
R E L A X I N G D E D U C T I V E A N D I N D U C T I V E R E A S O N I N G I N
R E L AT I O NA L L E A R N I N G

M A RT I N S VAT O Š

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

A thesis submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy (Ph.D.)

Study Programme No. P2612 – Electrical Engineering and Information Technology
Branch No. 2612V025 – Information Science and Computer Engineering

S U P E RV I S O R :
Ing. Ondřej Kuželka, Ph. D.

February 2024

[February 19, 2024 at 23:46 – classicthesis]

Martin Svatoš: Relaxing Deductive and Inductive Reasoning in Relational
Learning, a thesis submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy (Ph.D.),
Study Programme No. P2612 – Electrical Engineering and Information Tech-
nology
Branch No. 2612V025 – Information Science and Computer Engineering,

S U P E RV I S O R S:
Ing. Ondřej Kuželka, Ph. D.

L O C AT I O N:
Prague, Czech Republic

T I M E F R A M E:
2016 – February 2024

[February 19, 2024 at 23:46 – classicthesis]

To my brother
Jiří

and my beloved
Rád’a

for making me a better person.

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

A B S T R AC T

Relational learning employs first-order logic for the representation of both
data and models. The advantages of this representation arise from the trans-
parent explainability of models and the ability to model a wide variety of
tasks, including, for example, the well-known structural alert or knowledge
base completion. However, it also poses some challenges when one wants to
learn a model relying on an accurate hypothesis, which is quite a challeng-
ing problem since the space of hypotheses, i.e., logical formulae, is large and,
in turn, makes the learning expensive. Utilizing learned hypotheses in a non-
naive way is a challenging problem since learning on real-life data commonly
leads to imperfect hypotheses.

This thesis addresses these two challenges. Namely, we focus on pruning
the space of logical sentences in two separate scenarios. Firstly, we study
the problem of generating integer sequences that can be described using first-
order logic. We show that our novel approach, which resembles relational
pattern mining, is fruitful and scalable by pruning the space of logical formu-
lae. Besides producing a database as large as one-seventh of the well-known
On-Line Encyclopedia of Integer Sequences (OEIS), our approach was also
able to generate new descriptions of several entries in OEIS. Secondly, we
present a novel general technique for pruning hypotheses space by utilizing
domain knowledge, which has to be learned at first and, hence, requires addi-
tional computational time. However, our experiments show that the method
is faster than the standard isomorphism-based pruning and produces fewer
hypotheses without sacrificing the completeness of the search.

Finally, we consider the problem of utilizing imperfect rules for the knowl-
edge base completion task, for which the standard entailment is too brittle.
We propose a novel extension of an existing fragment-based inference algo-
rithm by stratifying rules, which we learn using a heuristically driven top-
down beam search suited for the inference algorithm. Our experiments show
that the inference method is inferior to some others and, when accompanied
by the heuristic rule learner, is more cautious than standard rule-based ap-
proaches applied in the inductive setting.

Keywords relational learning, mathematical discovery, rule learning, sen-
tence space pruning, inference

v

[February 19, 2024 at 23:46 – classicthesis]

A B S T R A K T

Relační učení využívá predikátovou logiku prvního řádu pro reprezentaci dat
i modelů. Neoddiskutovatelnou výhodou tohoto formalismu je snadné vysvět-
lení naučených modelů a možnost reprezentovat širokou paletu problémů,
kterými jsou například toxicita molekul nebo doplňování znalostní báze. Na
druhou stranu, tento formalismus také přináší jistá úskalí a to zejména v pří-
padech aplikování predikátových logických hypotéz. Jejich samotné hledá je
náročné kvůli velikému prostoru logických formulí, které plyne z prediká-
tové logiky. Použití hypotéz ve formě predikátové logiky na reálných datech
je těžký úkol sám o sobě, protože taková data často obsahují šum a vedou k
ne zcela přesným hypotézám.

Tato práce cílí na dva výše zmíněné problémy. Zaměřuje se na prořezá-
vání prostoru sentencí ve dvou oddělených úlohách. Cílem první úlohy je
generování celočíselných sekvencích, které mohou být popsány pomocí pre-
dikátové logiky. Naše výsledky ukazují, že námi navržený nový přístup ře-
šení této úlohy, který připomíná relační dolování vzorů, funguje díky proře-
závání prostoru logických formulí. Náš přístup zatím vygeneroval databází
celočíselných sekvencí o velikosti jedné sedminy velice populární On-Line
Encyclopedia of Integer Sequences (OEIS) a dokonce byl schopen vygene-
rovat sekvence, které již v této populární databázi jsou. Cílem druhé úlohy
je prořezávání prostoru hypotéz v relačních doménách, pro což jsme vytvo-
řili novou metodu, která využívá znalosti obsažené v datech, např. symetrii
určitých relací. Pravdou je, že tato znalost musí být nejdříve naučena z dat,
nicméně, naše experimenty ukázaly, že i tato část výpočtu je kompenzována
efektivitou tohoto prořezávání, které je rychlejší a produkuje méně logických
hypotéz aniž by došlo k ohrožení úplnosti prohledávaného prostoru.

Posledním problémem, který v této práci řešíme, je použití nedokonalých
hypotéz pro doplňování znalostní báze. Jejich přímočaré použití pomocí kla-
sického odvozování z predikátové logiky prvního řádu je v tomto případě
málo robustní. Proto jsme navrhli nové rozšíření metody založené na frag-
mentech dat, pro kterou jsme vyvinuli inferenční algoritmus. Naše rozšíření
spočívá v prioritizaci pravidel, která se učíme pomocí heuristického shora-
dolů paprskového prohledávání vyvinutého speciálně pro naší inferenční me-
todu. Experimenty ukazují, že naše inferenční metoda je v případě použití
stejných pravidel lepší než ostatní inferenční metody a zároveň, ve spojení s
heuristicky naučenými pravidly, je opatrnější než standardní pravidlové pří-
stupy v indukčním nastavení.

Klíčová slova relační učení, matematické objevy, učení pravidel, prořezávání
prostoru sentencí, inference

vi

[February 19, 2024 at 23:46 – classicthesis]

P U B L I C AT I O N S

Some contents of this thesis have appeared previously in the following publi-
cations:

[1] Martin Svatoš, Peter Jung, Jan Tóth, Yuyi Wang, and Ondřej Kuželka.
“On Discovering Interesting Combinatorial Integer Sequences.” In:
Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao,
SAR, China. ijcai.org, 2023, pp. 3338–3346. DOI: 10 . 24963 / ijcai .
2023/372. URL: https://doi.org/10.24963/ijcai.2023/372. WoS: 0,
Scopus: 1, Google: 1.

[2] Martin Svatoš, Steven Schockaert, Jesse Davis, and Ondřej Kuželka.
“STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment.”
In: ECAI 2020 - 24th European Conference on Artificial Intelligence,
29 August-8 September 2020, Santiago de Compostela, Spain, Au-
gust 29 - September 8, 2020 - Including 10th Conference on Pres-
tigious Applications of Artificial Intelligence (PAIS 2020). Ed. by
Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela
Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang. Vol. 325.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2020,
pp. 1515–1522. DOI: 10.3233/FAIA200259. URL: https://doi.org/10.
3233/FAIA200259. WoS: 0, Scopus: 1, Google: 7.

[3] Martin Svatoš, Gustav Šourek, Filip Zelezný, Steven Schockaert,
and Ondřej Kuželka. “Pruning Hypothesis Spaces Using Learned Do-
main Theories.” In: Inductive Logic Programming - 27th International
Conference, ILP 2017, Orléans, France, September 4-6, 2017, Re-
vised Selected Papers. Ed. by Nicolas Lachiche and Christel Vrain.
Vol. 10759. Lecture Notes in Computer Science. Springer, 2017, pp. 152–
168. DOI: 10.1007/978-3-319-78090-0_11. URL: https://doi.org/10.
1007/978-3-319-78090-0%5C_11. WoS: 0, Scopus: 2, Google: 5.

[4] Gustav Šourek, Martin Svatoš, Filip Železný, Steven Schockaert,
and Ondřej Kuželka. “Stacked Structure Learning for Lifted Rela-
tional Neural Networks.” In: Inductive Logic Programming - 27th In-
ternational Conference, ILP 2017, Orléans, France, September 4-6,
2017, Revised Selected Papers. Ed. by Nicolas Lachiche and Chris-
tel Vrain. Vol. 10759. Lecture Notes in Computer Science. Springer,
2017, pp. 140–151. DOI: 10.1007/978- 3- 319- 78090- 0_10. URL:
https : / /doi .org /10 .1007 /978- 3- 319- 78090- 0%5C_10. WoS: 0,
Scopus: 4, Google: 12.

Any parts of the original papers reused verbatim in this thesis have been in-
cluded with the approval of the co-authors.

vii

[February 19, 2024 at 23:46 – classicthesis]

https://doi.org/10.24963/ijcai.2023/372
https://doi.org/10.24963/ijcai.2023/372
https://doi.org/10.24963/ijcai.2023/372
https://doi.org/10.3233/FAIA200259
https://doi.org/10.3233/FAIA200259
https://doi.org/10.3233/FAIA200259
https://doi.org/10.1007/978-3-319-78090-0_11
https://doi.org/10.1007/978-3-319-78090-0%5C_11
https://doi.org/10.1007/978-3-319-78090-0%5C_11
https://doi.org/10.1007/978-3-319-78090-0_10
https://doi.org/10.1007/978-3-319-78090-0%5C_10

[February 19, 2024 at 23:46 – classicthesis]

AC K N OW L E D G M E N T S

Foremost, my warmest acknowledgment belongs to Ondřej Kuželka for his
endless well of ideas and support during my studies. Besides, I thank Gustav
Šír and Filip Železný, who co-supervised me during my freshman years, and
all of the co-authors, namely Steven Schockaert, Jesse Davis, Jan Tóth, Peter
Jung, Yuyi Wang, and Giuseppe Marra. Finally, I would like to thank Peter
Ryšavý, František Malinka, and Jáchym Barvínek for technical talks in the
loft office.

I acknowledge the support of the following grants: Czech Science Foundation (projects no.
17-26999S, 20-19104Y, 23-07299S), OP VVV project CZ.02.1.01/0.0/0.0/16_019/0000765
“Research Center for Informatics”, Czech Technical University students grants
(SGS17/189/OHK3/3T/13, SGS20/178/OHK3/3T/13, SGS23/184/OHK3/3T/13), and a
generous donation from X-Order Lab.
Computatianl resources were provided by the CESNET LM2015042 and the CERIT
Scientific Cloud LM2015085, provided under the programme “Projects of Large
Research, Development, and Innovations Infrastructures”, and OP VVV project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”

ix

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

C O N T E N T S

I I N T RO D U C T I O N 1
1 I N T RO D U C T I O N 3

1.1 A Brief Overview of Relational Learning 4
1.2 Problem Statement 5
1.3 Structure of the Thesis 6

II T H E O R E T I C A L B AC K G RO U N D 7
2 T H E O R E T I C A L F O U N DAT I O N 9

2.1 First-order Logic 9
2.2 Weighted First-Order Model Counting 12

2.2.1 WFOMC in the Two-Variable Fragment 13
2.2.2 WFOMC in the Two-Variable Fragment with Count-

ing Quantifiers 16
2.3 Learning Settings 17

2.3.1 Learning from Interpretations 17
2.3.2 Knowledge Base Completion 18

3 AU X I L I A RY A L G O R I T H M S 19
3.1 θ-subsumption Engine and Isomorphism Checking 19
3.2 Covering Relation |= 19
3.3 Theorem Proving Using SAT Solvers 20

III P RO P O S E D M E T H O D S 23
4 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R

L O G I C 25
4.1 Constructing the Sequence Database 26

4.1.1 Computing the Integer Sequences 26
4.2 Generating the First-Order Logic Sentences 27
4.3 Sentence Redundancy 28
4.4 Traversing the sentence space 29

4.4.1 Description of the Algorithm 30
4.4.2 Sentence Redundancy Techniques 33

4.5 Experiments 43
4.5.1 Filling the Database of Integer Sequences 44
4.5.2 An Initial Database Construction 45
4.5.3 Conclusion 49

4.6 Related Work 50
4.7 Future work 50

5 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E 53
5.1 Saturations 54
5.2 Searching the Space of Saturations 56
5.3 Pruning Isomorphic Saturations 58

5.3.1 Why Relative Subsumption is Not Sufficient 59
5.4 Learning Domain Theories 59
5.5 Integrating Saturations with Existing Algorithms 61

5.5.1 Level-wise Feature Construction 61

xi

[February 19, 2024 at 23:46 – classicthesis]

xii C O N T E N T S

5.5.2 Saturating Domain Theory Learner 61
5.6 Experiments 62

5.6.1 Feature Construction 63
5.6.2 Boosting Domain Theory Learner 64
5.6.3 Conclusion 65

5.7 Related Work 65
5.8 Future Work 67

6 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T 69
6.1 k-Entailment 70

6.1.1 Properties of k-entailment 71
6.2 Inference Algorithm 72

6.2.1 Description of the Algorithm 72
6.2.2 An Illustration 74

6.3 Sketch of Correctness and Runtime 75
6.4 Stratified k-Entailment 76
6.5 A Heuristic Rule Learner 78
6.6 Experiments 80

6.6.1 Evaluation of STRiKE Inference 80
6.6.2 Completing a Knowledge Graph 82
6.6.3 Conclusions 84

6.7 Related Work 86

IV A P P L I C AT I O N S 89
7 O N E I N T E G E R S E Q U E N C E , M U LT I P L E E X P L A N AT I O N S 91

7.1 Different Prescriptions 91
7.1.1 A Simple Combinatorial Sequence 91
7.1.2 Yet Another Combinatorial Sequence 92
7.1.3 A Sequence with Negative Numbers 93

7.2 Conclusion 94
8 E X P L O I T I N G B O N D S Y M M E T RY F O R RU L E L E A R N I N G 95

8.1 Inspecting Learned Domain Theory 95
8.2 Utilizing Bond Symmetry 96

V C O N C L U S I O N 97
9 C O N C L U S I O N 99

9.1 Thesis Contribution 99
9.2 Future work 100

VI A P P E N D I X 103
A I M P L E M E N TAT I O N D E TA I L S 105

A.1 Notes on Optimizations 105
A.1.1 Notes on Isomorphism 105
A.1.2 Effective Usage of Resources 106

B A D D I T I O N A L S C A L A B I L I T Y O F S E N T E N C E G E N E R AT O R 109
C C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S 111

B I B L I O G R A P H Y 121

C.1 Publications related the topic of this thesis 133
C.1.1 Conference papers 133

[February 19, 2024 at 23:46 – classicthesis]

C O N T E N T S xiii

C.2 Other authors’ publications 134
C.2.1 Conference papers 134
C.2.2 Workshop papers 134

[February 19, 2024 at 23:46 – classicthesis]

AC RO N Y M S

AUC-PR area under the precision-recall curve

CHED cumulative Hamming error distance

FOL first-order logic

GNN(s) graph neural network(s)

HB Herbrand base

ILP inductive logic programming

LRNN(s) lifted relational neural network(s)

MAP maximum a posteriori probability

MLN(s) Markov logic network(s)

OEIS On-Line Encyclopedia of Integer Sequences

PAC probably approximately correct

PCA partial completeness assumption

PR precision-recall

RL relational learning

SRL statistical relational learning

WL Weisfeiler-Lehman labeling procedure

(W)FOMC (weighted) first-order model counting

xiv

[February 19, 2024 at 23:46 – classicthesis]

Part I

I N T RO D U C T I O N

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

1
I N T RO D U C T I O N

Inductive and deductive reasoning have attracted philosophers’ minds since
the age of Aristotle. However, one could argue that it is pretty common in
a man’s life. For example, consider a person who likes rainbows. After he
had observed a dozen rainbows, he suddenly realized that a rainbow often
occurs after rain.1 The man actually induces this hypothesis from some obser-
vations.2 Then, this rainbow-liker can watch the sky after every rain, hoping
to see a rainbow. That is something he deduces from his hypothesis. Of course,
the hypothesis is not perfect.3 Nonetheless, it is the standard way of human
drive to understand things.

Whereas the above-mentioned example could be formulated in several rep-
resentations, e.g., propositional or modal logic, the choice of suitable rep-
resentation is arguably the most important one in machine learning tasks. A
typical scenario for a machine learning practitioner is to search for enough ex-
pressive representation while maintaining scalability for a task at hand. This
thesis is focused on relational learning that uses function-free subset of first-
order logic (FOL) for representation. In particular, this is suitable for struc-
tured data – these are everywhere around us, e.g., molecules and knowledge
bases, which can be encoded as (hyper)graphs. Despite its restriction w.r.t.
FOL, some of the reasoning processes fall into the NP-complete complexity
class, e.g., θ-subsumption, which makes the reasoning computationally chal-
lenging; still, this is better than the undecidability of pure FOL. Although the
field is relatively mature, both inductive and deductive reasoning parts of rela-
tional learning still contain challenging problems. One of the standard issues
is the vast space of first-order logical formulae, e.g., Horn rules, that comes
directly from the expressiveness of the representation. To deal with this is-
sue, most of the methods employ some language bias, i.e., they consider only
a subset of all possible hypotheses, which clearly makes them incomplete in
finding all possible solutions.4 Another issue arises in the presence of real-life
datasets since logical formulae are effective in capturing hard constraints, e.g.,
integrity constraints in databases, but are not suited for handling exceptions
and noisy data, which is typical for real-life data. Hence, the latter problem is
often solved in a closely related field of statistical relational learning (SRL)
that has emerged over the years to bridge the paradigms of relational learning
and statistical learning.

The aim of this thesis is to investigate the possibility of relaxing deductive
and inductive reasoning in relational learning. In particular, we focus on prun-
ing the space of logical formulae to make the inductive reasoning part faster.
Further, we focus on deductive reasoning in the presence of imperfect rules.

1 There are languages where rainbow contains the word rain, e.g., English and German; how-
ever, this does not hold all languages, e.g., French.

2 Most likely, he does not know the term induction.
3 Indeed, this is only partially true due to the fact that to see a rainbow, a viewer’s position w.r.t.

the Sun has to be taken into account.
4 Thought, some of such restrictions remove clearly redundant hypotheses, which is favorable.

3

[February 19, 2024 at 23:46 – classicthesis]

4 I N T RO D U C T I O N

1.1 A B R I E F OV E RV I E W O F R E L AT I O N A L L E A R N I N G

Despite the current progress in artificial intelligence, which is mainly driven
by deep learning, logic has been the main tool since the early days of artificial
intelligence. This was partially due to the long tradition of mathematical logic
and the ability of logic to capture problems and reason about them. However,
since the 1980s [78], researchers have started to shift from propositional logic
to FOL for its more expressive representation suitable for various problems.
The rise of relational learning, which combines machine learning with the
representation based on FOL, started with the wave of inductive logic pro-
gramming (ILP) in the 1990s [83].

Contrary to relational learning, ILP, which was extensively studied in the
past few decades, allows hypotheses to contain functions. The general task
in ILP can be formulated as follows: given a training set of positive E+ and
negative E− examples, learn a theory T that discriminates these two sets. The
exact definition of examples and the discrimination relation differ from one
learning setting to another. One of the typical ILP learning settings is learning
from entailment, which employs the following definition: an example is in the
form of a clause, T is a clausal theory, and the discriminator relation is logical
entailment. Then, the task is to learn T such that

T |= e ∀e ∈ E+

T ̸|= e ∀e ∈ E−

Another quite popular learning setting is learning from interpretation where
an example is in the form of a Herbrand interpretation, T is a clausal theory,
and the discriminator relation is satisfied if and only if an example is a model
of T.

e |= T ∀e ∈ E+

e ̸|= T ∀e ∈ E−

The main difference between these two is that in the latter case, the interpreta-
tion fully specifies the example. ILP and both of these learning settings were
studied and used for a number of applications besides toy-like problems [14].
One of the most known applications is the task of finding a sub-structure
that occurs in dangerous molecules while being absent from the rest of the
molecules at hand [118]. Another interesting application of ILP was the HR
system [25] dedicated to mathematical discovery.

Problems within the above-mentioned learning settings usually reduce to
searching for a set of logical theories, i.e., a set of logic formulae. Since
the space of formulae is inherently enormous, various approaches to pruning
are usually employed. The most typical approach is to apply language bias,
which considers only some syntactical forms of formula to be acceptable, as
well as semantics-based biases [85], e.g., minimal support of a hypothesis,
usage of variables, etc. Many, but not all, approaches are interested in Horn
clauses, which can be easily interpreted as rules and hence are often called
rule learners. The past decades brought many of these algorithms with vari-
ous search strategies, e.g., top-down, bottom-up, (in)complete, having either

[February 19, 2024 at 23:46 – classicthesis]

1.2 P RO B L E M S TAT E M E N T 5

ideal or optimal refinement operator, etc. Besides the evolution of underlying
engines, starting with Prolog-based methods [117], through in-memory-based
[39], all up to database-based [22], there was also a shift in the focus of ap-
plication through the decades. The most typical applications are program syn-
thesis [84], predicate invention [26], knowledge graph completion [75], and
data mining [33]. However, these problems are often tackled by researchers
from respective fields by enriching their language to (a subset) of FOL, which
consequently means that relational learning, ILP, and SRL often overlap with
other approaches on some tasks. A natural example of such overlap is mining
multi-relational data mining [36], which can be seen as the intersection of
ILP and data mining.

Unfortunately, ILP is not suited for all kinds of problems due to several
reasons. Firstly, the learning task does not incorporate any measure of perfor-
mance on unseen data. Secondly, the crisp logic does not handle uncertainty
and noise well; these are often present in real-life data. Hence, one can argue
that it is applicable only to idealized scenarios. There are limited ways ILP
can compensate for this. A straightforward way is to allow some degree of
misclassification of learned hypotheses [84] or to apply propositionalization.
The latter paradigm is based on transforming the problem into an attribute-
value learning setting and using various methods from that area. The trans-
formation can be simply viewed as constructing a vector of features for each
training example where features are learned using first-order pattern mining
algorithms [33].

However, the above-mentioned does not imply that we cannot reason with
relational representation under uncertainty. On the contrary, this is the main
goal of statistical relational learning (SRL) [108], which often enhances clauses
with weights and learns a probability distribution of the data. Many methods
have been developed over the years, e.g., Markov Logic Networks (MLNs)
[111], Bayesian logic programs [49], and ProbLog [31]. The learning task is
typically split into two main components – structure and parameters learning.
The structure learning mimics the ILP search for hypothesis [51] and, hence,
suffers from the same issues we discussed for hypotheses learning. In the sec-
ond component, the parameters of a model are learned as an optimization task
that maximizes (pseudo-)likelihood of the data.

There are other approaches with more or less restricted FOL language be-
side and within relational learning, e.g., OWL and RDF. We discuss relevant
related work for each task we solve in Part iii at the end of every chapter.

1.2 P RO B L E M S TAT E M E N T

The problem statement of this thesis is, as the title suggests, to exploit the re-
laxation of deductive and inductive reasoning in relational learning. Indeed,
this sounds like a general problem; hence, we narrowed the topic to be more
specific. In particular, we will be interested in how, if even possible, the relax-
ation of either one of these helps to

• scale up the process of sentence space traversal, and

• make the inference process robust in the presence of imperfect rules.

[February 19, 2024 at 23:46 – classicthesis]

6 I N T RO D U C T I O N

Rather than focusing on developing a general theory, we will study these
problems in isolation. Namely, the first two proposed methods, presented in
Chapters 4 and 5, prune the space of logical formulae to provide better scala-
bility for particular problems while preserving the completeness of the search
algorithms. The latter question is investigated in Chapter 6, where we present
an extension of a fragment-based inference method and design a heuristic
rule learner specially for it. For each of these, we will tweak either standard
induction, deduction, or both reasoning processes to achieve the goal.

1.3 S T RU C T U R E O F T H E T H E S I S

The thesis is structured as follows. After this introduction Chapter 1, Part ii
covers the basic notation and concepts in Chapter 2, followed by Chapter 3,
which presents algorithms that repeat as sub-routines in the main content of
this work. Part iii contains three chapters, each proposing a novel method for
a given problem. Chapter 4 presents a method for discovering combinatorial
integer sequences using a fragment of first-order logic. Chapter 5 proposes a
method that prunes hypothesis space automatically using domain knowledge
of the data. Chapter 6 devises an inference algorithm suited for reasoning
with imperfect rules. In Part iv, we briefly discuss the applications of Chap-
ter 4 and Chapter 5 in Chapter 7 and Chapter 8, respectively. In Part v, the
contribution of the proposed method is discussed in Chapter 9. The appendix
in Appendices A to C covers some technical details and additional material
for Chapter 4.

[February 19, 2024 at 23:46 – classicthesis]

Part II

T H E O R E T I C A L BAC K G RO U N D

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

2
T H E O R E T I C A L F O U N DAT I O N

This chapter contains theoretical foundations for the thesis.

2.1 F I R S T- O R D E R L O G I C

We work with a function-free subset of first-order logic. The language is de-
fined by a finite set of constants C, a finite set of variables V and a finite set
of predicates P. An atom has the form P(t1, . . . , tk) with k-arity predicate
symbol P/k ∈ P and terms ti ∈ C ∪ V. A literal is an atom or its negation.
A formula is an atom and a literal. More complex formulae may be formed
from existing formulae by logical connectives, e.g., ∧, ∨, and⇒, or by sur-
rounding them with a universal (∀x), an existential (∃x), or a counting (∃=k)
quantifier where x ∈ V. A variable x in a formula is called free if the for-
mula contains no quantification over x. A formula is called a sentence if it
contains no free variables. A formula is called ground if it contains no vari-
ables. Predicates start with an uppercase, while variables and constants start
with a lowercase. Variables are denoted by a single letter from the end of the
alphabet and usually preceded by a quantifier at the start of a sentence, e.g.,
∀x φ(x). Constants are denoted by a word or a single letter from the start of
the alphabet, e.g., ann or c.

A clause α is a universally quantified disjunction of literals ∀x1...∀xn τ1∨
... ∨ τk, such that x1, .., xn are the only variables occurring in the literals
τ1, ..., τk. For ease of presentation, we will sometimes identify a clause α
with the corresponding set of literals {τ1, ..., τk} and |α| denoting the number
of literals of α. The set of variables occurring in a clause α is written as
vars(α), the set of all terms as terms(α), and the set of all constants const(α).
For a clause α, we define the sign flipping operation as

α̃
def
=

∨
τ∈α

τ̃,

where τ̃ = ¬τ and ¬̃τ = τ for an atom τ. In other words, the sign flipping
operation simply replaces each literal by its negation. A clause is said to be
connected if it cannot be written as a disjunction of two non-empty clauses.

Example 1. Consider clauses

α = ∀x∀y P1(x)∨ P2(y)∨ P3(x,y, a)

β = ∀x∀y P1(x)∨¬P2(y)

9

[February 19, 2024 at 23:46 – classicthesis]

10 T H E O R E T I C A L F O U N DAT I O N

then

const(α) = {a}

const(β) = ∅
vars(α) = vars(β) = {x,y}

terms(α) = {a, x,y}

terms(β) = {x,y}

|α| = 3

|β| = 2

α̃ = ∀x∀y ¬P1(x)∨¬P2(y)∨¬P3(x,y, a)

β̃ = ∀x∀y ¬P1(x)∨ P2(y)

Both α and β are sentences since there is no free variable. Also, note that α
is a connected clause while β is not.

Fact is a ground positive literal. A definite rule is a clause which has exactly
one positive literal; note that facts are special cases of definite rules. A hard
constraint is a clause that has no positive literals. To improve readability, we
will usually write a definite rule

∀x1, ...,∀xm ¬b1 ∨ · · ·∨¬bn ∨ h

as
∀x1, ...,∀xm b1 ∧ · · ·∧ bn ⇒ h.

As usual, we call b1 ∧ ... ∧ bn the body of the rule and h the head. Range-
restricted rules satisfy vars(h) ⊆ vars(b1 ∧ ... ∧ bn). We often refer to a set
of sentencesΦ as a rule set or theory if it contains definite rules or sentences,
respectively.

Example 2. The fact
Smokes(alice)

asserts that alice smokes, the range-restricted rule

∀x∀y Smokes(x)∧ Friends(x,y)⇒ Smokes(y)

asserts that anyone who is friends with someone who smokes is also a smoker,
and the hard constraint

∀x ¬Friends(x, x)

states that no one can be friends with themselves.

A substitution θ is a mapping from variables to terms. For a clause α, we
write αθ for the clause {τθ | τ ∈ α}, where τθ is obtained by replacing each
occurrence in τ of a variable x by the corresponding term θ(x). A grounding
substitution is a substitution in which each variable is mapped to a constant.
Clearly, if θ is a grounding substitution, then for any literal τ it holds that
τθ is ground. For a clause α and a set of clauses Γ , we say that GΓ (α) is
the set of all grounding substitutions θ that can be constructed from variables
occurring in α and constants in Γ .

[February 19, 2024 at 23:46 – classicthesis]

2.1 F I R S T- O R D E R L O G I C 11

Example 3. Let Γ be a set of facts and α be a set of clauses

Γ = {Happy(ann),Happy(liz)},

α = ∀x∀y Friends(x,y)∨Happy(y).

Then GΓ (α) is equal to

{{x 7→ ann,y 7→ ann},

{x 7→ ann,y 7→ liz},

{x 7→ liz,y 7→ ann},

{x 7→ liz,y 7→ liz}}.

For example, applying the second substitution, we obtain Friends(ann, liz)∨
Happy(liz).

If α and β are clauses then we say that α θ-subsumes β (denoted α ⪯θ β)
if and only if there is a substitution θ such that αθ ⊆ β. If α ⪯θ β and
β ⪯θ α, we call α and β θ-equivalent (denoted α ≈θ β). Note that the ≈θ
relation is indeed an equivalence relation, i.e., it is reflexive, symmetric and
transitive. A clause α is said to be θ-reducible if there exists a clause β such
that α ≈θ β and |β| < |α|.

Clauses α and β are said to be isomorphic (denoted α ≈iso β) if there
exists an injective substitution θ such that αθ = β.1 We say that α OI-
subsumes β (denoted α ⪯OI β [37]) if there is an injective substitution such
that αθ ⊆ β. Note that α is isomorphic to β if and only if α ⪯OI β and
β ⪯OI α.

Example 4. Let us consider the following four clauses:

α1 = ∀x∀y P1(x,y)∨¬P2(x,y)

α2 = ∀x∀y∀z P1(x,y)∨¬P2(x,y)∨¬P2(x, z)

α3 = ∀x∀y∀w P1(x,y)∨¬P2(x,y)∨¬P2(x,w)

α4 = ∀x∀y P1(x,y)∨¬P3(x,y)

Then we can verify that α1 ≈θ α2 ≈θ α3, and thus also αi ⪯θ αj for
i, j ∈ {1, 2, 3}). While some of these relations are easy to see, e.g., α1 ⪯θ α2,
some are little bit more advanced, e.g., α3 ⪯θ α1 with θ = {x 7→ x,y 7→
y,w 7→ y}.

We also have α1 ̸≈iso α2, α1 ̸≈iso α3, as well as αi ̸⪯θ α4 and α4 ̸⪯θ
αi for any i ∈ {1, 2, 3}. The only two isomorphic clauses are α2 and α3, i.e.,
α2 ≈iso α3, since the variable w can map to the variable z and vice versa.

Finally, we also have α1 ⪯OI αi for i ∈ {1, 2, 3}, α2 ⪯OI α3, and
α3 ⪯OI α2. The clauses α2 and α3 are θ-reducible.

For a set of constants C, Φ[C] denotes the set of clauses obtained from Φ

by removing all clauses that contain a constant c ̸∈ C.

Example 5. Let Φ be a set of clauses and C be a set of constants

Φ = {Friends(alice, bob),Smokes(alice)},

C = {alice}.

Then
Φ[C] = {Smokes(alice)}.

1 This defines variable isomorphism among clauses. We will use this term heavily.

[February 19, 2024 at 23:46 – classicthesis]

12 T H E O R E T I C A L F O U N DAT I O N

As is customary in computer science, we adopt the Herbrand semantics
[44] with a finite domain. We use HB to denote the Herbrand base, i.e., the
set all ground atoms. We use ω to denote a possible world, i.e., any subset
of HB. Elements of a possible world are assumed to be true, all others are
assumed to be false. A clause α = {τ1, ..., τn} is satisfied by a possible world
ω, written

ω |= α,

if for each grounding substitution θ, it holds that {τ1θ, ..., τnθ} ∩ω ̸= ∅.
In particular, note that a ground literal τ is satisfied by ω if τ ∈ ω. The
satisfaction relation |= is extended to (sets of) propositional combinations of
clauses in the usual way. If ω |= A, for A a propositional combination of
clauses, we say that ω is a model of A. If A has at least one model, we say
A is satisfiable. For two sets of formulae Φ and Υ, we write Φ |= Υ if every
model ofΦ is also model of Υ. IfΦ |= Υ and Υ |= Φ, we writeΦ |=| Υ. Note
that if α ⪯θ β for clauses α and β, then α |= β but the converse does not hold
in general. Finally, ⊤ and ⊥ are used to denote tautology and contradiction,
respectively.

Note that classical entailment is tractable when restricted to facts and defi-
nite rules. Then, we can use forward chaining to compute the set of facts that
are entailed by a given set of clauses. It also means that the inference process
can be easily explained to users who are not familiar with formal logic.

Example 6. Forward chaining iteratively expands the given set of facts by
applying (groundings of) rules whose body is satisfied by the facts that have
already been derived. More precisely, if all the literals in a ground rule’s body
are included in the set of facts, then its head can be added to the set of facts.
This process is repeated until no further facts can be derived. To illustrate
this, consider the following rule set:

Φ = {∀x∀y∀z BornIn(x,y)∧ PartOf(y, z)⇒ BornIn(x, z),

∀x∀y BornIn(x,y)∧Country(y)⇒ Nationality(x,y)}

and the following set of facts:

E1 = {BornIn(alice, sdC),Country(spain),PartOf(sdC, spain)}.

We can use the first rule to derive

BornIn(alice, spain).

Together with the fact Country(spain) from E1, we can now apply the sec-
ond rule to derive

Nationality(alice, spain).

At this point, no further facts can be derived.

2.2 W E I G H T E D F I R S T- O R D E R M O D E L C O U N T I N G

In one part of this thesis, we will require access to fast computation of model
counts of first-order logic formulae. For that, we will make use of the weighted
first-order model counting (WFOMC) problem [136].

[February 19, 2024 at 23:46 – classicthesis]

2.2 W E I G H T E D F I R S T- O R D E R M O D E L C O U N T I N G 13

Definition 1. (Weighted First-Order Model Counting) Let φ be a sentence
over some relational language L. Let HB denote the Hebrand base of L over
some domain of size n ∈N. Let P be the set of the predicates of the language
L and let pred : HB 7→ P map each atom to its corresponding predicate
symbol. Let w : P 7→ R and w : P 7→ R be a pair of weightings assigning a
positive and a negative weight to each predicate in L. We define

WFOMC(φ,n,w,w) =
∑

ω⊆HB:ω|=φ

∏
l∈ω

w(pred(l))
∏

l∈HB\ω

w(pred(l)).

Example 7. Consider the sentence

φ = ∀x ¬Edge(x, x)

and the weightsw(Edge) = w(Edge) = 1. Since all the weights are unitary,
we simply count the number of models of φ. We can interpret the sentence as
follows: Each constant of the language is a vertex. Each atom Edge(a, b) ∈
HB with {a, b} ⊆ C denotes an edge from a to b. Furthermore, the sentence
prohibits reflexive atoms, i.e, loops. Overall, the models of φ will be all di-
rected graphs without loops on n vertices. Hence, we obtain

WFOMC(φ,n,w,w) = 2n
2−n.

Example 8. Consider the sentence

φ = ∃x Heads(x)

and the weightsw(Heads) = 4,w(Heads) = 1. Now, we can consider each
domain element to be the result of a coin flip. The sentence requires that there
is at least one coin flip with the value of “heads” (there exists a constant
a ∈ C such that Heads(a) is an element of the model). Suppose we have
i > 0 “heads” in the model. Then, the model’s weight will be 4i · 1n−i = 4i
and there will be

(
n
i

)
such models. Therefore,

WFOMC(φ,n,w,w) =
n∑
i=1

4i ·
(
n

i

)
= 5n − 1.

2.2.1 WFOMC in the Two-Variable Fragment

Limiting the number of variables in each sentence to at most two we obtain a
language known as FO2. This fragment of first-order logic allows computing
WFOMC in time polynomial in the domain size [134, 135]. We provide a
brief overview of that tractability result.

When computing WFOMC in a lifted manner, we seek to avoid grounding
the problem as much as possible. Grounding first-order sentences often ex-
ponentially enlarges the problem and inherently leads to many symmetrical
subproblems.

Example 9. Consider the sentence

φ = ∀x Smokes(x)⇒ Cancer(x).

Grounding the sentence on the domain of size n ∈N will produce a conjunc-
tion of n implications. Each of those implications will have three models with

[February 19, 2024 at 23:46 – classicthesis]

14 T H E O R E T I C A L F O U N DAT I O N

atoms completely different from the atoms in models of the other implications.
Moreover, there will be bijections between the models of different implica-
tions. Overall, we could have computed the model count in a much simpler
way. For one particular constant, there will be three distinct models. Since
there are n constants, the final model count will be 3n.

To avoid repeating the computations on such symmetrical instances, we aim
to decompose the WFOMC problem into mutually independent parts with
each needed to be solved only once. Cells of a logical sentence whose WFOMC
is to be computed allow such decomposition.

Definition 2 (Cell). A cell of an FO2 formula φ is a maximal consistent
conjunction of literals formed from atoms in φ using only a single variable.

Example 10. Consider the formula

φ = ∀x∀y Smokes(x)∧ Friends(x,y)⇒ Smokes(y).

