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Abstract

Scenarios where multiple autonomous aerial vehicles are required to closely coop-
erate in a shared operational space require mutual relative localization. In previ-
ous instances, the requirement of relative localization was often circumvented in
controlled conditions by using explicit global localization obtained from external
infrastructure. Such an approach may be suitable for constrained experimental con-
ditions for testing of theoretical cooperative behaviors. However, this solution is not
suitable for practical multirobot Unmanned Aerial Vehicle (UAV) deployment into
arbitrary environments where such infrastructure is unavailable without direct ac-
cess by the operator. The main outcome of my work is the Vision-based Relative
Localization (VRL) system UltraViolet Direction And Ranging (UVDAR), that ex-
ploits active ultraviolet (UV) markers and binary blinking signalization, combined
with specialized computer vision processing, such that it addresses the drawbacks
of prior onboard relative localization systems. This system enabled performing real-
world aerial multi-robot operations without reliance on external infrastructure. The
development of such a system revealed new challenges stemming from the non-ideal
properties of a real relative localization system that we addressed. Additionally, we
were able to exploit beneficial properties of the system unforeseen by theoretical
prior works, by enabling relative orientation estimation and optical data transmis-
sion. UVDAR was used in real-world swarm and formation flights, and it also allowed
us to create and publish a practical annotated image dataset for detection of UAVs
by Machine Learning (ML)-based computer vision. Besides the work derived from
relative localization of UAVs, I am also presenting the outcomes of my successful par-
ticipation in the Mohamed Bin Zayed International Robotics Challenge (MBZIRC)
2020 robotic competition, where I have developed tools used in the remainder of
my work. These works primarily address the issue of stabilization and aiming with
a UAV system with onboard computer vision in the loop.

Keywords: Unmanned Aerial Vehicles, Computer Vision, Visual Relative Local-
ization, Multi-Robot Systems, Swarms
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Abstrakt

Scénáře, ve kterých multirobotické letouny musí úzce spolupracovat ve sdílené op-
erační oblasti, vyžadují vzájemnou relativní lokalizaci. Stávající realizace multi-
robotických systémů tento předpoklad často naplňují použitím explicitní globální
lokalizace za využití externí infrastruktury. Takový přístup může být vhodný v
řízených podmínkách při experimentálním ověřování teoretických algoritmů koop-
erativního chování, ale podobná řešení nejsou vhodná pro praktické nasazení mul-
tirobotických týmů bezpilotních letounů v libovolných prostředích, v nichž se nedá
spolehnout na přítomnost nutné externí infrastruktury, nebo na možnost insta-
lace takové infrastruktury operátorem. Hlavní výstup mé práce je systém relativní
lokalizace založený na počítačovém vidění jménem UVDAR (Ultra-Violet Direction
And Ranging), který využívá binárně kódované aktivní ultrafialové značky kombi-
nované se specializovanými algoritmy zpracování obrazu, a který řeší omezení před-
chozích systémů palubní relativní lokalizace. Tento systém umožňuje nasazení mul-
tirobotických letounů v reálném světě bez závislosti na externí infrastruktuře. Vývoj
tohoto systému odhalil nové výzvy vyvstávající z neideálních vlastností reálných sys-
témů relativní lokalizace, které jsme vyřešili. Navíc jsme s výhodou využili žádoucí
vlastnosti systému, které teoretická literatura nepředpověděla, na získání odhadu
relativní orientace a na optický přenos dat. Nový systém byl použit pro přenos
rojových a formačních algoritmů z teorie a simulace do experimentů v reálném
světě nebo pro automatickou anotaci obrazových datasetů určených ke trénování
neuronových sítí na detekci letounů. Kromě práce týkající se relativní loakalizace
bezpilotních letounů prezentuji také výsledky mé úspěšné účasti na robotické soutěži
Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, kde jsem
vyvinul nástroje, které jsem následně používal ve zbytku své práce. Tyto nástroje
se týkaly primárně stabilizace a míření bezpilotním letounem pomocí zpětné vazby
z palubního počítačového vidění.

Klíčová slova Bezpilotní letouny, Počítačové vidění, Vizuální relativní lokalizace,
Multirobotické systémy, Roje
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Chapter 1

Introduction

Technological developments of the last two decades have given rise to readily available,
lightweight Unmanned Aerial Vehicles (UAVs). These devices are now capable of autonomous
robotic flight [1] and they can be equipped with various onboard sensors, such as Light De-
tection and Ranging (LiDAR) or computer-vision enabled cameras. Thus, they show promise
for a variety of applications, including surveillance [2]–[5], search and rescue [6], [7], and
robotic assistance in challenging conditions [8]. Compared to robotic ground vehicles, UAVs
are faster, more lightweight, and capable of bypassing difficult terrain. On the other hand,
their limited carrying capacity restricts their application in terms of both the physical pay-
load, as well as the energy and computational resources that can be carried onboard. These
detriments can be mitigated by cooperation of multiple simultaneously deployed UAVs. Such
cooperation can additionally provide capabilities that are otherwise unavailable to robotic
systems, such as the entire system changing shape for a specific task, redundancy in the case
of failure of an individual part in the system, and large-scale parallel area coverage. Effective
cooperation requires that the UAV group in question is equipped with some means of mutual
relative localization, and can benefit greatly if active communication between them is also
available. In previous works, this was typically achieved using external infrastructure present
in the deployment area. Examples of such an infrastructure include Global Navigation Satel-
lite System (GNSS), which can only achieve the necessary level of precision for cooperation by
using differential measurement, as in Real-Time Kinematic (RTK) systems [9], [10] or Motion
capture (mo-cap) systems using a calibrated set of specialized cameras and markers[11].

Both systems rely on external infrastructure that must be prepared near the area of
deployment. This requirement is a crucial drawback that makes these systems unsuitable for
practical deployment in arbitrary locations. The infrastructure in question must be accessible
within the entire operational space, meaning that, due to inaccessibility, these systems can
typically not be used in the e.g. search-and-rescue operations that would benefit from using
UAVs. In addition to the constraints presented by the installation of physical infrastructure,
these mutual relative localization methods require communication using radio channels to
transfer localization data to the UAVs. Such wireless communications are prone to congestion
and interference, either circumstantial or deliberate.

Mutual relative localization methods of UAVs not requiring external infrastructure,
but rather relying purely on onboard equipment, can be broadly divided into distance-based
methods and Vision-based Relative Localization (VRL). The basis of a typical example of a
distance-based relative localization method is Ultra-Wide Bandwidth (UWB) ranging, which
is a time-of-flight ranging system using the transmission of wide-bandwidth pulses [12]. A
drawback of onboard relative localization using distance sensors is that, without exhibiting
specific behavior, reconstructing the entire relative pose of a neighbor is not possible [13],
thus limiting the utility of this approach.

VRL, on the other hand, typically extracts the relative direction towards a target, i.e.,
the bearing of the target. It is also possible to extract clues on its relative distance, either
through the appearance of the object in the image, or by using stereo vision.
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CHAPTER 1. INTRODUCTION

One method of relative localization having the properties of both methods is based on
onboard LiDAR scanners [14], though such devices are, at the time of writing, too costly for
large-scale UAV cooperation.

The approach focused on in my research is VRL, which has been enabled in recent years
by the increasing computational power of the lightweight, low-power computers carriable by
UAVs. Prior works have leveraged passive visual markers attached to targets that can be
extracted and localized by computer vision algorithms. These markers are usually in the
form of simple shapes distinguished by a color assumed to be absent in the environment [15],
or by more specific patterns containing identifying information [16]–[18]. The drawbacks of
these passive markers are that their detection is sensitive to light conditions and that they
must be of considerable size for detection and localization from a distance, causing issues for
aerodynamics and carrying capacity.

These drawbacks can be addressed by using active markers instead. Works, such as
[19], use LED markers in the visible range to localize robots. However, due to the copious
intensity of visible light in general environments, especially due to the presence of sunlight,
these markers are only suitable for use at short distances or in dimly lit environments, devoid
of bright objects of colors similar to the markers. Infrared (IR) markers have also been used
in the past [20], though they suffer from the same drawbacks outlined above. One notable
approach for VRL of UAVs uses event-based cameras [21]. It shows promise due to the great
speed these devices provide, but is currently limited by the high costs and low specifications of
such cameras, as well as by the computational challenges related to processing their output in
real time. Additionally, due to the presence of a moving background, mounting these devices
on moving observers leads to a significant increase in information to be processed and to
increased difficulty of background separation.

UAVs without markers can be detected by exploiting computer vision systems based
on Machine Learning (ML) [22], [23]. This sensing modality is increasingly popular, due to
its flexibility without the need for designing targets with the vision system in mind. However,
as is outlined in one of the attached papers, their performance is dependent on the dataset
used for their training, which limits their utility w.r.t. targets and environments significantly
different from those appearing in the given dataset. Additionally, using real-time ML-based
vision on a UAV requires specialized computational resources such as graphics processors
being carried onboard.

The goals of this thesis and my work can be summarized as follows: first, to research
the possibility of developing a system for mutual relative localization of UAVs that does not
suffer from the above drawbacks; second, to design behaviors of UAVs that stabilizes them
w.r.t. a target observed by VRL, such that the sensory noise, delays, perturbances, and other
detrimental effects are accounted for; and, lastly, to apply VRL to cooperative multi-UAV
flight, thus promoting the application of cooperating UAVs in real-world tasks where they
show great promise.

The primary outcome of this research is the design and continuous development of a
VRL system called UltraViolet Direction And Ranging (UVDAR), which the Multi-robot
Systems Group (MRS) group uses onboard their UAVs. This system exploits the properties
of solar radiation by using ultraviolet (UV) light to relatively localize UAVs and to enable
direct communication between them in various challenging conditions, with special emphasis
on bright exterior illumination with a minimal need for visual background separation. The
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communication - and by extension identification - capabilities of the system use the active
nature of the UV LED markers to modulate their light with binary signals that can be tracked
in a camera image and decoded. This task requires simultaneous image tracking and extraction
of signals encoded in bright spots that regularly disappear from view for a number of frames.
The approach to this problem has seen numerous changes during its development and new
modifications are still being researched by me, as well as my colleagues and students.

Using VRL in the control loop of a flying autonomous UAV presents numerous chal-
lenges that are rarely addressed in theoretical research. In my participation with the MRS
Group at the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020 competi-
tion, I tackled such challenges and developed methods for autonomous aerial fire extinguishing
with a partially actuated UAVs. These methods used onboard computer vision in a feedback
loop with the extinguishing action. Such a system presents numerous challenges stemming
from the detrimental effects that the motion of a UAV has on the image produced by an
onboard camera. In addition, since fire extinguishing requires interaction with a target over
time - such as continuously spraying an extinguishing liquid at a target - a specialized sta-
bilization method was needed. The methods I developed enable active control counteracting
the drifting of a UAV w.r.t. a target observed with a VRL, while also minimizing tilting of
the UAV, which throws off the aim of the camera and the extinguishant stream.

Similar challenges occur when the targets of the VRL in question are mobile themselves,
as is the case with UAVs cooperating based on a mutual VRL system. The creation of the
UVDAR system enabled our group to implement numerous previously theoretical cooperative
flight algorithms, including various swarms [24]–[27] and formation flights [28], [29]. Doing so
revealed numerous challenges related to the properties of real-world environments and sensors,
as well as some unforeseen opportunities related to the properties of the system.

To demonstrate the practicality of using UVDAR onboard autonomous UAVs as a
source of relative localization in the control loop, we have first deployed a team of UAVs in
a swarm following the Boids model. We were among the first [30] to deploy a UAV swarm
without using external localization or explicit communication, basing the relative distance
estimates only on the VRL system itself. These experiments have shown that under the
simplistic, yet robust rules governing a swarm, UVDAR was a sufficiently reliable system for
the group to maintain its compactness.

Taking note of the explosive growth in popularity of ML-based computer vision, we
have leveraged UVDAR to generate an automatically annotated training dataset for these
algorithms, thus addressing a key challenge in applying the popular computer vision modality
to multi-UAV autonomous flights. This dataset has been published for use by the multi-robot
research community.

A significant source of challenges lies in the fact that a real-world VRL output is not
perfectly precise, but contains noise and even potential biases. The position of an object in an
image corresponds to the relative direction towards said object, i.e., the relative bearing, which
tends to have relatively good precision. UVDAR, as well as other VRL systems including ML-
based vision software, can also provide an estimate of the distance to a target, albeit with
significantly reduced precision. Notably, UVDAR also has the unique capability of providing
an additional rough estimate of the relative orientation of a neighboring UAV. I have first
demonstrated the advantage of this capability by performing a leader-follower flight of UAVs,
designed such that the follower used the relative orientation estimate to align itself with a
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CHAPTER 1. INTRODUCTION

specific side of the leader. This research marked the transition from swarms - a cooperative
flight modality that we define by the interchangeability of agents following simplistic rules -
to formation flight, where UAVs are made to assume a specific, defined formation in space.

Formation flight is the core topic of the final phases of my study, as the theoretical
formation-driving algorithms in previous literature [31], [32] invariably presumed precise rel-
ative localization with insignificant statistical noise. Since such a level of precision is not
available with real-world relative localization systems unless very specific conditions are en-
forced, they behave erratically and may even fail completely if the sensory noise is too large.
The statistical distribution of the noise present in such measurements can be estimated and, as
has been shown in the latest paper included in this thesis, such knowledge can be exploited.
Specifically, with the technique proposed therein, it is possible for theoretical formation-
driving algorithms to interface and successfully operate with real-world relative localization
systems.

4



Chapter 2

Ultraviolet relative localization system UVDAR

The first part of my research concerns the development of a VRL system suitable
for real-world cooperation between UAVs. As outlined in the introduction, various prior ap-
proaches exist. However, none have fulfilled the requirements we had for such a system, namely
that it is independent of external infrastructure, does not require radio communication, and
is independent of external lighting conditions within the range of exterior sunlight and total
darkness. The main outcome of this research is a system called UVDAR, which is used on-
board our UAVs. This system was developed in multiple phases and work on it is still ongoing
as better camera sensors and processing is continuously becoming available, as well as by the
requirements of new practical use-cases.

The system is based on the optical transmission of near-UV light from onboard LED
markers, received by onboard UV-sensitive cameras. The advantage of this approach stems
from the properties of outdoor sunlight. As we wanted our system to be operational in total
darkness, the markers needed to be active light sources themselves. However, emitters in the
visible spectrum, as well as in the near-IR range of the electromagnetic spectrum, were not
deemed suitable as sunlight strongly emits within these ranges. Using such emitters runs an
increased risk of unreliable detection due to the image background being too saturated by
the refracted and reflected sunlight. In comparison, UV radiation of sunlight is considerably
weaker, even fairly near to the visible range where common camera sensors like those we use
(see Figure 2.1) are still sensitive. This means that, if we use suitable band-pass filters, the
background in the camera image of this range is generally significantly darker than the active
UV emitters, even during peak daylight. Examples of such camera images are shown in the
included papers and in Figure 2.2. Note that the markers appear as small bright dots that
are exceedingly easy to extract with image processing. The specific design of the markers and
camera sensors is discussed in the attached paper

V. Walter, M. Saska, and A. Franchi, “Fast mutual relative localization of uavs us-
ing ultraviolet led markers,” in 2018 International Conference on Unmanned Aircraft
System (ICUAS 2018), © 2018 IEEE. Reprinted, with permission., 2018.

The next challenge to be addressed related to how the active markers are individually
indistinguishable due to their shared appearance as bright dots or small blobs in the image. As
a result, the individual UAVs carrying the markers are all anonymous in a single camera frame
and can additionally be confused with specific types of glare and sharp specular reflections
of sunlight. To address this challenge, I have developed a method of extracting a blinking
identification signal from a short sequence of consecutive camera frames. The camera used
allows for a limited frame-rate, typically set to 60 Hz. Thus, within the image sequence needed
for signal extraction, the projection of a marker moves across the image. This image motion
is the combined result of the movement of the target and of the observer carrying the camera.
Note that, due to the blinking, the marker periodically disappears from view as well, and
the combination of the image motion and blinking makes the markers susceptible to being
incorrectly associated with the wrong previously seen marker. Therefore, a need existed for
a method of extracting both the signal and image motion of the target at the same time.

5



CHAPTER 2. ULTRAVIOLET RELATIVE LOCALIZATION SYSTEM UVDAR

Figure 2.1: Camera and lens equipped with two different ultraviolet filters used in our early
tests of ultraviolet vision are shown in the top row. This configuration proved the concept, but
was deemed unsuitable for deployment onboard UAV due to size, costs, and incompatibility
with fisheye lenses. The bottom row shows the hardware components of our most commonly
used and current UVDAR sensor implementation.

Figure 2.2: View from a UV camera used in the UVDAR system. The three bright dots are the
active markers attached to a neighboring UAV. This view is captured in a desert environment
at noon, showing the high level of robustness to exterior illumination.
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The solution I developed is to use the Hough Transform (HT) to extract a 3D line that
approximates the motion of the markers - in the space of X-Y-time - from the detections
accumulated by a short sample of previous camera frames. Using this method, it is possible
to extract both the motion of the marker in the image, as well as its blinking signal by reading
out frames where the marker was detected along the extracted trajectory. The details of this
signal extraction method are provided in the attached paper

V. Walter, N.Staub, M. Saska, and A. Franchi, “Mutual localization of uavs based
on blinking ultraviolet markers and 3d time-position hough transform,” in 14th IEEE
International Conference on Automation Science and Engineering (CASE 2018), ©
2018 IEEE. Reprinted, with permission., 2018.

The initial implementation of the above system used crude signals in the form of square
waves with a 0.5 duty cycle, differentiated by their frequencies. This proved to be effective to
differentiate a number of markers, as well as to better suppress parasitic detections of sunlight
based on them not matching the expected pattern. However, the number of such signals was
limited by the maximal frequency stemming from the Nyquist limit of the cameras used, as
well as by the minimal frequency defined by the time during which the image motion of the
markers can be reasonably expected to be sufficiently straight for a linear approximation.
Additionally, the consecutive frequencies of the signal set needed to have periods separated
by, at the bare minimum, one camera frame. In practice with the software and hardware
setup at our disposal, the above signaling allowed for five individual signal IDs at most,
limiting the scalability of a multi-UAV group using the system. This limitation was overcome
by changing the signaling used to a more complex one, where we generated a set of periodic
binary signals of a set length in terms of camera frames. These signals needed to conform to a
set of constraints, such as having specific minimum circular hamming distances between each
pair, as well as a set of other empirical constraints. The design of this new signaling method
is shown in the included paper

D. B. Licea, V. Walter, M. Ghogho, and M. Saska, “Optical communication-based
identification for multi-uav systems: Theory and practice,” 2023. arXiv: 2302.04770
[eess.SP] Under review in Autonomous Robots.

This step upgraded the set of usable identities to over twenty without changing the size
of the sample set or camera frame-rate. It allowed our group to perform large-scale swarm
flights [27], as well as formation flights where multiple signals are used on each individual
UAV to extract relative orientations [28], [29]. An example of a camera view with annotated
markers attached to two neighbor UAVs is shown in Figure 2.3.

7
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CHAPTER 2. ULTRAVIOLET RELATIVE LOCALIZATION SYSTEM UVDAR

Figure 2.3: View from a UV camera used in the UVDAR system from a multi-UAV scenario.
The markers attached to two neighboring UAVs are automatically annotated with their re-
spective IDs based on their transmitted blinking signal.

Notably, besides extensive internal use by our our group, the system was exploited in
cooperation with researchers from the Technology Innovation Institute (TII) institute [33]–
[37], and it was even used by researchers independently of us [38]. It was also used in education,
both by six of our bachelor and master students within their thesis projects, as well as by
over a hundred external students as part of the IEEE RAS Summer School on Multi-Robot
Systems1 organized by our group.

The software used in UVDAR for processing camera stream is available on-line as
an open-source Robot Operating System (ROS) package, found at https://github.com/
ctu-mrs/uvdar_core.

1https://mrs.felk.cvut.cz/summer-school-2020/
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Fast Mutual Relative Localization of UAVs using Ultraviolet LED
Markers

Viktor Walter1, Martin Saska1, Antonio Franchi2

Abstract— This paper proposes a new methodology for out-
door mutual relative localization of UAVs equipped with active
ultraviolet markers and a suitable camera with specialized
bandpass filters. Mutual relative localization is a crucial tool
for formation preservation, swarming and cooperative task
completion in scenarios in which UAVs share working space
in small relative distances. In most current systems of compact
UAV swarms the localization of particular UAVs is based on
the data obtained from motion capture systems for indoor
experiments or on precise RTK-GNSS data outdoor. Such an
external infrastructure is unavailable in most of real multi-
UAV applications and often cannot be pre-installed. To account
for such situations, as well as to make the system more
autonomous, reliance on onboard sensors only is desirable. In
the proposed approach, we rely on ultraviolet LED markers,
that emit light in frequencies that are less common in nature
than the visible light or infrared radiation, especially in high
intensities. Additionally, common camera sensors are sensitive
to ultraviolet light, making the addition of a filter the only
necessary modification, keeping the platform low-cost, which
is one of the key requirements on swarm systems. This also
allows for a smaller size of the markers to be sufficient,
without burdening the processing resources. Thus the proposed
system aspires to be an enabling technology for deployment
of large swarms of possibly micro-scale aerial vehicles in real
world conditions and without any dependency on an external
infrastructure.

I. INTRODUCTION

Mutual relative localization of flying robots is indispens-
able in many real-world applications that require deployment
of multiple Unmanned Aerial Vehicles (UAVs) sharing the
same workspace in small relative mutual distances. Using
compact multi-UAV systems brings numerous benefits in-
cluding cooperative task completion, extension of reach of a
single robot and distribution of capabilities into independent
members. Moreover, several tasks that are not solvable by a
single robot do exist and some of them were successfully
solved by teams of UAVs developed by the Multi-robot
Systems group at CTU in Prague 3 by employing onboard
visual mutual relative localization - see Fig. 1 a) and c) for
examples. In this paper, we propose a novel robust method
of infrastructure-independent relative localization for flights
of multiple UAVs, applicable for outdoor environments, as

1Authors are with Faculty of Electrical Engineering Czech Technical
University, Technicka 2, Prague, Czech Republic
{viktor.walter|martin.saska}@fel.cvut.cz

2Author is with LAAS-CNRS, Université de Toulouse, CNRS, Toulouse,
France
antonio.franchi@laas.fr

This research was partially supported by the ANR, Project ANR-17-
CE33-0007 MuRoPhen and by CTU grant no. SGS17/187/OHK3/3T/13,
the Grant Agency of the Czech Republic under grant no. 17-16900Y

3https://mrs.felk.cvut.cz

Fig. 1: Examples of applications of mutual relative localization
developed by our group. a) Cooperative carrying of large objects,
b) simultaneous flight through forest-like environments using bio-
inspired swarming rules, c) mapping of historical buildings by a
formation of camera-carrying UAV and spotlight-carrying UAVs
to obtain footage with fixed illumination angle d) heterogeneous
formation of self-stabilised UAV-UGV.

well as the indoors. The method is based on the application
of markers composed of ultraviolet LEDs on the UAVs, in
addition to equipping the observer UAVs with cameras with
fisheye lenses and specialized bandpass filters. The relative
pose of the observed UAVs can then be retrieved easily from
the image, where the markers are visible as bright spots on
dark background that can be located with little processing.
Our intention is to provide each swarm member with an as
complete as possible information on the state of all UAVs
in close proximity without any the of communication among
the robots or with a base station. Fulfilling this goal requires
direct sensing of mutual relative distances, information about
the relative bearings and, if possible, also about their relative
headings.

As can be seen in numerous examples of flocking of an-
imals, such information can be effectively obtained through
vision [1]. In our previous works on mutual localization [2],
[3], passive markers in conjunction with an object detection
algorithm have been used to achieve the same sensory ability.
This vision-based system has been deployed in numerous
indoor and outdoor experiments [4], [5], [6], where multiple
drawbacks, such as strong lighting conditions dependency,
large size of the markers, limited operational space and
computational complexity have been identified. The most
significant is the fact that the changing outdoor lighting
conditions may prevent consistent recognition of the markers.
The system proposed in this paper aims to alleviate these
drawbacks and to further enlarge the application domain of
UAV swarms.
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Fig. 2: Example of an image from the onboard camera with filter of
a hexarotor UAV equipped with 6 markers on its arms. The picture
was taken at noon, with the exposure rate set to 1000 µs. Lower
left shows the same view from a conventional camera.

Fig. 3: An extreme case of long range and hard to separate
background. In the visible spectrum the UAV is difficult to locate
even by the human eye and today’s popular CNN methods [7],
while in UV the three markers are clearly visible as unique peaks
in brightness and can easily be detected by the proposed system.

A. State of the art and contributions

Most of the multi-UAV experiments that require local-
ization have been realized in laboratory conditions relying
on an absolute measurement by a motion capture system
(Optitrack4, VICON5, etc.) [8] and the relative pose measure-
ment is emulated by calculating it from a source of absolute
pose as a placeholder [9]. Outdoor cooperative flights [10],
[11] tend to rely on GNSS (Global Navigation Satellite
System) if a close proximity of robots is not required or on
RTK-GNSS data (provided in our case by Tarsus BX3056),
which may achieve the precision of ±10 mm. Obviously,
these approaches suffer from the necessity to pre-install an
external infrastructure (motion capture cameras or RTK base-
station) which precludes flights in environments that are
unknown or difficult to reach by the operators themselves.
Another problem is transition from outdoor to indoor en-
vironments, flight near elevated objects of larger volume -
buildings, rock formations, etc. - or flight in an unknown,
cluttered or inaccessible enclosed environment. Additionally,
continual reception of such external information requires
wireless communication, which is subject to limited range
and interference both from unrelated sources and by the units
themselves in the case of a large swarm. This makes the

4http://optitrack.com/
5https://www.vicon.com/motion-capture/engineering
6https://cdn.shopify.com/s/files/1/0928/6900/

files/\\Datasheet\_BX305\_Kit\_433\_915\_EN\_0913.
pdf

system difficult to scale up to larger number of units, which
is the main idea of robotic swarms. Another challenge caused
by the infrastructure dependence the task may easily be
deliberately obstructed by interfering with the infrastructure,
such as by introduction of artificial radio interference on
key radio frequencies. In order to be reliable even in such
circumstances, the units need to be able to independently
avoid damage and complete their mission. If the UAVs are
flying in a formation, they should be able to preserve it
or keep their mutual distances within safe ranges, which is
reliably enabled by the proposed approach.

Numerous principles of direct mutual localization can be
found in literature. From a theoretical point of view the
mutual localization problem in group of robots boils down to
the (bearing) rigidity problem, see [12] and reference therein
for an introduction to this concept. The multi-agent mutual
localization problem has been also faced in the case in which
measurements do not provide the identity of the measured
robot, i.e., they are anonymous [9].

Relative localization of noise-emitting objects such as
UAVs was successfully tested in [13]. This method, however,
requires a large and highly specialized equipment, while
providing only an approximate relative bearing of the target
and being sensitive to acoustic environmental noise.

Another approach was used in [14], where point-clouds
obtained from RGB-D cameras attached to each unit are
aligned to obtain their relative poses. These sensors have
severely limited range and field of view and the algorithm is
computationally too complex for most onboard computers of
lightweight UAVs. Similarly, [15] used the alignment of lines
detected in images of the environment of the UAVs to estab-
lish their relative positions. Such an approach can be applied
efficiently in an environment with multiple straight lines,
such as in streets or offices, but not in natural environments
where straight lines are rare. Both of the aforementioned
approaches additionally require communication between the
units, at fairly high bandwidths.

Numerous experimental solutions based on vision and
mutual observation of UAV and UGVs equipped with known
geometrical markers were tested [16], [17]. Our previous
solution uses circular visual markers [2], [3] for mutual
localization in small swarms of UAVs [5], [6] and in het-
erogeneous formations [4]. The main disadvantage of these
methods is the sensitivity to light conditions, computational
complexity and the physical dimensions of these markers.
The large size of the markers (see fig. 1-a), needed for proper
detection from reasonable distances and angle range leads
to problems connected to aerodynamics and maintenance
difficulties. In addition, these markers are highly susceptible
to a partial occlusion that can prevent detection.

A basic and often used approach is to apply a simple,
easy to segment color-based markers that work well in
controlled light conditions of laboratory environments [18],
[19]. While in a laboratory it is easy to apply active or passive
markers of a color that we ensure is not otherwise present
in the environment, this is seemingly unfeasible in outdoor
conditions, since in nature as well as in urban scenarios, all
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colors of the visible spectrum are naturally present.
The closest approach to the proposed system can be

found in [20], where UAV localization through infrared lights
blinking in the order of kilohertz attached to helicopters is
implemented. Such frequency allows for the markers tracked
even with aggressive flight maneuvers. This was achieved
by using an event-based camera. The solution in [20] was
only tested in indoor environments, with the camera being
statically placed in the room, instead of onboard of a UAV.
The use of a heavy and expensive specialized camera makes
it unsuitable for outdoor onboard deployment. Additionally,
the low resolution of contemporary event-based cameras
decrease the precision and the range of detection.

