2006.880583. url:
https://doi.org/10.1109/tnn.2006.880583 (cit. on p. 176).

[1381] W. Cao, Z. Ming, Z. Xu, J. Zhang, and Q. Wang. “Online Sequential Extreme Learning
Machine With Dynamic Forgetting Factor.” In: IEEE Access 7 (2019), pp. 179746–179757. doi:
10.1109/access.2019.2959032. url: https://doi.org/10.1109/access.2019.2959032
(cit. on p. 176).

[1382] W. Cao, J. Gao, Z. Ming, S. Cai, and Z. Shan. “Fuzziness-based online sequential extreme
learning machine for classification problems.” In: Soft Computing 22.11 (Feb. 2018), pp. 3487–
3494. doi: 10.1007/s00500-018-3021-4. url: https://doi.org/10.1007/s00500-018-3021-4
(cit. on p. 176).

[1383] G.-B. Huang and L. Chen. “Convex incremental extreme learning machine.” In: Neurocomputing
70.16-18 (Oct. 2007), pp. 3056–3062. doi: 10.1016/j.neucom.2007.02.009. url: https://doi
.org/10.1016/j.neucom.2007.02.009 (cit. on p. 176).

[1384] G. Feng, Z. Qian, and X. Zhang. “Evolutionary selection extreme learning machine optimization
for regression.” In: Soft Computing 16.9 (Feb. 2012), pp. 1485–1491. doi: 10.1007/s00500-012-
0823-7. url: https://doi.org/10.1007/s00500-012-0823-7 (cit. on p. 176).

[1385] G. Feng, G.-B. Huang, Q. Lin, and R. Gay. “Error Minimized Extreme Learning Machine With
Growth of Hidden Nodes and Incremental Learning.” In: IEEE Transactions on Neural Networks
20.8 (Aug. 2009), pp. 1352–1357. doi: 10.1109/tnn.2009.2024147. url: https://doi.org/10
.1109/tnn.2009.2024147 (cit. on p. 176).

[1386] E. Soria-Olivas, J. Gómez-Sanchis, J. D. Martin, J. Vila-Francés, M. Martinez, J. R. Magdalena,
and A. J. Serrano. “BELM: Bayesian Extreme Learning Machine.” In: IEEE Transactions on
Neural Networks 22.3 (Mar. 2011), pp. 505–509. doi: 10.1109/tnn.2010.2103956. url: https:
//doi.org/10.1109/tnn.2010.2103956 (cit. on p. 176).

[1387] Y. Wang, Z. Yu, T. Sivanagaraja, and K. C. Veluvolu. “Fast and accurate online sequential
learning of respiratory motion with random convolution nodes for radiotherapy applications.”
In: Applied Soft Computing 95 (Oct. 2020), p. 106528. doi: 10.1016/j.asoc.2020.106528. url:
https://doi.org/10.1016/j.asoc.2020.106528 (cit. on p. 176).

[1388] H. Zhou, J. Lan, R. Liu, and J. Yosinski. “Deconstructing Lottery Tickets: Zeros, Signs, and the
Supermask.” In: Proceedings of the 33rd International Conference on Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates Inc., 2019 (cit. on p. 176).

https://doi.org/10.1088/1361-6501/ac9709
https://doi.org/10.1088/1361-6501/ac9709
https://doi.org/10.1088/1361-6501/ac9709
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/s12559-020-09752-2
https://doi.org/10.1007/s12559-020-09752-2
https://doi.org/10.1007/s12559-020-09752-2
https://doi.org/10.1109/tim.2014.2367775
https://doi.org/10.1109/tim.2014.2367775
https://doi.org/10.1109/tim.2014.2367775
https://doi.org/10.1016/j.neunet.2019.03.004
https://doi.org/10.1016/j.neunet.2019.03.004
https://doi.org/10.1007/s10462-013-9405-z
https://doi.org/10.1007/s10462-013-9405-z
https://doi.org/10.1109/codit.2018.8394791
https://doi.org/10.1109/codit.2018.8394791
https://doi.org/10.1109/codit.2018.8394791
https://doi.org/10.1109/tnn.2006.880583
https://doi.org/10.1109/tnn.2006.880583
https://doi.org/10.1109/access.2019.2959032
https://doi.org/10.1109/access.2019.2959032
https://doi.org/10.1007/s00500-018-3021-4
https://doi.org/10.1007/s00500-018-3021-4
https://doi.org/10.1016/j.neucom.2007.02.009
https://doi.org/10.1016/j.neucom.2007.02.009
https://doi.org/10.1016/j.neucom.2007.02.009
https://doi.org/10.1007/s00500-012-0823-7
https://doi.org/10.1007/s00500-012-0823-7
https://doi.org/10.1007/s00500-012-0823-7
https://doi.org/10.1109/tnn.2009.2024147
https://doi.org/10.1109/tnn.2009.2024147
https://doi.org/10.1109/tnn.2009.2024147
https://doi.org/10.1109/tnn.2010.2103956
https://doi.org/10.1109/tnn.2010.2103956
https://doi.org/10.1109/tnn.2010.2103956
https://doi.org/10.1016/j.asoc.2020.106528
https://doi.org/10.1016/j.asoc.2020.106528

376 bibliography

[1389] J. Frankle and M. Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks.” In: ICLR. OpenReview.net, 2019. url: http://dblp.uni-trier.de/db/conf/iclr
/iclr2019.html#FrankleC19 (cit. on p. 176).

[1390] E. Hoffer, I. Hubara, and D. Soudry. “Fix your classifier: the marginal value of training the
last weight layer.” In: International Conference on Learning Representations. 2018. url: https://o
penreview.net/forum?id=S1Dh8Tg0- (cit. on p. 177).

[1391] R. Pascanu, T. Mikolov, and Y. Bengio. “On the difficulty of training recurrent neural networks.”
In: Proceedings of the 30th International Conference on Machine Learning. Ed. by S. Dasgupta and
D. McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, Georgia, USA:
PMLR, June 2013, pp. 1310–1318. url: https://proceedings.mlr.press/v28/pascanu13.html
(cit. on p. 177).

[1392] B. Schrauwen, D. Verstraeten, and J. Campenhout. “An overview of reservoir computing:
Theory, applications and implementations.” In: Jan. 2007, pp. 471–482 (cit. on p. 177).

[1393] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. “Model-Free Prediction of Large Spatiotem-
porally Chaotic Systems from Data: A Reservoir Computing Approach.” In: Physical Review
Letters 120.2 (Jan. 2018). doi: 10.1103/physrevlett.120.024102. url: https://doi.org/10.1
103/physrevlett.120.024102 (cit. on p. 177).

[1394] H. Jaeger and H. Haas. “Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication.” In: Science 304.5667 (Apr. 2004), pp. 78–80. doi: 10.1126
/science.1091277. url: https://doi.org/10.1126/science.1091277 (cit. on p. 177).

[1395] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. “Optimization and applications of
echo state networks with leaky- integrator neurons.” In: Neural Networks 20.3 (Apr. 2007),
pp. 335–352. doi: 10.1016/j.neunet.2007.04.016. url: https://doi.org/10.1016/j.neunet
.2007.04.016 (cit. on pp. 177, 178).

[1396] N. Rodriguez, E. Izquierdo, and Y.-Y. Ahn. “Optimal modularity and memory capacity of
neural reservoirs.” In: Network Neuroscience 3.2 (Jan. 2019), pp. 551–566. doi: 10.1162/netn_a
_00082. url: https://doi.org/10.1162/netn_a_00082 (cit. on p. 177).

[1397] T. Strauss, W. Wustlich, and R. Labahn. “Design Strategies for Weight Matrices of Echo State
Networks.” In: Neural Computation 24.12 (Dec. 2012), pp. 3246–3276. doi: 10.1162/neco_a_003
74. url: https://doi.org/10.1162/neco_a_00374 (cit. on p. 177).

[1398] I. B. Yildiz, H. Jaeger, and S. J. Kiebel. “Re-visiting the echo state property.” In: Neural Networks
35 (Nov. 2012), pp. 1–9. doi: 10.1016/j.neunet.2012.07.005. url: https://doi.org/10.1016
/j.neunet.2012.07.005 (cit. on p. 177).

[1399] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. “Training Recurrent Networks by
Evolino.” In: Neural Computation 19.3 (Mar. 2007), pp. 757–779. doi: 10.1162/neco.2007.19.3
.757. url: https://doi.org/10.1162/neco.2007.19.3.757 (cit. on p. 177).

[1400] W. Maass. “Liquid State Machines: Motivation, Theory, and Applications.” In: Computability in
Context. IMPERIAL COLLEGE PRESS, Feb. 2011, pp. 275–296. doi: 10.1142/9781848162778_0
008. url: https://doi.org/10.1142/9781848162778_0008 (cit. on p. 177).

[1401] W. Maass, P. Joshi, and E. D. Sontag. “Computational Aspects of Feedback in Neural Circuits.”
In: PLoS Computational Biology 3.1 (Jan. 2007). Ed. by R. Kotter, e165. doi: 10.1371/journal.pc
bi.0020165. url: https://doi.org/10.1371/journal.pcbi.0020165 (cit. on p. 177).

[1402] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. V. Campenhout. “Isolated word recognition
with the Liquid State Machine: a case study.” In: Information Processing Letters 95.6 (Sept. 2005),
pp. 521–528. doi: 10.1016/j.ipl.2005.05.019. url: https://doi.org/10.1016/j.ipl.2005
.05.019 (cit. on p. 177).

[1403] W. Maass, T. Natschläger, and H. Markram. “Real-Time Computing Without Stable States: A
New Framework for Neural Computation Based on Perturbations.” In: Neural Computation
14.11 (Nov. 2002), pp. 2531–2560. doi: 10.1162/089976602760407955. url: https://doi.org
/10.1162/089976602760407955 (cit. on p. 177).

[1404] T. Miconi. “Biologically plausible learning in recurrent neural networks reproduces neural
dynamics observed during cognitive tasks.” In: eLife 6 (Feb. 2017). doi: 10.7554/elife.20899.
url: https://doi.org/10.7554/elife.20899 (cit. on p. 177).

[1405] T. Yamazaki and S. Tanaka. “The cerebellum as a liquid state machine.” In: Neural Networks
20.3 (Apr. 2007), pp. 290–297. doi: 10.1016/j.neunet.2007.04.004. url: https://doi.org/1
0.1016/j.neunet.2007.04.004 (cit. on p. 177).

[1406] J. J. Steil. “Online reservoir adaptation by intrinsic plasticity for backpropagation–decorrelation
and echo state learning.” In: Neural Networks 20.3 (Apr. 2007), pp. 353–364. doi: 10.1016/j.ne
unet.2007.04.011. url: https://doi.org/10.1016/j.neunet.2007.04.011 (cit. on p. 177).

http://dblp.uni-trier.de/db/conf/iclr/iclr2019.html#FrankleC19
http://dblp.uni-trier.de/db/conf/iclr/iclr2019.html#FrankleC19
https://openreview.net/forum?id=S1Dh8Tg0-
https://openreview.net/forum?id=S1Dh8Tg0-
https://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.1103/physrevlett.120.024102
https://doi.org/10.1103/physrevlett.120.024102
https://doi.org/10.1103/physrevlett.120.024102
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1162/netn_a_00082
https://doi.org/10.1162/netn_a_00082
https://doi.org/10.1162/netn_a_00082
https://doi.org/10.1162/neco_a_00374
https://doi.org/10.1162/neco_a_00374
https://doi.org/10.1162/neco_a_00374
https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/10.1162/neco.2007.19.3.757
https://doi.org/10.1162/neco.2007.19.3.757
https://doi.org/10.1162/neco.2007.19.3.757
https://doi.org/10.1142/9781848162778_0008
https://doi.org/10.1142/9781848162778_0008
https://doi.org/10.1142/9781848162778_0008
https://doi.org/10.1371/journal.pcbi.0020165
https://doi.org/10.1371/journal.pcbi.0020165
https://doi.org/10.1371/journal.pcbi.0020165
https://doi.org/10.1016/j.ipl.2005.05.019
https://doi.org/10.1016/j.ipl.2005.05.019
https://doi.org/10.1016/j.ipl.2005.05.019
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.7554/elife.20899
https://doi.org/10.7554/elife.20899
https://doi.org/10.1016/j.neunet.2007.04.004
https://doi.org/10.1016/j.neunet.2007.04.004
https://doi.org/10.1016/j.neunet.2007.04.004
https://doi.org/10.1016/j.neunet.2007.04.011
https://doi.org/10.1016/j.neunet.2007.04.011
https://doi.org/10.1016/j.neunet.2007.04.011

bibliography 377

[1407] B. Schrauwen, M. Wardermann, D. Verstraeten, J. J. Steil, and D. Stroobandt. “Improving
reservoirs using intrinsic plasticity.” In: Neurocomputing 71.7-9 (Mar. 2008), pp. 1159–1171. doi:
10.1016/j.neucom.2007.12.020. url: https://doi.org/10.1016/j.neucom.2007.12.020
(cit. on pp. 177, 178).

[1408] I. Farkaš, R. Bosák, and P. Gergel’. “Computational analysis of memory capacity in echo state
networks.” In: Neural Networks 83 (Nov. 2016), pp. 109–120. doi: 10.1016/j.neunet.2016.07
.012. url: https://doi.org/10.1016/j.neunet.2016.07.012 (cit. on p. 177).

[1409] E. Wallace, H. R. Maei, and P. E. Latham. “Randomly Connected Networks Have Short
Temporal Memory.” In: Neural Computation 25.6 (June 2013), pp. 1408–1439. doi: 10.1162/nec
o_a_00449. url: https://doi.org/10.1162/neco_a_00449 (cit. on p. 177).

[1410] N. Bertschinger and T. Natschläger. “Real-Time Computation at the Edge of Chaos in Recurrent
Neural Networks.” In: Neural Computation 16.7 (July 2004), pp. 1413–1436. doi: 10.1162/08997
6604323057443. url: https://doi.org/10.1162/089976604323057443 (cit. on p. 177).

[1411] P. Barančok and I. Farkaš. “Memory Capacity of Input-Driven Echo State Networks at the
Edge of Chaos.” In: Artificial Neural Networks and Machine Learning – ICANN 2014. Springer
International Publishing, 2014, pp. 41–48. doi: 10.1007/978-3-319-11179-7_6. url: https:
//doi.org/10.1007/978-3-319-11179-7_6 (cit. on p. 177).

[1412] J. Boedecker, O. Obst, J. T. Lizier, N. M. Mayer, and M. Asada. “Information processing in echo
state networks at the edge of chaos.” In: Theory in Biosciences 131.3 (Dec. 2011), pp. 205–213.
doi: 10.1007/s12064-011-0146-8. url: https://doi.org/10.1007/s12064-011-0146-8
(cit. on p. 177).

[1413] L. Büsing, B. Schrauwen, and R. Legenstein. “Connectivity, Dynamics, and Memory in Reser-
voir Computing with Binary and Analog Neurons.” In: Neural Computation 22.5 (May 2010),
pp. 1272–1311. doi: 10.1162/neco.2009.01-09-947. url: https://doi.org/10.1162/neco.20
09.01-09-947 (cit. on p. 177).

[1414] M. Inubushi and K. Yoshimura. “Reservoir Computing Beyond Memory-Nonlinearity Trade-
off.” In: Scientific Reports 7.1 (Aug. 2017). doi: 10.1038/s41598-017-10257-6. url: https://d
oi.org/10.1038/s41598-017-10257-6 (cit. on pp. 177, 178).

[1415] S. Marzen. “Difference between memory and prediction in linear recurrent networks.” In:
Physical Review E 96.3 (Sept. 2017). doi: 10.1103/physreve.96.032308. url: https://doi.org
/10.1103/physreve.96.032308 (cit. on p. 177).

[1416] C. Gallicchio and A. Micheli. “Deep Reservoir Computing: A Critical Analysis.” In: The
European Symposium on Artificial Neural Networks. Apr. 2016. url: https://www.esann.org/sit
es/default/files/proceedings/legacy/es2016-175.pdf (cit. on p. 177).

[1417] C. Gallicchio, A. Micheli, and L. Pedrelli. “Deep reservoir computing: A critical experimental
analysis.” In: Neurocomputing 268 (Dec. 2017), pp. 87–99. doi: 10.1016/j.neucom.2016.12.089.
url: https://doi.org/10.1016/j.neucom.2016.12.089 (cit. on p. 177).

[1418] Q. Shen, H. Zhang, and Y. Mao. “Improving Deep Echo State Network with Neuronal
Similarity-Based Iterative Pruning Merging Algorithm.” In: Applied Sciences 13.5 (Feb. 2023),
p. 2918. doi: 10.3390/app13052918. url: https://doi.org/10.3390/app13052918 (cit. on
p. 177).

[1419] C. Gallicchio, A. Micheli, and L. Pedrelli. “Design of deep echo state networks.” In: Neural
Networks 108 (Dec. 2018), pp. 33–47. doi: 10.1016/j.neunet.2018.08.002. url: https://doi
.org/10.1016/j.neunet.2018.08.002 (cit. on p. 177).

[1420] C. Gallicchio, A. Micheli, and L. Pedrelli. “Hierarchical Temporal Representation in Linear
Reservoir Computing.” In: Neural Advances in Processing Nonlinear Dynamic Signals. Springer
International Publishing, July 2018, pp. 119–129. doi: 10.1007/978-3-319-95098-3_11. url:
https://doi.org/10.1007/978-3-319-95098-3_11 (cit. on p. 177).

[1421] C. Gallicchio and A. Micheli. “Echo State Property of Deep Reservoir Computing Networks.”
In: Cognitive Computation 9.3 (May 2017), pp. 337–350. doi: 10.1007/s12559-017-9461-9. url:
https://doi.org/10.1007/s12559-017-9461-9 (cit. on p. 177).

[1422] C. Gallicchio and A. Micheli. “Richness of Deep Echo State Network Dynamics.” In: Advances
in Computational Intelligence. Springer International Publishing, 2019, pp. 480–491. doi: 10.100
7/978-3-030-20521-8_40. url: https://doi.org/10.1007/978-3-030-20521-8_40 (cit. on
p. 177).

[1423] D. Verstraeten, J. Dambre, X. Dutoit, and B. Schrauwen. “Memory versus non-linearity in
reservoirs.” In: The 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, July
2010. doi: 10.1109/ijcnn.2010.5596492. url: https://doi.org/10.1109/ijcnn.2010.55964
92 (cit. on p. 177).

https://doi.org/10.1016/j.neucom.2007.12.020
https://doi.org/10.1016/j.neucom.2007.12.020
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1162/neco_a_00449
https://doi.org/10.1162/neco_a_00449
https://doi.org/10.1162/neco_a_00449
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1007/978-3-319-11179-7_6
https://doi.org/10.1007/978-3-319-11179-7_6
https://doi.org/10.1007/978-3-319-11179-7_6
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1162/neco.2009.01-09-947
https://doi.org/10.1162/neco.2009.01-09-947
https://doi.org/10.1162/neco.2009.01-09-947
https://doi.org/10.1038/s41598-017-10257-6
https://doi.org/10.1038/s41598-017-10257-6
https://doi.org/10.1038/s41598-017-10257-6
https://doi.org/10.1103/physreve.96.032308
https://doi.org/10.1103/physreve.96.032308
https://doi.org/10.1103/physreve.96.032308
https://www.esann.org/sites/default/files/proceedings/legacy/es2016-175.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2016-175.pdf
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.3390/app13052918
https://doi.org/10.3390/app13052918
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1007/978-3-319-95098-3_11
https://doi.org/10.1007/978-3-319-95098-3_11
https://doi.org/10.1007/s12559-017-9461-9
https://doi.org/10.1007/s12559-017-9461-9
https://doi.org/10.1007/978-3-030-20521-8_40
https://doi.org/10.1007/978-3-030-20521-8_40
https://doi.org/10.1007/978-3-030-20521-8_40
https://doi.org/10.1109/ijcnn.2010.5596492
https://doi.org/10.1109/ijcnn.2010.5596492
https://doi.org/10.1109/ijcnn.2010.5596492

378 bibliography

[1424] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. “An experimental unification
of reservoir computing methods.” In: Neural Networks 20.3 (Apr. 2007), pp. 391–403. doi:
10.1016/j.neunet.2007.04.003. url: https://doi.org/10.1016/j.neunet.2007.04.003
(cit. on p. 177).

[1425] D. Verstraeten and B. Schrauwen. “On the Quantification of Dynamics in Reservoir Comput-
ing.” In: Artificial Neural Networks – ICANN 2009. Springer Berlin Heidelberg, 2009, pp. 985–994.
doi: 10.1007/978-3-642-04274-4_101. url: https://doi.org/10.1007/978-3-642-04274-4
_101 (cit. on p. 177).

[1426] A. Hart, J. Hook, and J. Dawes. “Embedding and approximation theorems for echo state
networks.” In: Neural Networks 128 (Aug. 2020), pp. 234–247. doi: 10.1016/j.neunet.2020.05
.013. url: https://doi.org/10.1016/j.neunet.2020.05.013 (cit. on p. 177).

[1427] C. Gallicchio, A. Micheli, and L. Silvestri. “Local Lyapunov exponents of deep echo state
networks.” In: Neurocomputing 298 (July 2018), pp. 34–45. doi: 10.1016/j.neucom.2017.11.073.
url: https://doi.org/10.1016/j.neucom.2017.11.073 (cit. on p. 177).

[1428] L. A. Thiede and U. Parlitz. “Gradient based hyperparameter optimization in Echo State
Networks.” In: Neural Networks 115 (July 2019), pp. 23–29. doi: 10.1016/j.neunet.2019.02.0
01. url: https://doi.org/10.1016/j.neunet.2019.02.001 (cit. on p. 177).

[1429] N. Trouvain, N. Rougier, and X. Hinaut. “Create Efficient and Complex Reservoir Computing
Architectures with ReservoirPy.” In: From Animals to Animats 16. Springer International
Publishing, 2022, pp. 91–102. doi: 10.1007/978-3-031-16770-6_8. url: https://doi.org/10
.1007/978-3-031-16770-6_8 (cit. on p. 177).

[1430] P. Vlachas, J. Pathak, B. Hunt, T. Sapsis, M. Girvan, E. Ott, and P. Koumoutsakos. “Backpropa-
gation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting
of complex spatiotemporal dynamics.” In: Neural Networks 126 (June 2020), pp. 191–217. doi:
10.1016/j.neunet.2020.02.016. url: https://doi.org/10.1016/j.neunet.2020.02.016
(cit. on p. 177).

[1431] C. Yang, J. Qiao, H. Han, and L. Wang. “Design of polynomial echo state networks for time
series prediction.” In: Neurocomputing 290 (May 2018), pp. 148–160. doi: 10.1016/j.neucom.20
18.02.036. url: https://doi.org/10.1016/j.neucom.2018.02.036 (cit. on pp. 177, 178).

[1432] S. Zhong, X. Xie, L. Lin, and F. Wang. “Genetic algorithm optimized double-reservoir echo
state network for multi-regime time series prediction.” In: Neurocomputing 238 (May 2017),
pp. 191–204. doi: 10.1016/j.neucom.2017.01.053. url: https://doi.org/10.1016/j.neucom
.2017.01.053 (cit. on pp. 177, 178).

[1433] G. Shi, D. Liu, and Q. Wei. “Energy consumption prediction of office buildings based on echo
state networks.” In: Neurocomputing 216 (Dec. 2016), pp. 478–488. doi: 10.1016/j.neucom.201
6.08.004. url: https://doi.org/10.1016/j.neucom.2016.08.004 (cit. on p. 177).

[1434] X. Sun, T. Li, Q. Li, Y. Huang, and Y. Li. “Deep belief echo-state network and its application
to time series prediction.” In: Knowledge-Based Systems 130 (Aug. 2017), pp. 17–29. doi: 10.10
16/j.knosys.2017.05.022. url: https://doi.org/10.1016/j.knosys.2017.05.022 (cit. on
pp. 177, 178).

[1435] Y. Chen, Z. He, Z. Shang, C. Li, L. Li, and M. Xu. “A novel combined model based on echo
state network for multi-step ahead wind speed forecasting: A case study of NREL.” In: Energy
Conversion and Management 179 (Jan. 2019), pp. 13–29. doi: 10.1016/j.enconman.2018.10.068.
url: https://doi.org/10.1016/j.enconman.2018.10.068 (cit. on p. 177).

[1436] X. Yao, Z. Wang, and H. Zhang. “A novel photovoltaic power forecasting model based on echo
state network.” In: Neurocomputing 325 (Jan. 2019), pp. 182–189. doi: 10.1016/j.neucom.2018
.10.022. url: https://doi.org/10.1016/j.neucom.2018.10.022 (cit. on pp. 177, 178).

[1437] L. Wang, H. Hu, X.-Y. Ai, and H. Liu. “Effective electricity energy consumption forecasting
using echo state network improved by differential evolution algorithm.” In: Energy 153 (June
2018), pp. 801–815. doi: 10.1016/j.energy.2018.04.078. url: https://doi.org/10.1016/j
.energy.2018.04.078 (cit. on pp. 177, 178).

[1438] M. A. Chitsazan, M. S. Fadali, and A. M. Trzynadlowski. “Wind speed and wind direction
forecasting using echo state network with nonlinear functions.” In: Renewable Energy 131 (Feb.
2019), pp. 879–889. doi: 10.1016/j.renene.2018.07.060. url: https://doi.org/10.1016/j
.renene.2018.07.060 (cit. on p. 177).

[1439] F. M. Bianchi, S. Scardapane, A. Uncini, A. Rizzi, and A. Sadeghian. “Prediction of telephone
calls load using Echo State Network with exogenous variables.” In: Neural Networks 71 (Nov.
2015), pp. 204–213. doi: 10.1016/j.neunet.2015.08.010. url: https://doi.org/10.1016/j
.neunet.2015.08.010 (cit. on p. 177).

[1440] M. Han and M. Xu. “Predicting Multivariate Time Series Using Subspace Echo State Network.”
In: Neural Processing Letters 41.2 (Sept. 2013), pp. 201–209. doi: 10.1007/s11063-013-9324-7.
url: https://doi.org/10.1007/s11063-013-9324-7 (cit. on pp. 177, 178).

https://doi.org/10.1016/j.neunet.2007.04.003
https://doi.org/10.1016/j.neunet.2007.04.003
https://doi.org/10.1007/978-3-642-04274-4_101
https://doi.org/10.1007/978-3-642-04274-4_101
https://doi.org/10.1007/978-3-642-04274-4_101
https://doi.org/10.1016/j.neunet.2020.05.013
https://doi.org/10.1016/j.neunet.2020.05.013
https://doi.org/10.1016/j.neunet.2020.05.013
https://doi.org/10.1016/j.neucom.2017.11.073
https://doi.org/10.1016/j.neucom.2017.11.073
https://doi.org/10.1016/j.neunet.2019.02.001
https://doi.org/10.1016/j.neunet.2019.02.001
https://doi.org/10.1016/j.neunet.2019.02.001
https://doi.org/10.1007/978-3-031-16770-6_8
https://doi.org/10.1007/978-3-031-16770-6_8
https://doi.org/10.1007/978-3-031-16770-6_8
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1016/j.neucom.2018.02.036
https://doi.org/10.1016/j.neucom.2018.02.036
https://doi.org/10.1016/j.neucom.2018.02.036
https://doi.org/10.1016/j.neucom.2017.01.053
https://doi.org/10.1016/j.neucom.2017.01.053
https://doi.org/10.1016/j.neucom.2017.01.053
https://doi.org/10.1016/j.neucom.2016.08.004
https://doi.org/10.1016/j.neucom.2016.08.004
https://doi.org/10.1016/j.neucom.2016.08.004
https://doi.org/10.1016/j.knosys.2017.05.022
https://doi.org/10.1016/j.knosys.2017.05.022
https://doi.org/10.1016/j.knosys.2017.05.022
https://doi.org/10.1016/j.enconman.2018.10.068
https://doi.org/10.1016/j.enconman.2018.10.068
https://doi.org/10.1016/j.neucom.2018.10.022
https://doi.org/10.1016/j.neucom.2018.10.022
https://doi.org/10.1016/j.neucom.2018.10.022
https://doi.org/10.1016/j.energy.2018.04.078
https://doi.org/10.1016/j.energy.2018.04.078
https://doi.org/10.1016/j.energy.2018.04.078
https://doi.org/10.1016/j.renene.2018.07.060
https://doi.org/10.1016/j.renene.2018.07.060
https://doi.org/10.1016/j.renene.2018.07.060
https://doi.org/10.1016/j.neunet.2015.08.010
https://doi.org/10.1016/j.neunet.2015.08.010
https://doi.org/10.1016/j.neunet.2015.08.010
https://doi.org/10.1007/s11063-013-9324-7
https://doi.org/10.1007/s11063-013-9324-7

bibliography 379

[1441] D. Li, M. Han, and J. Wang. “Chaotic Time Series Prediction Based on a Novel Robust Echo
State Network.” In: IEEE Transactions on Neural Networks and Learning Systems 23.5 (May 2012),
pp. 787–799. doi: 10.1109/tnnls.2012.2188414. url: https://doi.org/10.1109/tnnls.2012
.2188414 (cit. on pp. 177, 178).

[1442] E. A. Antonelo, E. Camponogara, and B. Foss. “Echo State Networks for data-driven downhole
pressure estimation in gas-lift oil wells.” In: Neural Networks 85 (Jan. 2017), pp. 106–117. doi:
10.1016/j.neunet.2016.09.009. url: https://doi.org/10.1016/j.neunet.2016.09.009
(cit. on p. 177).

[1443] Z. Shi and M. Han. “Support Vector Echo-State Machine for Chaotic Time-Series Prediction.”
In: IEEE Transactions on Neural Networks 18.2 (Mar. 2007), pp. 359–372. doi: 10.1109/tnn.2006
.885113. url: https://doi.org/10.1109/tnn.2006.885113 (cit. on pp. 177, 178).

[1444] J. Xi, Z. Shi, and M. Han. “Analyzing the state space property of echo state networks for
chaotic system prediction.” In: Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005. IEEE, 2005. doi: 10.1109/ijcnn.2005.1556081. url: https://doi.org/10.11
09/ijcnn.2005.1556081 (cit. on p. 177).

[1445] K. Takano, C. Sugano, M. Inubushi, K. Yoshimura, S. Sunada, K. Kanno, and A. Uchida.
“Compact reservoir computing with a photonic integrated circuit.” In: Optics Express 26.22 (Oct.
2018), p. 29424. doi: 10.1364/oe.26.029424. url: https://doi.org/10.1364/oe.26.029424
(cit. on pp. 177, 178).

[1446] K. Bai and Y. Yi. “DFR: An Energy-efficient Analog Delay Feedback Reservoir Computing
System for Brain-inspired Computing.” In: ACM Journal on Emerging Technologies in Computing
Systems 14.4 (Oct. 2018), pp. 1–22. doi: 10.1145/3264659. url: https://doi.org/10.1145/326
4659 (cit. on pp. 177, 178).

[1447] M. L. Alomar, V. Canals, N. Perez-Mora, V. Martínez-Moll, and J. L. Rosselló. “FPGA-Based
Stochastic Echo State Networks for Time-Series Forecasting.” In: Computational Intelligence and
Neuroscience 2016 (2016), pp. 1–14. doi: 10.1155/2016/3917892. url: https://doi.org/10.11
55/2016/3917892 (cit. on pp. 177, 178).

[1448] X. Shi, J. Gao, L. L. Minku, J. J. Yu, and X. Yao. “Second-order Time Delay Reservoir Com-
puting for Nonlinear Time Series Problems.” In: 2021 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, Dec. 2021. doi: 10.1109/ssci50451.2021.9659913. url: https://doi
.org/10.1109/ssci50451.2021.9659913 (cit. on p. 177).

[1449] R. Budhiraja, M. Kumar, M. K. Das, A. S. Bafila, and S. Singh. “A reservoir computing approach
for forecasting and regenerating both dynamical and time-delay controlled financial system
behavior.” In: PLOS ONE 16.2 (Feb. 2021). Ed. by P. K. Arora, e0246737. issn: 1932-6203. doi:
10.1371/journal.pone.0246737. url: http://dx.doi.org/10.1371/journal.pone.0246737
(cit. on p. 177).

[1450] A. Elsonbaty, A. A. Elsadany, and W. Adel. “On Reservoir Computing Approach for Digital
Image Encryption and Forecasting of Hyperchaotic Finance Model.” In: Fractal and Fractional
7.4 (Mar. 2023), p. 282. issn: 2504-3110. doi: 10.3390/fractalfract7040282. url: http://dx
.doi.org/10.3390/fractalfract7040282 (cit. on p. 177).

[1451] W.-J. Wang, Y. Tang, J. Xiong, and Y.-C. Zhang. “Stock market index prediction based on
reservoir computing models.” In: Expert Systems with Applications 178 (Sept. 2021), p. 115022.
issn: 0957-4174. doi: 10.1016/j.eswa.2021.115022. url: http://dx.doi.org/10.1016/j.esw
a.2021.115022 (cit. on p. 177).

[1452] B. Liu, Y. Xie, X. Jiang, Y. Ye, T. Song, J. Chai, Q. Tang, and M. Feng. “Forecasting stock market
with nanophotonic reservoir computing system based on silicon optomechanical oscillators.”
In: Optics Express 30.13 (June 2022), p. 23359. issn: 1094-4087. doi: 10.1364/oe.454973. url:
http://dx.doi.org/10.1364/oe.454973 (cit. on pp. 177, 178).

[1453] L. Wang, Z. Wang, and S. Liu. “An effective multivariate time series classification approach
using echo state network and adaptive differential evolution algorithm.” In: Expert Systems
with Applications 43 (Jan. 2016), pp. 237–249. doi: 10.1016/ j.eswa.2015. 08.055. url:
https://doi.org/10.1016/j.eswa.2015.08.055 (cit. on p. 177).

[1454] M.-H. Yusoff, J. Chrol-Cannon, and Y. Jin. “Modeling neural plasticity in echo state networks
for classification and regression.” In: Information Sciences 364-365 (Oct. 2016), pp. 184–196. doi:
10.1016/j.ins.2015.11.017. url: https://doi.org/10.1016/j.ins.2015.11.017 (cit. on
p. 177).

[1455] E. Trentin, S. Scherer, and F. Schwenker. “Emotion recognition from speech signals via a
probabilistic echo-state network.” In: Pattern Recognition Letters 66 (Nov. 2015), pp. 4–12. doi:
10.1016/j.patrec.2014.10.015. url: https://doi.org/10.1016/j.patrec.2014.10.015
(cit. on pp. 177, 178).

https://doi.org/10.1109/tnnls.2012.2188414
https://doi.org/10.1109/tnnls.2012.2188414
https://doi.org/10.1109/tnnls.2012.2188414
https://doi.org/10.1016/j.neunet.2016.09.009
https://doi.org/10.1016/j.neunet.2016.09.009
https://doi.org/10.1109/tnn.2006.885113
https://doi.org/10.1109/tnn.2006.885113
https://doi.org/10.1109/tnn.2006.885113
https://doi.org/10.1109/ijcnn.2005.1556081
https://doi.org/10.1109/ijcnn.2005.1556081
https://doi.org/10.1109/ijcnn.2005.1556081
https://doi.org/10.1364/oe.26.029424
https://doi.org/10.1364/oe.26.029424
https://doi.org/10.1145/3264659
https://doi.org/10.1145/3264659
https://doi.org/10.1145/3264659
https://doi.org/10.1155/2016/3917892
https://doi.org/10.1155/2016/3917892
https://doi.org/10.1155/2016/3917892
https://doi.org/10.1109/ssci50451.2021.9659913
https://doi.org/10.1109/ssci50451.2021.9659913
https://doi.org/10.1109/ssci50451.2021.9659913
https://doi.org/10.1371/journal.pone.0246737
http://dx.doi.org/10.1371/journal.pone.0246737
https://doi.org/10.3390/fractalfract7040282
http://dx.doi.org/10.3390/fractalfract7040282
http://dx.doi.org/10.3390/fractalfract7040282
https://doi.org/10.1016/j.eswa.2021.115022
http://dx.doi.org/10.1016/j.eswa.2021.115022
http://dx.doi.org/10.1016/j.eswa.2021.115022
https://doi.org/10.1364/oe.454973
http://dx.doi.org/10.1364/oe.454973
https://doi.org/10.1016/j.eswa.2015.08.055
https://doi.org/10.1016/j.eswa.2015.08.055
https://doi.org/10.1016/j.ins.2015.11.017
https://doi.org/10.1016/j.ins.2015.11.017
https://doi.org/10.1016/j.patrec.2014.10.015
https://doi.org/10.1016/j.patrec.2014.10.015

380 bibliography

[1456] G. Shi, B. Zhao, C. Li, Q. Wei, and D. Liu. “An echo state network based approach to
room classification of office buildings.” In: Neurocomputing 333 (Mar. 2019), pp. 319–328. doi:
10.1016/j.neucom.2018.12.033. url: https://doi.org/10.1016/j.neucom.2018.12.033
(cit. on p. 177).

[1457] Q. Ma, L. Shen, W. Chen, J. Wang, J. Wei, and Z. Yu. “Functional echo state network for time
series classification.” In: Information Sciences 373 (Dec. 2016), pp. 1–20. doi: 10.1016/j.ins.20
16.08.081. url: https://doi.org/10.1016/j.ins.2016.08.081 (cit. on pp. 177, 178).

[1458] S. E. Lacy, S. L. Smith, and M. A. Lones. “Using echo state networks for classification: A case
study in Parkinson’s disease diagnosis.” In: Artificial Intelligence in Medicine 86 (Mar. 2018),
pp. 53–59. doi: 10.1016/j.artmed.2018.02.002. url: https://doi.org/10.1016/j.artmed.2
018.02.002 (cit. on p. 177).

[1459] M. Skowronski and J. Harris. “Minimum mean squared error time series classification using
an echo state network prediction model.” In: 2006 IEEE International Symposium on Circuits and
Systems. IEEE, 2006. doi: 10.1109/iscas.2006.1693294. url: https://doi.org/10.1109/isc
as.2006.1693294 (cit. on p. 177).

[1460] M. D. Skowronski and J. G. Harris. “Automatic speech recognition using a predictive echo
state network classifier.” In: Neural Networks 20.3 (Apr. 2007), pp. 414–423. doi: 10.1016/j.neu
net.2007.04.006. url: https://doi.org/10.1016/j.neunet.2007.04.006 (cit. on p. 177).

[1461] M. H. Tong, A. D. Bickett, E. M. Christiansen, and G. W. Cottrell. “Learning grammatical
structure with Echo State Networks.” In: Neural Networks 20.3 (Apr. 2007), pp. 424–432. doi:
10.1016/j.neunet.2007.04.013. url: https://doi.org/10.1016/j.neunet.2007.04.013
(cit. on p. 177).

[1462] S. Wang et al. “Echo state graph neural networks with analogue random resistive memory
arrays.” In: Nature Machine Intelligence 5.2 (Feb. 2023), pp. 104–113. doi: 10.1038/s42256-023-
00609-5. url: https://doi.org/10.1038/s42256-023-00609-5 (cit. on pp. 177, 178).

[1463] K. Yeo. “Data-driven reconstruction of nonlinear dynamics from sparse observation.” In:
Journal of Computational Physics 395 (Oct. 2019), pp. 671–689. doi: 10.1016/j.jcp.2019.06.039.
url: https://doi.org/10.1016/j.jcp.2019.06.039 (cit. on p. 177).

[1464] M. Magerl, V. Ceperic, and A. Baric. “Echo State Networks for Black-Box Modeling of In-
tegrated Circuits.” In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 35.8 (Aug. 2016), pp. 1309–1317. doi: 10.1109/tcad.2015.2501312. url: https://doi
.org/10.1109/tcad.2015.2501312 (cit. on p. 177).

[1465] Y. Yang, R. G. Harley, D. Divan, and T. G. Habetler. “Overhead conductor thermal dynamics
identification by using Echo State Networks.” In: 2009 International Joint Conference on Neural
Networks. IEEE, June 2009. doi: 10.1109/ijcnn.2009.5179006. url: https://doi.org/10.110
9/ijcnn.2009.5179006 (cit. on p. 177).

[1466] A. Jalalvand, K. Demuynck, W. D. Neve, and J.-P. Martens. “On the application of reservoir
computing networks for noisy image recognition.” In: Neurocomputing 277 (Feb. 2018), pp. 237–
248. doi: 10.1016/j.neucom.2016.11.100. url: https://doi.org/10.1016/j.neucom.2016.1
1.100 (cit. on p. 178).

[1467] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott. “Reservoir observers: Model-free
inference of unmeasured variables in chaotic systems.” In: Chaos: An Interdisciplinary Journal of
Nonlinear Science 27.4 (Apr. 2017), p. 041102. doi: 10.1063/1.4979665. url: https://doi.org
/10.1063/1.4979665 (cit. on p. 178).

[1468] P. Antonik, M. Gulina, J. Pauwels, and S. Massar. “Using a reservoir computer to learn chaotic
attractors, with applications to chaos synchronization and cryptography.” In: Physical Review
E 98.1 (July 2018). doi: 10.1103/physreve.98.012215. url: https://doi.org/10.1103/physr
eve.98.012215 (cit. on p. 178).

[1469] F. Triefenbach, A. Jalalvand, B. Schrauwen, and J.-p. Martens. “Phoneme Recognition with
Large Hierarchical Reservoirs.” In: Advances in Neural Information Processing Systems. Ed. by
J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta. Vol. 23. Curran Associates,
Inc., 2010. url: https://proceedings.neurips.cc/paper_files/paper/2010/file/2ca65f58
e35d9ad45bf7f3ae5cfd08f1-Paper.pdf (cit. on p. 178).

[1470] M. R. Salehi, E. Abiri, and L. Dehyadegari. “An analytical approach to photonic reservoir
computing – a network of SOA’s – for noisy speech recognition.” In: Optics Communications
306 (Oct. 2013), pp. 135–139. doi: 10.1016/j.optcom.2013.05.036. url: https://doi.org/10
.1016/j.optcom.2013.05.036 (cit. on p. 178).

[1471] Q. An, K. Bai, L. Liu, F. Shen, and Y. Yi. “A unified information perceptron using deep reservoir
computing.” In: Computers & Electrical Engineering 85 (July 2020), p. 106705. doi: 10.1016/j
.compeleceng.2020.106705. url: https://doi.org/10.1016/j.compeleceng.2020.106705
(cit. on p. 178).

https://doi.org/10.1016/j.neucom.2018.12.033
https://doi.org/10.1016/j.neucom.2018.12.033
https://doi.org/10.1016/j.ins.2016.08.081
https://doi.org/10.1016/j.ins.2016.08.081
https://doi.org/10.1016/j.ins.2016.08.081
https://doi.org/10.1016/j.artmed.2018.02.002
https://doi.org/10.1016/j.artmed.2018.02.002
https://doi.org/10.1016/j.artmed.2018.02.002
https://doi.org/10.1109/iscas.2006.1693294
https://doi.org/10.1109/iscas.2006.1693294
https://doi.org/10.1109/iscas.2006.1693294
https://doi.org/10.1016/j.neunet.2007.04.006
https://doi.org/10.1016/j.neunet.2007.04.006
https://doi.org/10.1016/j.neunet.2007.04.006
https://doi.org/10.1016/j.neunet.2007.04.013
https://doi.org/10.1016/j.neunet.2007.04.013
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1016/j.jcp.2019.06.039
https://doi.org/10.1016/j.jcp.2019.06.039
https://doi.org/10.1109/tcad.2015.2501312
https://doi.org/10.1109/tcad.2015.2501312
https://doi.org/10.1109/tcad.2015.2501312
https://doi.org/10.1109/ijcnn.2009.5179006
https://doi.org/10.1109/ijcnn.2009.5179006
https://doi.org/10.1109/ijcnn.2009.5179006
https://doi.org/10.1016/j.neucom.2016.11.100
https://doi.org/10.1016/j.neucom.2016.11.100
https://doi.org/10.1016/j.neucom.2016.11.100
https://doi.org/10.1063/1.4979665
https://doi.org/10.1063/1.4979665
https://doi.org/10.1063/1.4979665
https://doi.org/10.1103/physreve.98.012215
https://doi.org/10.1103/physreve.98.012215
https://doi.org/10.1103/physreve.98.012215
https://proceedings.neurips.cc/paper_files/paper/2010/file/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Paper.pdf
https://doi.org/10.1016/j.optcom.2013.05.036
https://doi.org/10.1016/j.optcom.2013.05.036
https://doi.org/10.1016/j.optcom.2013.05.036
https://doi.org/10.1016/j.compeleceng.2020.106705
https://doi.org/10.1016/j.compeleceng.2020.106705
https://doi.org/10.1016/j.compeleceng.2020.106705

bibliography 381

[1472] S. Tan, Z. Wu, D. Yue, W. Wu, and G. Xia. “Spoken digit recognition utilizing a reservoir
computing system based on mutually coupled VCSELs under optical injection.” In: Optics
Continuum 1.7 (July 2022), p. 1593. doi: 10.1364/optcon.453196. url: https://doi.org/10.1
364/optcon.453196 (cit. on p. 178).

[1473] P. Buteneers, B. Schrauwen, D. Verstraeten, and D. Stroobandt. “Real-Time Epileptic Seizure
Detection on Intra-cranial Rat Data Using Reservoir Computing.” In: Advances in Neuro-
Information Processing. Springer Berlin Heidelberg, 2009, pp. 56–63. doi: 10.1007/978-3-642-0
2490-0_7. url: https://doi.org/10.1007/978-3-642-02490-0_7 (cit. on p. 178).

[1474] P. Buteneers, D. Verstraeten, P. van Mierlo, T. Wyckhuys, D. Stroobandt, R. Raedt, H. Hallez,
and B. Schrauwen. “Automatic detection of epileptic seizures on the intra-cranial electroen-
cephalogram of rats using reservoir computing.” In: Artificial Intelligence in Medicine 53.3 (Nov.
2011), pp. 215–223. doi: 10.1016/j.artmed.2011.08.006. url: https://doi.org/10.1016/j
.artmed.2011.08.006 (cit. on p. 178).

[1475] A. Jalalvand, F. Triefenbach, K. Demuynck, and J.-P. Martens. “Robust continuous digit
recognition using Reservoir Computing.” In: Computer Speech & Language 30.1 (Mar. 2015),
pp. 135–158. doi: 10.1016/j.csl.2014.09.006. url: https://doi.org/10.1016/j.csl.2014
.09.006 (cit. on p. 178).

[1476] E. Antonelo, B. Schrauwen, and D. Stroobandt. “Event detection and localization for small
mobile robots using reservoir computing.” In: Neural Networks 21.6 (Aug. 2008), pp. 862–871.
doi: 10.1016/j.neunet.2008.06.010. url: https://doi.org/10.1016/j.neunet.2008.06.01
0 (cit. on p. 178).

[1477] K. Lüdge and A. Röhm. “Computing with a camera.” In: Nature Machine Intelligence 1.12 (Dec.
2019), pp. 551–552. doi: 10.1038/s42256-019-0124-2. url: https://doi.org/10.1038/s4225
6-019-0124-2 (cit. on p. 178).

[1478] S. Apostel, N. D. Haynes, E. Schöll, O. D’Huys, and D. J. Gauthier. “Reservoir Computing
Using Autonomous Boolean Networks Realized on Field-Programmable Gate Arrays.” In:
Natural Computing Series. Springer Singapore, 2021, pp. 239–271. doi: 10.1007/978-981-13-16
87-6_11. url: https://doi.org/10.1007/978-981-13-1687-6_11 (cit. on p. 178).

[1479] E. Iranmehr, S. B. Shouraki, and M. M. Faraji. “ILS-based Reservoir Computing for Hand-
written Digits Recognition.” In: 2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems
(CFIS). IEEE, Sept. 2020. doi: 10.1109/cfis49607.2020.9238722. url: https://doi.org/10.1
109/cfis49607.2020.9238722 (cit. on p. 178).

[1480] P. Antonik, N. Marsal, D. Brunner, and D. Rontani. “Human action recognition with a large-
scale brain-inspired photonic computer.” In: Nature Machine Intelligence 1.11 (Nov. 2019),
pp. 530–537. doi: 10.1038/s42256-019-0110-8. url: https://doi.org/10.1038/s42256-019-
0110-8 (cit. on p. 178).

[1481] K. Hamedani, L. Liu, R. Atat, J. Wu, and Y. Yi. “Reservoir Computing Meets Smart Grids:
Attack Detection Using Delayed Feedback Networks.” In: IEEE Transactions on Industrial
Informatics 14.2 (Feb. 2018), pp. 734–743. doi: 10.1109/tii.2017.2769106. url: https://doi
.org/10.1109/tii.2017.2769106 (cit. on p. 178).

[1482] S.-x. Lun, X.-s. Yao, and H.-f. Hu. “A new echo state network with variable memory length.”
In: Information Sciences 370-371 (Nov. 2016), pp. 103–119. doi: 10.1016/j.ins.2016.07.065.
url: https://doi.org/10.1016/j.ins.2016.07.065 (cit. on p. 178).

[1483] H. Wang, C. Ni, and X. Yan. “Optimizing the echo state network based on mutual information
for modeling fed-batch bioprocesses.” In: Neurocomputing 225 (Feb. 2017), pp. 111–118. doi:
10.1016/j.neucom.2016.11.007. url: https://doi.org/10.1016/j.neucom.2016.11.007
(cit. on p. 178).

[1484] H. Wang and X. Yan. “Optimizing the echo state network with a binary particle swarm
optimization algorithm.” In: Knowledge-Based Systems 86 (Sept. 2015), pp. 182–193. doi: 10.10
16/j.knosys.2015.06.003. url: https://doi.org/10.1016/j.knosys.2015.06.003 (cit. on
p. 178).

[1485] G. Wainrib and M. N. Galtier. “A local Echo State Property through the largest Lyapunov
exponent.” In: Neural Networks 76 (Apr. 2016), pp. 39–45. doi: 10.1016/j.neunet.2015.12.013.
url: https://doi.org/10.1016/j.neunet.2015.12.013 (cit. on p. 178).

[1486] H. Cui, C. Feng, Y. Chai, R. P. Liu, and Y. Liu. “Effect of hybrid circle reservoir injected with
wavelet-neurons on performance of echo state network.” In: Neural Networks 57 (Sept. 2014),
pp. 141–151. doi: 10.1016/j.neunet.2014.05.013. url: https://doi.org/10.1016/j.neunet
.2014.05.013 (cit. on p. 178).