Then there are four cells:

C1(x) = Smokes(x)∧ Friends(x, x),

C2(x) = ¬Smokes(x)∧ Friends(x, x),

C3(x) = ¬Smokes(x)∧¬Friends(x, x),

C4(x) = Smokes(x)∧¬Friends(x, x).

To simplify the WFOMC computation, we condition on cells in the following
way:

ψij(x,y) = φ(x,y)∧φ(y, x)∧Ci(x)∧Cj(y),

ψk(x) = φ(x, x)∧Ck(x).

And we compute

rij =WMC(ψij(a, b),w ′,w ′),

wk =WMC(ψk(a),w,w),

where WMC is simply the propositional version of WFOMC, {a, b} ⊆ C and
the weights (w ′,w ′) are the same as (w,w) except for the atoms appearing
in the cells conditioned on. Those weights are set to one, since the weights
of the unary and binary reflexive atoms are already accounted for in the wk
terms. Note that rij = rji.

Now, assuming there are p distinct cells, we can write

WFOMC(φ,n,w,w) =
∑

k∈Np:|k|=n

(
n

k

) ∏
i,j∈[p]:i<j

r
(k)i(k)j
ij

∏
i∈[p]

r
((k)i
2)

ii w
(k)i
i .

(1)

2.2.1.1 Lifting Skolemization

However, the approach above is only applicable for universally quantified
FO2 sentences. To get rid of existential quantifiers in the input formula, we
can utilize specialized Skolemization. In general, the procedure eliminates

[February 19, 2024 at 23:46 – classicthesis]

2.2 W E I G H T E D F I R S T- O R D E R M O D E L C O U N T I N G 15

existential quantifiers by introducing new (fresh) Skolem predicates Sk with
w(Sk) = 1 and w(Sk) = −1 [9]. Specifically, given a sentence

φ = ∀x∃y α(x,y)

where α is a quantifiers-free disjunction of literals, the method introduces a
fresh predicate Sk, i.e.

∀x (∃y α(x,y)⇒ Sk(x))

which is equal to
φ ′ = ∀x∀y ¬α(x,y)∨ Sk(x),

and sets up the weights, i.e.,w(Sk) = 1 andw(Sk) = −1. Then, it holds that

WFOMC(φ,n,w,w) =WFOMC(φ ′,n,w ′,w ′)

where

w(Edge) = w ′(Edge),

w(Edge) = w ′(Edge),

w ′(Sk) = 1,

w ′(Sk) = −1.

Informally, this approach is based on inclusion and exclusion of model counts;
we refer to [9] for justification. This process is repeated until all existential
quantifiers are eliminated.

Due to Equation (1) combined with the specialized Skolemization proce-
dure, WFOMC can be evaluated in time polynomial in n for any FO2 sen-
tence.

Example 11. Consider the sentence

φ = ∀x∃y Edge(x,y).

Applying the above mentioned Skolemization, we obtain

φ ′ = ∀x∀y ¬Edge(x,y)∨ Sk(x)

with w(Sk) = 1 and w(Sk) = −1.

Example 12. Consider the sentence

φ = ∀x∃y Edge(x,y)∨Black(y).

Applying the above mentioned Skolemization, we obtain

φ ′ = ∀x∀y ¬(Edge(x,y)∧Black(y))∨ Sk(x)

with w(Sk) = 1 and w(Sk) = −1, which can be expanded to a set of sen-
tences, i.e.

Φ ′ = {∀x∀y ¬Edge(x,y)∨ Sk(x),

∀x∀y ¬Balck(y)∨ Sk(x)}.

[February 19, 2024 at 23:46 – classicthesis]

16 T H E O R E T I C A L F O U N DAT I O N

2.2.2 WFOMC in the Two-Variable Fragment with Counting Quantifiers

Although the language of FO2 permits a polynomial-time WFOMC compu-
tation, its expressive power is naturally quite limited. The search for a larger
logical fragments still permitting a polynomial complexity is a subject of ac-
tive research. One possibility to extend the FO2 while preserving its tractable
property is by adding counting quantifiers. Such language is known as C2

and its tractability was shown by [54].
Counting quantifiers are a generalization of the traditional existential quan-

tifier. For a variable x ∈ V, we allow usage of a quantifier of the form ∃=kx,
where k ∈ N.2 Satisfaction of formulae with counting quantifiers is defined
naturally. For example, ∃=kx ψ(x) is satisfied inω if there are exactly k con-
stants { c1, c2, . . . , ck } ⊆ C such thatω |= ψ(ci) if and only if 1 ⩽ i ⩽ k.

To handle counting quantifiers, [54] suggested evaluating WFOMC repeat-
edly on many points. The values would be subsequently used in a polynomial
interpolation. Instead, we work with symbolic weights, which is, for all our
purposes, equivalent to the polynomial interpolation. We simply obtain the
would-be-interpolated polynomial directly.3

When we have a sentence with counting quantifiers whose WFOMC is to
be computed, first thing to do is to convert the counting quantifiers to the tradi-
tional existential quantifier. That can be achieved using yet another syntactic
construct known as cardinality constraints. We allow the formula to contain
an atomic formula of the form (|P| = k),4 where P ∈ P is a predicate and
k ∈N. Intuitively speaking, a cardinality constraint enforces that all models
of a sentence contain exactly k atoms with the predicate P.

Example 13. Consider the sentences

φ = ∀x∃=1y Edge(x,y),

φ ′ = (∀x∃y Edge(x,y))∧ (|E| = n).

Then it holds that

WFOMC(φ,n,w,w) =WFOMC(φ ′,n,w,w)

for any weights (w,w).

Using transformations such as the one shown in Example 13, WFOMC of a
C2 sentence φ can be reduced to WFOMC of the sentence

φ ′ = ψ∧

m∧
i=1

(|Pi| = ki),

whereψ is an FO2 sentence. Then, for each cardinality constraint (|Pi| = ki),
we define w ′(Pi) = xi, where xi is a new symbolic variable. For predicates

2 [54] actually proved the tractability for a more general version of the counting quantifiers, i.e.,
∃▷◁kx, where ▷◁∈ {<,⩽,=,⩾,> }. However, the counting with inequalities does not scale
very well – in fact, even the equalities turn out to be computationally challenging – so we only
work with equality in our counting quantifiers.

3 In Definition 1, WFOMC is defined for real-valued weights only. However, the extension to
(multivariate) polynomials is natural and does not break anything.

4 Similarly to counting quantifiers, cardinality constraints can be generalized to (|P| ▷◁ k) with
▷◁ ∈ {<,⩽,=,⩾>}. See [54] for the full treatment.

[February 19, 2024 at 23:46 – classicthesis]

2.3 L E A R N I N G S E T T I N G S 17

Q ∈ P, which do not occur in any cardinality constraint, we leave the positive
weight unchanged, i.e., w ′(Q) = w(Q).

Finally, we are ready to compute WFOMC(ψ,n,w ′,w). The result will
be a multivariate polynomial over the symbolic variables introduced for each
cardinality constraint. However, only one of its monomials will carry the in-
formation about the actual WFOMC of the original C2 sentence.5 Namely,
the monomial

A ·
m∏
i=1

xeii

such that ei = ki for each cardinality constraint (|Pi| = ki).
Now, we can report the final WFOMC result of the original C2 sentenceφ.

Nevertheless, we must still account for the positive weights that were replaced
by symbolic variables when dealing with cardinality constraints. Hence,

WFOMC(φ,n,w,w) = A ·
m∏
i=1

w(Pi)
ki .

Example 14. Consider the sentence

φ = ∀x∃=1y Edge(x,y),

domain of size n = 5 and w(Edge) = w(Edge) = 1. Let us compute
WFOMC(φ,n,w,w).

First, we get rid of the counting quantifier:

φ ′ = (∀x∃y Edge(x,y))∧ (|Edge| = 5)

Second, we introduce a symbolic variable x as the positive weight of the Edge
predicate:

w ′(Edge) = x

Finally, we evaluate WFOMC(∀x∃y Edge(x,y),n,w ′,w) and extract the
coefficient of the term where x is raised to the fifth power:

WFOMC(φ,n,w,w) = 3125.

Let us check the obtained result. We can interpret the formula φ as a di-
rected graph with each vertex having exactly one outgoing edge. For each
vertex, there are n vertices that it could be connected to. Hence, there are nn

such graphs. For n = 5, we obtain 55 = 3125.

2.3 L E A R N I N G S E T T I N G S

In this section, we describe the learning settings used in this thesis in detail.

2.3.1 Learning from Interpretations

In the classical setting of learning from interpretations [107], examples are in-
terpretations and hypotheses are clausal theories, i.e., conjunctions of clauses.

5 When using counting quantifiers ∃=k with k > 0, we also need to take care of overcounting,
which is described in detail in [54].

[February 19, 2024 at 23:46 – classicthesis]

18 T H E O R E T I C A L F O U N DAT I O N

An example e is said to be covered by a hypothesis α if e is a model of α; we
denote this by

e |= α.

Given a set of positive examples E+ and negative examples E−, the training
task is then to find a hypothesis α from some class of hypotheses A which op-
timizes a given scoring function, e.g., training error. For ease of presentation,
we will restrict ourselves to classes A of hypotheses in the form of clausal
theories without constants, as constants can be emulated by unary predicates
(since we do not consider functions). Note that examples are fully specified
in this setting, i.e., there is no missing information since the truth value of
each fact must be known.

2.3.2 Knowledge Base Completion

In the knowledge base completion task, there is a single training example E

that fully describes the world, i.e., a set of facts that are true, while the rest
are false. Then, the task is to learn a model, using E, that predicts missing
facts from Υ, i.e., to decide whether each single missing fact6 in Υ holds or
not. Both structures E and Υ share the same set of predicates.7

In this thesis, we will be interested in the inductive setting of the prob-
lem; that is a setup where E and Υ do not share any constant (entity), i.e.,
const(E) ∩ const(Υ) = ∅. On the contrary, a popular version of this problem
is knowledge graph completion in the transductive setting where both E and
Υ may share constants and sometimes are even equal, i.e., E = Υ; hence, the
training example is imperfect in this case. This is closely related to the open
world assumption, e.g., [39], whereas we consider the training example to
be fully specified, i.e., closed world assumption. The knowledge graph prob-
lem itself is a restriction that allows only binary relations,8 whereas we allow
arbitrary non-zero n-ary relations, e.g., unary and ternary predicates.

6 With respect to constants and predicates occurring in Υ.
7 For readers familiar with description logic: this setup differs from the one you are used to –

see, there is no T-Box, and the A-Box can contain predicates with arbitrary arity.
8 With the facts usually being described as a triplet of object-relation-subject instead of FOL

language.

[February 19, 2024 at 23:46 – classicthesis]

3
AU X I L I A RY A L G O R I T H M S

This chapter describes several algorithms that are used in the main part of
thesis as common routines.

3.1 θ - S U B S U M P T I O N E N G I N E A N D I S O M O R P H I S M C H E C K I N G

Deciding θ-subsumption between two clauses is an NP-complete problem.
It is closely related to constraint satisfaction problems with finite domains
and tabular constraints [32], conjunctive query containment [19] and homo-
morphism of relational structures. The formulation of θ-subsumption as a
constraint satisfaction problem has been exploited in the ILP literature for the
development of fast θ-subsumption algorithms [56, 71]. CSP solvers can also
be used to check whether two clauses are isomorphic, by using the primal
CSP encoding described in [71] together with an alldifferent constraint [45]
over CSP variables representing logical variables.

To efficiently check if a clause φ has an isomorphic counterpart in a set of
clauses Φ, i.e.

∃φ ′ ∈ Φ : φ ≈iso φ ′,

we use the above-mentioned CSP encoding accompanied with an optimiza-
tion based on the Weisfeiler-Lehman (WL) labeling procedure [140]. We use
its directed hypergraph variant, where terms play the role of hyper-vertices
and literals the role of directed hyper-edges and enrich the respective clauses
by unary literals with predicates representing the labels obtained by the Weisfeiler-
Lehman procedure, which also helps the CSP solver to reduce its search space.
This procedure provides us with a hash that we further utilize to minimize the
number of isomorphism calls. Therefore, we represent Φ by a multi-list, i.e.,
a map where the key is a hash of the WL procedure and the value is a list of
sentences. This is, in particular, favorable for the above-mentioned problem
since it allows us to test isomorphism only between pairs of sentences that
share the same hash. We will employ this approach as a routine for check-
ing whether an isomorphic sentence already exists within a set of sentences
for some sentence φ, because this is more efficient than testing every single
sentence φ ′ ∈ Φ against φ.

3.2 C OV E R I N G R E L AT I O N |=

To evaluate the covering relation of a hypothesis φ on an example e, i.e.

e |= φ,

which is the case in Section 2.3.1, we can use a θ-subsumption solver as fol-
lows. Since we restrict ourselves to hypotheses in the form of clausal theories,
each hypothesis φ can be written as a conjunction of clauses

φ = α1 ∧ · · ·∧αn.

19

[February 19, 2024 at 23:46 – classicthesis]

20 AU X I L I A RY A L G O R I T H M S

Clearly, e ̸|= φ if there is an i in {1, . . . ,n} such that

e |= ¬αi,

which holds precisely when

αi ⪯θ ¬(
∧
e).

This means that we can exploit fast θ-subsumption algorithms for checking
the covering relation in this setting.

Example 15. Let us consider the following example, inspired by the Michal-
ski’s East-West trains datasets [120]:

e = {EastBound(car1),HasCar(car1),HasLoad(car1, load1),

BoxShape(load1),¬EastBound(load1),¬HasCar(load1),

¬HasLoad(load1, car1),¬HasLoad(load1, load1),

¬HasLoad(car1, car1),¬BoxShape(car1)}

and two hypotheses φ1 and φ2

φ1 = ∀x∀y HasLoad(x,y)∧BoxShape(y)⇒ EastBound(x),

φ2 = ∀x∀y ¬EastBound(x)∨¬HasLoad(x,y).

To check if e |= φi, for i = 1, 2, using a θ-subsumption solver, we construct

¬(
∧
e) = ¬EastBound(car1)∨¬HasCar(car1)∨

∨¬HasLoad(car1, load1)∨BoxShape(load1)∨

∨ EastBound(load1)∨HasCar(load1)∨

∨HasLoad(load1, car1)∨HasLoad(load1, load1)∨

∨HasLoad(car1, car1)∨BoxShape(car1)

It is then easy to check that φ1 ̸⪯θ ¬(
∧
e) and φ2 ⪯θ ¬(

∧
e), from which

it follows that e |= φ1 and e ̸|= φ2.

In practice, when using a θ-subsumption solver to check αi ⪯θ ¬(
∧
e), it

is usually beneficial to flip the signs of all the literals, i.e., to instead check
α̃i ⪯θ

∨
e, which is clearly equivalent. This is because θ-subsumption

solvers often represent negative literals in interpretations implicitly to avoid
excessive memory consumption,1 relying on the assumption that most predi-
cates in real-life datasets are sparse.

3.3 T H E O R E M P ROV I N G U S I N G S AT S O LV E R S

In this thesis, we require access to an efficient theorem prover for clausal the-
ories. Since we restrict ourselves to function-free theories without equality,
we can rely on a simple theorem-proving procedure based on propositional-
ization, which is a consequence of the following well-known result2 [87].

1 This is true for the θ-subsumption solver based on [56] which we use in our implementation.
2 The formulation of Hebrand’s theorem used here is taken from notes by Cook and Pitassi:
http://www.cs.toronto.edu/∼toni/Courses/438/Mynotes/page39.pdf.

[February 19, 2024 at 23:46 – classicthesis]

3.3 T H E O R E M P ROV I N G U S I N G S AT S O LV E R S 21

Theorem 1 (Herbrand’s Theorem). Let L be a first-order language without
equality and with at least one constant symbol, and let T be a set of clauses.
Then T is unsatisfiable if and only if there exists some finite set T0 of L-ground
instances of clauses from T that is unsatisfiable.

Here αθ is called an L-ground instance of a clause α if θ is a grounding
substitution that maps each variable occurring in α to a constant from the
language L.

In particular, to decide if T |= α holds, where T is a set of clauses and α is a
clause (without constants and function symbols), we need to check if T ∧¬α

is unsatisfiable. Since Skolemization preserves satisfiability, this is the case if
and only if

T ∧¬αSk

is unsatisfiable, where ¬αSk is obtained from ¬α using Skolemization. Let
us now consider the restriction LSk of the considered first-order language L

to the constants appearing in αSk, or to some auxiliary constant s0 if there
are no constants in αSk. From Herbrand’s theorem, we know that T ∧¬αSk
is unsatisfiable in LSk if and only if the grounding of this formula w.r.t. the
constants from LSk is satisfiable, which we can efficiently check using a
SAT solver. Moreover, it is easy to see that T ∧¬αSk is unsatisfiable in LSk
if and only if this formula is unsatisfiable in L. Indeed, if T ∧ ¬αSk is un-
satisfiable in L, then there is a set of corresponding L-ground instances of
clauses that are unsatisfiable. If we replace each constant appearing in these
ground clauses which does not appear in αsk by an arbitrary constant that
does appear in αsk, then the resulting set of ground clauses must still be in-
consistent, since T does not contain any constants and there is no equality in
the language, meaning that T ∧¬αSk cannot be satisfiable in LSk.

In practice, it is not always necessary to completely ground the formula
T ∧ ¬αSk. It is often beneficial to use an incremental grounding strategy
similar to cutting plane inference in Markov logic [112]. To check if a clausal
theory T is satisfiable, this method proceeds as follows.

S T E P 0 : start with an empty Herbrand interpretation H and an empty set of
ground formulae G.

S T E P 1 : check which groundings of the formulae in T are not satisfied by H

(e.g. using a CSP solver). If there are no such groundings, the algorithm
returns H, which is a model of T. Otherwise the groundings are added
to G.

S T E P 2 : use a SAT solver to find a model of G. If G does not have any model
then T is unsatisfiable and the method finishes. Otherwise replace H by
this model and go back to Step 1.

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

Part III

P RO P O S E D M E T H O D S

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

4
D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A
F I R S T- O R D E R L O G I C

Every hard problem in mathematics has
something to do with combinatorics.

— Lennart Carleson [97]

Integer sequences are omnipresent in mathematics. A wide range of ques-
tions can be asked when a research is investigating one. The most fundamen-
tal question is

What is the next element of the sequence?

among others, followed by

Is there a closed formula to express the sequence?
Has the sequence usage in any area?

etc. A simple look-up database of integer sequences enhanced with a descrip-
tion, formulae, properties, usages, and other features would help researchers
in such situations.

A vital representative of such a database is the On-Line Encyclopedia of In-
teger Sequences (OEIS) [91], which has been in construction for more than
the last 50 years. OEIS has grown to more than 367 thousand of entries,1

where a single entry is often accompanied by different formulae, a list of
properties, and notes about occurrences of that particular sequence in differ-
ent fields. However, the content of this database is a clear reflection of what
researchers deemed to be interesting over the decades, which is of course a
subjective thing and may even shift during decades.

Many quite natural sequences are not contained in OEIS. For instance, as
observed by [8], it contains sequences counting 2-regular graphs properly col-
ored by 2 colors, but not 2-regular graphs properly colored by 3 colors. There
are many similar examples of sequences missing from OEIS, which might
be potentially useful for some users. This is also the motivation for the work
presented in this chapter, which is a method that constructs a database of
combinatorial sequences, i.e., sequences that count named objects of size n
that have some given property, which are the subject of interest of enumera-
tive combinatorics [119]. Examples of such combinatorial sequences include
sequences counting: subsets of an n-element set, graphs on n vertices, con-
nected graphs on n vertices, trees on n vertices, permutations on n elements
without fixpoints, etc. In particular, we focus on combinatorial sequences of
structures that can be described using a first-order logic sentence.

The following section outlines the construction of the database. The main
focus of this chapter – an effective generation of first-order sentences – one
of two cornerstones, which is needed to create the database in a reasonable
time, is described in Section 4.2.

1 To this date, January 2024.

25

[February 19, 2024 at 23:46 – classicthesis]

26 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

4.1 C O N S T RU C T I N G T H E S E Q U E N C E DATA B A S E

Our database of integer sequences is firmly intertwined with first-order logic
formulae since, as we said earlier, we are interested in combinatorial se-
quences that can be encoded using first-order logic sentences. We propose
a two-stage method to construct the database in a fully automatic way. The
first stage generates first-order logic sentences, and the second computes an
integer sequence for a given sentence.

When two sentences produce the same integer sentence,2 we call one of
them redundant. Naturally, we want to keep the database as compact as pos-
sible, ideally eliminating all redundant sentences. A naive approach would
consist of filtering redundant sentences when inserting a new entry into the
database. We show that there is a set of techniques that is beneficial to utilize
during the sentence generation process to construct the database in a non-
naive way. Our approach saves computational resources and is able to fill in
the database in a reasonable time compared to the naive approach. This sen-
tence generation process is described in Section 4.2, while the rest of this
section describes the second phase.

This task can also be formulated as a relational pattern mining problem:
Mine first-order logic formulae that correspond to integer sequences while ob-
taining as many as possible unique integer sequences in a reasonable amount
of time. However, the comparison to OEIS is a much more natural motivation.
This connection of paradigms of integer sequences and first-order logic is
usually the subject of (lifted) first-order model counting [103], which we also
utilize to achieve our goal.

4.1.1 Computing the Integer Sequences

Given a first-order logic sentence, we need to compute a number sequence
such that its k-th member is the model count of a relational sentence on the
domain of size k. The set of domain sizes for which the sequence member
would be non-zero is called a spectrum of the sentence. Spectrum of a logical
sentence φ is the set of natural numbers occurring as the size of some finite
model ofφ [15]. Since the sequence that we seek builds, in some sense, on top
of the spectrum, and since the sequence can also be described as the result of
the combinatorial interpretation of the original sentence, we dub the sequence
combinatorial spectrum of the sentence.

Definition 3 (Combinatorial Spectrum). Combinatorial spectrum of a logical
sentence φ, denoted as S(φ), is a sequence of model counts of φ on finite
domains of sizes taking on values 1, 2, 3, 4, . . .

Example 16. Consider the sentence

φ = ∃x H(x).

Then, all subsets of HB are a model of φ except for the empty set. Hence, for
a domain of size n, there will be 2n − 1 models, i.e,

S(φ) = 1, 3, 7, 15, . . .

2 A proper definition follows in the text later.

[February 19, 2024 at 23:46 – classicthesis]

4.2 G E N E R AT I N G T H E F I R S T- O R D E R L O G I C S E N T E N C E S 27

Defining combinatorial spectra in this way allows us to delegate the sec-
ond phase, i.e., computing an integer sequence given a first-order logical sen-
tence, to existing methods from lifted first-order model counting [134] if we
restrict the language. Model counting of the FO2 fragment of first-order logic
is computable in polynomial time [17].3 The same holds for any C2 sentence
as discussed in Section 2.2.2. Contrary, this does not hold for FO3 [9].

To conclude this, we can compute the combinatorial spectrum of any C2

sentence in polynomial time, which is an important observation that we will
use during the construction of our database.

4.2 G E N E R AT I N G T H E F I R S T- O R D E R L O G I C S E N T E N C E S

There are at least two Scott normal forms for C2 appearing in the literature
[43, 105]. However, these normal forms were designed only to guarantee eq-
uisatisfiability of C2 sentences and their normal forms. Since they do not
guarantee combinatorial equivalence, they would not be directly useful for
us in the sentence generation process. Instead, we are interested in C2 sen-
tences in the following syntactic form:

M∧
i=1

Qi,1x Qi,2y αi(x,y)∧
M ′∧
i=1

Qix αi(x) (2)

where Qi,Qi,1,Qi,2 ∈ {∀, ∃,∃=1, . . . ,∃=K}, each αi(x,y) is a quantifier-
free disjunction of literals containing only the logical variables x and y, and,
similarly, each αi(x) is a quantifier-free disjunction of literals containing only
the logical variable x. The integers K,M andM ′ are parameters.

Example 17 (Syntactical sentences). Consider the following C2 sentences:

φ1 = (∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨ R(y, x))

φ2 = (∀x∃=1y R(x,y))∧ (∀x∃=1y R(y, x))

φ3 = (∀x∃=1y R(x,y))∧ (∀y∃=1x R(x,y))∧ (∀x ¬R(x, x))

Each of these φi is an C2 of the form Equation (2).
Note that φ1 encodes the number undirected graphs with n and no loop,

i.e.
S(φ1) = 1, 2, 8, 64,

Sentence φ2 encodes a permutation, leading its combinatorial spectrum to
be values of n!, i.e.

S(φ2) = 1, 2, 6, 24

Finally, φ3 encodes a derangement with the combinatorial spectrum

S(φ3) = 0, 1, 2, 9,

Example 17 shows several sentences of the syntactical form we are inter-
ested in. However, these sentences are not taken by random. They do model
very well-known combinatorics problems. For instance, recall that derange-
ment can be used to solve the Secret Santa problem [64]. This example was

3 See Section 2.2.1 for details.

[February 19, 2024 at 23:46 – classicthesis]

28 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

aimed to demonstrate the suitability of Equation (2) for our task. The combi-
natorial spectrum of any sentence of this syntactical form is also computable
in polynomial time, which is essential to construct our database in a reason-
able time.

However, it is no secret that Equation (2) does not cover all combinatorial
spectra of C2 sentences. In fact, even FO2 sentences generate infinitely many
integer sequences. Take, for instance, the sentences φk of the form

φk = ∃x
k∨
i=1

Pi(x).

Their combinatorial spectra are

S(φk) =
(
(2k)n − 1

)∞
n=1

.

Hence, we have infinitely many combinatorial spectra even for these simple
sentences – one for each k ∈ N. Nevertheless, in our opinion, this hardly
matters because our task is not to generate all combinatorial sequences of
C2 sentences – this would not be feasible anyways because the number of
different integer sequences generated as spectra of C2 sentences is infinite.4

Instead, what we want to achieve is to generate as many interesting integer
sequences as possible within a limited time budget.

The transformation presented in [54] allows one to reduce the computation
of model counts of any C2 sentence to a computation with sentences that are
in the form of Equation (2), it requires some of the predicates to have neg-
ative weights. We do not allow negative weights in the generated sentences
because they make the post-hoc combinatorial explanation of the sentences
significantly more difficult.

Note that in the rest of this chapter, we will slightly abuse terminology
and use the term clause for the quantified disjunctions of literals in the form
Q1xQ2y αi(x,y) and Qx αi(x). This step is done to provide a compact
readability rather than wordy phrase quantified disjunction of literals every
single time. Since this goes against the standard terminology, we will write
quantifiers as much as possible to stress the difference.

4.3 S E N T E N C E R E D U N DA N C Y

For any integer sequence, there may be many sentences that generate it. The
most trivial example, based on semantics, is contradiction because the combi-
natorial spectrum of contradiction is, by definition, a sequence of zeros. See
the following example for a syntax-based counterpart.

Example 18. Let P be a set of n unary predicates, i.e.

P = {P1/1,P2/1,P3/1, . . . ,Pn/1}.

Then, we have at least n formulae corresponding to combinatorial spectra of
the form 2n − 1, i.e.

S(∃x Pi(x)) = 1, 3, 7, 15, . . .

4 This is a distinction from standard pattern mining task in which one usually wants to enumer-
ate all patterns within some language restrictions with non-zero occurrence in the data, i.e.,
support, which are usually finite. On contrary, in our task any C2 sentence corresponds to
some integer sequence, e.g., a trivial one as 0, 0, 0, 0,

[February 19, 2024 at 23:46 – classicthesis]

4.4 T R AV E R S I N G T H E S E N T E N C E S PAC E 29

for 1 ⩽ i ⩽ n.5 Thus, we can construct many first-order logic formulae of the
same spectrum when the language contains multiple predicates of the same
arity.

Note that there may be more than n formulae corresponding to this par-
ticular combinatorial spectrum – not all of them have the said syntactical
version, e.g., (∃x P1(x))∧ (∀x P1(x)∨ P2(x))∧ (∀x ¬P1(x)∨ P2(x)).

This poses a problem in the database construction as the database could be
overhauled by redundant sentences. Therefore, we aim to avoid generating
redundant sentences.

Definition 4. Given a collection of sentencesΦ, a sentence φ ∈ Φ is consid-
ered redundant if there is another sentence φ ′ ∈ Φ and S(φ) = S(φ ′).

Further, a redundant sentence may be either safe-to-delete or not-safe-to-
delete. These two subcategories serve different purposes. The first, safe-to-
delete, contains sentences that can be pruned from the sentence space without
destroying its completeness. On the contrary, sentences in the second cate-
gory, not-safe-to-delete, cannot be erased from the sentence space, however,
we do not have to compute their spectra.6 Whether a redundant sentence φ is
safe-to-delete or not-safe-to-delete depends on the search strategy used. Al-
though the latter category does not narrow the sentence space, it can still lead
to a tremendous saving of computational resources since it allows to skip
computation of some combinatorial spectra.

The problem of deciding whether two sentences have the same combinato-
rial spectrum is no easier than checking whether they are equivalent, which
can be seen as follows. Let one of the sentences be a contradiction. Check-
ing whether the other sentence has the same combinatorial spectrum, i.e.,
0, 0, 0, 0, . . . , is equivalent to checking whether it is also a contradiction. This
is only a complexity lower bound, but it already shows that checking the
equivalence of combinatorial spectra of C2 sentences is NEXPTIME-hard,
which follows from the classical results on the complexity of satisfiability
checking in C2 [104]. 7 Therefore, we will only search for sufficient condi-
tions for when two sentences generate the same spectrum.

4.4 T R AV E R S I N G T H E S E N T E N C E S PAC E

Our sentences-generation method works in an iterative-deepening mode. It
starts generating all sentences of a language Lk. When all possible sentences
of Lk are generated, it continues with Lk+1. A language Lk is an instantia-
tion of an extension of Equation (2) as follows:

M∧
i=1

Qi,1x Qi,2y α
J
i(x,y)∧

M ′∧
i=1

Qix α
J
i(x) (3)

5 Note that for a sentence φ we compute the combinatorial spectrum w.r.t. predicates occurring
in φ.

6 In other words, sentences from this category are not evaluated. Whereas in standard rule-
learning evaluating would mean computing support, accuracy, etc., it translates to computing
combinatorial spectra in our task.

7 The exact complexity of deciding whether two C2 sentences generate the same combinatorial
spectra remains an interesting open problem.

[February 19, 2024 at 23:46 – classicthesis]

30 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

whereQi,1,Qi,2,Qi are quantifiers from the set of quantifiers K. A quantifiers-
free disjunction of literals, i.e., αJi(x,y) and αJi(x), contains at most J liter-
als. There are at most M ′ and M disjunctions with one and two variables,
respectively. Finally, literals in disjunctions contain only predicates from P.
Iterative-deepening is then run over all of these parameters, including various
number of unary and binary predicates in P. This mimics enumerating all
sentences that are easier to encode in Occam’s razor style – using fewer liter-
als, predicates, and quantifiers sooner, followed by longer sentences with an
increasing number of predicates later in the generation process. Specifically,
the core algorithm running inside the iterative-deepening one has to solve the
following problem:

Given: A set of predicates P, set of quantifiers K, and integersM,M ′, J.

Generate: The set of sentences Φ of the form Equation (3) while Φ having
as few redundant sentences as possible.

The transition from Equation (2) to Equation (3) is a technicality that re-
stricts the language we are working with since the former unrestricted syntac-
tical form would lead to infinite set of basic clauses A, hence not deriving a
single sentence at all.8

4.4.1 Description of the Algorithm

From the high-level perspective, the algorithm may be described as follows:
firstly, the algorithm generates all disjunctions of literals with at most J lit-
erals and predicates from P, combining these with all available quantifiers.
Secondly, the algorithm gradually constructs literal-wise longer and longer
sentences by extending shorter sentences it generated before with all avail-
able clauses from the first step, starting with an empty clause as the very first
sentence.

Algorithm 1 describes the aforementioned approach in detail. The algo-
rithm starts by generating all possible clauses that can be constructed w.r.t.
the parameters; this is wrapped inside the function allClauses on line 1. It is
a straightforward process that we leave out intentionally for ease of presen-
tation. Then, safe-to-delete clauses are removed from A (line 2). The initial-
ization ends with assigning an empty sentence to Φ (line 3). It is important
to distinguish sets A and Φ, with the former containing clauses, i.e., basic
building blocks, and the latter containing sentences, i.e., the final product that
is, in turn, used to construct longer sentences.

At the end of the i-th cycle of the main for loop (lines 4-16), Φ contains
all possible sentences from the language with at most i literals. This is done
in the following two steps. In the first step, the algorithm extends Φ with all
clauses with exactly i literals from A (line 5). In the second step, it selects
all sentences φ with exactly l literals and refines them with all clauses α
such that the final refinement, i.e., φ∧ α, has exactly i literals (lines 7-14).
Unless the refinement is safe-to-delete, it is added into Φ (line 11). Finally,
redundant sentences are not returned by the algorithm (line 17). Note that

8 Other approaches may overcome this issue but will most likely suffer from unrestricted P as
well.

[February 19, 2024 at 23:46 – classicthesis]

4.4 T R AV E R S I N G T H E S E N T E N C E S PAC E 31

only not-safe-to-delete filtering is used as all safe-to-delete sentences9 were
already deleted through execution of the algorithm.

Algorithm 1 Pseudocode of Clause-wise Sentence Generator
Parameter: Set of predicates P, set of quantifiers K, and integersM,M ′, J.
Output: Set of (non-redundant) sentences with at most (M +M ′) · J liter-
als.

1: A← allClauses(M,M ′,K, J,P)
2: A← {α ∈ A | α is not redundant}
3: Φ← {∅}
4: for i ∈ [1, 2, 3, . . . , (M+M ′) · J] do
5: Φ← Φ∪ {α ∈ A

∣∣ |α| = i}
6: for l ∈ [1, 2, 3, . . . , i− 1] do
7: for φ ∈ {φ ∈ Φ

∣∣ |φ| = i− l} do
8: for α ∈ {α ∈ A

∣∣ |α∧φ| = i} do
9: φ ′ ← φ∧α

10: if φ ′ is not safe-to-delete then
11: Φ← Φ∪ {φ ′}

12: end if
13: end for
14: end for
15: end for
16: end for
17: return {φ ∈ Φ | φ is not redundant}

One could argue that redundancy of a sentence was defined w.r.t. a set of
sentences. Indeed, however, testing redundancy w.r.t. Φ, i.e., all generated
sentences, would be inefficient for most methods. In general, we can say that
the not-safe-to-delete filtering on line 17 is done w.r.t.Φ, while safe-to-delete
on line 10 is done w.r.t. sentences generated at i-the iteration of the main loop.
Finally, there are methods that assume the witness was generated earlier, i.e.,
is shorter, and thus check each sentence in isolation; these can appear on lines
2, 10 and 17.

The vanilla algorithm, i.e., with no redundancy-checking technique, enu-
merates all sentences w.r.t. some language restriction, which brings us to the
question why we have not opted for an optimal refinement operator, but used
an ideal one instead. From the discussion on sentences’ spectra equivalence
in Section 4.3 it follows that the an optimal refinement operator would be
costly.

Next, we describe an illustrating example. After that, we give a sketch of
correctness.

4.4.1.1 An Illustration

Let us now proceed with an example with no redundancy checking technique
and with a very restricted language to keep the example reasonable small.

9 With respect to used redundancy-checking techniques.

[February 19, 2024 at 23:46 – classicthesis]

32 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

Assume P = {P/1}, K = {∃}, M = 2, M ′ = 2, J = 2. First, we have to
generate all clauses satisfying this setup,10 i.e.

A = {α1 = ∃x P(x),
α2 = ∃x ¬P(x),
α3 = ∃x∃y P(x)∨ P(y),
α4 = ∃x∃y P(x)∨¬P(y),

α5 = ∃x∃y ¬P(x)∨ P(y),

α6 = ∃x∃y ¬P(x)∨¬P(y)}.

After the initiation,Φ will contain only an empty sentence,11 i.e.

Φ0 = {∅}

After the first iteration of the outer for-loop starting at line 4, Φ will newly
contain sentences with exactly one literal, i.e.

Φ1 = {α1,α2}

After the second iteration, the set of sentences will be extended with sentences
with exactly two literals, i.e.

Φ2 = {α3,α4,α5,α6,α1 ∧α2}

Note that there are only three unique spectra among these sentences, i.e.

S(α1) = S(α2) = S(α3) = S(α6) = 1, 3, 7, 15 . . .

S(α4) = S(α5) = 2, 4, 8, 16, . . .

S(α1 ∧α2) = 0, 2, 6, 14, . . .

Even though the algorithm started with six basic building blocks and fin-
ished with seven sentences, there are only three unique spectra.12 Since com-
puting a combinatorial spectrum is a resource-demanding operation, invoking
this computation as little as possible would be beneficial. In addition, prun-
ing the sentence space would be even more beneficial since it would lower
the number of generated sentences. Lines 2, 10, and 17 play a crucial role for
handling both of these issues.

4.4.1.2 Sketch of Correctness

Firstly, we will discuss the algorithm in its vanilla setting with no redun-
dancy checking technique applied during the generation process. Let A =

{α1, . . . ,αl} be the set of all possible clauses given K, P, M, M ′, and J. In
particular, soundness, follows from the refinement step – each sentence φ,

10 While generating other isomorphic clauses is possible, e.g., α ′
1 = ∃y P(y), it would be ineffi-

cient since refining a sentence φ with a variable-isomorphic clause would lead to isomorphic
clauses, i.e. φ∧α1 ≈iso φ∧α ′

1.
11 For which we do not compute its combinatorial spectrum since it does not contain any predi-

cate.
12 This is not surprising since we used the algorithm with its vanilla setup with no redundancy-

checking method.

[February 19, 2024 at 23:46 – classicthesis]

4.4 T R AV E R S I N G T H E S E N T E N C E S PAC E 33

that is added into the setΦ, consists of clauses in A, i.e.,φ = α1∧ · · ·∧αn.
To justify completeness, letΦi be the set of sentences generated after the i-th
iteration of the main for loop.Φi contains all sentences with at most i literals
w.r.t. clauses in A, which can be checked by inspection of the algorithm.

