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Abstract and contributions

Nowadays, advances in information technology have revolutionised many disciplines, in-
cluding medicine and public health. Thanks to these advances, huge amounts of data are
generated by individuals every day. Extracting knowledge from large amounts of data
poses several challenges, such as how to process these data. In the past decades, data
collected from different sources has been neglected due to the lack of efficient tools, and
many opportunities to improve patients’ knowledge about diseases have been missed. Ma-
chine learning is a field of computer science and data analytics research that automates
the creation of analytical models. Using algorithms that iteratively learn from data, ma-
chine learning allows computers to find hidden insights in data without being explicitly
programmed where to look. The iterative aspect of machine learning is important because
models are able to adapt themselves when confronted with new data. By using machine
learning methods, we can learn from past experience so that we can make reliable, repeat-
able decisions and achieve results. This science is not new - but it is becoming increasingly
important. Because of new computing technologies, machine learning today is nothing
like the machine learning of the past. While many machine learning algorithms have been
around for a long time, the ability to automatically apply complex mathematical calcu-
lations to large amounts of data - over and over again, and faster and faster - is a more
recent development.

One of the machine learning methods is Bayesian networks, a type of probabilistic
graphical model that uses Bayesian analysis, which is more popular than ever for probabil-
ity calculations. It has been successfully used in a variety of real-world applications when it
comes to supporting decision-making under uncertainty. Bayesian networks aim to model
independencies that allow efficient computations, by representing conditional dependencies
by edges in a directed graph and then using these conditional dependencies to efficiently
compute conditional probabilities in the model (i.e., probabilistic inference). This enables
the use of Bayesian networks in applications where it is necessary to model relationships
between hundreds of variables. Classifiers based on Bayesian networks are particularly
useful. They have a solid theoretical foundation in probability theory and provide com-
petitive predictive performance. There are many algorithms for learning Bayesian network
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classifiers. In particular, the main contributions of the dissertation thesis are as follows:

1. We implemented a method for building a Tree-Augmented Naive Bayesian (TAN)
model and a feature selection method for TAN using incomplete and imbalanced
data - Selective TAN (STAN).

2. We analysed medical records of patients suffering from acute myocardial infarction
(AMI) from the third world country Syria and a developed country - the Czech
Republic.

3. We applied machine learning methods to predict myocardial infarction mortality.

4. We designed a methodology for learning the structure of Bayesian networks and Belief
Noisy-Or models from incomplete datasets.

Keywords:
Machine Learning, Data mining, Data analysis, Classification, Bayesian networks,

Belief Noisy-Or, Structure learning, Acute Myocardial Infarction.
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Chapter 1

Introduction

This chapter begins with a brief overview of machine learning approaches and their role
in healthcare. We explain several motivations for addressing the problems of scarce data
and learning the model with a small amount of labelled data. We discuss the most com-
mon methods used in this work and provide intuitive explanations and key insights into
why the proposed methods work under scarcity conditions. Furthermore, we then present
the motivation, importance of the topic, problem statement, methodology, and research
contributions of these studies. Finally, the structure of the thesis is discussed.

1.1 Motivation

An enormous amount of data is generated every day, and analysing this data is impractical
without the help of automated procedures. Machine learning [1] provides these procedures.
The most commonly used form of machine learning is supervised classification [2]. Its goal
is to learn a mapping from the descriptive features of an object to the set of possible classes,
given a set of feature-class pairs. Probabilities play a central role in modern machine learn-
ing [3]. Probabilistic Graphical Models (PGMs) [4] have emerged as a general framework
for describing and applying probabilistic models. A PGM allows us to efficiently encode
a joint distribution over a set of random variables by making conditional independence
assumptions.

Bayesian Networks (BNs) have been used in many applications. The difficulty of learn-
ing a BN can be divided into two categories: (1) structural learning, which involves determ-
ining the topology of the network, and (2) parametric learning, which involves computing
the conditional probability tables (CPTs) for a given network. By far the most challenging
of the two is learning the structure of a BN. The structure is made up of nodes representing
the variables, and edges between pairs of nodes indicating the conditional probability for
the associated random variables. CPTs measure the relationships between variables. How-
ever, it has been pointed out that it is usually difficult to quantify the CPTs due to their
complexity. One of the most appropriate solutions to this problem is the Belief Noisy-OR
(NOR) [5].

3



1. Introduction

For example, in medical diagnosis, one may ask about the probability of a particular
disease if a patient has certain symptoms. These diagnostic problems are often complex
and involve many interrelated variables. There may be many symptoms and even more
possible causes. In practice, it is usually only possible to obtain the inverse conditional
probability, i.e. the probability of evidence given the cause, the probability of observing
symptoms if the patient has the disease. In these cases, a Bayesian approach is appropri-
ate, and Bayesian networks, or alternatively graphical models, are very useful tools not
only for dealing with uncertainty, but also for dealing with complexity and, more import-
antly, for modelling causality [6]. Bayesian networks have already found application in
health outcomes research and medical decision analysis, but modelling random events and
their probability distributions can be equally helpful in health economics or public health
research.

1.2 Problem Statement

The prevalence of chronic diseases is increasing worldwide, and their management is one of
the greatest challenges facing healthcare systems. As a result, healthcare systems are seek-
ing better solutions to improve quality, efficiency, and reduce the cost of care. In general,
healthcare institutions are becoming increasingly dependent on advances in technology,
and the use of machine learning (ML) techniques can provide valuable support to assist
physicians in a variety of ways.

Over the past decade, ML has attracted attention from various fields, including health-
care, with the aim of improving service quality and care. To date, advanced ML tech-
niques in healthcare have focused on solving prognostic problems, including those in mental
health [7] and human behaviour [8]. It is often argued that the use of ML tools in medicine
will lead to improvements in patient care, offering opportunities to enhance the work of
physicians, including the efficiency and quality of healthcare [9].

Current technologies generate and collect large amounts of data, making it too complex
to analyse using traditional methods. Building such systems presents a number of chal-
lenges, with particular interest in building robust learning systems that work in real-world
environments. However, collecting patient data poses several difficulties, including incom-
pleteness (missing label values), noise in the dataset, irrelevant feature selection, and data
scarcity due to the small number of available patient records. This research addresses the
problems of learning Bayesian network methods from incomplete, imbalanced, and noisy
data.

1.3 Related Work

Several machine learning methods have been applied to medical problems. Bayesian net-
works have also found applications in this field. However, there is still room for improve-
ment, especially in learning Bayesian networks and Belief Noisy-Or (BNO) models from

4



1.4. Goals of the Dissertation Thesis

incomplete and imbalanced data. In the next chapter, we will review previous results and
related work.

1.4 Goals of the Dissertation Thesis

1. Learning the structure of Bayesian networks and Belief Noisy-Or models from incom-
plete datasets.

2. Dealing with incomplete and imbalanced data for Chow-Liu, tree-augmented naive
Bayesian (TAN), and selective TAN (STAN), which is a feature selection method for
TAN.

3. An application of machine learning methods for heart attack mortality prediction
based on their features’ values.

1.5 Structure of the Dissertation Thesis

The thesis is organized into following chapters:

1. Introduction: Bayesian Network (BN) models can help us understand our environ-
ment and discover the ”laws” of nature in the sciences: biology, genetics, chemistry,
and even physics. Today, practical systems along the same lines can and do help doc-
tors narrow down their diagnostic choices for diseases. In this capacity, automatic or
even semi-automatic construction of models can be invaluable.

2. Background and State-of-the-Art: Several machine learning methods have been
applied to medical problems, including Bayesian Networks (BNs). However, to the
best of our knowledge, further improvements are needed, such as learning BNs and
Bayesian network structures (BNOs) from incomplete data.

3. Overview of Our Approach: We provide an approach to learn the optimal BN
structure from incomplete data by adapting [10]. This adaptation imputes missing
values using mixtures of Gaussian distributions learned by the EM algorithm [11].
We have shown that the sequence of log-likelihood values generated by the E-step
and M-step of the EM algorithm is non-decreasing, and that the algorithm converges.
We reduce the collection of candidate parent sets for a variable, which can speed up
the learning algorithm.

4. Main Results: We have empirically shown that our approach performs better than
other tested algorithms on several studied BNs and in different scenarios.

5. Conclusions: Based on these experiments, we can recommend this algorithm for
practitioners who use BNs or BNOs with incomplete data.

5



1. Introduction

6. Future Work: An interesting topic for future research might be learning the struc-
ture of large BNO networks from incomplete data.
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Chapter 2

Background

2.1 Why Bayesian Network Models

In this research, we focus on a special class of probabilistic graphical models called Bayesian
Networks (BNs). BNs can be viewed as a generally accepted formalism for representing and
efficiently reasoning with uncertain information [12]. A BN provides a model of conditional
independence using a directed acyclic graph.

There are numerous reasons for our choice. First, we need a specific class of models to
illustrate and apply our concepts and to test the resulting algorithms. Second, we intend
to use probability theory as a foundation. Probability theory is an ancient, well-established
theory that has withstood the test of time and has become one of the cornerstones of sci-
ence. Our use of probability theory is born out of necessity, as most areas of AI technology
involve uncertainty that we must address with clarity and rationality from the outset.

While various models can be used to describe uncertain domains, such as decision trees,
artificial neural networks, mixtures of Gaussian distributions, Markov networks, etc., only
in the Bayesian network literature do we find claims of the ability to represent and learn
directed causal relationships. In short, the reasons for choosing Bayesian networks are as
follows:

◦ They are graphical models, capable of representing relationships clearly and intuit-
ively.

◦ They are directional, thus capable of representing cause-effect relationships.

◦ They can handle uncertainty.

◦ They can be used to represent both indirect and direct causation.

Figure 2.1 briefly illustrates the dual nature of BN models, highlighting their ability to
represent both causal relationships and joint probability distributions. In this representa-
tion, nodes symbolize events (variables), while edges depict direct effects (e.g., the variable

7



2. Background

”Balance” has a direct effect on the variable ”Bike direction,” meaning that losing balance
can result in a loss of direction). Each table within the figure provides the probability of
a single variable (e.g., the table associated with the node ”Balance”) or the conditional
probability of an event given the state of another variable (e.g., the probability of ”Bal-
ance” and ”Bike direction”). For instance, the probability of maintaining direction given
that balance is maintained is 0.6, or 60

Balance 

Bike 

direction 

Safety stop 

p(B=F) 0.6 

p(B=T) 0.4 
p(B=F) p(B=T) 

p(D=T) p(D=F) p(D=T) p(D=F) 

P(S=F) 0.4 0.7 0.35 0.55 

P(S=T) 0.6 0.3 0.65 0.45 

D p(B=T) p(B=F) 

p(D=F) 0.4 0.65 

p(D=T) 0.6 0.35 

Figure 2.1: An example BN that can be used for modeling riding a bike.

2.2 Bayesian Networks and Health Care

The formalism of Bayesian networks is used to specify a joint probability distribution over
a collection of random variables. Consequently, a Bayesian network primarily serves prob-
abilistic reasoning, such as diagnosing a particular patient and predicting the effects of a
treatment. When it comes to decision-making, like choosing the best treatment alternative
for a specific patient, the network formalism may not be directly applicable. However,
contemplating treatment alternatives involves considering the expected effects of various
options, thereby encompassing both diagnostic and, more crucially, prognostic reasoning.
To facilitate the selection of an optimal treatment, Bayesian networks and their associated
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algorithms are often integrated into decision support systems, offering the necessary con-
structs from decision theory for selecting an optimal treatment based on predictions [13].
Alternatively, the Bayesian network formalism can be extended to incorporate knowledge
about decisions and preferences. An example of such an extended formalism is the influ-
ence diagram formalism [14]. Similar to a Bayesian network, an influence diagram consists
of an acyclic directed graph. In this graph, nodes are divided into three categories: prob-
abilistic nodes representing random variables, decision nodes modelling different treatment
alternatives, and a value node modelling respective preferences. Influence diagrams for
treatment selection also exhibit a clear and generalized structure.

Given that the topology of a Bayesian network can be interpreted as a representation
of uncertain interactions between variables, there is a growing interest in bioinformatics
in utilizing Bayesian networks to decipher molecular mechanisms at the cellular level. For
example, tracing interactions between genes based on experimentally obtained expression
data in microarrays is currently a significant research topic [15]. Biological data are often
collected over time, and analysing temporal patterns can reveal how variables interact as a
function of time. This is a common task in molecular biology, and Bayesian networks are
increasingly being used to analyse such biological time series data [16].

2.3 Probability Distribution Represented by a Bayesian
Network

A Bayesian network encodes a joint probability distribution over a set of random variables
U = {X1, X2, . . . , Xm}. We consider only discrete variables in this work, which is the most
common current usage of Bayesian networks. A finite set of states of a variable Xi will be
denoted by Xi.

Conditional probability distributions (CPDs) are attached to each variable in the net-
work. Their purpose is to quantify the strength of the relationships depicted in the Bayesian
network through its structure: these CPDs mathematically describe the behavior of that
variable under every possible value assignment of its parents. Since specifying this beha-
vior requires a number of parameters exponential in the number of parents, and since this
number is typically smaller than the number of variables in the domain, this approach
results in exponential savings in space and time.

Formally, a Bayesian network for U is a pair B = ⟨G, θ⟩. Its first component, G, is
a directed acyclic graph whose vertices correspond to the set of random variables U, and
whose edges represent direct dependencies between these variables. The graph G encodes
independence assumptions: each variable Xi is independent of its non-descendants given
its parents in G.

The second component of the pair, θ, represents the set of parameters that quantify the
network. It contains parameter θxi|Πxi

= f(xi|Πxi
) for each possible value xi of Xi and Πxi

of ΠXi
, where ΠXi

denotes the set of parents of Xi in G and f(xi|Πxi
) is the conditional

probability distribution.

9
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Accordingly, a Bayesian network B defines a unique joint probability distribution F
over U given by:

F (X1 = x1, . . . , Xm = xm) =
m∏
i=1

f(Xi = xi|ΠXi
= Πxi

) =
m∏
i=1

θxi|Πxi
(2.1)

for each ΠXi=xi
which is a parent ofXi = xi, where f is conditional probability distribution.

2.3.1 D-separation

Unlike regular graph connectivity concepts, conditioning on a node can ”block” or ”un-
block” a dependency path between two nodes, depending on the direction of traversal of
that node along that path [17,18].

Let’s assume that a subset of nodes Z lies on an undirected path p between X and
Y , and that p is a path between X and Y in the graph G (for simplicity). We want to
determine whether a path p from X to Y is blocked by Z. According to the d-separation,
the path is blocked by Z if:

◦ X, Y , and Zi are connected nodes where Zi ∈ Z is in the chain between X and Y
(X ↔ · · · ↔ Zi · · · ↔ Y ), or

◦ X and Y are connected by a common cause Zi ∈ Z (i.e., X and Y are chil-
dren/descendants of Zi, here: X · · · ← Zi → . . . Y ), or

◦ X and Y are connected by a common effect (’collider’), but Zi ∈ Z is not that
common effect, and Zi is not one of the effects of the common effect.

When influence can flow from X to Y via Zi, we say that the trail X ↔ Zi ↔ Y is
active. Our results for active two-edge trails were summarized into four classes:

◦ Causal trail (showed the strongest effects) X → Zi → Y : active if and only if Zi is
not observed.

◦ Evidential trail (showed a correlation) X ← Zi ← Y : active if and only if Zi is not
observed.

◦ Common cause X ← Zi → Y : active if and only if Zi is not observed.

◦ Common effectX → Zi ← Y : active if and only if either Zi or one of Zi’s descendants
is observed.

