České vysoké učení technické v Praze Fakulta strojní

Ústav mechaniky, biomechaniky a mechatroniky

Odbor pružnosti a pevnosti

DISERTAČNÍ PRÁCE

Návrhové metody analýzy kompozitních nosníků

Design methods of composite beam analysis

Autor:	Ing. Tereza Zámečníková
Školitel:	doc. Ing. Tomáš Mareš, Ph.D.
Studijní program:	Strojní inženýrství
Studijní obor:	Mechanika tuhých a poddajných těles a prostředí
Odevzdáno k obhajobo	ě: 2024

Anotační list

Tereza Zámečníková (roz. Zavřelová)
Návrhové metody analýzy kompozitních nosníků
Design methods of composite beam analysis
2024
Strojní inženýrství
Mechanika tuhých a poddajných těles a prostředí
12 105 Ústav mechaniky, biomechaniky a mechatroniky / 12 111 Odbor pružnosti a pevnosti
doc. Ing. Tomáš Mareš, Ph.D.
počet stran: 146
počet obrázků: 76
počet tabulek: 22
počet příloh: 5
kompozit, laminát, nosník, trubka, tuhost
composite, laminate, beam, tube, stiffness

Anotace:

Práce se zabývá vývojem metod pro výpočet tuhosti kompozitních nosníků s mezikruhovým průřezem (kompozitních trubek). Výsledkem práce je návrh nových metod spolehlivě určujících ekvivalentní tuhost kompozitních nosníků a rozbor rámce jejich použitelnosti. Výsledky nových metod jsou porovnávány s výsledky mechanických zkoušek a s výsledky z běžně dostupných metod pro určení tuhosti kompozitních nosníků včetně MKP analýzy. Vybrané vzorky jsou v širokém spektru možných rozměrů kompozitních nosníků trubkového tvaru. V tomto spektru jsou zastoupeny tenkostěnné i silnostěnné nosníky. Cílem práce je vyvinout univerzální metodu určení ekvivalentní tuhosti kompozitního nosníku trubkového tvaru použitelnou v návrhovém procesu při tvorbě nových mechanických soustav.

Abstract:

The work deals with the development of methods for calculating the stiffness of composite beams with an intermediate circular cross-section (composite tubes). The result of the work is the proposal of new methods for reliably determining the equivalent stiffness of composite beams and an analysis of their possibilities. The results of the new methods are compared with the results of mechanical tests and with the results of commonly available methods for determining the stiffness of composite beams, including FE analysis. The selected specimens are in a wide range of possible dimensions of tubular composite beams. Thin-walled and thick-walled beams are represented in this spectrum. The goal of the dissertation is to develop a universal method for determining the equivalent stiffness of a tubular composite beam that can be used in the design process when creating new mechanical systems.

Prohlášení

Prohlašuji, že jsem disertační práci na téma "Návrhové metody analýzy kompozitních nosníků" vypracovala samostatně, výhradně s použitím literatury, která je uvedena v seznamu použité literatury.

Nemám závažný důvod pro použití tohoto školního díla ve smyslu Zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V Praze dne

Tereza Zámečníková

.....

Poděkování

Úvodem této práce bych chtěla poděkovat doc. Ing. Tomášovi Marešovi, Ph.D. za trpělivé a podnětné připomínky k mé práci a ochotu naslouchat mým myšlenkám. Ráda bych poděkovala Bc. et Ing. Zdeňku Padovcovi, Ph.D. za praktické rady a pomoc při provedení všech experimentů, Ing. Anně Malé, Ing. Bohumilovi Kropíkovi za celkovou spolupráci na projektech spojených s mojí prací a celému kolektivu Odboru pružnosti a pevnosti za přátelské a tvůrčí prostředí, které na odboru panuje.

Dále bych ráda poděkovala celé své rodině, hlavně rodičům, manželovi Pavlovi a Pavle za veškerou podporu, za čas na studium a trpělivost, díky nimž mi studium umožnili.

ΤZ

Obsah

Anotační	list	2
Prohláše	ní	3
Poděková	iní	4
Obsah		5
Seznamy		8
Sezn	am použitých značek	8
Sezn	am obrázků	11
Sezn	am tabulek	14
Sezn	am příloh	15
Sezn	am zkratek	15
1 Úvod		16
1.1	Motivace	17
2 Přehl	ed o současném stavu problematiky	18
2.1	Výroba, složení a matematický popis kompozitních	nosníků
		18
2.1.1	Výroba kompozitní trubky	18
2.1.2	Matematický popis vybraných případů kompozitního materiálu	19
2.1.3	Materiálové charakteristiky kompozitního materiálu	20
2.2	Klasická laminátová teorie – CLT	26
2.3	Ohybová a smyková tuhost kompozitních nosníků	31
2.3.1	Aplikace Castiglianovy věty na vetknutý nosník zatížený osar	nělou silou
– diskuze pou	nžití pro kompozitní nosník a získání tuhosti z MKP modelů	32
2.3.2	Metoda určení ekvivalentní tuhosti nosníku založená na přím	é integraci
deformační	energie po vrstvách kompozitního nosníku při uvažování	Bernoulliho
(respektive T	imošenkovy) hypotézy	34
2.3.3	Metoda určení ekvivalentní tuhosti nosníku při využití ABD	matice pro
kompozitní sl	kladbu stěny nosníku	35

	2.4	MKP analýza kompozitních nosníků	36
	2.4.1	Klasická Skořepina (Conventional Shell)	37
	2.4.2	Objemová skořepina (Continuum Shell / Solid shell)	37
	2.4.3	Objemový Model (Volume Model / Solid model v Aj.)	37
	2.5	Shrnutí poznatků v oblasti výpočtu tuhosti kom	pozitního
	nosr	níku	38
	2.5.1	Závěry plynoucí z rešerše stavu problematiky	41
3	Konk	rétní cíle disertační práce	43
	3.1	Cíle disertační práce	44
Pa	ostup d	osažení cílů disertační práce	45
4	Analý	ýza běžně užívaných metod výpočtu tuhosti kompozitní	ch trubek
	•••••		46
	4.1	Ověření funkčnosti dostupných metod pro výpoče	et tuhosti
	kom	pozitních trubek užitých jako nosníky a porovná	ní jejich
	výsl	edků	47
	4.1.1	Závislost průhybu kompozitního nosníku na úhlu návinu vláken	
	4.1.2	Závislost ekvivalentních modulů pružnosti na štíhlosti nosníku a na	úhlu návinu
vlák	ten		50
	4.1.3	Rozšířené zkoumání závislosti ekvivalentních modulů pružnosti	na štíhlosti
nosi	níku a na	úhlu návinu vláken (Sada 4)	53
	4.1.4	Porovnání výsledků s experimentálními daty	57
	4.2	Shrnutí poznatků zjištěných při ověřování dos	avadních
	mete	od	63
5	Mater	natický popis nově navržených metod	64
	5.1	Použití matice tuhosti a poddajnosti	64
	5.2	Ohybová tuhost získaná statistickou metodou	65
	5.3	Nová metoda založená na úvaze o geometrii	66
6	Prove	dení experimentálních mechanických zkoušek	72
	6.1	Zkušební zařízení a konfigurace zkoušky pro	nosníky
	s vni	itřním průměrem 26 mm a 50 mm	76

	6.2	Popis vyhodnocení	79
	6.3	Základní série vzorků – naměřená data	82
	6.4	Dodatečná série silnostěnných vzorků – naměřen	ná data84
7	Porovi	nání výsledků experimentu s výsledky výpočetních i	metod85
	7.1	Základní série vzorků – grafické zpracování dat	88
	7.2	Dodatečná série silnostěnných vzorků – grafické	zpracování
	dat a	popis odlišností	92
8	Zhodn	ocení výsledků disertační práce a jejich diskuse	94
9	Závěr		96
10	Litera	tura	9 8
11	Publik	kace autora k tématu disertační práce	101
12	Ostatr	ıí publikace autora	103
13	Příloh	y	110
	13.1	Příloha 1: Data pro sadu 4 –graficky a číselně	110
	13.2	Příloha 2: Základní série vzorků – kompozitní	i skladba a
	rozm	ĕry	131
	13.3	Příloha 3: Dodatečná série vzorků - – kompozitn	í skladba a
	rozm	ĕry	133
	13.4	Příloha 4: Seznam všech vzorků s naměřenými	rozměry –
	zákla	ıdní série	134
	13.5	Příloha 5: Číselné hodnoty experimentálně	změřených
	tuho	stí a hodnoty získané všemi typy výpočtů	142

Seznamy

Seznam použitých značek

symbol	jednotka	název
A	N.m ⁻¹	matice tahové tuhosti
A^*	m.N ⁻¹	inverzní matice tahové tuhosti
Α	m ²	plocha
A_f	m ²	plocha průřezu vlákna
A_m	m ²	plocha matrice
A_{ij}	N.m ⁻¹	element matice tahové tuhosti
b	m	šířka
В	N.m ⁻¹	matice vazební tuhosti
B_{ij}	N.m ⁻¹	element matice vazební tuhosti
С	Pa-1	matice poddajnosti
C_{xy}	Pa-1	matice poddajnosti v rovině <i>xy</i>
d	mm	vnitřní průměr
D	Ν	matice ohybové tuhosti
D *	N-1	inverzní matice ohybové tuhosti
D	mm	vnější průměr
D _{ij}	Ν	element matice ohybové tuhosti
E	Ра	modul pružnosti
E_{1}, E_{2}, E_{3}	Ра	moduly pružnosti v příslušných směrech
E_{eq}	Ра	ekvivalentní modul pružnosti
${f E}_d$	Ра	modul pružnosti vypočítaný z naměřené deformace
E_f	Ра	modul pružnosti vlákna
E_L	Ра	modul pružnosti v podélném směru L
E_m	Pa	modul pružnosti matrice
E_T	Ра	modul pružnosti v příčném směru T
$E_{T'}$	Ра	modul pružnosti v příčném směru T'
E_x	Pa	efektivní modul pružnosti v tahu ve směru osy x
F	N	vnější síla
G	Pa	modul pružnosti ve smyku
G_{12}, G_{13}, G_{23}	Pa	moduly pružnosti ve smyku v příslušných rovinách
G _{eq}	Pa	ekvivalentni modul pružnosti ve smyku
G_{xy}	Pa	modul pružnosti ve smyku v roviné xy
G_{LT}	Pa	modul pružnosti ve smyku v rovine LT
$G_{LT'}$	Pa	modul pružnosti ve smyku v rovine LT
$G_{TT'}$	Pa	modul pružnosti ve smyku v rovine TT
n_k	m	vyska k-te vrstvy
n	III	vyska shoon á in donn
ι, j, κ Ι	- m4	bueche indexy
J_{y}	111 ²	kvauratický moment plochy k ose y
J _Z 1.	III ⁺	kvauraticky moment piocny k ose z
к , , ,	-	vektor krivosti stredni vrstvy laminatu
$\kappa_{\chi}, \kappa_{\gamma}, \kappa_{\chi\gamma}$	-	prvký vektoru krivosti streuni roviny faminatů
	-	dálla
L	111	ueika

symbol	jednotka	název
L_p	m	délka rozpětí podpěr
L_v	m	délka vzorku
М	Ν	matice momentů vztažených na jednotku délky
M_x , M_y , M_{xy}	Ν	prvky matice momentů
Mo	N.m	vektor výsledných ohybových momentů
Ň	N.m ⁻¹	matice výslednic sil vztažených na jednotku délky
Ν	-	počet vrstev
N_x, N_y, N_{xy}	N.m ⁻¹	výslednice sil vztažených na jednotku délky
N_1, N_2, N_3	N.m ⁻¹	výsledné síly vztažené na jednotku délky
n	-	počet vrstev
O_n	-	neutrální osa
Q	Ра	matice mimoosové tuhosti
Q_{ii}	Ра	element matice mimoosové tuhosti
r	m	poloměr
S	m ³	statický moment
<i>S</i>	Ра	matice tuhosti
S_{xv}	Ра	matice tuhosti v rovině <i>xy</i>
t t	m	tloušťka
Т	Ν	smyková síla
Т	-	příčný směr (index)
T _s	-	transformační matice pro vektor deformace
T_{σ}	-	transformační matice pro vektor napětí
u_0, v_0, w_0	m	posunutí ve směrech <i>x</i> . <i>v</i> . <i>z</i>
u_1, u_2, u_3	m	posunutí ve směrech x_1, x_2, x_3
U U	I	energie
$U_{M_{O}}$	Í	energie od ohybového momentu
U_{τ}	Ĭ	energie od smykového účinku
v(x)	m	posuv ve směru x
v	m	průhvb
${\cal V}_F$	m	průhyb od síly F
V	m ³	obiem
V_{f}	-	objemový podíl vláken
Vm	-	objemový podíl matrice
W	m	šířka
X, V, Z	-	osy souřadného systému
ß	-	součinitel charakterizující nerovnoměrné rozložení
I ⁻		smykových napětí v závislosti na geometrii průřezu
γ	-	zkos
$\gamma_{rv}, \gamma_{rz}, \gamma_{vz}$	-	zkos v souřadném systému <i>O (x, y, z)</i>
E	-	poměrné prodloužení (deformace)
\mathcal{E}_{f}	-	poměrné prodloužení (deformace) vlákna
\mathcal{E}_L	-	poměrné prodloužení (deformace) ve směru L
ε_m^-	-	poměrné prodloužení (deformace) matrice
ε°_{m}	-	poměrné prodloužení (deformace) střednice
ε_T	-	poměrné prodloužení (deformace) ve směru T
${\mathcal E}_{T'}$	-	poměrné prodloužení (deformace) ve směru T'
\mathcal{E}_{LT}	-	zkos v rovině <i>LT</i>

symbol	jednotka	název
$\mathcal{E}_{\chi\chi}, \mathcal{E}_{\gamma\gamma}, \mathcal{E}_{ZZ}$	-	poměrné prodloužení v souřadném systému O (x, y, z)
$\varepsilon^{\circ}_{\chi\chi}, \varepsilon^{\circ}_{\gamma\gamma}, \varepsilon^{\circ}_{ZZ}$	-	poměrné prodloužení střednice v souřadném systému
		$O\left(x,y,z\right)$
κ	-	křivost
λ	Ра	hustota deformační energie
v	-	Poissonovo číslo
v_{21}, v_{31}, v_{32}	-	Poissonova čísla (P. Poměry, též součinitele příčné
		kontrakce) v souřadném systému O (1, 2, 3)
$v_{LT}, v_{TL}, v_{LT'}, v_{TT'}$	-	Poissonova čísla (P. Poměry, též součinitele příčné
		kontrakce) v souřadném systému O (L, T, T')
θ	deg	úhel směru vláken
σ	Ра	napětí
σ	-	vektor napětí
$\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6$	Ра	normálové složky a smykové složky vektoru napětí
$\sigma_{\!f}$	Ра	napětí ve vláknu
$\sigma_L, \sigma_T, \sigma_{LT}$	Ра	normálové složky napětí ve směru vlákna, kolmo na
		vlákna a smyková složka napětí v souřadném systému
		O (L, T, T')
σ_m	Ра	napětí v matrici
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$	Ра	normálové složky napětí v souřadném systému
		$O\left(x,y,z\right)$
$\sigma_{xy}, \sigma_{xz}, \sigma_{yz}$	Ра	smykové složky napětí v souřadném systému
		$O\left(x,y,z\right)$
τ	Ра	smykové napětí

Seznam obrázků

Obr.	1: Chování anizotropního materiálu při zatížení - převzato – Guy [3]20
Obr.	2: RVE pro Youngův modul pružnosti v podélném směru – převzato Laš [7]21
Obr.	3: RVE pro příčný Youngův modul pružnosti – převzato Laš [7]21
Obr.	4: Příklad jednosměrové kompozitní vrstvy - převzato Laš [7]22
Obr.	5: Příklad jednosměrného kompozitu v souřadném systému <i>OL</i> , <i>T</i> , <i>T</i> ' - převzato Laš [7]
Obr.	6: Jednosměrná lamina znázorněná ve dvou souřadných systémech - převzato Laš [7] 24
Obr.	7: Část laminátu před a po deformaci - převzato Laš [7]26
Obr.	8: Symetrický laminát – převzato Laš [7]
Obr.	9: Antisymetrický laminát – převzato Laš [7]
Obr.	10: Schéma kompozitního nosníku zatíženého osamělou silou F
Obr.	11: Schéma vetknutého nosníku zatíženého ohybovým momentem
Obr.	12: Bernoulliho a Timošenkův předpoklad pro teorii ohybu
Obr.	13: Rozdíl mezi klasickou a objemovou skořepinou
Obr.	14: Výseč plátu laminátové kompozitní trubky [12]40
Obr.	15: Schéma modelu nosníku a jeho zatížení silou F
Obr.	16: Závislost průhybu na úhlu směru vláken pro nosník s průměrem 30 mm
Obr.	17: Závislost průhybu na úhlu směru vláken pro nosník s průměrem 100 mm
Obr.	18: Schéma modelu nosníku a jeho zatížení momentem M
Obr.	19: Závislost modulu pružnosti v tahu na štíhlosti nosníku
Obr.	20: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 5°
Obr.	21: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí
	vláken 45°
Obr.	22: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí
	vláken 90°
Obr.	23: Celková závislost průměrných hodnot ze sady 4
Obr.	24: Celková závislost průměrných hodnot průhybu na úhlu natočení vláken ze sady 4
Obr.	25: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání
	s experimentem – (Trubka 2 – tr2; def1, def2 – experimentálně měřené deformace
	první a druhý vzorek, další zkratky viz Tabulka 2), vzorek o délce 400 mm57
Obr.	26: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání
	s experimentem – (Trubka 2 – tr2; def1, def2 – experimentálně měřené deformace
Ohr	27: Závislost výslodných hodnot průhvhu počítanáho různými motodomi v porovnání
001.	21. Zavisiost vysleuhych houhot pruhybu pochaneno ružnými metodalní v porovnam a ovnorimontom u tonkostěnných posníků (Truhko $2 tružt tružt dof1 dof2)$
	ovnovimentélně měřené deformace prvního a dvuhého vzovku, delčí zkvetky viz
	Tabulka 2) wzorak o dólao 400 mm
Ohr	28: Závislost výslodných hodnot průhvhu počítoného vůznými motodomi v porovnání
OUT.	20. Zavisiosi vysieunych nouhot prunybu pochaneno ružnymi metodami v porovnam s ovnorimontom u tonkostonných nosníků (Truhko $2 + tr^2 \cdot doft dof2)$
	ovnorimentálně měřené deformace prvního a dvuhého vzorku delčí zkrotku viz
	Tabulka 2) vzorek o délce 600 mm
	$\mathbf{I} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$

Obr.	29: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání s experimentem u silnostěnných nosníků - (def1, def2 – experimentálně měřené deformace první a druhý vzorek, další zkratky viz Tabulka 2), vzorek o délce 400 mm
Obr.	30: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání s experimentem u silnostěnných nosníků - (def1, def2 – experimentálně měřené deformace první a druhý vzorek, další zkratky viz Tabulka 2), vzorek o délce 600 mm
Obr.	31: Vrstvený laminát zatížený ohybovou silou F66
Obr.	32: Vrstvený laminát zatížený tahovou silou F67
Obr.	33: Vrstvený laminát zatížený silou F pod úhlem α se svými ekvivalenty namáhanými tahem a ohybem
Obr.	34: Průřez kompozitního nosníku s vyznačenými oblastmi, které jsou zatíženy z větší
	části tahem a ohybem a příslušné moduly tuhosti68
Obr.	35: Konečně malá část průřezu kompozitní trubky69
Obr.	36: Průřez kompozitního nosníku s vyznačenou částí geometrie dα závislou na úhlu α
Obr.	37: Konečně malá část průřezu s ekvivalentními obdélníky představujícími části zatížené tahem a ohybem
Obr.	38: Příklad vzorků ID 50 - podélná a typická skladba74
Obr.	39: Konstrukční výkres vložek pro nosníky s vnitřním průměrem 26 mm76
Obr.	40: Vložky pro nosníky ID 26 a ID 50
Obr.	41: Konstrukční výkres vložek pro nosníky s vnitřním průměrem 50 mm77
Obr.	42: Schéma zkoušek
Obr.	43: Příklad zkoušeného vzorku a jeho uspořádání ve zkoušecím stroji
Obr.	44: Detail zatěžovacího členu zkušební soustavy
Obr.	45: Příklad naměřených dat optického snímače80
Obr.	46: Příklad naměřených dat z tenzometru80
Obr.	47: Schéma zkoušek pro dodatečnou sérii85
Obr.	48: Vypočítaná a naměřená tuhost pro typickou skladbu [90°, 0°, ±30°] - trubka ID 26 mm
Obr.	49: Vypočítaná a naměřená tuhost pro skladbu Napříčová 1 [90°, ±45°] - trubka ID 26 mm
Obr.	50: Vypočítaná a naměřená tuhost pro skladbu Napříčová 2 [90°, ±20°] - trubka ID 26 mm
Obr.	51: Vypočítaná a naměřená tuhost pro podélnou skladbu [90°, 0°] - trubka ID 26 mm
Obr.	52: Vypočítaná a naměřená tuhost pro typickou skladbu [90°, 0°, ±30°] - trubka ID 50 mm
Obr.	53: Vypočítaná a naměřená tuhost pro skladbu Napříčová 1 [90°, ±45°] - trubka ID 50 mm
Obr.	54: Vypočítaná a naměřená tuhost pro skladbu Napříčová 2 [90°, ±20°] - trubka ID 50 mm
Obr.	55: Vypočítaná a naměřená tuhost pro podélnou skladbu [90°, 0°] - trubka ID 50 mm

Obr.	56: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky s typickou skladbou [90°, 0°, ±30°]90
Obr.	57: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Napříčová 1 [90° +45°] 91
Obr.	 58: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Napříčová 2 [90°, ±20°]
Obr.	59: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky s podélnou skladbou [90°, 0°]91
Obr.	60: Vypočítaná a naměřená tuhost pro skladbu Napříčová 1 [90°, ±45°] - základní a
Obr.	61: Vypočítaná a naměřená tuhost pro skladbu Napříčová 2 [90°, ±20°] - základní a dodatečná série
Obr.	62: Vypočítaná a naměřená tuhost pro skladbu Typická [90°,0°, ±30°] - základní a dodatečná série
Obr.	63: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Napříčová 1 [90°. ±45°] - základní a dodatečná série
Obr.	64: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Napříčová 2 [90°, ±20°] - základní a dodatečná série
Obr.	65: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Typická [90°.0°. ±30°] - základní a dodatečná série
Obr.	66: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 0°
Obr.	67:Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 5°
Obr.	68: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 15°
Obr.	69: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 25°
Obr.	70: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 35°
Obr.	71: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 45°
Obr.	72: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 55°
Obr.	73: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 65°
Obr.	74: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 75°
Obr.	75: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 85°
Obr.	76: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 90°

Seznam tabulek

Tabulka 1: Přehled vlastností nejčastěji používaných vláken a matrice převzato z – Laš $\left[7\right]$
Tabulka 2: Seznam metod vybraných k porovnání47
Tabulka 3: Vstupní hodnoty pro porovnání stávajících metod48
Tabulka 4: Vstupní hodnoty pro výpočty pro sadu 251
Tabulka 5: Tabulka geometrických hodnot pro nosníky ze sady 251
Tabulka 6: Vstupní hodnoty pro výpočty ze sady 453
Tabulka 7: Tabulka hodnot průhybů počítaných pro nosník 2 experimentálně testovaný v $[33]$
Tabulka 8: Tabulka hodnot průhybů počítaných pro nosník 3 experimentálně testovaný v $\left[33\right]$
Tabulka 9: Tabulka hodnot průhybů počítaných pro silnostěnný nosník o délce 600 mm
experimentálně testovaný v [33]62
Tabulka 10: Materiálové vlastnosti vláken použitých na vzorky73
Tabulka 11: Materiálové vlastnosti kompozitu73
Tabulka 12: značení vzorků ID 2673
Tabulka 13: Značení vzorků ID 5074
Tabulka 14: Vnitřní a vnější průměry všech vzorků a jejich tloušťka75
Tabulka 15: Rozměry zkoušených vzorků
Tabulka 16: Výsledky zkoušek vzorků s ID 26 mm
Tabulka 17: Výsledky zkoušek vzorků s ID 50 mm83
Tabulka 18: Vnitřní a vnější průměry všech vzorků a jejich tloušťka z dodatečné série84
Tabulka 19: Rozměry zkoušených vzorků z dodatečné série
Tabulka 20: Výsledky zkoušek vzorků s ID 26 mm a ID 50 mm pro dodatečnou sérii vzorků
Tabulka 21: Seznam metod vybraných k porovnání86
Tabulka 22: Skupiny vzorků pro vyhodnocení dodatečné série

Seznam příloh

Kapitola 13 Přílohy	110
Příloha 1: 13.1 Data pro sadu 4 – graficky a číselně	110
Příloha 2: 13.2 Základní série vzorků – kompozitní skladba a rozměry	131
Příloha 3: 13.3 Dodatečná série vzorků – kompozitní skladba a rozměry	133
Příloha 4: 13.4 Seznam všech vzorků s naměřenými rozměry	134
Příloha 5: 13.5 Číselné hodnoty experimentálně změřených tuhostí a hodnoty získané všemi typy výpočtů	142

Seznam zkratek

- CLT klasická laminátová teorie (clasical laminate theory v angličtině)
- ConvS klasická skořepina (conventional shell v angličtině)
- CS objemová skořepina (continuum shell v angličtině)
- def1 deformace prvního vzorku
- def2 deformace druhého vzorku
- FEA analýza metodou konečných prvků (finit element analysis v angličtině)
- HS vysokopevnostní vlákna (high strength v angličtině)
- HM vysokomodulová vlákna (high modulus v angličtině)
- MKP metoda konečných prvků
- RVE reprezentativní objemový prvek (representativ volume element v angličtině)
- SmO směrodatná odchylka
- VM objemový model (volume model v angličtině)
- tr2 trubka 2
- tr3 trubka 3

1 Úvod

Použití kompozitních materiálů je v dnešní době zcela běžné v různých průmyslových odvětvích. Kompozitní materiály se stále častěji uplatňují nejen jako prvek k odlehčení mechanické struktury, ale pronikají též do základních mechanických sestav určených k přenosu zatížení. Pro takovéto nosné prvky většinou platí přísná návrhová pravidla týkající se zejména bezpečnosti provozu hotového stroje. U konvenčních materiálů jako je ocel nebo sklo jsou připraveny různé normy, které při konstrukci nových mechanických celků stanovují pravidla pro použití. U kompozitních materiálů takovéto ucelené normy zatím nejsou stanoveny zejména kvůli jejich různorodosti.

Při řešení různých projektů týkajících se návrhu kompozitních součástí se v praxi setkáváme s neúplným pochopením možností využití kompozitních materiálů a s konstruktéry, kteří s nimi pracují, ale nejsou zcela obeznámeni s jejich teorií. Z takovéto situace většinou plynou ne zcela optimální konstrukční řešení. Tato skutečnost přinesla motivaci ke hledání robustní výpočtové metody pro návrhy kompozitních nosníků trubkového tvaru.

Je všeobecně známé, že dostupné metody pro výpočet deformace kompozitních nosníků s mezikruhovým průřezem neposkytují relevantní výsledky pro všechny možné typy kompozitní skladby a tloušťky stěny. Existuje více metod pro výpočet deformace či tuhosti kompozitních nosníků. Ukazuje se ale, že tyto metody se při srovnání rozchází ve výsledcích pro tentýž případ kompozitního nosníku nebo jsou příliš složité pro prvotní návrh součásti a v praxi tudíž málo používané. Taktéž se tyto metody rozchází s případným experimentem. Tato disertační práce se zaměřuje na metody výpočtu tuhosti kompozitního nosníku ve tvaru trubky s mezikruhovým průřezem s jakoukoli kompozitní skladbou a tloušťkou stěny.

Pro výpočet tuhosti kompozitních nosníků jsou známé analytické, semi-analytické a numerické metody. Jako základ pro tuto práci byla vybrána klasická laminátová teorie, která slouží pro výpočet materiálových vlastností kompozitního materiálu. Pro stanovení tuhosti a deformace kompozitního nosníku jsou používané Timošenkova metoda a Bernoulliho metoda výpočtu ohybu. Pro srovnání je použita numerická metoda konečných prvků, která pracuje též s těmito teoriemi. Jednotlivé metody jsou porovnávány na základě získaných výsledků tuhosti, ekvivalentního modulu pružnosti kompozitního nosníku a průhybu nosníku. Je provedeno porovnání hodnot ekvivalentní tuhosti kompozitních nosníků získaných z dosavadních metod a nově vyvinutých metod výpočtu tuhosti, které jsou popsané v této práci. Další porovnání výsledků těchto výpočtových metod proběhlo s provedeným experimentem.

Cílem této práce je zjistit, ve kterých konkrétních případech jsou zmíněné dosavadní metody výpočtu tuhosti a deformace kompozitních nosníků platné a na základě zjištěných skutečností vyvinout novou robustní výpočtovou metodu tuhosti kompozitních nosníků s mezikruhovým průřezem s univerzálním použitím pro všechny možné kompozitní skladby a geometrie tohoto nosníku tak, aby byla použitelná pro prvotní návrhy kompozitních nosníků v širokém spektru průmyslových vývojových oddělení.

1.1 Motivace

Motivace k této práci vznikla z potřeby vyvinout robustní a spolehlivou metodu výpočtu tuhosti kompozitního nosníku s mezikruhovým průřezem – kompozitní trubky. Tato metoda bude aplikována v návrhových výpočtech při konstruování nových mechanismů, kde může sloužit jako analytická metoda k ověření konstrukčních vlastností navrhovaného nosníku (geometrických rozměrů, kompozitní skladby, materiálu) a z toho plynoucí mechanické vlastnosti – zejména tuhosti kompozitního nosníku. Také může být aplikována do MKP, kde bude sloužit k určení tuhosti nosníkového 1D prvku (typu "*beam*" z Aj.) nebo jako vlastnost skořepinových elementů určených k modelování kompozitních nosníků.

Téma této disertační práce vzniklo s cílem zjistit a popsat funkčnost dosavadních metod určení tuhosti kompozitních nosníků, která plynula z předchozích zjištění během studia, a na těchto základech vyvinout novou metodu pro výpočet tuhosti kompozitní trubky. Následně se připojily zkušenosti z výzkumných projektů v rámci doktorského studia a první zkušenosti ze zaměstnání mimo akademickou půdu, kde se naplno projevila potřeba robustní analytické a rychlé metody pro určení tuhosti kompozitní trubky a na tomto základě upravovat jak geometrii, tak kompozitní skladbu v prvotních návrzích při ověřování konstrukčních možností.

Výzkum byl podpořen v rámci projektů SGS: SGS15/188/OHK2/3T/12, SGS18/175/OHK2/3T/12 a SGS21/151/OHK2/3T/12. Rozsáhlý experiment pro ověření tuhosti konkrétních kompozitních nosníků vzniknul v rámci HS 8301775B001 ve spolupráci se společností Compo Tech Plus s.r.o.

Dílčí poznatky z průběhu výzkumu byly aplikovány v projektech Delta 312-3121602B001 se společnostmi Samyang a Compo Tech Plus s.r.o. – tvorba hybridní hřídele pro převodovou skříň, v projektu TAČR Zéta 312-3121908B001 – návrh integrovaného spoje kompozitních nosníků a v projektu FV30033 Ministerstva průmyslu a obchodu České republiky – vývoj kompozitních leteckých profilů s termoplastickou matricí ve spolupráci se společností Latecoere CZ, s. r. o.

2 Přehled o současném stavu problematiky

Kompozitní materiál je obecné označení pro vícesložkový materiál. Každá složka kompozitu má odlišné materiálové vlastnosti a v rámci kompozitu i odlišnou funkci. Vzhledem k rozšíření kompozitních materiálů do širokého spektra průmyslových odvětví a četnosti jejich použití v současnosti zde nebude uvedena základní teorie týkající se mechaniky kompozitních materiálů ani vysvětlení základních pojmů, které jsou v tomto odvětví ustálené a lze je dohledat v publikacích široce shrnujících základní poznatky jako je např. Gay [3], Berthelot [4] nebo Barbero [2]. Tato práce je zaměřena na kompozitní nosníky s mezikruhovým průřezem – kompozitní trubky a jejich mechanické vlastnosti. Tomuto zaměření je přizpůsobena i rešerše současného stavu problematiky.

2.1 Výroba, složení a matematický popis kompozitních nosníků

2.1.1 Výroba kompozitní trubky

Kompozitní trubka je běžný polotovar pro výrobu nosníků přenášejících ve výsledné mechanické soustavě ohybové, ale i krutové nebo tahové zatížení. Vzhledem k takové šíři použití je samozřejmé, že velikost výsledných nosníků je velice variabilní. Kompozitní trubky se vyrábí navíjením dlouhých vláken sycených matricí. Lze je vyrábět z tkanin tzv. ruční laminací nebo laminací z prepregů¹ navinutých na trn. Další možností výroby je pultruze. Přehled schémat různých výrobních technologií je uveden v publikacích Gay [3] a Ehrenstein [6].

Ve všech případech mohou být použita uhlíková vlákna nebo skleněná či aramidová. Většinu běžných materiálů vláken a matricí používaných na kompozitní nosníky popisuje Ehrenstein [6]. Při výrobě pomocí navíjení dlouhých vláken na trn můžeme kombinovat typy vláken pro dosažení optimálních vlastností výsledného nosníku. Uhlíková vlákna tažená rovnoběžně s osou trubky zajistí pevnostní vrstvu a lokální ovinutí skleněnými vlákny zaručí elektrickou izolaci proti galvanické korozi u spojů se součástmi ze slitin hliníku. Vrchní vrstva aramidových vláken zase zajistí otěruvzdornost a ochranu před impaktem. Vlastnosti nejběžněji užívaných vláken a epoxidové matrice jsou uvedeny v následující tabulce (Tabulka 1).

¹ Prepreg je předimpregnovaný materiál vyztužený vlákny, kde je pryskyřice částečně vytvrzena nebo zahuštěna. [2], [6]

Materiálové charakteristiky	Vlákna					
	Sklo		Uhlík		Kevlar	
	Typ E	Typ R	HM	HS	49	
Hustota pf [kg/m ³]	2600	2550	1950	1750	1450	
Modul pružnosti E _f [GPa]	73	86	380	260	135	
Poissonovo číslo v _f	0,22	0,22	0,33	0,33	0,37	
Pevnost v tahu R _{Pf} [MPa]	3400	4400	2200	2500	3500	
Matrice - epoxid						
Hustota $\rho_m [kg/m^3]$	1200					
Modul pružnosti E _m [GPa]	$3,\!45$					
Poissonovo číslo v _m	0,30					
Pevnost v tahu R _{Pm} [MPa]	70					
HM - vysokomodulová vlákna, HS – vysokopevnostní vlákna						

Tabulka 1: Přehled vlastností nejčastěji používaných vláken a matrice převzato z – Laš [7]

Na výztužná vlákna lze nahlížet jako na příčně izotropní materiál a na pryskyřici jako na izotropní materiál. Materiálovým modelům kompozitních materiálů se věnuje například Laš [7], Stellbrink [10], Agarwal [9], Had [32], Mareš [30] a mnoho dalších autorů.

2.1.2 Matematický popis vybraných případů kompozitního materiálu

U anizotropního materiálu s obecnou anizotropií (neexistuje jediná rovina symetrie elastických vlastností) má matice tuhosti S i matice poddajnosti C dvacet jedna nezávislých prvků. Matice jsou založeny na Hookově zákoně. [5], [7] V souřadném systému O(x, y, z) je Hookův zákon vyjádřen následovně

$$\boldsymbol{\sigma} = \boldsymbol{S} \cdot \boldsymbol{\varepsilon} \quad . \tag{2.1}$$

kde σ představuje vektor normálových a smykových napětí, S symetrickou matici tuhosti a ε představuje vektor deformací. Rovnici je možné napsat v maticovém tvaru.

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix} ,$$

Rovnice (2.1) může být vyjádřena i v inverzním tvaru, kde C je matice poddajnosti

$$\boldsymbol{\varepsilon} = \boldsymbol{C} \cdot \boldsymbol{\sigma} \quad . \tag{2.3}$$

Chování anizotropního materiálu můžeme popsat obrázkem (Obr. 1)

Obr. 1: Chování anizotropního materiálu při zatížení - převzato – Guy [3]

Vzhledem k povaze kompozitních trubek s dlouhými vlákny, pokud vezmeme v potaz všechny druhy jejich výroby, tak z pohledu mechaniky se bude jednat o případy ortotropního či příčně izotropního materiálu [5], [7]. Z materiálového hlediska se nejedná o zcela anizotropní případ. Vždy existuje alespoň jedna rovina symetrie, např. rovina průřezu kompozitního nosníku. Toto zjištění následně usnadňuje pevnostní výpočty.

2.1.3 Materiálové charakteristiky kompozitního materiálu

Modul pružnosti v tahu v podélném směru

Předpokladem matematického popisu kompozitního materiálu je, že oba materiály jsou spolu spojeny [5], [7]. Z tohoto předpokladu plyne, že matice m a vlákno f mají stejnou hodnotu podélného prodloužení ε_L . Hlavním předpokladem této formulace je, že deformace ve směru vláken jsou v matrici a vláknu stejné. To znamená, že spojení vlákno-matrice je dokonalé. Když je materiál natahován ve směru vlákna, matrice m a vlákna f se prodlouží stejným způsobem, jak je znázorněno na obrázku (Obr. 2). Tento základní předpoklad je nutný k tomu, aby bylo možné nahradit heterogenní materiál v reprezentativním objemovém prvku (RVE) materiálem homogenním. [7]

$$\varepsilon_1 = \frac{\Delta L}{L} \quad . \tag{2.4}$$

Obr. 2: RVE pro Youngův modul pružnosti v podélném směru – převzato Laš [7]

Ve většině případů je modul vláken mnohem větší než modul matrice, takže příspěvek matrice k podélnému modulu kompozitu je zanedbatelný. To znamená, že v hodnotě podélného modulu pružnosti E_1 převládá vliv vlastností vláken. [7]

Příčný modul pružnosti

Obr. 3: RVE pro příčný Youngův modul pružnosti – převzato Laš [7]

Při stanovení modulu ve směru příčném k vláknům je hlavním předpokladem, že napětí ve vláknu i v matrici je stejné. Tento předpoklad je nutný pro udržení rovnováhy v příčném směru. Z předpokladu opět vyplývá, že spojení vlákno-matrice je dokonalé. [7] Zatížená RVE je na obrázku (Obr. 3). Válcové vlákno bylo nahrazeno pro jednoduchost pravoúhlým. Předpokládá se, že matrice i vlákno jsou izotropní materiály. Podle situace na obrázku (Obr. 3) je napětí v matrici m a ve vláknu f stejné.

Z obrázku (Obr. 3) je patrné, že vlákna nepřispívají znatelně k tuhosti v příčném směru, proto je možné říci, že v modulu pružnosti E_2 převládají vlastnosti matrice. Toto je jednoduchá rovnice a lze ji použít pro kvalitativní hodnocení různých materiálů, ale ne pro konstrukční výpočty. [7]

Napětí a deformace kompozitního materiálu

Kompozit vyztužený vlákny (FRP) je jedním z nejčastěji používaných kompozitních materiálů. Velké využití je dáno především variabilitou tohoto materiálu. Lamináty se obvykle skládají z několika vrstev jednosměrného kompozitu, přičemž každá vrstva je složena z vláken a matrice.

Tuhost jednosměrných kompozitů (Obr. 4) je vyjádřena stejnými vztahy, jaké se používají pro konvenční materiály (např. ocel). Počet materiálových konstant se pouze zvyšuje. Z hlediska mikromechaniky je možné sledovat napětí pouze ve vláknu nebo v matrici. Z makro-mechanického hlediska je možné uvažovat napětí v celé vrstvě laminátu. Toto napětí se nazývá střední napětí ve vrstvě.

Takový kompozitní materiál lze považovat za ortotropní, resp. příčně izotropní materiál.[7] Jednosměrný kompozit je reprezentován v souřadném systému $O(x_1, x_2, x_3)$. Vlákna jsou orientována ve směru osy x_1 . Osa x_2 je kolmá k vláknům. Často se používá souřadný systém O(L, T, T'), kde L znamená podélný směr, T je příčný směr a T' je směr kolmý k rovině laminy (kompozitní vrstvy). Protože tloušťka jedné laminy je mnohem menší než její šířka a délka, je možné vyjádřit závislost mezi napětím a deformací jako v případě rovinného napětí. To značně zjednodušuje výpočet a výsledky se blíží realitě. [7]

Obr. 5: Příklad jednosměrného kompozitu v souřadném systému O(L,T,T') - převzato Laš [7]

Vztah mezi napětím a deformací je odvozen z předpokladu, že lamina je lineárně elastický materiál. Je uvažována ortotropní lamina zatížená tahem σ_L ve směru vlákna. Poměrná prodloužení jsou vyjádřena takto

$$\varepsilon_L = \frac{1}{E_L} \cdot \sigma_L; \quad \varepsilon_T = -\frac{\nu_{LT}}{E_L} \cdot \sigma_L = -\nu_{LT} \cdot \varepsilon_L \quad ,$$

$$(2.5)$$

kde E_L je Youngův modul pružnosti v podélném směru a v_{LT} je Poissonovo číslo. V případě modulu pružnosti v příčném směru je vyjádření obdobné

$$\varepsilon_T = \frac{1}{E_T} \cdot \sigma_T; \quad \varepsilon_L = -\frac{\nu_{TL}}{E_T} \cdot \sigma_T = -\nu_{TL} \cdot \varepsilon_T \quad ,$$
(2.6)

kde E_T je Youngův modul pružnosti v příčném směru a v_{TL} je Poissonovo číslo v příslušné rovině. Pro smykovou deformaci platí vztah

$$\varepsilon_{LT} = \frac{1}{G_{LT}} \cdot \sigma_{LT} \quad , \tag{2.7}$$

kde G_{LT} je modul pružnosti ve smyku v rovině LT (Obr. 5).

Zde může být použit princip superpozice. Poměrná prodloužení v souřadném systému jedné laminy O(L,T,T') pak lze vyjádřit vzorci

$$\varepsilon_L = \frac{1}{E_L} \cdot \sigma_L - \frac{\nu_{TL}}{E_T} \cdot \sigma_T; \quad \varepsilon_T = -\frac{\nu_{LT}}{E_L} \cdot \sigma_L + \frac{1}{E_T} \cdot \sigma_T; \quad \varepsilon_{LT} = \frac{1}{G_{LT}} \cdot \sigma_{LT} \quad .$$
(2.8)

Složky napětí a poměrného prodloužení ve směru *T'* jsou pro případ rovinné napjatosti vyjádřeny následovně

$$\varepsilon_{T'} = -\frac{\nu_{LT'}}{E_L} \cdot \sigma_L - \frac{\nu_{TT'}}{E_T} \cdot \sigma_T \quad , \tag{2.9}$$

kde $v_{LT'}$, $v_{TT'}$ jsou Poissonova čísla v příslušných rovinách.

