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High-dimensional entanglement is a promising resource
for quantum technologies. Being able to certify it for any
quantum state is essential. However, to date, experimen-
tal entanglement certification methods are imperfect and
leave some loopholes open. Using a single-photon-sensitive
time-stamping camera, we quantify high-dimensional spa-
tial entanglement by collecting all output modes and without
background subtraction, two critical steps on the route
toward assumptions-free entanglement certification. We
show position-momentum Einstein–Podolsky–Rosen (EPR)
correlations and quantify the entanglement of formation of
our source to be larger than 2.8 along both transverse spa-
tial axes, indicating a dimension higher than 14. Our work
overcomes important challenges in photonic entanglement
quantification and paves the way toward the development of
practical quantum information processing protocols based
on high-dimensional entanglement. © 2023 Optica Publishing
Group

https://doi.org/10.1364/OL.487182

High-dimensional entangled states offer several advantages
over qubits. They have a greater information capacity [1], an
improved computational power [2], and increased resistance to
noise and losses [3]. They are also good candidates for use
in device-independent quantum communication protocols [4].
In particular, pairs of photons entangled in their transverse
spatial degree of freedom have such a high-dimensional struc-
ture. When harnessed in the continuous bases of position and
momentum [5], these states can lead to many applications, such
as quantum key distribution [6], continuous-variable quantum
computation [7], and quantum imaging [8].

To fully take advantage of high-dimensional entanglement,
it is essential to certify its presence using as few measure-
ments as possible and without making any assumptions. The
most common experimental method consists in analyzing
the quantum state sequentially using single-outcome projec-
tive measurements [9]. In particular, this method has been
used to measure high-dimensional entanglement using differ-
ent approaches, such as measuring Einstein–Podolsky–Rosen

(EPR)-type correlations [10,11], using compressive sensing
[12], quantum steering [13], or by detecting photons in mutually
unbiased bases (MUBs) [14].

However, this approach has major shortcomings. First, it is
time consuming. For example, in the case of a bipartite state with
local dimension d, it requires performing at least 2d2 measure-
ments (e.g., using two MUBs), making this task impractical in
high dimensions and effectively limiting the key rate in quantum
communications scenarios [15]. Second, it necessarily leaves the
fair-sampling loophole open. Indeed, for the latter to be closed,
one must ensure that all possible output states are measured
simultaneously [16].

Due to the limitations of single-outcome projective measure-
ments, researchers are exploring new approaches to detect all
outputs simultaneously rather than measuring them one at a time.
One promising path is to use single-photon-sensitive cameras to
detect photons in all spatial modes in parallel. High-dimensional
spatial entanglement was thus recently measured using electron
multiplying charge coupled device (EMCCD) cameras [17–20],
intensified scientific complementary metal-oxide semiconduc-
tor (i-sCMOS) cameras [21,22], and single-photon avalanche
diode (SPAD)–CMOS sensor cameras [23,24]. However, all
of these methods require post-processing of the recorded data,
which necessarily opens a loophole in the certification protocol
[25]. Specifically, none of the results reported in Refs. [17–24]
were sufficient to violate the criterion of entanglement without
modeling and subtracting accidental coincidences.