Consider the case of a longer path X1 ↔ · · · ↔ Xn. For influence to flow from X1

to Xn, it needs to flow through every single node on the path. In other words, the path
X1 ↔ · · · ↔ Xn is active given Z if there is a common effect X → Zi ← Y , where Zi or
one of its descendants is in Z, and no other node along the trail is in Z. Also, X1 and Xn

are not in Z. For example, E → F ← I → S is not an active trail for Z = ∅ because

10
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the common effect E → F ← I is not activated. That same trail is active when Z = {L}
because observing the descendant of F activates the common effect. On the other hand,
when Z = {L, I}, the trail is not active because observing I blocks the trail F ← I → S.

More generally, what about graphs where there is more than one path between two
nodes? For example, is X independent of Y given the set of nodes Z, i.e.,

d-sepG(X ⊥ Y |Z) = Yes

in Figure 2.2?
Our flow intuition continues to carry through: one node can influence another if there

is any trail along which influence can flow. Putting these intuitions together, we obtain
the notion of d-separation, which provides us with a notion of separation between nodes
in a directed graph.

**Definition 2.1.** D-separation: Let X, Y, and Z be subsets of nodes in DAG
(Directed Acyclic Graph) G. We write

d-sepG(X ⊥ Y|Z) = Yes

if and only if there is no active trail between any node X ∈ X and Y ∈ Y given the
set of nodes Z in the graph G. This indicates that the variables in X are independent of
the variables in Y given Z in the context of the directed acyclic graph G.
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C A 

F 

D 

B 

Figure 2.2: Example of d-separation d-sepG(D ⊥ F |C)=Yes, d-sepG(C ⊥ D|B)= No, and
d-sepG(C ⊥ D|{A,B})=Yes.

2.4 Assumptions for Learning the Causal Structure

As mentioned earlier, the Bayesian Network (BN) model encodes a set of dependencies
that exist in a domain.

Causal Sufficiency Assumptions: There are no common unobserved (even as hidden
or latent) variables in the domain that are parents of one or more observed variables in
the domain.

Markov Assumptions: Any node in a Bayesian network, given its parents, is condi-
tionally independent of its non-descendants. In simpler terms, it is assumed that a node
depends only on its directed parents.

The Causal Sufficiency Assumptions state that there are no unobserved nodes in the
domain that might describe the dependencies observed in the data or their absence. This
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assumption is crucial for applications that require discovering the true underlying causal
structure of the domain. However, it is often challenging to uphold, as it is relatively easy
to envision another node, perhaps at a different level of detail, that can be added to the
model as an endogenous or even exogenous node. By applying the Markov Assumptions
and a set of assumptions described in [5], one can derive the complete set of independence
relations implied by the BN model. It’s important to note that the presence of an edge
or an unblocked path between two nodes does not necessarily imply that these nodes are
dependent.

Faithfulness Assumptions: Let G be a Bayesian network graph. The joint probab-
ility distribution F is exactly that which results from d-separation in the corresponding
causal graph G. Combined with the causal Markov assumption, this implies that G is a
perfect representation of F .

2.5 Bayesian Network Structure Learning

Note that a Bayesian Network (BN) can be viewed from two perspectives: as an effective
coding of an independence relationship and as an effective encoding of a high-dimensional
distribution of probabilities. One option for learning the structure is to rely on specialists
in the field through a deliberate and meticulous process of knowledge gathering. This
involves training experts in probabilistic graphical modelling, validating expert opinions,
and extracting and testing information. This process all too often leads to disagreements
among experts and a lack of reliability in the model. Nonetheless, in many fields where
data is scarce, this is one of the key approaches to model building.

Another mechanism is the automatic derivation of the model based on a dataset. We
adopt a machine learning approach (ML) for this purpose, in order to avoid the vast field of
human knowledge acquisition. For a dataset D = {u1,u2, . . . ,un}, where ui is a vector of
values representing an instantiation of all variables in U, Bayesian network (BN) structure
learning is the problem of inferring a network structure from D. Let’s assume that D is
complete and discrete. Consequently, the task of finding the optimal Bayesian network
reduces to finding the optimal structure.

The optimal structure can be learned to use three approaches in ML. The first is the
constraint-based approach to structure learning, which attempts to reconstruct a Bayesian
network by analysing data independence. The second is the score-based approach, which
looks for Bayesian networks that adequately describe the available data with the best score.
The core of the approach is to assign a score value s(G) to each acyclic directed graph G.
The score function defines an overall order (up to equivalences) over the structures in such
a way that structures with a better description of the data are assigned a higher value.
The last approach is a hybrid approach, which combines the two previous approaches.
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2.5.1 Trees

A directed acyclic graph on {X1, X2, . . . , Xm} is a tree if ΠXi
contains exactly one parent

for all Xi, except for one variable that has no parents (this variable is referred to as the
root). A tree network can be described by identifying the parent of each variable [5].

A function π : {1, . . . ,m} → {0, . . . ,m} is said to define a tree over X1, X2, . . . , Xm if
there is exactly one i such that π(i) = 0 (namely the root of the tree), and there is no
sequence i1, . . . , ik such that π(ij) = ij+1 for i ≤ j < k and π(ik) = i1 (i.e., no cycles).
Such a function defines a tree network where ΠXi

= {Xπ(i)} if π(i) > 0 and ΠXi
= ∅ if

π(i) = 0.

2.5.2 Maximum Likelihood TAN

Let {X1, X2, . . . , Xm} be a set of attribute variables, and let C be the class variable. We
say that Bayesian network is a TAN model (BT ) if ΠC = ∅, where ΠC is the parent set of
C, and there is a function π that defines a tree over {X1, X2, . . . , Xm} with an edge from
C to each node. The optimization problem consists of finding a tree-defining function π
over {X1, X2, . . . , Xm} such that the log-likelihood is maximized [12]:

LL(BT |D, θ) =
∑
u∈D

logL(u, θ)

Here, u represents a vector of values, and the summation is taken over all possible
vectors u that are part of the dataset D. The function L(u, θ) is the likelihood function
for the TAN model, and θ represents the model parameters.

To learn the maximum likelihood TAN, we should use the following equation to compute
the parameters [12]:

θXi=xi|ΠXi=xi
=

NXi=xi,ΠXi=xi
(Xi = xi,ΠXi=xi

)

NΠXi=xi
(ΠXi=xi

)

Here, θXi=xi|ΠXi=xi
represents the parameter for attribute Xi = xi given its parent set

ΠXi=xi
. NXi=xi,ΠXi=xi

(Xi = xi,ΠXi=xi
) represents the number of times that attribute Xi

has value xi, and its parents have values Πxi
in the dataset. Similarly, NΠXi=xi

(ΠXi=xi
) is

the number of times that the parents of attribute Xi have values ΠXi=xi
in the dataset.

2.5.3 Constraint-Based Vs. Score-Based

◦ Constraint-Based Structure Learning: This approach aims to recover the inde-
pendence relationships in the data by constructing a Bayesian network structure that
is consistent with the observed dependencies/independencies implicit in the data. A
notable advantage of this method over search and evaluation methods is its efficiency
in reconstructing sparsely populated networks - those that are not densely connected.
It also provides more accurate independence test results, even when the sample size is
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arbitrary [19]. However, because these algorithms rely on statistical tests to determ-
ine whether an arc between two variables should be included, they are sensitive to the
amount of data. The reliability of these tests depends on both the size of the database
and the number of variables in the conditioning set. In other words, these algorithms
require a large amount of data to learn independence with certainty, and high-order
independence tests may be unreliable unless the sample size is substantial [20].

◦ Score-based structure learning: This approach defines a metric (score) to assess
how well the dependencies/independencies represented by a given Bayesian network
structure fit the data. A search algorithm then searches for structures that maximise
or minimise this score. A major advantage of these algorithms is that they do not
require the setting of a statistical threshold. They also inherently follow the philo-
sophy of Occam’s razor, favouring simpler models over more complex ones in their
evaluation criteria. However, a notable drawback is their computational intractabil-
ity [21]. To mitigate this problem (i.e. the large search space), some algorithms, such
as K2 [22], assume an order of ancestral nodes, which means that variables are ar-
ranged in a list where a variable on the left may be a parent of a variable on the right,
but not vice versa. Another important drawback of most score-based algorithms is
their heuristic nature, which makes it impossible to find the best network structure,
only a good local one. As a result, these algorithms may need to be run several
times to avoid getting stuck in a local maximum, which can be very time consuming.
However, GOBNILP [23] has addressed some of these problems by guaranteeing an
optimal solution.

2.5.4 Score-Based

Score-based learning is a commonly used technique for determining the optimal structure
of Bayesian networks. In this approach, each candidate structure is assigned a Bayesian
Network (BN) score to measure its goodness of fit to the data. The goal of score-based
learning is to find the structure that maximizes this score, which typically indicates how
well the BN describes the data set D.

In essence, the goal is to find an acyclic graph G that maximizes the score function
L(G, θ)→ R (real numbers) where L is likelihood function. Given a structure G, its score
is defined as

s(G|D) = log(L(D|G, θ)) (2.2)

Here, θ represents a vector of model parameters.

The learning problem is to find G∗, where:

G∗ = argmax
G

s(G|D) (2.3)
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In other words, we want to find a graph that maximizes the posterior probability of
the data set D given G. Score-based algorithms are designed to maximize this score. This
calculation can be transformed into a more convenient form using Bayes’ rule [24]:

L(G|D, θ) = L(D|G, θ)L(G, θ)

L(D, θ)
(2.4)

To maximize this value, we only need to maximize the numerator, as the denominator
does not depend on G:

s(G|D) = log(L(D|G, θ)) + log(L(G, θ)) (2.5)

Many scoring functions are expressed as penalized log-likelihood (LL) functions. LL
represents the logarithmic probability of D given G and can be calculated as

LL(G|D, θ) = log(L(G|D, θ)) (2.6)

Adding an arc to a mesh does not reduce its probability. In fact, the extra arc should be
ignored if it doesn’t add any information. In addition, additional arcs can lead to overfitting
on training data and increase the runtime of downstream analyses such as inference and
prediction.

To address these issues, penalized LL functions aim to penalize complex networks.
These functions typically take the form of decomposable penalized LL (DPLL) values:

DPLL(G,D) = LL(G|D, θ)−
m∑
i=1

Penalty(Xi, G,D) (2.7)

There are several well-known DPLL scoring functions for learning Bayesian networks.
One commonly used scoring function is based on the principle of minimal description length
(MDL) [25]. The MDL approach treats the scoring of Bayesian networks as an information-
theoretic task, where the data is minimally encoded into the network structure and the
unexplained data.

**Definition 2.2.** Let B = ⟨G, θ⟩ be a Bayesian network, and letD = {u1, . . . ,un} be
a training set, where each ui is a vector of values of all variables in U = {X1, X2, . . . , Xm}.
The MDL scoring function of a network B given a training data set D, written as
MDL(B|D), is defined as

MDL(G|D) = LL(G|D, θ)− log n

2
|G| (2.8)

Here |G| represents the number of parameters in the network. The first term measures
model fit, and the second term penalizes model complexity.

The penalty term for MDL is usually larger than for most other scoring functions.
Networks optimized using MDL tend to minimize the scoring function rather than maximize
it.

The Bayesian Information Criterion (BIC) [26] is another scoring function that is equi-
valent to MDL for Bayesian networks but is derived based on the asymptotic behavior of
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the models. If the score is decomposable, it can be written as the sum of the scores for
each variable and its parent set:

BIC(G|D) =
m∑
i=1

BIC(Xi|ΠXi
) (2.9)

Here BIC(Xi|ΠXi
) = LL(Xi|ΠXi

, θ)− Penalty(Xi|ΠXi
).

Score-based algorithms aim to optimize this score and return the structure G that
maximizes it. However, since the space of all possible structures is at least exponential in
the number of variables m, this poses several challenges. A popular choice for exploring
this space is hill climbing [27], an iterative algorithm that incrementally improves an initial
solution until no further improvements can be found. An example of hill climbing is
illustrated in Figure 2.3.

Figure 2.3: Illustration of a BN structure hill-climbing search procedure.
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2.5.5 Constraint-Based

Another way to learn the structure of a Bayesian network (BN) is through the use of
constraints. These constraints typically involve conditional independence statements (e.g.
see [28]). The conditional independence tests used in practice are statistical tests on the
data set. In order to use the results to reconstruct structure, several assumptions must be
made: Causal Sufficiency, Causal Markov, and Faithfulness (see [29, 30]).

With these assumptions, the presence of an edge between two variables or the direction
of that edge can be determined, although the latter is only possible in certain cases. All
constraint-based structure learning algorithms share a common three-phase structure, in-
herited from the IC algorithm [31] through the PC algorithm [32] and the GS algorithm [33].

**Definition 2.3.**: Let Xk be a random variable in the set U = {X1, . . . , Xm}. The
Markov Blanket of a node Xk is the set containing the parents, children and co-parents of
the node, where the co-parents of a node are the parents of its children. Figure 2.4 shows
an example of a Markov Blanket in a Bayesian network.

 

X1 X2 

X4 X5 X3 

X6 

X5 

Figure 2.4: Example of a Markov blanket of variable X4. The members of the blanket are
shown shaded.
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The first, optional, phase consists of learning the Markov blanket of each node to re-
duce the number of candidate DAGs early on. Any algorithm for learning Markov blankets
can be plugged in as the first step (learning Markov blankets for each variable) and ex-
tended into a full BN structure learning algorithm, as originally suggested in [17] for the
GS algorithm. Once all Markov blankets have been learned, they are checked for con-
sistency in step 2 - check whether the Markov blankets are symmetric); by definition,
Xi ∈ ΠXj

⇔ Xj ∈ BXi
, where BXj

is the Markov blanket of Xj. Asymmetries are correc-
ted by treating them as false positives and removing the offending nodes from each other’s
Markov blankets.

The second phase learns the skeleton of the DAG, i.e., it identifies which arcs are
present in the DAG modulo their direction. This is equivalent to learning the neighbors
N(Xi) of each node: its parents and children (see algorithm 1 in [33]). As illustrated in
step 3 (learning the parents and the children of each node), the absence of a set of nodes
SXiXj

that separates a particular pair Xi, Xj implies that either Xi → Xj or Xj → Xi.
Separating sets are considered in order of increasing size to keep computations as local as
possible. Furthermore, if ΠXi

and ΠXj
are available from steps 1 and 2, the search space

can be greatly reduced because N(Xi) ⊆ ΠXi
. On the one hand, let BXi

be the Markov
blanket of variable Xi, if Xi /∈ BXi

by definition Xi is separated from Xj by SXiXj
= ΠXi

.
On the other hand, if Xj ∈ ΠXi

, most candidate sets can be disregarded because we know
that SXiXj

⊆ BXi
\ Xj and SXi,Xj

⊆ ΠXj
\ Xi. With the exception of the PC algorithm,

which is structured exactly as described in step 3, constraint-based algorithms learn the
skeleton by learning each N(Xi) and then enforcing symmetry (step 4: check whether they
are symmetric).

Finally, in the third phase, arc directions are established as in [34]. It is important
to note that, for some arcs, both directions are equivalent in the sense that they identify
equivalent conditional independencies. Therefore, some arcs will be left undirected, and the
algorithm will return a completed partially directed acyclic graph identifying an equivalence
class containing multiple DAGs. Such a class is uniquely identified by the skeleton learned
in steps 3 and 4, and by the v-structures Xi → Xk ← Xj, Xk ∈ N \ Xj learned in step
5 [35]. Additional arc directions are inferred indirectly in step 6 by ruling out those that
would introduce additional v-structures (which would have been identified in step 5) or
cycles (which are not allowed in DAGs).

2.5.6 Constraint Using Topological Ordering of Nodes

A topological ordering of a directed graph is a linear ordering of its vertices such that for
every directed edge X → Y from vertex X to vertex Y , X precedes Y in the ordering.
For instance, the vertices of the graph may represent tasks to be performed, and the
edges may represent constraints where one task must be performed before another. In this
application, a topological ordering represents a valid sequence for the tasks. A topological
ordering is possible if and only if the graph has no directed cycles, meaning it is a directed
acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are
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known for constructing a topological ordering of any DAG in linear time. An example of
an algorithm that assumes the ordering of nodes to learn the BN structure is K2 [22].