Výše zmíněné vztahy mohou být sumarizovány do maticového vyjádření

$$\begin{bmatrix} \varepsilon_L \\ \varepsilon_T \\ \varepsilon_T \\ 0 \\ 0 \\ \varepsilon_{LT} \end{bmatrix} = \begin{bmatrix} \frac{1/\varepsilon_L & -\nu_{TL}/\varepsilon_T & -\nu_{T'L}/\varepsilon_{T'} & 0 & 0 & 0 \\ -\nu_{LT}/\varepsilon_L & 1/\varepsilon_T & -\nu_{T'T}/\varepsilon_{T'} & 0 & 0 & 0 \\ -\nu_{LT'}/\varepsilon_L & -\nu_{TT'}/\varepsilon_T & 1/\varepsilon_{T'} & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 & 1/G_{LT'} & 0 \\ & 0 & 0 & 0 & 0 & 1/G_{LT'} & 0 \\ & 0 & 0 & 0 & 0 & 0 & 1/G_{LT} \end{bmatrix} \cdot \begin{bmatrix} \sigma_L \\ \sigma_T \\ 0 \\ 0 \\ \sigma_{LT} \end{bmatrix} .$$

Matice poddajnosti C pro ortotropní materiál má v tomto případě tvar

$$\boldsymbol{C} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} .$$

$$(2.11)$$

Protože matice *C* je symetrická, platí následující vztahy

$$\frac{\nu_{TL}}{E_T} = \frac{\nu_{LT}}{E_L}; \quad \frac{\nu_{T'L}}{E_{T'}} = \frac{\nu_{LT'}}{E_L}; \quad \frac{\nu_{T'T}}{E_{T'}} = \frac{\nu_{TT'}}{E_T}$$

$$(2.12)$$

$$(2.12)$$

$$(2.12)$$

Jelikož je uvažován pouze případ rovinné napjatosti, vektor napětí má pouze tři nenulové složky a celý vztah pro matici poddajnosti C můžeme zapsat ve zjednodušeném tvaru

$$\begin{bmatrix} \varepsilon_L \\ \varepsilon_T \\ \varepsilon_{LT} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{21} & C_{22} & 0 \\ 0 & 0 & C_{66} \end{bmatrix} \cdot \begin{bmatrix} \sigma_L \\ \sigma_T \\ \sigma_{LT} \end{bmatrix}$$
(2.13)
$$(\boldsymbol{\varepsilon} = \boldsymbol{C} \cdot \boldsymbol{\sigma}) \quad .$$

Pro matici tuhosti **S** pak bude platit inverzní vztah

$$\begin{bmatrix} \sigma_L \\ \sigma_T \\ \sigma_{LT} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{21} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_L \\ \varepsilon_T \\ \varepsilon_{LT} \end{bmatrix}$$
(2.14)
$$(\boldsymbol{\sigma} = \boldsymbol{S} \cdot \boldsymbol{\varepsilon}) ,$$

kde z předchozích vztahů je zřejmé

$$S = C^{-1}$$
 . (2.15)

Dané prvky matice tuhosti **S** mohou být vyjádřeny materiálovými konstantami E_L, E_T, v_{LT}, v_{TL} a G_{LT} . Z těchto výrazů vyplývá, že pro výpočet napětí jsou potřeba pouze čtyři nezávislé konstanty E_L, E_T, v_{LT}, G_{LT} .

$$S_{11} = \frac{E_L}{1 - v_{LT} \cdot v_{TL}} = \frac{E_L}{1 - \frac{E_T}{E_L} \cdot v_{LT}^2} ; \qquad (2.16)$$

$$S_{22} = \frac{E_T}{1 - v_{LT} \cdot v_{TL}} = \frac{E_T}{1 - \frac{E_T}{E_L} \cdot v_{LT}^2} = \frac{E_T}{E_L} \cdot S_{11} ;$$

$$S_{12} = S_{21} = \frac{v_{LT} \cdot E_T}{1 - v_{LT} \cdot v_{TL}} = v_{LT} \cdot S_{22} ;$$

$$S_{66} = G_{LT}$$

Specifickou vlastností jednosměrných kompozitů je jejich změna pevnosti a tuhosti v závislosti na směru v rovině *xy*. Proto je nutné transformovat veličiny tuhosti v různých směrech.

Obr. 6: Jednosměrná lamina znázorněná ve dvou souřadných systémech - převzato Laš [7]

Obrázek (Obr. 6) ukazuje jednosměrný kompozit a dva souřadné systémy. Souřadný systém O(L,T,T') je otočen vzhledem k systému O(x, y, z) o úhel θ kolem osy $z \equiv T'$. Vzorec pro výpočet napětí v souřadném systému O(L,T,T') je

$$\boldsymbol{\sigma}' = \boldsymbol{T}_{\boldsymbol{\sigma}} \cdot \boldsymbol{\sigma} \quad , \tag{2.17}$$

kde T_o je transformační matice pro vektor napětí a σ je vektor napětí v souřadném systému O(x, y, z). V předchozím oddílu bylo ukázáno, že velikost napětí a deformace závisí na směru, ve kterém jsou zkoumány. Je zřejmé, že matice tuhosti S a matice poddajnosti C nejsou

závislé pouze na materiálových konstantách, ale také na orientaci zvoleného souřadného systému. Hledáme vzorce matice tuhosti a matice poddajnosti pro soustavu O(x, y, z), která je vůči soustavě O(L, T, T') natočena o úhel $-\theta$. To je znázorněno na obrázku (Obr. 6). Matice tuhosti a matice poddajnosti v systému O(x, y, z) jsou dány vztahy

$$\mathbf{S}' = \mathbf{T}_{\sigma}^{-1} \cdot \mathbf{C} \cdot \mathbf{T}_{\varepsilon} \quad , \tag{2.18}$$

$$C = T_{\varepsilon}^{-1} \cdot S \cdot T_{\sigma} \quad . \tag{2.19}$$

Hookův zákon pro takto orientovaný souřadný systém může být vyjádřen v maticové formě

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ 0 \\ 0 \\ 0 \\ 0 \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} S'_{11} & S'_{12} & S'_{13} & 0 & 0 & S'_{16} \\ S'_{21} & S'_{22} & S'_{23} & 0 & 0 & S'_{26} \\ S'_{31} & S'_{32} & S'_{33} & 0 & 0 & S'_{36} \\ 0 & 0 & 0 & S'_{44} & S'_{45} & 0 \\ 0 & 0 & 0 & S'_{54} & S'_{55} & 0 \\ S'_{61} & S'_{62} & S'_{63} & 0 & 0 & S'_{66} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ 0 \\ 0 \\ \gamma_{xy} \end{bmatrix} .$$
 (2.20)

Podobně je možné vyjádřit vztah pro deformace

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ 0 \\ 0 \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} C'_{11} & C'_{12} & C'_{13} & 0 & 0 & C'_{16} \\ C'_{21} & C'_{22} & C'_{23} & 0 & 0 & C'_{26} \\ C'_{31} & C'_{32} & C'_{33} & 0 & 0 & C'_{36} \\ 0 & 0 & 0 & C'_{44} & C'_{45} & 0 \\ 0 & 0 & 0 & C'_{54} & C'_{55} & 0 \\ C'_{61} & C'_{62} & C'_{63} & 0 & 0 & C'_{66} \end{bmatrix} \cdot \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ 0 \\ 0 \\ 0 \\ \sigma_{xy} \end{bmatrix} .$$
 (2.21)

Stále platí předpoklad, že šířka a délka laminátu je podstatně větší než jeho tloušťka. V tomto případě je stále možné uvažovat rovinné napětí. Tři složky napětí lze vyjádřit pomocí tří složek deformace. Například pro první složku vektoru napětí o_{xx} platí následující vztah

$$\sigma_{xx} = \left(C'_{11} - \frac{C'_{13}C'_{31}}{C'_{33}}\right) \cdot \varepsilon_{xx} + \left(C'_{12} - \frac{C'_{13}C'_{32}}{C'_{33}}\right) \cdot \varepsilon_{yy} + \left(C'_{16} - \frac{C'_{13}C'_{36}}{C'_{33}}\right) \cdot \gamma_{xy} . \tag{2.22}$$

Analogicky se získá jak složka normálového napětí σ_{yy} , tak smykového napětí σ_{xy} . Tyto vztahy lze zapsat v maticovém tvaru do rovnice pro mimoosovou napjatost

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{61} & Q_{66} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_L \\ \varepsilon_T \\ \varepsilon_{LT} \end{bmatrix} .$$
(2.23)

$$\boldsymbol{\sigma}' = \boldsymbol{Q} \cdot \boldsymbol{\varepsilon}' \quad . \tag{2.24}$$

Pro redukovanou matici tuhosti mají element
y ${\cal Q}_{ij}$ následující tvary

$$Q_{ij} = C_{ij} - \frac{C_{i3}C_{3j}}{C_{33}}$$
; kde $Q_{ij} = Q_{ji}$, $i, j = 1, 2, 6$. (2.25)

Porovnáním rovnic (2.21) a (2.23) je patrný rozdíl mezi maticí tuhosti S a redukovanou maticí tuhosti Q. Matice Q má obecně všechny prvky nenulové. To znamená, že v Hookově zákoně (2.23) pro mimoosové složky napětí a deformace jsou normálové složky napětí σ_{xx} a σ_{yy} závislé také na smykové složce σ_{xy} . Platí i inverzní vztahy.

2.2 Klasická laminátová teorie – CLT

Obr. 7: Část laminátu před a po deformaci - převzato Laš [7]

Na obrázku (Obr. 7) je část laminátu v rovině *xz*. Normála AD, která je v nedeformovaném stavu přímá a kolmá ke střední ploše laminátu, zůstává i po deformaci přímá a kolmá ke střední ploše. V důsledku deformace vznikající ve střední rovině v bodě B posunutí u_0, v_0, w_0 odpovídají směrům os *x*, *y*, *z*. Vezmeme-li derivace posunů, dostaneme deformační pole. To lze zapsat v maticové formě

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \varepsilon^{\circ}_{xx} \\ \varepsilon^{\circ}_{yy} \\ \gamma^{\circ}_{xy} \end{bmatrix} + z \begin{bmatrix} \mathbf{k}_{x} \\ \mathbf{k}_{y} \\ \mathbf{k}_{xy} \end{bmatrix} , \qquad (2.26)$$

kde se poměrné deformace střednice a její křivosti dají vyjádřit pomocí vztahů

$$\varepsilon^{\circ}_{m} = \begin{bmatrix} \varepsilon^{\circ}_{xx} \\ \varepsilon^{\circ}_{yy} \\ \gamma^{\circ}_{xy} \end{bmatrix} = \begin{bmatrix} \frac{\partial u_{0}}{\partial x} \\ \frac{\partial v_{0}}{\partial y} \\ \frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} \end{bmatrix}, \qquad \mathbf{k} = \begin{bmatrix} \mathbf{k}_{x} \\ \mathbf{k}_{y} \\ \mathbf{k}_{xy} \end{bmatrix} = -\begin{bmatrix} \frac{\partial^{2} w_{0}}{\partial x^{2}} \\ \frac{\partial^{2} w_{0}}{\partial y^{2}} \\ 2\frac{\partial^{2} w_{0}}{\partial x \partial y} \end{bmatrix}.$$
(2.27)

Napětí v k-té vrstvě laminátu lze vyjádřit rovnicí pro mimoosovou napjatost (2.23)

$$\boldsymbol{\sigma}' = \boldsymbol{Q} \cdot \boldsymbol{\varepsilon}' \quad , \tag{2.28}$$

kde Q je redukovaná matice mimoosové tuhosti. Spojením rovnic (2.23) a (2.26) vzniká výraz pro napětí v k-té vrstvě laminátu

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix}_{k} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{61} & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon^{\circ}_{xx} \\ \varepsilon^{\circ}_{yy} \\ \gamma^{\circ}_{xy} \end{bmatrix} + z \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{61} & Q_{66} \end{bmatrix} \begin{bmatrix} \mathbf{k}_{x} \\ \mathbf{k}_{y} \\ \mathbf{k}_{xy} \end{bmatrix} .$$
(2.29)

Protože se napětí po tloušťce laminátu mění nespojitě, výsledné síly a momenty působící v laminátu je třeba posuzovat jako součet účinků všech *n* vrstev. Pro silové účinky je možné psát

$$\boldsymbol{N} = \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^n \int_{h_{k-1}}^{h_k} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} dz$$
(2.30)

26

a pro momentové účinky

$$\boldsymbol{M} = \begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \sum_{k=1}^n \int_{h_{k-1}}^{h_k} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} z \cdot dz \quad .$$
(2.31)

V těchto vztazích (2.30) a (2.31) mají výslednice sil N_x, N_y, N_{xy} rozměr $[N \cdot m^{-1}]$ tj. vztažená síla na jednotku délky a M_x, M_y, M_{xy} mají rozměr [N] tj. moment vztažený na jednotku délky, protože se jedná o výsledné síly a momenty působící na průřez *k*-té vrstvy kompozitního materiálu. Symbol h_k má v obou vztazích význam tloušťky *k*-té vrstvy viz (Obr. 8 a Obr. 9). [7]

Na základě těchto vztahů lze formulovat konstitutivní vztah závislosti sil a momentů na deformacích a křivostech. Dosazením rovnic (2.30) a (2.31) do rovnice (2.29) a použitím výrazů pro deformaci střední plochy a zakřivení desky (2.27) vznikají následující rovnice

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^n \left\{ \int_{h_{k-1}}^{h_k} \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{61} & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon^{\circ}_{xx} \\ \varepsilon^{\circ}_{yy} \\ \gamma^{\circ}_{xy} \end{bmatrix} dz + \int_{h_{k-1}}^{h_k} \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{61} & Q_{66} \end{bmatrix} \begin{bmatrix} \mathbf{k}_x \\ \mathbf{k}_y \\ \mathbf{k}_{xy} \end{bmatrix} z \cdot dz \right\} ,$$
(2.32)

$$\begin{bmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \sum_{k=1}^{n} \left\{ \int_{h_{k-1}}^{h_{k}} \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{61} & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon^{\circ}_{xx} \\ \varepsilon^{\circ}_{yy} \\ \gamma^{\circ}_{xy} \end{bmatrix} z \cdot dz + \int_{h_{k-1}}^{h_{k}} \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{61} & Q_{66} \end{bmatrix} \begin{bmatrix} \mathbf{k}_{x} \\ \mathbf{k}_{y} \\ \mathbf{k}_{xy} \end{bmatrix} z^{2} \cdot dz \right\}.$$

$$(2.33)$$

Je zřejmé, že vynásobením prvků deformace s prvky redukované matice tuhosti Q_k jednotlivých vrstev a integrací přes celou tloušťku kompozitu lze získat následující výrazy:

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{21} & A_{22} & A_{26} \\ A_{61} & A_{62} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon^{\circ}_{xx} \\ \varepsilon^{\circ}_{yy} \\ \gamma^{\circ}_{xy} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{21} & B_{22} & B_{26} \\ B_{61} & B_{62} & B_{66} \end{bmatrix} \begin{bmatrix} \mathbf{k}_x \\ \mathbf{k}_y \\ \mathbf{k}_{xy} \end{bmatrix} ,$$
(2.34)

$$\begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{21} & B_{22} & B_{26} \\ B_{61} & B_{62} & B_{66} \end{bmatrix} \begin{bmatrix} \varepsilon^{\circ}_{xx} \\ \varepsilon^{\circ}_{yy} \\ \gamma^{\circ}_{xy} \end{bmatrix} + \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{21} & D_{22} & D_{26} \\ D_{61} & D_{62} & D_{66} \end{bmatrix} \begin{bmatrix} \mathbf{k}_x \\ \mathbf{k}_y \\ \mathbf{k}_{xy} \end{bmatrix} ,$$
(2.35)

kde se prvky jednotlivých matic vyjadřují pomocí následujících vztahů

$$A_{ij} = \sum_{k=1}^{n} (Q_{ij})_{k} (h_{k} - h_{k-1}) ,$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} (Q_{ij})_{k} (h_{k}^{2} - h_{k-1}^{2}) ,$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} (Q_{ij})_{k} (h_{k}^{3} - h_{k-1}^{3}) .$$
(2.36)

Předchozí rovnice (2.34) a (2.35) je možné sloučit do jedné maticové rovnice

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \\ M_{xy} \\ M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{21} & A_{22} & A_{26} & B_{21} & B_{22} & B_{26} \\ A_{61} & A_{62} & A_{66} & B_{61} & B_{62} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{21} & B_{22} & B_{26} & D_{21} & D_{22} & D_{26} \\ B_{61} & B_{62} & B_{66} & D_{61} & D_{62} & D_{66} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}^{\circ}_{\mathbf{x}} \\ \mathbf{k}_{\mathbf{x}} \\ \mathbf{k}_{\mathbf{x}y} \end{bmatrix} ,$$

$$\begin{bmatrix} \mathbf{N} \\ \cdots \\ \mathbf{M} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \vdots & \mathbf{B} \\ \cdots & \vdots & \cdots \\ \mathbf{B} & \vdots & \mathbf{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}^{\circ}_{\mathbf{m}} \\ \cdots \\ \mathbf{k} \end{bmatrix} ,$$

$$(2.37)$$

nebo

Konstitutivní rovnice laminátové desky vyjadřuje síly a momenty v závislosti na křivosti a deformacích střednice. Tato matice ABD se nazývá globální matice tuhosti. Jejím zápisem je zřejmé, že matice A váže silové složky s deformacemi ve střední rovině, matice B spojuje momentové složky a složky deformace ve střední rovině a také složky vektoru vnitřních sil se složkami křivosti plochy, matice D vyjadřuje vztah mezi složkami momentů a křivosti. To znamená, že normálové a smykové síly působící ve střední rovině nezpůsobují pouze deformaci ve střední rovině, ale také ohyb a zkroucení střednice. Také složky ohybového momentu způsobují deformaci ve střední rovině. [2], [7] Pro výpočet sil a momentů v laminátu se používá vztah (2.38). V praxi se nejčastěji zjišťuje napětí a deformace způsobené vnějšími účinky. Forma, které chceme dosáhnout, je vlastně inverzní rovnice

$$\begin{bmatrix} \boldsymbol{\varepsilon}^{\circ}_{m} \\ \cdots \\ \boldsymbol{k} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A}^{*} & \vdots & \boldsymbol{B}^{*} \\ \cdots & \vdots & \cdots \\ \boldsymbol{B}^{*} & \vdots & \boldsymbol{D}^{*} \end{bmatrix} \begin{bmatrix} \boldsymbol{N} \\ \cdots \\ \boldsymbol{M} \end{bmatrix} , \qquad (2.39)$$

kde platí následující vztahy

$$A^* = A' + B^* D^{-1} B^{*T}; \quad A' = A^{-1} ,$$

$$B^* = B' D'^{-1}; \quad B' = A^{-1} B ,$$

$$D^* = D'^{-1}; \quad D' = D - B A^{-1} B .$$
(2.40)

Matice A^* , B^* a D^* se nazývají matice tahové, vazební a ohybové poddajnosti. [3], [7] Vazby mezi ohybem a tahem nebo krutem a tahem a také mezi normálovými silami střednice laminátu a smykové deformace nejsou ve většině případů žádoucí. Tomuto jevu je třeba se vyhnout při výrobě laminátu vhodnou skladbou vrstev.

Označení používané k popisu laminátů má kořeny v popisu použitém ke specifikaci skladby materiálu pro ruční kladení prepregů. Proto jsou laminy číslovány odspodu a úhly jsou uvedeny zdola nahoru. Například dvouvrstvý laminát může být [30/-30], třívrstvý [- 45/45/0] atd. [2], [3] Pokud je laminát symetrický, jako [30/0/0/30], použije se zkrácená notace, kde je uvedena pouze polovina sekvence překrývání a pro specifikaci symetrie je přidán dolní index (S). Posledním příkladem je [30/0]_S. Pokud jsou tlouštky lamin různé, jsou specifikovány pro každou vrstvu. Například $[\theta_{t_1}/\theta_{t_2}]$. Pokud jsou různé tlouštky násobky jedné tlouštky t, zápis se zjednoduší na $[\theta/-\theta_2]$, což označuje jednu vrstvu o tloušťce t a dvě vrstvy o stejné tloušťce t pod úhlem - θ . Kombinace úhlových vrstev jako $[\theta/-\theta]$ lze označit jako $[\pm\theta]$. Pokud mají všechny vrstvy stejnou tloušťku, nazývá se laminát pravidelný. [2], [7]

Symetrický laminát

Laminát je symetrický, pokud jsou vrstvy stejného materiálu, tloušťky a orientace umístěny symetricky vzhledem ke střední ploše laminátu. Například: [30/0/0/30] je laminát symetrický, ale nevyvážený; zatímco [30/(-30)/(-30)/(30]) je laminát symetrický a vyvážený. [2] Z hlediska namáhání je velmi vhodné odstranit spojení mezi ohybem a tahem a mezi tahem a krutem. Tato situace nastane, pokud je matice vazebné tuhosti **B** nulová. To znamená, že s ohledem na rovnice (2.37) a (2.38) musí platit následující výraz

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} (Q_{ij})_k (h_k^2 - h_{k-1}^2) = 0 \quad .$$
(2.41)

Každý prvek matice B je nulový, pokud ke každému účinku vrstvy nad střednicí laminátu existuje příspěvek od vrstvy stejných vlastností, orientace a ve stejné vzdálenosti pod střednicí laminátu (viz obrázek Obr. 8)

Obr. 8: Symetrický laminát – převzato Laš [7]

Pokud má laminát takovouto skladbu, pak platí následující vztah

$$(Q_{ij})_k = (Q_{ij})_m; \ |-h_{k-1}| = h_m, \ |-h_k| = h_{m-1}$$
 (2.42)

Pokud každá vrstva nad střednicí laminátu bude odpovídat stejné vrstvě pod ní, jedná se o symetrický laminát. Globální matice tuhosti z rovnice (1.60) pak bude ve tvaru

$$\begin{bmatrix} A_{11} & A_{12} & A_{16} & 0 & 0 & 0 \\ A_{21} & A_{22} & A_{26} & 0 & 0 & 0 \\ A_{61} & A_{62} & A_{66} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{11} & D_{12} & D_{16} \\ 0 & 0 & 0 & D_{21} & D_{22} & D_{26} \\ 0 & 0 & 0 & D_{61} & D_{62} & D_{66} \end{bmatrix} .$$

$$(2.43)$$

Vazba mezi tahem a ohybem, která tvoří matici B, je výsledkem skladby vrstev. Nevyplývá ani z anizotropie ani z ortotropie vrstev. Je výsledkem kompozitní skladby laminátu. Tento vztah existuje také u kompozitů vyrobených ze dvou různých kovových izotropních materiálů (bimetal). V důsledku změn teploty je viditelný průhyb kompozitu.

Antisymetrický laminát

Antisymetrický laminát se skládá ze sudého počtu vrstev (viz obrázek Obr. 9). Má páry vrstev opačné orientace, ale stejného materiálu a tloušťky symetricky umístěné vzhledem ke střednici laminátu. Například: [30/-30/30/-30] je antisymetrický úhlový laminát a [0/90/0/90] je antisymetrický křížový laminát. [2]

Obr. 9: Antisymetrický laminát – převzato Laš [7]

Pro každé dvě vrstvy tedy platí stejné vlastnosti materiálu

 $h_{m-1} = -h_k$, $h_m = -h_{k-1}$; $\theta = -\theta$. (2.44) Globální matice tuhosti z rovnice (1.60) antisymetrických laminátů má tvar

$$\begin{bmatrix} A_{11} & A_{12} & 0 & 0 & 0 & B_{16} \\ A_{21} & A_{22} & 0 & 0 & 0 & B_{26} \\ 0 & 0 & A_{66} & B_{61} & B_{62} & 0 \\ 0 & 0 & B_{16} & D_{11} & D_{12} & 0 \\ 0 & 0 & B_{26} & D_{21} & D_{22} & 0 \\ B_{61} & B_{62} & 0 & 0 & 0 & D_{66} \end{bmatrix}$$

$$(2.45)$$

Antisymetrické lamináty mají prvky rovné nule

 $A_{16} = A_{61} = A_{26} = A_{62} = D_{16} = D_{61} = D_{26} = D_{62} = 0 , \qquad (2.46)$ ale nejsou zvláštním zjednodušením problému ani nejsou snáze analyzovatelné než obecné lamináty, protože elementy matice vazbové tuhosti $B_{16} = B_{61}$ a $B_{26} = B_{62}$ nejsou pro tyto lamináty nulové. [2]

Kvazi-izotropní laminát

Kvazi-izotropní lamináty jsou konstruovány tak, aby vytvořily kompozit, který se chová jako izotropní materiál. Chování kvazi-izotropních laminátů v rovině je podobné jako u izotropních desek, ale chování kvazi-izotropních laminátů v ohybu je zcela odlišné než chování izotropních desek v ohybu. [4] V kvazi-izotropním laminátu má každá vrstva orientaci danou

$$\theta_k = \frac{k\pi}{N} + \theta_0 \quad , \tag{2.47}$$

kde *k* je číslo laminy, *N* je počet lamin (alespoň tři) a θ_0 je libovolný orientační úhel. Laminát lze uspořádat v libovolném pořadí jako [60/(-60)/0] nebo [60/(0/(-60))] a laminát je stále kvaziizotropní. Kvazi-izotropní lamináty nejsou symetrické, ale mohou být vyrobeny symetrické zdvojnásobením počtu vrstev zrcadlovým (symetrickým) způsobem. Např. z laminátu [60/(-60)/0] lze vytvořit [60/(-60)/00/(-60)/(60)], který je stále kvazi-izotropní. Výhodou symetrických kvazi-izotropních laminátů je, že mají vazební matici tuhosti B=0. [7] Matici tahové tuhosti A a matici ohybové tuhosti D kvazi-izotropních laminátů lze zapsat pomocí tloušťky desky t a pouze dvěma materiálovými vlastnostmi, modulu pružnosti E a Poissonova čísla v

$$A = \frac{Et}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix}$$
(2.48)

a

$$\boldsymbol{D} = \frac{Et^3}{12(1-v^2)} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix} .$$
(2.49)

Kvazi-izotropní lamináty mají, stejně jako izotropní desky, prvky matice tahové tuhosti $A_{11} = A_{22}$, ale mají nenulové prvky matice ohybové tuhosti $D_{11} \neq D_{22}, D_{16} \neq 0$ a $D_{26} \neq 0$, což dělá kvazi-izotropní lamináty zcela odlišné od izotropních materiálů, jak je vidět níže

$$\boldsymbol{A} = \begin{bmatrix} A_{11} & A_{12} & 0\\ A_{12} & A_{11} & 0\\ 0 & 0 & A_{66} \end{bmatrix}$$
(2.50)

а

$$\boldsymbol{D} = \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} .$$
(2.51)

Proto mohou být vzorce pro ohyb a vzpěr izotropních desek použity pro kvazi- izotropní lamináty pouze jako aproximace. Vzorce pro izotropní desky poskytují reálnou aproximaci pouze v případě, že je laminát navržen tak, aby se přiblížil charakteristikám izotropních desek s $D_{11} \approx D_{22}$ a D_{16} , $D_{26} \gg 0$. Toho lze dosáhnout u symetrických kvazi-izotropních laminátů, které jsou vyvážené a mají velký počet vrstev.

2.3 Ohybová a smyková tuhost kompozitních nosníků

Dalším aspektem této práce je tuhost nosníků. Tuhost nosníků je základní charakteristikou, podle které je nosník hodnocen z hlediska začlenění do mechanické soustavy a ukazuje též na velikost deformace při zatížení. Ačkoli k mechanickým zkouškám byla vybrána metoda tříbodového ohybu, všechny výpočtové metody včetně MKP modelů jsou aplikovány na vetknutý nosník zatížený na volném konci osamělou silou, což je z hlediska klasické mechaniky přípustné při zachování podmínek symetrie. Dle Timošenkovy teorie je průhyb vetknutého nosníku z izotropního materiálu na obrázku (Obr. 10) vyjádřen vztahem

$$v = \frac{FL^3}{3EJ_z} + \frac{\beta FL}{GA} \quad . \tag{2.52}$$

Obr. 10: Schéma kompozitního nosníku zatíženého osamělou silou F

Podobný vztah je vhodné hledat i pro kompozitní nosníky. Jedním z cílů této práce je právě spolehlivě stanovit ekvivalentní tuhost kompozitního nosníku, proto v následujících oddílech jsou uvedeny běžné metody vedoucí k určení ohybové tuhosti kompozitního nosníku. V dalších kapitolách bude popsáno, že výsledky těchto postupů nejsou konzistentní, při jejich srovnání dávají odlišné výsledky pro jeden konkrétní případ nosníku a nejsou vždy v souladu s MKP analýzou.

2.3.1 Aplikace Castiglianovy věty na vetknutý nosník zatížený osamělou silou – diskuze použití pro kompozitní nosník a získání tuhosti z MKP modelů

Ohyb kompozitního nosníku je možné rozdělit do dvou částí. Část ohybová je stejná jako teorie ohybu běžně používaná pro izotropní materiály a část účinku smyku, která se obvykle pro izotropní materiály zanedbává.

$$v = v_0 + v_\tau \quad , \tag{2.53}$$

kde v je celkový průhyb, v_o je průhyb způsobený ohybovým momentem a v_{τ} je průhyb způsobený smykovou silou. Ohybový průhyb v_o je řízen ohybovou tuhostí a smykový průhyb v_{τ} smykovou tuhostí. [A14]

Smykové deformace jsou u izotropních nosníků zanedbávány, protože smykový modul je relativně vysoký $G \approx E/2,5$. Smykové deformace jsou velice důležité pro kompozitní materiály, protože smykový modul je mnohem nižší (okolo $G \approx E/10$ nebo méně). Význam smykového průhybu v_{τ} vzhledem k deformaci ohybem se přirozeně mění s délkou ohýbaného nosníku, čím je nosník delší, tím je menší vliv smyku (ve srovnání s ohybem). [A14] Vetknutý nosník zatížený na volném konci byl vybrán s ohledem na použité MKP modely, protože modelování vetknutí je mnohem méně náročné než modelování podpěr při tříbodovém ohybu a nehrozí zavlečení nepřesností vyplývající z řešení kontaktu apod.

Pro další vztahy bude uvažováno mechanické rozložení dle schématu na (Obr. 10). Ohybový moment a působící smyková síla jsou dány vztahy

$$M_b(x) = F \cdot x \; ; \; T(x) = F = const. \tag{2.54}$$

Deformační energie U je dána jako součet ohybové energie a smykové energie.

$$U = U_{M_b} + U_{\tau} = \int_0^L \frac{M_b^2(x)}{2 \cdot E \cdot J_z(x)} dx + \int_0^L \frac{\beta \cdot T^2(x)}{2 \cdot G \cdot A(x)} dx$$
(2.55)

Výraz pro celkovou energii je

$$U = U_{M_b} + U_{\tau} = \frac{F^2 L^3}{6EJ_z} + \frac{\beta F^2 L}{2GA} \quad . \tag{2.56}$$

Pro výpočet průhybu na konci nosníku pod silou F je použita druhá Castiglianova věta [8].

$$v_F = \frac{\partial U}{\partial F} = \frac{\partial}{\partial F} \left(\frac{F^2 L^3}{6EJ_z} + \frac{\beta F^2 L}{2GA} \right) = \frac{FL^3}{3EJ_z} + \frac{\beta FL}{GA}$$
(2.57)

Tento vzorec je použit pro určení průhybu všech nosníků v této práci. Otázka stanovení ekvivalentní tuhosti bude řešena v následujících oddílech (2.3.2- 2.3.3).

Dále zde bude ještě předveden způsob získání tuhosti kompozitních nosníků z MKP modelů, protože navazuje na tuto teorii. Z MKP modelů nosníků je jako výsledná hodnota exportována hodnota průhybu na volném konci vetknutého nosníku.

V prvním případu je vyjádřen ekvivalentní modul pružnosti v tahu $E_{eq}(F)$ ze zatížení nosníku osamělou silou F. Stejně jako je zobrazeno na (Obr. 10). V tomto výpočtu není zahrnut smykový účinek, který dle předpokladů bude v kompozitním materiálu patrný. Nicméně ekvivalentní modul pružnosti je získán následující úpravou vzorce

$$v_{(F)} = \frac{F \cdot L^3}{3 \cdot E_{eq} \cdot J_z} \rightarrow E_{eq_{(F)}} = \frac{F \cdot L^3}{3 \cdot v_{(F)} \cdot J_z}$$
(2.58)

Ve druhém případu je MKP model nosníků zatížen ohybovým momentem (Obr. 12). Při zatížení nosníku pouze ohybovým momentem M, je předpoklad, že se v modelu žádný smykový účinek neprojeví. Pro měnící se štíhlost nosníku je získán konstantní ekvivalentní modul pružnosti v ohybu $E_{eq}(M)$.

Obr. 11: Schéma vetknutého nosníku zatíženého ohybovým momentem

Porovnáním výsledků z těchto dvou odlišných výpočtů (2.58) a (2.59) je patrná velikost vlivu smyku v kompozitním materiálu. Velikost ohybu nosníku se zahrnutím smykového účinku dle Timošenkovy teorie je pak možné vyjádřit opět pomocíCastiglianovy věty [8]. Pro výpočet ohybu je použit ekvivalentní modul pružnosti $E_{eq}(M)$ získaný ze zatížení nosníku ohybovým momentem, čímž je eliminován vliv smykových napětí.

2.3.2 Metoda určení ekvivalentní tuhosti nosníku založená na přímé integraci deformační energie po vrstvách kompozitního nosníku při uvažování Bernoulliho (respektive Timošenkovy) hypotézy

Klasická laminátová teorie používá pro určení napětí a deformace Hookův zákon upravený pro specifika anizotropního materiálu. Předpoklady pro použití této metody jsou jednak předpoklad rovinné napjatosti a použití Bernoulliho předpokladu pro deformaci. Bernoulliho teorie předpokládá, že plocha průřezu nosníku zůstane kolmá ke střednici nosníku i po deformaci. To je naznačeno na (Obr. 12).

Obr. 12: Bernoulliho a Timošenkův předpoklad pro teorii ohybu

Dále je nutné transformovat materiálové veličiny kompozitního materiálu do směru, ve kterém je použit v součásti a ve kterém působí zatížení. To je naznačeno v oddíle 2.1.3. Výsledný vztah lze zajistit transformací matice napětí (2.17) ze systému O(L,T,T') do souřadného systému celé trubky O(x, y, z).

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} \cos^2\theta & \sin^2\theta & -\sin\theta\cos\theta \\ \sin^2\theta & \cos^2\theta & \sin\theta\cos\theta \\ 2\sin\theta\cos\theta & -2\sin\theta\cos\theta & \cos^2\theta - \sin^2\theta \end{bmatrix} \cdot \begin{bmatrix} \sigma_L \\ \sigma_T \\ \sigma_{LT} \end{bmatrix} .$$
(2.60)

Pomocí transformované matice tuhosti je možné vyjádřit Hookův zákon (2.14) a z jeho převráceného tvaru (2.13) získat matici poddajnosti C.

$$C_{xy} = S_{xy}^{-1} = \begin{bmatrix} \frac{1}{E_x} & -\frac{v_{yx}}{E_x} & 0\\ -\frac{v_{xy}}{E_y} & \frac{1}{E_y} & 0\\ 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix}$$
(2.61)

kde E_1 , E_2 , E_3 , jsou moduly pružnosti v tahu ve směrech os souřadného systému $O(x_1, x_2, x_3)$; G_{12} , G_{23} , G_{13} , jsou moduly pružnosti ve smyku v rovinách x_2x_3 , x_1x_3 , x_1x_2 a v_{21} , v_{31} , v_{32} jsou Poissonova čísla v příslušných rovinách.

Z prvního elementu matice poddajnosti C je možno vyjádřit modul pružnosti ve směru osy nosníku.

$$E_x = \frac{1}{C_{xx}}$$
 (2.62)

Obdobným způsobem je možné získat modul pružnosti i z matice tuhosti S, vzhledem ke vztahu (2.61) však bude výsledný tvar složitější.

$$E_x = S_{xx} \cdot (1 - v_{xy}^2) \tag{2.63}$$

Z užití modulu pružnosti v tahu E_x ve směru osy x je patrné, že v celém výpočtu je uvažováno zjednodušené tahové zatížení ve směru osy nosníku. Deformace a napětí v ostatních směrech kompozitního materiálu nejsou uvažovány. Ohybová tuhost je získána jako součin výše zmíněného modulu pružnosti v tahu E_x a příslušného kvadratického momentu průřezu J_z . Ohybovou tuhost je nutné určit pro každou vrstvu zvlášť. Celková ekvivalentní tuhost kompozitního nosníku je pak dána součtem tuhostí ve všech vrstvách.

$$J_{z_k} = \frac{\pi D^4}{64} \left(1 - \left(\frac{d}{D}\right)^4 \right) \quad ; \ k = 1, 2, \dots, n \tag{2.64}$$

$$E_x \cdot J_z = \sum_{k=1}^{\infty} E_{x_k} \cdot J_{z_k} , \qquad (2.65)$$

kde *D* je vnější průměr každé vrstvy, *d* je vnitřní průměr každé vrstvy, *k* je index vrstvy a *n* je počet vrstev nosníku.

Průhyb vetknutého nosníku je spočítán pomocí Castiglianovy věty [8]. Výpočet je založen na matici poddajnosti C (2.62), takže tvoří horní hranici hodnoty průhybu ve srovnání s jinými metodami a je silně na straně bezpečnosti. Stejným postupem je možné k výpočtu použít matici tuhosti S (2.63), tím je získána další limitní hodnota, tentokráte spodní hranice hodnoty průhybu.

2.3.3 Metoda určení ekvivalentní tuhosti nosníku při využití ABD matice pro kompozitní skladbu stěny nosníku

Pro výpočet ohybu kompozitního nosníku s kruhovým průřezem pomocí této metody [7] je použita rovnice metody CLT *(2.38)*, která opět představuje Hookův zákon.

$$\begin{bmatrix} \mathbf{N} \\ \cdots \\ \mathbf{M} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \vdots & \mathbf{B} \\ \cdots & \vdots & \cdots \\ \mathbf{B} & \vdots & \mathbf{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}^{\circ}_{m} \\ \cdots \\ \mathbf{k} \end{bmatrix} , \qquad (2.66)$$

kde A je matice tahové tuhosti, B je matice vazební tuhosti a D je matice ohybové tuhosti; N představuje vektor silových účinků a M představuje vektor momentových účinků; ε_m° je pak vektor deformace střední roviny laminátu a k je vektor křivostí [7].

V případě trubky s kruhovým průřezem (Obr. 12) zatížené osamělou silou ($N_1 = N_1(F)$), kdy zvažujeme pouze rovinnou napjatost v jednotlivých vrstvách, je použita pro další výpočet modulu pružnosti v tahu pouze matice A, která v matici ABD reprezentuje právě tahové napětí.

$$\begin{bmatrix} N_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{21} & A_{22} & A_{26} \\ A_{61} & A_{62} & A_{66} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\varepsilon}^{\circ}_1 \\ \boldsymbol{\varepsilon}^{\circ}_2 \\ \boldsymbol{\varepsilon}^{\circ}_3 \end{bmatrix} .$$
(2.67)

Tento maticový zápis je možné rozdělit do dvou částí

$$N_1 = A_{11} \cdot \boldsymbol{\varepsilon}^{\circ}{}_1 + \begin{bmatrix} A_{12} & A_{16} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\varepsilon}^{\circ}{}_2 \\ \boldsymbol{\varepsilon}^{\circ}{}_3 \end{bmatrix}$$
(2.68)

a

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} A_{21}\\A_{61} \end{bmatrix} \cdot \boldsymbol{\varepsilon}^{\circ}_{1} + \begin{bmatrix} A_{22} & A_{26}\\A_{62} & A_{66} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\varepsilon}^{\circ}_{2}\\ \boldsymbol{\varepsilon}^{\circ}_{3} \end{bmatrix} .$$

$$(2.69)$$

Z druhé části plyne vztah pro deformaci střední plochy ve směrech y a v rovině xy

$$\begin{bmatrix} \boldsymbol{\varepsilon}^{\circ}_{2} \\ \boldsymbol{\varepsilon}^{\circ}_{3} \end{bmatrix} = -\begin{bmatrix} A_{22} & A_{26} \\ A_{62} & A_{66} \end{bmatrix}^{-1} \begin{bmatrix} A_{21} \\ A_{61} \end{bmatrix} \cdot \boldsymbol{\varepsilon}^{\circ}_{1} \quad .$$
 (2.70)

Tento vztah dosadíme do rovnice (2.68)

$$N_{1} = \begin{pmatrix} A_{11} - \begin{bmatrix} A_{12} & A_{16} \end{bmatrix} \cdot \begin{bmatrix} A_{22} & A_{26} \\ A_{62} & A_{66} \end{bmatrix}^{-1} \cdot \begin{bmatrix} A_{21} \\ A_{61} \end{bmatrix} \end{pmatrix} \cdot \boldsymbol{\varepsilon}^{\circ}_{1} \quad .$$
(2.71)

Výsledná hodnota N_1 má rozměr $[N \cdot m^{-1}]$, takže tento vztah nedává hodnotu napětí. Napětí kompozitního materiálu je vyjádřeno pomocí Hookova zákona. Pro získání vztahu pro napětí je nutné tento výraz podělit celkovou tloušťkou kompozitního materiálu t. Z výrazu (2.14) je evidentní, že modulu pružnosti odpovídá výraz v kulatých závorkách z poslední rovnice (2.71) vydělená celkovou tloušťkou kompozitního materiálu t.

$$\sigma_{1} = \frac{N_{1}}{t} = \frac{1}{t} \begin{pmatrix} A_{11} - \begin{bmatrix} A_{12} & A_{16} \end{bmatrix} \cdot \begin{bmatrix} A_{22} & A_{26} \\ A_{62} & A_{66} \end{bmatrix}^{-1} \cdot \begin{bmatrix} A_{21} \\ A_{61} \end{bmatrix} \end{pmatrix} \cdot \boldsymbol{\varepsilon}^{\circ}_{1} \quad (2.72)$$

Ekvivalentní modul pružnosti v tahu vyjádříme následujícím vztahem

$$E_{eq} = \begin{pmatrix} A_{11} - \begin{bmatrix} A_{12} & A_{16} \end{bmatrix} \cdot \begin{bmatrix} A_{22} & A_{26} \\ A_{62} & A_{66} \end{bmatrix}^{-1} \cdot \begin{bmatrix} A_{21} \\ A_{61} \end{bmatrix} \end{pmatrix} \cdot \frac{1}{t} , \qquad (2.73)$$

kde A_{ij} jsou prvky tahové matice tuhosti a t je celková tloušťka kompozitního materiálu. Následuje dosazení ekvivalentního modulu pružnosti E_{eg} do vzorce pro výpočet ohybu

$$v_F = \frac{F \cdot l^3}{3E_{eq}J_y} + \frac{F \cdot l \cdot \beta}{G_{xy} \cdot A} \quad . \tag{2.74}$$

Tato metoda je pouze přibližná, protože obsahuje několik zjednodušení. Za prvé, pro výpočet modulu pružnosti je uvažována pouze rovinná napjatost. Počítáme s rozvinutým průřezem kompozitního nosníku. Za druhé, uvažujeme, že matice vazebné tuhosti B je nulová, tento předpoklad je splněn pouze pro specifickou skladbu kompozitního materiálu, jako jsou symetrické lamináty. Tyto předpoklady zužují použití této metody, protože pomíjí některé vazby v kompozitním materiálu. Ačkoli je tato metoda pouze přibližná, dosahuje dobrých výsledků a zjednodušené předpoklady pro výpočet kompozitního materiálu nevnáší velkou chybu do výsledku. Metoda je též poměrně jednoduchá na provedení výpočtu.[29]

2.4 MKP analýza kompozitních nosníků

V této kapitole jsou popsány možné přístupy k modelování kompozitních nosníků pomocí metody konečných prvků (MKP). Pro účely této práce byly vybrány tři typy MKP modelů. Všechny byly provedeny v softwaru Abaqus. Pro výpočet průhybu kompozitních trubek byly zvoleny modely klasické skořepiny (*shell*), objemové skořepiny (*solid shell / continuum shell*) a objemového modelu (*solid model / volume model*). Modely s nosníkovými
1D prvky byly pro tyto účely vynechány, protože ze své podstaty požadují zadání všech materiálových charakteristik, což není pro zkoumání tuhosti kompozitních nosníků vhodné. [1], [4]

Oba modely skořepin pracují s ortotropním materiálem a s předpokladem rovinné napjatosti. Je nutné též kontrolovat, jestli jsou splněny všechny podmínky použití skořepinových modelů. Zejména pak požadavek na velký poměr nejkratší strany rozvinutého pláště a tloušťky materiálu. [1] Objemový model pracuje s ortotropním materiálem a používá všechny členy matice poddajnosti.