The system presented here is based on the observation that
while the colors of the visible spectrum, as well as a wide
band of the infrared wavelengths, are present with relatively
high intensity in normal sunlight, the ultraviolet light is
significantly less intense. This means that in the UV spectrum
the natural environments are dark and when an object bright
in the ultraviolet is observed, it is likely to be artificial.
Exploiting this fact does not even require a new specialized
sensor, since common monochromatic digital cameras tend
to be receptive to near ultraviolet frequencies, and need only
be modified with a proper band-pass filter. The UV light
can then be used as a robust and easy detect feature. The
only false positives in detection being the sun itself and
its specular reflections, while even most of artificial light
sources emit little to none UV radiation.

To sum up the contribution of the paper related to the
current literature, we emphasize that the proposed solution
combines knowledge gained during hundreds of flights with
multiple closely cooperating UAVs in realistic indoor and
outdoor conditions using different state-of-the-art localiza-
tion systems and a theoretical analyses of sources of dis-
turbance that lead to false positive detections in common
workspaces of UAV systems. Based on this data we propose
the HW design of a system made of multiple onboard
UV light sources that reliably provides the required in-
formation (distance and bearing of neighbouring vehicles)
in all possible configurations of the team. In comparison
with state-of-the-art solutions, our solution presents better
reliability w.r.t different weather conditions and precision,
while significantly reducing size and weight of the overall
system and the required computational power. We provide
two approaches for mutual localization using this HW setup.
The first minimalistic approach uses a single camera and a
single UV LED on each UAV to provide bearing information
and a rough estimation of the relative distance. This method
together with the work [21], where we have shown that
such a sensory information (even anonymous) is sufficient
for reliable coherent swarming, provides a complex solution
for deployment of large swarms of micro aerial vehicles. The
scalability is shown in [21] by a surprising observation that
the swarm stability and coherence increases with number of
swarm members even with such a limited sensory input. The
second approach presented in this paper exploits possibility
of using multiple LEDs onboard of UAVs to increase pre-

Fig. 4: The spectrum of solar radiation in wavelengths near the
visible spectrum. Notice the rapid decrease in irradiance in the UV
region.7

cision of the distance measurement and operational space.
In fact, this approach exploits full size of the UAVs, putting
the LEDs as far apart as possible, which increases baseline
used for the distance estimation, resulting in higher preci-
sion, in comparison with passive markers that are always
significantly smaller that the UAV itself.

The paper is structured as follows. Section II deals with the
theoretical background applied in the design of the system.
Section III comprises the overview of the hardware used.
Section IV explains the methodology used in estimating the
mutual location of the target (neighbouring UAV) as well as
the system identification. Finally, section V summarizes the
results of experimental testing of the system.

II. THEORETICAL BACKGROUND

A. The ultraviolet markers and sensors

Using UV light for mutual localization is an obvious
approach for deployment of swarms in real outdoor envi-
ronments, as it was the case in our experiments, but not in
typical laboratory experiments [8], [22]. The solar radiation
approximates the blackbody radiation, with peak intensity
centered on the visible light (see figure 4). This means
that the shape of the intensity to wavelength characteristic
is asymmetric w.r.t. the wavelength. The intensity decays
considerably slower with growing wavelengths than it does
with diminishing wavelength. Ultraviolet parts of sunlight
are therefore significantly less intense than the visible light
and the infrared, even relatively close to the visible spectrum.
We can exploit this observation to apply active markers that
can be easily distinguished from the multicolored natural
backgrounds purely based on the intensity. In the implemen-
tation, this requires physical band-pass filtering tuned to the
ultraviolet wavelengths of the markers.

7https://commons.wikimedia.org/w/index.php?title=
File:Solar_spectrum_ita.svg&oldid=261911890
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A gray-scale camera is more suitable for this task since it
is less selective w.r.t. the wavelength than RGB cameras and
is thus more sensitive to light outside of the visible spectrum.
Note, that while the sun does still emit considerable amounts
of UV radiation, this radiation is spread across a range of
wavelengths and most of it is filtered out by the atmosphere.
Additionally, it does not reflect well on solid natural surfaces.
With low enough exposure rate of the camera, the only
objects that will locally saturate the resulting image to white
will be the markers, directly observed sun and some of its
specular reflections. The appropriate exposure rate depends
on the required maximal detection distance. Our tests have
shown that the UV light refracted through the atmosphere
and reflected from matte surfaces is normally too dim to
prevent the detection. The image of the sun and its reflections
should be a minor issue which can be accounted for by
using knowledge of the size or other specific characteristics
of the spots caused by the sun or the knowledge of sun
position based on current place and time. The possibility to
set the exposure so that the markers will create saturated
white spots on dark background can be used to binarize
the image using simple static thresholding, as opposed to
the more computationally demanding adaptive thresholding
needed for arbitrary lighting conditions. The image spots
caused by artificial light sources will be saturated regardless
of the time of the day.

In order for this system to be suitable for mutual localiza-
tion of multiple UAVs, the camera has to be able to observe
the surroundings in a large field of view. This can be achieved
by using a fisheye lens. A potential drawback that has to be
addressed is the high rate of decay of UV light in common
types of glass, proportional to the specific frequency. In our
tests, this has limited the wavelength of the UV light that we
could use. Light sources radiating at 365 nm were suppressed
to the extent that they were mostly invisible to the camera,
while light sources with wavelengths of 395 nm were clearly
visible. Specialized lenses permeable to high-frequency UV
that also have wide FoV and are portable could not be found
on the market at the current time. Moreover, the infrared filter
applied to the lenses by the manufacturer also blocks out UV
light. A shorter wavelength would allow for better filtering
of of the sunlight. Despite this, the 395 nm light sources and
filters proved to be sufficient in our experiments.

III. HARDWARE OVERVIEW

The camera used in our experiments is based on the Matrix
Vision mvBlueFOX-MLC200wG sensor, equipped with the
Sunnex DSL215 fisheye lens and Midopt BP365-R6 ultravi-
olet bandpass filter.

The mvBlueFOX-MLC200wG (figure 5-c) is a greyscale
CMOS sensor with a resolution of 752 × 480 pixels, max-
imum frame-rate of 93 without binning and quantum effi-
ciency at 395 nm of ≈34 %8 In our experiments we were
able to achieve a maximum frame-rate of 70 Hz with the
exposure rate set to 1000 µs. The DSL215 is a fisheye lens

8https://www.matrix-vision.com/\\USB2.
0-single-board-camera-mvbluefox-mlc.html

Fig. 5: Summary of the proposed system components. The UAV
(a) is equipped by a mvBlueFOX-MLC200wG camera sensor (c)
with DSL215 lens with BP365-R6 bandpass filter that allows it to
observe and localize ultraviolet LED-based markers (d) or (e)

with the maximal FoV of 185◦. This value, however only
applies to the horizontal field of view with the MLC200wG
sensor. 9 The BP365-R6 is a miniature interference-based
optical bandpass filter for ultraviolet imaging10. The custom
size of 6 × 6 × 1 mm allowed us to attach it between the
lens and the sensor so that the whole image is covered, as
seen in figure 5-b. For the markers, we have selected the
ProLight PM2B-1LLE, (figure 5-d) which is a high power
ultraviolet LED, with the maximum of emission centered on
the wavelength of 395 nm and with Lambertian radiation
pattern. 11

This beacon-sensor system is small, lightweight and rela-
tively affordable, and thus ideal for deployment with small
UAVs.

IV. METHOD DESCRIPTION

A. System identification

1) Camera calibration: In order to convert the image
positions of the detected spots corresponding to the markers
on the UAVs into relative bearing vectors, it was necessary
to perform geometric calibration of the camera. We have
selected the model described in [23], suitable for cameras
with wide FoV, that translates pixel positions directly into
bearing vectors.

The parameters of the camera projection are affected by
the different index of refraction of UV light compared to
the visible light , as well as by small eccentricities of the
lens mount. To account for these factors we calibrated the
camera with the band-pass filter on and the lens attached in
the final position. For the chessboard-type calibration pattern
to be fully visible, the pattern had to be illuminated by a UV
light source, with the exposure rate and threshold manually
adjusted for the different angles of view, some parts of the
pattern became overbright or overly dark depending on the
angle of reflection. After obtaining the images, the calibration
was done semi-automatically using the OCamCalib toolbox
12. The toolbox itself provides a method of converting pixel
position into a unit bearing vectors of the markers, here
denoted c2w and the reverse function w2c.

9http://www.optics-online.com/OOL/dsl/dsl215.pdf
10http://midopt.com/filters/bp365/
11http://datasheet.octopart.com/\\

PM2B-1LLE-Prolight-datasheet-41916849.pdf
12https://sites.google.com/site/scarabotix/

ocamcalib-toolbox, [24]
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The angle φ between the optical axis of the camera and
an optical ray corresponding to a point in the image was
modeled as a linear function of the distance r of the point
from the optical center in pixels. The slope of the function
was measured to be

k = φ/r = 3.7673× 10−3 rad px−1. (1)

2) Spot size: An interesting imaging effect that can be
exploited in this setup is the blooming effect of the camera.
The markers used here are small LEDs, which with an
idealized camera each LED would be projected into a single
point on the sensor resulting in a single bright pixel. With
real-world cameras, these markers are shown in the image as
spots of sizes depending on the distance. This effect occurs
due to a combination of monochromatic optical aberrations
of the lens and of the finite capacity of the CMOS elements
in the sensor causing excess charge being spilled over to
the surrounding pixels. The exact analysis of the nature and
relative impacts of these phenomena is beyond the scope of
this paper.

The sizes of the spots can, however, be analyzed w.r.t.
the distance of the marker (see figure 6) and thus used to
give a rough estimate of the distance of the marker. Since
the geometry of these spots depends on many unknown
variables, and due to the finite resolution of the camera,
the true position of the ray incidence within such a spot
is ambiguous. The spots shrink down to the size of a single
pixel at a certain distance from the camera, depending on the
resolution, exposure rate, type of sensor and the radiation
intensity of the marker in the direction of the camera. In
order to preserve high output rate and ease of processing,
we store the sizes of these spots in terms the number of
pixels S after thresholding. To represent the position of the
spot, we store the x and y image coordinates of the middle
pixel in order of contour filling.

Since the tend to be slightly blurry around their edges, the
size of the spots after binarization depends on the selected
threshold.

While the estimation of distance based on such an im-
precise information is not ideal, it can inform of a neighbor
breaching certain safety radii or leaving the minimal mutual
distance. With the algorithm presented in [21] and the
proposed approach, we can achieve coherent swarming using
a minimal required mutual localization setup consisting of
one simple camera and LED per unit (total mass of 50g),
which opens new perspectives in use of micro aerial vehicles
(MAVs).

Additionally, knowing the characteristics of the spot sizes
S(l) w.r.t. the distance from the camera l is useful for
establishing margins of error for measurements based on the
estimated bearing vectors. For this purpose, we can select
a function Smax(l) such that the values will lay under it.
These were measured in experiments and can be seen in the
next sections.

B. Directional vector estimation
Measuring the relative bearing between UAVs is one of

the main requirements to let them stably fly in swarms with

Fig. 6: Relative difference in sizes of spots generated by markers
attached to quadrotor UAVs approximately 2 m (lower triplet) and
5 m (upper triplet) away from the camera.

a predefined shape. However, it is not always necessary for
each UAV to measure all the relative bearings w.r.t. all the
other members. Indeed, Franchi et al. [22], [9] have shown
that a stable, controllable swarm with a predetermined shape
can be achieved by resorting only to a certain minimum
number of directed observations of relative bearings between
the swarm members with known identities. It was also
demonstrated [25] that it is possible to reconstruct the shape
of the swarm purely based on relative bearings of the unit
even when the identities of the observed neighbors are
unknown. With our system, such control algorithm will be
applicable not only to units with limited processing and data
transfer capabilities but also to outdoor applications. Since
we have already calibrated the camera, we can convert a
pixel position mi to the relative bearing vector vi towards a
single marker as

vi = c2w(mi). (2)

In reality the pixel position mi corresponds to a range
of bearing vectors that are projected to the same CMOS
element, while the vector vi corresponds to the center of
that range. In the worst case, the spot is a linear chain and
the true bearing vector corresponds to the farthest point of
the pixel located the farthest away from the pixel we have
stored to represent the spot position. The calculated relative
bearing vector vi can, therefore, differ from the true bearing
vector vb at most by the angle

ε = k

(
Smax(l)−

1

2

)
. (3)

C. Distance estimation based on image distance of two
markers

The distance of an object in an image can be estimated
based on the distance of two points M1 and M2 on the
object (two LEDs of known relative position onboard of the
UAV) and the angle α they form with the camera origin C.
This requires for the camera to be calibrated, and is only
applicable if we have a reasonable assumption on the angle
between

←−−→
M1M2 and the direction towards the camera. For

this method to be used for UAV localization, there needs
to be at least a pair of visible markers. These two markers
should not deviate too much from perpendicular alignment
w.r.t. the direction towards the camera.

In order to limit the dependence of the precision of the
distance estimation on the relative orientation of the observed
UAV, the markers should be placed along a circle centered on
the UAV local frame of reference, with equal distances be-
tween adjacent markers. Additionally, these markers should
be spaced as far apart as possible, while still allowing
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Fig. 7: Allignments of LED markers for a hexarotor, and a quadro-
tor. In the center layout, only a single marker would be visible from
some directions, as opposed to the rightmost layout, with markers
consisting of two LEDs at the mutual angle of 120◦.
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Fig. 8: The relative radiant intensities w.r.t. the direction for two
combined, symmetrically aligned ideal Lambertian radiators. With
the mutual angle being 120◦ the intensity in the central direction
is the same as for a single radiator aimed in that direction.

at least a single adjacent pair to be visible from every
direcion. For multirotor UAVs with a star-like layout, with
the propellers attached to equally spaced arms extending
from the center, the best choice is to attach these markers at
the ends of these arms. In other cases, they can be attached
to a protective cage or on specific additional components,
to ensure radial symmetry. For a hexarotor UAV with equal
arm lengths and internal angles, which is our most common
use-case, the markers, composed of a single LED each, are
attached to the ends of the arms. In this case a single LED
per arm is sufficient, since the intensity of radiation in a
Lambertian radiator (such as our chosen LEDs) at the angle
of 60◦will not drop below 50 % of the intensity in the frontal
direction. In a similar quadrotor UAV, the markers must be
composed of symmetrically angled pair of LEDs to account
for the negligible intensities of radiation in the perpendicular
direction in a single LED (see figure 7 and 5-e).

We recommend for the angle between these two LEDs
to be 120◦in order to get approximately the same radiation
intensity in the direction away from the center as with a
single centered LED (see figure 8).

For a hexarotor with such markers we can estimate the
distance in a range defined by two borderline assumptions:

1) The observed pair is in perpendicular alignment w.r.t.
the direction towards the camera - camera in position
CA in figure 9;

2) One marker of the pair is on the connecting line of the
hexagonal frame - camera in position CB in figure 9.

Which situation is currently closer to being the case un-
known. While hexarotor is used as an example, similar bor-
derline assumptions can be defined for quadrotors, octarotors,
etc.

Depending on whether we need to check for UAVs being

lA

lB

M1

M2

CA

CB

αA

αB

60◦ 60◦

v

d/2

d

Fig. 9: Schematic of the two borderline algnments of a hexarotor
and the camera. With the camera in position CA, the observed pair
is in perpendicular alignment w.r.t. the camera. In position CB the
points are in the 30◦alignment w.r.t. the camera.

too close or too far away, we can select either calculation.
In the case 1) the UAV is more likely to be closer than
estimated, while in the case 2) it is more likely to be further
away. In a swarming algorithm such as [21] the UAVs need to
compare the distances of neighbors with two margins, the far
limit and the near limit, between which the distance should
be kept. In order to make such swarming more reliable,
it makes sense to calculate with case 1) for the far limit
and with case 2) for the near limit. This is also applicable
for tasks such as cooperative carrying of large objects (see
figure 1-a), where these limits are connected with the level
of control over the object, collision avoidance and energy
conservation.

The distance can be calculated from the triangle formed
by the camera C and the two markers M1 and M2. The
parameter d is distance between M1 and M2 and α is
]M1CM2. The relative bearing vectors from the camera
towards points M1 and M2 are denoted v1 and v2.

α = arccos (v1 · v2) = arccos (c2w(m1) · c2w (m2)) (4)

In the case 1), the distance lA to the UAV center can be
expressed as

lA =

(
d

2

)
cot
(α
2

)
+ v, (5)

while in case 2), the distance lB can be expressed as

lB = v cot (α) +

(
d

2

)
. (6)

The symbol v here stands for the height of an equilateral
triangle with side d.

The intensity of radiation in a Lambertian light source,
such as the one we are using is roughly proportional to
the cosine of the angle from the axis. It therefore is more
common to see only two of the six markers than three or
four.
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To establish error margins for the two cases at ground
truth distance l, we take the assumption that the wrong case
was presumed, so that while calculating for case 1), the real
situation corresponded to case 2) and vice-versa. If in the
case 2) the calculation for the case 1) was used, the relation
of the estimated distance to the real distance would be

laerr =

(
d

2

)
cot

(
arctan

(
v

l − d
2

)
/2

)
+ v. (7)

In the converse case, the erroneous selection of calculation
results in the estimate

lberr = v cot

(
2 arctan

(
d
2

l − v

))
+

(
d

2

)
. (8)

These margins should be additionally expanded by the ef-
fects of finite resolution and spot size. Due to foreshortening,
as the UAV retreats away from the camera, the change of
mutual distance of the two markers in the image becomes
less and less pronounced. This is more significant when
the mutual distance of the images of the markers becomes
comparable with the size of a pixel. As was the case in the
directional vector estimation, the maximum angular error ε
in the direction of the vector v1 is equal to k(Smax(l)− 1

2 )
The final maximal value of distance estimation in the first

case is then:

lamax =

(
d

2

)
cot



arctan

(
v

l− d
2

)
− k (Smax(l)− 1

2 )

2


+v

(9)
The minimal value for this case is:

lamin =

(
d

2

)
cot

(
arctan

(
d
2

l − v

)
+ k (Smax(l)−

1

2
)

)
+v

(10)
In the other case, where we presume that one of the spots

in the observed pair corresponds to a marker on the line
connecting the camera and the center of the UAV, the maxima
and minima of the estimation can be expressed similarly:

lbmax = v cot

(
arctan

(
v

l − d
2

)
− k (Smax(l)−

1

2
)

)
+

(
d

2

)

(11)

lbmin = v cot

(
2 arctan

(
d
2

l − v

)
+ k (Smax(l)−

1

2
)

)
+

(
d

2

)

(12)

D. Full pose estimation

For a more precise position estimation of a neighbor
UAV that is more suitable for 3D environments and returns
orientation as well, we might consider using a Perspective-
n-Point method. This may prove quite challenging in imple-
mentation, due to the anonymity of the observed points and
due to the diminished visibility of the markers not facing
the camera. Additionally, these methods are computationally
more complex, which may reduce the output rate. One way
to increase the number simutaneously of visible points is to

increase the number of the LEDs on the UAV. This may be
done in two possible ways:

1) by composing each marker out of multiple LEDs, as
can be seen in figure 5-e

2) by adding more single-LED markers for denser cover-
age.

Care should be taken with such a modification, since if the
distribution of the markers is too dense then they will tend
merging in the image into a single spot. The problem of
anonymity can also be addressed this way, by constructing
patterns that can be matched with a known template without
ambiguity.

Another potentially effective approach under consideration
is to encode information such as individual ID of a marker
into blinking patterns.

V. EXPERIMENTS

A. Distance estimation based on spot size

To evaluate the relationship between the mutual distance
and the size of the bright spot an Optitrack motion-capture
system was used to record the ground-truth distance between
the camera and a single LED in its view, while the size of
the spot was being recorded simultaneously. This procedure
was repeated for multiple exposure rates. The binarization
threshold used for segmentation of the bright spots was set
to 200 out of 255, or 78.42% of the saturated brightness
(for the characteristics, see figure 10). These tests seem to
indicate, that the best exposure rate for detecting whether the
neighbors are within a reasonable distance with this setup
is 1000 ms, when the spot shrank consistently to the size
of a single pixel at 6.62 m while still sufficiently filtering
out the ambient UV illumination. Therefore, a very simple
and low-cost approach (only one camera and one LED is
required) can be used for an effective collision avoidance as
it provides sufficient safety distance. For example the safety
distance used in Multi-robot Systems group in [26] was 5 m.
Within the range from 3.14 m to 6.62 m the occurence of
spots with the size of 1 pixel become common. For distances
smaller than 3.14 m the non-linear the characteristic can
be used for a rough, but quantitative distance estimation
in applications, where the UAVs have to operate within
very close mutual distances. From the characteristic for
the 1000 µs exposure rate (figure 11) we have derived the
parameters of an approximating equation (13) in the form
of a quadratic-hyperbolic function rounded to the nearest
integer.

Smax = b1.3398 + 31.4704

(x− 0.0154)
2 e. (13)

A quadratic-hyperbolic function was selected because the
number of saturated pixels from a single ray depends roughly
on the overall energy that has been received by the sensor
from the marker, which in turn is governed by the inverse
square law.

A different exposure rate can be selected for tasks where
closer or greater mutual distances are required (note the
different single-pixel thresholds in figure 10). For example,
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Fig. 10: Distance dependence of the bright spot size for multiple
exposure rates. The vertical lines denote distances beyond which
the spots are consistently reduced to a single pixel.
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in applications where very tight formations of micro aerial
vehicles are needed we can select short exposure rate to reach
a higher precision in distance estimation at short distances,
in addition to better selectivity w.r.t. other light sources.

If the margins used in a swarming algorithm are derived
from the spot sizes, then we can expand or shrink a formation
simply by changing the exposure rate. This can even be done
dynamically based on the circumstances, altering the swarm
parameters on-the-fly (for instance by changing the constants
in a Boids model [27] we can change the swarm size and
thus adjust the working area).

Using a high exposition rate presents a trade-off, since it
allows for detection and quantitative distance estimation in
larger mutual distances, but has the side-effect of lower se-
lectivity w.r.t. other light sources and thus lower robustness.

B. Bearing vector estimation precision

In order to verify the precision of the relative bearing
vector estimation and the distance estimation based on the
mutual distance of two spots in an image, we have equipped
a hexarotor frame with an arm length of 0.4 m with UV
light sources on the end of each arm. Precision and relia-
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Fig. 12: Angles between the estimated bearing vectors based on
the image and the true bearing vectors. The red line denotes the
expected maximal errors based on equation 3

bility of the mutual distance estimation were evaluated in
different relative positions and orientations using Optitrack
as a ground truth.

Lines connecting the camera with the potentially visible
markers were calculated from the ground truth poses of the
camera and the hexarotor frame. Relative bearing vectors
were estimated from the bright spots in the image. The
bearing vectors and connecting lines were compared and the
angles between the closest found matches were stored. Figure
12 shows, that the predicted maximal error in the estimation
according to equation (3) holds.

C. Neighbor distance from mutual distance of points

In the same dataset as used previously, the pair of adjacent
spots with the greatest mutual distance in the image was used
as the basis for the distance estimation. The distance of the
frame center from the camera was calculated both accord-
ing to equation 5 and equation 6. The estimated distances
compared to the ground truth obtained from the OptiTrack
system can be seen in figure 13, together with plots of the
predicted margins of error based on the previously obtained
function Smax(l). Note, that in the first case most estimates
are greater than the ground-truth, while in the other case the
opposite is true.

Figure 14 shows the relative errors in estimations in both
cases.

Within the tested range the error increases roughly linearly
with the distance. This is conforms to the expectations and
is of no concern in forming a swarm, since the precision is
only low outside of collision range.

The precision is decreased by the randomized angle of
the observed pair of markers so that the results would be
consistent with real-world situations.

For comparison, the precision listed in [2] was measured
in ideal laboratory conditions with all variables accounted
for. In such unrealistic conditions our system will exhibit
higher precision, due to the larger baseline.

D. Outdoor experiments of mutual localization of two UAVs

To verify the selectivity of the sensor, as well as the
range and precision in an outdoor environment, which is the
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primary intended use-case, we have performed a flight with
a pair of our outdoor UAV platforms. The platform itself
is a DJI 550 frame, equipped with a Pixhawk controller
an Intel NUC computer, described in detail in [26]. The
sensory equipment comprises a range sensor for altitude
measurements, RTK-GNSS antenna for ground truth mea-
surement, the UV camera described in this paper and a color
camera for a conventional video recording. The target UAV
was equipped with six ultraviolet LED markers as described
above. The exposure rate of the camera was set to 1000 µs.

The markers could still be detected at 15 m and after that
there were spurious drop-offs. Compare the table III in [2],
where the maximum range is 5.5 m for the highest resolution.
Indeed, since the camera FoV listed in the paper is only
42◦while our system uses a FoV of 180◦, our system can be
meaningfully compared with their system being used with
less than the smallest listed resolution, where the maximum
range was only 3.2 m.

An example of the image obtained by the ultraviolet-
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Fig. 15: UAV distance estimates compared with the ground truth.
The two estimates according to equations (5) - case A and (6)
- case B tend to be greater and smaller than the ground truth
respectively. The spurious pattern around 60 s and 110 s is the
result of the observed UAV spinning in place, leading to the two
equations rapidly exchanging their validity.
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sensitive camera can be seen in the figure 2. We have
attempted to measure the precision of the ultraviolet marker-
based localization by using the RTK-GNSS data inertial
measurement unit and built-in compass as ground truth. As
is shown in figures 15 and 16, the distance estimations
according to equations (5) and (6 resulted in upper and
lower margins, enclosing the ground truth. While the position
retrieved by RTK-GNSS was sufficiently precise, the orien-
tation estimate was burdened by a severe drift (see figure 17-
below), causing misalignment in the bearing vector returned
by our UV sensor. This hints at an alternative application
of our system as a precise orientation sensor if the position
of two or more mutually unoccluded UAVs is known from
RTK-GNSS data, since the observed relative bearing does
not drift.

VI. CONCLUSION

In this paper we have proposed a novel system for outdoor
and indoor mutual relative localization using ultraviolet LED
makers. The main intended use-case of this method is in
swarm control and stabilization of formations of light-weight
helicopter UAVs in arbitrary environments. The proposed
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Fig. 17: Selected frames from the video output of the camera and
visualization of the mutual state estimation procedure. The blue star
and white square represent the ground truth of the observed UAV.
The thick red line shows the range of possible positions computed
by our system. This can be seen in a video found at http://
mrs.felk.cvut.cz/uvdd1.

approach enables significantly higher detection range, ro-
bustness to light conditions and surrounding environment
(background of images) in comparison with state-of-the-art
methods, while having low computational intensity, small
size and weight and providing sufficient precision. The error
in the relative bearing vector towards a single ultraviolet
marker is in operational distances below 0.02 rad in distances
above 3 m, and thus allows direct applicability of the
method using most of the current swarming and formation
stabilization approaches. Two algorithms for estimating the
mutual distance were developed to satisfy requirements of
known multi-UAV stabilization techniques. The first relies
on the size of the detected spot in the image, while the
second is based on the diminishing apparent internal distance
between a pair of retreating markers with known true mutual
distance. The system was tested in outdoor environment and
was shown to be robust with respect to outdoor lighting
conditions as predicted. The theoretical predictions, as well
as the experimental data presented here, show a lot of
promise for deployment in swarm robotics.
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Mutual Localization of UAVs based on Blinking Ultraviolet Markers
and 3D Time-Position Hough Transform

Viktor Walter1, Nicolas Staub1,2, Martin Saska1 and Antonio Franchi2

Abstract— A novel vision-based approach for indoor/outdoor
mutual localization on Unmanned Aerial Vehicles (UAVs) with
low computational requirements and without external infras-
tructure is proposed in this paper. The proposed solution
exploits the low natural emissions in the near-Ultra-Violet
(UV) spectrum to avoid major drawbacks of the visible spec-
trum.Such approach provides much better reliability while be-
ing less computationally intensive. Working in near-UV requires
active markers, which can be leveraged by enriching the infor-
mation content through blinking patterns encoded marker-ID.
In order to track the markers motion and identify their blinking
frequency, we propose an innovative use of three dimensional
Hough Transform, applied to stored position-time points. The
proposed method was intensively tested onboard multi-UAV
systems in real-world scenarios that are very challenging for
visible-spectrum methods.The results of our methods in terms
of robustness, reliability and precision, as well as the low
requirement on the system deployment, predestine this method
to be an enabling technology for using swarms of UAVs.