[1487] Y. Guo, F. Wang, B. Chen, and J. Xin. “Robust echo state networks based on correntropy
induced loss function.” In: Neurocomputing 267 (Dec. 2017), pp. 295–303. doi: 10.1016/j.neuc
om.2017.05.087. url: https://doi.org/10.1016/j.neucom.2017.05.087 (cit. on p. 178).

https://doi.org/10.1364/optcon.453196
https://doi.org/10.1364/optcon.453196
https://doi.org/10.1364/optcon.453196
https://doi.org/10.1007/978-3-642-02490-0_7
https://doi.org/10.1007/978-3-642-02490-0_7
https://doi.org/10.1007/978-3-642-02490-0_7
https://doi.org/10.1016/j.artmed.2011.08.006
https://doi.org/10.1016/j.artmed.2011.08.006
https://doi.org/10.1016/j.artmed.2011.08.006
https://doi.org/10.1016/j.csl.2014.09.006
https://doi.org/10.1016/j.csl.2014.09.006
https://doi.org/10.1016/j.csl.2014.09.006
https://doi.org/10.1016/j.neunet.2008.06.010
https://doi.org/10.1016/j.neunet.2008.06.010
https://doi.org/10.1016/j.neunet.2008.06.010
https://doi.org/10.1038/s42256-019-0124-2
https://doi.org/10.1038/s42256-019-0124-2
https://doi.org/10.1038/s42256-019-0124-2
https://doi.org/10.1007/978-981-13-1687-6_11
https://doi.org/10.1007/978-981-13-1687-6_11
https://doi.org/10.1007/978-981-13-1687-6_11
https://doi.org/10.1109/cfis49607.2020.9238722
https://doi.org/10.1109/cfis49607.2020.9238722
https://doi.org/10.1109/cfis49607.2020.9238722
https://doi.org/10.1038/s42256-019-0110-8
https://doi.org/10.1038/s42256-019-0110-8
https://doi.org/10.1038/s42256-019-0110-8
https://doi.org/10.1109/tii.2017.2769106
https://doi.org/10.1109/tii.2017.2769106
https://doi.org/10.1109/tii.2017.2769106
https://doi.org/10.1016/j.ins.2016.07.065
https://doi.org/10.1016/j.ins.2016.07.065
https://doi.org/10.1016/j.neucom.2016.11.007
https://doi.org/10.1016/j.neucom.2016.11.007
https://doi.org/10.1016/j.knosys.2015.06.003
https://doi.org/10.1016/j.knosys.2015.06.003
https://doi.org/10.1016/j.knosys.2015.06.003
https://doi.org/10.1016/j.neunet.2015.12.013
https://doi.org/10.1016/j.neunet.2015.12.013
https://doi.org/10.1016/j.neunet.2014.05.013
https://doi.org/10.1016/j.neunet.2014.05.013
https://doi.org/10.1016/j.neunet.2014.05.013
https://doi.org/10.1016/j.neucom.2017.05.087
https://doi.org/10.1016/j.neucom.2017.05.087
https://doi.org/10.1016/j.neucom.2017.05.087

382 bibliography

[1488] X. Yao, Z. Wang, and H. Zhang. “Identification method for a class of periodic discrete-time
dynamic nonlinear systems based on Sinusoidal ESN.” In: Neurocomputing 275 (Jan. 2018),
pp. 1511–1521. doi: 10.1016/j.neucom.2017.09.092. url: https://doi.org/10.1016/j.neuc
om.2017.09.092 (cit. on p. 178).

[1489] S.-x. Lun, S. Wang, T.-t. Guo, and C.-j. Du. “An I–V model based on time warp invariant echo
state network for photovoltaic array with shaded solar cells.” In: Solar Energy 105 (July 2014),
pp. 529–541. doi: 10.1016/j.solener.2014.04.023. url: https://doi.org/10.1016/j.solen
er.2014.04.023 (cit. on p. 178).

[1490] C. Gallicchio and A. Micheli. “Fast and Deep Graph Neural Networks.” In: Proceedings of the
AAAI Conference on Artificial Intelligence 34.04 (Apr. 2020), pp. 3898–3905. doi: 10.1609/aaai.v
34i04.5803. url: https://doi.org/10.1609/aaai.v34i04.5803 (cit. on p. 178).

[1491] P. Mujal, R. Martínez-Peña, G. L. Giorgi, M. C. Soriano, and R. Zambrini. “Time-series quantum
reservoir computing with weak and projective measurements.” In: npj Quantum Information 9.1
(Feb. 2023). doi: 10.1038/s41534-023-00682-z. url: https://doi.org/10.1038/s41534-023-
00682-z (cit. on p. 178).

[1492] R. Martínez-Peña and J.-P. Ortega. “Quantum reservoir computing in finite dimensions.” In:
Physical Review E 107.3 (Mar. 2023). doi: 10.1103/physreve.107.035306. url: https://doi.or
g/10.1103/physreve.107.035306 (cit. on p. 178).

[1493] G. Llodrà, C. Charalambous, G. L. Giorgi, and R. Zambrini. “Benchmarking the Role of Particle
Statistics in Quantum Reservoir Computing.” In: Advanced Quantum Technologies 6.1 (Nov. 2022),
p. 2200100. doi: 10.1002/qute.202200100. url: https://doi.org/10.1002/qute.202200100
(cit. on p. 178).

[1494] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar.
“Optoelectronic Reservoir Computing.” In: Scientific Reports 2.1 (Feb. 2012). doi: 10.1038/srep
00287. url: https://doi.org/10.1038/srep00287 (cit. on p. 178).

[1495] R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, and L. Larger. “Photonic Nonlinear
Transient Computing with Multiple-Delay Wavelength Dynamics.” In: Physical Review Letters
108.24 (June 2012). doi: 10.1103/physrevlett.108.244101. url: https://doi.org/10.1103/p
hysrevlett.108.244101 (cit. on p. 178).

[1496] K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, and J. V.
Campenhout. “Toward optical signal processing using Photonic Reservoir Computing.” In:
Optics Express 16.15 (July 2008), p. 11182. doi: 10.1364/oe.16.011182. url: https://doi.org
/10.1364/oe.16.011182 (cit. on p. 178).

[1497] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mi-
rasso, and I. Fischer. “Photonic information processing beyond Turing: an optoelectronic
implementation of reservoir computing.” In: Optics Express 20.3 (Jan. 2012), p. 3241. doi:
10.1364/oe.20.003241. url: https://doi.org/10.1364/oe.20.003241 (cit. on p. 178).

[1498] Y. Chen, L. Yi, J. Ke, Z. Yang, Y. Yang, L. Huang, Q. Zhuge, and W. Hu. “Reservoir computing
system with double optoelectronic feedback loops.” In: Optics Express 27.20 (Sept. 2019),
p. 27431. doi: 10.1364/oe.27.027431. url: https://doi.org/10.1364/oe.27.027431 (cit. on
p. 178).

[1499] K. Vandoorne, M. Fiers, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman. “Photonic
reservoir computing: A new approach to optical information processing.” In: 2010 12th
International Conference on Transparent Optical Networks. IEEE, June 2010. doi: 10.1109/icton.2
010.5548990. url: https://doi.org/10.1109/icton.2010.5548990 (cit. on p. 178).

[1500] K. Vandoorne, M. Fiers, T. V. Vaerenbergh, D. Verstraeten, B. Schrauwen, J. Dambre, and
P. Bienstman. “Advances in photonic reservoir computing on an integrated platform.” In: 2011
13th International Conference on Transparent Optical Networks. IEEE, June 2011. doi: 10.1109/ict
on.2011.5970791. url: https://doi.org/10.1109/icton.2011.5970791 (cit. on p. 178).

[1501] Vandoorne, Kristof. “Photonic reservoir computing with a network of coupled semiconductor
optical amplifiers.” eng. PhD thesis. Ghent University, 2011, XXXV, 185. isbn: 9789085784517

(cit. on p. 178).

[1502] X. Li, N. Jiang, Q. Zhang, C. Tang, Y. Zhang, G. Hu, Y. Cao, and K. Qiu. “Performance-
enhanced time-delayed photonic reservoir computing system using a reflective semiconductor
optical amplifier.” In: Optics Express 31.18 (Aug. 2023), p. 28764. issn: 1094-4087. doi: 10.1364
/oe.495697. url: http://dx.doi.org/10.1364/oe.495697 (cit. on p. 178).

[1503] Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, and S. Massar.
“High-performance photonic reservoir computer based on a coherently driven passive cavity.”
In: Optica 2.5 (Apr. 2015), p. 438. doi: 10.1364/optica.2.000438. url: https://doi.org/10.1
364/optica.2.000438 (cit. on p. 178).

https://doi.org/10.1016/j.neucom.2017.09.092
https://doi.org/10.1016/j.neucom.2017.09.092
https://doi.org/10.1016/j.neucom.2017.09.092
https://doi.org/10.1016/j.solener.2014.04.023
https://doi.org/10.1016/j.solener.2014.04.023
https://doi.org/10.1016/j.solener.2014.04.023
https://doi.org/10.1609/aaai.v34i04.5803
https://doi.org/10.1609/aaai.v34i04.5803
https://doi.org/10.1609/aaai.v34i04.5803
https://doi.org/10.1038/s41534-023-00682-z
https://doi.org/10.1038/s41534-023-00682-z
https://doi.org/10.1038/s41534-023-00682-z
https://doi.org/10.1103/physreve.107.035306
https://doi.org/10.1103/physreve.107.035306
https://doi.org/10.1103/physreve.107.035306
https://doi.org/10.1002/qute.202200100
https://doi.org/10.1002/qute.202200100
https://doi.org/10.1038/srep00287
https://doi.org/10.1038/srep00287
https://doi.org/10.1038/srep00287
https://doi.org/10.1103/physrevlett.108.244101
https://doi.org/10.1103/physrevlett.108.244101
https://doi.org/10.1103/physrevlett.108.244101
https://doi.org/10.1364/oe.16.011182
https://doi.org/10.1364/oe.16.011182
https://doi.org/10.1364/oe.16.011182
https://doi.org/10.1364/oe.20.003241
https://doi.org/10.1364/oe.20.003241
https://doi.org/10.1364/oe.27.027431
https://doi.org/10.1364/oe.27.027431
https://doi.org/10.1109/icton.2010.5548990
https://doi.org/10.1109/icton.2010.5548990
https://doi.org/10.1109/icton.2010.5548990
https://doi.org/10.1109/icton.2011.5970791
https://doi.org/10.1109/icton.2011.5970791
https://doi.org/10.1109/icton.2011.5970791
https://doi.org/10.1364/oe.495697
https://doi.org/10.1364/oe.495697
http://dx.doi.org/10.1364/oe.495697
https://doi.org/10.1364/optica.2.000438
https://doi.org/10.1364/optica.2.000438
https://doi.org/10.1364/optica.2.000438

bibliography 383

[1504] A. Dejonckheere, F. Duport, A. Smerieri, L. Fang, J.-L. Oudar, M. Haelterman, and S. Massar.
“All-optical reservoir computer based on saturation of absorption.” In: Optics Express 22.9 (Apr.
2014), p. 10868. doi: 10.1364/oe.22.010868. url: https://doi.org/10.1364/oe.22.010868
(cit. on p. 178).

[1505] M. Abdalla, C. Zrounba, R. Cardoso, P. Jimenez, G. Ren, A. Boes, A. Mitchell, A. Bosio,
I. O’Connor, and F. Pavanello. “Minimum complexity integrated photonic architecture for
delay-based reservoir computing.” In: Optics Express 31.7 (Mar. 2023), p. 11610. doi: 10.1364/o
e.484052. url: https://doi.org/10.1364/oe.484052 (cit. on p. 178).

[1506] I. Bauwens, K. Harkhoe, P. Bienstman, G. Verschaffelt, and G. V. der Sande. “Transfer learning
for photonic delay-based reservoir computing to compensate parameter drift.” In: Nanophoton-
ics 12.5 (Oct. 2022), pp. 949–961. doi: 10.1515/nanoph-2022-0399. url: https://doi.org/10
.1515/nanoph-2022-0399 (cit. on p. 178).

[1507] G. V. der Sande, D. Brunner, and M. C. Soriano. “Advances in photonic reservoir computing.”
In: Nanophotonics 6.3 (May 2017), pp. 561–576. doi: 10.1515/nanoph-2016-0132. url: https:
//doi.org/10.1515/nanoph-2016-0132 (cit. on p. 178).

[1508] S. Masaad, E. Gooskens, S. Sackesyn, J. Dambre, and P. Bienstman. “Photonic reservoir
computing for nonlinear equalization of 64-QAM signals with a Kramers–Kronig receiver.” In:
Nanophotonics 12.5 (Oct. 2022), pp. 925–935. doi: 10.1515/nanoph-2022-0426. url: https://d
oi.org/10.1515/nanoph-2022-0426 (cit. on p. 178).

[1509] H. Hasegawa, K. Kanno, and A. Uchida. “Parallel and deep reservoir computing using
semiconductor lasers with optical feedback.” In: Nanophotonics 12.5 (Oct. 2022), pp. 869–881.
doi: 10.1515/nanoph-2022-0440. url: https://doi.org/10.1515/nanoph-2022-0440 (cit. on
p. 178).

[1510] J. Nakayama, K. Kanno, and A. Uchida. “Laser dynamical reservoir computing with consis-
tency: an approach of a chaos mask signal.” In: Optics Express 24.8 (Apr. 2016), p. 8679. doi:
10.1364/oe.24.008679. url: https://doi.org/10.1364/oe.24.008679 (cit. on p. 178).

[1511] M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, and L. Pesquera.
“Optoelectronic reservoir computing: tackling noise-induced performance degradation.” In:
Optics Express 21.1 (Jan. 2013), p. 12. doi: 10.1364/oe.21.000012. url: https://doi.org/10.1
364/oe.21.000012 (cit. on p. 178).

[1512] R. M. Nguimdo, E. Lacot, O. Jacquin, O. Hugon, G. V. der Sande, and H. G. de Chatellus.
“Prediction performance of reservoir computing systems based on a diode-pumped erbium-
doped microchip laser subject to optical feedback.” In: Optics Letters 42.3 (Jan. 2017), p. 375.
doi: 10.1364/ol.42.000375. url: https://doi.org/10.1364/ol.42.000375 (cit. on p. 178).

[1513] J. Bueno, D. Brunner, M. C. Soriano, and I. Fischer. “Conditions for reservoir computing
performance using semiconductor lasers with delayed optical feedback.” In: Optics Express
25.3 (Jan. 2017), p. 2401. doi: 10.1364/oe.25.002401. url: https://doi.org/10.1364/oe.25
.002401 (cit. on p. 178).

[1514] Y. Hou, G. Xia, W. Yang, D. Wang, E. Jayaprasath, Z. Jiang, C. Hu, and Z. Wu. “Prediction
performance of reservoir computing system based on a semiconductor laser subject to double
optical feedback and optical injection.” In: Optics Express 26.8 (Apr. 2018), p. 10211. doi:
10.1364/oe.26.010211. url: https://doi.org/10.1364/oe.26.010211 (cit. on p. 178).

[1515] J. Vatin, D. Rontani, and M. Sciamanna. “Enhanced performance of a reservoir computer
using polarization dynamics in VCSELs.” In: Optics Letters 43.18 (Sept. 2018), p. 4497. doi:
10.1364/ol.43.004497. url: https://doi.org/10.1364/ol.43.004497 (cit. on p. 178).

[1516] Y.-S. Hou, G.-Q. Xia, E. Jayaprasath, D.-Z. Yue, W.-Y. Yang, and Z.-M. Wu. “Prediction and
classification performance of reservoir computing system using mutually delay-coupled
semiconductor lasers.” In: Optics Communications 433 (Feb. 2019), pp. 215–220. doi: 10.101
6/j.optcom.2018.10.014. url: https://doi.org/10.1016/j.optcom.2018.10.014 (cit. on
p. 178).

[1517] S. S. Mosleh, L. Liu, C. Sahin, Y. R. Zheng, and Y. Yi. “Brain-Inspired Wireless Communications:
Where Reservoir Computing Meets MIMO-OFDM.” In: IEEE Transactions on Neural Networks
and Learning Systems 29.10 (Oct. 2018), pp. 4694–4708. doi: 10.1109/tnnls.2017.2766162. url:
https://doi.org/10.1109/tnnls.2017.2766162 (cit. on p. 178).

[1518] H. Numata, J. B. Heroux, T. Yamane, and D. Nakano. “FPGA-driven High Density Photonic
Reservoir Computing.” In: 2022 International Conference on Electronics Packaging (ICEP). IEEE,
May 2022. doi: 10.23919/icep55381.2022.9795514. url: https://doi.org/10.23919/icep55
381.2022.9795514 (cit. on p. 178).

[1519] S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso,
and J. M. Gutiérrez. “A Unified Framework for Reservoir Computing and Extreme Learning
Machines based on a Single Time-delayed Neuron.” In: Scientific Reports 5.1 (Oct. 2015). doi:
10.1038/srep14945. url: https://doi.org/10.1038/srep14945 (cit. on p. 178).

https://doi.org/10.1364/oe.22.010868
https://doi.org/10.1364/oe.22.010868
https://doi.org/10.1364/oe.484052
https://doi.org/10.1364/oe.484052
https://doi.org/10.1364/oe.484052
https://doi.org/10.1515/nanoph-2022-0399
https://doi.org/10.1515/nanoph-2022-0399
https://doi.org/10.1515/nanoph-2022-0399
https://doi.org/10.1515/nanoph-2016-0132
https://doi.org/10.1515/nanoph-2016-0132
https://doi.org/10.1515/nanoph-2016-0132
https://doi.org/10.1515/nanoph-2022-0426
https://doi.org/10.1515/nanoph-2022-0426
https://doi.org/10.1515/nanoph-2022-0426
https://doi.org/10.1515/nanoph-2022-0440
https://doi.org/10.1515/nanoph-2022-0440
https://doi.org/10.1364/oe.24.008679
https://doi.org/10.1364/oe.24.008679
https://doi.org/10.1364/oe.21.000012
https://doi.org/10.1364/oe.21.000012
https://doi.org/10.1364/oe.21.000012
https://doi.org/10.1364/ol.42.000375
https://doi.org/10.1364/ol.42.000375
https://doi.org/10.1364/oe.25.002401
https://doi.org/10.1364/oe.25.002401
https://doi.org/10.1364/oe.25.002401
https://doi.org/10.1364/oe.26.010211
https://doi.org/10.1364/oe.26.010211
https://doi.org/10.1364/ol.43.004497
https://doi.org/10.1364/ol.43.004497
https://doi.org/10.1016/j.optcom.2018.10.014
https://doi.org/10.1016/j.optcom.2018.10.014
https://doi.org/10.1016/j.optcom.2018.10.014
https://doi.org/10.1109/tnnls.2017.2766162
https://doi.org/10.1109/tnnls.2017.2766162
https://doi.org/10.23919/icep55381.2022.9795514
https://doi.org/10.23919/icep55381.2022.9795514
https://doi.org/10.23919/icep55381.2022.9795514
https://doi.org/10.1038/srep14945
https://doi.org/10.1038/srep14945

384 bibliography

[1520] A. Katumba, J. Heyvaert, B. Schneider, S. Uvin, J. Dambre, and P. Bienstman. “Low-Loss
Photonic Reservoir Computing with Multimode Photonic Integrated Circuits.” In: Scientific
Reports 8.1 (Feb. 2018). doi: 10.1038/s41598-018-21011-x. url: https://doi.org/10.1038/s
41598-018-21011-x (cit. on p. 178).

[1521] Y. Zhang, P. Li, Y. Jin, and Y. Choe. “A Digital Liquid State Machine With Biologically Inspired
Learning and Its Application to Speech Recognition.” In: IEEE Transactions on Neural Networks
and Learning Systems 26.11 (Nov. 2015), pp. 2635–2649. doi: 10.1109/tnnls.2015.2388544. url:
https://doi.org/10.1109/tnnls.2015.2388544 (cit. on p. 178).

[1522] A. N. Elbedwehy, A. M. El-Mohandes, A. Elnakib, and M. E. Abou-Elsoud. “FPGA-based
reservoir computing system for ECG denoising.” In: Microprocessors and Microsystems 91 (June
2022), p. 104549. doi: 10.1016/j.micpro.2022.104549. url: https://doi.org/10.1016/j.mi
cpro.2022.104549 (cit. on p. 178).

[1523] P. Kumar, M. Jin, T. Bu, S. Kumar, and Y.-P. Huang. “Efficient reservoir computing using field
programmable gate array and electro-optic modulation.” In: OSA Continuum 4.3 (Mar. 2021),
p. 1086. doi: 10.1364/osac.417996. url: https://doi.org/10.1364/osac.417996 (cit. on
p. 178).

[1524] Y. Liao, H. Li, Y. Shen, and W. Li. “An FPGA Based Real Time Reservoir Computing System
for Neuromorphic Processors.” In: 2018 3rd Asia-Pacific Conference on Intelligent Robot Systems
(ACIRS). IEEE, July 2018. doi: 10.1109/acirs.2018.8467252. url: https://doi.org/10.1109
/acirs.2018.8467252 (cit. on p. 178).

[1525] V. M. Gan, Y. Liang, L. Li, L. Liu, and Y. Yi. “A Cost-Efficient Digital ESN Architecture on FPGA
for OFDM Symbol Detection.” In: ACM Journal on Emerging Technologies in Computing Systems
17.4 (June 2021), pp. 1–15. doi: 10.1145/3440017. url: https://doi.org/10.1145/3440017
(cit. on p. 178).

[1526] E. S. Skibinsky-Gitlin, M. L. Alomar, C. F. Frasser, V. Canals, E. Isern, M. Roca, and J. L.
Rosselló. “Cyclic Reservoir Computing with FPGA Devices for Efficient Channel Equalization.”
In: Artificial Intelligence and Soft Computing. Springer International Publishing, 2018, pp. 226–234.
doi: 10.1007/978-3-319-91253-0_22. url: https://doi.org/10.1007/978-3-319-91253-0
_22 (cit. on p. 178).

[1527] H. O. Sillin, R. Aguilera, H.-H. Shieh, A. V. Avizienis, M. Aono, A. Z. Stieg, and J. K. Gimzewski.
“A theoretical and experimental study of neuromorphic atomic switch networks for reservoir
computing.” In: Nanotechnology 24.38 (Sept. 2013), p. 384004. doi: 10.1088/0957-4484/24/38
/384004. url: https://doi.org/10.1088/0957-4484/24/38/384004 (cit. on p. 178).

[1528] L. Chua. “Memristor-The missing circuit element.” In: IEEE Transactions on Circuit Theory 18.5
(1971), pp. 507–519. doi: 10.1109/tct.1971.1083337. url: https://doi.org/10.1109/tct.19
71.1083337 (cit. on p. 178).

[1529] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. “The missing memristor found.”
In: Nature 453.7191 (May 2008), pp. 80–83. doi: 10.1038/nature06932. url: https://doi.org
/10.1038/nature06932 (cit. on p. 178).

[1530] J. Moon, W. Ma, J. H. Shin, F. Cai, C. Du, S. H. Lee, and W. D. Lu. “Temporal data classification
and forecasting using a memristor-based reservoir computing system.” In: Nature Electronics
2.10 (Oct. 2019), pp. 480–487. doi: 10.1038/s41928-019-0313-3. url: https://doi.org/10.1
038/s41928-019-0313-3 (cit. on p. 178).

[1531] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu. “Reservoir computing using
dynamic memristors for temporal information processing.” In: Nature Communications 8.1 (Dec.
2017). doi: 10.1038/s41467-017-02337-y. url: https://doi.org/10.1038/s41467-017-0233
7-y (cit. on p. 178).

[1532] Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, and H. Wu. “Dynamic memristor-based reservoir
computing for high-efficiency temporal signal processing.” In: Nature Communications 12.1 (Jan.
2021). doi: 10.1038/s41467-020-20692-1. url: https://doi.org/10.1038/s41467-020-2069
2-1 (cit. on p. 178).

[1533] G. Tanaka and R. Nakane. “Simulation platform for pattern recognition based on reservoir
computing with memristor networks.” In: Scientific Reports 12.1 (June 2022). doi: 10.1038/s41
598-022-13687-z. url: https://doi.org/10.1038/s41598-022-13687-z (cit. on p. 178).

[1534] J. Ren, M. Ji’e, S. Xu, D. Yan, S. Duan, and L. Wang. “RC-MHM: reservoir computing with a
2D memristive hyperchaotic map.” In: The European Physical Journal Special Topics (Mar. 2023).
doi: 10.1140/epjs/s11734-023-00773-0. url: https://doi.org/10.1140/epjs/s11734-023-
00773-0 (cit. on p. 178).

[1535] E. Wlaźlak, P. Zawal, and K. Szaciłowski. “Neuromorphic Applications of a Multivalued
[SnI4(C6H5)2SO2] Memristor Incorporated in the Echo State Machine.” In: ACS Applied Elec-
tronic Materials 2.2 (Jan. 2020), pp. 329–338. doi: 10.1021/acsaelm.9b00750. url: https://doi
.org/10.1021/acsaelm.9b00750 (cit. on p. 178).

https://doi.org/10.1038/s41598-018-21011-x
https://doi.org/10.1038/s41598-018-21011-x
https://doi.org/10.1038/s41598-018-21011-x
https://doi.org/10.1109/tnnls.2015.2388544
https://doi.org/10.1109/tnnls.2015.2388544
https://doi.org/10.1016/j.micpro.2022.104549
https://doi.org/10.1016/j.micpro.2022.104549
https://doi.org/10.1016/j.micpro.2022.104549
https://doi.org/10.1364/osac.417996
https://doi.org/10.1364/osac.417996
https://doi.org/10.1109/acirs.2018.8467252
https://doi.org/10.1109/acirs.2018.8467252
https://doi.org/10.1109/acirs.2018.8467252
https://doi.org/10.1145/3440017
https://doi.org/10.1145/3440017
https://doi.org/10.1007/978-3-319-91253-0_22
https://doi.org/10.1007/978-3-319-91253-0_22
https://doi.org/10.1007/978-3-319-91253-0_22
https://doi.org/10.1088/0957-4484/24/38/384004
https://doi.org/10.1088/0957-4484/24/38/384004
https://doi.org/10.1088/0957-4484/24/38/384004
https://doi.org/10.1109/tct.1971.1083337
https://doi.org/10.1109/tct.1971.1083337
https://doi.org/10.1109/tct.1971.1083337
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/s41928-019-0313-3
https://doi.org/10.1038/s41928-019-0313-3
https://doi.org/10.1038/s41928-019-0313-3
https://doi.org/10.1038/s41467-017-02337-y
https://doi.org/10.1038/s41467-017-02337-y
https://doi.org/10.1038/s41467-017-02337-y
https://doi.org/10.1038/s41467-020-20692-1
https://doi.org/10.1038/s41467-020-20692-1
https://doi.org/10.1038/s41467-020-20692-1
https://doi.org/10.1038/s41598-022-13687-z
https://doi.org/10.1038/s41598-022-13687-z
https://doi.org/10.1038/s41598-022-13687-z
https://doi.org/10.1140/epjs/s11734-023-00773-0
https://doi.org/10.1140/epjs/s11734-023-00773-0
https://doi.org/10.1140/epjs/s11734-023-00773-0
https://doi.org/10.1021/acsaelm.9b00750
https://doi.org/10.1021/acsaelm.9b00750
https://doi.org/10.1021/acsaelm.9b00750

bibliography 385

[1536] E. Wlaźlak, M. Marzec, P. Zawal, and K. Szaciłowski. “Memristor in a Reservoir System —
Experimental Evidence for High-Level Computing and Neuromorphic Behavior of PBI2.” In:
ACS Applied Materials & Interfaces 11.18 (Apr. 2019), pp. 17009–17018. doi: 10.1021/acsami.9b
01841. url: https://doi.org/10.1021/acsami.9b01841 (cit. on p. 178).

[1537] D. Przyczyna, G. Hess, and K. Szaciłowski. “KNOWM memristors in a bridge synapse delay-
based reservoir computing system for detection of epileptic seizures.” In: International Journal
of Parallel, Emergent and Distributed Systems 37.5 (June 2022), pp. 512–527. doi: 10.1080/174457
60.2022.2088751. url: https://doi.org/10.1080/17445760.2022.2088751 (cit. on p. 178).

[1538] F. Hadaeghi. “Neuromorphic Electronic Systems for Reservoir Computing.” In: Natural Com-
puting Series. Springer Singapore, 2021, pp. 221–237. doi: 10.1007/978-981-13-1687-6_10.
url: https://doi.org/10.1007/978-981-13-1687-6_10 (cit. on p. 178).

[1539] Y. Yang, H. Cui, S. Ke, M. Pei, K. Shi, C. Wan, and Q. Wan. “Reservoir computing based on
electric-double-layer coupled InGaZnO artificial synapse.” In: Applied Physics Letters 122.4 (Jan.
2023), p. 043508. doi: 10.1063/5.0137647. url: https://doi.org/10.1063/5.0137647 (cit. on
p. 178).

[1540] O. Obst et al. “Nano-scale reservoir computing.” In: Nano Communication Networks 4.4 (Dec.
2013), pp. 189–196. doi: 10.1016/j.nancom.2013.08.005. url: https://doi.org/10.1016/j
.nancom.2013.08.005 (cit. on p. 178).

[1541] D. Nishioka, T. Tsuchiya, W. Namiki, M. Takayanagi, M. Imura, Y. Koide, T. Higuchi, and
K. Terabe. “Edge-of-chaos learning achieved by ion-electron–coupled dynamics in an ion-
gating reservoir.” In: Science Advances 8.50 (Dec. 2022). doi: 10.1126/sciadv.ade1156. url:
https://doi.org/10.1126/sciadv.ade1156 (cit. on p. 178).

[1542] S. Kan, K. Nakajima, T. Asai, and M. Akai-Kasaya. “Physical Implementation of Reservoir
Computing through Electrochemical Reaction.” In: Advanced Science 9.6 (Dec. 2021), p. 2104076.
doi: 10.1002/advs.202104076. url: https://doi.org/10.1002/advs.202104076 (cit. on
p. 178).

[1543] S.-G. Koh, H. Shima, Y. Naitoh, H. Akinaga, and K. Kinoshita. “Reservoir computing with
dielectric relaxation at an electrode–ionic liquid interface.” In: Scientific Reports 12.1 (Apr. 2022).
doi: 10.1038/s41598-022-10152-9. url: https://doi.org/10.1038/s41598-022-10152-9
(cit. on p. 178).

[1544] T. Matsuo, D. Sato, S.-G. Koh, H. Shima, Y. Naitoh, H. Akinaga, T. Itoh, T. Nokami, M.
Kobayashi, and K. Kinoshita. “Dynamic Nonlinear Behavior of Ionic Liquid-Based Reservoir
Computing Devices.” In: ACS Applied Materials & Interfaces 14.32 (July 2022), pp. 36890–36901.
doi: 10.1021/acsami.2c04167. url: https://doi.org/10.1021/acsami.2c04167 (cit. on
p. 178).

[1545] M. Nakajima, K. Minegishi, Y. Shimizu, Y. Usami, H. Tanaka, and T. Hasegawa. “In-materio
reservoir working at low frequencies in a Ag2S-island network.” In: Nanoscale 14.20 (2022),
pp. 7634–7640. doi: 10.1039/d2nr01439d. url: https://doi.org/10.1039/d2nr01439d (cit. on
p. 178).

[1546] H. Tanaka et al. “In-materio computing in random networks of carbon nanotubes complexed
with chemically dynamic molecules: a review.” In: Neuromorphic Computing and Engineering 2.2
(May 2022), p. 022002. doi: 10.1088/2634-4386/ac676a. url: https://doi.org/10.1088/263
4-4386/ac676a (cit. on p. 178).

[1547] D. Banerjee, T. Kotooka, S. Azhari, Y. Usami, T. Ogawa, J. K. Gimzewski, H. Tamukoh, and H.
Tanaka. “Emergence of In-Materio Intelligence from an Incidental Structure of a Single-Walled
Carbon Nanotube–Porphyrin Polyoxometalate Random Network.” In: Advanced Intelligent
Systems 4.4 (Jan. 2022), p. 2100145. doi: 10.1002/aisy.202100145. url: https://doi.org/10
.1002/aisy.202100145 (cit. on p. 178).

[1548] Y. Suzuki, Q. Gao, K. C. Pradel, K. Yasuoka, and N. Yamamoto. “Natural quantum reservoir
computing for temporal information processing.” In: Scientific Reports 12.1 (Jan. 2022). doi:
10.1038/s41598-022-05061-w. url: https://doi.org/10.1038/s41598-022-05061-w (cit. on
p. 178).

[1549] S. Ghosh, K. Nakajima, T. Krisnanda, K. Fujii, and T. C. H. Liew. “Quantum Neuromorphic
Computing with Reservoir Computing Networks.” In: Advanced Quantum Technologies 4.9 (July
2021), p. 2100053. doi: 10.1002/qute.202100053. url: https://doi.org/10.1002/qute.2021
00053 (cit. on p. 178).

[1550] P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni, G. L. Giorgi, M. C. Soriano, and R.
Zambrini. “Opportunities in Quantum Reservoir Computing and Extreme Learning Machines.”
In: Advanced Quantum Technologies 4.8 (June 2021), p. 2100027. doi: 10.1002/qute.202100027.
url: https://doi.org/10.1002/qute.202100027 (cit. on p. 178).

https://doi.org/10.1021/acsami.9b01841
https://doi.org/10.1021/acsami.9b01841
https://doi.org/10.1021/acsami.9b01841
https://doi.org/10.1080/17445760.2022.2088751
https://doi.org/10.1080/17445760.2022.2088751
https://doi.org/10.1080/17445760.2022.2088751
https://doi.org/10.1007/978-981-13-1687-6_10
https://doi.org/10.1007/978-981-13-1687-6_10
https://doi.org/10.1063/5.0137647
https://doi.org/10.1063/5.0137647
https://doi.org/10.1016/j.nancom.2013.08.005
https://doi.org/10.1016/j.nancom.2013.08.005
https://doi.org/10.1016/j.nancom.2013.08.005
https://doi.org/10.1126/sciadv.ade1156
https://doi.org/10.1126/sciadv.ade1156
https://doi.org/10.1002/advs.202104076
https://doi.org/10.1002/advs.202104076
https://doi.org/10.1038/s41598-022-10152-9
https://doi.org/10.1038/s41598-022-10152-9
https://doi.org/10.1021/acsami.2c04167
https://doi.org/10.1021/acsami.2c04167
https://doi.org/10.1039/d2nr01439d
https://doi.org/10.1039/d2nr01439d
https://doi.org/10.1088/2634-4386/ac676a
https://doi.org/10.1088/2634-4386/ac676a
https://doi.org/10.1088/2634-4386/ac676a
https://doi.org/10.1002/aisy.202100145
https://doi.org/10.1002/aisy.202100145
https://doi.org/10.1002/aisy.202100145
https://doi.org/10.1038/s41598-022-05061-w
https://doi.org/10.1038/s41598-022-05061-w
https://doi.org/10.1002/qute.202100053
https://doi.org/10.1002/qute.202100053
https://doi.org/10.1002/qute.202100053
https://doi.org/10.1002/qute.202100027
https://doi.org/10.1002/qute.202100027

386 bibliography

[1551] E. Wlaźlak, W. Macyk, W. Nitek, and K. Szaciłowski. “Influence of π-Iodide Intermolecular
Interactions on Electronic Properties of Tin(IV) Iodide Semiconducting Complexes.” In: Inor-
ganic Chemistry 55.12 (June 2016), pp. 5935–5945. doi: 10.1021/acs.inorgchem.6b00336. url:
https://doi.org/10.1021/acs.inorgchem.6b00336 (cit. on p. 178).

[1552] K. Liu, B. Dang, T. Zhang, Z. Yang, L. Bao, L. Xu, C. Cheng, R. Huang, and Y. Yang. “Multilayer
Reservoir Computing Based on Ferroelectric α-In2Se3 for Hierarchical Information Processing.”
In: Advanced Materials 34.48 (Feb. 2022), p. 2108826. doi: 10.1002/adma.202108826. url: https
://doi.org/10.1002/adma.202108826 (cit. on p. 178).

[1553] C. Kaspar, B. J. Ravoo, W. G. van der Wiel, S. V. Wegner, and W. H. P. Pernice. “The rise of
intelligent matter.” In: Nature 594.7863 (June 2021), pp. 345–355. doi: 10.1038/s41586-021-03
453-y. url: https://doi.org/10.1038/s41586-021-03453-y (cit. on p. 178).

[1554] S. Ganguli, D. Huh, and H. Sompolinsky. “Memory traces in dynamical systems.” In: Proceed-
ings of the National Academy of Sciences 105.48 (Dec. 2008), pp. 18970–18975. doi: 10.1073/pnas
.0804451105. url: https://doi.org/10.1073/pnas.0804451105 (cit. on p. 178).

[1555] S. Ganguli and H. Sompolinsky. “Short-term memory in neuronal networks through dynamical
compressed sensing.” In: vol. 23. Jan. 2010, pp. 667–675. url: https://ganguli-gang.stanfor
d.edu/pdf/DynCompSense.pdf (cit. on p. 178).

[1556] L. Grigoryeva and J.-P. Ortega. “Echo state networks are universal.” In: Neural Networks 108

(Dec. 2018), pp. 495–508. doi: 10.1016/j.neunet.2018.08.025. url: https://doi.org/10.10
16/j.neunet.2018.08.025 (cit. on p. 178).

[1557] L. Gonon and J.-P. Ortega. “Reservoir Computing Universality With Stochastic Inputs.” In:
IEEE Transactions on Neural Networks and Learning Systems 31.1 (Jan. 2020), pp. 100–112. doi:
10.1109/tnnls.2019.2899649. url: https://doi.org/10.1109/tnnls.2019.2899649 (cit. on
p. 178).

[1558] E. Bollt. “On explaining the surprising success of reservoir computing forecaster of chaos? The
universal machine learning dynamical system with contrast to VAR and DMD.” In: Chaos: An
Interdisciplinary Journal of Nonlinear Science 31.1 (Jan. 2021), p. 013108. doi: 10.1063/5.0024890.
url: https://doi.org/10.1063/5.0024890 (cit. on p. 178).

[1559] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa. “Next generation reservoir comput-
ing.” In: Nature Communications 12.1 (Sept. 2021). doi: 10.1038/s41467-021-25801-2. url:
https://doi.org/10.1038/s41467-021-25801-2 (cit. on p. 179).

[1560] H. Zhang and D. V. Vargas. “A Survey on Reservoir Computing and its Interdisciplinary
Applications Beyond Traditional Machine Learning.” In: IEEE Access 11 (2023), pp. 81033–
81070. issn: 2169-3536. doi: 10.1109/access.2023.3299296. url: http://dx.doi.org/10.110
9/access.2023.3299296 (cit. on p. 179).

[1561] M. Lukoševičius, H. Jaeger, and B. Schrauwen. “Reservoir Computing Trends.” In: KI -
Künstliche Intelligenz 26.4 (May 2012), pp. 365–371. doi: 10.1007/s13218-012-0204-5. url:
https://doi.org/10.1007/s13218-012-0204-5 (cit. on p. 179).

[1562] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D.
Nakano, and A. Hirose. “Recent advances in physical reservoir computing: A review.” In:
Neural Networks 115 (July 2019), pp. 100–123. doi: 10.1016/j.neunet.2019.03.005. url:
https://doi.org/10.1016/j.neunet.2019.03.005 (cit. on p. 179).

[1563] C. Huang, M. Li, F. Cao, H. Fujita, Z. Li, and X. Wu. “Are Graph Convolutional Networks With
Random Weights Feasible?” In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2022), pp. 1–18. doi: 10.1109/tpami.2022.3183143. url: https://doi.org/10.1109/tpami.2
022.3183143 (cit. on p. 179).

[1564] Z. Liao. “A random matrix framework for large dimensional machine learning and neural
networks.” PhD thesis. Université Paris-Saclay, 2019. url: https://theses.hal.science/tel-
02397287/document (cit. on pp. 179, 186).

[1565] T. R. Davidson, L. Falorsi, N. D. Cao, T. Kipf, and J. M. Tomczak. “Hyperspherical Variational
Auto-Encoders.” In: Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelli-
gence, UAI 2018, Monterey, California, USA, August 6-10, 2018. Ed. by A. Globerson and R. Silva.
AUAI Press, 2018, pp. 856–865. url: http://auai.org/uai2018/proceedings/papers/309.pdf
(cit. on pp. 179, 181).

[1566] Y. Chen, X.-H. Yang, Z. Wei, A. A. Heidari, N. Zheng, Z. Li, H. Chen, H. Hu, Q. Zhou, and
Q. Guan. “Generative Adversarial Networks in Medical Image augmentation: A review.” In:
Computers in Biology and Medicine 144 (May 2022), p. 105382. doi: 10.1016/j.compbiomed.2022
.105382. url: https://doi.org/10.1016/j.compbiomed.2022.105382 (cit. on p. 179).

[1567] M. Brundage et al. The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitiga-
tion. Tech. rep. 2018. doi: 10.17863/CAM.22520. url: https://www.repository.cam.ac.uk/ha
ndle/1810/275332 (cit. on p. 179).

https://doi.org/10.1021/acs.inorgchem.6b00336
https://doi.org/10.1021/acs.inorgchem.6b00336
https://doi.org/10.1002/adma.202108826
https://doi.org/10.1002/adma.202108826
https://doi.org/10.1002/adma.202108826
https://doi.org/10.1038/s41586-021-03453-y
https://doi.org/10.1038/s41586-021-03453-y
https://doi.org/10.1038/s41586-021-03453-y
https://doi.org/10.1073/pnas.0804451105
https://doi.org/10.1073/pnas.0804451105
https://doi.org/10.1073/pnas.0804451105
https://ganguli-gang.stanford.edu/pdf/DynCompSense.pdf
https://ganguli-gang.stanford.edu/pdf/DynCompSense.pdf
https://doi.org/10.1016/j.neunet.2018.08.025
https://doi.org/10.1016/j.neunet.2018.08.025
https://doi.org/10.1016/j.neunet.2018.08.025
https://doi.org/10.1109/tnnls.2019.2899649
https://doi.org/10.1109/tnnls.2019.2899649
https://doi.org/10.1063/5.0024890
https://doi.org/10.1063/5.0024890
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1109/access.2023.3299296
http://dx.doi.org/10.1109/access.2023.3299296
http://dx.doi.org/10.1109/access.2023.3299296
https://doi.org/10.1007/s13218-012-0204-5
https://doi.org/10.1007/s13218-012-0204-5
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1109/tpami.2022.3183143
https://doi.org/10.1109/tpami.2022.3183143
https://doi.org/10.1109/tpami.2022.3183143
https://theses.hal.science/tel-02397287/document
https://theses.hal.science/tel-02397287/document
http://auai.org/uai2018/proceedings/papers/309.pdf
https://doi.org/10.1016/j.compbiomed.2022.105382
https://doi.org/10.1016/j.compbiomed.2022.105382
https://doi.org/10.1016/j.compbiomed.2022.105382
https://doi.org/10.17863/CAM.22520
https://www.repository.cam.ac.uk/handle/1810/275332
https://www.repository.cam.ac.uk/handle/1810/275332

bibliography 387

[1568] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive Growing of GANs for Improved
Quality, Stability, and Variation.” In: CoRR abs/1710.10196 (2017). arXiv: 1710.10196. url:
http://arxiv.org/abs/1710.10196 (cit. on p. 179).

[1569] J. Wu, W. Gan, Z. Chen, S. Wan, and H. Lin. AI-Generated Content (AIGC): A Survey. 2023. doi:
10.48550/ARXIV.2304.06632. url: https://arxiv.org/abs/2304.06632 (cit. on pp. 179, 182,
183).

[1570] Y. Pang, J. Lin, T. Qin, and Z. Chen. “Image-to-Image Translation: Methods and Applications.”
In: IEEE Transactions on Multimedia 24 (2022), pp. 3859–3881. doi: 10.1109/tmm.2021.3109419.
url: https://doi.org/10.1109/tmm.2021.3109419 (cit. on p. 179).

[1571] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. “Image-to-Image Translation with Conditional
Adversarial Networks.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, July 2017. doi: 10.1109/cvpr.2017.632. url: https://doi.org/10.1109/cvpr
.2017.632 (cit. on pp. 179, 182).

[1572] Y. Chen, X. Yu, S. Liu, W. Gao, and G. Li. “Zero-shot unsupervised image-to-image translation
via exploiting semantic attributes.” In: Image and Vision Computing 124 (Aug. 2022), p. 104489.
doi: 10.1016/j.imavis.2022.104489. url: https://doi.org/10.1016/j.imavis.2022.10448
9 (cit. on p. 179).

[1573] V. Talasila, N. M. R, and M. M. V. “Optimized GAN for Text-to-Image Synthesis: Hybrid
Whale Optimization Algorithm and Dragonfly Algorithm.” In: Advances in Engineering Software
173 (Nov. 2022), p. 103222. doi: 10.1016/j.advengsoft.2022.103222. url: https://doi.org
/10.1016/j.advengsoft.2022.103222 (cit. on pp. 179, 182).

[1574] T. Qiao, J. Zhang, D. Xu, and D. Tao. “Learn, Imagine and Create: Text-to-Image Generation
from Prior Knowledge.” In: Advances in Neural Information Processing Systems. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran
Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper_files/paper/2019/fil
e/d18f655c3fce66ca401d5f38b48c89af-Paper.pdf (cit. on pp. 179, 182).

[1575] U. Ullah, J.-S. Lee, C.-H. An, H. Lee, S.-Y. Park, R.-H. Baek, and H.-C. Choi. “A Review of
Multi-Modal Learning from the Text-Guided Visual Processing Viewpoint.” In: Sensors 22.18

(Sept. 2022), p. 6816. doi: 10.3390/s22186816. url: https://doi.org/10.3390/s22186816
(cit. on pp. 179, 183).

[1576] R. Mechrez, I. Talmi, and L. Zelnik-Manor. “The Contextual Loss for Image Transformation
with Non-aligned Data.” In: Computer Vision – ECCV 2018. Springer International Publishing,
2018, pp. 800–815. doi: 10.1007/978-3-030-01264-9_47. url: https://doi.org/10.1007/97
8-3-030-01264-9_47 (cit. on p. 179).

[1577] J. Johnson, A. Alahi, and L. Fei-Fei. “Perceptual Losses for Real-Time Style Transfer and
Super-Resolution.” In: Computer Vision – ECCV 2016. Springer International Publishing, 2016,
pp. 694–711. doi: 10.1007/978-3-319-46475-6_43. url: https://doi.org/10.1007/978-3-3
19-46475-6_43 (cit. on p. 180).

[1578] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. “Unpaired Image-to-Image Translation Using
Cycle-Consistent Adversarial Networks.” In: 2017 IEEE International Conference on Computer
Vision (ICCV). IEEE, Oct. 2017. doi: 10.1109/iccv.2017.244. url: https://doi.org/10.1109
/iccv.2017.244 (cit. on pp. 180, 182).

[1579] M. Liu, Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo, and S. Wen. “STGAN: A Unified Selective
Transfer Network for Arbitrary Image Attribute Editing.” In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, June 2019. doi: 10.1109/cvpr.2019.003
79. url: https://doi.org/10.1109/cvpr.2019.00379 (cit. on pp. 180, 182).

[1580] C. Louizos, U. Shalit, J. Mooij, D. Sontag, R. Zemel, and M. Welling. “Causal Effect Inference
with Deep Latent-Variable Models.” In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran Associates Inc.,
2017, pp. 6449–6459. isbn: 9781510860964 (cit. on pp. 180, 181).

[1581] Y. Lu, H. Wang, and W. Wei. Machine Learning for Synthetic Data Generation: A Review. 2023.
doi: 10.48550/ARXIV.2302.04062. url: https://arxiv.org/abs/2302.04062 (cit. on p. 180).

[1582] J.-F. Rajotte, R. Bergen, D. L. Buckeridge, K. E. Emam, R. Ng, and E. Strome. “Synthetic data
as an enabler for machine learning applications in medicine.” In: iScience 25.11 (Nov. 2022),
p. 105331. doi: 10.1016/j.isci.2022.105331. url: https://doi.org/10.1016/j.isci.2022
.105331 (cit. on p. 180).

[1583] J. Tremblay, T. To, and S. Birchfield. “Falling Things: A Synthetic Dataset for 3D Object
Detection and Pose Estimation.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE, June 2018. doi: 10.1109/cvprw.2018.00275. url:
https://doi.org/10.1109/cvprw.2018.00275 (cit. on p. 180).

https://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
https://doi.org/10.48550/ARXIV.2304.06632
https://arxiv.org/abs/2304.06632
https://doi.org/10.1109/tmm.2021.3109419
https://doi.org/10.1109/tmm.2021.3109419
https://doi.org/10.1109/cvpr.2017.632
https://doi.org/10.1109/cvpr.2017.632
https://doi.org/10.1109/cvpr.2017.632
https://doi.org/10.1016/j.imavis.2022.104489
https://doi.org/10.1016/j.imavis.2022.104489
https://doi.org/10.1016/j.imavis.2022.104489
https://doi.org/10.1016/j.advengsoft.2022.103222
https://doi.org/10.1016/j.advengsoft.2022.103222
https://doi.org/10.1016/j.advengsoft.2022.103222
https://proceedings.neurips.cc/paper_files/paper/2019/file/d18f655c3fce66ca401d5f38b48c89af-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d18f655c3fce66ca401d5f38b48c89af-Paper.pdf
https://doi.org/10.3390/s22186816
https://doi.org/10.3390/s22186816
https://doi.org/10.1007/978-3-030-01264-9_47
https://doi.org/10.1007/978-3-030-01264-9_47
https://doi.org/10.1007/978-3-030-01264-9_47
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1109/iccv.2017.244
https://doi.org/10.1109/iccv.2017.244
https://doi.org/10.1109/iccv.2017.244
https://doi.org/10.1109/cvpr.2019.00379
https://doi.org/10.1109/cvpr.2019.00379
https://doi.org/10.1109/cvpr.2019.00379
https://doi.org/10.48550/ARXIV.2302.04062
https://arxiv.org/abs/2302.04062
https://doi.org/10.1016/j.isci.2022.105331
https://doi.org/10.1016/j.isci.2022.105331
https://doi.org/10.1016/j.isci.2022.105331
https://doi.org/10.1109/cvprw.2018.00275
https://doi.org/10.1109/cvprw.2018.00275

388 bibliography

[1584] K. Maharana, S. Mondal, and B. Nemade. “A review: Data pre-processing and data augmenta-
tion techniques.” In: Global Transitions Proceedings 3.1 (June 2022), pp. 91–99. doi: 10.1016/j.g
ltp.2022.04.020. url: https://doi.org/10.1016/j.gltp.2022.04.020 (cit. on p. 180).

[1585] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian. Building Generalizable Agents with a Realistic and Rich 3D
Environment. 2018. arXiv: 1801.02209 [cs.LG] (cit. on p. 180).

[1586] M. Fabbri, G. Braso, G. Maugeri, O. Cetintas, R. Gasparini, A. Osep, S. Calderara, L. Leal-Taixe,
and R. Cucchiara. MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?
2021. arXiv: 2108.09518 [cs.CV] (cit. on p. 180).

[1587] C. Shorten and T. M. Khoshgoftaar. “A survey on Image Data Augmentation for Deep
Learning.” In: Journal of Big Data 6.1 (July 2019). doi: 10.1186/s40537-019-0197-0. url:
https://doi.org/10.1186/Fs40537-019-0197-0 (cit. on p. 180).

[1588] F. Zhou, S. Yang, H. Fujita, D. Chen, and C. Wen. “Deep learning fault diagnosis method based
on global optimization GAN for unbalanced data.” In: Knowledge-Based Systems 187 (Jan. 2020),
p. 104837. doi: 10.1016/j.knosys.2019.07.008. url: https://doi.org/10.1016/j.knosys.2
019.07.008 (cit. on pp. 180, 183).