2.6 Previous Results and Related Work

Several machine learning methods have been applied to medical problems. Probably the
closest work in the area of acute myocardial infarction (AMI) is the work of [36]. The
authors used a residual network with a structure similar to that of a convolutional neural
network. This architecture allows a deep neural network to be effectively trained by incor-
porating skipping connections. The network consisted of a convolutional layer (Conv) and
four residual blocks, each of which had two convolutional layers. The output of the last
block was connected to a fully connected layer (dense) with a sigmoid activation function.
The output of each convolutional layer was rescaled using batch normalisation and passed
through a rectified linear activation unit (ReLU).

In another paper [37], the authors compared several over- and under-sampling tech-
niques to deal with the imbalance in the dataset. They compared regularised logistic
regression, random forest, boosted gradient machines, and shallow and deep neural net-
works. A baseline model for comparison was a logistic regression model using a limited
set of ’known’ risk factors for MI. Hyperparameters were determined using 10-fold cross-
validation.

In addition, Kaufmann [38] conducted research to investigate the decision-making pro-
cess underlying the estimation of cardiac function in patients acutely admitted to the
intensive care unit (ICU) based on the current standardised clinical examination using
Bayesian methods. Using real data, the study first analysed the probabilistic dependencies
between the examiner’s estimates and the set of clinically measured variables on which
they are based, using a Bayesian network. Second, the accuracy of the cardiac function
estimates was assessed by comparing them with cardiac index values measured by critical
care ultrasound.
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Chapter 3

Main Results

3.1 Heart Attack Mortality Prediction

This part of the thesis was published in [R1,R3], listed in 4.2. Acute myocardial infarction
(AMI) is commonly known as a heart attack. A heart attack occurs when an artery
leading to the heart becomes completely blocked, and the heart doesn’t receive enough
blood or oxygen. Without oxygen, cells in that area of the heart die. AMI is responsible
for more than half of all deaths in most countries worldwide. Its treatment has a significant
socioeconomic impact.

One of the main objectives of our research is to design, analyze, and verify a predictive
model of hospital mortality based on clinical data about patients. A model that predicts
mortality accurately can be used, for example, to evaluate the quality of medical care in
different hospitals. Evaluating hospitals based solely on mortality rates would not be fair
to those that frequently treat complicated cases. It seems better to measure the quality of
healthcare using the difference between predicted and observed mortality.

A related work was published by [39]. The authors analyze mortality data in U.S.
hospitals using the logistic regression model.

3.1.1 Data

Our dataset contains information on 787 patients characterised by 24 variables. Among
them, 603 patients are from the Czech Republic [40] and 184 are from Syria. The attributes
are listed in Table 3.1. Most of the attributes are real, while four are nominal. Only a
subset of attributes were measured for the Syrian patients.

Most records contain missing values, i.e. for most patients only some attribute values
are available. Thirty-day mortality is recorded for all patients.

In the Czech Republic, blood test results are reported in millimoles per litre of blood.
In Syria, some measurements are reported in milligrams per litre and some in millimoles
per litre. We standardise all measurements to millimoles per litre.
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Attribute Code type value range in data Country
Age AGE real [23, 94] SYR, CZ
Height HT real [145, 205] CZ
Weight WT real [35, 150] CZ
Body Mass Index BMI real [16.65, 48.98] CZ
Gender SEX nominal {male, female} SYR, CZ
Nationality NAT nominal {Czech, Syrian} SYR, CZ
STEMI Location STEMI nominal {inferior, anterior, lateral} SYR, CZ
Hospital Hospital nominal {CZ, SYR1, SYR2} SYR, CZ
Kalium K real [2.25, 7.07] CZ
Urea UR real [1.6, 61] SYR, CZ
Kreatinin KREA real [17, 525] SYR, CZ
Uric acid KM real [97, 935] SYR, CZ
Albumin ALB real [16, 60] SYR, CZ
HDL Cholesterol HDLC real [0.38, 2.92] SYR, CZ
Cholesterol CH real [1.8, 9.9] SYR, CZ
Triacylglycerol TAG real [0.31, 11.9] SYR, CZ
LDL Cholesterol LDLC real [0.261, 7.79] SYR, CZ
Glucose GLU real [2.77, 25.7] SYR, CZ
C-reactive protein CRP real [0.3, 359] SYR, CZ
Cystatin C CYSC real [0.2, 5.22] SYR, CZ
N-terminal prohormone of
brain natriuretic peptide

NTBNP real [22.2, 35000] CZ

Troponin TRPT real [0, 25] CZ
Glomerular filtration rate
(based on MDRD)

GFMD real [0.13, 7.31] CZ

Glomerular filtration rate
(based on Cystatin C)

GFCD real [0.09, 7.17] CZ

Table 3.1: Attributes

3.1.2 Preliminary Statistical Analysis

For a preliminary statistical analysis [41], we randomly selected 150 Czech patients and 150
Syrian patients from our dataset, creating two groups of equal size. We considered a subset
of the characteristics present in both groups, specifically these variables: age, nationality,
sex, STEMI location, and mortality.

As STEMI location is nominal and has three states in most experiments, we transformed
it into three binary variables: STEMI.inf, STEMI.ant and STEMI.lat. Nationality is coded
as a binary variable where 0 is Czech and 1 is Syrian. Gender is coded as a binary variable
where 0 is male and 1 is female. Mortality is also coded as a binary variable where 0
indicates that the patient survived 30 days and 1 indicates that the patient did not survive.

From Figure 3.1, which shows the histogram of age values, we can see that among the
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3.1. Heart Attack Mortality Prediction

patients who didn’t survive, a high percentage are young patients from Syria.

Age

10080604020

No

Yes

Survival

Syria

Czech

Nationality

Figure 3.1: Histogram of the age values

Table 3.2: The correlations and their statistical significance

gender STEMI loc. mortality nationality
age corr. 0.092 0.001 -0.074 -0.460

sign. 0.111 0.982 0.199 0.0001
gender corr. 0.034 0.018 0.133

sign. 0.557 0.757 0.021
STEMI loc. corr. 0.104 0.106

sign. 0.071 0.066
mortality corr. 0.128

sign. 0.026

In Table 3.2, we present the correlation matrix, and since it is symmetric, we display
only the upper triangular part without the diagonal. Statistically significant correlations
(at the 0.05 level) are highlighted.
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3. Main Results

We can observe a negative correlation between the age of the patients and nationality,
where the Czech Republic is encoded as 0 and Syria as 1. Consequently, the average age of
Czech patients is greater than that of Syrian patients. There is also a significant difference
in the percentage of male and female patients in each country – 28% of patients in the
Czech Republic are female, compared to 40.6% in Syria. Additionally, there is a significant
difference in mortality rates between Syrian patients (12%) and Czech patients (5.4%).

Table 3.3: The Chi-Square Test of conditional independence

gender STEMI loc. mortality nationality
age value 52.63 136.7 102.57 104.78

sign. 0.821 0.242 0.001 0.001
gender value 1.605 0.096 5.337

sign. 0.448 0.756 0.021
STEMI loc. value 10.678 17.173

sign. 0.005 0.0001
mortality value 4.925

sign. 0.026

The standard chi-square test of conditional independence between two variables reveals
(see Table 3.3) that there is a significant dependence between mortality and nationality.
There is also a significant dependence between mortality and STEMI location – the patients
from Syria with a lateral infarction have the lowest probability to survive.

Table 3.4: The Mann–Whitney U test

age gender STEMI.lat STEMI.ant STEMI.inf nationality
mortality value 3100 10036 2833 2952 3567 2860

sign. 0.173 0.757 0.002 0.045 0.748 0.027

We also conducted the Mann–Whitney U test (see Table 3.4) to determine if there is a
significant difference in mortality among groups classified by age, gender, STEMI location,
and nationality. Based on the test results, we conclude that patients from the Czech
Republic have lower mortality rates than Syrians, and patients with lateral infarctions
have a lower probability of survival.

Finally, we developed a logistic regression model to describe the relationship between
the independent variables and mortality as the dependent variable. The model is defined
as follows:

logit L(Y = 1|X = x) = β0 + β1x1 + . . .+ β5x5

= −2.375− 0.006 · x1 − 0.026 · x2 + 0.613 · x3 + 0.916 · x4 − 0.489 · x5
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3.1. Heart Attack Mortality Prediction

where x1 is the age, x2 is the gender (0 for male and 1 for female), x3 is the nationality
(0 for Czech and 1 for Syrian), x4 is the STEMI.lat (0 for no, 1 for yes), and x5 is the
STEMI.ant (0 for no, 1 for yes).

However, only the intercept and the variable STEMI.lat appear to be statistically sig-
nificant for predicting mortality.

From the preliminary statistical analysis, we can conclude that although the various
tests we used do not suggest exactly the same relationships between the studied variables,
they mostly agree on a few significant findings:

◦ In Syria, mortality from AIM is significantly higher than in the Czech Republic—87.3%
of Syrian patients survive, while 94.7% of patients from the Czech Republic survive.

◦ The average age of patients in Syria is lower (with an average difference of 13 years),
and there is a higher prevalence of women among patients with AIM in Syria com-
pared to the Czech Republic.

◦ The STEMI location is related to mortality.

3.1.3 Machine Learning Methods

The preliminary statistical analysis focused on pairwise relations. Since explanatory vari-
ables can combine their influence, and the influence of one variable may be mediated by
another, it is worthwhile to study the relationships between all variables together. We will
do this in two steps: (1) Since mortality prediction is our primary interest, we will compare
how different classifiers are able to predict mortality. (2) To gain an overall understanding
of the relations between all variables, we will learn a Bayesian network model from the
collected data [40].

We will work with different versions of the data, depending on how we treat variables
that have more than two states: (1) Real-valued ordinal variables, (2) Discrete-valued
variables (with at most five states), and (3) Binary variables. We will discuss the trans-
formation of values in more detail in the following sections.

Our data are incomplete and imbalanced. We will present an idea for dealing with this
type of data using tree-augmented naive Bayes (TAN).

3.1.3.1 Ordinal Attributes

In our dataset, we have several categorical variables, often referred to as nominal variables.
These are variables with two or more categories. For instance, gender is a categorical
variable with two categories: male and female. However, certain machine learning methods
require ordinal attributes. These are attributes with values that possess a natural order,
quantifying their impact on the class. This ordinality criterion applies even to nominal
attributes, such as gender (0 for male, 1 for female) and mortality (0 for survived, 1 for
died). In our dataset, most real-valued attributes can be considered ordinal. It’s worth
noting that there may also be laboratory tests whose values deviate from the normal range
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in both directions, meaning that both lower and higher values may increase mortality. We
will refer to this ordinal data as D.ORD.

3.1.3.2 Discrete Attributes

A discrete variable can take values from a finite set. Certain classification techniques
require discrete variables. To obtain statistically reliable estimates of model parameters, it
is advisable to minimize the number of values while still capturing significant relationships.

In our case, we have discretized all real-valued attributes. Determining the optimal
number and values of splitting points in discretization can be challenging. Fortunately, the
Czech National Code Book provides a helpful resource. It classifies numerical laboratory
results into nine groups (1, 2, ..., 9) based on age and sex, with Group 5 corresponding to
standard values in the standard population. We have further reduced the number of states
to 5 by combining some of these groups. We will refer to the data in this discretized form
as D.DISCR.

3.1.3.3 Binary Attributes

Binary data consists of variables that can have only two possible states, traditionally
denoted as 0 and 1 in accordance with the binary numeral system and Boolean algebra. In
our case, all laboratory tests are encoded using two binary attributes. The first attribute
takes a value of 0 for standard test values and 1 if the values are decreased. The second
attribute takes a value of 0 for standard test values and 1 if the values are increased. The
attributes Age, Height, and Weight have been removed. From the demographic group
of attributes, only Gender and the Body Mass Index (BMI) have been retained. BMI is
encoded using two binary attributes: BMI high (1 if BMI is greater than the mean, 0
otherwise) and BMI low (1 if BMI is less than or equal to the mean, 0 otherwise). We will
refer to data in this form as D.BIN.

3.1.3.4 Attribute Selection

Before learning a model, we preprocess the data. Usually, one of the most useful parts
of preprocessing is attribute selection, where irrelevant attributes are removed. Attribute
selection is a process by which we automatically search for the best subset of attributes in
our dataset. The notion of “best” is relative to the problem we are trying to solve, but
typically means the highest accuracy. Three key benefits of performing attribute selection
on our data are:

◦ Reduces Overfitting: Less redundant data means less opportunity to make decisions
based on noise.

◦ Improves Accuracy: Less misleading data means that modeling accuracy improves.

◦ Reduces Training Time: Less data means that algorithms train faster.
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3.1. Heart Attack Mortality Prediction

The CfsSubsetEval method of Weka [42] selects subsets of attributes that are highly
correlated with the class while having low inter-correlation. We searched the space of all
subsets by a greedy best-first search with backtracking. Data D after the application of
this attribute selection method will be suffixed as D.AS.

3.1.3.5 Tested Classifiers

For tests, we used a large subset of classifiers implemented in Weka. Classifiers that
performed best in the preliminary tests qualified for the final tests. In the final tests, we
compared the following classifiers:

◦ Decision tree C4.5 [43].

◦ Logistic regression [44].

◦ Naive Bayes (NB) classifier [45], which assumes that the value of a particular
explanatory variable (attribute) is independent of the value of any other attribute
given the class variable.

◦ Bayesian network (BN) classifiers, including (1) those learned by the K2 al-
gorithm [46] (referred to as BN.K2) and (2) the Tree Augmented Naive Bayes clas-
sifier referred to as BN.TAN [12].

Where all BN algorithms implemented in Weka assume that all variables are discrete
finite variables, we will use ”NA” in the results of that classification methods for
non-discrete data.

We use the leave-one-out cross-validation as the model evaluation method. It means
that N separate times, the classifier is trained on all the data except for one point,
and a prediction is made for that point. After that, the average error is computed
and used to evaluate the model.

3.1.3.6 Prediction Quality

For each data record classified by a classifier, there are four possible classification
results. Either the classifier got a positive example labeled as positive (in our data,
the positive example is the patient not survived), or it made a mistake and marked it
as negative. Conversely, a negative example may have been mislabeled as a positive
one or correctly marked as negative. This defines the following metrics:

– True Positives (TP): the number of positive examples labeled as such.

– False Positives (FP): the number of negative examples labeled as positive.

– True Negatives (TN): the number of negative examples labeled as such.

– False Negatives (FN): the number of positive examples labeled as negative.

We used the following measures of prediction quality:
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– Accuracy measures how often the classifier makes the correct prediction. It
is the ratio between the number of correct predictions and the total number of
predictions.

ACC =
TP + TN

TP + TN + FP + FN

– Recall, also known as sensitivity, is the fraction of positive instances that are
correctly classified as positive (the rate of true positives).

REC =
TP

TP + FN

– Precision is the fraction of true positives over the number of all reported pos-
itives.

PRE =
TP

TP + FP

– F-measure is the harmonic mean of precision and recall.

F = 2 · PRE ·REC

PRE +REC

– Specificity is the fraction of true negatives over the number of all negatives.

SPE =
TN

FP + TN

– Area under the ROC curve (AUC). The ROC curve shows how the classifier
can sacrifice the true positive rate (recall or sensitivity) for the false positive rate
(1-specificity) by plotting the TP rate against the FP rate. In other words, it
shows you how many correct positive classifications can be gained as you allow
for more and more false positives. As an example, in Figure 3.2, we report the
ROC curve for the Naive Bayes classifier with the ordinal attributes. Its area
under the curve is 0.782.