2.4.1 Klasická Skořepina (Conventional Shell)

Klasická skořepina redukuje celý objem tělesa na zakřivenou plochu. Celková geometrie modelu je reprezentována skořepinou. Všechny další údaje jako jsou materiálové parametry, tloušťky vrstev kompozitního materiálu a úhel navinutí vláken jsou zadávány jako parametry celého modelu. Tloušťka materiálu může být specifikována jako parametr modelu nebo je zahrnuta do členů ABD matic, jež mohou být též vstupním parametrem tohoto modelu. Jsou zde dvě možnosti pro vstupní data do tohoto modelu. Pro tento model jsou používány běžné skořepinové elementy S4R. [1]

2.4.2 Objemová skořepina (Continuum Shell / Solid shell)

Objemová skořepina používá model objemu celého tělesa. Skladba kompozitního materiálu a úhly návinu jsou opět stanoveny parametricky. Elementy používané pro model objemové skořepiny mají stanovenou skladbu kompozitního materiálu po šířce jednoho prvku. Je nutné správně stanovit normálu objemové skořepiny, protože v jejím směru se skládají jednotlivé vrstvy kompozitního materiálu. Je výhodné použít jeden prvek po tloušťce materiálu. Rozdíl mezi klasickou a objemovou skořepinou je patrný z (Obr. 13). Elementy použité pro síťování jsou SC8R. [1]

Obr. 13: Rozdíl mezi klasickou a objemovou skořepinou

2.4.3 Objemový Model (Volume Model / Solid model v Aj.)

Při tvorbě objemového modelu je pro každou kompozitní vrstvu vytvořena vlastní sekce materiálu se svými materiálovými parametry ortotropního materiálu a s vlastním úhlem navinutí vláken. Spojení na rozhraní jednotlivých vrstev je tvořeno celkovou geometrií. Model může mít více elementů po tloušťce jedné vrstvy kompozitního materiálu. Pro síťování modelu jsou použity běžné šestistěnné elementy typu C3D8R. [1]

2.5 Shrnutí poznatků v oblasti výpočtu tuhosti kompozitního nosníku

Tuhost kompozitních nosníků s pravoúhlým průřezem (např. vyrobených pomocí laminace) se určuje pomocí klasické laminátové teorie (CLT) [2], [5], [7]. Modul pružnosti vlákny vyztuženého plastu (FRP) je popsán v [15]. Řada přístupů k výpočtu deformace laminátových nosníků byla vyvinuta pouze pro určitou specifickou kompozitní skladbu, jako je symetrické vrstvení kompozitu popsané v [11]. Tyto výpočtové přístupy však nelze aplikovat na nosníky kruhového průřezu kvůli jejich geometrii. Některé teorie v tomto ohledu aplikovaly válcové systémy, jako např. přístupy laminátových ploch a laminátových skořepin uvedené v [12], jejichž autoři upozorňují na skutečnost, že malé poloměry vedou v případě aplikace k chybám až 50 % konvenčních metod výpočtu ohybové tuhosti.

Zatímco kompozitní trubky pod různým zatížením byly řešeny v [12], použitý přístup generuje velké množství konstant a parametrů, což činí výpočet velmi obtížným z hlediska jeho použití v inženýrské praxi; navíc tuto aplikaci lze použít pouze pro symetrické rozložení. Obecné analytické řešení bylo představeno v [18], které představuje řešení dvou omezených případů, a to bez uvažování tření a bez uvažování kluzu. Podobné studie, které na tuto studii navazovaly, jsou popsány v [19] a [20]. Uvádějí sice řadu úspěšně řešených příkladů, ale nenabízejí univerzální metodu výpočtu pro kompozitní nosníky s kruhovým průřezem. Teorie vztahující se k přesným řešením je obtížné aplikovat v praxi, protože matematické vztahy jsou komplikované a řešení generují řadu konstant, které se mění podle kompozitní skladby.

Tuhost kompozitní trubky se symetrickou skladbou je řešena v článku v [13]. Přestože jsou výsledky prezentované v tomto článku porovnány s analýzou MKP, v [13] není provedeno srovnání s experimentem. Ukazuje se, že analýza konečných prvků neodpovídá experimentálním datům pro některé případy kompozitní skladby. Další přístup ke stanovení tuhosti kompozitních trubek je popsán v [16]; výpočet hodnoty pomocí neklasické laminátové teorie je však také komplikovaný a matematický přístup je náročný.

Mnoho teorií se zabývá pouze tenkostěnnými nosníky, jako v [14] – nosník s pravoúhlým profilem a v [17] – nosníky s otevřenými profily, které jsou porovnávány pomocí analýzy konečných prvků. S ohledem na trubky se problém týká kruhové geometrie a definice, zda je trubka silnostěnná nebo tenkostěnná v závislosti na průměru a tloušťce stěny trubky. Tenkostěnné nosníky s kruhovým průřezem jsou řešeny v [21]. Řešení napětí pro anizotropní trubky je uvedeno v [22] a [23] a cylindrická anizotropie je řešena v [24]. Tyto metody však nejsou univerzální pro tlustostěnné a tenkostěnné nosníky. Řada výpočtových metod byla vyvinuta pouze pro určitá specifická kompozitní uspořádání, např. symetrické skladby kompozitu popsané v [12]. Uživatelé těchto teorií musí být vysoce kvalifikovaní v oblasti mechaniky kompozitních materiálů, aby byli schopni zvolit vhodný výpočetní postup pro konkrétní kompozitní nosník.

S. R. Bhate et al. [26] se zabývá modifikovanou teorií ohybu pro laminované kompozitní nosníky navržené k mechanickému i teplotnímu namáhání. Tato formulace dovoluje zahrnout i změnu geometrie průřezu při deformaci celého nosníku a eliminuje potřebu zavést korekční koeficienty pro smyk. Teorie uvažuje stacionaritu energetického potenciálu, z čehož získá rovnice rovnováhy laminátového nosníku. Vyjádřením výslednice napětí jako funkce osového posuvu u_0 , proměnné příčného posuvu w_0 a proměnných vyšsího stupně je získán

lineární systém rovnic desátého řádu. Teorie se dle autorů zdá být vhodná pro krátké nosníky, kde převládá smykové napětí.

Model osového zatížení teorie z [26] je získán z Taylorova polynomu třetího řádu vztaženého ke střední ploše průřezu a je dán vztahem

$$u = u_0 + z\theta_x + z^2 u_0^* + z^3 \theta_x^* \quad . \tag{2.75}$$

Poslední dva sčítance tohoto vztahu se neobjevují v klasické laminátové teorii ani v Timošenkově teorii. Vyjádření poměrných deformací pomocí posuvů a použití výslednic napětí z rovnice

$$\begin{bmatrix} N_x & N_x^* & M_x & M_x^* \\ Q_x & S_x & Q_x^* & 0 \end{bmatrix} = \sum_{L=1}^{N_L} \int_{h_L}^{h_{L+t}} \begin{pmatrix} \sigma_x \\ \tau_{xz} \end{pmatrix} \begin{bmatrix} 1 & z^2 & z & z^3 \end{bmatrix}$$
(2.76)

a uvažováním neměnnosti celkové potenciální energie získáme diferenciální rovnice rovnováhy pro laminátové nosníky. Tento článek se zabývá pouze laminátovými nosníky, pokud je nutné aplikovat geometrii vinuté kompozitní trubky, celý problém nabude větších rozměrů.

Karama et al. [11] uvádí model vícevrstvého kompozitního nosníku k výpočtu mechanického chování vícevrstvých laminátových struktur. Výpočty provádí na konkrétní kompozitní skladbě [90°/0°/0°/90°]. Výsledky porovnává s MKP analýzou. Rovnice rovnováhy a vazebné podmínky odvozuje z principu virtuálních prací.

Obě výše zmíněné ([11]a[26]) teorie se zabývají obecným řešením deformace kompozitního materiálu, ale nezmiňují případ kompozitní trubky. Zejména výpočty jejich deformací bych se chtěla věnovat ve své práci. Řešením deformací a napětí a stejně tak určení ekvivalentní ohybové tuhosti kompozitních vinutých trubek se zabývají následující teorie.

Chouchai a Ochoa v [19], [20] vyvinuli analytický model pro výpočet napětí a deformace vícevrstvých kompozitních trubek, přičemž je uvažováno absolutně pevné spojení mezi vrstvami. Výsledky porovnávají s experimentálně získanými daty. Deformace a napětí jsou hodnoceny pro různé úhly vláken v jednotlivých vrstvách a různé poměry průměru k délce. Řešení problému je založeno na klasické teorii výpočtu tenzoru deformací,

$$\vec{\varepsilon} = \mathbf{C} \cdot \vec{\sigma} \tag{2.77}$$

ale pro řešení napětí a deformací kompozitní trubky používají cylindrický souřadný systém, který se lépe hodí pro popis její geometrie. Nevýhodou je, že generuje mnohem více koeficientů během výpočtu, což činí tuto metodu poměrně složitou i pro jednoduché případy kompozitního skladby.

Podobným problémem se zabývají *Jolicoeur a Cardou* v [18]. Představují zde obecné řešení pro výpočet napětí i deformací soustavy několika soustředných kompozitních trubek. Uvažují dva typy vazebných podmínek mezi vrstvami: žádný smyk nebo žádné tření na sobě ležících vrstev. Výsledky ukazují, že v této úloze není žádná vazba mezi ohybem, tahem a krutem. Při zatížení trubky ohybem se objevuje zvlnění geometrie průřezu, což ukazuje, že Bernoulliho – Eulerova hypotéza není vhodná pro případy trubek z ortotropních materiálů. Při řešení daného problému se dostávají k maticové rovnici (2.78), která ukazuje, že není žádná vazba mezi osově symetrickými silami ($P, C, \varepsilon \ a \vartheta$) a ohybovým zatížením a deformací (M, κ).

$$\begin{cases} P\\C\\M \end{cases} = \begin{bmatrix} EA & B_{12} & 0\\ B_{21} & GJ & 0\\ 0 & 0 & EI \end{bmatrix} \begin{cases} \varepsilon\\\vartheta\\\kappa \end{cases}$$
(2.78)

Kollár a Springer se v [27] zabývají zejména analýzou napětí vlákny zpevněných trubek a jejich segmentů. Zabývají se jak tenkostěnnými, tak silnostěnnými případy trubek namáhaných mechanicky nebo teplotou a vlhkostí. Tyto podmínky se mohou měnit radiálně, ale nikoliv axiálně. Odvozují rovnice, které jsou použitelné k výpočtu posuvů, poměrných deformací a napětí v materiálu. Používají opět Hookův zákon rozšířený pro ortotropní materiál se zahrnutím účinků od teploty a vlhkosti.

Tarn a Wang v [12] pojednávají o prostorovém přístupu k deformaci laminátových kompozitních trubek. Uvádí modulaci základních rovnic anizotropní elasticity v cylindrickém souřadném systému do stavových rovnic pomocí proměnných posuvů a napětí. Systém matic je tedy nezávislý na poloměru trubky. Formulace nabízí systém maticových rovnic k získání deformací a napětí vícevrstvých kompozitních trubek.

Zhang et al. v článku [28] uvádí metodu analýzy čistého ohybu kompozitní trubky složené z vrstev o úhlech 0° a 90° a dalších úhlech vinutí. Dokazuje, že dřívější metody jsou singulární pro některé kombinace úhlů vinutí, i když napětí a posuvy singulární nejsou. Výzkum ukazuje, že singulární parametry jsou přímosměrné úhlům vinutí. Zde jsou představeny nové koeficienty a jejich nesingulární parametry a navržen postup efektivní pro všechny případy vinutých trubek.

Důležitým krokem k určení deformace kompozitního nosníku je stanovení jeho ohybové tuhosti. Tím se zabývá např. *Wen S. Chan et al.* v [13]. Prezentují se zde dva analytické přístupy založené na laminátových plátech a skořepinových teoriích pro výpočet ohybové tuhosti vinutých trubek z kompozitního materiálu. Všechny výsledky jsou porovnány s MKP analýzou.

Obr. 14: Výseč plátu laminátové kompozitní trubky [12]

Přístup založený na laminátových vrstvách vychází z teorie ABD matic.

$$\overline{[A]} = \int_{0}^{2\pi} [A'] \cdot R \cdot d\theta$$

$$\overline{[B]} = \int_{0}^{2\pi} [B'] \cdot R \cdot d\theta$$

$$\overline{[D]} = \int_{0}^{2\pi} [D'] \cdot R \cdot d\theta$$
(2.79)

Kde [*A*], [*B*] *a* [*D*] jsou celkové matice tuhosti. Další proměnné jsou znázorněny v (Obr. 14).

Další přístup používá modul pružnosti ve směru osy x.

$$EJ = E_x \frac{\pi}{4} \cdot \left(R_0^4 - R_i^4 \right)$$
 (2.80)

Obecně lze říci, že výsledky všech zmíněných přístupů vykazují malé odchylky výsledků (cca do 5%). Problém nastává, pokud stoupá poměr L/D a zároveň se trubka stává silnostěnnou. Pak značně stoupají i odchylky přesnosti v porovnání s experimentem u jednotlivých metod.

Shadmehri et al [16] poskytuje teoretickou formulaci pro určení tuhosti kompozitních trubek. Třídimenzionální laminátová teorie je použita k získání ekvivalentní ohybové tuhosti (*EJ*), dále je provedena zjednodušená aproximační metoda pro získání ohybové tuhosti. Tato teorie porovnává závěry s experimentálními daty.

Přístup používající kvadratický moment plochy průřezu vychází z podobného vztahu jako v [13].

$$EJ = \sum_{n=1}^{N} \frac{\pi[(R_0^n)^4 - (R_i^n)^4]}{4} E_n \cdot$$
(2.81)

Ekvivalentní ohybová tuhost je získána jako součet příspěvků od všech vrstev.

Druhý uvedený přístup k získání ekvivalentní ohybové tuhosti, který nepoužívá klasickou laminátovou teorii, vede k odlišné rovnici

$$EJ = E \cdot \frac{\pi}{4} \cdot \left(R_0^4 - R_i^4\right) = E \cdot R^3 \cdot H \cdot \pi \left(\frac{1}{4} \left(\frac{H}{R}\right)^2 + 1\right) , \qquad (2.82)$$

kde R je průměrný poloměr celé trubky, H je tloušťka trubky a E je Yougův modul pružnosti.

2.5.1 Závěry plynoucí z rešerše stavu problematiky

Tato podkapitola ve stručnosti uvádí souhrnný osobní názor a odborný pohled autora disertační práce na základě výše uvedené literární rešerše, odborné praxe a znalosti problematiky v oblasti výpočtových modelů a analytických výpočtových metod pro zjištění tuhosti kompozitní trubky užité jako nosník, za účelem definování cílů práce.

Z uvedených zdrojů plyne, že stále chybí univerzální metoda výpočtu tuhosti a s tím související stanovení deformace kompozitní trubky. V praxi je používáno mnoho řešení zejména pomocí MKP modelů. Řešený model nosníku se ladí a upravuje vůči mechanickým zkouškám tak, aby nakonec dosáhly výpočet i zkoušky požadované tolerance. Takový proces je velmi náročný nejen časově, ale i ekonomicky. Přičemž je jasné, že malá změna vstupních podmínek vyvolá celé opakování procesu ladění MKP modelu se zkouškami. To je důvod pátrání po univerzální metodě výpočtu tuhosti kompozitních trubek.

Nová metoda by měla splňovat zejména robustnost a neomezovat svůj rozsah použití pouze na vybrané geometrie (tenkostěnné či silnostěnné) kompozitní trubky. Měla by sloužit pro návrhové výpočty a pro získání prvotní představy o rozměrech, kompozitní skladbě a použitých materiálech pro návrh určitého nosníku. Takový návrh by probíhal poměrně rychle za pomoci analytických prostředků. Modely MKP by se uplatnily až při konkrétní představě pro ověření funkčnosti navrhovaného nosníku v rámci celé mechanické sestavy.

Při rešerši ani při řešení dalších výzkumných projektů se autor práce s univerzálním řešením tuhosti kompozitních nosníků nesetkal. To je jeden z hlavních důvodů motivace pro hledání obecné analytické metody pro stanovení tuhosti kompozitních nosníků.

3 Konkrétní cíle disertační práce

Cílem této disertační práce je poskytnout inženýrům spolehlivou, univerzální a časově úspornou metodu pro návrh mechanických celků včetně kompozitních nosníků s mezikruhovým průřezem. Tato metoda poslouží k urychlení procesu návrhu a predikci tuhosti takových kompozitních nosníků. Nově zavedená metoda má za cíl poskytnout robustní inženýrský nástroj pro výpočet ekvivalentní tuhosti obecného kompozitního nosníku s mezikruhovým průřezem. Tato metoda poskytuje přibližný výsledek pro tuhost kompozitního nosníku, který je užitečný při navrhování a dimenzování kompozitních nosníků s mezikruhovým průřezem v mechanických soustavách.

Nosníky kruhového průřezu se ve strojírenské praxi běžně používají. Pro návrh nosníků vyrobených z plastů vyztužených vlákny (FRP) je vyžadována jednoduchá výpočetní metoda, aby se urychlil návrh mechanických konstrukcí, které zahrnují kompozitní nosníky. Předpokládá se, že zde popsaná výpočetní metoda bude řešit různé problémy související s předběžným návrhem kompozitních nosníků s mezikruhovými průřezy. Obecně platí, že příprava MKP analýzy mechanických součástí vyrobených z kompozitních materiálů je časově náročná, přičemž zde uvedená výpočetní metoda by měla poskytovat odpovědi na dimenzování, urychlovat proces návrhu a poskytovat prostor pro zaměření se na příslušné specifické problémy obklopující konstrukci příslušné mechanické jednotky. Dle doporučení by analýza konečných prvků byla aplikována na specifikované rozměry a skladbu kompozitních nosníků až po procesu předběžného návrhu.

Tato studie navazuje na teorie uvedené v kapitole 2 a kombinuje je s novým přístupem ke geometrii kompozitních trubek. Nový způsob výpočtu tuhosti kompozitního nosníku využívá přístup CLT pro laminátový nosník obdélníkového průřezu zatíženého jedinou osamělou silou ve směru vrstev a napříč vrstvami, jak je popsáno v [4]. Nový přístup k výpočtu ekvivalentní tuhosti nosníku s mezikruhovým průřezem je porovnán s výsledky získanými z běžně používaných výpočtů (CLT, neklasická teorie laminátů [16], FEA, princip minimální potenciální energie a použití prvků matice tuhosti a poddajnosti [A14]). Nový přístup má vyřešit problém stanovení ekvivalentní tuhosti kompozitních trubek vyrobených pomocí navíjení uhlíkových či jiných vláken nebo navíjení tkaniny/prepregu na trn. Ekvivalentní tuhost takových nosníků odvozená z CLT [5], [7] byla pro tvar kompozitní trubky nedostatečná. Neklasická teorie laminátů [16] a další přístupy, např. [24] a [12], jsou složité pro použití ve strojírenství a nejsou univerzální.

3.1 Cíle disertační práce

Z předchozího rozboru vyplývají tyto konkrétní cíle pro disertační práci:

Hlavní cíl disertační práce:

Hlavním cílem práce je: Definovat návrh nové analytické výpočetní metody pro určení tuhosti kompozitního nosníku s mezikruhovým průřezem.
 Nová metoda výpočtu ekvivalentní tuhosti nosníku poskytne inženýrům časově úspornou, robustní a spolehlivou analytickou metodu pro návrh kompozitních nosníků s mezikruhovým průřezem sloužící k ověření zamýšlených vlastností kompozitního nosníku při návrhu nové konstrukce.

K tomuto cíli vedou následující dílčí cíle disertační práce:

 Stanovit podmínky platnosti současných metod. Stanovit, pro které nosníky (silnostěnné či tenkostěnné), jsou současné metody výpočtu tuhosti kompozitních nosníků platné a ve kterých případech přinášejí problematické výsledky.

Kompozitní nosníky jsou velice variabilní nejen svým tvarem či průřezem, ale i skladbou kompozitního materiálu, z něhož jsou vyrobeny. Vzniká tak celá řada proměnných, které musíme brát v úvahu při výpočtu jejich tuhosti, což úzce souvisí se stanovením deformace takového nosníku.

- Experimentálně ověřit funkčnost dosavadních metod a ze získaných výsledků provést rozbor pro následnou práci.
- Navrhnout nový přístup k výpočtu tuhosti kompozitních nosníků s mezikruhovým průřezem.

Pro návrh nosníků vyrobených z plastů vyztužených vlákny (FRP) je vyžadována jednoduše použitelná, robustní výpočetní metoda, aby se urychlil návrh mechanických konstrukcí, které zahrnují kompozitní nosníky. Předpokládá se, že zde popsaná výpočetní metoda bude řešit různé problémy související s předběžným návrhem kompozitních trubek jako součástí aktivně přenášejících zatížení v mechanických soustavách.

• Experimentálně ověřit platnost jak současných, tak nově vzniklých analytických metod pro výpočet ekvivalentní tuhosti kompozitního trubkového nosníku.

Experiment bude vyžadovat kombinaci nosníků se silnostěnným a tenkostěnným průřezem a výběr několika kompozitních skladeb i několik různých materiálů k ověření univerzální platnosti nové výpočtové metody. Pro zjištění tuhosti takových nosníků je navržen experiment tříbodovým ohybem.

 Vyhodnocení dat porovnáním všech výpočetních metod – stávajících a nově vyvinutých – s experimentálními výsledky. Postup dosažení cílů disertační práce

4 Analýza běžně užívaných metod výpočtu tuhosti kompozitních trubek

Práce vznikla za účelem uspořádat a stanovit, pro které případy geometrie kompozitních trubek užitých jako nosníky lze použít dosavadní metody výpočtu jejich tuhosti, a na základě těchto znalostí navrhnout jinou spolehlivou metodu pro výpočet tuhosti použitelnou pro jakékoli geometrie kompozitních nosníků s mezikruhovým průřezem. Z uvedené rešerše stavu problematiky vyplývá, že použití klasických výpočetních metod vyvinutých pro lamináty není zcela vhodné pro případy kompozitních trubek. Zejména vzhledem k jejich geometrickému uspořádání, kdy je laminát při zatížení takového kompozitního nosníku orientován vůči zatížení různými směry, což způsobuje tvar mezikruhového průřezu.

Metodika práce byla založená na porovnání výsledků různých způsobů výpočtu tuhosti kompozitní trubky pro konkrétní případy nosníků s určitou geometrií a kompozitní skladbou. Geometrické rozměry nosníků byly navrhovány s ohledem na rozdíl mezi silnostěnnými a tenkostěnnými nosníky i s ohledem na jejich délku. Zkoumán byl i vliv kompozitní skladby a úhel návinu vláken (orientace jednotlivých kompozitních vrstev). Kvůli obecné platnosti byly zkoumány vždy nesymetrické kompozitní skladby o třech stejně širokých vrstvách. Dále byly všechny metody výpočtu provedeny pro konkrétní vzorky, které byly podrobeny v rámci výzkumu zkouškám tříbodovým ohybem.

Nejprve vzniklo porovnání výsledků dosavadně užívaných metod pro sérii myšlených kompozitních trubek s konkrétními geometrickými rozměry a konkrétní kompozitní skladbou.[A13] [A13] Z každé metody byla vyjádřena ekvivalentní tuhost celého nosníku. Výsledné tuhosti byly porovnávány mezi sebou. Z tohoto srovnání byly vyvozeny souvislosti mezi podstatou jednotlivých způsobů výpočtu tuhosti a jejich mnohdy rozdílnými výsledky pro jeden případ geometrie a kompozitní skladby myšleného nosníku.[A5] Na těchto poznatcích byly založeny návrhy na nové způsoby výpočtu ekvivalentní tuhosti kompozitních nosníků. Všechny výpočetní metody byly průběžně použity na vzorky kompozitních nosníků se známou skladbou a geometrií a jejich výsledky byly porovnávány s experimentálními daty získanými ze zkoušek vzorků. Poznatky získané v průběhu práce se podařilo aplikovat i na jiné případy kompozitních nosníků, jejichž geometrie obsahovala cylindrický průřez pouze částečně, jako např. v případě T-profilu pro leteckou konstrukci – Padovec [B37]

Disertační práce obsahuje část teoretickou, kde je snaha o vyvinutí spolehlivé univerzální metody pro výpočet tuhosti kompozitních nosníků s mezikruhovým průřezem, a část experimentální, která vznikla za účelem kontroly a průběžného srovnávání výsledků s teoretickými hodnotami. V návaznosti na chronologický průběh prací je nejprve uvedeno porovnání všech dostupných metod pro výpočet tuhosti kompozitního nosníku, následuje teoretický popis nově navržených způsobů výpočtu. Dále je uveden popis experimentální části disertační práce. Výsledkem práce je porovnání všech zmíněných metod výpočtů tuhosti s experimentálními daty, jejich diskuse a konstatování doporučených metod pro výpočet tuhosti kompozitního nosníku.

4.1 Ověření funkčnosti dostupných metod pro výpočet tuhosti kompozitních trubek užitých jako nosníky a porovnání jejich výsledků

Pro metody výpočtů zmíněné v předchozích kapitolách byla stanovena vstupní data, pro která byly určeny výsledky sloužící k porovnání dosavadních metod mezi sebou. Nejprve byly stanoveny závislosti průhybu vetknutého nosníku na změnu orientace návinu vláken v jednotlivých vrstvách. Dále byly porovnány ekvivalentní moduly pružnosti v tahu v závislosti na změně štíhlosti nosníku a též na změně úhlu návinu vláken.[A12] Pro porovnání byly vybrány metody uvedené v tabulce (Tabulka 2). V tabulce je rovněž uvedeno značení jednotlivých metod použitých v uvedených grafech.

	odkoz na kan	značka motody použitá					
Název metody							
	v rešeršni časti prace	pro grafické znázornění					
Analytické metody							
CLT – matice poddajnosti	2.3.2	Bernoulli					
CLT – výpočet pomocí matice ABD	2.3.3	ABD					
MKP modely							
Klasická skořepina	2.4.1	ConvS					
Objemová skořepina	2.4.2	CS					
Objemový model	2.4.3	VM					
V grafických znázorněních se vyskytují další zkratky odkazující na charakteristiku							
jednotlivých metod výpočtu:							
d – vnitřní průměr kompozitní trubky (někdy číselně doplněn informací o velikosti							
průřezu)							
F – zatížení silou							
M-zatížení momentem							
E_{eq} – ekvivalentní modul pružnosti							

4.1.1 Závislost průhybu kompozitního nosníku na úhlu návinu vláken

Pro tuto závislost byl použit model vetknutého nosníku zatíženého na volném konci osamělou silou (Obr. 15). Rozměry nosníku a složení kompozitního materiálu jsou uvedeny v tabulce (Tabulka 3). Pro počáteční porovnání byla zvolena závislost průhybu kompozitního nosníku zatíženého silou na úhlu návinu vláken v kompozitních vrstvách.[A11] Tento model byl zvolen, protože se velmi blíží realitě nosníku zatíženého při zkouškách. Pro vyloučení symetrie či antisymetrie byla do skladby přidána tzv. podvrstva s úhlem návinu 90°. Tato vrstva má v praxi technologický význam, ale přenáší minimum zatížení. Zkoumání průhybu mělo pro počáteční zjištění také výhodu v jednoduchosti aplikace MKP modelů, ze kterých jsou jedním z hlavních výstupů posuvy modelované součásti při zatížení. Ekvivalentní tuhost nosníku by bylo nutné z posuvů vypočítat.

Obr. 15: Schéma modelu nosníku a jeho zatížení silou F

Tabulka 3: Vstupní hodnoty pro porovnání stávajících metod

Vstupní hodnoty	
Geometrie	
délka	L = 1 m
vnitřní průměr	d = [30; 100] mm
tloušťka jednotlivých vrstev	t = 1 mm
tloušťka stěny trubky	$t_p = 3 mm$
Zatížení	
síla	F = 10 N
Materiál	
hustota	$\rho = 1474 \text{ kg.m}^3$
modul pružnosti v tahu v	$E_L = 156.05 \text{ GPa}$
podélném směru	
modul pružnosti v tahu v	$E_T = 6.045 \text{ GPa}$
příčném směru	
moduly pružnosti ve smyku	$G_{LT} = 4.431 \text{ GPa}$
v příslušných rovinách	$G_{LT} = 4.431 \text{ GPa}$
	G_{TT} = 4.431 GPa
Poissonovo číslo	$v_{LT} = 0.328$
skladba kompozitního	[90°, α, -α]
materiálu	
úhly navinutí	$\alpha = [0^{\circ}, 5^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}, 45^{\circ}, 55^{\circ}, 65^{\circ}, 75^{\circ}, 85^{\circ}, 90^{\circ}]$

Výsledná závislost je zobrazena v grafech (Obr. 16 a Obr. 17). Na Obr. 16 jsou patrné dvě větve sobě blízkých výsledků, mezi nimiž je pak viditelný zásadní rozdíl. Velký rozdíl mezi výpočty pomocí klasické skořepiny (ConvS) a ostatními metodami v oblasti větších úhlů navinutí vláken. To je v souladu s předpoklady užívání skořepin při výpočtech. Tento problém zmizí, pokud jsou použity výrazně tenkostěnné profily, což je patrné na Obr. 17, kde se tento rozdíl zmenšuje.

Pro toto prvotní srovnání byly použity oba způsoby tvorby modelu klasické skořepiny (viz. 2.4.1). Rozdíl mezi výpočty pomocí klasické skořepiny s použitím vstupních dat ve tvaru ABD matic a mezi použitím materiálových hodnot spolu s tloušťkou jednotlivých vrstev je malý. Přesto lze říci, že použití matice ABD do skořepinového modelu přibližuje jeho výsledky analytickému výpočtu pomocí CLT s užitím matice ABD. [A12]

Použití objemové skořepiny vykazuje nejtužší chování s minimálním průhybem ve všech případech, ale hodnoty získané touto metodou se blíží výsledkům analytického výpočtu s užitím ABD matice, což odpovídá i teoretickému základu tohoto modelu. Při větších úhlech návinu se u tohoto modelu neprokazuje ztráta tuhosti jako v případě klasické skořepiny.

Objemový model velmi těsně kopíruje hodnoty získané analyticky pomocí matice poddajnosti, což je opět v souladu s teorií.

Největší rozdíl ve výsledných hodnotách se nachází ve středních hodnotách úhlů navinutí vláken. Tam se právě ukazuje velký rozdíl ve výsledcích použitých metod, který dosahuje velikosti až 33.4%. [A5], [A9]

Obr. 16: Závislost průhybu na úhlu směru vláken pro nosník s průměrem 30 mm

Obr. 17: Závislost průhybu na úhlu směru vláken pro nosník s průměrem 100 mm

4.1.2 Závislost ekvivalentních modulů pružnosti na štíhlosti nosníku a na úhlu návinu vláken

Další zkoumaná závislost již zahrnuje ekvivalentní moduly pružnosti v tahu kompozitních nosníků.[A10] Moduly pružnosti v tahu byly počítány při zatížení momentem M (Obr. 18). Tato datová sada byla navržena tak, aby byla dodržena předepsaná štíhlost nosníku L/D. Použité hodnoty geometrických rozměrů pro zkoumané myšlené nosníky jsou seřazeny do tabulky (Tabulka 5). Kompozitní skladba byla opět třívrstvá [90, 0, 0] s tloušťkami vrstev 1mm. Pro tyto modely byla použita materiálová data pro materiál T700/epoxid. Materiálová data spolu s hodnotami zatížení jsou v tabulce (Tabulka 4).

Obr. 18: Schéma modelu nosníku a jeho zatížení momentem M

Pro tuto sadu dat byl zvolen model nosníku zatížený momentem z důvodu jednoduššího získání ekvivalentního modulu pružnosti z modelů MKP. Při zatížení momentem nosník nepodléhá smykovému zatížení od posouvající síly a není potřeba zjišťovat modul pružnosti ve smyku, aby bylo možné zjistit ekvivalentní modul pružnosti kompozitního nosníku z hodnoty průhybu získaného s MKP modelu (viz oddíl 2.3.1). Z analytických metod

se ekvivalentní modul pružnosti vyjádří v obou případech samostatně před výpočtem deformace (viz 2.2).

Vstupní hodnoty	
Zatížení	
síla	F = 10 N
moment	$M = 10\ 000\ Nmm$
Materiál	
modul pružnosti v tahu	$E_{L} = 143.12 \text{ GPa}$
v podélném směru	
modul pružnosti v tahu	$E_T = 6.672 \text{ GPa}$
v příčném směru	
moduly pružnosti ve smyku	$G_{LT} = 3.39 \text{ GPa}$
v příslušných rovinách	$G_{LT} = 3.39 \text{ GPa}$
	$G_{TT} = 3.39 \text{ GPa}$
Poissonovo číslo	$v_{LT} = 0.26$

Tabulka 4: Vstupní hodnoty pro výpočty pro sadu 2

Tabulka 5: Tabulka geometrických hodnot pro nosníky ze sady 2

	L/d:	1	2	4	8	10	20	40	50
					L[mm]				
	60	60	120	240	480	600	1200	2400	3000
	100	100	200	400	800	1000	2000	4000	5000
d [mm]	150	150	300	600	1200	1500	3000	6000	7500
	200	200	400	800	1600	2000	4000	8000	10000
	300	300	600	1200	2400	3000	6000	12000	15000

Pro sadu 2 byly pevně stanoveny velikosti průřezů a dle štíhlostního poměru *L/D* byly dopočítány délky nosníků.[A8] Třívrstvá kompozitní skladba [90, 0, 0] byla zvolena s ohledem na výsledky z předchozího oddílu 4.1.1., kde pro tuto skladbu byly výsledky nejméně odlišné.

Tato sada dat má za úkol zjistit vliv geometrie na hodnotu vypočítané tuhosti při použití modelů MKP. Pro výpočet ekvivalentního modulu pružnosti z analytických metod je jeho hodnota konstantní, což je v souladu s jejich teorií.

Lze říci, že hodnoty získané oběma způsoby, numerickou i analytickou metodou, vykazují odchylku max. 16%. Prokázalo se, že geometrie myšlených vzorků má vliv na velikost ekvivalentního modulu pružnosti. U modelu klasické skořepiny mají výsledky pro nosník s nejmenším průřezem nejmenší hodnotu modulu pružnosti. Rozdíl hodnot pro model klasické skořepiny je 10%. Naopak při použití modelu objemové skořepiny má nosník s nejmenším průřezem největší hodnotu ekvivalentního modulu pružnosti. Shoda pro hodnoty z modelu objemové skořepiny je 2,2%. Velmi obdobnou shodu vykazuje objemový model. Jeho odchylka mezi jednotlivými průřezy činí 2,7% a opět model s nejmenším průřezem je z vypočítaných případů nejtužší. Rozdíl mezi hodnotami obou analytických metod je 0,7%. K hodnotám z analytických modelů se shodně blíží hodnoty z modelů objemové

skořepiny a objemového modelu. Model klasické skořepiny se svými výsledky ostatním metodám vzdaluje a vykazuje nižší hodnoty ekvivalentního modulu pružnosti kompozitních nosníků.[A7]

Obr. 19: Závislost modulu pružnosti v tahu na štíhlosti nosníku

4.1.3 Rozšířené zkoumání závislosti ekvivalentních modulů pružnosti na štíhlosti nosníku a na úhlu návinu vláken (Sada 4)

Pro tuto sadu dat (Sada 4) byly vyneseny závislosti ekvivalentních modulů pružnosti v tahu na štíhlosti nosníku pro všechny úhly návinu, materiál a geometrii, které jsou zmíněné v tabulce (Tabulka 6). Všechny použité průměry a délky nosníků jsou stejné, jako v předchozím případě viz (Tabulka 6).

Tato sada dat vznikla, aby bylo možné ověřit kombinaci faktorů, které ovlivňují výsledky z jednotlivých metod. Jedná se o kombinaci orientace vláken v kompozitní skladbě nosníku [90°, α , $-\alpha$] a poměru délky k průřezu nosníku, tento geometrický vliv se vztahuje k hodnocení tlustostěnnosti a tenkostěnnosti zamýšlených nosníků.[A6]

Příklady výsledků jsou zobrazeny v grafech (Obr. 20 - Obr. 22). Celé výsledky jsou uvedeny v příloze 13.1 (Příloha 1). Jak již bylo zmíněno v předchozím oddílu 4.1.2, ukazuje se vliv poměru délky k průměru L/D, který se mění u jednotlivých metod při kombinaci se skladbou obsahující vrstvy pod různým úhlem návinu. Tato změna ale není tak markantní jako rozdíl hodnot vznikající právě se změnou úhlu orientace vláken kompozitní skladby.

Další jev se objevuje při použití modelu objemové skořepiny pro nosníky se skladbou s vyššími úhly návinu v případech velmi silnostěnných profilů s poměrem $\frac{L}{D} < 10$ v kombinaci s malými úhly navinutí, jež se blíží 0°. Zde se projevuje zvýšení tuhosti modelu např. (Obr. 22).

Vstupní hodnoty	
Geometrie	
délka	$L/D = \{1; 2;; 40; 50\}$
vnitřní průměr	ØD= {60mm; 100mm; 150mm; 200mm; 300mm}
tloušťka jednotlivých vrstev	t = 1 mm
tloušťka stěny trubky	$t_p = 3 mm$
Zatížení	
síla	F = 10 N
moment	$M = 10\ 000\ Nmm$
Materiál	
modul pružnosti v tahu v	$E_{L} = 143.12 \text{ GPa}$
podélném směru	
modul pružnosti v tahu v	$E_T = 6.672 \text{ GPa}$
příčném směru	
moduly pružnosti ve smyku	$G_{LT} = 3.39 \text{ GPa}$
v příslušných rovinách	$G_{LT} = 3.39 \text{ GPa}$
	$G_{TT} = 3.39 \text{ GPa}$
Poissonovo číslo	$v_{LT} = 0.26$
skladba kompozitního	[90°, α, -α]
materiálu	
úhly navinutí	$\alpha = [0^{\circ}, 5^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}, 45^{\circ}, 55^{\circ}, 65^{\circ}, 75^{\circ}, 85^{\circ}, 90^{\circ}]$

Tabulka 6: Vstupní hodnoty pro výpočty ze sady 4

Obr. 20: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 5°

Obr. 21: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 45°

Obr. 22: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 90°

Pro souhrnný závěr tohoto průzkumu metod pro výpočet tuhosti kompozitních nosníků byla data vždy pro jeden případ výpočetní metody a pro jeden úhel návinu zprůměrována a vynesena do grafu závislosti ekvivalentního modulu pružnosti na úhlu orientace vláken. Z grafu (Obr. 23) je opět patrný velký rozdíl mezi výsledky v oblasti s úhly návinu mezi 5° a 60°.[A8]

Pro jeden případ kompozitního nosníku o vnitřním průměru 300 mm a délky 15 000 mm byla vynesena kontrolní závislost průhybu na úhlu orientace vláken se skladbou [90°, $+\alpha$, $-\alpha$] (Obr. 24). Dle předpokladu se objevily podobné rozdíly v datech z jednotlivých MKP modelů, které byly popsány v oddíle 4.1.1. Vzhledem k tomu, že MKP modely jsou odvozeny od analytických metod, nebyly tyto v tomto případě již počítány.

Obr. 23: Celková závislost průměrných hodnot ze sady 4

Obr. 24: Celková závislost průměrných hodnot průhybu na úhlu natočení vláken ze sady 4

4.1.4 Porovnání výsledků s experimentálními daty

V diplomové práci paní Malé [33] je popsán experiment tříbodového ohybu v elastické oblasti tenkostěnných i silnostěnných kompozitních trubek. Tenkostěnné trubky mají skladbu [°0°, 87,6°] v případě trubky 2 (Tabulka 7) a skladbu [0°, 7°, -7°, 87°] v případě trubky 3 (Tabulka 8). Silnostěnné trubky se skládají ze třinácti vrstev s úhly návinu [±45°]₁₃ (Tabulka 9). Všechny tři případy nosníků byly podrobeny zkouškám tříbodovým ohybem s rozpětím podpěr 400 mm a 600 mm.

K tomuto experimentu byly použity výpočty tuhosti kompozitních nosníků zde popsané analytické metody (kapitola 2.3) i MKP modely (kapitola 2.4). Vzhledem k symetrii dané úlohy byla modelována pouze polovina délky nosníku a zatíženy poloviční silou při zachování vetknutí nosníku v modelech, jak je znázorněno na Obr. 15. V následujících grafech je vždy vynesena závislost průhybu nosníku v závislosti na aplikované síle. [A7]

V případě MKP modelů, které jsou všechny lineární, je vyjmuto několik hodnot zatěžující síly a k nim je zjištěna velikost průhybu. Z těchto bodů je vytvořen graf závislosti. Stejně je postupováno při získání hodnot analytickými metodami.

Ukazuje se, že v případech tenkostěnných nosníků všechny výsledky použitých metod se značně odlišují od experimentálních dat (Obr. 25 - Obr. 28). Ovšem je nutné konstatovat i velký rozptyl experimentálních dat samotných (Tabulka 7 a Tabulka 8).