The soundness of the algorithm is also easy to show in the case of sound
not-safe-to-delete techniques, which follows from the fact that these tech-
niques do not prune the sentence space. Their application resembles post-
processing filtering, which forbids adding sentences that produce the same
combinatorial spectrum and.

In general, safe-to-delete techniques detect a class of sentences Φ ′ which
are redundant, i.e., all sentences from the class produce the same combinato-
rial spectrum but not vice versa. After the detection, a single sentence from
this class, a witness, is left in the sentence space while the rest is removed.
Rather than making a general proof showing that refinements of every sen-
tence in Φ ′ lead to the same set of combinatorial spectra, we discuss the
correctness of each redundancy-checking method in isolation.

4.4.2 Sentence Redundancy Techniques

In this section, we discuss several techniques that decide whether a sentence
is redundant or not. We stress upfront that the methods presented here will
not guarantee detecting all redundancies. On the other hand, these methods
will be sound – they will not mark non-redundant sentences as redundant.
Some of the techniques will mark a sentence as redundant, but they will not
give us a witness for the redundancy, i.e., other sentences with the same com-
binatorial spectrum. This will be the case for techniques that guarantee that
the witness is a shorter sentence (in the number of literals), which must have
been generated earlier; thus, we will know that by pruning the longer redun-
dant sentences, we will not affect the completeness of the search. We will use
the terms safe-to-delete and not-safe-to-delete for these methods in the same
way we use them for sentences. Sometimes, we call these techniques pruning
since it is a standard term in symbolic search.

4.4.2.1 Isomorphic Sentences

Earlier, we said that the problem we are solving in this chapter resembles a
pattern-mining scenario. Indeed, the first redundancy-checking technique is
an extension of a usual component for the enumeration of non-isomorphic pat-
terns, e.g., used in [88], which works by extending the definition of sentences
isomorphism. Let us formally define variable-isomorphism of two clauses:

Definition 5 (Isomorphism of clause). We say that the clauseQ1xQ2y φ(x,y)
is isomorphic to the clause Q ′

1xQ
′
2y ψ(x,y) if one of the following condi-

tions holds:

1. IfQ1 = Q ′
1 = Q2 = Q

′
2 and there exists a bijection f : {x,y}→ {x,y}

such that the set of literals of f(φ(x,y)) is the same as the set of literals
of ψ(x,y).

2. If Q1 = Q ′
1 ̸= Q2 = Q ′

2 and the set of literals of φ(x,y) is the same
as the set of literals of ψ(x,y).

[February 19, 2024 at 23:46 – classicthesis]

34 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

Naturally, we firstly need to extend this definition to sentences.

Definition 6 (Variable-isomorphism of sentences). We say that two sentences
of the form Equation (2) are isomorphic if, for every clause from one sentence,
we can find a clause from the other sentence which it is isomorphic to.

Finally, we extend this to our case where isomorphism of sentences is checked
with respect to predicate names and variables.

Definition 7 (Variable & predicate-isomorphism of sentences). We say that
two sentences of the form Equation (2) are isomorphic by renaming of pred-
icates if there exists a bijection between their predicates that makes the two
sentences isomorphic according to the definition of isomorphism Definition 6.

Definition 7 can be utilized to induce classes of isomorphism over sen-
tences. It is easy to see that given a class of isomorphic sentences Φ, each
sentence φ ∈ Φ produces the same combinatorial spectrum; this holds since
we can consistently rename predicates and variables in one sentence to get
another in the same class.

This method is safe-to-delete and thus can be used to prune the sentence
space. The reasoning behind this follows the usage of enumerating non-isomorphic
patterns in [88]. Whereas there, the meaning and a support of pattern is the
same no matter the legal renaming of variables, here the combinatorial spec-
trum does not rely on particular names of predicates. A more rigorous justifi-
cation, for instance, would define a refinement downward operator (ρA) and
prove that the sets of refinements for two isomorphic sentences φ1 and φ2
are isomorphic, i.e., ρA(φ1) and ρA(φ2) are isomorphic.

Example 19. Having M = 0, M ′ = 1, P = {P0/1,P1/1}, and the set
quantifiers K = {∀, ∃}, the algorithm’s content of Φ after the first iteration
is13

{∃x P0(x),∃x ¬P0(x), ∀x P0(x), ∀x ¬P0(x)}.

The vanilla algorithm would haveΦ twice that size.
After computation of combinatorial spectra of sentences in Φ, we obtain

two unique sequences, i.e.

S(∃x P0(x)) = S(∃x ¬P0(x)) = 1, 3, 7, 15, . . .

S(∀x P0(x)) = S(∀x ¬P0(x)) = 1, 1, 1, 1, . . .

Note that to effectively check the isomorphism of two sentences,14 we can
deploy the hash-based approach discussed in Section 3.1. However, in prac-
tice, the checking of these extended classes of isomorphism15 can be solved
more efficiently using a canonical-based description of a sentence, which is
discussed in Appendix A.1.1.

13 We denote each class of isomorphism by the corresponding lexicographically smallest mem-
ber.

14 And isomorphism-based methods that are yet to come.
15 The methods that follow – Negations and Permuting arguments.

[February 19, 2024 at 23:46 – classicthesis]

4.4 T R AV E R S I N G T H E S E N T E N C E S PAC E 35

4.4.2.2 Negations

From the Example 19 we can observe that negation signs can sometimes be
flipped. Indeed, this holds when we flip the signs consistently – if we flip
negation signs for all occurrences of all literals of some predicate in a sen-
tence, the combinatorial spectrum stays the same. The rationale behind this is
the signs flip can be seen as a predicate renaming; in the end, it is up to us how
we interpret a predicate, e.g., whether P(c) says that c is red or black node of
a red-black tree. Therefore, we extend Definition 7 with negation signs.

Definition 8 (Negation signs-isomorphism). We say that two sentences of the
form Equation (2) are isomorphic if one can be obtained from the other by
negating all occurrences of literals of some predicates.

This definition induces yet another class of equivalences that can be again
utilized to prune the sentence space. The justification is analogical to the one
in Section 4.4.2.1. Thus, we mark this method as safe-to-delete.

Example 20. Continuing with the setup from Example 19, i.e.,M = 0,M ′ =

1, P = {P0/1,P1/1}, and the set quantifiers K = {∀, ∃}, the algorithm’s
content of Φ after the first iteration is

{∃x P0(x), ∀x P0(x)},

further halving the size ofΦ.

Example 21. Consider the following sentences:

φ1 = (∀x∀y R(x,y)∨ P(x))∧ (∃x P(x)),
φ2 = (∀x∀y ¬R(x,y)∨¬P(x))∧ (∃x ¬P(x)),
φ3 = (∀x∀y ¬R(x,y)∨ P(x))∧ (∃x ¬P(x)).

Then, it is easy to see that φ1 and φ2 are negation signs-isomorphic while
φ3 is not isomorphic to neither of them.

4.4.2.3 Permuting Arguments

In the previous method, we claimed that the interpretation of a predicate is
solely in our hands. Here, we apply this argument to the interpretation of
binary relations. Suppose we have two sentences α and β as follows:

α = ∀x∃y R(x,y),

β = ∀x∃y R(y, x).

α can be interpreted as modelling directed graphs in which no vertex has out-
degree 0 and β as modelling directed graphs in which no vertex has in-degree
0. This interpretation was based on our decision to interpret R(x,y) as an
edge from x to y, yet we could have also interpreted it as an edge from y to
x. However, a change in the interpretation does not change the combinatorial
spectrum of the sentence, which, again, does not depend on how we interpret
the sentence. Therefore, we extend the previous definition of isomorphism
with arguments flip.

[February 19, 2024 at 23:46 – classicthesis]

36 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

Definition 9 (Arguments flip-isomorphism). We say that two sentences of
the form Equation (2) are isomorphic if we can obtain one from the other by
flipping arguments all literals of some binary predicates.

As in the two previous cases, this technique induces an equivalence class
that can be utilized to prune the sentence space. Hence, it is safe-to-delete.

4.4.2.4 Tautologies and Contradictions

Any sentence containing a tautological clause is redundant because a shorter
sentence with the same combinatorial spectrum always exists. Consider a sen-
tence φ that contains a tautological clause, i.e.

φ = φ ′ ∧⊤,

then
S(φ) = S(φ ′)

since
φ |= φ ′.

We can get rid of tautological quantified clauses by filtering them out from
the set of refinements A, i.e. at line 2 of Algorithm 1.

Similarly, every contradiction is redundant because every refinement leads
to a contradiction with the combinatorial spectrum of all zeros. Therefore,
once a contradictory sentence is generated in the algorithm, it is not added
to the set of generated sentences Φ. This removes all sequences of the form
0, 0, 0, 0, . . . from the generation process, which is not a problem, as this
particular integer sequence is not interesting.

Both of these approaches are safe-to-delete.

4.4.2.5 Trivial Constraints

Contrary to the previous method, this one uses a deduction in a relaxed man-
ner. Firstly, let us denote trivial constraint as a universally quantified single-
literal clause that has only one model; for example, ∀x P(x) and ∀x∀y R(x,y).
Then, every sentence containing a trivial constraint is redundant since we can
replace all occurrences of all literals, either P or R depending on the trivial
constraint, by ⊤, thus obtaining a shorter sentence with the same combinato-
rial spectrum.

This method is safe-to-delete. Hence, the algorithm will not refine a sen-
tence containing a trivial constraint nor add one to the set of generated sen-
tences Φ.

Example 22. Letφ = (∃x ¬P0(x)∨P1(x))∧ (∀x P0(x)). The latter clause
is a trivial constraint, thus we replace all occurrences of literal P0/1 with ⊤,
obtaining

φ ′ = (∃x ⊥∨ P1(x))∧ (∀x ⊤) = ∃x P1(x).

4.4.2.6 Subsumption and Entailment

In the previous method, we exploited a simplified version of deduction. Hence,
a natural question arises – can we inject more complex reasoning into the

[February 19, 2024 at 23:46 – classicthesis]

4.4 T R AV E R S I N G T H E S E N T E N C E S PAC E 37

redundancy-checking process? For this, we employ several well-known tech-
niques from logic. Namely, we utilize θ-subsumption, entailment, and their
relationship, i.e., entailment can be tested using the θ-subsumption for uni-
versally quantified clauses, that is

(α ⪯θ β) =⇒ (α |= β). (4)

Further, let α and β be two clauses. If α and β are logically equivalent, then
their combinatorial spectra are the same, i.e.

(α |=| β) =⇒ (S(α) = S(β)) (5)

which follows from the entailment relation.

θ-reducibility: Let α be non-θ-reducible universally quantified clause and β
be θ-reducible universally quantified clause. Then β is redundant if they both
are θ-equivalent since, in that case, they produce the same spectrum. See,
from

α ≈θ β

we derive
S(α) = S(β)

using Equation (4) and Equation (5). Thus, the technique is safe-to-delete
and we filter out θ-reducible clauses from the basic ones in A on line 2 of
Algorithm 1.

Example 23. Consider the following universally quantified clause α and β:

α = ∀x R(x, x),

β = ∀x∀y R(x,y)∨ R(x, x).

It is sufficient to drop β and keep only α for refinements.

Usually, θ-reducibility is defined over universally quantified clauses, which,
unfortunately, cover only a subset of our sentences. Therefore, we extend
this idea to FO2 utilizing the specialized Skolemization described in Sec-
tion 2.2.1.1. That is, a clause with an existential quantifierφ is firstly skolem-
ized, which yields a set of universally quantified clauses Φ ′. We say that φ
is θ-reducible if there is a θ-reducible clause φ ′ in Φ ′, or if there are two
sentences φ ′

1 and φ ′
2 in Φ ′ such that φ ′

1 ⪯θ φ ′
2. The justification and appli-

cation follow the standard case of θ-reducibility.

Example 24. Let φ = ∀x∃y R(x, x) ∨ R(x,y). Applying the specialized
Skolemization from Section 2.2.1.1 we obtain

Φ ′ = {∀x ¬R(x, x)∨ Sk(x),

∀x∀y ¬R(x,y)∨ Sk(x)}

with weights w(Sk) = 1 and w(Sk) = −1. It is easy to see that the second
sentence in Φ ′ θ-subsumes the first one with substitution

θ = {x 7→ x,y 7→ x}.

[February 19, 2024 at 23:46 – classicthesis]

38 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

Inter-clause subsumption: While the standard θ-reducibility case can be
seen as an intra-clause application of θ-subsumption, the extension to exis-
tentially quantified case showed an inter-clause application. Now, we discuss
reasoning along this line of application. Suppose we have a sentence that con-
tains two clauses, i.e.

φ = Q1xQ2y Ψ(x,y)∧Q1xQ2y Γ(x,y).

If Ψ ⪯θ Γ with θ = {x 7→ x, y 7→ y} then φ is redundant since S(φ)

is generated by a shorter sentence, namely φ ′ = Q1xQ2y Ψ(x,y). Again,
a proof follows from Equations (4) and (5). Thus, the algorithm marks as
safe-to-delete all sentences that contain two quantified clauses where one θ-
subsumes the other.

Example 25. Consider following clauses

α = ∀x∀y R1(x,y)∨ R2(y,y),

β = ∀x∀y R1(x,y).

Then, the sentence α∧β is redundant.

Entailment: Recall that satisfiability checking in C2 is NEXPTIME-hard, so
decidable but time-consuming in practice. Our goal is to fill up a database
with sentence-spectrum pairs in a limited time. Therefore, we prefer to relax
reasoning to cases where redundancy-checking can be done quickly instead
of applying full logical reasoning. The core idea is to relax entailment using
θ-subsumption given variations of quantifiers. For example, let

α = ∀x Ψ(x),
β = ∃x Ψ(x),

then sentence containing α∧β is redundant since

α |= β

which we can check using θ-subsumption and a condition on quantifiers. A
dozen of similar combinations, for instance

α = ∀x∀y Ψ(x,y),

β = ∀x∃y Ψ(x,y)

can be derived using the same reasoning. Although this may seem like a naive
or hardcoded simplification, it allows us to scale the sentence-generation pro-
cess while preserving some limited reasoning.

Similarly, we may remove some C2 sentences with a relaxed deduction rea-
soning. For example, ∃x Ψ(x)∧∃=1x Ψ(x) is redundant since ∃=1x Ψ(x) |=
∃x Ψ(x). However, it is important to stress that when computing a combinato-
rial spectrum, we leave out the empty universe, i.e. the zero-sized entity case.
Another example would be ∃=1x Ψ(x)∧ ∃=2x Ψ(x) which is a contradic-
tion.

We mark all of these three safe-to-delete techniques as θ* because it is not
a plain θ-subsumption as one might think, nor full logical reasoning.

[February 19, 2024 at 23:46 – classicthesis]

4.4 T R AV E R S I N G T H E S E N T E N C E S PAC E 39

4.4.2.7 Cell Graph Isomorphism

Another redundancy-checking method is built on a concept from the area of
lifted inference, originally intended for a more efficient evaluation of Equa-
tion (1). In [17], the authors introduced a special structure called a cell graph
to help them compute WFOMC faster.

Definition 10 (Cell Graph). A cell graph Gφ of a sentence φ is a complete
graph (V ,E) such that

1. V is the set of cell labels { 1, 2, . . . ,p },

2. each node i ∈ V has a label wi,

3. each edge, including loops, from node i to j has a label rij.

As one can observe from Equation (1), the WFOMC computation is fully
determined by the terms rij and wk. That remains unchanged even with the
counting quantifiers, since then, only the symbolic result of Equation (1) is
further searched for particular monomials. Hence, the computation is fully
determined by a cell graph, which contains all the rij and wk values.

Building on that observation, we propose a pruning technique based on two
cell graphs being isomorphic. If cell graphs of two sentences are isomorphic,
then their WFOMC results will be the same, and consequently, their combi-
natorial spectra will be the same as well. We formalize those claims below.

We start by discussing the simpler case where all weights are real-valued.
That is enough to apply this pruning method to FO2 sentences, and then
we extend it to the case with symbolic weights, which is needed for correct
handling of sentences from C2.

First we define what we mean by cell graph isomorphism.

Definition 11 (Cell Graph Isomorphism, for graphs with real-valued weights).
Let G and G ′ be two cell graphs where each edge {i, j} ∈ E(G) ({i ′, j ′} ∈
E(G ′), respectively) is labeled by a real-valued weight rij (r ′i ′j ′ , respectively)
and each vertex i ∈ V(G) (i ′ ∈ V(G ′)) is labeled by a real numberwi (w ′

i ′).
We say that G and G ′ are isomorphic if there exists a bijection f : V(G) →
V(G ′) such that w ′

i = wf(i) and r ′ij = rf(i),f(j) for all i, j ∈ V(G).

In order to exploit the isomorphism, we will exploit the following interesting
property of Equation (1).

Remark 1. Let p be again the number of cells in Equation (1) and let

f : [p]→ [p]

be a bijection. Then the following equality holds:∑
k∈Np:|k|=n

(
n

k

) ∏
i,j∈[p]:i<j

r
(k)i(k)j
ij

∏
i∈[p]

r
((k)i
2)

ii w
(k)i
i =

∑
k∈Np:|k|=n

(
n

k

) ∏
i,j∈[p]:i<j

r
(k)i(k)j
f(i),f(j)

∏
i∈[p]

r
((k)i
2)

f(i),f(i)w
(k)i
f(i).

In other words, permuting the cells, while preserving the structure of the
weights, does not change the resulting value.

[February 19, 2024 at 23:46 – classicthesis]

40 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

Next we state the result which will justify using the cell graph isomorphism
method for FO2 sentences.

Theorem 2. Let φ and ψ be two FO2 sentences with weights (w,w) and
(w ′,w ′), respectively, and let Gφ and Gψ be their respective cell graphs. If
Gφ is isomophic to Gψ, then

WFOMC(φ,n,w,w) =WFOMC(ψ,n,w,w)

for any domain size n ∈N.

Proof sketch. The proof follows from the following observation: Let f be the
bijection f : V(Gφ) → V(Gψ) preserving weights, which must exist from
the definition of cell graph isomorphism. Consider the equation for comput-
ing WFOMC of a sentence from its cell graph, Equation (1). If we apply the
bijection f on the cell indices (i’s and j’s from the equation), it will turn the
equation for computing WFOMC of φ to the one for ψ (again because f is
weight-preserving bijection). It follows from Remark 1 that these two must
be the same and therefore WFOMC ofφ andψmust be equal for any domain
size n.

Next we extend the cell graph isomorphism method to C2 sentences. For
that, we first need to extend the definition of cell graphs and of cell graph
isomorphism.

Definition 12 (Cell Graph with Cardinality Constraints). A cell graph Gφ of
a sentence φ is a pair (G,C) consisting of:

1. A complete graph G = (V ,E) such that

a) V is the set of cell labels { 1, 2, . . . ,p },

b) each node i ∈ V has a label wi,

c) each edge, including loops, from node i to j has a label rij.

Here the weights wi and rij are, in general, multivariate polynomials.

2. A set C of monomials representing the cardinality constraints.

Example 26. Consider the sentence

φ = (∀x ¬E(x, x))∧ (∀x∀y ¬E(x,y)∨ E(y, x))∧ (|E| = 10)

which models undirected graphs with 5 edges. There is only one cell which
is consistent with φ for this sentence, ¬E(x, x). As we already saw in Exam-
ple 14, to encode the cardinality constraint |E| = 5, we need to introduce the
symbolic weight w(E) = x. The cell graph then consists of the graph given
by the the weightsw1 = 1, r1,1 = 1+ x

2, and of the singleton set C = {x10},
representing the cardinality constraint.

Now we are ready to state the definition of cell graph isomorphism for
FO2 sentences with cardinality constraints (which is all we need to encode
C2 sentences).

[February 19, 2024 at 23:46 – classicthesis]

4.4 T R AV E R S I N G T H E S E N T E N C E S PAC E 41

Definition 13 (Cell Graph Isomorphism, for graphs with symbolic weights
and cardinality constraints). Let (G,C) and (G ′,C ′) be two cell graphs with
cardinality constraints where each edge {i, j} ∈ E(G) ({i ′, j ′} ∈ E(G ′), re-
spectively) is labeled by a multivariate polynomial rij (r ′i ′j ′ , respectively) and
each vertex i ∈ V(G) (i ′ ∈ V(G ′)) is labeled by a multivariate polynomial
wi (w ′

i ′). We say that G and G ′ are isomorphic if there exists a bijection
f : V(G) → V(G ′) and another bijection g mapping variables occurring
in the polynomials in (G,C) to variables occurring in the polynomials in
(G ′,C ′) which satisfy the following conditions:

1. w ′
i = g(wf(i)),

2. r ′ij = g(rf(i),f(j)) for all i, j ∈ V(G),

3. C ′ = g(C).

The above definition is more complicated than the one for cell graphs of FO2

sentences because we need to make sure that when we discover an isomor-
phism of the cell graph, it will not “break” the cardinality constraints.

Finally we are ready to formally show that cell graph isomorphism can be
used also for C2 sentences.

Theorem 3. Let φ and ψ be two C2 sentences and φ ′ and ψ ′ be their en-
coding into FO2 sentences with cardinality constraints. Let (Gφ ′ ,Cφ ′) and
(Gψ ′ ,Cψ ′) be their respective cell graphs with constraints. If (Gφ ′ ,Cφ ′) is
isomorphic to (Gψ ′ ,Cψ ′), then

WFOMC(φ,n,w,w) =WFOMC(ψ,n,w,w)

for any domain size n ∈N and any weights (w,w).

Proof. The proof is a straightforward extension of the proof of Theorem 2.

Example 27. Consider the following sentences:

φ1 = ∀x P(x),
φ2 = ∀x ∀yR(x,y).

It is easy to see that they share the same combinatorial spectrum, i.e.

S(φi) = 1, 1, 1, 1, . . .

Their cell graphs are isomorphic; each of these cell graphs consist of a single
node with all weights set to 1.

In contrast to the previous isomorphism-based pruning techniques, this one
is not-safe-to-delete since it does not use the syntactical description of a sen-
tence.

[February 19, 2024 at 23:46 – classicthesis]

42 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

4.4.2.8 Decomposable Sentences

Definition 4 defines redundancy of a sentence within a set of sentences. We
intentionally extend this definition to inter-sentences setup:

Definition 14. We also consider a sentence φ ∈ Φ redundant if there are
two other sentences φ ′, φ ′′ such that S(φ) = S(φ ′) ·S(φ ′′), where the
product · is taken element-wise.

This method is based on the following observation, which is well-known
among others in lifted inference literature [134]: let φ = φ1 ∧φ2 be a first-
order logic sentence. If φ1 and φ2 use disjoint sets of predicates, then it is
not hard to show that

S(φ) = S(φ1) ·S(φ2)

where the product is taken element-wise and both S(φ1) and S(φ2) are un-
derstood to be computed only over the languages consisting of the predicates
contained in φ1 and φ2, respectively.16

Example 28. Consider the following sentences:

φ1 = ∃x P0(x),
φ2 = ∃=2x P1(x),
φ3 = φ1 ∧φ2.

Then, we have the following combinatorial spectra:

S(φ1) = 1, 3, 7, 15, . . .

S(φ2) = 0, 1, 3, 6, . . .

S(φ3) = 0, 3, 21, 90, . . .

Note that S(φ3) can be also computed as S(φ1) ·S(φ2).

This method is safe-to-delete since it restricts the language of sentences.
Those eliminated sentences can be generated in a post-processing step any-
way.

4.4.2.9 Reflexive Atoms

If a sentence φ contains atoms of some binary predicate R only in the form
R(x, x) or R(y,y) then all the ground atoms R(i, j), where i and j are domain
elements and i ̸= j, are unconstrained by φ. It follows that

S(φ) = S(φ ′) ·S(φ ′′)

where φ ′ = ∀x ¬R(x, x) and φ ′′ is a sentence obtained by replacing all
occurrences of R(x, x) by PR(x) and occurrences of R(y,y) by PR(y) where
PR is a fresh predicate. Here, φ ′ accounts for all possible configurations of
the atoms R(i, j) with arguments i ̸= j.

16 Indeed, this resembles the most typical language bias – connected clauses – employed in
most FOL rule and patter mining approaches. There, however, a clause is a single connected
component w.r.t. variables, whereas we consider a set of disjunctions w.r.t. predicates.

[February 19, 2024 at 23:46 – classicthesis]

4.5 E X P E R I M E N T S 43

Example 29. Consider φ = (∀x R(x, x))∧ (∃x P(x)). Then,x we construct
φ ′ and φ ′′ according to the prescription above, i.e.

φ ′ = ∀x ¬R(x, x),

φ ′′ = (∀x PR(x))∧ (∃x P(x)).

Then we have the following spectra:

S(φ ′) = 1, 4, 64, 4096, . . .

S(φ ′′) = 1, 3, 7, 15, . . .

S(φ) = S(φ ′) ·S(φ ′′) = 1, 12, 448, 61440, . . .

It follows that such a sentence φ is not-safe-to-delete. Deleting such a
sentence would destroy the completeness of the search, but adding it to the
database is redundant as there is a sentence generating the same spectrum
having one more unary predicate.

4.4.2.10 Remark on Interestingness

Our effort in this chapter is biased towards a database containing a fragment
of combinatorial integer sequences. Nevertheless, one might think of some of
such sequences uninteresting. For instance, consider a sequence of all but one
zero, i.e.

0, 1, 0, 0,

While detecting all sentences that correspond to this particular combinatorial
spectrum may prove to be hard,17 we can, at least, remove a fragment of
sentences that trivially corresponds to such a combinatorial spectrum. For
instance, it is easy to construct the sentence

(∀x P(x))∧ (∃=2x P(x))

that produces the spectrum above and is very easy to check. However, if this
spectrum is really uninteresting is left out on a user.

4.5 E X P E R I M E N T S

In this section, we experimentally evaluate the effectiveness of the proposed
approach for constructing the database of integer sequences described above
within a reasonable amount of time. The goal of the following evaluation is
to address the following questions:18

1. How do the proposed redundancy-checking methods impact the con-
struction of the integers database?

2. Does the proposed approach of integer database construction discover
new integer sequences?

17 Intuition for this stems from our argument on deciding whether two sentences produce the
same combinatorial spectrum in Section 4.3.

18 In addition, Appendix B contains one more experiment focused on the comparison of the
redundancy-checking techniques in isolation, i.e., without the spectra computation part.

[February 19, 2024 at 23:46 – classicthesis]

44 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

4.5.1 Filling the Database of Integer Sequences

To answer the first question, we ran Algorithm 1 with two language restric-
tions, namely FO2 and C2 setups, to evaluate the effectiveness of the tech-
niques described in Section 4.4.2 against a vanilla approach, which would
implement the most natural redundancy-checking techniques. The metric of
interest for this experiment is the time needed to construct the database, i.e.,
both sentence generation and combinatorial spectra computation time.

We set a time limit of five minutes for the computation of combinatorial
spectra per sentence. We restricted the language of sentences in order to make
a fair comparison; the language restrictions follow: a single unary and binary
predicate, sentences with at most 2 clauses, each one having at most 5 literals,
i.e., P = {R/2,P/1}, M = 2, M ′ = 2, J = 5, and KFO2 = {∀,∃} and KC2 =

{∀,∃,∃=1} for FO2 and C2 experiment, respectively. We further forbid tuples
of quantifiers where one is in the form ∃=kx and the other is either ∃=ly or
∃y, i.e. ∃x∃=ky, ∃=kx∃y, and ∃=kx∃=ly. When computing combinatorial
spectra, these three combinations do not scale well, so we could not compute
their combinatorial spectra within the time limit we used for filling in the
database. For the same reason, we restricted the number of literals to at most
1 in a clause with a counting quantifier. Each sentence generator was executed
with 51GB of memory and 48 hours of computation time.

In order to prevent a deadlock in the computation process, we relaxed the
method Tautologies & Contradiction to act as a soft filter – if a theorem prover
does not check a sentence within a 30 second limit, the sentence is processed
as usual.19

We start with a baseline consisting of just the method that filters out sen-
tences that are isomorphic (using the standard notion of isomorphism used in
pattern mining literature [88], which does not consider renaming predicates)
and with pruning of decomposable sentences – these are the very essentials
any reasonable method would probably implement. Then, we enhance the
baseline with Tautologies & Contradiction. Similarly, we add a single prun-
ing technique on top of the previous one in the following order: Isomorphic
Sentences, Negations, Permuting Arguments, Reflexive Atoms, Trivial Con-
straints, θ*, and Cell Graph Isomorphism.

Our aim with these experiments was to assess the effect of our proposed
pruning techniques. The results are depicted in Figure 1 and Figure 2 for FO2

and C2, respectively. The pruning techniques help to scale up the database-
filling process in two ways. Whereas the naive approach, e.g., baseline, gen-
erates many sentences fast, soon consuming all available memory,20 safe-to-
delete techniques lower the memory requirements significantly. All pruning
techniques consume some computation time, but that is negligible compared
to the time needed for computing combinatorial spectra, which is the most
time-demanding part of the task; e.g., compare Figure 1c with Figure 1b.
Since the pruning methods, including those which are not-safe-to-delete, re-
duce the number of computations of combinatorial spectra, their use quickly
pays off, as can be seen from Figure 1b and Figure 2b which show the es-
timated time to fill in the database. The most basic methods that do not use

19 Cell Graph Isomorphism yields contradictory sentences as a byproduct when computing valid
cells.

20 Hence not making it into the final layer of sentences with 10 literals.

[February 19, 2024 at 23:46 – classicthesis]

4.5 E X P E R I M E N T S 45

the full set of our pruning techniques, i.e., basline and Tautologies & Contra-
dictions, generate an extremely high number of (mostly redundant) sentences
whose spectra computation would take thousands of hours. Therefore, we
only estimated the runtime by computing the spectra for a random sample
of sentences for these methods. Using all available pruning techniques yields
the fastest database construction time.

4.5.2 An Initial Database Construction

To answer the second question, we used our algorithm to generate an initial
database of combinatorial sequences. We let the sentence generator run for
5 days to obtain a collection of sentences and their combinatorial spectra on
a machine with 500GB RAM and 128 processors (we used multi-threading).
As in the previous experiment, we used a five-minute time limit for the com-
binatorial spectrum computation of a sequence. The result was a database
containing over 26, 000 unique integer sequences. We further split our discus-
sion into two cases – generated sequences contained in OEIS and brand-new
sequences.

Sequences in OEIS: For each of the sequences in our database, we queried
OEIS to determine if the sequence matches a sequence that is already in
OEIS. We found that 301 of the sequences21 were present in OEIS – this
makes≈ 1.2% of the sequences we generated. This may not sound like much,
but it is undoubtedly non-negligible. This number serves as a check that our
database contains some known combinatorial problems. In addition, our goal
was to generate primarily new sequences, not to cover the OEIS database,22

which is not doable by our approach because of two reasons. Firstly, our
database and OEIS are counterparts since the former contains a subset of
combinatorial integer sequences, while the latter contains both combinatorial
and non-combinatorial integer sequences. Secondly, our approach does not
generate all combinatorial integer sequences, e.g., decomposable sentences is
one of them and the syntactical form. Several interesting generated sequences
that happened to be in OEIS are shown in Table 1.

An example of an interesting sequence is the last one in Table 1. This
sequence had no combinatorial characterization in OEIS before we published
our work [125]. We can obtain such a characterization from the C2 sentence
that generated it:23

(∀x∀y P(x)∨¬P(y)∨¬R(x,y))∧ (∀x∃=1y R(x,y)).

This can be interpreted as follows: We are counting configurations consisting
of a function r : [n]→ [n] and a set p ⊆ [n] that satisfy that if y = r(x) and
y ∈ p then x ∈ p. While this may not be a profound combinatorial problem,

21 See a larger sample in Appendix C, or browse a snapshot of our database at https://fluffy.jung.
ninja.

22 An interesting task on its own which is the aim of [27, 40, 67].
23 For easier readability, we replaced the predicate R/2 by its negation, which does not change

the spectrum.

[February 19, 2024 at 23:46 – classicthesis]

https://fluffy.jung.ninja
https://fluffy.jung.ninja

46 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

101

102

103

104

105

106

1 2 3 4 5 6 7 8 9 10

(a)

#
se

nt
en

ce
s

baseline Tautologies & Contradictions
Isomorphic Sentences Negations
Permuting Arguments Reflexive Atoms
Trivial Constraints θ*
Cell Graph Isomorphism

0

10,000

20,000

30,000

1 2 3 4 5 6 7 8 9 10

(b)

es
tim

at
ed

tim
e

[h
]

0

10

20

1 2 3 4 5 6 7 8 9 10

(c)

tim
e

[h
]

Figure 1: Cumulative number of FO2 sentences (a) with at most x literals, the ex-
pected time to fill in the database (b), and the time needed to generate
sentences (c). At most 5 literals per clause, at most 2 clauses per sentence,
one unary, and one binary predicate.

it provides a combinatorial interpretation of the sequence at hand. We would
not be able to find this description without our database. Besides others, this
case shows that our approach can enrich descriptions of some entries in OEIS.

[February 19, 2024 at 23:46 – classicthesis]

4.5 E X P E R I M E N T S 47

101

102

103

104

105

106

1 2 3 4 5 6 7 8 9 10

(a)

#
se

nt
en

ce
s

baseline Tautologies & Contradictions
Isomorphic Sentences Negations
Permuting Arguments Reflexive Atoms
Trivial Constraints θ*
Cell Graph Isomorphism

0

10,000

20,000

30,000

1 2 3 4 5 6 7 8 9 10

(b)

es
tim

at
ed

tim
e

[h
]

0

10

20

1 2 3 4 5 6 7 8 9 10

(c)

tim
e

[h
]

Figure 2: Cumulative number of C2 sentences (a) with at most x literals, the expected
time to fill in the database (b), and the time needed to generate sentences
(c). At most 5 literals per clause, at most 2 clauses per sentence, quantifiers
∀,∃,∃=1, one unary, and one binary predicate.

New sequences: The rest of the database in this experiment, roughly 25, 000
combinatorial integer sequences, is what we hoped to get in the first place.
Let us discuss several examples of those. The first of these examples is the
sequence

[February 19, 2024 at 23:46 – classicthesis]

48 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

Table 1: A sample of sequences that are combinatorial spectra of sentences generated
by our algorithm that also appear in OEIS.

Sentence OEIS ID OEIS name
(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x))∧ (∀x∀y R(x, x)∨
R(x,y)∨¬R(y, x))

A85 Number of self-inverse permutations
on n letters, also known as involutions;
number of standard Young tableaux
with n cells.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x))
A142 Factorial numbers: n! = 1 · 2 · 3 · 4 · ... ·

n (order of symmetric group Sn, num-
ber of permutations of n letters).

(∃x∃y P(x) ∨ R(x,y)) ∧

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x))

A165 Double factorial of even numbers:
(2n)!! = 2n ∗n!.

(∀x R(x, x))∧ (∀x∃=1y ¬R(x,y))∧
(∀x∃=1y ¬R(y, x))

A166 Subfactorial or rencontres numbers, or
derangements: number of permutations
of n elements with no fixed points.

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∃x R(x, x))∧ (∀x∃=1 y¬R(x,y))
A1189 Number of degree-n permutations of

order exactly 2.

(∀x R(x, x)) ∧ (∃x R(x, x)) ∧

(∀x∃=1y ¬R(y, x)) ∧

(∃=1x∀y R(x,y))

A37184 Functional digraphs with 1 node not in
the image.

(∃x ¬R(x, x))∧ (∀x∃=1y ¬R(y, x)) A45531 Number of sticky functions: endofunc-
tions of [n] having a fixed point.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∀y ¬P(x)∨ R(y, x))
A47863 Number of labeled graphs with 2-

colored nodes where black nodes are
only connected to white nodes and vice
versa.

(∀x∀y R(x,y) ∨ ¬R(y,y)) ∧

(∃x∀y R(x,y)) ∧ (∃x ¬R(x, x)) ∧
(∃=1x ¬R(x, x))

A58877 Number of labeled acyclic digraphs
with n nodes containing exactly n− 1

points of in-degree zero.

(∀x∀y P0(x) ∨ P1(y) ∨ P2(y)) ∧

(∀x P0(x)∨¬P1(x))

A85350 Binomial transform of poly-Bernoulli
numbers A027649.

(∀x R(x, x)) ∧ (∀x∃y ¬R(x,y)) ∧
(∀x∃y ¬R(y, x))

A86193 Number of n×n matrices with entries
in {0, 1} with no zero row, no zero col-
umn and with zero main diagonal.

(∀x∀y P0(x) ∨ R(y,y)) ∧

(∃x∃y P0(x)∨ P1(x)∨ R(x,y))
A88668 Number of nXn matrices over GF(2)

with characteristic polynomial xn−1 ∗
(x− 1).

(∃x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∀x R(x, x))∧ (∀x∃=1y ¬R(x,y))
A246189 Number of endofunctions on [n] where

the smallest cycle length equals 2.

(∀x∀y P(x) ∨ ¬P(y) ∨ R(x,y)) ∧
(∀x∃=1y ¬R(x,y))

A290840 a(n) = n! · [xn] exp(n·x)
1+LambertW(−x)

0, 0, 6, 72, 980, 15360, . . .

generated by the sentence

(∀x ¬R(x, x))∧ (∃x∀y ¬R(y, x))∧ (∀x∃=1y R(x,y)).