I. INTRODUCTION

The use of swarms of Unmanned Aerial Vehicles (UAVs)
has extends significantly the capabilities of single UAV,
allowing for tasks otherwise impossible for single robot due
to payload, actuation or sensory limitations. Typically, small
UAVs are used for their cost-effectiveness and commercial
availability and they can safely compose compact multi-UAV
systems with small relative mutual distances. This raises the
importance of mutual relative localization, in order to main-
tain safety distances, enforce the desired flocking behavior
or the decentralized bio-inspired swarm stabilization [1], [2].

A typical challenge of mutual localization for aerial
swarms is to present a low-cost infrastructure-independent
solution, suitable for both indoor and outdoor settings and
reasonable mutual distances. Literature is rich in approaches
relaxing these requirements, like indoor work conducted with
Motion Capture systems (MoCap), e.g. [3], [4], or Infra-
red blinking markers, coupled with an event-based ground
camera [5] and outdoor setups relying on Global Navigation
Satellite System (GNSS) [6], [7]. These solutions provide
precise mutual localization information (≤ 1 cm, considering
RTK-GNSS) with the major drawback of requiring pre-
installed infrastructures, limiting the usage to known, unclut-
tered, and easily-accessible environments. Additionally, they
are costly and tend to rely on intensive radio-communication
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{viktor.walter|martin.saska}@fel.cvut.cz
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Fig. 1: Far away UAV against urban background in the shade.
Barely noticeable in visible spectrum but obvious in UV spectrum.

between the swarm members, which is subject to limited
range, interferences and does not scale up for large swarms.

Typical solutions to these issues are visible-spectrum
vision-based approaches [8]. In an indoor-only setup, color-
based markers can be used, see [9], [10], that are easy to
segment under controlled lighting conditions, but not in the
extremely unpredictable lighting conditions and the multi-
colored outdoor environment. For outdoors, black and white
markers are preferred, leading to solutions which combine
passive markers and object detection, see [11], [12], used for
swarms [2], [13] and heterogeneous groups of robots [14],
[15], [16]. The drawbacks of these approaches are the need
for large markers, computational complexity and sensitivity
to lighting conditions.

Our solution extends our previous research on a novel,
vision-based mutual localization in the Ultra-Violet (UV)
spectrum [17] . Motivated by the low amount of near-UV
radiation in sunlight and most artificial sources, compared to
the visible spectrum. The technology uses active UV markers
and standard cameras with UV band-pass filters, allowing for
fast detection of markers in complex environments.

In order to retrieve the orientation or identity (ID) informa-
tion, we encoded individual marker ID in blinking patterns.
These are retrieved using an unprecedented application of
3D Time-Position Hough Transform. Indeed, the algorithm
presented is the first exploiting the Hough Transform for
tracking of objects in time. Since, in this case, the precision
of the shape fitting is less relevant than the computational
speed, this is en exemplary use-case for such algorithm.

The rest of the paper is structured as follows. Sec. II intro-
duces the theoretical background necessary for the proposed
algorithm presented in Sec. III. Finally, Sec. IV summarizes
the results of our experimental proof-of-concept.

II. THEORETICAL BACKGROUND

A. UV spectrum: properties and motivations

For the sake of brevity, only key properties for our
approach are presented, more details are presented in [17].
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The solar spectrum approximates the black-body radiation
model and has its peak intensity in the visible spectrum [18],
while UV radiation is significantly less intense even close to
the visible spectrum. This can be leveraged using affordable
near-UV LEDs and suitable band-pass filters applied on
a monochromatic camera. Tests have shown that the UV
radiation refracted through the atmosphere and reflected from
matte surfaces can be neglected, see [17]. Artificial radiation
sources with strong UV emissions are rare, making this
wavelength range very attractive for our application.

The image spots caused by UV LEDs sources are saturated
at any time of the day, while the only other bright features
are the sun or its specular reflections. Such images can be
binarized by static thresholding, as opposed to the more
computationally intensive adaptive thresholding needed for
the visible spectrum. This allows for computationally simple
detection of markers in the UV-range, robust to outdoor
lighting conditions1.

Following extensive testing in the wavelengths range of
commercial UV LEDs. Best results are achieved with near-
UV wavelength of 395 nm, compatible with widely available
fisheye lenses with a large Field of View (FoV).

B. 3D time-position parametrization
With the proposed near-UV vision system, active markers

appear in the camera image as white spots against a nearly-
black background, see Fig. 1. While easy to locate, they
are individually anonymous. In order to enrich their infor-
mation content we devised blinking patterns encoding ID
information (single marker ID or ID common to markers
on one side of a UAV). While a non-blinking marker can
be tracked among two consecutive camera frames using the
nearest distance between two frames, this is not possible for
blinking markers which are only visible in their on-frames,
and periodically disappear in their off-frames. The only
impact of this addition is a decrease of the admissible flight
dynamics. On the other hand the introduction of blinking
patterns does not only provide additional information, but
also increases robustness by allowing 1) to easily filter out
the sun and its reflections (non-blinking bright spots) and
2) to detect aliasing or occlusion, if the detected blinking
frequency is not among the set of given patterns.

Identification and tracking of these blinking markers calls
for a fast algorithm able to accommodate their periodical
disappearance, which will use the following time-position
parametrization. First, consider that markers observed by a
camera are defined by their x-y coordinates in the image
plane. These can be stored in an accumulator along time,
with t-indexes such that the latest camera image corresponds
to t = 0.We refer to triplets (x, y, t) as t-points which corre-
spond to observations. Then for a set of markers with limited
physical dynamics, their t-points will lie along smooth curves
w.r.t. time, intermittent for blinking markers,see Fig. 2-a.

We chose to approximate those curves, around t = 0, by
lines, see Fig. 2-b. We refer to these lines as t-lines. The
time window used for this approximation impacts both the
admissible flight dynamics and the range of usable blinking

1mrs.felk.cvut.cz/uvdd1

a) b)

Fig. 2: Basic assumptions for the proposed system. (a) moving
points (green) in present camera images (blue plane) follow smooth
trajectories w.r.t. time. Due to blinking of the markers these curves
are intermittent, making some of the points temporarily invisible
(red). (b) considering short enough time-span these curves can be
approximated by lines and such lines can be parametrized by their
origin-point (yellow) and their pitch ϕ and yaw ψ.

frequencies. The t-lines can be parametrized by their origin-
point x-y coordinates and two angles that we call pitch ϕ and
yaw ψ, see Fig. 2-b. The origin-points are the points located
in the image plane where the t-lines intersect. In on-frames
they coincide with a t-point of t = 0, otherwise they are
retrieved via Hough Transform, as detailed in Sec. III, and
correspond to the theoretical marker position along the curve.
The pitch and yaw map to the image speed of the tracked
marker, and to the direction of its motion respectively.

Clearly the blinking frequency of a tracked marker can
be retrieved via the t-points spacing along a t-line, the
construction of which relies on a Hough Transform, see
Sec. III. An additional benefit of considering t-lines is that
markers fixed to a translating rigid body will have parallel
t-lines, thus allowing for association of markers and objects.

C. Hough Transform

Hough Transform is a well-known method used to retrieve
regular geometric forms described by a set of parameters. An
example application is fitting a over a set of collinear points.
This is done by projecting the points into image matrix
in the form of curves representing the range of possible
lines passing through this point in terms of their param-
eters. The pixels of the temporary image matrix (Hough
space) are incremented along each of these curves. Such
projections of a number of collinear points will intersect
in the Hough space, creating a local maximum in value
representing the most likely parameters of a line common to
all the original points. For general 3D line fitting scenarios
with reasonable precision the Hough Transform will require
a dense discretization of the parameter space consisting
of at least four parameters [19]. This means searching for
local maxima in a large 4D space which is not feasible for
UAV embedded solutions. Instead we use a more purpose-
fitted implementation of Hough Transform, relaxing t-lines
reconstruction to guarantee a good enough approximation in
order to reliably separate adjacent markers. As we aim at a
good enough approximation, the discretization steps of the
t-line parameters, ∆ϕ and ∆ψ, can be chosen large enough
to enforce robustness against small errors in the origin-point
coordinates arising from the camera image pre-processing.
Moreover the set of possible t-lines is constrained by the
physics of the system, allowing to reduce the size of the
Hough space.
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Fig. 3: Flow chart of our tracking algorithm based on Hough
Transform. Both origin-point and blinking frequencies are retrieved,
by-products are the full t-line parameters.

III. ALGORITHM FOR ORIGIN-POINT POSITION AND
BLINKING FREQUENCY TRACKING

This section details the proposed algorithm to retrieve the
origin-points and their blinking frequencies from the camera
grey-scale image. The overall flow is summarized in Fig. 3.

A. Base algorithm
1) Image pre-processing: The pre-processing of the grey-

scale image starts by the detection of bright spots, which
are used to construct t-points, see Sec. II-B. The t-points are
stored in a set, U ⊂ N3. These t-points can be interpreted
as points in a bounded 3D space of height F corresponding
to the highest t-index, i.e. the time window of U . The set
of t-points is updated with each new camera image. We are
interested in a way to retrieve for each t-line both the origin-
point and the blinking frequency along the t-line.

2) Hough Space Operations: A direct approach would
consist in applying 4D Hough Transform on U directly,
which proves to be computationally expensive and cum-
bersome. Therefore, our algorithm is based on two simpler
3D Hough voxel spaces, considering origin-point coordinates
combined with pitch and yaw separately. To reduce the
search space for the construction of the Hough Transform,
the pitch and yaw are discretized such that

ψj = j
2π

∆ψ
| j ∈ [

ψ

∆ψ
;
ψ

∆ψ
] ⊂ N and ϕi = i

π

2∆ϕ
| i ∈ [

ϕ

∆ϕ
;
ϕ

∆ϕ
] ⊂ N,

where the range limits and discretization steps are parameters
of our algorithm, listed in Tab. I. Our specialized Hough
Transform translates t-points into their images in the form of
voxelated surfaces in the two aforementioned voxel spaces.
If multiple t-points belong to the same marker, their images

Fig. 4: Erroneous peaks (red) in Hough Transform for pitch (left)
and yaw (center), are suppressed by element-wise multiplication.

in the Hough spaces will intersect at voxels corresponding
to parameters of the t-line on which they lie.

To find the t-line parameters one needs to find local max-
ima in a 3D voxel space, which is computationally complex.
We use the fact that since the curves followed by the t-
points are non-retreating w.r.t. time and since the markers
are attached around non-transparent objects, it is physically
impossible for multiple t-lines to share the same origin-point.
With this assumption, we can simplify the search for local
maxima into 2D, the Hough spaces are flattened into so-
called maxima matrices. This operation is done by assigning
to each [x, y] element of the maxima matrix the highest
value among voxels of the Hough space with the same x-
y coordinates. This results in easier detection for origin-
coordinates at the expense of an information loss about
the associated angle parameters. To keep this information
easily accessible, a second matrix, so-called angle matrix,
is constructed during the flattening process, which stores
the angle value (respectively ψ or ϕ) corresponding of the
maxima in the Hough space for each x-y coordinates.

3) Origin-point retrieving: From there origin-points can
be retrieved as peaks in the maxima matrices. However some
aliasing phenomena, as well as ambiguity-based artifacts may
be found in the maxima matrix. For pitch, erroneous peaks
in between two slow moving markers can appear. For yaw,
two different kinds of erroneous peaks can appear; some
corresponding to opposite yaw, as well as peaks perpendic-
ular to the connecting lines of neighboring markers due to
discretization. To increase robustness against these erroneous
peaks, the two maxima matrices are multiplied element-wise,
which leads to the suppression of the erroneous peaks as they
are not likely to be present in both spaces.

The origin-point coordinates correspond to peaks in the
combined maxima matrix, and are retrieved in a two-step
method; 1) t-point of index t=0 are collected as their coordi-
nate are more reliable than the estimated one, then 2) peaks
in the combined maxima matrix are collected. After each
located peak, its surroundings are nullified in the combined
maxima matrix, allowing for finding further peaks. During
the peak search we also consider the number of expected
origin-points, L, once L peaks are found the search can stop.
The policy to define L can be based on considering: 1) the
knowledge of visible origin-points based on the number of
UAVs and the average number of visible markers, 2) the
maximum number of markers seen simultaneously within the
last F frames or 3) any other heuristic.

At this stage of the algorithm, the t-line origin-points are
retrieved, i.e. the image positions of markers both in on- and
off-frames. From the respective angle matrices, it is possible
to retrieve the two other t-line parameters estimates.

4) Blinking frequency retrieval: As we decided to encode
additional information into blinking patterns further process-
ing is needed to retrieve them. A possible way to do so
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Fig. 5: Cone shell defined by the estimated t-line pitch. The t-
lines with distant origin-point (red filled) will intersect the expanded
cone shell in few points (hollow red), while t-lines with origin-
point (green filled) nearby to the center of the t-cone (yellow) will
intersect in most of their points (hollow green). This suppresses
their influence on the estimated frequency and yaw.

is to cluster all t-points in the vicinity of the identified t-
lines to find their average blinking frequency. To reduce
computational requirements induced by exploring two Hough
spaces of small granularity, we choose ∆ϕ� ∆ψ and forgo
an angle matrix for ψ. This only gives a reliable estimate
of the pitch parameter, while the ψ maxima matrix is still
rich enough to reject aliasing. Instead, we now consider t-
cones, which are generated by t-lines rotated around their
t-axis passing through the origin point, see Fig. 5, and their
vicinity to retrieve both blinking frequency and t-line yaw,
by averaging the values of the corresponding t-points. The
vicinity rv is a tunable parameter defining the maximum
distance from the t-cone where we look for t-points. Note
that this method is likely to collect more t-points which are
not a part of the desired t-line in the averaging process, see
Fig. 5. Nevertheless they are, in practice, outnumbered by
the t-points corresponding to the desired t-line. Lastly, the
origin-point with blinking frequency under a certain (low)
threshold can be disregarded as being the sun or its specular
reflections, which are the most significant contaminant of the
camera image in the UV spectrum.

This concludes the algorithm as both origin-points and
their associated blinking frequency are retrieved, along with
the other t-lines parameters.

B. Improvements

In order to increase the robustness to high flight dynamics
and computational efficiency, we have designed two refine-
ments of our algorithm.

1) Weighted Hough space: First, to increase the admissi-
ble dynamics of the tracked markers we propose to introduce
weight in the construction of the Hough space. Instead of
giving equivalent weight for all t-indices, we introduce the
following weighting function,

w(t) = λ(F − t) + F ∈ N,

where λ is a parameter regulating the weight ratio between
the newest t-points, and the oldest ones in U . In this way
the more recent t-points affect the t-lines parameters more,
making our algorithm more resilient to abrupt changes of
direction, implied by highly dynamic flight. This refinement
leads directly to better origin-point estimate.

2) Pre-computed masks: The second refinement reduces
the computational complexity of the Hough space con-
struction, by applying pre-computed masks to generate it.
The constructed masks resemble hollow cones for the pitch

Fig. 6: A mask used in Hough space for pitch, generated for t-points
with t = 10 (left) and a mask for yaw, generated for t-points with
t = 15 (right). Side bitmaps show the corresponding mask slices.

Hough space, see Fig. 6-left, and spiral staircases for the yaw
Hough space, see Fig. 6-right. These shapes can be explained
intuitively. We observed that the possible origin-points of
all t-lines passing through a t-point, can be easily expressed
w.r.t. the t-line parameters, ϕ and ψ, for a given t-index t.
The potential origin-point for this t-point directly underneath
has the parameter ϕ = π

2 and as the distance of the potential
origin-points increases, the corresponding pitch decreases,
which leads to a cone shape in the Hough space. Such cones
are of the same shape for a given t, while the x and y
parameters of the t-point merely shift it to the respective
x-y position. Similar reasoning explains the mask shape for
the yaw Hough space. In order to prevent discontinuities
in the masks, which arise from the angle discretization, we
introduce overlap parameters, δϕ and δψ.

To construct the Hough space, at each t-point in U , the
introduced masks are used as follow: 1) retrieve the mask
associated with the t-index 2) retrieve the x-y coordinates of
the t-point and then 3) apply the mask at the coordinates
by increasing the corresponding voxel values in the Hough
space. This considerably speeds up the construction of the
Hough space as instead of calculating all t-lines passing
through each t-point we apply a static, pre-computed, mask.

IV. EXPERIMENTAL VALIDATION

Experimental parameters are grouped in Tab. I. The chosen
parameters influence the maximal admissible flight dynam-
ics, in our case the maximum linear image speed for a
marker is 144 px/s, which translates to a maximum speed
perpendicular to the camera axis of respectively 0.6 and
3 m s−1, for marker-camera distance of 1 and 5 m.

The innovative part of the system, the UV active markers
and camera, are introduced and discussed in [17]. They can
be easily fitted to any UAV platform, which we demonstrate
by using a standard hexarotor for outdoor experiments and
a standard quadrotor for the indoor ones. Indoor experiment
used motion capture system (MoCap) as ground truth.

In the testing phase, our algorithm runs real-time off-
board on an Intel NUC 7 (4 cores, 2.6 GHz), a classical
embedded computer for UAVs. The prototypical MATLAB
implementation loads a single core up to 48.8% on average,
validating that our approach can be easily embedded. Inded
there are enough resources left to run typical mission control
and planning algorithms. The final C code implementation
is expected to run significantly faster. The experiments were
recorded on video (mrs.felk.cvut.cz/uvdd2).
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Symbol Meaning Impact on Experimental
Value [unit]

F time window size of U admissible dynamics 0.3f
∆ϕ ϕ discretization step in Hough Transform robustness to dynamic motion; selectivity; computational complexity π/64 rad
∆ψ ψ discretization step in Hough Transform computational load π/4 rad
δϕ mask overlap parameter robustness; overall selectivity π/68 rad
ϕ upper limit of the pitch value minimal expected movement π/2 rad
ϕ lower limit of the pitch value admissible dynamics; marker selectivity (via ∆ϕ) π/4 rad
L number of expected peaks number of markers; computational complexity 3 (o) 10 (i)
λ weighting factor admissible dynamics 1
rv inspected vicinity of t-cones robustness; marker selectivity 3 px
f camera frame-rate maximal blinking frequency fb 72 Hz
tx camera exposure rate selectivity w.r.t. ambient radiation; effective distance range 1000 µs

[fb; fb] blinking frequency range number of ID encodable 3.34 – 40 Hz

TABLE I: Main parameters of the proposed solution, when needed (o) and (i) denotes outdoor and indoor parameters respectively.
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Fig. 7: Indoor precision testing with MoCap as ground truth, the
position error in the camera horizontal direction against the distance
to the camera is assessed. Marker close have larger (but reasonable)
error, due to larger spot in image, making the exact pixel position
of the marker ambiguous.

A. Indoor validation against ground truth
To evaluate the accuracy, two quadrotor UAVs are flown

in front of a fixed camera, markers are located on the UAV
arms, as described in [17]. To identify each UAV, blinking
patterns are assigned such that each UAV has two dedicated
frequencies, one for front and one for back markers.

In the experiment the UAV 1 was hovering within 1 m
of the camera while performing yaw rotation motion, with
blinking frequencies of 6 and 10 Hz. The UAV 2 was
following a zig-zag like trajectory from 5 to 2 m toward
the camera, with blinking frequencies of 15 and 30 Hz. The
UAVs motion are constrained by the limited size of the flying
arena, forbidding tests on distance longer than 5 m.

MoCap information is translated to camera image and
MoCap-based image positions are paired with the closest
estimated positions of origin points.The position error against
the camera-marker distance is used to asses performances,
see Fig. 7. Markers close to the camera suffer an error of
at most 20 px, while for further away markers the error is
mostly below 5 px. This correlates with the size of the bright
spots in the image that make t-point detection less precise.

The results were additionally evaluated w.r.t. the blinking
frequency of the markers, see Fig. 8. It appears that the
blinking frequencies have not detectable influence on the
position error, as the trend for each individual frequency
follows the aggregated values for their respective UAV.

B. Outdoor validations and characterization
Additional outdoor experiments were conducted to assess

our approach performances in operational conditions. Exper-
iments were conducted around noon by clear weather and
consisted of flights of two hexarotor UAVs, one equipped
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Fig. 8: Impact of blinking frequency on the position error, indoor.
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Fig. 9: Example of outdoor tracking for UAV horizontal motion
(the most agile). Near the instant t = 13 s the UAV was rotated,
so that only two markers remained visible.

with a camera and one equipped with markers following [17].
The markers were set to blink with two distinct frequencies,
such that two triplets on adjacent hexarotor arms shared
frequency. Blinking frequencies where set at 15 and 30 Hz,
for back and front respectively. The tracking results presented
in Fig. 9 show the good performance of the proposed
approach under outdoor light conditions.

In particular, our algorithm was able to keep track of the
IDs of the markers encoded in their blinking frequency, while
still providing accurate image position estimation even in
between the on-frame t-points.

C. Blinking frequency estimation

Both indoor and outdoor data are used to assess the
performances of the frequency estimation, as the generated
frequency are known, they are compared in Fig. 10. By fil-
tering out the obvious outliers, we compute the average error
for all points close to a given frequency. Performances of the
blinking frequency estimation, both indoor and outdoor, are
good with mean absolute error (MEA) below 3.9%, 2.2%,
3.8% and 3.1% for respectively 6, 10, 15 and 30 Hz blinking
frequency. This also demonstrates that the blinking frequency
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Method Resolution FoV Range ID count Environment Properties

Color circles [20] 752× 480 125◦ N/A 3+ indoor, well illuminated large marker size, lighting sensitive
WhyCon [11] 752× 480 42◦ 5.5 m 1 indoor/outdoor, illuminated large marker size (≤ 18 cm)
ALM-DVS [5] 128× 128 65◦ N/A 3+ indoor requires event-based camera
CNN-YOLO [21] 1280× 720 132◦ 15 m N/A indoor/outdoor, illuminated high computational load, marker independant
Proposed approach 752× 480 180◦ 15 m 6+ indoor/outdoor small markers, low computational intensity

TABLE II: Performance comparison with various representative methods.
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Fig. 10: Estimated Frequencies evolution, in both indoor (top)
and outdoor (bottom) experiments. In both cases the frequency
estimation performs with a MEA below 3.9%.

estimation performs similarly for all frequencies well inside
the admissible blinking frequency range.

D. Comparison with other methods
Our proposed methods is significantly more versatile than

state-of-the-art methods, allowing usage both indoor and out-
door without illumination requirements, see Tab.II. Moreover
our appraoch has a low impact in terms of computational
power and works with small markers. For each method
the precision and range can be tuned by selecting different
resolution and FoV, therefore there are no standard metrics to
evaluate them. Despite the combination of small resolution
and large FoV in our experiments, the performances are
comparable or exceeding those of other methods.

V. CONCLUSION

In this paper, we proposed a novel system for outdoor
and indoor mutual relative localization using active UV LED
markers. It enables significantly better performances in com-
parison with state-of-the-art methods of UAV mutual local-
ization. Additionally, we have shown how active markers can
be leveraged to encode additional information via blinking
patterns. Our approach relies on 3D time-position Hough
Transform and has been tested in active UAV deployment
both indoor and outdoor. Results from outdoor experiments
show excellent detection reliability w.r.t. backgrounds such
as the sky, trees or even buildings, while still being able to
decode the blinking signal. The theoretical predictions, as
well as the experimental data presented here, show a lot of
promise for deployment in swarm robotics and multi-robot
systems in general.

[2] M. Saska, “Mav-swarms: Unmanned aerial vehicles stabilized along
a given path using onboard relative localization,” in International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2015.
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Abstract

Mutual relative localization and identification are important features for multi-Unmanned Aerial
Vehicle (UAV) systems. Camera-based communications technology, also known as Optical Camera
Communications (OCC) in the literature, is a novel technology that brings a valuable solu-
tion to this task. In such a system, the UAVs are equipped with LEDs acting as beacons, and
with cameras to locate the LEDs of the other UAVs. Specific blinking sequences are assigned
to the LEDs of each of the UAVs to uniquely identify them. This camera-based system is
immune to Radio Frequency (RF) electromagnetic interference and operates in Global Naviga-
tion Satellite (GNSS)-denied environments. In addition, the implementation of this system is
inexpensive. In this article, we study in detail the capacity of this system and its limitations.
Furthermore, we show how to construct blinking sequences for UAV LEDs to improve system
performance. Finally, experimental results are presented to corroborate the analytical derivations.

Keywords: mutual identification, multi-UAV system, OCC

1 Introduction

Mutual relative localization and identification are
important features in multi-UAV. While relative
localization is important for close cooperative
flying and mutual collision avoidance, the identi-
fication of neighboring team members is crucial
for high-level planning. This feature can be imple-
mented using RF electromagnetic signals, vision-
based techniques, or through a combination of
both. For instance, in [1, 2], RTK-GNSS is used for
UAV localization. In [3], Ultra Wide-band (UWB)
ranging is used to determine the distance between
the UAVs. In [4], they use a motion capture system

that sends its position estimate to the UAV via
an RF link. Such localization techniques based on
RF are vulnerable to electromagnetic interference
and may fail in providing mutual identification in
multi-robot systems. On the other hand, vision-
based techniques are immune to electromagnetic
interference and can provide relative localization
and identification in multi-robot systems.

Vision-based localization and identification
systems can be divided into passive and active,
distinguished based on whether the optical mark-
ers emit light. In [5], the authors present a pas-
sive system where specific marker patterns are
assigned to each robot. The same system was used

1
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in [6] for outdoors localization and identification of
UAVs. A disadvantage of passive systems is their
sensitivity to ambient light, making them ineffec-
tive in poorly illuminated environments. This is
solved by using active systems where the markers
of UAVs are generally implemented with LEDs.

In [7], the authors equipped a UAV with
infrared LEDs and used a CMOS camera to per-
form indoors localization. Different blinking fre-
quencies, in the range of 1-2kHz, were assigned
to each LED to differentiate them. The blinking
frequencies were set in such a way that no two
signals shared common harmonics to avoid ambi-
guities in their discrimination. In [8], our research
group presented the UltraViolet Direction And
Ranging (UVDAR) system for UAVs, see Fig. 1.
In this system, UAVs are equipped with Ultravi-
olet (UV) LEDs as markers and cameras coupled
with optical UV bandpass filters. The optical sig-
nals emitted by the LEDs were square signals of
different frequencies. This is a simple way to dis-
criminate the different blinking patterns, but it is
inefficient as will be shown in this paper.

In the field of communications, the Optical
Camera Communications (OCC) system, in which
the transmitter is a LED and the receiver is a cam-
era [9, 10], has been used for car-to-car communi-
cations and car-to-infrastructure communications
[11, 12], and recently it has started to being
applied to communications with UAVs [13, 14].
Despite the fact that the purpose of the OCC sys-
tem is to exchange information, it can be used to
improve the active vision-based localization and
identification systems for UAVs.

This paper focuses on the mutual identifica-
tion capacity of a vision-based active system, as
the relative localization issue is beyond its scope.
We investigate the mutual identification using the
UVDAR system, as mentioned above.

The main contributions of this article are as
follows:

• Blinking sequence generation method: a theo-
retical framework was developed to design sets
of blinking sequences for the LEDs of UAV
groups. These sequence sets are optimized to
discriminate between as many sequences as pos-
sible in the shortest time. This enables large
groups of UAVs to perform mutual identifica-
tion in the shortest time.

• Theoretical analysis of UVDAR: we performed
an analytical analysis to derive the probability
of misdetection of the blinking sequences, and
analytically determined the number of different
blinking sequences that can be detected as a
function of their length. This can be used to
calculate the total number of UAVs that can be
identified by this system.

• Experimental validation: we implemented a pro-
totype of the proposed vision-based mutual
identification system for UAVs and tested it
outdoors.

The paper is organized as follows. In section 2,
we describe the system model. This includes the
models for the UAV clock signal, for the optical
identification system, and for the optical trans-
mission channel. In section 3, we formalize the
problem of the visual identification system for
UAVs. In section 4, we describe the theoretical
framework for the construction of the blinking
sequences for the LEDs using the Non-Return-to-
Zero (NRZ) optical modulation (a popular optical
modulation scheme). In section 5, we show how,
instead of the NRZ, the use of the Manchester
optical modulation (another popular optical mod-
ulation scheme) changes the properties of the
identification system. In section 6, we study the
effects of the UAVs clock on the performance of
the identification system. Section 7 describes the
experiments performed. Conclusions are provided
in section 8.