Situace je lepší v případě silnostěnných nosníků (Obr. 29 a Obr. 30). V tomto případě mají experimentální data rozptyl okolo 10%. Rozdíl vypočítaných hodnot je však uspokojující pouze v případě MKP modelu objemové skořepiny (Tabulka 9). Toto zjištění bylo uplatněno při tvorbě modelu hybridní hřídele. [B12], [B13]

Obr. 25: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání s experimentem – (Trubka 2 – tr2; def1, def2 – experimentálně měřené deformace první a druhý vzorek, další zkratky viz Tabulka 2), vzorek o délce 400 mm

Obr. 26: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání s experimentem – (Trubka 2 – tr2; def1, def2 – experimentálně měřené deformace první a druhý vzorek, další zkratky viz Tabulka 2), vzorek o délce 600 mm

Trubka	2						
Geometrie:				Geometrie:			
délka [mm]	vnitřní průměr [mm]	kompozitní skladba	Max. zatížení [kN]	délka [mm]	vnitřní průměr [mm]	kompozitní skladba	Max. zatížení [kN]
400	26	[0°, 87.6°]	0.4115	600	26	[0°, 87.6°]	0.4063
Experiment číslo:	Průhyb [mm]	Průměr experimentu [mm]	Odchylka experimentu od průměru [%]	Experiment číslo:	Průhyb [mm]	Průměr experimentu [mm]	Odchylka experimentu od průměru [%]
experiment 1	3.370			experiment 1	5.115	4.07	00.15
experiment 2	1.148	2.26	49.18	experiment 2	2.993	4.05	26.17
Metoda výpočtu:	Průhyb [mm]	Odchylka od průměru experimentu [%]		Metoda výpočtu:	Průhyb [mm]	Odchylka od průměru experimentu [%]	
klasická skořepina	1.771	-21.59		klasická skořepina	5.237	29.17	
objemová skořepina	1.628	-27.93		objemová skořepina	4.779	17.87	
objemový model	1.641	-27.36		objemový model	4.821	18.91	
Bernoulli	1.457	-35.50		Bernoulli	4.541	12.01	
ABD	1.395	-38.25		ABD	4.334	6.91	

Tabulka 7: Tabulka hodnot průhybů počítaných pro nosník 2 experimentálně testovaný v [33]

Obr. 27: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání s experimentem u tenkostěnných nosníků – (Trubka 3 – tr3; def1, def2 – experimentálně měřené deformace prvního a druhého vzorku, další zkratky viz Tabulka 2), vzorek o délce 400 mm

Obr. 28: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání s experimentem u tenkostěnných nosníků – (Trubka 3 – tr3; def1, def2 – experimentálně měřené deformace prvního a druhého vzorku, další zkratky viz Tabulka 2), vzorek o délce 600 mm

Trubka	3						
Geometrie:				Geometrie:			
délka [mm]	vnitřní průměr [mm]	kompozit ní skladba	Max. zatížení [kN]	délka [mm]	vnitřní průměr [mm]	kompozit ní skladba	Max. zatížení [kN]
400	26	[0°, 7°, - 7°, 87°]	0.4172	600	26	[0°, 7°, - 7°, 87°]	0.4099
Experiment číslo:	Průhyb [mm]	Průměr experimentu [mm]	Odchylka experimentu od průměru [%]	Experiment číslo:	Průhyb [mm]	Průměr experimentu [mm]	Odchylka experimentu od průměru [%]
experiment 1	2.143	1 50	24.07	experiment 1	3.981	2.90	01.15
experiment 2	1.040	1.59	34.67	experiment 2	2.591	3.29	21.15
Metoda výpočtu:	Průhyb [mm]	Odchylka průměru experimer	od ntu [%]	Metoda výpočtu:	Průhyb [mm]	Odchylka průměru experime	od ntu [%]
klasická skořepina	0.831	-47	7.79	klasická skořepina	2.367	-27.	.97
objemová skořepina	0.751	-52.82		objemová skořepina	2.114	-35.67	
objemový model	0.917	-42.38		objemový model	2.570	-21.	.79
Bernoulli	0.784	-50.74		Bernoulli	2.371	-27.	.84
ABD	0.629	-60	0.47	ABD	1.901	-42.15	

Tabulka 8: Tabulka hodnot průhybů počítaných pro nosník 3experimentálně testovaný v [33]

Obr. 29: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání s experimentem u silnostěnných nosníků - (def1, def2 – experimentálně měřené deformace první a druhý vzorek, další zkratky viz Tabulka 2), vzorek o délce 400 mm

Obr. 30: Závislost výsledných hodnot průhybu počítaného různými metodami v porovnání s experimentem u silnostěnných nosníků - (def1, def2 – experimentálně měřené deformace první a druhý vzorek, další zkratky viz Tabulka 2), vzorek o délce 600 mm

Tabulka 9: Tabulka hodnot průhybů počítaných pro silnostěnný nosník o délce 600 mm experimentálně testovaný v [33]

Silnostěnná trubka						
Geometrie:			Max. zatížení [kN]			
délka [mm]	vnitřní průměr [mm]	kompozitní skladba				
600	14	[± 45°] ₁₃	1.833			
Experiment:	Průhyb [mm]	Průměr experimentu [mm]	Odchylka experimentu od průměru [%]			
experiment 1	6.167	6.87	-10.23			
experiment 2	7.572					
Metoda výpočtu:	Průhyb [mm]	Odchylka od průměru e	experimentu [%]			
klasická skořepina	-	-				
objemová skořepina	6.001	-12.64				
objemový model	9.044	31.65				
Bernoulli	9.157	33.30				
ABD	5.434	-20.90				
Geometrie:			Max. zatížení [kN]			
délka [mm]	vnitřní průměr [mm]	kompozitní skladba				
400	14	[± 45°] ₁₃	3.987			
Experiment:	Průhyb [mm]	Průměr experimentu [mm]	Odchylka experimentu od průměru [%]			
experiment 1	5.017	4.57	9.78			
experiment 2	4.123	4.07	5.10			
Metoda výpočtu:	Průhyb [mm]	Odchylka od průměru experimentu [%]				
klasická skořepina	-	-				
objemová skořepina	4.221	-7.63				
objemový model	5.871	28.47				
Bernoulli	5.946	30.10				
ABD	3.508	-23.2	3			

4.2 Shrnutí poznatků zjištěných při ověřování dosavadních metod

Celkový průzkum metod týkajících se výpočtu průhybu nosníku z kompozitního materiálu byl zahájen zjištěním závislosti průhybu na úhlu navinutí vláken ve vrstvách kompozitního materiálu na nosníku s vybranými kompozitními skladbami, přičemž byly použity všechny dosavadní výpočetní metody (tři MKP modely a dva analytické způsoby).[A13] Bylo zjištěno, že většina metod se shoduje v případech, kdy skladba kompozitního materiálu je z vrstev, které mají úhel navinutí 0° nebo 90°. Naopak velké rozdíly vykazují ve střední oblasti okolo úhlu navinutí 45° (Obr. 23).

Při výpočtu pomocí klasické skořepiny se ukazuje velká odchylka od ostatních metod v případech silnostěnných profilů trubek. Při použití větších poměrů průměru k tloušťce stěny nosníku (průřez se stane více tenkostěnným) tento problém mizí, což odpovídá předpokladům pro řešení úloh teorií skořepin [1]. Výsledky z obou MKP metod používající teorii skořepin se blíží výsledkům z výpočtu pomocí ABD matic. Přičemž lze konstatovat, že objemová skořepina lépe aproximuje experimentální data při silnostěnných případech nosníků, čehož bylo využito při řešení dalších výzkumných projektů. [B11], [B17]

Objemový MKP model poskytuje výsledky blížící se výsledkům z klasické laminátové teorie (CLT) s použitím matice poddajnosti a Bernoulliho metody ohybu. Výsledky z těchto dvou metod jsou ve srovnání s ostatními metodami vyšší v případě průhybu a nižší při zjišťování modulů pružnosti kompozitního nosníku.[A12] Vždy jsou tedy na straně bezpečnosti výpočtu. Ovšem při porovnání s experimentem vykazují zpravidla větší odchylky než ostatní metody výpočtu.

Dále byly získány hodnoty ekvivalentních modulů pružnosti kompozitních nosníků pro několik sad geometrických a materiálových hodnot (oddíly 4.1.2 a 4.1.3) při dodržení stejných štíhlostních poměrů pro všechny sady a pro totožný kompozitní materiál.[A7], [A8] Štíhlostní poměr L/D se ve všech sadách pohybuje v hodnotách od 1 do 50 pro všechny použité průměry. Z těchto datových sad byly zjištěny závislosti ekvivalentních modulů pružnosti jak na štíhlosti nosníku, tak na změně úhlu návinu vrstev kompozitu.

Vyhodnocením předešlých výpočtů a porovnáním všech vyhodnocených dat včetně aplikace všech zmíněných metod na experimentálně zkoušené kompozitní trubky je možné vyvodit tyto závěry:

- Zkoumané metody nejsou univerzální vzhledem ke geometrii kompozitní trubky.
- Všechny metody poskytují srovnatelné výsledky v případech kompozitní skladby s vrstvami orientovanými pod úhly 0° a 90°.[A5] Při užití jiných směrů vláken se začnou data z jednotlivých metod rozcházet, přičemž nelze vysledovat závislost s experimentem.
- Vzhledem ke geometrii trubky s mezikruhovým průřezem nelze stanovit přesnou hranici pro použití skořepinových modelů.

Tyto problémy s výpočtem tuhosti a průhybu kompozitních trubek se snaží vyřešit následující nově vyvinuté metody, které se snaží zakomponovat do řešení geometrii mezikruhového průřezu kompozitního nosníku a kladou si za cíl univerzální použití pro všechny možné geometrie kompozitních trubek.

5 Matematický popis nově navržených metod

Všechny nově navržené metody mají své základy v klasické laminátové teorii. Tato teorie velmi dobře popisuje vlastnosti laminátu v jeho rovinné podobě. Vzhledem ke geometrii kompozitní trubky je však nutné klasickou laminátovou teorii uzpůsobit cylindrické geometrii trubky tak, aby nově navržená metoda charakterizovala vlastnosti cylindrické geometrie nebo se jí alespoň přiblížila.

5.1 Použití matice tuhosti a poddajnosti

Tento způsob výpočtu tuhosti plyne z faktu, že k sobě invertní matice tuhosti a matice poddajnosti tvoří horní a dolní meze hodnot, ve kterých se pohybují výsledky všech ostatních metod viz kap. 4.1. Proto je navržena velmi jednoduchá metoda aritmetického průměru hodnot získaných pro jeden materiál z matice tuhosti S a matice poddajnosti C (oddíl 2.3.2). Ze členů matice poddajnosti C i z matice tuhosti lze získat modul pružnosti ve směru osy nosníku ze členu matice C_{11} respektive S_{11} v případě matice tuhosti S. Obě matice ale musí být transformovány do souřadného systému celého nosníku. [A6]

Z užití modulu pružnosti v tahu E_x ve směru osy x je patrné, že v celém výpočtu je uvažováno zjednodušené tahové zatížení ve směru osy nosníku. Deformace a napětí v ostatních směrech kompozitního materiálu nejsou uvažovány. Ohybová tuhost je získána jako součin výše zmíněného modulu pružnosti v tahu E_x a příslušného kvadratického momentu v průřezu J_z . Ohybovou tuhost musíme určit pro každou vrstvu.

$$J_{z_k} = \frac{\pi D_k^4}{64} \left(1 - \left(\frac{d_k}{D_k}\right)^4 \right) \quad ; \ k = 1, 2, \dots, n \tag{5.1}$$

$$E_x \cdot J_z = \sum_{k=1}^{n} E_{x_k} \cdot J_{z_k} , \qquad (5.2)$$

kde D je vnější průměr každé vrstvy, d je vnitřní průměr každé vrstvy, k je index vrstvy a n je počet vrstev.

Použití matice tuhosti S představuje horní odhad ekvivalentní tuhosti, použití matice poddajnosti C zase dolní odhad tuhosti kompozitního nosníku.

$$EJ_{S} = \sum_{k=1}^{n} S_{11_{k}} \cdot J_{Z_{k}}$$
(5.3)

$$EJ_C = \sum_{k=1}^{n} C_{11_k} \cdot J_{Z_k}$$
(5.4)

V této metodě je použit jejich aritmetický průměr k získání ekvivalentní tuhosti kompozitního nosníku s mezikruhovým průřezem.

$$EJ_{eq} = \frac{EJ_S + EJ_C}{2} \tag{5.5}$$

64

kde EJ_{eq} je hodnota ekvivalentního modulu pružnosti kompozitního nosníku, EJ_S je hodnota modulu pružnosti získaná s použitím členu S_{11} matice tuhosti a EJ_C je hodnota modulu pružnosti získaná s použitím členu C_{11} matice poddajnosti.

5.2 Ohybová tuhost získaná statistickou metodou

Tato metoda je založená na analogii ke statistické mechanice a vyjádření deformační energie U pomocí rovnice (2.55). Dle statistické mechaniky je (pravděpodobná) energie systému $\langle E \rangle$ rovna záporně vzaté derivaci logaritmu partiční funkce Z, podle parametru zvaného termodynamická beta (β)

$$\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta} \quad , \tag{5.6}$$

kde partiční funkci lze určit ze vztahu

$$Z = \sum_{i} e^{-\beta E_i} \quad . \tag{5.7}$$

Energii systému lze pak vyjádřit takto

$$\langle E \rangle = -\frac{\partial kZ}{\beta} \tag{5.8}$$

$$\beta = \frac{1}{k_B T} \tag{5.9}$$

Ve vyjádření tzv. termodynamické bety β (5.9), je k_B Boltzmanova konstanta, jejíž velikost je pro tyto účely změněna na hodnotu zabezpečující konvergenci výpočtu a T je termodynamická teplota. E_i je celková energie systému v příslušném mikrostavu.[A4]

V této analogii vedoucí k určení ohybové (a podobně i smykové) tuhosti za mikrostav považujeme soubor tuhostí jednotlivých vrstev vypočítaných podle libovolné vzájemně i různé metody. Celková ohybová tuhost, EJ_i , příslušná danému mikrostavu je dána součtem tuhostí všech vrstev. Každému mikrostavu přísluší energie E_i rovna úplné potenciální energii Π daného nosníku. Například při uvažování symetrického tříbodového ohybu.

$$E_i = \Pi = U - F \cdot u = -\frac{1}{2}F \cdot u = -\frac{1}{2}F \cdot \frac{Fl^3}{48(EJ)_i}$$
(5.10)

Takto vyjádřenou partiční funkci Z podrobíme numerické derivaci dle vztahu (5.6) a získáme (předpokládanou, průměrnou) energii nosníku $\langle E \rangle$. Zpětně pak ze vztahu pro úplnou potenciální energii nosníku (5.10) dopočítáme efektivní ohybovou tuhost nosníku.[A4]

$$(EJ)_{efektivni} = -\frac{F^2 l^3}{96\langle E \rangle} \tag{5.11}$$

5.3 Nová metoda založená na úvaze o geometrii

Základní úvaha s přihlédnutím k podstatě kompozitních nosníků zahrnuje stanovení tuhosti trubky s jakýmikoli geometrickými rozměry a neurčenou kompozitní skladbou. Tato nová metoda je založena na CLT reprezentovaném rovnicí (2.38) v kombinaci s geometrickými principy. V [4] Berthelot popisuje dva případy zatížených klasických laminátových nosníků s obdélníkovým průřezem. Laminátový nosník je zatížen silou Fv různých směrech. Tuhost nosníku je odvozena z prvků matice A a prvků matice Dv závislosti na poloze zatěžující síly. Obr. 31 ukazuje laminátový nosník zatížený ve směru, ve kterém je tuhost nosníku odvozena od matice D, konkrétně od prvku D_{11} . Laminát se deformuje ohybovou silou F.[A2]

Obr. 31: Vrstvený laminát zatížený ohybovou silou F

Křivost v příslušném směru z rovnice (2.27) je vyjádřena takto [4]

$$\frac{\partial^2 w_0}{\partial x^2} = -\frac{M}{E_x J} \tag{5.12}$$

Následuje výraz pro kvadratický moment plochy k příslušné ose pro případ na (Obr. 31)

$$J = \frac{bh^3}{12} , (5.13)$$

a vyjádření modulu pružnosti [4]

$$E_x = \frac{12}{h^3 D_{11}^*} , (5.14)$$

kde inverzní člen ke členu matice ABD D_{11} přestavuje D^{\ast}_{11} [4]

$$D_{11}^{*} = \frac{1}{\Delta} (D_{22} D_{66} - D_{26}^{2})$$
(5.15)

$$\Delta = D_{11}D_{22}D_{66} + 2D_{12}D_{16}D_{26} - D_{11}D_{26}^2 - D_{22}D_{16}^2 - D_{66}D_{12}^2 .$$
(5.16)

Obr. 32: Vrstvený laminát zatížený tahovou silou F

Obr. 32 znázorňuje tentýž laminátový nosník zatížený ve směru, ve kterém se tuhost nosníku odvozuje od matice **A**, konkrétně od prvku A_{11} . Laminát je deformován axiální (tahovou) silou F [4].

Křivost v příslušném směru z rovnice (2.27) je vyjádřena opět jako v předchozím případu [4]

$$\frac{\partial^2 w_0}{\partial x^2} = -\frac{M}{E_x I} \tag{5.17}$$

Následuje výraz pro kvadratický moment plochy k příslušné ose pro případ na (Obr. 32)

$$J = \frac{hb^3}{12}$$
(5.18)

a vyjádření modulu pružnosti [4]

$$E_x = \frac{1}{h \, A^*_{11}} \,, \tag{5.19}$$

kde inverzní člen ke členu matice ABD A_{11} přestavuje $A^*_{\ 11}$ [4]

$$A^*_{11} = \frac{1}{\Delta} (A_{22}A_{66} - A_{26}^2)$$
(5.20)

$$\Delta = A_{11}A_{22}A_{66} + 2A_{12}A_{16}A_{26} - A_{11}A_{26}^2 - A_{22}A_{16}^2 - A_{66}A_{12}^2 .$$
(5.21)

Úvaha předcházející přechodu k řešení geometrie trubky s mezikruhovým průřezem zahrnuje laminátový nosník zatížený silou orientovanou pod úhlem α . (Obr. 33)

Obr. 33: Vrstvený laminát zatížený silou F pod úhlem a se svými ekvivalenty namáhanými tahem a ohybem

Z pravidel klasické mechaniky lze předpokládat, že výše uvedené případy zobrazené na Obr. 31 a Obr. 32 lze použít pro stanovení tuhosti pomocí superpozice vhodného modulu tuhosti pro tento směr zatížení s ohledem na polohu vrstev v laminátu, Obr. 33. Výsledná tuhost nosníku je pak určena pomocí superpozice tahové a ohybové tuhosti, jak je znázorněno na Obr. 34.

Prvek matice A, tj. prvek A_{11} pro stanovení ekvivalentního modulu pružnosti v tahu se aplikuje v případě laminátového nosníku zatíženého tahem podle [4]. V případě laminátového nosníku zatíženého ohybem se však uplatní jeden z prvků matice D, tj. D_{11} . Proto v rovnici (5.22) je ekvivalentní složka tuhosti EJ_{eq} závislá na prvku A_{11} a ekvivalentní složka tuhosti v ohybu EJ_{eq} je závislá na prvku D_{11} .

Obr. 34: Průřez kompozitního nosníku s vyznačenými oblastmi, které jsou zatíženy z větší části tahem a ohybem a příslušné moduly tuhosti

$$(EJ)_{eq} = EJ_{tahová} + EJ_{ohybová} = (EJ)_{A^*_{11}} + (EJ)_{D^*_{11}}.$$
(5.22)

Nyní je možné tento poznatek aplikovat na kompozitní trubku zatíženou ohybovou silou. Pokud je kompozitní trubka použita jako nosník zatížený osamělou silou, chovají se některé její součásti stejně jako laminátový nosník na Obr. 31 a jiné její části jako nosník na Obr. 32. Tento přístup je znázorněn na Obr. 34. U těchto komponentů dominuje ekvivalentní modul pružnosti pro tah (závislý na A_{11}) a pro ohyb (závislý na D_{11}).

Tato obecná úvaha se však jeví jako příliš nepřesná a nereflektuje vhodně geometrii vinuté trubky znázorněné na Obr. 34. Je možné se zaměřit pouze na konečnou malou část trubky $d\alpha$ v podobě části kruhového průřezu, např. v prvním kvadrantu souřadného systému (Obr. 36). S ohledem na malý úsek zakřiveného průřezu $d\alpha$, viz Obr. 35, vztah (5.22) použitý na laminátový nosník znázorněný na Obr. 33 může být aplikován prostřednictvím síly zatížené pod úhlem a, kde se délka oblouku l blíží k hodnotě délky b laminátové desky znázorněné na Obr. 33 a lze předpokládat použití superpozice tahové a ohybové tuhosti.

Obr. 35: Konečně malá část průřezu kompozitní trubky

Součet účinků všech konečně malých částí trubky, které jsou orientovány pod úhlem $\alpha \epsilon < 0$;90°> se použije k určení tuhosti celé trubky, přičemž element trubky orientovaný pod úhlem α dosáhne všech poloh mezi tou, kterou má nosník zobrazený na Obr. 31 a nosník zobrazený na Obr. 32. Poloha na jedné čtvrtině celého kruhového průřezu se symetricky opakuje ve všech částech geometrie mezikruhového průřezu. Tloušťka kompozitní trubky *h* je zároveň šířkou náhradních obdélníků (Obr. 33). Vyjádření tuhosti pro čtvrtinu celého průřezu kompozitní trubky je následující:

$$EJ_{eq} \cdot \frac{1}{4} = \int_{0}^{\frac{\pi}{2}} (EJ)_{A^{*}_{11}} + (EJ)_{D^{*}_{11}} d\alpha$$
(5.23)

$$EJ_{eq} \cdot \frac{1}{4} = \int_{0}^{\frac{\pi}{2}} \frac{1}{h \cdot A^*_{11}} \cdot \frac{h \cdot (l \cos \alpha)^3}{12} \, d\alpha + \int_{0}^{\frac{\pi}{2}} \frac{12}{h^3 \cdot D^*_{11}} \cdot \frac{h^3 \cdot (l \sin \alpha)}{12} \, d\alpha \tag{5.24}$$

$$EJ_{eq} \cdot \frac{1}{4} = \frac{l^3}{12A^*_{11}} \int_0^{\frac{\pi}{2}} (\cos \alpha)^3 \ d\alpha + \frac{l}{D^*_{11}} \int_0^{\frac{\pi}{2}} \sin \alpha \ d\alpha \tag{5.25}$$

$$EJ_{eq} \cdot \frac{1}{4} = \frac{l^3}{12A^*_{11}} \cdot \frac{2}{3} + \frac{l}{D^*_{11}} \cdot 1$$
(5.26)

Ekvivalentní tuhost celé kompozitní trubky je vyjádřena pomocí následujícího vztahu

$$EJ_{eq} = 4 \cdot \left(\frac{l^3}{18A^*_{11}} + \frac{l}{D^*_{11}}\right).$$
(5.27)

Velikost hodnoty l je vysvětlena, jestliže stejná derivace na konečném malém kruhovém segmentu poskytuje stejné řešení jako v případě laminátového nosníku s obdélníkovým průřezem. Prvek da určený úhlem a je vyjmut z celkového průřezu trubky, jak je znázorněno na Obr. 36.

Obr. 36: Průřez kompozitního nosníku s vyznačenou částí geometrie da závislou na úhlu a

Obr. 37 znázorňuje podrobněji superpozici tahové a ohybové tuhosti v části průřezu materiálu kompozitní trubky, což se odráží zejména v rozdílu momentů setrvačnosti J u obou různě orientovaných náhradních obdélníků. Rozměry obdélníků pro výpočet tuhosti jsou rovněž na Obr. 37, jehož podobnost s Obr. 33 je patrná.

Obr. 37: Konečně malá část průřezu s ekvivalentními obdélníky představujícími části zatížené tahem a ohybem

Hodnoty úhlu α se pohybují v intervalu <0°, 90°>, tj. dvou mezních poloh laminátového nosníku z Obr. 31 a Obr. 32. Rovnice (5.23) má tvar:

$$dEJ_{eq} \cdot \frac{1}{4} = \int_{0}^{\frac{\pi}{2}} (EJ)_{A^{*}_{11}} + (EJ)_{D^{*}_{11}} d\alpha$$
(5.28)

$$dEJ_{eq} \cdot \frac{1}{4} = \int_{0}^{\frac{\pi}{2}} \frac{1}{h \cdot A_{11}^{*}} \cdot \frac{h \cdot (db \cos \alpha)^{3}}{12} d\alpha + \int_{0}^{\frac{\pi}{2}} \frac{12}{h^{3} \cdot D_{11}^{*}} \cdot \frac{h^{3} \cdot (db \sin \alpha)}{12} d\alpha.$$
(5.29)

Dále je nutné vzít v úvahu délku oblouku *l*, která je znázorněna prvkem *db* na Obr. 37. Protože se jedná o výpočet tuhosti celkové kompozitní trubky charakterizované jejím průměrem, je integrace aplikována na celý průměr. *D*. To zahrnuje předpoklad pro délku *l* náhradních obdélníků převzatý z Obr. 37. Ekvivalentní hodnota tuhosti trubky pod ohybovou silou se získá z výsledku následující rovnice.

$$EJ_{eq} \cdot \frac{1}{4} = \int_{0}^{D} \int_{0}^{\frac{\pi}{2}} \frac{1}{h \cdot A_{11}^{*}} \cdot \frac{h \cdot (\cos \alpha)^{3}}{12} \, d\alpha \, db^{3} + \int_{0}^{D} \int_{0}^{\frac{\pi}{2}} \frac{12}{h^{3} \cdot D_{11}^{*}} \cdot \frac{h^{3} \cdot (\sin \alpha)}{12} \, d\alpha \, db \tag{5.30}$$

$$EJ_{eq} \cdot \frac{1}{4} = \frac{1}{12A^*_{11}} \int_{0}^{D} \int_{0}^{\frac{\pi}{2}} (\cos \alpha)^3 \ d\alpha \ db^3 + \frac{1}{D^*_{11}} \int_{0}^{D} \int_{0}^{\frac{\pi}{2}} \sin \alpha \ d\alpha \ db \tag{5.31}$$

$$EJ_{eq} \cdot \frac{1}{4} = \frac{1}{12A^*_{11}} \cdot \frac{2}{3} \cdot D^3 + \frac{1}{D^*_{11}} \cdot 1 \cdot D$$
(5.32)

$$EJ_{eq} = 4 \cdot \left(\frac{D^3}{18A^*_{11}} + \frac{D}{D^*_{11}}\right).$$
(5.33)

Ačkoli se řešení nové výpočetní metody týká čtvrtiny kruhového průřezu charakterizovaného úhlem a ϵ <0°, 90>, je nutné vzhledem k povaze geometrického tvaru kruhového průřezu (průřez nosníku) vzít v úvahu vzájemné působení všech částí průřezu dohromady. Charakteristický rozměr kruhových průřezů zahrnuje průměr. Integrace délky oblouku ve čtvrtkruhovém úseku tedy překračuje meze velikosti oblouku *l*. V tomto případě je vhodnější uvažovat vnitřní průměr, který je menší a který tak zaručuje, že výpočet zůstane v mezích bezpečnosti. Princip ohybové charakteristiky náhradního tvaru na Obr. 34 je splněn v maximálních mezích integrace. Integrace v rovnici (5.30) poskytuje podrobnější popis problému než rovnice (5.24) a výsledný výraz spojuje ohybovou a tahovou tuhost nosníku. Tyto dvě veličiny působí společně s ohledem na ohyb nosníků s kruhovým průřezem zatížených silou nebo ohybovým momentem. V různých částech nosníku vždy dominuje jedna ze dvou tuhostí podle směru působení zatížení, což je opět znázorněno na Obr. 36. Obě tuhosti působí vždy společně v různých poměrech současně na kruhovém průřezu nosníku, pokud je zatížen ohybem. Rovnice (5.33) spojuje tahové i ohybové účinky ve formě ekvivalentní tuhosti EJ_{eq} kompozitní trubky kruhového průřezu. [A2]

6 Provedení experimentálních mechanických zkoušek

Několik typů kompozitních trubek zahrnujících tři různá vlákna a čtyři kompozitní skladby bylo podrobeno experimentálnímu testování. Zkoumány byly vzorky o dvou vnitřních průměrech kompozitních trubek. Nosník o vnitřním průměru 26 mm byl podle poměru tloušťky stěny k průměru [A5] klasifikován jako silnostěnný a nosník s vnitřním průměrem 50 mm jako tenkostěnný. Geometrické rozměry kompozitních vrstev vzorků jsou uvedeny v tabulce (Tabulka 14). Údaje o materiálech kompozitních vláken a matricích jsou uvedeny v tabulkách (Tabulka 10 a Tabulka 11). [A2], [A5]

Po vyhodnocení první série vzorků byla navržena dodatečná série ryze silnostěnných vzorků pro ověření platnosti nově vyvinuté metody výpočtu tuhosti kompozitního nosníku. Kompozitní skladba, materiál a rozměry jednotlivých vzorků jsou uvedeny v příloze (13.2).
Tabulka 10: Materiálové vlastnos	i vláken použitých na vzorky
----------------------------------	------------------------------

VLÁKNO:	Hustota [kg/m3]	E _L [MPa]	E _T [MPa]	Glt [MPa]	VLT [-]
T700	800	235000	15000	50000	0.30
XN80	1768	779000	5000	20000	0.35
XN90	880	860000	5000	20000	0.35
UMS40	800	395000	15000	50000	0.30
XN60	1780	632000	5000	20000	0.35
PRYSKYŘICE	1200	2800	2800	1600	0.40

Tabulka 11: Materiálové vlastnosti kompozitu

MATERIÁL:	\mathbf{v}_{f}	Hustota	$E_{\rm L}$	\mathbf{E}_{T}	G_{LT}	VLT	VTL
	[%]	[kg/m ³]	[MPa]	[MPa]	[MPa]	[-]	[-]
T700/EPOXID	50	1500	116400	4719	3101	0.3500	0.0142
UMS40/EPOXID	50	1000	198900	4719	3101	0.3500	0.0083
XN60/EPOXID	50	1490	317400	3590	2963	0.3750	0.0042
XN80/EPOXID	50	1484	390900	3590	2963	0.3750	0.0034
XN90/EPOXID	50	1040	431400	3590	2963	0.3750	0.0031

Každému vzorku byl přiřazen štítek s unikátním názvem tak, aby bylo možné přesně identifikovat jednotlivé kusy kompozitních trubek. Název se skládá z vnitřního průměru vzorku (ID), zkratky použitých uhlíkových vláken, písmene identifikujícího skladbu návinu uhlíkového vlákna, číselné hodnoty délky vzorku a čísla přiřazeného vždy každému kusu vzorku se stejnými parametry.

ID vzorku	26
uhlíková vlákna	T700, XN80, XN90
skladba	T - typická; P - podélná; N1 - napříčová ±45°;
	$N2 - napříčová \pm 20^{\circ}$
délka vzorku	500 mm
	780 mm
číslo vzorku	1 až 6
příklad značení	26_T700_T_780_1

Tabulka 12: značení vzorků ID 26

U každého vzorku kompozitních trubek ID 26 byl změřen posuvným měřítkem vnitřní a vnější průměr, vždy na dvou odlišných místech. Průměrné hodnoty vnějších a vnitřních průměrů slouží zejména k vypočítání obsahu plochy průřezu kompozitní trubky. Obsah plochy průřezu každého vzorku se používá dále k výpočtům pevnosti kompozitních trubek při zátěžových zkouškách. Celkový katalog vzorků je v příloze 13.4.

Obr. 38: Příklad vzorků ID 50 - podélná a typická skladba

Tabulka 13:	Značení	vzorků	ID 50
-------------	---------	--------	-------

ID vzorku	50
uhlíková vlákna	T700, UMS40, XN60
skladba	T – typická; P – podélná; N1 – napříčová ±45°;
	N2 – napříčová ±20°
délka vzorku	500 mm
	780 mm
číslo vzorku	1 až 6
příklad značení	50_T700_T_780_1

U každého vzorku kompozitních trubek ID 50 byl změřen posuvným měřítkem vnější průměr a tloušťka stěny, vždy na dvou odlišných místech. Měření tloušťky stěny se provádělo, aby se zabránilo vlivu deformace vzorku při mechanickém měření posuvným měřítkem. Průměrné hodnoty vnějších průměrů a tlouštěk stěn slouží zejména k vypočítání obsahu plochy průřezu kompozitní trubky. Obsah plochy průřezu každého vzorku se používá dále k výpočtům pevnosti kompozitních trubek z analýzy po zátěžových zkouškách. Celkový katalog vzorků je v příloze 13.4.

Tabulka 14: Vnitřní a vnější průměry všech vzorků a jejich tloušťka

Typická skladba [90°, 0°, ±30°]								
ID	V1/1rm a	OD	Tloušťka	ID	V1/1	OD	Tloušťka	
vzorku	viakno	vzorku	vzorku	vzorku	viakno	vzorku	vzorku	
[mm]		[mm]	[mm]	[mm]		[mm]	[mm]	
26	T700	28,56	1,28	50	T700	52,52	1,26	
26	XN80	28,74	1,37	50	UMS40	52,64	1,32	
26	XN90	28,54	1,27	50	XN60	53,18	1,59	

Podélná skladba [90°, 0°]									
ID	Vlálma	OD	Tloušťka	ID	Vlálma	OD	Tloušťka		
vzorku	v lakilo	vzorku	vzorku	vzorku	v lakilo	vzorku	vzorku		
[mm]		[mm]	[mm]	[mm]		[mm]	[mm]		
26	T700	27,58	0,79	50	T700	51,66	0,83		
26	XN80	27,72	0,86	50	UMS40	51,64	0,82		
26	XN90	27,48	0,74	50	XN60	52	1		

Napříčová skladba 1 [90°, ±45°]									
ID	Vlálma	OD	Tloušťka	ID	Vlálma	OD	Tloušťka		
vzorku	v lakno	vzorku	vzorku	vzorku	v lakilo	vzorku	vzorku		
[mm]		[mm]	[mm]	[mm]		[mm]	[mm]		
26	T700	27,42	0,71	50	T700	51,3	0,65		
26	XN80	27,68	0,84	50	UMS40	51,52	0,76		
26	XN90	27,62	0,81	50	XN60	52,12	1,06		

Napříčová skladba 2 [90°, ±20°]								
ID vzorku [mm]	Vlákno	OD vrstev [mm]	Tloušťka vzorku [mm]	ID vzorku [mm]	Vlákno	OD vrstev [mm]	Tloušťka vzorku [mm]	
26	T700	27,44	0,72	50	T700	51,28	0,64	
26	XN80	27,82	0,91	50	UMS40	51,48	0,74	
26	XN90	27,56	0,78	50	XN60	52,1	1,05	

Vzorky byly opatřeny štítky s unikátním označením umožňujícím rozlišit od sebe všechny exempláře. U každého vzorku byl před zkoušením změřen vnitřní a vnější průměr v případě vzorků s ID 26 a u vzorků s ID 50 byl změřen vnější průměr a tloušťka stěny, aby se předešlo nepřesnostem způsobeným deformací vzorků přímo při měření. Byl vypočítán obsah průřezu pro všechny vzorky. Následně byly všechny naměřené hodnoty katalogizovány včetně vypočítaných průřezů. Jedná se o 346 vzorků s ID26 a 499 vzorků s ID50. Tabulky se všemi vzorky jsou v příloze 13.4.

6.1 Zkušební zařízení a konfigurace zkoušky pro nosníky s vnitřním průměrem 26 mm a 50 mm

Pro zkoušení vzorků byl zvolen experiment tříbodovým ohybem. S ohledem na relativně malé tloušťky stěn a možnost ztráty stability stěny trubek byla zkouška modifikována tak, že do konců trubek byly vloženy těsné kruhové vložky s průměrem odpovídajícím vnitřnímu průměru a délce 10 mm, jak je patrné z obrázků (Obr. 39 - Obr. 41). Tyto vložky byly umístěny tak, aby střed vložky byl v místě podpory vzorku. Zatížení se na vzorek zavedlo pomocí textilního popruhu o šířce 25 mm. Toto opatření bylo rovněž k potlačení ztráty stability při bodovém dotyku.

K zatížení vzorků bylo využito univerzální zkušební zařízení Heckert FPZ 100/1 s elektromechanickým pohonem zatěžovacího příčníku pomocí pohybových šroubů. Řídící jednotka stroje disponuje napěťovými výstupy, které umožňují synchronizaci s dalšími zařízeními. Jmenovitý rozsah stroje v tlaku je 100 kN, kdy je možné pomocí vestavěných předzesilovačů volit z rozsahů 10, 20, 40 a 100 kN. Pro zkoušky bylo použito vybavení z příslušenství stroje a pro větší rozpětí pak podpůrný příčník z vybavení stroje Heckert EU10.[A5]

Obr. 39: Konstrukční výkres vložek pro nosníky s vnitřním průměrem 26 mm

Obr. 40: Vložky pro nosníky ID 26 a ID 50

Obr. 41: Konstrukční výkres vložek pro nosníky s vnitřním průměrem 50 mm

Vzorky byly dodány ve výše uvedených skladbách ve čtyřech délkových provedeních. Konfigurace zkoušky pak byla volena dle níže uvedeného schématu a tabulky. Lv je délka vzorku, Lp je rozteč podpor.

Obr. 42: Schéma zkoušek

Tabulka 15: Rozměry zkoušených vzorků

ID sady vzorků	Lv [mm]	Lp [mm]
26	280	200
26	500	400
50	500	400
50	780	750

Pro stanovení elastických vlastností zkoumaných těles byl do středu každé trubky instalován odporový tenzometr HBM LY11 - 6/350. S ohledem na pružnost zatěžovacího popruhu bylo nutné sledovat průhyb vzorku nezávisle na poloze příčníku stroje. K tomuto bylo použito laserové triangulační čidlo Microepsilon 1310 (Obr. 43). Snímače byly umístěny uprostřed trubky pod zatěžovacím členem (Obr. 44). [A5]

Obr. 43: Příklad zkoušeného vzorku a jeho uspořádáníObr. 44: Detail zatěžovacího členu zkušební soustavy ve zkoušecím stroji

Byly testovány skupiny šesti vzorků od každé kombinace materiálů, kompozitní skladby a rozpětí podpěr. Ekvivalentní tuhost EJ_{eq} byla vypočtena z výsledků pomocí Castiglianovy věty z rovnice (6.1):

$$v = \frac{\partial U}{\partial F} = \frac{\partial}{\partial F} \left(\frac{\left(\frac{F}{2}\right)^2 \cdot \left(\frac{L_p}{2}\right)^3}{6E_{eq}J} + \frac{\beta \cdot \left(\frac{F}{2}\right)^2 \frac{L_p}{2}}{2GA} \right) = \frac{\frac{F}{2} \cdot \left(\frac{L_p}{2}\right)^3}{48E_{eq}J} + \frac{\beta \cdot \frac{F}{2} \cdot \frac{L_p}{2}}{4GA}.$$
(6.1)

Všechny typy vzorků (materiály a kompozitní skladby) byly modelovány pomocí FE metod a byla vypočtena ekvivalentní tuhost EJ_{eq} . Výsledky ekvivalentní tuhosti byly získány jak analytickými metodami, tak nově vyvinutými metodami a porovnány s experimentálními daty.