[February 19, 2024 at 23:46 – classicthesis]

4.5 E X P E R I M E N T S 49

We can interpret it as counting the number of functions r : [n]→ [n] without
fixed points and with image not equal to [n]. Another example is the sequence

1, 7, 237, 31613, 16224509, 31992952773, . . .

which corresponds to the sentence

(∀x∃y R(x,y))∧ (∃x∀y R(x,y)∨ R(y, x))

and counts directed graphs on n vertices in which every vertex has non-zero
out-degree and there is a vertex that is connected to all other vertices (includ-
ing to itself) by either an outgoing or incoming edge. Yet another example is
the sequence

1, 5, 127, 12209, 4329151, 5723266625, . . .

corresponding to the sentence

(∀x∃y R(x,y))∧ (∃x∀y R(x,y))

which counts directed graphs where every vertex has non-zero out-degree and
at least one vertex has out-degree n, which is also the same as the number of
binary matrices with no zero rows and at least one row containing all ones.
These examples correspond to the simpler structures in the database, there
are others which are more complex (and also more difficult to interpret). For
example, another sequence

0, 3, 43, 747, 22813, 1352761, . . .

constructed by our algorithm, given by the sentence

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨ R(y, x))∧

∧(∃x∀y ¬R(x,y)∨¬P(y))∧ (∃x∃y R(x,y))

which counts undirected graphs without loops with at least one edge and with
vertices labeled by two colors, red and black (red corresponding to P(x), and
black corresponding to ¬P(x)) such that there is at least one vertex not con-
nected to any of the red vertices (note that this vertex can itself be red). We
could keep on listing similar sequences,24 but we believe the handful we
showed here gives a sufficient idea about the kind of sequences one could
find in the database constructed by our system.

4.5.3 Conclusion

The latter experiment shows that the idea of discovering interesting com-
binatorial sentences using first-order logic works in practice. Although we
constructed only a tiny initial database, we made a small contribution to
the well-established OEIS. The former experiment shows that the proposed
redundancy-checking techniques scale up the sentence-generation process
and save computational resources in order of magnitudes compared to a naive
approach.

24 Continuing at this pace, this would take roughly 8, 000 more pages.

[February 19, 2024 at 23:46 – classicthesis]

50 D I S C OV E R I N G I N T E G E R S E Q U E N C E S V I A F I R S T- O R D E R L O G I C

4.6 R E L AT E D W O R K

There is a long tradition of research focusing on automated discovery in math-
ematics dating back to the AM program [63] through the well-known HR sys-
tem [23, 24] and current approaches [28, 47, 81, 132]. Usually, methods from
this field aim to either discover new concepts in mathematics or construct new
conjectures about some objects of interest automatically, e.g., groups, graphs,
programs, and prove them. The HR system [25] was used to generate new
integers from initial knowledge that, e.g., contains numbers, operations be-
tween numbers, and a set of rules. Several recent works use OEIS sequences
as inputs for program synthesis, e.g., QSynt [40] or [27, 67]. However, these
works have different biases and are orthogonal to ours since their initial aim
is to synthesize programs or formulae covering entries in OEIS.2526

To the best of our knowledge, there has been almost no prior work on
automated generation of combinatorial sequences, with the work [2], which
focuses on sequences generated by permutations avoiding certain patterns,
being an exception. However, there are works that intersect with the work
presented in this chapter in certain aspects. Our bias towards combinatorics
puts us very close to the works on lifted inference [9, 42, 54, 103, 134, 135].
In fact, our approach would not be possible without lifted inference as it con-
structs the bridge between first-order logic and integer sequences since we
use the algorithms and the concept of cell graphs from [17]. Although the
detection of isomorphic sentences can be seen as an extension of standard
isomorphic pruning from pattern-mining literature [88], it is similar, in spirit,
to the techniques presented in [16]. There, however, the main focus lies on
propositional logic problems, whereas we use these techniques for problems
with first-order logic sentences.

The closest line of work at the intersection of combinatorics and artificial
intelligence are the works [124] and [131]. However, those works do not at-
tempt to generate new sequences or new combinatorics results, as they mostly
aim at solving textbook-style combinatorial problems, which is still a highly
non-trivial problem too, though.

4.7 F U T U R E W O R K

To the best of our knowledge, this is the first work along the lines of auto-
matically combinatorics interwinding first-order logic sentences and integer
sequences. In this chapter, we focused only on a single component of the
whole environment – generation of logical sentences. Each component of the
database construction can be extended, and the database can be used for other
machine-learning tasks. We briefly outline a few extensions of the database
construction process.

Techniques for lifted first-order model counting are a vital part of our ap-
proach. Hence, progress in this area can extend the number of entries in the
database with almost no modification at all. This is usually done by proving a
particular class of sentences to be domain liftable, e.g., by adding tree axiom
[133] or linear order axiom [130].

25 For instance, the OEIS’s sequence A290840, which we discussed in Section 4.5, corresponds
to the output of https://loda-lang.org/edit/?oeis=290840 Loda program.

26 See Chapter 7 for demonstration of learned models by these methods and ours.

[February 19, 2024 at 23:46 – classicthesis]

https://loda-lang.org/edit/?oeis=290840

4.7 F U T U R E W O R K 51

The other component of our approach, which was the main topic of this
chapter, touched its limits after a few weeks of computation, leading to a
database with 161, 000 sentences and 52, 000 unique integer sequences. While
our method enumerated all sentences in a given syntactical form, an incom-
plete approach, e.g., utilizing reinforcement learning [40], sounds like the
next natural step that could overcome the current limitations of our approach.
In fact, any similar extension, depth-breath search, literal-wise refinements,
etc., can build up on the pruning techniques described in this chapter. Recall
that these techniques have to be adjusted to their usage; for example, some
techniques may change to not-safe-to-delete from our safe-to-delete, and vice
versa. A more profound investigation of entailment-based pruning, i.e., incor-
porating more complex, or even full, reasoning on the intra-sentence level, is
left for future work as we relaxed this technique to preserve scalability.

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

5
S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N
K N OW L E D G E

Domain knowledge is your
compass in any domain.

— Richard Warepam [138]

In the previous chapter, we deployed a standard sentence space traversal
algorithm with a dozen, less or more complicated, pruning methods in order
to generate integer sequences in a fully automatic way. A natural question
arises:

Having some knowledge of the sentence space, can we prune the space
automatically?

In this chapter, we answer this question positively in a single scenario that
covers standard ILP systems. A lack of domain knowledge is not an issue
since we learn domain knowledge by observing regularities in the data.

In this chapter, we work within Section 2.3.1 learning setup, i.e., learning
from interpretation.1 Let us start with two motivating examples.

Example 30. Let us consider the following two sentences for some target
concept C:

α = ∀x Animal(x)∧Cod(x)⇒ C(x),

β = ∀x Fish(x)∧Cod(x)⇒ C(x).

Intuitively, these two sentences are equivalent since every cod is a fish and
every fish is an animal. Yet, standard rule-mining systems would need to con-
sider both of these sentences separately because α and β are not isomorphic,
not θ-equivalent, and neither of them θ-subsumes the other.

Example 31. Problems with redundant hypotheses abound in datasets of
molecules, which are widespread in the ILP literature. For instance, consider
the following two sentences:

α = ∀x∀y∀z Carb(y)∧Bond(x,y)∧Bond(y, z)∧Hydro(z)⇒ C(x),

β = ∀x∀y∀z Carb(x)∧Bond(x,y)∧Bond(z,y)∧Hydro(z)⇒ C(x).

These two sentences intuitively represent the same molecular structures (a
carbon and a hydrogen both connected to the same atom of unspecified type).
They differ only in the syntactical form of bond direction, which is, in reality,
undirected. Again, however, their equivalence cannot be detected without the
domain knowledge that bonds in molecular datasets are symmetric.2

1 Contrary to the previous chapter, universally quantified clauses, and variable-based isomor-
phism (Section 2.1) is enough.

2 In the physical world, bonds do not necessarily have to be symmetric, e.g., there is an obvious
asymmetry in polar bonds. However, it is a common simplification in data mining on molecular
datasets to assume that bonds are symmetric.

53

[February 19, 2024 at 23:46 – classicthesis]

54 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E

These two examples correspond to the scenario this chapter aims for. In a
nutshell, our approach consists of two steps: i) learning a domain theory that
covers the data, e.g., learning that bond relation is symmetric, ii) utilizing that
knowledge to prune the space of sentences, e.g., saying that α and β from
Example 31 are equal w.r.t. bond symmetry. We solve the first step straight-
forwardly and focus mainly on the second.

5.1 S AT U R AT I O N S

The main technical ingredient of our approach is the following notion of sat-
uration.

Definition 15 (Saturation of a clause). Let B be a clausal theory and α a
clause (without constants or function symbols). If B ̸|= α, we define the satu-
ration of α w.r.t. B to be the maximal clause α ′ satisfying:

1. vars(α ′) = vars(α)

2. B∧α ′θ |= αθ

for any injective grounding substitution θ. If B |= α, we define the saturation
of α w.r.t. B to be ⊤.

When B is clear from the context, we will simply refer to α ′ as the saturation
of α.

Definition 15 naturally leads to a straightforward procedure for computing
the saturation of a given clause. Let L = {τ1, τ2, . . . , τn} be the set of all lit-
erals which can be constructed using variables from α and predicate symbols
from B and α. Let θ be an arbitrary injective grounding substitution; note
that we can indeed take θ to be arbitrary because B and α do not contain
constants. If B ̸|= α, the saturation of α is given by the following clause:∨

{τ ∈ L | B |= ¬τθ∨αθ}. (6)

This means in particular that we can straightforwardly use the SAT based the-
orem proving method from Section 3.3 to compute saturations. The fact that
Equation (6) correctly characterizes the saturation can be seen as follows. If
α ′ is the saturation of α then B∧ α ′θ |= αθ by definition, which is equiva-
lent to

B∧¬(αθ) |= ¬(α ′θ).

We have

¬(α ′θ) =
∧

{τ̃θ | B ∧¬(αθ) |= τ̃θ}

=
∧

{τ̃θ | B ∧ τθ |= αθ}

and thus
α ′θ =

∨
{τθ | B ∧ τθ |= αθ}.

Finally, since θ is injective, we have3

α ′ = (α ′θ)θ− =
∨

{τ | B ∧ τθ |= αθ}.

3 Note that we are slightly abusing notation here, as θ−1 is not a substitution.

[February 19, 2024 at 23:46 – classicthesis]

5.1 S AT U R AT I O N S 55

Example 32. Let us consider the following theory

B = {∀x∀y Friends(x,y)⇒ Friends(y, x)}

which expresses the fact that friendship is a symmetric relation and a clause

α = ∀x∀y Friends(x,y)⇒ Happy(x).

To find the saturation of this clause, we first need a suitable injective substitu-
tion θ; let us take θ = {x 7→ c1,y 7→ c2}. Then we have

B∪¬(αθ) = B∪ {Friends(c1, c2)∧¬Happy(c1)}

|= Friends(c1, c2)∧ Friends(c2, c1)∧¬Happy(c1),

After negating the latter formula and inverting the substitution (noting that it
is injective) we get the following saturation

α ′ = ∀x∀y Friends(x,y)∧ Friends(y, x)⇒ Happy(x).

Now, let us consider another clause

β = ∀x∀y Friends(x,y)⇒ Happy(y).

This clause is not isomorphic toα. However, it is easy to see that its saturation

β ′ = ∀x∀y Friends(x,y)∧ Friends(y, x)⇒ Happy(y)

is isomorphic to the saturation α ′ of α.

The next proposition will become important later as it will allow us to
replace clauses by their saturations when learning from interpretations.

Proposition 1. If α ′ is a saturation of α w.r.t. B then B∧α ′ |= α.

Proof. We have B ∧ α ′ |= α if and only if B ∧ α ′ ∧ ¬α is unsatisfiable.
Skolemizing ¬α, this is equivalent to B ∧ α ′ ∧ ¬(αθSk) being unsatisfi-
able, where θSk is a substitution representing the Skolemization. As in Sec-
tion 3.3, we find that the satisfiability of B ∧ α ′ ∧ ¬(αθSk) is also equiv-
alent to the satisfiability of the grounding of B ∧ α ′ ∧ ¬(αθSk) w.r.t. the
Skolem constants introduced by θSk. In particular, this grounding must con-
tain the ground clause α ′θSk. From the definition of saturation, we have
that B∧ α ′θSk ∧¬(αθSk) |= ⊥, note that θSk is injective. It follows that
B∧α ′ ∧¬α |= ⊥, and thus also B∧α ′ |= α.

The next proposition shows that saturations cover the same examples as the
clauses from which they were obtained, when B is a domain theory that is
valid for all examples in the dataset.

Proposition 2. Let B be a clausal theory such that for all examples e from
a given dataset it holds that e |= B. Let α be a clause and let α ′ be its
saturation w.r.t. B. Then for any example e from the dataset we have (e |=

α)⇔ (e |= α ′).

Proof. From the characterization of saturation in Equation (6), it straightfor-
wardly follows that α |= α ′, hence e |= α implies e |= α ′.

Conversely, if e |= α ′, then we have e |= B∧ α ′, since we assumed that
e |= B. Since we furthermore know from Proposition 1 that B∧ α ′ |= α, it
follows that e |= α.

[February 19, 2024 at 23:46 – classicthesis]

56 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E

Finally, we define positive and negative saturations, which only add positive
or negative literals to clauses. Among others, this will be useful in settings
where we are only learning Horn clauses or hard constraints.

Definition 16. A positive (resp. negative) saturation of α is defined as

α ′′ = α∪ {τ ∈ α ′ | τ is a positive (resp. negative) literal}

where α ′ is a saturation of α.

Proposition 1 and Proposition 2 are also valid for positive or negative satu-
rations; their proofs can be straightforwardly adapted. When computing the
positive (resp. negative) saturation, we can restrict the set L of candidate lit-
erals to the positive (resp. negative) ones. This can speed up the computation
of saturations significantly.

5.2 S E A R C H I N G T H E S PAC E O F S AT U R AT I O N S

In this section, we show how saturations can be used together with refinement
operators to search the space of clauses ordered by OI-subsumption, which
we use to partially order the constructed sentences.4 Specifically, we show
that if we have a refinement operator that can completely generate some set
of clauses then we can use the same refinement operator, in combination with
a procedure for computing saturations, to generate the set of all saturations of
the considered set of clauses. Since this set of saturations is typically smaller
than the complete set of clauses (as many clauses can lead to the same satu-
rated clauses), this is already beneficial for reducing the size of the sentence
space. In Section 5.3, we show that it also allows us to very quickly prune
clauses equivalent w.r.t. domain theory. First we give a definition of refine-
ment operator [126].

Definition 17 (Refinement operator). Let L be a first-order language. A re-
finement operator5 on the set A of all L-clauses is a function ρ : A → 2A

such that for any α ∈ A and any β ∈ ρ(α) it holds α ⪯OI β. A refinement
operator ρ is complete if for any two clauses α and β such that α ⪯OI β,
a clause γ isomorphic to β (β ≈iso γ) can be obtained from α by repeated
application of the refinement operator (i.e. γ ∈ ρ(ρ(. . . ρ(α) . . .))).

Most works define refinement operators w.r.t. θ-subsumption instead of OI-
subsumption [126]. We need the restriction to OI-subsumption as a technical
condition for Proposition 3 below. It should be noted, however, that our results
remain valid for many refinement operators that are not specifically based on
OI-subsumption, including all refinement operators that only add new literals
to clauses. Also, note that we do not use OI-subsumption as a covering oper-
ator but only to structure the space of sentences. Therefore, there is no loss in
what sentences can be learned.

The following definition formally introduces the combination of refine-
ment operators and saturations.

4 We do not use OI-subsumption to check the entailment relation.
5 What we call refinement operator in this chapter is often called downward refinement operator.

Since we only consider downward refinement operators here, we omit the word downward.

[February 19, 2024 at 23:46 – classicthesis]

5.2 S E A R C H I N G T H E S PAC E O F S AT U R AT I O N S 57

Definition 18 (Saturated refinement operator). Let L be a first-order lan-
guage. Let ρ be a refinement operator on the set A of all L-clauses con-
taining at most n variables. Let B be a clausal theory. Let σB : A→ A be a
function that maps a clause α to its saturation α ′ w.r.t. B. Then the function
ρB = σB ◦ ρ is called the saturation of ρ w.r.t. B.

Clearly, the saturation of a refinement operator w.r.t. some clausal theory B

is a refinement operator as well. However, it can be the case that ρ is complete,
whereas its saturation is not. As we will show next, this is not a problem for
completeness w.r.t. the given theory B in the sense that saturations of all
clauses from the given class A are guaranteed to be eventually constructed by
the combined operator, when ρ is a complete refinement operator.

Proposition 3. Let L be a first-order language. Let ρ be a complete refine-
ment operator on the set of L-clauses A, B be clausal theory, σB a function
that maps a clause α to its saturation α ′ w.r.t. B and let ρB be the saturation
of ρ w.r.t. B. Let α ∈ A be a clause, Sα and let SBα be the sets of clauses
that can be obtained from α by repeated application of ρ and ρB, respec-
tively. Then for any clause β ∈ Sα there is a clause β ′ ∈ SBα such that
σB(β) ≈iso β

′.

Proof. We first note that if A ⪯OI B then σB(A) ⪯OI σB(B) (assuming an
extended definition of OI-subsumption such thatA ⪯OI ⊤ for anyA), which
follows from the monotonicity of the entailment relation |=. Let us define
X = {σB(A) | A ∈ SC}. Note that X and SBC are not defined in the same way;
X is the set of saturations of clauses in SC, whereas SBC is the set of clauses
that can be obtained by the saturated refinement operator ρB from the clause
C. We need to show that these two sets are equivalent. Clearly, SBC ⊆ X.
To show the other direction, let us assume (for contradiction) that there is a
clause X ∈ X for which there is no clause Y ∈ SBC which is isomorphic to
X. Let us assume that X is a minimal clause with this property, meaning that
for any clause X ′ contained in the set ZX = {Z ∈ X | Z ⪯OI X,X ̸≈iso Z}

there is a clause Y ′ ∈ SBC which is isomorphic to X ′. Clearly, if there is one
such clause X then there is also a minimal one which follows from the fact
that all the considered clauses are finite and ⪯OI is a partial order. Let us
take a clause X ′ ∈ ZX which is maximal6 w.r.t. the ordering induced by ⪯OI
and let Y ′ be the respective isomorphic clause from SBC . Then ρ(Y ′) must
contain a clause Y ′′, Y ′ ̸≈iso Y

′′, that OI-subsumes X, which follows from
completeness of the refinement operator ρ. However, then σB(Y ′′) must be
contained in SBC . It must also hold that σB(Y ′′) ⪯OI σB(X) = X. Here,
σB(Y ′′) ⪯OI σB(X) follows from the already mentioned observation that if
A ⪯OI B then σB(A) ⪯OI σB(B), and the equality σB(X) = X follows
from the idempotence of σB, noting that X is already a saturation of some
clause. However, this is a contradiction with the maximality of X ′ and the
corresponding Y ′.

6 If we ordered the set of clauses by θ-subsumption instead of OI-subsumption then there would
not have to exist a maximal clause with this property.

[February 19, 2024 at 23:46 – classicthesis]

58 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E

5.3 P RU N I N G I S O M O R P H I C S AT U R AT I O N S

When searching the space of clauses or, in particular, saturations of clauses,
we should avoid searching through isomorphic clauses. It is easy to see that
the sets of clauses generated by a (saturated) complete refinement operator ρ
from two isomorphic clauses α and α ′ will contain clauses that are isomor-
phic, i.e., for any clause in the first set there will be an isomorphic clause in
the second set and vice versa. Therefore, it is safe to prune isomorphic clauses
during the search.

During sentence space traversal, searching algorithms keep some data struc-
tures, usually an open and closed lists, in order not to evaluate a clause multi-
ple times. However, many of the clauses that are stored in such data structures
will be equivalent, even if they are not isomorphic. Existing methods, even if
they were removing isomorphic clauses during the search,7 have to consider
each of these equivalent clauses separately, which may significantly affect
their performance. This is where using saturations of clauses w.r.t. some do-
main knowledge is most useful because it can replace the different implicitly
equivalent clauses by their saturation. Therefore, we first compute the satu-
ration of α and prune it if α ′ is isomorphic to a clause in an open or closed
list.8

Example 33. Let us again consider the two clauses from Example 30:

α = ∀x∀y Animal(x)∧Cod(x)⇒ C(x),

β = ∀x∀y Fish(x)∧Cod⇒ C(x).

Suppose that the theory B encodes the taxonomy of animals consists of the
following clauses

B = {∀x Cod(x)⇒ Fish(x),

∀x Fish(x)⇒ Animal(x)}.

Computing the saturations of α and β w.r.t. B, we obtain

α ′ = ∀x Animal(x)∧Cod(x)∧ Fish(x)⇒ C(x),

β ′ = ∀x Fish(x)∧Cod(x)∧Animal(x)⇒ C(x),

which are isomorphic. Therefore both of them can be replaced by the same
saturations while the corresponding algorithm keeps searching the sentence
space.

Similarly, as shown above, for the two clauses from Example 30, saturations
could be used to detect the equivalence of the two clauses from Example 31
w.r.t. the corresponding domain knowledge theory B.9

In addition to equivalence testing, saturations can be used to filter trivial
sentences, i.e., hypotheses covering every example, without explicitly com-
puting their coverage on the dataset, which can be very costly on large datasets,

7 For instance, Farmr [88] or RelF [57] remove isomorphic clauses (or conjunctive patterns),
but many existing ILP systems do not attempt removing isomorphic clauses.

8 Or any other structure a search algorithm uses.
9 Assuming B = {∀x∀y Bond(x,y) ⇒ Bond(y, x)}, saturations of both clauses are iso-

morphic to ∀x∀y Carb(y) ∧ Bond(x,y) ∧ Bond(y, x) ∧ Bond(y, z) ∧ Bond(z,y) ∧
Hydro(z)⇒ C(x). The computation follows the same process as in Example 32.

[February 19, 2024 at 23:46 – classicthesis]

5.4 L E A R N I N G D O M A I N T H E O R I E S 59

or in scenarios where the evaluation of a sentence is complex, e.g., together
with a theory. We illustrate this use of saturations in the following example.

Example 34. Consider a domain theory

B = {∀x ¬Professor(x)∨¬Student(x)}

which contains a hard constraint stating that no one can be both a student
and a professor. Let us also consider a sentence

α = ∀x Professor(x)∧ Student(x)⇒ Employee(x).

If the domain theory B is correct, α should cover all examples from the
dataset and is thus trivial. Accordingly, the saturation of α contains every
literal, and is in particular equivalent to ⊤.

Finally, we note that it can be shown straightforwardly that the pruning
method based on saturations does not affect the completeness of the sentence
search methods considered here. Preservation of completeness follows, first,
from the monotonicity of deduction in classical logic and, second, from the
fact that we use isomorphism for pruning and not θ-equivalence.

5.3.1 Why Relative Subsumption is Not Sufficient

Although the motivation behind relative subsumption [102] is similar to ours,
relative subsumption has two main disadvantages that basically disqualify it
for the purpose of pruning the sentence space. The first problem is that prun-
ing sentences that are equivalent w.r.t. relative subsumption may not guaran-
tee the completeness of the search. This is the same issue as with pruning
based on plain θ-subsumption, which, unlike pruning based on isomorphism,
may lead to incompleteness of the search. Note that this is already the case
in the more restricted setting of graph mining under homomorphism [110].
The second issue with relative subsumption is that it would need to be tested
for all pairs of candidate sentences, whereas the pruning based on saturations
and isomorphism testing allows us to use the more efficient hashing strategy
based on the Weisfeiler-Lehman procedure.

5.4 L E A R N I N G D O M A I N T H E O R I E S

The domain theories that we want to use for pruning sentence space can be
learned from the given training dataset E. Every clause α in such a learned
domain theory should satisfy

e |= α ∀e ∈ E. (7)

Further, we are interested in relatively small and compact theories to make
fast computations. Hence, only clauses satisfying Equation (7) are added into
the domain theory B only if there is no other clause from the theory that
would θ-subsume them. The algorithm we use solves the following problem:

Given: A set of example E and an integer d.

[February 19, 2024 at 23:46 – classicthesis]

60 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E

Compute: The domain theory B such that each β ∈ B has at most d literals
and there are not any two distinct βi,βj ∈ B such that βi ⪯θ βj.

Algorithm 2 describes how we construct such theories using a level-wise
search procedure, starting with an empty domain theory (line 1). The level-
wise procedure maintains a list of candidate clauses Ai (modulo isomorphism
– lines 12-14)10 with i literals. If a clause γ, from the list of candidate clauses,
covers all examples (line 8), then it is removed from the list, and if there is
no clause in the domain theory which θ-subsumes γ, then γ is also added
to the domain theory (line 9). Each of the remaining clauses in the list, i.e.,
those which do not cover all examples in the dataset, are then extended in all
possible ways by the addition of a literal in the next iteration of the main loop
(line 5). This is repeated until a threshold on the maximum number of literals
is reached. The covering of examples by the candidate clauses is checked
using θ-subsumption as outlined in Section 3.2.

Algorithm 2 Pseudocode of Level-wise Domain-Theory Learner
Parameter: Set of examples E and integer d.
Output: Domain theory B.

1: B← ∅
2: A0 ← {∅}
3: for i ∈ {1, 2, 3, . . . ,d} do
4: Ai ← ∅
5: for α ∈ Ai−1 do
6: for γ ∈ refinements(α) do
7: if ∀e ∈ E : e |= γ then
8: if ∀β ∈ B : β ̸⪯θ γ then
9: B← B∪ {γ}

10: end if
11: else
12: if ∀δ ∈ Ai : γ ̸≈iso δ then
13: Ai ← Ai ∪ {γ}
14: end if
15: end if
16: end for
17: end for
18: end for
19: return B

It is worth pointing out that if we restrict the domain theories, e.g., to con-
tain only clauses of length at most two or only Horn clauses, the saturation
process will be guaranteed to run in polynomial time, which follows from the
polynomial-time solvability of 2-SAT and Horn-SAT.

10 Note that for checking isomorphism within a set of clauses, we use the hash-based approach
discussed in Section 3.1, not an exhaustive testing of all pairs.

[February 19, 2024 at 23:46 – classicthesis]

5.5 I N T E G R AT I N G S AT U R AT I O N S W I T H E X I S T I N G A L G O R I T H M S 61

5.5 I N T E G R AT I N G S AT U R AT I O N S W I T H E X I S T I N G A L G O R I T H M S

In this section, we describe two separate applications of saturation-based
pruning within more or less straightforward algorithms used in the literature.
We evaluate the effectiveness of our pruning method later in Section 5.6.

5.5.1 Level-wise Feature Construction

We consider the feature construction using a simple exhaustive level-wise
algorithm, which works similarly to the Warmr frequent pattern-mining al-
gorithm [33]. It takes three parameters by default: a set of examples E, the
maximum depth d, and the maximum number of covered examples t (also
called “maximum frequency”). Due to the connection with saturation, it also
takes domain theory B. It returns all connected11 clauses that can be obtained
by saturating clauses containing at most d literals and which cover at most
t examples. Unlike in frequent conjunctive pattern-mining where minimum
frequency constraints are natural when mining in the setting of learning from
interpretations, the analogue of the minimum frequency is the maximum fre-
quency constraint.12

The level-wise algorithm, which is depicted in Algorithm 3, expects as
input a list of interpretations (examples) E, domain theory B, and parameters
t and d. It starts with an empty clause (line 1). Then it proceeds in the level-
wise manner (lines 4-18) by extending clauses stored in the previous level
in all possible ways by negative literals (line 5). Negative saturations (line 6)
of those clauses are used for isomorphic pruning (lines 9-11).13 Finally, only
clauses with coverage at most t are stored for the next iteration (line 13). The
algorithm ends after exceeding all d levels.

We restricted ourselves to mining clauses which contain only negative lit-
erals. This essentially corresponds to mining positive conjunctive queries,
which is arguably the most typical scenario.

5.5.2 Saturating Domain Theory Learner

Inference algorithms, e.g., classical logical entailment or MLNs, often uti-
lize hard constraints that are an essential part of a domain theory. During
inference, hard constraints forbid the algorithms to predict things that appar-
ently do not hold. For instance, recall Example 34 where domain theory en-
coded that no one is a student and a professor at the same time. We also need
domain theory to mine features with our proposed saturation-based pruning.
One could easily ask the following question aloud:

Can we use domain theory to learn domain theory?

Indeed, boosting the domain theory learner from Section 5.4 is relatively easy.
The idea is to saturate i-th layer of the search, i.e., clauses with i literals, us-
ing domain theory learned up to that layer, i.e., (i− 1)-th level. It is important

11 If a clause is connected, then its saturation is also connected.
12 Frequent conjunctive pattern mining can be emulated in our setting. It is enough to notice that

the clauses that we construct are just negations of conjunctive patterns.
13 Again, this is just a pseudocode. We use the hash-based approach discussed in Section 3.1.

[February 19, 2024 at 23:46 – classicthesis]

62 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E

Algorithm 3 Pseudocode of Level-wise Feature Construction Algorithm
Parameter: Set of examples E, domain theory B, and integers t, d.
Output: Clauses Φ with at most d literals and covering at most t exam-
ples.

1: A0 ← {∅}
2: L− ← all possible negative literals
3: Φ← A0
4: for i ∈ {1, 2, 3, . . . ,d} do
5: Ai ←

⋃
α∈Ai−1

{α∪ {τ} | τ ∈ L− ∧ τ ̸∈ α}
6: Ai ← {σB(α) | α ∈ Ai}

7: Γ ← ∅
8: for α ∈ Ai do
9: if ∀γ ∈ Γ : γ ̸≈iso α then

10: Γ ← Γ ∪ {α}
11: end if
12: end for
13: Ai ← {γ ∈ Γ

∣∣ |{e ∈ E | e |= γ}| ⩽ t}
14: if Ai is empty then
15: break
16: end if
17: Φ← Φ∪Ai
18: end for
19: return Φ

to note that the algorithm still traverses the space of sentences rather than the
space of saturations, which is an important difference compared to the pre-
vious feature-construction scenario. Otherwise, some sentences equivalent14

to some domain theory clause could be expanded multiple times. We do not
show here the whole pseudocode since it is a straightforward extension of
Algorithm 2.

5.6 E X P E R I M E N T S

In this section, we evaluate the usefulness of the proposed saturation-based
pruning method. The goal of our empirical evaluation is to answer the follow-
ing question:

1. Does our proposed saturation-based pruning method make sentence
mining faster than standard isomorphism-based pruning?

We evaluate this question on real datasets in two separate cases for which
we already outlined algorithms in Section 5.5. The first case emulates a stan-
dard pattern-mining scenario, while the second uses the saturation-based prun-
ing within the domain theory learner.

14 With respect to domain theory of the data.

[February 19, 2024 at 23:46 – classicthesis]

5.6 E X P E R I M E N T S 63

5.6.1 Feature Construction

In this scenario, we follow the evaluation of the exhaustive level-wise feature
construction algorithm described in Section 5.5.1. We measure runtime and
the total number of clauses returned by the level-wise algorithm without sat-
urations and with saturations. Both algorithms are exactly the same, the only
difference being that the second algorithm first learns a domain theory, using
the approach described in Section 5.4, and then uses it for computing the sat-
urations. Note, in particular, that both algorithms use the same isomorphism
filtering. Therefore, any differences in computation time must be directly due
to the use of saturations.

The experiment was evaluated on a standard molecular dataset KM20L2
from the NCI GI 50 dataset collection [109]. This dataset contains 1207 ex-
amples (molecules) and 94263 facts; the representation uses 40 unary pred-
icates to describe atoms, e.g., carbon or hydrogen, and 5 binary predicates
to encode different bond types, e.g., double or aromatic bound. The learned
domain theories were restricted to only clauses with at most 2 literals. We set
the maximum number of covered examples equal to the number of examples
in the dataset minus 1. Then, we also performed an experiment where we
set it equal to the number of examples in the dataset minus 50. We set the
maximum time limit to 10 hours.15

The results of the experiments are shown in Figure 3. The pruning method
based on saturations turns out to pay off when searching for longer clauses
where it improves the baseline by approximately an order of magnitude and
allows it to search for longer clauses within the given time limit. When search-
ing for smaller clauses, the runtime is dominated by the time for learning the
domain theory, which is why the baseline algorithm is faster in that case.
The number of generated clauses, which is directly proportional to memory
consumption, also becomes orders of magnitude smaller when using satura-
tions for longer clauses. Note that for every clause constructed by the base-
line algorithm, there is an equivalent clause constructed by the algorithm with
saturation-based pruning. The learned domain theory can be described in two
terms: bond symmetry and mutexes. The former is something we already dis-
cussed in Example 31, e.g.

∀x∀y Bond(x,y)⇒ Bond(y, x).

The latter encodes a variety of mutexes among types of atoms (predicates in
general). For example, an atom (entity) cannot be a carbon and a hydrogen at
the same time, i.e.

∀x ¬Carb(x)∨¬Hydro(x).

Similar results, i.e., the effectiveness of the pruning method and learned
domain theories, were also observed on the rest of the NCI molecular dataset,
as they all describe molecules with very similar structures. Hence, we report
only the result on KM20L2.

15 A side-note: a clause in this setup can be viewed as a negated conjunctive pattern. Thus, the
first setup corresponds to a minimum frequency constraint of 1. Analogically, the second setup
corresponds to a minimum frequency constraint of 50.

[February 19, 2024 at 23:46 – classicthesis]

64 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E

0 2 4 6
100

102

104

depth
ov

er
al

lt
im

e
[s

]
0 2 4 6

100

102

104

depth

#
cl

au
se

s

0 2 4 6 8

100

102

104

depth

ov
er

al
lt

im
e

[s
]

0 2 4 6

100

102

104

depth

#
cl

au
se

s
Figure 3: Left: Runtime of the level-wise algorithm using saturations for pruning

(red) and without using saturations (blue). Right: Number of clauses con-
structed by the algorithm using saturations (red) and without using satura-
tions (blue). Top: Results for maximal number of covered examples equal
to dataset size minus 1 and bottom for this parameter set to dataset size mi-
nus 50, which corresponds to minimum frequency of 50. One minute, one
hour, and 10 hours are highlighted by yellow, green, and purple horizontal
lines, respectively. Runtimes are extrapolated by exponential function and
shown in dashed lines.

5.6.2 Boosting Domain Theory Learner

In this scenario, we are interested in applying the saturation-based pruning to
the domain theory mining algorithm described in Section 5.4 and extended
in Section 5.5.2. Similar to the previous experiment, we execute the domain
theory learning algorithm with the two pruning techniques – the only differ-
ence is that one setup uses saturation-based pruning while the other only uses
isomorphic-based pruning. Hence, any difference in the performance comes
directly from saturation-based pruning. Further, we restrict the constraints to
be connected with up to 4 literals, with at most 1 positive literal,16 and at
most 15 variables. Again, we measure the runtime and the number of evalu-
ated clauses.

Since all NCI datasets have similar underlying structures (bond symmetry
and mutexes), we decided to use different datasets from different domains,
numbers of predicates, etc. Therefore, we chose the standard SRL datasets
and created four new ones. For the former, we selected UWCS [111], describ-
ing relations in a Department of Computer Science, Proteins [3], describing
proteins and interactions between them, and IMDB [79], describing movie-
related persons with relations to movies their appeared in or created. In ad-

16 This results in rules we can easily understand.

[February 19, 2024 at 23:46 – classicthesis]

5.7 R E L AT E D W O R K 65

dition, we created several new datasets, which are more artificial than the
already mentioned.

Firstly, we created two datasets from quasigroups and loops by generating
35 examples of the order from 5 to 40 for each structure. In detail, for order i,
we generate i constants and describe only those relations between three con-
stants that hold in the particular structure (e.g. P/3). Similarly, we encoded
the first 100 Moufangs loops [86].

Secondly, we created a dataset composed of two consecutive steps from
plans found by a planning algorithm on the Gripper domain, which is in the
standard benchmarks of classical planning [128]. We used the PDDL notation
for describing the world; therefore, we call this dataset PDDL-Grip. Recall
that in classical planning, there is a domain, i.e., a set of first-order rules de-
scribing valid actions and facts in the world, and an instance, i.e., a particular
description of the initial and the goal state. The planning algorithm task is
to find a plan, e.g., a set of actions, leading from the initial to the goal state.
Learning domain theory from this PDDL-Grip dataset actually corresponds
to learning constraints in the domain file. We can check the validity of the
learned domain theories on the newly created datasets because we know the
underlying rules from which the examples were generated. This contrasts real-
world datasets like UWCS and IMDB where we do not know the underlying
structure.

Note that these datasets contain unary predicates, as well as binary, e.g.,
UWCS, and sometimes ternary predicates, e.g., PDDL-Grip.

The aggregated results, showing the number of evaluated clauses and the
runtime from these runs for each dataset, are in Figure 4. Saturated-based
pruning lowered the number of evaluated sentences in all datasets except the
quasigroup one. Saturated-based pruning was faster on all datasets except for
UWCS. This is caused by the fact that there are five hundred constraints of
length two, which slows the computation of saturations. There was a tie on
the IMDB dataset, but with such a short runtime of one minute compared to
other datasets, we do not make any conclusions here.

This experiment showed another application of saturated-based pruning.
The effectiveness, however, always depends on the underlying structure of
the data.

5.6.3 Conclusion

We evaluated the proposed saturation-based pruning method in two sentence-
mining cases and different application levels. Except for a single dataset, a
method with saturation-based pruning outperformed its vanilla isomorphism-
based pruning. These results clearly suggest the usefulness of this kind of
pruning, which could be applied to various relational methods that use some
first-order sentences.