2 System Model

We consider a group of UAVs composed of J mem-
bers. Each UAV is equipped with the UVDAR
system, see Fig. 1, which is composed mainly of
three modules, see Fig. 2: the optical transmitter,
the optical receiver, and the clock signal genera-
tor. We now discuss the three modules, and the
optical channel model.

2.1 Clock signal

The clock signal’s falling (or rising) edges indicate
the instants when the receiver’s camera shoots
and when the LEDs of the transmitter can change
state. An ideal clock signal should be stable
and the interval between falling (or rising) edges
should always remain constant. Furthermore, the
clock signal frequency of the different UAVs of
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Fig. 1 On top UAV platforms used in the experimental
data acquisition. The frame is based on the Holybro X500
platform, with an arm length from the center of 0.245 cm.
Each unit is equipped with the UVDAR system, with three
UV cameras and four pairs of UV LEDs. Each of the LED
pairs is placed at the end of each arm, and cameras are
attached as shown on the diagram to cover the entire hor-
izontal surroundings. The LEDs are rated at 1W input
power, but we are driving them at 600mW, producing
cca 276mW of radiometric power. On the bottom, view
of the left UVDAR camera of UAV-0 in the outdoor flight
experiment. The markers are correctly labeled based on the
retrieved signal.

the group should be exactly the same. Unfor-
tunately, due to physical impairments, the clock
signals are not perfectly stable. Even if the nomi-
nal frequencies of all the clocks are the same, their
true frequencies will differ slightly. These impair-
ments and their effects on similar systems have
been documented in the literature. For instance, in
[15, 16], it was observed that the measured inter-
frame interval of certain cameras is time-variant.
In [9], it was noted in the context of smartphone
cameras, that the nominal frame rate by software
differs from the true frame rate and varies depend-
ing on the phone. As will be demonstrated in
section 6, these irregularities on the clock signal
limit the capacity of the optical identification sys-
tem studied in this article. First, let us describe
the model of the jth UAV clock signal, denoted
by cj(t). Without loss of generality, we consider
that the optical transmitter and receiver are con-
trolled by the falling edges of cj(t). Based on the

mathematical models for clock signals described
in [17, 18], we model the kth falling edge instant
of cj(t) as:

tj,k = Tj + nj,k + tj,k−1, k = 1, 2, (2.1)

where tj,0 is the instant when the system of the jth
UAV is turned on; tj,k with k ≥ 1 is the instant of
the kth falling edge instant of cj(t); Tj > 0 is the
true clock signal period of cj(t) and is modelled
as a random variable with mean E[Tj ] = T , with
T being the nominal period of the clock signal,
with variance var[Tj ] = σ2

T . Due to the fabri-
cation process uncertainties, different clocks will
have slightly different oscillation frequencies, even
if their nominal frequencies are the same. Thus, we
consider that the set {Tj}Jj=1 is composed of J sta-
tistically independent and identically distributed
random variables. nj,k accounts for the frequency
instability of the clock signal and is modelled as a
white noise process.

2.2 Optical Transmitter

Fig. 2 (right) depicts the diagram of the opti-
cal transmitter for the quadrotor shown in Fig.
1. The transmitter is divided into M parallel
branches. In this particular case, we selectM = 4,
i.e., one branch per UAV arm in Fig. 1. We can
have more branches [19], but a discussion on such
configurations is beyond the scope of this arti-
cle. The transmitter modules are the following:
1) Binary stream generator: takes as inputs
the clock signal cdj (t) and a binary matrix Sj of
size M × L, which contains M binary sequences
of length L. The mth binary stream generator
produces the discrete-time stream sj,m composed
of a continuously repeated concatenation of the
binary sequence contained in the mth row of the
matrix Sj ; sj,m[k] denotes the kth bit in the binary
stream sj,m. All the binary sequences used by
the UAVs in the group are stored in a dictionary
matrix D; each row of the matrix D is a different
binary sequence, and its identification number is
the row number in which it is stored. The dictio-
nary D is shared by all the UAVs in the group.
Finally, the identification number embedded in the
stream sj,m is the same as the identification num-
ber of the binary sequence used to generate it. 2)
Encoder and Modulator (Enc./Mod.): the
encoder codifies the binary discrete-time stream
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Fig. 2 UVDAR block diagram of the jth UAV (left). Optical receiver architecture for the jth UAV (center). Optical
transmitter architecture for the jth UAV (right).

sj,m with a line code, such as NRZ or Manchester
[20]. The modulator modulates the encoded signal
with On-Off Keying (OOK) [21] to produce the
continuous-time electrical signal uj,m(t) ∈ {0, 1}.
3) Frequency divider: divides the clock signal
frequency by a factor df . The modulator and the
encoder are both driven directly with the clock
signal cj(t). But, the binary stream generator is
driven by cdj (t). If the Manchester code is used,
then each bit consists of two minibits and the fre-
quency of cdj (t) must be half the frequency of cj(t),
i.e., we need df = 2. Alternatively, if the NRZ
code is used, then each bit consists of only one
mini-bit. Thus, the frequencies of cdj (t) and cj(t)
must be equal, i.e. df = 1. 4) Analog frontend:
this transforms the binary electrical signal uj,m(t)
into the optical signal vj,m(t) = Puj,m(t), where
P is the emitted optical power. Each frontend has
two LEDs that emit the same optical signal with
a wavelength of 395 nm. Both LEDs are mounted
orthogonally (see Fig. 1) to increase the angular
visibility range of the optical signal.

2.3 Optical Receiver

The architecture of the optical receiver of the jth
UAV is shown in Fig. 2 and is composed of the
following modules: 1) Camera: a grey scale UV
sensitive camera mounted on the UAV as shown
in Fig. 1 (center). The camera is coupled with
an optical filter that allows UV light to pass and
filters-out most visible light, see [22]. The filter
attenuates most of the background light and facil-
itates the detection of the UV light emitted by the
other UAVs. The camera shoots at every falling
edge of the clock signal cj(t) with an exposure
time τe. The kth frame captured is denoted as

Fj [k]. 2) Image Processing: this module must
detect the bright spots potentially generated by
the UV LEDs from the other UAVs in the group,
track their motion on the screen, and then extract
the optical signal from their blinking patterns. To
do this, the frame Fj [k] is first binarized with
the threshold ηb to produce F̄j [k]. This simpli-
fies the distinction between the background and
bright spots potentially generated by UV LEDs,
see Fig. 1. When a new bright spot is detected in
F̄j [k], a serialized service number ns is assigned
and the following operations take place simulta-
neously: i) the coordinates of the central pixel of
the nsth bright spot is estimated p̂j,ns [k], and
its onscreen motion begins to be tracked; ii) the
pixel with coordinates p̂j,ns [k] is read in F̄j [k],
and the values are stored as a binary time series
yj,ns [k]. The instant when the time series associ-
ated with the ns bright spot is created is denoted
as its birth time tb,j,ns ; iii) a classifier instance is
created to process the time series yj,ns . As long
as the nsth bright spot is successfully tracked,
the associated time series yj,ns remains alive. But,
once the tracking fails, the time series yj,ns dies
and the associated classifier instance is destroyed.
We denote this instant as the death time td,j,ns
of time series yj,ns . Possible reasons for tracking
failure may include LED occlusions, fast move-
ments of the bright spot on the camera frame,
or LED blinking patterns with long times off. 3)
Classifier. Each classifier takes the dictionary D
described in section 2.2 and the last L bits received
in the binary stream yj,ns as input. The classifier
output is the time-series zj,ns [k], which is then fed
into the higher level modules. The first objective of
the classifier is to determine if {yj,ns [m]}km=k−L+1

was generated with a binary sequence contained

CHAPTER 2. ULTRAVIOLET RELATIVE LOCALIZATION SYSTEM UVDAR

Paper is under review, working version is available at https://arxiv.org/abs/2302.04770

28

https://arxiv.org/abs/2302.04770


Springer Nature 2021 LATEX template

Optical communication-based identification for multi-UAV systems: theory and practice 5

in the dictionary D. This allows for discarding
the bright spots generated by sources other than
the UAVs. This is done by calculating the corre-
lation of {yj,ns [m]}km=k−L+1 with the sequences
contained into the dictionary D, and then com-
paring it with a detection threshold ηd. If the
classifier decides that {yj,ns [m]}km=k−L+1 was not
generated by a binary sequence contained in the
dictionary D, then it produces zj,ns [k]=−1. In the
contrary case, the classifier estimates the identifi-
cation number of the binary stream yj,ns ; zj,ns [k]
takes on this number.

2.4 Optical channel model

We reasonably assume that the exposure time τe is
smaller than the coherence time of the background
illumination signal. Then, regarding the optical
channel between an LED from the jth UAV and
the camera from the ℓth UAV, we have:

xℓ[k] = hℓ(tk)

∫ tℓ,k+τe

tℓ,k

vj(t)dt+ nℓ[k], (2.2)

where xℓ[k] is the pixel value from the kth frame
captured by the ℓth UAV camera, hℓ(tk) is the
optical channel gain, vj(t) is the optical power
emitted by the LED of the jth UAV, see 2.2, and
nℓ[k] is the noise generated at the pixel. In general,
the integral representing the exposure process in
(2.2) becomes [17]:

∫ tk+τe

tk

p(t)dt = τeP (a[k]s[kt]+(1−a[k])s[kt+1]),

(2.3)
where kt is related to k by:

kt =

{
argmin

n
{| tℓ,k − tj,n |} : tj,n ≤ tℓ,k < tj,n+1

}
.

(2.4)
During the exposure process, a bit transition may
occur in vj(t). This is modelled by the random
process a[k] ∈ [0, 1], whose behaviour depends on
the relative uncertainties of the clock signals from
the transmitter and receiver, as well as on the
exposure time τe.

3 Problem description and
proposed solution

The mutual identification system must determine
the identification numbers associated with the
optical signals emitted by the LEDs of the UAVs
in the group, as in section 2.2. This identification
system can be used to estimate the relative loca-
tion and pose of the UAVs [19]. In this case, each
branch of the optical transmitters of the UAVs
will transmit different optical signals, and thus all
rows in Sj will be different. On the other hand, the
identification system can be used to estimate only
the relative positions of the UAVs [23, 8, 24]. In
this case, each branch of the optical transmitters
will transmit the same optical signals, and there-
fore all the rows in Sj will be identical. The matrix
Sj is related to the dictionary D by:

Sj = AjD, (3.1)

where Aj is an M ×N binary matrix that we call
the assignation matrix. It is a design parameter to
select the binary sequences used by the jth UAV,
and also to determine in which branches they will
be emitted.

We seek to design the dictionary matrix D for
the system described in section 2 to minimize the
expected identification time for a fixed number of
different optical signals, i.e. minimize the expected
identification time given for a fixed number of rows
of D. We define the identification time of an opti-
cal signal as the time elapsed from its birth time
(defined in section 2.3) until the time when the
classifier assigned to the signal successfully deter-
mines its identification number. The design of the
ssignation matrices {Aj}Jj=1 is beyond the scope
of this article. Thus, they will be considered fixed
with an arbitrary configuration.

Regarding the encoder, we select the NRZ cod-
ing as it maximizes the bit rate for the OOK
modulation (as long as synchronization problems
are not considered) [25]. In section 5, we briefly
discuss utilization of the Manchester coding.
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4 Binary Sequences
Construction and
Combinatorial Analysis

The performance of the mutual vision-based iden-
tification system discussed in this article strongly
depends on the set of binary sequences contained
in the dictionary D, as mentioned in section 2.3.
Let XL be the set of all the binary sequences in
the dictionary matrix D with dimensions M × L.
Let bn denote the nth binary sequence in XL and
bn[k] denote its kth bit, where k = 0, 1, · · · , L−1.
For simplicity, we disregard the effects of the
clock signals mismatches in this section, but they
will be studied theoretically in section 6 and
experimentally in section 7.

Before we proceed, we describe the require-
ments of the identification system receiver of Fig.
2 (center). The image processing module in Fig.
2 (center) must reliably detect the bright spots
generated by the LEDs of the group’s UAVs. It
must also discriminate bright spots generated by
the UAVs from the bright spots generated by ran-
dom environmental lights. As the UAVs move and
their relative positions change, the image process-
ing module must track the motion of the blinking
lights emitted by the LEDs of the UAVs. The
classifier must determine the true identification
number of the analyzed optical sequences as fast
as possible. In addition, the identification system
must support as many different optical signals as
possible to enable its use for a large group of of
UAVs.

The requirements described above dictate the
following requirements for the binary sequences in
the set XL:

1) To facilitate the detection and tracking of
the bright spots generated by the LEDs, we ensure
a minimum average power of the emitted optical
signals. Since we are using the OOK modula-
tion with the NRZ coding, the average power
of the optical signal associated with the binary
sequence bn is proportional to the average power
of the binary sequence. To ensure a minimum aver-
age power on all emitted optical sequences, we
constrain all of the binary sequences to satisfy:

∥bn∥0 ≥ b̄L, (4.1)

where b̄ ∈ [0, 1] is the desired normalized minimum
average power, and ∥.∥0 is the L0-norm.

2) Many bright spots on the camera frames
that are not generated by UAV LEDs are sunlight
reflections. Some of these reflections are generated
by static reflectors and appear on many consec-
utive camera frames as a constant bright spots.
We help to discriminate valid binary sequences
from these reflections by limiting the maximum
time that any LED can be continuously turned
on. Thus, we limit to N1 the number of circu-
larly consecutive bits with value ’1’ for each binary
sequence bn.

3) The image processing module must track
the motion of all bright spots detected on the
camera frame. One way to implement this tracker
is by using the Hough transform [26] as in [8].
But, regardless of the particular implementation,
the general behaviour of the tracker is as follows.
When the bright spot is detected on the camera
frame, the tracker locks to the central pixel of the
bright spot and starts tracking it. Since the UAV
LEDs are blinking, when the LED is turned off,
the tracker must predict the central pixel of the
bright spot, which should appear once the LED
is turned on again. The longer the LED remains
off, the larger the uncertainty of the central pixel
location. If this uncertainty grows too large, the
tracking will fail. To reduce the tracking failure, we
limit the time that each LED can remain turned
off by restricting bn to have no more than N0

circularly consecutive bits with value ’0’.
4) The emitted optical signals are periodic

with a period of L bits. The L most recent bits
received at the input of the classifier at time
instant k, assuming no bit errors, are:




y[k]
y[k − 1]

...
y[k − L+ 2]
y[k − L+ 1]



=




bn[mod(L− 1 + d, L)]
bn[mod(L− 2 + d, L)]

...
bn[mod(d+ 1, L)]
bn[mod(d, L)]



,

(4.2)
where d is a random variable uniformly distributed
within the discrete set {0, 1, . . . , L−1}, represent-
ing the lack of time synchronization between the
optical receiver and the optical transmitter. The
classifier must identify bn, regardless of the ran-
dom shift d and without its knowledge. Thus, any
two binary sequences bn and bm are considered
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equal if one is a circularly shifted version of the
other, in which case we say that they are circularly
equivalent.

5) When the Signal-to-Noise Ratio (SNR) is
poor, the raw Bit Error Rate (BER) is large, and
can result in long identification times and con-
stant identification failures. To alleviate this, we
can add some robustness by increasing the circular
Hamming distance of the set XL, defined as:

D(XL) = min
bn,bm∈XL

Hc(bn,bm). (4.3)

where Hc(bn,bm) ≜ mind ∥bn ⊕ c(bm, d)∥0 is the
circular Hamming distance between the binary
sequences bn and bm; c(bn, d) is the binary
sequence bn after being circularly shifted d bits
to the right; and ⊕ is the XOR logic operator. If
D(XL) = 1, then any single bit error can trans-
form a valid binary sequence into another valid
binary sequence. Thus, it is impossible to deter-
mine if the binary sequence was correctly decoded.
If D(XL) = 2, any single bit error will trans-
form a valid binary sequence into an invalid binary
sequence. Thus, it becomes possible to detect sin-
gle bit errors, but it will not be possible to correct
them. If D(XL) = 3, then any single bit error will
transform a valid binary sequence into an invalid
binary sequence. However, the circular Hamming
distance of this erroneous invalid binary sequence
to the original binary sequence will be shorter than
to any other valid binary sequence. Thus, it will
be possible to detect and correct single bit errors.

4.1 Binary sequence set generation
and analysis

After establishing the sequence requirements, we
construct XL and study its cardinality. To do this,
we use the algorithm 1 with the following inputs:
the set SL of all the 2L binary sequences of length
L, the minimum value allowed for each sequence
average b̄ (see (4.1)), the maximum number N1

(N0) of circularly consecutive bits with value ’1’
(’0’) for each sequence, and the circular Hamming
distance Hm for XL.

We now discuss each step of algorithm 1 and
calculate the cardinality of the output set XL. To
do this, we partition SL into L + 1 partitions,
{SLℓ }Lℓ=0, where SLℓ is the partition containing all
binary sequences b ∈ SL that satisfy ∥b∥0 = ℓ.

Algorithm 1 Sequences generation for NRZ cod-
ing

1: procedure XL = f(SL, b̄, N1, N0, Hm)
2: AL=PowerTest(SL, b̄)
3: BL=CircularityTest(AL)
4: CL=OnesTest(BL, N1)
5: DL=ZerosTest(CL, N0)
6: EL=HammingTest(DL, Hm)
7: return EL
8: end procedure

The same partition is applied to each set. The car-
dinality of SLℓ is given by the binomial coefficient
L choose ℓ:

| SLℓ |=
(
L
ℓ

)
. (4.4)

4.1.1 Power test

The power test sets the minimum power of the
emitted optical signals to b̄P . This is done by dis-
carding the subsets SLℓ with ℓ < Lb̄. Thus, the
cardinality of AL is:

| AL |=
L∑

ℓ=⌈Lb̄⌉
| SLℓ | . (4.5)

4.1.2 Circularity test

This test ensures that all binary sequences in BL
are circularly different. To do this, we extract
a sequence b from ALℓ , include it into BLℓ , and
eliminate from1 ALℓ all of the sequences that are
circularly equivalent to b. We repeat this for each
sequence in ALℓ until | ALℓ |= 0. Then, we repeat
this process for all the remaining partitions of AL.
Each binary sequence b ∈ ALℓ has, at most, L− 1
circularly equivalent sequences2 in ALℓ . Therefore,
for 0 < ℓ < L, we can approximate the cardinality
of BLℓ as:

| BLℓ |≈| ALℓ | /L, (4.6)
while | BL0 |= 1 and | BLL |= 1.

4.1.3 Ones and zeros tests

These tests ensure that each of the binary
sequences has no more than N1 circularly con-
secutive bits with value ’1’, and no more than

1All the circularly equivalent sequences to b ∈ ALℓ have the
same L0 norm, and thus belong to the same partition.

2It can have less if the sequence presents some symmetries.
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N0 circularly consecutive bits with value ’0’. Let
us start with the Ones test. All sequences within
partitions {BLℓ }ℓ≤N1

have no more than N1 circu-
larly consecutive bits with value ’1’, since their L0

norm is not larger than N1 by definition. Conse-
quently, | CLℓ |=| BLℓ | for ℓ ≤ N1. But, partitions
{BLℓ }ℓ>N1

have sequences with more than N1 cir-
cularly consecutive bits with value ’1’ and must
be eliminated. To calculate {| CLℓ |}ℓ∈(N1,L−1], we
proceed as follows. Due to the circular equivalence,
every single sequence b ∈ BLℓ with N1 < ℓ < L
having more than N1 circularly consecutive bits
with value ’1’ can be written, after some circular
shifting, in the form of the following row vector:

b = [1N1+1, vL−N1−2(ℓ−N1 − 1), 0], (4.7)

where 1x is a binary row vector of length x and
∥1x∥0 = x, vx(y) is any binary row vector of length
x with ∥vx(y)∥0 = y. The number of all sequences
b ∈ BLℓ in (4.7) is determined by the number of
different vectors vL−N1−2(ℓ−N1−1), given by the
binomial coefficient L−N1− 2 choose ℓ−N1− 1:

∆C(ℓ) =

(
L−N1 − 2
ℓ−N1 − 1

)
. (4.8)

The number of sequences b ∈ BLℓ that violate
the constraint of the maximum allowed number
of circularly consecutive bits with value ’1’ is
approximately ∆C(ℓ). Thus, we have:

| CLℓ |≈ max
(
| BLℓ | −∆C(ℓ), 0

)
. (4.9)

The zeros test is complementary to the ones
test in algorithm 1. Thus, we use a similar proce-
dure to estimate | DLℓ |.

If N1 ≥ L − N0, then the zeros-test acts only
on partitions that were not modified by the ones-
test. Thus, using the same method used to derive
(4.8)-(4.9), we obtain for the zero-test:

| DLℓ | ≈ max
(
| CLℓ | −∆D(ℓ), 0

)
, (4.10)

∆D(ℓ) =

(
L−N0 − 2

L− ℓ−N0 − 1

)
. (4.11)

If N1 < L − N0, then we can divide the par-
titions into three groups: i) partitions affected
by the zeros-test only, i.e., partitions that sat-
isfy CLℓ = BLℓ and DLℓ ̸= CLℓ . These partitions
are given by ℓ ∈ 0, 1, · · · , N1 − 1; ii) partitions

affected by both tests, i.e., partitions that satisfy
CLℓ ̸= BLℓ and DLℓ ̸= CLℓ . These partitions are given
by ℓ ∈ N1, N1 + 1, · · · , L−N0; and iii) partitions
affected only by the ones-test, i.e., partitions that
satisfy CLℓ ̸= BLℓ and DLℓ = CLℓ . These partitions
are given by ℓ ∈ L−N0 + 1, L−N0 + 2, · · · , L.

The cardinality of {DLℓ }ℓ∈[0,N1) is calcu-
lated using (4.10)-(4.11). The cardinality of
{DLℓ }ℓ∈(L−N0,L] remains the same as that
of the partitions {CLℓ }ℓ∈(L−N0,L]. Regarding
{DLℓ }ℓ∈[N1,L−N0], (4.10)-(4.11) provide a poor car-
dinality estimation, as they disregard that some
sequences that violate the zeros-test also violate
the ones-test and thus were already discarded.
After extensive numerical analysis, we derived the
following heuristic approximation for the cardinal-
ity of partitions {DLℓ }ℓ∈(L−N0,L]:

| DLℓ | ≈ max(| CLℓ | −∆′
D(ℓ), 0), (4.12)

∆′
D(ℓ) = max(∆D(ℓ)−∆C(ℓ), 0), (4.13)

where ∆′
D(ℓ) is based on the difference between

the number of sequences eliminated by the one-
test and those eliminated by the zero-test.A good
cardinality approximation for every partition DLℓ
can be obtained by combining equations (4.5),
(4.6), (4.8), (4.9), (4.11), (4.12), and (4.14). We
show the cardinality of DL and its estimation,
using the above-mentioned equations, in the fifth
and sixth columns of Table 1, respectively.

4.1.4 Hamming distance test

This test tries to maximize the cardinality of XL,
while satisfying the circular Hamming distance
D(XL) = Hm:

maximize
f

∥f∥0 (4.14)

s.t.
Hm[f ]k[f ]j ≤ Hc(bk,bj),
j, k = 1, ..., | DL |, j ̸= k

where bk is the kth sequence in DL, and f is a
binary vector of length | DL | that indicates which
sequences are included in XL. If bk ∈ XL, then
[f ]k = 1. But, if bk /∈ XL, then [f ]k = 0. (4.14)
describes a discrete combinatorial optimization
problem. Verifying if a particular binary vector
f∗ constitutes an optimum solution requires the
exploration of the full search space (composed
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of 2|D
L| elements). Thus, as | DL | grows, the

problem becomes more computationally expen-
sive to solve. Consequently, less computationally
demanding suboptimal solutions are of interest.

For Hm = 1, we have that XL = DL. For
Hm = 2, we can derive a suboptimal solution
by considering the following three properties: i)
if bk,bj ∈ DLℓ , then Hc(bk,bj) ≥ 2 because
∥bk∥0 = ∥bj∥0 and Hc(bk,bj) > 0. To transform
any binary sequence bk into any other sequence
bj , at least two bit flips are needed: a 0 bit flip
and a 1 bit flip. A single one bit flip on bk would
alter ∥bk∥0, and thus the resulting sequence would
no longer belong to DLℓ ; ii) if bj ∈ DLℓ and
bk ∈ DLℓ±2, then Hc(bj ,bk) ≥ 2 due to ∥bj∥0 =

∥bk∥0±2; and iii) if bj ∈ DLℓ and bk ∈ DLℓ±1, then
Hc(bj ,bk) ≥ 1 due to ∥bj∥0 = ∥bk∥0 ± 1. From
these properties, we conclude that D(∩kDL2k) ≥ 2
and D(∩kDL2k+1) ≥ 2, where ∩ is the intersection
operator. Thus, a suboptimal solution for Hm = 2
is:

XL =

{
∩kDL2k if | ∩kDL2k |>| ∩kDL2k+1 |
∩kDL2k+1 otherwise

(4.15)
and its cardinality is the sum of the cardinalities
of the selected partitions, which we have already
shown how to calculate.

Developing similar methods for Hm > 2
is extremely complicated due to the growing
complexity of the relations among the binary
sequences and the partitions. A suboptimal solu-
tion can be obtained using methods based on
random search. It is simple to implement, but
difficult to analyze.

It is possible to analytically derive a coarse car-
dinality estimation for the optimum solution when
Hm = 3. To do this, we use a modified version of
the definition of a sphere around a binary vector
c as used in [27]:

Sr(c) ≜ {v ∈ DL : Hc(c,v) ≤ r} (4.16)

where c is the center of the sphere of radius r. If
bj ,bk ∈ XL with D(XL) = 3, then Hc(bj ,bk) ≥
3. The following properties also hold: i) the spheres
of radius one of any two valid sequences do not
overlap S1(bj) ∩ S1(bk) = ∅; ii) the sphere of
radius two of any valid sequences does not include
any other valid sequence S2(bj) ∩ bk = ∅; iii) the
spheres of radius two (or the larger) of any two

valid sequences can overlap and so, in general, we
have that Sn(bj) ∩ Sn(bk) ̸= ∅ for n ≥ 2; and iv)
regardless of the nature of DL in (4.16), the vol-
ume of the sphere of radius one of any sequence is
bounded as follows: | S1(b) |≤ L+ 1.

From the properties described above, we can
think, in an oversimplified manner, of the opti-
mization problem (4.14)-(4.15) as the problem of
forming as many spheres of radius one, defined by
(4.16), as possible while using the sequences inDL,
where XL is formed with the sequences that con-
stitute the centers of all of the spheres. Following
this reinterpretation of (4.14)-(4.15), a coarse esti-
mation for the cardinality of XL when D(XL) = 3
is the maximum number of spheres of radius one
that can be formed with sequences in DL:

| XL |≈
⌈
| DL |/(L+ 1)

⌉
. (4.17)

In table 1, we plot, for a circular Hamming dis-
tance of 3, the cardinality of XL in the seventh
column and its estimate using (4.17) in the eighth
column. For L ≤ 11, equation (4.17) is accurate,
but for larger values of L, it is poor.

Table 1 Cardinality Results

L b̄ N1 N0 | DL | ˆ| DL | | XL | ˆ| XL |
8 0.1 6 4 29 28 4 4
8 0.2 6 6 32 31 5 4
8 0.5 3 7 14 13 2 2
10 0.3 7 3 72 70 8 7
10 0.4 3 6 56 54 6 6
10 0.5 7 2 42 41 4 4
11 0.2 4 9 148 148 11 13
11 0.2 4 3 97 98 9 9
11 0.2 6 8 172 172 11 15
12 0.1 6 7 326 321 20 26
12 0.4 3 7 159 153 13 13

5 Manchester coding

If we use Manchester coding instead of NRZ, the
encoder/modulator must operate twice as fast as
the binary stream generator and the frequency
division factor must be df = 2 (see diagram
in Fig. 2). In this case, each bit has a dura-
tion Tb of two periods of the clock signal cj(t),
i.e., Tb = 2T . With Manchester coding, the LED
always changes state in the middle of every bit.
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Consequently, regardless of the binary stream sig-
nal sj,m, the average power of the emitted optical
signal is E[vjm(t)] = 0.5P . The LEDs will con-
tinuously be turned on for 2T at most, and also
continuously turned off for 2T at most. Thus, the
Manchester coding automatically satisfies some of
the requirements listed in section 4. Thus, if we
use Manchester coding, we can drop some lines
from Algorithm 1 and use Algorithm 2 instead.