3.1.3.7 Results of Experiments

In Table 3.5 we compare the results of different classifiers on different versions of data.
The C4.5 classifier with D.DISCR has the highest accuracy of 0.942, its recall and
precision are also among the best achieved. However, its area under the ROC curve
is very low, only 0.371, which suggests that this classifier can not be satisfactorily
tuned if we want to sacrifice precision to recall or vice versa.

The contribution of attribute selection method (CfsSubsetEval method of Weka) to
the performance of models was pretty good where the accuracy was improved in gen-
eral except C4.5 with D.ORD, and LOG.REG with D.ORD and D.BIN. Additionally,
the AUC and F-measure were improved in most of the models.
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Figure 3.2: ROC for the NB classifier with ordinal attributes

Figure 3.4 shows the tree structure of C4.5 trained on the discrete data. Its structure
is surprisingly simple. If the patient is Czech then it is predicted that he will survive,
if the patient is Syrian then the LDL cholesterol value should be checked. If it is
below 4.78, the patient is predicted to survive, otherwise, if the LDL cholesterol
value is between 4.78 and 6.28 then it depends on the Syrian hospital where he/she
is being treated. If he/she is treated in the public hospital (SYR1) he/she will die;
if he/she is treated in a private hospital (SYR2), he/she will survive. If his/her LDL
cholesterol is higher than 6.28, he/she will die (regardless of which Syrian hospital
he/she is treated in). The simplicity of the C4.5 classifier is in line with the general
recommendation that to avoid overfitting training data models should be as simple
as possible. This is probably the best we can learn from the data, but it probably
oversimplifies reality. More data would be needed.

The highest accuracy of all the classifiers tested was achieved by Random Forest
(RF). The highest area under the ROC curve (AUC) was achieved by the Naive
Bayes classifier with ordinal attributes. The highest value of F-measure was achieved
by BN.K2 with discrete attributes. by the CfsSubsetEval method of Weka [42]. The
learned BN model is actually also a Naive Bayes model – see Figure 3.3. We can
conclude that there is no single winner – no classifier that is the best in all the criteria
considered.

The classifiers also differ in which variables they consider important for predicting
AMI mortality. We believe that learning different classifiers is worthwhile because it
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TRPT NT.BNP CysC CRP LDLC ALB KREA Age

Mortality

Figure 3.3: BN learned by BN.K2

can help medical professionals to get insight into the problem being modelled.

hHospital <= 0: 0 (603.0/36.0)

hHospital > 0

h| LDLC <= 4.78: 0 (157.86/6.0)

h| 4.78 < LDLC <= 6.28

h| | Hospital <= 1: 1 (12.95/2.95)

h| | Hospital > 1: 0 (9.0/1.0)

h| LDLC > 6.28: 1 (4.18/0.18)

Figure 3.4: Decision tree C4.5 learned from D.DISCR.
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Table 3.5: Results of experiments

Classifier Criteria D.ORD D.ORD.AS D.DISCR D.DISCR.AS D.BIN D.BIN.AS
ACC 0.855 0.925 0.860 0.914 0.875 0.911
AUC 0.782 0.722 0.744 0.781 0.695 0.717

Naive Bayes Recall 0.439 0.158 0.351 0.368 0.246 0.140
Prec. 0.234 0.450 0.215 0.396 0.203 0.276
F-measure 0.305 0.234 0.267 0.382 0.222 0.186
ACC 0.935 0.933 0.942 0.921 0.926 0.927
AUC 0.527 0.621 0.371 0.627 0.528 0.273

C4.5 Recall 0.263 0.105 0.246 0.123 0.070 0.035
Prec. 0.625 0.750 0.875 0.368 0.444 0.333
F-measure 0.370 0.185 0.384 0.184 0.121 0.063
ACC 0.929 0.931 0.947 0.934 0.905 0.912
AUC 0.532 0.559 0.383 0.631 0.529 0.291

RF Recall 0.269 0.215 0.244 0.127 0.101 0.095
Prec. 0.635 0.770 0.891 0.382 0.451 0.337
F-measure 0.377 0.319 0.385 0.188 0.159 0.132
ACC 0.932 0.937 0.906 0.923 0.901 0.924
AUC 0.542 0.629 0.383 0.631 0.529 0.291

SVM Recall 0.289 0.218 0.239 0.114 0.113 0.085
Prec. 0.629 0.769 0.889 0.402 0.459 0.341
F-measure 0.394 0.322 0.377 0.170 0.162 0.133
ACC 0.930 0.925 0.907 0.919 0.926 0.919
AUC 0.746 0.755 0.622 0.746 0.675 0.746

LOG.REG Recall 0.140 0.018 0.193 0.140 0.070 0.140
Prec. 0.571 0.250 0.289 0.364 0.364 0.364
F-measure 0.225 0.033 0.232 0.203 0.118 0.203
ACC 0.932 0.936 0.914 0.920 0.913 0.920
AUC 0.658 0.480 0.701 0.726 0.701 0.726

NB-Tree Recall 0.211 0.228 0.228 0.088 0.070 0.088
Prec. 0.600 0.684 0.310 0.313 0.211 0.313
F-measure 0.312 0.342 0.263 0.137 0.105 0.137
ACC NA NA 0.886 0.918 0.900 0.926
AUC NA NA 0.750 0.775 0.687 0.671

BN.K2 Recall NA NA 0.316 0.368 0.193 0.105
Prec. NA NA 0.265 0.429 0.256 0.462
F-measure NA NA 0.288 0.396 0.220 0.171
ACC NA NA 0.908 0.925 0.904 0.927
AUC NA NA 0.721 0.768 0.653 0.642

BN.TAN Recall NA NA 0.193 0.228 0.088 0.053
Prec. NA NA 0.297 0,464 0.179 0.333
F-measure NA NA 0.234 0.306 0.118 0.091
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3.2 Learning TAN from Incomplete Data

This part of the thesis was published in [R4], listed in 4.2. Missing data is a com-
mon problem that requires consideration in many data mining, machine learning,
and pattern recognition applications. Some variables may remain unobservable (i.e.,
hidden) even for training instances. Nowadays, an increasing number of datasets are
available, and most of them are incomplete. Therefore, we aim to find a way to build
a new model from an incomplete dataset. Normally, to learn the maximum likelihood
Tree-Augmented Naive Bayes (TAN) structure [12], we need complete data, where
all instances (ui, i ∈ {1, . . . , n}) from D are complete and do not have any missing
values. If the data are incomplete, and an instance has a missing value, we will not
use the whole instance in TAN structure learning. In other words, we will not use
the other known values from that instance in TAN structure learning. Note that the
class is always known, and a missing value in the dataset is denoted by ”NA.”

Our goal is to learn a Tree-Augmented Naive Bayesian (TAN) model from incom-
plete data. Some previous work [47] proposes maximizing conditional likelihood for
Bayesian Network (BN) parameter learning. The authors apply their method to
MCAR (Missing Completely At Random) incomplete data by using available case
analysis to find the best TAN classifier. In other work by [48], they also deal with
TAN classifiers and the expectation-maximization (EM) principle for partially un-
labeled data. In their work, only the variable corresponding to the class can have
missing values.

Another work [49] addresses TAN based on the EM principle, where they have pro-
posed an adaptation of the learning process of the Tree-Augmented Naive Bayes
classifier from incomplete data. In their work, any variable can have missing val-
ues in the dataset. Also, in other work [50], the author uses graphical independence
networks (gRain) [51] to compute the class posterior of instances with missing values.

The TAN algorithm can be adapted to learn from incomplete datasets, allowing for
the utilization of most available data in TAN structure learning. The procedure is
shown in Algorithm 1, where the Conditional Mutual Information (CMI) is defined
as:

I(X, Y |Z) =
∑
x,y,z

f(x,y, z) log
f(z)f(x,y, z)

f(x, z)f(y, z)
(3.1)

Here, the sum is only over x,y, z such that f(x, z) > 0 and f(y, z) > 0, where f is
conditional probability distribution function.
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3.2. Learning TAN from Incomplete Data

Algorithm 1 TAN for Incomplete Data

1: procedure CMI(Xi, Xj, C}) ▷ // Conditional Mutual Information
2: D = {u1, . . . ,uN},um = (xi, xj, c),m ∈ {1, . . . , N}, such that um =

(x1, . . . , xn, c) ∈ D
3: Foreach um ∈ D
4: If(ai == NA|aj == NA)
5: Delete um from D
6: endfor
7: Compute Ip = I(Xi, Xj|C) from D
8: return Ip
9: Endprocedure

10: Read D = {u1, . . . ,uN},um = (x1, . . . , xn, c),m ∈ {1, . . . , N}
11: var:
12: n the number of attribute variables X
13: Ip[n][n] the WeightMatrix;
14: UG the UndirectedGraph;
15: UT the UndirectedTree;
16: T the DirectedTree;
17: TAN the DirectedGraph;
18: Foreach Xi, i ∈ {1, . . . , n− 1}
19: Foreach Xj, j ∈ {2, . . . , n}
20: Ipij = CMI(Xi, Xj, C)
21: Ip[i, j] = Ipij
22: Ip[j, i] = Ipij
23: EndForeach
24: EndForeach
25: G = ConstructUndirectedGraph(Ip)
26: UT = MaximumWeightedSpanningTree(G);
27: T = MakeDirected(UT );
28: TAN = AddClass(T );

In Algorithm 11, on line 25, we construct a complete undirected graph in which the
vertices are the attributes X1, . . . , Xn. Note that the weight of an edge connecting
Xi to Xj, where i ̸= j, is denoted as Ipij = I(Xi, Xj|C). On line 26, we construct a
subgraph of G without any cycles and with the maximum possible total edge weight.
On line 27, we transform the resulting undirected tree into a directed one by choosing
a root variable and setting the direction of all edges outward from it. On line 28, we
add the class C to the graph as a node and add edges from C to all other nodes in
the graph.

1The complexity is O(n2 log n)
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Similarly, we can create a procedure in Algorithm 22 that allows the Chow-Liu al-
gorithm to handle incomplete data, whereas the standard Chow-Liu algorithm [52]
only deals with complete data. The procedure is shown in Algorithm 2, where Mutual
Information (MI) is defined as:

I(X, Y ) =
∑
x,y

f(x,y) log
f(x,y)

f(x)f(y)
(3.2)

Here, the sum is only over x,y such that f(x) > 0 and f(y) > 0, where f is conditional
probability distribution function. .

The idea behind Algorithms 1, 2 is that we believe if we use more data then the es-
timates of mutual information and conditional mutual information are more reliable.

3.2.1 Selective Tree Augmented Naive Bayes

The selective tree augmented naive Bayes (STAN) algorithm [53] is a variant of TAN
which performs feature subset selection (FSS) [53] and may augment naive Bayes
with less than n − 1 arcs by using the joint probability distribution between each
variable and the class as a threshold to run FFS. Only the variables which meet a
certain level of threshold α are taken into account for the induction of the TAN.

In our experiments, we will select all variables that are not independent from the
class, as deemed by the test of independence based on mutual information (MI)
with threshold α = 0.05. Before learning the augmenting tree(s), STAN filters out
variables and inter-feature dependencies (i.e. its G is not necessarily complete). If
some direct dependencies between some pair of feature sets are filtered out, also
between some variables and the class are filtered out but a maximum spanning tree
is obtained over each connected set of features. Each of these trees is then directed
as in the case of TAN (see Figure 3.5). The procedure is shown in Algorithm 32.

The idea behind Algorithms 3 to select the subsets of attributes that are highly
correlated with the class using mutual information.

We will refer to this algorithm as (STAN).

3.2.2 Imbalanced Data

In the case of imbalanced data, classifiers are more sensitive to predicting the ma-
jority class and less sensitive to the minority class. Thus, if we don’t address this
issue, the classification output will be biased, often resulting in always predicting the
majority class. Many methods have been proposed in the past few years to deal with
imbalanced data. In our research, the mortality rate of patients with myocardial
infarction refers to the percentage of patients who have not survived more than 30

2The complexity is O(n2 log n)
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Algorithm 2 Procedure Chow-Liu for incomplete data

1: procedure MI(X, Y ) ▷ // Mutual Information
2: D = {u1, . . . ,uN},um = (x, y),m ∈ {1, . . . , N}, x, y ∈ um, such that um =

(a1, . . . , an, c) ∈ D
3: Foreach um ∈ D
4: If(x == NA|y == NA)
5: Delete um from D
6: endfor
7: Compute Ip = I(X, Y ) from D
8: return Ip
9: Endprocedure

10: m = n+ 1 ▷ //add the Class to WeightMatrix
11: Ipc [m][m] Chow-Liu WeightMatrix; ▷ //last row and the last column are for Class C
12: n the number of attribute variables X
13: UT the UndirectedTree;
14: T the DirectedTree;
15: Foreach Xi, i ∈ {1, . . . , n− 1}
16: Foreach Xj, j ∈ {2, . . . , n}
17: Icpij = MI(Xi, Xj)
18: Ipc [i][j] = Ipij
19: Ipc [j][i] = Ipij
20: EndForeach
21: EndForeach
22: Foreach Ai, i ∈ {1, . . . , n} ▷ // MI between Class and each variable
23: Icpij = MI(Ai, C)
24: Ipc [i][m] = Ipij
25: Ipc [m][i] = Ipij
26: EndForeach
27: G = ConstructUndirectedGraph(Ipc)
28: UT = MaximumWeightedSpanningTree(G);
29: T = MakeDirected(UT );
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Figure 3.5: STAN

Algorithm 3 Procedure STAN

1: IC the WeightVector between class and variables
2: In Algorithm 1 run lines 1 till 27
3: Foreach two connected variables Xi, Xj, i ̸= j in T
4: Icpij = MI(Xi, Xj)
5: If(Icpij < 0.05)
6: Delete the edge between Xi and Xj

7: EndForeach
8: Foreach Xi, i ∈ {1, . . . , n}
9: IC,Xi

= MI(Xi, C) ▷ // MI is a function in Algoritm 2
10: If(IC,Xi

> 0.05)
11: Add edge between the class and Xi

12: else
13: Delete all edges from/to Xi

14: EndForeach
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days. The results show that 89% of patients survive, while 11% of patients do not
survive, making the data quite imbalanced. One of the most common and simplest
strategies for handling imbalanced data is to under-sample the majority class [54,55].
Although different techniques have been proposed in the past, they did not bring any
improvement compared to simply selecting samples at random. Therefore, for this
analysis, we propose the following steps:

– Let M be the number of samples for the majority class, and N be the number
of samples for the minority class, with M being L times greater than N.

– Divide the instances with the majority class into L distinct clusters.

– Train L predictors, where each predictor is trained on only one of the distinct
clusters, but on all of the data from the rare class. To clarify, the data from the
minority class are used in the training of all L predictors.

– Use model averaging for the L learned predictors as your final predictor. In
our case, we will compute conditional mutual information between each pair of
attributes (Xi, Xj), i, j ∈ {1, 2, . . . , n}, i ̸= j, given the class L times for each
pair. Each time we will use only one of the distinct clusters and all data from the
minority class, then we will use the average of conditional mutual information
for each pair to compute the weight matrix.

We provide a procedure for WeightMatrix computation in Algorithms 1, 2, and 3. We
replace its computation with Algorithms 4 that deal with incomplete and imbalanced
data.

Algorithm 4 Procedure for WeightMatrix computation with incomplete and imbalance
data
1: var
2: M number of samples for the majority class
3: N number of samples for the minority class
4: DT instances of the majority class, DT ⊂ D
5: DF instances of the minority class, DF ⊂ D
6: integer division L = M/N
7: Divide DT to L parts, DTk

, k ∈ {1, . . . , L}
8: Foreach k ∈ {1, 2, . . . , L}
9: Dk = DTk

∪ DF

10: Ipk = WeightMatrix for Dk

11: EndForeach
12: Îp = the average of Ipk , k ∈ 1, . . . , L ▷ // Îp is the final WeightMatrix

We will refer to TAN, Chow-Liu and STAN which deal with incomplete and imbal-
anced data as TANI, CLI, and STANI.
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3.2.3 Results

To compare the methods, we used the dataset presented in Table 3.1. The results
are summarized in Table 3.6. We compared the results of our methods with the
following:

– TAN for the incomplete dataset in bnclassify [50], which we will refer to as (TB).