5.7 R E L AT E D W O R K

The idea of utilizing some kind of knowledge for pattern mining has been
tackled by many researchers [1, 4] with the utmost goal of i) constraint the
search space to scale up the search process, ii) driving the search to interest-

[February 19, 2024 at 23:46 – classicthesis]

66 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E

U
W

C
S

Pr
ot

ei
ns

IM
D

B

lo
op

qu
as

ig
ro

up

M
ou

fa
ng

s
lo

op

PD
D

L
-G

ri
p

0

10,000

20,000

30,000

40,000

2
3

,1
2
4

6
,5
5
9

3
,0
9
4 1
0

,4
3
2

1
0

,9
4
7

1
0

,4
2
1

4
,9
1
2

2
2

,3
3
2

5
,3
5
0

2
,4
8
7

5
,3
8
1

1
0

,9
4
7

5
,3
7
5

4
,5
9
1

#
se

nt
en

ce
s

isomorphism pruning
saturation-based pruning

U
W

C
S

Pr
ot

ei
ns

IM
D

B

lo
op

qu
as

ig
ro

up

M
ou

fa
ng

s
lo

op

PD
D

L
-G

ri
p

0

100

200

1
41
8

1

6
2 6
3

1
6
3

4
4 4
8

71

5
2

3
6

6
3

2
8ru

nt
im

e
[m

in
]

Figure 4: Number of evaluated sentences (top) and runtime in minutes (bottom) for
domain theory learner with isomorphism (blue) and saturation-based prun-
ing (red) on several datasets. Domain theories of the following form were
sought: connected clauses with at most 4 literals, at most one 1 positive
literal, and at most 15 variables.

ing discoveries, iii) or both at the same time. Naturally, the very essence of
knowledge differs from paper to paper as some use regularities in the data (as
we do), large ontologies, or even interaction with human experts [82, 92]. We
will discuss only the first two cases.

However, most papers that inject domain knowledge into the rule-mining
process consider only propositional (associative) rules. These methods often
utilize domain knowledge in a pre-processing step [143], e.g., narrowing the
number of attributes, or in a post-processing step to shrink large rule sets [11,
98]. Only a few approaches utilize domain knowledge, usually in the form of
ontology or taxonomy of attributes, in the search process [69, 70, 142], as our
approach does, or learn statistics from the data to drive the search [66]. Back-
ground knowledge was used to reduce the space of hypotheses in the Progol
4.4 system [84], which uses Plotkin’s relative clause reduction. Note that the
latter is a method for removing literals from bottom clauses, whereas, in con-
trast, our method is based on adding literals to clauses. Hence, the Progol
4.4 strategy is orthogonal to the methods presented in this chapter. Another

[February 19, 2024 at 23:46 – classicthesis]

5.8 F U T U R E W O R K 67

key difference is that our approach is able to learn the domain knowledge
from the training data, whereas all the other ILP approaches use predefined
background knowledge.

Nonetheless, the works most related to our approach are those relying
on a special case of Plotkin’s relative subsumption [102] called generalized
subsumption [18]. Generalized subsumption was among others used in [68].
However, we already discussed the reasons why relative subsumption is not
suitable for pruning in Section 5.3.1.

The most common approach for learning first-order logical rules uses some
heuristic search strategy with an ideal downward refinement operator [126] –
our method is suited to accompany methods that follow this idea. However, to
narrow the sentence space, these approaches usually deploy language biases
[85] that are predefined or customizable by a user. For instance, rule-mining
algorithms developed for RDF data, i.e., knowledge graphs, such as AMIE
[39], typically employ closed paths language bias in which the variables in
the head of a horn rule are chained through the body’s literals. Even though
most of these approaches [39, 76] learn only from the A-Box,17 i.e., facts as
we do, there are some exceptions that also utilize T-Box, i.e., RDF schema.
Most notably, OP [21] and RARL [101] use the T-Box to learn rules that
are then checked w.r.t. the A-Box; similarly, SWARM [7] exploits a single
relationship from T-Box. However, SWARM mines semantically-enriched as-
sociation rules rather than first-order logic rules. Contrary to these, our ap-
proach does not use predefined background knowledge but learns domain
theory from the data. Nonetheless, it is important to note that we assume ex-
amples to be fully specified, i.e., closed world assumption, while RDF-based
rule learning methods typically do not. In addition, a pruning technique was
developed [139] for a very similar task we solved in Section 5.5.1 with the
author’s suggestion to develop a language bias based on regularities in data,
which is very similar to our work.

Finally, our approach is not limited to definite clauses, which is also why
we do not use SLD resolution. On the other hand, as our method is rooted in
first-order logic (due to the fact that we use the learning from interpretations
setting) and not directly in logic programming, it lacks some of the expressive
power of logic programming.

5.8 F U T U R E W O R K

In the experiments, we showed two possible applications of the saturation-
based pruning method. One more application is briefly discussed in Chapter 8.
Hence, we will turn the discussion of future work to two possible extensions
of this pruning method.

A natural case for extension of this method would be the propositional-
ization technique in ILP since it essentially mines features, i.e., conjunc-
tive queries, from the data. While traversing the feature space, saturation-
based pruning can utilize more than one domain theory to produce satura-
tions. Hence, the algorithm would learn domain theories specific to different

17 This, among others, implies that the learned rule sets are typically quite huge and various
aggregation techniques are being developed, e.g., [96].

[February 19, 2024 at 23:46 – classicthesis]

68 S E N T E N C E S PAC E P RU N I N G U S I N G D O M A I N K N O W L E D G E

example coverages. However, the exact strategy to connect this idea with a
feature-mining algorithm is left for future work.

Computing of the saturations can be time-consuming since the presented
approach is quite general. One of the drawbacks comes from the fact that
we first generate all possible clause extensions and saturate all of these after
that. Translating at least part of learned domain knowledge straightly into the
refinement operator would be beneficial as it could save computational re-
sources. A hot candidate for an easy domain-to-refinement translation would
be the utilization of mutexes.

[February 19, 2024 at 23:46 – classicthesis]

6
B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D
k - E N TA I L M E N T

I would suggest “prioritised” entailment
is a better fit. I do admit, “Prike” is not

such a catchy name.

— Anonymous reviewer

Besides other applications, the pruning method proposed in the previous
chapter can be used for learning Horn rules. In turn, these can be utilized
to predict missing facts from a knowledge base. However, the most natural
application of these rules using standard entailment may lead to the deriva-
tion of false positive facts. Consider the well-known example of smokers and
friends, i.e.

∀x∀y Smokes(x)∧ Friends(x,y)⇒ Smokes(y),

and a knowledge base of persons in which friendship connects each two peo-
ple either directly or indirectly using a common friend of a friend, and so on.
Finally, consider a single smoker in the knowledge base, i.e.

E = {Smokes(ann), Friends(ann, bob), Friends(bob, christin),

Friends(christin, danny), . . . }.

In such case, the rule is quite accurate, since the implication is violated only
for the grounding

Smokes(ann)∧ Friends(ann, bob)⇒ Smokes(bob).

Unsurprisingly, applying this rule leads to marking every person in the knowl-
edge base as a smoker.

To deal with this issue, we follow, in this chapter, the approach from [53]
called k-entailment. The method was proposed to overcome the issue by
breaking down long inference chains containing dozens of constants, which
is done by relaxing the standard entailment and allowing it to reason only
over a subset of constants at a time.

However, the method was studied only from a theoretical point of view,
i.e., deriving PAC-style1 guarantees on the number of incorrect derived facts,
with no focus at all on practical inference algorithms or evaluation. Hence, in
this chapter, we propose an inference algorithm as well as an extension of the
method to our rule-based setting. We also propose a heuristic rule learner that
suits the proposed inference method. In this chapter, we are working under
the learning setting described in Section 2.3.2, i.e., having a fully described
training example E and an incomplete test example Υ.

1 Probably approximately correct (PAC).

69

[February 19, 2024 at 23:46 – classicthesis]

70 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

6.1 k - E N TA I L M E N T

We start with a description of k-entailment, which was introduced in [53].
Intuitively, a fact can be k-entailed from a given rule base if it has a deriva-
tion involving at most k constants. This captures the intuition that, in most
domains, the knowledge about one specific constant typically only directly
affects what we can derive about a small set of closely related constants. For
instance, when modelling a social network, using k-entailment means that the
knowledge we have about a given user only directly affects what we derive
about the users in their neighborhood. By using 2-entailment, we thus restrict
the impact of any errors in our knowledge about some user to his or her direct
friends. Similarly, using 3-entailment would mean that our knowledge about
the friends of a user’s friends might also be affected, but not the wider net-
work. In contrast, when using classical logic, a single error might, in principle,
affect the entire network. Formally, k-entailment is defined as follows.

Definition 19 (k-entailment). Let k be a non-negative integer, E a set of facts,
Φ a set of rules and Γ a set of constraints. We say that a fact υ is k-entailed
by E∪Φ∪ Γ , denoted

E∪Φ∪ Γ |=k υ

if there is some C ⊆ const(E∪Φ∪ Γ) such that:

1. |C| ⩽ k

2. (E∪Φ∪ Γ)[C] is consistent

3. (E∪Φ)[C] |= υ

Note that, apart from limiting the impact that a given piece of knowledge can
have, in the presence of constraints, k-entailment also blocks all inferences
involving sets of constants C that make (E ∪Φ ∪ Γ)[C] inconsistent. This is
illustrated in the next example.

Example 35. Let us consider the following:

Φ = {∀x Giraffe(x)⇒ Animal(x),

∀x∀y Friends(x,y)⇒ Friends(y, x),

∀x∀y Friends(x,y)⇒ Human(x)}

Γ = {∀x ¬Human(x)∨¬Animal(x)}

E = {Giraffe(liz), Friends(ann, liz)}.

Then Animal(liz) is the only fact which is 2-entailed by E ∪ Φ ∪ Γ , be-
sides those in E. In particular, note that we can infer neither Human(liz)
nor Human(ann) because (E ∪ Φ ∪ Γ)[{ann, liz}] is not logically consis-
tent. Intuitively, the constraint in Γ and rules in Φ assert that animals do
not have friends and that one cannot be an animal and a human at the same
time. This means that, assuming the rules were perfect, Giraffe(liz) and
Friends(ann, liz) cannot both be correct. Since we do not want the potential
errors to spread through our knowledge base, by using 2-entailment we avoid
inferences that involve ann and liz at the same time.

[February 19, 2024 at 23:46 – classicthesis]

6.1 k - E N TA I L M E N T 71

In Example 35, we observed what type of theory, i.e., set of rules, is used in
k-entailment – definite rules and constraints. The distinction betweenΦ and Γ
is that the former contains (most likely) imperfect rules that infer something.
Contrary, Γ encodes constraints that hold in the data, for instance, mutual-
exclusivity.2 These may cause inconsistency during the inference procedure,
affecting the whole knowledge base when we apply standard entailment.

6.1.1 Properties of k-entailment

In [53], authors derive PAC-style guarantees for k-entailment in relational
domains. First, we define the accuracy of a set of rules and constraints Φ ∪
Γ , inspired by [53], in order to show these guarantees in our setting. Note
that for a set of k constants C ′, we can think of E[C ′] as a possible world
involving these k constants. The accuracy of a set of clauses is then simply
the percentage of these possible worlds in which the clauses are satisfied. This
is formalized in the following definition.

Definition 20 (Accuracy). Let E be a set of facts,Φ be a set of rules and Γ be
a set of constraints. Let C = const(E∪Φ∪ Γ) and [C]k be the set of all size-k
subsets of C. Then, for a given positive integer k, the accuracy ofΦ∪ Γ on E

is defined as:

AccE,k(Φ∪ Γ) =
1

|[C]k|

∑
C ′∈[C]k

1(E[C ′] |= (Φ∪ Γ)[C ′])

The next proposition links the accuracy of a set of rules and constraints
Φ ∪ Γ to the number of errors produced by k-entailment; it is a direct coun-
terpart of Proposition 6 from [53].

Proposition 4. Let E ′ and E be sets of facts such that E ′ ⊆ E, Φ be a set of
rules and Γ a set of constraints. Furthermore let F be the set of all positive
ground literals of an a-arity predicate P/a, a ⩽ k, which are k-entailed by
E ′ ∪Φ∪ Γ but are not contained in E. Then

|F| ⩽ (1− AccE,k(Φ∪ Γ)) |C|kka

where
C = const(E ′ ∪Φ∪ Γ).

Note that the bound grows with the size of C. In particular, even for a fixed
value of AccE,k(Φ∪ Γ), the bound grows with the size of the test data.

To see the significance of the above proposition, let E ′ represent the set
of facts that we are given as evidence and let E be the set of all facts. The
proposition bounds the number of incorrect facts that are derived when us-
ing k-entailment. Note, however, that this bound depends on AccE,k(Φ∪ Γ),
whereas in practice E is not known. This characterization is useful because
we are typically able to estimate AccE,k(Φ ∪ Γ) sufficiently precisely from
the given training data. This is formalized in the next proposition, which is an
adaptation of Theorem 10 from [53] to our setting.

2 This is in contrast to standard definite logic programs where constraints only determine
whether a solution exists or not without any applying to inference or solutions’ filtering.

[February 19, 2024 at 23:46 – classicthesis]

72 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

Proposition 5. Let E be a set of facts and let 0 ⩽ n ⩽ |const(E)| and 0 ⩽
k ⩽ n be integers. Let C be sampled uniformly from [const(E)]n and let
E ′ = E[C]. Then we have

P [|AccE ′,k(Φ∪ Γ) − AccE,k(Φ∪ Γ)| ⩾ ε] ⩽ 2 exp
(
−2

⌊n
k

⌋
ε2
)

.

One can combine Proposition 4 and Proposition 5 to get various learning
guarantees.3

The significance of the insights from [53] for this chapter is that they justify
why our rule learner is able to evaluate candidate rules based on how accurate
they are on small fragments of the training data (assuming that this training
data was sampled from a reasonable distribution). Our rule learning approach
in Section 6.5 will take advantage of this insight.

Furthermore, unlike entailment from classical logic, k-entailment is non-
monotonic. We will discuss this property more in Section 6.4.

6.2 I N F E R E N C E A L G O R I T H M

Naively following the definition of k-entailment would require enumerating
all subsets with at most k constants in the given domain C and determining
which positive literals can be entailed from each of them. This section shows
how to implement k-entailment in a much more efficient way. In particular,
we present an approach based on a forward-chaining procedure with addi-
tional book-keeping of set-wise minimal sets of constants. Specifically, the
algorithm solves the following problem:

Given: A set of range-restricted definite rulesΦ = {α1, . . . ,αl}, constraints
Γ = {β1, . . . ,βl ′} and facts E = {e1, e2, . . . , en}.

Compute: The set of positive literals k-entailed byΦ∪ Γ ∪ E.
We assume w.l.o.g. that Φ does not contain any facts, noting that including a
fact α in Φ is equivalent to including α in E.

6.2.1 Description of the Algorithm

The algorithm begins by initializing auxiliary variables (lines 1-6) and a hash
table Support, which associates literals (keys) to sets of subsets of constants
(values). When the algorithm terminates, Support[υ] will contain all minimal
sets of constants C, up to size k, for which E[C] ∪Φ ∪ Γ |= υ. The set of
k-entailed literals will thus correspond to the key set of Support, which we
denote by Keys(Support). To find these sets C, the algorithm alternatingly
adds new candidate subsets of constants and then filters those which turn out
to be inconsistent. To detect inconsistencies efficiently, the algorithm main-
tains the set Incons which is initially empty. Throughout the execution of the
algorithm, it is used to store all encountered subsets I of C where E[I]∪Φ∪ Γ
is found to be logically inconsistent.

The main loop (lines 7-28) of the algorithm starts with solving the follow-
ing sub-problem: given a set of ground positive literals E and a rule α =

(b1 ∧ · · ·∧ bl ⇒ a) or a constraint β = ¬(b1 ∧ · · ·∧ bl), find the set of

3 Further details on confidence bounds that one can obtain in this setting for accuracy can be
found in [53].

[February 19, 2024 at 23:46 – classicthesis]

6.2 I N F E R E N C E A L G O R I T H M 73

all groundings θ such that (b1 ∧ · · ·∧ bl)θ ⊆ E. We will denote the corre-
sponding set of ground rules and constraints by Active(α,E). In other words,
this set contains those ground rules and constraints whose body is satisfied
by the literals that we have derived so far (line 8). It can be efficiently com-
puted using a conjunctive query in a relational database, similar to how such
relational database engines are used in Markov logic inference [89, 112].

Next, the algorithm removes each active rule α for which there is some
I ∈ Incons such that I ⊆ const(α) (line 9). The rules that are removed from A

in this step correspond to those whose body can only be satisfied by starting
from a fragment of E that is inconsistent with Φ ∪ Γ or – more precisely –
those which have previously been found to be inconsistent.

In the next step, the algorithm iterates over the remaining active rules (lines
10-23). For each such rule (b1 ∧ · · ·∧ bm) ⇒ h ∈ A it combines the sup-
port sets of the ground literals b1, . . . ,bm and stores them in a set U. In
particular, if we have S1 ∈ Support[b1], this intuitively means that we can
derive b1 using a fragment of E that only involves the constants from S1, and
similar for b2, . . . ,bm. Hence, thanks to the given rule, this means that we
can also derive its head h using a fragment that contains all constants from
S = S1 ∪ · · · ∪ Sm. Of these sets S, we only keep those which have at most k
elements (line 13) and which are minimal w.r.t. set inclusion (line 14). Next,
the procedure FindInconsistent aims to detect subsets of constants C that
occur in Support[h ′], for some literal h ′, such that E[C] ∪Φ ∪ Γ is inconsis-
tent. To do this efficiently, we take advantage of the fact that each iteration
of the main loop corresponds to an iteration of a modified forward chaining
procedure. Rather than checking whether E[C] ∪Φ ∪ Γ is inconsistent, we
thus check whether such an inconsistency has been derived so far. This is
done in two steps, which are not shown in the pseudocode. First, we deter-
mine all the sets of constants C whose consistency needs to be (re-)checked.
This is the case for all supersets of the elements from U (including the ele-
ments from U themselves). For the second step, let us write Support−1[S] for
the set of all literals h ′ for which Support[h ′] contains a subset of S. Note
that Support−1[S] intuitively corresponds to the set of literals for which our
forward chaining procedure has already established that they can be derived
from E[S]∪Φ∪ Γ . For every superset S of an element from U, the procedure
checks if Support−1[S] is consistent with the constraints in Γ ; it returns all
sets S for which this is not the case. Finally, these sets of constants are re-
moved from Support (line 17). If the set of support sets for some literal h ′ in
Keys(Support) then becomes empty, this literal is removed from the key set
of the hash table (line 19). Finally, all support sets found as inconsistent are
added to the set Incons (line 22).

Next, the algorithm first updates the current state of the evidence E to con-
tain exactly the facts which occur as keys in the hash table Support (line 25)
and then it either repeats the main loop from line 7 if Support has been modi-
fied in the current iteration, or it finishes and returns derived facts E together
with the initial evidence E0 (line 29).

Next, we describe an illustrating example. Thereafter, we give a sketch of
correctness.

[February 19, 2024 at 23:46 – classicthesis]

74 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

Algorithm 4 Pseudocode of k-Entailment Inference Algorithm
Parameter: Set of range-restricted rules Φ, constraints Γ , evidence E and
the integer k.
Output: All positive facts that are k-entailed by Φ ∪ Γ ∪
E.

1: E0 ← E

2: Support← ∅
3: Incons← ∅
4: for υ ∈ E do
5: Support[υ]← const(υ)
6: end for
7: while true do
8: A← ∪α∈ΦActive(α,E)
9: A← {α ∈ A | ∀I ∈ Incons : I ̸⊆ const(α)}

10: for (b1 ∧ · · ·∧ bn ⇒ h) ∈ A do
11: SCart ← Support[b1]× · · · × Support[bm]

12: U← {S1 ∪ · · · ∪ Sm | (S1, . . . ,Sm) ∈ SCart}

13: Support[h]← Support[h]∪ {S ∈ U
∣∣ |S| ⩽ k}

14: Support[h]← {S1 ∈ Support[h]
∣∣ ∀S2 ∈ Support[h] : S2 ̸⊂ S1}

15: I← FindInconsistent(h, Support, Γ)
16: for h ∈ Keys(Support) do
17: Support[h]← Support[h] \ I
18: if Support[h] = ∅ then
19: remove h from Support
20: end if
21: end for
22: Incons← Incons∪ I
23: end for
24: E← Keys(Support)
25: if If Support was not changed in the last iteration then
26: break
27: end if
28: end while
29: return E∪ E0

6.2.2 An Illustration

Here, we exemplify one run of the algorithm. Let continue with Φ, Γ and E

from Example 35, i.e.

Φ = {∀x Giraffe(x)⇒ Animal(x),

∀x∀y Friends(x,y)⇒ Friends(y, x),

∀x∀y Friends(x,y)⇒ Human(x)},

Γ = {∀x ¬Human(x)∨¬Animal(x)},

E = {Giraffe(liz), Friends(ann, liz)},

k = 3.

[February 19, 2024 at 23:46 – classicthesis]

6.3 S K E T C H O F C O R R E C T N E S S A N D RU N T I M E 75

which talks about the giraffe liz and her friend ann. Running the initialization
procedure will result in

Support = {Giraffe(liz) : {{liz}},

Friends(ann, liz) : {{ann, liz}}}.

Evaluating line 8, we find the set A, which is the set of ground rules whose
bodies are true in the current A:

A = {Giraffe(liz)⇒ Animal(liz),

Friends(ann, liz)⇒ Friends(liz, ann)},

Friends(ann, liz)⇒ Human(ann)}.

After the inner loop on lines 10-23 is executed, the state of the hash table
becomes

Support = {Giraffe(liz) : {{liz}},

Friends(ann, liz) : {{ann, liz}},

Animal(liz) : {{liz}},

Friends(liz, ann) : {{ann, liz}},

Human(ann) : {{ann, liz}}}.

Next, in the procedure FindInconsistent, none of the support sets will be
found inconsistent in this iteration because there is no inconsistency with the
constraints Γ . The algorithm sets E = Keys(Support) and continues from
line 7.

In the second iteration, the algorithm then adds Human(liz) : {{ann, liz}}
to Support. Next, on line 15, the algorithm finds the support set {ann, liz} in-
consistent. After the filtering step, the state of the hash table Support becomes

Support = {Animal(liz) : {{liz}},

Giraffe(liz) : {{liz}}}.

In the third (and in this case final) iteration, the state of the hash table
Support remains the same and the algorithm finishes, returning the set

{Animal(liz),Giraffe(liz), Friends(ann, liz)}.

Note that the fact Friends(ann, liz) is added from the original evidence set.

6.3 S K E T C H O F C O R R E C T N E S S A N D RU N T I M E

If we had Γ = ∅, then the correctness of the algorithm would follow almost
immediately from the same arguments that show the correctness of the for-
ward chaining procedure for classical logical reasoning. In general, when
Γ ̸= ∅, we can proceed as follows. It is easier to analyze a version of the
algorithm without the filtering of non-minimal support sets. We can check
that omitting this step would not affect the correctness of the algorithm and
that the number of iterations of this modified algorithm would not be lower
than that of the full algorithm. Hence, we will analyze this simpler algorithm
below.

[February 19, 2024 at 23:46 – classicthesis]

76 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

Termination: Let A be the maximum arity among the relations from P. Let
us define

Ni = |P| · kA+1 · |Inconsi|+
∑

υ∈Keys(Supporti)

|Supporti[υ]|

where Inconsi and Supporti are states of the respective data structures at the
beginning of the i-th iteration of the main loop. Then, for all i > 1 it holds
Ni−1 < Ni; in particular, this is true because we ignore filtering of non-
minimal support sets. Since the set C is finite, there may be only a finite
number of iterations of the algorithm, in particular at most

|P| · kA+1 · |C|k.

This also gives us a polynomial bound on the number of iterations of the main
loop of the algorithm.

Soundness and Completeness: Showing soundness and completeness for
our inference algorithm in a completely rigorous way would be tedious and
not really illuminating. Thus, we only provide a brief justification. Soundness
is easy to check. In particular, whenever a fact υ is derived using the inference
algorithm, there must be a classical proof of it on a fragment of evidence,
given as input, with at most k constants (this can be seen easily by inspection
of the algorithm). Now, it could still be the case that υ is derived from a
fragment that is inconsistent with Φ ∪ Γ . However, if that was the case, this
fragment would have been detected by the procedure FindInconsistent and
it would have been removed together with all its occurrences among support
sets stored in the hash table Support.

Completeness is not difficult to check either. If there is a fragment of E that
is consistent withΦ∪ Γ and a fact υ can be derived from it, then it can also be
derived from it using forward chaining (this follows from the same result for
classical logic). Since the fragment is consistent, neither the fragment itself
nor any of its subsets can be present in the set Incons at any time. It follows
that the fact υ must be derived by the algorithm.

6.4 S T R AT I F I E D k - E N TA I L M E N T

Unlike classical logic, k-entailment is not monotonic. In particular,

E∪Φ∪ Γ |=k α

does not imply that
E∪ E ′ ∪Φ∪ Γ |=k α,

for E, E ′ sets of ground literals, Φ a set of rules and Γ a set of constraints.
This is illustrated in the next well-known example from the non-monotonic
reasoning literature [121].

Example 36. Consider the following rules and constraints

Φ = {∀x Bird(x)⇒ Flies(x),

∀x Penguin(x)⇒ Bird(x)},

Γ = {∀x ¬Penguin(x)∨¬Flies(x)}.

[February 19, 2024 at 23:46 – classicthesis]

6.4 S T R AT I F I E D k - E N TA I L M E N T 77

For E = {Bird(tweety)}, we can derive Flies(tweety) using k-entailment.
However, when we additionally know that Tweety is a penguin, i.e. if our
evidence is given by

E ′ = {Bird(tweety),Penguin(tweety)},

we can no longer derive Flies(tweety) using k-entailment because

(Φ∪ Γ ∪ E ′)[{tweety}]

is inconsistent.

This non-monotonic behavior is in itself not problematic. Indeed, it is stan-
dard practice in artificial intelligence to use non-monotonic reasoning when
dealing with rules that may have exceptions, and probabilistic reasoning is
also non-monotonic. However, the behavior of k-entailment in the presence
of conflicts is arguably too cautious – most frameworks for non-monotonic
reasoning would still derive Bird(tweety) from Penguin(tweety) in the pre-
vious example. This can be achieved by taking into account that the rule

∀x Penguin(x)⇒ Bird(x)

is more reliable than the other rule, either by inducing an ordering on the set
of rules automatically [41, 99] or by relying on an explicitly given ordering
of these rules [10].

We will follow the latter strategy to obtain a refinement of k-entailment,
which we call stratified k-entailment or STRiKE.

Definition 21 (Stratified k-Entailment). Let Λ = (α1, . . . ,αm) be a list of
rules and constraints and let E be a set of facts. We say that a fact υ is k-
entailed at level i from Λ and E if there exists some j ⩽ i s.t. {α1, . . . ,αj} ∪
E |=k υ.

The general intuition is that the rules and constraints in Λ are ordered based
on how confident we are in them, i.e., α1 is the most confident rule or con-
straint.

The use of stratified k-entailment serves two purposes. First, ordering the
rules and constraints permits ordering the predictions made by stratified k-
entailment according to how confident we are in them. This brings k-entailment
closer to approaches such as AMIE and MLNs, which also provide confi-
dence values for the predicted facts. In applications, this allows us to tune the
trade-off between precision and recall. Second, by taking the ordering of the
rules and constraint into account, we can avoid the situation from Example 36,
where a less reliable rule was blocking the conclusion of a more reliable rule.
This is illustrated in the next example.

Example 37. Consider the following list:

Λ = (∀x Penguin(x)⇒ Bird(x),

∀x ¬Penguin(x)∨¬Flies(x),

∀x Bird(x)⇒ Flies(x))

and let E = {Penguin(tweety)}. Then, one can check that Bird(tweety) is
k-entailed at level 1 whereas with standard k-entailment we could not derive
Bird(tweety) at all.

[February 19, 2024 at 23:46 – classicthesis]

78 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

Note that the inference mechanism in the previous example is similar in
spirit to the one from possibilistic logic [35]. However, the ordering of formu-
las in possibilistic logic plays a different role than in stratified k-entailment
– it is used in possibilistic logic to avoid entailment becoming trivial in the
face of inconsistencies, but in our setting, the use of k-entailment already pre-
vents entailment from becoming trivial. Furthermore, standard possibilistic
logic only considers propositional formulas. The set of entailed facts in pos-
sibilistic logic is also unordered when the standard approach to inconsistency
handling is used. Specifically, a formula is entailed from a possibilistic logic
knowledge base if and only if it can be classically entailed from the set of for-
mulas above the so-called inconsistency level, i.e., the first level i such that
{α1, ...,αi} is inconsistent.

Importantly, the PAC-type guarantees that follow from Proposition 4 and
Proposition 5 also hold for stratified k-entailment. This follows easily from
the fact that they must hold for every Φi = {α1, . . . ,αi} where i ⩽ m.
Obviously, it holds that

AccE,k(Φi) ⩽ AccE,k(Φj)

when j ⩽ i. Using the union bound, e.g. as Proposition 2 in [48], the accuracy
of Φ on E can be bounded using the accuracies of the individual rules as

AccE,k(Φi) ⩾ 1−
i∑
l=1

(1− AccE,k(αi)).

Hence, as long as the rules are accurate, we can obtain guarantees on the
number of errors that stratified k-entailment will make.

Finally, the extension of the algorithm from Section 6.2 to the stratified
case of k-entailment is as easy as executing the algorithm with a gradually
increasing number of rules, i.e., {α1, . . . ,αi}.

6.5 A H E U R I S T I C RU L E L E A R N E R

We introduce a heuristic algorithm for learning rules that are suitable for rea-
soning with stratified k-entailment. At a high level, the algorithm performs a
top-down beam search through the space of definite rules, using a refinement
operator [85] that adds one literal at a time to the rules in the beam. This is a
standard strategy in relational learning and inductive logic programming sys-
tems [85, 106]. The algorithm’s key novelty is how it heuristically scores the
candidate rules.

Definition 22 (Precision of a rule). Let α = b1 ∧ · · ·∧ bm ⇒ h be a rule
and let E a set of facts. We define precision of rule α as

ψΛ(α) =
|Hα ∩ E|
|Hα|

where
Hα = {hθ | E |= (b1 ∧ · · ·∧ bm)θ, θ ∈ GE(α)}.

In other words, ψΛ(α) corresponds to the percentage of facts predicted by
the rule α that we know to be true.

[February 19, 2024 at 23:46 – classicthesis]

6.5 A H E U R I S T I C RU L E L E A R N E R 79

We then create a sorted list of rulesΛ in descending order of their precision,
i.e.

Λ = (α1, . . . ,αl)

where
ψΛ(αi) ⩾ ψΛ(αi+1).

Λ defines a probabilistic model that assigns to any fact υ the probability

p(υ) = max{ψΛ(αi) | 1 ⩽ i ⩽ l,υ ∈ Hαi}.

Thus, this simple model assumes that the probabilities of the facts are inde-
pendent. However, we recall that this is still just a heuristic for selecting the
rules, not the final model for prediction. The advantage of this probabilistic
view is that it naturally allows us to learn rules by selecting those that most
improve the log-likelihood of the training data, i.e.∑

υ∈E

logp(υ) +
∑
υ∈E

log (1− p(υ)).

Our beam-search selects rules based on optimizing this score. An essential ad-
vantage of this approach is that the values ψ (precision) are computed based
on the whole dataset rather than on what remains after removing the covered
subsets of the dataset. This should improve the robustness of the algorithm.

This strategy contrasts with the standard covering strategy used in induc-
tive logic programming [84], which is brittle and has problems with imbal-
anced data. Our rule learning strategy exploits the properties of stratified k-
entailment, especially its ability to predict facts with different levels of cer-
tainty. In the classical inductive logic programming setting, one would typi-
cally optimize accuracy (or a closely related measure) and would, therefore,
often only end up with high-precision rules. In contrast, since stratified k-
entailment ranks the predicted facts by confidence, it can also work well with
less precise rules (although the usefulness of such lower-confidence predic-
tions clearly depends on the application).

In order to force the rule learning algorithm to discover non-trivial rela-
tionships, we give it subsampled data. Consider, for instance, that the training
complete dataset contains facts of the form Friends(x,y). Then it would be
difficult to learn any rules beyond symmetry, i.e.

∀x∀y Friends(x,y)⇒ Friends(y, x),

as no other rule for predicting friendship would improve the log-likelihood.
However, by subsampling the data we can break these symmetries, which
means that other rules may be found that improve the log-likelihood. For
instance, assume that the fact Friends(christin, anna) is missing from the
subsampled dataset but that these facts

{Friends(anna, bob),

Friends(bob, christin),

Friends(ann, christin)}

are present in E. Then, the rule learner might add the rule

∀x∀y∀z Friends(x,y)∧ Friends(y, z)⇒ Friends(x, z)

[February 19, 2024 at 23:46 – classicthesis]

80 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

which might improve log-likelihood because it can be used to predict

Friends(anna, christin).

In contrast, without subsampling, the fact Friends(anna, christin) can simply
be predicted from Friends(christin, anna) using the symmetry rule, hence
there would not be any reason for adding the transitivity rule.

Finally, note that given a list of rules Λ = (α1, . . . ,αm), there often exists
a probability-assigning function ψ ′

Λ(.) ̸= ψΛ(.) that will lead to a better log-
likelihood score; in fact, an optimal one can be obtained using the geometric
programming formulation from [55]. Following that approach would change
the meaning of a rule’s weight – the weight of a rule αi would, in the simplest
case, correspond to the probability of facts that are predicted by αi and not
predicted by α1, . . . , αi−1. Using the fixed distribution ψΛ(.), the case we
follow, has several practical advantages. First, it means that all rules and their
weights can be understood in isolation from the other rules and their weights
– a rule’s weight gives a lower bound on the probability of the facts it predicts.
Second, it means that adding more rules at some point stops improving the
log-likelihood even if there are some not yet used rules, which we think of as
a form of heuristic regularization.

6.6 E X P E R I M E N T S

In this section, we experimentally evaluate our proposed approach stratified
k-entailment in isolation and as a whole system together with our proposed
heuristic rule learner. The goal of our empirical evaluation is to address the
following two questions:

1. How does our proposed STRiKE reasoning method compare to other
forms of inference?

2. How does our approach compete with state-of-the-art methods?

We investigate these questions in the same order. In all the experiments re-
ported in this section, we set the parameter of (stratified) k-entailment to
k = 5.

6.6.1 Evaluation of STRiKE Inference

To address the first question, we compare the following four approaches to
reasoning with a fixed set of relational rules:

MLN-MAP uses RockIt [90] to perform MAP-inference in a Markov logic
network learned using the default structure learner from the Alchemy
package.

PosLog is the possibilistic logic inference approach from [55].

k-entailment is the k-entailment algorithm proposed in Section 6.1.

STRiKE is our stratified k-entailment proposed in Section 6.4.

[February 19, 2024 at 23:46 – classicthesis]

6.6 E X P E R I M E N T S 81

1S is the one-step prediction, which returns max-aggregated predictions pro-
duced by a single iteration of forward chaining. It does not use con-
straints.

We compare these five approaches on the UWCSE and Proteins data set,
which were used in [55].We use the same sets of rules, constraints, and MLNs
as in [55]; hence all methods use the same theory.

We follow the same experimental protocol as [55]. In particular, we ran-
domly divide the constants into two disjoint sets of equal size. The training
set consists of atoms containing only the constants from the first set, and the
test set contains only the constants from the second set. We then predict the
set of facts given evidence sets of increasing size using the four inference
methods and compute the Hamming error, which measures the size of the
symmetric difference between the predicted set of facts and the set of facts in
the test set. We then report the cumulative differences (CHED) between the
errors of the models and a baseline, which is MAP-inference in Markov logic
networks.

The results are shown in Figure 5. A specific inference method outper-
forms MAP inference in MLNs for a range of evidence set-sizes if the curve
is increasing and performs worse otherwise. Steeper curves signify large dif-
ferences in performance.

0 100 200 300 400 500
−2,000

0

2,000

4,000

6,000

Evidence size

C
H

E
D

(M
L

N
-M

et
ho

d
X

)

UWCSE

PosLog
k-Entailment

STRiKE
1S

0 500 1,000 1,500 2,000

0

500

1,000

Evidence size

C
H

E
D

(M
L

N
-M

et
ho

d
X

)

Proteins

Figure 5: Comparison of the performance for inference given a fixed rule set for the
UWCS (left) and Proteins dataset (right). The results show the cumulative
Hamming error as a function of the size of the evidence set between the
predictions made by PosLog, (2) k-entailment, (3) STRiKE, and (4) one-
step versus MLN-MAP. Increasing slopes mean that a specific inference
approach outperforms MLN-MAP.

In this case, STRiKE performed best among the considered methods. For
UWCSE, it improves MLNs consistently, across the entire range of evidence
sizes, in contrast to the possibilistic logic strategy which is only effective
for sufficiently small evidence sets. On the proteins dataset, we can see that
MLNs perform best for large evidence sets; the difference between STRiKE
and possibilistic logic is also smaller on this dataset. The relatively weak
performance of this variant shows that having constraints can be beneficial.
On the Proteins dataset, on the other hand, there was no difference between
the variants with and without constraints.

To better understand why MLNs outperformed STRiKE for large evidence
sets on the Proteins dataset, we perform the following experiment. We select
the n most confident rules from the rule set and then report the cumulative

[February 19, 2024 at 23:46 – classicthesis]

82 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

0 500 1,000 1,500 2,000
−200

0

200

400

600

800

1,000

evidence size

C
H

E
D

1 Rule
2 Rules
3 Rules
4 Rules
5 Rules

Figure 6: The cumulative Hamming error as a function of the size of the evidence
set between the predictions made by STRiKE versus MLN-MAP on the
Proteins dataset for rule sets with 1, 2, 3, 4, and 5 best rules. Increasing
slopes mean that STRiKE outperforms MLN-MAP.

Hamming error of predictions made by STRiKE and MLN-MAP when using
the simplified rule set. Figure 6 shows the results for this experiment when
using only top n = {1, 2, 3, 4, 5} rules. Having all but the least certain rule
already leads to STRiKE outperforming MLNs over the entire range of evi-
dence set sizes.

6.6.2 Completing a Knowledge Graph

To answer the second question, we compared our proposed method with
AMIE 3 [59] and AnyBURL [75] on the knowledge graph completion task.
We follow the same experimental protocol as in Section 6.6.1 but report the
area under the precision-recall curve (AUC PR) because it is better suited for
evaluating weighted predictions. We ran this experiment on three datasets –
Nations, Kinships, and UMLS [3]. We use the following acronyms:

AMIE 3 is a rule-learning method that uses one-step inference.