Algorithm 2 Sequences generation for Manch-
ester coding

1: procedure XL = fM (SL, Hm)
2: AL=CircularityTest(SL)
3: BL=HammingTest(AL, Hm)
4: return BL
5: end procedure

Algorithm 2 is less restrictive than Algorithm
1. It discards less sequences and, under the same
conditions, generates a set XL with higher cardi-
nality. In other words, we require shorter sequence
lengths L to obtain the set XL with a desired
number of sequences. However, the bit duration
Tb when using the Manchester code is twice that
of the NRZ code. To compare both codes fairly,
we note from Algorithm 1 and Algorithm 2 that
| fM (SL, Hm) |=| f(SL, 0.5, 2, 2, Hm) |. Using this
equivalence, we generate various sets of binary
sequences with Algorithms 1 and 2 for compari-
son. The result is shown in table 2. The left part
of the table shows the results obtained by using
Algorithm 1 with the NRZ coding, where NNRZ

is the number of obtained sequences and LTb/T
is the normalized sequence duration. On the right
side of the table, we observe the same information
for the sequences obtained using algorithm 2 with
the Manchester coding. We note that, for a given
value of NNRZ, the sequence duration is shorter.
Thus, the NRZ coding results in shorter sequence
durations and consequently shorter identification
times.

Lastly, the use of optical signals of different
frequencies as is done in [19, 24] is extremely inef-
ficient. Using the Fast Fourier Transform (FFT)
we can demonstrate that with this strategy we can
only produce L/2 different sequences of length L.

Table 2 NRZ and Manchester Comparison

NNRZ L Hm LTb/T NMan L Hm LTb/T

6 8 1 8 6 5 1 10
11 10 1 10 12 6 1 12
24 12 1 12 34 8 1 16
7 14 3 14 8 10 3 20
16 16 3 16 18 12 3 24
28 18 3 18 29 13 3 26

6 Identification Time Analysis

Next, we study the identification time of the
sequences considering the clock signal impair-
ments. We focus on the link from one LED of
UAV-1 to the camera of UAV-0. For simplicity, we
assume an errorless detection and perfect tracking
of the bright spot generated by the LED.

6.1 Ideal clock signals

When all clock signals are stable (i.e., nj,k = 0 in
(2.1)) and have the same true period (i.e., Tj = T ),
then (2.1) becomes:

tj,kj = kjT + tj,0, (6.1)

where kj is the local discrete-time index of the jth
UAV. From (6.1), it is clear that the clock signals
of the optical transmitter of the UAV-1 and of the
optical receiver of the UAV-0 operate at exactly
the same rate. Thus, the receiver always takes one
sample per bit transmitted, and the only source of
bit error detection comes from the noise discussed
in section 2.4.

When Hm = 1, the classifier must accumu-
late L consecutive errorless bits to identify the
binary sequence. In this case, the minimum detec-
tion time (normalized over T ) is L, which occurs
when the first L bits received are errorless. Given a
bit error probability pb, the following identification
time Td probabilities hold:

Pr(Td < L) = 0, (6.2)

Pr(Td = L) = (1− pb)L. (6.3)

For Pr(Td = L+m) with m = 1, · · · , L, the most
recent L bits received must be errorless and the
m−L bit (counted backwards) must be erroneous.
Therefore, we have:

Pr(Td = L+m) = pb(1− pb)L. (6.4)
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For m ∈ 1, 2, · · · , L− 1], we have

Pr(Td = 2L+m) = 1− pb(1− pb)2L
− (m− 1)p2b(1− pb)2L,

(6.5)

and for m ≥ L, we have

Pr(Td = 2L+m) =

(
1−

m−1∑

k=0

Pr(Td = L+ k)

)

× pb(1− pb)L. (6.6)

From (6.4)-(6.6), the expected identification time
is:

E[Td] =
[
3pb
2
L2 +

(
1 +

pb
2

)
L

]
(1− pb)L

+

[ ∞∑

n=2L+1

n

(
1−

n−L−1∑

k=L

Pr(Td = k)

)]

× (1− pb)L

From (6.7), we generally observe that the expected
identification time is a strictly increasing non-
linear function of the sequence length L. This
analysis also holds for Hm = 2, but for Hm = 3,
the analysis is more complex.

6.2 Stable clock signals with
uncertain oscillation frequency

A more realistic case is when all clock signals are
stable, but we consider the uncertainty due to the
fabrication process in the clock period (i.e., σ2

T ̸=
0). Then, (2.1) becomes:

tj,kj = kjTj + tj,0. (6.7)

After doing some algebra in (6.7) and (2.4), kt
becomes:

kt =

⌊
∆+ k0T0

T1

⌋
(6.8)

−
⌈

2(t0,0 − t1,0)
T1 + T0 + sign(t0,0 − t1,0)(T1 − T0)

⌉
,

where

∆ = t0,0 − t1,0 (6.9)

−
⌊

2(t0,0 − t1,0)
T1 + T0 + sign(t0,0 − t1,0)(T1 − T0)

⌋
.

The index kt, defined in (2.4), is the value of the
local discrete time index k1 at the transmitter
when the local discrete time index at the receiver
is k0. In other words, at local discrete time k0,
the receiver samples the ktth bit emitted by the
receiver.

Let us define the following random variable:

δ0,1 ≜ T0/T1 − 1. (6.10)

As mentioned in section 2.1, Tj0 and Tj1 are
statistically independent. We also assume that3

σ2
T /T

2 ≪ 1, and that the skewedness of Tj is zero,
i.e., its probability distribution is symmetric w.r.t.
its mean. Using the Taylor series approximations
in (6.10), we demonstrate that E[δ0,1] ≈ 0 and
that:

var[δ0,1] = σ2
δ ≈ 2σ2

T /T
2. (6.11)

The r.h.s. of (6.8) is composed of a time-variant
term and of a constant term. We rewrite the first
term using (6.10):

⌊(∆ + k0T0)/T1⌋ = k0+ ⌊∆/T1 + k0δ0,1⌋ . (6.12)

We observe in (6.12) that the time variant term
of kt in (6.8) is composed of a linear term k0
and a nonlinear function of δ0,1 and k0. When the
receiver’s clock is slower than the transmitter’s
clock, we have δ0,1 > 0, and the nonlinear func-
tion in (6.12) increases one unit approximately
every ⌊1/δ0,1⌋ sampling instants. However, when
the receiver’s clock is faster than the transmitter’s
clock, we have δ0,1 < 0, and the nonlinear func-
tion in (6.12) decreases one unit approximately
every ⌊1/ | δ0,1 |⌋ sampling instants. Conse-
quently, every ≈ ⌊1/ | δ0,1 |⌋ sampling instants,
the receiver will miss a bit (if δ0,1 < 0) or dupli-
cate a bit (if δ0,1 > 0). If the length of the emitted
binary sequence, L, is larger than ⌊1/ | δ0,1 |⌋,
then the sequence will always be received with a
missing or a duplicated bit. Thus, to ensure cor-
rect reception, the binary sequence length must
satisfy L < ⌊1/ | δ0,1 |⌋. Since δ01 is actu-
ally a random variable, the probability that the
transmission of a binary sequence with length L

3This is a realistic assumption for oscillators of reasonable
quality.
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fails every time is Pr
(
L ≥| δ01 |−1

)
. From (6.11)

and the Chebyshev’s inequality, we bound this
probability as:

Pr
(
L ≥| δ01 |−1

)
≤ σ2

δL
2 = 2σ2

TL
2/T 2, (6.13)

The probability that transmission through this
link will work correctly is the complement to
(6.13). The resulting inequality is the key to deter-
mining the maximum sequence length L for a
group of J UAVs. From (6.13), the probabil-
ity that all possible J(J − 1) links can operate
correctly is:

pg (J) = Pr
(
δJ < L−1

)
(6.14)

The random variable δJ is the maximum value of
the J(J − 1) identically distributed random vari-
ables {| δj,k |}j ̸=k. However, that set of J(J −
1) variables is generated by only J independent
random variables ({Tj}Jj=1). Thus, the random
variables {| δj,k |}j ̸=k are not statistically inde-
pendent. But, if we neglect this, then we can make
the following approximation:

pg (J) ≈
(
Pr
(
| δjk |< L−1

))J(J−1)
, (6.15)

Further, using (6.13), we obtain:

pg (J) ≥
(
1− 2σ2

TL
2/T 2

)J(J−1)
. (6.16)

The probability pg (J) that all optical links oper-
ate correctly in the group of J UAVs is lower
bounded according to (6.16). Consequently, if we
want all the optical links in a group of J UAVs
to work correctly with a probability that is lower
bounded by pg (J), then the sequence length must
satisfy:

Lmax ≜ T

σT

√
1

2

(
1− exp

(
ln (pg (J))

J(J − 1)

))
≥ L.

(6.17)
The maximum sequence length Lmax is propor-
tional to the nominal clock period T and inversely
proportional to the standard deviation of the clock
period σT . Lmax is a decreasing function of the
number of UAVs within the group.

7 Simulations and
Experiments

7.1 Hamming distance effect on the
identification time

We consider a group of J = 11 UAVs with two dif-
ferent blinking sequences assigned to each UAV,
i.e. dim(Sj) = 2. Thus, we need to construct
a dictionary D with at least 22 different binary
sequences. In addition, we set b̄ = 0.4, N1 = 7,
and N0 = 7. Next, we consider two different cases.
In case A, we construct a set with Hm = 1, and
sequence length L = 8 (the minimum length that
satisfies the desired number of sequences) which
contains a total of 22 different sequences. In case
B, we construct a second set with Hm = 3, and
sequence length L = 13 (the minimum length that
satisfies the desired number of sequences) which
contains a total of 22 different sequences.

For both cases, we perform simulations to cal-
culate the classification probability error pce and
the expected identification time Td for different
bit probability errors pb. We perform these simu-
lations assuming σT = 0, i.e., perfect clock signals.
The results are presented at the top of Table
3. For pb ≤ 0.2, the identification time Td for
case B is longer, but its classification error prob-
ability is lower. In the absence of a clock signal
mismatch, the benefits of the reduced classifica-
tion error probability provided by the robustness
obtained by increasing the circular Hamming dis-
tance weaken as the bit probability error increases.
This is because sets of sequences with a larger cir-
cular Hamming distance must have larger lengths
to maintain their cardinality, thus presenting more
errors.

Table 3 Simulation Results

(δ = 0), pb 2 · 10−1 10−1 10−2 10−3

E[Td] (case A) 21.404 12.751 8.369 8.031
E[Td] (case B) 24.927 15.598 13.025 13.001
pce (case A) 0.789 0.538 0.073 0.0070
pce (case B) 0.687 0.322 0.006 0.0001

(| δ |= 0.01), pb 2 · 10−1 10−1 10−2 10−3

E[Td] (case A) 21.735 13.036 8.542 8.205
E[Td] (case B) 25.025 16.134 13.267 13.205
pce (case A) 0.795 0.559 0.120 0.059
pce (case B) 0.704 0.368 0.064 0.057
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7.2 Clock Period Uncertainty effect
on the maximum identification
capacity

Running the same simulations for the same set of
binary sequences as was done in section 7.1, we
now consider a mismatch between the transmit-
ter and receiver clocks of δ = 0.01 (i.e., one bit
missed every 100 bits transmitted approximately)
and present the results at the bottom of Table 3.

We observe a slight increase in the identifica-
tion time, but the classification error probability
has a more interesting behaviour: when the bit
error probability is high, the classification error
probability for case A gets close to that of case B,
just slightly higher. When the bit error probability
is medium, the classification error probability is
significantly lower for case B. When the bit error
probability is low, the classification error proba-
bility for both cases reaches a common lower limit,
where the errors due to the clocks mismatch dom-
inate the errors due to the individual bit decoding
errors. Thus, increasing the SNR (which implies a
further decrease of pb) will not contribute to fur-
ther reducing the classification error probability.
When pb is low, the classification error probability
for case A is slightly lower than that for case B,
because longer binary sequences are more affected
by the clocks mismatch.
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Fig. 3 In black, Lmax for pg(J)=0.999 and T/σT =
104.In blue and red, the minimum sequence length L of
a set with circular Hamming distance 1 and Hamming
distance 3, respectively, that satisfies the cardinality con-
straints for a group of J UAVs.

As mentioned in section 6.2, the variance σ2
T of

the clock used in the UAVs determines the capac-
ity of the identification system. To illustrate this,
we analyse groups composed of J UAVs equipped

with reasonably accurate clocks (T/σT = 104). In
Fig. 3, we plot in black the maximum sequence
length Lmax that can be used by the identifica-
tion system, so that we have a probability pg (J)
that all optical links can operate correctly (i.e.,
that any UAV can identify any other UAV). In
blue, we plot the minimum sequence length L of
a set with circular Hamming distance 1, required
to assign one sequence per UAV (top) and two
sequences per UAV (bottom); and in red, we plot
the minimum sequence length L of a set with
Hm = 3.

In the left image, we observe that for L ≥ 29,
both the blue and red curves are above Lmax. This
means that given the clocks used by the UAVs,
it is not possible to assign one distinct sequence
per UAV and ensure that any UAV in the group
can identify any other UAV in the group with a
probability of pg (J) or higher. In the right image
where we assign two different sequences per UAV,
this occurs for L ≥ 26. On the left, for 20 ≤ J ≤ 28
only, sets of sequences withHm = 1 can ensure the
proper operation of all optical links. For J ≤ 19,
we can use either sets of sequences with Hm = 1
or Hm = 3.

7.3 Camera interframe duration
analysis

We recorded the camera interframe duration of
the UAV shown in Fig. 1 during 400 seconds. The
timings were recorded as those reported by the
camera driver4 used on the platforms. The nom-
inal camera frame rate was set to 60 frames/s.
The p.d.f. derived from the measurements his-
togram was recorded and compared to the Laplace
distribution with its parameters estimated using
maximum log-likelihood. We observed an excel-
lent match between both distributions, and thus
we conclude that the camera interframe duration
follows a Laplace probability distribution.

To continue investigating the effect of the
clock signal impairments, we perform the following
indoor experiment. We place two UAVs (UAV-
0 and UAV-1) of the same model as before 5m
apart on the floor of the laboratory. The UAV-0
camera operates with a nominal frame rate of 60
frames/s, and points to UAV-1. UAV-1 points one

4https://github.com/ctu-mrs/bluefox2
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arm towards the UAV-0 camera, while two adja-
cent arms remain oriented parallel to the UAV-0
camera image plane. We name these LEDs, from
left to right on their camera image, as D0, D1, and
D2.

The bit-rate of the blinking LEDs was
60.241Hz due to hardware limitations of the
microcontroller architecture used in the LED
driver. This creates a difference in the period of
less than 66.7 µs compared to the nominal camera
period of 16.167ms, with the exposure time of the
camera set to 500 µs. The precision of the crystal
clock of the LED driver incurs an additional error
several orders of magnitude lower than the other
sources of error. Each LED emits an optical sig-
nal generated with a different binary sequence. We
generate a set of sequences f(S7, 0.5, 3, 3, 1) using
Algorithm 1. We then feed the binary stream gen-
erators (see Fig. 2 (right)) associated with LEDs
D0, D1, and D2 the sequences 0010111, 0011011,
and 0011101. Then, we record the UAV-0 camera
footage for 180 s.

Due to the short distance between the UAVs,
the pixels corresponding to the light emitted by
the LEDs get almost saturated when the LEDs are
turned on. Thus, the SNR at the receiver is high
and the effects of the clock signal impairments and
mismatch dominate over the effects of the noise.
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Fig. 4 The time progression and error analysis classifica-
tion success signals for f(S7, 0.5, 3, 3, 1) at 5m.

In Fig. 4, we plot, for each LED, a binary signal
that takes the value 1 when the binary sequence

embedded in the optical signal is correctly clas-
sified and 0 otherwise. In these plots, we note
the presence of quasi periodic errors, which are
generated by the mismatch between the transmit-
ter and the receiver clock signals, as described in
section 6. To analyze these errors in more detail,
we plot the histograms of their duration and of
the time between the errors measured from start-
to-start in Fig. 4. From these histograms, we note
two different types of errors: the first type of error
is caused by noise at the receiver, and it has a
duration of one single sample. The time between
them does not follow any specific pattern; the sec-
ond type of error is due to missing/duplicated bits
caused by clock mismatches. In this experiment,
they can last between two and four samples. The
time between them is a random variable with a
mean of around 40.6 samples and a variance of
around 1.49 samples. The histograms in Fig. 4
show the following: i) if the optical signals are gen-
erated with sequences with a length of 39 bits or
larger, they will always be received with errors; ii)
the clock signal mismatch is time-variant, which
is why the time between errors caused by miss-
ing/duplicated bits varies mostly between 39-42
samples; and iii) at high SNR, the main factor that
limits the performance of the optical identification
system is the mismatch between the transmitter
and receiver clocks.

7.4 Dynamic outdoor testing

As proof of concept, we deployed a group of three
UAVs (UAV-0, UAV-1, and UAV-2) equipped with
the UVDAR system outdoors. We used binary
sequences taken from the set generated with
f(S14, 3, 3, 0.5, 1) and assigned one sequence to
each arm of each UAV, where each UAV emit-
ted four unique optical signals through its LEDs.
Fig. 1 shows a camera snapshot with correctly
classified markers. The UAVs flew autonomously
according to a formation enforcement technique
developed in our laboratory. The ability to distin-
guish between the individual signals allowed the
UAVs to identify each other and estimate their rel-
ative orientations. This flight allowed us to test the
visual identification system in a more challenging
and realistic scenario.

We recorded the content of the UAV-0 camera
for 235 s with a nominal frame rate of 60 frames/s.
The clock signal of the optical transmitters of all
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the UAVs operate with a nominal frequency of
60Hz. The trajectories of the UAVs and the exe-
cution of the identification process are shown in a
video of the experiment at the following link5.

We evaluated the classification success signal
for each individual LED of the UAV-1 and of the
UAV-2 by the left camera of UAV-0. This signal
takes on a value of one when the classification is
successful and takes a zero value when there is an
error in classification, or when the LED leaves the
UAV-0 camera’s Field of View (FoV). From the
video of the experiment, we observe that usually
only two LEDs per UAV are captured by the UAV-
0 camera, although sometimes three LEDs can
be captured simultaneously. We also note that,
UAV-2 leaves the UAV-0 camera’s FoV and is
lost for some moments. The detection success is
significantly more erratic than in the prior test-
ing with the static transmitter and receiver, since
the motion of the UAVs affects the optical signal
retrieval. Additionally, the distances between the
transmitters and receivers were at times greater,
and the contrast of the active LEDs in the image
was slightly lower due to sunlight. Despite this, the
classification success was sufficient for the forma-
tion enforcement system to perform its function,
which testifies to the practical applicability of
the proposed identification system in real-world
conditions.
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Fig. 5 Error duration and time between errors histograms
for UAV-1 (top) and UAV-2 (bottom).

For both signals mentioned above, the his-
tograms of the duration of the errors observed are
plotted in Fig. 5. In Fig. 5, we plot the histograms
of the time between the errors. The first thing to
note in Fig. 5 is that most of the errors for both

UAVs last only a single sample. For UAV-1, sin-
gle sample errors constitute 66.33% of the total
errors. For UAV-2, single sample errors constitute
47.02% of the total errors. From Fig. 5, it can be
observed that errors occur more often; this is due
to the larger distances (lower SNR) and the addi-
tional effect of the blurring and tracking errors.
Despite the challenging conditions, the probability
of correctly detecting UAV-1 is 0.9311, and 0.6327
for detecting UAV-2. Further, the errors appear in
short bursts as long as the Line of Sight (LoS) is
present. This demonstrates that our identification
system performs well in real scenarios.

8 Conclusion

In this paper, we studied the theoretical and
practical aspects of UVDAR: a camera-based
optical identification system for UAVs. Herein,
it was shown how to optimize the optical sig-
nals emitted by the UAVs in order to maximize
the number of detectable UAVs while minimizing
identification time. Through theoretical analysis
and experiments, we demonstrated that clock sig-
nal mismatches impose important limitations on
the capacity of this visual identification system.
This visual identification system was tested both
indoors and outdoors, demonstrating successful
operation with sufficient performance. The results
of this work can be used to further optimize
visual-based localization and identification sys-
tems, such as UVDAR, as well as to evaluate the
capacity of this system as the base for an optical
communication network for UAVs.
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Chapter 3

In-flight visual relative localization and stabilization
techniques

The task of detecting neighboring UAVs from a camera image builds upon the more
general task of detecting and relatively localizing objects from cameras onboard UAVs. In
real-world scenarios, relative localization based on computer vision is significantly more com-
plex than in laboratory or industrial environments, with strictly defined targets and stable,
predicable viewpoints. In addition, when aerial view of a scene is concerned, the motion and
orientation of the observer at a given time are in practice not known exactly. If VRL is used
in a feedback loop with a control that changes the viewpoint over time, the resulting action
can, in turn, perturb the performance of the computer vision. This problem became signif-
icant during our participation in the MBZIRC 2020 competition. The competition, taking
place in Abu Dhabi in February 2020, consisted of three main challenges: autonomous aerial
interception of objects, cooperative robotic structure building, and autonomous robotic fire
extinguishing. Many prestigious research institutes entered the competition, including ETH
Zurich, KAIST, University of Bonn, University of Tokyo, University Carnegie Mellon, and
CNRS, among others. Our group participated in all three of these challenges in coopera-
tion with the University of Pennsylvania and New York University. My contribution was to
Challenge 3, pertaining to fire extinguishing, which consisted of three sub-tasks in which my
expertise was applied to all.

The most relevant contributions include the techniques I developed for aerial extin-
guishing of fires in two specific modalities - with aerial spraying of liquid extinguishant, and
by aerial placement of fire blankets. I also participated tangentially on the sub-task of liquid-
based fire extinguishing using a ground robot [39], but given the significantly better stability
of a ground robot compared to an aerial robot, only the tasks involving UAVs became rele-
vant to my further research on UAV-based VRL. In all of these sub-tasks, I have leveraged
thermographic cameras and laser range sensors, allowing for accurate relative pose estimation
of targets in terms of both their bearing and distance.

In the aerial liquid-based fire extinguishing tasks, there were two types of targets: “fire
analogues”, consisting of an aluminium heating element, and a real gas fire ring with a heater
in the center. In both cases, the target objects had a liquid receptacle for scoring based on
the amount of extinguishant deposited.

Although the fire analogues are comparatively easy to detect indoors using a thermo-
graphic camera with their distance retrievable using laser range sensors, extinguishing fires
using liquid sprayed from a UAV still carried significant challenges pertaining to the vision-
based control. Due to the combined effects of air currents and the pushback of the sprayed
liquid, the firefighting UAV is subject to significant drifting. The relative drifting itself can
be measured using the sensor system. If the UAV is currently not aiming from a suitable po-
sition at the target, it can either keep spraying in the incorrect direction, wasting the limited
amount of stored liquid, or it can immediately stop spraying, allowing the fire to re-ignite,
while also inducing more dynamic, difficult to compensate-for force feedback on the UAV. We
therefore needed to ensure that the UAV was able to maintain continuous aim for extended
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periods of time. The core of the unique stabilization problem here dwells in the fact that in
order to correct the relative position of a partially-actuated1 UAV with respect to a target,
the UAV in question first needs to tilt. Doing so not only redirects the camera sensors used,
potentially losing the line of sight, but it also redirects the spray nozzle. The solution I devel-
oped involved modifying the dynamic flight control to better suit the computer vision, as well
as the spraying action. Rather than constantly controlling the spraying UAV to an “ideal”
relative spraying position w.r.t. the target object, it was allowed a region of hysteresis where
positional drifting was allowed, while only correcting the heading of the UAV. This made it
possible to continuously spray the extinguishant at the target for extended periods of time,
while also keeping the target in view of the cameras for more precise relative pose estimation.
This technique is described in detail in the attached paper

V. Spurny, V. Pritzl, V. Walter, M. Petrlik, T. Baca, P. Stepan, D. Zaitlik, and M.
Saska, “Autonomous Firefighting Inside Buildings by an Unmanned Aerial Vehicle,”
IEEE Access, vol. 9, pp. 15 872–15 890, Jan. 2021. doi: 10 . 1109 / ACCESS . 2021 .
3052967,

where the sub-task of extinguishing indoor fires is discussed. Attaching the nozzle and the
camera of an active UAV to a gimbal can help with continous aim, but at the time of writing,
these devices are still relatively costly, especially if they need to be able to withstand the
considerable forces created by the flow of the extinguishant.

Extinguishing real fires had the above stabilization issue as well, while additionally
complicating the targeting due to the visually-dynamic appearance of flames in both the
thermographic camera images, as well as in the RGB camera images also used for this task.
The flames moved and changed their brightness and temperature in response to air currents,
especially those created by the presence of a multirotor UAV, as well as by changing pressures
in the gas intake and the act of liquid-based extinguishing itself. The solution herein combined
separate computer vision solutions for thermographic imaging and RGB imaging, exploiting
the strengths of each, while compensating for the drawbacks inherent to each modality. Ther-
mographic imaging makes it possible to locate very hot objects - especially active flames - from
great distances. However, it also has drawbacks, including the lower resolution compared to
equivalently priced RGB sensors and the fact that flames are opaque in this imaging method,
obscuring other features useful for precise target localization. On the other hand, once the
UAV was sufficiently close, RGB imaging allowed us to locate other target features for more
precise aiming by exploiting the partial transparency of flames to specific visible wavelengths.
This sub-task and the computer vision system is described in detail in the attached paper

V. Walter, V. Spurny, M. Petrlik, T. Báca, D. Zaitlík, L. Demkiv, and M. Saska,
“Extinguishing real fires by fully autonomous multirotor UAVs in the MBZIRC 2020
competition,” Field Robotics, vol. 2, pp. 406–436, Apr. 2022, issn: 2771-3989. doi:
10.55417/fr.2022015.

The task of aerial placement of fire blankets required a precise R3 × S1 pose estimation
of a target in order to achieve maximum possible overlap of the placed blanket on the target.
This helped me to develop a set of tools that were later re-used in the pose estimation
module of the UVDAR system. The interaction of the UAV motion with the camera view

1as opposed to specialized fully-actuated platforms capable of full 6DoF control
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was addressed in this case by accumulating pose measurements for an extended period of
time without moving before executing the rapid placement of a fire blanket based on prior
measurements. This meant that the placement action following successful estimation occurred
in the shortest time possible, in order to minimize the drift we would accumulate in the time
without direct target observation. The rapid action also minimized potential contact of the
UAV with fire. Tailoring the computer vision to the specific task at hand using meticulously
collected environmental data was crucial, since the thermal appearance of the ground fire
analogues turned out to be significantly different than our intuition held. Our solution to the
blanket placement sub-task is described in the attached paper

V. Walter, V. Spurný, M. Petrlík, T. Báča, D. Žaitlík, and M. Saska, “Extinguishing
of Ground Fires by Fully Autonomous UAVs Motivated by the MBZIRC 2020 Com-
petition,” in 2021 International Conference on Unmanned Aircraft Systems (ICUAS),
© 2021 IEEE. Reprinted, with permission., Jun. 2021, pp. 787–793. doi: 10.1109/
ICUAS51884.2021.9476723.

Overall, my work on the competition contributed to the excellent overall ranking our
team achieved. By successfully competing in all three challenges, the CTU-UPENN-NYU
team qualified to compete in the Grand challenge of the competition, winning first place2.

In addition, the observations I made on estimation and temporal fusion of visually-
observed targets proved invaluable in my subsequent work. The knowledge and tools gained
were applied in both the relative pose estimation of neighboring UAVs and in addressing the
problems inherent in using VRL for mutual relative localization of cooperating UAVs.

2https://web.archive.org/web/20210805164213/https://www.mbzirc.com/winning-teams/2020
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ABSTRACT This paper presents a novel approach to autonomous extinguishing of indoor fires inside
a building by a Micro-scale Unmanned Aerial Vehicle (MAV). In particular, controlling and estimating
the MAV state, detection of a building entrance, multi-modal MAV localization during the outdoor-
indoor transition, interior motion planning and exploration, fire detection and position estimation, and fire
extinguishing are discussed. The performance of these elements, as well as of the entire integrated system, are
evaluated in simulations and field tests in various demanding real-world conditions. The system presented
here is part of a complex multi-MAV solution that won the Mohamed Bin Zayed International Robotics
Challenge 2020 (MBZIRC 2020) competition, and is being used as the core of a fire-fighting Unmanned
Aerial System (UAS) industrial platform under development. A video attachment to this paper is available
at the website http://mrs.felk.cvut.cz/2020firechallenge-insidefires.

INDEX TERMS Unmanned aerial vehicle, autonomous systems, firefighting, mobile robots, rescue robots.