6.2 Popis vyhodnocení

Při zkoušce byla naměřená závislost síla – průhyb (Obr. 45) a síla – deformace (Obr. 46), jak je patrné z obrázků níže. Příklady naměřených dat jsou uvedeny pro vzorek 26_T700_N1_280. U deformace byla odstraněna část dat, kde tenzometr přesáhl maximální limit zatížení.[A5]

Obr. 45: Příklad naměřených dat optického snímače

Obr. 46: Příklad naměřených dat z tenzometru

Vyhodnocen byl modul pružnosti E, a to z obou měřených závislostí. Pro modul pružnosti měřený ze závislosti síla – průhyb byl použit vzorec

$$v = \frac{F \cdot L_p^3}{48 \cdot E \cdot J} \quad , \tag{6.2}$$

ze kterého bylo vyjádřeno E a dosazen moment setrvačnosti plochy průřezu jako

$$J = \frac{1}{64} \cdot \pi \cdot (D^4 - d^4).$$
(6.3)

Po vyjádření tak získáme závislost, kde modul pružnosti vypočtený z průhybu vzorku značíme s indexem p, v nezkrácené formě

80

$$E_p = \frac{64 \cdot F \cdot L_p^{\ 3}}{48 \cdot v \cdot \pi \cdot (D^4 - d^4)}.$$
(6.4)

Vyhodnocení modulu pružnosti ze závislosti síla – deformace vychází z Hookova zákona

$$E = \frac{\sigma}{\varepsilon}.$$
(6.5)

Dosadíme vztah pro ohybové napětí

$$\sigma = \frac{M_o}{W_o},\tag{6.6}$$

a do vzorce pro výpočet napětí dosadíme

$$M_o = \frac{F \cdot l}{4} \tag{6.7}$$

а

$$W_o = \frac{\pi \cdot (D^4 - d^4)}{32 \cdot D}.$$
 (6.8)

Pro napětí pak získáme po úpravě vztah

$$\sigma = \frac{8 \cdot F \cdot l}{\pi \cdot D^3 \cdot \left[1 - \left(\frac{d}{D}\right)^4\right]}.$$
(6.9)

Po vyjádření získáme závislost, kde modul pružnosti vypočtený z měřené deformace značíme indexem d

$$E_d = \frac{\sigma}{\varepsilon} \quad . \tag{6.10}$$

Tuhost byla určena dle vztahu

$$K = \frac{\Delta F}{\Delta y}.\tag{6.11}$$

6.3 Základní série vzorků – naměřená data

Data jsou pro přehlednost rozdělena do dvou tabulek, kde je jako $E_d \left[\frac{N}{mm^2}\right]$ označen modul pružnosti určený z deformace naměřené tenzometrem a $E_p \left[\frac{N}{mm^2}\right]$ jako modul pružnosti určený z průhybu naměřeného průhybovým senzorem. $F_{max} \left[N\right]$ je maximální síla, které bylo při zkoušce dosaženo a $\sigma_{max} \left[\frac{N}{mm^2}\right]$ značí maximální dosažené napětí. Tuhost je označována $K \left[\frac{N}{mm}\right]$ a SmO je označení pro směrodatnou odchylku odpovídající hodnoty, uváděna vždy vpravo od hodnoty, ke které je vztažena, v jednotkách příslušné veličiny. V prvním sloupci tabulky je vždy označení vzorku, kde prvním parametrem je ID vzorku, druhým typ vlákna, třetím skladba vláken a posledním délka vzorku.[A5]

	$\mathbf{E}_{\mathbf{d}}$	SmO	$\mathbf{E}_{\mathbf{p}}$	SmO	F _{max}	Sm0	σ_{max}	SmO	К	SmO
26_T700_T_280	89 628	6 088	$51\ 687$	7 833	6 909	441	439	30	3 439	397
26_T700_N1_280	$25\ 172$	1 877	$20\ 087$	$3\ 325$	1 668	247	222	39	605	49
26_T700_N2_280	89 190	7 437	$94\ 647$	$19\;531$	1 846	122	224	17	$3\ 037$	361
26_T700_P_280	190 934	$50\ 121$	130 894	$69\ 179$	1 147	186	140	31	$4\ 366$	$2\ 050$
26_XN80_T_280	$346\ 379$	$217\ 025$	$97\ 474$	13 200	$3\ 166$	255	163	18	8 389	1 460
26_XN80_N1_280	$39\ 458$	3 148	$24\ 433$	$2\ 405$	850	39	85	6	968	136
26_XN80_N2_280	$211\ 379$	36 604	$113\ 731$	$27 \ 312$	1 308	149	110	11	$5\ 491$	1042
26_XN80_P_280	499 775	134 211	$146\ 644$	23 123	$1\ 386$	69	148	32	6267	813
26_XN90_T_280	403 171	$107\ 782$	$124\ 459$	$15\ 773$	$2\ 091$	283	146	20	$7\ 406$	723
26_XN90_N1_280	$50\;584$	$5\ 324$	$29\ 181$	$2\ 024$	779	195	77	16	$1\ 205$	129
26_XN90_N2_280	$324\ 135$	$51\ 195$	$170\ 460$	49 149	$1\ 005$	88	98	9	$7\ 161$	1964
26_XN90_P_280	$968\;451$	$351\ 906$	$301\ 614$	$151\;588$	844	112	112	10	$9\ 253$	4 499
26_T700_T_500	69 833	$2\ 642$	$52\ 680$	$2\ 436$	4 152	154	527	23	444	11
26_T700_N1_500	$19\ 465$	1 944	$15\ 426$	1 706	949	100	224	31	67	7
26_T700_N2_500	$64\ 356$	8 826	$45\ 679$	$2\ 127$	1 171	30	264	9	207	7
26_T700_P_500	102 681	$23\ 062$	$58\;508$	$13\ 850$	896	209	182	26	283	9
26_XN80_T_500	$179\ 276$	$21\ 784$	$123\ 126$	$9\ 950$	1 802	102	179	8	1 348	56
26_XN80_N1_500	$28\ 385$	$5\ 229$	$22 \ 363$	$3\ 262$	520	120	88	14	134	23
26_XN80_N2_500	$167\ 662$	38 038	$99\ 185$	$3\ 252$	779	53	125	4	649	40
26_XN80_P_500	331 120	44 709	$140\ 758$	$7\ 979$	926	57	176	9	764	75
26_XN90_T_500	319 620	$34 \ 325$	$163\ 454$	$9\ 948$	1 267	97	182	8	$1\ 235$	129
26_XN90_N1_500	41 939	$9\ 474$	32 906	1 994	506	73	94	8	177	7
26_XN90_N2_500	$205\ 005$	9 518	140 735	15 796	631	59	126	13	719	60
26_XN90_P_500	381 898	89 855	164 371	27 763	640	65	160	6	664	112

Tabulka 16: Výsledky zkoušek vzorků s ID 26 mm

	\mathbf{E}_{d}	SmO	$\mathbf{E}_{\mathbf{p}}$	Sm0	F _{max}	Sm0	σ _{max}	Sm0	K	Sm0
50_T700_T_500	98 081	2843	$65\ 474$	311	8 4 3 8	715	306	29	3 384	97
50_T700_N1_500	$25\ 458$	$2\ 069$	24 640	1 936	$2\ 006$	201	147	15	623	39
50_T700_N2_500	118 854	$25\ 022$	213 990	83 377	2 0 2 0	151	182	24	4 454	1 0 3 0
50_T700_P_500	229 803	$44\ 935$	-	-	1 820	105	132	16	-	-
50_XN60_T_500	246 691	$23\ 857$	111 199	14 399	5 148	263	157	12	$6\ 847$	612
50_XN60_N1_500	33 428	$9\ 158$	$25\ 259$	$2\ 557$	2 336	376	103	8	1 086	280
50_XN60_N2_500	$251\ 979$	$26\ 991$	203 490	42 391	2 214	312	97	13	8 799	1 621
50_XN60_P_500	393 556	130 118	232 462	$\begin{array}{c}114\ 73\\9\end{array}$	3 002	228	137	5	9 505	4 255
50_UMS40_T_500	172 348	$7\ 411$	111 998	8 145	8 599	1 976	310	80	6 002	417
50_UMS40_N1_500	30 833	$2\ 339$	$26\ 253$	2 127	4 105	291	229	13	880	12
50_UMS40_N2_500	$155\ 921$	$22\ 374$	170 116	$28\;532$	3 776	204	219	12	$5\ 472$	607
50_UMS40_P_500	464 133	$157\ 964$	$171\ 318$	46 489	2792	124	306	11	$2\ 985$	667
50_T700_T_780	71 097	$4\ 573$	$57\ 555$	$4\ 539$	5 161	454	357	28	459	13
50_T700_N1_780	$24\ 453$	$4\;551$	$20\ 660$	3 369	965	39	160	27	68	3
50_T700_N2_780	64 730	$7\ 604$	$56\ 536$	$4\ 938$	980	163	140	24	212	8
50_T700_P_780	$149\ 371$	$29\ 065$	$115\ 792$	$24\ 703$	1 241	54	197	42	387	9
50_XN60_T_780	$190 \ 355$	$30\;341$	111 983	$18\ 960$	2 810	$1\ 082$	160	56	1 080	209
50_XN60_N1_780	33 233	$8\ 529$	$28\ 034$	$3\ 863$	1 369	173	103	7	202	6
50_XN60_N2_780	$157\;384$	40 726	$100\ 115$	$26\ 644$	1 118	377	96	33	632	180
50_XN60_P_780	$219\ 314$	$33\ 829$	$100\ 035$	$22\ 823$	1 380	595	124	53	596	139
50_UMS40_T_780	143 985	13 084	102 986	$9\ 273$	$5\ 300$	2 149	373	134	789	62
50_UMS40_N1_780	26 182	$2\ 998$	21 330	$2\ 808$	1 738	$26\overline{3}$	178	36	114	5
50_UMS40_N2_780	99 881	12 898	84 259	7 711	1 943	144	225	29	396	14
50_UMS40_P_780	320 277	129 223	$229\ 252$	37 773	$2\ 003$	76	444	27	551	71

Tabulka 17: Výsledky zkoušek vzorků s ID 50 mm

6.4 Dodatečná série silnostěnných vzorků – naměřená data

Dodatečná série vzorků vznikla za účelem ověření všech výpočetních metod pro zjištění tuhosti kompozitních nosníků na silnostěnných vzorcích. Data jsou uspořádána stejným způsobem jako u předchozí série v oddíle 6.3.

Za tímto účelem byly vybrány pouze některé skladby. Podélná skladba – P byla z této série vynechána kvůli technologickým problémům při výrobě takovéto kompozitní skladby ve větších tloušťkách. Skladby Napříčová 1 a Napříčová 2 byly vyrobeny s vnitřním průměrem ID 26 a Typická skladba byla vyrobena pro vnitřní průměr ID 50. [A3]

Typická skladba [90°, 0°, ±30°]								
ID vzorku [mm]	Vlákno	OD vzorku [mm]	Tloušťka vzorku [mm]					
50	T700	55,43	2,72					
Napříčová skladba 1 [90°, ±45°]								
ID vzorku [mm]	Vlákno	OD vzorku [mm]	Tloušťka vzorku [mm]					
26	T700	31,31	2,66					
Napříčová skladba 2 [90°, ±20°]								
ID vzorku [mm]	Vlákno	OD vrstev [mm]	Tloušťka vzorku [mm]					
26	T700	31,94	2,97					

Tabulka 18: Vnitřní a vnější průměry všech vzorků a jejich tloušťka z dodatečné série

Vzorky s vnitřním průměrem ID 26 byly vyrobeny v délkách 450 mm pro zkoušky s rozpětím podpěr 400 mm a 760 mm pro zkoušky s rozpětím podpěr 750 mm. Pro vzorky s ID 50 byla zvolena už pouze délka 760 mm pro zkoušky s rozpětím podpěr 750 mm. Větší délky roztečí byly zvoleny s ohledem na předpokládanou tuhost silnostěnných vzorků. Označení vzorků bylo zvoleno stejným způsobem, jak je popsáno tabulkami (Tabulka 12 a Tabulka 13).

Tabulka 19: Rozměry zkoušených vzorků z dodatečné série

ID sady vzorků	Lv [mm]	Lp [mm]
26	450	400
26	760	750
50	760	750

Schéma zkoušek a osazení vzorků snímači zůstalo stejné jako u předchozí série vzorků. V těchto případech byl přidán ještě jeden snímač průhybu do jedné čtvrtiny rozteče podpěr Lp/4 (Obr. 47). Změřený průhyb ve čtvrtině rozteče má hlavně kontrolní funkci pro výpočet ekvivalentní tuhosti kompozitního nosníku.

Obr. 47: Schéma zkoušek pro dodatečnou sérii

Vyhodnocení ze snímání průhybu v ½ délky vzorku										
	Ed	Sm0	Ep	SmO	\mathbf{F}_{\max}	Sm0	σ _{max}	Sm0	K	SmO
26_T700_N1_450	17 450	866	14 458	736	4 333	570	236	32	451	12
26_T700_N2_450	63 971	1 470	50 401	$2\ 207$	$10\ 792$	1378	620	78	1670	257
26_T700_N1_750	17 306	76	16 308	93	1 0 3 1	30	109	3	129	9
26_T700_N2_750	$68\ 580$	1 135	$55\ 673$	1 248	$2\ 526$	173	287	20	232	48
50_T700_T_760	307 851	6 176	$225\ 424$	10 906	$13\ 851$	885	417	26	$5\ 804$	1 021
Vyhodnocení ze snímání průhybu v ¼ délky vzorku										
	vynoan	oceni ze	sniman	i pruny	bu v ¼	aeiky	vzor.	ки		
	E _d	SmO		SmO	bu v ¼	áeiky íl mezi	SmO	ĸu		
	E _d	SmO	Ep	SmO	bu v ¹ /4 E - rozdi 1/2 a 1/4	deiky íl mezi [%]	SmO	ки		
26_T700_N1_450	E _d	SmO	E p 14 158	SmO 477	2 bu v ¹ /4 E - rozdi 1/2 a 1/4	ál mezi [%] 2.0982	SmO	ки 3.4943		
26_T700_N1_450 26_T700_N2_450	• ynoan E _d - -	SmO -	E _p 14 158 45 694	SmO <u>477</u> 2 691	7 bu v ⁷ /4 E - rozdi <u>1/2 a 1/4</u>	deiky íl mezi [%] 2.0982 10.4746	SmO	3.4943 4.5626		
26_T700_N1_450 26_T700_N2_450 26_T700_N1_750	E _d - -	SmO - -	E _p 14 158 45 694 16 456	SmO 477 2 691 185	2 bu v 4 E - rozd <u>1/2 a 1/4</u>	il mezi [%] 2.0982 10.4746 -0.8943	SmO	3.4943 4.5626 0.6485		
26_T700_N1_450 26_T700_N2_450 26_T700_N1_750 26_T700_N2_750	E _d - - - -	SmO 	E _p 14 158 45 694 16 456 56 247	SmO 477 2 691 185 727	E - rozd: 1/2 a 1/4	fil mezi [%] 2.0982 10.4746 -0.8943 -1.0284	SmO	3.4943 4.5626 0.6485 1.1373		

Tabulka 20: Výsledky zkoušek vzorků s ID 26 mm a ID 50 mm pro dodatečnou sérii vzorků

7 Porovnání výsledků experimentu s výsledky výpočetních metod

K porovnání byly vybrány výsledky analytických metod popsaných v předchozí kapitole 5 a výsledky tří typů MKP modelů (2.4). Všechny MKP modely byly provedeny v softwaru Abaqus. Pro výpočet průhybu byly použity klasické skořepiny, objemová skořepina a objemový model. Výsledky MKP modelů byly zpracovány a výsledná ekvivalentní tuhost kompozitního nosníku byla vypočítána dle oddílu (2.4).Výsledky jsou zpracovány

graficky a rozděleny do sloupcových grafů podle kompozitní skladby zvlášť pro vzorky s ID 26 a ID 50. Všechny hodnoty jsou uvedeny též číselně v příloze 13.5. [A2], [A5]

Po hodnotách tuhostí z jednotlivých skupin následuje grafické zpracování procentuálních odchylek jednotlivých výpočetních metod od hodnoty získané experimentálně. Pro přehlednost jsou vynášeny hodnoty vždy pro jednu kompozitní skladbu a pro skupiny ID 26 a ID 50 dohromady. Číselné hodnoty jsou opět uvedeny v příloze 13.5.

		-				
Název metody:	odkaz na kap. popisu	značka metody použitá				
razev meteraj:	dané metody	pro grafické znázornění				
Nově navržené metody						
Průměr hodnot z matic C a S	5.1	EJ_průměr				
Statistická metoda	5.2	EJ_statistická metoda				
Nová metoda	5.3	EJ_nová metoda				
Analytické metody						
CLT – matice poddajnosti	2.3.2	EJ_C				
CLT – matice tuhosti	2.3.2	EJ_S				
CLT – výpočet pomocí matice ABD	2.3.3	EJ_ABD				
MKP modely						
Klasická skořepina	2.4.1	EJ_ConvS				
Objemová skořepina	2.4.2	EJ_CS				
Objemový model	2.4.3	EJ_VM				
V grafických znázorněních se vyskytují další zkratky odkazující na charakteristiku						
jednotlivých metod výpočtu:						
EJ – ekvivalentní ohybová tuhost						

Tabulka 21: Seznam metod vybraných k porovnání

Grafy na Obr. 49 - Obr. 51 uvádí výsledky ekvivalentní tuhosti nosníků s vnitřním průměrem 26 mm (ID 26) hodnocených jako silnostěnné a grafy na Obr. 52 - Obr. 55 uvádí výsledky ekvivalentní tuhosti tenkostěnných nosníků s vnitřním průměrem 50 mm (ID 50).

První sloupec zobrazuje hodnotu ekvivalentní tuhosti naměřenou experimentálně zkouškou tříbodovým ohybem. Další tři sloupce zobrazují hodnoty ekvivalentní tuhosti vypočítané nově zavedenými metodami. Další sloupce zobrazují hodnoty z konvenčních analytických metod a MKP modelů. Metody vybrané pro porovnání výsledků jsou uvedeny v tabulce (Tabulka 21) včetně odkazů na popis jednotlivých metod..

Data jsou zpracována také statisticky a v dalších grafech na obrázcích (Obr. 56 - Obr. 59) jsou zobrazeny procentuální odchylky všech výpočetních metod od experimentální hodnoty. Číselné hodnoty odchylek jsou uvedeny v příloze 13.5.

Následně byla stejným způsobem vyhodnocena a zpracována data z dodatečné série silnostěnných vzorků. Série vznikla jako ověření funkčnosti vybraných metod u velmi silnostěnných vzorků. (V této sérii jsou navržené vzorky silnostěnné v obou případech průměrů vzorků – ID 26 A ID 50.) Opět jsou ve sloupcových grafech vyneseny hodnoty ekvivalentní tuhosti kompozitních nosníků získané experimentálně a za nimi jsou seřazeny hodnoty získané početně. Opět následuje grafické zpracování procentuálních odchylek hodnot výpočetních metod od experimentální hodnoty. Pro toto porovnání byla statistická metoda vynechána z důvodu nekonzistentní funkce pro silnostěnné nosníky ID 26 ze základní série vzorků.

V grafech na obrázcích (Obr. 60 - Obr. 62) jsou zobrazeny hodnoty ekvivalentní tuhosti kompozitních nosníků z dodatečné série vždy s hodnotami pro stejnou skladbu ze základní série dat pro porovnání. Skupiny vzorků z dodatečné série a skupiny ze základní série vzorků se stejnou skladbou a materiálem zobrazené pro porovnání jsou uvedeny v tabulce (Tabulka 22).[A1]

Označení vzorků:	rozpětí podpěr při	značení v grafickém					
(Tabulka 16, Tabulka 17,	experimentu [mm]	vyhodnocení					
Tabulka 20)							
Skupiny ze základní série vzorků pro porovnání							
26_T700_N1	200 / 400	26_T700_N1					
26_T700_N2	200 / 400	26_T700_N2					
50_T700_T	400 / 750	50_T700_T					
Skupiny dodatečné série vzorků							
26_T700_N1_450	400	26_T700_N1_silná					
26_T700_N2_450	400	26_T700_N2_silná					
26_T700_N1_760	750	26_T700_N1_silná_dlouhá					
26_T700_N2_760	750	26_T700_N2_silná_dlouhá					
50_T700_T_750	750	50_T700_T_silná					

Tabulka 22: Skupiny vzorků pro vyhodnocení dodatečné série

Hodnoty procentuálních odchylek ekvivalentního modulu pružnosti vypočteného ze všech výpočetních metod mimo statistickou metodu jsou uvedeny v grafech na obrázcích (Obr. 64 - Obr. 65).[A1]

7.1 Základní série vzorků – grafické zpracování dat

Obr. 48: Vypočítaná a naměřená tuhost pro typickou skladbu [90°, 0°, ±30°] - trubka ID 26 mm

Obr. 49: Vypočítaná a naměřená tuhost pro skladbu Napříčová 1 $[90^\circ,\pm45^\circ]$ - trubka ID 26 mm

Obr. 50: Vypočítaná a naměřená tuhost pro skladbu Napříčová 2 [90°, ±20°] - trubka ID 26 mm

Obr. 51: Vypočítaná a naměřená tuhost pro podélnou skladbu [90°, 0°] - trubka ID 26 mm

Obr. 52: Vypočítaná a naměřená tuhost pro typickou skladbu [90°, 0°, ±30°] - trubka ID 50 mm

Obr. 53: Vypočítaná a naměřená tuhost pro skladbu Napříčová 1 $[90^\circ,\pm45^\circ]$ - trubka ID 50 mm

Obr. 54: Vypočítaná a naměřená tuhost pro skladbu Napříčová 2 [90°, ±20°] - trubka ID 50 mm

Obr. 55: Vypočítaná a naměřená tuhost pro podélnou skladbu [90°, 0°] - trubka ID 50 mm

Obr. 56: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky s typickou skladbou [90°, 0°, ±30°]

Obr. 57: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Napříčová 1 [90°, ±45°]

Obr. 58: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Napříčová 2 [90°, $\pm 20^{\circ}$]

Obr. 59: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky s podélnou skladbou [90°, 0°]

7.2 Dodatečná série silnostěnných vzorků – grafické zpracování dat a popis odlišností

Obr. 60: Vypočítaná a naměřená tuhost pro skladbu Napříčová 1 [90°, ±45°] - základní a dodatečná série

Obr. 61: Vypočítaná a naměřená tuhost pro skladbu Napříčová 2 [90°, ±20°] - základní a dodatečná série

Obr. 62: Vypočítaná a naměřená tuhost pro skladbu Typická [90°,0°, ±30°] - základní a dodatečná série

Obr. 63: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Napříčová 1 [90°, ±45°] - základní a dodatečná série

Obr. 64: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Napříčová 2 [90°, ±20°] - základní a dodatečná série

Obr. 65: Procentuální odchylka jednotlivých výpočetních metod od experimentálních dat pro vzorky se skladbou Typická [90°,0°, ±30°] - základní a dodatečná série

8 Zhodnocení výsledků disertační práce a jejich diskuse

V rámci disertační práce byly zkoumány metody pro výpočet ekvivalentní tuhosti kompozitního nosníku s mezikruhovým průřezem. Výzkum začal ověřením funkčnosti dosavadně používaných metod pro výpočet tuhosti kompozitního nosníku založených na klasické laminátové teorii, včetně MKP modelů. Během tohoto ověřování bylo zjištěno, že tuhost (zahrnující ekvivalentní modul pružnosti, nebo přeneseně výpočet průhybu kompozitního nosníku) počítaná různými způsoby se pro určité kompozitní nosníky s nesymetrickou skladbou velmi liší a to v řádu desítek procent.

Bylo zjištěno, že většina metod se shoduje v případech, kdy kompozitní skladba obsahuje vrstvy, které mají úhel navíjení 0° až 20° nebo 75° až 90°. Naopak velké odchylky cca 30 % byly zjištěny pro úhel vinutí 30° až 55°. Výsledky z metod konečných prvků využívajících skořepinové teorie se přibližují výsledkům výpočtu CLT s užitím matice ABD. Objemový model poskytuje výsledek přibližující se výsledkům CLT s využitím matice poddajnosti jako základ pro tuhostní charakteristiku kompozitního materiálu. Výsledky těchto dvou metod jsou vyšší než u ostatních metod v případě průhybu a nižší ve stanovení ekvivalentního modulu pružnosti kompozitního nosníku.[A5]

Dále byly tyto známé metody porovnány na konkrétních případech nosníků, které byly zkoušeny metodou tříbodového ohybu v elastické oblasti deformace. Pro tenkostěnné případy nosníků se metody lišily od průměrných hodnot experimentu o 20% - 50%, což je značně neuspokojivý výsledek. Nutno však konstatovat velký rozptyl experimentálních dat.[A5], [33]

V případě silnostěnného nosníku lze nejlépe hodnotit MKP model objemové skořepiny, jehož hodnoty se od experimentálních lišily v jednom případě o 8% a ve druhém o 13%. Metoda matice ABD měla v případě silnostěnného nosníku odchylku okolo 20%. Výpočet pomocí CLT s užitím matice poddajnosti a objemový MKP model měly opět neuspokojivou odchylku od experimentu okolo 30%. MKP model klasické skořepiny nebyl na silnostěnný nosník aplikován, protože tento nosník nesplnil charakteristiku tenkostěnného profilu.

V další fázi disertační práce došlo k navržení nových přístupů k výpočtu ekvivalentní tuhosti kompozitního nosníku. Jedná se o výpočet pomocí průměru hodnot matice tuhosti a matice poddajnosti zjištěné pomocí CLT, dále o statistický přístup k výpočtu tuhosti a o metodu založenou na úvaze o geometrickém vlivu mezikruhového průřezu na hodnoty získané z CLT pro kompozitní skladbu nosníku s mezikruhovým průřezem. Matematické vyjádření nových přístupů je popsané v příslušných kapitolách této disertační práce. [A2]

Pro ověření funkčnosti nových metod výpočtu tuhosti kompozitního nosníku byl navržen rozsáhlý experiment čítající více jak 600 vzorků podrobených zkouškám tříbodového ohybu. Vzorky byly navrženy tak, aby pokryly variabilitu geometrie kompozitních trubek. Byla navržena silnostěnná a tenkostěnná geometrie nosníků o čtyřech kompozitních skladbách a vyrobených ze tří různých materiálů. Použitím různých materiálů se pokryl i možný vliv materiálových dat na konečné výsledky tuhosti kompozitního nosníku. Skladby byly navrženy tak, aby bylo možné ověřit předpoklady již známých přístupů k výpočtu tuhosti kompozitních nosníků, které jsou popsané na začátku procesu řešení disertační práce (kap. 4.1) – což jsou příklady obou Napříčových skladeb a podélné skladby, ale aby též odrážely realitu technologicky výhodných skladeb, což je příklad Typické skladby. V průběhu

vyhodnocování experimentálních dat vznikla potřeba ověřit výsledky výpočetních metod na ryze silnostěnných případech nosníků, proto vznikla ještě dodatečná série vzorků s tloušťkou stěny cca 3 mm, které se dají hodnotit jako silnostěnné pro oba průměry vzorků navržených v základní sérii. [A5]

Výsledky experimentu byly porovnány se všemi metodami výpočtů, jak běžně užívaných dosavadních metod, tak těch nově navržených. Z porovnání výsledků vyplývá, že všechny nově navržené způsoby mohou aproximovat experimentální data s odchylkou do 20 % od experimentální hodnoty alespoň pro určitý typ kompozitních nosníků. Cílem disertační práce však bylo hledat robustní metodu, která bude univerzální pro všechny typy a geometrie kompozitních nosníků s mezikruhovým průřezem.

V případech MKP modelů se nejvíce univerzální jeví použití objemové skořepiny, dosahuje stabilních výsledků pro tenkostěnné i silnostěnné nosníky a jeho výsledky jsou srovnatelné s CLT s užitím matice ABD. Bohužel obvykle predikuje větší tuhost nosníku, než se prokázalo experimentálními daty. Model klasické skořepiny lze využít s výhodou u velmi tenkostěnných průřezů, což je založené na jeho definici. Objemový model velmi často kopíruje data získaná z CLT s užitím matice poddajnosti a ve většině případů má velmi velké odchylky od experimentu. Výjimku tvoří případy vzorků s Typickou skladbou.

Pro analytické modely používané pro výpočet tuhosti kompozitní trubky založené na CLT lze konstatovat, že hodnoty získané použitím matice tuhosti a matice poddajnosti tvoří vždy horní a spodní mez všech ostatních hodnot (s výjimkou statistické metody) s tím, že experimentální data se obvykle pohybují okolo poloviny tohoto rozmezí. Model CLT s užitím ABD matice nejeví dobré výsledky ve většině případů a jeho výsledky predikují vždy vyšší tuhost, než jsou hodnoty naměřené. Lze konstatovat, že se nikdy nepohybuje na straně bezpečnosti výpočtu. Lepších výsledků tento analytický model dosahuje zakomponován do MKP modelu objemové skořepiny.

Nově navržená metoda aritmetického průměru z hodnot s využitím matice tuhosti a matice poddajnosti získané z CLT se jeví jako spolehlivá. Ve většině případů s odchylkou do 20% od experimentu, kromě případů s Podélnou skladbou, ale jeho data se obvykle nepohybují na straně bezpečnosti výpočtu. Statistická metoda přináší velmi dobré výsledky pro tenkostěnné průřezy, ale selhává v případech silnostěnných nosníků. Z tohoto důvodu byla také vyřazena z hodnocení výsledků pro dodatečnou sérii vzorků, které byly ryze silnostěnné. Nový přístup založený na úvaze o geometrii má ve většině případů též dobrou shodu s experimentem, jako v případě průměru hodnot z matice tuhosti a matice poddajnosti, s odchylkou okolo 20% od experimentálních dat s tou výhodou, že se ve většině případů pohybuje na straně bezpečnosti výpočtu a predikuje tak nižší tuhost než jsou hodnoty z experimentu.[A1], [A2]

9 Závěr

Disertační práce popisuje souhrn poznatků včetně nových přístupů k výpočtu ekvivalentní tuhosti nosníků s mezikruhovým průřezem.

Dosavadně používané metody a modely MKP byly porovnány nejprve mezi sebou na vybraných sadách dat. Tím bylo zjištěno, že výsledné hodnoty získané různými metodami se mohou výrazně lišit pro jeden konkrétní případ nosníku. Tímto srovnáním byl splněn první dílčí cíl disertační práce (*Stanovit podmínky platnosti současných metod. Stanovit, pro které* nosníky (silnostěnné či tenkostěnné), jsou současné metody výpočtu tuhosti kompozitních nosníků platné a ve kterých případech přinášejí problematické výsledky.).

Všechny tyto dosavadní metody byly aplikovány pro nosníky se známou skladbou experimentálně testované tříbodovým ohybem v rámci diplomové práce paní Malé [33]. Tímto srovnáním bylo zjištěno, že shoda s experimentálními daty u běžných metod není uspokojivá ani v případě MKP modelů (bez výrazného ladění modelu pro přiblížení se experimentálním výsledkům). Z tohoto srovnání lze konstatovat, že MKP model objemové skořepiny je pro modelování kompozitních nosníků s mezikruhovým průřezem vhodnější než ostatní metody. I tak ale nebylo dosaženo uspokojivé shody s experimentálně naměřenými daty. Tímto porovnáním byl splněn druhý dílčí cíl disertační práce (*Experimentálně ověřit funkčnost dosavadních metod a ze získaných výsledků provést rozbor pro následnou práci.*).

Výsledky metod pro zjištění tuhosti (ekvivalentního modulu pružnosti nebo i průhybu) se mohou lišit v závislosti na zvolené kompozitní skladbě, geometrii zkoumaného nosníku, a to i v případě MKP modelů. Dalším postupem bylo vyvinout nové přístupy k výpočtu tuhosti kompozitních nosníků s mezikruhovým průřezem. V průběhu práce byly vyvinuty nové přístupy k řešení výpočtu tuhosti kompozitního nosníku. Ty nejvhodnější byly představeny v této disertační práci. Na tomto základě byl zároveň navržen experiment, který by reflektoval různé geometrie kompozitních trubek, zejména z pohledu rozdělení na silnostěnné a tenkostěnné nosníky a dostatečnou variabilitou kompozitních skladeb, které by prověřily celé spektrum kombinace vrstev s měnícími se směry návinu kompozitních vláken i možné kombinace kompozitní skladby vhodné z technologického pohledu. V rámci těchto úvah byl naplněn třetí dílčí cíl (*Navrhnout nový přístup k výpočtu tuhosti kompozitních nosníků s mezikruhovým průřezem.*). V této fázi byly také uplatněny dosavadní znalosti při tvorbě MKP modelu leteckého profilu [B36] a při tvorbě modelů hybridní hřídele [B17].

Nově navržené přístupy k výpočtu tuhosti kompozitního nosníku trubkového tvaru byly aplikovány na navrženou "základní sadu" vzorků. Pro srovnání byly použity i všechny dosavadní metody výpočtu tuhosti včetně MKP modelů. Všechna data byla porovnána s experimentem navrženým pro ověření spolehlivosti všech výpočetních metod pro získání tuhosti kompozitního nosníku. Experiment zahrnul čtyři kompozitní skladby ze tří různých materiálů ve dvou vnitřních průměrech nosníku – ID 26 mm a ID 50 mm. Výsledky byly seskupeny podle čtyř kompozitních skladeb. Zvlášť pro oba vnitřní průměry nosníků.

Ve většině případů výsledky nových přístupů průměrných hodnot matice tuhosti a matice poddajnosti a metoda založená na geometrii prokázaly dobrou shodu s výsledky experimentu. S odchylkou menší než 20% od experimentálních výsledků pro silnostěnné trubky a s odchylkou mezi 20% a 25% od experimentálních výsledků pro tenkostěnné trubky ze základní série vzorků. U těchto tenkostěnných trubek je předpoklad větších nepřesností zahrnujících lokální deformace u zátěžných členů při provedení experimentu. Pro dodatečnou sérii silnostěnných vzorků jsou hodnoty ještě blíže experimentálním datům s odchylkou maximálně 17% od experimentální hodnoty. Výsledky obou metod jsou mnohem blíže experimentálním datům, než jsou další dosavadně užívané analytické metody i některé MKP modely. Protože nový přístup s geometrickou úvahou predikuje nižší tuhost než experiment, jsou výsledky této metody vhodně konzervativní a lze je hodnotit jako bezpečné. Obě metody lze doporučit k předběžným výpočtům v rámci nových návrhů mechanických soustav s kompozitními nosníky trubkového tvaru. Tímto rozborem zjištěných hodnot byly naplněny dílčí cíle (*Experimentálně ověřit platnost jak současných, tak nově vzniklých analytických metod pro výpočet ekvivalentní tuhosti kompozitního trubkového nosníku*) a (*Vyhodnocení dat porovnáním všech výpočetních metod – stávajících a nově vyvinutých – s experimentálními*

Z tohoto hodnocení je vyjmuta statistická metoda, protože ta dosáhla dobré shody výsledků pouze u tenkostěnných nosníků. U silnostěnných nosníků ze základní série vzorků se projevila jako nespolehlivá s odchylkou dat od experimentu větší než 50%. Z tohoto důvodu už nebyla použita pro dodatečnou sadu silnostěnných nosníků. Rovněž ji nelze doporučit jako univerzální metodu pro zjišťování či predikci tuhosti kompozitních nosníků s mezikruhovým průřezem.

V rámci disertace bylo ověřeno několik nových přístupů k výpočtu tuhosti kompozitního nosníku trubkového tvaru, ale nebylo dosaženo zcela uspokojivé shody výpočtu s experimentálními daty. Lze říci, že v technické praxi včetně norem používaných v letectví je považována za uspokojivou shodu teoretických a experimentálních výsledků v rozsahu $\pm 10\%$. Takovýto rozsah byl naplněn pouze částečně, většinou u silnostěnných nosníků. Podíl na tom může mít i sestava experimentu, kdy měření hodnoty posuvu probíhala lokálně na spodní straně vzorku, což není u kruhového průřezu zcela ideální. Nemůže být vyloučen ani vliv lokálních deformací pod zátěžným členem zejména u tenkostěnných vzorků. Z těchto důvodů lze označit práci z pohledu globálního cíle (*Definovat návrh nové analytické výpočetní metody pro určení tuhosti kompozitního nosníku s mezikruhovým průřezem.*) za splněnou v kontextu prvotního návrhu. Výsledky plynoucí z této metody musí být podrobeny následné analýze a detailní kontrole dle běžného inženýrského postupu zahrnujícího experimentální

Další ujištění o funkčnosti nově navržených výpočtových metod by zahrnovalo experiment snímaný metodou DIC, k čemuž by se musel přizpůsobit zátěžný člen zkušební sestavy. Dále by bylo vhodné nové analytické přístupy zakomponovat do modelů MKP, kde by byl předpoklad větší shody s experimentálními daty. Nejvhodněji by se dalo pracovat s modelem objemové skořepiny nebo klasické skořepiny pro tenkostěnné případy nosníků nebo s nosníkovými prvky typu "beam". Z hlediska rozšíření teoretického výpočtu tuhosti kompozitních nosníků by se dala metoda založená na geometrické kombinaci využít při výpočtech tuhosti kompozitních nosníků s oválným či elipsovitým průřezem. Typickým případem takového nosníku je stěžeň závodních jachet.

10 Literatura

- [1] Barbero, Ever J. Finite element analysis of composite materials using Abaqus. Boca Raton: CRC Press/Taylor & Francis Group; 2013. 413s. ISBN 978-14-6651-661-8
- Barbero, Ever J. Introduction to composite materials design. 2nd. Boca Raton: CRC Press, 2011. ISBN 9781420079159;1420079158
- [3] Gay, Daniel. Composite materials: design and applications. Third ed. Boca Raton: CRC Press/Taylor & Francis, ©2015. xxiii, 611 s. ISBN 978-1-4665-8487-7.
- [4] Berthelot, Jean-Marie. Composite materials: Mechanical behavior and structural analysis. New York: Springer, 1999. Mechanical engineering series. ISBN 0-387-98426 - 7.
- [5] Lekhnitskii, S. G. a Julius J. Brandstatter. Theory of elasticity of an anisotropic elastic body. San Francisco: HOLDEN-DAY, 1963.
- [6] Ehrenstein, Gottfried W. Polymerní kompozitní materiály. V ČR 1. vyd. vyd. Praha: Scientia, 2009. ISBN 8086960293;9788086960296;
- [7] Laš, Vladislav. Mechanika kompozitních materiálů. Západočeská univerzita, 2008. ISBN 9788-0704.
- [8] Sochor, Miroslav a České vysoké učení technické v Praze. Strojní fakulta. Strength of materials I. 3. přeprac. vyd. Praha: České vysoké učení technické, 2011. ISBN 8001049337;9788001049334 (in english)
- [9] Agarwal, B.D., Broutman L. J., Chandrashekhara, K. Analysis and Performance of Fiber Composites 4th Edition. Wiley, United States of America, 2017, pp. 1-576, ISBN: 978-1-119-38998-9.
- [10] Stellbrink, Kuno K.U. Micromechanics of composites: Composite properties of fibre and matrix constituents. München: Hanser, Německo, 1996, pp. 1-118.
- [11] Karama, M., K. S. Afaq a S. Mistou, Mechanical behavior of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of Solids and Structures. 2003, vol. 40, p. 1525-1546
- [12] Tarn, Jiann-Quo a Yung-Ming Wang. Laminated composite tubes under extension, torsion, bending, sparing and pressuring: a state-space approach. International Journal of Solids and Structures. 2001, vol. 38, p. 9053-9075
- [13] Chan, Wen S. a Kazim C. Demirhan, A Simple Closed-Form Solution of Bending Stiffness for laminated Composite Tubes. Journal of Reinforced Plastics and Composites. 2000, year. 19, č. 4, s. 278-291
- [14] Qin, Zhanming and Liviu Librescu. On a shear-deformable theory of anisotropic thinwalled beams: further contribution and validations. *Composite Structures*. 2002, vol. 56, no. 4, s. 345-358. ISSN 0263-8223.
- [15] Hashin, Zvi and B. W. Rosen. The Elastic Moduli of Fiber-Reinforced Materials. Journal of Applied Mechanics, vol. 31, Trans. ASME, vol. 86, Series E, 1964, pp. 223-232.
- [16] Shadmehri, F., B. Derisi and S. V. Hoa. On bending stiffness of composite tubes. Composite Structures. 2011, vol. 93, no. 9, s. 2173-2179. ISSN 0263-8223.

- [17] Kim, Nam-Il et al. Coupled deflection analysis of thin-walled Timošenko laminated composite beams. Computational Mechanics. 2009, vol. 43, no. 4, s. 493-514. ISSN 0178-7675.
- [18] Jolicoeur, Claude and Alain Cardou. Analytical Solution for Bending of Coaxial Orthotropic Cylinders. Journal of Engineering Mechanics. 1994, vol. 120, no. 12, s. 2556-2574. ISSN 0733-9399.
- [19] Chouchaoui, C. S. a O. O. Ochoa. Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure Part I: governing equations. Composite structures. 1999, year. 44, s. 221-229
- [20] Chouchaoui, C. S. a O. O. Ochoa. Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure Part II: scale models. Composite structures. 1999, year. 44, p. 231-236
- [21] Librescu, Liviu a Ohseop Song. *Thin-walled composite beams: theory and application*. Springer, 2006. ISBN 9781402042034;1402042035
- [22] Ting, T. C. T. Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, 452.1954: 2397-2421.
- [23] Ting, T. C. T. New solutions to pressuring, shearing, torsion and extension of a cylindrically anisotropic elastic circular tube or bar. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1999, 455.1989: 3527-3542.
- [24] Chen, Tungyang; Chung, Chi-Tai; Lin, Wei-Long. A revisit of a cylindrically anisotropic tube subjected to pressuring, shearing, torsion, extension and a uniform temperature change. *International Journal of Solids and Structures*, 2000, 37.37: 5143-5159.
- [25] Chan, Wen S. a Kazim C. Demirhan, A Simple Closed-Form Solution of Bending Stiffness for laminated Composite Tubes. Journal of Reinforced Plastics and Composites. 2000, roč. 19, č. 4, s. 278-291
- [26] Bhate, S. R., U. N. Nayak a A. V. Patki, Deformation of Composite Beam Using Refined Theory. Computers and Structures. 1995, roč. 54, č. 3, s. 541-546
- [27] Kollár, László P. a George S. Springer, Stress Analysis of Anisotropic Laminated Cylinders and Cylindrical Segments. International Journal of Solids and Structures. 1992, roč. 29, č. 12, s. 1499-1517
- [28] Zhang, Canhui, Suong V. Hoa a Pei Liu. A method to analyze the pure bending of tubes of cylindrically anisotropic layers with arbitry Angeles including 0°or 90°. Composite Structures. 2014, roč. 109, s. 57-67
- [29] Mareš, T., Jiran, L. Odborná zpráva TAČR TA2-0543 V-12-060 Příloha II: Timošenko beam theory for composite beams, the first approximation of the effect of shear stress. Praha: České vysoké učení technické, 2012, pp. 1-9.
- [30] Mareš, Tomáš. Curvilinear elasticity in biomechanics. Praha: Tomáš Mareš, 2008, pp. 1-85.
- [31] Pošvář, Zdeněk. Výpočtové modely vlastností hybridních kompozitních struktur: disertační práce = Computatinal models of properties of hybrid composite structures. Praha, 2019. Disertace (Ph.D.). České vysoké učení technické v Praze. Strojní fakulta, Ústav mechaniky, biomechaniky a mechatroniky. Vedoucí práce Milan Růžička.

- [32] Had, Jiří Návrh numerických modelů 3D kompozitních struktur a posuzování jejich mezních stavů. Disertační práce, České vysoké učení technické v Praze, 2015, pp. 1-137.
- [33] Malá, Anna. Výpočtové metody pro analýzu tenkostěnných i silnostěnných kompozitních nosníků. Diplomová práce (Ing.), České vysoké učení technické v Praze. Fakulta strojní, ústav mechaniky, biomechaniky a mechatroniky. Praha, ČR, 2017.

11 Publikace autora k tématu disertační práce

- [A1] ZÁMEČNÍKOVÁ, T. et al. Determination of the equivalent stiffness of thickwalled composite beams with an inter-circular cross-section using the semi-analytical method. In: PROCEEDINGS OF COMPUTATIONAL MECHANICS 2022. Computational Mechanics 2022, Srní, 2022-11-07/2022-11-09. Plzeň: Západočeská univerzita v Plzni, 2022. ISBN 978-80-261-1116-0. Dostupné z: https://www.kme.zcu.cz/compmech/info_sborniky.php
- [A2] ZÁMEČNÍKOVÁ, T. et al. A Novel Semi-Analytical Approach to the Assessment of the Equivalent Stiffness of a Beam. Strojnícky časopis. 2022, 72(2), 247-270. ISSN 2450-5471. DOI 10.2478/scjme-2022-0033
- [A3] ZÁMEČNÍKOVÁ, T. et al. STIFFNESS ANALYSIS OF THICK-WALLED COMPOSITE BEAMS WITH AN INTERCIRCULAR CROSS-SECTION USING SEMI-ANALYTICAL METHODS. In: PADOVEC, Z., K. KUBÁŠOVÁ a R. SEDLÁČEK, eds. 23rd International Scientific Conference Applied Mechanics 2022 Book of Abstracts. AM 2022 - Applied Mechanics, Liblice, 2022-04-04/2022-04-06. Praha: ČVUT FS. Ústav mechaniky, biomechaniky a mechatroniky, 2022. s. 125-128. ISBN 978-80-01-06974-5.
- [A4] ZÁMEČNÍKOVÁ, T. et al. Comparison of analytical methods and FE models to calculate the stiffness of a wound composite beam. In: PROCEEDINGS OF COMPUTATIONAL MECHANICS 2021. 36th CONFERENCE WITH INTERNATIONAL PARTICIPATION COMPUTATIONAL MECHANICS 2021, Srní, 2021-11-08/2021-11-10. Plzeň: Západočeská univerzita v Plzni, 2021. s. 270-273. ISBN 978-80-261-1059-0.
- [A5] ZÁMEČNÍKOVÁ, T. et al. Comparison of Methods for Calculation of Composite Wound Tube Deflection. In: Materials Today: Proceedings. 36th Danubia Adria Symposium on Advances in Experimental Mechanics, Plzeň, 2019-09-24/2019-09-27. Amsterdam: Elsevier B.V., 2020. s. 224-231. sv. 32. ISSN 2214-7853. DOI 10.1016/j.matpr.2020.05.145
- [A6] ZÁMEČNÍKOVÁ, T., T. MAREŠ a V. KULÍŠEK. Analytické modely efektivní tuhosti kompozitních nosníků. In: VONDROVÁ, J. a Z. PADOVEC, eds. MECHANIKA KOMPOZITNÍCH MATERIÁLŮ A KONSTRUKCÍ 2020 SBORNÍK. MECHANIKA KOMPOZITNÍCH MATERIÁLŮ A KONSTRUKCÍ 2020, Kamenice, 2020-09-09/2020-09-10. Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2020. s. 35-40. ISBN 978-80-01-06767-3.
- [A7] ZÁMEČNÍKOVÁ, T. et al. COMPARISON OF METHODS FOR CALCULATION THE DEFLECTION OF COMPOSITE WOUND TUBES. In: 36th Danubia Adria Symposium on Advances in Experimental Mechanics. Plzeň, 2019-09-24/2019-09-27. Pilsen: University of West Bohemia, 2019. s. 65-66. ISBN 978-80-261-0876-4.