AnyBURL is a rule-based method for knowledge-graph completion using
one-step inference.

STRiKE is our inference method from Section 6.4 with rules learned using
a beam search with the heuristic proposed in Section 6.5.

When a fact can be derived with multiple confidence using one-step infer-
ence, we take the maximal, i.e., max-aggregation, since it performs better
than noisy-or in practice [96]. It is important that all of these methods were
designed with different goals in mind, but all of them can be, and historically
were, used for knowledge graph completion. We allow only constant-free
range-restricted rules with object-identity constraints for all of them. Having
constants in rules is meaningless in an inductive setting.

The algorithms from AMIE family4 were developed to mine rules on large
knowledge graphs without sacrificing the completeness of the search. They
proved to be suited for the task, and, in turn, the rules they learned started to

4 AMIE, AMIE+, AMIE 3

[February 19, 2024 at 23:46 – classicthesis]

6.6 E X P E R I M E N T S 83

be used to complete knowledge graphs by applying one-step prediction. As
such, comparing AMIE 3 with its default setup leads to unfair competition.5

Therefore, we ran AMIE 3 with the following settings: the maximum number
of literals in a rule was set to 3,6 recursivity limit was set to 4, the minimum
size of the relations to be considered as head relations was set to 10, the
minimum support was set to 2, the minimum head coverage was set to 0.05,
and the minimum value of PCA confidence was set to 0.01. We used PCA
confidence as a rule’s weight, which was done in the original paper [39].7

The algorithms from the AnyBURL family were developed to learn rules
by generalizing sampled paths in the knowledge graph, hence acting as a
heuristic and incomplete rule-learning procedure. However, AnyBURL learns
many rules; therefore, we selected only those with confidence with at least 0.5.
AnyBURL was executed with the default setting – 7 threads and a maximum
runtime of 100 seconds.

To learn a theory for STRiKE, we subsampled the dataset uniformly to ob-
tain two evidence sets of equal size. Then, we used our rule learning method
from Section 6.5 with the following settings: beam size was set to 4, the
number of iterations of beam search was set to 5 per a predicate in the head,
minimum coverage was set to 1, the maximum number of literals in the rule’s
bodies was set to 3, minimum precision of 0.5, and the maximal number of
variables within a rule was limited to 5. We learned all possible connected
constraints using the domain-theory learner from Section 5.4 with at most 2
variables and 2 literals on the training data.

Our method learns only a handful of rules, while AMIE’s and AnyBURL’s
theories consist of thousands. Table 2 shows the exact number of rules learned
by each method on each dataset. Recall that our method utilizes constraints
as well; hence, we show the number of definite rules and constraints, whereas
the other methods contain only definite rules.

Table 2: Number of learned definite rules and constraints in learned theories with
AMIE 3, AnyBURL, and our rule learner.

AMIE 3 AnyBURL our rule learner

rules # rules # rules # constraints

Nations 122904 1295227 40 1476

Kinships 13083 25366 57 467

UMLS 8010 42353 103 1254

The results are shown in Figure 7. The left column displays AUC-PR of the
methods as a function of evidence size. The right column displays illustrative
PR curves for different evidence sizes on the three datasets; these allow us
to gain better insight into the behavior of the methods. Here, we also added
STRiKE without any constraints for comparison. As can be seen from these
plots, using constraints helps STRiKE to obtain better precision but at the
cost of decreasing the recall, which is to be expected. In fact, constraints
are making STRiKE too cautious. STRiKE also scales up poorly when no

5 The default setup leads to learning only a few rules, which usually derive only a few facts.
6 This value was selected for all datasets because AMIE 3 did not finish on the Nations dataset

within a day.
7 All three methods were ran in the same environment with 16GB of memory.

[February 19, 2024 at 23:46 – classicthesis]

84 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

constraints are provided; this is caused by too many fragments that need to be
evaluated. Hence, we only show this version on the smallest dataset – Nations
– see Figure 7a.

The order of methods stays unchanged through all evidence sizes on Na-
tions. This is different for the other two larger datasets, where we can see that
at some point in the evidence size, STRiKE starts to perform better than the
other methods. To explain this, we can examine precision-recall plots from
which we may observe the trend that STRiKE provides more precise pre-
dictions than the other methods. AMIE’s and AnyBURL’s precisions suffer
from deriving too many false positive facts; the size of false positives can be
orders of magnitudes higher than those predicted by STRiKE. In turn, this
raises their recall. In theory, we can try to increase recall by increasing k in
STRiKE, which would make the inference process longer.

The empirical evaluation done in this section suggests that our approach
is more cautious than standard knowledge-graph completion methods, which
suffer from huge rule sets they rely on. Naturally, one would try to select rules
carefully rather than mining all of them – which is exactly what AnyBURL
does – or focus on a robust aggregation of multiple rules that derive the same
fact – which is the active field of research [13, 96]. Once more, we stress that
these two systems were developed and are often evaluated in a transductive
setting of the same task where rules involving constants may boost perfor-
mance. In addition, note that the most popular evaluation metrics for knowl-
edge graph completion are query-based – mean reciprocal rank (MRR) and
Hits@k. In other words, a model is evaluated using a handful of queries that
only target the first (head) or second (tail) argument of a partially grounded
fact, i.e., who is the most probable friend of ann – Friend(ann, ?).89 This
is a reasonable metric for large knowledge graphs; however, it favors neural
methods since symbolic methods threaten all non-derived, i.e., non-entailed,
facts as having the same score [5]. Typically, the set of queries is fixed with
the work of [93] being an exception.

Finally, we abstain from a detailed runtime analysis since we know from
the start that our reasoning procedure would be more complex than single-
step prediction. We only briefly mention time requirements for each part of
the knowledge graph completion. Considering the rule learning part – Any-
BURL was always the fastest learner, using up to two minutes. AMIE usually
ran up to one hour, and our heuristic rule learner with up to two hours. Con-
sidering the runtime of the inference part depicted in Figure 8 – AMIE was
fastest because it had fewer rules than AnyBURL, which followed. STRiKE
was slowest, clearly, due to much more complex reasoning than the one-step
inference used in the other systems – clearly, this does not hold for Nations
where the constraints were too tight and forbidding almost all derivations.

6.6.3 Conclusions

During these experiments, we showed that the proposed rule-based inference
is more effective than MLNs, the possibilistic logic strategy from [55], and
one-step prediction when all inferences were run with the same theories. Also,

8 The giraffe liz is the correct answer.
9 Although it is possible to ask what is the most probable relation that holds between ann and

liz, i.e., ?(ann, liz), such queries are usually not present in the test set.

[February 19, 2024 at 23:46 – classicthesis]

6.6 E X P E R I M E N T S 85

0 200 400

0.4

0.6

0.8

1

Evidence size

A
U

C
PR

Nations: AUC PR vs Evidence Size

AMIE 3

AnyBURL

STRiKE

STRiKE W/C

(a)

0.8 0.85 0.9 0.95 1
0.2

0.4

0.6

0.8

1

Recall
Pr

ec
is

io
n

Nations, Precision-Recall, Evidence Size = 400

(b)

0 1,000 2,000
0

0.5

1

Evidence size

A
U

C
PR

Kinships: AUC PR vs Evidence Size

(c)

0.2 0.4 0.6 0.8 1
0

0.5

1

Recall

Pr
ec

is
io

n

Kinships, Precision-Recall, Evidence Size = 500

(d)

0 200 400 600

0.2

0.4

0.6

Evidence size

A
U

C
PR

UMLS: AUC PR vs Evidence Size

(e)

0.2 0.4 0.6 0.8
0

0.5

1

Recall

Pr
ec

is
io

n

UMLS, Precision-Recall, Evidence Size = 350

(f)

Figure 7: Comparison of AMIE 3, AnyBURL and STRiKE one Nations (top), Kin-
ships (middle), and UMLS (bottom) datasets. Left: Area under precision-
recall curve as a function of evidence size. Right: precision-recall plots for
selected evidence size. STRiKE W/C is our method without constraints in
the theory.

[February 19, 2024 at 23:46 – classicthesis]

86 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

0 200 400
10−1
100
101
102

Evidence size
tim

e
[s

]

Nations

(a)

0 1,000 2,000
10−1
100
101
102

Evidence size

tim
e

[s
]

Kinship

(b)

0 200 400 600
10−1

101

103

Evidence size

tim
e

[s
]

UMLS

AMIE 3

AnyBURL

STRiKE

(c)

Figure 8: Comparison of AMIE 3, AnyBURL and STRiKE inference time one Na-
tions (top left), Kinships (top right), and UMLS (bottom) datasets in sec-
onds.

our proposed heuristic rule learner produces relatively small theories that,
when accompanied by stratified k-entailment, tend to provide more cautious
predictions than the current system, with the drawback of failing to achieve
the same recall.

6.7 R E L AT E D W O R K

Our approach can be seen as an alternative to Markov Logic Networks [111].
MLNs address the brittleness of classical logic by using weighted rules that
define a probabilistic graphical model. That also implies a complex relation-
ship between the weights of rules at hand, which can no longer be described as
intuitive as confidence. Among others, this means that MLNs can be used for
marginal inference, which our method does not support. However, learning
MLNs is challenging, and their effectiveness for the knowledge base comple-
tion task is not well understood. The same holds to a large extent for other
statistical relational learning systems, e.g., ProbLog [31] and HL-MRF [6] as
well.

Our work is also related to approaches for learning relational rules from
data. The most closely related work falls in the area of structure learning for
statistical relational learning, e.g., TDSL [50] for MLNs, or SAYU [29] for
Bayesian networks. These approaches usually employ a beam search and typi-
cally evaluate a candidate rule’s usefulness in the context of the current model.
However, for formalisms like Markov logic, unless one considers a restricted
model class, it is intractable to select rules that maximize the log-likelihood of
the data. For this reason, an approximate measure, such as pseudo-likelihood,
is often used instead, e.g., [50]. Our approach to rule learning is quite differ-

[February 19, 2024 at 23:46 – classicthesis]

6.7 R E L AT E D W O R K 87

ent from traditional approaches to inductive logic programming, e.g., Aleph
[117] or FOIL [106], which typically employ a cover-removal style approach
that scores each rule independently by looking at, for example, the differ-
ence in the number of positive and negative examples a rule covers. Similarly,
more recent approaches to mining relational rules from knowledge graphs,
e.g., AMIE [39] and [147] continue this tradition of evaluating the usefulness
of each rule in isolation.

Knowledge graph completion [80, 114], a restriction of knowledge base
completion to only binary relations, is an active field of research with many
methods developed in the past decade. On the contrary, our approach is appli-
cable beyond binary relations, which also holds for MLNs.10 It is possible to
transform the knowledge base to one with only binary predicates – the most
straightforward way is to create an id for each fact and tie up that id with all
arguments by a fresh set predicates.11 However, many current systems such as
AMIE and AnyBURL employ closed rules language bias, i.e., enforcing each
variable to appear at least twice,12 or even more strict version of connected
closed paths rules, both of which are obviously not suited for handling such
transformed knowledge bases. These symbolic methods arose around several
mining paradigms13 – Apriori-like exhaustive rule mining [38, 39, 59, 137,
144], path ranking-based (PRA) [60] that learns from (sampled) paths in the
knowledge graph [75–77], as well as heuristic-based searches [95, 145], e.g.,
by utilizing embeddings RLvLR [94], or reinforcement learning [20]. Note
that from these, only RuDiK [95] learns constraints, i.e., negative rules that
should express integrity constraints in the knowledge graph. Their applica-
tion and possible knowledge graph repairement14 are left to the user since
they are not used in the inference step, whereas we use constraints within the
inference phase.

Besides the language bias, there are several more distinctions between our
method and those developed for the knowledge graph task. Firstly, this prob-
lem typically assumes an open world while we assume a fully observed train-
ing example. Secondly, the weight of a rule may be confidence, similar to
our approach, or its approximation when its exact value is difficult to com-
pute [75]. Several assumptions may be used to compute confidence in partic-
ular scenarios, e.g., the partial completeness assumption (PCA)15 [39]16 for
function-like relations and [100, 147]. Thirdly, these symbolic approaches
usually learn thousands of Horn rules which, in turn, may infer a single fact
with multiple weights. Most natural aggregation of these are taking the maxi-
mum or employing noisy-or [38] which performs poorly in practice [96]. Re-
cent methods (learn to) prune a rule set before inference, e.g., ScaLeKB [22]
and SAFRAN [96], or learn a latent representation to aggregate the predicted

10 For example, UWCS dataset, used in Section 6.6.1, contains unary and ternary predicates.
11 For example, R(a, b, c) would transform to a set of binary facts

{R1(id1, a),R2(id1, b),R3(id1, c)}.
12 Although this is not precisely correct for AnyBURL – it allows a type of rule with a single

variable occurring only once, i.e., Ud – the consequence remains the same.
13 Indeed, these methods often stem from the data mining community since they are oriented for

RDF-like triplets, i.e., a set of facts (A-Box), while usually ignoring RDF schema, i.e., T-Box,
if even present for the data. Methods that arose from description logic would try to incorporate
RDF schema by default.

14 This behavior brings RuDiK close to ORE for OWL [62].
15 Which would have to be acommodated for knowledge bases with relations of arbitrary arity.
16 In [34], this is also called as local closed world assumption.

[February 19, 2024 at 23:46 – classicthesis]

88 B O U N D E D R E A S O N I N G U S I N G S T R AT I F I E D k - E N TA I L M E N T

weights [13]. Probabilistic interpretation of these aggregation method is an
active field of research [12]. On the contrary, our approach is biased toward
sound inference mechanisms.

Besides neural-based approaches such as Neural LP [141] and Lifted Re-
lational Neural Networks [115], popular frameworks for knowledge graph
completion are based on embeddings and graph neural networks (GNNs).
Although embedding-based approaches gained a lot of attention and many
methods were developed over the past decade,17 these are usually applica-
ble only to the transductive setting, e.g., RotatE [122] and ComplEx-N3 [58].
Contrary to this limitation, GNNs-based methods such as GraIL [127] and
NBFNet [146] operate within the inductive setting. Finally, several hybrid ap-
proaches used both rules and embeddings, e.g., [5, 74, 113]. While some of
these methods share closed paths bias, e.g., [127], we abstain from a detailed
review of these approaches since they usually lack the interpretability of a
rule-based paradigm.

17 However, many of the early works had flawed evaluation protocols with filtered and non-
filtered Hits@k and unfair tie-breaking [123]. Since then, several frameworks were developed
to tackle this issue, e.g., PyKEEN or LibKGE.

[February 19, 2024 at 23:46 – classicthesis]

Part IV

A P P L I C AT I O N S

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

7
O N E I N T E G E R S E Q U E N C E , M U LT I P L E
E X P L A NAT I O N S

In Chapter 4, we proposed a method that discovers new, unseen, combinato-
rial integer sequences that have a combinatorial interpretation. Motivated by
the results that showed that some of these sequences are already contained in
OEIS, we turn our attention in this chapter to a small demonstration of expla-
nations created by different methods that solve a similar task. Namely, these
are:

QSynt [40] – reinforcement learning-based model that synthesizes programs
for integer sequences, and

Sequence Machine [67] – a generator of stacked programs that generate
integer sequences.

Indeed, all the approaches, including ours, construct prescriptions of inte-
ger sequences, however, each one of them was developed with a different goal.
Specifically, our approach is biased toward enumerating all combinatorial se-
quences with descriptions in first-order logic. Contrary, QSynt produces pro-
grams in a heuristic, i.e., incomplete, way. Similarly, Sequence Machine gen-
erates programs that may even be stacked,1 in an assembly-like language. On
the contrary, our approach nor QSynt uses stacking of formulae or programs.
The aim of this chapter is to show a few OEIS’s sequences with correspond-
ing prescriptions made by each of these algorithms rather than a rigorous
comparative study.2

7.1 D I F F E R E N T P R E S C R I P T I O N S

As we mentioned above, we abstain from a profound comparison of the meth-
ods as well as their languages;3 we will discuss only operators that occur in
shown programs. We will select few sequences from OEIS, show their de-
scription from OEIS,4 and discuss programs found by each approach.

7.1.1 A Simple Combinatorial Sequence

Consider the OEIS sequence A165, i.e.

2, 8, 48, 384, 3840, . . .

which is given by the double factorial of even number, i.e.

a(n) = (2n)!! = 2n ∗n! (8)

1 Stacking here means an arbitrary program from an archive of previously generated programs
may be used as a subroutine.

2 For the ease of presentation, we consider domain 1, 2, 3, 4, . . . as we did in Chapter 4.
3 We refer to [40] for QSynt’s and [65] for Sequence Machine’s language, respectively.
4 The description is available on the webpage https://oeis.org/Axyz where Axyz is the A-

identifier of a sequence.

91

[February 19, 2024 at 23:46 – classicthesis]

https://oeis.org/Axyz

92 O N E I N T E G E R S E Q U E N C E , M U LT I P L E E X P L A N AT I O N S

Our approach generated the sentence

(∃x∃y P(x)∨ R(x,y))∧ (∀x∃=1y R(x,y))∧ (∀x∃=1y R(y, x))

which can be described as follows: We are counting the Cartesian product
of two sets – permutations of [n] and subsets of [n]. Indeed, Equation (8)
expresses the number of such products. Note that the set of subsets contains
an empty set since ∀x∃=1y R(x,y) |= ∃x∃y R(x,y), and hence the middle
disjunction entails the first one.5

QSynt produced loop((y+y) ∗ x, x, 1) which can be rewritten, for clarity,
as a recurrent function6

f(n) =

1 if n ⩽ 0

(n+n) ∗ f(n− 1).

Clearly, this is equivalent to
∏n−1
i=0 2(n − i) and hence to Equation (8) as

well.
Sequence Machine produced assembly-like program depicted in Algorithm 5

that can be rewritten to a pseudocode in a higher-order language for clarity,
i.e., Algorithm 6. The computation of the latter algorithm can be expressed
as

∏n−1
i=0 (2n− 2i) which is equal to Equation (8).

Algorithm 5 Sequence Machine
Program for A165

1: mov $1, 1
2: mul $0, 2
3: lpb $0
4: mul $1, $0
5: sub $0, 2
6: lpe
7: mov $0, $1

Algorithm 6 Higher-order Pseu-
docode for Algorithm 5

1: v1 ← 1

2: v0 ← 2 ∗n
3: while v0 ⩾ 0 do
4: v1 ← v1 ∗ v0
5: v0 ← v0 − 2

6: end while
7: return v1

7.1.2 Yet Another Combinatorial Sequence

Next, consider the OEIS’s sequence A126883, i.e.

1, 7, 63, 1023, 32767, . . .

with quite wordy description: a(n) = (20) ∗ (21) ∗ (22) ∗ (23) ∗ · · · ∗ (2n) −
1 = 2T(n) − 1 where T(n) = A000217(n) is the n-th triangular number.7

5 One could argue that such a sentence is in fact redundant since it does not differ seman-
tically from (∃x P(x) ∨ ¬P(x)) ∧ (∀x∃=1y R(x,y)) ∧ (∀x∃=1y R(y, x)), i.e., a sen-
tence that is decomposable. However, to solve this case, we would need to i) integrate
a more complex reasoning in the redundancy checking phase, which we left for future
work, and ii) extend the database with a post-processing step that would combine differ-
ent sentences to get their element-wise product, e.g., to combine ∃x P(x) ∨ ¬P(x) and
(∀x∃=1y R(x,y))∧ (∀x∃=1y R(y, x)).

6 f(n) is actually an instantiation of a QSynt’s language construct that corresponds to functional-
like definition of recursive function with the first argument, e.g., (y+ y) ∗n, being a function
of two arguments.

7 The mentioned sequence A000217 is defined as follows: a(n) = binomial(n + 1, 2) =
n∗(n+1)

2 = 0+ 1+ 2+ · · ·+n.

[February 19, 2024 at 23:46 – classicthesis]

7.1 D I F F E R E N T P R E S C R I P T I O N S 93

Our approach generated the sentence

(∀x∀y R(x,y)∨¬R(y, x))∧ (∃x∃y R(x,y))

that can be described as computing the number of undirected graphs with n
nodes having at least one edge. Note that these graphs can contain loops; thus
there are 2n ∗ 2

n(n−1)
2 − 1 such graphs with n nodes, which is equivalent to

the description mentioned above.
QSynt produced loop2(x ∗ y,y + y, x, 1, 2) − 1 that can be rewritten as

Algorithm 7 since the loop2 construct is defined as follows:

loop2(f,g,a,b, c) =

b if c ⩽ 0

loop2(f,g,a− 1, f(b, c),g(b, c)).

Following the computation, the resulting value can be expressed as 2
n(n+1)
2 −

1 and hence is equal to the expression we derived above for our approach.

Algorithm 7 Pseudocode for QSynth’s loop2(x ∗ y,y+ y, x, 1, 2) − 1

1: b← 1

2: c← 2

3: while n > 0 do
4: b← b ∗ c
5: c← c+ c

6: n← n− 1

7: end while
8: return b− 1

Sequence Machine produced program depicted in Algorithm 8 that can
be rewritten into a single formula 2(

−n
2) − 1 where the binomial number is

extended for negative values [52]. Obviously, this approach profits from its
language bias that already contains a combinatorial function, while the other
approaches do not.

Algorithm 8 Sequence Machine Program for A126883

1: sub $1, $0
2: bin $1, 2
3: mov $0, 2
4: pow $0, $1
5: sub $0, 1

7.1.3 A Sequence with Negative Numbers

Finally, consider the OEIS’s A33999 sequence, i.e.

−1, 1,−1, 1,−1, . . .

which can be encoded as a(n) = (−1)n.
Although our approach, as described in Chapter 4, did not generate this

particular sequence, it is possible to make a few adjustments in order to do so.

[February 19, 2024 at 23:46 – classicthesis]

94 O N E I N T E G E R S E Q U E N C E , M U LT I P L E E X P L A N AT I O N S

For example, computing the number weighted of models of sentence ∀x P(x)
with the positive weight set −1, i.e., w(P) = −1,8 produces this sequence.
However, the explanation then is not so natural.9

QSynt produced loop(0− x, x, 1) that downplays to
∏n
i=1−1.

Sequence Machine produced Algorithm 9, which translates into
(
−1
n

)
, again

utilizing the extended combinatorial function.

Algorithm 9 Sequence Machine Program for A33999

1: mov $1,−1
2: bin $1, 0
3: mov $0, 1

7.2 C O N C L U S I O N

We could keep listing more examples like these, e.g., the sequence A290840
discussed in Section 4.5.2, for some more time; however, these few above
should be enough for a reader to get the intuition. Finally, from the two first
integer sequences, we observe that a single approach is not always the most
comprehandsible for all sequences.

8 The model count of this particular sentence does not depend on the negative weight since there
is only a single model with all atoms being positive.

9 Which is also why we abstained from different weights setups in this work.

[February 19, 2024 at 23:46 – classicthesis]

8
E X P L O I T I N G B O N D S Y M M E T RY F O R RU L E
L E A R N I N G

Motivated by the effectiveness of the domain theory-based pruning we pre-
sented in Chapter 5, we briefly outline, in this chapter, a single application
and stress the advantage it brings for a particular set of datasets, namely
those from the NCI [109] molecular datasets collection. As in Chapter 5,
we are working within the learning from interpretation learning setup (Sec-
tion 2.3.1).

8.1 I N S P E C T I N G L E A R N E D D O M A I N T H E O RY

As we already outlined in Section 5.6, when learning a domain theory on an
NCI dataset, we derived two types of rules: i) mutex constraints, which says
that an atom can be only of a single type, e.g.

∀x ¬Carb(x)∨¬Hydro(x),

and ii) bond symmetry, e.g.

∀x∀y Bond(x,y)⇒ Bond(y, x).

Implementation of the mutex constraint into a refinement is quite straight-
forward. This kind of optimization, i.e., forbidding some type of refinements
w.r.t. a clause α, is particularly favorable in cases where evaluating a single
sentence is resource demanding, e.g., computing coverage of a large dataset,
since we know ahead, thanks to the domain theory, that such refinement is
useless. Therefore, we turn our attention to the bond-related domain theory.
To see the advantage of utilization of this knowledge, consider the following
example.

Example 38. Consider a Horn rule

α = ∀x∀y Hydro(y)∧Bond(x,y)⇒ Carb(x).

Then, α is equivalent to

β = ∀x∀y Hydro(y)∧Bond(y, x)⇒ Carb(x)

w.r.t. bond symmetry, i.e.

B = {∀x∀y Bond(x,y)⇒ Bond(y, x)}

which we already saw in Example 31.
Now, consider refining the body of α with new bond literal containing a

fresh variable, i.e.

γ1 = ∀x∀y∀z Bond(z,y)∧Hydro(y)∧Bond(x,y)⇒ Carb(x),

γ2 = ∀x∀y∀z Bond(y, z)∧Hydro(y)∧Bond(x,y)⇒ Carb(x).

Then, unsurprisingly, both γ1 and γ2 are also equivalent w.r.t. B.

95

[February 19, 2024 at 23:46 – classicthesis]

96 E X P L O I T I N G B O N D S Y M M E T RY F O R RU L E L E A R N I N G

Adjusting a refinement operator to utilize the bond symmetry knowledge
is easy – instead of adding a single bond literal, its symmetric counterpart is
also added. This also holds for double, triple, quadruple, and aromatic bond.

Example 39. Consider the bond symmetry knowledge from Example 38 and
path-like rule with n− 1 body bond literals, e.g.

∀x1 . . . ∀xn Bond(x1, x2)∧Bond(x2, x3)∧ · · ·∧Bond(xn−1, xn)⇒ C(xn).

Then, there are 2n−1 − 1 more rules1 that are equivalent to this rule w.r.t.
domain theory. See, adding an arbitrary atom ¬Bond(xi−1, xi) leads to the
same equivalence class.

8.2 U T I L I Z I N G B O N D S Y M M E T RY

Among others, the beam search strategy is popular for a heuristic traversal
of the search space, e.g., [51]. Utilization of bond symmetry is particularly
practical for this kind of problem since it removes domain-equivalent clauses
that would otherwise occupy the beam and skew the search. For instance,
consider γ1 and γ2 from Example 38; evaluating both of these would lead
to the same value, e.g., support or accuracy. Having both of these in a beam
would narrow the search space traversed by the search procedure.

Motivated by this knowledge, we enhanced a refinement operator with the
bond symmetry for structure learning of Lifted Relational Neural Networks
(LRNN) [115], a template-based method that combines function-free first-
order logic and neural networks. Specifically, it is built around the concept
of weighted Horn rules where the weights correspond to weights in a neural
network. A ground neural network is constructed w.r.t. a learning example
by computing the least Herbrand model2 of the set of Horn rules given a set
of facts, i.e., the example, and constructing weight connections among the
facts in the Herbrand model which correspond to learnable weights that are,
thereafter, learned by stochastic gradient descent. Hence, we applied beam
search enhanced with the refinement operator and learned LRNN by altering
the structure learning phase, i.e., learning Horn rules, and weight learning, i.e.,
the neural network part. This approach proved to be effective as the learned
LRNN outperformed hand-crafted templates, i.e., logical theories, on which
the method relies.

In detail, the structure learning algorithm initially starts only with a set of
predicates P that are in the training data. In each iteration, it deploys a top-
down beam search to learn a Horn rule with a fresh predicate in the head,
i.e., b1 ∧ · · ·∧ bn ⇒ h where predicate in the head h does not occur in P.3

After the beam search terminates, the set of predicates P is extended by the
fresh predicate in h. Thus, in the next iteration, the algorithm may use this
predicate inside new rules and, hence, stack the invented predicates. Note
that the newly invented predicates correspond to induced soft (hierarchical)
concepts. Thus, this particular approach can be seen as a statistic predicate
invention with the ability to induce hierarchical latent concepts.4

1 With the same prefix ∀x1 . . . ∀xn.
2 For example by employing forward chaining as shown in Example 6.
3 We do not allow recursive rules, so body literals can contain predicates only from the previous

iteration.
4 We refer to [116] for a detailed description.

[February 19, 2024 at 23:46 – classicthesis]

Part V

C O N C L U S I O N

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

9
C O N C L U S I O N

Here, we sum up the contribution of the proposed methods in Part iii and
discuss possible future work in the following section.

9.1 T H E S I S C O N T R I B U T I O N

In general, we proposed two techniques for sentence space pruning. The com-
mon property of these lies in their preservation of completeness of the search
procedures they were designed for. In the first case, which resembles a spe-
cialized pattern mining scenario and is described in Chapter 4, a set of task-
dependent pruning techniques was developed to discover integer sequences
with combinatorial explanations. The set of pruning techniques proved to be
an order of magnitudes faster than a vanilla version. We showed that our
approach is fruitful by generating a database of first-order formulae and cor-
responding integer sequences, although we used quite restrictive language
bias. Compared to other approaches in the line of mathematical discovery,
e.g., HR system [24], we set up the goal of investigating a subset of integer
sequences, whereas other methods usually focus on generating and explain-
ing more general sequences. Our direction of generation of integer sequences
from scratch is orthogonal to the current approaches, e.g., [27, 40] which
learn a model that, in turn, generates integer sequences or their prescription.
We contributed to the OEIS as few entries were enriched with our first-order
formula description1 without our direct involvement, which clearly shows the
potential benefit of our approach for the wider scientific community.2

In Chapter 5, we presented a more general sentence space pruning method
that can be deployed in many rule-learning algorithms in the literature. Our
experiments show that utilizing domain theory can be beneficial for exhaus-
tive searches even though our method needs to learn domain theory at the
beginning. The method differs from the current systems since they often rely
on some predefined language bias, e.g., closed paths, which are typically not
devised for a particular dataset. The output of these methods is postprocessed,
in the case of the large learned rule set, while our approach uses the regular-
ity in the data during the learning process. The methods OP [21] and RARL
[101] are clear exceptions from the mainstream since they employ some do-
main knowledge (from the T-Box) for rule learning, whereas the rest uses
only the data (A-Box).3 In particular, other systems could benefit by utilizing
our approach in domains where regularities are common, e.g., some relations
being symmetric, as in Chapter 8.

1 For example, A290840.
2 Historically, papers presented the number of newly derived integer sequences that were ac-

cepted into OEIS. However, we feel that this is not proper anymore in the current age of
large-scale integer sequence generation. Similarly, [67] could easily overfill OEIS.

3 Although we use only data, we firstly learn regularities in them and exploit that knowledge
later.

99

[February 19, 2024 at 23:46 – classicthesis]

100 C O N C L U S I O N

In Chapter 6, we presented a method suited for knowledge base completion
in the presence of imperfect rules. Our approach, based on the stratification of
rules and accompanied by a restricted version of logical entailment, usually
derives fewer incorrect facts than standard rule-based methods that rely on
large rule sets with an even more restricted version of logical entailment [76].
Besides other differences with the current approaches, such as the learning
setting, e.g., inductive vs transductive setup, knowledge graph vs base, query-
based evaluation vs ground truth, our approach is primarily focused towards
cautious inference with a specially tailored rule learner. This fills the gap
in the current state of the art, which is usually concerned with the simple
application of large rule sets. Recently, a cautious aggregation of these large
rule sets became an active field of research [13].

Each method can be used in isolation, including the heuristic rule learner
and stratified k-entailment from Chapter 6. However, the sentence state prun-
ing method from Chapter 5 can be used together with methods from Chap-
ter 6.

9.2 F U T U R E W O R K

The methods from this thesis can be used in various machine-learning tasks.4

The most straightforward application of a method presented in this thesis is
the usage of saturation-based pruning from Chapter 5 for rule learning. While
we have demonstrated its effectiveness on exhaustive searches and discuss
its advantages in beam search strategy, it can be deployed in current rule
learning systems, e.g., [59], as a post-processing step for filtering rules that
are equivalent w.r.t. domain theory to obtain a more compact representation
of a learned rule set. In particular, this would find usage in the knowledge
graph completion task since current systems, e.g., [76], need to aggregate
predictions made by large rule sets; a pruning w.r.t. domain theory would
help to remove redundant ones. Besides possible applications, the method,
or at least a part of it, could be injected into a refinement operation on the
implementation level in order to make it more efficient, as we discussed in
Section 5.8.5

In Chapter 4, we investigated a way of generating integer sequences, which
resulted in two contributions: i) a set of pruning techniques,6 ii) a database of
combinatorial integer sequences. The latter can be used for various machine-
learning tasks. For instance, a model biased towards combinatorial integer
sequences can be learned with [27] or [40] using our database as an input. In
theory, our database could be merged with OEIS.7 This would be beneficial
for learning a language for the description of combinatorial problems since
our database consists of first-order logical formulae, which is a native lan-
guage only for logicians, whereas OEIS contains descriptions of sequences
in natural language.

4 Here, we discuss possible applications and extensions of the proposed methods. Notes on more
specific extensions of the methods are described at the end of each chapter.

5 Indeed, scalability is a strong argument nowadays since there are many quite fast algorithms
that learn thousands of rules in the blink of an eye.

6 See Section 4.7 for a detailed discussion of possible future work regarding the pruning tech-
niques.

7 Hence constructing an OEIS+ as few reviewers hinted out.

[February 19, 2024 at 23:46 – classicthesis]

9.2 F U T U R E W O R K 101

Finally, Chapter 6 sheds new light on the field of relational inference. Hence,
one may follow our path by presenting newer versions of altered logical entail-
ment. One such representative is voting entailment [53], which was developed
with the same underlying principle as k-entailment.

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

Part VI

A P P E N D I X

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

A
I M P L E M E N TAT I O N D E TA I L S

This section contains a few implementation details for all methods that were
presented through Part iii. The core algorithms are available at https://github.
com/martinsvat together with experiment setups, datasets, and results. A snap-
shot of our database from Chapter 4 is accessible at https://fluffy.jung.ninja.1

For some parts, we used third-party libraries. However, the main algorithms
are implemented in Java. We heavily relied on, and are grateful for, the fol-
lowing libraries:

1. Prover9 [72] – for theorem proving in Section 4.4.2.4.

2. FastWFOMC.jl [129] – to compute cell graphs and generate combina-
torial spectra.

3. θ-subsumption engine [56] – to check the coverage of examples.

4. Sat4j library [61] – in connection with the above, this allowed us to
prove theories using an incremental grounding solver.

5. AUC-PR [30] – to evaluate experiments in Section 6.6.

A.1 N OT E S O N O P T I M I Z AT I O N S

This section contains a few implementation details of the methods in Part iii.

A.1.1 Notes on Isomorphism

For the vast majority of sentence isomorphism checking, we used the hash-
based approach discussed in Section 3.1 to lower the number of isomorphism
calls. In fact, the task of isomorphism-based redundancy-checking techniques,
i.e., predicates, negations, and permuting arguments Sections 4.4.2.1 to 4.4.2.3,
can be encoded as isomorphism of hypergraphs (ensuring that a binary pred-
icate can map only to another binary predicate, etc.). This is rather a techni-
cal and straightforward application of isomorphism. However, in practice, it
proved to be too expensive to compute and was easily outperformed by canon-
ical representation of a sentence. The latter approach comes from standard
graph mining [46], where the canonical representation of graphs is used to
forbid the evaluation of isomorphic graphs multiple times. Therefore, we de-
veloped a branch-and-bound algorithm that computes lexicographically mini-
mal sentence given a C2 sentence of the form Equation (2) w.r.t. variable and
predicate names, flipping negation signs, and permuting arguments of binary
relations (according to the definitions in Sections 4.4.2.1 to 4.4.2.3). This ap-
proach proved to scale much better, even though it is not easier to compute
than the isomorphism of hypergraphs. As a byproduct, we obtain sentences
in a canonical representation throughout our integer sequences database.

1 If this link does not work anymore, please check the aforementioned Github page.

105

[February 19, 2024 at 23:46 – classicthesis]

https://github.com/martinsvat
https://github.com/martinsvat
https://fluffy.jung.ninja

106 I M P L E M E N TAT I O N D E TA I L S

Example 40. Consider the sentence

φ = ∃x∃y ¬P0(x)∨ P1(y).

Then, the canonical, i.e., lexicographical minimal, counter part is

φ ′ = ∃x∃y P0(x)∨ P1(y).

While the result should not be surprising, several mappings θ ′ derive this
lexicographically minimal counterpart of φ. For instance, the following map-
pings transform φ into φ ′:

θ ′1 = {P0/1 7→ ¬P0/1,

¬P0/1 7→ P0/1},

θ ′2 = {P0/1 7→ ¬P1/1,

¬P0/1 7→ P1/1,

P1/1 7→ P0/1,

x 7→ y,

y 7→ x}.

The first mapping swaps negation signs of P0/1, whereas the second swaps
and renames both variables, predicates, and swaps negation signs for the
original P0/1 predicate.

There are several factors that, when combined, helped the canonical-based
approach to outperform the isomorphism of hypergraphs, which was usually
overwhelmed with too many variables in the isomorphism-checking problem,
i.e., there is a single variable for each predicate name, negation flip, binary
relation order, etc. One of these factors is an effective pruning of unfavorable
branches in the computation of the canonical version since there are only a
few ways to map the original sentence into its canonical version. Secondly,
comparing two canonical sentences is as hard as comparing the equality of
two lines of text. Thirdly, canonical counterparts can be computed in parallel
for a set of sentences, whereas testing the isomorphism of two hypergraphs
relies on some engine and its capability of parallel executions.

Finally, we note that the canonical approach only worked well for the
abovementioned problem. We have not experimented with developing an al-
gorithm that would compute canonical representation for cell graphs. Al-
though the problem is the same in nature, the input – a (hyper)graph – dif-
fers since it represents a complete weighted graph. Hence, it would be much
more efficient to utilize some specialized programs for finding the canonical
representation of a graph, e.g., nauty [73].