I. INTRODUCTION
Micro-scale Unmanned Aerial Vehicles (MAVs) are nowa-
days used in numerous applications due to their potential
for rapid deployment and their ability to reach locations
that are difficult or dangerous for humans to access [1].
Despite advances in the autonomy and the reliability of
MAVs, they are most often still teleoperated by a pilot while
helping on site after natural disasters. TeleoperatedMAVs are
used for various situations, e.g. for providing assistance for
cities hit by an earthquake [2], [3], finding victims in urban
areas [4], localizing flooded areas [5], finding survivors dur-
ing floods [6], and quickly localizing forest fires [7]. Further
examples of robots assisting in search and rescuemissions are
presented in [8].

The MAVs deployed in the applications mentioned above
operate at high altitudes, where no obstacles can be encoun-
tered and Global Navigation Satellite System (GNSS) local-
ization is reliable. However, to fully exploit the potential of
MAVs assisting in disaster response tasks, it is necessary to

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Liu .

FIGURE 1. The proposed system uses processed data from the onboard
sensors of the MAV towards the goal to extinguish fire inside the building.

move from teleoperated robots to autonomous robots that
perceive their environment, can reliably localize and navigate
in it, and furthermore, can influence their state by interacting
with objects of interest. Autonomous MAVs have already
been tested for use in locations where teleoperated MAVs
cannot operate, e.g. coal mine tunnels [9], which can be dan-
gerous to access after natural disasters such as earthquakes or
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gas fires. A multi-modal mapping unit [10] can be attached to
an MAV to provide autonomous exploration of GNSS-denied
dark environments. A small agile MAV can be deployed as a
first responder [11] of a rescue team to assess the situation in
mines, to evaluate the risk of human rescuer injury and, most
importantly, to find visual cues about the location of possible
survivors in order to direct further rescue operations. During
search and rescue operations, human rescuers underground
often risk exposure to noxious gases. To reduce such hazards,
a system described by [12] deploys an MAV with sensors
capable of detection and measurement of the concentration of
such gases. Multiple gas detectingMAVs deployed in parallel
can be used for precise localization of the gas source [13].
Operations in places that are in the proximity of a source of
radiation, such as the interior of a nuclear power plant, have
to be planned with limited exposure time of human workers.
The assistance of autonomous MAVs is therefore valuable
in localizing the source of radiation [14], or in finding sur-
vivors [15], without risking prolonged exposure of human
rescuers.

The approaches mentioned above were designed only for
indoor environments or only for outdoor environments. How-
ever, the challenge and the novelty of the approach presented
here is in the required transition from the open space around
the building into the confined space of the rooms. These envi-
ronments require different localization and state estimation
techniques.

A cooperative firefighting mission called the Fire Chal-
lenge was the most complex task at MBZIRC 2020.1 This
challenge was motivated by the use of robots for urban
firefighting, and it required a team of robots to collaborate
on a series of urban firefighting-related tasks in outdoor
and indoor environments. In this challenge, three MAVs and
one Unmanned Ground Vehicle (UGV) had to collaborate to
autonomously extinguish a series of fires (real and simulated)
in an urban building. The fires were placed at various random
locations at ground level in the arena (indoor and outdoor),
and at different heights of the building. The challenge can
be divided into four separate sub-tasks: extinguishing interior
fires by a UGV, extinguishing fires on the facade of the
building by MAVs, extinguishing ground fires by MAVs, and
extinguishing fires inside the building by MAVs. These tasks
were meant to be solved in their full scope, including search-
ing for fires with unknown positions, fire extinguishing, and
cooperation among multiple MAVs and a UGV working
in the same environment. The deployment of such a team,
as opposed to a single unit, was motivated by the requirement
for minimal total mission time, as time is a critical factor
for eliminating fire spreading and for saving people in real
scenarios. Team deployment also enabled the use of a range
of firefighting techniques (a fire-extinguishing agent or a fire
blanket) and various platforms (MAV and UGV).

This paper addresses what we consider to be the most
challenging task of the third challenge of the MBZIRC 2020

1http://www.mbzirc.com/

competition – fire extinguishing inside a building (see
Fig. 1). The work presented here contributed not only to the
MBZIRC 2020 challenge and to the firefighting mission but
it also benefits other MAV applications. Research on indoor-
outdoor transition through the narrow space of small windows
and precise multi-sensor based servoing is important for a
wide range of MAV challenges that are being tackled nowa-
days.

A. PROBLEM DEFINITION AND REQUIREMENTS ON THE
PLATFORM
To solve the task of fire extinguishing inside a building,
we assume that the size of the MAV platform, including the
propellers, is limited by the width of the windows through
which the platform has to fly. Of course, this width will
be unknown during the deployment of the system in a
real firefighting scenario. However, the organizers of the
MBZIRC 2020 competition specified the window size to
dimension of 2m. Choosing the right platform size is crucial
to task performance, as a smaller platform allows for a larger
margin of error of the localization and control systems. On the
other hand, a smaller MAV can carry less fire-extinguishing
agent, and cooperation amongmultiple agents may be needed
to extinguish a single fire.

We expect that the MAV will be equipped with a flight
controller that commands the Electronic Speed Controllers
(ESCs) to drive the brushless motors propelling the MAV,
based on angular rate commands from an onboard computer.
Furthermore, this flight controller should contain a set of
sensors, such as accelerometers, gyroscopes, barometers, and
magnetometers, and should provide them to the onboard
computer for MAV state estimation. This onboard computer
should provide sufficient computational power to solve all the
required onboard processing tasks, in addition to besides gen-
eral MAV control, state estimation, and collision-free motion
planning.

For outdoor flying capability, the MAV has to be equipped
with a GNSS receiver. However, the precision of the posi-
tion data derived from satellite-based positioning systems
can drift in the proximity of tall structures such as build-
ings, and this may block the visibility of some of the satel-
lites, or may reflect the signal. The most fitting sensors
that can be deployed to avoid a possible collision with the
building are 3D LIDARs, thanks to their high information
density and precise measurements of the obstacle distance.
However, these devices are still relatively expensive and
heavy. The proposed system therefore requires the MAV to
be equipped with two complementary sensors — 2D LIDAR
and a stereo camera. These sensors were selected because the
data they provide can also be used for MAV control, for state
estimation, and for collision-avoidance inside the building.
Furthermore, this data is useful for correct detection of the
window, for planning a collision-free trajectory through it,
and also for estimating the position of detected fires.

The proposed system requires a thermal camera, or rather,
a compound sensor consisting of multiple thermal cameras
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for detecting fires. These cameras need to be arranged in
such a way that the MAV flying at a safe distance from the
wall will cover the whole wall, from the floor to the ceiling,
with their Field Of Views (FOVs) to minimize the chance of
missing a fire source. The MAV should be further equipped
with two laser rangefinders. One faces downwards tomeasure
the distance to the ground, and the second faces upwards to
measure the distance to the ceiling when the MAV is inside
the building. Data from these sensors is used forMAV altitude
estimation and to help ensure safe flight. To extinguish the
fires, the MAV has to be equipped with a water bag and with
a pump that can force water through a nozzle mounted on
the front of the MAV. To reduce the weight, the nozzle can
be rigidly attached to the MAV, since it does not have to be
actively stabilized.

We assume that the GNSS signal is available only outside
the building, and not inside. The building interior contains
unknown obstacles (e.g. a bed, a TV with a table, or a dining
table), so that the system for fire extinguishing inside the
building meets realistic assumptions. Lastly, we considered
that a direct line of sight to the MAV would not be main-
tained during the whole mission, especially after entering
the building, and that teleoperation through the base station
would not be possible. Therefore, the task has to be solved
completely autonomously, using only the onboard equipment
of the MAV.

B. RELATED WORK AND CONTRIBUTION
Employing MAVs in firefighting has already been explored
in several works. An obvious example of a situation where
MAVs can prove beneficial is outdoor fire detection and
monitoring. As reported in [16], a system of multiple MAVs
can be used for automatic forest fire monitoring using visual
and infrared cameras. Real experiments with forest fire mon-
itoring in a national park have already been conducted by
the Hungarian fire department [17]. The authors of [18]
describe a task allocation strategy for distributed cooperation
of ground and aerial robot teams in fire detection and extin-
guishing. In [19], an MAV system is designed to extinguish a
fire by dropping a fire-extinguishing capsule on it.

MAVs fighting fires have also already been a topic for
robotic competitions. [20] describes the design and imple-
mentation of a firefighting MAV for outdoor applications
designed specifically for the IMAV 2015 competition. The
employment of MAVs could also prove to be beneficial
and life-saving in urban environments. Studies have already
been done on fire detection in urban areas using a ther-
mal camera carried by an MAV [21]. MAVs capable of
entering buildings through doors and windows will be espe-
cially helpful, because of their ability to reach the target
location much earlier than human firefighters. [22] contains
the design of a semi-autonomous indoor firefighting MAV.
The authors designed a fireproof, thermoelectrically-cooled
MAV equipped with visual and thermal cameras, a collision
avoidance module, and a first-person view system. However,
to fully exploit the potential of MAVs in firefighting and to

achieve reliable operation, the MAVs themselves need to be
autonomous.

MAVs autonomously entering a building through awindow
has already been partially explored in the literature, using
various approaches with varying levels of experimental veri-
fication. In [23], the authors used RGB camera images and 2D
LIDAR data for window detection and tracking, visual servo-
ing while approaching the window, and potential field-based
planning for the fly-through itself. However, their approach
for window detection requires an operator to manually select
a point of interest in the RGB image, and was verified only by
simulations. This approach was further extended and verified
in real-world experiments with flight through awooden frame
in [24]. However, the experimental verification only con-
sisted of manually guiding the MAV in front of the window,
autonomous flight through the window, and immediate man-
ual landing. [25] utilizes stereo image pairs for detecting and
estimating a window that can potentially be used by an MAV
for entering a building. However, the proposed algorithm was
verified only on data captured using a hand-held stereo rig.
[26] deals with window detection from an RGB-D camera
along with the generation of an optimal trajectory to a point
in front of the window, but the approach was only verified
in simulations. [27] focuses on cooperative control of an
ornithopter MAV using visual servoing for narrow passage
traversal. They demonstrated their approach in a real exper-
iment with a small MAV flying through a narrow wooden
frame. This approach requires a ground station continuously
observing the scene throughout the flight. [28] deals with
state estimation, control, and planning for an aggressive flight
by anMAV through a narrow window tilted at various angles.
State estimation is done based on visual camera images and
an Inertial Measurement Unit (IMU). However, the position
of the window needs to be known beforehand. Similarly, [29]
focuses on an aggressive flight of an MAV through narrow
gaps tilted at various angles employing a forward-facing fish-
eye camera for gap detection. A black-and-white rectangular
pattern was used to simplify the detection of the gap. The
approach for window detection and autonomous entering of
buildings proposed in this paper was designed specifically
for reliable performance under real-world conditions, and to
function as a part of a complex autonomous system without
input from a human operator. As such, the proposed approach
was extensively verified in complex real-world experiments
and therefore surpasses previous approaches both in the
degree of autonomy under real-world conditions and in the
complexity of its experimental verification.

Transition between an indoor environment and an outdoor
environment creates the necessity to combine different local-
ization methods in a single flight. [30] describes a system
combining visual and laser odometry with IMU, using an
Extended Kalman Filter (EKF) for flight in both indoor and
outdoor environments. The authors use one common filter
for fusing measurements from laser scan matching and from
correlation-based visual odometry. The data source that is
currently fused is determined by its variance. Fusion in one
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FIGURE 2. A diagram of the control system architecture. Mission & navigation software supplies a position and heading reference (rd , ηd ) to the
reference tracker. The Reference tracker creates a smooth and feasible reference χd for the reference feedback controller. The feedback Reference
controller produces the desired thrust and angular velocities (Td , ωd ) for the embedded Attitude rate controller. The State estimator fuses control input
ad with data from the onboard sensors to create an estimate of the MAV translation and rotation (x, R, ω). For a more detailed description of the whole
control pipeline, see [32].

common filter is problematic when the reference frames
of the two odometry sources are not coincident, e.g. due
to imprecise extrinsic calibration. Moreover, in the case of
GNSS and LIDAR odometry, the frames of reference are
inherently different.We propose fusing each type of measure-
ment in its own separate filter and then choosing the better
output to close the control feedback loop. [31] describes an
approach that uses depth image processing for visual odom-
etry capable of navigating MAVs during indoor and outdoor
flight, and during transfers between these two types of flight.
The solution relies on stereo camera depth estimation, which
is much less precise than direct distance measurements using
a laser sensor. Our solution offers a higher level of autonomy,
as the whole mission is governed by a mission control state
machine while in [31] the MAV is controlled by waypoints
manually entered by an operator.

To sum up, the contributions of this paper are in the
complexity and the reliability of the proposed system, which
includes indoor outdoor transition, interaction with the envi-
ronment based on vision from thermal cameras, precise MAV
stabilization and control for safe flight through window,
and for firefighting. Furthermore, the paper proposes a new
approach for handling data from multiple sensors to robustly
obtain a single state estimate – MAV pose estimation, height
estimation, relative window pose estimation, and relative
pose of the fire target estimation. All of these estimates are
crucial for safe autonomous flight in complex MAV mis-
sions, and the proposed redundancy by using various sensors
is necessary for achieving reliability required for industrial
applications.

II. AUTONOMOUS SYSTEM DESIGN
The proposed system components are described in this
section. Note that the entire system is run on the onboard
PC only, allowing for full autonomy without any control
station or teleoperation needed.

A. CONTROL AND ESTIMATION OF THE MAV STATE IN
OUTDOOR AND INDOOR ENVIRONMENTS
One of the main contributions of this paper is a system that
allows precise control for flying through relatively small

windows and for inserting water into a small opening of
a measurement device using multi-sensor control feedback.
Additionally, in a real scenario, precise placement of the
fire fire-extinguishing agent is crucial for mission success.
Another important aspect of the system is the MAV state
estimation approach, which allows precise localization and
stabilization in the open space around the building, inside
rooms with obstacles, and a smooth transition between these
work-spaces.

The MAV is controlled by the novel multi-layer control
pipeline, depicted in Figure 2, which was suited for the pro-
posed system using the general control framework presented
in [32]. The desired trajectory reference is supplied by higher-
level motion planning modules that are specialized for each
mission phase, as described in II-F. The reference is first
processed by the Reference tracker [33], based on model pre-
dictive control to obtain a smooth and feasible reference for
theReference controller. The tracker also imposes constraints
on the MAV states to prevent fast and aggressive motions,
which are undesirable when navigating constrained indoor
environments. The Reference controller uses the processed
reference to provide SE(3) geometric state feedback control
[34] of the translational dynamics and the orientation of the
MAV. This type of controller achievesminimal control errors,
which allows precise window flythrough. The attitude rate
and thrust commands generated by the Reference controller
are sent to the embedded Attitude rate controller in the flight
control unit of the MAV, which controls the speed of each
motor, using ESCs. The feedback loop of the Reference con-
troller is closed by the State estimator, which fuses data from
onboard sensors with the MAV altitude to obtain a precise
and reliable state estimate for both the indoor and the outdoor
phase.

The state estimation process uses Kalman filtering to esti-
mate the 3D position of theMAV and its heading angle, along
with their respective first and second derivatives. The MAV
state is divided into lateral, altitude, and heading parts. Such
decoupling facilitates tuning of the filters. Smaller system
matrices save computation resources, allowing for running
multiple filters in parallel. All active filters are grouped in a
filter bank, visualized in Figure 3, from which the best filter
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FIGURE 3. The bank of filters K = {K1,. . . ,Kn}. The prediction step is
driven by the desired acceleration ad . The correction step is triggered
asynchronously as sensor measurements zi , where i = {1, . . . ,n}, arrives.
The output hypothesis x∗ is chosen by the arbiter.

for the current situation is used to close the feedback loop of
Reference controller.

Since the fire-extinguishing mission consists of two phases
(outdoor and indoor), the bank of filters for the lateral axes
contains one for each phase. Both filters have the same three-
state model with the desired acceleration from Reference
controller on the input. The difference between the filters
is in the sensor measurement used to correct the state in
the update step of the Kalman filter iteration. The outdoor
filter uses position corrections from GNSS and heading cor-
rections from magnetometers. Inside the building, GNSS
cannot be used. Both position corrections and heading cor-
rections are therefore provided by the Hector SLAM [35]
algorithm, using 2D LIDAR. In general, the bank of filters
may fuse multiple sensors and localization techniques for
state estimation (e.g. 3D LIDAR, VIO, Optic Flow). One of
the simultaneously running filters is always selected as the
main estimator, depending on the reliability of the filter state
estimation (estimation covariance) and based on considera-
tion of the current environment. For the task solved in this
paper, the high-level planner changes the main lateral esti-
mator during transitions between indoor and outdoor phases,
just before flying through a window. This approach prevents
measurements from the sensor that are inappropriate for the
current surroundings to corrupt the state estimate used for
feedback control. Greater reliability is thus ensured during
the window flythrough, thanks to lower position drift. The
estimation framework is also responsible for synchronously
broadcasting the change of main estimator, so that the tracker
and the controller can react by updating their internal state
accordingly. The switch of the main estimator is smooth
and seamless without producing any spikes in the controller
output, which makes it virtually unnoticeable.

The altitude estimation fuses data from a barometer with
measurements from a laser rangefinder. The rangefinder mea-
sures the height above the terrain, which can result in sharp
changes in height when flying above objects protruding from
the ground plane. Measurements of this type are declined
by a median filter when the tall object is visible for less
than 1 s and, in combination with the barometer data fusion,

FIGURE 4. Example of window detection using the stereo camera and 2D
LIDAR. The red squares in the visualization represent the LIDAR data,
the blue rectangle represents the depth detection, and the yellow
rectangle represents the filtered estimate.

a smooth altitude estimate suitable for control is obtained.
In the case of a height measurement jump lasting for more
than 1 second, the measurement is offset by the difference
from the original height. Up until this time, the median filter
suppresses reaction to the measurement change.

B. WINDOW DETECTION AND ESTIMATION
In order to enter the target building, a suitable entrance needs
to be detected and its position needs to be continuously
estimated during the entire flythrough. For this purpose, depth
data from the stereo camera and 2D LIDAR data are utilized.
The depth data can provide complete information about the
3D position, the orientation, and the size of the window.
However, these detections contain significant noise and the
FOV of the stereo camera is limited. On the other hand,
the 2D LIDAR data is very precise and 2D LIDAR is capable
of seeing the window during the whole flythrough maneu-
ver, regardless of the MAV orientation. The main drawback
of 2D LIDAR is that it only provides information about the
window in the 2D horizontal plane. The proposed approach
offers multiple modes of estimation. In depth + lidar mode,
the depth data is fused with the 2D LIDAR data with no
apriori-known information required. In lidar+apriorimode,
only 2D LIDAR detections and apriori-known information
about window size and altitude are used for window detec-
tion. This mode was used to simplify window detection for
the competition, in which information about window size and
altitude was made available beforehand. Both modes work
only in the case that the window is not obstructed.

Window detection from the depth data is described in
Algorithm 1. The algorithm takes the 1280 × 720 depth
image published by the stereo camera and downsamples it
by a factor of 8 to reduce the computational demands on the
CPU. The algorithm then searches for contours in the image
and tries to fit quadrilateral shapes with certain parameters
to the data. After identifying such quadrilaterals, a check is
performed to ensure that the detected shape is an opening and
not a protrusion. The algorithm starts from the center of the
quadrilateral, where it generates a Region of Interest (ROI)
such that its aspect ratio is the same as the initial quadrilateral
and the shorter size is two pixels. It then checks if the depth
of all the pixels within this ROI is greater than the plane
of the initial quadrilateral. Then it iteratively expands this
ROI and repeats the check until the check fails. Afterwards,
the corners of the last ROI are projected to the plane of
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Algorithm 1 Detection of Window From Depth Data
Input: Raw depth image Iraw
Output: List Ddepth of detected windows
1: function Detect_windows_depth(Iraw)
2: Idown← Downsample(Iraw)
3: C ← Find_contours(Idown)
4: for c ∈ C do
5: q← Fit_quadrilateral(c)
6: if q 6= ∅ and Is_hole(q) then
7: Add q to Ddepth
8: return Ddepth F Detections are passed to the LKF

the initial quadrilateral. Then the size of the quadrilateral
formed by the projected points is compared with the size of
the initial quadrilateral. If it is above a certain ratio, the new
quadrilateral is accepted as a traversable window. Otherwise,
the detection is discarded.

Window detection from 2D LIDAR data is described in
Algorithm 2. Firstly, a combination of line extraction algo-
rithms is utilized to identify possible window edges. The
Successive Edge Following algorithm [36] is used for detect-
ing window edge candidates E1 based on sudden changes
in 2D LIDAR measurements. The algorithm parses the orig-
inal scan into a set of segments S1 by splitting the scan in
places where the difference between two consecutive mea-
surements exceeds a predefined threshold. The endpoints of
the segments S1 are used as window edge candidates E1.
The set of segments S1 is then passed to the Iterative End-
Point Fit algorithm [36]. The algorithm fits a line through
the endpoints of each segment and splits the segment into
two sub-segments at the point most distant from the line,
if the distance exceeds a predefined threshold. This process
enables us to detect the window edges in the form of a
corner protruding towards the MAV, which occurs when a
wall or an obstacle is located right next to the window inside
the building. Depending on the mode of estimation, the final
detections are then produced either by linking the window
edge candidates E to existing window estimatesW initialized
based on depth detections, or by standalone detection based
on apriori-known informationA describing window size and
altitude.

The Linear Kalman Filter [37] is used for fusion of the
individual detections and for filtering out measurement noise.
The state x of the Kalman filter describing a single window
is defined as

x =
[
cx , cy, cz, φ,w, h

]T
, (1)

where cx , cy, cz are Cartesian coordinates of the window
center, φ ∈ [−π, π] is the angle between the projection of
the normal vector of the window to the xy-plane and the x-
axis (i.e., rotation around the z-axis), w is the width, and h
is the height of the window. It is assumed that the window
is not tilted and is perpendicular to the ground plane. The
position and the orientation of the window are specified in

Algorithm 2 Detection of Window From 2D LIDAR
Input: List P = 〈p1, . . . pn〉, where pi are points obtained

from a single laser scan; mode ∈ {depth+ lidar, lidar +
apriori} - selected mode of estimation; (optional) listW
of existing window estimates; (optional) listA of apriori
information

Output: List Dlidar of window edge pairs
1: function Detect_windows(P)
2: E1,S1← SEF(P) F Successive Edge Following
3: E2,S2← IEPF(S1,P) F Iterative End-Point Fit
4: E ← E1, E2
5: if mode = depth+ lidar then
6: Dlidar ← Link_edges_to_estimates(E,W)
7: else if mode = lidar + apriori then
8: Dlidar ← Standalone_detection(E,A)
9: return Dlidar F Detections are passed to the LKF

a global coordinate frame and therefore all the state vector
elements are modeled as static. Figure 4 shows an example of
window detection for a mock-up building constructed at the
Czech Technical University in Prague. The figure contains an
external view of the MAV hovering in front of the window,
a depth image from the onboard camera, and a visualization
of the data.

C. INDOOR MOTION PLANNING AND EXPLORATION
The position of the fire is unknown (in the competition and
usually also in a real application) before the mission and
therefore the interior must be explored to find its location.
Obstacles can be detected using data from the stereo camera
and from 2D LIDAR. We store the information about the
environment around the MAV in an occupancy grid within
a three-dimensional buffer that slides along with the MAV.
Our buffer is a modification of the implementation of a buffer
that has been developed as a part of the Ewok system [38].
Originally, the buffer was in the shape of a cube, with the
same number of blocks in all axes. However, the height of a
room is usually much smaller than its horizontal dimensions.
Therefore, we modified the buffer to be able to specify its
z-axis dimension separately. For the experiments, the buffer
size was set to 128 × 128 × 32 voxels with resolution of
0.1m. This improves the times for inserting the data from
the sensors and for recomputing the buffer in the case of
MAV movement. See an example of a visualization of the
occupancy grid in Figure 5(a).

The trajectory planning in our case is done using an A*
planner that finds a local plan in a three-dimensional grid with
a predefinedminimal allowed distance from the obstacles (the
grid has the same resolution as the occupancy grid). This plan
is further processed by removing redundant points, in order to
smooth out the overall path. The points that can be removed
are those where the path between the previous point and the
next point in the plan is still safe. This is done iteratively
until no points can be removed from the plan. Because the
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FIGURE 5. Examples of occupancy grids around the MAV used for motion
planning and exploration inside the building. The red elements denote
obstacles, the green elements show the already scanned space, and the
yellow elements denote frontiers for exploration.

stereo camera at the front has a limited FOV, movement in
any direction is allowed only when the MAV is facing in
that direction. The plan is then sampled according to the
permissible dynamics of theMAV for planning procedure and
send to the reference tracker. The dynamic of theMAV for the
planner was set for all deployments presented in Section III
to a speed of 0.3m s−1 and a heading rate of 0.3 rad s−1.
This is within the capabilities of the MAV platform that had
flying dynamic constraints set to a speed of 2m s−1 and
a acceleration of 10m s−2. This ensures that the processed
trajectory produced by the reference tracker will not differ
from the plan by an unsafe amount.

One of the primary goals for successfully completing the
mission is to find the fires. Using the planning presented here,
we can fly without collision inside the building. However,
it is necessary to specify the position that we want to reach.
To ensure that each room is completely scanned for fire
sources, a novel exploration algorithm had to be designed.
The whole exploration process is described in Algorithm 3.
The proposed approach differs from state-of-the-art explo-
ration methods, which are designed to build a map in which
the robot is localized. In our case, one set of sensors is
applied for simultaneous localization and mapping, and a
different set is applied for fire source localization. Moreover,
the FOV of the two sensory sets differs significantly, requir-
ing different exploration strategies. The exploration strategy
relies on information about which parts of the interior have
already been seen by the thermal cameras. The part that has
already been visited (i.e. visually scanned) is the space that
was within the FOV of the thermal cameras and is closer
than the maximum detection distance. We assume that the
height of the room is completely covered by the vertical FOV
of the thermal cameras. The exploration can therefore be
simplified and solved as a two-dimensional problem, where
the z-coordinate of the goal position is set to a constant
flying height (the z-coordinate of the center of the opened
window). For this purpose, a two-dimensional occupancy grid
is built from the incoming sensor data. The horizontal FOV
of the thermal cameras is projected to this grid, where all
elements of the grid located within this field and unobscured
by obstacles are updated. When an element has been updated
thirty times (the replanning was set to 10Hz, meaning that

FIGURE 6. Thermal vision outputs. From left to right: Thermal camera
view scaled from 0 to 120 ◦C, differential image produced with the
Laplacian operator (scaled between the two extreme values of the
image), and thresholded detection with the rounded centroid in red.

the block has been observed for 3 s), the block is marked
as scanned. Frontiers - elements that are marked as scanned
and that have at least one neighboring unscanned element -
are then candidates for goal positions for the planning. From
these frontier elements, we select the element that can be
scanned the earliest and which has at least twenty unscanned
elements in its proximity. If the selected goal position can
be seen from the current position of the MAV merely by
changing the MAV heading towards it, that plan is then used.
Otherwise, a plan found by the trajectory planning is selected.
An example of a visualization of a two-dimensional grid with
information about the already scanned space and its frontiers
is shown in Figure 5(b).

D. DETECTION AND ESTIMATION OF THE POSITION OF
FIRES
It would be too complicated to safely create real fires inside
a building. Therefore, the organizers of the competition
decided to use artificial fires, hereafter referred to as fire
analogues. These fire analogues are distinguishable both ther-
mally and visually. The main body is made from plexiglass
and is divided into two separate parts. The first part contains
an anodized aluminium heating element with dimensions of
60mm × 35mm heated to 120 ◦C. This part is accessible
through a 150mm wide circular opening, and the task of
the MAV is to spray water through this opening. The second
part contains a silk flame that visually emulates flames and
allows spectators of the competition to see which of the fire
analogues was active. The second part is placed behind the
first on the side opposite to the opening. Examples of what the
fire analogues looked like during the competition are shown
in Figure 11.

For effective extinguishing, it is necessary not only to
detect the heating element in a thermal image, but also to
detect its relative position w.r.t. the MAV in 3D. It is also
necessary to obtain an estimate of the normal vector of the
front plate of the fire analogue object in order to select the
optimal extinguishing position for the MAV.