- [A8] ZAVŘELOVÁ ZÁMEČNÍKOVÁ, T. et al. COMPARISON OF CALCULATION METHODS OF COMPOSITE BEAMS DEFORMATION WITH THE EXPERIMENT. In: Konference Mechanika kompozitních materiálů a konstrukcí. MK2 – Mechanika kompozitních materiálů a konstrukcí, Roztoky u Křivoklátu, 2018-03-22/2018-03-23. Plzeň: Západočeská universita, 2018. s. 83-88. ISBN 978-80-261-0776-7.
- [A9] ZAVŘELOVÁ ZÁMEČNÍKOVÁ, T. a T. MAREŠ. METHODS FOR COMPUTATION THE DEFORMATION OF COMPOSITE BEAMS. In: Applied Mechanics 2017 Conference Proceedings. 19th International Conference APPLIED MECHANICS 2017, Brno, 2017-04-25/2017-04-28. Brno: Ústav fyziky materiálů AV ČR, 2017. s. 129-132. ISBN 978-80-87434-08-6.
- [A10] ZAVŘELOVÁ ZÁMEČNÍKOVÁ, T. a T. MAREŠ. The Influence of the Slenderness Ratio of the Composite Beam on Its Bending Stiffness. In: 32nd conference with international participation Computational Mechanics 2016 - Book of Extended Abstracts. 32nd conference with international participation Computational Mechanics 2016, Špičák, 2016-10-31/2016-11-02. Pilsen: University of West Bohemia, 2016. ISBN 978-80-261-0647-0.
- [A11] ZAVŘELOVÁ ZÁMEČNÍKOVÁ, T. a T. MAREŠ. Analysis of Composite Beam Bending. In: PADOVEC, Z., R. SEDLÁČEK a J. VONDROVÁ, eds. Mechanika kompozitních materiálů a konstrukcí mk2 2016 - sborník. Mechanika kompozitních materiálů a konstrukcí mk2, Sušice, 2016-04-21/2016-04-22. Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2016. s. 64-69. ISBN 978-80-01-05941-8.
- [A12] ZAVŘELOVÁ ZÁMEČNÍKOVÁ, T. a T. MAREŠ. COMPARISON OF METHODS FOR CALCULATING THE DEFLECTION OF COMPOSITE BEAMS. In: PADOVEC, Z. a J. VONDROVÁ, eds. 18th Workshop of Applied Mechanics. Praha, 2015-06-15. Praha: České vysoké učení technické v Praze, Fakulta strojní, 2015. s. 48-49. ISBN 978-80-01-05746-9.
- [A13] ZAVŘELOVÁ ZÁMEČNÍKOVÁ, T. a T. MAREŠ. Analysis of Bending Composite Beam. In: PADOVEC, Z., J. VONDROVÁ a R. SEDLÁČEK, eds. Applied Mechanics 2015 - Book of Abstracts. Applied Mechanics 2015, Kutná Hora, 2015-04-13/2015-04-15. Praha: ČVUT FS, Ústav pružnosti a pevnosti, 2015. s. 71-72. ISBN 978-80-01-05708-7.
- [A14] ZAVŘELOVÁ ZÁMEČNÍKOVÁ, Tereza. Analysis of composite beam bending. Diploma thesis (Ing.), Czech Technical University in Prague. Faculty of Mechanical Engineering, Department of mechanics, biomechanics and mechatronics. Prague, CZ, 2015.

12 Ostatní publikace autora

- [B1] SCHMIDOVÁ, N. et al. Development of the Adaptable Energy Absorbers for Car Crashes. In: PELIKÁN, J., ed. 21st Workshop of Applied Mechanics -Proceedings. 21st Workshop of Applied Mechanics, Praha, 2016-12-21. Praha: České vysoké učení technické v Praze, Fakulta strojní, 2016. s. 58-61. ISBN 978-80-01-06085-8.
- [B2] KULÍŠEK, V. et al. WP7 Závěrečná zpráva za rok 2016. [Výzkumná zpráva] ČVUT v Praze, fakulta strojní, 2016. Zpráva č. V-16-047.
- [B3] SCHMIDOVÁ, N. et al. DEVELOPMENT OF THE ADAPTABLE ENERGYABSORBERS FOR CAR CRASHES. In: COSMI, F.C., ed. DAS2017 proceedings. 34th Danubia Adria Symposium on Advances in Experimental Mechanics, Trieste, 2017-09-19/2017-09-22. Trieste: University of Trieste, 2017. s. 192-194. ISBN 978-88-8303-863-1.
- [B4] PADOVEC, Z. et al. ZTRÁTA STABILITY KOMPOZITOVÉ DESKY VYZTUŽENÉ PODÉLNÍKY – POROVNÁNÍ EXPERIMENTU A NUMERICKÉ SIMULACE. In: Mezinárodní konference Polymerní kompozity 2017 - Sborník. Polymer Composites 2017, Hotel Studánka, Rychnov nad Kněžnou, 2017-05-17/2017-05-18. Praha: Česká společnost pro mechaniku, 2017. s. 14-21. ISBN 978-80-906713-0-0.
- [B5] RŮŽIČKA, M. et al. Zpráva o řešení projektu Vysokorychlostní lehká převodovka pro zástavbu do elektrovozidel za použití kompozitních materiálů v roce 2017. [Výzkumná zpráva] Praha: ČVUT v Praze, Fakulta strojní, Ústav výrobních strojů a zařízení (Ú12135), 2017. Zpráva č. V-17-043.
- [B6] PADOVEC, Z. et al. High-speed and lightweight reducer of Electric Vehicle using composite materials. Precheck report for the year 2017. [Výzkumná zpráva] Praha: ČVUT FS. Ústav výrobních strojů a zařízení, 2017. Zpráva č. V-17-032.
- [B7] SCHMIDOVÁ, N. et al. INFLUENCE OF THE BEAM GEOMETRY ON THE COURSE OF FORCE DURING IMPACT. In: PELIKÁN, J., ed. 23rd Workshop of Applied Mechanics - Proceedings. 23rd Workshop of Applied Mechanics, Praha, 2017-12-15. Praha: České vysoké učení technické v Praze, Fakulta strojní, 2017. s. 56-60. ISBN 978-80-01-06372-9.
- [B8] VAŠÍČEK, M. et al. Adaptive response of composite structure under impact loading. [Nepublikovaná přednáška] 25th WAM. 2018-12-07.
- [B9] PADOVEC, Z., R. SEDLÁČEK a T. ZÁMEČNÍKOVÁ. Napěťově-deformační analýza Omega profilu. [Výzkumná zpráva] Praha: ČVUT FS, Ústav mechaniky, Odbor pružnosti a pevnosti, 2018. Zpráva č. 12105/18/14.
- [B10] PADOVEC, Z., R. SEDLÁČEK a T. ZÁMEČNÍKOVÁ. Napěťově-deformační analýza Ti a C/PPS T profilu. [Výzkumná zpráva] Praha: ČVUT FS, Ústav mechaniky, Odbor pružnosti a pevnosti, 2018. Zpráva č. 12105/18/13.

- [B11] ZÁMEČNÍKOVÁ, T. et al. FE Analysis of the T-profile for Airplane Door. In: 34th conference with international participation Computational Mechanics Book of Extended Abstracts. Computational Mechanics 2018, Srní, 2018-10-31/2018-11-02. Pilsen: University of West Bohemia, 2018. s. 135-136. ISBN 978-80-261-0819-1.
- [B12] PADOVEC, Z., B. KROPÍK a T. ZÁMEČNÍKOVÁ. Design and analysis of shaft and bonded joints for electric car. In: 34th conference with international participation Computational Mechanics - Book of Extended Abstracts. Computational Mechanics 2018, Srní, 2018-10-31/2018-11-02. Pilsen: University of West Bohemia, 2018. ISBN 978-80-261-0819-1.
- [B13] KROPÍK, B., Z. PADOVEC a T. ZAVŘELOVÁ. Design and Analysis of Shafts for Electric Car Gearbox. In: VONDROVÁ, J. a Z. PADOVEC, eds. 24th WORKSHOP OF APPLIED MECHANICS - BOOK OF PAPERS. 24th Workshop of Applied Mechanics, ČVUT FS, 2018-06-08. Praha: ČVUT FS. Odbor pružnosti a pevnosti, 2018. s. 29-32. ISBN 978-80-01-06453-5.
- [B14] DAVID, P. et al. Analýza kompozitových nosníků s průřezem tvaru omega. In: MORAVEC, J., ed. Studentská tvůrčí činnost 2019. Konference studentské tvůrčí činnosti 2019, Technická 4, Praha 6, 2019-04-09. Praha: České vysoké učení technické v Praze, Fakulta strojní, 2019. ISBN 978-80-01-06564-8. Dostupné z: http://stc.fs.cvut.cz/pdf19/9547.pdf?_=1554146304
- [B15] MATUŠŮ, M. et al. Analysis of Composite Bracket for Airplane Construction. In: AM 2019 Conference Proceedings. 21st International Scientific Conference APPLIED MECHANICS 2019, Ostravice, 2019-04-15/2019-04-17. Ostrava: VŠB -Technical University of Ostrava, 2019. s. 129-134. ISBN 978-80-248-4287-5.
- [B16] DAVID, P. et al. The Analysis and Variation of Composite Omega Shaped Beam. In: AM 2019 Conference Proceedings. 21st International Scientific Conference APPLIED MECHANICS 2019, Ostravice, 2019-04-15/2019-04-17. Ostrava: VŠB - Technical University of Ostrava, 2019. s. 38-43. ISBN 978-80-248-4287-5.
- [B17] SULITKA, M. et al. High-speed and lightweight reducer of Electric Vehicle using composite materials. Precheck report for the year 2018. [Výzkumná zpráva] Praha: ČVUT v Praze, Fakulta strojní, Ústav výrobních strojů a zařízení (Ú12135), 2018. Zpráva č. V-18-018.
- [B18] SULITKA, M. et al. Zpráva o řešení projektu TF03000050 Vysokorychlostní lehká převodovka pro zástavbu do elektrovozidel za použití kompozitních materiálů v roce 2018. [Výzkumná zpráva] Praha: ČVUT v Praze, Fakulta strojní, Ústav výrobních strojů a zařízení (Ú12135), 2018. Zpráva č. V-18-054.
- [B19] RŮŽIČKA, M. et al. Kompozitové absorbéry pro pohlcování energie nárazu vozidel. [Nepublikovaná přednáška] Česká společnost pro mechaniku - odborná skupina Mechanika kompozitních materiálů a konstrukcí. 2018-11-13.

- [B20] SCHMIDOVÁ, N. et al. Development of Adaptable CF RP Energy Absorbers for Car Crashes. Materials Today: Proceedings. 2018, 5(13), 26784-26791. ISSN 2214-7853. DOI 10.1016/j.matpr.2018.08.152
- [B21] MATUŠŮ, M. et al. COMPOSITE CONSOLE CALCULATION FOR AIRCRAFT CONSTRUCTION. In: PADOVEC, Z. a J. VONDROVÁ, eds. 26th Workshop of Applied Mechanics. Praha, 2019-06-21. Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2019. s. 46-49. ISBN 978-80-01-06604-1.
- [B22] DAVID, P. et al. THE ANALYSIS OF VARIOUS COMPOSITE OMEGA-SHAPED BEAMS FOR AIRCRAFT APPLICATIONS. In: PADOVEC, Z. a J. VONDROVÁ, eds. 26th Workshop of Applied Mechanics. Praha, 2019-06-21. Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2019. ISBN 978-80-01-06604-1.
- [B23] PADOVEC, Z., R. SEDLÁČEK a T. ZÁMEČNÍKOVÁ. Testing of C/PPS structural element for aircraft. In: EAN 2019 57th conference on experimental stress analysis CONFERENCE PROCEEDINGS. 57th conference on experimental stress analysis EAN 2019, Luhačovice, 2019-06-03/2019-06-06. Praha: Česká společnost pro mechaniku, 2019. s. 361-364. ISBN 9788021457669.
- [B24] ZÁMEČNÍKOVÁ, T. et al. KOMPOZITNÍ PROFILY V LETECKÉ KONSTRUKCI. In: PADOVEC, Z., R. SEDLÁČEK a J. VONDROVÁ, eds. Polymer Composites 2019 Proceedings. Polymer Composites 2019, Tábor, 2019-05-15/2019-05-16. Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2019. s. 126-131. ISBN 978-80-01-06582-2.
- [B25] MATUŠŮ, M. et al. Analýza kompozitové konzole pro leteckou konstrukci. In: MORAVEC, J., ed. Studentská tvůrčí činnost 2019. Konference studentské tvůrčí činnosti 2019, Technická 4, Praha 6, 2019-04-09. Praha: České vysoké učení technické v Praze, Fakulta strojní, 2019. ISBN 978-80-01-06564-8. Dostupné z: http://stc.fs.cvut.cz/pdf19/9507.pdf?_=1553549878
- [B26] PADOVEC, Z. et al. Numerická a experimentální analýza C/PPS T-profilů s použitím vrstvených prvků. [Výzkumná zpráva] Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2019. Zpráva č. 12105/19/11.
- [B27] PADOVEC, Z. et al. FE analýza vybraných variant C/PPS Omega profilu. [Výzkumná zpráva] Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2019. Zpráva č. 12105/19/10.
- [B28] MALÁ, A. et al. Finite Element Analysis of Composite Tubes with Integrated Loop Connections. In: PROCEEDINGS OF COMPUTATIONAL MECHANICS 2019. 35th conference with international participation COMPUTATIONAL MECHANICS 2019, Srní, 2019-11-04/2019-11-06. Plzeň: Západočeská univerzita v Plzni. Fakulta aplikovaných věd, 2019. s. 114-116. ISBN 978-80-261-0889-4.

- [B29] PADOVEC, Z., R. SEDLÁČEK a T. ZÁMEČNÍKOVÁ. Experimental and numerical evaluation of composite part strength. In: PROCEEDINGS OF COMPUTATIONAL MECHANICS 2019. 35th conference with international participation COMPUTATIONAL MECHANICS 2019, Srní, 2019-11-04/2019-11-06. Plzeň: Západočeská univerzita v Plzni. Fakulta aplikovaných věd, 2019. s. 145-147. ISBN 978-80-261-0889-4.
- [B30] DAVID, P. et al. THE FE ANALYSIS AND VARIATION OF COMPOSITE TOP HAT SHAPED BEAM. Strojnícky časopis. 2019, 69(3), 27-32. ISSN 2450-5471. DOI 10.2478/scjme-2019-0026
- [B31] KULÍŠEK, V. et al. WP07 Závěrečná zpráva za rok 2019. [Výzkumná zpráva] Praha: ČVUT v Praze, Fakulta strojní, Ústav výrobních strojů a zařízení (Ú12135), 2019. Zpráva č. V-19-067.
- [B32] KROPÍK, B. et al. Detection and Monitoring of Failures in CFRP Specimens with Integrated Joints by Acoustic Emission Method. In: PELIKÁN, J., ed. 27th Workshop of Applied Mechanics - Proceedings. Praha: České vysoké učení technické v Praze, Fakulta strojní, 2019. s. 20-23. ISBN 978-80-01-06680-5.
- [B33] MALÁ, A. et al. ANALÝZA TUHOSTI A PEVNOSTI VINUTÝCH TRUBEK S INTEGROVANÝMI SPOJI. In: VONDROVÁ, J. a Z. PADOVEC, eds. MECHANIKA KOMPOZITNÍCH MATERIÁLŮ A KONSTRUKCÍ 2020 – SBORNÍK. MECHANIKA KOMPOZITNÍCH MATERIÁLŮ A KONSTRUKCÍ 2020, Kamenice, 2020-09-09/2020-09-10. Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2020. s. 15-19. ISBN 978-80-01-06767-3.
- [B34] VONDRÁČEK, D. et al. Optimalizace kompozitních nosníků. In: KUBÁŠOVÁ, K., Z. PADOVEC a R. SEDLÁČEK, eds. POLYMER COMPOSITES 2021 – Proceedings. Polymer Composites 2021, Tábor, 2021-10-26/2021-10-27. Praha: ČVUT FS. Ústav mechaniky, biomechaniky a mechatroniky, 2021. s. 62-67. ISBN 978-80-01-06897-7.
- [B35] KŘENA, J. et al. A thermoplastic T-profile with effective lay-up in one shot. JEC Composites Magazine. 2020, 135 27-29. ISSN 1639-965X.
- [B36] PADOVEC, Z., T. ZÁMEČNÍKOVÁ a R. SEDLÁČEK. Numerical and Experimental Analysis of C/PPS Y-Shaped Profile. In: 58th Conference on Experimental Stress Analysis - Book of Full Papers. 58th Conference on Experimental Stress Analysis, Sobotín, 2020-10-19/2020-10-22. Brno: Czech Society for Mechanics, 2020. s. 340-343. ISBN 978-80-248-4451-0. Dostupné z: https://ean.vsb.cz/index.php/paper
- [B37] PADOVEC, Z. et al. Experimental and Numerical Analyses of Optimized Composite Profiles for Aircraft Construction. Mechanics of Composite materials. 2022, 58(2), 283-292. ISSN 1573-8922. DOI 10.1007/s11029-022-10029-y

- [B38] PONÍŽIL, T. et al. ODBORNÁ ZPRÁVA O POSTUPU PRACÍ A DOSAŽENÝCH VÝSLEDCÍCH ZA ROK 2020. [Výzkumná zpráva] 2020. Zpráva č. ČVUT 12105/20/24.
- [B39] KROPÍK, B. et al. Optimalizace termobariér pro vibrační zkoušky s teplotní komorou. [Výzkumná zpráva] Praha: ČVUT FS. Odbor pružnosti a pevnosti, 2020. Zpráva č. 12105/2020/15.
- [B40] ZÁMEČNÍKOVÁ, T. et al. MKP analýza nosníku s integrovaným spojem. [Výzkumná zpráva] 2019. Zpráva č. 12105/19/22.
- [B41] MALÁ, A., T. ZÁMEČNÍKOVÁ a M. BARTOŠÁK. MKP MODELY ZKUŠEBNÍHO VZORKU SOUČÁSTI S INTEGROVANÝMI SPOJI A RÁMU JÍZDNÍHO KOLA SE ZADNÍ STAVBOU. [Výzkumná zpráva] 2020. Zpráva č. 12105/20/28.
- [B42] PADOVEC, Z., R. SEDLÁČEK a T. ZÁMEČNÍKOVÁ. Numerická a experimentální analýza C/PPS Y profilu. [Výzkumná zpráva] Praha: ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky, 2020. Zpráva č. 12105/20/16.
- [B43] KŘENA, J. et al. T-Profile with Effective Lay-up in One Shot. In: 5th International Conference and Exhibition on Thermoplastic Composites -Conference Proceedings. 5th International Conference and Exhibition on Thermoplastic Composites, Bremen, 2020-10-13/2020-10-15. Bremen: Congres Bremen und Messe Bremen, 2020. s. 41-44.
- [B44] PADOVEC, Z. et al. Prototyp T profilu. [Prototyp] 2021.
- [B45] MALÁ, A. et al. MKP modely zkušebního vzorku součásti s integrovanými spoji a rámu jízdního kola se zadní stavbou. [Výzkumná zpráva] 2020. Zpráva č. 12105/20/28.
- [B46] ZÁMEČNÍKOVÁ, T. et al. Inovace řešení termobariéry na vibračním zkušebním stroji. In: KUBÁŠOVÁ, K., Z. PADOVEC a R. SEDLÁČEK, eds. POLYMER COMPOSITES 2021 – Proceedings. Polymer Composites 2021, Tábor, 2021-10-26/2021-10-27. Praha: ČVUT FS. Ústav mechaniky, biomechaniky a mechatroniky, 2021. s. 68-73. ISBN 978-80-01-06897-7.
- [B47] PADOVEC, Z., T. ZÁMEČNÍKOVÁ a R. SEDLÁČEK. Development of composite element joining keel beam and aircraft fuselage. In: PROCEEDINGS OF COMPUTATIONAL MECHANICS 2021. 36th CONFERENCE WITH INTERNATIONAL PARTICIPATION COMPUTATIONAL MECHANICS 2021, Srní, 2021-11-08/2021-11-10. Plzeň: Západočeská univerzita v Plzni, 2021. s. 175-178. ISBN 978-80-261-1059-0. Dostupné z: https://www.kme.zcu.cz/compmech/download/proceedings/CM2020_Conference_P roceedings.pdf

- [B48] PONÍŽIL, T. et al. ODBORNÁ ZPRÁVA O POSTUPU PRACÍ A DOSAŽENÝCH VÝSLEDCÍCH ZA ROK 2021. [Technická zpráva] 2021. Zpráva č. 12105/21/02.
- [B49] PONÍŽIL, T. et al. Funkční vzorek Rám jízdního kola z kompozitních profilů s integrovanými spoji. [Funkční vzorek] 2021.
- [B50] SCHMIDOVÁ, N. et al. Funkční vzorek integrovaného spoje vybaveného snímači pro SHM. [Funkční vzorek] 2021.
- [B51] RŮŽIČKA, M. et al. Funkční vzorek termobariéry. [Funkční vzorek] 2022.
- [B52] DAVID, P. et al. Optimalizace termobariér pro vibrační zkoušky s teplotní komorou. [Výzkumná zpráva] Praha: ČVUT FS. Odbor pružnosti a pevnosti, 2021. Zpráva č. 12105/2021/15. České vysoké učení technické v Praze, Fakulta strojní, Praha 6, CZ; Robert Bosch, spol. s r.o., České Budějovice, České Budějovice 3, CZ. Upínací přípravek zkušebních vzorků. Původci: M. RŮŽIČKA et al. Česká republika. Užitný vzor CZ 35 722. 2022-01-18. Dostupné z: https://isdv.upv.cz/webapp/resdb.print_detail.det?pspis=PUV/39152&plang=CS
- [B53] PADOVEC, Z., R. SEDLÁČEK a T. ZÁMEČNÍKOVÁ. Fatigue/lifetime Testing of T and Y Composite Profiles. In: PADEVĚT, P. a P. BITTNAR, eds. EAN 2021 59th conference on experimental stress analysis. Litomyšl, 2021-09-29/2021-10-01. Praha: ČVUT FSv. Katedra mechaniky, 2022. s. 155-159. ISBN 978-80-01-06885-4. Dostupné z: https://mech.fsv.cvut.cz/ean2021/final-book-ean2021.pdf
- [B54] KROPÍK, B. et al. Tension and Compression Optimization of Integrated Loop Technology Joint. In: PADEVĚT, P. a P. BITTNAR, eds. EAN 2021 59th conference on experimental stress analysis. Litomyšl, 2021-09-29/2021-10-01. Praha: ČVUT FSv. Katedra mechaniky, 2022. s. 99-106. ISBN 978-80-01-06885-4.
- [B55] MALÁ, A. et al. Finite element analysis of composite tubes with integrated loop technology joints. In: PROCEEDINGS OF COMPUTATIONAL MECHANICS 2021. 36th CONFERENCE WITH INTERNATIONAL PARTICIPATION COMPUTATIONAL MECHANICS 2021, Srní, 2021-11-08/2021-11-10. Plzeň: Západočeská univerzita v Plzni, 2021. s. 146-148. ISBN 978-80-261-1059-0.
- [B56] ZÁMEČNÍKOVÁ, T. et al. MKP modely zkušebního vzorku součásti s integrovanými spoji s modely snímačů deformace zatížené ohybem a krutem. [Výzkumná zpráva] 2021. Zpráva č. 12105/21/08.
- [B57] DAVID, P. et al. Optimalizace termobariér pro vibrační zkoušky s teplotní komorou. [Výzkumná zpráva]. Praha: ČVUT FS. Odbor pružnosti a pevnosti, 2022. Zpráva č. 12105/2022/03.
[B58] KROPÍK, B. et al. Flexural and Torsional Loading of Integrated Loop Technology Joint. In: DOUBRAVA, K. et al., eds. 60th annual international conference on Experimental Stress Analysis - Book of Extended Abstracts. 60th annual international conference on Experimental Stress Analysis, Praha, 2022-06-06/2022-06-09. Praha: ČVUT FS. Ústav mechaniky, biomechaniky a mechatroniky, 2022. ISBN 978-80-01-07010-9.

13 Přílohy

Obr. 66: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 0°

Obr. 67:Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 5°

Obr. 68: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 15°

Obr. 69: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 25°

Obr. 70: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 35°

Obr. 71: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 45°

Obr. 72: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 55°

Obr. 73: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 65°

Obr. 74: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 75°

Obr. 75: Závislost ekvivalentního modulu pružnosti na štíhlosti nosníku pro úhel navinutí vláken 85°

 $Obr. \ \ 76: Z\'{a}vislost \ ekvivalentn\'{h}o \ modulu \ pru\'{z}nosti \ na \ \v{s}t\'{h}losti \ nosn\'{k}u \ pro \ \'{u}hel \ navinut\'{i} \ vl\'{a}ken \ 90^\circ$

		±α	Eeg M ConvS	Eeg M CS	Eeg M VM	Eeg F ABD	Eeg F Bernoulli	Eeq_F_Bernoulli- stiffness
60	1	0	84603.46739	100125.1203	101235.9485	97888.11851	101915.2963	102237.4867
	2	0	84599.75459	99862.39707	101139.3839	97888.11851	101915.2963	102237.4867
	4	0	84597.89098	99731.55201	101091.5017	97888.11851	101915.2963	102237.4867
	8	0	84596.97021	99666.26613	101067.5881	97888.11851	101915.2963	102237.4867
	10	0	84596.78517	99653.21025	101062.8017	97888.11851	101915.2963	102237.4867
	15	0	84596.53318	99635.81745	101056.42	97888.11851	101915.2963	102237.4867
	20	0	84596.40895	99627.12604	101053.2365	97888.11851	101915.2963	102237.4867
	30	0	84596.28537	99618.43706	101050.0495	97888.11851	101915.2963	102237.4867
	40	0	85949.63216	99614.08499	101048.463	97888.11851	101915.2963	102237.4867
	50	0	85949.58460	99611.4837	101047.4966	97888.11851	101915.2963	102237.4867
100	1	0	90187.46531	98921.40038	100109.6807	97888.11851	100267.845	100584.8272
	2	0	90183.99558	98761.86473	100036.8228	97888.11851	100267.845	100584.8272
	4	0	90182.25479	98682.29662	100000.2597	97888.11851	100267.845	100584.8272
	8	0	90181.39424	98642.56375	99981.99378	97888.11851	100267.845	100584.8272
	10	0	90181.21978	98634.62102	99978.34108	97888.11851	100267.845	100584.8272
	15	0	90180.98297	98624.03186	99973.46686	97888.11851	100267.845	100584.8272
	20	0	90180.87294	98618.73688	99971.03036	97888.11851	100267.845	100584.8272
	30	0	90180.75477	98613.44359	99968.59312	97888.11851	100267.845	100584.8272
	40	0	90778.13377	98610.79454	99967.38635	97888.11851	100267.845	100584.8272
	50	0	90778.10855	98609.21236	100158.8718	97888.11851	100267.845	100584.8272
150	1	0	92940.54871	98282.84738	99399.30513	97888.11851	99412.63994	99726.91853
	2	0	92937.35318	98175.55098	99340.07659	97888.11851	99412.63994	99726.91853
	4	0	92935.77333	98121.98968	99310.47767	97888.11851	99412.63994	99726.91853
	8	0	92934.96924	98095.2332	99295.67789	97888.11851	99412.63994	99726.91853
	10	0	92934.81572	98089.88455	99292.71754	97888.11851	99412.63994	99726.91853
	15	0	92934.59392	98082.74952	99288.77561	97888.11851	99412.63994	99726.91853
	20	0	92934.49328	98079.18721	99373.08789	97888.11851	99412.63994	99726.91853
	30	0	92934.38436	98075.61914	99369.64632	97888.11851	99412.63994	99726.91853
	40	0	93166.3795	98073.8322	99367.92872	97888.11851	99412.63994	99726.91853
	50	0	93166.34677	98072.76632	99366.89621	97888.11851	99412.63994	99726.91853
200	1	0	94226.04497	97953.88854	99120.00125	97888.11851	98976.99556	99289.89694
	2	0	94223.10002	97872.88836	99034.66893	97888.11851	98976.99556	99289.89694
	4	0	94221.63746	97832.43022	98991.92201	97888.11851	98976.99556	99289.89694
	8	0	94220.89909	97812.21458	98970.5651	97888.11851	98976.99556	99289.89694
	10	0	94220.7547	97808.18483	98966.28698	97888.11851	98976.99556	99289.89694
	15	0	94220.55099	97802.79218	98960.6023	97888.11851	98976.99556	99289.89694
	20	0	94220.46044	97800.09333	98957.75176	97888.11851	98976.99556	99289.89694
	30	0	94220.35944	97797.40222	98954.90165	97888.11851	98976.99556	99289.89694
	40	0	94360.59988	97796.05515	98551.83525	97888.11851	98976.99556	99289.89694
	50	0	94360.58134	97795.25039	98550.84052	97888.11851	98976.99556	99289.89694

300 1	0	95487.57215	97618.46786	98585.97325	97888.11851	98535.92684	98847.43383
2	0	95485.01046	97563.92539	98544.60879	97888.11851	98535.92684	98847.43383
4	0	95483.71887	97536.65362	98523.93074	97888.11851	98535.92684	98847.43383
8	0	95483.07766	97523.03665	98364.56156	97888.11851	98535.92684	98847.43383
10	0	95482.95025	97520.31415	98360.76217	97888.11851	98535.92684	98847.43383
15	0	95482.77317	97516.68313	98355.69902	97888.11851	98535.92684	98847.43383
20	0	95543.68494	97514.86484	98353.16646	97888.11851	98535.92684	98847.43383
30	0	95543.60626	97513.04469	98350.6403	97888.11851	98535.92684	98847.43383
40	0	95543.55778	97512.13089	98349.37169	97888.11851	98535.92684	98847.43383
50	0	95543.53534	97511.57892	98348.60538	97888.11851	98535.92684	98847.43383
Průměr Eeq		91581.85257	98372.32042	99552.01241	97888.11851	99821.74074	100137.3126

		±α	Eeq_M_ConvS	Eeq_M_CS	Eeq_M_VM	Eeq_F_ABD	Eeq_F_Bernoulli	Eeq_F_Bernoulli- stiffness
60	1	5	83304.71538	98660.6405	78740.6946	96472.35	78835.19	100810.7
	2	5	83294.63647	98398.5818	78398.0184	96472.35	78835.19	100810.7
	4	5	83289.58115	98268.0741	78269.2918	96472.35	78835.19	100810.7
	8	5	83287.069	98202.955	78214.7466	96472.35	78835.19	100810.7
	10	5	83286.56019	98189.9395	78204.6263	96472.35	78835.19	100810.7
	15	5	83285.89838	98172.6021	78191.5263	96472.35	78835.19	100810.7
	20	5	83285.55326	98163.9217	78185.1529	96472.35	78835.19	100810.7
	30	5	83285.21698	98155.2455	78178.8914	96472.35	78835.19	100810.7
	40	5	84609.80045	98150.9113	78175.809	96472.35	78835.19	100810.7
	50	5	84609.66219	98148.312	78173.9671	96472.35	78835.19	100810.7
100	1	5	88854.67453	97486.4154	77660.0795	96472.35	77586.96	99182.71
	2	5	88847.69175	97326.2595	77491.4041	96472.35	77586.96	99182.71
	4	5	88844.19188	97246.3778	77418.9412	96472.35	77586.96	99182.71
	8	5	88842.44649	97206.48	77385.7503	96472.35	77586.96	99182.71
	10	5	88842.0992	97198.5081	77379.3516	96472.35	77586.96	99182.71
	15	5	88841.63005	97187.8742	77370.9456	96472.35	77586.96	99182.71
	20	5	88841.40158	97182.5683	77366.7928	96472.35	77586.96	99182.71
	30	5	88841.16769	97177.2449	77362.6817	96472.35	77586.96	99182.71
	40	5	89426.99759	97174.5925	77360.6391	96472.35	77586.96	99182.71
	50	5	89426.91825	97173.0021	77555.6583	96472.35	77586.96	99182.71
150	1	5	91584.99183	96861.1171	77042.6413	96472.35	76939	98337.62
	2	5	91579.07083	96752.656	76934.5735	96472.35	76939	98337.62
	4	5	91576.11692	96698.5195	76885.2336	96472.35	76939	98337.62
	8	5	91574.642	96671.4773	76861.7407	96472.35	76939	98337.62
	10	5	91574.33994	96666.072	76857.1383	96472.35	76939	98337.62
	15	5	91573.9393	96658.8617	76851.0554	96472.35	76939	98337.62
	20	5	91573.75313	96655.2605	76969.973	96472.35	76939	98337.62

	30	5	91573.54425	96651.6541	76950.3396	96472.35	76939	98337.62
	40	5	91800.65508	96649.8583	76940.5674	96472.35	76939	98337.62
	50	5	91800.58686	96648.7776	76934.7228	96472.35	76939	98337.62
200	1	5	92858.06064	96538.2667	77616.6605	96472.35	76608.92	97907.12
	2	5	92852.69339	96455.9408	77070.563	96472.35	76608.92	97907.12
	4	5	92850.00681	96414.827	76823.7618	96472.35	76608.92	97907.12
	8	5	92848.6604	96394.287	76706.8631	96472.35	76608.92	97907.12
	10	5	92848.39749	96390.1783	76683.9992	96472.35	76608.92	97907.12
	15	5	92848.03633	96384.7018	76653.776	96472.35	76608.92	97907.12
	20	5	92847.86425	96381.9603	76638.7747	96472.35	76608.92	97907.12
	30	5	92847.68225	96379.2299	76623.8577	96472.35	76608.92	97907.12
	40	5	92985.07507	96377.8644	76314.2164	96472.35	76608.92	97907.12
	50	5	92985.01286	96377.0338	76308.5364	96472.35	76608.92	97907.12
300	1	5	94105.83419	96208.5213	76364.5181	96472.35	76274.74	97471.27
	2	5	94101.15804	96152.5746	76306.5163	96472.35	76274.74	97471.27
	4	5	94098.82739	96124.629	76278.4161	96472.35	76274.74	97471.27
	8	5	94097.65546	96110.6739	76230.4093	96472.35	76274.74	97471.27
	10	5	94097.4239	96107.8795	76210.6104	96472.35	76274.74	97471.27
	15	5	94097.11506	96104.1549	76184.3958	96472.35	76274.74	97471.27
	20	5	94156.7214	96102.2909	76171.3534	96472.35	76274.74	97471.27
	30	5	94156.55782	96100.4252	76158.3669	96472.35	76274.74	97471.27
	40	5	94156.48652	96099.4868	76151.8917	96472.35	76274.74	97471.27
	50	5	94156.43729	96098.9287	76148.0121	96472.35	76274.74	97471.27
Průměr Eea	r _	5	90227.10518	96941.7723	77119.1691	96472.35	77248.96	98741.88
· · ·				-				

								Eeq_F_Bernoulli-
		±α	Eeq_M_ConvS	Eeq_M_CS	Eeq_M_VM	Eeq_F_ABD	Eeq_F_Bernoulli	stiffness
60	1q	15	72849.39521	86912.2356	31152.8835	85276.85	29975.34	90025.12
	2	15	72748.53118	86604.248	30404.4347	85276.85	29975.34	90025.12
	4	15	72698.2073	86451.0952	30066.7286	85276.85	29975.34	90025.12
	8	15	72673.07092	86374.7241	29906.2211	85276.85	29975.34	90025.12
	10	15	72668.04248	86359.4706	29874.7644	85276.85	29975.34	90025.12
	15	15	72661.3462	86339.1339	29833.16	85276.85	29975.34	90025.12
	20	15	72657.99202	86328.9631	29812.4977	85276.85	29975.34	90025.12
	30	15	72654.64682	86318.8075	29791.9288	85276.85	29975.34	90025.12
	40	15	73747.91642	86313.7219	29781.6809	85276.85	29975.34	90025.12
	50	15	73746.558	86310.675	29775.5431	85276.85	29975.34	90025.12
100	1	15	78231.88067	86071.2211	30307.6476	85276.85	29572.25	88583.7
	2	15	78178.35119	85885.1336	29890.2936	85276.85	29572.25	88583.7
	4	15	78151.61097	85792.3818	29692.6237	85276.85	29572.25	88583.7
	8	15	78138.25066	85746.0899	29596.4792	85276.85	29572.25	88583.7

	10	15	78135.57875	85736.8344	29577.4627	85276.85	29572.25	88583.7
	15	15	78132.01418	85724.5058	29552.22	85276.85	29572.25	88583.7
	20	15	78130.23097	85718.3339	29539.6416	85276.85	29572.25	88583.7
	30	15	78128.45046	85712.1693	29527.0928	85276.85	29572.25	88583.7
	40	15	78621.19394	85709.0822	29520.8358	85276.85	29572.25	88583.7
	50	15	78620.57135	85707.2307	29719.5611	85276.85	29572.25	88583.7
150	1	15	80830.54247	85592.915	29871.9775	85276.85	29363.01	87835.45
	2	15	80789.49195	85460.8831	29599.9448	85276.85	29363.01	87835.45
	4	15	80768.98568	85395.0099	29468.3053	85276.85	29363.01	87835.45
	8	15	80758.72192	85362.1199	29403.5533	85276.85	29363.01	87835.45
	10	15	80756.67957	85355.5443	29390.6858	85276.85	29363.01	87835.45
	15	15	80753.95022	85346.7825	29373.5771	85276.85	29363.01	87835.45
	20	15	80752.5848	85342.3977	29509.2458	85276.85	29363.01	87835.45
	30	15	80751.21262	85338.0073	29476.1117	85276.85	29363.01	87835.45
	40	15	80938.67214	85335.8226	29459.5982	85276.85	29363.01	87835.45
	50	15	80938.23179	85334.5085	29449.7068	85276.85	29363.01	87835.45
200	1	15	82025.59466	85335.7124	30938.305	85276.85	29256.42	87454.29
	2	15	81988.99832	85230.2768	30072.1544	85276.85	29256.42	87454.29
	4	15	81970.71861	85177.6491	29670.6541	85276.85	29256.42	87454.29
	8	15	81961.56897	85151.3587	29477.2523	85276.85	29256.42	87454.29
	10	15	81959.74591	85146.1088	29439.1367	85276.85	29256.42	87454.29
	15	15	81957.31474	85139.1015	29388.6155	85276.85	29256.42	87454.29
	20	15	81956.09756	85135.6003	29363.477	85276.85	29256.42	87454.29
	30	15	81954.87378	85132.0957	29338.4199	85276.85	29256.42	87454.29
	40	15	82069.16535	85130.3417	29231.6442	85276.85	29256.42	87454.29
	50	15	82068.7962	85129.2871	29222.3784	85276.85	29256.42	87454.29
300	1	15	83180.99307	85064.4877	29423.496	85276.85	29148.5	87068.38
	2	15	83148.69361	84986.2641	29286.4987	85276.85	29148.5	87068.38
	4	15	83132.55518	84947.2069	29218.8201	85276.85	29148.5	87068.38
	8	15	83124.48485	84927.6911	29282.0589	85276.85	29148.5	87068.38
	10	15	83122.86782	84923.7929	29250.1963	85276.85	29148.5	87068.38
	15	15	83120.7179	84918.5975	29207.9013	85276.85	29148.5	87068.38
	20	15	83169.43658	84915.9892	29186.838	85276.85	29148.5	87068.38
	30	15	83168.35201	84913.3888	29165.8244	85276.85	29148.5	87068.38
	40	15	83167.81183	84912.0832	29155.338	85276.85	29148.5	87068.38
	50	15	83167.48437	84911.2866	29149.0551	85276.85	29148.5	87068.38
Průměi	^r Eeq	15	79420.58368	85542.1674	29615.8894	85276.85	29463.1	88193.39

		_						Eeq_F_Bernoulli-
		±α	Eeq_M_ConvS	Eeq_M_CS	Eeq_M_VM	Eeq_F_ABD	Eeq_F_Bernoulli	stiffness
60	1	25	54207.2738	65366.7465	16437.1581	64693.16	15376.99	71529.93
	2	25	53955.5353	64935.39	15828.8512	64693.16	15376.99	71529.93
	4	25	53830.51171	64721.8374	15554.4664	64693.16	15376.99	71529.93
	8	25	53768.22998	64615.5846	15423.8454	64693.16	15376.99	71529.93
	10	25	53755.78263	64594.3801	15398.2255	64693.16	15376.99	71529.93
	15	25	53739.20249	64566.1194	15364.322	64693.16	15376.99	71529.93
	20	25	53730.9206	64551.9993	15347.4802	64693.16	15376.99	71529.93
	30	25	53722.641	64537.8904	15330.7102	64693.16	15376.99	71529.93
	40	25	54473.6814	64530.8326	15322.3524	64693.16	15376.99	71529.93
	50	25	54470.61785	64526.6022	15317.3464	64693.16	15376.99	71529.93
100	1	25	58934.09602	65114.2568	15877.3781	64693.16	15226.42	70408.43
	2	25	58780.02909	64847.9715	15529.9908	64693.16	15226.42	70408.43
	4	25	58703.2973	64715.6523	15366.3672	64693.16	15226.42	70408.43
	8	25	58665.01175	64649.6889	15286.9688	64693.16	15226.42	70408.43
	10	25	58657.36008	64636.5164	15271.2775	64693.16	15226.42	70408.43
	15	25	58647.15738	64618.9564	15250.4532	64693.16	15226.42	70408.43
	20	25	58642.05663	64610.181	15240.0812	64693.16	15226.42	70408.43
	30	25	58636.96464	64601.4057	15229.738	64693.16	15226.42	70408.43
	40	25	58983.42843	64597.0204	15224.5763	64693.16	15226.42	70408.43
	50	25	58981.75852	64594.3871	15479.5814	64693.16	15226.42	70408.43
150	1	25	61175.63766	64904.6314	16464.9352	64693.16	15148.26	69826.25
	2	25	61048.93627	64701.0282	15795.5466	64693.16	15148.26	69826.25
	4	25	60985.78167	64599.7132	15489.1582	64693.16	15148.26	69826.25
	8	25	60954.25246	64549.1693	15342.2439	64693.16	15148.26	69826.25
	10	25	60947.95297	64539.0709	15313.3416	64693.16	15148.26	69826.25
	15	25	60939.55518	64525.6111	15275.0519	64693.16	15148.26	69826.25
	20	25	60935.35459	64518.8861	15256.0114	64693.16	15148.26	69826.25
	30	25	60931.15056	64512.1547	15237.0392	64693.16	15148.26	69826.25
	40	25	61058.43889	64508.7931	15227.5793	64693.16	15148.26	69826.25
	50	25	61057.1305	64506.7738	15221.9122	64693.16	15148.26	69826.25
200	1	25	62188.98641	64769.7225	16108.7548	64693.16	15108.44	69529.69
	2	25	62072.79521	64595.7296	15606.1052	64693.16	15108.44	69529.69
	4	25	62014.86654	64509.0912	15365.7763	64693.16	15108.44	69529.69
	8	25	61985.94036	64465.8546	15253.9846	64693.16	15108.44	69529.69
	10	25	61980.16026	64457.2124	15231.3695	64693.16	15108.44	69529.69
	15	25	61972.45408	64445.6979	15201.8956	64693.16	15108.44	69529.69
	20	25	61968.60328	64439.9463	15187.6568	64693.16	15108.44	69529.69
	30	25	61964.75296	64434.1912	15172.9429	64693.16	15108.44	69529.69
	40	25	62042.98137	64431.3093	15177.028	64693.16	15108.44	69529.69
	50	25	62041.80089	64429.5846	15170.1366	64693.16	15108.44	69529.69