[1589] J. Luo, L. Zhu, Q. Li, D. Liu, and M. Chen. “Imbalanced Fault Diagnosis of Rotating Machinery
Based on Deep Generative Adversarial Networks with Gradient Penalty.” In: Processes 9.10

(Sept. 2021), p. 1751. doi: 10.3390/pr9101751. url: https://doi.org/10.3390/pr9101751
(cit. on pp. 180, 182, 183).

[1590] M. Abufadda and K. Mansour. “A Survey of Synthetic Data Generation for Machine Learning.”
In: 2021 22nd International Arab Conference on Information Technology (ACIT). IEEE, Dec. 2021.
doi: 10.1109/acit53391.2021.9677302. url: https://doi.org/10.1109/acit53391.2021.96
77302 (cit. on p. 180).

[1591] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. “Privacy in Pharmacogenetics:
An End-to-End Case Study of Personalized Warfarin Dosing.” In: SEC’14. San Diego, CA:
USENIX Association, 2014, pp. 17–32. isbn: 9781931971157 (cit. on p. 180).

[1592] M. Fredrikson, S. Jha, and T. Ristenpart. “Model Inversion Attacks that Exploit Confidence
Information and Basic Countermeasures.” In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, Oct. 2015. doi: 10.1145/2810103.2813677.
url: https://doi.org/10.1145/2810103.2813677 (cit. on p. 180).

[1593] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang. “Membership Inference Attacks on
Machine Learning: A Survey.” In: ACM Computing Surveys 54.11s (Jan. 2022), pp. 1–37. doi:
10.1145/3523273. url: https://doi.org/10.1145/3523273 (cit. on p. 180).

[1594] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. “Privacy Risk in Machine Learning: Analyzing
the Connection to Overfitting.” In: 2018 IEEE 31st Computer Security Foundations Symposium
(CSF). IEEE, July 2018. doi: 10.1109/csf.2018.00027. url: https://doi.org/10.1109/csf.2
018.00027 (cit. on p. 180).

[1595] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. “A Methodology for Formalizing Model-
Inversion Attacks.” In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF). IEEE,
June 2016. doi: 10.1109/csf.2016.32. url: https://doi.org/10.1109/csf.2016.32 (cit. on
p. 180).

[1596] S. Yeom, I. Giacomelli, A. Menaged, M. Fredrikson, and S. Jha. “Overfitting, robustness,
and malicious algorithms: A study of potential causes of privacy risk in machine learning.”
In: Journal of Computer Security 28.1 (Feb. 2020), pp. 35–70. doi: 10.3233/jcs-191362. url:
https://doi.org/10.3233/jcs-191362 (cit. on p. 180).

[1597] M. Xu and X. Li. “Subject Property Inference Attack in Collaborative Learning.” In: 2020 12th
International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE,
Aug. 2020. doi: 10.1109/ihmsc49165.2020.00057. url: https://doi.org/10.1109/ihmsc491
65.2020.00057 (cit. on p. 180).

[1598] J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri. “Enhanced Membership
Inference Attacks against Machine Learning Models.” In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. ACM, Nov. 2022. doi: 10.1145/3548606.3
560675. url: https://doi.org/10.1145/3548606.3560675 (cit. on p. 180).

[1599] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A.
Stephan, S. F. Nelson, and D. W. Craig. “Resolving Individuals Contributing Trace Amounts
of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays.” In:
PLoS Genetics 4.8 (Aug. 2008). Ed. by P. M. Visscher, e1000167. doi: 10.1371/journal.pgen.10
00167. url: https://doi.org/10.1371/journal.pgen.1000167 (cit. on p. 180).

[1600] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. “Membership Inference Attacks Against
Machine Learning Models.” In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE, May
2017. doi: 10.1109/sp.2017.41. url: https://doi.org/10.1109/sp.2017.41 (cit. on p. 180).

https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.1016/j.gltp.2022.04.020
https://arxiv.org/abs/1801.02209
https://arxiv.org/abs/2108.09518
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/Fs40537-019-0197-0
https://doi.org/10.1016/j.knosys.2019.07.008
https://doi.org/10.1016/j.knosys.2019.07.008
https://doi.org/10.1016/j.knosys.2019.07.008
https://doi.org/10.3390/pr9101751
https://doi.org/10.3390/pr9101751
https://doi.org/10.1109/acit53391.2021.9677302
https://doi.org/10.1109/acit53391.2021.9677302
https://doi.org/10.1109/acit53391.2021.9677302
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/3523273
https://doi.org/10.1145/3523273
https://doi.org/10.1109/csf.2018.00027
https://doi.org/10.1109/csf.2018.00027
https://doi.org/10.1109/csf.2018.00027
https://doi.org/10.1109/csf.2016.32
https://doi.org/10.1109/csf.2016.32
https://doi.org/10.3233/jcs-191362
https://doi.org/10.3233/jcs-191362
https://doi.org/10.1109/ihmsc49165.2020.00057
https://doi.org/10.1109/ihmsc49165.2020.00057
https://doi.org/10.1109/ihmsc49165.2020.00057
https://doi.org/10.1145/3548606.3560675
https://doi.org/10.1145/3548606.3560675
https://doi.org/10.1145/3548606.3560675
https://doi.org/10.1371/journal.pgen.1000167
https://doi.org/10.1371/journal.pgen.1000167
https://doi.org/10.1371/journal.pgen.1000167
https://doi.org/10.1109/sp.2017.41
https://doi.org/10.1109/sp.2017.41

bibliography 389

[1601] X. Gong, Y. Chen, Q. Wang, M. Wang, and S. Li. “Private Data Inference Attacks against Cloud:
Model, Technologies, and Research Directions.” In: IEEE Communications Magazine 60.9 (Sept.
2022), pp. 46–52. doi: 10.1109/mcom.004.2100867. url: https://doi.org/10.1109/mcom.004
.2100867 (cit. on p. 180).

[1602] M. Backes, P. Berrang, M. Humbert, and P. Manoharan. “Membership Privacy in MicroRNA-
based Studies.” In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, Oct. 2016. doi: 10.1145/2976749.2978355. url: https://doi.org/10.11
45/2976749.2978355 (cit. on p. 180).

[1603] Y. Long, L. Wang, D. Bu, V. Bindschaedler, X. Wang, H. Tang, C. A. Gunter, and K. Chen. “A
Pragmatic Approach to Membership Inferences on Machine Learning Models.” In: 2020 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, Sept. 2020. doi: 10.1109/eurosp
48549.2020.00040. url: https://doi.org/10.1109/eurosp48549.2020.00040 (cit. on p. 180).

[1604] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes. “ML-Leaks: Model and
Data Independent Membership Inference Attacks and Defenses on Machine Learning Models.”
In: Proceedings 2019 Network and Distributed System Security Symposium. Internet Society, 2019.
doi: 10.14722/ndss.2019.23119. url: https://doi.org/10.14722/ndss.2019.23119 (cit. on
p. 180).

[1605] C. Dwork and A. Roth. “The Algorithmic Foundations of Differential Privacy.” In: Foundations
and Trends® in Theoretical Computer Science 9.3-4 (2013), pp. 211–407. doi: 10.1561/0400000042.
url: https://doi.org/10.1561/0400000042 (cit. on p. 180).

[1606] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. “Deep
Learning with Differential Privacy.” In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Oct. 2016. doi: 10.1145/2976749.2978318. url:
https://doi.org/10.1145/2976749.2978318 (cit. on p. 180).

[1607] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. “Differentially Private Empirical Risk
Minimization.” In: J. Mach. Learn. Res. 12 (July 2011), pp. 1069–1109. issn: 1532-4435 (cit. on
p. 180).

[1608] P. Wang, Z. Yang, Y. Lei, Y. Ying, and H. Zhang. “Differentially private empirical risk min-
imization for AUC maximization.” In: Neurocomputing 461 (Oct. 2021), pp. 419–437. doi:
10.1016/j.neucom.2021.07.001. url: https://doi.org/10.1016/j.neucom.2021.07.001
(cit. on p. 180).

[1609] X. Liu, L. Xie, Y. Wang, J. Zou, J. Xiong, Z. Ying, and A. V. Vasilakos. “Privacy and Security
Issues in Deep Learning: A Survey.” In: IEEE Access 9 (2021), pp. 4566–4593. doi: 10.1109/acc
ess.2020.3045078. url: https://doi.org/10.1109/access.2020.3045078 (cit. on p. 180).

[1610] A. Honkela, M. Das, A. Nieminen, O. Dikmen, and S. Kaski. “Efficient differentially private
learning improves drug sensitivity prediction.” In: Biology Direct 13.1 (Feb. 2018). doi: 10.1186
/s13062-017-0203-4. url: https://doi.org/10.1186/s13062-017-0203-4 (cit. on p. 180).

[1611] S. Tople, A. Sharma, and A. V. Nori. “Alleviating Privacy Attacks via Causal Learning.” In:
Proceedings of the 37th International Conference on Machine Learning. ICML’20. JMLR.org, 2020

(cit. on p. 180).

[1612] M. Gong, Y. Xie, K. Pan, K. Feng, and A. Qin. “A Survey on Differentially Private Machine
Learning [Review Article].” In: IEEE Computational Intelligence Magazine 15.2 (May 2020), pp. 49–
64. doi: 10.1109/mci.2020.2976185. url: https://doi.org/10.1109/mci.2020.2976185
(cit. on p. 180).

[1613] P. Jain and A. Thakurta. “Differentially Private Learning with Kernels.” In: Proceedings of the
30th International Conference on Machine Learning. Ed. by S. Dasgupta and D. McAllester. Vol. 28.
Proceedings of Machine Learning Research 3. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013,
pp. 118–126. url: https://proceedings.mlr.press/v28/jain13.html (cit. on p. 180).

[1614] P. Jain, P. Kothari, and A. Thakurta. “Differentially Private Online Learning.” In: Proceedings
of the 25th Annual Conference on Learning Theory. Ed. by S. Mannor, N. Srebro, and R. C.
Williamson. Vol. 23. Proceedings of Machine Learning Research. Edinburgh, Scotland: PMLR,
25–27 Jun 2012, pp. 24.1–24.34. url: https://proceedings.mlr.press/v23/jain12.html
(cit. on p. 180).

[1615] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex. “Differentially Private Model Publishing for
Deep Learning.” In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE, May 2019. doi:
10.1109/sp.2019.00019. url: https://doi.org/10.1109/sp.2019.00019 (cit. on p. 180).

[1616] M. Jagielski, J. Ullman, and A. Oprea. In: Proceedings of the 34th International Conference on
Neural Information Processing Systems. NIPS’20. Vancouver, BC, Canada: Curran Associates Inc.,
2020. isbn: 9781713829546 (cit. on p. 180).

[1617] F. Tramer and D. Boneh. “Differentially Private Learning Needs Better Features (or Much
More Data).” In: International Conference on Learning Representations. 2021. url: https://openr
eview.net/forum?id=YTWGvpFOQD- (cit. on p. 180).

https://doi.org/10.1109/mcom.004.2100867
https://doi.org/10.1109/mcom.004.2100867
https://doi.org/10.1109/mcom.004.2100867
https://doi.org/10.1145/2976749.2978355
https://doi.org/10.1145/2976749.2978355
https://doi.org/10.1145/2976749.2978355
https://doi.org/10.1109/eurosp48549.2020.00040
https://doi.org/10.1109/eurosp48549.2020.00040
https://doi.org/10.1109/eurosp48549.2020.00040
https://doi.org/10.14722/ndss.2019.23119
https://doi.org/10.14722/ndss.2019.23119
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1016/j.neucom.2021.07.001
https://doi.org/10.1016/j.neucom.2021.07.001
https://doi.org/10.1109/access.2020.3045078
https://doi.org/10.1109/access.2020.3045078
https://doi.org/10.1109/access.2020.3045078
https://doi.org/10.1186/s13062-017-0203-4
https://doi.org/10.1186/s13062-017-0203-4
https://doi.org/10.1186/s13062-017-0203-4
https://doi.org/10.1109/mci.2020.2976185
https://doi.org/10.1109/mci.2020.2976185
https://proceedings.mlr.press/v28/jain13.html
https://proceedings.mlr.press/v23/jain12.html
https://doi.org/10.1109/sp.2019.00019
https://doi.org/10.1109/sp.2019.00019
https://openreview.net/forum?id=YTWGvpFOQD-
https://openreview.net/forum?id=YTWGvpFOQD-

390 bibliography

[1618] J. Wang and Z.-H. Zhou. “Differentially Private Learning with Small Public Data.” In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence 34.04 (Apr. 2020), pp. 6219–6226. doi:
10.1609/aaai.v34i04.6088. url: https://doi.org/10.1609/aaai.v34i04.6088 (cit. on
p. 180).

[1619] N. Ponomareva, H. Hazimeh, A. Kurakin, Z. Xu, C. Denison, H. B. McMahan, S. Vassilvitskii, S.
Chien, and A. Thakurta. How to DP-fy ML: A Practical Guide to Machine Learning with Differential
Privacy. 2023. doi: 10.48550/ARXIV.2303.00654. url: https://arxiv.org/abs/2303.00654
(cit. on p. 180).

[1620] Z. Zhang, C. Yan, and B. A. Malin. “Membership inference attacks against synthetic health
data.” In: Journal of Biomedical Informatics 125 (Jan. 2022), p. 103977. doi: 10.1016/j.jbi.2021
.103977. url: https://doi.org/10.1016/j.jbi.2021.103977 (cit. on p. 180).

[1621] K. S. Liu, C. Xiao, B. Li, and J. Gao. “Performing Co-membership Attacks Against Deep
Generative Models.” In: 2019 IEEE International Conference on Data Mining (ICDM). IEEE, Nov.
2019. doi: 10.1109/icdm.2019.00056. url: https://doi.org/10.1109/icdm.2019.00056
(cit. on p. 180).

[1622] J. Hayes, L. Melis, G. Danezis, and E. D. Cristofaro. “LOGAN: Membership Inference Attacks
Against Generative Models.” In: Proceedings on Privacy Enhancing Technologies 2019.1 (Dec.
2018), pp. 133–152. doi: 10.2478/popets-2019-0008. url: https://doi.org/10.2478/popets
-2019-0008 (cit. on p. 180).

[1623] D. Chen, N. Yu, Y. Zhang, and M. Fritz. “GAN-Leaks: A Taxonomy of Membership Inference
Attacks against Generative Models.” In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Oct. 2020. doi: 10.1145/3372297.3417238. url:
https://doi.org/10.1145/3372297.3417238 (cit. on p. 180).

[1624] B. Hilprecht, M. Härterich, and D. Bernau. “Monte Carlo and Reconstruction Membership
Inference Attacks against Generative Models.” In: Proceedings on Privacy Enhancing Technologies
2019.4 (July 2019), pp. 232–249. doi: 10.2478/popets-2019-0067. url: https://doi.org/10.2
478/popets-2019-0067 (cit. on p. 180).

[1625] S. Mukherjee, Y. Xu, A. Trivedi, N. Patowary, and J. L. Ferres. “privGAN: Protecting GANs
from membership inference attacks at low cost to utility.” In: Proceedings on Privacy Enhancing
Technologies 2021.3 (Apr. 2021), pp. 142–163. doi: 10.2478/popets-2021-0041. url: https://d
oi.org/10.2478/popets-2021-0041 (cit. on p. 180).

[1626] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song. “The Secret Sharer: Evaluating and
Testing Unintended Memorization in Neural Networks.” In: Proceedings of the 28th USENIX
Security Symposium. USENIX Associatio, Aug. 2019. url: https://www.usenix.org/system/fi
les/sec19-carlini.pdf (cit. on p. 180).

[1627] G. E. Hinton. “Training Products of Experts by Minimizing Contrastive Divergence.” In:
Neural Computation 14.8 (Aug. 2002), pp. 1771–1800. doi: 10.1162/089976602760128018. url:
https://doi.org/10.1162/089976602760128018 (cit. on p. 180).

[1628] V. Upadhya and P. S. Sastry. “An Overview of Restricted Boltzmann Machines.” In: Journal of
the Indian Institute of Science 99.2 (Feb. 2019), pp. 225–236. doi: 10.1007/s41745-019-0102-z.
url: https://doi.org/10.1007/s41745-019-0102-z (cit. on p. 180).

[1629] M. Ranzato, A. Krizhevsky, and G. Hinton. “Factored 3-Way Restricted Boltzmann Machines
For Modeling Natural Images.” In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. Ed. by Y. W. Teh and M. Titterington. Vol. 9. Proceedings
of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May 2010,
pp. 621–628. url: https://proceedings.mlr.press/v9/ranzato10a.html (cit. on p. 180).

[1630] G. W. Taylor, G. E. Hinton, and S. Roweis. “Modeling Human Motion Using Binary Latent
Variables.” In: Advances in Neural Information Processing Systems. Ed. by B. Schölkopf, J. Platt,
and T. Hoffman. Vol. 19. MIT Press, 2006. url: https://proceedings.neurips.cc/paper_fil
es/paper/2006/file/1091660f3dff84fd648efe31391c5524-Paper.pdf (cit. on p. 180).

[1631] R. Souriau, J. Lerbet, H. Chen, and V. Vigneron. “A review on generative Boltzmann networks
applied to dynamic systems.” In: Mechanical Systems and Signal Processing 147 (Jan. 2021),
p. 107072. doi: 10.1016/j.ymssp.2020.107072. url: https://doi.org/10.1016/j.ymssp.202
0.107072 (cit. on p. 180).

[1632] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with Neural
Networks.” In: Science 313.5786 (July 2006), pp. 504–507. doi: 10.1126/science.1127647. url:
https://doi.org/10.1126/science.1127647 (cit. on p. 180).

[1633] G. E. Hinton, S. Osindero, and Y.-W. Teh. “A Fast Learning Algorithm for Deep Belief Nets.”
In: Neural Computation 18.7 (July 2006), pp. 1527–1554. doi: 10.1162/neco.2006.18.7.1527.
url: https://doi.org/10.1162/neco.2006.18.7.1527 (cit. on p. 180).

https://doi.org/10.1609/aaai.v34i04.6088
https://doi.org/10.1609/aaai.v34i04.6088
https://doi.org/10.48550/ARXIV.2303.00654
https://arxiv.org/abs/2303.00654
https://doi.org/10.1016/j.jbi.2021.103977
https://doi.org/10.1016/j.jbi.2021.103977
https://doi.org/10.1016/j.jbi.2021.103977
https://doi.org/10.1109/icdm.2019.00056
https://doi.org/10.1109/icdm.2019.00056
https://doi.org/10.2478/popets-2019-0008
https://doi.org/10.2478/popets-2019-0008
https://doi.org/10.2478/popets-2019-0008
https://doi.org/10.1145/3372297.3417238
https://doi.org/10.1145/3372297.3417238
https://doi.org/10.2478/popets-2019-0067
https://doi.org/10.2478/popets-2019-0067
https://doi.org/10.2478/popets-2019-0067
https://doi.org/10.2478/popets-2021-0041
https://doi.org/10.2478/popets-2021-0041
https://doi.org/10.2478/popets-2021-0041
https://www.usenix.org/system/files/sec19-carlini.pdf
https://www.usenix.org/system/files/sec19-carlini.pdf
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1007/s41745-019-0102-z
https://doi.org/10.1007/s41745-019-0102-z
https://proceedings.mlr.press/v9/ranzato10a.html
https://proceedings.neurips.cc/paper_files/paper/2006/file/1091660f3dff84fd648efe31391c5524-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/1091660f3dff84fd648efe31391c5524-Paper.pdf
https://doi.org/10.1016/j.ymssp.2020.107072
https://doi.org/10.1016/j.ymssp.2020.107072
https://doi.org/10.1016/j.ymssp.2020.107072
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527

bibliography 391

[1634] S. Osindero and G. E. Hinton. “Modeling image patches with a directed hierarchy of Markov
random fields.” In: Advances in Neural Information Processing Systems 20, Proceedings of the
Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 3-6, 2007. Ed. by J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis.
Curran Associates, Inc., 2007, pp. 1121–1128. url: https://proceedings.neurips.cc/paper
/2007/hash/9232fe81225bcaef853ae32870a2b0fe-Abstract.html (cit. on p. 180).

[1635] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. “Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations.” In: Proceedings of the 26th
Annual International Conference on Machine Learning. ACM, June 2009. doi: 10.1145/1553374.1
553453. url: https://doi.org/10.1145/1553374.1553453 (cit. on pp. 180, 181).

[1636] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie. “Stacked Generative Adversarial
Networks.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
July 2017. doi: 10.1109/cvpr.2017.202. url: https://doi.org/10.1109/cvpr.2017.202
(cit. on pp. 180, 182).

[1637] R. Salakhutdinov and G. Hinton. “Deep Boltzmann Machines.” In: Proceedings of the Twelth
International Conference on Artificial Intelligence and Statistics. Ed. by D. van Dyk and M. Welling.
Vol. 5. Proceedings of Machine Learning Research. Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA: PMLR, 16–18 Apr 2009, pp. 448–455. url: https://proceedings.mlr.pre
ss/v5/salakhutdinov09a.html (cit. on p. 180).

[1638] Y. Li, L. Zou, L. Jiang, and X. Zhou. “Fault Diagnosis of Rotating Machinery Based on
Combination of Deep Belief Network and One-dimensional Convolutional Neural Network.”
In: IEEE Access 7 (2019), pp. 165710–165723. doi: 10.1109/access.2019.2953490. url: https:
//doi.org/10.1109/access.2019.2953490 (cit. on p. 181).

[1639] T. Pan, J. Chen, and Z. Zhou. “Intelligent Fault Diagnosis of Rolling Bearing via Deep-
Layerwise Feature Extraction Using Deep Belief Network.” In: 2018 International Conference on
Sensing, Diagnostics, Prognostics, and Control (SDPC). IEEE, Aug. 2018. doi: 10.1109/sdpc.2018
.8664995. url: https://doi.org/10.1109/sdpc.2018.8664995 (cit. on p. 181).

[1640] H. Lee, P. Pham, Y. Largman, and A. Ng. “Unsupervised feature learning for audio classifica-
tion using convolutional deep belief networks.” In: Advances in Neural Information Processing
Systems. Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta. Vol. 22.
Curran Associates, Inc., 2009. url: https://proceedings.neurips.cc/paper_files/paper/2
009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf (cit. on p. 181).

[1641] Y. Zhang and J. Ji. “Intelligent Fault Diagnosis of a Reciprocating Compressor Using Mode
Isolation Convolutional Deep Belief Networks.” In: IEEE/ASME Transactions on Mechatronics
26.3 (June 2021), pp. 1668–1677. doi: 10.1109/tmech.2020.3027912. url: https://doi.org/1
0.1109/tmech.2020.3027912 (cit. on p. 181).

[1642] T. Osogami. Boltzmann machines and energy-based models. 2017. doi: 10.48550/ARXIV.1708.0600
8. url: https://arxiv.org/abs/1708.06008 (cit. on p. 181).

[1643] Y. Du and I. Mordatch. “Implicit Generation and Modeling with Energy Based Models.”
In: Advances in Neural Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019. url:
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34

f4bde584c7d-Paper.pdf (cit. on p. 181).

[1644] M. Arbel, L. Zhou, and A. Gretton. “Generalized Energy Based Models.” In: International
Conference on Learning Representations. 2021. url: https://openreview.net/forum?id=0PtUPB9
z6qK (cit. on p. 181).

[1645] M. Roder, G. H. de Rosa, V. H. C. de Albuquerque, A. L. D. Rossi, and J. P. Papa. “Energy-Based
Dropout in Restricted Boltzmann Machines: Why Not Go Random.” In: IEEE Transactions on
Emerging Topics in Computational Intelligence 6.2 (Apr. 2022), pp. 276–286. doi: 10.1109/tetci
.2020.3043764. url: https://doi.org/10.1109/tetci.2020.3043764 (cit. on p. 181).

[1646] P. Duda, L. Rutkowski, P. Woldan, and P. Najgebauer. “The Streaming Approach to Train-
ing Restricted Boltzmann Machines.” In: Artificial Intelligence and Soft Computing. Springer
International Publishing, 2021, pp. 308–317. doi: 10.1007/978- 3- 030- 87986- 0_27. url:
https://doi.org/10.1007/978-3-030-87986-0_27 (cit. on p. 181).

[1647] S. Elfwing, E. Uchibe, and K. Doya. “Expected energy-based restricted Boltzmann machine
for classification.” In: Neural Networks 64 (Apr. 2015), pp. 29–38. doi: 10.1016/j.neunet.2014
.09.006. url: https://doi.org/10.1016/j.neunet.2014.09.006 (cit. on p. 181).

[1648] J. Zhang, S. Ding, T. Sun, and L. Guo. “A Gaussian RBM with binary auxiliary units.” In:
International Journal of Machine Learning and Cybernetics 13.9 (Mar. 2022), pp. 2425–2433. doi:
10.1007/s13042-022-01534-6. url: https://doi.org/10.1007/s13042-022-01534-6 (cit. on
p. 181).

https://proceedings.neurips.cc/paper/2007/hash/9232fe81225bcaef853ae32870a2b0fe-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/9232fe81225bcaef853ae32870a2b0fe-Abstract.html
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1109/cvpr.2017.202
https://doi.org/10.1109/cvpr.2017.202
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://doi.org/10.1109/access.2019.2953490
https://doi.org/10.1109/access.2019.2953490
https://doi.org/10.1109/access.2019.2953490
https://doi.org/10.1109/sdpc.2018.8664995
https://doi.org/10.1109/sdpc.2018.8664995
https://doi.org/10.1109/sdpc.2018.8664995
https://proceedings.neurips.cc/paper_files/paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf
https://doi.org/10.1109/tmech.2020.3027912
https://doi.org/10.1109/tmech.2020.3027912
https://doi.org/10.1109/tmech.2020.3027912
https://doi.org/10.48550/ARXIV.1708.06008
https://doi.org/10.48550/ARXIV.1708.06008
https://arxiv.org/abs/1708.06008
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf
https://openreview.net/forum?id=0PtUPB9z6qK
https://openreview.net/forum?id=0PtUPB9z6qK
https://doi.org/10.1109/tetci.2020.3043764
https://doi.org/10.1109/tetci.2020.3043764
https://doi.org/10.1109/tetci.2020.3043764
https://doi.org/10.1007/978-3-030-87986-0_27
https://doi.org/10.1007/978-3-030-87986-0_27
https://doi.org/10.1016/j.neunet.2014.09.006
https://doi.org/10.1016/j.neunet.2014.09.006
https://doi.org/10.1016/j.neunet.2014.09.006
https://doi.org/10.1007/s13042-022-01534-6
https://doi.org/10.1007/s13042-022-01534-6

392 bibliography

[1649] J. Zhai, X. Zhou, S. Zhang, and T. Wang. “Ensemble RBM-based classifier using fuzzy integral
for big data classification.” In: International Journal of Machine Learning and Cybernetics 10.11

(May 2019), pp. 3327–3337. doi: 10.1007/s13042-019-00960-3. url: https://doi.org/10.10
07/s13042-019-00960-3 (cit. on p. 181).

[1650] B. Uria, M.-A. Côté, K. Gregor, I. Murray, and H. Larochelle. “Neural Autoregressive Distribu-
tion Estimation.” In: J. Mach. Learn. Res. 17.1 (Jan. 2016), pp. 7184–7220. issn: 1532-4435 (cit. on
p. 181).

[1651] H. Larochelle and I. Murray. “The Neural Autoregressive Distribution Estimator.” In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Ed. by
G. Gordon, D. Dunson, and M. Dudík. Vol. 15. Proceedings of Machine Learning Research.
Fort Lauderdale, FL, USA: PMLR, Nov. 2011, pp. 29–37. url: https://proceedings.mlr.pres
s/v15/larochelle11a.html (cit. on p. 181).

[1652] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra. “Deep AutoRegressive Net-
works.” In: Proceedings of the 31st International Conference on Machine Learning. Ed. by E. P. Xing
and T. Jebara. Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China: PMLR,
22–24 Jun 2014, pp. 1242–1250. url: https://proceedings.mlr.press/v32/gregor14.html
(cit. on p. 181).

[1653] K. Gregor and Y. LeCun. Learning Representations by Maximizing Compression. 2011. doi: 10.485
50/ARXIV.1108.1169. url: https://arxiv.org/abs/1108.1169 (cit. on p. 181).

[1654] M. Germain, K. Gregor, I. Murray, and H. Larochelle. “MADE: Masked Autoencoder for
Distribution Estimation.” In: Proceedings of the 32nd International Conference on Machine Learning.
Ed. by F. Bach and D. Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:
PMLR, July 2015, pp. 881–889. url: https://proceedings.mlr.press/v37/germain15.html
(cit. on p. 181).

[1655] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. “Pixel Recurrent Neural Networks.”
In: Proceedings of The 33rd International Conference on Machine Learning. Ed. by M. F. Balcan and
K. Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research. New York, New York,
USA: PMLR, 20–22 Jun 2016, pp. 1747–1756. url: https://proceedings.mlr.press/v48/oord
16.html (cit. on p. 181).

[1656] L. Theis and M. Bethge. “Generative Image Modeling Using Spatial LSTMs.” In: Proceedings of
the 28th International Conference on Neural Information Processing Systems - Volume 2. NIPS’15.
Montreal, Canada: MIT Press, 2015, pp. 1927–1935 (cit. on p. 181).

[1657] R. Wei and A. Mahmood. “Recent Advances in Variational Autoencoders With Representation
Learning for Biomedical Informatics: A Survey.” In: IEEE Access 9 (2021), pp. 4939–4956. doi:
10.1109/access.2020.3048309. url: https://doi.org/10.1109/access.2020.3048309
(cit. on p. 181).

[1658] C. Doersch. Tutorial on Variational Autoencoders. 2016. doi: 10.48550/ARXIV.1606.05908. url:
https://arxiv.org/abs/1606.05908 (cit. on p. 181).

[1659] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling. “Semi-Supervised Learning
with Deep Generative Models.” In: Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT Press, 2014, pp. 3581–
3589 (cit. on p. 181).

[1660] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic Backpropagation and Approximate
Inference in Deep Generative Models.” In: Proceedings of the 31st International Conference on
Machine Learning. Ed. by E. P. Xing and T. Jebara. Vol. 32. Proceedings of Machine Learning
Research 2. Bejing, China: PMLR, 22–24 Jun 2014, pp. 1278–1286. url: https://proceedings
.mlr.press/v32/rezende14.html (cit. on p. 181).

[1661] Y. Bengio, A. Courville, and P. Vincent. “Representation Learning: A Review and New Per-
spectives.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.8 (Aug. 2013),
pp. 1798–1828. doi: 10.1109/tpami.2013.50. url: https://doi.org/10.1109/tpami.2013.50
(cit. on p. 181).

[1662] A. T. Cemgil, S. Ghaisas, K. Dvijotham, S. Gowal, and P. Kohli. “The Autoencoding Variational
Autoencoder.” In: Proceedings of the 34th International Conference on Neural Information Processing
Systems. NIPS’20. Vancouver, BC, Canada: Curran Associates Inc., 2020. isbn: 9781713829546

(cit. on p. 181).

[1663] G. Alain and Y. Bengio. “What Regularized Auto-Encoders Learn from the Data-Generating
Distribution.” In: J. Mach. Learn. Res. 15.1 (Jan. 2014), pp. 3563–3593. issn: 1532-4435 (cit. on
p. 181).

[1664] Y. Zhu, M. R. Min, A. Kadav, and H. P. Graf. “S3VAE: Self-Supervised Sequential VAE for
Representation Disentanglement and Data Generation.” In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, June 2020. doi: 10.1109/cvpr42600.202
0.00657. url: https://doi.org/10.1109/cvpr42600.2020.00657 (cit. on p. 181).

https://doi.org/10.1007/s13042-019-00960-3
https://doi.org/10.1007/s13042-019-00960-3
https://doi.org/10.1007/s13042-019-00960-3
https://proceedings.mlr.press/v15/larochelle11a.html
https://proceedings.mlr.press/v15/larochelle11a.html
https://proceedings.mlr.press/v32/gregor14.html
https://doi.org/10.48550/ARXIV.1108.1169
https://doi.org/10.48550/ARXIV.1108.1169
https://arxiv.org/abs/1108.1169
https://proceedings.mlr.press/v37/germain15.html
https://proceedings.mlr.press/v48/oord16.html
https://proceedings.mlr.press/v48/oord16.html
https://doi.org/10.1109/access.2020.3048309
https://doi.org/10.1109/access.2020.3048309
https://doi.org/10.48550/ARXIV.1606.05908
https://arxiv.org/abs/1606.05908
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v32/rezende14.html
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1109/cvpr42600.2020.00657
https://doi.org/10.1109/cvpr42600.2020.00657
https://doi.org/10.1109/cvpr42600.2020.00657

bibliography 393

[1665] J. Bai, W. Wang, and C. P. Gomes. “Contrastively Disentangled Sequential Variational Autoen-
coder.” In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan. 2021. url: https://openreview.net/forum?id=rWPxhfz2_S
(cit. on p. 181).

[1666] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. “Neural Discrete Representation Learning.”
In: NIPS’17. Long Beach, California, USA: Curran Associates Inc., 2017, pp. 6309–6318. isbn:
9781510860964 (cit. on p. 181).

[1667] A. Razavi, A. van den Oord, and O. Vinyals. “Generating Diverse High-Fidelity Images with
VQ-VAE-2.” In: Proceedings of the 33rd International Conference on Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates Inc., 2019. url: https://dl.acm.org/doi/10
.5555/3454287.3455618 (cit. on p. 181).

[1668] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. “Variational Deep Embedding: An Un-
supervised and Generative Approach to Clustering.” In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence. IJCAI’17. Melbourne, Australia: AAAI Press, 2017,
pp. 1965–1972. isbn: 9780999241103 (cit. on p. 181).

[1669] Z. Li, Y. Zhao, H. Xu, W. Chen, S. Xu, Y. Li, and D. Pei. “Unsupervised Clustering through
Gaussian Mixture Variational AutoEncoder with Non-Reparameterized Variational Inference
and Std Annealing.” In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE,
July 2020. doi: 10.1109/ijcnn48605.2020.9207493. url: https://doi.org/10.1109/ijcnn48
605.2020.9207493 (cit. on p. 181).

[1670] S. Zhao, J. Song, and S. Ermon. “InfoVAE: Balancing Learning and Inference in Variational
Autoencoders.” In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (July 2019),
pp. 5885–5892. doi: 10.1609/aaai.v33i01.33015885. url: https://doi.org/10.1609/aaai.v
33i01.33015885 (cit. on p. 181).

[1671] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerch-
ner. “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework.”
In: International Conference on Learning Representations. 2017. url: https://openreview.net/fo
rum?id=Sy2fzU9gl (cit. on p. 181).

[1672] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra. “DRAW: A Recurrent Neural
Network For Image Generation.” In: Proceedings of the 32nd International Conference on Machine
Learning. Ed. by F. Bach and D. Blei. Vol. 37. Proceedings of Machine Learning Research. Lille,
France: PMLR, July 2015, pp. 1462–1471. url: https://proceedings.mlr.press/v37/gregor1
5.html (cit. on p. 181).

[1673] A. Vahdat and J. Kautz. “NVAE: A Deep Hierarchical Variational Autoencoder.” In: Proceedings
of the 34th International Conference on Neural Information Processing Systems. NIPS’20. Vancouver,
BC, Canada: Curran Associates Inc., 2020. isbn: 9781713829546. url: https://dl.acm.org/do
i/abs/10.5555/3495724.3497374 (cit. on p. 181).

[1674] U. Hwang, J. Park, H. Jang, S. Yoon, and N. I. Cho. “PuVAE: A Variational Autoencoder to
Purify Adversarial Examples.” In: IEEE Access 7 (2019), pp. 126582–126593. doi: 10.1109/acce
ss.2019.2939352. url: https://doi.org/10.1109/access.2019.2939352 (cit. on p. 181).

[1675] H. Xu, S. Lu, Z. Sun, C. Ma, and C. Guo. “VAE based Text Style Transfer with Pivot Words
Enhancement Learning.” In: Proceedings of the 18th International Conference on Natural Language
Processing (ICON). National Institute of Technology Silchar, Silchar, India: NLP Association of
India (NLPAI), Dec. 2021, pp. 162–172. url: https://aclanthology.org/2021.icon-main.20
(cit. on p. 181).

[1676] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. “Autoencoding beyond
pixels using a learned similarity metric.” In: Proceedings of The 33rd International Conference on
Machine Learning. Ed. by M. F. Balcan and K. Q. Weinberger. Vol. 48. Proceedings of Machine
Learning Research. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1558–1566. url:
https://proceedings.mlr.press/v48/larsen16.html (cit. on pp. 181, 182).

[1677] J. Li, D. Kang, W. Pei, X. Zhe, Y. Zhang, Z. He, and L. Bao. “Audio2Gestures: Generating
Diverse Gestures from Speech Audio with Conditional Variational Autoencoders.” In: 2021
IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct. 2021. doi: 10.1109/ic
cv48922.2021.01110. url: https://doi.org/10.1109/iccv48922.2021.01110 (cit. on p. 181).

[1678] L. Ternes, M. Dane, S. Gross, M. Labrie, G. Mills, J. Gray, L. Heiser, and Y. H. Chang. “A
multi-encoder variational autoencoder controls multiple transformational features in single-cell
image analysis.” In: Communications Biology 5.1 (Mar. 2022). doi: 10.1038/s42003-022-03218-x.
url: https://doi.org/10.1038/s42003-022-03218-x (cit. on p. 181).

[1679] H. Hadipour, C. Liu, R. Davis, S. T. Cardona, and P. Hu. “Deep clustering of small molecules
at large-scale via variational autoencoder embedding and K-means.” In: BMC Bioinformatics
23.S4 (Apr. 2022). issn: 1471-2105. doi: 10.1186/s12859-022-04667-1. url: http://dx.doi.o
rg/10.1186/s12859-022-04667-1 (cit. on p. 181).

https://openreview.net/forum?id=rWPxhfz2_S
https://dl.acm.org/doi/10.5555/3454287.3455618
https://dl.acm.org/doi/10.5555/3454287.3455618
https://doi.org/10.1109/ijcnn48605.2020.9207493
https://doi.org/10.1109/ijcnn48605.2020.9207493
https://doi.org/10.1109/ijcnn48605.2020.9207493
https://doi.org/10.1609/aaai.v33i01.33015885
https://doi.org/10.1609/aaai.v33i01.33015885
https://doi.org/10.1609/aaai.v33i01.33015885
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://proceedings.mlr.press/v37/gregor15.html
https://proceedings.mlr.press/v37/gregor15.html
https://dl.acm.org/doi/abs/10.5555/3495724.3497374
https://dl.acm.org/doi/abs/10.5555/3495724.3497374
https://doi.org/10.1109/access.2019.2939352
https://doi.org/10.1109/access.2019.2939352
https://doi.org/10.1109/access.2019.2939352
https://aclanthology.org/2021.icon-main.20
https://proceedings.mlr.press/v48/larsen16.html
https://doi.org/10.1109/iccv48922.2021.01110
https://doi.org/10.1109/iccv48922.2021.01110
https://doi.org/10.1109/iccv48922.2021.01110
https://doi.org/10.1038/s42003-022-03218-x
https://doi.org/10.1038/s42003-022-03218-x
https://doi.org/10.1186/s12859-022-04667-1
http://dx.doi.org/10.1186/s12859-022-04667-1
http://dx.doi.org/10.1186/s12859-022-04667-1

394 bibliography

[1680] N. Russkikh, D. Antonets, D. Shtokalo, A. Makarov, Y. Vyatkin, A. Zakharov, and E. Terentyev.
“Style transfer with variational autoencoders is a promising approach to RNA-Seq data
harmonization and analysis.” In: Bioinformatics 36.20 (July 2020). Ed. by Z. Lu, pp. 5076–5085.
doi: 10.1093/bioinformatics/btaa624. url: https://doi.org/10.1093/bioinformatics/bt
aa624 (cit. on p. 181).

[1681] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. “Generative Adversarial Nets.” In: Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT Press,
2014, pp. 2672–2680 (cit. on pp. 181, 182).

[1682] H. Alqahtani, M. Kavakli-Thorne, and G. Kumar. “Applications of Generative Adversarial
Networks (GANs): An Updated Review.” In: Archives of Computational Methods in Engineering
28.2 (Dec. 2019), pp. 525–552. doi: 10.1007/s11831-019-09388-y. url: https://doi.org/10
.1007/s11831-019-09388-y (cit. on pp. 182, 184).

[1683] W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-H. Yang. “GAN Inversion: A Survey.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022), pp. 1–17. doi: 10.1109
/tpami.2022.3181070. url: https://doi.org/10.1109/tpami.2022.3181070 (cit. on p. 182).

[1684] X. Wu, K. Xu, and P. Hall. “A survey of image synthesis and editing with generative adversarial
networks.” In: Tsinghua Science and Technology 22.6 (Dec. 2017), pp. 660–674. doi: 10.23919/tst
.2017.8195348. url: https://doi.org/10.23919/tst.2017.8195348 (cit. on p. 182).

[1685] Z. Zhang, Z. Li, K. Wei, S. Pan, and C. Deng. “A survey on multimodal-guided visual content
synthesis.” In: Neurocomputing 497 (Aug. 2022), pp. 110–128. doi: 10.1016/j.neucom.2022.04
.126. url: https://doi.org/10.1016/j.neucom.2022.04.126 (cit. on p. 182).

[1686] L. Lan, L. You, Z. Zhang, Z. Fan, W. Zhao, N. Zeng, Y. Chen, and X. Zhou. “Generative
Adversarial Networks and Its Applications in Biomedical Informatics.” In: Frontiers in Public
Health 8 (May 2020). doi: 10.3389/fpubh.2020.00164. url: https://doi.org/10.3389/fpubh
.2020.00164 (cit. on p. 182).

[1687] R. Gao, X. Hou, J. Qin, J. Chen, L. Liu, F. Zhu, Z. Zhang, and L. Shao. “Zero-VAE-GAN:
Generating Unseen Features for Generalized and Transductive Zero-Shot Learning.” In: IEEE
Transactions on Image Processing 29 (2020), pp. 3665–3680. doi: 10.1109/tip.2020.2964429. url:
https://doi.org/10.1109/tip.2020.2964429 (cit. on p. 182).

[1688] Y. Xian, S. Sharma, B. Schiele, and Z. Akata. “F-VAEGAN-D2: A Feature Generating Framework
for Any-Shot Learning.” In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2019. doi: 10.1109/cvpr.2019.01052. url: https://doi.org/10.1109/cv
pr.2019.01052 (cit. on p. 182).

[1689] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata. “Feature Generating Networks for Zero-Shot
Learning.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June
2018. doi: 10.1109/cvpr.2018.00581. url: https://doi.org/10.1109/cvpr.2018.00581
(cit. on p. 182).

[1690] B. Zhao, W. Li, and W. Gong. “Real-aware motion deblurring using multi-attention CycleGAN
with contrastive guidance.” In: Digital Signal Processing 135 (Apr. 2023), p. 103953. doi: 10.101
6/j.dsp.2023.103953. url: https://doi.org/10.1016/j.dsp.2023.103953 (cit. on p. 182).

[1691] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. “Toward
Multimodal Image-to-Image Translation.” In: Proceedings of the 31st International Conference on
Neural Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran Associates
Inc., 2017, pp. 465–476. isbn: 9781510860964. url: https://dl.acm.org/doi/10.5555/3294771
.3294816 (cit. on p. 182).

[1692] Q. Qi, J. Guo, and W. Jin. “EGAN: Non-uniform image deblurring based on edge adversarial
mechanism and partial weight sharing network.” In: Signal Processing: Image Communication 88

(Oct. 2020), p. 115952. doi: 10.1016/j.image.2020.115952. url: https://doi.org/10.1016/j
.image.2020.115952 (cit. on p. 182).

[1693] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas. “StackGAN: Text to
Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks.” In: 2017
IEEE International Conference on Computer Vision (ICCV). IEEE, Oct. 2017. doi: 10.1109/iccv.2
017.629. url: https://doi.org/10.1109/iccv.2017.629 (cit. on p. 182).

[1694] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas. “StackGAN++:
Realistic Image Synthesis with Stacked Generative Adversarial Networks.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 41.8 (Aug. 2019), pp. 1947–1962. doi: 10.1109/tpam
i.2018.2856256. url: https://doi.org/10.1109/tpami.2018.2856256 (cit. on p. 182).

[1695] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee. “Learning What and Where
to Draw.” In: NIPS’16. Barcelona, Spain: Curran Associates Inc., 2016, pp. 217–225. isbn:
9781510838819 (cit. on p. 182).

https://doi.org/10.1093/bioinformatics/btaa624
https://doi.org/10.1093/bioinformatics/btaa624
https://doi.org/10.1093/bioinformatics/btaa624
https://doi.org/10.1007/s11831-019-09388-y
https://doi.org/10.1007/s11831-019-09388-y
https://doi.org/10.1007/s11831-019-09388-y
https://doi.org/10.1109/tpami.2022.3181070
https://doi.org/10.1109/tpami.2022.3181070
https://doi.org/10.1109/tpami.2022.3181070
https://doi.org/10.23919/tst.2017.8195348
https://doi.org/10.23919/tst.2017.8195348
https://doi.org/10.23919/tst.2017.8195348
https://doi.org/10.1016/j.neucom.2022.04.126
https://doi.org/10.1016/j.neucom.2022.04.126
https://doi.org/10.1016/j.neucom.2022.04.126
https://doi.org/10.3389/fpubh.2020.00164
https://doi.org/10.3389/fpubh.2020.00164
https://doi.org/10.3389/fpubh.2020.00164
https://doi.org/10.1109/tip.2020.2964429
https://doi.org/10.1109/tip.2020.2964429
https://doi.org/10.1109/cvpr.2019.01052
https://doi.org/10.1109/cvpr.2019.01052
https://doi.org/10.1109/cvpr.2019.01052
https://doi.org/10.1109/cvpr.2018.00581
https://doi.org/10.1109/cvpr.2018.00581
https://doi.org/10.1016/j.dsp.2023.103953
https://doi.org/10.1016/j.dsp.2023.103953
https://doi.org/10.1016/j.dsp.2023.103953
https://dl.acm.org/doi/10.5555/3294771.3294816
https://dl.acm.org/doi/10.5555/3294771.3294816
https://doi.org/10.1016/j.image.2020.115952
https://doi.org/10.1016/j.image.2020.115952
https://doi.org/10.1016/j.image.2020.115952
https://doi.org/10.1109/iccv.2017.629
https://doi.org/10.1109/iccv.2017.629
https://doi.org/10.1109/iccv.2017.629
https://doi.org/10.1109/tpami.2018.2856256
https://doi.org/10.1109/tpami.2018.2856256
https://doi.org/10.1109/tpami.2018.2856256

bibliography 395

[1696] T. R. Shaham, T. Dekel, and T. Michaeli. “SinGAN: Learning a Generative Model From a Single
Natural Image.” In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE,
Oct. 2019. doi: 10.1109/iccv.2019.00467. url: https://doi.org/10.1109/iccv.2019.00467
(cit. on p. 182).

[1697] X. He and Z. Fu. “Recurrent SinGAN.” In: Proceedings of the 2021 5th International Conference on
Electronic Information Technology and Computer Engineering. ACM, Oct. 2021. doi: 10.1145/3501
409.3501476. url: https://doi.org/10.1145/3501409.3501476 (cit. on p. 182).

[1698] X. Wang and A. Gupta. “Generative Image Modeling Using Style and Structure Adversarial
Networks.” In: Computer Vision – ECCV 2016. Springer International Publishing, 2016, pp. 318–
335. doi: 10.1007/978-3-319-46493-0_20. url: https://doi.org/10.1007/978-3-319-4649
3-0_20 (cit. on p. 182).

[1699] M. Mehralian and B. Karasfi. “RDCGAN: Unsupervised Representation Learning With Reg-
ularized Deep Convolutional Generative Adversarial Networks.” In: 2018 9th Conference on
Artificial Intelligence and Robotics and 2nd Asia-Pacific International Symposium. IEEE, Dec. 2018.
doi: 10.1109/aiar.2018.8769811. url: https://doi.org/10.1109/aiar.2018.8769811
(cit. on p. 182).

[1700] A. Odena, C. Olah, and J. Shlens. “Conditional Image Synthesis with Auxiliary Classifier
GANs.” In: Proceedings of the 34th International Conference on Machine Learning. Ed. by D. Precup
and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017, pp. 2642–
2651. url: https://proceedings.mlr.press/v70/odena17a.html (cit. on p. 182).

[1701] Y. Jiang, S. Chang, and Z. Wang. “TransGAN: Two Pure Transformers Can Make One Strong
GAN, and That Can Scale Up.” In: Advances in Neural Information Processing Systems. Ed. by M.
Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran Associates,
Inc., 2021, pp. 14745–14758. url: https://proceedings.neurips.cc/paper_files/paper/202
1/file/7c220a2091c26a7f5e9f1cfb099511e3-Paper.pdf (cit. on p. 182).

[1702] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. “Self-Attention Generative Adversarial
Networks.” In: Proceedings of the 36th International Conference on Machine Learning. Ed. by K.
Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
Sept. 2019, pp. 7354–7363. url: https://proceedings.mlr.press/v97/zhang19d.html (cit. on
p. 182).

[1703] M.-Y. Liu and O. Tuzel. “Coupled Generative Adversarial Networks.” In: Advances in Neural
Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R.
Garnett. Vol. 29. Curran Associates, Inc., 2016. url: https://proceedings.neurips.cc/paper
_files/paper/2016/file/502e4a16930e414107ee22b6198c578f-Paper.pdf (cit. on p. 182).

[1704] J. Wang, E. Zhang, S. Cui, J. Wang, Q. Zhang, J. Fan, and J. Peng. “GGD-GAN: Gradient-Guided
dual-Branch adversarial networks for relic sketch generation.” In: Pattern Recognition 141 (Sept.
2023), p. 109586. doi: 10.1016/j.patcog.2023.109586. url: https://doi.org/10.1016/j.pa
tcog.2023.109586 (cit. on p. 182).

[1705] A. Dudhane, H. S. Aulakh, and S. Murala. “RI-GAN: An End-To-End Network for Single
Image Haze Removal.” In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE, June 2019. doi: 10.1109/cvprw.2019.00253. url: https://doi.or
g/10.1109/cvprw.2019.00253 (cit. on p. 182).

[1706] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He. “AttnGAN: Fine-
Grained Text to Image Generation with Attentional Generative Adversarial Networks.” In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June 2018. doi:
10.1109/cvpr.2018.00143. url: https://doi.org/10.1109/cvpr.2018.00143 (cit. on p. 182).

[1707] X. Gong, S. Chang, Y. Jiang, and Z. Wang. “AutoGAN: Neural Architecture Search for Gener-
ative Adversarial Networks.” In: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV). IEEE, Oct. 2019. doi: 10.1109/iccv.2019.00332. url: https://doi.org/10.1109/icc
v.2019.00332 (cit. on p. 182).