The heating elements are heated to 120 ◦C, but our ther-
mal cameras2 report them as being at a temperature of only
approximately 70 ◦C. This is due to the material having
an emissivity value of 0.55 [39], as opposed to the value

2https://terabee.b-cdn.net/wp-content/uploads/2020/05/evo-
thermal_specsheet.pdf
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Algorithm 3 Indoor Exploration
Input: horizontal FOV of the thermal camera ε
1: function Explore_interior(ε)
2: Bplan← [ ] F initialize 3D grid for planning
3: Bexpl ← [ ] F initialize 2D grid for exploration
4: while not Fire_detected() do
5: R← Get_current_state_of_MAV() FR = (x,R)
6: if Received_new_data_from_sensors() then F From the stereo camera or 2D LIDAR
7: dnew← Get_new_data()
8: Bplan← Update_planning_buffer(Bplan, dnew,R)
9: Bexpl ← Update_exploration_buffer(Bexpl, dnew,R, ε)
10: if Is_time_to_replan() then
11: f ← Get_nearest_frontier(Bexpl,R)
12: if Is_empty(f ) then
13: return False F Space has been explored without detection
14: Plan← Plan_trajectory(Bplan,R, f , ε) F Plan = [r1, η1, . . . , rn, ηn]
15: Fly_trajectory(Plan)
16: Hover() F Stop following the previous trajectory
17: return True F Fire detected

of 0.95 that our cameras internally use in calculating all
surface temperatures. This means that the contrast between
the heating elements and their surroundings in the thermal
image is less than would be expected based on the tem-
peratures alone (see Figure 6 on the left). This, however,
was not a significant issue indoors, where the environment
does not contain objects of such a temperature, and the
viewing distances are short due to the limited size of the
interior.

We could therefore merely detect the fire sources in the
thermal image by binarizing the image with a fixed threshold
lower than the typically measured temperature of the heat-
ing elements (Figure 6, right). In order to avoid detecting
a uniformly heated background, such as a sun-heated wall,
we additionally validated the detections using a differential
image produced by the Laplacian image operator to check if
the detected object is significantly hotter than its surround-
ings (Figure 6, center). It should be noted that the plexi-
glass casing of the fire analogues is not transparent to the
infrared radiation used by our thermal cameras. This means
that the observation angles, w.r.t. the front wall from which
they can be seen, are limited. The observation has to be
made and the extinguishing has to be done from a position
as close to perpendicular with the wall. Since the radius of
the circular front opening in the plexiglass casing is 7.5 cm
and the heating element is positioned approx. 6 cm inwards
from the front plate, the heating element can be seen from at
most 57◦ from the perpendicular position. However, this is
an extreme where we would only have a line of sight to the
very edge of the heating element, which may not even appear
on the camera. It is still desirable to maintain perpendicular
alignment for extinguishing, since this maximizes the image
area of the heating element, minimizes the influence of the
parallax between the heating element and the front plate to

which we measure the distance, and additionally maximizes
the robustness of the correct aiming w.r.t. drifting in an arbi-
trary direction.

We assume that the thermal cameras have the properties
of pinhole cameras and derive their focal distance from the
pixel resolution w per side and their FOV ε per side. This
assumption is based on the minuscule size of the cameras,
the small FOV, the relative rarity, and the high cost of
infrared compatible lenses. More precise calibration than
this is impractically complicated to achieve, due to the low
resolution of the cameras.

When a contour of compliant pixels is detected in the ther-
mal image, we calculate the average x-y image coordinates
of these pixels. These coordinates are converted to direction
vectors using the assumed camera model:

vt =

vtxvty
vtz

 =
1/f 0 −((w− 1)/2)/f

0 1/f −((w− 1)/2)/f
0 0 1

 ·
xy
1

 , (2)

where

f =
(w/2)

tan(ε/2)
. (3)

For convenience in subsequent operations, vector vt is nor-
malized and is transformed into a coordinate frame centered
in the optical center of the camera, with the x-axis pointing
forwards, the y-axis to the left, and the z-axis upwards. This
coordinate frame is called the thermal base frame. The trans-
formed vector is denoted as v̂f.

For extinguishing action carried out by MAVs, we also
need a distance estimate. This is achieved by combining the
direction vectors with a surface shape measurement source.
We use the 2D LIDAR sensor to estimate the outline of the
fire analogues in front of the camera in the form of a set of
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FIGURE 7. Illustration of how the fire is localized.

coplanar 3D points Plidar ordered by their angle from the
sensors (blue and green points in Figure 7). This works by
presuming that the entire scene is a vertical extrusion object
with equal cross-sections at all heights. We can then represent
the scene as a set of vertical planes passing through pairs
of 3D points adjacent in the sense of angle (white and green
vertical planes in Figure 7). We select a pair of points pi and
pi+1 from Plidar , s.t.

atan2(piy , pix ) > atan2(vfy , vfx ), (4)

atan2(pi+1y , pi+1x ) < atan2(vfy , vfx ). (5)

The 3D position of the estimated target is then obtained
by calculating the intersection of the optical line (the orange
line in Figure 7) with the vertical plane V (the green plane
in Figure 7) passing through the selected pair of points. Plane
V is defined by point pi and normal nv:

nv =

−(pi+1y − piy )pi+1x − pix
0

 . (6)

The intersection point q is then calculated as:

q = v̂f · t, (7)

where t is obtained using the normalized vector of the surface
normal n̂v as:

t =
n̂v · pi
n̂v · v̂f

. (8)

The estimate of the surface normal n̂v and the intersection
point q are used to steer the MAV into perpendicular position
for extinguishing s, defined as

s = q+ rd · n̂v, (9)

where rd is the desired extinguishing distance of 1.5m.
We did not consider a single estimate of the 3D position

of the heat source to be sufficient. Instead, we implemented a
Kalman filter that stores multiple measurements as an array
of states and refines each state using new measurements. The
state vector of the Kalman filter used here is

xi =
[
cix , ciy , ciz , ψi

]T
, (10)

FIGURE 8. An example of the view of a real fire with the thermal camera
used in the competition at two different thermal ranges. Note the high
contrast of the fire compared to the background, in addition to the large
size of the fires in the image. In the range of temperatures used in the
competition, the fire itself is completely saturated in the image. Detecting
and targeting such objects is significantly easier to achieve than when fire
analogues are used.

where cix , ciy , and ciz are the coordinates of the fire in the
world coordinate frame. The ψi represents the azimuth of
the surface normal for that fire. The filtering mechanism
stores multiple such state vectors, corresponding to multiple
different detected fires. We update a specific state vector xi
using a new estimate of the fire position q and normal nv, if q
is closer in the world frame than 1m to

[
cix , ciy , ciz

]T and at
the same time the horizontal component of nv is closer than
90◦ to ψi. If no such state is found, a new state is initialized
based on the current estimate. As is typical of the Kalman
filter, the state covariances grow in time to reflect loss of
knowledge without observation and, in our case, additionally
discard any measurements or even states that exhibit erro-
neous properties or states that have not been updated with a
measurement for the past 10 s. To account for random errors,
a state xi is only used in fire extinguishing if it has been
associated with at least 10 measurements.

It should be noted that the method for thermal detection
and localization of fire analogues used here is significantly
more complicated than would be realistically required in
extinguishing real-world fires. This is because fires that pose
a real danger are significantly hotter than the heating elements
of the fire analogues used in the competition, and dangerous
fires do not appear colder than they actually are in thermal
cameras (see Figure 8 for an example). Additionally, these
fires are significantly larger objects, and extinguishing them
would not require just spraying into a very narrow opening. In
real fire extinguishing, it is desirable to aim at the hottest areas
detected in the fire. A more dispersed water stream would
also be advantageous, as it would be more likely to hit the
fire, even with less precise target localization, and it would
extinguish the fire more effectively.

E. FIRE EXTINGUISHING
Upon obtaining the first validated fire detection state in the
Kalman filter array, the MAV is sent to a position s 1.5m
in front of the given target q along the estimated normal nv.
As the MAV flies there, its estimate of the target position
and the surface normal improves as it obtains new detections
from better viewpoints. When it reaches the position, control
is handed over to the fire-extinguishing subsystem (the state
labeled Extinguish fire in Figure 10(d)).
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FIGURE 9. Steering hysteresis for fire extinguishing, viewed from above.

In this state, the MAV is steered towards position s. How-
ever, continuous positional stabilization of the MAV towards
this exact position may lead to rapid tilting, due to movement
oscillations during attempts to correct the current position,
especially in face of potential fire estimation errors and
disturbances such as air currents. This causes the direction
of the water stream to be significantly unstable, since the
water nozzle does not have active stabilization due to weight
restrictions.

To mitigate this effect, we have included a hysteresis to
horizontal steering through two ranges of angle and distance
offsets (see Figure 9). The angle ranges were defined as limits
to the angles formed by the surface normal nv and the line
connecting the center of the fire analogue with the MAV -
the inner range αi was set to ±5◦, and the outer range αo
was set to ±10◦. The distance ranges are offsets from the
desired extinguishing distance of 1.5m. These were set to
±0.075m for the inner range ri, and to±0.15m for the outer
range ro. Once the MAV has reached the inner ranges (the
red zone in Figure 9), the xy-coordinates are not corrected,
irrespective of disturbances. The system can only correct its
altitude and its heading as changing these does not generate
tilt of the MAV. The MAV thus tends to drift or "float". It is
necessary to correct the heading continuously, otherwise the
drifting would affect the aim of the MAV. Water spraying is
only activated when the MAV is in this drifting state. The z-
coordinate and the heading are controlled either to spray at the
directly observed heating element of the fire analogue, or - if
it is not visible e.g. due to being cooled down by the water
- to spray at its estimated position from the Kalman filter. If
the target is directly observed, the aiming is more responsive
to disturbances. However, if the aiming relies on the filter,
the precision is lowered. The MAV is only allowed to correct
its xy-coordinates again when it has been moved outside the
outer ranges (the green zone in Figure 9), at which point water
spraying is disabled.

F. HIGH-LEVEL BEHAVIOR CONTROL
The complete behavior structure of the proposed system is
constructed as a hierarchical state machine, which is used
for interconnecting all the subsystems. The state machine
was designed for robustness of the entire code structure by

resolving the remaining few subsystem failure cases due to
wrong sequential and concurrent operations. The hierarchical
state machine is implemented using the Flexbe library [40],
and it is fully integrated into the designed ROS framework.

In Figure 10, the internal states of the state machines
are visualized as single-outline rectangles, and the nested
lower-level state machines are visualized as double-outline
rectangles. Transitions between two states and from one state
machine to a lower-level state machine are marked by arrows
with labels of outcomes describing the given transition. Dot-
ted terminal states represent the transition that is called after
returning to a higher level state machine. A landing event is
called whenever any state produces an outcome that means
that the MAV cannot continue its mission. Unfortunately,
there is no information available for the MAV to recognize
whether the amount of the sprayed liquid was sufficient to
extinguish the fire. Therefore, whenever the MAV lands,
the operators can see whether or not the mission was success-
ful by the state of the water bag.

The diagram of the main state machine is visualized in Fig-
ure 10(a). In the first step, the correct performance of all key
parts of the system is checked. When every component is
verified to be operational, an automatic takeoff is called. Once
the MAV is in the air, the mission commences. The mission
is divided into two parts: the outdoor phase and the indoor
phase. The outdoor phase is the part of the mission where
the MAV is outside the building. The indoor phase is when
the MAV is inside the building. At the end of the mission
(a window or a fire has not been found, or a fire has been
successfully extinguished), the MAV flies back to the home
position and lands.

The outdoor phase (Figure 10(c)) starts by flying to the
known GNSS position of the building. This position must be
a position from which the MAV is capable of detecting the
building. A common problem with navigation using standard
GNSS is its precision, which depends on the quality of the
satellite signal. GNSS satellites broadcast their signals in
space, but what we receive depends on additional factors,
such as signal blockage and atmospheric conditions. There-
fore, a safe position in front of the building may drift into the
building. For this reason, theMAV uses scans provided by 2D
LIDAR during the flight to facilitate navigation around the
building where the GNSS quality is degraded by the building
blocking the direct line of sight of some satellites. These scans
provide planar information in 360◦ around the MAV and are
used in a virtual bumper. The virtual bumper is a system that
prevents the MAV from following a plan that would lead it to
go closer than the predefined safe distance from the building.
If the target position is inside the building, the MAVwill stop
at a position within a safe distance from the building and
closest to the target position.

After it reaches a safe position near the building, the MAV
starts flying alongside the building at a predefined distance
with a heading towards the building, and begins the win-
dow detection mechanism. Whenever a window is located,
the MAV stops flying alongside the building and flies in front
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FIGURE 10. Diagrams of the main parts of the proposed system.

of the window to distance of 2 m from its center. Once this
position is reached, the localization of the MAV is switched
to indoor flying mode (LIDAR-based odometry is used in the
controller feedback), and an attempt is made to fly through
the window. If the attempt is successful, the MAV is inside
the building and the outdoor phase is considered successfully
finished. In the case of the opposite result, the MAV restarts
the search for an open window. After circumnavigating the
building without detecting a window, the outdoor phase ends,
and the result is registered as ‘‘window not found’’. The
MAV is allowed to detect the same window again and to
attempt to fly through it. This strategy is motivated by the
knowledge that only a single window was to be opened on

each floor during the competition trial. The attempts can be
repeated until the maximum allowed flight time is reached.
After reaching this time, the MAV automatically lands.

The steps for flying through the selectedwindow are shown
in Figure 10(b). The procedure utilizes window estimates pro-
duced by algorithms described in section II-B. First, theMAV
flies to a position in front of the window while continuously
facing the center of the window. The MAV then hovers in
front of the center of the window to stabilize itself before the
actual flythrough. The flythroughmaneuver is then initialized
and the state machine waits for an up-to-date window esti-
mate corrected by new detections. After the window estimate
has been updated, the MAV flies through the center of the

15882 VOLUME 9, 2021

CHAPTER 3. IN-FLIGHT VISUAL RELATIVE LOCALIZATION AND
STABILIZATION TECHNIQUES

Final version is available at https://ieeexplore.ieee.org/document/9476723

56

https://ieeexplore.ieee.org/document/9476723


V. Spurny et al.: Autonomous Firefighting Inside Buildings by an Unmanned Aerial Vehicle

FIGURE 11. Photos of the MBZIRC 2020 Fire Challenge area. The photo on
the left shows the tall structure simulating a building, the photo in the
middle shows front view of the fire analogues (this unit was turned on)
and the photo on the right shows side view of the fire analogues (this
unit was turned off).

window to a goal position at a predefined distance behind the
window while maintaining a constant altitude. If the window
estimate is lost while the flythrough is in progress and the
MAV is still outside the building, the state machine switches
to the Escaping state and the MAV returns to its original
hovering position in front of the window.

The indoor phase (Figure 10(d)) contains the final parts
– localization and extinguishing of the fire. Localization is
done by using the exploration method, which is described in
section II-C, and the detection system, which is described in
section II-D. Once the fire is detected, the MAV flies in front
of it and begins extinguishing (section II-E). If the fire target
is not lost, the MAV depletes all the water that it is carrying
during the extinguishing maneuver. There is no feedback
that provides information as to whether the extinguishing
has been completed. The extinguishing is therefore declared
completed once all the water is depleted. In the case that the
fire is lost, the MAV starts exploring again. After depleting
the extinguishing agent, the MAV flies back in front of the
window that it entered through and tries to fly back outside
the building. An attempt to leave the building using the same
window is also performed if the exploration finishes without
successful localization of the fire. When the MAV is outside,
the localization of the MAV is switched to outdoor flying
again and MAV flies back to land on the starting position.

In the case of a real firefighting scenario inside a building,
the proposed system can be used in almost the same structure
as presented here. The only modification is that the process of
searching for an open window can be accelerated by directly
specifying the approximate GNSS position of the window.

III. EXPERIMENTAL RESULTS
A. SIMULATIONS
To be able to experimentally verify the entire firefightingmis-
sion, we modeled the MBZIRC 2020 scenario in the Gazebo
robotic simulator. The interior of the building was updated
during the competition to correspond with the interior of the
real building, as observed during the rehearsals (see photos
from the competition in Figure 11). The Fire Challenge arena
is approximately 50m × 60m in dimensions and contains a
tall structure (18m in height) simulating a building. The inte-
rior of each floor of the building contains two fire analogues
and only one per floor is activated during the trial. Each floor
of the building contains eight 2m × 2m windows. Only one
of them is open and can be used as an access point to enter

FIGURE 12. Snapshots from the simulation developed for the Fire
Challenge of the MBZIRC 2020 competition.

the floor. Snapshots from the simulated scenario are shown
in Figure 12.

The behavior of the proposed system can be simulated
completely, including the outdoor and indoor flying, win-
dow detection, fire detection and also fire extinguishing (see
the right image in Figure 12). Numerous simulations were
conducted with different settings of the system parameters
during the preparations for the competition. The results of the
system in the final form after the competition obtained for the
evaluation of the system for this paper are shown in Table 1.
The goal of each run of the simulation was to extinguish an
artificial fire on the first floor of the building. For testing
purposes and according to the rules, one of the fire ana-
logues (windows) was randomly selected and was turned on
(opened). The position where the MAV started was the same
each time for each run of the simulation. Three performance
criteria may be considered for an evaluation of the task under
discussion in this paper: reliability, total mission time, and
minimal distance from the obstacles. The results show that
the mission can be completed within 7min. However, the fire
analogue was detected and extinguished only in 80% of the
cases, due to problematic properties of the fire analogues. The
fire analogues are visible in the thermal images only under a
viewing angle of at most 57◦ from the position perpendicular
to the fire analogue. The proposed exploration method does
not consider the angle under which the particular surface
in the scene is observed. Therefore with the fire analogues,
the system can consider the surface as already scanned even
though the fire analoguewas not detected, because the surface
was scanned under an angle from which the heated element
could not be detected. This is a specific property of the fire
analogues used in the competition, and it will not prevent
successful detection of real fires. During these simulations,
it was successfully verified that the MAV did not come closer
to the obstacles than 0.7m, which was the minimum obstacle
distance set for the indoor motion planning algorithm.

B. REAL-WORLD VERIFICATION
1) PLATFORM DESCRIPTION
Our team participated in all challenges of the MBZIRC 2020
competition. To allow reusability of the system and the spare
parts, we decided to select a base MAV platform that can be
used in all challenges, with possible modifications to the sen-
sors and actuators. The proposed firefighting MAV platform
with the complete sensory equipment is shown in Figure 13.

The selected base platform is created mostly from com-
mercially available off-the-shelf components and 3D printed
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TABLE 1. Table with results from 10 runs of the simulated MBZIRC 2020 competition scenario. The MAV returned back to the starting position each time.
However, the fire analogue was detected and was extinguished only in 8 of the cases, due to problematic properties of the fire analogues.

FIGURE 13. Description of the components of the deployed MAV platform
for indoor fire extinguishing.

parts. The platform is built from the Tarot T650 quadrotor
frame, the PixHawk 4 flight controller,3 and an Intel NUC
onboard computer. This frame satisfies the size limitations
set for the competition and also for the real applications
(the diagonal dimension without propellers is 650mm), and
provides the payload capacity that is necessary for carry-
ing additional sensors and fire-extinguishing equipment. The
onboard computer is Intel NUC8i7BEH,4 which contains
Intel i7-8559U CPU and 8GB of RAM, and runs the Ubuntu
18.04 LTS operating system and Robot Operating System
(ROS) [41] Melodic middleware. In addition, the MAV is
equipped with RPLIDAR A3,5 which is a 360◦ 2D laser
range scanner that can be used for both indoor and outdoor
applications. This sensor provides 16000 samples per second
and can detect obstacles within a 25m radius, depending on
the setting of the sensor. For the stereo camera, we use the
Realsense D435 camera,6 which has FOV (H × V × D)
87◦±3◦ × 58◦±1◦ × 95◦±3◦ and a range of up to 10m. Fire
detection is done using a set of three TeraRanger Evo Thermal
337 thermal cameras. This thermal camera is cheap, small,
and compact (only 12 g), which is very important in this case
of a limited payload. However, the camera has small resolu-

3https://github.com/PX4/px4_user_guide/raw/master/assets/flight_
controller/pixhawk4/pixhawk4_technical_data_sheet.pdf

4https://www.intel.com/content/dam/support/us/en/documents/mini-
pcs/NUC8i3BE_NUC8i5BE_NUC8i7BE_TechProdSpec.pdf

5https://www.generationrobots.com/media/LD310_SLAMTEC_rplidar_
datasheet_A3M1_v1.0_en.pdf

6https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-
RealSense-D400-Series-Datasheet-June-2020.pdf

7https://terabee.b-cdn.net/wp-content/uploads/2020/05/evo-
thermal_specsheet.pdf

tion of 32 × 32 pixels and FOV of 33◦ in both dimensions,
and requires a set of three of these sensors onboard the MAV
to cover the vertical space in front of theMAV sufficiently for
this application. The cameras are arranged vertically, with s.t.
one pointing forward and the two others above and below it,
oriented 30◦ upwards and downwards from the first camera
(see Figure 13). The MAV is further equipped with two
Garmin LIDAR-Lite v38 laser rangefinders.

To extinguish fires, the MAV is equipped with a water bag
and a pump.9 The capacity of the bag was limited to 1 L of
the fire-extinguishing agent (water in the case of the com-
petition) to maintain higher maneuverability of the system.
This maneuverability is vital for flight in an environment,
such as the inside of a building, where strong air currents
and various obstacles can be encountered. The pump drives
the water through a nozzle with a diameter of 4mm and
can fully deplete the bag within 25 s. The nozzle is rigidly
attached to the MAV frame, and is oriented to the front with
the spraying tip located 2 cm below and 2 cm in front of it. As
has already been mentioned, this nozzle is not actuated, since
a servomechanism of this type would significantly increase
the weight of the MAV.

2) EXPERIMENTS
The key parts of the proposed system were thoroughly tested
in demanding outdoor conditions in the desert near Abu
Dhabi in the United Arab Emirates. This environment was
selected to emulate the conditions around buildings and other
conditions set for the competition itself (mainly sudden wind
gusts, strong sunlight and dust), while providing a safe field
for system tuning and experimental verification. Repeated
experimental verification of the key parts of the proposed
system was necessary in order to prepare for phenomena that
are difficult to simulate, and also to discover issues related to
the hardware that was deployed. One issue that emerged was
the influence of sensors connected using USB 3.x., such as
Realsense D435, on the precision of GNSS. The precision of
GNSS localization can be severely decreased by the influence
of components transmitting via cable at frequencies close to
those used by GNSS. See sheet10 for a detailed description
of USB 3 frequency interference. It was therefore necessary

8http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_
and_Technical_Specifications.pdf

9https://www.comet-pumpen.de/fileadmin/pdf/pumpen_datenblaetter/
24v/Datenblatt_VIP-PLUS_24V_1435.88.00.pdf

10https://www.intel.com/content/www/us/en/products/docs/io/universal-
serial-bus/usb3-frequency-interference-paper.html
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FIGURE 14. Experimental verification of fire extinguishing in the desert
near Abu Dhabi, United Arab Emirates. The image on the left shows a
photo from this experiment. The image on the right displays the plot of
the changing offsets of the nozzle direction from the estimated fire
analogue direction during the extinguishing procedure. Angles φ and ψ
denote vertical (pitch) and horizontal (yaw) angular offsets. The blue line
denotes when the water pump was activated. The black circle denotes the
range of offsets corresponding to the area of the opening in the
plexiglass viewed from the desired extinguishing distance of 1.5 m. Note
that most of the time, the water only sprinkled when the nozzle was
aiming into the opening. However, the real world dynamics of the water
stream caused more spillage than the aim itself implies. A video of this
experiment is on YouTube11.

FIGURE 15. Plot of the MAV trajectory during the extinguishing
experiment displayed in Figure 14. The red line denotes the trajectory
itself relative to the fire analogue. The green points are specific positions
from which the MAV activated its water pump. Spraying lines parallel to
the direction of the water nozzle in the spraying positions are projected
in blue. Note that 93% of these spraying lines pass through the black
circle denoting the opening in the plexiglass of the fire analogue. The
trajectory is projected to the xy-plane as a shadow, for better clarity. Also
shown in the xy-plane are the hysteresis ranges described in Figure 9.

to shield the receiver of the GNSS signal. Another issue
that we discovered was the necessity to calibrate the fire-
extinguishing device to hit the fire detected by the thermal
cameras precisely for each MAV. Otherwise, the ejected
water would not precisely hit the opening in the fire ana-
logues. In fact, the direction of the water stream was diverted
downwards by the pressure generated by the active propellers.
Although precise placement of the fire-extinguishing agent
is also important consideration in real firefighting, the small
size of the opening in the MBZIRC 2020 fire analogues
presented a much more difficult challenge than a firefighting
MAV would face in a real fire.

FIRE DETECTION AND EXTINGUISHING
The first experiment presented here was focused on fire
detection in conjunction with autonomous fire extinguishing

(discussed in section II-D and section II-E). The initial goal
of this experiment was to detect the fire analogues. After
successful detection, the MAV moves in front of the fire
at a distance of 1.5m while heading towards the opening
in the center of the fire analogue, and then it initiates the
autonomous fire extinguishing. Whenever the MAV points
the nozzle towards the opening at the correct relative distance,
the water pump is activated (see Figure 14 and Figure 15).
The experiment shown in Figure 14 and 15 was carried out
in the latest stage of system development prior to the com-
petition, representing the final state of the fire-extinguishing
subsystem. A video showing this experiment is available on
YouTube.11 As the data shows, at least in terms of position
and heading, the MAV approached the desired extinguishing
position w.r.t. the fire analogue and deployed water into the
small opening. In this experiment, for 93% of the time when
the water pump was activated, the water nozzle was aiming
correctly at the opening. The remaining 7% was affected by
the delay until the pump turned off successfully. This shows
the accuracy of the fire detection and localization system. It
should be noted that some of the deployed water was lost
due to various effects such as dispersion, the momentum of
the liquid in the spraying system, surface tension within the
water stream, bouncing off from the back plate of the fire
analogue, stronger ballistic curvature when the pump is being
activated or deactivated, and evaporation from the heating
element. Note also that there were numerous interruptions
in the correctly-aimed water spraying. These interruptions
were caused by loss of the target by the thermal cameras
due to the heating element being temporarily cooled down
by the deployed water (this was a special property of the
MBZIRC 2020 fire analogue, not of a real fire). For this
implementation, we decided that it was a better strategy to let
the target heat up again and to invest additional time instead
of continuously spraying merely based on the "remembered"
position of the target. Such estimation without new measure-
ments drifts from the real position, and the limited carrying
capacity of an MAV makes it a priority to be economical
with the extinguishing agent. With real hazardous fires, such
losses of vision will only occur after the extinguishing has
been successful, so it would not be necessary to interrupt the
water stream.

INDOOR MOTION PLANNING AND EXPLORATION
Another experimentally verified subsystem was indoor
motion planning and exploration (discussed in section II-
C). The goal of the experiment was to completely explore
the space inside a room with obstacles consisting of poles
holding the structure and wooden artificial obstacles. An
example layout of the obstacles inside the room is shown
in Figure 16(a). A visualization of data from the experiment
in this setup is shown in Figure 16(b). Figure 17 shows a
visualization of theMAV trajectory andminimal obstacle dis-
tance progression from one of the performed flights. During

11https://youtu.be/9bkvfi5uHK4
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FIGURE 16. Experimental verification of the indoor motion planning and
exploration techniques in the desert near Abu Dhabi, United Arab
Emirates before MBZIRC 2020. In the image on the right, the red blocks
denote obstacles, the green blocks show the already scanned space, and
the yellow blocks denote frontiers for exploration. A video from this
experiment is on YouTube12.

FIGURE 17. Data from one of the flights from the indoor motion planning
and exploration experiment displayed in Figure 16.

the flights, the MAV had not come closer than the specified
minimal distance of 0.9m to the observed obstacles, and had
successfully explored the space inside the room. A video
showing one of these experiments is available on YouTube.12

WINDOW DETECTION AND THE OUTDOOR-INDOOR
TRANSITION
Another experiment in the desert was aimed at verifying
the correct performance of outdoor wall following, window
detection, flight through the detected window, and switching
between indoor and outdoor modes of localization. For this
purpose, a wooden room was constructed next to a long wall.
The room was approximately 2.5m × 3m × 2m in size
and contained an entrance 2m × 2m in size. The size of
the room did not match the MBZIRC 2020 specification but
it was suitable for testing these particular parts of the sys-

12https://youtu.be/9LTf6PG4ijc

FIGURE 18. Images from experimental verification of the correct
performance of outdoor wall-following, window detection, flight through
the detected window, and switching between indoor and outdoor modes
of localization. 18(a) shows the MAV before entering a mock-up building
in the desert and 18(b) displays a particular visualization of the onboard
sensor data. The visualization includes the MAV position, LIDAR data
shown as red squares, the detected window as a yellow rectangle, and a
map produced by the Hector SLAM algorithm. A video from this
experiment is on YouTube13.

tem. Figure 19(a) displays the trajectory of the MAV during
the experiment. The MAV started 2.5m from the wall and
autonomously detected the wall as the closest object seen
by the 2D LIDAR, then followed the wall at a distance of
2m while simultaneously searching for a window. During
the outdoor flight, the MAV was localized using GNSS. The
windowwas detected using a combination of 2D LIDAR data
and a priori information about its size and altitude. When
the window was detected, the MAV approached the window,
after which the localization switched to indoor mode (using
2D LIDAR-based Hector SLAM), and the MAV flew inside.
The MAV then turned around inside the building, flew back
outside, and the localization mode switched back to GNSS.
Finally, the MAV returned back to its starting position and
landed. The whole experiment, along with a visualization
of the sensor data, can be seen in a video on YouTube.13

Figure 18 shows the MAV in front of the building along with
a visualization of the sensor data and the detected window.
Figure 19(b) contains a plot of the total control error (defined
as the 3D Euclidean distance between the current reference
and the MAV position) from the entire flight. This graph
shows that the switch between the two different localization
systems was smooth and did not impact the control of the
MAV. The average control error during the flight was 0.14m.