300 1	25	63147.62632	64608.5791	15311.5122	64693.16	15068.13	69229.43
2	25	63042.54898	64465.7549	15194.0623	64693.16	15068.13	69229.43
4	25	62990.13447	64394.5793	15136.5439	64693.16	15068.13	69229.43
8	25	62963.96458	64359.0491	15210.7597	64693.16	15068.13	69229.43
10	25	62958.73177	64351.9474	15186.8384	64693.16	15068.13	69229.43
15	25	62951.76293	64342.4762	15155.0959	64693.16	15068.13	69229.43
20	25	62982.82602	64337.751	15139.2893	64693.16	15068.13	69229.43
30	25	62979.32205	64333.0135	15123.5268	64693.16	15068.13	69229.43
40	25	62977.56407	64330.6445	15115.6612	64693.16	15068.13	69229.43
50	25	62976.50413	64329.2258	15110.9463	64693.16	15068.13	69229.43
Průměr							
Eeq	25	59750.48148	64572.6122	15377.2775	64693.16	15185.65	70104.75

	±α	Eeq_M_ConvS	Eeq_M_CS	Eeq_M_VM	Eeq_F_ABD	Eeq_F_Bernoulli	Eeq_F_Bernoulli- stiffness
60 1	35	33919.75667	41210.4438	11166.3475	41054.01	10355.77	50275.47
2	35	33622.46575	40737.1165	10720.8574	41054.01	10355.77	50275.47
4	35	33475.76621	40504.5086	10519.8022	41054.01	10355.77	50275.47
8	35	33402.89647	40389.2008	10423.9082	41054.01	10355.77	50275.47
10	35	33388.35989	40366.2161	10405.0843	41054.01	10355.77	50275.47
15	35	33368.99979	40335.612	10380.1671	41054.01	10355.77	50275.47
20	35	33359.32283	40320.3266	10367.7854	41054.01	10355.77	50275.47
30	35	33349.65868	40305.0518	10355.4551	41054.01	10355.77	50275.47
40	35	33803.12187	40297.4223	10349.3085	41054.01	10355.77	50275.47
50	35	33799.75741	40292.843	10345.627	41054.01	10355.77	50275.47
100 1	35	37258.61884	41299.5535	10795.0364	41054.01	10292.05	49521.62
2	35	37031.65238	40969.5851	10533.8833	41054.01	10292.05	49521.62
4	35	36919.20207	40806.5721	10411.0031	41054.01	10292.05	49521.62
8	35	36863.24007	40725.5516	10351.3969	41054.01	10292.05	49521.62
10	35	36852.06452	40709.388	10339.6185	41054.01	10292.05	49521.62
15	35	36837.1787	40687.8512	10323.9871	41054.01	10292.05	49521.62
20	35	36829.74029	40677.0935	10316.2024	41054.01	10292.05	49521.62
30	35	36822.30412	40666.342	10308.4395	41054.01	10292.05	49521.62
40	35	37032.17406	40660.9686	10304.5651	41054.01	10292.05	49521.62
50	35	37029.81686	40657.7432	10619.6758	41054.01	10292.05	49521.62
150 1	35	38829.79171	41263.2367	11229.1224	41054.01	10258.98	49130.28
2	35	38626.83139	40993.4461	10757.0517	41054.01	10258.98	49130.28
4	35	38526.14856	40859.8721	10540.7045	41054.01	10258.98	49130.28
8	35	38476.00025	40793.4088	10436.7184	41054.01	10258.98	49130.28
10	35	38465.98375	40780.1412	10416.2418	41054.01	10258.98	49130.28
15	35	38452.64358	40762.4674	10389.1056	41054.01	10258.98	49130.28
20	35	38445.97318	40753.6377	10375.6059	41054.01	10258.98	49130.28

i								
	30	35	38439.30571	40744.8111	10362.1532	41054.01	10258.98	49130.28
	40	35	38513.84142	40740.3966	10355.4438	41054.01	10258.98	49130.28
	50	35	38511.80344	40737.7476	10351.4243	41054.01	10258.98	49130.28
200	1	35	39532.88696	41214.4452	10981.2206	41054.01	10242.13	48930.94
	2	35	39342.37759	40975.5487	10622.6883	41054.01	10242.13	48930.94
	4	35	39247.80734	40857.1382	10450.406	41054.01	10242.13	48930.94
	8	35	39200.69724	40798.1885	10370.3597	41054.01	10242.13	48930.94
	10	35	39191.28386	40786.4223	10354.0131	41054.01	10242.13	48930.94
	15	35	39178.74801	40770.7409	10332.7868	41054.01	10242.13	48930.94
	20	35	39172.48145	40762.9029	10322.6771	41054.01	10242.13	48930.94
	30	35	39166.21438	40755.0678	10312.0248	41054.01	10242.13	48930.94
	40	35	39211.683	40751.1506	10353.381	41054.01	10242.13	48930.94
	50	35	39209.7785	40748.7954	10348.5662	41054.01	10242.13	48930.94
300	1	35	40185.88076	41136.5894	10420.2978	41054.01	10225.07	48729.11
	2	35	40012.13458	40933.0035	10327.2641	41054.01	10225.07	48729.11
	4	35	39925.82397	40831.9602	10281.8464	41054.01	10225.07	48729.11
	8	35	39882.80779	40781.6281	10355.8803	41054.01	10225.07	48729.11
	10	35	39874.21842	40771.5764	10338.9199	41054.01	10225.07	48729.11
	15	35	39862.76561	40758.1838	10316.4095	41054.01	10225.07	48729.11
	20	35	39877.92912	40751.4848	10305.1985	41054.01	10225.07	48729.11
	30	35	39872.18629	40744.7927	10294.0164	41054.01	10225.07	48729.11
	40	35	39869.31501	40741.4435	10288.4359	41054.01	10225.07	48729.11
	50	35	39867.59461	40739.429	10285.0919	41054.01	10225.07	48729.11
Průměr Feg		35	37638,7807	40753,1809	10444,2641	41054 01	10274 8	49317 48
		00	0.000.007		10 20 / 1	.10001	1017 110	1002/110

								Eeq_F_Bernoulli-
		±α	Eeq_M_ConvS	Eeq_M_CS	Eeq_M_VM	Eeq_F_ABD	Eeq_F_Bernoulli	stiffness
60	1	45	18688.26554	22728.81663	8821.85467	22545.77	8244.082	31216.87
	2	45	18445.44958	22311.86936	8512.18428	22545.77	8244.082	31216.87
	4	45	18326.39216	22109.08009	8371.43008	22545.77	8244.082	31216.87
	8	45	18267.43845	22009.06104	8303.96714	22545.77	8244.082	31216.87
	10	45	18255.69395	21989.16553	8290.69855	22545.77	8244.082	31216.87
	15	45	18240.0566	21962.69587	8273.12219	22545.77	8244.082	31216.87
	20	45	18232.24678	21949.4836	8264.38295	22545.77	8244.082	31216.87
	30	45	18224.44565	21936.28915	8255.67594	22545.77	8244.082	31216.87
	40	45	18484.94416	21929.69689	8251.33415	22545.77	8244.082	31216.87
	50	45	18482.3797	21925.74438	8248.73313	22545.77	8244.082	31216.87
100	1	45	20547.85405	22803.4229	8586.06778	22545.77	8216.889	30792.68
	2	45	20333.64144	22492.63086	8397.19167	22545.77	8216.889	30792.68
	4	45	20228.20292	22340.39102	8307.95743	22545.77	8216.889	30792.68
	8	45	20175.89199	22265.04019	8264.58658	22545.77	8216.889	30792.68

-								
	10	45	20165.46305	22250.03194	8256.01036	22545.77	8216.889	30792.68
	15	45	20151.5739	22230.05085	8244.62432	22545.77	8216.889	30792.68
	20	45	20144.63589	22220.0743	8238.95321	22545.77	8216.889	30792.68
	30	45	20137.70272	22210.10633	8233.29582	22545.77	8216.889	30792.68
	40	45	20255.89441	22205.12459	8230.47197	22545.77	8216.889	30792.68
	50	45	20253.74868	22202.13815	8564.32684	22545.77	8216.889	30792.68
150	1	45	21421.3496	22787.8277	8886.27335	22545.77	8202.773	30572.47
	2	45	21223.21381	22530.53468	8571.05843	22545.77	8202.773	30572.47
	4	45	21125.51512	22404.05778	8425.29686	22545.77	8202.773	30572.47
	8	45	21077.00277	22341.34841	8354.79109	22545.77	8202.773	30572.47
	10	45	21067.32588	22328.84618	8340.87356	22545.77	8202.773	30572.47
	15	45	21054.43854	22312.20257	8322.41066	22545.77	8202.773	30572.47
	20	45	21048.00051	22303.89053	8313.21934	22545.77	8202.773	30572.47
	30	45	21041.5677	22295.58106	8304.05436	22545.77	8202.773	30572.47
	40	45	21083.50718	22291.43129	8299.48133	22545.77	8202.773	30572.47
	50	45	21081.55436	22288.93757	8296.74115	22545.77	8202.773	30572.47
200	1	45	21810.40292	22758.9549	8720.75435	22545.77	8195.583	30460.3
	2	45	21624.33316	22531.60205	8476.16333	22545.77	8195.583	30460.3
	4	45	21532.48429	22419.62276	8357.22739	22545.77	8195.583	30460.3
	8	45	21486.8524	22364.04716	8301.8852	22545.77	8195.583	30460.3
	10	45	21477.74831	22352.96589	8290.44123	22545.77	8195.583	30460.3
	15	45	21465.62193	22338.2074	8275.64196	22545.77	8195.583	30460.3
	20	45	21459.56399	22330.83386	8268.71239	22545.77	8195.583	30460.3
	30	45	21453.51086	22323.46751	8261.23482	22545.77	8195.583	30460.3
	40	45	21478.43274	22319.78544	8316.66745	22545.77	8195.583	30460.3
	50	45	21476.61294	22317.57596	8313.44905	22545.77	8195.583	30460.3
300	1	45	22167.09523	22708.48165	8340.73416	22545.77	8188.302	30346.73
	2	45	21999.66365	22516.72694	8267.92602	22545.77	8188.302	30346.73
	4	45	21916.8919	22422.06122	8232.39297	22545.77	8188.302	30346.73
	8	45	21875.73969	22375.0252	8298.46241	22545.77	8188.302	30346.73
	10	45	21867.52905	22365.64181	8286.8523	22545.77	8188.302	30346.73
	15	45	21856.58989	22353.14139	8271.43238	22545.77	8188.302	30346.73
	20	45	21863.18572	22346.89752	8263.74861	22545.77	8188.302	30346.73
	30	45	21857.71031	22340.65995	8256.08161	22545.77	8188.302	30346.73
	40	45	21854.97117	22337.53892	8252.25462	22545.77	8188.302	30346.73
- 0	50	45	21853.33057	22335.6695	8249.96032	22545.77	8188.302	30346.73
Průměr Eeq	4	5	20632.87336	22322.28957	8346.66184	22545.77	8209.526	30677.81

		+0	Fea M ConvS	Feg M CS	Fea M VM	Fea F ABD	Fea E Bernoulli	Eeq_F_Bernoulli-
60	1	±u 55	10228 5260	12575 9/1/	7656 96416	12256 01	7280 58	17507 27
00	1 2	55	10328.3303	12373.0414	7050.30410	12250.51	7280.58	17597.37
	2	55	10104 64114	12200.2000	7361 41327	12256.91	7280.58	17597.37
	7 8	55	10104.04114	12101.0202	7316 55281	12256.91	7280.58	17597.37
	10	55	10061 02122	12023.5474	7307 71	12256.91	7280.58	17597.37
	15	55	10051 38015	11990 3564	7295 98461	12256.91	7280.58	17597.37
	20	55	10046 56582	11980 3964	7290 15006	12256.91	7280.58	17597.37
	30	55	10041 75573	11970 4528	7284 33408	12256.91	7280.58	17597.37
	40	55	10197,21394	11965.4874	7281.43329	12256.91	7280.58	17597.37
	50	55	10195.69369	11962,5094	7279.69474	12256.91	7280.58	17597.37
100	1	55	11255.83384	12524.7573	7524.55925	12256.91	7270.053	17408.75
100	2	55	11116.43355	12292.904	7393.87322	12256.91	7270.053	17408.75
	4	55	11048.0205	12180.1674	7331.65394	12256.91	7270.053	17408.75
	8	55	11014.12819	12124.5706	7301.31574	12256.91	7270.053	17408.75
	10	55	11007.37537	12113.5121	7295.30869	12256.91	7270.053	17408.75
	15	55	10998.38358	12098.7988	7287.32985	12256.91	7270.053	17408.75
	20	55	10993.8936	12091.4562	7283.35395	12256.91	7270.053	17408.75
	30	55	10989.40677	12084.1216	7279.38723	12256.91	7270.053	17408.75
	40	55	11058.33407	12080.458	7277.40709	12256.91	7270.053	17408.75
	50	55	11056.96167	12078.2612	7571.77607	12256.91	7270.053	17408.75
150	1	55	11694.84311	12475.4261	7716.37251	12256.91	7264.589	17310.84
	2	55	11566.50439	12291.0011	7518.09086	12256.91	7264.589	17310.84
	4	55	11503.38295	12200.8169	7425.30135	12256.91	7264.589	17310.84
	8	55	11472.0826	12156.2203	7380.07979	12256.91	7264.589	17310.84
	10	55	11465.84173	12147.3407	7371.12657	12256.91	7264.589	17310.84
	15	55	11457.53204	12135.5204	7359.23604	12256.91	7264.589	17310.84
	20	55	11453.38119	12129.6183	7353.31015	12256.91	7264.589	17310.84
	30	55	11449.23374	12123.7238	7347.39807	12256.91	7264.589	17310.84
	40	55	11474.47249	12120.7773	7344.44695	12256.91	7264.589	17310.84
	50	55	11473.22041	12119.0111	7342.67792	12256.91	7264.589	17310.84
200	1	55	11891.4599	12440.6591	7614.94843	12256.91	7261.805	17260.96
	2	55	11772.48126	12282.5053	7456.09555	12256.91	7261.805	17260.96
	4	55	11713.88015	12204.9275	7377.71941	12256.91	7261.805	17260.96
	8	55	11684.79791	12166.5038	7341.10193	12256.91	7261.805	17260.96
	10	55	11678.99929	12158.8486	7333.43996	12256.91	7261.805	17260.96
	15	55	11671.2761	12148.656	7323.56451	12256.91	7261.805	17260.96
	20	55	11667.41795	12143.5658	7319.01014	12256.91	7261.805	17260.96
	30	55	11663.56208	12138.4802	7313.98655	12256.91	7261.805	17260.96
	40	55	11678.3026	12135.9385	7362.87924	12256.91	7261.805	17260.96
	50	55	11677.14196	12134.415	7360.85563	12256.91	7261.805	17260.96

300 1	55	12072.4099	12394.9942	7374.81688	12256.91	7258.987	17210.47
2	55	11967.681	12266.8185	7318.52707	12256.91	7258.987	17210.47
4	55	11915.99501	12203.7192	7291.00681	12256.91	7258.987	17210.47
8	55	11890.31968	12172.4107	7340.62969	12256.91	7258.987	17210.47
10	55	11885.19756	12166.1691	7333.02764	12256.91	7258.987	17210.47
15	55	11878.37506	12157.8568	7322.92191	12256.91	7258.987	17210.47
20	55	11882.21182	12153.7043	7317.8813	12256.91	7258.987	17210.47
30	55	11878.79939	12149.5545	7312.85019	12256.91	7258.987	17210.47
40	55	11877.09344	12147.4804	7310.33761	12256.91	7258.987	17210.47
50	55	11876.07025	12146.2379	7308.83167	12256.91	7258.987	17210.47
Průměr							
Eeq	55	11260.91999	12166.3781	7365.34242	12256.91	7267.203	17357.68

	±α	Eeq_M_ConvS	Eeq_M_CS	Eeq_M_VM	Eeq_F_ABD	Eeq_F_Bernoulli	Eeq_F_Bernoulli- stiffness
60 1	65	6823.012456	8412.63004	7074.00194	8051.901	6859.203	10115.18
2	65	6758.512239	8168.62464	6950.53796	8051.901	6859.203	10115.18
4	65	6726.717434	8051.85416	6892.88637	8051.901	6859.203	10115.18
8	65	6710.932158	7994.71134	6864.90373	8051.901	6859.203	10115.18
10	65	6707.784145	7983.38072	6859.37338	8051.901	6859.203	10115.18
15	65	6703.590955	7968.322	6852.03306	8051.901	6859.203	10115.18
20	65	6701.496226	7960.81371	6848.37823	8051.901	6859.203	10115.18
30	65	6699.40248	7953.32	6844.73174	8051.901	6859.203	10115.18
40	65	6807.567004	7949.57805	6842.91257	8051.901	6859.203	10115.18
50	65	6806.914955	7947.33519	6841.82209	8051.901	6859.203	10115.18
100 1	65	7375.947498	8287.2762	7018.61776	8051.901	6855.965	10055.99
2	65	7315.977224	8126.89972	6932.16307	8051.901	6855.965	10055.99
4	65	7286.357274	8049.01665	6890.53247	8051.901	6855.965	10055.99
8	65	7271.636078	8010.633	6870.13675	8051.901	6855.965	10055.99
10	65	7268.698855	8002.99973	6866.0905	8051.901	6855.965	10055.99
15	65	7264.78698	7992.84583	6860.71348	8051.901	6855.965	10055.99
20	65	7262.83278	7987.77779	6858.03251	8051.901	6855.965	10055.99
30	65	7260.878649	7982.71636	6855.35551	8051.901	6855.965	10055.99
40	65	7308.544715	7980.1889	6854.01901	8051.901	6855.965	10055.99
50	65	7307.948668	7978.6738	7064.57443	8051.901	6855.965	10055.99
150 1	65	7644.701334	8217.74414	7131.89188	8051.901	6854.284	10025.26
2	65	7590.268552	8099.92734	7012.69278	8051.901	6854.284	10025.26
4	65	7563.341439	8042.27659	6956.06212	8051.901	6854.284	10025.26
8	65	7549.949467	8013.75764	6928.28528	8051.901	6854.284	10025.26
10	65	7547.276682	8008.07861	6922.77192	8051.901	6854.284	10025.26
15	65	7543.71575	8000.51878	6915.44269	8051.901	6854.284	10025.26
20	65	7541.936437	7996.74369	6911.7873	8051.901	6854.284	10025.26

i i							
30	65	7540.157939	7992.97213	6908.13828	8051.901	6854.284	10025.26
40	65	7558.212365	7991.08789	6906.31566	8051.901	6854.284	10025.26
50	65	7557.675513	7989.95668	6905.22312	8051.901	6854.284	10025.26
200 1	65	7768.321936	8179.78924	7077.80476	8051.901	6853.427	10009.61
2	65	7718.464439	8084.10481	6977.92166	8051.901	6853.427	10009.61
4	65	7693.774039	8037.0969	6927.94758	8051.901	6853.427	10009.61
8	65	7681.488707	8013.79686	6904.4164	8051.901	6853.427	10009.61
10	65	7679.036638	8009.15412	6899.47042	8051.901	6853.427	10009.61
15	65	7675.769066	8002.97066	6893.09217	8051.901	6853.427	10009.61
20	65	7674.136177	7999.88161	6890.1641	8051.901	6853.427	10009.61
30	65	7672.506369	7996.79695	6886.90983	8051.901	6853.427	10009.61
40	65	7683.169471	7995.25498	6914.91074	8051.901	6853.427	10009.61
50	65	7682.678448	7994.32513	6913.69567	8051.901	6853.427	10009.61
300 1	65	7885.936301	8138.22355	6938.76941	8051.901	6852.561	9993.76
2	65	7842.748013	8065.96226	6895.70127	8051.901	6852.561	9993.76
4	65	7821.330668	8030.31135	6874.55307	8051.901	6852.561	9993.76
8	65	7810.665857	8012.60399	6902.7852	8051.901	6852.561	9993.76
10	65	7808.536051	8009.07107	6897.92727	8051.901	6852.561	9993.76
15	65	7805.698805	8004.36601	6891.46444	8051.901	6852.561	9993.76
20	65	7809.284427	8002.01613	6888.23874	8051.901	6852.561	9993.76
30	65	7807.864929	7999.66689	6885.0172	8051.901	6852.561	9993.76
40	65	7807.155207	7998.49484	6883.40795	8051.901	6852.561	9993.76
50	65	7806.728992	7997.78895	6882.44302	8051.901	6852.561	9993.76
Průměr Feg	65	7422 841376	8034 28675	6913 34137	8051 901	6855 088	10039 96
			202	3010.0.107	0001.001	0000.000	20005.50

							Eeq_F_Bernoulli-
	±α	Eeq_M_ConvS	Eeq_M_CS	Eeq_M_VM	Eeq_F_ABD	Eeq_F_Bernoulli	stiffness
60 1	60 1 75 5763.914597		7214.67696 6823.64096		6851.807	6708.538	7281.249
2	75	5749.801223	7001.77402	6745.26655	6851.807	6708.538	7281.249
4	75	5742.770288	6899.96499	6707.54787	6851.807	6708.538	7281.249
8	75	5739.26091	6850.1627	6689.05508	6851.807	6708.538	7281.249
10	75	5738.55992	6840.28849	6685.38502	6851.807	6708.538	7281.249
15	75	5737.624941	6827.16693	6680.50664	6851.807	6708.538	7281.249
20	75	5737.157611	6820.62521	6678.07392	6851.807	6708.538	7281.249
30	75	5736.690627	6814.09627	6675.64515	6851.807	6708.538	7281.249
40	75	5830.39016	6810.83626	6674.43274	6851.807	6708.538	7281.249
50	75	5830.244746	6808.88119	6673.70502	6851.807	6708.538	7281.249
100 1	75	6219.755328	7062.91734	6813.81392	6851.807	6707.906	7271.075
2	75	6206.652641	6934.83761	6753.4241	6851.807	6707.906	7271.075
4	75	6200.122027	6872.5234	6723.95283	6851.807	6707.906	7271.075
8	75	6196.861778	6841.78493	6709.4116	6851.807	6707.906	7271.075

	10	75	6196.210053	6835.67013	6706.51826	6851.807	6707.906	7271.075
	15	75	6195.341385	6827.53416	6702.66926	6851.807	6707.906	7271.075
	20	75	6194.907274	6823.47352	6700.74814	6851.807	6707.906	7271.075
	30	75	6194.473334	6819.41777	6698.82965	6851.807	6707.906	7271.075
	40	75	6235.967699	6817.39111	6697.87087	6851.807	6707.906	7271.075
	50	75	6235.837607	6816.17641	6816.63282	6851.807	6707.906	7271.075
150	1	75	6447.093267	6986.61463	6879.48888	6851.807	6707.577	7265.794
	2	75	6435.263334	6899.70484	6802.64141	6851.807	6707.577	7265.794
	4	75	6429.365951	6857.05535	6765.19161	6851.807	6707.577	7265.794
	8	75	6426.420149	6835.92838	6746.71329	6851.807	6707.577	7265.794
	10	75	6425.8317	6831.71798	6743.03671	6851.807	6707.577	7265.794
	15	75	6425.047243	6826.11338	6738.14497	6851.807	6707.577	7265.794
	20	75	6424.654621	6823.31394	6735.70374	6851.807	6707.577	7265.794
	30	75	6424.262564	6820.51718	6733.26429	6851.807	6707.577	7265.794
	40	75	6440.346902	6819.11955	6732.04621	6851.807	6707.577	7265.794
	50	75	6440.228763	6818.28115	6731.31563	6851.807	6707.577	7265.794
200	1	75	6554.548518	6947.98255	6853.862	6851.807	6707.41	7263.104
	2	75	6543.755938	6881.51742	6786.2201	6851.807	6707.41	7263.104
	4	75	6538.373414	6848.75918	6752.09808	6851.807	6707.41	7263.104
	8	75	6535.68501	6832.49724	6735.80506	6851.807	6707.41	7263.104
	10	75	6535.147516	6829.2542	6732.4133	6851.807	6707.41	7263.104
	15	75	6534.431228	6824.93412	6728.00856	6851.807	6707.41	7263.104
	20	75	6534.073529	6822.77666	6725.94907	6851.807	6707.41	7263.104
	30	75	6533.715588	6820.62016	6723.71011	6851.807	6707.41	7263.104
	40	75	6543.391895	6819.5439	6727.47647	6851.807	6707.41	7263.104
	50	75	6543.284272	6818.89897	6726.67518	6851.807	6707.41	7263.104
300	1	75	6660.035834	6908.69464	6774.10038	6851.807	6707.241	7260.38
	2	75	6650.731767	6862.74783	6739.83419	6851.807	6707.241	7260.38
	4	75	6646.089596	6840.00289	6722.90533	6851.807	6707.241	7260.38
	8	75	6643.770739	6828.68735	6731.55369	6851.807	6707.241	7260.38
	10	75	6643.307242	6826.42844	6728.1781	6851.807	6707.241	7260.38
	15	75	6642.689231	6823.419	6723.68329	6851.807	6707.241	7260.38
	20	75	6646.674807	6821.9153	6721.43888	6851.807	6707.241	7260.38
	30	75	6646.365992	6820.41142	6719.19628	6851.807	6707.241	7260.38
	40	75	6646.211448	6819.65704	6718.07622	6851.807	6707.241	7260.38
	50	75	6646.118703	6819.21103	6717.40373	6851.807	6707.241	7260.38
	50		I I					

		+0	Fog M Convs	Fog M CS	Fog M VM		Eca E Bornoulli	Eeq_F_Bernoulli-
60	1	±u or		7047 2826	C740 164172		cc74 227	6717 924
00		0J 0F	5597.792077	(826.22840	6687 184026	6675.89	6674.227	6717.834
	2	60 01	5596.513069	6725 28589	6656 628754	6675.89	6674.227	6717.834
	4	0J 0E	5595.875271	6686 06770	6641 401603	6675.89	6674.227	6717.834
	10	0J	5595.553870 EEOE 480872	6676 20047	6628 476206	6675.89	6674.227	6717.834
	10	0J 95	5505 101221	6663 29909	6624 460013	6675.89	6674.227	6717.834
	20	85	5505 3617/3	6656 82173	6632 454759	6675.89	6674.227	6717.834
	30	85	5595 318863	6650 35727	6630 451357	6675.89	6674 227	6717.834
	40	85	5686 970775	6647 13016	6629 45017	6675.89	6674 227	6717.834
	50	85	5686.957155	6645,19516	6628,849362	6675.89	6674.227	6717.834
100	1	85	6040.317812	6885,78859	6755.829806	6675.89	6674.188	6717.406
100	2	85	6039.094087	6762.63081	6706.16559	6675.89	6674.188	6717.406
	4	85	6038,483163	6702.68944	6681,675371	6675.89	6674.188	6717.406
	8	85	6038.177365	6673.11544	6669.514804	6675.89	6674.188	6717.406
	10	85	6038.115775	6667.2322	6667.090276	6675.89	6674.188	6717.406
	15	85	6038.034259	6659.40326	6663.859513	6675.89	6674.188	6717.406
	20	85	6037.994019	6655.49589	6662.246335	6675.89	6674.188	6717.406
	30	85	6037.952735	6651.59291	6660.633239	6675.89	6674.188	6717.406
	40	85	6078.625821	6649.64261	6659.827817	6675.89	6674.188	6717.406
	50	85	6078.61349	6648.47154	6719.532548	6675.89	6674.188	6717.406
150	1	85	6262.676975	6806.33531	6797.186859	6675.89	6674.168	6717.184
	2	85	6261.555816	6725.15158	6737.569979	6675.89	6674.168	6717.184
	4	85	6260.995387	6685.28159	6708.110628	6675.89	6674.168	6717.184
	8	85	6260.714751	6665.52283	6693.493633	6675.89	6674.168	6717.184
	10	85	6260.659325	6661.58521	6690.579344	6675.89	6674.168	6717.184
	15	85	6260.584323	6656.34244	6686.698196	6675.89	6674.168	6717.184
	20	85	6260.54719	6653.72376	6684.760008	6675.89	6674.168	6717.184
	30	85	6260.509159	6651.10794	6682.822646	6675.89	6674.168	6717.184
	40	85	6276.376757	6649.80149	6681.854281	6675.89	6674.168	6717.184
	50	85	6276.365487	6649.01643	6681.273765	6675.89	6674.168	6717.184
200	1	85	6368.608601	6766.82442	6782.809037	6675.89	6674.158	6717.071
	2	85	6367.577858	6706.18497	6729.605493	6675.89	6674.158	6717.071
	4	85	6367.062313	6676.27065	6702.86865	6675.89	6674.158	6717.071
	8	85	6366.805008	6661.41314	6689.93066	6675.89	6674.158	6717.071
	10	85	6366.753025	6658.44971	6687.276509	6675.89	6674.158	6717.071
	15	85	6366.684499	6654.50281	6683.799478	6675.89	6674.158	6717.071
	20	85	6366.650735	6652.53017	6682.130136	6675.89	6674.158	6717.071
	30	85	6366.61644	6650.55817	6680.37516	6675.89	6674.158	6717.071
	40	85	6376.214029	6649.57097	6668.330359	6675.89	6674.158	6717.071
	50	85	6376.203795	6648.97469	6667.687576	6675.89	6674.158	6717.071

300 1	85	6473.492296	6727.39941	6730.936279	6675.89	6674.148	6716.956
2	85	6472.595982	6687.04271	6701.485882	6675.89	6674.148	6716.956
4	85	6472.148681	6667.04624	6686.871201	6675.89	6674.148	6716.956
8	85	6471.925206	6657.09254	6683.665751	6675.89	6674.148	6716.956
10	85	6471.879902	6655.10497	6680.968297	6675.89	6674.148	6716.956
15	85	6471.820584	6652.45714	6677.375123	6675.89	6674.148	6716.956
20	85	6475.980738	6651.13393	6675.580526	6675.89	6674.148	6716.956
30	85	6475.95088	6649.80934	6673.786316	6675.89	6674.148	6716.956
40	85	6475.935798	6649.14327	6672.889938	6675.89	6674.148	6716.956
50	85	6475.927054	6648.75397	6672.351902	6675.89	6674.148	6716.956
Průměr							·
Eeq	85	6153.489241	6687.48526	6685.001189	6675.89	6674.178	6717.29

	±α	Eeq_M_ConvS	Eeq_M_CS	Eeq_M_VM	Eeq_F_ABD	Eeq_F_Bernoulli	Eeq_F_Bernoulli- stiffness
60 1	90	5.59E+03	7045.04741	6741.51505	6672	6672	6693.093
2	90	5.59E+03	6833.379823	6681.79294	6672	6672	6693.093
4	90	5.59E+03	6732.245789	6652.20495	6672	6672	6693.093
8	90	5.59E+03	6682.793229	6637.50925	6672	6672	6693.093
10	90	5.59E+03	6672.989451	6634.5775	6672	6672	6693.093
15	90	5.59E+03	6659.963023	6630.6729	6672	6672	6693.093
20	90	5.59E+03	6653.468801	6628.72215	6672	6672	6693.093
30	90	5.59E+03	6646.986709	6626.7727	6672	6672	6693.093
40	90	5.68E+03	6643.75097	6625.79817	6672	6672	6693.093
50	90	5.68E+03	6641.810845	6625.21383	6672	6672	6693.093
100 1	90	6.04E+03	6882.50377	6750.08246	6672	6672	6693.093
2	90	6.03E+03	6759.266446	6702.06797	6672	6672	6693.093
4	90	6.03E+03	6699.287944	6678.31707	6672	6672	6693.093
8	90	6.03E+03	6669.69588	6666.50403	6672	6672	6693.093
10	90	6.03E+03	6663.809584	6664.14694	6672	6672	6693.093
15	90	6.03E+03	6655.975673	6661.00556	6672	6672	6693.093
20	90	6.03E+03	6652.065924	6659.43675	6672	6672	6693.093
30	90	6.03E+03	6648.161336	6657.86822	6672	6672	6693.093
40	90	6.08E+03	6646.21057	6657.08422	6672	6672	6693.093
50	90	6.08E+03	6645.041191	6708.70056	6672	6672	6693.093
150 1	90	6.26E+03	6802.658428	6787.30183	6672	6672	6693.093
2	90	6.26E+03	6721.591524	6730.55567	6672	6672	6693.093
4	90	6.26E+03	6681.778689	6702.47575	6672	6672	6693.093
8	90	6.26E+03	6662.048403	6688.52358	6672	6672	6693.093
10	90	6.26E+03	6658.116071	6685.74015	6672	6672	6693.093
15	90	6.26E+03	6652.880421	6682.03283	6672	6672	6693.093
20	90	6.26E+03	6650.265877	6680.18045	6672	6672	6693.093

i i								
	30	90	6.26E+03	6647.652907	6678.32853	6672	6672	6693.093
	40	90	6.27E+03	6646.346951	6677.40344	6672	6672	6693.093
	50	90	6.27E+03	6645.564009	6676.84834	6672	6672	6693.093
200	1	90	6.36E+03	6763.002338	6774.20516	6672	6672	6693.093
	2	90	6.36E+03	6702.551176	6723.66666	6672	6672	6693.093
	4	90	6.36E+03	6672.72872	6698.26269	6672	6672	6693.093
	8	90	6.36E+03	6657.916996	6685.93665	6672	6672	6693.093
	10	90	6.36E+03	6654.962511	6683.4145	6672	6672	6693.093
	15	90	6.36E+03	6651.027474	6680.10433	6672	6672	6693.093
	20	90	6.36E+03	6649.061046	6678.50807	6672	6672	6693.093
	30	90	6.36E+03	6647.095515	6676.83892	6672	6672	6693.093
	40	90	6.37E+03	6646.111053	6662.63383	6672	6672	6693.093
	50	90	6.37E+03	6645.517483	6662.01681	6672	6672	6693.093
300	1	90	6.47E+03	6723.486285	6727.12187	6672	6672	6693.093
	2	90	6.47E+03	6683.362547	6698.50422	6672	6672	6693.093
	4	90	6.47E+03	6663.479041	6684.28654	6672	6672	6693.093
	8	90	6.47E+03	6653.581629	6679.36559	6672	6672	6693.093
	10	90	6.47E+03	6651.606076	6676.79466	6672	6672	6693.093
	15	90	6.47E+03	6648.973195	6673.36866	6672	6672	6693.093
	20	90	6.47E+03	6647.656919	6671.65684	6672	6672	6693.093
	30	90	6.47E+03	6646.34061	6669.94616	6672	6672	6693.093
	40	90	6.47E+03	6645.685466	6669.09113	6672	6672	6693.093
	50	90	6.47E+03	6645.290962	6668.57819	6672	6672	6693.093
Průměr			-					
Eeq		90	6149.690315	6684.055894	6680.47371	6672	6672	6693.093

ID VZORKU [MM]	Vlákno	Skladba	Tloušťka [mm]	vrstev	OD vrstev [mm]	Obj. podíl vláken [%]
26	T700	87,3°	0.24		26.48	50
		0°	0.55		27.58	50
26	XN80	86,1°	0.29		26.58	50
		0°	0.57		27.72	50
26	XN90	87,9°	0.27		26.54	50
		0°	0.47		27.48	50
50	T700	88,6°	0.24		50.48	50
		0°	0.59		51.66	50
50	UMS40	88,8°	0.27		50.54	50
		0°	0.55		51.64	50
50	XN60	88,2°	0.33		50.66	50
		0°	0.67		52	50
DIAGO	NÁLNÍ S	KLADBA	.1			
ID VZORKU [MM]	Vlákno	Skladba	Tloušťka [mm]	vrstev	OD vrstev [mm]	Obj. podíl vláken [%]
26	T700	87,3°	0.24		26.48	50
		±45,3°	0.47		27.42	50
26	XN80	86,1°	0.29		26.58	50
		$\pm 45,5^{\circ}$	0.55		27.68	50
26	XN90	87,9°	0.27		26.54	50
		$\pm 45,4^{\circ}$	0.54		27.62	50
50	T700	88,6°	0.24		50.48	50
		$\pm 44,5^{\circ}$	0.41		51.3	50
50	UMS40	88,8°	0.27		50.54	50
		$\pm 44,5^{\circ}$	0.49		51.52	50
50	XN60	88,2°	0.33		50.66	50
		±44,6°	0.73		52.12	50

13.2 Příloha 2: Základní série vzorků – kompozitní skladba a rozměry PODÉLNÁ SKLADBA

ID Vlákno Skladba Tloušťka vrstev OD vrstev Obj. podíl vláken VZORKU [mm] [mm] [%] [MM] T700 87,3° 0.24 26.485026 ±21,5° 27.44500.4826 XN80 86,1° 0.29 26.5850±21,6° 0.62 27.82 5087.9° 26 XN90 0.27 26.5450±21,5° 0.5127.565088.6° 50 T700 0.2450.48 50 ±21,5° 0.4 51.285050 UMS40 88,8° 0.27 50.5450±21,5° 500.4751.4888,2° 50 XN60 50.660.33 50 ±21,5° 0.7252.150TYPICKÁ SKLADBA ID Vlákno Skladba Tloušťka vrstev OD vrstev Obj. podíl vláken **VZORKU** [mm] [mm] [%] [**MM**] 26 T700 87.3° 0.24 26.48500° 0.5527.5850±30,4° 0.49 28.565026 86,1° 0.29 50**XN80** 26.580° 500.5727.72±30,5° 0.5128.745026 XN90 87,9° 0.2726.5450 0° 0.4727.485050±30,3° 0.5328.5488,6° 50 T700 0.24 50.48 500° 0.5951.6650±31,1° 0.43 52.525088,8° 50 UMS40 0.2750.54500° 500.5551.64±31,1° 52.64500.5XN60 88,2° 50 0.33 50.6650 0° 0.675250±31,3° 0.5953.1850

DIAGONÁLNÍ SKLADBA 2

ID VZORKU [MM]	Vlákno	Skladba	Tloušťka vrstev [mm]	OD vrstev [mm]	Obj. podíl vláken [%]
26	T700	87.26	0.931	27.862	50
		46.79	0.432	28.726	
		47.66	0.427	29.58	
		48.5	0.421	30.422	
		49.29	0.446	31.314	50
	suma:	48.06	1.73		
DIAGO	NÁLNÍ SKL	ADBA 2			
ID VZORKU [MM]	Vlákno	Skladba	Tloušťka vrstev [mm]	OD vrstev [mm]	Obj. podíl vláken [%]
26	T700	87.26	0.913	27.826	50
		22.46	0.405	28.636	
		23.05	0.395	29.426	
		23.62	0.429	30.284	
		24.23	0.419	31.122	
		24.82	0.41	31.942	50
	suma:	23.64	2.06		
TYPICK	ΚÁ				
ID VZORKU [MM]	Vlákno	Skladba	Tloušťka vrstev [mm]	OD vrstev [mm]	Obj. podíl vláken [%]
50	T700	88,58°	0.231	50.462	50
		0°	1.268	52.998	50
		34.53	0.392	53.782	50
		34.92	0.414	54.61	50
		35.33	0.41	55.43	50
	suma:	34.93	1.22		

13.3 Příloha 3: Dodatečná série vzorků – kompozitní skladba a rozměry DIAGONÁLNÍ SKLADBA 1

13.4 Příloha 4: Seznam všech vzorků s naměřenými rozměry – základní série

Vzorky ID 26 délky 780 mm pro modální a zkoušky ohybem s

značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm²]	značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm²]	značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm²]
Typická skladba																	
26_T700_T_780_1	25.89	25.67	28.81	28.72	127.88	26_XN80_T_780_1	25.94	25.82	29.82	29.63	167.92	26_XN90_T_780_1	26.06	26.19	28.3	28.64	100.55
$26_{T700}_{7.780}_{2}$	26.13	26.1	28.85	28.81	117.16	26_XN80_T_780_2	26.29	26.07	29.52	29.39	143.10	26_XN90_T_780_2	26.06	26.13	28.25	28.57	99.10
26_T700_T_780_3	26.04	26.05	28.73	28.88	118.90	26_XN80_T_780_3	26.07	26.19	29.85	29.51	155.61	26_XN90_T_780_3	26.2	26.18	28.32	28.48	94.75
$26_{T700}T_{780}4$	25.99	25.91	28.91	28.97	128.90	26_XN80_T_780_4	26.04	25.95	29.6	29.94	165.34	26_XN90_T_780_4	26.01	25.77	28.61	28.61	116.43
$26_{T700}T_{780}5$	25.93	26.04	29.37	29.03	139.35	26_XN80_T_780_5	26.03	26	29.68	29.77	162.42	26_XN90_T_780_5	26.11	26.03	28.8	29.01	122.41
26_T700_T_780_6	25.85	25.97	29.01	29.07	135.08	26_XN80_T_780_6	26.04	25.97	29.48	29.35	148.43	26_XN90_T_780_6	26.09	26.13	28.45	28.52	101.84
26_T700_T_780_7	25.91	25.98	28.83	28.74	122.08	26_XN80_T_780_7	26.08	26.17	29.62	29.42	148.37	26_XN90_T_780_7	26.09	26.17	29	28.8	119.72
Podélná skladba																	
26_T700_P_780_1	26.18	26.08	28.12	28.29	88.55	26_XN80_P_780_1	26.08	26	27.48	27.53	61.61	26_XN90_P_780_1	26.09	26.06	27.67	27.74	68.85
26_T700_P_780_2	26.02	26.05	28.17	28.17	90.89	26_XN80_P_780_2	25.97	25.98	27.85	28.01	82.77	26_XN90_P_780_2	26.03	26.03	28.03	27.87	81.40
26_T700_P_780_3	25.83	26.15	28.92	28.33	113.03	26_XN80_P_780_3	26.08	26.05	28.17	28.23	90.99	26_XN90_P_780_3	26.08	26.09	27.41	27.62	60.20
26_T700_P_780_4	26.02	26.03	27.76	27.8	74.16	26_XN80_P_780_4	26.09	26.06	28.38	27.95	89.03	26_XN90_P_780_4	26.03	25.9	27.51	27.62	67.27
$26_{T700}P_{780}5$	25.82	25.93	28.25	28.1	97.64	26_XN80_P_780_5	26.03	25.75	27.86	27.86	83.16	26_XN90_P_780_5	26.08	25.96	27.49	27.53	62.64
26_T700_P_780_6	26.17	25.91	27.84	27.8	75.30	26_XN80_P_780_6	25.99	26.09	28.07	28.15	88.04	26_XN90_P_780_6	26.14	26.13	27.48	27.41	55.13
26_T700_P_780_7	26.12	25.88	27.96	27.89	81.53	26_XN80_P_780_7	25.89	26	27.97	27.99	86.19						0.00