[1708] B. Wang, T. Wu, M. Zhu, and P. Du. “Interactive Image Synthesis With Panoptic Layout Gener-
ation.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2022, pp. 7783–7792. url: https://openaccess.thecvf.com/content/CVPR2022
/papers/Wang_Interactive_Image_Synthesis_With_Panoptic_Layout_Generation_CVPR_20

22_paper.pdf (cit. on p. 182).

[1709] M. Tao, H. Tang, F. Wu, X.-Y. Jing, B.-K. Bao, and C. Xu. “DF-GAN: A Simple and Effective
Baseline for Text-to-Image Synthesis.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2022, pp. 16515–16525. url: https://openaccess
.thecvf.com/content/CVPR2022/papers/Tao_DF-GAN_A_Simple_and_Effective_Baseline_f

or_Text-to-Image_Synthesis_CVPR_2022_paper.pdf (cit. on p. 182).

https://doi.org/10.1109/iccv.2019.00467
https://doi.org/10.1109/iccv.2019.00467
https://doi.org/10.1145/3501409.3501476
https://doi.org/10.1145/3501409.3501476
https://doi.org/10.1145/3501409.3501476
https://doi.org/10.1007/978-3-319-46493-0_20
https://doi.org/10.1007/978-3-319-46493-0_20
https://doi.org/10.1007/978-3-319-46493-0_20
https://doi.org/10.1109/aiar.2018.8769811
https://doi.org/10.1109/aiar.2018.8769811
https://proceedings.mlr.press/v70/odena17a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/7c220a2091c26a7f5e9f1cfb099511e3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7c220a2091c26a7f5e9f1cfb099511e3-Paper.pdf
https://proceedings.mlr.press/v97/zhang19d.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/502e4a16930e414107ee22b6198c578f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/502e4a16930e414107ee22b6198c578f-Paper.pdf
https://doi.org/10.1016/j.patcog.2023.109586
https://doi.org/10.1016/j.patcog.2023.109586
https://doi.org/10.1016/j.patcog.2023.109586
https://doi.org/10.1109/cvprw.2019.00253
https://doi.org/10.1109/cvprw.2019.00253
https://doi.org/10.1109/cvprw.2019.00253
https://doi.org/10.1109/cvpr.2018.00143
https://doi.org/10.1109/cvpr.2018.00143
https://doi.org/10.1109/iccv.2019.00332
https://doi.org/10.1109/iccv.2019.00332
https://doi.org/10.1109/iccv.2019.00332
https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_Interactive_Image_Synthesis_With_Panoptic_Layout_Generation_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_Interactive_Image_Synthesis_With_Panoptic_Layout_Generation_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_Interactive_Image_Synthesis_With_Panoptic_Layout_Generation_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Tao_DF-GAN_A_Simple_and_Effective_Baseline_for_Text-to-Image_Synthesis_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Tao_DF-GAN_A_Simple_and_Effective_Baseline_for_Text-to-Image_Synthesis_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Tao_DF-GAN_A_Simple_and_Effective_Baseline_for_Text-to-Image_Synthesis_CVPR_2022_paper.pdf

396 bibliography

[1710] P. Sumi, S. Sindhuja, and S. Sureshkumar. “A Comparison between AttnGAN and DF GAN:
Text to Image Synthesis.” In: 2021 3rd International Conference on Signal Processing and Communi-
cation (ICPSC). IEEE, May 2021. doi: 10.1109/icspc51351.2021.9451789. url: https://doi.o
rg/10.1109/icspc51351.2021.9451789 (cit. on p. 182).

[1711] M. Bahani, A. E. Ouaazizi, and K. Maalmi. “AraBERT and DF-GAN fusion for Arabic text-to-
image generation.” In: Array 16 (Dec. 2022), p. 100260. doi: 10.1016/j.array.2022.100260.
url: https://doi.org/10.1016/j.array.2022.100260 (cit. on p. 182).

[1712] L. Feng, G. Geng, Q. Li, Y. Jiang, Z. Li, and K. Li. “CRPGAN: Learning image-to-image
translation of two unpaired images by cross-attention mechanism and parallelization strategy.”
In: PLOS ONE 18.1 (Jan. 2023). Ed. by X. Kong, e0280073. doi: 10.1371/journal.pone.0280073.
url: https://doi.org/10.1371/journal.pone.0280073 (cit. on p. 182).

[1713] X. Luo, X. Chen, X. He, L. Qing, and X. Tan. “CMAFGAN: A Cross-Modal Attention Fusion
based Generative Adversarial Network for attribute word-to-face synthesis.” In: Knowledge-
Based Systems 255 (Nov. 2022), p. 109750. doi: 10.1016/j.knosys.2022.109750. url: https:
//doi.org/10.1016/j.knosys.2022.109750 (cit. on p. 182).

[1714] K. C. Dharma, C. T. Morrison, and B. Walls. “Texture Generation Using a Graph Generative
Adversarial Network and Differentiable Rendering.” In: Image and Vision Computing. Springer
Nature Switzerland, 2023, pp. 388–401. doi: 10.1007/978-3-031-25825-1_28. url: https://d
oi.org/10.1007/978-3-031-25825-1_28 (cit. on pp. 182, 183).

[1715] J. Yin, Z. Zhou, S. Xu, R. Yang, and K. Liu. “A Generative Adversarial Network Fused with
Dual-Attention Mechanism and Its Application in Multitarget Image Fine Segmentation.”
In: Computational Intelligence and Neuroscience 2021 (Dec. 2021). Ed. by Y. Yi, pp. 1–16. doi:
10.1155/2021/2464648. url: https://doi.org/10.1155/2021/2464648 (cit. on p. 182).

[1716] H. Zhang, H. Zhu, S. Yang, and W. Li. “DGattGAN: Cooperative Up-Sampling Based Dual
Generator Attentional GAN on Text-to-Image Synthesis.” In: IEEE Access 9 (2021), pp. 29584–
29598. doi: 10.1109/access.2021.3058674. url: https://doi.org/10.1109/access.2021.30
58674 (cit. on p. 182).

[1717] Y. Ma, G. Zhong, W. Liu, Y. Wang, P. Jiang, and R. Zhang. “ML-CGAN: Conditional Generative
Adversarial Network with a Meta-learner Structure for High-Quality Image Generation with
Few Training Data.” In: Cognitive Computation 13.2 (Jan. 2021), pp. 418–430. doi: 10.1007/s125
59-020-09796-4. url: https://doi.org/10.1007/s12559-020-09796-4 (cit. on p. 182).

[1718] A. Phaphuangwittayakul, F. Ying, Y. Guo, L. Zhou, and N. Chakpitak. “Few-shot image
generation based on contrastive meta-learning generative adversarial network.” In: The Visual
Computer (July 2022). doi: 10.1007/s00371-022-02566-3. url: https://doi.org/10.1007/s0
0371-022-02566-3 (cit. on p. 182).

[1719] T. Nguyen, T. Le, H. Vu, and D. Phung. “Dual Discriminator Generative Adversarial Nets.” In:
Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.
url: https://proceedings.neurips.cc/paper_files/paper/2017/file/e60e81c4cbe5171cd
654662d9887aec2-Paper.pdf (cit. on p. 182).

[1720] B. Liu, L. Wang, J. Wang, and J. Zhang. “Dual Discriminator Weighted Mixture Generative
Adversarial Network for image generation.” In: Journal of Ambient Intelligence and Humanized
Computing (Feb. 2022). doi: 10.1007/s12652-021-03667-y. url: https://doi.org/10.1007/s
12652-021-03667-y (cit. on p. 182).

[1721] G. G. Chrysos, J. Kossaifi, and S. Zafeiriou. “RoCGAN: Robust Conditional GAN.” In: Interna-
tional Journal of Computer Vision 128.10-11 (July 2020), pp. 2665–2683. doi: 10.1007/s11263-020
-01348-5. url: https://doi.org/10.1007/s11263-020-01348-5 (cit. on p. 182).

[1722] S. Mohammadjafari, M. Cevik, and A. Basar. “VARGAN: variance enforcing network enhanced
GAN.” In: Applied Intelligence 53.1 (Apr. 2022), pp. 69–95. doi: 10.1007/s10489-022-03199-8.
url: https://doi.org/10.1007/s10489-022-03199-8 (cit. on p. 182).

[1723] X. Liang, Y. Li, X. Li, Y. Zhang, and Y. Ding. “A Dual Stream Generative Adversarial Network
with Phase Awareness for Speech Enhancement.” In: Information 14.4 (Apr. 2023), p. 221. doi:
10.3390/info14040221. url: https://doi.org/10.3390/info14040221 (cit. on p. 182).

[1724] J. Kossaifi, L. Tran, Y. Panagakis, and M. Pantic. “GAGAN: Geometry-Aware Generative
Adversarial Networks.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, June 2018. doi: 10.1109/cvpr.2018.00098. url: https://doi.org/10.1109/cvpr.2018
.00098 (cit. on p. 182).

[1725] L. Sun, B. Jiang, C. Yang, J. Dai, and W. Zeng. “RePGAN: image inpainting via residual partial
connection and mask discriminator.” In: International Journal of Machine Learning and Cybernetics
(Apr. 2023). doi: 10.1007/s13042-023-01827-4. url: https://doi.org/10.1007/s13042-023
-01827-4 (cit. on p. 182).

https://doi.org/10.1109/icspc51351.2021.9451789
https://doi.org/10.1109/icspc51351.2021.9451789
https://doi.org/10.1109/icspc51351.2021.9451789
https://doi.org/10.1016/j.array.2022.100260
https://doi.org/10.1016/j.array.2022.100260
https://doi.org/10.1371/journal.pone.0280073
https://doi.org/10.1371/journal.pone.0280073
https://doi.org/10.1016/j.knosys.2022.109750
https://doi.org/10.1016/j.knosys.2022.109750
https://doi.org/10.1016/j.knosys.2022.109750
https://doi.org/10.1007/978-3-031-25825-1_28
https://doi.org/10.1007/978-3-031-25825-1_28
https://doi.org/10.1007/978-3-031-25825-1_28
https://doi.org/10.1155/2021/2464648
https://doi.org/10.1155/2021/2464648
https://doi.org/10.1109/access.2021.3058674
https://doi.org/10.1109/access.2021.3058674
https://doi.org/10.1109/access.2021.3058674
https://doi.org/10.1007/s12559-020-09796-4
https://doi.org/10.1007/s12559-020-09796-4
https://doi.org/10.1007/s12559-020-09796-4
https://doi.org/10.1007/s00371-022-02566-3
https://doi.org/10.1007/s00371-022-02566-3
https://doi.org/10.1007/s00371-022-02566-3
https://proceedings.neurips.cc/paper_files/paper/2017/file/e60e81c4cbe5171cd654662d9887aec2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e60e81c4cbe5171cd654662d9887aec2-Paper.pdf
https://doi.org/10.1007/s12652-021-03667-y
https://doi.org/10.1007/s12652-021-03667-y
https://doi.org/10.1007/s12652-021-03667-y
https://doi.org/10.1007/s11263-020-01348-5
https://doi.org/10.1007/s11263-020-01348-5
https://doi.org/10.1007/s11263-020-01348-5
https://doi.org/10.1007/s10489-022-03199-8
https://doi.org/10.1007/s10489-022-03199-8
https://doi.org/10.3390/info14040221
https://doi.org/10.3390/info14040221
https://doi.org/10.1109/cvpr.2018.00098
https://doi.org/10.1109/cvpr.2018.00098
https://doi.org/10.1109/cvpr.2018.00098
https://doi.org/10.1007/s13042-023-01827-4
https://doi.org/10.1007/s13042-023-01827-4
https://doi.org/10.1007/s13042-023-01827-4

bibliography 397

[1726] F. Zhang, X. Wang, T. Sun, and X. Xu. “SE-DCGAN: a New Method of Semantic Image
Restoration.” In: Cognitive Computation 13.4 (May 2021), pp. 981–991. doi: 10.1007/s12559-02
1-09877-y. url: https://doi.org/10.1007/s12559-021-09877-y (cit. on p. 182).

[1727] Z. Wenjun, S. Benpeng, F. Ruiqi, P. Xihua, and C. Shanxiong. “EA-GAN: restoration of text
in ancient Chinese books based on an example attention generative adversarial network.” In:
Heritage Science 11.1 (Mar. 2023). doi: 10.1186/s40494-023-00882-y. url: https://doi.org/1
0.1186/s40494-023-00882-y (cit. on p. 182).

[1728] D. Lazcano, N. F. Franco, and W. Creixell. “HGAN: Hyperbolic Generative Adversarial
Network.” In: IEEE Access 9 (2021), pp. 96309–96320. doi: 10.1109/access.2021.3094723. url:
https://doi.org/10.1109/access.2021.3094723 (cit. on p. 182).

[1729] M. Armandpour, A. Sadeghian, C. Li, and M. Zhou. “Partition-Guided GANs.” In: 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2021. doi:
10.1109/cvpr46437.2021.00506. url: https://doi.org/10.1109/cvpr46437.2021.00506
(cit. on p. 182).

[1730] J. Chen, Y. Zhang, X. Hu, and C. Y.-C. Chen. “Cascading residual–residual attention generative
adversarial network for image super resolution.” In: Soft Computing 25.14 (Mar. 2021), pp. 9651–
9662. doi: 10.1007/s00500-021-05730-4. url: https://doi.org/10.1007/s00500-021-0573
0-4 (cit. on p. 182).

[1731] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. 2017. arXiv: 1701.07875 [stat.ML]

(cit. on p. 182).

[1732] A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep Convolu-
tional Generative Adversarial Networks. 2016. arXiv: 1511.06434 [cs.LG] (cit. on p. 182).

[1733] A. Brock, J. Donahue, and K. Simonyan. “Large Scale GAN Training for High Fidelity Natural
Image Synthesis.” In: International Conference on Learning Representations. 2019. url: https://o
penreview.net/forum?id=B1xsqj09Fm (cit. on p. 182).

[1734] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. “StarGAN v2: Diverse Image Synthesis for Multiple
Domains.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2020. url: https://openaccess.thecvf.com/content_CVPR_2020/papers/Ch
oi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.pdf

(cit. on p. 182).

[1735] J. Kim, H. Yang, and K. Min. “24-GAN: Portrait Generation with Composite Attributes.” In:
Mathematics 10.20 (Oct. 2022), p. 3887. doi: 10.3390/math10203887. url: https://doi.org/10
.3390/math10203887 (cit. on p. 182).

[1736] S. Yang, J.-T. Zhang, C.-W. Lin, and C.-C. Hsu. “GAN-Based Criminal Suspect Face Generator.”
In: Communications in Computer and Information Science. Springer Nature Singapore, 2022,
pp. 329–340. doi: 10.1007/978-981-19-9582-8_29. url: https://doi.org/10.1007/978-981-
19-9582-8_29 (cit. on p. 182).

[1737] X. Huang, A. Mallya, T.-C. Wang, and M.-Y. Liu. “Multimodal Conditional Image Synthesis
with Product-of-Experts GANs.” In: Lecture Notes in Computer Science. Springer Nature Switzer-
land, 2022, pp. 91–109. doi: 10.1007/978-3-031-19787-1_6. url: https://doi.org/10.1007
/978-3-031-19787-1_6 (cit. on p. 182).

[1738] J. Fu, S. Li, Y. Jiang, K.-Y. Lin, C. Qian, C. C. Loy, W. Wu, and Z. Liu. “StyleGAN-Human: A
Data-Centric Odyssey of Human Generation.” In: Lecture Notes in Computer Science. Springer
Nature Switzerland, 2022, pp. 1–19. doi: 10.1007/978-3-031-19787-1_1. url: https://doi.o
rg/10.1007/978-3-031-19787-1_1 (cit. on p. 182).

[1739] P. Celard, E. L. Iglesias, J. M. Sorribes-Fdez, R. Romero, A. S. Vieira, and L. Borrajo. “A
survey on deep learning applied to medical images: from simple artificial neural networks to
generative models.” In: Neural Computing and Applications 35.3 (Nov. 2022), pp. 2291–2323. doi:
10.1007/s00521-022-07953-4. url: https://doi.org/10.1007/s00521-022-07953-4 (cit. on
p. 182).

[1740] J. Zhang, E. Sangineto, H. Tang, A. Siarohin, Z. Zhong, N. Sebe, and W. Wang. “3D-Aware
Semantic-Guided Generative Model for Human Synthesis.” In: Lecture Notes in Computer
Science. Springer Nature Switzerland, 2022, pp. 339–356. doi: 10.1007/978-3-031-19784-0_20.
url: https://doi.org/10.1007/978-3-031-19784-0_20 (cit. on p. 182).

[1741] C. Yang, Y. Shen, and B. Zhou. “Semantic Hierarchy Emerges in Deep Generative Repre-
sentations for Scene Synthesis.” In: International Journal of Computer Vision 129.5 (Feb. 2021),
pp. 1451–1466. doi: 10.1007/s11263-020-01429-5. url: https://doi.org/10.1007/s11263-
020-01429-5 (cit. on p. 182).

[1742] Q. Zhou, J. Zhang, G. Han, Z. Ruan, and Y. Wei. “Enhanced self-supervised GANs with blend
ratio classification.” In: Multimedia Tools and Applications 81.6 (Jan. 2022), pp. 7651–7667. doi:
10.1007/s11042-022-12056-2. url: https://doi.org/10.1007/s11042-022-12056-2 (cit. on
p. 182).

https://doi.org/10.1007/s12559-021-09877-y
https://doi.org/10.1007/s12559-021-09877-y
https://doi.org/10.1007/s12559-021-09877-y
https://doi.org/10.1186/s40494-023-00882-y
https://doi.org/10.1186/s40494-023-00882-y
https://doi.org/10.1186/s40494-023-00882-y
https://doi.org/10.1109/access.2021.3094723
https://doi.org/10.1109/access.2021.3094723
https://doi.org/10.1109/cvpr46437.2021.00506
https://doi.org/10.1109/cvpr46437.2021.00506
https://doi.org/10.1007/s00500-021-05730-4
https://doi.org/10.1007/s00500-021-05730-4
https://doi.org/10.1007/s00500-021-05730-4
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1511.06434
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
https://openaccess.thecvf.com/content_CVPR_2020/papers/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.pdf
https://doi.org/10.3390/math10203887
https://doi.org/10.3390/math10203887
https://doi.org/10.3390/math10203887
https://doi.org/10.1007/978-981-19-9582-8_29
https://doi.org/10.1007/978-981-19-9582-8_29
https://doi.org/10.1007/978-981-19-9582-8_29
https://doi.org/10.1007/978-3-031-19787-1_6
https://doi.org/10.1007/978-3-031-19787-1_6
https://doi.org/10.1007/978-3-031-19787-1_6
https://doi.org/10.1007/978-3-031-19787-1_1
https://doi.org/10.1007/978-3-031-19787-1_1
https://doi.org/10.1007/978-3-031-19787-1_1
https://doi.org/10.1007/s00521-022-07953-4
https://doi.org/10.1007/s00521-022-07953-4
https://doi.org/10.1007/978-3-031-19784-0_20
https://doi.org/10.1007/978-3-031-19784-0_20
https://doi.org/10.1007/s11263-020-01429-5
https://doi.org/10.1007/s11263-020-01429-5
https://doi.org/10.1007/s11263-020-01429-5
https://doi.org/10.1007/s11042-022-12056-2
https://doi.org/10.1007/s11042-022-12056-2

398 bibliography

[1743] D. Bang, S. Kang, and H. Shim. “Discriminator Feature-Based Inference by Recycling the
Discriminator of GANs.” In: International Journal of Computer Vision 128.10-11 (Mar. 2020),
pp. 2436–2458. doi: 10.1007/s11263-020-01311-4. url: https://doi.org/10.1007/s11263-
020-01311-4 (cit. on p. 182).

[1744] Q. Zhou, J. Zhang, and G. Han. “Improved Generative Adversarial Network Learning via
Structural Pattern Classification.” In: Neural Processing Letters (Mar. 2023). doi: 10.1007/s1106
3-023-11221-4. url: https://doi.org/10.1007/s11063-023-11221-4 (cit. on p. 182).

[1745] Y. Skandarani, P.-M. Jodoin, and A. Lalande. “GANs for Medical Image Synthesis: An Empirical
Study.” In: Journal of Imaging 9.3 (Mar. 2023), p. 69. doi: 10.3390/jimaging9030069. url: http
s://doi.org/10.3390/jimaging9030069 (cit. on p. 182).

[1746] J. Chen, S. Luo, M. Xiong, T. Peng, P. Zhu, M. Jiang, and X. Qin. “HybridGAN: hybrid
generative adversarial networks for MR image synthesis.” In: Multimedia Tools and Applications
79.37-38 (July 2020), pp. 27615–27631. doi: 10.1007/s11042-020-09387-3. url: https://doi
.org/10.1007/s11042-020-09387-3 (cit. on p. 182).

[1747] Z. Liu, K. Niu, and Z. He. “ML-CookGAN: Multi-Label Generative Adversarial Network for
Food Image Generation.” In: ACM Transactions on Multimedia Computing, Communications, and
Applications 19.2s (Feb. 2023), pp. 1–21. doi: 10.1145/3554738. url: https://doi.org/10.114
5/3554738 (cit. on p. 182).

[1748] Y. Fang, X. Zhang, H. Cao, J. Nie, Z. Chen, and Z. He. “Insulator Image Dataset Generation
based on Generative Adversarial Network.” In: 2023 4th International Conference on Computer
Vision, Image and Deep Learning (CVIDL). IEEE, May 2023. doi: 10.1109/cvidl58838.2023.101
66407. url: https://doi.org/10.1109/cvidl58838.2023.10166407 (cit. on pp. 182, 183).

[1749] Z. Zhang, Y. Xie, and L. Yang. “Photographic Text-to-Image Synthesis with a Hierarchically-
Nested Adversarial Network.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, June 2018. doi: 10.1109/cvpr.2018.00649. url: https://doi.org/10.1109
/cvpr.2018.00649 (cit. on p. 182).

[1750] Y. X. Tan, C. P. Lee, M. Neo, K. M. Lim, and J. Y. Lim. “Enhanced Text-to-Image Synthesis
With Self-Supervision.” In: IEEE Access 11 (2023), pp. 39508–39519. doi: 10.1109/access.2023
.3268869. url: https://doi.org/10.1109/access.2023.3268869 (cit. on p. 182).

[1751] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. “Generative Adversarial Text
to Image Synthesis.” In: Proceedings of The 33rd International Conference on Machine Learning.
Ed. by M. F. Balcan and K. Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research.
New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1060–1069. url: https://proceedings
.mlr.press/v48/reed16.html (cit. on p. 182).

[1752] A. Sauer, T. Karras, S. Laine, A. Geiger, and T. Aila. StyleGAN-T: Unlocking the Power of
GANs for Fast Large-Scale Text-to-Image Synthesis. 2023. doi: 10.48550/ARXIV.2301.09515. url:
https://arxiv.org/abs/2301.09515 (cit. on p. 182).

[1753] A. Kushwaha, C. P, and K. P. Singh. “Text to Face generation using Wasserstein stackGAN.”
In: 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and
Computer Engineering (UPCON). IEEE, Dec. 2022. doi: 10.1109/upcon56432.2022.9986391.
url: https://doi.org/10.1109/upcon56432.2022.9986391 (cit. on p. 182).

[1754] E. Raparla, V. Raavipaati, S. N. G, S. S. T. Md, and K. K. S. “Different Techniques of Facial
Image Generation from Textual Input : A Survey.” In: 2022 2nd International Conference on
Intelligent Technologies (CONIT). IEEE, June 2022. doi: 10.1109/conit55038.2022.9848228.
url: https://doi.org/10.1109/conit55038.2022.9848228 (cit. on p. 182).

[1755] Y. Zhou, R. Zhang, C. Chen, C. Li, C. Tensmeyer, T. Yu, J. Gu, J. Xu, and T. Sun. “Towards
Language-Free Training for Text-to-Image Generation.” In: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.202
2.01738. url: https://doi.org/10.1109/cvpr52688.2022.01738 (cit. on p. 182).

[1756] J. Sun, Q. Deng, Q. Li, M. Sun, M. Ren, and Z. Sun. “AnyFace: Free-style Text-to-Face Synthesis
and Manipulation.” In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01813. url: https://doi.org/10.11
09/cvpr52688.2022.01813 (cit. on p. 182).

[1757] M. Berrahal and M. Azizi. “Optimal text-to-image synthesis model for generating portrait
images using generative adversarial network techniques.” In: Indonesian Journal of Electrical
Engineering and Computer Science 25.2 (Feb. 2022), p. 972. doi: 10.11591/ijeecs.v25.i2.pp972
-979. url: https://doi.org/10.11591/ijeecs.v25.i2.pp972-979 (cit. on p. 182).

[1758] Y. Zhou. “Generative Adversarial Network for Text-to-Face Synthesis and Manipulation.”
In: Proceedings of the 29th ACM International Conference on Multimedia. ACM, Oct. 2021. doi:
10.1145/3474085.3481026. url: https://doi.org/10.1145/3474085.3481026 (cit. on p. 182).

https://doi.org/10.1007/s11263-020-01311-4
https://doi.org/10.1007/s11263-020-01311-4
https://doi.org/10.1007/s11263-020-01311-4
https://doi.org/10.1007/s11063-023-11221-4
https://doi.org/10.1007/s11063-023-11221-4
https://doi.org/10.1007/s11063-023-11221-4
https://doi.org/10.3390/jimaging9030069
https://doi.org/10.3390/jimaging9030069
https://doi.org/10.3390/jimaging9030069
https://doi.org/10.1007/s11042-020-09387-3
https://doi.org/10.1007/s11042-020-09387-3
https://doi.org/10.1007/s11042-020-09387-3
https://doi.org/10.1145/3554738
https://doi.org/10.1145/3554738
https://doi.org/10.1145/3554738
https://doi.org/10.1109/cvidl58838.2023.10166407
https://doi.org/10.1109/cvidl58838.2023.10166407
https://doi.org/10.1109/cvidl58838.2023.10166407
https://doi.org/10.1109/cvpr.2018.00649
https://doi.org/10.1109/cvpr.2018.00649
https://doi.org/10.1109/cvpr.2018.00649
https://doi.org/10.1109/access.2023.3268869
https://doi.org/10.1109/access.2023.3268869
https://doi.org/10.1109/access.2023.3268869
https://proceedings.mlr.press/v48/reed16.html
https://proceedings.mlr.press/v48/reed16.html
https://doi.org/10.48550/ARXIV.2301.09515
https://arxiv.org/abs/2301.09515
https://doi.org/10.1109/upcon56432.2022.9986391
https://doi.org/10.1109/upcon56432.2022.9986391
https://doi.org/10.1109/conit55038.2022.9848228
https://doi.org/10.1109/conit55038.2022.9848228
https://doi.org/10.1109/cvpr52688.2022.01738
https://doi.org/10.1109/cvpr52688.2022.01738
https://doi.org/10.1109/cvpr52688.2022.01738
https://doi.org/10.1109/cvpr52688.2022.01813
https://doi.org/10.1109/cvpr52688.2022.01813
https://doi.org/10.1109/cvpr52688.2022.01813
https://doi.org/10.11591/ijeecs.v25.i2.pp972-979
https://doi.org/10.11591/ijeecs.v25.i2.pp972-979
https://doi.org/10.11591/ijeecs.v25.i2.pp972-979
https://doi.org/10.1145/3474085.3481026
https://doi.org/10.1145/3474085.3481026

bibliography 399

[1759] H. Ku and M. Lee. “TextControlGAN: Text-to-Image Synthesis with Controllable Generative
Adversarial Networks.” In: Applied Sciences 13.8 (Apr. 2023), p. 5098. doi: 10.3390/app13085098.
url: https://doi.org/10.3390/app13085098 (cit. on p. 182).

[1760] S. Luo. “A Survey on Multimodal Deep Learning for Image Synthesis.” In: 2021 the 5th
International Conference on Innovation in Artificial Intelligence. ACM, Mar. 2021. doi: 10.1145/34
61353.3461388. url: https://doi.org/10.1145/3461353.3461388 (cit. on pp. 182, 184).

[1761] Z. Deng, X. He, and Y. Peng. “LFR-GAN: Local Feature Refinement based Generative Adver-
sarial Network for Text-to-Image Generation.” In: ACM Transactions on Multimedia Computing,
Communications, and Applications (Mar. 2023). doi: 10.1145/3589002. url: https://doi.org/1
0.1145/3589002 (cit. on p. 182).

[1762] S. Pande, S. Chouhan, R. Sonavane, R. Walambe, G. Ghinea, and K. Kotecha. “Development
and deployment of a generative model-based framework for text to photorealistic image
generation.” In: Neurocomputing 463 (Nov. 2021), pp. 1–16. doi: 10.1016/j.neucom.2021.08.0
55. url: https://doi.org/10.1016/j.neucom.2021.08.055 (cit. on p. 182).

[1763] C. Zhang, C. Zhang, M. Zhang, and I. S. Kweon. Text-to-image Diffusion Models in Generative AI:
A Survey. 2023. doi: 10.48550/ARXIV.2303.07909. url: https://arxiv.org/abs/2303.07909
(cit. on pp. 182, 183).

[1764] L. Gao, D. Chen, J. Song, X. Xu, D. Zhang, and H. T. Shen. “Perceptual Pyramid Adversarial
Networks for Text-to-Image Synthesis.” In: Proceedings of the AAAI Conference on Artificial
Intelligence 33.01 (July 2019), pp. 8312–8319. doi: 10.1609/aaai.v33i01.33018312. url:
https://doi.org/10.1609/aaai.v33i01.33018312 (cit. on p. 182).

[1765] Z. Zhang, C. Fu, W. Weng, and J. Zhou. “Text-Guided Customizable Image Synthesis and
Manipulation.” In: Applied Sciences 12.20 (Oct. 2022), p. 10645. doi: 10.3390/app122010645.
url: https://doi.org/10.3390/app122010645 (cit. on p. 182).

[1766] V. Sushko, E. Schönfeld, D. Zhang, J. Gall, B. Schiele, and A. Khoreva. “OASIS: Only Adver-
sarial Supervision for Semantic Image Synthesis.” In: International Journal of Computer Vision
130.12 (Sept. 2022), pp. 2903–2923. doi: 10.1007/s11263-022-01673-x. url: https://doi.org
/10.1007/s11263-022-01673-x (cit. on p. 182).

[1767] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, and D. Lischinski. “StyleCLIP: Text-Driven
Manipulation of StyleGAN Imagery.” In: 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). IEEE, Oct. 2021. doi: 10.1109/iccv48922.2021.00209. url: https://doi.org/1
0.1109/iccv48922.2021.00209 (cit. on p. 182).

[1768] W. Xia, Y. Yang, J.-H. Xue, and B. Wu. “TediGAN: Text-Guided Diverse Face Image Generation
and Manipulation.” In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2021. doi: 10.1109/cvpr46437.2021.00229. url: https://doi.org/10.11
09/cvpr46437.2021.00229 (cit. on p. 182).

[1769] C.-K. T. Chao and Y. Gingold. Text-guided Image-and-Shape Editing and Generation: A Short Survey.
2023. doi: 10.48550/ARXIV.2304.09244. url: https://arxiv.org/abs/2304.09244 (cit. on
pp. 182–184).

[1770] J. Ko, K. Cho, D. Choi, K. Ryoo, and S. Kim. “3D GAN Inversion with Pose Optimization.” In:
2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, Jan. 2023. doi:
10.1109/wacv56688.2023.00298. url: https://doi.org/10.1109/wacv56688.2023.00298
(cit. on p. 182).

[1771] S. H. Lee, G. Oh, W. Byeon, C. Kim, W. J. Ryoo, S. H. Yoon, H. Cho, J. Bae, J. Kim, and S.
Kim. Sound-Guided Semantic Video Generation. 2022. doi: 10.48550/ARXIV.2204.09273. url:
https://arxiv.org/abs/2204.09273 (cit. on p. 182).

[1772] Y. Alaluf, O. Tov, R. Mokady, R. Gal, and A. Bermano. “HyperStyle: StyleGAN Inversion with
HyperNetworks for Real Image Editing.” In: 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01796. url:
https://doi.org/10.1109/cvpr52688.2022.01796 (cit. on p. 182).

[1773] Y. Liu, Q. Li, Q. Deng, and Z. Sun. “Towards Spatially Disentangled Manipulation of Face
Images With Pre-Trained StyleGANs.” In: IEEE Transactions on Circuits and Systems for Video
Technology 33.4 (Apr. 2023), pp. 1725–1739. doi: 10.1109/tcsvt.2022.3213662. url: https://d
oi.org/10.1109/tcsvt.2022.3213662 (cit. on p. 182).

[1774] Q. Bai, W. Xia, F. Yin, and Y. Yang. “Identity-Guided Face Generation with Multi-Modal
Contour Conditions.” In: 2022 IEEE International Conference on Image Processing (ICIP). IEEE,
Oct. 2022. doi: 10.1109/icip46576.2022.9897459. url: https://doi.org/10.1109/icip4657
6.2022.9897459 (cit. on p. 182).

[1775] Z. Guo, M. Shao, and S. Li. “Image-to-image translation using an offset-based multi-scale
codes GAN encoder.” In: The Visual Computer (Mar. 2023). doi: 10.1007/s00371-023-02810-4.
url: https://doi.org/10.1007/s00371-023-02810-4 (cit. on p. 182).

https://doi.org/10.3390/app13085098
https://doi.org/10.3390/app13085098
https://doi.org/10.1145/3461353.3461388
https://doi.org/10.1145/3461353.3461388
https://doi.org/10.1145/3461353.3461388
https://doi.org/10.1145/3589002
https://doi.org/10.1145/3589002
https://doi.org/10.1145/3589002
https://doi.org/10.1016/j.neucom.2021.08.055
https://doi.org/10.1016/j.neucom.2021.08.055
https://doi.org/10.1016/j.neucom.2021.08.055
https://doi.org/10.48550/ARXIV.2303.07909
https://arxiv.org/abs/2303.07909
https://doi.org/10.1609/aaai.v33i01.33018312
https://doi.org/10.1609/aaai.v33i01.33018312
https://doi.org/10.3390/app122010645
https://doi.org/10.3390/app122010645
https://doi.org/10.1007/s11263-022-01673-x
https://doi.org/10.1007/s11263-022-01673-x
https://doi.org/10.1007/s11263-022-01673-x
https://doi.org/10.1109/iccv48922.2021.00209
https://doi.org/10.1109/iccv48922.2021.00209
https://doi.org/10.1109/iccv48922.2021.00209
https://doi.org/10.1109/cvpr46437.2021.00229
https://doi.org/10.1109/cvpr46437.2021.00229
https://doi.org/10.1109/cvpr46437.2021.00229
https://doi.org/10.48550/ARXIV.2304.09244
https://arxiv.org/abs/2304.09244
https://doi.org/10.1109/wacv56688.2023.00298
https://doi.org/10.1109/wacv56688.2023.00298
https://doi.org/10.48550/ARXIV.2204.09273
https://arxiv.org/abs/2204.09273
https://doi.org/10.1109/cvpr52688.2022.01796
https://doi.org/10.1109/cvpr52688.2022.01796
https://doi.org/10.1109/tcsvt.2022.3213662
https://doi.org/10.1109/tcsvt.2022.3213662
https://doi.org/10.1109/tcsvt.2022.3213662
https://doi.org/10.1109/icip46576.2022.9897459
https://doi.org/10.1109/icip46576.2022.9897459
https://doi.org/10.1109/icip46576.2022.9897459
https://doi.org/10.1007/s00371-023-02810-4
https://doi.org/10.1007/s00371-023-02810-4

400 bibliography

[1776] J. Chen, S. Chen, L. Wee, A. Dekker, and I. Bermejo. “Deep learning based unpaired image-
to-image translation applications for medical physics: a systematic review.” In: Physics in
Medicine & Biology 68.5 (Feb. 2023), 05TR01. doi: 10.1088/1361-6560/acba74. url: https://d
oi.org/10.1088/1361-6560/acba74 (cit. on p. 182).

[1777] M. Liu, Y. Wei, X. Wu, W. Zuo, and L. Zhang. “Survey on leveraging pre-trained generative
adversarial networks for image editing and restoration.” In: Science China Information Sciences
66.5 (Apr. 2023). doi: 10.1007/s11432-022-3679-0. url: https://doi.org/10.1007/s11432-
022-3679-0 (cit. on p. 182).

[1778] Y. Alaluf, O. Patashnik, Z. Wu, A. Zamir, E. Shechtman, D. Lischinski, and D. Cohen-Or. “Third
Time’s the Charm? Image and Video Editing with StyleGAN3.” In: Lecture Notes in Computer
Science. Springer Nature Switzerland, 2023, pp. 204–220. doi: 10.1007/978-3-031-25063-7_13.
url: https://doi.org/10.1007/978-3-031-25063-7_13 (cit. on p. 182).

[1779] Y. Liu, R. Gal, A. H. Bermano, B. Chen, and D. Cohen-Or. “Self-Conditioned GANs for Image
Editing.” In: Special Interest Group on Computer Graphics and Interactive Techniques Conference
Proceedings. ACM, Aug. 2022. doi: 10.1145/3528233.3530698. url: https://doi.org/10.114
5/3528233.3530698 (cit. on p. 182).

[1780] Y. Zhang, Q. Wang, and B. Hu. “MinimalGAN: diverse medical image synthesis for data
augmentation using minimal training data.” In: Applied Intelligence 53.4 (June 2022), pp. 3899–
3916. doi: 10.1007/s10489-022-03609-x. url: https://doi.org/10.1007/s10489-022-0360
9-x (cit. on p. 182).

[1781] C.-Y. Chung and S.-H. Huang. “Interactively transforming chinese ink paintings into realistic
images using a border enhance generative adversarial network.” In: Multimedia Tools and
Applications 82.8 (Aug. 2022), pp. 11663–11696. doi: 10.1007/s11042- 022- 13684- 4. url:
https://doi.org/10.1007/s11042-022-13684-4 (cit. on p. 182).

[1782] A. Mehta, H. Sinha, P. Narang, and M. Mandal. “HIDeGan: A Hyperspectral-guided Image
Dehazing GAN.” In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE, June 2020. doi: 10.1109/cvprw50498.2020.00114. url: https://d
oi.org/10.1109/cvprw50498.2020.00114 (cit. on p. 182).

[1783] K. Regmi and A. Borji. “Cross-view image synthesis using geometry-guided conditional
GANs.” In: Computer Vision and Image Understanding 187 (Oct. 2019), p. 102788. doi: 10.1016/j
.cviu.2019.07.008. url: https://doi.org/10.1016/j.cviu.2019.07.008 (cit. on p. 182).

[1784] Y. Mao, T. Zhang, B. Fu, and D. N. H. Thanh. “A Self-Attention Based Wasserstein Generative
Adversarial Networks for Single Image Inpainting.” In: Pattern Recognition and Image Analysis
32.3 (Sept. 2022), pp. 591–599. doi: 10.1134/s1054661822030245. url: https://doi.org/10.1
134/s1054661822030245 (cit. on p. 182).

[1785] G. Chen, P. Kang, X. Wu, Z. Yang, and W. Liu. “Adaptive Visual Field Multi-scale Generative
Adversarial Networks Image Inpainting Base on Coordinate-Attention.” In: Neural Processing
Letters (Mar. 2023). doi: 10.1007/s11063-023-11233-0. url: https://doi.org/10.1007/s110
63-023-11233-0 (cit. on p. 182).

[1786] Y. Chen and H. Hu. “An Improved Method for Semantic Image Inpainting with GANs:
Progressive Inpainting.” In: Neural Processing Letters 49.3 (June 2018), pp. 1355–1367. doi:
10.1007/s11063-018-9877-6. url: https://doi.org/10.1007/s11063-018-9877-6 (cit. on
p. 182).

[1787] G. Chen, G. Zhang, Z. Yang, and W. Liu. “Multi-scale patch-GAN with edge detection for
image inpainting.” In: Applied Intelligence 53.4 (June 2022), pp. 3917–3932. doi: 10.1007/s1048
9-022-03577-2. url: https://doi.org/10.1007/s10489-022-03577-2 (cit. on p. 182).

[1788] Y. Chen, H. Zhang, L. Liu, X. Chen, Q. Zhang, K. Yang, R. Xia, and J. Xie. “Research on
image Inpainting algorithm of improved GAN based on two-discriminations networks.” In:
Applied Intelligence 51.6 (Nov. 2020), pp. 3460–3474. doi: 10.1007/s10489-020-01971-2. url:
https://doi.org/10.1007/s10489-020-01971-2 (cit. on p. 182).

[1789] Y. Chen, L. Liu, J. Tao, R. Xia, Q. Zhang, K. Yang, J. Xiong, and X. Chen. “The improved image
inpainting algorithm via encoder and similarity constraint.” In: The Visual Computer 37.7 (July
2020), pp. 1691–1705. doi: 10.1007/s00371-020-01932-3. url: https://doi.org/10.1007/s0
0371-020-01932-3 (cit. on p. 182).

[1790] C. Lv, Z. Li, Y. Shen, J. Li, and J. Zheng. “SeparaFill: Two generators connected mural image
restoration based on generative adversarial network with skip connect.” In: Heritage Science
10.1 (Aug. 2022). doi: 10.1186/s40494-022-00771-w. url: https://doi.org/10.1186/s40494
-022-00771-w (cit. on p. 182).

[1791] S. Ma, J. Cao, Z. Li, Z. Chen, and X. Hu. “An improved algorithm for superresolution
reconstruction of ancient murals with a generative adversarial network based on asymmetric
pyramid modules.” In: Heritage Science 10.1 (May 2022). doi: 10.1186/s40494-022-00700-x.
url: https://doi.org/10.1186/s40494-022-00700-x (cit. on p. 182).

https://doi.org/10.1088/1361-6560/acba74
https://doi.org/10.1088/1361-6560/acba74
https://doi.org/10.1088/1361-6560/acba74
https://doi.org/10.1007/s11432-022-3679-0
https://doi.org/10.1007/s11432-022-3679-0
https://doi.org/10.1007/s11432-022-3679-0
https://doi.org/10.1007/978-3-031-25063-7_13
https://doi.org/10.1007/978-3-031-25063-7_13
https://doi.org/10.1145/3528233.3530698
https://doi.org/10.1145/3528233.3530698
https://doi.org/10.1145/3528233.3530698
https://doi.org/10.1007/s10489-022-03609-x
https://doi.org/10.1007/s10489-022-03609-x
https://doi.org/10.1007/s10489-022-03609-x
https://doi.org/10.1007/s11042-022-13684-4
https://doi.org/10.1007/s11042-022-13684-4
https://doi.org/10.1109/cvprw50498.2020.00114
https://doi.org/10.1109/cvprw50498.2020.00114
https://doi.org/10.1109/cvprw50498.2020.00114
https://doi.org/10.1016/j.cviu.2019.07.008
https://doi.org/10.1016/j.cviu.2019.07.008
https://doi.org/10.1016/j.cviu.2019.07.008
https://doi.org/10.1134/s1054661822030245
https://doi.org/10.1134/s1054661822030245
https://doi.org/10.1134/s1054661822030245
https://doi.org/10.1007/s11063-023-11233-0
https://doi.org/10.1007/s11063-023-11233-0
https://doi.org/10.1007/s11063-023-11233-0
https://doi.org/10.1007/s11063-018-9877-6
https://doi.org/10.1007/s11063-018-9877-6
https://doi.org/10.1007/s10489-022-03577-2
https://doi.org/10.1007/s10489-022-03577-2
https://doi.org/10.1007/s10489-022-03577-2
https://doi.org/10.1007/s10489-020-01971-2
https://doi.org/10.1007/s10489-020-01971-2
https://doi.org/10.1007/s00371-020-01932-3
https://doi.org/10.1007/s00371-020-01932-3
https://doi.org/10.1007/s00371-020-01932-3
https://doi.org/10.1186/s40494-022-00771-w
https://doi.org/10.1186/s40494-022-00771-w
https://doi.org/10.1186/s40494-022-00771-w
https://doi.org/10.1186/s40494-022-00700-x
https://doi.org/10.1186/s40494-022-00700-x

bibliography 401

[1792] J. Cao, Y. Jia, M. Yan, and X. Tian. “Superresolution reconstruction method for ancient murals
based on the stable enhanced generative adversarial network.” In: EURASIP Journal on Image
and Video Processing 2021.1 (July 2021). doi: 10.1186/s13640-021-00569-z. url: https://doi
.org/10.1186/s13640-021-00569-z (cit. on p. 182).

[1793] J. Cao, Z. Zhang, A. Zhao, H. Cui, and Q. Zhang. “Ancient mural restoration based on a
modified generative adversarial network.” In: Heritage Science 8.1 (Jan. 2020). doi: 10.1186/s4
0494-020-0355-x. url: https://doi.org/10.1186/s40494-020-0355-x (cit. on p. 182).

[1794] J. Li, H. Wang, Z. Deng, M. Pan, and H. Chen. “Restoration of non-structural damaged murals
in Shenzhen Bao’an based on a generator–discriminator network.” In: Heritage Science 9.1 (Jan.
2021). doi: 10.1186/s40494-020-00478-w. url: https://doi.org/10.1186/s40494-020-0047
8-w (cit. on p. 182).

[1795] R. Liu, R. Yang, S. Li, Y. Shi, and X. Jin. “Painting completion with generative translation
models.” In: Multimedia Tools and Applications 79.21-22 (Oct. 2018), pp. 14375–14388. doi:
10.1007/s11042-018-6761-3. url: https://doi.org/10.1007/s11042-018-6761-3 (cit. on
p. 182).

[1796] P. Kumar and V. Gupta. “Restoration of damaged artworks based on a generative adversarial
network.” In: Multimedia Tools and Applications (Apr. 2023). doi: 10.1007/s11042-023-15222-2.
url: https://doi.org/10.1007/s11042-023-15222-2 (cit. on p. 182).

[1797] K. Falahkheirkhah, T. Guo, M. Hwang, P. Tamboli, C. G. Wood, J. A. Karam, K. Sircar, and
R. Bhargava. “A generative adversarial approach to facilitate archival-quality histopathologic
diagnoses from frozen tissue sections.” In: Laboratory Investigation 102.5 (May 2022), pp. 554–559.
doi: 10.1038/s41374-021-00718-y. url: https://doi.org/10.1038/s41374-021-00718-y
(cit. on p. 182).

[1798] D. Lee, W.-J. Moon, and J. C. Ye. “Assessing the importance of magnetic resonance contrasts
using collaborative generative adversarial networks.” In: Nature Machine Intelligence 2.1 (Jan.
2020), pp. 34–42. doi: 10.1038/s42256-019-0137-x. url: https://doi.org/10.1038/s42256-
019-0137-x (cit. on p. 182).

[1799] J. Denck, J. Guehring, A. Maier, and E. Rothgang. “MR-contrast-aware image-to-image trans-
lations with generative adversarial networks.” In: International Journal of Computer Assisted
Radiology and Surgery 16.12 (June 2021), pp. 2069–2078. doi: 10.1007/s11548-021-02433-x.
url: https://doi.org/10.1007/s11548-021-02433-x (cit. on p. 182).

[1800] V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers. “Data augmentation using generative
adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.” In:
Scientific Reports 9.1 (Nov. 2019). doi: 10.1038/s41598-019-52737-x. url: https://doi.org/1
0.1038/s41598-019-52737-x (cit. on p. 182).

[1801] B. Sun, S. Jia, X. Jiang, and F. Jia. “Double U-Net CycleGAN for 3D MR to CT image synthesis.”
In: International Journal of Computer Assisted Radiology and Surgery 18.1 (Aug. 2022), pp. 149–156.
doi: 10.1007/s11548-022-02732-x. url: https://doi.org/10.1007/s11548-022-02732-x
(cit. on p. 182).

[1802] P. Qian, K. Xu, T. Wang, Q. Zheng, H. Yang, A. Baydoun, J. Zhu, B. Traughber, and R. F. Muzic.
“Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks.”
In: Journal of Grid Computing 18.2 (Mar. 2020), pp. 211–226. doi: 10.1007/s10723-020-09513-3.
url: https://doi.org/10.1007/s10723-020-09513-3 (cit. on p. 182).

[1803] S. Yao, J. Tan, Y. Chen, and Y. Gu. “A weighted feature transfer gan for medical image
synthesis.” In: Machine Vision and Applications 32.1 (Nov. 2020). doi: 10.1007/s00138-020-011
52-8. url: https://doi.org/10.1007/s00138-020-01152-8 (cit. on p. 182).

[1804] S. Pang, A. Du, M. A. Orgun, Z. Yu, Y. Wang, Y. Wang, and G. Liu. “CTumorGAN: a unified
framework for automatic computed tomography tumor segmentation.” In: European Journal of
Nuclear Medicine and Molecular Imaging 47.10 (Mar. 2020), pp. 2248–2268. doi: 10.1007/s00259-
020-04781-3. url: https://doi.org/10.1007/s00259-020-04781-3 (cit. on p. 182).

[1805] L. Chen, H. Song, C. Wang, Y. Cui, J. Yang, X. Hu, and L. Zhang. “Liver tumor segmentation
in CT volumes using an adversarial densely connected network.” In: BMC Bioinformatics 20.S16

(Dec. 2019). doi: 10.1186/s12859-019-3069-x. url: https://doi.org/10.1186/s12859-019-
3069-x (cit. on p. 182).

[1806] H. M. Azni, M. Afsharchi, and A. Allahverdi. “Improving brain tumor segmentation perfor-
mance using CycleGAN based feature extraction.” In: Multimedia Tools and Applications 82.12

(Nov. 2022), pp. 18039–18058. doi: 10.1007/s11042-022-14174-3. url: https://doi.org/10
.1007/s11042-022-14174-3 (cit. on p. 182).

[1807] P. Yang, X. Peng, J. Xiao, X. Wu, J. Zhou, and Y. Wang. “Automatic Head-and-Neck Tumor
Segmentation in MRI via an End-to-End Adversarial Network.” In: Neural Processing Letters
(Apr. 2023). doi: 10.1007/s11063-023-11232-1. url: https://doi.org/10.1007/s11063-023
-11232-1 (cit. on p. 182).

https://doi.org/10.1186/s13640-021-00569-z
https://doi.org/10.1186/s13640-021-00569-z
https://doi.org/10.1186/s13640-021-00569-z
https://doi.org/10.1186/s40494-020-0355-x
https://doi.org/10.1186/s40494-020-0355-x
https://doi.org/10.1186/s40494-020-0355-x
https://doi.org/10.1186/s40494-020-00478-w
https://doi.org/10.1186/s40494-020-00478-w
https://doi.org/10.1186/s40494-020-00478-w
https://doi.org/10.1007/s11042-018-6761-3
https://doi.org/10.1007/s11042-018-6761-3
https://doi.org/10.1007/s11042-023-15222-2
https://doi.org/10.1007/s11042-023-15222-2
https://doi.org/10.1038/s41374-021-00718-y
https://doi.org/10.1038/s41374-021-00718-y
https://doi.org/10.1038/s42256-019-0137-x
https://doi.org/10.1038/s42256-019-0137-x
https://doi.org/10.1038/s42256-019-0137-x
https://doi.org/10.1007/s11548-021-02433-x
https://doi.org/10.1007/s11548-021-02433-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1007/s11548-022-02732-x
https://doi.org/10.1007/s11548-022-02732-x
https://doi.org/10.1007/s10723-020-09513-3
https://doi.org/10.1007/s10723-020-09513-3
https://doi.org/10.1007/s00138-020-01152-8
https://doi.org/10.1007/s00138-020-01152-8
https://doi.org/10.1007/s00138-020-01152-8
https://doi.org/10.1007/s00259-020-04781-3
https://doi.org/10.1007/s00259-020-04781-3
https://doi.org/10.1007/s00259-020-04781-3
https://doi.org/10.1186/s12859-019-3069-x
https://doi.org/10.1186/s12859-019-3069-x
https://doi.org/10.1186/s12859-019-3069-x
https://doi.org/10.1007/s11042-022-14174-3
https://doi.org/10.1007/s11042-022-14174-3
https://doi.org/10.1007/s11042-022-14174-3
https://doi.org/10.1007/s11063-023-11232-1
https://doi.org/10.1007/s11063-023-11232-1
https://doi.org/10.1007/s11063-023-11232-1

402 bibliography

[1808] S. G. Domadia, F. N. Thakkar, and M. A. Ardeshana. “Recent advancement in learning
methodology for segmenting brain tumor from magnetic resonance imaging -a review.”
In: Multimedia Tools and Applications (Feb. 2023). doi: 10.1007/s11042-023-14857-5. url:
https://doi.org/10.1007/s11042-023-14857-5 (cit. on p. 182).