A.1.2 Effective Usage of Resources

To scale up the process of either sentence generation in Chapter 4 and k-
entailment in Chapter 6 we utilized bit sets. In the former case, bit sets were
used to precompute calls that would be quite repetitive – this concerns mostly

[February 19, 2024 at 23:46 – classicthesis]

A.1 N OT E S O N O P T I M I Z AT I O N S 107

entailment and θ-subsumption-based methods from Section 4.4.2.6. For in-
stance, let α and β be clauses such that

α∧β

is redundant. Then, every sentence φ that contains β is redundant when re-
fined by α, i.e.

α∧φ,

as well as any refinement of φ.
In the case of Chapter 6, we used bit sets to represent subsets of constants.

This was beneficial for two purposes: i) lower memory consumption, and ii)
fast checking of subset relation between two sets of constants, i.e. C1 ⊆ C2.

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

B
A D D I T I O NA L S C A L A B I L I T Y O F S E N T E N C E
G E N E R AT O R

In Chapter 4, we were focused purely on building up a database of sentences
and their combinatorial spectra. Here, we present one more experiment of the
proposed pruning techniques, however, only to compare their effectiveness
and runtime. We abstain here from computing combinatorial spectra as such,
which, as we saw in Section 4.5.1, is arguable the most resource demanding
part of the database building process.

We will use a slightly changed protocol from Section 4.5.1. Specifically, we
are concerned only with the set of quantifiers containing a counting quantifier,
i.e., K = {∀, ∃, ∃=1}, since such sentence space is larger than pure FO2, and
a richer set of predicates, i.e., P = {P0/1,P1/1,R0/2,R1/2}. We run three
different setups, namely:

• at most 3 literals per disjunction, at most 3 disjunctions per clause

• at most 4 literals per disjunction, at most 3 disjunctions per clause

• at most 4 literals per disjunction, at most 4 disjunctions per clause

The rest of the protocol stays unchanged.1 Actually, the language bias in Sec-
tion 4.5.1 was too strict, so not all redundancy checking technique could take
place in the process.

The results are depicted in Figure 9; the order from top to bottom follows
the order of the above-mentioned language restrictions. We show only the
cumulative number of generated sentences (left) and the required runtime
(right).2 Although the baseline is quite fast, it generates too many sentences.
In turn, it quickly ran into memory issues, e.g., the bottom figure. The post-
process filtering based on the isomorphism of cell graphs is time-demanding;
hence, it did not make it to the same level as the other techniques.3 The rest
of the methods behave the same as in the initial experiment of construction
of a small initial database in Section 4.5.1.

1 This means 51GB memory, 48 hours of computation, 30 seconds as proving limit, and restric-
tion of disjunction with counting quantifiers.

2 Since we are not concerned with the time needed to compute corresponding spectra.
3 Nonetheless, if we also consider the time needed to compute combinatorial spectra, we would

fill in the database faster than using only the other methods.

109

[February 19, 2024 at 23:46 – classicthesis]

110 A D D I T I O N A L S C A L A B I L I T Y O F S E N T E N C E G E N E R AT O R

101

102

103

104

105

106

1 2 3 4

(a)

#
se

nt
en

ce
s

baseline Tautologies & Contradictions
Isomorphic Sentences Negations
Permuting Arguments Reflexive Atoms
Trivial Constraints θ*
Cell Graph Isomorphism

10−2

10−1

100

101

102

1 2 3 4

(b)
tim

e
[h

]

101

102

103

104

105

106

1 2 3 4

(c)

#
se

nt
en

ce
s

10−2

10−1

100

101

102

1 2 3 4

(d)

tim
e

[h
]

101

102

103

104

105

106

1 2 3 4

(e)

#
se

nt
en

ce
s

10−3

10−2

10−1

100

101

1 2 3 4

(f)

tim
e

[h
]

Figure 9: Cumulative number of C2 sentences (left) with at most x literals and the
time needed to generate them (right). At most 2 unary and 2 binary predi-
cates, K = {∀,∃,∃=1}, at most 3 (top and middle) and 4 (bottom) literals
per clause, and at most 3 (top) and 4 (middle and bottom) disjunctions per
sentence.

[February 19, 2024 at 23:46 – classicthesis]

C
C O M B I NAT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N
O E I S

Table 3 is an extension of Table 1 from Chapter 4. It contains a sample of
152 integer sequences that we generated during the experiment discussed in
Section 4.5.2. The entries are sorted in increasing order of OEIS identifiers.

Table 3: A larger sample of OEIS sequences that corresponds to some C2 sentence
we generated during the experiment in Section 4.5.2.

Sentence OEIS ID OEIS name
(∃=1x P(x)) A27 The positive integers. Also called

the natural numbers, the whole num-
bers or the counting numbers, but
these terms are ambiguous.

(∀x P(x)∨¬P(x))∧ (∀x ¬P(x)∨
P(x))

A79 Powers of 2: a(n) = 2n.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y R(x,y)∨¬R(y, x))

A85 Number of self-inverse permuta-
tions on n letters, also known as
involutions; number of standard
Young tableaux with n cells.

(∀x∃y ¬R(y, x)) ∧

(∃x∃y ¬R(x,y)) ∧

(∀x∃=1y ¬R(x,y))

A142 Factorial numbers: n! = 1 ∗ 2 ∗ 3 ∗
4 ∗ ... ∗n (order of symmetric group
Sn, number of permutations of n
letters).

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y R(x,y)∨ R1(x,y))

A165 Double factorial of even numbers:
(2n)!! = 2n ∗n!.

(∀x ¬P(x) ∨ ¬R(x, x)) ∧

(∀x∃=1y ¬R(x,y))
A169 Number of labeled rooted trees with

n nodes: nn−1.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∃=1x R(x, x))

A240 Rencontres numbers: number of
permutations of [n] with exactly
one fixed point.

(∀x P(x)∨ P1((x)) A244 Powers of 3: a(n) = 3n.

(∀x∀y R(x,y) ∨ ¬R(x, x)) ∧

(∀x∃=1y ¬R(y, x))
A248 expansion of e.g.f. exp(x ∗

exp(x)).

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y R(x, x) ∨ ¬R(x,y) ∨

¬R(y, x))

A266 expansion of e.g.f. exp(−
x2

2)

1−x .

(∃x∃yR(x,y)) ∧

(∀x∃=1y R(x,y))
A312 a(n) = nn; number of labeled

mappings from n points to them-
selves (endofunctions).

111

[February 19, 2024 at 23:46 – classicthesis]

112 C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S

Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x P(x)∨ P1((x))∧ (∀x P(x)∨
P2(x))

A351 Powers of 5: a(n) = 5n.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y ¬R(x, x)∨ P(x)∨ R(x,y))

A354 expansion of e.g.f. exp(−x)1−2∗x .

(∀x∃y P(x) ∨ P1((y)) ∧

(∀x∀y P1((x)∨¬P1((y)∨ P2(x))

A400 Powers of 6: a(n) = 6n.

(∀x P(x)∨ P1((x)∨ P2(x)) A420 Powers of 7: a(n) = 7n.

(∀x∃y R(x,y)) ∧ (∀x R(x, x) ∨
P(x))∧ (∀x∃=1y R(y, x))

A522 Total number of ordered k-tuples
(k = 0..n) of distinct elements
from an n-element set: a(n) =∑
k=0..n

n!
k! .

(∀x P(x) ∨ P1((x) ∨ P2(x)) ∧

(∀x P(x)∨ P3(x))
A1020 Powers of 11: a(n) = 11n.

(∀x P(x) ∨ P1((x) ∨ P2(x) ∨

P3(x))

A1024 Powers of 15.

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∃xR(x, x))∧ (∀x∃=1y ¬R(x,y))
A1189 Number of degree-n permutations

of order exactly 2.

(∀x∃=1y ¬R(y, x)) ∧

(∃=1x∀yR(x,y))
A1804 a(n) = n! ∗C(n, 2).

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x ¬R(x, x)∨ P(x)∨ P1((x))

A1907 expansion of e.g.f. exp(−x)(1−4∗x) .

(∀x P(x) ∨ P1((x)) ∧

(∃=1x ¬P(x))∧ (∃=1x ¬P1((x))
A2378 Oblong (or promic, pronic, or het-

eromecic) numbers: a(n) = n ∗
(n+ 1).

(∀x R(x, x)∨¬R(x, x)) A2416 a(n) = 2n
2
.

(∃x ¬R(x, x))∧ (∃x∀y ¬R(y, x)) A5019 The number ofnXn (0,1)-matrices
with a 1-width of 1.

(∀x P(x) ∨ P1((x)) ∧

(∀x∀y ¬P(x)∨ P2(y))

A5056 a(n) = 3n + 2n − 1.

(∀x∀y P(x) ∨ P1((y)) ∧

(∃x P(x))∧ (∀x∀y P(x)∨ P2(y))
A5367 a(n) = 2 ∗ (2n + 1) ∗ (2n+1 − 1).

(∀x∀y R(x,y)∨¬R(y, x)) A6125 a(n) = 2
n∗(n−1)

2 .

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∀x∃y R(x,y))∧ (∃xR(x, x))
A6129 a(0), a(1), a(2), ... sat-

isfy
∑
k=0..n a(k) ∗

binomial(n,k) =

2binomial(n,2), for n ⩾ 0.

[February 19, 2024 at 23:46 – classicthesis]

C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S 113

Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
R(y, x))∧ (∀x∀y ¬R(x,y)∨P(x))

A6896 a(n) is the number of hierarchical
linear models on n labeled factors
allowing 2-way interactions (but no
higher order interactions); or the
number of simple labeled graphs
with nodes chosen from an n-set.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∀y R(x,y)∨¬R(y, x))
A6898 a(n) =

∑
k=0..nC(n,k) ∗

2
k∗(k+1)

2 .

(∀x∀y R(x, x) ∨ R(y,y)) ∧

(∀x∃=1y ¬R(x,y))
A7778 a(n) = nn+1.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x))∧ (∀x R(x, x)∨
P(x)∨ P1((x))

A10845 a(n) = 3 ∗ n ∗ a(n − 1) + 1,
a(0) = 1.

(∀x∃y P(x) ∨ R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∃=1x ¬P(x))∧ (∃=1x ¬R(x, x))

A11379 a(n) = n2 ∗ (n+ 1).

(∀x P(x) ∨ P1((x) ∨ P2(x)) ∧

(∀x ¬P(x)∨ P3(x))
A11557 Powers of 10: a(n) = 10n.

(∀x ¬R(x, x)) ∧ (∀x∃y R(x,y) ∨
P(x) ∨ P1((y)) ∧

(∀x∀y ¬R(x,y)∨ R(x, x))

A20515 a(n) = 4n − 2n + 1.

(∀x∃y P(x) ∨ P1((y)) ∧

(∃x P(x)∨ P2(x)∨ P3(x))
A20518 10th cyclotomic polynomial evalu-

ated at powers of 2.

(∃x P(x)∨P1((x))∧ (∃x ¬P(x)∨
P2(x))

A20540 a(n) = 8n+1 − 2n+2.

(∀x∀y P(x) ∨ P(y) ∨ P1((x) ∨

¬P1((y))

A27649 a(n) = 2 ∗ (3n) − 2n.

(∀x∀y P(x) ∨ P1((y)) ∧

(∀x∀y ¬P(x)∨ P2(y))

A33484 a(n) = 3 ∗ 2n − 2.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y R(x, x)∨ P(x)∨¬P(y))

A33540 a(n+ 1) = n ∗ (a(n) + 1) for n ⩾
1, a(1) = 1.

(∀x∃=1y R(x,y))∧ (∀x R(x, x)∨
P(x)) ∧ (∀x ¬R(x, x)) ∧

(∃=1x∀y ¬R(y, x))

A37184 Functional digraphs with 1 node not
in the image.

(∃xR(x, x)) ∧ (∃x∃yR(x,y)) ∧

(∀x∃=1y R(y, x))
A45531 Number of sticky functions: end-

ofunctions of [n] having a fixed
point.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∃x∃y R(x,y)∨ P(x)∨ P1((x))

A47053 a(n) = 4n ∗n!.

(∀x∀y R(x,y)∨ R(y, x)) A47656 a(n) = 3
n2−n
2 .

[February 19, 2024 at 23:46 – classicthesis]

114 C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S

Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∀y ¬P(x)∨ R(y, x))
A47863 Number of labeled graphs with 2-

colored nodes where black nodes
are only connected to white nodes
and vice versa.

(∀x∃y ¬R(x,y)) ∧

(∀x∃y ¬R(y, x))
A48291 Number of 0, 1 n X nmatrices with

no zero rows or columns.

(∀x P(x) ∨ P1((x) ∨ P2(x)) ∧

(∀x∀y ¬P(x)∨¬P1((y))

A48473 a(0) = 1, a(n) = 3 ∗a(n− 1)+ 2;
a(n) = 2 ∗ 3n − 1.

(∃x ¬R(x, x))∧ (∀x∃=1y R(x,y)) A48861 a(n) = nn − 1.

(∀x R(x, x))∧ (∀x∃y R(x,y)) A53763 a(n) = 2n
2−n.

(∀x∀y R(x,y) ∨ R1(x,y)) ∧

(∃xR(x, x))∧ (∀x ¬R1(x, x))
A53764 a(n) = 3n

2−n.

(∀x∃y ¬R(y, x)) A55601 Number of n X n binary matrices
with no zero rows.

(∀x∃=1y R(x,y))∧ (∀x R(x, x)∨
P(x))∧ (∃x ¬P(x))

A55869 a(n) = (n+ 1)n −nn.

(∀x∃=1y R(x,y)) ∧

(∃=1x R(x, x))
A55897 a(n) = n ∗ (n− 1)n−1.

(∀x P(x)∨ P1((x))∧ (∃x P(x))∧
(∃x P1((x))

A58481 a(n) = 3n − 2.

(∀x P(x) ∨ P1((x)) ∧

(∃x ¬P(x))∧ (∃=1x ¬P1((x))
A58877 Number of labeled acyclic digraphs

with n nodes containing exactly n−

1 points of in-degree zero.

(∀x∀y P(x) ∨ P1((y)) ∧

(∃x ¬P(x)∨ P2(x))
A59153 a(n) = 2n+2 ∗ (2n+1 − 1).

(∀x ¬R(x, x) ∨ ¬R1(x, x)) ∧

(∀x R1(x, x)∨ P(x))
A60757 a(n) = 4n

2
.

(∀x∀y R(x,y) ∨ R1(x,y)) ∧

(∀x∀y R(x,y)∨ R2(x,y))
A60758 a(n) = 5n

2
.

(∀x∃y P(x) ∨ P1((y)) ∧

(∃x ¬P(x))
A60867 a(n) = (2n − 1)2.

(∀x∃y R(x,y)) ∧

(∃x∃y ¬R(x,y)) ∧

(∀x∃=1y ¬R(y, x))

A61190 a(n) = nn −n.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x ¬R(x, x) ∨ P(x)) ∧

(∃=1x ¬P(x))

A62119 a(n) = n! ∗ (n− 1).

(∃x∃yP(x) ∨ R(x,y)) ∧

(∀x∃=1y ¬R(x,y))
A62971 a(n) = (2 ∗n)n.

[February 19, 2024 at 23:46 – classicthesis]

C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S 115

Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x∃y R(x,y)) ∧

(∃x∀y ¬R(y, x) ∨ ¬R(x,y)) ∧

(∀x∃=1y R(y, x))

A66052 Number of permutations in the sym-
metric group Sn with order ⩾ 3.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∃y ¬P(x) ∨ R(y, x)) ∧

(∀x∃=1y R(y, x))

A66068 a(n) = nn +n.

(∀x∀y P(x) ∨ P1((y)) ∧

(∃x P(x)) ∧ (∀x∀y ¬P1((x) ∨

P2(y))

A68156 G.f.: (x+2)∗(x+1)
(x−1)∗(x−2) =

∑
n⩾0 a(n) ∗

x
2
n.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∃x∃y ¬R(x,y)) ∧

(∀x∃=1y ¬R(y, x))

A72034 a(n) =∑
k=0..n binomial(n,k) ∗ kn.

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
R(y, x)) ∧ (∀x∀y ¬R(x,y) ∨

P(x)∨ P(y))

A79491 Numerator of∑
k=0..n

binomial(n,k)

2
k∗(k−1)

2

.

(∀x∀y P(x) ∨ ¬P(y) ∨ P1((x) ∨

P2(y))

A81626 2 ∗ 6n − 4n.

(∀x∀y R(x,y) ∨ R1(x,y)) ∧

(∀x∀y R(x,y)∨¬R1(y, x))
A81955 a(n) = 2r ∗ 3s where r = n(n+1)

2

and s = n(n−1)
2 .

(∀x∀y P(x) ∨ P1((x) ∨ P2(y)) ∧

(∀x∀y P(x)∨¬P2(y))

A83319 4n + 3n − 2n.

(∀x∀y P(x) ∨ P1((x) ∨ P2(y)) ∧

(∀x P(x)∨ P2(x))
A83320 a(n) = 5n + 4n − 3n.

(∀x P(x) ∨ P1((x)) ∧

(∀x∃y P(x) ∨ ¬P1((y)) ∧

(∃x P(x))

A83323 a(n) = 3n − 2n + 1.

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
R(y, x)) ∧ (∀x∀y ¬R(x,y) ∨

R1(x,y)) ∧ (∀x∀y R1(x,y) ∨

¬R1(y, x))

A83667 Number of antisymmetric binary re-
lations on a set of n labeled points.

(∀x∀y P(x) ∨ P1((y) ∨ P2(y)) ∧
(∀x P(x)∨¬P1((x))

A85350 Binomial transform of poly-
Bernoulli numbers A027649.

(∀x∀y P(x) ∨ P(y) ∨ P1((x) ∨

P2(y))

A85352 expansion of 1−4x
(1−5x)(1−6x) .

(∀x∃=1y R(x,y))∧ (∀x R(x, x)∨
P(x))∧ (∀x P(x)∨ P1((x))

A85527 a(n) = (2n+ 1)n.

(∀x ¬P(x) ∨ R(x, x)) ∧

(∀x∃=1y ¬R(x,y))
A85528 a(n) = (2 ∗n+ 1)n+1.

(∀x∀y R(x,y) ∨ R1(x,y)) ∧

(∃xR(x, x)) ∧ (∀x ¬R1(x, x)) ∧
(∀x∃=1y R1(x,y))

A85532 (2n)n+1.

[February 19, 2024 at 23:46 – classicthesis]

116 C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S

Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x R(x, x))∧ (∀x∃y ¬R(x,y))∧
(∀x∃y ¬R(y, x))

A86193 Number of n X n matrices with en-
tries in 0, 1 with no zero row, no
zero column and with zero main di-
agonal.

(∀x ¬R(x, x))∧ (∀x∃y R(x,y)) A86206 Number of n X n matrices with en-
tries in 0, 1 with no zero row and
with zero main diagonal.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y ¬R(x, x) ∨ P(y)) ∧

(∃=1x P(x))

A86325 Let P(1) = 0, P(2) = 1, P(k) =

P(k − 1) +
P(k−2)
k−2 ; then a(n) =

n! ∗ P(n).

(∀x∀y P(x) ∨ R(y,y)) ∧

(∃x∃yP(x)∨ P1((x)∨ R(x,y))
A88668 Number of n X n matrices over

GF(2) with characteristic polyno-
mial xn−1 ∗ (x− 1).

(∀x P(x) ∨ ¬R(x, x)) ∧

(∃=1x ¬P(x))∧ (∀x∃=1y R(x,y))
A89205 a(n) = nn ∗ (n− 1).

(∀x∃y P(x) ∨ P1((y)) ∧

(∀x∀y P1((x)∨ P2(y))
A92440 a(n) = 2(n+1) − 2n+1 + 1.

(∀x∀y P(x) ∨ ¬P(y)) ∧

(∀x∀y P(x)∨ P1((x)∨ P2(y))
A93069 a(n) = (2n + 1)2 − 2.

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∀x∀y R(x, x) ∨ P(y)) ∧

(∃=1x ¬R(x, x))

A95340 Total number of nodes in all labeled
graphs on n nodes.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∃=1y ¬R(y, x)) ∧

(∃=1x∀yR(x,y))

A98916 Permanent of the n X n (0,1)-
matrices with ij-th entry equal to
zero iff (i = 1, j = 1),(i = 1, j =
n),(i = n, j = 1) and (i = n, j =
n).

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∀x∀y R(x,y)∨ R1(x,y))
A99168 a(n) = 3n ∗ 5binomial(n,2).

(∀x∀y P(x) ∨ P1((x) ∨ P2(y)) ∧

(∀x∀y ¬P(x)∨ P2(y))

A99393 a(n) = 4n + 2n − 1.

(∀x P(x) ∨ P1((x)) ∧

(∀x∃y ¬P(x) ∨ ¬P1((y)) ∧

(∃x ¬P(x))

A101052 Number of preferential arrange-
ments of n labeled elements when
only k ⩽ 3 ranks are allowed.

(∀x∀y R(x,y) ∨ R1(x,y)) ∧

(∀x∀y ¬R(x,y)∨¬R(y, x))
A109345 a(n) = 5

n2−n
2 .

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
R1(x,y)) ∧ (∀x∀y R1(x,y) ∨

R(y, x))

A109354 a(n) = 6
n2−n
2 .

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
R(y, x) ∨ R1(x,y)) ∧

(∀x∀y R1(x,y)∨ R(x,y))

A109493 a(n) = 7
n2−n
2 .

[February 19, 2024 at 23:46 – classicthesis]

C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S 117

Table 3 – continued from previous page
Sentence OEIS ID OEIS name

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
R1(x,y)) ∧ (∀x∀y R1(x,y) ∨

R1(y, x))

A109966 a(n) = 8
n2−n
2 .

(∀x∃=1y R(x,y)) ∧

(∀x∀y R(x, x)∨¬R(y,y))
A110567 a(n) = nn+1 + 1.

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∃xR(x, x))
A122743 Number of normalized polynomials

of degree n in GF(2)[x,y].

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∃x∃yR(x,y))
A126883 a(n) = (20) ∗ (21) ∗ (22) ∗

(23)...(2n) − 1 = 2T(n) − 1 where
T(n) = A000217(n) is the n-th tri-
angular number.

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
R(y, x)) ∧ (∀x∀y ¬R(x,y) ∨

P(x))∧ (∀x∀y P(x)∨¬P(y))

A126884 a(n) = (20) ∗ (21) ∗ (22) ∗
(23)...(2n) + 1 = 2Tn + 1 (cf.
A000217).

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y R(x, x)∨ P(y))

A127986 a(n) = n! + 2n − 1.

(∃=1x ¬R(x, x)) A128406 a(n) = (n+ 1) ∗ 2n∗(n+1).
(∀x∃y P(x) ∨ P1((y)) ∧

(∀x∃y ¬P1((x) ∨ P2(y)) ∧

(∃x ¬P2(x))

A128831 Number of n-tuples where each en-
try is chosen from the subsets of
1, 2, 3 such that the intersection of
all n entries is empty.

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∀x R(x, x)∨ P(x))
A132727 a(n) = 3 ∗ 2n−1 ∗ a(n − 1) with

a(0) = 1.

(∀x∀y P(x)∨ P1((x)∨ R(x,y))∧
(∀x P(x)∨ P1((x))

A133460 3n ∗ 2n2 .

(∀x∃y R(x,y)) ∧ (∃xR(x, x)) ∧
(∃x ¬R(x, x))∧ (∀x∃=1y R(y, x))

A133798 a(n) = A002467(n) − 1.

(∀x∀y P(x) ∨ P(y) ∨ R(x,y)) ∧
(∀x R(x, x))

A134485 Row sums of trian-
gle A134484(n,k) =

2[n(n−1)−k(k−1)] ∗C(n,k).

(∀x∀y P(x) ∨ P1((x) ∨

¬P1((y))∧ (∀x P(x)∨ P2(x))
A135160 a(n) = 5n + 3n − 2n.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∀y P(x)∨ R(y, x))
A135748 a(n) =∑

k=0..n binomial(n,k) ∗ 2k2 .
(∀x∀y P(x)∨ R(x,y)∨ R(y, x))∧
(∀x∀y ¬P(x)∨¬R(x,y))

A135755 a(n) =
∑
k=0..nC(n,k) ∗

3[
k∗(k−1)

2].

(∀x∀y R(x,y) ∨ ¬R(x, x)) ∧

(∀x∀y ¬R(x, x)∨ R(y, x))
A135756 a(n) =

∑
k=0..nC(n,k) ∗

2k∗(k−1).

(∀x∀y ¬P(x)∨¬R(y, x)) A136516 a(n) = (2n + 1)n.

(∀x∃y P(x) ∨ P1((y)) ∧

(∃x P(x)∨¬P1((x)∨ P2(x))

A145641 Numbers whose binary representa-
tion is the concatenation of n 1’s, n
0’s and n 1’s.

[February 19, 2024 at 23:46 – classicthesis]

118 C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S

Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x∀y P(x)∨ ¬P(y)∨ P1((x))∧

(∀x P(x)∨ P2(x))
A155588 a(n) = 5n + 2n − 1n.

(∀x P(x) ∨ P1((x)) ∧

(∀x∃y ¬P(x)∨¬P1((y)∨ P2(y))

A155597 a(n) = 6n − 2n + 1.

(∀x∃y P(x)∨ P1((y)∨ P2(y)) A155599 a(n) = 8n − 2n + 1n.

(∀x∀y P(x)∨ ¬P(y)∨ P1((x))∧

(∀x ¬P1((x)∨ P2(x))
A155602 4n + 3n − 1.

(∀x P(x) ∨ P1((x)) ∧

(∀x∃y P(x)∨ P2(y))∧ (∃x P(x))
A155611 6n − 3n + 1.

(∀x P(x) ∨ P1((x) ∨ P2(x)) ∧

(∃x∀yP(x)∨¬P1((y))

A155612 7n − 3n + 1.

(∀x∃y P(x) ∨ P1((y)) ∧

(∃x P(x)∨ P2(x))
A155629 a(n) = 8n − 4n + 1n.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y R(x,y) ∨ R1(x,y)) ∧

(∃=1x ¬R1(x, x))

A161937 The number of indirect isometries
that are derangements of the (n −

1)-dimensional facets of an n-cube.

(∀x∀y R(x, x)∨¬R(y, x)) A165327 E.g.f:
∑
n⩾0 2

n(n−1) ∗ exp(2n ∗
x) ∗ xnn! .

(∃x P(x) ∨ P1((x)) ∧

(∃x ¬P(x)) ∧ (∃x P(x) ∨

¬P1((x))

A170940 4n − 2n − 2.

(∀x∀y P(x) ∨ P1((y)) ∧

(∃x P(x))∧ (∀x ¬P1((x)∨ P2(x))
A171270 a(n) is the only number m such

that m = pi(1
1
n) + pi(2

1
n) + ... +

pi(m
1
n).

(∀x∃y ¬R(x,y) ∨ ¬R(y, x)) ∧

(∃x∃y ¬R(x,y))
A173403 Inverse binomial transform of

A002416.

(∃x∀y R(x,y) ∨ ¬R(y,y)) ∧

(∃x∃y ¬R(x,y)) ∧

(∀x∃=1y R(y, x))

A176043 a(n) = (2 ∗n− 1) ∗ (n− 1)n−1.

(∀x∃y ¬P(x)∨ R(x,y)) A180602 (2n+1 − 1)n.

(∀x∃y P(x) ∨ P1((y)) ∧

(∀x∃y P1((x)∨ P(y))
A191341 a(n) = 4n − 2 ∗ 2n + 3.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∀y R(x,y)∨ P1((y))
A196460 e.g.f.: A(x) =

∑
n⩾0(1 + 2

n)n ∗
exp((1+ 2n) ∗ x) ∗ xnn! .

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∀y ¬R(x,y)∨ R1(x,y))
A202989 E.g.f:

∑
n⩾0 3

(n2) ∗ exp(3n ∗ x) ∗
xn

n! .

(∀x P(x) ∨ P1((x)) ∧

(∀x∃y ¬P(x)∨ R(x,y))
A202990 E.g.f:

∑
n⩾0 3

n ∗ 2n2 ∗ exp(−2 ∗
2n ∗ x) ∗ xnn! .

(∀x∀y R(x,y) ∨ R1(x,y)) ∧

(∀x∃y R(x,y)) ∧

(∀x∃y ¬R(x,y)∨¬R1(x,y))

A202991 E.g.f:
∑
n⩾0 3

n2 ∗ exp(−2 ∗ 3n ∗
x) ∗ xnn! .

[February 19, 2024 at 23:46 – classicthesis]

C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S 119

Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x∀y R(x,y) ∨ R(y, x)) ∧

(∃x∃y ¬R(x,y))
A206601 3

n(n+1)
2 − 1.

(∀x∃=1y R(x,y)) ∧

(∀x∃=1y R(y, x)) ∧

(∀x∀y ¬R(x, x) ∨ R(x,y) ∨

¬R(y,y))

A212291 Number of permutations of n ele-
ments with at most one fixed point.

(∀x P(x) ∨ P1((x)) ∧

(∀x∃y ¬P(x) ∨ P2(y)) ∧

(∃x ¬P2(x))

A212850 Number of n X 3 arrays with rows
being permutations of 0..2 and no
column j greater than column j-1 in
all rows.

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∀x∀y R(x, x)∨¬R(y,y))
A217994 a(n) = 2

2+n+n2

2 .

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
R(y, x)) ∧ (∀x∀y ¬R(x,y) ∨

P(x)∨¬P(y))

A226773 Number of ways to select a simple
labeled graph on n nodes and then
select a subset of its connected com-
ponents.

(∀x∀y R(x,y) ∨ R1(x,y)) ∧

(∀x∃y R(x,y)) ∧

(∀x∃y R(y, x))∧ (∃x∃yR(x,y))

A230879 Number of 2-packed n X n matri-
ces.

(∀x∃y R(y, x)∨ R1(x,y)) A241098 (4n − 1)n.

(∀x ¬R(x, x))∧ (∀x∀y ¬R(x,y)∨
P(x) ∨ P1((x)) ∧ (∀x∀y P(x) ∨

¬R(y, x))

A243918 a(n) =∑
k=0..n binomial(n,k) ∗

(1+ 2k)k.

(∃x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∀x R(x, x))∧ (∀x∃=1y ¬R(x,y))
A246189 Number of endofunctions on [n]

where the smallest cycle length
equals 2.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∃y P(x)∨¬R(y, x))
A251183 a(n) =∑

k=0..n binomial(n,k) ∗
(−1)n−k ∗ (2k + 1)k.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∀y R(x,y)∨ P1((x))
A251657 a(n) = (2n + 3)n.

(∀x∀y P(x) ∨ P1((y)) ∧

(∃x P(x)∨ P2(x))∧ (∃x P1((x))
A267816 Decimal representation of the n-

th iteration of the "Rule 221" ele-
mentary cellular automaton starting
with a single ON (black) cell.

(∀x∃y R(x,y) ∨

R1(x,y)) ∧ (∀x R(x, x)) ∧

(∀x∃=1y ¬R(x,y)) ∧

(∀x∃=1y ¬R1(x,y))

A281997 a(n) = (n− 1)n ∗nn.

(∀x∃y R(x,y)) ∧

(∀x∃y ¬R(x,y)) ∧

(∀x∃y R(y, x))∧ (∀x∃y ¬R(y, x))

A283624 Number of 0, 1 n X nmatrices with
no rows or columns in which all en-
tries are the same.

[February 19, 2024 at 23:46 – classicthesis]

120 C O M B I N AT O R I A L I N T E G E R S E Q U E N C E S F O U N D I N O E I S

Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x∃y R(x,y)) ∧

(∃x∀y ¬R(y, x) ∨ P(y)) ∧

(∀x∀y P(x)∨¬P(y))

A287065 Number of dominating sets on the n
X n rook graph.

(∃x∀y R(x,y) ∨ P(y)) ∧

(∀x∃=1y R(y, x)) ∧

(∃=1x ¬R(x, x))

A317637 a(n) = n ∗ (n+ 1) ∗ (n+ 3).

(∀x∀y R(x,y) ∨ ¬R(y, x)) ∧

(∀x∃y R(x,y))
A322661 Number of graphs with loops span-

ning n labeled vertices.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∃y ¬P(x)∨¬R(y, x))
A324306 G.f.:

∑
n⩾0

(2n+1)n∗xn
(1+2n∗x)n+1 .

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∀y R(x,y)∨ R1(x,y))
A326555 a(n) = (2n + 3n)n for n ⩾ 0.

(∀x P(x) ∨ P1((x) ∨ P2(x)) ∧

(∃x P(x))∧ (∃x P1((x))
A337418 Number of sets (in the Hausdorff

metric geometry) at each location
between two sets defined by a com-
plete bipartite graph K(3,n) (with
n at least 3) missing two edges,
where the removed edges are not
incident to the same vertex in the
3 point part but are incident to the
same vertex in the other part.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∃x P(x))∧ (∀x∃y ¬R(y, x))
A337527 G.f.:

∑
n⩾0

(2n+1)n∗xn
(1+(2n+1)∗x)n+1 .

(∀x P(x) ∨ P1((x)) ∧

(∀x∀y ¬P(x)∨ R(x,y))
A337851 a(n) = (2n + 2)n.

(∀x∀y P(x) ∨ R(x,y)) ∧

(∀x∃y R(x,y)∨ P1((x))
A337852 a(n) = (2n+1 + 1)n.

[February 19, 2024 at 23:46 – classicthesis]

B I B L I O G R A P H Y

[1] CB Abhilash and Kavi Mahesh. “Ontology-based data interesting-
ness: A state-of-the-art review.” In: Natural Language Processing
Journal (2023), p. 100021.

[2] Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau,
Jay Pantone, and Henning Ulfarsson. Combinatorial Exploration: An
algorithmic framework for enumeration. https://arxiv.org/abs/2202.
07715. 2022. arXiv: 2202.07715 [math.CO].

[3] Alchemy. Alchemy: Open Source AI. [Online; accessed 09-September-
2018]. 2018. URL: http://alchemy.cs.washington.edu/.

[4] Sarabjot S Anand, David A Bell, and John G Hughes. “The role of
domain knowledge in data mining.” In: Proceedings of the fourth in-
ternational conference on Information and knowledge management.
1995, pp. 37–43.

[5] Akash Anil, Víctor Gutiérrez-Basulto, Yazmín Ibañéz-García, and
Steven Schockaert. “Inductive Knowledge Graph Completion with
GNNs and Rules: An Analysis.” In: arXiv preprint arXiv:2308.07942
(2023).

[6] Stephen H Bach, Matthias Broecheler, Bert Huang, and Lise Getoor.
“Hinge-Loss Markov Random Fields and Probabilistic Soft Logic.”
In: Journal of Machine Learning Research 18.109 (2017), pp. 1–67.

[7] Molood Barati, Quan Bai, and Qing Liu. “SWARM: an approach for
mining semantic association rules from semantic web data.” In: PRI-
CAI 2016: Trends in Artificial Intelligence: 14th Pacific Rim Interna-
tional Conference on Artificial Intelligence, Phuket, Thailand, August
22-26, 2016, Proceedings 14. Springer. 2016, pp. 30–43.

[8] Jáchym Barvínek, Timothy van Bremen, Yuyi Wang, Filip Železný,
and Ondřej Kuželka. “Automatic Conjecturing of P-Recursions Us-
ing Lifted Inference.” In: Inductive Logic Programming - 30th Inter-
national Conference, ILP 2021, Proceedings. Ed. by Nikos Katzouris
and Alexander Artikis. Vol. 13191. Lecture Notes in Computer Sci-
ence. Springer, 2021, pp. 17–25. DOI: 10.1007/978-3-030-97454-
1_2. URL: https://doi.org/10.1007/978-3-030-97454-1%5C_2.

[9] Paul Beame, Guy Van den Broeck, Eric Gribkoff, and Dan Suciu.
“Symmetric Weighted First-Order Model Counting.” In: Proceedings
of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems. PODS ’15. Melbourne, Victoria, Australia: As-
sociation for Computing Machinery, 2015, pp. 313–328. ISBN: 9781450327572.
DOI: 10 . 1145 / 2745754 . 2745760. URL: https : / / doi . org / 10 . 1145 /
2745754.2745760.

[10] Salem Benferhat, Claudette Cayrol, Didier Dubois, Jérôme Lang, and
Henri Prade. “Inconsistency Management and Prioritized Syntax-Based
Entailment.” In: Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence. 1993, pp. 640–647.

121

[February 19, 2024 at 23:46 – classicthesis]

https://arxiv.org/abs/2202.07715
https://arxiv.org/abs/2202.07715
https://arxiv.org/abs/2202.07715
http://alchemy.cs.washington.edu/
https://doi.org/10.1007/978-3-030-97454-1_2
https://doi.org/10.1007/978-3-030-97454-1_2
https://doi.org/10.1007/978-3-030-97454-1%5C_2
https://doi.org/10.1145/2745754.2745760
https://doi.org/10.1145/2745754.2745760
https://doi.org/10.1145/2745754.2745760

122 B I B L I O G R A P H Y

[11] Abdelaziz Berrado and George C Runger. “Using metarules to orga-
nize and group discovered association rules.” In: Data mining and
knowledge discovery 14 (2007), pp. 409–431.

[12] Patrick Betz, Stefan Lüdtke, Christian Meilicke, and Heiner Stucken-
schmidt. “On the aggregation of rules for knowledge graph comple-
tion.” In: arXiv preprint arXiv:2309.00306 (2023).

[13] Patrick Betz, Christian Meilicke, and Heiner Stuckenschmidt. “Su-
pervised knowledge aggregation for knowledge graph completion.”
In: European Semantic Web Conference. Springer. 2022, pp. 74–92.

[14] Mikhail Bongard. “Pattern Recognition.” In: Spartan Books (1970).

[15] Egon Börger, Erich Grädel, and Yuri Gurevich. “The classical deci-
sion problem.” In: Springer Science & Business Media, 2001, p. 48.

[16] Timothy van Bremen, Vincent Derkinderen, Shubham Sharma, Sub-
hajit Roy, and Kuldeep S. Meel. “Symmetric Component Caching for
Model Counting on Combinatorial Instances.” In: Thirty-Fifth AAAI
Conference on Artificial Intelligence. AAAI Press, 2021, pp. 3922–
3930.