– Chow-Liu [52], referred to as (CL).

– EM algorithm [48] for Chow-Liu using Hugin3 [56], which we will refer to as
(EMCL).

– Normal TAN [12] after omitting all instances with a missing value.

– SMOTE algorithm [57] for TAN, referred to as (ST).

– Algorithm in [49]. This algorithm deals with TAN based on the EM algorithm,
where they have proposed an adaptation of the learning process of the Tree
Augmented Naive Bayes classifier from incomplete data, where any variable can
have missing values in the dataset. We will refer to it as (FL) on two versions
of the dataset.

We use AUC for comparison. Also, we use the 10-fold cross-validation as the model
evaluation method. Algorithm TANI with D.BIN has achieved the highest area under
the ROC curve (AUC) (0.953) - see Figure 3.6. The results of Algorithm 1 are better
than the normal TAN algorithm in both datasets. The SMOTE algorithm with
TAN has achieved a better AUC than the AUC of Algorithm 1 with D.DISCR and
Algorithm 2 in both datasets.

3.2.4 Quality of Classifiers Tested on Artificial Data

It is difficult to determine which algorithm is better than another one since, in dif-
ferent papers, algorithms are usually tested using different datasets with specific
constraints such as dimension, the number and type of attributes, data distribution,
the number of classes, missing values, etc.

We decided to use artificial data to enable fair comparisons using the fixed models
of TAN. The experiments were repeated ten times on ten different subsets for each
MCAR [58] rate on different models. We used datasets generated from the true
models summarized in Table A.1 in Appendix A.

3.2.4.1 Results of Experiments

We compare our algorithms Algo1 and STAN with related algorithms FL and TB.
We used area under curve (AUC) to compare the algorithms. Figure 3.7 represents
the results of all models with all dataset sizes and all MCAR rates.

3http://www.hugin.com
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Figure 3.6: AUC

Table 3.6: BN Results

D.DISCR D.Bin
TB AUC 0.804 0.448
FL AUC 0.950 0.871
ST AUC 0.802 0.818
CL AUC 0.723 0.690
EMCL AUC 0.691 0.710
TAN AUC 0.620 0.670
Algo1 AUC 0.770 0.930
Algo2 AUC 0.750 0.730
STAN AUC 0.891 0.905
TANI AUC 0.820 0.953
CLI AUC 0.476 0.895
STANI AUC 0.931 0.895

We studied the results of T4 model shown in Figure A.2. All results of T4 model -
mean (M) of AUC - are shown in Tables 3.7, 3.8, 3.9, 3.10, and 3.11. The results
are recorded in the form (V(±s)) where V is the mean of AUCs and s is the Standard
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Figure 3.7: The mean (M) of AUC from the resulting models using data generated from
all models, summarized in Table A.1 averaged over all data sizes and all MCAR rates.

Deviation (SD).
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MCAR Algo1 (A1) STAN (A2) TB (A3) FL (A4) Wilcoxon tests
10% 0.972(±.164) 0.969(±.122) 0.953(±.145) 0.979(±.168) A4 >0.130 A1 >0.220 A2 >0.009 A3
20% 0.969(±.142) 0.938(±.163) 0.941(±.104) 0.970(±.126) A4 >0.16 A1 >0.009 A3 >0.422 A2
30% 0.954(±.208) 0.903(±.248) 0.906(±.158) 0.945(±.209) A1 >0.006 A4 >0.009 A3 >0.207 A2
40% 0.918(±.204) 0.886(±.246) 0.900(±.165) 0.915(±.303) A1 >0.210 A4 >0.096 A3 >0.032 A2
50% 0.894(±.204) 0.872(±.246) 0.865(±.151) 0.891(±.316) A1 >0.539 A4 >0.052 A2 >0.137 A3

Table 3.7: The mean AUC and its SD over all MCAR and data size 1000

MCAR Algo1 (A1) STAN (A2) TB (A3) FL (A4) Wilcoxon tests
10% 0.977(±.096) 0.971(±.101) 0.969(±.138) 0.981(±.139) A4 >0.230 A1 >0.018 A2 >0.384 A3
20% 0.969(±.122) 0.942(±.158) 0.940(±.170) 0.971(±.121) A4 >0.452 A1 >0.001 A2 >0.361 A3
30% 0.959(±.194) 0.902(±.219) 0.911(±.175) 0.947(±.208) A1 >0.024 A4 >0.009 A3 >0.080 A2
40% 0.920(±.205) 0.890(±.241) 0.900(±.175) 0.910(±.225) A1 >0.041 A4 >0.080 A3 >0.096 A2
50% 0.910(±.203) 0.879(±.252) 0.889(±.142) 0.902(±.228) A1 >0.215 A4 >0.032 A3 >0.080 A2

Table 3.8: The mean AUC and its SD over all MCAR and data size 2000

MCAR Algo1 (A1) STAN (A2) TB (A3) FL (A4) Wilcoxon tests
10% 0.981(±.099) 0.974(±.100) 0.9782(±.110) 0.982(±.131) A4 >0.460 A1 >0.340 A3 >0.160 A2
20% 0.971(±.110) 0.946(±.161) 0.952(±.192) 0.972(±.114) A4 >0.570 A1 >0.009 A3 >0.187 A2
30% 0.963(±.194) 0.936(±.121) 0.921(±.148) 0.949(±.149) A1 >0.024 A4 >0.040 A2 >0.009 A3
40% 0.943(±.200) 0.931(±.230) 0.901(±.176) 0.915(±.168) A1 >0.004 A2 >0.380 A4 >0.001 A3
50% 0.914(±.205) 0.886(±.237) 0.890(±.160) 0.910(±.199) A1 >0.380 A4 >0.009 A3 >0.312 A2

Table 3.9: The mean AUC and its SD over all MCAR and data size 5000
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MCAR Algo1 (A1) STAN (A2) TB (A3) FL (A4) Wilcoxon tests
10% 0.983(±.095) 0.976(±.109) 0.979(±.098) 0.983(±.113) A4 >0.460 A1 >0.340 A3 >0.215 A2
20% 0.973(±.102) 0.951(±.147) 0.958(±.100) 0.974(±.115) A4 >0.784 A1 >0.004 A3 >0.116 A2
30% 0.966(±.193) 0.938(±.124) 0.924(±.130) 0.953(193) A1 >0.018 A4 >0.009 A2 >0.009 A3
40% 0.945(±.178) 0.923(±.185) 0.903(±.172) 0.919(±.171) A1 >0.002 A2 >0.187 A4 >0.003 A3
50% 0.921(±.202) 0.900(±.203) 0.891(±.162) 0.915(±.167) A1 >0.246 A4 >0.024 A2 >0.116 A3

Table 3.10: The mean AUC and its SD over all MCAR and data size 7000

MCAR Algo1 (A1) STAN (A2) TB (A3) FL (A4) Wilcoxon tests
10% 0.982(±.099) 0.979(±.097) 0.980(±.085) 0.985(±.089) A4 >0.539 A1 >0.116 A3 >0.340 A2
20% 0.976(±.073) 0.956(±.141) 0.969(±.103) 0.976(±.127) A4 >0.830 A1 >0.065 A3 >0.052 A2
30% 0.968(±.177) 0.943(±.112) 0.948(±.140) 0.957(±.191) A1 >0.024 A4 >0.032 A3 >0.570 A2
40% 0.948(±.194) 0.932(±.157) 0.910(±.179) 0.921(±.170) A1 >0.002 A2 >0.006 A4 >0.001 A3
50% 0.933(±.194) 0.906(±.173) 0.909(±.173) 0.921(±.161) A1 >0.137 A4 >0.004 A3 >0.380 A2

Table 3.11: The mean AUC and its SD over all MCAR and data size 10000
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Algo1 algorithm achieved best results in all datasets where MCAR rates are higher
than 20%. In the other data-sets the FL achieved the best results. Also, TB al-
gorithm achieved the worst results in all data-sets and all MCAR rates. Also from
Figures 3.8, and 3.9, we can see that FL was better than Algo1 in the lowest MCAR
rate (20%,10%) but not in the highest MCAR rate in all datasets.

Note that standard deviation of results are quite high compared to the means and
the confidence intervals overlap quite a lot. However, since the distributions of AUC
cannot be assumed to be normally distributed it is not possible to derive directly
from these values an (intuitively correct) conclusion that the results of the methods
are not statistically significantly different. For that, a non-parametric test that can
be used to compare two related samples to assess whether their mean ranks differ.
Appropriate seems to be the Wilcoxon signed-rank test in our case. In other words.
We did the test for algorithms in each row in each table independently. This allows
to see in which situations algorithms statistically differ. We reported the results
of the Wilcoxon test in the form of an additional column attached to each table
(Tables 3.7, 3.8, 3.9, 3.10, and 3.11), and containing an expression in the form (Ai >V

Aj >V ′ Ak >V ′′ Am). Where the values of V, V ′, V ′′ are p-values of the Wilcoxon
tests between the algorithms with neighboring values of means. The algorithms
are ordered (Ai, Aj, Ak, Am ) according to their mean AUC values. For simplicity,
we report in the tables p-value only for tests with neighboring mean AUC values.
The relations are not necessarily transitive but, in our opinion, this suffices to show
methods dominance.

From Wilcoxon test results we can see that the FL algorithm in all data sets with the
MCAR rates 10% and 20% achieved p-value higher than the significance level alpha =
0.05 with Algo1. So, we cannot conclude that FL is significantly better than Algo1,
but they are significantly better than the TB algorithm. Algo1 in data sets size
higher than 1000 with the MCAR rates (30% and 40% )) achieved p-value less than
the significance level alpha = 0.05 with its neighbor which means it is significantly
better. Finally, Algo1 in all data sets with the MCAR rate 50% and in data sets size
1000 with the MCAR rate 40% achieved p-value higher than the significance level
alpha = 0.05 which means it’s not significantly better.
The STAN algorithm performs significantly better than TB in data sets size 1000
with the MCAR rate 10% and in data sets size 5000 and 7000 with the MCAR rate
30% (the p-values are less than the significance level alpha = 0.05). Also, TB is
significantly better than STAN in the data size 1000 with the MCAR rate 40% .

Table 3.12 shows the results of TAN and STAN algorithms using complete data-set.
The TAN algorithm is significantly better than STAN in all data-sets.

Figures 3.10, 3.11, 3.12, and 3.13 show the behavior of algorithms for all data-sets
in all MCAR rates. The results are directly proportional to the size of the data and
inversely proportional to the MCAR rate.
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Figure 3.8: The AUC with data size 1000
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Figure 3.9: The AUC with data size 10000
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Figure 3.10: The TB Algorithm
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Figure 3.11: The FL Algorithm
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3.2. Learning TAN from Incomplete Data

Data Size 1000 2000 5000 7000 10000
TAN 0.978 0.980 0.982 0.984 0.987
STAN 0.966 0.971 0.974 0.979 0.981
Wilcoxon tests 0.01 0.009 0.007 0.005 0.006

Table 3.12: Comparing results of STAN and TAN using complete data
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Figure 3.12: The Algo1 Algorithm
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Figure 3.13: The STAN Algorithm

3.2.4.2 TAN Structure Learned

It’s important to compare the TAN structures with the real ones to learn where the
threshold of the sub-dataset size is for learning the correct TAN structure. From our
experiments, we found that we were not able to learn the correct TAN structures
when the complete sub-dataset was less than 800. In addition, we couldn’t build the
correct TAN structure from subsets with a size of 1000 and an MCAR rate higher
than 20% for the Algo1 and FL algorithms, but with an MCAR rate higher than
10% for the TB algorithm.

To compare the graphs, we used a numerical measure called the F1 score, which
combines recall (the percentage of edges in the original model that are also in the
learned model) and precision (the percentage of edges in the learned model that are
not in the original model) into a single metric by taking their harmonic mean.

Figure 3.14 shows how the algorithms behave when learning the structures. We
observe that FL has a better F1 score and Algo1 is better than TB.

Figure 3.16 (referred to as Algo1 40) shows the structure learned by Algo1 from a
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Figure 3.14: F1-score compare essential graphs

dataset with a size of 1000 and a 40% MCAR rate. The arcs between C1 and C4 do
not match; the true network contains C1 - C4, while the learned network contains no
arc between C1 and C4. Similarly, the arcs between C3 and C4 do not match; the
true network contains no arc between C3 and C4, but the learned network contains
C3 - C4. The recall for this structure is 0.894.

In Figure 3.15 (referred to as Algo1 50), which shows the structure learned by Algo1
from a dataset with a size of 1000 and a 50% MCAR rate, there are discrepancies
in the arcs. Specifically, there are no matching arcs between C1 and C2; the learned
network contains no arc between C1 and C2, while the true network contains C1 -
C2. Additionally, the learned network contains a C1 - C6 edge that does not exist in
the true network. The recall for this structure is 0.7368.

Figure 3.17 (referred to as FL 50) displays the FL structure from a dataset with a
size of 1000 and a 50% MCAR rate. Several arcs do not match with the true network.
Notably, there are arcs between C1 and C3, but the true network contains no arc
between C1 and C3. Similarly, the arcs between C1 and C7 do not match; the learned
network contains C1 - C7, while the true network contains no such arc. There are
also disparities between C2 and C6, C3 and C4, C3 and C7, C4 and C9, C5 and C6,
and C8 and C9. Table 3.13 summarizes these differences, using a checkmark (✓) to
indicate existing edges and a multiplication symbol (× ) to indicate missing edges.
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Figure 3.18: True TAN
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Table 3.13: Algorithms Structure Comparing

Edage Algo1 50 Algo1 40 FL 50 True TAN
C1 C6 ✓ ×
C2 C1 × ✓
C3 C4 ✓ ×
C1 C4 × ✓
C2 C6 × ✓
C4 C9 ✓ ×
C1 C3 × ✓
C1 C7 × ✓
C5 C6 ✓ ×
C3 C7 ✓ ×
C3 C4 ✓ ×
C8 C9 × ✓
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3.3. Learning the Structure of BNs

3.3 Learning the Structure of BNs

This part of the thesis was published in [R5], listed in 4.2. Following up the previ-
ous results, we provide a new approach to learning optimal Bayesian network (BN)
structures from incomplete data based on the BIC score function using a mixture
model to handle missing values. We have compared the proposed approach with
other methods. Our experiments have been conducted on different models, some of
them Belief Noisy-Or (BNO) ones. We have performed experiments using datasets
with values missing completely at random having different missingness rates and
data sizes. We have analyzed the significance of differences between the algorithm
performance levels using the Wilcoxon test. The new approach typically learns ad-
ditional edges in the case of Belief Noisy-or models. We have analyzed this issue
using the Chi-square test of independence between the variables in the true models;
this approach reveals that additional edges can be explained by strong dependence
in generated data. An important property of our new method for learning BNs from
incomplete data is that it can learn not only optimal general BNs but also specific
Belief Noisy-Or models.

3.3.1 Structural Learning with Pruning

Statistical testing is a method of reducing the set of potential DAGs. Another ap-
proach to reducing this set is to use constraints provided by experts. Besides that,
we can use structural constraints similar to in [30]. The structural constraints can
be applied locally as long as they include only one node and its parents.

Algorithm 5 represents an approach to learning the optimal structure of a BN us-
ing the constraint rules and a decomposable score [10]. The main function of the
algorithm is to compute a collection of candidate parent sets for each variable. Then
we optimize across this collection by selecting one parent set for each variable, without
creating directed cycles while maximizing the total score. The following corollary can
be used to reduce the numbers of the collections for candidate parents. It represents
a special case of Lemma 1 in [59].