[1809] Q. Yang, N. Li, Z. Zhao, X. Fan, E. I.-C. Chang, and Y. Xu. “MRI Cross-Modality Image-to-
Image Translation.” In: Scientific Reports 10.1 (Feb. 2020). doi: 10.1038/s41598-020-60520-6.
url: https://doi.org/10.1038/s41598-020-60520-6 (cit. on p. 182).

[1810] H. A. Amirkolaee and H. A. Amirkolaee. “Medical image translation using an edge-guided
generative adversarial network with global-to-local feature fusion.” In: The Journal of Biomedical
Research 36.6 (2022), p. 409. doi: 10.7555/jbr.36.20220037. url: https://doi.org/10.7555
/jbr.36.20220037 (cit. on p. 182).

[1811] X. Zhang, C. Feng, A. Wang, L. Yang, and Y. Hao. “CT super-resolution using multiple dense
residual block based GAN.” In: Signal, Image and Video Processing 15.4 (Oct. 2020), pp. 725–733.
doi: 10.1007/s11760-020-01790-5. url: https://doi.org/10.1007/s11760-020-01790-5
(cit. on p. 182).

[1812] Z. Wang, J. Li, and M. Enoh. “Removing ring artifacts in CBCT images via generative ad-
versarial networks with unidirectional relative total variation loss.” In: Neural Computing
and Applications 31.9 (Jan. 2019), pp. 5147–5158. doi: 10.1007/s00521-018-04007-6. url:
https://doi.org/10.1007/s00521-018-04007-6 (cit. on p. 182).

[1813] P. Li, Z. Li, X. Pang, H. Wang, W. Lin, and W. Wu. “Multi-scale residual denoising GAN
model for producing super-resolution CTA images.” In: Journal of Ambient Intelligence and
Humanized Computing 13.3 (Mar. 2021), pp. 1515–1524. doi: 10.1007/s12652-021-03009-y.
url: https://doi.org/10.1007/s12652-021-03009-y (cit. on p. 182).

[1814] M.-Y. Liu, T. Breuel, and J. Kautz. “Unsupervised Image-to-Image Translation Networks.” In:
Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.
url: https://proceedings.neurips.cc/paper_files/paper/2017/file/dc6a6489640ca02b0
d42dabeb8e46bb7-Paper.pdf (cit. on p. 182).

[1815] H. Hoyez, C. Schockaert, J. Rambach, B. Mirbach, and D. Stricker. “Unsupervised Image-to-
Image Translation: A Review.” In: Sensors 22.21 (Nov. 2022), p. 8540. doi: 10.3390/s22218540.
url: https://doi.org/10.3390/s22218540 (cit. on p. 182).

[1816] J. Sun, B. Bhattarai, Z. Chen, and T.-K. Kim. SeCGAN: Parallel Conditional Generative Adversarial
Networks for Face Editing via Semantic Consistency. 2021. doi: 10.48550/ARXIV.2111.09298. url:
https://arxiv.org/abs/2111.09298 (cit. on p. 182).

[1817] C. Ledig et al. “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
July 2017. doi: 10.1109/cvpr.2017.19. url: https://doi.org/10.1109/cvpr.2017.19 (cit. on
p. 182).

[1818] M. Zareapoor, H. Zhou, and J. Yang. “Perceptual image quality using dual generative adver-
sarial network.” In: Neural Computing and Applications 32.18 (May 2019), pp. 14521–14531. doi:
10.1007/s00521-019-04239-0. url: https://doi.org/10.1007/s00521-019-04239-0 (cit. on
p. 182).

[1819] H. Li, Z. Xuan, J. Zhou, X. Hu, and B. Yang. “Fast and accurate super-resolution of MR images
based on lightweight generative adversarial network.” In: Multimedia Tools and Applications
82.2 (June 2022), pp. 2465–2487. doi: 10.1007/s11042-022-13326-9. url: https://doi.org/1
0.1007/s11042-022-13326-9 (cit. on p. 182).

[1820] Z. Chen, J. Wang, C. Jia, and X. Ye. “Pathological image super-resolution using mix-attention
generative adversarial network.” In: International Journal of Machine Learning and Cybernetics
(Mar. 2023). doi: 10.1007/s13042-023-01806-9. url: https://doi.org/10.1007/s13042-023
-01806-9 (cit. on p. 182).

[1821] X. Chen and H. Zhao. “A Novel Fast Reconstruction Method for Single Image Super Resolution
Task.” In: Neural Processing Letters (Mar. 2023). doi: 10.1007/s11063-023-11235-y. url: https
://doi.org/10.1007/s11063-023-11235-y (cit. on p. 182).

[1822] F. Nan, Q. Zeng, Y. Xing, and Y. Qian. “Single Image Super-Resolution Reconstruction based
on the ResNeXt Network.” In: Multimedia Tools and Applications 79.45-46 (June 2020), pp. 34459–
34470. doi: 10.1007/s11042-020-09053-8. url: https://doi.org/10.1007/s11042-020-090
53-8 (cit. on p. 182).

[1823] V. Chudasama and K. Upla. “RSRGAN: computationally efficient real-world single image
super-resolution using generative adversarial network.” In: Machine Vision and Applications
32.1 (Oct. 2020). doi: 10.1007/s00138-020-01135-9. url: https://doi.org/10.1007/s00138-
020-01135-9 (cit. on p. 182).

https://doi.org/10.1007/s11042-023-14857-5
https://doi.org/10.1007/s11042-023-14857-5
https://doi.org/10.1038/s41598-020-60520-6
https://doi.org/10.1038/s41598-020-60520-6
https://doi.org/10.7555/jbr.36.20220037
https://doi.org/10.7555/jbr.36.20220037
https://doi.org/10.7555/jbr.36.20220037
https://doi.org/10.1007/s11760-020-01790-5
https://doi.org/10.1007/s11760-020-01790-5
https://doi.org/10.1007/s00521-018-04007-6
https://doi.org/10.1007/s00521-018-04007-6
https://doi.org/10.1007/s12652-021-03009-y
https://doi.org/10.1007/s12652-021-03009-y
https://proceedings.neurips.cc/paper_files/paper/2017/file/dc6a6489640ca02b0d42dabeb8e46bb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/dc6a6489640ca02b0d42dabeb8e46bb7-Paper.pdf
https://doi.org/10.3390/s22218540
https://doi.org/10.3390/s22218540
https://doi.org/10.48550/ARXIV.2111.09298
https://arxiv.org/abs/2111.09298
https://doi.org/10.1109/cvpr.2017.19
https://doi.org/10.1109/cvpr.2017.19
https://doi.org/10.1007/s00521-019-04239-0
https://doi.org/10.1007/s00521-019-04239-0
https://doi.org/10.1007/s11042-022-13326-9
https://doi.org/10.1007/s11042-022-13326-9
https://doi.org/10.1007/s11042-022-13326-9
https://doi.org/10.1007/s13042-023-01806-9
https://doi.org/10.1007/s13042-023-01806-9
https://doi.org/10.1007/s13042-023-01806-9
https://doi.org/10.1007/s11063-023-11235-y
https://doi.org/10.1007/s11063-023-11235-y
https://doi.org/10.1007/s11063-023-11235-y
https://doi.org/10.1007/s11042-020-09053-8
https://doi.org/10.1007/s11042-020-09053-8
https://doi.org/10.1007/s11042-020-09053-8
https://doi.org/10.1007/s00138-020-01135-9
https://doi.org/10.1007/s00138-020-01135-9
https://doi.org/10.1007/s00138-020-01135-9

bibliography 403

[1824] J. Daihong, Z. Sai, D. Lei, and D. Yueming. “Multi-scale generative adversarial network for
image super-resolution.” In: Soft Computing 26.8 (Feb. 2022), pp. 3631–3641. doi: 10.1007/s005
00-022-06822-5. url: https://doi.org/10.1007/s00500-022-06822-5 (cit. on p. 182).

[1825] B. Das and S. D. Roy. “Edge-Aware Image Super-Resolution Using a Generative Adversarial
Network.” In: SN Computer Science 4.2 (Jan. 2023). doi: 10.1007/s42979-022-01561-8. url:
https://doi.org/10.1007/s42979-022-01561-8 (cit. on p. 182).

[1826] Y. Choi and H. Park. “Improving ESRGAN with an additional image quality loss.” In: Multime-
dia Tools and Applications 82.2 (July 2022), pp. 3123–3137. doi: 10.1007/s11042-022-13452-4.
url: https://doi.org/10.1007/s11042-022-13452-4 (cit. on p. 182).

[1827] J. Huang. “Image super-resolution reconstruction based on generative adversarial network
model with double discriminators.” In: Multimedia Tools and Applications 79.39-40 (Aug. 2020),
pp. 29639–29662. doi: 10.1007/s11042-020-09524-y. url: https://doi.org/10.1007/s11042
-020-09524-y (cit. on p. 182).

[1828] J. Qiao, H. Song, K. Zhang, and X. Zhang. “Conditional generative adversarial network with
densely-connected residual learning for single image super-resolution.” In: Multimedia Tools
and Applications 80.3 (Sept. 2020), pp. 4383–4397. doi: 10.1007/s11042-020-09817-2. url:
https://doi.org/10.1007/s11042-020-09817-2 (cit. on p. 182).

[1829] T. Ma and W. Tian. “Back-projection-based progressive growing generative adversarial network
for single image super-resolution.” In: The Visual Computer 37.5 (Apr. 2020), pp. 925–938. doi:
10.1007/s00371-020-01843-3. url: https://doi.org/10.1007/s00371-020-01843-3 (cit. on
p. 182).

[1830] M. Wang, Z. Chen, Q. M. J. Wu, and M. Jian. “Improved face super-resolution generative
adversarial networks.” In: Machine Vision and Applications 31.4 (Apr. 2020). doi: 10.1007/s0013
8-020-01073-6. url: https://doi.org/10.1007/s00138-020-01073-6 (cit. on p. 182).

[1831] L. Zhang, W. Zhang, G. Lu, P. Yang, and Z. Rao. “Feature-level interpolation-based GAN for
image super-resolution.” In: Personal and Ubiquitous Computing 26.4 (Jan. 2021), pp. 995–1010.
doi: 10.1007/s00779-020-01488-y. url: https://doi.org/10.1007/s00779-020-01488-y
(cit. on p. 182).

[1832] S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, M. L. Nguyen, and C. Haruechaiyasak.
“Parametric regularization loss in super-resolution reconstruction.” In: Machine Vision and
Applications 33.5 (July 2022). doi: 10.1007/s00138-022-01315-9. url: https://doi.org/10.1
007/s00138-022-01315-9 (cit. on p. 182).

[1833] Y. Gu et al. “MedSRGAN: medical images super-resolution using generative adversarial
networks.” In: Multimedia Tools and Applications 79.29-30 (May 2020), pp. 21815–21840. doi:
10.1007/s11042-020-08980-w. url: https://doi.org/10.1007/s11042-020-08980-w (cit. on
p. 182).

[1834] Z. Yin, K. Xia, S. Wang, Z. He, J. Zhang, and B. Zu. “Unpaired low-dose CT denoising via
an improved cycle-consistent adversarial network with attention ensemble.” In: The Visual
Computer (Aug. 2022). doi: 10.1007/s00371-022-02599-8. url: https://doi.org/10.1007/s
00371-022-02599-8 (cit. on p. 182).

[1835] W. Du, H. Chen, H. Yang, and Y. Zhang. “Disentangled generative adversarial network for
low-dose CT.” In: EURASIP Journal on Advances in Signal Processing 2021.1 (July 2021). doi:
10.1186/s13634-021-00749-z. url: https://doi.org/10.1186/s13634-021-00749-z (cit. on
p. 182).

[1836] R. Li, C. Wang, J. Wang, G. Liu, H.-Y. Zhang, B. Zeng, and S. Liu. “UPHDR-GAN: Generative
Adversarial Network for High Dynamic Range Imaging With Unpaired Data.” In: IEEE
Transactions on Circuits and Systems for Video Technology 32.11 (Nov. 2022), pp. 7532–7546. doi:
10.1109/tcsvt.2022.3190057. url: https://doi.org/10.1109/tcsvt.2022.3190057 (cit. on
p. 182).

[1837] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas. “DeblurGAN: Blind Mo-
tion Deblurring Using Conditional Adversarial Networks.” In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE, June 2018. doi: 10.1109/cvpr.2018.00854. url:
https://doi.org/10.1109/cvpr.2018.00854 (cit. on p. 182).

[1838] W.-Z. Shao, Y.-Y. Liu, L.-Y. Ye, L.-Q. Wang, Q. Ge, B.-K. Bao, and H.-B. Li. “DeblurGAN+: Re-
visiting blind motion deblurring using conditional adversarial networks.” In: Signal Processing
168 (Mar. 2020), p. 107338. doi: 10.1016/j.sigpro.2019.107338. url: https://doi.org/10.1
016/j.sigpro.2019.107338 (cit. on p. 182).

[1839] S. Sharif, R. A. Naqvi, F. Ali, and M. Biswas. “DarkDeblur: Learning single-shot image
deblurring in low-light condition.” In: Expert Systems with Applications 222 (July 2023), p. 119739.
doi: 10.1016/j.eswa.2023.119739. url: https://doi.org/10.1016/j.eswa.2023.119739
(cit. on p. 182).

https://doi.org/10.1007/s00500-022-06822-5
https://doi.org/10.1007/s00500-022-06822-5
https://doi.org/10.1007/s00500-022-06822-5
https://doi.org/10.1007/s42979-022-01561-8
https://doi.org/10.1007/s42979-022-01561-8
https://doi.org/10.1007/s11042-022-13452-4
https://doi.org/10.1007/s11042-022-13452-4
https://doi.org/10.1007/s11042-020-09524-y
https://doi.org/10.1007/s11042-020-09524-y
https://doi.org/10.1007/s11042-020-09524-y
https://doi.org/10.1007/s11042-020-09817-2
https://doi.org/10.1007/s11042-020-09817-2
https://doi.org/10.1007/s00371-020-01843-3
https://doi.org/10.1007/s00371-020-01843-3
https://doi.org/10.1007/s00138-020-01073-6
https://doi.org/10.1007/s00138-020-01073-6
https://doi.org/10.1007/s00138-020-01073-6
https://doi.org/10.1007/s00779-020-01488-y
https://doi.org/10.1007/s00779-020-01488-y
https://doi.org/10.1007/s00138-022-01315-9
https://doi.org/10.1007/s00138-022-01315-9
https://doi.org/10.1007/s00138-022-01315-9
https://doi.org/10.1007/s11042-020-08980-w
https://doi.org/10.1007/s11042-020-08980-w
https://doi.org/10.1007/s00371-022-02599-8
https://doi.org/10.1007/s00371-022-02599-8
https://doi.org/10.1007/s00371-022-02599-8
https://doi.org/10.1186/s13634-021-00749-z
https://doi.org/10.1186/s13634-021-00749-z
https://doi.org/10.1109/tcsvt.2022.3190057
https://doi.org/10.1109/tcsvt.2022.3190057
https://doi.org/10.1109/cvpr.2018.00854
https://doi.org/10.1109/cvpr.2018.00854
https://doi.org/10.1016/j.sigpro.2019.107338
https://doi.org/10.1016/j.sigpro.2019.107338
https://doi.org/10.1016/j.sigpro.2019.107338
https://doi.org/10.1016/j.eswa.2023.119739
https://doi.org/10.1016/j.eswa.2023.119739

404 bibliography

[1840] W. Xiao, Z. Tang, J. Luo, and J. Liu. “FS-DeblurGAN: a spatiotemporal deblurring method
for zinc froth flotation.” In: The European Physical Journal Special Topics 231.10 (Feb. 2022),
pp. 1983–1993. doi: 10.1140/epjs/s11734-022-00459-z. url: https://doi.org/10.1140/epj
s/s11734-022-00459-z (cit. on p. 182).

[1841] L. Song, Q. Wang, H. Li, J. Fan, and B. Hu. “Spatio-Temporal Learning for Video Deblurring
based on Two-Stream Generative Adversarial Network.” In: Neural Processing Letters 53.4 (Apr.
2021), pp. 2701–2714. doi: 10.1007/s11063-021-10520-y. url: https://doi.org/10.1007/s1
1063-021-10520-y (cit. on p. 182).

[1842] L. Zhou, W. Min, D. Lin, Q. Han, and R. Liu. “Detecting Motion Blurred Vehicle Logo in IoV
Using Filter-DeblurGAN and VL-YOLO.” In: IEEE Transactions on Vehicular Technology 69.4
(Apr. 2020), pp. 3604–3614. doi: 10.1109/tvt.2020.2969427. url: https://doi.org/10.1109
/tvt.2020.2969427 (cit. on p. 182).

[1843] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz. “PassGAN: A Deep Learning Approach for
Password Guessing.” In: Applied Cryptography and Network Security. Springer International
Publishing, 2019, pp. 217–237. doi: 10.1007/978-3-030-21568-2_11. url: https://doi.org
/10.1007/978-3-030-21568-2_11 (cit. on p. 182).

[1844] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz. PassGAN: A Deep Learning Approach for
Password Guessing. 2017. doi: 10.48550/ARXIV.1709.00440. url: https://arxiv.org/abs/170
9.00440 (cit. on p. 183).

[1845] H. Liu, H. Zhao, J. Wang, S. Yuan, and W. Feng. “LSTM-GAN-AE: A Promising Approach for
Fault Diagnosis in Machine Health Monitoring.” In: IEEE Transactions on Instrumentation and
Measurement 71 (2022), pp. 1–13. doi: 10.1109/tim.2021.3135328. url: https://doi.org/10
.1109/tim.2021.3135328 (cit. on p. 183).

[1846] H. Zhang, R. Wang, R. Pan, and H. Pan. “Imbalanced Fault Diagnosis of Rolling Bearing Using
Enhanced Generative Adversarial Networks.” In: IEEE Access 8 (2020), pp. 185950–185963.
doi: 10.1109/access.2020.3030058. url: https://doi.org/10.1109/access.2020.3030058
(cit. on p. 183).

[1847] P. Samangouei, M. Kabkab, and R. Chellappa. “Defense-GAN: Protecting Classifiers Against
Adversarial Attacks Using Generative Models.” In: International Conference on Learning Repre-
sentations. 2018. url: https://openreview.net/forum?id=BkJ3ibb0- (cit. on p. 183).

[1848] K. Nakashima, Y. Iwashita, and R. Kurazume. “Generative Range Imaging for Learning Scene
Priors of 3D LiDAR Data.” In: 2023 IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV). IEEE, Jan. 2023. doi: 10.1109/wacv56688.2023.00131. url: https://doi.org
/10.1109/wacv56688.2023.00131 (cit. on p. 183).

[1849] Z. Canfes, M. F. Atasoy, A. Dirik, and P. Yanardag. “Text and Image Guided 3D Avatar
Generation and Manipulation.” In: 2023 IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV). IEEE, Jan. 2023. doi: 10.1109/wacv56688.2023.00440. url: https://doi.org
/10.1109/wacv56688.2023.00440 (cit. on p. 183).

[1850] J. Gao, T. Shen, Z. Wang, W. Chen, K. Yin, D. Li, O. Litany, Z. Gojcic, and S. Fidler. “GET3D: A
Generative Model of High Quality 3D Textured Shapes Learned from Images.” In: Advances in
Neural Information Processing Systems. Ed. by A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho.
2022. url: https://openreview.net/forum?id=GAUwreODU5L (cit. on p. 183).

[1851] D. Pavllo, J. Kohler, T. Hofmann, and A. Lucchi. “Learning Generative Models of Textured
3D Meshes from Real-World Images.” In: 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). IEEE, Oct. 2021. doi: 10.1109/iccv48922.2021.01362. url: https://doi.org/1
0.1109/iccv48922.2021.01362 (cit. on p. 183).

[1852] D. Pavllo, G. Spinks, T. Hofmann, M.-F. Moens, and A. Lucchi. “Convolutional Generation
of Textured 3D Meshes.” In: Advances in Neural Information Processing Systems. Ed. by H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc.,
2020, pp. 870–882. url: https://proceedings.neurips.cc/paper_files/paper/2020/file/0
98d86c982354a96556bd861823ebfbd-Paper.pdf (cit. on p. 183).

[1853] R. Wu and C. Zheng. “Learning to Generate 3D Shapes from a Single Example.” In: ACM
Transactions on Graphics 41.6 (Nov. 2022), pp. 1–19. doi: 10.1145/3550454.3555480. url:
https://doi.org/10.1145/3550454.3555480 (cit. on p. 183).

[1854] Z. Shi, S. Peng, Y. Xu, Y. Liao, and Y. Shen. Deep Generative Models on 3D Representations: A
Survey. 2022. doi: 10.48550/ARXIV.2210.15663. url: https://arxiv.org/abs/2210.15663
(cit. on p. 183).

[1855] W. Kang, L. Lin, S. Sun, and S. Wu. “Three-round learning strategy based on 3D deep
convolutional GANs for Alzheimer’s disease staging.” In: Scientific Reports 13.1 (Apr. 2023).
doi: 10.1038/s41598-023-33055-9. url: https://doi.org/10.1038/s41598-023-33055-9
(cit. on p. 183).

https://doi.org/10.1140/epjs/s11734-022-00459-z
https://doi.org/10.1140/epjs/s11734-022-00459-z
https://doi.org/10.1140/epjs/s11734-022-00459-z
https://doi.org/10.1007/s11063-021-10520-y
https://doi.org/10.1007/s11063-021-10520-y
https://doi.org/10.1007/s11063-021-10520-y
https://doi.org/10.1109/tvt.2020.2969427
https://doi.org/10.1109/tvt.2020.2969427
https://doi.org/10.1109/tvt.2020.2969427
https://doi.org/10.1007/978-3-030-21568-2_11
https://doi.org/10.1007/978-3-030-21568-2_11
https://doi.org/10.1007/978-3-030-21568-2_11
https://doi.org/10.48550/ARXIV.1709.00440
https://arxiv.org/abs/1709.00440
https://arxiv.org/abs/1709.00440
https://doi.org/10.1109/tim.2021.3135328
https://doi.org/10.1109/tim.2021.3135328
https://doi.org/10.1109/tim.2021.3135328
https://doi.org/10.1109/access.2020.3030058
https://doi.org/10.1109/access.2020.3030058
https://openreview.net/forum?id=BkJ3ibb0-
https://doi.org/10.1109/wacv56688.2023.00131
https://doi.org/10.1109/wacv56688.2023.00131
https://doi.org/10.1109/wacv56688.2023.00131
https://doi.org/10.1109/wacv56688.2023.00440
https://doi.org/10.1109/wacv56688.2023.00440
https://doi.org/10.1109/wacv56688.2023.00440
https://openreview.net/forum?id=GAUwreODU5L
https://doi.org/10.1109/iccv48922.2021.01362
https://doi.org/10.1109/iccv48922.2021.01362
https://doi.org/10.1109/iccv48922.2021.01362
https://proceedings.neurips.cc/paper_files/paper/2020/file/098d86c982354a96556bd861823ebfbd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/098d86c982354a96556bd861823ebfbd-Paper.pdf
https://doi.org/10.1145/3550454.3555480
https://doi.org/10.1145/3550454.3555480
https://doi.org/10.48550/ARXIV.2210.15663
https://arxiv.org/abs/2210.15663
https://doi.org/10.1038/s41598-023-33055-9
https://doi.org/10.1038/s41598-023-33055-9

bibliography 405

[1856] C. Ren and Y. Xu. “A Fully Data-Driven Method Based on Generative Adversarial Networks
for Power System Dynamic Security Assessment With Missing Data.” In: IEEE Transactions
on Power Systems 34.6 (Nov. 2019), pp. 5044–5052. doi: 10.1109/tpwrs.2019.2922671. url:
https://doi.org/10.1109/tpwrs.2019.2922671 (cit. on p. 183).

[1857] Y. Raghuvamsi and K. Teeparthi. “Distribution System State Estimation with Convolutional
Generative Adversarial Imputation Networks for Missing Measurement Data.” In: Arabian
Journal for Science and Engineering (Nov. 2023). doi: 10.1007/s13369- 023- 08393- 5. url:
https://doi.org/10.1007/s13369-023-08393-5 (cit. on p. 183).

[1858] R. Li, S. Liu, G. Wang, G. Liu, and B. Zeng. “JigsawGAN: Auxiliary Learning for Solving Jigsaw
Puzzles With Generative Adversarial Networks.” In: IEEE Transactions on Image Processing 31

(2022), pp. 513–524. doi: 10.1109/tip.2021.3120052. url: https://doi.org/10.1109/tip.20
21.3120052 (cit. on p. 183).

[1859] J. Fei, Z. Xia, B. Tondi, and M. Barni. Supervised GAN Watermarking for Intellectual Property
Protection. 2022. doi: 10.48550/ARXIV.2209.03466. url: https://arxiv.org/abs/2209.03466
(cit. on p. 183).

[1860] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs. “Unsupervised
Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery.” In:
Lecture Notes in Computer Science. Springer International Publishing, 2017, pp. 146–157. doi:
10.1007/978-3-319-59050-9_12. url: https://doi.org/10.1007/978-3-319-59050-9_12
(cit. on p. 183).

[1861] N. Bhatt, D. R. Prados, N. Hodzic, C. Karanassios, and H. Tizhoosh. “Unsupervised Detection
of Lung Nodules in Chest Radiography Using Generative Adversarial Networks.” In: 2021
43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).
IEEE, Nov. 2021. doi: 10.1109/embc46164.2021.9630340. url: https://doi.org/10.1109/em
bc46164.2021.9630340 (cit. on p. 183).

[1862] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth. “f-AnoGAN: Fast
unsupervised anomaly detection with generative adversarial networks.” In: Medical Image
Analysis 54 (May 2019), pp. 30–44. doi: 10.1016/j.media.2019.01.010. url: https://doi.or
g/10.1016/j.media.2019.01.010 (cit. on p. 183).

[1863] S. Park, K. H. Lee, B. Ko, and N. Kim. “Unsupervised anomaly detection with generative
adversarial networks in mammography.” In: Scientific Reports 13.1 (Feb. 2023). doi: 10.1038/s
41598-023-29521-z. url: https://doi.org/10.1038/s41598-023-29521-z (cit. on p. 183).

[1864] C. Zhao, T. Wang, and B. Lei. “Medical image fusion method based on dense block and deep
convolutional generative adversarial network.” In: Neural Computing and Applications 33.12

(Oct. 2020), pp. 6595–6610. doi: 10.1007/s00521-020-05421-5. url: https://doi.org/10.10
07/s00521-020-05421-5 (cit. on p. 183).

[1865] M. Esmaeili, A. Toosi, A. Roshanpoor, V. Changizi, M. Ghazisaeedi, A. Rahmim, and M.
Sabokrou. “Generative Adversarial Networks for Anomaly Detection in Biomedical Imaging:
A Study on Seven Medical Image Datasets.” In: IEEE Access 11 (2023), pp. 17906–17921. doi:
10.1109/access.2023.3244741. url: https://doi.org/10.1109/access.2023.3244741
(cit. on p. 183).

[1866] B. Yao, J. Li, S. Xue, J. Wu, H. Guan, J. Chang, and Z. Ding. “GARAT: Generative Adversarial
Learning for Robust and Accurate Tracking.” In: Neural Networks 148 (Apr. 2022), pp. 206–218.
doi: 10.1016/j.neunet.2022.01.010. url: https://doi.org/10.1016/j.neunet.2022.01.01
0 (cit. on p. 183).

[1867] X. Guo and L. Zhao. “A Systematic Survey on Deep Generative Models for Graph Generation.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022), pp. 1–20. doi: 10.1109
/tpami.2022.3214832. url: https://doi.org/10.1109/tpami.2022.3214832 (cit. on p. 183).

[1868] Z. Liu, N. Vouitsis, S. K. Gorti, J. Ba, and G. Loaiza-Ganem. TR0N: Translator Networks for
0-Shot Plug-and-Play Conditional Generation. 2023. doi: 10.48550/ARXIV.2304.13742. url:
https://arxiv.org/abs/2304.13742 (cit. on p. 183).

[1869] Y. Gao, X. Liu, and J. Xiang. “Fault Detection in Gears Using Fault Samples Enlarged by a
Combination of Numerical Simulation and a Generative Adversarial Network.” In: IEEE/ASME
Transactions on Mechatronics 27.5 (Oct. 2022), pp. 3798–3805. doi: 10.1109/tmech.2021.3132459.
url: https://doi.org/10.1109/tmech.2021.3132459 (cit. on p. 183).

[1870] S. Shao, P. Wang, and R. Yan. “Generative adversarial networks for data augmentation in
machine fault diagnosis.” In: Computers in Industry 106 (Apr. 2019), pp. 85–93. doi: 10.1016
/j.compind.2019.01.001. url: https://doi.org/10.1016/j.compind.2019.01.001 (cit. on
p. 183).

[1871] L. Huo, H. Qi, S. Fei, C. Guan, and J. Li. “A Generative Adversarial Network Based a Rolling
Bearing Data Generation Method Towards Fault Diagnosis.” In: Computational Intelligence and
Neuroscience 2022 (July 2022). Ed. by S. Mumtaz, pp. 1–21. doi: 10.1155/2022/7592258. url:
https://doi.org/10.1155/2022/7592258 (cit. on p. 183).

https://doi.org/10.1109/tpwrs.2019.2922671
https://doi.org/10.1109/tpwrs.2019.2922671
https://doi.org/10.1007/s13369-023-08393-5
https://doi.org/10.1007/s13369-023-08393-5
https://doi.org/10.1109/tip.2021.3120052
https://doi.org/10.1109/tip.2021.3120052
https://doi.org/10.1109/tip.2021.3120052
https://doi.org/10.48550/ARXIV.2209.03466
https://arxiv.org/abs/2209.03466
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1109/embc46164.2021.9630340
https://doi.org/10.1109/embc46164.2021.9630340
https://doi.org/10.1109/embc46164.2021.9630340
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1038/s41598-023-29521-z
https://doi.org/10.1038/s41598-023-29521-z
https://doi.org/10.1038/s41598-023-29521-z
https://doi.org/10.1007/s00521-020-05421-5
https://doi.org/10.1007/s00521-020-05421-5
https://doi.org/10.1007/s00521-020-05421-5
https://doi.org/10.1109/access.2023.3244741
https://doi.org/10.1109/access.2023.3244741
https://doi.org/10.1016/j.neunet.2022.01.010
https://doi.org/10.1016/j.neunet.2022.01.010
https://doi.org/10.1016/j.neunet.2022.01.010
https://doi.org/10.1109/tpami.2022.3214832
https://doi.org/10.1109/tpami.2022.3214832
https://doi.org/10.1109/tpami.2022.3214832
https://doi.org/10.48550/ARXIV.2304.13742
https://arxiv.org/abs/2304.13742
https://doi.org/10.1109/tmech.2021.3132459
https://doi.org/10.1109/tmech.2021.3132459
https://doi.org/10.1016/j.compind.2019.01.001
https://doi.org/10.1016/j.compind.2019.01.001
https://doi.org/10.1016/j.compind.2019.01.001
https://doi.org/10.1155/2022/7592258
https://doi.org/10.1155/2022/7592258

406 bibliography

[1872] J. Liu, G. Yang, X. Li, Q. Wang, Y. He, and X. Yang. “Wind turbine anomaly detection based on
SCADA: A deep autoencoder enhanced by fault instances.” In: ISA Transactions (Apr. 2023). doi:
10.1016/j.isatra.2023.03.045. url: https://doi.org/10.1016/j.isatra.2023.03.045
(cit. on p. 183).

[1873] W. Fabian, K. Timo, B. Moritz, K. Markus, and L. Marcus. “Generation of synthetic data
with low-dimensional features for condition monitoring utilizing Generative Adversarial
Networks.” In: Procedia Computer Science 207 (2022), pp. 634–643. doi: 10.1016/j.procs.2022
.09.118. url: https://doi.org/10.1016/j.procs.2022.09.118 (cit. on p. 183).

[1874] A. Kebaili, J. Lapuyade-Lahorgue, and S. Ruan. “Deep Learning Approaches for Data Aug-
mentation in Medical Imaging: A Review.” In: Journal of Imaging 9.4 (Apr. 2023), p. 81. doi:
10.3390/jimaging9040081. url: https://doi.org/10.3390/jimaging9040081 (cit. on pp. 183,
184).

[1875] P. Chen, Y. Deng, Q. Zou, L. Lu, and H. Li. “EAAE: A Generative Adversarial Mechanism
Based Classfication Method for Small-scale Datasets.” In: Neural Processing Letters 55.2 (June
2022), pp. 969–987. issn: 1573-773X. doi: 10.1007/s11063-022-10921-7. url: http://dx.doi
.org/10.1007/s11063-022-10921-7 (cit. on p. 183).

[1876] W. Mao, Y. Liu, L. Ding, and Y. Li. “Imbalanced Fault Diagnosis of Rolling Bearing Based on
Generative Adversarial Network: A Comparative Study.” In: IEEE Access 7 (2019), pp. 9515–
9530. doi: 10.1109/access.2018.2890693. url: https://doi.org/10.1109/access.2018.289
0693 (cit. on p. 183).

[1877] B. Zhao and Q. Yuan. “Improved generative adversarial network for vibration-based fault
diagnosis with imbalanced data.” In: Measurement 169 (Feb. 2021), p. 108522. doi: 10.1016
/j.measurement.2020.108522. url: https://doi.org/10.1016/j.measurement.2020.108522
(cit. on p. 183).

[1878] W. S. Wong, M. Amer, T. Maul, I. Y. Liao, and A. Ahmed. “Conditional Generative Adversarial
Networks for Data Augmentation in Breast Cancer Classification.” In: Recent Advances on Soft
Computing and Data Mining. Springer International Publishing, Dec. 2019, pp. 392–402. isbn:
9783030360566. doi: 10.1007/978-3-030-36056-6_37. url: http://dx.doi.org/10.1007/978
-3-030-36056-6_37 (cit. on p. 183).

[1879] O. N. Oyelade, A. E. Ezugwu, M. S. Almutairi, A. K. Saha, L. Abualigah, and H. Chiroma.
“A generative adversarial network for synthetization of regions of interest based on digital
mammograms.” In: Scientific Reports 12.1 (Apr. 2022). doi: 10.1038/s41598-022-09929-9. url:
https://doi.org/10.1038/s41598-022-09929-9 (cit. on p. 183).

[1880] D. Mukherkjee, P. Saha, D. Kaplun, A. Sinitca, and R. Sarkar. “Brain tumor image generation
using an aggregation of GAN models with style transfer.” In: Scientific Reports 12.1 (June 2022).
doi: 10.1038/s41598-022-12646-y. url: https://doi.org/10.1038/s41598-022-12646-y
(cit. on p. 183).

[1881] R. Touati and S. Kadoury. “A least square generative network based on invariant contrastive
feature pair learning for multimodal MR image synthesis.” In: International Journal of Computer
Assisted Radiology and Surgery (Apr. 2023). doi: 10.1007/s11548-023-02916-z. url: https://d
oi.org/10.1007/s11548-023-02916-z (cit. on p. 183).

[1882] R. A. Werner, T. Higuchi, N. Nose, F. Toriumi, Y. Matsusaka, I. Kuji, and K. Kazuhiro. “Gener-
ative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to
scans from real patients.” In: Scientific Reports 12.1 (Nov. 2022). doi: 10.1038/s41598-022-233
25-3. url: https://doi.org/10.1038/s41598-022-23325-3 (cit. on p. 183).

[1883] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski. “Plug & Play Generative
Networks: Conditional Iterative Generation of Images in Latent Space.” In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017. doi: 10.1109/cvpr.2017.3
74. url: https://doi.org/10.1109/cvpr.2017.374 (cit. on p. 183).

[1884] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. “Deep Unsupervised
Learning using Nonequilibrium Thermodynamics.” In: Proceedings of the 32nd International
Conference on Machine Learning. Ed. by F. Bach and D. Blei. Vol. 37. Proceedings of Machine
Learning Research. Lille, France: PMLR, July 2015, pp. 2256–2265. url: https://proceedings
.mlr.press/v37/sohl-dickstein15.html (cit. on p. 183).

[1885] Y. Song and S. Ermon. “Generative Modeling by Estimating Gradients of the Data Distribu-
tion.” In: Proceedings of the 33rd International Conference on Neural Information Processing Systems.
Red Hook, NY, USA: Curran Associates Inc., 2019 (cit. on p. 183).

[1886] P. Dhariwal and A. Nichol. “Diffusion Models Beat GANs on Image Synthesis.” In: Advances
in Neural Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 8780–8794. url:
https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d

02681df5cfa-Paper.pdf (cit. on p. 183).

https://doi.org/10.1016/j.isatra.2023.03.045
https://doi.org/10.1016/j.isatra.2023.03.045
https://doi.org/10.1016/j.procs.2022.09.118
https://doi.org/10.1016/j.procs.2022.09.118
https://doi.org/10.1016/j.procs.2022.09.118
https://doi.org/10.3390/jimaging9040081
https://doi.org/10.3390/jimaging9040081
https://doi.org/10.1007/s11063-022-10921-7
http://dx.doi.org/10.1007/s11063-022-10921-7
http://dx.doi.org/10.1007/s11063-022-10921-7
https://doi.org/10.1109/access.2018.2890693
https://doi.org/10.1109/access.2018.2890693
https://doi.org/10.1109/access.2018.2890693
https://doi.org/10.1016/j.measurement.2020.108522
https://doi.org/10.1016/j.measurement.2020.108522
https://doi.org/10.1016/j.measurement.2020.108522
https://doi.org/10.1007/978-3-030-36056-6_37
http://dx.doi.org/10.1007/978-3-030-36056-6_37
http://dx.doi.org/10.1007/978-3-030-36056-6_37
https://doi.org/10.1038/s41598-022-09929-9
https://doi.org/10.1038/s41598-022-09929-9
https://doi.org/10.1038/s41598-022-12646-y
https://doi.org/10.1038/s41598-022-12646-y
https://doi.org/10.1007/s11548-023-02916-z
https://doi.org/10.1007/s11548-023-02916-z
https://doi.org/10.1007/s11548-023-02916-z
https://doi.org/10.1038/s41598-022-23325-3
https://doi.org/10.1038/s41598-022-23325-3
https://doi.org/10.1038/s41598-022-23325-3
https://doi.org/10.1109/cvpr.2017.374
https://doi.org/10.1109/cvpr.2017.374
https://doi.org/10.1109/cvpr.2017.374
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf

bibliography 407

[1887] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang.
Diffusion Models: A Comprehensive Survey of Methods and Applications. 2022. doi: 10.48550
/ARXIV.2209.00796. url: https://arxiv.org/abs/2209.00796 (cit. on pp. 183, 184).

[1888] G. Batzolis, J. Stanczuk, C.-B. Schönlieb, and C. Etmann. Conditional Image Generation with
Score-Based Diffusion Models. 2021. doi: 10.48550/ARXIV.2111.13606. url: https://arxiv.org
/abs/2111.13606 (cit. on p. 183).

[1889] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans. “Cascaded Diffusion
Models for High Fidelity Image Generation.” In: Journal of Machine Learning Research 23.47

(2022), pp. 1–33. url: http://jmlr.org/papers/v23/21-0635.html (cit. on p. 183).

[1890] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg. “Structured Denoising Diffusion
Models in Discrete State-Spaces.” In: Advances in Neural Information Processing Systems. Ed. by
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. 2021. url: https://openreview.net
/forum?id=h7-XixPCAL (cit. on p. 183).

[1891] E. Luhman and T. Luhman. “Denoising Synthesis: A module for fast image synthesis using
denoising-based models.” In: Software Impacts 9 (Aug. 2021), p. 100076. doi: 10.1016/j.simpa
.2021.100076. url: https://doi.org/10.1016/j.simpa.2021.100076 (cit. on pp. 183, 184).

[1892] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. “SDEdit: Guided Image
Synthesis and Editing with Stochastic Differential Equations.” In: International Conference on
Learning Representations. 2022. url: https://openreview.net/forum?id=aBsCjcPu_tE (cit. on
p. 183).

[1893] A. Graikos, N. Malkin, N. Jojic, and D. Samaras. “Diffusion Models as Plug-and-Play Priors.”
In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh, A. Agarwal, D. Belgrave,
and K. Cho. 2022. url: https://openreview.net/forum?id=yhlMZ3iR7Pu (cit. on pp. 183,
184).

[1894] V. Kulikov, S. Yadin, M. Kleiner, and T. Michaeli. SinDDM: A Single Image Denoising Diffusion
Model. 2022. doi: 10.48550/ARXIV.2211.16582. url: https://arxiv.org/abs/2211.16582
(cit. on p. 183).

[1895] B. Kawar, R. Ganz, and M. Elad. “Enhancing Diffusion-Based Image Synthesis with Robust
Classifier Guidance.” In: Transactions on Machine Learning Research (2023). issn: 2835-8856. url:
https://openreview.net/forum?id=tEVpz2xJWX (cit. on p. 183).

[1896] A. Farshad, Y. Yeganeh, Y. Chi, C. Shen, B. Ommer, and N. Navab. SceneGenie: Scene Graph
Guided Diffusion Models for Image Synthesis. 2023. doi: 10.48550/ARXIV.2304.14573. url:
https://arxiv.org/abs/2304.14573 (cit. on p. 183).

[1897] G. C. Tarrés, D. Ruta, T. Bui, and J. Collomosse. PARASOL: Parametric Style Control for Diffusion
Image Synthesis. 2023. doi: 10.48550/ARXIV.2303.06464. url: https://arxiv.org/abs/2303
.06464 (cit. on p. 183).

[1898] X. Liu, D. H. Park, S. Azadi, G. Zhang, A. Chopikyan, Y. Hu, H. Shi, A. Rohrbach, and T.
Darrell. “More Control for Free! Image Synthesis with Semantic Diffusion Guidance.” In: 2023
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, Jan. 2023. doi:
10.1109/wacv56688.2023.00037. url: https://doi.org/10.1109/wacv56688.2023.00037
(cit. on p. 183).

[1899] F. Khader et al. “Denoising diffusion probabilistic models for 3D medical image generation.”
In: Scientific Reports 13.1 (May 2023). doi: 10.1038/s41598-023-34341-2. url: https://doi.o
rg/10.1038/s41598-023-34341-2 (cit. on p. 183).

[1900] I. Han, S. Yang, T. Kwon, and J. C. Ye. Highly Personalized Text Embedding for Image Manipulation
by Stable Diffusion. 2023. doi: 10.48550/ARXIV.2303.08767. url: https://arxiv.org/abs/230
3.08767 (cit. on p. 183).

[1901] H. Go, Y. Lee, J.-Y. Kim, S. Lee, M. Jeong, H. S. Lee, and S. Choi. Towards Practical Plug-and-Play
Diffusion Models. 2022. doi: 10.48550/ARXIV.2212.05973. url: https://arxiv.org/abs/2212
.05973 (cit. on p. 183).

[1902] V. T. Hu, D. W. Zhang, Y. M. Asano, G. J. Burghouts, and C. G. M. Snoek. “Self-Guided
Diffusion Model.” In: NeurIPS 2022 Workshop on Score-Based Methods. 2022. url: https://open
review.net/forum?id=Mf6NLebyqdq (cit. on p. 183).

[1903] X. Liu, L. Wu, M. Ye, and qiang liu. “Let us Build Bridges: Understanding and Extending
Diffusion Generative Models.” In: NeurIPS 2022 Workshop on Score-Based Methods. 2022. url:
https://openreview.net/forum?id=0ef0CRKC9uZ (cit. on p. 183).

[1904] X. Liu, L. Wu, M. Ye, and Q. Liu. Let us Build Bridges: Understanding and Extending Diffusion
Generative Models. 2022. doi: 10.48550/ARXIV.2208.14699. url: https://arxiv.org/abs/220
8.14699 (cit. on pp. 183, 184).

https://doi.org/10.48550/ARXIV.2209.00796
https://doi.org/10.48550/ARXIV.2209.00796
https://arxiv.org/abs/2209.00796
https://doi.org/10.48550/ARXIV.2111.13606
https://arxiv.org/abs/2111.13606
https://arxiv.org/abs/2111.13606
http://jmlr.org/papers/v23/21-0635.html
https://openreview.net/forum?id=h7-XixPCAL
https://openreview.net/forum?id=h7-XixPCAL
https://doi.org/10.1016/j.simpa.2021.100076
https://doi.org/10.1016/j.simpa.2021.100076
https://doi.org/10.1016/j.simpa.2021.100076
https://openreview.net/forum?id=aBsCjcPu_tE
https://openreview.net/forum?id=yhlMZ3iR7Pu
https://doi.org/10.48550/ARXIV.2211.16582
https://arxiv.org/abs/2211.16582
https://openreview.net/forum?id=tEVpz2xJWX
https://doi.org/10.48550/ARXIV.2304.14573
https://arxiv.org/abs/2304.14573
https://doi.org/10.48550/ARXIV.2303.06464
https://arxiv.org/abs/2303.06464
https://arxiv.org/abs/2303.06464
https://doi.org/10.1109/wacv56688.2023.00037
https://doi.org/10.1109/wacv56688.2023.00037
https://doi.org/10.1038/s41598-023-34341-2
https://doi.org/10.1038/s41598-023-34341-2
https://doi.org/10.1038/s41598-023-34341-2
https://doi.org/10.48550/ARXIV.2303.08767
https://arxiv.org/abs/2303.08767
https://arxiv.org/abs/2303.08767
https://doi.org/10.48550/ARXIV.2212.05973
https://arxiv.org/abs/2212.05973
https://arxiv.org/abs/2212.05973
https://openreview.net/forum?id=Mf6NLebyqdq
https://openreview.net/forum?id=Mf6NLebyqdq
https://openreview.net/forum?id=0ef0CRKC9uZ
https://doi.org/10.48550/ARXIV.2208.14699
https://arxiv.org/abs/2208.14699
https://arxiv.org/abs/2208.14699

408 bibliography

[1905] T. Chen, R. ZHANG, and G. Hinton. “Analog Bits: Generating Discrete Data using Diffu-
sion Models with Self-Conditioning.” In: The Eleventh International Conference on Learning
Representations. 2023. url: https://openreview.net/forum?id=3itjR9QxFw (cit. on p. 183).

[1906] V. Fernandez, W. H. L. Pinaya, P. Borges, P.-D. Tudosiu, M. S. Graham, T. Vercauteren, and M. J.
Cardoso. “Can Segmentation Models Be Trained with Fully Synthetically Generated Data?” In:
Simulation and Synthesis in Medical Imaging. Springer International Publishing, 2022, pp. 79–90.
doi: 10.1007/978-3-031-16980-9_8. url: https://doi.org/10.1007/978-3-031-16980-9_8
(cit. on p. 183).

[1907] F. Bao, S. Nie, K. Xue, C. Li, S. Pu, Y. Wang, G. Yue, Y. Cao, H. Su, and J. Zhu. One Transformer
Fits All Distributions in Multi-Modal Diffusion at Scale. 2023. doi: 10.48550/ARXIV.2303.06555.
url: https://arxiv.org/abs/2303.06555 (cit. on pp. 183, 184).

[1908] X. Xu, Z. Wang, E. Zhang, K. Wang, and H. Shi. Versatile Diffusion: Text, Images and Variations
All in One Diffusion Model. 2022. doi: 10.48550/ARXIV.2211.08332. url: https://arxiv.org
/abs/2211.08332 (cit. on p. 183).

[1909] A. Pokle, Z. Geng, and J. Z. Kolter. “Deep Equilibrium Approaches to Diffusion Models.” In:
Advances in Neural Information Processing Systems. Ed. by A. H. Oh, A. Agarwal, D. Belgrave,
and K. Cho. 2022. url: https://openreview.net/forum?id=zGPeowwxWb (cit. on p. 183).

[1910] L. Ruan, Y. Ma, H. Yang, H. He, B. Liu, J. Fu, N. J. Yuan, Q. Jin, and B. Guo. MM-Diffusion:
Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation. 2022. doi: 10.48550
/ARXIV.2212.09478. url: https://arxiv.org/abs/2212.09478 (cit. on pp. 183, 184).

[1911] Y. Nikankin, N. Haim, and M. Irani. SinFusion: Training Diffusion Models on a Single Image or
Video. 2022. doi: 10.48550/ARXIV.2211.11743. url: https://arxiv.org/abs/2211.11743
(cit. on p. 183).

[1912] D. Zhou, W. Wang, H. Yan, W. Lv, Y. Zhu, and J. Feng. MagicVideo: Efficient Video Generation
With Latent Diffusion Models. 2022. doi: 10.48550/ARXIV.2211.11018. url: https://arxiv.org
/abs/2211.11018 (cit. on p. 183).

[1913] W. Harvey, S. Naderiparizi, V. Masrani, C. D. Weilbach, and F. Wood. “Flexible Diffusion
Modeling of Long Videos.” In: Advances in Neural Information Processing Systems. Ed. by A. H.
Oh, A. Agarwal, D. Belgrave, and K. Cho. 2022. url: https://openreview.net/forum?id=0
RTJcuvHtIu (cit. on p. 183).

[1914] J. Ho, T. Salimans, A. A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. “Video Diffusion
Models.” In: ICLR Workshop on Deep Generative Models for Highly Structured Data. 2022. url:
https://openreview.net/forum?id=BBelR2NdDZ5 (cit. on p. 183).

[1915] Anonymous. “Diffusion Probabilistic Modeling for Video Generation.” In: Submitted to Transac-
tions on Machine Learning Research (2023). Rejected. url: https://openreview.net/forum?id
=Sw4aYWX21a (cit. on p. 183).

[1916] R. Yang, P. Srivastava, and S. Mandt. Diffusion Probabilistic Modeling for Video Generation. 2022.
doi: 10.48550/ARXIV.2203.09481. url: https://arxiv.org/abs/2203.09481 (cit. on p. 183).