Napříčová skladba 1																	
26_T700_N1_780_1	26.06	25.94	27.54	27.73	68.87	26_XN80_N1_780_1	26.01	25.72	27.94	28.06	90.32	26_XN90_N1_780_1	26.06	25.89	27.96	27.98	84.52
26_T700_N1_780_2	26.07	26	27.48	27.5	61.17	26_XN80_N1_780_2	25.99	26.07	28	28.08	85.36	26_XN90_N1_780_2	26.11	25.87	27.66	27.63	69.72
26_T700_N1_780_3	25.82	25.97	27.58	27.59	70.99	26_XN80_N1_780_3	26.01	26.11	28.15	28.2	90.09	26_XN90_N1_780_3	26.02	25.9	28.07	28.1	90.20
26_T700_N1_780_4	26.13	26.04	27.85	27.71	71.71	26_XN80_N1_780_4	25.91	26.09	27.74	27.77	74.09	26_XN90_N1_780_4	26.08	25.95	27.82	27.88	77.63
26_T700_N1_780_5	26.11	26.08	27.58	27.55	61.95	26_XN80_N1_780_5	25.81	26.05	27.88	28.11	87.46	26_XN90_N1_780_5	25.99	26	27.73	27.67	71.90
26_T700_N1_780_6	25.98	26	27.78	27.85	77.12	26_XN80_N1_780_6	25.93	26.06	27.86	28.24	87.23	26_XN90_N1_780_6	26.07	25.83	27.77	27.74	76.13
26_T700_N1_780_7	25.88	26.03	27.95	27.85	82.27	26_XN80_N1_780_7	26.05	25.78	28.21	28.19	97.12	26_XN90_N1_780_7	25.91	26.07	28.14	27.8	83.91
Napříčová skladba 2																	
26_T700_N2_780_1	26	25.73	27.69	27.74	77.85	26_XN80_N2_780_1	26.08	26.05	27.96	28.3	87.90	26_XN90_N2_780_1	25.95	25.85	27.85	27.96	84.73
26_T700_N2_780_2	26.05	26.15	27.67	27.72	67.39	26_XN80_N2_780_2	26.13	26.1	28.12	28.09	84.74	26_XN90_N2_780_2	26.04	26.04	28.14	27.94	84.95
26_T700_N2_780_3	25.92	26.07	27.67	27.8	73.43	26_XN80_N2_780_3	26.05	26.02	28.34	28.14	93.99	26_XN90_N2_780_3	26.08	26.01	27.95	27.93	80.35
26_T700_N2_780_4	26.16	25.8	27.77	27.8	76.22	26_XN80_N2_780_4	26.09	25.91	28.47	28.33	102.54	26_XN90_N2_780_4	25.98	25.78	27.83	27.78	81.17
26_T700_N2_780_5	26.08	25.89	27.59	27.58	67.32	26_XN80_N2_780_5	25.98	26.08	28.4	28.36	100.42	26_XN90_N2_780_5	26.01	26.02	27.94	27.92	81.14
26_T700_N2_780_6	26.09	26.13	27.75	27.8	70.46	26_XN80_N2_780_6	26.06	25.93	28.38	28.32	100.52	26_XN90_N2_780_6	26.02	26.07	28.02	28	83.42
26_T700_N2_780_7	25.83	25.88	27.8	27.84	82.84	26_XN80_N2_780_7	26.12	26.11	28.05	28.2	85.63	26_XN90_N2_780_7	25.96	26.08	28.28	27.99	89.96

Vzorky ID 26 délky 500 mm pro zkoušky ohybem

značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm2]	značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm2]	značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm2]
Typická skladba																	
26_T700_T_500_1	26.01	26.03	28.83	28.86	121.73	26_XN80_T_500_1	25.94	26.01	29.75	29.56	160.79	26_XN90_T_500_1	26.12	25.96	28.43	28.4	101.58
$26_{T700}_{500}_{2}$	26.02	25.86	28.75	28.83	122.51	26_XN80_T_500_2	26.02	25.99	29.42	29.22	144.04	26_XN90_T_500_2	25.83	26.08	28.73	28.61	116.48
$26_{T700}_{500}3$	26.08	26.08	28.7	28.81	115.21	26_XN80_T_500_3	25.77	25.92	29.4	29.51	156.79	26_XN90_T_500_3	26.12	26.15	28.32	28.48	97.01
$26_{T700}_{500}_{4}$	25.99	25.91	28.76	28.75	120.52	26_XN80_T_500_4	26.03	26.03	29.71	29.74	161.80	26_XN90_T_500_4	26.02	28.79	28.37	28.46	44.28
$26_{T700}_{500}5$	26.07	26.03	29.02	28.78	123.00	26_XN80_T_500_5	26	25.99	29.29	29.34	144.22	26_XN90_T_500_5	26.11	26.09	28.91	28.62	114.84
$26_{T700}_{500}_{6}$	25.94	25.81	28.77	28.96	128.55	26_XN80_T_500_6	25.97	26.06	29.46	29.37	148.02	26_XN90_T_500_6	26.08	26.02	28.27	28.41	97.82
$26_{T700}_{500}7$	26.01	25.89	28.71	28.69	118.04	26_XN80_T_500_7	26	25.94	29.54	29.44	153.32	26_XN90_T_500_7	25.95	26.06	28.49	28.63	109.50
Podélná skladba																	
26_T700_P_500_1	26.06	25.78	28.44	28.12	100.46	26_XN80_P_500_1	26.08	26.14	27.84	27.78	71.99	26_XN90_P_500_1	25.99	25.96 27	.44 27	51 62.	97
26_T700_P_500_2	26.15	26.12	27.75	27.35	59.66	26_XN80_P_500_2	25.97	26.05	27.94	27.88	80.46	26_XN90_P_500_2	25.99	26.03 27	2.2 27	34 52.	73
26_T700_P_500_3	26.16	26.21	28.26	28.33	90.28	26_XN80_P_500_3	26.06	25.91	28.07	28.08	88.74	26_XN90_P_500_3	26.12	26.03 27	.57 27	55 62.	56
$26_{T700}P_{500}4$	26.1	25.96	27.46	27.7	65.26	26_XN80_P_500_4	26.02	25.88	27.96	27.93	84.45	26_XN90_P_500_4	26.11	26.02 27	7.71 27	52 65.	35
$26_{T700}P_{500}5$	26.11	25.92	27.54	27.53	63.93	26_XN80_P_500_5	26.09	26.15	28.08	27.87	78.81	26_XN90_P_500_5	26	26.01 27	.38 27	6 62.	39
26_T700_P_500_6	26.05	26.19	28.95	28.25	106.58	26_XN80_P_500_6	26.05	26.14	27.9	27.94	77.42	26_XN90_P_500_6	26.06	26.02 27	.52 27	62 64.	42
26_T700_P_500_7	25.96	26.11	28.34	27.83	87.14	26_XN80_P_500_7	25.94	26.04	27.7	27.72	72.54						

značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm2]	značka II) [mm]		II [n	O OE nm] [m) OD m] [mm	průřez 1] [mm2]	II značka [n) nm] O	D [mm]]	OD [mm	průřez .] [mm2]	ID [mm
Napříčová skladba																			
26_T700_N1_500_1	26.04	26.06	27.59	27.51	63.15	26_XN80_N1_500_1	26.04	26	28.05	28.08	86.87	26_XN90_	N1_500_1	26.04	25.95	27.66	27.9	75.39	
$26_{T700}N1_{500}2$	25.99	26.04	27.72	27.64	70.22	26_XN80_N1_500_2	26.05	25.99	27.84	27.85	77.21	26_XN90_	N1_500_2	26.01	26.03	27.91	27.84	78.52	
26_T700_N1_500_3	26.04	26.12	27.77	27.59	67.56	26_XN80_N1_500_3	26	26.01	28.22	28.12	92.12	26_XN90_	N1_500_3	26.03	26.05	28.07	28.08	86.49	
26_T700_N1_500_4	26.12	26.2	27.52	27.6	59.07	26_XN80_N1_500_4	25.99	25.91	28.39	27.99	95.25	26_XN90_	N1_500_4	25.99	25.96	28.1	28.14	91.13	
$26_{T700}N1_{500}5$	26.08	26.08	27.66	27.61	65.60	26_XN80_N1_500_5	25.94	25.82	28.22	28.15	97.88	26_XN90_	N1_500_5	26.12	25.92	27.99	27.85	80.49	
26_T700_N1_500_6	25.85	26.04	27.68	27.56	70.47	26_XN80_N1_500_6	26.02	26.12	28.39	27.86	87.47	26_XN90_	N1_500_6	26.08	25.99	27.83	27.97	79.00	
26_T700_N1_500_7	25.93	25.99	27.61	27.51	67.26	26_XN80_N1_500_7	26.02	26.02	28.29	28.31	97.27	26_XN90_	N1_500_7	26.04	25.97	27.75	27.91	77.16	
Napříčová skladba 2																			
26_T700_N2_500_1	26.12	26.18	27.76	27.76	68.17	26_XN80_N2_500_1	26.09	26.09	28.3	28.23	92.85	26_XN90_	N2_500_1	26.1	26.07	27.91	27.99	79.15	
$26_{T700}N2_{500}2$	26.2	26.21	27.78	27.81	67.43	26_XN80_N2_500_2	26.04	26.14	28.28	28.03	87.98	26_XN90_	N2_500_2	26.06	26	27.59	27.72	68.52	
26_T700_N2_500_3	26.09	26.03	27.71	27.68	69.03	26_XN80_N2_500_3	25.81	26.15	28.35	28.22	98.24	26_XN90_	N2_500_3	26.03	26.08	28.01	27.97	82.13	
$26_{T700}N2_{500}4$	26.25	26.14	27.79	27.68	65.23	26_XN80_N2_500_4	26.05	26.08	28.44	28.4	100.78	26_XN90_	N2_500_4	26.12	26.11	27.9	27.86	74.85	
$26_{T700}N2_{500}5$	26.11	26.14	27.8	27.69	68.54	26_XN80_N2_500_5	26.09	25.91	28.29	28.35	98.98	26_XN90_	N2_500_5	26.12	26.09	27.99	28	80.31	
26_T700_N2_500_6	26.02	26.25	27.81	27.78	70.31	26_XN80_N2_500_6	25.98	26.12	28.15	28.24	91.39	26_XN90_	N2_500_6	26.1	26.15	27.87	27.96	75.97	
26_T700_N2_500_7	26.12	26.11	27.87	27.71	70.91	26_XN80_N2_500_7	26.01	26.04	28.16	28.21	91.97	26_XN90_	N2_500_7	26.12	26.06	28.05	28.13	85.11	

Vzorky ID 50 délky	780 mm	n pro m	odální a	nalýzu a	zkoušky	v ohybem											
značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm²]	značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm²]	značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm²]
Typická skladba																	
50_T700_T_780_1	50.34	50.05	52.85	52.86	215.29	50_UMS40_T_780_1	49.85	50.09	52.84	52.83	231.33	50_XN60_T_780_1	49.74	49.83	52.95	53.09	261.20
50_T700_T_780_2	50.22	50.03	52.99	52.9	228.28	50_UMS40_T_780_2	50.18	50.11	52.63	52.8	207.62	50_XN60_T_780_2	49.99	50.23	53.24	53.41	261.18
50_T700_T_780_3	50.21	50.1	52.62	52.45	191.95	50_UMS40_T_780_3	50.03	50.21	52.61	52.69	204.21	50_XN60_T_780_3	50.19	50.11	53.37	52.9	242.14
50_T700_T_780_4	50.26	50.02	52.83	52.91	220.87	50_UMS40_T_780_4	49.99	49.96	52.39	52.36	192.93	50_XN60_T_780_4	49.91	50.07	53.28	53.47	274.80
50_T700_T_780_5	49.81	50.02	52.73	52.68	224.87	50_UMS40_T_780_5	50.06	50.29	52.67	52.75	204.84	50_XN60_T_780_5	49.85	49.92	53.03	53.37	268.39
50_T700_T_780_6	50.21	49.85	52.65	53.02	226.62	50_UMS40_T_780_6	50.19	50.1	52.81	52.76	213.42	50_XN60_T_780_6	49.91	49.91	53.1	52.83	246.84
						50_UMS40_T_780_7	50.07	50.26	52.87	52.98	223.47						
						50_UMS40_T_780_8	49.95	50.05	52.81	52.77	225.24						
						50_UMS40_T_780_9	50.16	50.14	52.67	52.64	202.26						
						50_UMS40_T_780_10	50.14	49.99	52.74	52.77	217.23						
						50_UMS40_T_780_11	50.05	50.18	52.69	52.75	210.40						
						50_UMS40_T_780_12	49.83	49.78	52.26	52.3	198.44						
Podélná skladba																	
50_T700_P_780_1	50.42	50.19	51.55	51.51	97.98	50_UMS40_P_780_1	0.76	0.73	51.69	51.78	119.34	50_XN60_P_780_1	50.05	50.11	52.35	52.29	180.15
50_T700_P_780_2	50.4	50.48	51.45	51.48	82.04	50_UMS40_P_780_2	0.84	0.79	51.53	51.58	129.91	50_XN60_P_780_2	50.16	49.85	52.31	52.3	184.81
50_T700_P_780_3	50.53	50.36	51.49	51.42	80.83	50_UMS40_P_780_3	0.86	1.01	51.51	51.62	148.72	50_XN60_P_780_3	50.4	50.16	52.15	51.96	142.66
50_T700_P_780_4	50.2	50.53	51.79	51.19	90.00	50_UMS40_P_780_4	0.81	0.84	51.83	51.88	132.26	50_XN60_P_780_4	50.31	50.08	52.02	52.36	160.42
50_T700_P_780_5	49.95	50.06	51.57	51.93	139.46	50_UMS40_P_780_5	0.85	0.81	51.67	51.7	132.61	50_XN60_P_780_5	50.08	50.33	52.36	52.25	169.07
50_T700_P_780_6	50.15	50.24	51.22	51.52	93.73	0	0	0	0	0	0.00	50_XN60_P_780_6	50.1	49.98	51.81	52.07	152.18

Napříčová skladba																	
50_T700_N1_780_1	50.45	50.39	51.31	51.38	73.93	50_UMS40_N1_780_1	50.01	49.96	51.62	51.7	133.72	50_XN60_N1_780_1	50.22	50.2	52.77	52.91	212.86
50_T700_N1_780_2	50.13	50.22	51.39	51.36	95.71	$50_{UMS40_N1_780_2}$	49.88	50.03	51.85	52.07	160.49	$50_XN60_N1_780_2$	50.23	50.22	52.27	52.33	167.09
50_T700_N1_780_3	50.56	50.36	51.58	51.43	83.69	50_UMS40_N1_780_3	50.1	50.13	52.08	51.93	151.59	50_XN60_N1_780_3	50.19	50.04	52.5	53.25	223.25
50_T700_N1_780_4	50.34	50.22	51.35	51.53	92.67	50_UMS40_N1_780_4	49.88	49.98	51.98	51.95	162.86	$50_XN60_N1_780_4$	50.24	50.3	52.58	52.65	189.49
50_T700_N1_780_5	50.12	49.95	51.258	51.63	112.30	50_UMS40_N1_780_5	50.33	50.29	51.59	52.17	126.01	50_XN60_N1_780_5	50.26	50.13	52.65	52.74	202.02
50_T700_N1_780_6	50.29	50.37	51.56	51.65	102.08	50_UMS40_N1_780_6	50.01	50.18	52.03	51.76	144.18	50_XN60_N1_780_6	50.18	50.21	52.3	52.72	186.74
Napříčová skladba 2																	
50_T700_N2_780_1	50.24	50.1	51.49	51.51	106.20	50_UMS40_N2_780_1	50.35	50.32	51.86	52.1	132.19	50_XN60_N2_780_1	50.01	49.83	52.18	52.03	175.08
50_T700_N2_780_2	50.41	50.2	51.6	51.47	98.38	50_UMS40_N2_780_2	50.32	50.14	51.81	52.13	139.67	50_XN60_N2_780_2	50.24	50.19	52.66	52.45	188.87
50_T700_N2_780_3	49.91	50.04	51.29	51.44	110.63	50_UMS40_N2_780_3	49.95	50.05	51.62	51.63	129.70	50_XN60_N2_780_3	50.29	50.12	51.94	51.9	137.56
50_T700_N2_780_4	50	50.33	51.27	51.44	94.88	50_UMS40_N2_780_4	50.15	50.14	51.52	51.72	117.89	$50_{XN60_{N2_{780_{4}}}}$	49.9	50.1	52.06	52.44	180.69
50_T700_N2_780_5	50.42	50.3	51.82	51.77	115.13	50_UMS40_N2_780_5	50.22	50.21	51.75	51.88	128.21	50_XN60_N2_780_5	49.78	49.73	52.22	52.29	200.30
50_T700_N2_780_6	50.29	50.02	51.59	51.62	115.89	50_UMS40_N2_780_6	50.26	50.12	51.93	51.29	113.53	50_XN60_N2_780_6	50.35	50.24	52.46	53.03	198.27

Vzorky ID 50 délky	y 500 mm	pro zkouš	šky ohybe	m													
značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm²]	značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm²]	značka	ID [mm]	ID [mm]	OD [mm]	OD [mm]	průřez [mm
Typická skladba																	
$50_{T700_{T}500_{1}}$	50.07	50.22	52.69	52.93	215.49	50_UMS40_T_500_1	49.85	50.13	52.77	52.84	227.27	50_XN60_T_500_1	50.26	50.089	53.19	53.31	249.82
$50_{T700_{T_{500_{2}}}$	50.03	50.18	52.76	52.81	216.57	50_UMS40_T_500_2	49.92	50.16	52.66	52.79	216.71	50_XN60_T_500_2	50.15	50.2	53.37	53.44	262.77
50_T700_T_500_3	50.08	50.09	52.78	52.86	221.05	50_UMS40_T_500_3	50.09	50.18	52.75	52.79	212.96	50_XN60_T_500_3	49.55	50.15	53.53	53.14	282.43
50_T700_T_500_4	50.12	50.11	52.81	52.9	221.59	50_UMS40_T_500_4	49.5	50.13	52.74	52.73	235.18	50_XN60_T_500_4	50.08	50.11	53	53.24	245.22
$50_{T700_{T_{500_{5}}}}$	50.14	50.17	52.9	52.99	225.92	50_UMS40_T_500_5	50.16	49.8	52.66	52.81	222.25	50_XN60_T_500_5	50.09	50.11	53.37	53.42	267.83
50_T700_T_500_6	49.9	50.12	52.91	52.82	230.68	50_UMS40_T_500_6	50.13	50.27	52.79	52.66	204.11	50_XN60_T_500_6	50.31	50.13	53.24	53.26	246.23
						50_UMS40_T_500_7	49.94	50	52.63	52.69	216.83						
						50_UMS40_T_500_8	49.97	50.07	52.78	52.64	217.04						
						50_UMS40_T_500_9	50.15	50.02	52.65	52.55	202.83						
						50_UMS40_T_500_10	50.02	49.94	52.74	52.79	224.74						
						50_UMS40_T_500_11	49.97	50.16	52.81	52.76	219.72						
						50_UMS40_T_500_12	50.11	50.06	52.66	52.74	211.10						
Podélná skladba																	
$50_{T700}P_{500}1$	49.86	50.21	51.79	51.59	132.23	50_UMS40_P_500_1	0.85	0.94	51.69	51.79	142.96	50_XN60_P_500_1	50	50.25	52.2	52.26	169.22
$50_{T700}P_{500}2$	50.29	50.23	51.65	51.39	100.72	$50_{UMS40_{P_{500_{2}}}}$	0.88	0.87	51.48	51.88	139.66	50_XN60_P_500_2	49.94	49.91	52.27	52.28	188.63
$50_{T700}P_{500}3$	50.45	50.13	51.62	51.51	102.00	50_UMS40_P_500_3	0.96	0.83	51.73	51.76	142.98	50_XN60_P_500_3	50.12	50.14	52.56	52.17	179.92
$50_{T700}P_{500}4$	50.05	50.2	51.63	51.74	124.74	50_UMS40_P_500_4	0.85	0.94	51.83	51.79	143.16	50_XN60_P_500_4	50.52	50.56	52.31	52.46	149.14
50_T700_P_500_5	50.64	50.35	51.65	51.7	94.69	50_UMS40_P_500_5	0.89	0.9	51.59	51.59	142.54	50_XN60_P_500_5	50.02	50.11	52.35	52.43	187.09
50_T700_P_500_6	50.03	50.38	51.67	51.66	116.81	0	0	0	0	0	0.00	50_XN60_P_500_6	49.98	50.02	52.31	52.2	181.10

Napříčová skladba																	
50_T700_N1_500_1	50.16	50.12	51.47	51.63	112.61	50_UMS40_N1_500_1	50.23	50.1	52.05	52.23	158.69	50_XN60_N1_500_1	50.23	50.14	52.75	52.81	209.85
50_T700_N1_500_2	50.27	50.21	51.62	51.67	112.43	50_UMS40_N1_500_2	50.28	50.16	52.04	52.07	147.40	50_XN60_N1_500_2	50.12	50.07	51.77	51.83	136.45
50_T700_N1_500_3	49.99	50.23	51.44	51.38	103.65	50_UMS40_N1_500_3	50.35	50.35	51.92	51.99	128.96	50_XN60_N1_500_3	50.04	50.09	51.89	51.78	141.66
50_T700_N1_500_4	50.26	50.23	51.5	51.63	105.55	50_UMS40_N1_500_4	50.15	50.06	51.84	51.76	135.66	50_XN60_N1_500_4	50.25	50.14	52.97	53.15	232.34
$50_{T700}N1_{500}5$	50.23	50.43	51.51	51.84	107.75	50_UMS40_N1_500_5	50.11	50.07	51.74	52.07	145.39	50_XN60_N1_500_5	50.33	50.32	52.73	52.79	197.14
50_T700_N1_500_6	50.25	50.5	51.35	51.7	92.04	50_UMS40_N1_500_6	49.92	50.32	51.95	51.98	147.93	50_XN60_N1_500_6	50.19	50.01	52.77	52.8	216.96
Napříčová skladba 2																	
50_T700_N2_500_1	50.74	50.64	51.59	51.53	69.87	50_UMS40_N2_500_1	50.13	50.32	51.9	51.96	136.80	50_XN60_N2_500_1	50.02	50.02	52.35	52.3	185.28
50_T700_N2_500_2	50.56	50.52	51.57	51.52	80.58	50_UMS40_N2_500_2	50.2	50.24	51.85	51.91	133.11	50_XN60_N2_500_2	49.99	50.12	52.33	52.38	185.00
50_T700_N2_500_3	50.46	50.07	51.36	51.54	94.67	50_UMS40_N2_500_3	50.05	50.23	51.98	52.16	154.93	50_XN60_N2_500_3	50.21	50.12	52.3	52.29	171.41
$50_{T700}N2_{500}4$	50.19	50.42	51.54	51.8	109.32	50_UMS40_N2_500_4	50.25	50.24	51.76	51.85	125.03	50_XN60_N2_500_4	50.18	50.1	52.34	52.63	189.01
$50_{T700}N2_{500}5$	50.41	50.09	51.36	51.47	93.02	50_UMS40_N2_500_5	50.16	50.16	51.88	51.93	139.88	50_XN60_N2_500_5	50.08	50.24	52.23	52.33	170.57
50_T700_N2_500_6	50.42	50.54	51.65	51.54	89.39	50_UMS40_N2_500_6	50.11	50.21	51.88	51.96	141.11	50_XN60_N2_500_6	50.06	50.09	52.6	52.77	210.65

13.5 Příloha 5: Číselné hodnoty experimentálně změřených tuhostí a hodnoty získané všemi typy výpočtů

 $Tabulka \ 1: \ V \acute{y} sledky \ ekvivalentn \acute{i} ho \ modulu \ pružnosti \ EJ_{eq} \ [MPa^*mm^4] \ z \ experiment \acute{a} ln \acute{i} \ anal \acute{y} zy$

	EXPERIMENTA	ALNI DATA	
VZORKY	Průměr	Experiment	Experiment
ID 26	experimentu	max	min
26_T700_T	5.9925E+08	5.9757E+08	6.0560E+08
26_T700_N1	8.6336E+07	9.5302E+07	7.7388E+07
26_T700_N2	2.3970E+08	2.4489E+08	2.3516E+08
26_T700_P	3.2459E+08	3.2039E+08	3.5869E+08
26_XN80_T	1.9872E+09	1.9646E+09	2.0614E+09
26_XN80_N1	1.8523E+08	2.1890E+08	1.5173E+08
26_XN80_N2	8.4989E+08	8.7318E+08	8.3856E+08
26_XN80_P	1.0095E+09	1.0987E+09	9.2113E+08
26_XN90_T	1.8522E+09	2.0521E+09	1.6525E+09
26_XN90_N1	2.5053E+08	2.5487E+08	2.4744E+08
26_XN90_N2	8.9895E+08	9.3835E+08	8.8261E+08
26_XN90_P	7.7484E+08	8.7487E+08	7.1769E+08
VZORKY	Průměr	Experiment	Experiment
ID 50	experimentu	max	min
50_T700_T	3.8697E+09	3.7635E+09	3.9760E+09
50_T700_N1	5.3980E+08	5.2302E+08	5.5679E+08
50_T700_N2	1.4639E+09	1.4466E+09	1.4940E+09
50_T700_P			
50_XN60_T	9.6505E+09	7.4257E+09	1.2001E+10
50_XN60_N1	1.9555E+09	2.2666E+09	1.8379E+09
50_XN60_N2	4.5920E+09	3.2202E+09	5.9812E+09
50_XN60_P	4.2477E+09	3.4318E+09	5.1394E+09
50_UMS40_T	6.5823E+09	6.0447E+09	7.1204E+09
50_UMS40_N1	9.4881E+08	9.0242E+08	9.9578E+08
50_UMS40_N2	2.8805E+09	2.8164E+09	2.9507E+09
50_UMS40_P	5.3036E+09	4.9419E+09	5.7491E+09

 $Tabulka \ 2: \ V \acute{y} sledky \ ekvivalentního \ modulu \ pružnosti \ EJ_{eq} \ [MPa^*mm^4] \ z \ analytick \acute{y} ch \ metod$

VZORKY ID 26	EJ_ABD	EJ_S z matice tuhosti	E J _C z matice poddajnosti	EJ_průměr	EJ_nová metoda
26_T700_T	7.7400E+08	8.1300E+08	5.6900E+08	6.9100E+08	4.9214E+08
26_T700_N1	9.7200E+07	1.3200E+08	3.4700E+07	8.3350E+07	6.4012E+07
26_T700_N2	3.2500E+08	3.4600E+08	8.6700E+07	2.1635E+08	2.0131E+08
26_T700_P	5.0500E+08	5.1800E+08	5.1500E+08	5.1650E+08	3.1348E+08
26_XN80_T	2.6100E+09	2.7500E+09	1.8100E+09	2.2800E+09	1.7108E+09
26_XN80_N1	2.9200E+08	4.3500E+08	3.5000E+07	2.3500E+08	2.0085E+08
26_XN80_N2	1.3500E+09	1.4500E+09	1.1300E+08	7.8150E+08	8.6656E+08
26_XN80_P	1.7100E+09	1.7600E+09	1.7600E+09	1.7600E+09	1.0742E+09
26_XN90_T	2.5400E+09	2.6900E+09	1.6300E+09	2.1600E+09	1.6473E+09
26_XN90_N1	3.1300E+08	4.6800E+08	3.3900E+07	2.5095E+08	2.1359E+08
26_XN90_N2	1.2200E+09	1.3000E+09	9.3500E+07	6.9675E+08	7.7460E+08
26_XN90_P	1.5300E+09	1.5800E+09	1.5800E+09	1.5800E+09	9.5110E+08
VZORKY	EJ ABD	EJ S	ЕЈС	EJ průměr	EJ nová
ID 50		z matice tuhosti	z matice poddajnosti	P1 411101	metoda
ID 50 50_T700_T	5.1520E+09	z matice tuhosti 5.3580E+09	z matice poddajnosti 4.0190E+09	4.6885E+09	metoda 3.0718E+09
ID 50 50_T700_T 50_T700_N1	5.1520E+09 6.3250E+08	z matice tuhosti 5.3580E+09 8.2010E+08	z matice poddajnosti 4.0190E+09 2.1660E+08	4.6885E+09 5.1835E+08	metoda 3.0718E+09 3.9861E+08
ID 50 50_T700_T 50_T700_N1 50_T700_N2	5.1520E+09 6.3250E+08 1.8630E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08	4.6885E+09 5.1835E+08 1.2225E+09	metoda 3.0718E+09 3.9861E+08 1.1093E+09
ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P	5.1520E+09 6.3250E+08 1.8630E+09 3.6920E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09 3.7440E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08 3.7260E+09	4.6885E+09 5.1835E+08 1.2225E+09 3.7350E+09	metoda 3.0718E+09 3.9861E+08 1.1093E+09 2.2000E+09
ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T	5.1520E+09 6.3250E+08 1.8630E+09 3.6920E+09 6.2950E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09 3.7440E+09 6.5920E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08 3.7260E+09 4.7190E+09	4.6885E+09 5.1835E+09 1.2225E+09 3.7350E+09 5.6555E+09	metoda 3.0718E+09 3.9861E+08 1.1093E+09 2.2000E+09 1.0180E+10
ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1	5.1520E+09 6.3250E+09 1.8630E+09 3.6920E+09 6.2950E+09 2.3010E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09 3.7440E+09 6.5920E+09 3.4150E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08 3.7260E+09 4.7190E+09 3.1490E+08	4.6885E+09 5.1835E+09 1.2225E+09 3.7350E+09 5.6555E+09 1.8650E+09	metoda 3.0718E+09 3.9861E+08 1.1093E+09 2.2000E+09 1.0180E+10 1.4937E+09
ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2	5.1520E+09 6.3250E+09 1.8630E+09 3.6920E+09 6.2950E+09 2.3010E+09 8.7480E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09 3.7440E+09 6.5920E+09 3.4150E+09 9.2650E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08 3.7260E+09 4.7190E+09 3.1490E+08 8.8680E+08	4.6885E+09 5.1835E+08 1.2225E+09 3.7350E+09 5.6555E+09 1.8650E+09 5.0759E+09	metoda 3.0718E+09 3.9861E+08 1.1093E+09 2.2000E+09 1.0180E+10 1.4937E+09 5.3918E+09
ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2 50_XN60_P	5.1520E+09 6.3250E+09 1.8630E+09 3.6920E+09 6.2950E+09 2.3010E+09 8.7480E+09 3.6920E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09 3.7440E+09 6.5920E+09 3.4150E+09 9.2650E+09 3.7440E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08 3.7260E+09 4.7190E+09 3.1490E+08 8.8680E+08 3.7260E+09	4.6885E+09 5.1835E+09 1.2225E+09 3.7350E+09 5.6555E+09 1.8650E+09 5.0759E+09 3.7350E+09	metoda 3.0718E+09 3.9861E+08 1.1093E+09 2.2000E+09 1.0180E+10 1.4937E+09 5.3918E+09 6.7795E+09
ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2 50_XN60_P 50_UMS40_T	5.1520E+09 6.3250E+09 1.8630E+09 3.6920E+09 6.2950E+09 2.3010E+09 8.7480E+09 3.6920E+09 8.4920E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09 3.7440E+09 3.4150E+09 9.2650E+09 3.7440E+09 8.8890E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08 3.7260E+09 4.7190E+09 3.1490E+08 8.8680E+08 3.7260E+09 6.1400E+09	4.6885E+09 5.1835E+09 1.2225E+09 3.7350E+09 5.6555E+09 1.8650E+09 5.0759E+09 3.7350E+09 7.5145E+09	metoda 3.0718E+09 3.9861E+08 1.1093E+09 2.2000E+09 1.0180E+10 1.4937E+09 5.3918E+09 6.7795E+09 5.1855E+09
ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2 50_XN60_P 50_UMS40_T 50_UMS40_N1	5.1520E+09 6.3250E+09 1.8630E+09 3.6920E+09 6.2950E+09 2.3010E+09 8.7480E+09 3.6920E+09 8.4920E+09 1.1110E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09 3.7440E+09 6.5920E+09 3.4150E+09 9.2650E+09 3.7440E+09 8.8890E+09 1.5130E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08 3.7260E+09 4.7190E+09 3.1490E+08 8.8680E+08 3.7260E+09 6.1400E+09 2.5650E+08	4.6885E+09 5.1835E+09 1.2225E+09 3.7350E+09 5.6555E+09 1.8650E+09 5.0759E+09 3.7350E+09 3.7350E+09 8.8475E+08	metoda 3.0718E+09 3.9861E+08 1.1093E+09 2.2000E+09 1.0180E+10 1.4937E+09 5.3918E+09 6.7795E+09 5.1855E+09 7.1817E+08
ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2 50_XN60_P 50_UMS40_T 50_UMS40_N1 50_UMS40_N1	5.1520E+09 6.3250E+09 3.6920E+09 6.2950E+09 2.3010E+09 8.7480E+09 3.6920E+09 8.4920E+09 1.1110E+09 3.5990E+09	z matice tuhosti 5.3580E+09 8.2010E+08 1.9480E+09 3.7440E+09 6.5920E+09 3.4150E+09 9.2650E+09 3.7440E+09 8.8890E+09 1.5130E+09 3.7730E+09	z matice poddajnosti 4.0190E+09 2.1660E+08 4.9700E+08 3.7260E+09 4.7190E+09 3.1490E+08 8.8680E+08 3.7260E+09 6.1400E+09 2.5650E+08 6.1130E+08	4.6885E+09 5.1835E+08 1.2225E+09 3.7350E+09 5.6555E+09 1.8650E+09 5.0759E+09 3.7350E+09 3.7350E+09 8.8475E+08 2.1922E+09	metoda 3.0718E+09 3.9861E+08 1.1093E+09 2.2000E+09 1.0180E+10 1.4937E+09 5.3918E+09 6.7795E+09 5.1855E+09 7.1817E+08 2.1958E+09

ANALYTICKÉ VÝPOČTY

 $Table \; 3: \; V \acute{y} sledky \; ekvivalentn \acute{i} ho \; modulu \; pružnosti \; EJ_{eq} \; [MPa^*mm^4]z \; MKP \; anal \acute{y} zy$

VZORKY	klasická	objemová	objemový
ID 20	skorepina	skorepina	model
26_T700_T	6.4842E+08	7.4571E+08	5.5850E+08
26_T700_N1	8.7719E+07	9.4109E+07	3.5131E+07
26_T700_N2	2.9446E+08	3.1807E+08	8.7159E+07
26_T700_P	4.9020E+08	4.9407E+08	5.0354E+08
26_XN80_T	2.2036E+09	2.5549E+09	1.8104E+09
26_XN80_N1	2.4534E+08	2.7027E+08	3.5889E+07
26_XN80_N2	1.2189E+09	1.3441E+09	1.1499E+08
26_XN80_P	1.5615E+09	1.7112E+09	1.7545E+09
26_XN90_T	2.1478E+09	2.4631E+09	1.6295E+09
26_XN90_N1	2.6695E+08	2.9002E+08	3.4795E+07
26_XN90_N2	1.1166E+09	1.2133E+09	9.4958E+07
26_XN90_P	1.4188E+09	1.5342E+09	1.5722E+09
VZODKV	klagiekó	obiomovó	obiomorrí
VLUKKI	клазіска	objemova	objemovy
ID 50	skořepina	skořepina	model
ID 50	skořepina	skořepina	model
V201111 ID 50 50_T700_T	skořepina 4.6382E+09	skořepina 5.0352E+09	model 3.9406E+09
50_T700_T 50_T700_N1	4.6382E+09 5.9823E+08	5.0352E+09 6.2664E+08	objeniovy model 3.9406E+09 2.1924E+08
50_T700_T 50_T700_N1 50_T700_N2	4.6382E+09 5.9823E+08 1.7519E+09	5.0352E+09 6.2664E+08 1.8335E+09	3.9406E+09 2.1924E+08 4.9982E+08
V20RR1 ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P	4.6382E+09 5.9823E+08 1.7519E+09 3.4294E+09	5.0352E+09 6.2664E+08 1.8335E+09 3.6258E+09	3.9406E+09 2.1924E+08 4.9982E+08 3.6417E+09
50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T	A.6382E+09 5.9823E+08 1.7519E+09 3.4294E+09 1.4784E+10	5.0352E+09 6.2664E+08 1.8335E+09 3.6258E+09 1.6319E+10	3.9406E+09 2.1924E+08 4.9982E+08 3.6417E+09 1.1727E+10
V20KK1 ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1	kiasicka skořepina 4.6382E+09 5.9823E+08 1.7519E+09 3.4294E+09 1.4784E+10 2.1268E+09	5.0352E+09 6.2664E+08 1.8335E+09 3.6258E+09 1.6319E+10 2.2831E+09	00jemovy model 3.9406E+09 2.1924E+08 4.9982E+08 3.6417E+09 1.1727E+10 3.2224E+08
50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2	Kiasickaskořepina4.6382E+095.9823E+081.7519E+093.4294E+091.4784E+102.1268E+098.2115E+09	5.0352E+09 6.2664E+08 1.8335E+09 3.6258E+09 1.6319E+10 2.2831E+09 8.7951E+09	3.9406E+09 2.1924E+08 4.9982E+08 3.6417E+09 1.1727E+10 3.2224E+08 8.9991E+08
V201011 ID 50 50_T700_T 50_T700_N1 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2 50_XN60_P	Klastekaskořepina4.6382E+095.9823E+081.7519E+093.4294E+091.4784E+102.1268E+098.2115E+091.0515E+10	5.0352E+09 6.2664E+08 1.8335E+09 3.6258E+09 1.6319E+10 2.2831E+09 8.7951E+09 1.1228E+10	3.9406E+09 2.1924E+08 4.9982E+08 3.6417E+09 1.1727E+10 3.2224E+08 8.9991E+08 1.1328E+10
V2010111 ID 50 50_T700_T 50_T700_N1 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2 50_XN60_P 50_UMS40_T	Klastekaskořepina4.6382E+095.9823E+081.7519E+093.4294E+091.4784E+102.1268E+098.2115E+091.0515E+107.7760E+09	5.0352E+09 6.2664E+08 1.8335E+09 3.6258E+09 1.6319E+10 2.2831E+09 8.7951E+09 1.1228E+10 8.4645E+09	3.9406E+09 2.1924E+08 4.9982E+08 3.6417E+09 1.1727E+10 3.2224E+08 8.9991E+08 1.1328E+10 6.1372E+09
V201K1 ID 50 50_T700_T 50_T700_N1 50_T700_N2 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2 50_XN60_P 50_UMS40_T 50_UMS40_N1	Klastekaskořepina4.6382E+095.9823E+081.7519E+093.4294E+091.4784E+102.1268E+098.2115E+091.0515E+107.7760E+091.0589E+09	5.0352E+09 6.2664E+08 1.8335E+09 3.6258E+09 1.6319E+10 2.2831E+09 8.7951E+09 1.1228E+10 8.4645E+09 1.1163E+09	3.9406E+09 2.1924E+08 4.9982E+08 3.6417E+09 1.1727E+10 3.2224E+08 8.9991E+08 1.1328E+10 6.1372E+09 2.6103E+08
V20KK1 ID 50 50_T700_T 50_T700_N1 50_T700_P 50_XN60_T 50_XN60_N1 50_XN60_N2 50_XN60_P 50_XN60_P 50_UMS40_T 50_UMS40_N1 50_UMS40_N1	Klastekaskořepina4.6382E+095.9823E+081.7519E+093.4294E+091.4784E+102.1268E+098.2115E+091.0515E+107.7760E+091.0589E+093.4364E+09	5.0352E+09 6.2664E+08 1.8335E+09 3.6258E+09 1.6319E+10 2.2831E+09 8.7951E+09 1.1228E+10 8.4645E+09 1.1163E+09 3.6153E+09	b)jenovy model 3.9406E+09 2.1924E+08 4.9982E+08 3.6417E+09 1.1727E+10 3.2224E+08 8.9991E+08 1.1328E+10 6.1372E+09 2.6103E+08 6.1816E+08

MKP MODELY
Tabulka 4: Odchylky vypočítaných ekvivalentních modulů pružnosti EJ_{eq} [MPa*mm⁴] od průměru experimentálních dat

	ANALYTICKÉ VÝPOČTY				NOVÁ METODA	MKP MODELY			
VZORKY ID 26	EJ_AB D	EJ_S z matice tuhosti	E J _C z matice poddajnosti	EJ_prů měr	EJ_nová metoda	klasická skořepina	objemová skořepina	objemový	
26_T700_T	29.16	35.67	-5.05	15.31	-17.87	8.21	24.44	-6.80	
26_T700_N1	12.58	52.89	-59.81	-3.46	-25.86	1.60	9.00	-59.31	
26_T700_N2	35.59	44.35	-63.83	-9.74	-16.02	22.85	32.69	-63.64	
26_T700_P	55.58	59.59	58.66	59.12	-3.42	51.02	52.21	55.13	
26_XN80_T	31.34	38.39	-8.92	14.74	-13.91	10.89	28.57	-8.90	
26_XN80_N 1	57.64	134.84	-81.10	26.87	8.43	32.45	45.91	-80.62	
26_XN80_N 2	58.84	70.61	-86.70	-8.05	1.96	43.42	58.15	-86.47	
26_XN80_P	69.39	74.34	74.34	74.34	6.41	54.68	69.50	73.80	
26_XN90_T	37.13	45.23	-12.00	16.62	-11.07	15.96	32.98	-12.02	
26_XN90_N 1	24.94	86.81	-86.47	0.17	-14.74	6.56	15.77	-86.11	
26_XN90_N 2	35.71	44.61	-89.60	-22.49	-13.83	24.21	34.97	-89.44	
26_XN90_P	97.46	103.91	103.91	$103.9 \\ 1$	22.75	83.11	98.00	102.90	

Tabulka 5: Odchylky vypočítaných ekvivalentních modulů pružnosti EJeq [MPa*mm4] od průměru experimentálních dat

VZORKY ID 50	EJ_ABD	EJ_S z matice tuhosti	E J _C z matice poddajnosti	EJ_průmě r	EJ_nová metoda	klasická skořepina	objemová skořepina	objemový model
50_T700_T	33.14	38.46	3.86	21.16	-20.62	19.86	30.12	1.83
50_T700_N1	17.17	51.93	-59.87	-3.97	-26.16	10.82	16.09	-59.39
50_T700_N2	27.26	33.07	-66.05	-16.49	-24.23	19.67	25.25	-65.86
50_T700_P								
50_XN60_T	-34.77	-31.69	-51.10	-41.40	5.49	53.20	69.10	21.52
50_XN60_N1	17.67	74.64	-83.90	-4.63	-23.62	8.76	16.75	-83.52
50_XN60_N2	90.50	101.76	-80.69	10.54	17.42	78.82	91.53	-80.40
50_XN60_P	-13.08	-11.86	-12.28	-12.07	59.61	147.55	$\begin{array}{c} 164.3\\ 4\end{array}$	166.68
50_UMS40_T	29.01	35.04	-6.72	14.16	-21.22	18.14	28.59	-6.76
50_UMS40_N 1	17.09	59.46	-72.97	-6.75	-24.31	11.60	17.65	-72.49
50_UMS40_N 2	24.94	30.98	-78.78	-23.90	-23.77	19.30	25.51	-78.54
50_UMS40_P	7.85	9.55	9.23	9.39	-34.78	2.46	8.29	8.98