Lemma 3.3.1. Let Xi be a variable and Π
′
be a candidate parent set for Xi. Suppose

that BIC(Xi|Π
′
) < BIC(Xi|{}). Then Π

′
can be safely ignored from the candidate

parent sets.

Proof. The proof uses the decomposability of the BIC score. Let G
′
and G be DAGs

that differ only on the parent set of Xi where Π
′
is the parent set of Xi in G

′

and Π is the parent set of Xi in G. Suppose Π ⊂ Π
′
. Therefore, if G

′
does not

contain directed cycles then G cannot contain them either. This fact, together with
BIC(Xi|Π) > BIC(Xi|Π

′
), implies thast G

′
is not BIC optimal. This statement also

holds if the candidate subset is the empty set Π = {}.
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Let us also note that, if a dataset is generated from a BN having the empty graph as its
structure and this dataset is large enough then, for any parent set {ΠXi

̸= ϕ}, it holds
that BIC(Xi|{}) > BIC(Xi|ΠXi

). This implies that the variables are independent
and the penalty for larger parent sets makes the BIC value worse for all nonempty
parent sets.

Algorithm 5 Parent sets evaluation for the BN structure learning algorithm
1: Input:
2: D: a data set
3: m: an integer representing the number of variables in D
4: Output: Accepted sets of parents for each node
5: Phase 1: initialize the parameters
6: gi = (V,E)
7: Si: BIC score of gi
8: Qi: priority queue of triples (Xi,ΠXi

, Si ) ordered by Si

9: Phase 2: mscour(Xi,D) ▷ function to find the min(BIC) score
10: Si = the BIC score of gi where only Xi is included
11: return Si

12: Phase 3: find the accepted Qi for Xi

13: Qi is empty
14: S∗ = mscour(Xi,D)
15: ΠXi

is a parent set for Xi

16: add (Xi,ΠXi
, S∗) to Qi

17: For each Xk, k ∈ {1, . . . ,m} do:
18: add Xk to ΠXi

19: Ski = the BIC score of the updated ΠXi

20: if(Ski > S∗)
21: add (Xi,ΠXi

, Ski) to Qk

22: For each Xj, j ∈ {1, . . . ,m}, i ̸= j ̸= k, do:
23: add Xj to ΠXi

24: Ski = the BIC score of the updated ΠXi

25: if(Ski > S∗)
26: add (Xi,ΠXi

, Ski) to Qk

27: else delete Xj from ΠXi

28: end for
29: else delete Xk from ΠXi

30: end for
31:

The gi = (V,E) in Phase 1 from Algorithm 5 is a DAG containing the set of nodes
V = {Xi,ΠXi

} and the set of arcs E = {(Xo, Xi),∀Xo ∈ ΠXi
}, in another world

it is a DAG containing a node and its candidate parent set. Algorithm 5 considers
all possible parent sets that can lead to an optimal BN. Its implementation is based
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on [10]. After Phase 3, we find a DAG with the highest BIC from among the variables
given the candidate parent sets of each variable. That is done using GOBNILP [23]
tool4 which is a smart algorithm using integer linear programming. We will refer to
this algorithm as A1.

One of the axioms of the pruning rules stated in the literature states that if a candid-
ate subset has a better score than another candidate set and the first candidate set
is a subset of the second candidate set, it is safe to disregard that second candidate
set due to the decomposability of score functions. We have applied the pruning rule
as formalized in the Lemma 3.3.1 in Algorithm 5. That algorithm will reduce the
collection of accepted parent sets for each node by discarding all parent sets which
do not meet the criteria.

3.3.2 Incomplete Datasets

One of the widespread problems in data mining and machine learning is incomplete
data. Values may be missing even from training instances. Nowadays more and
more datasets are available, but most of them are incomplete. Therefore, machine
learning must cope with this problem. Normally, to learn the BN structure using A1
algorithm [30], we need complete data, such that all instances ui ∈ D, i ∈ {1, . . . , n}
are complete and don’t have any missing values. In the case of incomplete data and
an instance which has a missing value, A1 does not use this instance in the BN
structure learning.

3.3.2.1 Product Distribution Mixtures to Handle Incomplete Data

Because of incomplete data, most methods in machine learning cannot be applied.
An easy way to deal with this problem is completing the data by simply omitting
the incomplete vectors or removing the incomplete variables. But this approach
has a weakness: we may lose a massive part of the available information. Another
alternative is to use an estimation to replace the missing values [60] (i.e., put in
estimates of the missing values). However, for certain reasons, the estimated values
have to be typical, and the natural variability of the data will be partially restricted.
For that, the product mixture model gives us a better way to directly apply the EM
algorithm to complete the dataset [11]. We will refer to this approach as EM-Mixture.

Considering finite mixtures we assume that:

4https://www.cs.york.ac.uk/aig/sw/gobnilp/
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3. Main Results

P (X) =
r∑

j=1

wjF (X = x|j), (3.3)

F (X = x|j) =
m∏
i=1

f(xi|j). (3.4)

r∑
j=1

wj = 1 (3.5)

where wj > 0 is a probabilistic weight of the j-th mixture component, F is the
joint probability distribution, f is the conditional probability distribution of the
variable Xi, i ∈ 1, . . . ,m, and r is the number of components. Note that the product
components do not imply that the involved variables are independent. In this sense,
the mixture model (3.3) is not restrictive [61]. It is easy to verify that, by increasing
the number of components r, we can describe any discrete probability distribution
in the form (3.3).

To estimate the mixture parameters, we maximize the log-likelihood function:

LL(θ) =
n∑

k=1

logP (u(k))

where n is the number of records in the dataset D and u(k) is the k-th datavector
from D. We will use the EM algorithm to maximize the log-likelihood function.

Next, we explain how the learned product mixture model will be used to fill in the
missing values. Let C = {i1, i2, . . . , ik} be a subset of M = {1, 2, . . . ,m} such that
the corresponding sub-vector

uC = (xi1 , xi2 , . . . , xik)

is complete. Then, under the product mixture model, we can compute the marginal
probability of uC as

PC(uC) =
r∑

j=1

wjFC(uc|j) (3.6)

FC(uC|j) =
∏
i∈C

f(xi|j) . (3.7)

Let z be an index of a variable unobserved in u, i.e., z ∈M \C. Under the product
mixture model, we can compute the conditional distribution of the missing value uz

given the complete part uC with PC(uC) > 0 as

Pz|C(uz|uC) =
Pz,C(uz,uC)

PC(uC)

=
r∑

j=1

Wj(uC)Fz(uz|j)
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3.3. Learning the Structure of BNs

where Wj(uC) are the conditional component weights:

Wj(uC) =
wjFC(uC|j)∑r
j=1wjFC(uC|j)

.

We thus compute the probability distribution Pz|C(uz|uC) for each missing value of
each data vector u ∈ D with a missing value. There are several ways of using this
probability distribution to fill in the missing value of Xz in u – in this paper, we
select value uz maximizing Pz|C(uz|uC) over all values of Xz.

The last step of our presentation is the description of adapting the EM algorithm
for learning product mixture models such that it is applicable to incomplete data.
Given a data vector u ∈ D and a variable Xi with index i ∈ {1, 2, . . . , n}, let N (u)
be the subset of indices of the available variables (i.e., observed in that data) of u,
and D(i) ⊂ D be the subset of vectors with observed values of variable Xi:

N (u) = {v ∈ {1, 2, . . . , n} : uv observed in u}
D(i) = {u ∈ D : i ∈ N (u)}

In Algorithm 6, we present the modification of the EM algorithm for the product
mixture model for incomplete data. For xv ∈ Xv, v ∈ {1, 2, . . . , n}, and j = 1, . . . , r,
we use f(xv|j) to denote the conditional probability of observing value xv of variable
Xv given the component j. The initialization of the EM-Mixture algorithm (presen-
ted in Algorithm 6) is performed using the partitions obtained from agglomerative
hierarchical clustering implemented in the function hc of the R package mclust [62].
In our algorithm, the symbol δ(x, y) denotes the standard delta function equal to one
if x = y and equal to zero otherwise.
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Algorithm 6 EM-Mixture
1: Input:
2: D is a data set
3: Output: a completed data set
4: Phase 1: initializing:
5: wj, j = 1, . . . , r
6:

7: Fv(xv|j), for xv ∈ Xv, v ∈ {1, 2, . . . , n}, and j = 1, . . . , r
8: L = −∞
9: Phase 2: modified EM
10: repeat
11: E-Step:

q(j|u) =
wj

∏
v∈N(u)

Fv(uv|j)∑r
l=1wl

∏
v∈N(u)

Fv(uv|l)
, for u ∈ D, j = 1, . . . , r

wj =
1

|D|
∑
u∈D

q(j|u), for j = 1, . . . , r

M-Step: for xv ∈ Xv, v ∈ {1, 2, . . . , n}, and j = 1, . . . , r

Fv(xv|j) =

∑
u∈D(v) δ(xv,uv) · q(j|u)∑

u∈D(v) q(j|u)

L′ =
∑
u∈D

log

 r∑
j=1

wj

∏
v∈N (u)

Fv(uv|j)


Q = L′ − L

L = L′

until Q ≤ ε
12:

The EM algorithm converges monotonically to a local or global maximum or a saddle
point of the log-likelihood function L in the sense that the sequence of {Lt}∞t=0 does
not decrease. The presence of a local maximum makes the starting point of the
procedure influential; hence it is selected at random. We use the value of ε = 0.005
to terminate the main loop of the algorithm. The sequence of log-likelihood values
generated by E-Step and M-Step is non-decreasing [11] (i.e., L

′
⩾ L).

Theorem 3.3.2. [11]. The sequence of log-likelihood values generated by E-Step
and M-Step is non-decreasing (i.e., L

′
⩾ L).

Proof. Since Kullback–Leibler follows that information divergence is positive for any
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3.3. Learning the Structure of BNs

two discrete probability distributions [63].

1

|U|
∑

X=x∈U

∑
m∈M

q(m|X)

[
log

q(m|X)

q′(m|X)

]
⩾ 0

Substitution from E-Step:

1

|U|
∑
X∈U

∑
m∈M

q(m|X)

[
log

P
′
(X)

P (X)
+ log

wmF (X= x|m)

w′
mF

′(X = x|m)

]
⩾ 0

The first term as we Know that it is equal to the increment of the criterion L:

L
′ − L ⩾

1

|U|
∑
X∈U

∑
m∈M

q(m|X)

[
log

w
′
mF

′
(X = x|m)

wmF (X = x|m)

]

⩾
∑
m∈M

[
1

|U|
∑
X∈U

q(m|X)

]
log

w
′
m

wm

+
∑
m∈M

1

|U|
∑
X∈U

q(m|X)log
F

′
(X= x|m)

F (X= x|m)

By using substitution from M-Step we obtain that:

L
′ − L ⩾

∑
m∈M

w
′

mlog
w

′
m

wm

+
∑
m∈M

1

|U|
∑
X∈U

q(m|X)log
F

′
(X=x|m)

F (X=x|m)

Note that ∑
m∈M

w
′

mlog
w

′
m

wm

⩾ 0

According to M-Step definition, we find that the function F
′
(.|m) maximizes the

right-hand side, i.e.:

∑
m∈M

1

|U|
∑
X∈U

q(m|X)log
F

′
(X=x|m)

F (X=x|m)
⩾ 0

This implies L
′ − L ⩾ 0.

We adapt the BN structure learning algorithm A1 so that it can learn from incomplete
data. We use the EM-Mixture algorithm, i.e., Algorithm 6, to make the incomplete
data complete in Phase 3. The whole algorithm will be referred to as A2. See
Algorithm 7.
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Algorithm 7 Modification of A1 algorithms for incomplete data (referred as A2)

1: Input:
2: D: incomplete dataset
3: m: an integer representing the number of variables in D
4: Output: Accepted sets of parents for each node
5: Phase 3: find the accepted Qi for Xi

6: Qi is empty
7: S∗ = mscour(Xi,D)
8: ΠXi

is a parent set for Xi

9: add (Xi,ΠXi
, S∗) to Qi

10: For each Xk, k ∈ {1, . . . ,m} do:
11: add Xk to ΠXi

12: Ski = the BIC score of the updated ΠXi

13: if(Ski > S∗)
14: add (Xi,ΠXi

, Ski) to Qk

15: For each Xj, j ∈ {1, . . . ,m}, i ̸= j ̸= k, do:
16: add Xj to ΠXi

17: if ΠXi
is not complete:

18: Π′
Xi

= EM.Mixture(ΠXi
)

19: else:
20: Π′

Xi
= ΠXi

21: Ski = the BIC score of the updated Π′
Xi

22: if(Ski > S∗)
23: add (Xi,ΠXi

, Ski) to Qk

24: else delete Xj from ΠXi

25: end for
26: else delete Xk from ΠXi

27: end for
28:

3.3.2.2 Experiments

The experiments have been repeated ten times on ten different subsets for each
MCAR rate on different models, using the generated datasets from the true models
summarized in Table A.2 in A. We have compared our approach, denoted as A2,
with three other methods. A1 denotes the BIC optimal learning from complete data
created by omitting all rows containing a missing value. In [64], the authors proposed
the soft and hard EM algorithms to fill in the missing values and learn an optimal
BN structure from the completed data using Tabu search [65], which we refer to as
A3 and A4, respectively.

The test scenarios, which include more than 700 incomplete datasets, are summarized
in Figure 3.19. The resulting BNs of the simulations within each scenario are shown
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3.3. Learning the Structure of BNs

in Tables 3.14, 3.15, and 3.16.

The decision tree shown in Figure 3.19 is intended to guide practitioners regarding
which imputation algorithm appears to perform the best, depending on the char-
acteristics of their problem with incomplete data. Each leaf of the decision tree
corresponds to a subset of the scenarios we studied, grouped according to the val-
ues of the experimental factors, to recommend which algorithm has the best average
Structure Hamming Distance [66] (SHD) values between the essential graph of the
learned model and the essential graph of the true model. The dominance of the al-
gorithms has been tested using the Wilcoxon test [67]. We consider an algorithm to
be better than another if it has a lower average SHD, and their confidence intervals
do not overlap, i.e., the p-value of the Wilcoxon test is less than 5%.

In the results based on the SHD, A2 has achieved the best results. In the results
based on the SHD and the Wilcoxon test, we have observed some important general
trends:

– A2 appears to be a good algorithm in all scenarios.

– A2 is significantly better than other algorithms for Model M2 in Leaves B and
G.

– A2 is significantly better than other algorithms for the model Child in Leaf C.

– A2 and A3 are significantly better than A1 and A4 for Models M1 in Leaves C,
D, P, and K.

– A1 is significantly worse than other algorithms in all scenarios where the data
size is smaller than 5,000.

Figure 3.20 represents the algorithm results for all models, dataset sizes, and MCAR
rates.
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Figure 3.20: The Structural Hamming Distance to the true models from the resulting mod-
els of the structure learning algorithms using data generated from all models, summarized
in Table A.2 averaged over all data sizes and all MCAR rates.
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Table 3.14: Recommended algorithm by decision tree leaf where MCAR rate in [5 - 10 ]
-Group 1.

Leaf Size Bayesian Network Recommended Algorithm
Weather A1, A2, A3, A4

A Size >5000 M1 A2, A3, A4
Weather A2, A3, A4

B Size in [3000 - 5000] M1 A2, A3, A4
M2 A2
Child A2, A3, A4
Weather A2, A3, A4

C Size in [1500 - 2500] M1 A2, A3
M2 A2, A3, A4
Child A2
Weather A2, A3, A4

D Size <1000 M1 A2, A3
M2 A2
Child A2, A3

Table 3.15: Recommended algorithm by decision tree leaf where MCAR rate in [15 - 25] -
Group 2.