[1917] S. Yu, K. Sohn, S. Kim, and J. Shin. Video Probabilistic Diffusion Models in Projected Latent Space.
2023. doi: 10.48550/ARXIV.2302.07685. url: https://arxiv.org/abs/2302.07685 (cit. on
p. 183).

[1918] M. Zhang, Z. Cai, L. Pan, F. Hong, X. Guo, L. Yang, and Z. Liu. MotionDiffuse: Text-Driven
Human Motion Generation with Diffusion Model. 2022. doi: 10.48550/ARXIV.2208.15001. url:
https://arxiv.org/abs/2208.15001 (cit. on p. 183).

[1919] J. Z. Wu, Y. Ge, X. Wang, W. Lei, Y. Gu, Y. Shi, W. Hsu, Y. Shan, X. Qie, and M. Z. Shou.
Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation. 2022. doi:
10.48550/ARXIV.2212.11565. url: https://arxiv.org/abs/2212.11565 (cit. on p. 183).

[1920] A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler, and K. Kreis. Align
your Latents: High-Resolution Video Synthesis with Latent Diffusion Models. 2023. doi: 10.48550
/ARXIV.2304.08818. url: https://arxiv.org/abs/2304.08818 (cit. on p. 183).

[1921] Y. He, T. Yang, Y. Zhang, Y. Shan, and Q. Chen. Latent Video Diffusion Models for High-Fidelity
Long Video Generation. 2022. doi: 10.48550/ARXIV.2211.13221. url: https://arxiv.org/abs
/2211.13221 (cit. on p. 183).

[1922] J. Ho et al. Imagen Video: High Definition Video Generation with Diffusion Models. 2022. doi:
10.48550/ARXIV.2210.02303. url: https://arxiv.org/abs/2210.02303 (cit. on p. 183).

[1923] A. Ulhaq, N. Akhtar, and G. Pogrebna. Efficient Diffusion Models for Vision: A Survey. 2022. doi:
10.48550/ARXIV.2210.09292. url: https://arxiv.org/abs/2210.09292 (cit. on pp. 183, 184).

[1924] C. Saharia et al. “Photorealistic Text-to-Image Diffusion Models with Deep Language Under-
standing.” In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh, A. Agarwal,
D. Belgrave, and K. Cho. 2022. url: https://openreview.net/forum?id=08Yk-n5l2Al (cit. on
p. 183).

https://openreview.net/forum?id=3itjR9QxFw
https://doi.org/10.1007/978-3-031-16980-9_8
https://doi.org/10.1007/978-3-031-16980-9_8
https://doi.org/10.48550/ARXIV.2303.06555
https://arxiv.org/abs/2303.06555
https://doi.org/10.48550/ARXIV.2211.08332
https://arxiv.org/abs/2211.08332
https://arxiv.org/abs/2211.08332
https://openreview.net/forum?id=zGPeowwxWb
https://doi.org/10.48550/ARXIV.2212.09478
https://doi.org/10.48550/ARXIV.2212.09478
https://arxiv.org/abs/2212.09478
https://doi.org/10.48550/ARXIV.2211.11743
https://arxiv.org/abs/2211.11743
https://doi.org/10.48550/ARXIV.2211.11018
https://arxiv.org/abs/2211.11018
https://arxiv.org/abs/2211.11018
https://openreview.net/forum?id=0RTJcuvHtIu
https://openreview.net/forum?id=0RTJcuvHtIu
https://openreview.net/forum?id=BBelR2NdDZ5
https://openreview.net/forum?id=Sw4aYWX21a
https://openreview.net/forum?id=Sw4aYWX21a
https://doi.org/10.48550/ARXIV.2203.09481
https://arxiv.org/abs/2203.09481
https://doi.org/10.48550/ARXIV.2302.07685
https://arxiv.org/abs/2302.07685
https://doi.org/10.48550/ARXIV.2208.15001
https://arxiv.org/abs/2208.15001
https://doi.org/10.48550/ARXIV.2212.11565
https://arxiv.org/abs/2212.11565
https://doi.org/10.48550/ARXIV.2304.08818
https://doi.org/10.48550/ARXIV.2304.08818
https://arxiv.org/abs/2304.08818
https://doi.org/10.48550/ARXIV.2211.13221
https://arxiv.org/abs/2211.13221
https://arxiv.org/abs/2211.13221
https://doi.org/10.48550/ARXIV.2210.02303
https://arxiv.org/abs/2210.02303
https://doi.org/10.48550/ARXIV.2210.09292
https://arxiv.org/abs/2210.09292
https://openreview.net/forum?id=08Yk-n5l2Al

bibliography 409

[1925] Z. Pan, X. Zhou, and H. Tian. “Arbitrary Style Guidance for Enhanced Diffusion-Based Text-
to-Image Generation.” In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV). IEEE, Jan. 2023. doi: 10.1109/wacv56688.2023.00444. url: https://doi.org/10.11
09/wacv56688.2023.00444 (cit. on p. 183).

[1926] A. Voynov, K. Aberman, and D. Cohen-Or. Sketch-Guided Text-to-Image Diffusion Models. 2022.
doi: 10.48550/ARXIV.2211.13752. url: https://arxiv.org/abs/2211.13752 (cit. on p. 183).

[1927] Y. Balaji et al. eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers. 2022.
doi: 10.48550/ARXIV.2211.01324. url: https://arxiv.org/abs/2211.01324 (cit. on p. 183).

[1928] N. Huang, Y. Zhang, F. Tang, C. Ma, H. Huang, Y. Zhang, W. Dong, and C. Xu. DiffStyler:
Controllable Dual Diffusion for Text-Driven Image Stylization. 2022. doi: 10.48550/ARXIV.2211.10
682. url: https://arxiv.org/abs/2211.10682 (cit. on p. 183).

[1929] G. Kim and S. Y. Chun. DATID-3D: Diversity-Preserved Domain Adaptation Using Text-to-Image
Diffusion for 3D Generative Model. 2022. doi: 10.48550/ARXIV.2211.16374. url: https://arxiv
.org/abs/2211.16374 (cit. on p. 183).

[1930] L. Struppek, D. Hintersdorf, and K. Kersting. Rickrolling the Artist: Injecting Backdoors into Text
Encoders for Text-to-Image Synthesis. 2022. doi: 10.48550/ARXIV.2211.02408. url: https://arx
iv.org/abs/2211.02408 (cit. on pp. 183, 184).

[1931] L. Struppek, D. Hintersdorf, F. Friedrich, M. Brack, P. Schramowski, and K. Kersting. Exploiting
Cultural Biases via Homoglyphs in Text-to-Image Synthesis. 2022. doi: 10.48550/ARXIV.2209.08891.
url: https://arxiv.org/abs/2209.08891 (cit. on p. 183).

[1932] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-or. “An
Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion.”
In: The Eleventh International Conference on Learning Representations. 2023. url: https://openre
view.net/forum?id=NAQvF08TcyG (cit. on p. 183).

[1933] Z. Dong, P. Wei, and L. Lin. DreamArtist: Towards Controllable One-Shot Text-to-Image Generation
via Positive-Negative Prompt-Tuning. 2022. doi: 10.48550/ARXIV.2211.11337. url: https://arx
iv.org/abs/2211.11337 (cit. on p. 183).

[1934] W. Chen, H. Hu, Y. Li, N. Ruiz, X. Jia, M.-W. Chang, and W. W. Cohen. Subject-driven Text-
to-Image Generation via Apprenticeship Learning. 2023. doi: 10.48550/ARXIV.2304.00186. url:
https://arxiv.org/abs/2304.00186 (cit. on p. 183).

[1935] Z. Liu, Y. Shin, B.-C. Okogwu, Y. Yun, L. Coleman, P. Schaldenbrand, J. Kim, and J. Oh. Towards
Equitable Representation in Text-to-Image Synthesis Models with the Cross-Cultural Understanding
Benchmark (CCUB) Dataset. 2023. doi: 10.48550/ARXIV.2301.12073. url: https://arxiv.org
/abs/2301.12073 (cit. on p. 183).

[1936] X. Jia, Y. Zhao, K. C. K. Chan, Y. Li, H. Zhang, B. Gong, T. Hou, H. Wang, and Y.-C. Su. Taming
Encoder for Zero Fine-tuning Image Customization with Text-to-Image Diffusion Models. 2023. doi:
10.48550/ARXIV.2304.02642. url: https://arxiv.org/abs/2304.02642 (cit. on p. 183).

[1937] R. Zbinden. Implementing and Experimenting with Diffusion Models for Text-to-Image Generation.
2022. doi: 10.48550/ARXIV.2209.10948. url: https://arxiv.org/abs/2209.10948 (cit. on
p. 183).

[1938] S. Sheynin, O. Ashual, A. Polyak, U. Singer, O. Gafni, E. Nachmani, and Y. Taigman. “kNN-
Diffusion: Image Generation via Large-Scale Retrieval.” In: The Eleventh International Conference
on Learning Representations. 2023. url: https://openreview.net/forum?id=x5mtJD2ovc (cit. on
p. 183).

[1939] Y. Zhou, B. Liu, Y. Zhu, X. Yang, C. Chen, and J. Xu. Shifted Diffusion for Text-to-image Generation.
2022. doi: 10.48550/ARXIV.2211.15388. url: https://arxiv.org/abs/2211.15388 (cit. on
p. 183).

[1940] N. Tumanyan, M. Geyer, S. Bagon, and T. Dekel. Plug-and-Play Diffusion Features for Text-Driven
Image-to-Image Translation. 2022. doi: 10.48550/ARXIV.2211.12572. url: https://arxiv.org
/abs/2211.12572 (cit. on p. 183).

[1941] C. Meng, R. Gao, D. P. Kingma, S. Ermon, J. Ho, and T. Salimans. “On Distillation of Guided
Diffusion Models.” In: NeurIPS 2022 Workshop on Score-Based Methods. 2022. url: https://ope
nreview.net/forum?id=6QHpSQt6VR- (cit. on p. 183).

[1942] Y. Zhu and Y. Zhao. Diffusion Models in NLP: A Survey. 2023. doi: 10.48550/ARXIV.2303.07576.
url: https://arxiv.org/abs/2303.07576 (cit. on pp. 183, 184).

[1943] O. Avrahami, D. Lischinski, and O. Fried. “Blended Diffusion for Text-driven Editing of
Natural Images.” In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01767. url: https://doi.org/10.11
09/cvpr52688.2022.01767 (cit. on p. 183).

https://doi.org/10.1109/wacv56688.2023.00444
https://doi.org/10.1109/wacv56688.2023.00444
https://doi.org/10.1109/wacv56688.2023.00444
https://doi.org/10.48550/ARXIV.2211.13752
https://arxiv.org/abs/2211.13752
https://doi.org/10.48550/ARXIV.2211.01324
https://arxiv.org/abs/2211.01324
https://doi.org/10.48550/ARXIV.2211.10682
https://doi.org/10.48550/ARXIV.2211.10682
https://arxiv.org/abs/2211.10682
https://doi.org/10.48550/ARXIV.2211.16374
https://arxiv.org/abs/2211.16374
https://arxiv.org/abs/2211.16374
https://doi.org/10.48550/ARXIV.2211.02408
https://arxiv.org/abs/2211.02408
https://arxiv.org/abs/2211.02408
https://doi.org/10.48550/ARXIV.2209.08891
https://arxiv.org/abs/2209.08891
https://openreview.net/forum?id=NAQvF08TcyG
https://openreview.net/forum?id=NAQvF08TcyG
https://doi.org/10.48550/ARXIV.2211.11337
https://arxiv.org/abs/2211.11337
https://arxiv.org/abs/2211.11337
https://doi.org/10.48550/ARXIV.2304.00186
https://arxiv.org/abs/2304.00186
https://doi.org/10.48550/ARXIV.2301.12073
https://arxiv.org/abs/2301.12073
https://arxiv.org/abs/2301.12073
https://doi.org/10.48550/ARXIV.2304.02642
https://arxiv.org/abs/2304.02642
https://doi.org/10.48550/ARXIV.2209.10948
https://arxiv.org/abs/2209.10948
https://openreview.net/forum?id=x5mtJD2ovc
https://doi.org/10.48550/ARXIV.2211.15388
https://arxiv.org/abs/2211.15388
https://doi.org/10.48550/ARXIV.2211.12572
https://arxiv.org/abs/2211.12572
https://arxiv.org/abs/2211.12572
https://openreview.net/forum?id=6QHpSQt6VR-
https://openreview.net/forum?id=6QHpSQt6VR-
https://doi.org/10.48550/ARXIV.2303.07576
https://arxiv.org/abs/2303.07576
https://doi.org/10.1109/cvpr52688.2022.01767
https://doi.org/10.1109/cvpr52688.2022.01767
https://doi.org/10.1109/cvpr52688.2022.01767

410 bibliography

[1944] A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. Mcgrew, I. Sutskever, and
M. Chen. “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided
Diffusion Models.” In: Proceedings of the 39th International Conference on Machine Learning.
Ed. by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato. Vol. 162.
Proceedings of Machine Learning Research. PMLR, 17–23 Jul 2022, pp. 16784–16804. url:
https://proceedings.mlr.press/v162/nichol22a.html (cit. on p. 183).

[1945] S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, and B. Guo. “Vector Quantized
Diffusion Model for Text-to-Image Synthesis.” In: 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01043. url:
https://doi.org/10.1109/cvpr52688.2022.01043 (cit. on p. 183).

[1946] W.-C. Fan, Y.-C. Chen, D. Chen, Y. Cheng, L. Yuan, and Y.-C. F. Wang. Frido: Feature Pyramid
Diffusion for Complex Scene Image Synthesis. 2022. doi: 10.48550/ARXIV.2208.13753. url:
https://arxiv.org/abs/2208.13753 (cit. on p. 183).

[1947] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. DreamBooth: Fine Tuning
Text-to-Image Diffusion Models for Subject-Driven Generation. 2022. doi: 10.48550/ARXIV.2208.1
2242. url: https://arxiv.org/abs/2208.12242 (cit. on p. 183).

[1948] M. F. Sutedy and N. N. Qomariyah. “Text to Image Latent Diffusion Model with Dreambooth
Fine Tuning for Automobile Image Generation.” In: 2022 5th International Seminar on Research
of Information Technology and Intelligent Systems (ISRITI). IEEE, Dec. 2022. doi: 10.1109/isriti
56927.2022.10052908. url: https://doi.org/10.1109/isriti56927.2022.10052908 (cit. on
p. 183).

[1949] B. Kawar, S. Zada, O. Lang, O. Tov, H. Chang, T. Dekel, I. Mosseri, and M. Irani. Imagic:
Text-Based Real Image Editing with Diffusion Models. 2022. doi: 10.48550/ARXIV.2210.09276.
url: https://arxiv.org/abs/2210.09276 (cit. on p. 183).

[1950] A. Voynov, Q. Chu, D. Cohen-Or, and K. Aberman. P+: Extended Textual Conditioning in Text-to-
Image Generation. 2023. doi: 10.48550/ARXIV.2303.09522. url: https://arxiv.org/abs/2303
.09522 (cit. on p. 183).

[1951] D. Valevski, M. Kalman, Y. Matias, and Y. Leviathan. UniTune: Text-Driven Image Editing by Fine
Tuning an Image Generation Model on a Single Image. 2022. doi: 10.48550/ARXIV.2210.09477.
url: https://arxiv.org/abs/2210.09477 (cit. on p. 183).

[1952] L. Zhang and M. Agrawala. Adding Conditional Control to Text-to-Image Diffusion Models. 2023.
doi: 10.48550/ARXIV.2302.05543. url: https://arxiv.org/abs/2302.05543 (cit. on p. 183).

[1953] L. Yang, Z. Huang, Y. Song, S. Hong, G. Li, W. Zhang, B. Cui, B. Ghanem, and M.-H. Yang.
Diffusion-Based Scene Graph to Image Generation with Masked Contrastive Pre-Training. 2022. doi:
10.48550/ARXIV.2211.11138. url: https://arxiv.org/abs/2211.11138 (cit. on p. 183).

[1954] J. An, S. Zhang, H. Yang, S. Gupta, J.-B. Huang, J. Luo, and X. Yin. Latent-Shift: Latent Diffusion
with Temporal Shift for Efficient Text-to-Video Generation. 2023. doi: 10.48550/ARXIV.2304.08477.
url: https://arxiv.org/abs/2304.08477 (cit. on p. 183).

[1955] U. Singer et al. “Make-A-Video: Text-to-Video Generation without Text-Video Data.” In: The
Eleventh International Conference on Learning Representations. 2023. url: https://openreview.ne
t/forum?id=nJfylDvgzlq (cit. on p. 183).

[1956] C. Qi, X. Cun, Y. Zhang, C. Lei, X. Wang, Y. Shan, and Q. Chen. FateZero: Fusing Attentions for
Zero-shot Text-based Video Editing. 2023. doi: 10.48550/ARXIV.2303.09535. url: https://arxiv
.org/abs/2303.09535 (cit. on p. 183).

[1957] E. J. C. Findlay, H. Zhang, Z. Chang, and H. P. H. Shum. Denoising Diffusion Probabilistic Models
for Styled Walking Synthesis. 2022. doi: 10.48550/ARXIV.2209.14828. url: https://arxiv.org
/abs/2209.14828 (cit. on p. 183).

[1958] G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-or, and A. H. Bermano. “Human Motion
Diffusion Model.” In: The Eleventh International Conference on Learning Representations. 2023.
url: https://openreview.net/forum?id=SJ1kSyO2jwu (cit. on p. 183).

[1959] Y. Yuan, J. Song, U. Iqbal, A. Vahdat, and J. Kautz. PhysDiff: Physics-Guided Human Motion
Diffusion Model. 2022. doi: 10.48550/ARXIV.2212.02500. url: https://arxiv.org/abs/2212
.02500 (cit. on p. 183).

[1960] M. Zhang, X. Guo, L. Pan, Z. Cai, F. Hong, H. Li, L. Yang, and Z. Liu. ReMoDiffuse: Retrieval-
Augmented Motion Diffusion Model. 2023. doi: 10.48550/ARXIV.2304.01116. url: https://arx
iv.org/abs/2304.01116 (cit. on p. 183).

[1961] J. Kim, J. Kim, and S. Choi. FLAME: Free-form Language-based Motion Synthesis & Editing. 2022.
doi: 10.48550/ARXIV.2209.00349. url: https://arxiv.org/abs/2209.00349 (cit. on p. 183).

[1962] J. Tseng, R. Castellon, and C. K. Liu. EDGE: Editable Dance Generation From Music. 2022. doi:
10.48550/ARXIV.2211.10658. url: https://arxiv.org/abs/2211.10658 (cit. on p. 183).

https://proceedings.mlr.press/v162/nichol22a.html
https://doi.org/10.1109/cvpr52688.2022.01043
https://doi.org/10.1109/cvpr52688.2022.01043
https://doi.org/10.48550/ARXIV.2208.13753
https://arxiv.org/abs/2208.13753
https://doi.org/10.48550/ARXIV.2208.12242
https://doi.org/10.48550/ARXIV.2208.12242
https://arxiv.org/abs/2208.12242
https://doi.org/10.1109/isriti56927.2022.10052908
https://doi.org/10.1109/isriti56927.2022.10052908
https://doi.org/10.1109/isriti56927.2022.10052908
https://doi.org/10.48550/ARXIV.2210.09276
https://arxiv.org/abs/2210.09276
https://doi.org/10.48550/ARXIV.2303.09522
https://arxiv.org/abs/2303.09522
https://arxiv.org/abs/2303.09522
https://doi.org/10.48550/ARXIV.2210.09477
https://arxiv.org/abs/2210.09477
https://doi.org/10.48550/ARXIV.2302.05543
https://arxiv.org/abs/2302.05543
https://doi.org/10.48550/ARXIV.2211.11138
https://arxiv.org/abs/2211.11138
https://doi.org/10.48550/ARXIV.2304.08477
https://arxiv.org/abs/2304.08477
https://openreview.net/forum?id=nJfylDvgzlq
https://openreview.net/forum?id=nJfylDvgzlq
https://doi.org/10.48550/ARXIV.2303.09535
https://arxiv.org/abs/2303.09535
https://arxiv.org/abs/2303.09535
https://doi.org/10.48550/ARXIV.2209.14828
https://arxiv.org/abs/2209.14828
https://arxiv.org/abs/2209.14828
https://openreview.net/forum?id=SJ1kSyO2jwu
https://doi.org/10.48550/ARXIV.2212.02500
https://arxiv.org/abs/2212.02500
https://arxiv.org/abs/2212.02500
https://doi.org/10.48550/ARXIV.2304.01116
https://arxiv.org/abs/2304.01116
https://arxiv.org/abs/2304.01116
https://doi.org/10.48550/ARXIV.2209.00349
https://arxiv.org/abs/2209.00349
https://doi.org/10.48550/ARXIV.2211.10658
https://arxiv.org/abs/2211.10658

bibliography 411

[1963] H. Ni, C. Shi, K. Li, S. X. Huang, and M. R. Min. Conditional Image-to-Video Generation with
Latent Flow Diffusion Models. 2023. doi: 10.48550/ARXIV.2303.13744. url: https://arxiv.org
/abs/2303.13744 (cit. on p. 183).

[1964] T. Höppe, A. Mehrjou, S. Bauer, D. Nielsen, and A. Dittadi. “Diffusion Models for Video
Prediction and Infilling.” In: Transactions on Machine Learning Research (2022). issn: 2835-8856.
url: https://openreview.net/forum?id=lf0lr4AYM6 (cit. on p. 183).

[1965] M. Özbey, O. Dalmaz, S. U. Dar, H. A. Bedel, Ş. Özturk, A. Güngör, and T. undefinedukur.
Unsupervised Medical Image Translation with Adversarial Diffusion Models. 2022. doi: 10.48550
/ARXIV.2207.08208. url: https://arxiv.org/abs/2207.08208 (cit. on pp. 183, 184).

[1966] H. Chung and J. C. Ye. “Score-based diffusion models for accelerated MRI.” In: Medical Image
Analysis 80 (Aug. 2022), p. 102479. doi: 10.1016/j.media.2022.102479. url: https://doi.or
g/10.1016/j.media.2022.102479 (cit. on p. 183).

[1967] C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi. “Palette:
Image-to-Image Diffusion Models.” In: Special Interest Group on Computer Graphics and Interactive
Techniques Conference Proceedings. ACM, Aug. 2022. doi: 10.1145/3528233.3530757. url: http
s://doi.org/10.1145/3528233.3530757 (cit. on pp. 183, 184).

[1968] K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn. “Diffusion Autoencoders:
Toward a Meaningful and Decodable Representation.” In: 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01
036. url: https://doi.org/10.1109/cvpr52688.2022.01036 (cit. on p. 183).

[1969] Y. Song, L. Shen, L. Xing, and S. Ermon. “Solving Inverse Problems in Medical Imaging with
Score-Based Generative Models.” In: International Conference on Learning Representations. 2022.
url: https://openreview.net/forum?id=vaRCHVj0uGI (cit. on p. 183).

[1970] B. Kawar, M. Elad, S. Ermon, and J. Song. “Denoising Diffusion Restoration Models.” In: ICLR
Workshop on Deep Generative Models for Highly Structured Data. 2022. url: https://openreview
.net/forum?id=BExXihVOvWq (cit. on pp. 183, 184).

[1971] Y. Wang, J. Yu, and J. Zhang. “Zero-Shot Image Restoration Using Denoising Diffusion Null-
Space Model.” In: The Eleventh International Conference on Learning Representations. 2023. url:
https://openreview.net/forum?id=mRieQgMtNTQ (cit. on pp. 183, 184).

[1972] G. Kwon and J. C. Ye. “Diffusion-based Image Translation using disentangled style and content
representation.” In: The Eleventh International Conference on Learning Representations. 2023. url:
https://openreview.net/forum?id=Nayau9fwXU (cit. on p. 183).

[1973] G. Kim, T. Kwon, and J. C. Ye. “DiffusionCLIP: Text-Guided Diffusion Models for Robust
Image Manipulation.” In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.2022.00246. url: https://doi.org/10.11
09/cvpr52688.2022.00246 (cit. on p. 183).

[1974] C. Kong, D. Jeon, O. Kwon, and N. Kwak. “Leveraging Off-the-shelf Diffusion Model for Multi-
attribute Fashion Image Manipulation.” In: 2023 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV). IEEE, Jan. 2023. doi: 10.1109/wacv56688.2023.00091. url:
https://doi.org/10.1109/wacv56688.2023.00091 (cit. on p. 183).

[1975] H. Ravi, S. Kelkar, M. Harikumar, and A. Kale. PRedItOR: Text Guided Image Editing with
Diffusion Prior. 2023. doi: 10.48550/ARXIV.2302.07979. url: https://arxiv.org/abs/2302.0
7979 (cit. on p. 183).

[1976] N. Starodubcev, D. Baranchuk, V. Khrulkov, and A. Babenko. Towards Real-time Text-driven
Image Manipulation with Unconditional Diffusion Models. 2023. doi: 10.48550/ARXIV.2304.04344.
url: https://arxiv.org/abs/2304.04344 (cit. on p. 183).

[1977] N. G. Nair, K. Mei, and V. M. Patel. “AT-DDPM: Restoring Faces Degraded by Atmospheric
Turbulence Using Denoising Diffusion Probabilistic Models.” In: 2023 IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV). IEEE, Jan. 2023. doi: 10.1109/wacv56688.2023
.00343. url: https://doi.org/10.1109/wacv56688.2023.00343 (cit. on p. 183).

[1978] K. Karchev, N. A. Montel, A. Coogan, and C. Weniger. Strong-Lensing Source Reconstruction
with Denoising Diffusion Restoration Models. 2022. doi: 10.48550/ARXIV.2211.04365. url:
https://arxiv.org/abs/2211.04365 (cit. on p. 183).

[1979] Q. Lyu and G. Wang. Conversion Between CT and MRI Images Using Diffusion and Score-Matching
Models. 2022. doi: 10.48550/ARXIV.2209.12104. url: https://arxiv.org/abs/2209.12104
(cit. on p. 183).

[1980] H. Chung and J. C. Ye. Score-based diffusion models for accelerated MRI. 2021. doi: 10.48550
/ARXIV.2110.05243. url: https://arxiv.org/abs/2110.05243 (cit. on p. 183).

[1981] A. Güngör, S. U. Dar, Ş. Öztürk, Y. Korkmaz, G. Elmas, M. Özbey, and T. undefinedukur.
Adaptive Diffusion Priors for Accelerated MRI Reconstruction. 2022. doi: 10.48550/ARXIV.2207.0
5876. url: https://arxiv.org/abs/2207.05876 (cit. on p. 183).

https://doi.org/10.48550/ARXIV.2303.13744
https://arxiv.org/abs/2303.13744
https://arxiv.org/abs/2303.13744
https://openreview.net/forum?id=lf0lr4AYM6
https://doi.org/10.48550/ARXIV.2207.08208
https://doi.org/10.48550/ARXIV.2207.08208
https://arxiv.org/abs/2207.08208
https://doi.org/10.1016/j.media.2022.102479
https://doi.org/10.1016/j.media.2022.102479
https://doi.org/10.1016/j.media.2022.102479
https://doi.org/10.1145/3528233.3530757
https://doi.org/10.1145/3528233.3530757
https://doi.org/10.1145/3528233.3530757
https://doi.org/10.1109/cvpr52688.2022.01036
https://doi.org/10.1109/cvpr52688.2022.01036
https://doi.org/10.1109/cvpr52688.2022.01036
https://openreview.net/forum?id=vaRCHVj0uGI
https://openreview.net/forum?id=BExXihVOvWq
https://openreview.net/forum?id=BExXihVOvWq
https://openreview.net/forum?id=mRieQgMtNTQ
https://openreview.net/forum?id=Nayau9fwXU
https://doi.org/10.1109/cvpr52688.2022.00246
https://doi.org/10.1109/cvpr52688.2022.00246
https://doi.org/10.1109/cvpr52688.2022.00246
https://doi.org/10.1109/wacv56688.2023.00091
https://doi.org/10.1109/wacv56688.2023.00091
https://doi.org/10.48550/ARXIV.2302.07979
https://arxiv.org/abs/2302.07979
https://arxiv.org/abs/2302.07979
https://doi.org/10.48550/ARXIV.2304.04344
https://arxiv.org/abs/2304.04344
https://doi.org/10.1109/wacv56688.2023.00343
https://doi.org/10.1109/wacv56688.2023.00343
https://doi.org/10.1109/wacv56688.2023.00343
https://doi.org/10.48550/ARXIV.2211.04365
https://arxiv.org/abs/2211.04365
https://doi.org/10.48550/ARXIV.2209.12104
https://arxiv.org/abs/2209.12104
https://doi.org/10.48550/ARXIV.2110.05243
https://doi.org/10.48550/ARXIV.2110.05243
https://arxiv.org/abs/2110.05243
https://doi.org/10.48550/ARXIV.2207.05876
https://doi.org/10.48550/ARXIV.2207.05876
https://arxiv.org/abs/2207.05876

412 bibliography

[1982] B. Kim, Y. Oh, and J. C. Ye. “Diffusion Adversarial Representation Learning for Self-supervised
Vessel Segmentation.” In: The Eleventh International Conference on Learning Representations. 2023.
url: https://openreview.net/forum?id=H0gdPxSwkPb (cit. on pp. 183, 184).

[1983] P. Rouzrokh, B. Khosravi, S. Faghani, M. Moassefi, S. Vahdati, and B. J. Erickson. Multitask
Brain Tumor Inpainting with Diffusion Models: A Methodological Report. 2022. doi: 10.48550
/ARXIV.2210.12113. url: https://arxiv.org/abs/2210.12113 (cit. on p. 183).

[1984] A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, and D. Merhof.
Diffusion Models for Medical Image Analysis: A Comprehensive Survey. 2022. doi: 10.48550

/ARXIV.2211.07804. url: https://arxiv.org/abs/2211.07804 (cit. on pp. 183, 184).

[1985] T. Chen, C. Wang, and H. Shan. BerDiff: Conditional Bernoulli Diffusion Model for Medical Image
Segmentation. 2023. doi: 10.48550/ARXIV.2304.04429. url: https://arxiv.org/abs/2304.04
429 (cit. on p. 183).

[1986] A. Rahman, J. M. J. Valanarasu, I. Hacihaliloglu, and V. M. Patel. Ambiguous Medical Image
Segmentation using Diffusion Models. 2023. doi: 10.48550/ARXIV.2304.04745. url: https://ar
xiv.org/abs/2304.04745 (cit. on p. 183).

[1987] H. Chung, E. S. Lee, and J. C. Ye. “MR Image Denoising and Super-Resolution Using Regular-
ized Reverse Diffusion.” In: IEEE Transactions on Medical Imaging 42.4 (Apr. 2023), pp. 922–934.
doi: 10.1109/tmi.2022.3220681. url: https://doi.org/10.1109/tmi.2022.3220681 (cit. on
pp. 183, 184).

[1988] H. Chung, B. Sim, and J. C. Ye. “Come-Closer-Diffuse-Faster: Accelerating Conditional Dif-
fusion Models for Inverse Problems through Stochastic Contraction.” In: 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2022. doi: 10.1109/cv
pr52688.2022.01209. url: https://doi.org/10.1109/cvpr52688.2022.01209 (cit. on pp. 183,
184).

[1989] C. Peng, P. Guo, S. K. Zhou, V. M. Patel, and R. Chellappa. “Towards Performant and Reliable
Undersampled MR Reconstruction via Diffusion Model Sampling.” In: Lecture Notes in Com-
puter Science. Springer Nature Switzerland, 2022, pp. 623–633. doi: 10.1007/978-3-031-16446
-0_59. url: https://doi.org/10.1007/978-3-031-16446-0_59 (cit. on p. 183).

[1990] Y. Xie and Q. Li. “Measurement-Conditioned Denoising Diffusion Probabilistic Model for Under-
Sampled Medical Image Reconstruction.” In: Lecture Notes in Computer Science. Springer Nature
Switzerland, 2022, pp. 655–664. doi: 10.1007/978-3-031-16446-0_62. url: https://doi.org
/10.1007/978-3-031-16446-0_62 (cit. on p. 183).

[1991] C. Shin, H. Kim, C. H. Lee, S.-g. Lee, and S. Yoon. Edit-A-Video: Single Video Editing with
Object-Aware Consistency. 2023. doi: 10.48550/ARXIV.2303.07945. url: https://arxiv.org/a
bs/2303.07945 (cit. on p. 183).

[1992] B. Kawar, J. Song, S. Ermon, and M. Elad. “JPEG Artifact Correction using Denoising Diffusion
Restoration Models.” In: NeurIPS 2022 Workshop on Score-Based Methods. 2022. url: https://op
enreview.net/forum?id=O3WJOt79289 (cit. on p. 183).

[1993] D. Baranchuk, A. Voynov, I. Rubachev, V. Khrulkov, and A. Babenko. “Label-Efficient Semantic
Segmentation with Diffusion Models.” In: International Conference on Learning Representations.
2022. url: https://openreview.net/forum?id=SlxSY2UZQT (cit. on p. 183).

[1994] L. Zbinden, L. Doorenbos, T. Pissas, A. T. Huber, R. Sznitman, and P. Márquez-Neila. Stochastic
Segmentation with Conditional Categorical Diffusion Models. 2023. doi: 10.48550/ARXIV.2303.088
88. url: https://arxiv.org/abs/2303.08888 (cit. on p. 183).

[1995] E. A. Brempong, S. Kornblith, T. Chen, N. Parmar, M. Minderer, and M. Norouzi. “Denoising
Pretraining for Semantic Segmentation.” In: 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). IEEE, June 2022. doi: 10.1109/cvprw56347.2022.004
62. url: https://doi.org/10.1109/cvprw56347.2022.00462 (cit. on p. 183).

[1996] J. Xu, S. Liu, A. Vahdat, W. Byeon, X. Wang, and S. De Mello. Open-Vocabulary Panoptic
Segmentation with Text-to-Image Diffusion Models. 2023. doi: 10.48550/ARXIV.2303.04803. url:
https://arxiv.org/abs/2303.04803 (cit. on p. 183).

[1997] T. Amit, T. Shaharbany, E. Nachmani, and L. Wolf. SegDiff: Image Segmentation with Diffusion
Probabilistic Models. 2021. doi: 10.48550/ARXIV.2112.00390. url: https://arxiv.org/abs/21
12.00390 (cit. on p. 183).

[1998] J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin. Diffusion Models for Implicit
Image Segmentation Ensembles. 2021. doi: 10.48550/ARXIV.2112.03145. url: https://arxiv.o
rg/abs/2112.03145 (cit. on p. 183).

[1999] B. Kolbeinsson and K. Mikolajczyk. Multi-Class Segmentation from Aerial Views using Recursive
Noise Diffusion. 2022. doi: 10.48550/ARXIV.2212.00787. url: https://arxiv.org/abs/2212.0
0787 (cit. on p. 183).

https://openreview.net/forum?id=H0gdPxSwkPb
https://doi.org/10.48550/ARXIV.2210.12113
https://doi.org/10.48550/ARXIV.2210.12113
https://arxiv.org/abs/2210.12113
https://doi.org/10.48550/ARXIV.2211.07804
https://doi.org/10.48550/ARXIV.2211.07804
https://arxiv.org/abs/2211.07804
https://doi.org/10.48550/ARXIV.2304.04429
https://arxiv.org/abs/2304.04429
https://arxiv.org/abs/2304.04429
https://doi.org/10.48550/ARXIV.2304.04745
https://arxiv.org/abs/2304.04745
https://arxiv.org/abs/2304.04745
https://doi.org/10.1109/tmi.2022.3220681
https://doi.org/10.1109/tmi.2022.3220681
https://doi.org/10.1109/cvpr52688.2022.01209
https://doi.org/10.1109/cvpr52688.2022.01209
https://doi.org/10.1109/cvpr52688.2022.01209
https://doi.org/10.1007/978-3-031-16446-0_59
https://doi.org/10.1007/978-3-031-16446-0_59
https://doi.org/10.1007/978-3-031-16446-0_59
https://doi.org/10.1007/978-3-031-16446-0_62
https://doi.org/10.1007/978-3-031-16446-0_62
https://doi.org/10.1007/978-3-031-16446-0_62
https://doi.org/10.48550/ARXIV.2303.07945
https://arxiv.org/abs/2303.07945
https://arxiv.org/abs/2303.07945
https://openreview.net/forum?id=O3WJOt79289
https://openreview.net/forum?id=O3WJOt79289
https://openreview.net/forum?id=SlxSY2UZQT
https://doi.org/10.48550/ARXIV.2303.08888
https://doi.org/10.48550/ARXIV.2303.08888
https://arxiv.org/abs/2303.08888
https://doi.org/10.1109/cvprw56347.2022.00462
https://doi.org/10.1109/cvprw56347.2022.00462
https://doi.org/10.1109/cvprw56347.2022.00462
https://doi.org/10.48550/ARXIV.2303.04803
https://arxiv.org/abs/2303.04803
https://doi.org/10.48550/ARXIV.2112.00390
https://arxiv.org/abs/2112.00390
https://arxiv.org/abs/2112.00390
https://doi.org/10.48550/ARXIV.2112.03145
https://arxiv.org/abs/2112.03145
https://arxiv.org/abs/2112.03145
https://doi.org/10.48550/ARXIV.2212.00787
https://arxiv.org/abs/2212.00787
https://arxiv.org/abs/2212.00787

bibliography 413

[2000] B. Kim, Y. Oh, and J. C. Ye. Diffusion Adversarial Representation Learning for Self-supervised Vessel
Segmentation. 2022. doi: 10.48550/ARXIV.2209.14566. url: https://arxiv.org/abs/2209.14
566 (cit. on pp. 183, 184).

[2001] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. Hashimoto. “Diffusion-LM Improves
Controllable Text Generation.” In: Advances in Neural Information Processing Systems. Ed. by
A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho. 2022. url: https://openreview.net/forum?i
d=3s9IrEsjLyk (cit. on p. 183).

[2002] T. Rahman, H.-Y. Lee, J. Ren, S. Tulyakov, S. Mahajan, and L. Sigal. Make-A-Story: Visual
Memory Conditioned Consistent Story Generation. 2022. doi: 10.48550/ARXIV.2211.13319. url:
https://arxiv.org/abs/2211.13319 (cit. on p. 183).

[2003] S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong. “DiffuSeq: Sequence to Sequence Text Generation
with Diffusion Models.” In: The Eleventh International Conference on Learning Representations.
2023. url: https://openreview.net/forum?id=jQj-_rLVXsj (cit. on p. 183).

[2004] X. Han, S. Kumar, and Y. Tsvetkov. SSD-LM: Semi-autoregressive Simplex-based Diffusion Language
Model for Text Generation and Modular Control. 2022. doi: 10.48550/ARXIV.2210.17432. url:
https://arxiv.org/abs/2210.17432 (cit. on p. 183).

[2005] T. Wang et al. Rodin: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion. 2022.
doi: 10.48550/ARXIV.2212.06135. url: https://arxiv.org/abs/2212.06135 (cit. on p. 183).

[2006] A. Raj et al. DreamBooth3D: Subject-Driven Text-to-3D Generation. 2023. doi: 10.48550/ARXIV.23
03.13508. url: https://arxiv.org/abs/2303.13508 (cit. on p. 183).

[2007] J. Xu, X. Wang, W. Cheng, Y.-P. Cao, Y. Shan, X. Qie, and S. Gao. Dream3D: Zero-Shot Text-to-3D
Synthesis Using 3D Shape Prior and Text-to-Image Diffusion Models. 2022. doi: 10.48550/ARXIV.2
212.14704. url: https://arxiv.org/abs/2212.14704 (cit. on p. 183).

[2008] Z. Liu, P. Dai, R. Li, X. Qi, and C.-W. Fu. ISS++: Image as Stepping Stone for Text-Guided 3D Shape
Generation. 2023. doi: 10.48550/ARXIV.2303.15181. url: https://arxiv.org/abs/2303.15181
(cit. on p. 183).

[2009] A. Karnewar, A. Vedaldi, D. Novotny, and N. Mitra. HOLODIFFUSION: Training a 3D Diffusion
Model using 2D Images. 2023. doi: 10.48550/ARXIV.2303.16509. url: https://arxiv.org/abs
/2303.16509 (cit. on p. 183).

[2010] N. Müller, Y. Siddiqui, L. Porzi, S. R. Bulò, P. Kontschieder, and M. Nießner. DiffRF: Rendering-
Guided 3D Radiance Field Diffusion. 2022. doi: 10.48550/ARXIV.2212.01206. url: https://arxi
v.org/abs/2212.01206 (cit. on p. 183).

[2011] Z. Zhou and S. Tulsiani. SparseFusion: Distilling View-conditioned Diffusion for 3D Reconstruction.
2022. doi: 10.48550/ARXIV.2212.00792. url: https://arxiv.org/abs/2212.00792 (cit. on
pp. 183, 184).

[2012] G. Chou, Y. Bahat, and F. Heide. Diffusion-SDF: Conditional Generative Modeling of Signed Distance
Functions. 2022. doi: 10.48550/ARXIV.2211.13757. url: https://arxiv.org/abs/2211.13757
(cit. on p. 183).

[2013] C. Sbrolli, P. Cudrano, M. Frosi, and M. Matteucci. IC3D: Image-Conditioned 3D Diffusion for
Shape Generation. 2022. doi: 10.48550/ARXIV.2211.10865. url: https://arxiv.org/abs/2211
.10865 (cit. on p. 183).

[2014] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. “DreamFusion: Text-to-3D using 2D Diffu-
sion.” In: The Eleventh International Conference on Learning Representations. 2023. url: https://o
penreview.net/forum?id=FjNys5c7VyY (cit. on p. 183).

[2015] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis, S. Fidler, M.-Y. Liu, and
T.-Y. Lin. Magic3D: High-Resolution Text-to-3D Content Creation. 2022. doi: 10.48550/ARXIV.221
1.10440. url: https://arxiv.org/abs/2211.10440 (cit. on p. 183).

[2016] S. Hong, D. Ahn, and S. Kim. Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D
Generation. 2023. doi: 10.48550/ARXIV.2303.15413. url: https://arxiv.org/abs/2303.15413
(cit. on p. 183).

[2017] L. Zhou, Y. Du, and J. Wu. “3D Shape Generation and Completion through Point-Voxel
Diffusion.” In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct.
2021. doi: 10.1109/iccv48922.2021.00577. url: https://doi.org/10.1109/iccv48922.2021
.00577 (cit. on p. 184).

[2018] S. Luo and W. Hu. “Diffusion Probabilistic Models for 3D Point Cloud Generation.” In: 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2021. doi:
10.1109/cvpr46437.2021.00286. url: https://doi.org/10.1109/cvpr46437.2021.00286
(cit. on p. 184).

https://doi.org/10.48550/ARXIV.2209.14566
https://arxiv.org/abs/2209.14566
https://arxiv.org/abs/2209.14566
https://openreview.net/forum?id=3s9IrEsjLyk
https://openreview.net/forum?id=3s9IrEsjLyk
https://doi.org/10.48550/ARXIV.2211.13319
https://arxiv.org/abs/2211.13319
https://openreview.net/forum?id=jQj-_rLVXsj
https://doi.org/10.48550/ARXIV.2210.17432
https://arxiv.org/abs/2210.17432
https://doi.org/10.48550/ARXIV.2212.06135
https://arxiv.org/abs/2212.06135
https://doi.org/10.48550/ARXIV.2303.13508
https://doi.org/10.48550/ARXIV.2303.13508
https://arxiv.org/abs/2303.13508
https://doi.org/10.48550/ARXIV.2212.14704
https://doi.org/10.48550/ARXIV.2212.14704
https://arxiv.org/abs/2212.14704
https://doi.org/10.48550/ARXIV.2303.15181
https://arxiv.org/abs/2303.15181
https://doi.org/10.48550/ARXIV.2303.16509
https://arxiv.org/abs/2303.16509
https://arxiv.org/abs/2303.16509
https://doi.org/10.48550/ARXIV.2212.01206
https://arxiv.org/abs/2212.01206
https://arxiv.org/abs/2212.01206
https://doi.org/10.48550/ARXIV.2212.00792
https://arxiv.org/abs/2212.00792
https://doi.org/10.48550/ARXIV.2211.13757
https://arxiv.org/abs/2211.13757
https://doi.org/10.48550/ARXIV.2211.10865
https://arxiv.org/abs/2211.10865
https://arxiv.org/abs/2211.10865
https://openreview.net/forum?id=FjNys5c7VyY
https://openreview.net/forum?id=FjNys5c7VyY
https://doi.org/10.48550/ARXIV.2211.10440
https://doi.org/10.48550/ARXIV.2211.10440
https://arxiv.org/abs/2211.10440
https://doi.org/10.48550/ARXIV.2303.15413
https://arxiv.org/abs/2303.15413
https://doi.org/10.1109/iccv48922.2021.00577
https://doi.org/10.1109/iccv48922.2021.00577
https://doi.org/10.1109/iccv48922.2021.00577
https://doi.org/10.1109/cvpr46437.2021.00286
https://doi.org/10.1109/cvpr46437.2021.00286

414 bibliography

[2019] X. Zeng, A. Vahdat, F. Williams, Z. Gojcic, O. Litany, S. Fidler, and K. Kreis. “LION: Latent
Point Diffusion Models for 3D Shape Generation.” In: Advances in Neural Information Processing
Systems. Ed. by A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho. 2022. url: https://openrevi
ew.net/forum?id=tHK5ntjp-5K (cit. on p. 184).

[2020] D. Watson, W. Chan, R. M. Brualla, J. Ho, A. Tagliasacchi, and M. Norouzi. “Novel View Synthe-
sis with Diffusion Models.” In: The Eleventh International Conference on Learning Representations.
2023. url: https://openreview.net/forum?id=HtoA0oT30jC (cit. on p. 184).

[2021] H. Chen, J. Gu, A. Chen, W. Tian, Z. Tu, L. Liu, and H. Su. Single-Stage Diffusion NeRF: A
Unified Approach to 3D Generation and Reconstruction. 2023. doi: 10.48550/ARXIV.2304.06714.
url: https://arxiv.org/abs/2304.06714 (cit. on p. 184).

[2022] S. W. Kim, B. Brown, K. Yin, K. Kreis, K. Schwarz, D. Li, R. Rombach, A. Torralba, and S.
Fidler. NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion Models. 2023. doi:
10.48550/ARXIV.2304.09787. url: https://arxiv.org/abs/2304.09787 (cit. on p. 184).

[2023] Q. Wang, H. Deng, Y. Qi, D. Li, and Y.-Z. Song. “SketchKnitter: Vectorized Sketch Generation
with Diffusion Models.” In: The Eleventh International Conference on Learning Representations.
2023. url: https://openreview.net/forum?id=4eJ43EN2g6l (cit. on p. 184).

[2024] P. Yu, S. Xie, X. Ma, B. Jia, B. Pang, R. Gao, Y. Zhu, S.-C. Zhu, and Y. N. Wu. “Latent Diffusion
Energy-Based Model for Interpretable Text Modelling.” In: Proceedings of the 39th International
Conference on Machine Learning. Ed. by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu,
and S. Sabato. Vol. 162. Proceedings of Machine Learning Research. PMLR, 17–23 Jul 2022,
pp. 25702–25720. url: https://proceedings.mlr.press/v162/yu22h.html (cit. on p. 184).

[2025] Y. Li, K. Zhou, W. X. Zhao, and J.-R. Wen. Diffusion Models for Non-autoregressive Text Generation:
A Survey. 2023. doi: 10.48550/ARXIV.2303.06574. url: https://arxiv.org/abs/2303.06574
(cit. on p. 184).

[2026] S. Dieleman et al. Continuous diffusion for categorical data. 2022. doi: 10.48550/ARXIV.2211.150
89. url: https://arxiv.org/abs/2211.15089 (cit. on p. 184).

[2027] H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen. “SRDiff: Single image
super-resolution with diffusion probabilistic models.” In: Neurocomputing 479 (Mar. 2022),
pp. 47–59. doi: 10.1016/j.neucom.2022.01.029. url: https://doi.org/10.1016/j.neucom.2
022.01.029 (cit. on p. 184).

[2028] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi. “Image Super-Resolution
Via Iterative Refinement.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2022), pp. 1–14. doi: 10.1109/tpami.2022.3204461. url: https://doi.org/10.1109/tpami.2
022.3204461 (cit. on p. 184).

[2029] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. “High-Resolution Image
Synthesis with Latent Diffusion Models.” In: 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01042. url:
https://doi.org/10.1109/cvpr52688.2022.01042 (cit. on p. 184).

[2030] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. V. Gool. “RePaint: Inpainting
using Denoising Diffusion Probabilistic Models.” In: 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01117.
url: https://doi.org/10.1109/cvpr52688.2022.01117 (cit. on p. 184).

[2031] S. H. Lee, S. Kim, I. Yoo, F. Yang, D. Cho, Y. Kim, H. Chang, J. Kim, and S. Kim. Soundini:
Sound-Guided Diffusion for Natural Video Editing. 2023. doi: 10.48550/ARXIV.2304.06818. url:
https://arxiv.org/abs/2304.06818 (cit. on p. 184).

[2032] F. Zhang, N. Ji, F. Gao, and Y. Li. “DiffMotion: Speech-Driven Gesture Synthesis Using
Denoising Diffusion Model.” In: MultiMedia Modeling. Springer International Publishing, 2023,
pp. 231–242. doi: 10.1007/978-3-031-27077-2_18. url: https://doi.org/10.1007/978-3-0
31-27077-2_18 (cit. on p. 184).

[2033] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan. “WaveGrad: Estimating
Gradients for Waveform Generation.” In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=NsMLjcFaO8O (cit. on p. 184).

[2034] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro. “DiffWave: A Versatile Diffusion
Model for Audio Synthesis.” In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=a-xFK8Ymz5J (cit. on p. 184).

[2035] C. Zhang, C. Zhang, S. Zheng, M. Zhang, M. Qamar, S.-H. Bae, and I. S. Kweon. A Survey
on Audio Diffusion Models: Text To Speech Synthesis and Enhancement in Generative AI. 2023. doi:
10.48550/ARXIV.2303.13336. url: https://arxiv.org/abs/2303.13336 (cit. on p. 184).