[17] Timothy van Bremen and Ondřej Kuželka. “Faster lifting for two-
variable logic using cell graphs.” In: Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence. Vol. 161. Pro-
ceedings of Machine Learning Research. PMLR, July 2021, pp. 1393–
1402. URL: https://proceedings.mlr.press/v161/bremen21a.html.

[18] Wray L. Buntine. “Generalized Subsumption and Its Applications to
Induction and Redundancy.” In: Artif. Intell. 36.2 (1988), pp. 149–
176.

[19] Chandra Chekuri and Anand Rajaraman. “Conjunctive query contain-
ment revisited.” In: Theor. Comput. Sci. 239.2 (2000), pp. 211–229.

[20] Lihan Chen, Sihang Jiang, Jingping Liu, Chao Wang, Sheng Zhang,
Chenhao Xie, Jiaqing Liang, Yanghua Xiao, and Rui Song. “Rule
mining over knowledge graphs via reinforcement learning.” In: Knowledge-
Based Systems 242 (2022), p. 108371.

[21] Yang Chen, Sean Goldberg, Daisy Zhe Wang, and Soumitra Siddharth
Johri. “Ontological pathfinding.” In: Proceedings of the 2016 Interna-
tional Conference on Management of Data. 2016, pp. 835–846.

[22] Yang Chen, Daisy Zhe Wang, and Sean Goldberg. “ScaLeKB: scal-
able learning and inference over large knowledge bases.” In: The
VLDB Journal 25.6 (2016), pp. 893–918.

[23] Simon Colton. “Refactorable numbers-a machine invention.” In: Jour-
nal of Integer Sequences 2.99.1 (1999), p. 2.

[24] Simon Colton. “The HR program for theorem generation.” In: Inter-
national Conference on Automated Deduction. Springer. 2002, pp. 285–
289.

[25] Simon Colton, Alan Bundy, and Toby Walsh. “Automatic invention
of integer sequences.” In: AAAI/IAAI. 2000, pp. 558–563.

[February 19, 2024 at 23:46 – classicthesis]

https://proceedings.mlr.press/v161/bremen21a.html

B I B L I O G R A P H Y 123

[26] Andrew Cropper, Rolf Morel, and Stephen H Muggleton. “Learning
Higher-Order Programs through Predicate Invention.” In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. Vol. 34. 09.
2020, pp. 13655–13658.

[27] Stéphane D’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample,
and Francois Charton. “Deep symbolic regression for recurrence pre-
diction.” In: Proceedings of the 39th International Conference on Ma-
chine Learning. Ed. by Kamalika Chaudhuri, Stefanie Jegelka, Le
Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato. Vol. 162. Pro-
ceedings of Machine Learning Research. PMLR, July 2022, pp. 4520–
4536. URL: https://proceedings.mlr.press/v162/d-ascoli22a.html.

[28] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel
Zheng, Nenad Tomašev, Richard Tanburn, Peter Battaglia, Charles
Blundell, András Juhász, et al. “Advancing mathematics by guiding
human intuition with AI.” In: Nature 600.7887 (2021), pp. 70–74.

[29] J. Davis, E. Burnside, I.C. Dutra, D. Page, and V. Santos Costa. “An
Integrated Approach to Learning Bayesian Networks of Rules.” In:
16th ECML. Springer, 2005, pp. 84–95.

[30] Jesse Davis and Mark Goadrich. “The relationship between Precision-
Recall and ROC curves.” In: Proceedings of the 23rd international
conference on Machine learning. 2006, pp. 233–240.

[31] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. “ProbLog:
A Probabilistic Prolog and Its Application in Link Discovery.” In:
IJCAI 2007, Proceedings of the 20th International Joint Conference
on Artificial Intelligence. 2007, pp. 2462–2467.

[32] Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[33] Luc Dehaspe and Luc De Raedt. “Mining Association Rules in Mul-
tiple Relations.” In: Inductive Logic Programming, 7th International
Workshop, ILP-97. 1997, pp. 125–132.

[34] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao,
Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang.
“Knowledge vault: A web-scale approach to probabilistic knowledge
fusion.” In: Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. 2014, pp. 601–610.

[35] D. Dubois, J. Lang, and H. Prade. “Possibilistic logic.” In: Handbook
of Logic in Artificial Intelligence and Logic Programming. Ed. by
D. Nute D. Gabbay C. Hogger J. Robinson. Vol. 3. Oxford University
Press, 1994, pp. 439–513.

[36] Sašo Džeroski. Relational data mining. Springer, 2010.

[37] Stefano Ferilli, Nicola Fanizzi, Nicola Di Mauro, and Teresa MA
Basile. “Efficient θ-subsumption under object identity.” In: AI*IA Work-
shop, 2002). 2002, pp. 59–68.

[38] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M Suchanek.
“Fast rule mining in ontological knowledge bases with AMIE+.” In:
The VLDB Journal 24.6 (2015), pp. 707–730.

[February 19, 2024 at 23:46 – classicthesis]

https://proceedings.mlr.press/v162/d-ascoli22a.html

124 B I B L I O G R A P H Y

[39] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian
Suchanek. “AMIE: association rule mining under incomplete evidence
in ontological knowledge bases.” In: Proceedings of the 22nd Interna-
tional Conference on World Wide Web. 2013, pp. 413–422.

[40] Thibault Gauthier, Miroslav Olšák, and Josef Urban. Alien Coding.
2023. DOI: 10.48550/ARXIV.2301.11479. URL: https://arxiv.org/abs/
2301.11479.

[41] Hector Geffner and Judea Pearl. “Conditional Entailment: Bridging
two Approaches to Default Reasoning.” In: Artif. Intell. 53.2-3 (1992),
pp. 209–244.

[42] Vibhav Gogate and Pedro M. Domingos. “Probabilistic Theorem Prov-
ing.” In: UAI 2011, Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17,
2011. Ed. by Fábio Gagliardi Cozman and Avi Pfeffer. AUAI Press,
2011, pp. 256–265. URL: https://dslpitt.org/uai/displayArticleDetails.
jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2263%5C&
proceeding%5C_id=27.

[43] Erich Grädel and Martin Otto. “On logics with two variables.” In:
Theoretical computer science 224.1-2 (1999), pp. 73–113.

[44] Timothy Hinrichs and Michael Genesereth. Herbrand Logic. Tech.
rep. LG-2006-02. http://logic.stanford.edu/reports/LG-2006-02.pdf. Stan-
ford, CA: Stanford University, 2006.

[45] Willem Jan van Hoeve. “The alldifferent Constraint: A Survey.” In:
CoRR cs.PL/0105015 (2001). URL: http : / / arxiv . org / abs / cs . PL /
0105015.

[46] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. “An apriori-
based algorithm for mining frequent substructures from graph data.”
In: Principles of Data Mining and Knowledge Discovery: 4th Euro-
pean Conference, PKDD 2000 Lyon, France, September 13–16, 2000
Proceedings 4. Springer. 2000, pp. 13–23.

[47] Moa Johansson and Nicholas Smallbone. “Conjectures, tests and proofs:
An overview of theory exploration.” In: arXiv preprint arXiv:2109.03721
(2021).

[48] Brendan Juba. “Implicit Learning of Common Sense for Reasoning.”
In: IJCAI 2013, Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence. 2013, pp. 939–946.

[49] Kristian Kersting and Luc De Raedt. “Towards combining inductive
logic programming with Bayesian networks.” In: International Con-
ference on Inductive Logic Programming. Springer. 2001, pp. 118–
131.

[50] Stanley Kok and Pedro Domingos. “Learning the Structure of Markov
Logic Networks.” In: Proceedings of the 22nd ICML. Bonn, Germany:
ACM Press, 2005, pp. 441–448.

[51] Stanley Kok and Pedro Domingos. “Statistical predicate invention.”
In: Proceedings of the 24th International Conference on Machine
Learning. 2007, pp. 433–440.

[February 19, 2024 at 23:46 – classicthesis]

https://doi.org/10.48550/ARXIV.2301.11479
https://arxiv.org/abs/2301.11479
https://arxiv.org/abs/2301.11479
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2263%5C&proceeding%5C_id=27
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2263%5C&proceeding%5C_id=27
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2263%5C&proceeding%5C_id=27
http://arxiv.org/abs/cs.PL/0105015
http://arxiv.org/abs/cs.PL/0105015

B I B L I O G R A P H Y 125

[52] MJ Kronenburg. “The binomial coefficient for negative arguments.”
In: arXiv preprint arXiv:1105.3689 (2011).

[53] Ondrej Kuzelka, Yuyi Wang, Jesse Davis, and Steven Schockaert.
“PAC-Reasoning in Relational Domains.” In: Proceedings of the Thirty-
Fourth Conference on Uncertainty in Artificial Intelligence. 2018, pp. 927–
936.

[54] Ondřej Kuželka. “Weighted First-Order Model Counting in the Two-
Variable Fragment With Counting Quantifiers.” In: Journal of Artifi-
cial Intelligence Research 70 (2021), pp. 1281–1307.

[55] Ondřej Kuželka, Jesse Davis, and Steven Schockaert. “Induction of
Interpretable Possibilistic Logic Theories from Relational Data.” In:
Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence. 2017, pp. 1153–1159.

[56] Ondřej Kuželka and Filip Železný. “A Restarted Strategy for Efficient
Subsumption Testing.” In: Fundam. Inform. 89.1 (2008), pp. 95–109.

[57] Ondřej Kuželka and Filip Železný. “Block-wise construction of tree-
like relational features with monotone reducibility and redundancy.”
In: Mach. Learn. 83.2 (2011), pp. 163–192.

[58] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. “Canon-
ical tensor decomposition for knowledge base completion.” In: Inter-
national Conference on Machine Learning. PMLR. 2018, pp. 2863–
2872.

[59] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. “Fast and ex-
act rule mining with AMIE 3.” In: The Semantic Web: 17th Interna-
tional Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–
June 4, 2020, Proceedings 17. Springer. 2020, pp. 36–52.

[60] Ni Lao, Tom Mitchell, and William Cohen. “Random walk inference
and learning in a large scale knowledge base.” In: Proceedings of the
2011 conference on empirical methods in natural language process-
ing. 2011, pp. 529–539.

[61] D. Le Berre and A. Parrain. “The SAT4J library, release 2.2.” In: Jour-
nal on Satisfiability, Boolean Modeling and Computation 7 (2010),
pp. 50–64.

[62] Jens Lehmann and Lorenz Bühmann. “ORE-a tool for repairing and
enriching knowledge bases.” In: (2010), pp. 177–193.

[63] Douglas Bruce Lenat. AM: an artificial intelligence approach to dis-
covery in mathematics as heuristic search. Stanford University, 1976.

[64] Leo Liberti and Franco Raimondi. “The secret santa problem.” In: In-
ternational Conference on Algorithmic Applications in Management.
Springer. 2008, pp. 271–279.

[65] Loda language. [Online; accessed 01-January-2024]. 2024. URL: https:
//loda-lang.org/.

[66] Ali Mirza Mahmood and Mrithyumjaya Rao Kuppa. “A novel prun-
ing approach using expert knowledge for data-specific pruning.” In:
Engineering with Computers 28 (2012), pp. 21–30.

[February 19, 2024 at 23:46 – classicthesis]

https://loda-lang.org/
https://loda-lang.org/

126 B I B L I O G R A P H Y

[67] Jon Maiga. Sequence Machine. https://sequencedb.net. [Online; ac-
cessed 01-January-2024]. 2024.

[68] Donato Malerba. “Learning Recursive Theories in the Normal ILP
Setting.” In: Fundam. Inform. 57.1 (2003), pp. 39–77.

[69] František Malinka, Filip Železný, and Jiří Kléma. “Finding semantic
patterns in omics data using concept rule learning with an ontology-
based refinement operator.” In: BioData mining 13 (2020), pp. 1–22.

[70] J. Mallen and M. Bramer. “CUPID-an iterative knowledge discovery
framework.” In: Expert Systems 94 (1994).

[71] Jérôme Maloberti and Michèle Sebag. “Fast Theta-Subsumption with
Constraint Satisfaction Algorithms.” In: Machine Learning 55.2 (2004),
pp. 137–174.

[72] W. McCune. “Prover9 and Mace4.” 2010. URL: http://www.cs.unm.
edu/~mccune/prover9/.

[73] Brendan D McKay and Adolfo Piperno. “Practical graph isomorphism,
II.” In: Journal of symbolic computation 60 (2014), pp. 94–112.

[74] Christian Meilicke, Patrick Betz, and Heiner Stuckenschmidt. “Why
a naive way to combine symbolic and latent knowledge base com-
pletion works surprisingly well.” In: 3rd Conference on Automated
Knowledge Base Construction. 2021.

[75] Christian Meilicke, Melisachew Wudage Chekol, Patrick Betz, Manuel
Fink, and Heiner Stuckeschmidt. “Anytime bottom-up rule learning
for large-scale knowledge graph completion.” In: The VLDB Journal
(2023), pp. 1–31.

[76] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli,
and Heiner Stuckenschmidt. “Anytime Bottom-Up Rule Learning for
Knowledge Graph Completion.” In: IJCAI. 2019, pp. 3137–3143.

[77] Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer
Gemulla, and Heiner Stuckenschmidt. “Fine-grained evaluation of
rule-and embedding-based systems for knowledge graph completion.”
In: The Semantic Web–ISWC 2018: 17th International Semantic Web
Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings,
Part I 17. Springer. 2018, pp. 3–20.

[78] Ryszard S Michalski. “A theory and methodology of inductive learn-
ing.” In: Machine learning. Elsevier, 1983, pp. 83–134.

[79] Lilyana Mihalkova and Raymond J Mooney. “Bottom-up learning of
Markov logic network structure.” In: Proceedings of the 24th interna-
tional conference on Machine learning. 2007, pp. 625–632.

[80] George A Miller. “WordNet: a lexical database for English.” In: Com-
munications of the ACM 38.11 (1995), pp. 39–41.

[81] Omar Montano-Rivas, Roy McCasland, Lucas Dixon, and Alan Bundy.
“Scheme-based theorem discovery and concept invention.” In: Expert
systems with applications 39.2 (2012), pp. 1637–1646.

[82] Mahesh Motwani, JL Rana, and RC Jain. “Use of domain knowledge
for fast mining of association rules.” In: Proceedings of the Interna-
tional Multi-Conference of Engineers and Computer Scientists. 2009.

[February 19, 2024 at 23:46 – classicthesis]

https://sequencedb.net
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

B I B L I O G R A P H Y 127

[83] Stephen Muggleton. “Inductive logic programming.” In: New genera-
tion computing 8.4 (1991), pp. 295–318.

[84] Stephen Muggleton. “Inverse Entailment and Progol.” In: New Gen.
Comput. 13.3&4 (1995), pp. 245–286.

[85] Stephen Muggleton and Luc De Raedt. “Inductive logic program-
ming: Theory and methods.” In: The Journal of Logic Programming
19 (1994), pp. 629–679.

[86] Gábor P Nagy and Petr Vojtěchovskỳ. “Computing with quasigroups
and loops in GAP.” In: (2005).

[87] Monty Newborn. Automated theorem proving - theory and practice.
Springer, 2001. ISBN: 978-0-387-95075-4.

[88] Siegfried Nijssen and Joost N. Kok. “Faster Association Rules for
Multiple Relations.” In: Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Wash-
ington, USA, August 4-10, 2001. Ed. by Bernhard Nebel. Morgan
Kaufmann, 2001, pp. 891–896.

[89] Feng Niu, Christopher Ré, AnHai Doan, and Jude W. Shavlik. “Tuffy:
Scaling up Statistical Inference in Markov Logic Networks using an
RDBMS.” In: PVLDB 4.6 (2011), pp. 373–384.

[90] Jan Noessner, Mathias Niepert, and Heiner Stuckenschmidt. “RockIt:
Exploiting Parallelism and Symmetry for MAP Inference in Statisti-
cal Relational Models.” In: Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence. 2013.

[91] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences.
Published electronically at http : / / oeis . org. Accessed: 2023-05-23.
2023.

[92] Andrei Olaru, Claudia Marinica, and Fabrice Guillet. “Local mining
of association rules with rule schemas.” In: 2009 IEEE Symposium on
Computational Intelligence and Data Mining. IEEE. 2009, pp. 118–
124.

[93] Pouya Ghiasnezhad Omran, Kerry Taylor, Sergio Rodriguez Mendez,
and Armin Haller. “Active knowledge graph completion.” In: Infor-
mation Sciences 604 (2022), pp. 267–279.

[94] Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. “Scalable
Rule Learning via Learning Representation.” In: IJCAI. 2018, pp. 2149–
2155.

[95] Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti.
“Rudik: Rule discovery in knowledge bases.” In: Proceedings of the
VLDB Endowment 11.12 (2018), pp. 1946–1949.

[96] Simon Ott, Christian Meilicke, and Matthias Samwald. “SAFRAN:
An interpretable, rule-based link prediction method outperforming
embedding models.” In: arXiv preprint arXiv:2109.08002 (2021).

[97] Igor Pak. What is Combinatorics? [Online; accessed 01-January-2024].
2024. URL: https://www.math.ucla.edu/~pak/hidden/papers/Quotes/
Combinatorics-quotes.htm.

[February 19, 2024 at 23:46 – classicthesis]

http://oeis.org
https://www.math.ucla.edu/~pak/hidden/papers/Quotes/Combinatorics-quotes.htm
https://www.math.ucla.edu/~pak/hidden/papers/Quotes/Combinatorics-quotes.htm

128 B I B L I O G R A P H Y

[98] Nicolas Pasquier, Claude R Pasquier, Laurent Brisson, and Martine
Collard. “Mining gene expression data using domain knowledge.” In:
International Journal of Software and Informatics (IJSI) 2.2 (2008),
pp. 215–231.

[99] Judea Pearl. “System Z: A Natural Ordering of Defaults with Tractable
Applications to Nonmonotonic Reasoning.” In: Proceedings of the
3rd Conference on Theoretical Aspects of Reasoning about Knowl-
edge. 1990, pp. 121–135.

[100] Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. “Completeness-aware rule learning from
knowledge graphs.” In: The Semantic Web–ISWC 2017: 16th Inter-
national Semantic Web Conference, Vienna, Austria, October 21–25,
2017, Proceedings, Part I 16. Springer. 2017, pp. 507–525.

[101] Giuseppe Pirrò. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 03. 2020, pp. 2975–2982.

[102] Gordon D Plotkin. “A note on inductive generalization.” In: Machine
intelligence 5.1 (1970), pp. 153–163.

[103] David Poole. “First-order probabilistic inference.” In: IJCAI-03, Pro-
ceedings of the Eighteenth International Joint Conference on Artifi-
cial Intelligence, Acapulco, Mexico, August 9-15, 2003. Ed. by Georg
Gottlob and Toby Walsh. Morgan Kaufmann, 2003, pp. 985–991. URL:
http://ijcai.org/Proceedings/03/Papers/142.pdf.

[104] Ian Pratt-Hartmann. “Complexity of the two-variable fragment with
counting quantifiers.” In: Journal of Logic, Language, and Informa-
tion (2005), pp. 369–395.

[105] Ian Pratt-Hartmann. “Data-complexity of the two-variable fragment
with counting quantifiers.” In: Information and Computation 207.8
(2009), pp. 867–888.

[106] J. Ross Quinlan and R. Mike Cameron-Jones. “Induction of logic pro-
grams: FOIL and related systems.” In: New Generation Computing
13.3-4 (1995), pp. 287–312.

[107] Luc De Raedt. “Logical Settings for Concept-Learning.” In: Artif. In-
tell. 95.1 (1997), pp. 187–201.

[108] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole.
“Statistical relational artificial intelligence: Logic, probability, and
computation.” In: Synthesis lectures on artificial intelligence and ma-
chine learning 10.2 (2016), pp. 1–189.

[109] Liva Ralaivola, Sanjay J. Swamidass, Hiroto Saigo, and Pierre Baldi.
“Graph kernels for chemical informatics.” In: Neural Netw. 18.8 (2005),
pp. 1093–1110.

[110] Jan Ramon, Samrat Roy, and Daenen Jonny. “Efficient homomorphism-
free enumeration of conjunctive queries.” In: Preliminary Papers ILP
2011. 2011, p. 6.

[111] Matthew Richardson and Pedro Domingos. “Markov logic networks.”
In: Machine Learning 62 (2006), pp. 107–136.

[February 19, 2024 at 23:46 – classicthesis]

http://ijcai.org/Proceedings/03/Papers/142.pdf

B I B L I O G R A P H Y 129

[112] Sebastian Riedel. “Improving the Accuracy and Efficiency of MAP
Inference for Markov Logic.” In: UAI 2008, Proceedings of the 24th
Conference in Uncertainty in Artificial Intelligence. 2008, pp. 468–
475.

[113] Tim Rocktäschel and Sebastian Riedel. “End-to-end Differentiable
Proving.” In: Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems. 2017, pp. 3791–3803.

[114] Edward W Schneider. “Course Modularization Applied: The Inter-
face System and Its Implications For Sequence Control and Data
Analysis.” In: (1973).

[115] Gustav Šourek, Vojtěch Aschenbrenner, Filip Železný, Steven Schock-
aert, and Ondřej Kuželka. “Lifted Relational Neural Networks: Effi-
cient Learning of Latent Relational Structures.” In: J. Artif. Intell. Res.
62 (2018), pp. 69–100.

[116] Gustav Šourek, Martin Svatoš, Filip Železný, Steven Schockaert, and
Ondřej Kuželka. “Stacked Structure Learning for Lifted Relational
Neural Networks.” In: Inductive Logic Programming - 27th Interna-
tional Conference, ILP 2017, Orléans, France, September 4-6, 2017,
Revised Selected Papers. Ed. by Nicolas Lachiche and Christel Vrain.
Vol. 10759. Lecture Notes in Computer Science. Springer, 2017, pp. 140–
151. DOI: 10.1007/978-3-319-78090-0_10. URL: https://doi.org/10.
1007/978-3-319-78090-0%5C_10.

[117] Ashwin Srinivasan. The Aleph Manual. 2001.

[118] Ashwin Srinivasan and Ross D King. “Using inductive logic program-
ming to construct structure-activity relationships.” In: Predictive toxi-
cology of chemicals: experiences and impact of AI tools (Papers from
the 1999 AAAI Spring Symposium). AAAI Press Menlo Park, CA.
1999, pp. 64–73.

[119] Richard P. Stanley. “What is enumerative combinatorics?” In: Enu-
merative combinatorics. Springer, 1986, pp. 1–63.

[120] Robert E Stepp and Ryszard S Michalski. “Conceptual clustering: In-
venting goal-oriented classifications of structured objects.” In: Ma-
chine learning: An artificial intelligence approach 2 (1986), pp. 471–
498.

[121] Christian Strasser and G Aldo Antonelli. “Non-monotonic Logic.” In:
(2001).

[122] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. “Ro-
tate: Knowledge graph embedding by relational rotation in complex
space.” In: arXiv preprint arXiv:1902.10197 (2019).

[123] Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar,
and Yiming Yang. “A re-evaluation of knowledge graph completion
methods.” In: arXiv preprint arXiv:1911.03903 (2019).

[124] Simon Suster, Pieter Fivez, Pietro Totis, Angelika Kimmig, Jesse
Davis, Luc De Raedt, and Walter Daelemans. “Mapping probability
word problems to executable representations.” In: Proceedings of the
2021 Conference on Empirical Methods in Natural Language Pro-
cessing. 2021, pp. 3627–3640.

[February 19, 2024 at 23:46 – classicthesis]

https://doi.org/10.1007/978-3-319-78090-0_10
https://doi.org/10.1007/978-3-319-78090-0%5C_10
https://doi.org/10.1007/978-3-319-78090-0%5C_10

130 B I B L I O G R A P H Y

[125] Svatoš, Peter Jung, Jan Tóth, Yuyi Wang, and Ondřej Kuželka. “On
Discovering Interesting Combinatorial Integer Sequences.” In: Pro-
ceedings of the Thirty-Second International Joint Conference on Arti-
ficial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China. ijcai.org, 2023, pp. 3338–3346. DOI: 10.24963/ijcai.2023/372.
URL: https://doi.org/10.24963/ijcai.2023/372.

[126] Alireza Tamaddoni-Nezhad and Stephen Muggleton. “The lattice struc-
ture and refinement operators for the hypothesis space bounded by a
bottom clause.” In: Machine Learning 76.1 (2009), pp. 37–72.

[127] Komal Teru, Etienne Denis, and Will Hamilton. “Inductive relation
prediction by subgraph reasoning.” In: International Conference on
Machine Learning. PMLR. 2020, pp. 9448–9457.

[128] The Fourth International Conference. [Online; accessed 09-September-
2018]. AIPS 1998 competition. 2018. URL: http://www.cs.cmu.edu/
~aips98/.

[129] Jan Tóth. Fast WFOMC. https://github.com/jan-toth/FastWFOMC.jl/.
2023.

[130] Jan Tóth and Ondřej Kuželka. “Lifted inference with linear order ax-
iom.” In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. Vol. 37. 10. 2023, pp. 12295–12304.

[131] Pietro Totis, Jesse Davis, Luc De Raedt, and Angelika Kimmig. “Lifted
Reasoning for Combinatorial Counting.” In: Journal of Artificial In-
telligence Research 76 (2023), pp. 1–58.

[132] Josef Urban and Jan Jakubuv. “First neural conjecturing datasets and
experiments.” In: Intelligent Computer Mathematics: 13th Interna-
tional Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020,
Proceedings 13. Springer. 2020, pp. 315–323.

[133] Timothy Van Bremen and Ondřej Kuželka. “Lifted inference with tree
axioms.” In: Artificial Intelligence 324 (2023), p. 103997.

[134] Guy Van den Broeck. “On the Completeness of First-Order Knowl-
edge Compilation for Lifted Probabilistic Inference.” In: Proceedings
of the 24th International Conference on Neural Information Process-
ing Systems. NIPS’11. Granada, Spain: Curran Associates Inc., 2011,
pp. 1386–1394. ISBN: 9781618395993.

[135] Guy Van den Broeck, Wannes Meert, and Adnan Darwiche. “Skolem-
ization for Weighted First-Order Model Counting.” In: Proceedings of
the Fourteenth International Conference on Principles of Knowledge
Representation and Reasoning. KR’14. Vienna, Austria: AAAI Press,
2014, pp. 111–120. ISBN: 1577356578.

[136] Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis,
and Luc De Raedt. “Lifted probabilistic inference by first-order knowl-
edge compilation.” In: Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Ed. by Toby
Walsh. AAAI Press/International Joint Conferences on Artificial In-
telligence, 2011, pp. 2178–2185. URL: http : / / starai . cs . ucla . edu /
papers/VdBIJCAI11.pdf.

[February 19, 2024 at 23:46 – classicthesis]

https://doi.org/10.24963/ijcai.2023/372
https://doi.org/10.24963/ijcai.2023/372
http://www.cs.cmu.edu/~aips98/
http://www.cs.cmu.edu/~aips98/
https://github.com/jan-toth/FastWFOMC.jl/
http://starai.cs.ucla.edu/papers/VdBIJCAI11.pdf
http://starai.cs.ucla.edu/papers/VdBIJCAI11.pdf

B I B L I O G R A P H Y 131

[137] Zhichun Wang and Juanzi Li. “RDF2Rules: Learning rules from RDF
knowledge bases by mining frequent predicate cycles.” In: arXiv preprint
arXiv:1512.07734 (2015).

[138] Richard Warepam. Why “Domain Knowledge” is IMPORTANT for
Data Science Jobs? https://medium.com/dare-to-be-better/why-domain-
knowledge-is-important-for-data-science-jobs-8195a5d3e84e. [Online;
accessed 01-January-2024]. 2023.

[139] Irene Weber. “Levelwise search and pruning strategies for first-order
hypothesis spaces.” In: Journal of Intelligent Information Systems 14
(2000), pp. 217–239.

[140] Boris Weisfeiler and AA Lehman. “A reduction of a graph to a canon-
ical form and an algebra arising during this reduction.” In: Nauchno-
Technicheskaya Informatsia 2.9 (1968), pp. 12–16.

[141] Fan Yang, Zhilin Yang, and William W Cohen. “Differentiable learn-
ing of logical rules for knowledge base reasoning.” In: Advances in
neural information processing systems 30 (2017).

[142] Monika Žáková and Filip Železnỳ. “Exploiting term, predicate, and
feature taxonomies in propositionalization and propositional rule learn-
ing.” In: European Conference on Machine Learning. Springer. 2007,
pp. 798–805.

[143] Martin Zeman, Martin Ralbovskỳ, Vojtěch Svátek, and Jan Rauch.
“Ontology-driven data preparation for association mining.” In: Online
http://keg. vse. cz/onto-kdd-draft. pdf (2009).

[144] Václav Zeman, Tomáš Kliegr, and Vojtěch Svátek. “RDFRules: Mak-
ing RDF rule mining easier and even more efficient.” In: Semantic
web 12.4 (2021), pp. 569–602.

[145] Qiang Zeng, Jignesh M Patel, and David Page. “Quickfoil: Scalable
inductive logic programming.” In: Proceedings of the VLDB Endow-
ment 8.3 (2014), pp. 197–208.

[146] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian
Tang. “Neural bellman-ford networks: A general graph neural net-
work framework for link prediction.” In: Advances in Neural Infor-
mation Processing Systems 34 (2021), pp. 29476–29490.

[147] Kaja Zupanc and Jesse Davis. “Estimating rule quality for knowledge
base completion with the relationship between coverage assumption.”
In: Proceedings of the Web Conference 2018. 2018, pp. 1–9.

[February 19, 2024 at 23:46 – classicthesis]

[February 19, 2024 at 23:46 – classicthesis]

AU T H O R ’ S P U B L I C AT I O N S

C.1 P U B L I C AT I O N S R E L AT E D T H E T O P I C O F T H I S T H E S I S

List of publications presented for the purpose of dissertation defense with cita-
tions from Web of Science, Scopus, and Google Scholar listed as of February
18th, 2024.

C.1.1 Conference papers

[1] Martin Svatoš, Peter Jung, Jan Tóth, Yuyi Wang, and Ondřej Kuželka.
“On Discovering Interesting Combinatorial Integer Sequences.” In:
Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao,
SAR, China. ijcai.org, 2023, pp. 3338–3346. DOI: 10 . 24963 / ijcai .
2023/372. URL: https://doi.org/10.24963/ijcai.2023/372. WoS: 0,
Scopus: 1, Google: 1.

[2] Martin Svatoš, Steven Schockaert, Jesse Davis, and Ondřej Kuželka.
“STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment.”
In: ECAI 2020 - 24th European Conference on Artificial Intelligence,
29 August-8 September 2020, Santiago de Compostela, Spain, Au-
gust 29 - September 8, 2020 - Including 10th Conference on Pres-
tigious Applications of Artificial Intelligence (PAIS 2020). Ed. by
Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela
Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang. Vol. 325.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2020,
pp. 1515–1522. DOI: 10.3233/FAIA200259. URL: https://doi.org/10.
3233/FAIA200259. WoS: 0, Scopus: 1, Google: 7.

[3] Martin Svatoš, Gustav Šourek, Filip Zelezný, Steven Schockaert,
and Ondřej Kuželka. “Pruning Hypothesis Spaces Using Learned Do-
main Theories.” In: Inductive Logic Programming - 27th International
Conference, ILP 2017, Orléans, France, September 4-6, 2017, Re-
vised Selected Papers. Ed. by Nicolas Lachiche and Christel Vrain.
Vol. 10759. Lecture Notes in Computer Science. Springer, 2017, pp. 152–
168. DOI: 10.1007/978-3-319-78090-0_11. URL: https://doi.org/10.
1007/978-3-319-78090-0%5C_11. WoS: 0, Scopus: 2, Google: 5.

[4] Gustav Šourek, Martin Svatoš, Filip Železný, Steven Schockaert,
and Ondřej Kuželka. “Stacked Structure Learning for Lifted Rela-
tional Neural Networks.” In: Inductive Logic Programming - 27th In-
ternational Conference, ILP 2017, Orléans, France, September 4-6,
2017, Revised Selected Papers. Ed. by Nicolas Lachiche and Chris-
tel Vrain. Vol. 10759. Lecture Notes in Computer Science. Springer,
2017, pp. 140–151. DOI: 10.1007/978- 3- 319- 78090- 0_10. URL:
https : / /doi .org /10 .1007 /978- 3- 319- 78090- 0%5C_10. WoS: 0,
Scopus: 4, Google: 12.

133

[February 19, 2024 at 23:46 – classicthesis]

https://doi.org/10.24963/ijcai.2023/372
https://doi.org/10.24963/ijcai.2023/372
https://doi.org/10.24963/ijcai.2023/372
https://doi.org/10.3233/FAIA200259
https://doi.org/10.3233/FAIA200259
https://doi.org/10.3233/FAIA200259
https://doi.org/10.1007/978-3-319-78090-0_11
https://doi.org/10.1007/978-3-319-78090-0%5C_11
https://doi.org/10.1007/978-3-319-78090-0%5C_11
https://doi.org/10.1007/978-3-319-78090-0_10
https://doi.org/10.1007/978-3-319-78090-0%5C_10

134 B I B L I O G R A P H Y

C.2 OT H E R AU T H O R S ’ P U B L I C AT I O N S

C.2.1 Conference papers

[1] Jan Tozicka, Jan Jakubuv, Martin Svatoš, and Antonin Komenda.
“Recursive Polynomial Reductions for Classical Planning.” In: TWENTY-
SIXTH INTERNATIONAL CONFERENCE ON AUTOMATED PLAN-
NING AND SCHEDULING (ICAPS 2016). Proceedings of the Inter-
national Conference on Automated Planning and Scheduling. 26th In-
ternational Conference on Automated Planning and Scheduling (ICAPS),
Kings Coll, London, ENGLAND, JUN 12-17, 2016. 2016, pp. 317–
325. WoS: 2, Scopus: 4, Google: 8.

C.2.2 Workshop papers

[1] Martin Svatoš, Gustav Šourek, and Filip Železný. “Revisiting Neural-
Symbolic Learning Cycle.” In: Proceedings of the 2019 International
Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2019),
Annual workshop of the Neural-Symbolic Learning and Reasoning
Association, Macao, China, August 12, 2019. Ed. by Derek Doran,
Artur S. d’Avila Garcez, and Freddy Lécué. 2019. WoS: 0, Scopus: 0,
Google: 2.

[February 19, 2024 at 23:46 – classicthesis]

	Dedication
	Abstract
	Abstrakt
	Publications
	Acknowledgments
	Contents
	Acronyms
	Introduction
	1 Introduction
	1.1 A Brief Overview of Relational Learning
	1.2 Problem Statement
	1.3 Structure of the Thesis

	Theoretical Background
	2 Theoretical Foundation
	2.1 First-order Logic
	2.2 Weighted First-Order Model Counting
	2.2.1 WFOMC in the Two-Variable Fragment
	2.2.2 WFOMC in the Two-Variable Fragment with Counting Quantifiers

	2.3 Learning Settings
	2.3.1 Learning from Interpretations
	2.3.2 Knowledge Base Completion

	3 Auxiliary Algorithms
	3.1 -subsumption Engine and Isomorphism Checking
	3.2 Covering Relation |-3.45mu
	3.3 Theorem Proving Using SAT Solvers

	Proposed Methods
	4 Discovering Integer Sequences via First-Order Logic
	4.1 Constructing the Sequence Database
	4.1.1 Computing the Integer Sequences

	4.2 Generating the First-Order Logic Sentences
	4.3 Sentence Redundancy
	4.4 Traversing the sentence space
	4.4.1 Description of the Algorithm
	4.4.2 Sentence Redundancy Techniques

	4.5 Experiments
	4.5.1 Filling the Database of Integer Sequences
	4.5.2 An Initial Database Construction
	4.5.3 Conclusion

	4.6 Related Work
	4.7 Future work

	5 Sentence Space Pruning using Domain Knowledge
	5.1 Saturations
	5.2 Searching the Space of Saturations
	5.3 Pruning Isomorphic Saturations
	5.3.1 Why Relative Subsumption is Not Sufficient

	5.4 Learning Domain Theories
	5.5 Integrating Saturations with Existing Algorithms
	5.5.1 Level-wise Feature Construction
	5.5.2 Saturating Domain Theory Learner

	5.6 Experiments
	5.6.1 Feature Construction
	5.6.2 Boosting Domain Theory Learner
	5.6.3 Conclusion

	5.7 Related Work
	5.8 Future Work

	6 Bounded Reasoning Using Stratified k-Entailment
	6.1 k-Entailment
	6.1.1 Properties of k-entailment

	6.2 Inference Algorithm
	6.2.1 Description of the Algorithm
	6.2.2 An Illustration

	6.3 Sketch of Correctness and Runtime
	6.4 Stratified k-Entailment
	6.5 A Heuristic Rule Learner
	6.6 Experiments
	6.6.1 Evaluation of STRiKE Inference
	6.6.2 Completing a Knowledge Graph
	6.6.3 Conclusions

	6.7 Related Work

	Applications
	7 One Integer Sequence, Multiple Explanations
	7.1 Different Prescriptions
	7.1.1 A Simple Combinatorial Sequence
	7.1.2 Yet Another Combinatorial Sequence
	7.1.3 A Sequence with Negative Numbers

	7.2 Conclusion

	8 Exploiting Bond Symmetry for Rule Learning
	8.1 Inspecting Learned Domain Theory
	8.2 Utilizing Bond Symmetry

	Conclusion
	9 Conclusion
	9.1 Thesis Contribution
	9.2 Future work

	Appendix
	A Implementation Details
	A.1 Notes on Optimizations
	A.1.1 Notes on Isomorphism
	A.1.2 Effective Usage of Resources

	B Additional Scalability of Sentence Generator
	C Combinatorial Integer Sequences Found in OEIS
	Bibliography
	C.1 Publications related the topic of this thesis
	C.1.1 Conference papers

	C.2 Other authors' publications
	C.2.1 Conference papers
	C.2.2 Workshop papers