Leaf Size Bayesian Network Recommended Algorithm
Weather A1, A2, A3, A4

E Size >5000 M1 A2, A3, A4
Weather A2, A3, A4

F Size in [3000 - 5000] M1 A2, A3, A4
M2 A2, A3
Child A2, A3
Weather A2, A3, A4

G Size in [1500 - 2500] M1 A2, A3, A4
M2 A2
Child A2, A3
Weather A2, A3, A4

P Size <1000 M1 A2, A3
M2 A2
Child A2, A3
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Table 3.16: Recommended algorithm by decision tree leaf where MCAR rate in [35 - 50] -
Group 3.

Leaf Size Bayesian Network Recommended Algorithm
Weather A1, A2, A3, A4

H Size >5000 M1 A2, A3, A4
Weather A2, A3, A4

G Size in [3000 - 5000] M1 A2, A3
Weather A2, A3, A4

K Size in [1500 - 2500] M1 A2, A3
Weather A2, A3, A4

M Size <1000 M1 A2
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3.4. Belief Noisy-Or Model

3.4 Belief Noisy-Or Model

The Belief Noisy-Or (BNO) model is suitable for describing a specific class of uncer-
tain relationships in Bayesian networks [5] common in several practical applications
of BNs. As an example, let us mention the QMR-DT network [68]. In Figure 3.21 we
present the structure of a CPT F (Y |X1, . . . , Xn) where auxiliary nodes X ′

1, . . . , X
′
n

are added to explicitly separate the noisy relations from the logical OR relation. For
a CPT with multiple parent variables X1, . . . , Xn the noisy-or is defined as follows5:

F (X
′

i = 0|Xi = 0) = 1− α

F (X
′

i = 1|Xi = 0) = α

F (X
′

i = 0|Xi = 1) = pi

F (X
′

i = 1|Xi = 1) = 1− pi

where i ∈ {1, . . . , n} and pi ∈ [0, 1] is the parameter which defines the probability
that the positive value xi of variable Xi is inhibited – it is referred to as the inhibition
probability and the parameter α specifies the possibility of a positive value even if
the value of the corresponding parent variable is negative. In most experiments, we
will set α = 0. The CPT of F (Y |X ′

1, . . . , X
′
n) represents the deterministic logical OR

function, i.e.,

F (Y = 0|X ′
1 = x′

1, . . . , X
′
n = x′

n) =

{
1 if x′

1 = 0, . . . , x′
n = 0

0 otherwise.

Consequently, the CPT of F (Y |X1, . . . , Xn), which represents the noisy-or function,
is computed as follows:

F (Y = 0|X1 = x1, . . . , Xn = xn) =
n∏

i=1

F (X
′

i = 0|Xi = xi)

=
n∏
1

(pi)
xi(1− α)1−xi

F (Y = 1|X1 = x1, . . . , Xn = xn) = 1−
n∏
1

(pi)
xi(1− α)1−xi

where i ∈ {1, . . . , n} and pi ∈ [0, 1] is the parameter which defines the probability
that the positive value xi of variable Xi is inhibited – it is referred to as the inhibition
probability and the parameter α specifies the possibility of a positive value even if
the value of the corresponding parent variable is negative. In most experiments, we
will set α = 0. The CPT of F (Y |X ′

1, . . . , X
′
n) represents the deterministic logical OR

function, i.e.,

F (Y = 0|X ′
1 = x′

1, . . . , X
′
n = x′

n) =

{
1 if x′

1 = 0, . . . , x′
n = 0

0 otherwise.
5In the case of one parent variable, we use probability values as specified in Table 3.17.
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Consequently, the CPT of F (Y |X1, . . . , Xn), which represents the noisy-or function,
is computed as follows:

F (Y = 0|X1 = x1, . . . , Xn = xn) =
n∏

i=1

F (X
′

i = 0|Xi = xi) =
n∏
1

(pi)
xi(1− α)1−xi(3.8)

F (Y = 1|X1 = x1, . . . , Xn = xn) = 1− F (Y = 0|X1 = x1, . . . , Xn = xn) (3.9)

Table 3.17: F (X
′
i |Xi) table

Xi

0 1
X

′
i 0 1− α 0.2

1 α 0.8

Table 3.18: N1 (Figure A.4): Marginal prob-
ability distributions

C1 C2 C3 C4 C5 C6
F (Ci = 0) .5 .6 .68 .744 .795 .837
F (Ci = 1) .5 .4 .32 .256 .205 .163

Figure 3.21: Noisy-or

3.4.1 Analysis of BNO Models

In this section we analyse the BNO models shown in Table A.3 in A where α = 0.
Tables 3.18, 3.19 and 3.20 show the marginal probability distributions (MPD) of the
variables in the BNO models N1, N2 and BN2O respectively; see Figures A.4 and A.5.
The tables illustrate the decrease in the marginal probability values for F(Ci = 0) in
the case of a node with more than one parent. See Table 3.20. This decrease is due
to the properties of the product of probabilities in (3.8). On the other hand, they
also illustrate the increase of this marginal probability with a higher number of its
predecessors in previous layers; this increase depends on the number of layers above
and also on the number of edges in these layers. See Table 3.18 and Table 3.19.
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Table 3.19: N2 (Figure A.4): Marginal probability distributions

C1 C2 C3 C4 C5 C6
F (Ci = 0) .5 .6 .536 .539 .716 .707
F (Ci = 1) .5 .4 .464 .461 .284 .293

Table 3.20: BN2O (Figure A.5): Marginal probability distributions

C1 C2 C3 C4 C5 C6 C7 C8
F (Ci = 0) .5 .5 .5 .5 .5 .129 .36 .36
F (Ci = 1) .5 .5 .5 .5 .5 .871 .64 .64

Using the conditional probability distributions of the variables given their parents,
we can easily calculate joint probability distributions F (U) using formula (2.1) and
conditional probability distributions (CPD) F (XA|XB), where XA ⊆ U and XB ⊆
U \ XA. Recall that a CPD for a particular configuration xB of parent nodes XB

can be computed as6:

F (XA|XB = xB) =
F (XA,XB = xB)

F (XB = xB)
(3.10)

The Kullback-Leibler Distance (KLD) of two conditional probability distributions
F (XA|XB) and G(XA|XB) defined on the same state space is computed as the
weighted average KLD of F (XA|XB = xB) and G(XA|XB = xB) over all config-
urations xB:

D(F (XA|XB)||G(XA|XB)) =
∑
xB

F (XB = xB)
∑
xA

F (XA = xA|XB = xB)(3.11)

∗ log
F (XA = xA|XB = xB)

G(XA = xA|XB = xB)
(3.12)

=
∑
xA,xB

F (XA = xA,XB = xB) (3.13)

∗ log
F (XA = xA|XB = xB)

G(XA = xA|XB = xB)
. (3.14)

We will use KLD of conditional probability distributions estimated from the true
data to support our arguments when we explain the results.

3.4.2 Experiments

We have performed experiments on different Belief noisy-or (BNO) models with their
CPTs defined in Table 3.17 where α ∈ {0, 0.2} and the CPT of a node which has no

6Please, note that all BNs considered in this paper satisfy the condition F (XB = xB) > 0 for all xB .
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parent is uniform, i.e., F (Xi = 1|{}) = 0.5, F (Xi = 0|{}) = 0.5. The experiments
have been repeated ten times on ten different datasets generated from BNO models
with different MCAR rates as specified in Table A.3 in Appendix A. In all Figures,
we will denote additional edges by blue dashed lines, missing edges by red lines, and
edges with different arrows by orange lines.

3.4.2.1 Model N1

The true N1 model is shown in Figure A.4 in Appendix A. We use this model as
an example of a simple model with a chain structure. This model is motivated by
some applications, e.g. from telecommunications. Let us summarise the results of
this model:

– All algorithms learn the true structure when α ̸= 0 in all data sizes and all
MCAR rates.

– Algorithms A2, A3 and A4 learn structures that differ from the true model in
some cases when α = 0, MCAR rate 15% and data size 1,000. For example, A3
and A4 learn an additional edge C2→ C4, and A2 learns C4→ C6 instead of
C5→ C6.

– Using the equation (3.10), we compute F (C6|C5) and F (C6|C4) from the true
model N1. We found that their KLD value (calculated using equation (3.11))
is very small, it is only 0.001. Also, the Chi-square test of independence, whose
p-value is less than 0.0001, shows that there is a strong dependence between C6
and C4, in addition to the relationship between C6 and C5 already explicitly
present in the true model. Also, the BIC of the learned structure7 is -2.252,93
and the BIC of the true model from the same dataset is -2.255,64. This can
be explained by the deterministic conditional distribution F (C6|C5 = 0) for
C5 = 0. For these reasons we can conclude that we can accept that A2 learned
C4→ C6 instead of C5→ C6.

3.4.2.2 Model N2

The true N2 model is shown on the right hand side of Figure A.4 in Appendix A. We
use this model as an example of a model more complicated than the previous model
N1. This model is motivated by some applications, e.g., by computer networks. We
summarize the results of the experiments performed with this model:

– Figure 3.22 represents the Structure Hamming Distance (SHD) for all tested
MCAR rates and models with α = 0. We can observe that, as expected, the
algorithm’s performance is getting better with increasing the data size.

– We can see that A2 on average has a smaller SHD distance to the true model
than other algorithms.

7We report the BIC value for one out of ten datasets as the results for the remaining nine are similar.
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– In Figure 3.23, we compare the models learned from the datasets of size 5,000
with MCAR rate 10% using all four algorithms. We can see that A2 and A3
have the same SHD but they differ in that A3 has a missing edge C4 → C5
while A2 has an additional edge C3 → C6. This additional edge can be ex-
plained by observing that there is a chain of nodes C3 → C4 → C6 which
the state 0 is propagated through because of α = 0. In other words, we
calculate F (C3, C6|C1, C2, C4, C5) and the product F (C3|C1, C2, C4, C5) ·
F (C6|C4, C5) from the true model A.4 using equation (3.10). The KLD value
(computed using equation (3.11)) of these two distributions is very small, it is
only 0.02. Also, the chi-square test of independence of C3 and C6 reveals these
variables are dependent (the test’s p-value is smaller than 0.0001). The addi-
tional edge can be also supported by a comparison of BIC values of the learned
structure with and without the additional edge C3 → C6; they are -9,813.67
for the model with the additional edge and -9,880.5 for the true model.

– If α > 0 then no additional edge is learned anymore, no matter what the MCAR
rate is. Algorithms A2 and A4 we are always able to learn the true structure
when the data size exceeds 1,000. Also, A1 and A3 learn the true structure
when the data size is larger than 1,500.

3.4.2.3 BN2O Models

These models are motivated by health care applications, such as the QMR-DT
network [68]. We created 60 different BN2O models consisting of two layers with
N = 20 nodes in total. They differ in the number of nodes in the first layer, namely
L1 ∈ {5, 8, 12, 15}; the number of nodes in the second layer is L2 = 20 − L1. The
number of edges between layers is randomly generated with three different options
N
2
, 2·N

2
, and 4·N

2
; each option is repeated five times. Using these models, we generated

several incomplete datasets with dataset sizes of 3,000 and 5,000 and MCARs of 10%
and 15%. Figure 3.26 shows the boxplot of the number of additional and missing
edges learned in all instances for each algorithm where the dataset size is 3,000 and
for all MCAR rates. The results show that A2 performs better on average (i.e. the
distance to the true model is smaller) than the other algorithms.

Next, a simpler example of a BN2O is discussed in more detail. The structure of this
model is shown in Figure A.5 in Appendix A.

– Figure 3.24 shows the SHD of all learned models grouped by MCAR rates with
models where α = 0.

– The learned models from the data set of size 5,000, MCAR rate 10% and α = 0
with all algorithms are shown in Figure 3.25. We can see that A2 performs
better (i.e. the SHD distance to the true model is smaller) than the other
algorithms.
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Figure 3.22: The Structural Hamming Distance of the resulting models of the structure
learning algorithms to the true model (with α = 0) using the data generated from the N2
model (the true model is presented in Figure A.4) using the average over ten experiments
for different data sizes and for the MCAR rates of 5%, 10%, and 15%, respectively.
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Figure 3.23: Models learned by A1, A2, A3, and A4, respectively, for most of ten datasets
generated from the true N2 model (presented in Figure A.4) (for α = 0) with the MCAR
rate 10 and the data size of 5,000.
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– Note the additional edge C7 → C8 learned by A2 for most datasets. The
argument for this extra edge is similar to that for the extra edge in the N2
model. Again we can see that the KLD of F (C7, C8|C2, C5) and the product
F (C7|C2, C5).F (C8|C2, C5) is very small; it is only 0.002. Also, the chi-squared
test of independence of C7 and C8 has a p-value smaller than 0.0001, and there
is always a very small difference between the BIC of the model with the extra
edge and the true model; for example, the BIC of the model with the extra edge
is -7,331.8, while the BIC of the true model is -7,338.5 for one of the data sets
generated.

– In the experiments with models with α > 0, no extra edge was learned and the
true model is successfully learned when the data size is 2,500 or greater for all
MCAR rates.
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Figure 3.24: The Structural Hamming Distance to the true models of the resulting models
of the structure learning algorithms using data generated from the BN2O model (the true
model is presented in Figure A.5) (with α = 0) averaged over all data sizes for MCAR
rates of 5%, 10%, and 15%, respectively.
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Figure 3.25: Models learned by A1, A2, A3, and A4, respectively, using data generated for
most of ten datasets generated from the true BN2O model (presented in Figure A.5) (for
α = 0) with the MCAR rate 10 and the data size of 5,000.
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Figure 3.26: Results of the structure learning algorithms using data generated from the
BN2O model (with α = 0) with the data size of 3,000 and averaged over all tested MCAR
rates. The plot on LHS displays the average number of additional edges and the plot on
RHS displays the average number of missing edges.

3.4.2.4 Large BN2O Model

We have performed experiments with a model shown in Figure A.6 in Appendix A.
This model consists of 25 variables; 14 in the first layer and 11 in the second layer. All
algorithms required a data size of more than 5,000 to give a good performance. With
the data size of 5,000 (and the MCAR rate of 10%) the achieved SHD of algorithms
A1, A2, A3, and A4 still have not been very good – namely, 14.6, 11.2, 10, and 9.8,
respectively. With the data size of 7,500 (and the MCAR rate of 10%) the achieved
SHD of A1, A2, A3, and A4 are already much better – namely, 7.2, 4.6, 4.3, and 5.1,
respectively. See Figure 3.27 for the learned models. With the data size of 12,000
we already get the true models except for the additional edges in the case of A2, as
discussed in Section 3.4.2.3.

70



3.4. Belief Noisy-Or Model

A

B

C D
E

F

G H

IJ

K
L

M

N

O

PQ

R

S

T

U

V

W

XY

A

B

C D
E

F

G H

IJ

K
L

M

N

O

PQ

R

S

T

U

V

W

XY

A

B

C D
E

F

G H

IJ

K
L

M

N

O

PQ

R

S

T

U

V

W

XY

A

B

C D
E

F

G H

IJ

K
L

M

N

O

PQ

R

S

T

U

V

W

XY

Figure 3.27: Models learned by A1, A2, A3, and A4, respectively, using the data generated
from the large BN2O model consisting of 25 variables (for α = 0) with the MCAR rate of
10% and the data size of 7,500 (true model is presented in Figure A.6).
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3. Main Results

3.5 Evaluation of a Novel Bayesian Network Model
for Heart Disease Classification

This part of the thesis has been submitted for publication in [R6]. As shown in
sections 3.3 and 3.4, the A2 Algorithm achieved the best experimental performance.
Consequently, we will use this algorithm to analyze real public data from [69]. This
dataset provides information about the diagnosis of cardiac Single Proton Emission
Computed Tomography (SPECT) images. Each patient is categorized as either nor-
mal or abnormal. The database consisted of 267 SPECT image sets (patients), from
which we extracted features summarizing the original SPECT images. This extrac-
tion process resulted in 44 continuous feature patterns for each patient, which were
further transformed into 22 binary feature patterns.