[2036] A. Levkovitch, E. Nachmani, and L. Wolf. “Zero-Shot Voice Conditioning for Denoising
Diffusion TTS Models.” In: Interspeech 2022. ISCA, Sept. 2022. doi: 10.21437/interspeech.20
22-10045. url: https://doi.org/10.21437/interspeech.2022-10045 (cit. on p. 184).

https://openreview.net/forum?id=tHK5ntjp-5K
https://openreview.net/forum?id=tHK5ntjp-5K
https://openreview.net/forum?id=HtoA0oT30jC
https://doi.org/10.48550/ARXIV.2304.06714
https://arxiv.org/abs/2304.06714
https://doi.org/10.48550/ARXIV.2304.09787
https://arxiv.org/abs/2304.09787
https://openreview.net/forum?id=4eJ43EN2g6l
https://proceedings.mlr.press/v162/yu22h.html
https://doi.org/10.48550/ARXIV.2303.06574
https://arxiv.org/abs/2303.06574
https://doi.org/10.48550/ARXIV.2211.15089
https://doi.org/10.48550/ARXIV.2211.15089
https://arxiv.org/abs/2211.15089
https://doi.org/10.1016/j.neucom.2022.01.029
https://doi.org/10.1016/j.neucom.2022.01.029
https://doi.org/10.1016/j.neucom.2022.01.029
https://doi.org/10.1109/tpami.2022.3204461
https://doi.org/10.1109/tpami.2022.3204461
https://doi.org/10.1109/tpami.2022.3204461
https://doi.org/10.1109/cvpr52688.2022.01042
https://doi.org/10.1109/cvpr52688.2022.01042
https://doi.org/10.1109/cvpr52688.2022.01117
https://doi.org/10.1109/cvpr52688.2022.01117
https://doi.org/10.48550/ARXIV.2304.06818
https://arxiv.org/abs/2304.06818
https://doi.org/10.1007/978-3-031-27077-2_18
https://doi.org/10.1007/978-3-031-27077-2_18
https://doi.org/10.1007/978-3-031-27077-2_18
https://openreview.net/forum?id=NsMLjcFaO8O
https://openreview.net/forum?id=a-xFK8Ymz5J
https://doi.org/10.48550/ARXIV.2303.13336
https://arxiv.org/abs/2303.13336
https://doi.org/10.21437/interspeech.2022-10045
https://doi.org/10.21437/interspeech.2022-10045
https://doi.org/10.21437/interspeech.2022-10045

bibliography 415

[2037] J. Tae, H. Kim, and T. Kim. EdiTTS: Score-based Editing for Controllable Text-to-Speech. 2021. doi:
10.48550/ARXIV.2110.02584. url: https://arxiv.org/abs/2110.02584 (cit. on p. 184).

[2038] V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, and M. Kudinov. “Grad-TTS: A Diffusion
Probabilistic Model for Text-to-Speech.” In: Proceedings of the 38th International Conference on
Machine Learning. Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning
Research. PMLR, 18–24 Jul 2021, pp. 8599–8608. url: https://proceedings.mlr.press/v139
/popov21a.html (cit. on p. 184).

[2039] S. Wu and Z. Shi. “ItôWave: Itô Stochastic Differential Equation is all You Need for Wave
Generation.” In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, May 2022. doi: 10.1109/icassp43922.2022.9746153. url:
https://doi.org/10.1109/icassp43922.2022.9746153 (cit. on p. 184).

[2040] R. Huang, Z. Zhao, H. Liu, J. Liu, C. Cui, and Y. Ren. “ProDiff: Progressive Fast Diffusion
Model for High-Quality Text-to-Speech.” In: Proceedings of the 30th ACM International Conference
on Multimedia. ACM, Oct. 2022. doi: 10.1145/3503161.3547855. url: https://doi.org/10.11
45/3503161.3547855 (cit. on p. 184).

[2041] H. Kim, S. Kim, and S. Yoon. “Guided-TTS: A Diffusion Model for Text-to-Speech via Classifier
Guidance.” In: Proceedings of the 39th International Conference on Machine Learning. Ed. by K.
Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato. Vol. 162. Proceedings of
Machine Learning Research. PMLR, 17–23 Jul 2022, pp. 11119–11133. url: https://proceedin
gs.mlr.press/v162/kim22d.html (cit. on p. 184).

[2042] S. Kim, H. Kim, and S. Yoon. Guided-TTS 2: A Diffusion Model for High-quality Adaptive Text-to-
Speech with Untranscribed Data. 2022. doi: 10.48550/ARXIV.2205.15370. url: https://arxiv.o
rg/abs/2205.15370 (cit. on p. 184).

[2043] D. Yang, J. Yu, H. Wang, W. Wang, C. Weng, Y. Zou, and D. Yu. “Diffsound: Discrete Diffusion
Model for Text-to-Sound Generation.” In: IEEE/ACM Transactions on Audio, Speech, and Language
Processing 31 (2023), pp. 1720–1733. doi: 10.1109/taslp.2023.3268730. url: https://doi.or
g/10.1109/taslp.2023.3268730 (cit. on p. 184).

[2044] J. Zhang, S. Jayasuriya, and V. Berisha. “Restoring Degraded Speech via a Modified Diffusion
Model.” In: Interspeech 2021. ISCA, Aug. 2021. doi: 10.21437/interspeech.2021-1889. url:
https://doi.org/10.21437/interspeech.2021-1889 (cit. on p. 184).

[2045] K. Saito, N. Murata, T. Uesaka, C.-H. Lai, Y. Takida, T. Fukui, and Y. Mitsufuji. “Unsupervised
Vocal Dereverberation with Diffusion-Based Generative Models.” In: ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, June 2023.
doi: 10.1109/icassp49357.2023.10095761. url: https://doi.org/10.1109/icassp49357.20
23.10095761 (cit. on p. 184).

[2046] L. Lin, Z. Li, R. Li, X. Li, and J. Gao. Diffusion Models for Time Series Applications: A Survey. 2023.
doi: 10.48550/ARXIV.2305.00624. url: https://arxiv.org/abs/2305.00624 (cit. on p. 184).

[2047] Y. Li, X. Lu, Y. Wang, and D. Dou. “Generative Time Series Forecasting with Diffusion, Denoise,
and Disentanglement.” In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh, A.
Agarwal, D. Belgrave, and K. Cho. 2022. url: https://openreview.net/forum?id=rG0jm74xtx
(cit. on p. 184).

[2048] J. L. Alcaraz and N. Strodthoff. “Diffusion-based Time Series Imputation and Forecasting
with Structured State Space Models.” In: Transactions on Machine Learning Research (2023). issn:
2835-8856. url: https://openreview.net/forum?id=hHiIbk7ApW (cit. on p. 184).

[2049] K. Rasul, C. Seward, I. Schuster, and R. Vollgraf. “Autoregressive Denoising Diffusion Models
for Multivariate Probabilistic Time Series Forecasting.” In: Proceedings of the 38th International
Conference on Machine Learning. Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 18–24 Jul 2021, pp. 8857–8868. url: https://proceedings.mlr.pr
ess/v139/rasul21a.html (cit. on p. 184).

[2050] Y. Tashiro, J. Song, Y. Song, and S. Ermon. “CSDI: Conditional Score-based Diffusion Models
for Probabilistic Time Series Imputation.” In: Advances in Neural Information Processing Systems.
Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. 2021. url: https://openrevi
ew.net/forum?id=VzuIzbRDrum (cit. on p. 184).

[2051] S. W. Park, K. Lee, and J. Kwon. “Neural Markov Controlled SDE: Stochastic Optimization
for Continuous-Time Data.” In: International Conference on Learning Representations. 2022. url:
https://openreview.net/forum?id=7DI6op61AY (cit. on p. 184).

[2052] M. S. Graham, W. H. L. Pinaya, P.-D. Tudosiu, P. Nachev, S. Ourselin, and M. J. Cardoso.
Denoising diffusion models for out-of-distribution detection. 2022. doi: 10.48550/ARXIV.2211.07740.
url: https://arxiv.org/abs/2211.07740 (cit. on p. 184).

[2053] Y. Wang, D. Guo, S. Li, and Y. Fu. Towards Explainable Visual Anomaly Detection. 2023. doi:
10.48550/ARXIV.2302.06670. url: https://arxiv.org/abs/2302.06670 (cit. on p. 184).

https://doi.org/10.48550/ARXIV.2110.02584
https://arxiv.org/abs/2110.02584
https://proceedings.mlr.press/v139/popov21a.html
https://proceedings.mlr.press/v139/popov21a.html
https://doi.org/10.1109/icassp43922.2022.9746153
https://doi.org/10.1109/icassp43922.2022.9746153
https://doi.org/10.1145/3503161.3547855
https://doi.org/10.1145/3503161.3547855
https://doi.org/10.1145/3503161.3547855
https://proceedings.mlr.press/v162/kim22d.html
https://proceedings.mlr.press/v162/kim22d.html
https://doi.org/10.48550/ARXIV.2205.15370
https://arxiv.org/abs/2205.15370
https://arxiv.org/abs/2205.15370
https://doi.org/10.1109/taslp.2023.3268730
https://doi.org/10.1109/taslp.2023.3268730
https://doi.org/10.1109/taslp.2023.3268730
https://doi.org/10.21437/interspeech.2021-1889
https://doi.org/10.21437/interspeech.2021-1889
https://doi.org/10.1109/icassp49357.2023.10095761
https://doi.org/10.1109/icassp49357.2023.10095761
https://doi.org/10.1109/icassp49357.2023.10095761
https://doi.org/10.48550/ARXIV.2305.00624
https://arxiv.org/abs/2305.00624
https://openreview.net/forum?id=rG0jm74xtx
https://openreview.net/forum?id=hHiIbk7ApW
https://proceedings.mlr.press/v139/rasul21a.html
https://proceedings.mlr.press/v139/rasul21a.html
https://openreview.net/forum?id=VzuIzbRDrum
https://openreview.net/forum?id=VzuIzbRDrum
https://openreview.net/forum?id=7DI6op61AY
https://doi.org/10.48550/ARXIV.2211.07740
https://arxiv.org/abs/2211.07740
https://doi.org/10.48550/ARXIV.2302.06670
https://arxiv.org/abs/2302.06670

416 bibliography

[2054] J. Wyatt, A. Leach, S. M. Schmon, and C. G. Willcocks. “AnoDDPM: Anomaly Detection
with Denoising Diffusion Probabilistic Models using Simplex Noise.” In: 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, June 2022. doi:
10.1109/cvprw56347.2022.00080. url: https://doi.org/10.1109/cvprw56347.2022.00080
(cit. on p. 184).

[2055] J. Wolleb, F. Bieder, R. Sandkühler, and P. C. Cattin. “Diffusion Models for Medical Anomaly
Detection.” In: Lecture Notes in Computer Science. Springer Nature Switzerland, 2022, pp. 35–45.
doi: 10.1007/978-3-031-16452-1_4. url: https://doi.org/10.1007/978-3-031-16452-1_4
(cit. on p. 184).

[2056] W. G. C. Bandara, N. G. Nair, and V. M. Patel. DDPM-CD: Remote Sensing Change Detection
using Denoising Diffusion Probabilistic Models. 2022. doi: 10.48550/ARXIV.2206.11892. url:
https://arxiv.org/abs/2206.11892 (cit. on p. 184).

[2057] Z. Sun and Y. Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization. 2023.
doi: 10.48550/ARXIV.2302.08224. url: https://arxiv.org/abs/2302.08224 (cit. on p. 184).

[2058] I. Corley and P. Najafirad. Single-View Height Estimation with Conditional Diffusion Probabilistic
Models. 2023. doi: 10.48550/ARXIV.2304.13214. url: https://arxiv.org/abs/2304.13214
(cit. on p. 184).

[2059] P. Fernandez, G. Couairon, H. Jégou, M. Douze, and T. Furon. The Stable Signature: Rooting
Watermarks in Latent Diffusion Models. 2023. doi: 10.48550/ARXIV.2303.15435. url: https://a
rxiv.org/abs/2303.15435 (cit. on p. 184).

[2060] M. Zhang, M. Qamar, T. Kang, Y. Jung, C. Zhang, S.-H. Bae, and C. Zhang. “A Survey on
Graph Diffusion Models: Generative AI in Science for Molecule, Protein and Material.” In:
(2023). doi: 10.48550/ARXIV.2304.01565. url: https://arxiv.org/abs/2304.01565 (cit. on
p. 184).

[2061] Z. Guo, J. Liu, Y. Wang, M. Chen, D. Wang, D. Xu, and J. Cheng. Diffusion Models in Bioinformat-
ics: A New Wave of Deep Learning Revolution in Action. 2023. doi: 10.48550/ARXIV.2302.10907.
url: https://arxiv.org/abs/2302.10907 (cit. on p. 184).

[2062] C. Liu, W. Fan, Y. Liu, J. Li, H. Li, H. Liu, J. Tang, and Q. Li. Generative Diffusion Models on
Graphs: Methods and Applications. 2023. doi: 10.48550/ARXIV.2302.02591. url: https://arxiv
.org/abs/2302.02591 (cit. on p. 184).

[2063] L. Wu, C. Gong, X. Liu, M. Ye, and qiang liu. “Diffusion-based Molecule Generation with
Informative Prior Bridges.” In: Advances in Neural Information Processing Systems. Ed. by A. H.
Oh, A. Agarwal, D. Belgrave, and K. Cho. 2022. url: https://openreview.net/forum?id
=TJUNtiZiTKE (cit. on p. 184).

[2064] A. Morehead and J. Cheng. Geometry-Complete Diffusion for 3D Molecule Generation. 2023. doi:
10.48550/ARXIV.2302.04313. url: https://arxiv.org/abs/2302.04313 (cit. on p. 184).

[2065] E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling. “Equivariant Diffusion for Molecule
Generation in 3D.” In: Proceedings of the 39th International Conference on Machine Learning. Ed. by
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato. Vol. 162. Proceedings
of Machine Learning Research. PMLR, 17–23 Jul 2022, pp. 8867–8887. url: https://proceedi
ngs.mlr.press/v162/hoogeboom22a.html (cit. on p. 184).

[2066] B. Jing, G. Corso, J. Chang, R. Barzilay, and T. S. Jaakkola. “Torsional Diffusion for Molecular
Conformer Generation.” In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho. 2022. url: https://openreview.net/forum?id=w6fj2r6
2r_H (cit. on p. 184).

[2067] N. Anand and T. Achim. Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models. 2022. doi: 10.48550/ARXIV.2205.15019. url: https://arxiv.or
g/abs/2205.15019 (cit. on p. 184).

[2068] K. E. Wu, K. K. Yang, R. v. d. Berg, J. Y. Zou, A. X. Lu, and A. P. Amini. Protein structure
generation via folding diffusion. 2022. doi: 10.48550/ARXIV.2209.15611. url: https://arxiv.or
g/abs/2209.15611 (cit. on p. 184).

[2069] B. Jing, E. Erives, P. Pao-Huang, G. Corso, B. Berger, and T. S. Jaakkola. “EigenFold: Generative
Protein Structure Prediction with Diffusion Models.” In: ICLR 2023 - Machine Learning for
Drug Discovery workshop. 2023. url: https://openreview.net/forum?id=BgbRVzfQqFp (cit. on
p. 184).

[2070] G. Corso, H. Stärk, B. Jing, R. Barzilay, and T. S. Jaakkola. “DiffDock: Diffusion Steps, Twists,
and Turns for Molecular Docking.” In: The Eleventh International Conference on Learning Repre-
sentations. 2023. url: https://openreview.net/forum?id=kKF8_K-mBbS (cit. on p. 184).

[2071] M. A. Ketata, C. Laue, R. Mammadov, H. Stark, M. Wu, G. Corso, C. Marquet, R. Barzilay,
and T. S. Jaakkola. “DiffDock-PP: Rigid Protein-Protein Docking with Diffusion Models.” In:
ICLR 2023 - Machine Learning for Drug Discovery workshop. 2023. url: https://openreview.net
/forum?id=AM7WbQxuRS (cit. on p. 184).

https://doi.org/10.1109/cvprw56347.2022.00080
https://doi.org/10.1109/cvprw56347.2022.00080
https://doi.org/10.1007/978-3-031-16452-1_4
https://doi.org/10.1007/978-3-031-16452-1_4
https://doi.org/10.48550/ARXIV.2206.11892
https://arxiv.org/abs/2206.11892
https://doi.org/10.48550/ARXIV.2302.08224
https://arxiv.org/abs/2302.08224
https://doi.org/10.48550/ARXIV.2304.13214
https://arxiv.org/abs/2304.13214
https://doi.org/10.48550/ARXIV.2303.15435
https://arxiv.org/abs/2303.15435
https://arxiv.org/abs/2303.15435
https://doi.org/10.48550/ARXIV.2304.01565
https://arxiv.org/abs/2304.01565
https://doi.org/10.48550/ARXIV.2302.10907
https://arxiv.org/abs/2302.10907
https://doi.org/10.48550/ARXIV.2302.02591
https://arxiv.org/abs/2302.02591
https://arxiv.org/abs/2302.02591
https://openreview.net/forum?id=TJUNtiZiTKE
https://openreview.net/forum?id=TJUNtiZiTKE
https://doi.org/10.48550/ARXIV.2302.04313
https://arxiv.org/abs/2302.04313
https://proceedings.mlr.press/v162/hoogeboom22a.html
https://proceedings.mlr.press/v162/hoogeboom22a.html
https://openreview.net/forum?id=w6fj2r62r_H
https://openreview.net/forum?id=w6fj2r62r_H
https://doi.org/10.48550/ARXIV.2205.15019
https://arxiv.org/abs/2205.15019
https://arxiv.org/abs/2205.15019
https://doi.org/10.48550/ARXIV.2209.15611
https://arxiv.org/abs/2209.15611
https://arxiv.org/abs/2209.15611
https://openreview.net/forum?id=BgbRVzfQqFp
https://openreview.net/forum?id=kKF8_K-mBbS
https://openreview.net/forum?id=AM7WbQxuRS
https://openreview.net/forum?id=AM7WbQxuRS

bibliography 417

[2072] B. L. Trippe, J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. S. Jaakkola. “Diffusion
Probabilistic Modeling of Protein Backbones in 3D for the motif-scaffolding problem.” In: The
Eleventh International Conference on Learning Representations. 2023. url: https://openreview.ne
t/forum?id=6TxBxqNME1Y (cit. on p. 184).

[2073] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang. “GeoDiff: A Geometric Diffusion Model
for Molecular Conformation Generation.” In: International Conference on Learning Representations.
2022. url: https://openreview.net/forum?id=PzcvxEMzvQC (cit. on p. 184).

[2074] C. Shi, S. Luo, M. Xu, and J. Tang. “Learning Gradient Fields for Molecular Conformation
Generation.” In: Proceedings of the 38th International Conference on Machine Learning. Ed. by
M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, 18–24

Jul 2021, pp. 9558–9568. url: https://proceedings.mlr.press/v139/shi21b.html (cit. on
p. 184).

[2075] S. Luo, C. Shi, M. Xu, and J. Tang. “Predicting Molecular Conformation via Dynamic Graph
Score Matching.” In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran Associates, Inc., 2021,
pp. 19784–19795. url: https://proceedings.neurips.cc/paper_files/paper/2021/file/a4
5a1d12ee0fb7f1f872ab91da18f899-Paper.pdf (cit. on p. 184).

[2076] T. Xie, X. Fu, O.-E. Ganea, R. Barzilay, and T. S. Jaakkola. “Crystal Diffusion Variational Autoen-
coder for Periodic Material Generation.” In: International Conference on Learning Representations.
2022. url: https://openreview.net/forum?id=03RLpj-tc_ (cit. on p. 184).

[2077] S. Luo, Y. Su, X. Peng, S. Wang, J. Peng, and J. Ma. “Antigen-Specific Antibody Design and
Optimization with Diffusion-Based Generative Models for Protein Structures.” In: Advances in
Neural Information Processing Systems. Ed. by A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho.
2022. url: https://openreview.net/forum?id=jSorGn2Tjg (cit. on p. 184).

[2078] W. Nie, B. Guo, Y. Huang, C. Xiao, A. Vahdat, and A. Anandkumar. “Diffusion Models for
Adversarial Purification.” In: Proceedings of the 39th International Conference on Machine Learning.
Ed. by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato. Vol. 162.
Proceedings of Machine Learning Research. PMLR, 17–23 Jul 2022, pp. 16805–16827. url:
https://proceedings.mlr.press/v162/nie22a.html (cit. on p. 184).

[2079] T. Blau, R. Ganz, B. Kawar, A. Bronstein, and M. Elad. Threat Model-Agnostic Adversarial Defense
using Diffusion Models. 2022. doi: 10.48550/ARXIV.2207.08089. url: https://arxiv.org/abs
/2207.08089 (cit. on p. 184).

[2080] J. Yoon, S. J. Hwang, and J. Lee. “Adversarial Purification with Score-based Generative
Models.” In: Proceedings of the 38th International Conference on Machine Learning. Ed. by M. Meila
and T. Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, 18–24 Jul 2021,
pp. 12062–12072. url: https://proceedings.mlr.press/v139/yoon21a.html (cit. on p. 184).

[2081] Q. Wu, H. Ye, and Y. Gu. Guided Diffusion Model for Adversarial Purification from Random Noise.
2022. doi: 10.48550/ARXIV.2206.10875. url: https://arxiv.org/abs/2206.10875 (cit. on
p. 184).

[2082] J. Wang, Z. Lyu, D. Lin, B. Dai, and H. Fu. Guided Diffusion Model for Adversarial Purification.
2022. doi: 10.48550/ARXIV.2205.14969. url: https://arxiv.org/abs/2205.14969 (cit. on
p. 184).

[2083] J. Sun, W. Nie, Z. Yu, Z. M. Mao, and C. Xiao. PointDP: Diffusion-driven Purification against
Adversarial Attacks on 3D Point Cloud Recognition. 2022. doi: 10.48550/ARXIV.2208.09801. url:
https://arxiv.org/abs/2208.09801 (cit. on p. 184).

[2084] C. Xiao, Z. Chen, K. Jin, J. Wang, W. Nie, M. Liu, A. Anandkumar, B. Li, and D. Song.
“DensePure: Understanding Diffusion Models for Adversarial Robustness.” In: The Eleventh
International Conference on Learning Representations. 2023. url: https://openreview.net/forum
?id=p7hvOJ6Gq0i (cit. on p. 184).

[2085] S. Wu, J. Wang, W. Ping, W. Nie, and C. Xiao. “Defending against Adversarial Audio via
Diffusion Model.” In: The Eleventh International Conference on Learning Representations. 2023.
url: https://openreview.net/forum?id=5-Df3tljit7 (cit. on p. 184).

[2086] C. Shi, C. Holtz, and G. Mishne. “Online Adversarial Purification based on Self-supervised
Learning.” In: International Conference on Learning Representations. 2021. url: https://openrev
iew.net/forum?id=_i3ASPp12WS (cit. on p. 184).

[2087] N. Carlini, F. Tramer, K. D. Dvijotham, L. Rice, M. Sun, and J. Z. Kolter. “(Certified!!) Adver-
sarial Robustness for Free!” In: The Eleventh International Conference on Learning Representations.
2023. url: https://openreview.net/forum?id=JLg5aHHv7j (cit. on p. 184).

[2088] C. Meng, L. Yu, Y. Song, J. Song, and S. Ermon. “Autoregressive Score Matching.” In: Pro-
ceedings of the 34th International Conference on Neural Information Processing Systems. NIPS’20.
Vancouver, BC, Canada: Curran Associates Inc., 2020. isbn: 9781713829546. url: https://dl.a
cm.org/doi/pdf/10.5555/3495724.3496284 (cit. on p. 184).

https://openreview.net/forum?id=6TxBxqNME1Y
https://openreview.net/forum?id=6TxBxqNME1Y
https://openreview.net/forum?id=PzcvxEMzvQC
https://proceedings.mlr.press/v139/shi21b.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/a45a1d12ee0fb7f1f872ab91da18f899-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a45a1d12ee0fb7f1f872ab91da18f899-Paper.pdf
https://openreview.net/forum?id=03RLpj-tc_
https://openreview.net/forum?id=jSorGn2Tjg
https://proceedings.mlr.press/v162/nie22a.html
https://doi.org/10.48550/ARXIV.2207.08089
https://arxiv.org/abs/2207.08089
https://arxiv.org/abs/2207.08089
https://proceedings.mlr.press/v139/yoon21a.html
https://doi.org/10.48550/ARXIV.2206.10875
https://arxiv.org/abs/2206.10875
https://doi.org/10.48550/ARXIV.2205.14969
https://arxiv.org/abs/2205.14969
https://doi.org/10.48550/ARXIV.2208.09801
https://arxiv.org/abs/2208.09801
https://openreview.net/forum?id=p7hvOJ6Gq0i
https://openreview.net/forum?id=p7hvOJ6Gq0i
https://openreview.net/forum?id=5-Df3tljit7
https://openreview.net/forum?id=_i3ASPp12WS
https://openreview.net/forum?id=_i3ASPp12WS
https://openreview.net/forum?id=JLg5aHHv7j
https://dl.acm.org/doi/pdf/10.5555/3495724.3496284
https://dl.acm.org/doi/pdf/10.5555/3495724.3496284

418 bibliography

[2089] C. Meng, J. Song, Y. Song, S. Zhao, and S. Ermon. “Improved Autoregressive Modeling with
Distribution Smoothing.” In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=rJA5Pz7lHKb (cit. on p. 184).

[2090] A. Vahdat, K. Kreis, and J. Kautz. “Score-based Generative Modeling in Latent Space.” In:
Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan. 2021. url: https://openreview.net/forum?id=P9TYG0j-wtG (cit. on
p. 184).

[2091] C.-W. Huang, J. H. Lim, and A. C. Courville. “A Variational Perspective on Diffusion-Based
Generative Models and Score Matching.” In: Advances in Neural Information Processing Systems.
Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran
Associates, Inc., 2021, pp. 22863–22876. url: https://proceedings.neurips.cc/paper_files
/paper/2021/file/c11abfd29e4d9b4d4b566b01114d8486-Paper.pdf (cit. on p. 184).

[2092] C. Luo. Understanding Diffusion Models: A Unified Perspective. 2022. doi: 10.48550/ARXIV.2208
.11970. url: https://arxiv.org/abs/2208.11970 (cit. on p. 184).

[2093] Z. Wang, H. Zheng, P. He, W. Chen, and M. Zhou. “Diffusion-GAN: Training GANs with
Diffusion.” In: The Eleventh International Conference on Learning Representations. 2023. url:
https://openreview.net/forum?id=HZf7UbpWHuA (cit. on p. 184).

[2094] Z. Xiao, K. Kreis, and A. Vahdat. “Tackling the Generative Learning Trilemma with Denoising
Diffusion GANs.” In: International Conference on Learning Representations. 2022. url: https://o
penreview.net/forum?id=JprM0p-q0Co (cit. on p. 184).

[2095] D. Klein and K. Yang. FUDGE: Controlled Text Generation With Future Discriminators. 2021. doi:
10.48448/S9SW-6G59. url: https://underline.io/lecture/19580-fudge-controlled-text-
generation-with-future-discriminators (cit. on p. 184).

[2096] K. Yang and D. Klein. “FUDGE: Controlled Text Generation With Future Discriminators.” In:
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.naacl-main.276. url: https://doi.org/10.18653/v1/2021.naacl-main
.276 (cit. on p. 184).

[2097] Q. Zhang and Y. Chen. “Diffusion Normalizing Flow.” In: Advances in Neural Information
Processing Systems. Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. 2021. url:
https://openreview.net/forum?id=x1Lp2bOlVIo (cit. on p. 184).

[2098] W. Gong and Y. Li. Interpreting diffusion score matching using normalizing flow. 2021. doi: 10.485
50/ARXIV.2107.10072. url: https://arxiv.org/abs/2107.10072 (cit. on p. 184).

[2099] D. Kim, B. Na, S. J. Kwon, D. Lee, W. Kang, and I.-c. Moon. “Maximum Likelihood Training
of Implicit Nonlinear Diffusion Model.” In: Advances in Neural Information Processing Systems.
Ed. by A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho. 2022. url: https://openreview.net/f
orum?id=TQn44YPuOR2 (cit. on p. 184).

[2100] R. Gao, Y. Song, B. Poole, Y. N. Wu, and D. P. Kingma. “Learning Energy-Based Models by
Diffusion Recovery Likelihood.” In: International Conference on Learning Representations. 2021.
url: https://openreview.net/forum?id=v_1Soh8QUNc (cit. on p. 184).

[2101] H. Cao, C. Tan, Z. Gao, G. Chen, P.-A. Heng, and S. Z. Li. A Survey on Generative Diffusion
Model. 2022. doi: 10.48550/ARXIV.2209.02646. url: https://arxiv.org/abs/2209.02646
(cit. on p. 184).

[2102] W. Luo. A Comprehensive Survey on Knowledge Distillation of Diffusion Models. 2023. doi: 10.485
50/ARXIV.2304.04262. url: https://arxiv.org/abs/2304.04262 (cit. on p. 184).

[2103] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah. “Diffusion Models in Vision: A
Survey.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2023), pp. 1–20. doi:
10.1109/tpami.2023.3261988. url: https://doi.org/10.1109/tpami.2023.3261988 (cit. on
p. 184).

[2104] M. Jovanovic and M. Campbell. “Generative Artificial Intelligence: Trends and Prospects.” In:
Computer 55.10 (Oct. 2022), pp. 107–112. doi: 10.1109/mc.2022.3192720. url: https://doi.or
g/10.1109/mc.2022.3192720 (cit. on p. 184).

[2105] Z. Zhao, J. C. Ye, and Y. Bresler. “Generative Models for Inverse Imaging Problems: From
mathematical foundations to physics-driven applications.” In: IEEE Signal Processing Magazine
40.1 (Jan. 2023), pp. 148–163. doi: 10.1109/msp.2022.3215282. url: https://doi.org/10.110
9/msp.2022.3215282 (cit. on p. 184).

[2106] H. Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo
state network approach. GMD Report 159, German National Research Center for Information
Technology. 2002. url: https://www.ai.rug.nl/minds/uploads/ESNTutorialRev.pdf (cit. on
p. 185).

https://openreview.net/forum?id=rJA5Pz7lHKb
https://openreview.net/forum?id=P9TYG0j-wtG
https://proceedings.neurips.cc/paper_files/paper/2021/file/c11abfd29e4d9b4d4b566b01114d8486-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c11abfd29e4d9b4d4b566b01114d8486-Paper.pdf
https://doi.org/10.48550/ARXIV.2208.11970
https://doi.org/10.48550/ARXIV.2208.11970
https://arxiv.org/abs/2208.11970
https://openreview.net/forum?id=HZf7UbpWHuA
https://openreview.net/forum?id=JprM0p-q0Co
https://openreview.net/forum?id=JprM0p-q0Co
https://doi.org/10.48448/S9SW-6G59
https://underline.io/lecture/19580-fudge-controlled-text-generation-with-future-discriminators
https://underline.io/lecture/19580-fudge-controlled-text-generation-with-future-discriminators
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://openreview.net/forum?id=x1Lp2bOlVIo
https://doi.org/10.48550/ARXIV.2107.10072
https://doi.org/10.48550/ARXIV.2107.10072
https://arxiv.org/abs/2107.10072
https://openreview.net/forum?id=TQn44YPuOR2
https://openreview.net/forum?id=TQn44YPuOR2
https://openreview.net/forum?id=v_1Soh8QUNc
https://doi.org/10.48550/ARXIV.2209.02646
https://arxiv.org/abs/2209.02646
https://doi.org/10.48550/ARXIV.2304.04262
https://doi.org/10.48550/ARXIV.2304.04262
https://arxiv.org/abs/2304.04262
https://doi.org/10.1109/tpami.2023.3261988
https://doi.org/10.1109/tpami.2023.3261988
https://doi.org/10.1109/mc.2022.3192720
https://doi.org/10.1109/mc.2022.3192720
https://doi.org/10.1109/mc.2022.3192720
https://doi.org/10.1109/msp.2022.3215282
https://doi.org/10.1109/msp.2022.3215282
https://doi.org/10.1109/msp.2022.3215282
https://www.ai.rug.nl/minds/uploads/ESNTutorialRev.pdf

bibliography 419

[2107] H. Hauser, A. J. Ijspeert, R. M. Füchslin, R. Pfeifer, and W. Maass. “The role of feedback in
morphological computation with compliant bodies.” In: Biological Cybernetics 106.10 (Sept.
2012), pp. 595–613. doi: 10.1007/s00422-012-0516-4. url: https://doi.org/10.1007/s0042
2-012-0516-4 (cit. on p. 185).

[2108] L. Righetti and A. J. Ijspeert. “Pattern generators with sensory feedback for the control of
quadruped locomotion.” In: 2008 IEEE International Conference on Robotics and Automation. IEEE,
May 2008. doi: 10.1109/robot.2008.4543306. url: https://doi.org/10.1109/robot.2008.4
543306 (cit. on p. 185).

[2109] L. A. Gatys, A. S. Ecker, and M. Bethge. “Texture Synthesis Using Convolutional Neural
Networks.” In: Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1. NIPS’15. Montreal, Canada: MIT Press, 2015, pp. 262–270 (cit. on p. 186).

[2110] A. Mahendran and A. Vedaldi. “Understanding deep image representations by inverting
them.” In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June
2015. doi: 10.1109/cvpr.2015.7299155. url: https://doi.org/10.1109/cvpr.2015.7299155
(cit. on p. 186).

[2111] L. Gatys, A. Ecker, and M. Bethge. “A Neural Algorithm of Artistic Style.” In: Journal of Vision
16.12 (Sept. 2016), p. 326. doi: 10.1167/16.12.326. url: https://doi.org/10.1167/16.12.326
(cit. on p. 186).

[2112] M. Abbas and Y. EL-Manzalawy. “Machine learning based refined differential gene expression
analysis of pediatric sepsis.” In: BMC Medical Genomics 13.1 (Aug. 2020). doi: 10.1186/s12920-
020-00771-4. url: https://doi.org/10.1186/s12920-020-00771-4 (cit. on pp. xlvi, 192).

[2113] G. K. Smyth et al. limma. 2017. doi: 10.18129/B9.BIOC.LIMMA. url: https://bioconductor.o
rg/packages/limma (cit. on pp. 192, 193, 270).

[2114] M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, and G. K. Smyth. “limma powers
differential expression analyses for RNA-sequencing and microarray studies.” In: Nucleic Acids
Research 43.7 (Jan. 2015), e47–e47. doi: 10.1093/nar/gkv007. url: https://doi.org/10.1093
/nar/gkv007 (cit. on pp. 192, 193, 270).

[2115] B. Efron and C. Morris. “Stein’s Estimation Rule and Its Competitors–An Empirical Bayes
Approach.” In: Journal of the American Statistical Association 68.341 (Mar. 1973), p. 117. issn:
0162-1459. doi: 10.2307/2284155. url: http://dx.doi.org/10.2307/2284155 (cit. on p. 192).

[2116] G. K. Smyth. “Linear Models and Empirical Bayes Methods for Assessing Differential Expres-
sion in Microarray Experiments.” In: Statistical Applications in Genetics and Molecular Biology 3.1
(Jan. 2004), pp. 1–25. issn: 1544-6115. doi: 10.2202/1544-6115.1027. url: http://dx.doi.org
/10.2202/1544-6115.1027 (cit. on p. 192).

[2117] M. Loni, A. Mohan, M. Asadi, and M. Lindauer. Learning Activation Functions for Sparse Neural
Networks. 2023. doi: 10.48550/ARXIV.2305.10964. url: https://arxiv.org/abs/2305.10964
(cit. on p. 194).

[2118] A. Liu, H. Hu, T. Qiu, Q. Zhou, Q. Guan, and X. Li. “Exploring Optimal Adaptive Activation
Functions for Various Tasks.” In: 2020 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). IEEE, Dec. 2020. doi: 10.1109/bibm49941.2020.9313386. url: http://dx
.doi.org/10.1109/BIBM49941.2020.9313386 (cit. on p. 194).

[2119] H. Bostrom et al. “On evidential combination rules for ensemble classifiers.” In: Information
Fusion, 2008 11th International Conference on. June 2008, pp. 1–8 (cit. on p. 221).

[2120] Y. Freund and R. E. Schapire. “Experiments with a New Boosting Algorithm.” In: Proceedings
of the Thirteenth International Conference on Machine Learning. Morgan Kaufmann, 1996, pp. 148–
156. url: http://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf (cit. on
p. 221).

[2121] L. Rokach. “Taxonomy for characterizing ensemble methods in classification tasks: A review
and annotated bibliography.” In: Computational Statistics & Data Analysis 53.12 (Oct. 2009),
pp. 4046–4072. doi: 10.1016/j.csda.2009.07.017. url: http://dx.doi.org/10.1016/j.csda
.2009.07.017 (cit. on p. 221).

[2122] L. Rokach. “Ensemble-based Classifiers.” In: Artif. Intell. Rev. 33.1-2 (Feb. 2010), pp. 1–39. issn:
0269-2821. doi: 10.1007/s10462-009-9124-7. url: http://dx.doi.org/10.1007/s10462-009
-9124-7 (cit. on p. 221).

[2123] O. Vinyals et al. “Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning
Challenge.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 39.4 (Apr. 2017),
pp. 652–663. doi: 10.1109/tpami.2016.2587640. url: https://doi.org/10.1109/tpami.2016
.2587640 (cit. on p. 221).

[2124] I. Nigam et al. “Ensemble Knowledge Transfer for Semantic Segmentation.” In: 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV). IEEE, Mar. 2018. doi: 10.1109/wa
cv.2018.00168. url: https://doi.org/10.1109/wacv.2018.00168 (cit. on p. 221).

https://doi.org/10.1007/s00422-012-0516-4
https://doi.org/10.1007/s00422-012-0516-4
https://doi.org/10.1007/s00422-012-0516-4
https://doi.org/10.1109/robot.2008.4543306
https://doi.org/10.1109/robot.2008.4543306
https://doi.org/10.1109/robot.2008.4543306
https://doi.org/10.1109/cvpr.2015.7299155
https://doi.org/10.1109/cvpr.2015.7299155
https://doi.org/10.1167/16.12.326
https://doi.org/10.1167/16.12.326
https://doi.org/10.1186/s12920-020-00771-4
https://doi.org/10.1186/s12920-020-00771-4
https://doi.org/10.1186/s12920-020-00771-4
https://doi.org/10.18129/B9.BIOC.LIMMA
https://bioconductor.org/packages/limma
https://bioconductor.org/packages/limma
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.2307/2284155
http://dx.doi.org/10.2307/2284155
https://doi.org/10.2202/1544-6115.1027
http://dx.doi.org/10.2202/1544-6115.1027
http://dx.doi.org/10.2202/1544-6115.1027
https://doi.org/10.48550/ARXIV.2305.10964
https://arxiv.org/abs/2305.10964
https://doi.org/10.1109/bibm49941.2020.9313386
http://dx.doi.org/10.1109/BIBM49941.2020.9313386
http://dx.doi.org/10.1109/BIBM49941.2020.9313386
http://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf
https://doi.org/10.1016/j.csda.2009.07.017
http://dx.doi.org/10.1016/j.csda.2009.07.017
http://dx.doi.org/10.1016/j.csda.2009.07.017
https://doi.org/10.1007/s10462-009-9124-7
http://dx.doi.org/10.1007/s10462-009-9124-7
http://dx.doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1109/tpami.2016.2587640
https://doi.org/10.1109/tpami.2016.2587640
https://doi.org/10.1109/tpami.2016.2587640
https://doi.org/10.1109/wacv.2018.00168
https://doi.org/10.1109/wacv.2018.00168
https://doi.org/10.1109/wacv.2018.00168

420 bibliography

[2125] P. Yang et al. “A Review of Ensemble Methods in Bioinformatics.” In: CBIO 5.4 (Dec. 2010),
pp. 296–308. doi: 10.2174/157489310794072508. url: http://dx.doi.org/10.2174/15748931
0794072508 (cit. on p. 221).

[2126] G. Valentini et al. “Bagged ensembles of Support Vector Machines for gene expression data
analysis.” In: Proceedings of the International Joint Conference on Neural Networks, 2003. IEEE, 2003.
doi: 10.1109/ijcnn.2003.1223688. url: http://dx.doi.org/10.1109/IJCNN.2003.1223688
(cit. on p. 221).

[2127] L. I. Kuncheva. Combining Pattern Classifiers. John Wiley & Sons, Inc., July 2004. doi: 10.1002
/0471660264. url: http://dx.doi.org/10.1002/0471660264 (cit. on p. 221).

[2128] A. K. Tiwari and R. Srivastava. “A Survey of Computational Intelligence Techniques in
Protein Function Prediction.” In: International Journal of Proteomics 2014 (2014), pp. 1–22. doi:
10.1155/2014/845479. url: http://dx.doi.org/10.1155/2014/845479 (cit. on p. 221).

[2129] E. Jones et al. SciPy: Open source scientific tools for Python. [Online; accessed 2015-05-12]. 2001–.
url: http://www.scipy.org/ (cit. on p. 225).

[2130] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830. url: http://arxiv.org/pdf/1201.0490v2.pdf (cit. on
p. 225).

[2131] W. McKinney. “Data Structures for Statistical Computing in Python.” In: Proceedings of the 9th
Python in Science Conference. Ed. by S. van der Walt and J. Millman. 2010, pp. 51–56 (cit. on
p. 225).

[2132] S. van der Walt et al. “The NumPy Array: A Structure for Efficient Numerical Computation.”
In: Computing in Science & Engineering 13.2 (Mar. 2011), pp. 22–30. doi: 10.1109/mcse.2011.37.
url: http://dx.doi.org/10.1109/MCSE.2011.37 (cit. on p. 225).

[2133] J. D. Hunter. “Matplotlib: A 2D Graphics Environment.” In: Computing in Science & Engineering
9.3 (2007), pp. 90–95. doi: 10.1109/mcse.2007.55. url: http://dx.doi.org/10.1109/MCSE.20
07.55 (cit. on p. 225).

[2134] M. Waskom et al. seaborn: v0.7.1 (June 2016). June 2016. doi: 10.5281/zenodo.54844. url:
https://doi.org/10.5281/zenodo.54844 (cit. on p. 225).

[2135] C. Yun, S. Sra, and A. Jadbabaie. “Small ReLU networks are powerful memorizers: a tight
analysis of memorization capacity.” In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32.
Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper_files/paper/2
019/file/dbea3d0e2a17c170c412c74273778159-Paper.pdf (cit. on p. 277).

[2136] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep learning
requires rethinking generalization.” In: International Conference on Learning Representations. 2017.
url: https://openreview.net/forum?id=Sy8gdB9xx (cit. on p. 277).

[2137] R. Vershynin. “Memory Capacity of Neural Networks with Threshold and Rectified Linear
Unit Activations.” In: SIAM Journal on Mathematics of Data Science 2.4 (Jan. 2020), pp. 1004–1033.
issn: 2577-0187. doi: 10.1137/20m1314884. url: http://dx.doi.org/10.1137/20M1314884
(cit. on p. 277).

[2138] G.-B. Huang. “Learning capability and storage capacity of two-hidden-layer feedforward
networks.” In: IEEE Transactions on Neural Networks 14.2 (Mar. 2003), pp. 274–281. issn: 1045-
9227. doi: 10.1109/tnn.2003.809401. url: http://dx.doi.org/10.1109/TNN.2003.809401
(cit. on p. 277).

[2139] D. A. Medler and M. R. W. Dawson. “Training redundant artificial neural networks: Imposing
biology on technology.” In: Psychological Research 57.1 (Nov. 1994), pp. 54–62. doi: 10.1007/bf
00452996. url: https://doi.org/10.1007/bf00452996 (cit. on p. 278).

[2140] D. A. Medler and M. R. W. Dawson. “Using Redundancy to Improve The Performance of
Artificial Neural Networks.” In: Biennial Conference of the Canadian Society for Computational
Studies of Intelligence on Advances in Artificial Intelligence. New Jersey: IEEE, 1994 (cit. on p. 278).

[2141] M. Johnson and S. Chartier. “Is There a Purpose to Network Redundancy?” In: 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, July 2018. doi: 10.1109/ijcnn.2018.8
489203. url: https://doi.org/10.1109/ijcnn.2018.8489203 (cit. on p. 278).

[2142] A. T. Nguyen, J. Xu, D. K. Luu, Q. Zhao, and Z. Yang. “Advancing System Performance with
Redundancy: From Biological to Artificial Designs.” In: Neural Computation 31.3 (Mar. 2019),
pp. 555–573. doi: 10.1162/neco_a_01166. url: https://doi.org/10.1162/neco_a_01166
(cit. on p. 278).

[2143] I. Safran and O. Shamir. “On the Quality of the Initial Basin in Overspecified Neural Networks.”
In: ed. by M. F. Balcan and K. Q. Weinberger. Vol. 48. Proceedings of Machine Learning
Research. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 774–782. url: http://proce
edings.mlr.press/v48/safran16.html (cit. on p. 278).

https://doi.org/10.2174/157489310794072508
http://dx.doi.org/10.2174/157489310794072508
http://dx.doi.org/10.2174/157489310794072508
https://doi.org/10.1109/ijcnn.2003.1223688
http://dx.doi.org/10.1109/IJCNN.2003.1223688
https://doi.org/10.1002/0471660264
https://doi.org/10.1002/0471660264
http://dx.doi.org/10.1002/0471660264
https://doi.org/10.1155/2014/845479
http://dx.doi.org/10.1155/2014/845479
http://www.scipy.org/
http://arxiv.org/pdf/1201.0490v2.pdf
https://doi.org/10.1109/mcse.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/mcse.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.54844
https://doi.org/10.5281/zenodo.54844
https://proceedings.neurips.cc/paper_files/paper/2019/file/dbea3d0e2a17c170c412c74273778159-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/dbea3d0e2a17c170c412c74273778159-Paper.pdf
https://openreview.net/forum?id=Sy8gdB9xx
https://doi.org/10.1137/20m1314884
http://dx.doi.org/10.1137/20M1314884
https://doi.org/10.1109/tnn.2003.809401
http://dx.doi.org/10.1109/TNN.2003.809401
https://doi.org/10.1007/bf00452996
https://doi.org/10.1007/bf00452996
https://doi.org/10.1007/bf00452996
https://doi.org/10.1109/ijcnn.2018.8489203
https://doi.org/10.1109/ijcnn.2018.8489203
https://doi.org/10.1109/ijcnn.2018.8489203
https://doi.org/10.1162/neco_a_01166
https://doi.org/10.1162/neco_a_01166
http://proceedings.mlr.press/v48/safran16.html
http://proceedings.mlr.press/v48/safran16.html

bibliography 421

[2144] Q. Nguyen and M. Hein. “The Loss Surface of Deep and Wide Neural Networks.” In: Proceed-
ings of the 34th International Conference on Machine Learning - Volume 70. ICML’17. Sydney, NSW,
Australia: JMLR.org, 2017, pp. 2603–2612 (cit. on p. 278).

[2145] D. C. Freeman and J. Bruna. “Topology and Geometry of Half-Rectified Network Opti-
mization.” In: 5th International Conference on Learning Representations. ICLR, 2017. arXiv:
1611.01540 (cit. on p. 278).

[2146] C. Lee, Y.-B. Kim, H. Ji, Y. Lee, Y. Hur, and H. Lim. “On the Redundancy in the Rank of
Neural Network Parameters and Its Controllability.” In: Applied Sciences 11.2 (Jan. 2021), p. 725.
issn: 2076-3417. doi: 10.3390/app11020725. url: http://dx.doi.org/10.3390/app11020725
(cit. on p. 278).

[2147] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis. “Locally adaptive activation functions with
slope recovery term for deep and physics-informed neural networks.” In: CoRR abs/1909.12228

(2019). arXiv: 1909.12228. url: http://arxiv.org/abs/1909.12228 (cit. on p. 278).

[2148] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. “Modeling wine preferences by
data mining from physicochemical properties.” In: Decision Support Systems 47.4 (Nov. 2009),
pp. 547–553. issn: 0167-9236. doi: 10.1016/j.dss.2009.05.016. url: http://dx.doi.org/10
.1016/j.dss.2009.05.016 (cit. on p. 282).

[2149] W. Wolberg, W. Street, and O. Mangasarian. Breast Cancer Wisconsin (Prognostic). 1995. doi:
10.24432/C5GK50. url: https://archive.ics.uci.edu/dataset/16 (cit. on p. 282).

[2150] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. “Visualizing the Loss Landscape of Neural
Nets.” In: Advances in Neural Information Processing Systems. Ed. by S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates, Inc.,
2018. url: https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b0
50b6c9067c67f663b915-Paper.pdf (cit. on p. 288).

[2151] A. Anuarbekov. “Neural network learning visualization.” Czech Technical University in
Prague, Faculty of Electrical Engineering, Department of Cybernetics, June 2021 (cit. on
p. 288).

[2152] J. R. Beveridge et al. “The challenge of face recognition from digital point-and-shoot cameras.”
In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS).
IEEE, Sept. 2013. doi: 10.1109/btas.2013.6712704. url: http://dx.doi.org/10.1109
/BTAS.2013.6712704 (cit. on p. 289).

[2153] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. “Labeled Faces in the Wild: A
Database for Studying Face Recognition in Unconstrained Environments.” In: Workshop on
Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition. Erik Learned-Miller and Andras
Ferencz and Frédéric Jurie. Marseille, France, Oct. 2008. url: https://inria.hal.science/in
ria-00321923 (cit. on p. 289).

[2154] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. “Attribute and simile classifiers for
face verification.” In: 2009 IEEE 12th International Conference on Computer Vision. IEEE, Sept. 2009.
doi: 10.1109/iccv.2009.5459250. url: http://dx.doi.org/10.1109/ICCV.2009.5459250
(cit. on p. 289).

[2155] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. “The FERET evaluation methodology for face-
recognition algorithms.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22.10

(2000), pp. 1090–1104. issn: 0162-8828. doi: 10.1109/34.879790. url: http://dx.doi.org/10
.1109/34.879790 (cit. on p. 289).

[2156] P. Phillips, H. Wechsler, J. Huang, and P. J. Rauss. “The FERET database and evaluation
procedure for face-recognition algorithms.” In: Image and Vision Computing 16.5 (Apr. 1998),
pp. 295–306. issn: 0262-8856. doi: 10.1016/s0262-8856(97)00070-x. url: http://dx.doi.org
/10.1016/S0262-8856(97)00070-X (cit. on p. 289).

[2157] A. M. Martínez and R. Benavente. The AR Face Database. CVC Technical Report #24. 1998. url:
https://www2.ece.ohio-state.edu/~aleix/ARdatabase.html (cit. on p. 289).

[2158] A. Martínez and A. Kak. “PCA versus LDA.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 23.2 (2001), pp. 228–233. issn: 0162-8828. doi: 10.1109/34.908974. url:
http://dx.doi.org/10.1109/34.908974 (cit. on p. 289).

[2159] A. Georghiades, P. Belhumeur, and D. Kriegman. “From few to many: illumination cone models
for face recognition under variable lighting and pose.” In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 23.6 (June 2001), pp. 643–660. issn: 0162-8828. doi: 10.1109/34.927464.
url: http://dx.doi.org/10.1109/34.927464 (cit. on p. 289).