The presence of such a high rate of accidental coincidences
is due to the technical imperfections of these camera technolo-
gies, such as their low temporal resolution (EMCCD), poor
quantum efficiency (SPAD array), or the presence of noise
(CMOS) [8]. In our work, we quantify high-dimensional spatial
entanglement without post-processing the data using a recently
developed single-photon-sensitive time-stamping camera [26].
We achieve violation of an EPR-type criterion and measure an
entanglement of formation (EoF) of 2.81(3) and 3.02(3) along
the x and y transverse spatial axes, respectively, thus showing
an entanglement dimension higher than 14. Figure 1(a) shows
the experimental setup. Spatially entangled photon pairs are
produced via type-I spontaneous parametric downconversion
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Fig. 1. Experimental setup. (a) A horizontally polarized
continuous-wavelength collimated 405-nm laser diode illuminates
a 0.5-mm-long β-barium-borate (BBO) crystal to produce spatially
entangled photon pairs by type-I spontaneous parametric downcon-
version (SPDC). The pump laser power is 50 mW. Crystal surface
is imaged and magnified (×2) into an intermediate optical plane P
(dashed line) by a set of lenses f1–f2. A beam splitter (BS) separates
the photon-pairs beam into two that are re-positioned side-by-side
using a half-wave plate at 45◦ and a polarizing beam splitter (PBS).
In the far-field (FF) configuration, the crystal is Fourier imaged onto
the camera by lens f4. In the near-field (NF) configuration, the crys-
tal surface is imaged onto the camera using lenses f3 = 30 mm and
f4 = 150 mm. The camera is composed of an image intensifier and a
time-stamping camera Tpx3Cam. Long pass (LPF) and bandpass fil-
ters (BPF) block the pump after the crystal to select near-degenerate
photon pairs at 810 ± 5 nm. (b) and (c) Intensity images measured
on the camera in the FF and NF configurations, respectively. For
clarity, the spatial positions with an index “1” correspond to pixels
on the left side of the camera and those with an index “2” to pixels
on the right side. Spatial axes units are in pixels and intensity is in
photon counts. Acquisition time is 200 seconds. The losses in the
experiment are mainly due to the quantum efficiency of the image
intensifier, which is approximately 0.2.

(SPDC) in a β-barium-borate (BBO) crystal using a 405-nm
continuous wave pump laser. After magnification, a beam split-
ter divides the optical path into two paths imaged onto two
separate parts of a single-photon-sensitive time-stamping cam-
era. In our work, two distinct imaging configurations are used.
To detect photons in the momentum basis, the Fourier plane
of the crystal surface is imaged onto the camera by the lens f4
(far-field (FF) configuration). To detect photons in the position
basis, we insert the lens f3 to form a 4f -telescope (i.e., f3 and
f4) and image the output surface of the crystal onto the cam-
era (near-field (NF) configuration). Figures 1(b) and 1(c) show
intensity images measured by the camera using the FF and NF
configurations, respectively.

A central element in our experiment is the single-photon-
sensitive time-stamping camera. It consists of a Tpx3Cam
camera (Amsterdam Scientific Instruments) and an image inten-
sifier (Photonis). In contrast to the CCD and CMOS cameras,
which acquire the images frame by frame, the Tpx3Cam is
an event-driven camera, which time-stamps the single photons
continuously. After performing an acquisition and after post-
processing of the raw data with a centroiding algorithm [27],
a list of all the recorded single photons together with their
time-stamps and spatial coordinates is formed. The list is then fil-
tered using a pairing algorithm to keep only coincidence events,
i.e., pairs of photons detected within a 6-ns time-window (see

Supplement 1 for more details). Similar approaches were used in
recent quantum and correlation imaging experiments [27–32].
In our work, we use it to retrieve the full spatial two-photon
joint probability distribution (JPD) of detected photons. In the
FF configuration, it is noted Γ(kx1 , ky1 , kx2 , ky2 ) and represents the
joint probability of detecting a photon at spatial position (kx1 , ky1 )

(left half of the camera) and a photon at position (kx2 , ky2 ) (right
half). In the NF configuration, Γ(x1, y1, x2, y2) is the joint prob-
ability of detecting a photon at position (x1, y1) (left half) and a
photon at position (x2, y2) (right half).

Figures 2(a)–2(h) show bi-dimensional projections of meas-
ured JPDs. In the momentum basis (FF configuration), JPD
projections in Figs. 2(b)–2(d) show that photons are anti-
correlated on the camera, i.e., when a photon is detected at
position (kx2 , ky2 ), its twin is detected with a high probability at
(kx1 , ky1 ) = (−kx2 ,−ky2 ). In the position basis (NF), we observe
that photons are strongly correlated, i.e., they are always detected
next to each other [Figs. 2(f)–2(h)]. As position and momen-
tum bases are mutually unbiased, the existence of strong spatial
correlations suggest the presence of spatial entanglement [33].
Formally, its presence can be demonstrated using separability
criteria. In our work, we use the EPR-Reid criterion [34] based
on the inequality

∆min[x]∆min[kx] ≥
1
2

, (1)

where ∆min[x] and ∆min[kx] are the minimum inferred uncertain-
ties for position and momentum measurements, respectively.
The same inequality exists also for the y axis after substi-
tuting x → y and kx → ky. Uncertainties are expressed from
measurable quantities by the following definition:

∆
2
min[x] =

∫
dx1dx2Γm(x2)∆

2[x1 |x2], (2)

where ∆[x1 |x2] is the uncertainty in detecting a photon at x1

conditioned on a detection at x2 and Γm(x2) is the marginal
probability of detecting a photon at x2. The same definition
applies for ∆min[y], ∆min[kx], and ∆min[ky]. Conditional uncer-
tainties are estimated from conditional probability distribution,
such as those shown in Figs. 2(b) and 2(f), by Gaussian fitting
[35]. All uncertainty values are reported in Table 1. In partic-
ular, we find ∆min[x]∆min[kx] = 0.0333(6) and ∆min[y]∆min[ky] =

0.0366(6), showing clear violation of the inequality in Eq. (1)
along both spatial axes. This shows the presence of EPR corre-
lations, and thus spatial entanglement, in the detected quantum
state.

To quantify high-dimensional entanglement, we measure the
EoF. The EoF is a measure of how many Bell states would need
to be used to transform a single copy of our high-dimensional
entangled state using only local operations and classical com-
munication. As described in Ref. [36], a lower bound of the EoF
along the x axis is expressed as follows:

Ex ≥ −log2(e∆[x1 − x2]∆[kx1 + kx2 ]), (3)

where ∆[x1 − x2] and ∆[kx1 + kx2 ] are the uncertainty for
measurements in the transformed variables x2 − x1 and kx1 + kx2 ,
respectively. The same inequality exists for Ey, the lower
bound of EoF along the y axis, after substituting x1 − x2 →

y1 − y2 and kx1 + kx2 → ky1 + ky2 . Uncertainty values are esti-
mated from the sum and minus-coordinate JPD projections
shown in Figs. 2(d) and 2(h), respectively, by Gaussian fitting. In

https://doi.org/10.6084/m9.figshare.22801724
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Fig. 2. Bi-dimensional projections of the measured spatial joint probability distribution (JPD). (a) and (e) Marginal probability distributions
Γm(kx2 , ky2 ) and Γm(x2, y2) of detecting one photon of the pair in the FF and NF configurations, respectively. (b) and (f) Conditional probability
distributions Γ(kx2 , ky2 |kx1 , ky1 ) and Γ(x2, y2 |x1, y1) of detecting one photon of a pair when its twin was detected at pixel (kx1 , ky1 ) = (x1, y1) =

(−25,−10) (white dashed lines) in the FF and NF configurations, respectively. (c) and (g) Joint probability distribution Γ(ky2 , ky1 , kx2 , kx1 )

and Γ(y2, y1, x2, x1) of detecting photon pairs on the central column of the sensor i.e., (kx1 , kx2 ) = (0, 0) and (x1, x2) = (0, 0), in the FF and NF
configurations, respectively. (d) Sum-coordinate projection Γ+(kx1 + kx2 , ky1 + ky2 ) of the JPD measured in the FF configuration. (h) Minus-
coordinate projection Γ−(x1 − x2, y1 − y2) of the JPD measured in the NF configuration. Definitions of Γm, Γ−, and Γ+ are provided in the
Supplement 1. Inserted images are zooms around the peaks (10 × 10 pixels). Acquisition time is 200 seconds in each configuration. Spatial
axes units are in pixels. The measured JPD are not normalized and their units are numbers of coincidences. Totals of 1.4 × 106 and 2.1 × 106

coincidences were detected by the sensor during acquisition in the FF and NF configuration, respectively.

Table 1. Measured Values of Uncertainties, Lower
Bounds of Entanglement of Formation, and Low Bound
of Dimensiona

Quantity Values Product

∆[kx2 |kx1 ] 3.5(5)×103 m−1

∆[ky2 |ky1 ] 3.1(5)×103 m−1

∆[x2 |x1] 1.0(5)×10−5 m
∆[y2 |y1] 9.7(9)×10−6 m
∆min[kx] 3.217(5)×103 m−1 }︂

0.0333(6)
∆min[x] 1.03(1)×10−5 m
∆min[ky] 3.351(4)×103 m−1 }︂

0.0366(6)
∆min[y] 1.09(1)×10−5 m
∆[kx2 + kx1 ] 3.82(4)×103 m−1 }︂

0.0524(7)
∆[y2 − y1] 1.28(2)×10−5 m
∆[ky2 + ky1 ] 4.07(4)×103 m−1 }︂

0.0450(7)
∆[x2 − x1] 1.17(1)×10−5 m
Lower bound Ex 3.03(2)
Lower bound Ey 2.81(2)
Lower bound dx 8.1(1)
Lower bound dy 7.01(9)