The CLIP3 algorithm [70] was used to generate classification rules from these pat-
terns. The CLIP3 algorithm generated rules with an accuracy of 84.0% (compared
to cardiologists’ diagnoses) [69]. We refer to these data as D1.

In addition, we will use the real data explained in section 3.1. We refer to these data
in this section as D2. Figure 3.28 shows the result of the A2 Algorithm compared to
other algorithms.

Figure 3.28: BNs - Results of experiments.

Figure 3.29 displays the Bayesian Network (BN) structure learned by A2. From this
figure, we can discern that Cystatin C has a direct impact on Mortality. Cardiologists
also employ this test as a marker for other health issues, such as kidney failure. To
confirm Heart Attack Diagnosis, other markers come into play:

– Reduced Glomerular filtration rates (based on Cystatin C (GFCR) and MDRD
(GRMD)) are associated with an increased mortality risk in patients with a
heart attack. It is recommended for individuals with chronic heart disease.
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– The C-reactive protein test predicts the likelihood of having heart disease. El-
evated levels of C-reactive protein are associated with a three-fold greater risk
of a heart attack.

– The circulating Cystatin C in blood is linked to an increased mortality risk in
patients with heart disease. Typically, patients with higher circulating Cystatin
C concentrations tend to be older and have a higher prevalence of systemic
hypertension, resulting in a higher mortality risk.

– Creatinine (KREA) serves as a marker for diabetes and coronary artery disease
(CAD) as well as kidney function. It is associated with an increased mortality
risk in patients with a heart attack.

The learned structure illustrates the dependency between these markers and mortal-
ity. We also compared the classification performance of this model with the models
evaluated in Section 3.1.3 using the D.Bin dataset. It achieved the highest accuracy
of 93.146%. Moreover, its area under the ROC curve and F-Measure rank among the
best achieved, with values of 0.718 and 0.252, respectively.

Furthermore, we report the Markov blanket (see Section 2.5.5) of the Mortality vari-
able in the learned BN structure. The highlighted nodes in Figure 3.29 represent vari-
ables of this Markov blanket. The classification performance of the Markov blanket
for this model is as follows: the accuracy is 92.6302%, the area under the ROC curve
is 0.679, and the F-Measure is 0.1879.
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Figure 3.29: Bayesian Network learned from D.Bin using A2 specified in Algorithm 7.
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3.5.1 BN Structure Analysis

We analyzed the learned BN structure to verify the relationship between AMI fol-
lowing cardiac normality/abnormality, its mortality, and important decision markers,
which can help healthcare providers not only predict heart disease but also measure
healthcare quality and reduce costs. In addition, the variables that directly affect the
prediction results could be reviewed to identify factors that influence heart disease.

We believe that not all variables are related to the results of our study. We applied
feature selection using Bayesian uncertainty [71, 72]. This is a common technique
used in machine learning and statistics to select relevant features and eliminate irrel-
evant ones. The process typically involves estimating the uncertainty or importance
of each feature using a Bayesian approach. There are various Bayesian-based fea-
ture selection methods, such as the Bayesian Information Criterion (BIC) [26] and
Bayesian Regression [73]. We used the BIC approach with a threshold of 0.5.

We have identified the five most important variables. We provide valuable insights
into the relationships and their impact on patient outcomes by analyzing the impact
of each variable on the predictive power of the models. The variables are ranked
from most important to least important according to the results of the BNs models:
Killip, Cystatin (CYS), Glomerular filtration rate (GFMD), Kreatinin (KREA), and
Albumin (ALB). The values are shown in Figure 3.30 where there predictive power of
the models decreased between 6% with ALB up to 16% with Killip. The Table 3.21
represent in detail the impact of different variables on the predictive power of BNs.

Figure 3.30: Impact of removing a variable on prediction qualitys
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A1 A2 A3 A4

AUC CYS 13.27% 9.35% 8.90% 13.19%
ACC CYS 10.14% 8.02% 7.08% 10.51%
AUC ALB 8.06% 3.91% 3.44% 7.98%
ACC ALB 5.92% 3.22% 2.62% 6.10%
AUC Killip 15.87% 12.07% 11.63% 15.79%
ACC Killip 11.09% 9.00% 8.07% 11.45%
ACC KREA 5.50% 5.42% 5.53% 5.71%
AUC KREA 9.08% 4.97% 4.50% 8.99%
AUC GFMD 12.23% 8.26% 7.81% 12.15%
ACC GFMD 9.06% 6.92% 5.97% 9.43%

Table 3.21: Impact of different nodes on the predictive power of BNs
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Chapter 4

Conclusions

4.1 Summary

We used medical data from patients with AIM to compare the results of (a) basic
statistical methods, (b) classification models, and (c) Bayesian networks modeling
the relationships found in the data.

While some conclusions are specific to the data at hand, we also present general
observations.

Certain attribute tests appear to be dependent on the class variable, although they
may be conditionally independent. The observed dependence in the data may be
attributed to their relationship with another attribute that, in turn, depends on
the class variable. Detecting this using basic statistical methods can be challen-
ging. In principle, Bayesian network (BN) learning algorithms can discover mediated
correlations because they test not only pairwise independence but also conditional
independence given the values of other variables.

Bayesian network structure learning often requires complete data. In this study, we
introduced an adaptation of the learning process for the Chow-Liu, Tree Augmented
Naive Bayes Classifier (TAN), and Selective TAN using incomplete and unbalanced
medical datasets. These methods were successfully tested on our dataset. We found
that our proposed algorithm (Algorithm 4) consistently outperformed the other al-
gorithms.

In the reported experiments, we observed that the classifier based on the true model
(TAN) consistently yielded the best results. our proposed algorithm ( Algorithm 4)
achieved the highest AUC with an MCAR rate higher than 20% for all data sizes
greater than 1000. However, according to the Wilcoxon test, it’s not significantly
better than FL with an MCAR rate of 50%. FL achieved the highest AUC with an
MCAR rate of less than 30%, but it’s not better than Algorithm 4 according to the
Wilcoxon test. In addition, STAN with a data size greater than 2000 and an MCAR
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rate of 40% recorded a better AUC than FL and bnclassify, but it is significantly
better than them only with a dataset size of 10000 (significance level α = 0.05).

Using the Wilcoxon signed-rank test on all mean AUC values, we can conclude that
the proposed Algorithm 4 is significantly better than the other algorithms. FL is
significantly better than STAN and TB. Comparing the structures of TAN shows
that there is a significant difference between models 3.15 and 3.16 and the original,
which means that the results concern the graph edges. Additionally, Algorithm 4 is
significantly better than the other algorithms.

We proposed an approach to learn the optimal BN structure from incomplete data
based on [10]. This adaptation imputes missing values using product mixtures
learned by the EM algorithm [11].

We have shown that the sequence of log-likelihood values generated by the E-step
and M-step of the EM algorithm is non-decreasing and that the algorithm converges.

Lemma 3.3.1 helps us to reduce the collection of candidate parent sets for a variable,
which can speed up the learning algorithm.

We performed experiments on incomplete data generated from different types of BN
models to compare the proposed algorithm 7 (A2) with other algorithms [10], soft
and hard EM [64]. In our comparisons, we use the Structure Hamming Distance of
the CPDAGs of the learned DAGs to the CPDAGs of the original models. These
comparisons were performed on (a) general Bayesian networks and (b) Belief Noisy-
or [5] (BNO) models with partially deterministic and non-deterministic conditional
probability distributions. Experiments with type (b) models are motivated by the
relationships in Bayesian networks that are common in practical applications of BNs.

We obtained the following results in the simulation studies.

General BN models:

(a) ∗ A2 appears to be the best choice among the tested algorithms for learning
the structure of BNs from any incomplete data whatever the data size and
the missing MCAR rates are.

∗ In most scenarios corresponding to different data sizes and MCAR rates,
A2 is significantly better than the other algorithms, and in no scenario. It
is significantly worse than any other algorithm according to the Wilcoxon
test.

(b) BNO models:

A2 is able to recover all true edges in the tested models except for
the single chain model (shown in Figure A.4) at size 1,000 and the missing

78



4.1. Summary

rate of 15%. However, the different learned structure of single chain
model is justified by the Chi-square(X 2) test and the Kullback-Leibler
distance (KLD) between the related conditional probabilities suggest there
is a high degree of relationship between the connected variables. A2 has
learned an additional edge in the case of Belief-Noisy-OR models (shown
in Figure A.4) and BN2O (shown in Figure A.5). The additional edge is
acceptable since the X 2 test and KLD suggest there is a high degree of
relationship between these variables. We have seen that BIC of the learned
structure is almost equal to BIC of the true model. Similar behavior has
been observed in other BNO models. A2 is always able to recover all
edges with no missing one while other algorithms are not. The additional
edges were justified by the Chi-square(X 2) test and the Kullback-Leibler
distance (KLD) between the related conditional probabilities suggest there
is a high degree of relationship between the connected variables. For
large BN2O models, all algorithms require large data sizes to have a good
performance; e.g., for the BN2O with 25 variables A2 needs at least 12,000
data records to learn the correct model (with the exception of additional
edges).

We have empirically shown that our A2 behaves better than other tested algorithms
on several studied BNs and in different scenarios. Based on these experiments, we can
recommend this algorithm for practitioners that use BNs or BNOs with incomplete
data.

Finally, the result of A2 using real medical data on patients with AIM is represent
the dependency between important markers and mortality in exactly the same way as
described by a cardiologist, which is done by analysing the impact of different nodes
in the Bayesian Network on the prediction outcomes to identify factors affecting
heart diseases. We have seen that the following variables Killip, Cystatin (CYS),
Glomerular filtration rate (GFMD), Kreatinin (KREA) and Albumin (ALB) have
the most impact on the predictive power.
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4.2 Future Work

The author of the dissertation thesis suggests to explore the following:

∗∗∗∗– The results could be further improved by finding the optimal number of com-
ponents to learn the EM-Mixture in Algorithm 6.

– The implementation of our methodology could be further improved to learn an
optimal BN structure from large datasets by reducing the space of candidate
parents.

– Our methodology could be further improved by learning the structure of large
BN2O networks from incomplete data using constraint methods, and it could
be applied to different real healthcare datasets.
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Appendix A

Appendix

Simulation Scenarios

This Appendix provides an inclusive list of all experiments in the simulation study
described in Sections 3.2.4, 3.3.2.2 and 3.4.2, organized by their main characteristics
in Tables A.1, A.2 and A.3, respectively. The number of components in each exper-
iment in the Sections 3.3.2.2 and 3.4.2 selected based on the number of variables in
the datasets. The true models mentioned in the Table A.2 are shown in Figure A.3.
The true models mentioned in the Table A.3 are shown in Figures A.4 and A.5.
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Figure A.1: T1 and T2 true models, respectively.
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A. Appendix

Table A.1: Description of the key factors of all TAN experiments in the simulation study.

Network Missing Rate (MCAR) Replicates Sample Size
10 10 1000,2000,5000,7000,10000
20 10 1000,2000,5000,7000,10000

T1(Figure A.1) 30 10 1000,2000,5000,7000,10000
40 10 1000,2000,5000,7000,10000
50 10 1000,2000,5000,7000,10000
10 10 1000,2000,5000,7000,10000
20 10 1000,2000,5000,7000,10000

T2 (Figure A.1) 30 10 1000,2000,5000,7000,10000
40 10 1000,2000,5000,7000,10000
50 10 1000,2000,5000,7000,10000
10 10 1000,2000,5000,7000,10000
20 10 1000,2000,5000,7000,10000

T3 (Figure A.2) 30 10 1000,2000,5000,7000,10000
40 10 1000,2000,5000,7000,10000
50 10 1000,2000,5000,7000,10000
10 10 1000,2000,5000,7000,10000
20 10 1000,2000,5000,7000,10000

T4 (Figure A.2) 30 10 1000,2000,5000,7000,10000
40 10 1000,2000,5000,7000,10000
50 10 1000,2000,5000,7000,10000
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Figure A.2: T3 and T4 true models, respectively.
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Table A.2: Description of the key factors of all BN experiments in the simulation study.

Network Missing Rate (MCAR) Replicates Sample Size
10 10 100, 500,1000,5000,10000

Weather [74] 25 10 100, 500,1000,5000,10000
50 10 100, 500,1000,5000,10000,13000
10 10 1000, 2000,3000,5000

Child [75] 15 10 1000, 2000,3000,5000
50 10 1000, 2000,3000,5000
5 10 500,1000,1500,2500,5000

M2 (Figure A.3) 10 10 500,1000,1500,2500,5000
15 10 500,1000,1500,2500,5000
25 10 500,1000,1500,2500,5000
10 10 500,1500,2500,5000,10000,13000

M1 (Figure A.3) 20 10 500,1500,2500,5000,10000,13000
35 10 500,1500,2500,5000,10000,13000
50 10 500,1500,2500,5000,10000,13000
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Figure A.3: M1 and M2 true models, respectively
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A. Appendix

Table A.3: Description of the key factors of all Belief Noisy-OR experiments in the simu-
lation study (true models are presented in Figures A.4 and A.5).

Network Missing Rate (MCAR) Replicates Sample Size
5 10 1000,1500,2500,5000

BN2O 10 10 1000,1500,2500,5000
15 10 1000,1500,2500,5000
5 10 1000,1500,2500,5000

N1 10 10 1000,1500,2500,5000
15 10 1000,1500,2500,5000
5 10 1000,1500,2500,5000

N2 10 10 1000,1500,2500,5000
15 10 1000,1500,2500,5000

large BN2O 10 10 5000, 7500
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C5 C6
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C4

C5

C6

Figure A.4: N1 and N2 true models, respectively. Their marginal probability distributions
are summarized in Tables 3.18 and 3.19
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Figure A.5: BN2O true model. Its marginal probability distributions are summarized in
Table 3.20
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Figure A.6: Example of a large BN2O model with 25 variables (whose learned models are
presented in Figure 3.27).
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A. Appendix

Algorithm2

All algorithms are available at https://github.com/issamsalman/PhD-thesis-algorithms.

The computational complexity of A2 algorithm is as follows:

– The computational complexity of A2 depends on the number of components,
data size, the convergence criteria, etc.

– Generally, the complexity of the A2 Algorithm is O(T · C), where T is the
number of iterations and C represents the complexity of each iteration.

– C is number of data point multiplied by number of components.

96

https://github.com/issamsalman/PhD-thesis-algorithms

	Introduction
	Motivation
	Problem Statement
	Related Work
	Goals of the Dissertation Thesis
	Structure of the Dissertation Thesis

	Background
	Why Bayesian Network Models
	Bayesian Networks and Health Care
	Probability Distribution Represented by a Bayesian Network
	D-separation

	Assumptions for Learning the Causal Structure
	Bayesian Network Structure Learning
	Trees
	Maximum Likelihood TAN
	Constraint-Based Vs. Score-Based
	Score-Based
	Constraint-Based 
	Constraint Using Topological Ordering of Nodes

	Previous Results and Related Work

	Main Results
	Heart Attack Mortality Prediction
	Data
	Preliminary Statistical Analysis
	Machine Learning Methods

	Learning TAN from Incomplete Data
	Selective Tree Augmented Naive Bayes
	 Imbalanced Data
	Results
	Quality of Classifiers Tested on Artificial Data

	Learning the Structure of BNs
	Structural Learning with Pruning
	Incomplete Datasets

	Belief Noisy-Or Model
	Analysis of BNO Models
	Experiments

	Evaluation of a Novel Bayesian Network Model for Classification
	BN Structure Analysis


	Conclusions
	Summary
	Future Work

	Bibliography
	Author's Publications Relevant to the Thesis:
	Other Publications of the Author
	Appendix