[2160] K.-C. Lee, J. Ho, and D. Kriegman. “Acquiring linear subspaces for face recognition under
variable lighting.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 27.5 (May
2005), pp. 684–698. issn: 0162-8828. doi: 10.1109/tpami.2005.92. url: http://dx.doi.org/1
0.1109/TPAMI.2005.92 (cit. on p. 289).

https://arxiv.org/abs/1611.01540
https://doi.org/10.3390/app11020725
http://dx.doi.org/10.3390/app11020725
https://arxiv.org/abs/1909.12228
http://arxiv.org/abs/1909.12228
https://doi.org/10.1016/j.dss.2009.05.016
http://dx.doi.org/10.1016/j.dss.2009.05.016
http://dx.doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.24432/C5GK50
https://archive.ics.uci.edu/dataset/16
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://doi.org/10.1109/btas.2013.6712704
http://dx.doi.org/10.1109/BTAS.2013.6712704
http://dx.doi.org/10.1109/BTAS.2013.6712704
https://inria.hal.science/inria-00321923
https://inria.hal.science/inria-00321923
https://doi.org/10.1109/iccv.2009.5459250
http://dx.doi.org/10.1109/ICCV.2009.5459250
https://doi.org/10.1109/34.879790
http://dx.doi.org/10.1109/34.879790
http://dx.doi.org/10.1109/34.879790
https://doi.org/10.1016/s0262-8856(97)00070-x
http://dx.doi.org/10.1016/S0262-8856(97)00070-X
http://dx.doi.org/10.1016/S0262-8856(97)00070-X
https://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
https://doi.org/10.1109/34.908974
http://dx.doi.org/10.1109/34.908974
https://doi.org/10.1109/34.927464
http://dx.doi.org/10.1109/34.927464
https://doi.org/10.1109/tpami.2005.92
http://dx.doi.org/10.1109/TPAMI.2005.92
http://dx.doi.org/10.1109/TPAMI.2005.92

422 bibliography

[2161] B. Zhang, L. Zhang, D. Zhang, and L. Shen. “Directional binary code with application to PolyU
near-infrared face database.” In: Pattern Recognition Letters 31.14 (Oct. 2010), pp. 2337–2344.
issn: 0167-8655. doi: 10.1016/j.patrec.2010.07.006. url: http://dx.doi.org/10.1016/j.p
atrec.2010.07.006 (cit. on p. 289).

[2162] S. Sabour, N. Frosst, and G. E. Hinton. “Dynamic Routing Between Capsules.” In: Advances in
Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. url:
https://proceedings.neurips.cc/paper_files/paper/2017/file/2cad8fa47bbef282badbb

8de5374b894-Paper.pdf (cit. on p. 289).

[2163] S. Bhuvaji, A. Kadam, P. Bhumkar, S. Dedge, and S. Kanchan. Brain Tumor Classification (MRI).
2020. doi: 10.34740/kaggle/dsv/1183165. url: https://www.kaggle.com/dsv/1183165
(cit. on p. 289).

[2164] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic, G. Venkatesh, C. Yu, and P. Micikevicius.
Accelerating Sparse Deep Neural Networks. 2021. doi: 10.48550/ARXIV.2104.08378. url: https:
//arxiv.org/abs/2104.08378 (cit. on p. 289).

https://doi.org/10.1016/j.patrec.2010.07.006
http://dx.doi.org/10.1016/j.patrec.2010.07.006
http://dx.doi.org/10.1016/j.patrec.2010.07.006
https://proceedings.neurips.cc/paper_files/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf
https://doi.org/10.34740/kaggle/dsv/1183165
https://www.kaggle.com/dsv/1183165
https://doi.org/10.48550/ARXIV.2104.08378
https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2104.08378

A P P E N D I X

423

A
A D D I T I O N A L F I G U R E S

a.1 distributions of differences of various metrics using real

phenotypes

425

426 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10
F 1

 d
iff

er
en

ce

(a) Breast × Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 1
 d

iff
er

en
ce

(b) Breast × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

0.15

0.20

F 1
 d

iff
er

en
ce

(c) Breast × Lung
Figure A.1: Distributions of F1 score differences for the real phenotypes

Distributions of the F1 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles. The
larger variant of Fig. 6.11.

A.1 distributions of differences of various metrics using real phenotypes 427

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.05

0.10

0.15

0.20

F 1
 d

iff
er

en
ce

(d) Breast × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

0.15

F 1
 d

iff
er

en
ce

(e) Breast × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F 1
 d

iff
er

en
ce

(f) Colon × Kidney
Figure A.1: (cont.) Distributions of F1 score differences for the real phenotypes

Distributions of the F1 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles. The
larger variant of Fig. 6.11. Continuation of Fig. A.1.

428 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12
F 1

 d
iff

er
en

ce

(g) Colon × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F 1
 d

iff
er

en
ce

(h) Colon × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 1
 d

iff
er

en
ce

(i) Colon × Uterus
Figure A.1: (cont.) Distributions of F1 score differences for the real phenotypes

Distributions of the F1 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles. The
larger variant of Fig. 6.11. Continuation of Fig. A.1.

A.1 distributions of differences of various metrics using real phenotypes 429

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F 1
 d

iff
er

en
ce

(j) Kidney × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 1
 d

iff
er

en
ce

(k) Kidney × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08

F 1
 d

iff
er

en
ce

(l) Kidney × Uterus
Figure A.1: (cont.) Distributions of F1 score differences for the real phenotypes

Distributions of the F1 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles. The
larger variant of Fig. 6.11. Continuation of Fig. A.1.

430 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

F 1
 d

iff
er

en
ce

(m) Lung × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

F 1
 d

iff
er

en
ce

(n) Lung × Uterus
Figure A.1: (cont.) Distributions of F1 score differences for the real phenotypes

Distributions of the F1 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles. The
larger variant of Fig. 6.11. Continuation of Fig. A.1.

A.1 distributions of differences of various metrics using real phenotypes 431

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

F 1
 d

iff
er

en
ce

(o) Ovary × Uterus
Figure A.1: (cont.) Distributions of F1 score differences for the real phenotypes

Distributions of the F1 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles. The
larger variant of Fig. 6.11. Continuation of Fig. A.1.

432 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 0
.5

 d
iff

er
en

ce

(a) Breast × Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 0
.5

 d
iff

er
en

ce

(b) Breast × Kidney
Figure A.2: Distributions of F0.5 score differences for the real phenotypes

Distributions of the F0.5 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles.

A.1 distributions of differences of various metrics using real phenotypes 433

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

0.15

0.20

0.25

F 0
.5

 d
iff

er
en

ce

(c) Breast × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.05

0.10

0.15

0.20

F 0
.5

 d
iff

er
en

ce

(d) Breast × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.05

0.10

0.15

0.20

F 0
.5

 d
iff

er
en

ce

(e) Breast × Uterus
Figure A.2: (cont.) Distributions of F0.5 score differences for the real phenotypes

Distributions of the F0.5 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.2.

434 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
F 0

.5
 d

iff
er

en
ce

(f) Colon × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

F 0
.5

 d
iff

er
en

ce

(g) Colon × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 0
.5

 d
iff

er
en

ce

(h) Colon × Ovary
Figure A.2: (cont.) Distributions of F0.5 score differences for the real phenotypes

Distributions of the F0.5 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.2.

A.1 distributions of differences of various metrics using real phenotypes 435

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 0
.5

 d
iff

er
en

ce

(i) Colon × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 0
.5

 d
iff

er
en

ce

(j) Kidney × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.02

0.04

0.06

0.08

F 0
.5

 d
iff

er
en

ce

(k) Kidney × Ovary
Figure A.2: (cont.) Distributions of F0.5 score differences for the real phenotypes

Distributions of the F0.5 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.2.

436 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
F 0

.5
 d

iff
er

en
ce

(l) Kidney × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

F 0
.5

 d
iff

er
en

ce

(m) Lung × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.025

0.000

0.025

0.050

0.075

0.100

0.125

F 0
.5

 d
iff

er
en

ce

(n) Lung × Uterus
Figure A.2: (cont.) Distributions of F0.5 score differences for the real phenotypes

Distributions of the F0.5 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.2.

A.1 distributions of differences of various metrics using real phenotypes 437

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F 0
.5

 d
iff

er
en

ce

(o) Ovary × Uterus
Figure A.2: (cont.) Distributions of F0.5 score differences for the real phenotypes

Distributions of the F0.5 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.2.

438 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.02

0.00

0.02

0.04

0.06

0.08

0.10

F 2
 d

iff
er

en
ce

(a) Breast × Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 2
 d

iff
er

en
ce

(b) Breast × Kidney
Figure A.3: Distributions of F2 score differences for the real phenotypes

Distributions of the F2 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles.

A.1 distributions of differences of various metrics using real phenotypes 439

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.10

0.05

0.00

0.05

0.10

0.15

0.20

F 2
 d

iff
er

en
ce

(c) Breast × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.10

0.05

0.00

0.05

0.10

0.15

0.20

F 2
 d

iff
er

en
ce

(d) Breast × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.10

0.05

0.00

0.05

0.10

0.15

F 2
 d

iff
er

en
ce

(e) Breast × Uterus
Figure A.3: (cont.) Distributions of F2 score differences for the real phenotypes

Distributions of the F2 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.3.

440 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06
F 2

 d
iff

er
en

ce

(f) Colon × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

F 2
 d

iff
er

en
ce

(g) Colon × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F 2
 d

iff
er

en
ce

(h) Colon × Ovary
Figure A.3: (cont.) Distributions of F2 score differences for the real phenotypes

Distributions of the F2 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.3.

A.1 distributions of differences of various metrics using real phenotypes 441

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

F 2
 d

iff
er

en
ce

(i) Colon × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F 2
 d

iff
er

en
ce

(j) Kidney × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.02

0.04

0.06

0.08

0.10

F 2
 d

iff
er

en
ce

(k) Kidney × Ovary
Figure A.3: (cont.) Distributions of F2 score differences for the real phenotypes

Distributions of the F2 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.3.

442 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08
F 2

 d
iff

er
en

ce

(l) Kidney × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

0.15

F 2
 d

iff
er

en
ce

(m) Lung × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.10

0.05

0.00

0.05

0.10

F 2
 d

iff
er

en
ce

(n) Lung × Uterus
Figure A.3: (cont.) Distributions of F2 score differences for the real phenotypes

Distributions of the F2 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.3.

A.1 distributions of differences of various metrics using real phenotypes 443

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

F 2
 d

iff
er

en
ce

(o) Ovary × Uterus
Figure A.3: (cont.) Distributions of F2 score differences for the real phenotypes

Distributions of the F2 score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.3.

444 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.02

0.04

0.06

0.08

M
CC

 d
iff

er
en

ce

(a) Breast × Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
CC

 d
iff

er
en

ce

(b) Breast × Kidney
Figure A.4: Distributions of MCC differences for the real phenotypes

Distributions of the MCC pairwise differences of the D–GEX with TAAFs
and the plain D–GEX of 5,000 repetitions for each sample size for differ-
ent tissues. The whiskers show the 10th and 90th percentiles.

A.1 distributions of differences of various metrics using real phenotypes 445

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

M
CC

 d
iff

er
en

ce

(c) Breast × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.05

0.00

0.05

0.10

0.15

0.20

M
CC

 d
iff

er
en

ce

(d) Breast × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

0.15

M
CC

 d
iff

er
en

ce

(e) Breast × Uterus
Figure A.4: (cont.) Distributions of MCC differences for the real phenotypes

Distributions of the MCC score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.4.

446 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.00

0.01

0.02

0.03

0.04

0.05
M

CC
 d

iff
er

en
ce

(f) Colon × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
CC

 d
iff

er
en

ce

(g) Colon × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.02

0.00

0.02

0.04

0.06

0.08

0.10

M
CC

 d
iff

er
en

ce

(h) Colon × Ovary
Figure A.4: (cont.) Distributions of MCC differences for the real phenotypes

Distributions of the MCC score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.4.

A.1 distributions of differences of various metrics using real phenotypes 447

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.02

0.00

0.02

0.04

0.06

0.08

M
CC

 d
iff

er
en

ce

(i) Colon × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.02

0.04

0.06

0.08

M
CC

 d
iff

er
en

ce

(j) Kidney × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
CC

 d
iff

er
en

ce

(k) Kidney × Ovary
Figure A.4: (cont.) Distributions of MCC differences for the real phenotypes

Distributions of the MCC score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.4.

448 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06
M

CC
 d

iff
er

en
ce

(l) Kidney × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

0.15

0.20

M
CC

 d
iff

er
en

ce

(m) Lung × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.05

0.00

0.05

0.10

0.15

M
CC

 d
iff

er
en

ce

(n) Lung × Uterus
Figure A.4: (cont.) Distributions of MCC differences for the real phenotypes

Distributions of the MCC score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.4.

A.1 distributions of differences of various metrics using real phenotypes 449

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

M
CC

 d
iff

er
en

ce

(o) Ovary × Uterus
Figure A.4: (cont.) Distributions of MCC differences for the real phenotypes

Distributions of the MCC score pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size
for different tissues. The whiskers show the 10th and 90th percentiles.
Continuation of Fig. A.4.

450 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175
AC

C
di

ffe
re

nc
e

(a) Breast × Colon

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.000

0.005

0.010

0.015

0.020

AC
C

di
ffe

re
nc

e

(b) Breast × Kidney

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

AC
C

di
ffe

re
nc

e

(c) Breast × Lung
Figure A.5: Distributions of accuracy differences for the real phenotypes

Distributions of the accuracy pairwise differences of the D–GEX with
TAAFs and the plain D–GEX of 5,000 repetitions for each sample size for
different tissues. The whiskers show the 10th and 90th percentiles. Note
that unlike MCC shown in Fig. A.4, the accuracy does not take the class
imbalance into account the accuracy, F1, F0.5, F2, and MCC scores.

A.1 distributions of differences of various metrics using real phenotypes 451

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

AC
C

di
ffe

re
nc

e

(d) Breast × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

AC
C

di
ffe

re
nc

e

(e) Breast × Uterus

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

40
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

AC
C

di
ffe

re
nc

e

(f) Colon × Kidney
Figure A.5: (cont.) Distributions of accuracy differences for the real phenotypes

Distributions of the accuracy score pairwise differences of the D–GEX
with TAAFs and the plain D–GEX of 5,000 repetitions for each sample
size for different tissues. The whiskers show the 10th and 90th percentiles.
Note that unlike MCC shown in Fig. A.4, the accuracy does not take the
class imbalance into account. Continuation of Fig. A.5.

452 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

AC
C

di
ffe

re
nc

e

(g) Colon × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

AC
C

di
ffe

re
nc

e

(h) Colon × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

AC
C

di
ffe

re
nc

e

(i) Colon × Uterus
Figure A.5: (cont.) Distributions of accuracy differences for the real phenotypes

Distributions of the accuracy score pairwise differences of the D–GEX
with TAAFs and the plain D–GEX of 5,000 repetitions for each sample
size for different tissues. The whiskers show the 10th and 90th percentiles.
Note that unlike MCC shown in Fig. A.4, the accuracy does not take the
class imbalance into account. Continuation of Fig. A.5.

A.1 distributions of differences of various metrics using real phenotypes 453

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.005

0.010

0.015

0.020

AC
C

di
ffe

re
nc

e

(j) Kidney × Lung

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

30
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

AC
C

di
ffe

re
nc

e

(k) Kidney × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

AC
C

di
ffe

re
nc

e

(l) Kidney × Uterus
Figure A.5: (cont.) Distributions of accuracy differences for the real phenotypes

Distributions of the accuracy score pairwise differences of the D–GEX
with TAAFs and the plain D–GEX of 5,000 repetitions for each sample
size for different tissues. The whiskers show the 10th and 90th percentiles.
Note that unlike MCC shown in Fig. A.4, the accuracy does not take the
class imbalance into account. Continuation of Fig. A.5.

454 additional figures

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

AC
C

di
ffe

re
nc

e

(m) Lung × Ovary

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

AC
C

di
ffe

re
nc

e

(n) Lung × Uterus
Figure A.5: (cont.) Distributions of accuracy differences for the real phenotypes

Distributions of the accuracy score pairwise differences of the D–GEX
with TAAFs and the plain D–GEX of 5,000 repetitions for each sample
size for different tissues. The whiskers show the 10th and 90th percentiles.
Note that unlike MCC shown in Fig. A.4, the accuracy does not take the
class imbalance into account. Continuation of Fig. A.5.

A.1 distributions of differences of various metrics using real phenotypes 455

12 16 20 24 28 32 36 40 50 60 80 10
0

12
0

14
0

16
0

20
0

sample size

0.000

0.005

0.010

0.015

0.020

0.025

AC
C

di
ffe

re
nc

e

(o) Ovary × Uterus
Figure A.5: (cont.) Distributions of accuracy differences for the real phenotypes

Distributions of the accuracy score pairwise differences of the D–GEX
with TAAFs and the plain D–GEX of 5,000 repetitions for each sample
size for different tissues. The whiskers show the 10th and 90th percentiles.
Note that unlike MCC shown in Fig. A.4, the accuracy does not take the
class imbalance into account. Continuation of Fig. A.5.

456 additional figures

a.2 performance impact of layer configuration of the infer-
ence network

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.030

0.032

0.034

0.036

0.038

0.040

0.042

m
ea

n
M

M
AE

Target = Noiseless | Experiment = NN4

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00
Layers

0.0725

0.0750

0.0775

0.0800

0.0825

0.0850

0.0875

m
ea

n
M

M
AE

Target = Noisy | Experiment = NN4

Target noise variance: 0.1 Variant
TAAF
baseline
Data Var.
test loss
train last

Figure A.6: Absolute performance by layer configuration with target noise
The absolute performance different configuration of hidden layers of the
inference network. Only the OOS performance of the best model on the
validation set and the in-sample performance of models trained on the
training set till the last epoch is shown. It shows the mean MMAE over
all relevant parameterizations for models trained on targets with noise
with a standard deviation of 0.1.

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.05

0.10

0.15

0.20

0.25

0.30

m
ea

n
M

M
AE

Target = Noiseless | Experiment = NN4

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

0.675

0.700

0.725

0.750

0.775

0.800

0.825

m
ea

n
M

M
AE

Target = Noisy | Experiment = NN4

Target noise variance: 1.0 Variant
TAAF
baseline
Data Var.
test loss
train last

Figure A.7: Absolute performance by layer configuration with target noise
The absolute performance different configuration of hidden layers of the
inference network. Only the OOS performance of the best model on the
validation set and the in-sample performance of models trained on the
training set till the last epoch is shown. It shows the mean MMAE over
all relevant parameterizations for models trained on targets with noise
with a standard deviation of 1.0.

A
.
2

p
e

r
f

o
r

m
a

n
c

e
i
m

p
a

c
t

o
f

l
a

y
e

r
c

o
n

f
i
g

u
r

a
t

i
o

n
o

f
t

h
e

i
n

f
e

r
e

n
c

e
n

e
t

w
o

r
k

4
5

7

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

0.02

0.03

0.04

0.05

0.06

m
ea

n
M

M
AE

Target = Noiseless | Experiment = NN1

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

0.01

0.02

0.03

0.04

0.05

0.06
Target = Noiseless | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.12

0.13

0.14

Target = Noiseless | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.04

0.05

0.06

0.07

Target = Noiseless | Experiment = NN4

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

Layers

0.185

0.190

0.195

0.200

m
ea

n
M

M
AE

Target = Noisy | Experiment = NN1

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

Layers

0.185

0.190

0.195

0.200

Target = Noisy | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

0.18

0.20

0.22

0.24

Target = Noisy | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

0.18

0.19

0.20

Target = Noisy | Experiment = NN4

Target noise variance: 0.25 Variant
TAAF
baseline
Data Var.
test loss
train last

Figure A.8: Absolute performance by layer configuration with target noise
The absolute performance different configuration of hidden layers of the inference network. Only the OOS performance of the best model on
the validation set and the in-sample performance of models trained on the training set till the last epoch is shown. It shows the mean MMAE
over all relevant parameterizations for models trained on targets with noise with a standard deviation of 0.25.

4
5

8
a

d
d

i
t

i
o

n
a

l
f

i
g

u
r

e
s

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

0.02

0.04

0.06

0.08

0.10

0.12

m
ea

n
M

M
AE

Target = Noiseless | Experiment = NN1

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

0.02

0.04

0.06

0.08

0.10

0.12
Target = Noiseless | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Target = Noiseless | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.04

0.06

0.08

0.10

0.12

0.14

Target = Noiseless | Experiment = NN4

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

Layers

0.37

0.38

0.39

0.40

m
ea

n
M

M
AE

Target = Noisy | Experiment = NN1

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

Layers

0.36

0.37

0.38

0.39

0.40

Target = Noisy | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

0.34

0.36

0.38

0.40

0.42

Target = Noisy | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

0.34

0.36

0.38

0.40

Target = Noisy | Experiment = NN4

Target noise variance: 0.5 Variant
TAAF
baseline
Data Var.
test loss
train last

Figure A.9: Absolute performance by layer configuration with target noise
The absolute performance different configuration of hidden layers of the inference network. Only the OOS performance of the best model on
the validation set and the in-sample performance of models trained on the training set till the last epoch is shown. It shows the mean MMAE
over all relevant parameterizations for models trained on targets with noise with a standard deviation of 0.5.

A
.
2

p
e

r
f

o
r

m
a

n
c

e
i
m

p
a

c
t

o
f

l
a

y
e

r
c

o
n

f
i
g

u
r

a
t

i
o

n
o

f
t

h
e

i
n

f
e

r
e

n
c

e
n

e
t

w
o

r
k

4
5

9

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

0.1

0.2

0.3

0.4

0.5
m

ea
n

M
M

AE

Target = Noiseless | Experiment = NN1

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

0.1

0.2

0.3

0.4

0.5

Target = Noiseless | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.2

0.3

0.4

0.5

0.6

0.7

Target = Noiseless | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

0.1

0.2

0.3

0.4

0.5

0.6
Target = Noiseless | Experiment = NN4

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

Layers

1.45

1.50

1.55

1.60

m
ea

n
M

M
AE

Target = Noisy | Experiment = NN1

1×
10

00

2×
10

00

3×
10

00

1×
30

00

2×
30

00

Layers

1.45

1.50

1.55

1.60

Target = Noisy | Experiment = NN2

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

1.3

1.4

1.5

1.6

Target = Noisy | Experiment = NN3

1×
10

00
2×

10
00

3×
10

00
1×

30
00

2×
30

00
3×

30
00

1×
60

00
2×

60
00

3×
60

00

Layers

1.35

1.40

1.45

1.50

1.55

1.60

Target = Noisy | Experiment = NN4

Target noise variance: 2.0 Variant
TAAF
baseline
Data Var.
test loss
train last

Figure A.10: Absolute performance by layer configuration with target noise
The absolute performance different configuration of hidden layers of the inference network. Only the OOS performance of the best model on
the validation set and the in-sample performance of models trained on the training set till the last epoch is shown. It shows the mean MMAE
over all relevant parameterizations for models trained on targets with noise with a standard deviation of 2.0.

D E C L A R AT I O N

I declare that I elaborated this thesis on my own and that I mentioned all the
information sources that have been used in accordance with the Guideline
for adhering to ethical principles in the course of elaborating an academic
final thesis1.

Moreover, I state that this thesis has neither been submitted nor accepted
for any other degree. The results presented in this thesis were achieved
during my own research in cooperation with my thesis supervisor doc.
Ing. Jiří Kléma, Ph.D. and are based on the works listed in this thesis (see
Publications).

Prague, February 2024

Vladimír Kunc

1 EN: https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e
715d3c59e/en/20230926-methodical-guideline-no-12009.pdf

CZ: https://intranet.fel.cvut.cz/cz/rozvoj/MP_2009_01.pdf

https://intranet.fel.cvut.cz/cz/rozvoj/MP_2009_01.pdf
https://intranet.fel.cvut.cz/cz/rozvoj/MP_2009_01.pdf
https://intranet.fel.cvut.cz/cz/rozvoj/MP_2009_01.pdf
https://orcid.org/0000-0003-1753-9435
https://orcid.org/0000-0003-1753-9435
https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20230926-methodical-guideline-no-12009.pdf
https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20230926-methodical-guideline-no-12009.pdf
https://intranet.fel.cvut.cz/cz/rozvoj/MP_2009_01.pdf

This document was typeset in LATEX using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić which was
inspired by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”.

Final Version as of February 16, 2024 (v1.0).

https://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/
http://www.miede.de

	Gene expression inference using artificial neural networks
	Abstract
	Abstrakt
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Glossary
	1 Introduction
	1.1 Problem statement
	1.2 Main contributions
	1.3 Thesis organization

	2 Neural networks — a brief overview
	2.1 Brief history of neural networks and deep learning
	2.1.1 Early neural networks
	2.1.2 The ascent of backpropagation
	2.1.3 Winning competitions

	2.2 Building blocks of neural networks
	2.2.1 Basic unit — neuron
	2.2.2 Simple neural network
	2.2.3 Layers
	2.2.3.1 Fully connected layer
	2.2.3.2 Dropout layer
	2.2.3.3 Convolutional layer
	2.2.3.4 Pooling layer

	2.2.4 Optimization
	2.2.4.1 Loss function
	2.2.4.2 Backpropagation
	2.2.4.3 Gradient descent

	3 DNA microarrays and gene expression measurement — another brief overview
	3.1 DNA and genetics
	3.2 Brief history of microarrays
	3.2.1 First arrays
	3.2.2 Increasing the density
	3.2.3 Mature microarrays
	3.2.3.1 Spotted arrays
	3.2.3.2 In-situ synthesised arrays
	3.2.3.3 Self assembled arrays

	3.2.4 Future of microarrays

	3.3 DNA microarrays and measuring gene expression
	3.3.1 Microrrary experiments
	3.3.2 RNA-Seq
	3.3.3 L1000 gene expression profiling assay
	3.3.3.1 Selection of landmark genes
	3.3.3.2 L1000 comparison to RNA-Seq

	4 Literature review
	4.1 Artificial neural networks for gene expression inference and classification
	4.1.1 D–GEX
	4.1.2 Usage of neural networks for other gene expression data tasks besides profile reconstruction from the L1000 assay
	4.1.2.1 Genetic neural network
	4.1.2.2 Clustering, analysis, and generation of gene expression data
	4.1.2.3 Classification of gene expression data

	4.2 Activation functions
	4.2.1 Binary activation function
	4.2.2 Sigmoid family of activation functions
	4.2.2.1 Shifted and scaled sigmoid (SSS)
	4.2.2.2 Variant sigmoid function (VSF)
	4.2.2.3 Scaled hyperbolic tangent
	4.2.2.4 Arctan
	4.2.2.5 Sigmoid-Algebraic activation function
	4.2.2.6 Triple-state sigmoid
	4.2.2.7 Improved logistic sigmoid
	4.2.2.8 Combination of the sigmoid and linear activation (SigLin)
	4.2.2.9 Penalized hyperbolic tangent
	4.2.2.10 Soft-root-sign (SRS)
	4.2.2.11 Soft clipping (SC)
	4.2.2.12 Hexpo
	4.2.2.13 Softsign
	4.2.2.14 Smooth step
	4.2.2.15 Elliott activation function
	4.2.2.16 Sinc-Sigmoid
	4.2.2.17 Sigmoid-Gumbel activation function
	4.2.2.18 NewSigmoid
	4.2.2.19 Root2sigmoid
	4.2.2.20 LogLog
	4.2.2.21 Complementary Log-Log (cLogLog)
	4.2.2.22 SechSig
	4.2.2.23 TanhSig
	4.2.2.24 Multistate activation function (MSAF)
	4.2.2.25 Rootsig and others
	4.2.2.26 Sigmoid and tanh combinations

	4.2.3 Class of sigmoid-weighted linear units
	4.2.3.1 Gaussian error linear unit (GELU)
	4.2.3.2 Symmetrical Gaussian error linear unit (SGELU)
	4.2.3.3 Cauchy linear unit (CaLU)
	4.2.3.4 Laplace linear unit (LaLU)
	4.2.3.5 Collapsing linear unit (LaLU)
	4.2.3.6 Triple-state swish
	4.2.3.7 Generalized swish
	4.2.3.8 Exponential swish
	4.2.3.9 Derivative of sigmoid function
	4.2.3.10 Gish
	4.2.3.11 Logish
	4.2.3.12 LogLogish
	4.2.3.13 ExpExpish
	4.2.3.14 Self arctan
	4.2.3.15 Parametric logish
	4.2.3.16 Phish
	4.2.3.17 Suish
	4.2.3.18 Tangent-sigmoid ReLU (TSReLU)
	4.2.3.19 Tangent-bipolar-sigmoid ReLU (TBSReLU)
	4.2.3.20 Log-sigmoid
	4.2.3.21 Derivative of sigmoid-weighted linear unit (dSiLU)
	4.2.3.22 Double sigmoid-weighted linear unit (DoubleSiLU)
	4.2.3.23 Modified sigmoid-weighted linear unit (MSiLU)
	4.2.3.24 Hyperbolic tangent sigmoid-weighted linear unit (TSiLU)
	4.2.3.25 Arctan sigmoid-weighted linear unit (ASiLU)
	4.2.3.26 SwAT
	4.2.3.27 Rectified hyperbolic secant
	4.2.3.28 Linearly scaled hyperbolic tangent (LiSHT)
	4.2.3.29 Mish
	4.2.3.30 Smish
	4.2.3.31 TanhExp
	4.2.3.32 Serf
	4.2.3.33 Efficient asymmetric nonlinear activation function (EANAF)
	4.2.3.34 SinSig
	4.2.3.35 Gaussian error linear unit with sigmoid activation function (SiELU)

	4.2.4 Gated linear unit (GLU)
	4.2.4.1 Gated tanh unit (GTU)
	4.2.4.2 Gated ReLU (ReGLU)
	4.2.4.3 Gated GELU (GEGLU)
	4.2.4.4 Swish GELU (SwiGLU)

	4.2.5 Softmax
	4.2.5.1 Beta-softmax

	4.2.6 Rectified linear function (ReLU)
	4.2.6.1 Shifted ReLU
	4.2.6.2 Leaky ReLU (LReLU)
	4.2.6.3 Randomized leaky ReLU (RReLU)
	4.2.6.4 Softsign randomized leaky ReLU (S-RReLU)
	4.2.6.5 Sloped ReLU (SlReLU)
	4.2.6.6 Noisy ReLU (NReLU)
	4.2.6.7 SineReLU
	4.2.6.8 Minsin
	4.2.6.9 Variational linear unit (VLU)
	4.2.6.10 Spatial context-aware activation (SCAA)
	4.2.6.11 Randomly translational ReLU (RT-ReLU)
	4.2.6.12 Natural-Logarithm-ReLU (NLReLU)
	4.2.6.13 Softplus linear unit (SLU)
	4.2.6.14 Rectified softplus (ReSP)
	4.2.6.15 Parametric rectified non-linear unit (PReNU)
	4.2.6.16 Bounded ReLU (BReLU)
	4.2.6.17 Hard sigmoid
	4.2.6.18 HardTanh
	4.2.6.19 Shifted HardTanh
	4.2.6.20 Hard swish
	4.2.6.21 Truncated rectified (TRec) activation function
	4.2.6.22 Hardshrink
	4.2.6.23 Softshrink
	4.2.6.24 Bounded leaky ReLU (BLReLU)
	4.2.6.25 V-shaped ReLU (vReLU)
	4.2.6.26 Pan function
	4.2.6.27 Absolute linear unit (AbsLU)
	4.2.6.28 Mirrorer rectified linear unit (mReLU)
	4.2.6.29 Leaky single-peaked triangle linear unit (LSPTLU)
	4.2.6.30 SoftModulusQ
	4.2.6.31 SoftModulusT
	4.2.6.32 SignReLU
	4.2.6.33 Li-ReLU
	4.2.6.34 Concatenated ReLU (CReLU)
	4.2.6.35 Negative CReLU (NCReLU)
	4.2.6.36 DualReLU
	4.2.6.37 Orthogonal permutation liner unit
	4.2.6.38 Elastic ReLU (EReLU)
	4.2.6.39 Power activation functions & rectified power units (RePU)
	4.2.6.40 Approximate ReLU (AppReLU)
	4.2.6.41 Power linear activation function (PLAF)
	4.2.6.42 Average biased ReLU (ABReLU)
	4.2.6.43 Delay ReLU (DRLU)
	4.2.6.44 Displaced ReLU (DisReLU)
	4.2.6.45 Modified LReLU
	4.2.6.46 Flatted-T swish
	4.2.6.47 Optimal activation function (OAF)
	4.2.6.48 Exponential linear unit (ELU)
	4.2.6.49 Rectified exponential unit (REU)
	4.2.6.50 Apical dendrite activation (ADA)
	4.2.6.51 Leaky apical dendrite activation (LADA)
	4.2.6.52 Sigmoid linear unit (SigLU)
	4.2.6.53 Swish and ReLU activation (SaRa)

	4.2.7 Maxsig
	4.2.7.1 Tanh linear unit (ThLU)
	4.2.7.2 DualELU
	4.2.7.3 Difference ELU (DiffELU)
	4.2.7.4 Polynomial linear unit (PolyLU)
	4.2.7.5 Inverse polynomial linear unit (IpLU)
	4.2.7.6 Power linear unit (PoLU)
	4.2.7.7 Power function linear unit (PFLU)
	4.2.7.8 Faster power function linear unit (FPFLU)
	4.2.7.9 Elastic adaptively parametric compounded unit (EACU)
	4.2.7.10 Lipschitz ReLU (L–ReLU)
	4.2.7.11 Scaled exponential linear unit (SELU)
	4.2.7.12 Leaky scaled exponential linear unit (LSELU)
	4.2.7.13 Scaled exponentially-regularized linear unit (SERLU)
	4.2.7.14 Scaled scaled exponential linear unit (sSELU)
	4.2.7.15 RSigELU
	4.2.7.16 HardSReLUE
	4.2.7.17 Exponential linear sigmoid squashing (ELiSH)
	4.2.7.18 Hard exponential linear sigmoid squashing (HardELiSH)
	4.2.7.19 RSigELUD
	4.2.7.20 LS–ReLU

	4.2.8 Square-based activation functions
	4.2.8.1 SQNL
	4.2.8.2 Square linear unit (SQLU)
	4.2.8.3 Square swish (squish)
	4.2.8.4 Square REU (SqREU)
	4.2.8.5 Square softplus (SqSoftplus)
	4.2.8.6 Square logistic sigmoid (LogSQNL)
	4.2.8.7 Square softmax (SQMAX)
	4.2.8.8 Linear quadratic activation
	4.2.8.9 Inverse square root linear unit (ISRLU)
	4.2.8.10 Inverse square root unit (ISRU)
	4.2.8.11 Modified Elliott function (MEF)

	4.2.9 Square-root-based activation function (SQRT)
	4.2.10 Bent identity
	4.2.11 Mishra activation function
	4.2.12 Saha-Bora activation function (SBAF)
	4.2.13 Logarithmic activation function
	4.2.14 Symexp
	4.2.15 Scaled polynomial constant unit (SPOCU)
	4.2.16 Polynomial universal activation function (PUAF)
	4.2.17 Softplus
	4.2.18 Parametric softplus (PSoftplus)
	4.2.18.1 Soft++

	4.2.19 Rand softplus (RSP)
	4.2.20 Aranda-Ordaz
	4.2.21 Bi-firing activation function (bfire)
	4.2.22 Bounded bi-firing activation function (bbfire)
	4.2.23 Piecewise Mexican-hat activation function (PMAF)
	4.2.24 Piecewise radial basis function (PRBF)
	4.2.25 Comb-H-sine
	4.2.26 Modified arcsinh
	4.2.27 hyper-sinh
	4.2.28 Arctid
	4.2.29 Sine
	4.2.30 Cosine
	4.2.31 Cosid
	4.2.32 Sinp
	4.2.33 Growing cosine unit (GCU)
	4.2.34 Amplifying sine unit (ASU)
	4.2.35 Sinc
	4.2.36 Decaying sine unit (DSU)
	4.2.37 Hyperbolic cosine linearized squashing function (HcLSH)
	4.2.38 Polyexp
	4.2.39 Exponential
	4.2.40 E-Tanh
	4.2.40.1 Evolved combination of tanh and ReLU

	4.2.41 Wave
	4.2.42 Non-monotonic cubic unit (NCU)
	4.2.43 Triple
	4.2.44 Shifted quadratic unit (SQU)
	4.2.45 Knowledge discovery activation function (KDAC)
	4.2.46 K-winner-takes-all activation function (k-WTA)
	4.2.47 Volatility-based activation function (VBAF)
	4.2.48 Chaotic activation functions
	4.2.48.1 Hybrid chaotic activation function
	4.2.48.2 Fusion of chaotic activation function (FCAF)
	4.2.48.3 Cascade chaotic activation function (CCAF)

	4.3 Adaptive activation functions
	4.3.1 The ReLU-based family of adaptive functions
	4.3.1.1 Parametric rectified linear unit (PReLU)
	4.3.1.2 Positive parametric rectified linear unit (PReLU+)
	4.3.1.3 Margin Relu
	4.3.1.4 Funnel parametric rectified linear unit (FunPReLU)
	4.3.1.5 React-PReLU (RPReLU)
	4.3.1.6 Smooth activation unit (SAU)
	4.3.1.7 Smooth maximum unit (SMU)
	4.3.1.8 Leaky Learnable ReLU (LeLeLU)
	4.3.1.9 Parametric rectified exponential unit (PREU)
	4.3.1.10 Randomly translational PReLU (RT-PReLU)
	4.3.1.11 Probabilistic activation (ProbAct)
	4.3.1.12 Adaptive offset activation function (AOAF)
	4.3.1.13 Dynamic leaky ReLU (DLReLU)
	4.3.1.14 Dynamic ReLU (DReLU)
	4.3.1.15 Flexible ReLU (FReLU)
	4.3.1.16 Adaptive shifted ReLU (ShiLU)
	4.3.1.17 StarReLU
	4.3.1.18 Adaptive HardTanh
	4.3.1.19 Attention-based ReLU (AReLU)
	4.3.1.20 Dual parametric ReLU (DPReLU) and Dual Line activation function
	4.3.1.21 Dual Line
	4.3.1.22 Piecewise linear unit (PiLU)
	4.3.1.23 Dual parametric family of activation functions
	4.3.1.24 Fully parameterized activation function (FPAF)
	4.3.1.25 Elastic PReLU (EPReLU)
	4.3.1.26 Paired ReLU
	4.3.1.27 Tent
	4.3.1.28 Hat
	4.3.1.29 ReLU memristor-like activation function (RMAF)
	4.3.1.30 Parametric tanh linear unit (PTELU)
	4.3.1.31 Tangent linear unit (TaLU)
	4.3.1.32 PTaLU
	4.3.1.33 TanhLU
	4.3.1.34 TeLU
	4.3.1.35 Tanh based ReLU (TReLU)
	4.3.1.36 Rectified linear tanh (ReLTanh)
	4.3.1.37 Bendable linear unit (BLU)
	4.3.1.38 Rectified BLU (ReBLU)
	4.3.1.39 DELU
	4.3.1.40 Soft clipping mish
	4.3.1.41 Soft clipping swish
	4.3.1.42 Parametric swish (p-swish)
	4.3.1.43 Parametric exponential linear unit (PELU)
	4.3.1.44 Extended exponential linear unit (EDELU)
	4.3.1.45 Adaptive combination of PELU and PReLU
	4.3.1.46 Fast exponential linear unit (FELU)
	4.3.1.47 P+FELU
	4.3.1.48 Multiple parametric exponential linear unit (MPELU)
	4.3.1.49 P-E2-ReLU
	4.3.1.50 Soft exponential
	4.3.1.51 Continuously differentiable ELU (CELU)
	4.3.1.52 Erf-based ReLU (ErfReLU)
	4.3.1.53 Parametric scaled exponential linear unit (PSELU)
	4.3.1.54 Leaky parametric scaled exponential linear unit (LPSELU)
	4.3.1.55 Leaky parametric scaled exponential linear unit with reposition parameter (LPSELU_RP)
	4.3.1.56 Shifted ELU family
	4.3.1.57 Tunable swish (T-swish)
	4.3.1.58 Rectified parametric sigmoid unit (RePSU)
	4.3.1.59 Parametric deformable exponential linear unit (PDELU)
	4.3.1.60 Elastic exponential linear unit (EELU)
	4.3.1.61 Parametric first power linear unit with sign (PFPLUS)
	4.3.1.62 Parametric variational linear unit (PVLU)

	4.3.2 Sigmoid-based adaptive functions
	4.3.2.1 Generalized hyperbolic tangent
	4.3.2.2 Trainable amplitude
	4.3.2.3 Adaptive slope sigmoidal function (ASSF)
	4.3.2.4 Slope varying activation function (SVAF)
	4.3.2.5 TanhSoft
	4.3.2.6 Parametric sigmoid (psigmoid)
	4.3.2.7 Parametric sigmoid function (PSF)
	4.3.2.8 Slope and threshold adaptive activation function with tanh function (STAC-tanh)
	4.3.2.9 Generalized Riccati activation (GRA)

	4.3.3 Adaptive sigmoid-weighted linear units
	4.3.3.1 Swish
	4.3.3.2 Adaptive hybrid activation function (AHAF)
	4.3.3.3 Parametric shifted SiLU (PSSiLU)
	4.3.3.4 E-swish
	4.3.3.5 ACON-B
	4.3.3.6 ACON-C
	4.3.3.7 Parameterized self-circulating gating unit (PSGU)
	4.3.3.8 Tangent-bipolar-sigmoid ReLU learnable (TBSReLUl)
	4.3.3.9 PATS
	4.3.3.10 Adaptive quadratic linear unit (AQuLU)
	4.3.3.11 Sinu-sigmoidal linear unit (SinLU)
	4.3.3.12 ErfAct
	4.3.3.13 Parametric serf (pserf)
	4.3.3.14 Swim

	4.3.4 Tuned softmax (tsoftmax)
	4.3.5 Generalized Lehmer softmax (glsoftmax)
	4.3.6 Generalized power softmax (gpsoftmax)
	4.3.7 Adaptive radial basis function (ARBF)
	4.3.8 Parametric Gaussian error linear unit (PGELU)
	4.3.9 Parametric flatted-T swish (PFTS)
	4.3.10 Parametric flatten-p mish (PFPM)
	4.3.11 Gaussian error unit (GEU)
	4.3.12 Scaled-gamma-tanh activation function (SGT)
	4.3.13 RSign
	4.3.14 P-SIG-RAMP
	4.3.15 Locally adaptive activation function (LAAF)
	4.3.15.1 Adaptive slope hyperbolic tangent
	4.3.15.2 Parametric scaled hyperbolic tangent (PSTanh)
	4.3.15.3 Scaled sine-hyperbolic function (SSinH)
	4.3.15.4 Scaled exponential function (SExp)
	4.3.15.5 Logmoid activation unit (LAU)
	4.3.15.6 Cosinu-sigmoidal linear unit (CosLU)
	4.3.15.7 Adaptive Gumbel (AGumb)

	4.3.16 Shape autotuning adaptive activation function (SAAAF)
	4.3.17 Noisy activation functions
	4.3.18 Fractional adaptive activation functions
	4.3.18.1 Fractional ReLU
	4.3.18.2 Fractional softplus
	4.3.18.3 Fractional hyperbolic tangent
	4.3.18.4 Fractional adaptive linear unit
	4.3.18.5 Fractional leaky ReLU (FracLReLU)
	4.3.18.6 Fractional parametric ReLU (FracPReLU)
	4.3.18.7 Fractional ELU (FracELU)
	4.3.18.8 Fractional SiLU (FracSiLU)
	4.3.18.9 Fractional GELU (FracGELU)

	4.3.19 Scaled softsign
	4.3.20 Parameterized softplus (s+2L)
	4.3.21 Universal activation function (UAF)
	4.3.22 Learnable extended activation function (LEAF)
	4.3.23 Generalized ReLU (GReLU)
	4.3.24 Multiquadratic activation function (MAF)
	4.3.25 EIS activation functions
	4.3.25.1 Linear combination of parameterized softplus and ELU (ELUs+2L)

	4.3.26 Global-local neuron (GLN)
	4.3.27 Neuron-adaptive activation function
	4.3.27.1 Scaled logistic sigmoid

	4.3.28 Adaptive piece-wise linear unit (APLU)
	4.3.29 Simple piecewise linear and adaptive function with symmetric hinges (SPLASH)
	4.3.30 Multi-bias activation (MBA)
	4.3.31 Mexican ReLU (MeLU)
	4.3.31.1 Modified Mexican ReLU (MMeLU)
	4.3.31.2 Gaussian ReLU (GaLU)
	4.3.31.3 Hard-Swish

	4.3.32 S-shaped rectified linear activation unit (SReLU)
	4.3.32.1 N-activation
	4.3.32.2 ALiSA

	4.3.33 Alternated left ReLU (All-ReLU)
	4.3.34 Piecewise linear unit (PLU)
	4.3.35 Adaptive linear unit (AdaLU)
	4.3.36 Trapezoid-shaped activation function (TSAF)
	4.3.37 Adaptive Richard's curve weighted activation (ARiA)
	4.3.38 Modified Weibull function
	4.3.39 Sincos
	4.3.40 Combination of sine and logistic sigmoid (CSS)
	4.3.41 Catalytic activation function (CatAF)
	4.3.42 Expcos
	4.3.43 Multi-bin trainable linear unit (MTLU)
	4.3.44 Continuous piecewise nonlinear activation function CPN
	4.3.45 Look-up table unit (LuTU)
	4.3.46 Maxout unit
	4.3.47 Adaptive blending unit (ABU)
	4.3.47.1 Trainable compound activation function (TCA)
	4.3.47.2 Average of a pool of activation functions (APAF)
	4.3.47.3 Gating adaptive blending unit (GABU)
	4.3.47.4 Deep Kronecker neural networks
	4.3.47.5 Rowdy activation functions
	4.3.47.6 Self-learnable activation function (SLAF)
	4.3.47.7 Chebyshev polynomial-based activation function (ChPAF)
	4.3.47.8 Legendre polynomial-based activation function (LPAF)
	4.3.47.9 Hermite polynomial-based activation function (HPAF)
	4.3.47.10 Mixture of Gaussian unit (MoGU)
	4.3.47.11 Fourier series activation

	4.3.48 Padé activation unit (PAU)
	4.3.49 Randomized Padé activation unit (RPAU)
	4.3.50 Enhanced rational activation (ERA)
	4.3.51 Orthogonal Padé activation unit (OPAU)
	4.3.52 Spline interpolating activation functions
	4.3.53 Truncated Gaussian unit (TruG)
	4.3.54 Mollified square root function (MSRF) family
	4.3.54.1 SquarePlus
	4.3.54.2 StepPlus
	4.3.54.3 LReLUPlus
	4.3.54.4 vReLUPlus
	4.3.54.5 SoftshrinkPlus
	4.3.54.6 PanPlus
	4.3.54.7 BReLUPlus
	4.3.54.8 SReLUPlus
	4.3.54.9 HardTanhPlus
	4.3.54.10 HardshrinkPlus
	4.3.54.11 MeLUPlus
	4.3.54.12 TSAFPlus
	4.3.54.13 ELUPlus
	4.3.54.14 SwishPlus
	4.3.54.15 MishPlus
	4.3.54.16 LogishPlus
	4.3.54.17 SoftsignPlus
	4.3.54.18 SignReLUPlus

	4.3.55 Complex approaches
	4.3.55.1 Variable activation function (VAF)
	4.3.55.2 Flexible activation bag (FAB)
	4.3.55.3 Dynamic parameter ReLU (DY–ReLU)
	4.3.55.4 Random NNs with trainable activation functions
	4.3.55.5 Kernel activation function (KAF)

	4.3.56 SAVE-inspired activation functions

	4.4 Neural Network architectures with parallel connections
	4.5 Artificial data generation
	4.5.1 Neural networks with random weights
	4.5.2 Synthetic data generation
	4.5.3 Neural networks with random weights for data generation

	5 Methods
	5.1 Preliminaries
	5.1.1 Data
	5.1.1.1 Heterogeneity–aware dataset
	5.1.1.2 Data normalization

	5.1.2 Experiments with artificial data
	5.1.2.1 Methodology

	5.1.3 Baseline architectures and training procedure
	5.1.4 Model evaluation
	5.1.4.1 Pairwise evaluation of relative performance

	5.1.5 Evaluation of the practical impact
	5.1.5.1 Differential gene expression analysis
	5.1.5.2 Used phenotypes
	5.1.5.3 Evaluation

	5.2 Transformative adaptive activation function
	5.2.1 Motivation for individual parameters
	5.2.1.1 Activations as special cases of TAAFs
	5.2.1.2 Activations related to TAAFs
	5.2.1.3 TAAF as output layer

	5.2.2 Ensembles

	5.3 Tower and checkerboard architectures
	5.3.1 Tower architecture (T–D–GEX)
	5.3.2 Checkerboard architecture (C–D–GEX)
	5.3.3 Skip connections

	5.4 Implementation
	5.4.1 Transformative adaptive activation function
	5.4.1.1 Adaptive transformation unit
	5.4.1.2 TAAF as the application of ATUs

	6 Experimental evaluation
	6.1 Establishing TAAF performance on the D-GEX microarray data
	6.1.1 Experiment 1: Usage of TAAFs
	6.1.2 Experiment 2: Replacing tanh with sigmoid activation function
	6.1.3 Experiment 3: TAAFs for capacity adjusted NNs
	6.1.4 Experiment 4: Importance of individual parameters
	6.1.5 Experiment 5: TAAF in the output layer
	6.1.6 Experiment 6: heterogeneity-aware data sampling
	6.1.7 Overall comparison

	6.2 Practical impact of TAAFs on differential gene expression analysis on the D-GEX microarray data
	6.2.1 Artificial phenotypes
	6.2.1.1 Impact on candidate rankings

	6.2.2 Real phenotypes
	6.2.2.1 Impact on candidate rankings

	6.3 Exploring TAAF performance using artificial data
	6.3.1 The general performance comparison
	6.3.2 Target noise variance's impact on performance
	6.3.3 Performance impact of layer configuration of the inference network
	6.3.4 Consistency of results over repetitions
	6.3.5 Width of data generation networks
	6.3.5.1 Results

	6.3.6 Depth of data generation networks
	6.3.6.1 Results

	6.4 Establishing the architectural improvements using D–GEX microarray data
	6.4.1 Statistical evaluation
	6.4.2 Varying dropout rates in checkerboard architectures

	6.5 Practical impact of the checkerboard architecture on differential gene expression analysis

	7 Discussion
	7.1 Transformative adaptive activation functions
	7.1.1 TAAFs improve the performance
	7.1.2 TAAF parameters
	7.1.3 Conceptual architectural simplification for regression tasks
	7.1.4 Gene expression inference perspective
	7.1.5 Practical impact of TAAFs

	7.2 TAAFs for other tasks besides gene expression inference
	7.2.1 Impact of initialization of the data generation network
	7.2.2 Depth and width of the data generation network

	7.3 Tower and checkerboard architectures
	7.3.1 Practical impact of checkerboard architecture

	8 Conclusions
	8.1 Future works
	8.1.1 Gaining insights into TAAFs
	8.1.2 Analysis of redundancy
	8.1.3 Simplification of usability
	8.1.4 Extending applications
	8.1.5 Insights into tower and checkerboard architectures
	8.1.6 Generalization of the checkerboard architecture
	8.1.7 Leaving the blocks behind
	8.1.8 Dual transformative adaptive activation function
	8.1.9 Generalized dual transformative adaptive activation function
	8.1.10 GAN-based approaches for GE inference
	8.1.11 TAAF initialization

	Bibliography
	Appendix
	A Additional figures
	A.1 Distributions of differences of various metrics using real phenotypes
	A.2 Performance impact of layer configuration of the inference network

	Declaration
	Colophon