a∆[kx2 |kx1 ], ∆[y2 |ky1 ] are conditional uncertainties measured along both
axes for (kx1, ky1 ) = (−25, 10), i.e., widths of the peak shown in Fig. 2(b).
∆[x2 |x1], ∆[y2 |y1] are conditional uncertainties measured along both axes
for (x1, y1) = (−25, 10), i.e., widths of the peak shown in Fig. 2(d). ∆min

values were calculated using Eq. (2). Their product value shows violation of
the EPR-Reid criterion. Lower bounds of the EoF and dimension of entan-
glement are obtained using Eq. (3). Errors in the measured and calculated
values are written between parentheses and apply to the last digit of the
value. They correspond to 5σ, where σ is the standard deviation obtained
via Monte Carlo simulation of the experiment.

our work, we find −log2(e∆[x1 − x2]∆[kx1 + kx2 ] = 3.03(2) and
−log2(e∆[y1 − y2]∆[ky1 + ky2 ]) = 2.81(2). EoF values then pro-
vide lower bounds for entanglement dimensionality dx ≥ 8 (x
axis) and dy ≥ 6 (y axis) using the formula d ≥ 2E [36]. The
dimension of the state measured is thus higher than 14.

We demonstrated the use of a single-photon-sensitive time-
stamping camera to quantify high-dimensional spatial entan-
glement without performing accidental background subtraction.
Our approach improves on all previous camera-based techniques
[17–24], in which such a post-processing step is required to
demonstrate the presence of entanglement. Furthermore, by
accurately detecting all output modes in parallel, we come
closer to an ideal experimental configuration for certifying high-
dimensional entanglement without assumptions, a situation
that would be unattainable using single-outcome measure-
ment approaches. From a practical point of view, we achieved
high-dimensional entanglement quantification without acciden-
tal subtraction in 400 seconds by detecting more than 6000
spatial output modes (i.e., illuminated pixels) in two bases,
which is to our knowledge one of the fastest approaches in
term of acquisition time per number of modes. Nevertheless,
our approach still needs improvement to reach assumptions-free
high-dimensional entanglement certification. From the theory
side, it is important to note that the entanglement criteria used
in our study [i.e., Eqs. (1) and (3)] do not enable certifica-
tion of high-dimensional entanglement in the strict sense of the
term, because they use assumptions about the state, e.g., purity
and double-Gaussian approximation [35,36]. In our work, we
thus prefer to use the terms detection and quantification. To
achieve proper certification, one would need to adapt more
robust protocols, such as those developed for single-outcome
measurements [14], to the case of camera detection. This is
not straightforward, but could be done by specific design of the
measurement bases [37] and by using multi-plane light con-
verters [38]. From the technical side, we would like to point
out that the image intensifier that we use has a quantum effi-
ciency of approximately 20%, which is insufficient to close the
fair-sampling loophole [16]. The commercial image intensifiers
do not achieve a quantum efficiency of more than 40%, so one
would need to employ instead a single-photon-sensitive sen-
sor with higher quantum efficiency, for example, single-photon

https://doi.org/10.6084/m9.figshare.22801724
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avalanche detector, SPAD [39], or superconducting nanowire
single-photon detectors, SNSPDs, [40]. These detectors would
need to be combined with a data-driven readout as in Tpx3Cam.

Furthermore, even if their rates are very low, we still detect
accidental coincidences in the measured JPDs, i.e., approx-
imately 1.4×10−4 accidental coincidences per pixel pair per
second in the FF configuration, and 1.8×10−4 accidental coinci-
dences per pixel pair per second in the NF configuration. These
accidentals increase the measured uncertainties and therefore
decreases the amount of entanglement dimension that can be
quantified. They could be further reduced by diminishing the
system losses, e.g., using a type-II SPDC source to split pho-
ton paths with a polarizing beam splitter, and by enhancing the
effective camera temporal resolution [32].
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