COMPLETE SYSTEM VERIFICATION
The complete system was tested in a mock-up of the com-
petition building set up in the Czech Republic. The mock-
up is 5m × 5m, with 2 floors totaling 5m in height, with
windows 1.85m × 1m in dimensions (see Figure 20). The
size of the windows matches the first specification for the
MBZIRC 2020 competition. This specification was changed
later, and the windows are smaller than in the competition.
This made the flight through the window more challenging
than was necessary for the competition, but it verified the
performance and the robustness of the system for real-world
deployment. In the experiment presented here, the MAV
began next to the mock-up, autonomously detected the wall
as the closest object seen by 2D LIDAR, and then followed

13https://youtu.be/aCKUjbJ2Mxs
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FIGURE 19. Data from the outdoor-indoor transition experiment
displayed in Figure 18.

FIGURE 20. Experimental verification of the proposed system on a
mock-up of the building set up in the Czech Republic. The image on the
left shows the MAV outside the mock-up during its search for an open
window. The image on the right displays the MAV while the water is being
sprayed on the fire analogue inside the mock-up. A video of this
experiment is on YouTube14.

the wall at a distance of 1.5mwhile simultaneously searching
for a window. The window was detected using a combination
of data from 2D LIDAR and from the stereo camera. After
successful detection, the MAV approached the window and
flew inside. Then, the MAV started to explore the interior of
the building with the goal to find the fire analogue and then to
extinguish the fire. The fire analogue was later detected and
all the water was depleted on it. Finally, the MAV flew out
of the building, using the same window through which had
flown in, and then flew back to the starting position of the
mission, where it landed. The complete trajectory traveled by
the MAV during this experiment is shown in Figure 21(a).
Figure 21(b) shows the distance from the closest obstacles
measured by 2D LIDAR during the flight. The shortest obsta-
cle distance of the whole flight was 0.74m, when the MAV
was flying through the window. It can be seen that the MAV
motion was successfully planned with an adequate safety
margin throughout the flight. The whole experiment, along

FIGURE 21. Data from the complete system verification experiment
presented in Figure 20.

with a visualization of the sensor data, can be seen in a video
on YouTube.14

IV. GOING BEYOND THE MBZIRC COMPETITION
An MAV can carry a water bag filled only with a very
limited amount of water, due its limited payload capacity.
Even after this entire amount has been discharged perfectly
into a real fire, the fire will very likely not be extinguished. To
increase the payload capability of the MAV, its size has to be
changed. However, greater dimensions of theMAVwill make
flying through windows and inside buildings very difficult to
achieve, if not even impossible. Therefore, in the most cases
the fire-extinguishing approach, with the water spray, is not
the optimal solution.

Based on our results in the competition, the proposed
autonomous system was selected to be the core of an indus-
trial firefighting MAV system using fire-extinguishing cap-
sules.15 This systemmakes it necessary to hit the fire directly,
meaning that it requires reliable techniques for locating,
approaching, and aiming precisely at fires. These techniques
are being adapted from the work presented here, combined
with a throwing mechanism able to place the active fire-
fighting capsules quickly and precisely.16 A prototype of a
complex industrial platform is shown in Figure 22.

14https://youtu.be/a-VsVQcMLuQ
15http://www.fire-defender.com/en/bonpet-3/1465-2
16http://mrs.felk.cvut.cz/projects/dofec
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FIGURE 22. A new platform under development that uses
fire-extinguishing capsules as projectiles. The first two photos on the
right show 3D render of the platform and launcher design, photo on the
left shows constructed platform.

V. CONCLUSION
In this work, we have presented a complex system developed
for fully autonomous extinguishing of fires inside a building
using an MAV system. The challenges include control and
estimation of the MAV state, interior motion planning and
exploration, window and fire detection and position estima-
tion, and fire extinguishing. One of the main contributions
of the system lies in precise control for flying through rel-
atively small windows, and also for precise spraying of fire-
extinguishing agent into a small opening representing the fire,
using multiple sensory data to increase reliability. For this,
we have presented a novel multi-layer control pipeline that
further enables precise localization and stabilization in an
open space around a building, inside rooms with obstacles,
and also with a smooth transition between these two environ-
ments (with GNSS and GNSS-denied). This smooth transi-
tion is another contribution that motivated theMBZIRC 2020
committee to design this demanding challenge. The paper
contains the system performance presented in simulations
and field tests in various demanding real-world conditions.
The system was developed as part of a solution for the
firefighting mission in the MBZIRC 2020 competition, and
it helped our team to achieve first place in the Grand Chal-
lenge of this competition among the best universities in aerial
robotics worldwide.17 Although the system was developed
specifically for this competition, the solution presented here
has led to an industrial solution that is now under develop-
ment. This solutionwill be focused on real-world firefighting,
in which autonomous drones will deploy fire-extinguishing
capsules.
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Lyubomyr Demkiv2 and Martin Saska1
1Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague,

http://mrs.felk.cvut.cz
2Robotics Group of SoftServe Inc. and with the Institute of Computer Science and Information Technologies,

Lviv Polytechnic National University, Ukraine

Abstract: In this paper, we describe a system for combating real fires with sprayed liquid
extinguishing agent using a team of multirotor UAVs. The system design relies on onboard sensors
and operates without the need for human intervention throughout its complex mission, from its
takeoff to landing. The core UAV platform can estimate its state, self-localize, navigate and locate
and extinguishing fires. Thermal and RGB cameras are used, each with a specialized computer vision
subsystem and are combined with planar LIDAR for 3D localization of fires on multistory building
facades. The system conducts aerial firefighting with a software stack that addresses flight dynamics
and sensor limitations and a liquid-spraying subsystem incorporating a rigidly-attached water nozzle.
The approach presented in this paper was motivated by the Mohamed Bin Zayed International
Robotics Challenge (MBZIRC 2020) firefighting scenario, which focused on coordinated multi-UAV
teams that can autonomously combat high-rise building fires. The MBZIRC series places particular
emphasis on fast and reliable deployment of robots in realistic conditions. These contests promote
development of real-world applications that are greatly needed by society, but which still exceed
State-of-the-Art in the robotics community. To our knowledge, our system was the only MBZIRC
2020 contender to extinguish a facade fire successfully in autonomous mode without using an
RTK-GNSS system. Our approach contributed to victory in the overall competition and we have
now adapted it into an industrial prototype for a firefighting UAV. A video attachment to this
paper is available at http://mrs.felk.cvut.cz/fr2020firechallenge-facadefires.

Keywords: emergency response, aerial robotics

1. Introduction
There is currently an increasing demand for Unmanned Aerial Vehicles (UAVs) in the disaster-relief
and emergency-response sectors. In 2017 alone, worldwide fire casualties reached 120,632 people
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(Ritchie, 2018) and death from fire or heat was the 4th leading cause of death by accidental injury
in 2019, with over 110,000 victims (WHO, 2020). Additionally, there were 1,318,500 fires in the
United States during 2018, causing 3,655 deaths and 15,200 injuries. The total losses from fires in
2018 were equal to $25.6 billion US dollars (USFA, 2018; NFPA, 2019).

Robots present one possible solution to helping firefighters and decreasing the amount of fire-
related casualties. The robots can aid firefighters in detecting and locating fires within buildings and
extinguishing them, both indoors and outdoors (Safetymanagement, 2018). Such systems can also
provide firefighters with the information needed to protect the lives of firefighters during incidents.
For example, among the robots used in disaster response is

• THOR (Tactical Hazardous Operations Robot), a humanoid robot designed by Virginia Tech
University and employed by the U.S. Navy’s Shipboard Autonomous Firefighting Robot
(SAFFiR) program. Its goal is to assist sailors in firefighting onboard ships. Unfortunately,
this robot is slow and may be vulnerable to water damage (VT, 2018; Hopkins et al., 2015).

• Thermite Robot is a system created by Howe and Howe Technologies for the U.S. Army. It is a
remote-controlled mobile robot equipped with a hose capable of delivering 1900 liters of water
per minute (Firehouse, 2018).

• TAF 20 and TAF 35 (Turbine Aided Firefighting Machine) by Emicontrols (a subsidiary of
the TechnoAlpin Group) operates well in small spaces, such as tunnels. The robot can move
obstacles with its bulldozer blade and clear the environment of smoke and gasses by binding
them within its turbine. It is also able to discharge 3,500 liters of water per minute (Emicontrols,
2018a; Emicontrols, 2018b).

• TC800-FF by Tecdrone is a remotely operated robot capable of working indoors and outdoors.
It is equipped with multiple sensors to retrieve data from disaster-stricken areas and to then
send it back to remote operators (Robotpompier, 2018).

• Fire OX (Fire Product Search, 2018) by Lockheed Martin is capable of carrying a water tank,
standing out among other disaster robots due to its capability of semi-autonomous operation.

These are merely samples of existing solutions. Other firefighting robotic systems are also in use
(Lattimer, 2020; Science|Business, 2020; Peskoe-Yang, 2019).

While these robots share a common need for remote operation, they are also unsuitable for
combatting fire on tall buildings. Though they can ascend stairs, when speed is essential these
systems are outperformed by UAVs. The robots used during the fire at Notre Dame Cathedral
(Science|Business, 2020; Peskoe-Yang, 2019) could not help firefighters abate the fire, but rather
helped them fight with assessing the consequences and to save priceless artefacts. However, even
though UAVs were used as well, they were only applied to monitor the scene and to select locations
for deploying hoses by humans. Thermal cameras, which would have have been highly practical for
the scenario, were not used (The Verge, 2019).

Moreover, operating within environments with low visibility makes it harder for a remote operator
to control the robot. Such limitations increase the importance of autonomous robots in navigating
smoky or hazardous environments, since they are able to navigate using data from sensors of diverse
modalities, such as rangefinders, thermal and visual cameras, etc.

Fires on high-rise building facades pose a particularly relevant challenge and opportunity for
robots. An emergency evacuation in such a building can be difficult and may thus lead to injuries or
the loss of human life and since such fires are out of reach for conventional, ground-based firefighting
methods, an aerial solution is called for. The timing aspect of this problem is the decisive factor
for the amount of damage the fire will cause. According to recent analyses, the incipient stages of
fires on the cladding materials of modern high-rise buildings take several minutes, during which
the size of the fire is relatively manageable. After this phase, the fire rapidly spreads beyond the
control of firefighting efforts and considerable damages are then unavoidable (Chen et al., 2019b;
Guillaume et al., 2018; McKenna et al., 2018). This observation is consistent with the timeline of
the fire in the Grenfell Tower in June 2017 (London Fire Brigade, 2018). One strategic option would
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maintain a team of UAVs with firefighting capabilities on-site or ready for delivery by the local first
responders deployed by local fire departments. Such systems could be deployed significantly sooner
than a manned helicopter mission, which might follow later.

In order to fully exploit the potential of UAVs in firefighting, especially in high-rise buildings,
and to achieve reliable operation, the UAVs themselves need to be autonomous with capabilities
going beyond merely following a static, predefined trajectory. The precise location of a fire source,
especially in hard-to-reach locations such as high-rise buildings, is difficult to specify accurately
from a takeoff location. The fire source may not even be directly visible from the operator’s vantage
point, apart from smoke plumes indicating an approximate region of interest.

On the other hand, the human factor in UAV-based firefighting can be indispensable. For
example, with vision-based fire localization onboard a UAV, finding fire sources without at least
an approximate prior estimate of the region of interest can be time-consuming. Human oversight
can specify, for example, the range of floors or the building face where the fire is most likely located,
based on external observation, sensors inside the building, and other information sources available
to the human operators. This input can then be used by the UAV system to navigate quickly and
autonomously to a location where onboard sensors can identify and locate the fire sources. While
merely flying close to a point outside of a building in an otherwise open space is simple to execute, it
is time-consuming if the distance is great. For this reason, manual control of the UAV in the approach
phase would waste human time and attention that could better be applied to other critical aspects
of the entire firefighting mission.

Autonomy is additionally indispensable in the procedure of extinguishing the fires themselves.
Since direct mechanical contact with the environment by UAVs is hazardous, the fires may have to be
doused with a liquid stream or fire-extinguishing projectiles. For such scenarios a fire-fighting UAV
must be able to aim at the localized fire sources. The ideal position at which the extinguishing agent
should be deployed at any given moment will change with time and with targets being affected by
extinguishing. Controlling this operation manually is unfeasible in conditions typical of the exteriors
of higher floors of high-rise buildings. In such locations, the UAV and the fire source can be too far
away from ground-based operators for them to effectively take aim, even if the UAV system features
a low-latency onboard video streaming system. Wind often present in such conditions would also
make manually correcting aim highly challenging, as had been observed during the Mohamed Bin
Zayed International Robotics Challenge (MBZIRC 2020) Challenge 3 where some teams employed
teleoperated solutions without success.

Saving endangered people and property is an often-cited motivation for the development of new
robotic systems. However, this factor is rarely as immediately applicable as it was in Challenge 3 of
the MBZIRC 2020 competition which was directly inspired by the need to extinguish fires in difficult
to access locations, such as the high-rise buildings discussed above. This challenge required the use
of a team of firefighting robots to locate and extinguish fires, both within and without a building.
Solving the challenge required multiple robotic tasks to be addressed beyond just hardware design,
including navigation, searching for objects, computer vision with 3D localization, sensor fusion, and
implementation of active extinguishing procedures.

This paper describes our approach to one specific subtask of the challenge: extinguishing real fires
on the facade of a building with water deployed by a multirotor UAV. The approach we employed
was based on using thermal cameras combined with a specialized thermal vision and estimation
subsystem, as well as custom-designed searching and in-flight extinguishing maneuvers. To the best
of our knowledge, we were the only team in this subtask to not only successfully use full autonomy
during the flight, but to also rely solely on local sensors for localization of the targets and control
of the UAVs.

The main contributions of this paper include the overall system design, as a model for realistic
UAV-based firefighting, and the observations made during iterative development and deployment
stages. Novel aspects of our system include the onboard, hybrid, vision-based localization of building-
facade fires and fire-extinguishing capability, using dynamic body-pose-based aiming and water-jet
control. Among the lessons learned in deployment, we emphasize the need for robust computer
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vision, specifically robust with respect to the highly dynamic appearance of fires in RGB and thermal
images. Other lessons include the possibility of exploiting the transparency of flames to blue light in
order to observe surfaces behind the flames. There is also a need for robust aiming and localization
suitable even for a maneuvering multirotor UAV. More specific technical aspects are also included,
such as addressing the severe interference of USB 3.x devices with Global Navigation Satellite
System (GNSS) equipment.

2. Related Work
Using UAVs in firefighting has been previously investigated in several works. One situation where
UAVs can help is in monitoring of outdoor fires. As reported in (Merino et al., 2012), a system of
multiple UAVs can be used for automatic forest fire monitoring using RGB and infrared cameras.
Real experiments with forest fire monitoring in a national park have already been conducted by
the Hungarian fire department (Restas, 2006). The authors of (Viguria et al., 2010) describe a task
allocation strategy for the distributed cooperation of ground and aerial robot teams in fire detection
and extinguishing. In (Chen et al., 2019a), a UAV system is designed to extinguish a fire by dropping
a fire-extinguishing capsule on it. Similarly, in (Saikin et al., 2020) the authors employ a UAV system
for delivering a liquid fire-extinguishing agent by a dynamic dropping maneuver, maximizing release
velocity to reduce dispersion.

However, none of the systems above address certain aspects, such as environmental interaction,
precision control for extinguishing, or flight close to buildings (much less flight inside them). In
order to solve these tasks autonomously, the following challenges need to be addressed: Precise
localization near obstacles with minimal reliance on GNSS, autonomous real-time detection of fires
using onboard sensors, reliable stabilization of UAV during extinguishing, motion planning, and
reactive obstacle avoidance.

Multirotor UAVs, also known as drones, are widely used in multiple areas of industry and the
public sector, as is evident in surveys (Shakhatreh et al., 2019). For instance, the CB Insight report
(CBInsight, 2020) lists 38 technology sectors where UAVs are highly applicable were listed, among
which were education, space, defense, disaster relief, etc. An extensive survey of the application of
drones for bridge inspection is performed in (Hubbard and Hubbard, 2020). While the methodology
presented in the paper establishes a basic framework intended for bridge inspection, the approach can
be tailored for inspections in other domains, such as the firefighting mission under consideration.
For the inspection, a mission definition system must be set up. Such multirotor UAV-oriented
architecture is presented in (Portas et al., 2018). Another mission guided framework was presented
in (Hrabia et al., 2019). The investigation of automated inspection applications is conducted
in (Tudevdagva et al., 2017) for high voltage transmission lines, and in (Ashour et al., 2016) for
inspecting and regulating construction sites. As mentioned in the Deloitte analysis report (Schatsky
and Ream, 2016), UAVs can increase the speed of wind turbine inspection up to 10 times in
comparison to traditional methods. In the report published by (Measure, 2016), benefits and use
cases of UAVs in power generation facilities are also analyzed. However, these systems are primarily
intended only to assist in gathering information for human operators using manual control and
telemetry.

During a firefighting mission, one of the objectives is to detect specific objects, typically flames,
and to determine their coordinates. This can be done in multiple ways. One of the methods
that is becoming increasingly common in practical use is computer vision. Images provide a rich
information source on a relatively large section of the environments, but they require specialized
processing to be utilized in autonomous systems. A survey regarding the computer vision methods
and corresponding data-sets for UAV flying at different altitudes (e.g., eye-level, low-medium, aerial)
is discussed in (Cazzato et al., 2020). Among the most popular ways is the utilization of the machine
learning (ML) approach. For instance in (Nousi et al., 2019), a Robot Operating System (ROS)-based
environment was used to investigate the applicability of various approaches (executed on Nvidia
Jetson TX2) for real-time object detection and tracking. The results obtained in this paper testify
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to the possibility of running Neural Network (NN)-based detection on an embedded device. While
such ML methods are capable of exceptional object recognition capabilities in certain situations,
they present numerous challenges. Besides the considerable onboard computational power necessary
for such a hazardous application, the highly varied appearance of fires and the unpredictable
backgrounds and lighting in real-world situations can make it unfeasible to obtain sufficiently
representative training datasets.

In general, for projects where the goal is to detect fire, a vision based approach using classical color
imaging alone may not be enough as the fire itself may be obscured from cameras by various solid
surfaces or smoke. For this purpose, in (Pecho et al., 2019), a thermal camera for indoor building
inspection was used. The thermal imaging proved to be a good source of data on the interior fires,
but the UAV was only piloted manually, with the thermal images being transmitted for appraisal
by human operators instead of being processed automatically. Thermal cameras are also useful for
the detection of other objects beside fires or when, for example, detection is challenging due to light
conditions in the visible spectrum (Andraši et al., 2017). Simultaneous utilisation of both thermal
and RGB cameras is also a common form of sensor fusion. For instance in (Vidas et al., 2013), such
a sensor combination is used for the construction of a dense 3D model of an investigated object. It
is used for crowd monitoring in (Schulte et al., 2017) and for small UAV detection in (Goecks et al.,
2020).

The robotic extinguishing of fire with a water stream has been previously explored, but primarily
with ground robots (Liljeback et al., 2006; Rangan et al., 2013) that are mechanically stabilized by
contact with the ground. The kinematics of a water stream deployed from a UAV were explored
in (Lee et al., 2020) and aiming with UAV body position was explored in (Vrba et al., 2019).
However, these works were not focused on correctly aiming for extended periods of time in the
context of firefighting. Firefighting using UAVs has already also been a topic of other robotics
competitions. (Qin et al., 2016) describes the design and implementation of a firefighting UAV for
outdoor applications designed specifically for the IMAV 2015 competition.

3. MBZIRC 2020 Challenge 3
This paper is mainly motivated by the MBZIRC 2020 competition. The competition was divided into
three challenges plus a Grand Challenge and final Exhibition, all of which our team participated
in, each motivated by a different set of real-world problems. Challenge 3 was focused on robotic
firefighting in various conditions and this paper discusses our approach to its first subtask, specifically
extinguishing real fires that were emitted by a gas pipe on the facade of a building with a water
stream.

3.1. Challenge subtasks
Challenge 3 of the MBZIRC 2020 comprised four distinct parts: extinguishing real fires on the
exterior of a building by UAV with water, extinguishing fire analogues in the interior of a building
by UAV with water, extinguishing fire analogues in the interior of a building by Unmanned
Ground Vehicle (UGV) with water, and extinguishing free-standing fire analogues by UAV with
fire blankets.

Each of the three challenges progressed as follows: first, each participating team was given three
rehearsal runs on the dates of the 20th, 21st, and 22nd of February, 2020. These rehearsals took
15 min each for Challenge 3. Afterwards, two scored attempts were performed as part of the
competition proper on the 23rd and 24th of February, 2020, once again for 15 min each. Each
challenge of MBZIRC 2020 had a separate ranking based on points achieved with manual control.
The teams scoring no points on autonomous control were always ranked below the lowest scoring
team with at least some degree of autonomy, reflecting the significant difference in relevance to the
field of robotics and the difficulty of execution. The final result of a team was selected as the better
result of two attempts. Lastly, the Grand Challenge phase of the competition took place on the
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Figure 1. Description of the fire objects used in the competition.

25th of February, where parts of two other challenges (aerial grasping and wall building) were to be
performed simultaneously with Challenge 3.

This model of competition enabled a fair comparison of diverse, competing solutions. Each team
was afforded an equal number of public attempts and limited rehearsal time. This makes the results
more trustworthy than if they were potentially cherry-picked from laboratory testing. Nevertheless,
such a small number of attempts makes it impossible to obtain statistically significant test results
on the performance of the systems. To address this observation, we complement these results with
statistical evaluation of the precision of our aiming procedure.

3.2. Facade firefighting
The Challenge 3 subtask of extinguishing facade fires took place around the facade of a purposefully-
built structure resembling a three story building of realistic proportions (referred to hereby as
“building”). The real fires (henceforth collectively referred to as “fire objects”) were housed in
structures located on the facade of the building comprised of multiple parts (see Figure 1):

• A circular ring of perforated metal piping producing ignited gasses — approximately 25 cm
diameter

• A circular opening in the facade with a dark interior, containing a system for measurement for
the volume of collected water - approximately 15 cm diameter

• An anodized aluminium heating element in the center of the opening — rectangle of 6×3.5 cm
• Air blowers on two sides of the ring active on the ground floor of the building.

These objects were spread out on 3 of the 4 sides of the building, but only one fire object was
activated per floor during each run of the subtask. The rest were inactive, meaning that the fire was
out and the entire object was covered by an opaque lid of the same color as the building walls. The
lid was also closed on the active objects once 1 L of water had been collected through the opening.
One of the objects had air blowers activated on the sides, complicating stabilization of the UAV in
front of it.

While the specification of the competition task corresponds to a simplified situation compared
to a real firefighting mission, it provides a well-modelled representation for such real-life missions.
This is because a successful solution in the competition must contain, in some form, all the elements
that would otherwise be involved in a real, autonomous, aerial, firefighting system, namely self-
localization, navigation, fire source localization, and extinguishing capabilities.

For the liquid-based fire extinguishing subtasks of Challenge 3, the scoring scheme was based on
the weighted sum of the amount of water deposited into each specific target. Up to 1 L of water
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Figure 2. The description of components of the deployed UAV platform for liquid-based fire extinguishing.

could be deposited into each of the six targets. Relevant to the subtask described in this section,
the fire objects on the upper floors of the building facade counted as 8 points each multiplied by
the amount of deposited water in liters. The total maximum possible score in Challenge 3 of all
subtasks was 100 points.

4. Platform Description
Our team participated in all challenges of the MBZIRC 2020 competition. To allow for re-usability
of the system and its spare parts, our intention was to select a base UAV platform that could be
used in all challenges with the possibility to modify the sensors and actuators. The UAV platform
with complete sensory equipment for the task solved in this paper can be seen in Figure 2. The
selected base platform is created mostly from commercially available off-the-shelf components and
3D printed parts. The platform is built from the Tarot T650 quadrotor frame, the PixHawk 4 flight
controller1, and an onboard computer. This frame satisfies the size limitations for the competition
- diagonal dimension without propellers is 650 mm, with the 15 inch propellers attached expanding
it to maximum diagonal span of 995 mm, or aligned with the front-back axis making the highest
dimension 800 mm. The height of the fully equipped UAV is 410 mm. The payload capacity is
sufficient for carrying additional sensors and fire extinguishing equipment. The entire unit weighs
4.1 kg, with the full water bag mentioned below increasing this weight by up to additional 1 kg. The
onboard computer is Intel NUC8i7BEH2 that contains Intel i7-8559U CPU and 8 GB of RAM, and
runs the Ubuntu 18.04 LTS operating system and ROS(Quigley et al., 2009) Melodic middleware.
For general localization, the UAV carries GNSS receiver based on the Ublox Neo-M8N module.
Furthermore, the UAV is equipped with the RPLIDAR A3 3, which is a 360◦ 2D LIDAR. This
sensor provides 1,600 samples per second and can detect obstacles up to a 25 m radius depending
on the setting of the sensor. We also use the Realsense D435 camera4 with field of view (FoV) (H ×
V × D) 87◦±3◦ × 58◦±1◦ × 95◦±3◦ and a range of up to 10 m, but for the facade fire detection, it

1 https://github.com/PX4/px4_user_guide/raw/master/assets/flight_controller/pixhawk4/pixhawk4_technical_
data_sheet.pdf - Accessed: 03-30-2022
2 https://www.intel.com/content/dam/support/us/en/documents/mini-pcs/NUC8i3BE_NUC8i5BE_NUC8i7BE_
TechProdSpec.pdf - Accessed: 03-30-2022
3 https://www.generationrobots.com/media/LD310_SLAMTEC_rplidar_datasheet_A3M1_v1.0_en.pdf
- Accessed: 03-30-2022
4 https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-
2020.pdf - Accessed: 03-30-2022
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Figure 3. Empirical evaluation of the flight time of our UAV platform in relation to its total mass including all
equipment.5

is only used as an RGB camera for precise target localization from close distances. Detection of the
fires from greater distance is done using a set of three thermal cameras – TeraRanger Evo Thermal
33 6. This thermal camera is cheap, small, and lightweight (only 12 g) which is very important
for a limited payload, as is the case here. The cameras are arranged vertically with one pointing
forwards and the two others above and below it with an orientation at 30◦ upwards and downwards
respectively, from the first thermal camera - see Figure 2. The UAV is further equipped with down
facing Garmin LIDAR-Lite v3 7 laser rangefinder used as a precise altimeter.

To extinguish fires, the UAV is equipped with a water bag and a pump. The capacity of the bag
was limited to 1 L of water to maintain high maneuverability of the system. This maneuverability
is vital for flight in an environment with possible strong air currents close to hazards. The pump
drives the water through a nozzle with a diameter of 4 mm and can fully deplete the bag in 25 s.
The nozzle is rigidly attached to the UAV frame and is oriented towards the front with the spraying
tip located 2 cm below and 2 cm in front of the Realsense camera. Aiming is done using the motion
of the UAV itself.

Early in development, we had considered the option of having the nozzle independently actuated
to allow for aiming uncoupled from the motion of the UAV. However for the design of the small-scale
UAV for the purposes of the competition, we avoided this approach due to various development
considerations and limitations. Among other things, these included the increased likelihood of
unpredictable behavior in untested states brought about by added mechanical and subsequent
software complexity in the system, added weight to UAV with limited carrying capacity, and
precision of the available actuators. Additionally, our experience afforded us the expectation that
the repair work of UAVs damaged in testing and the competition runs would be significantly more
difficult and costly.

It should be noted that while water was used, because of the specifications of the competition,
the platform could easily have been adapted to other liquid fire extinguishing agents, as would be
demanded by real-world conditions of use.

The use of an extinguishing agent with a better weight to effect ratio would be especially beneficial
when the flight time of UAV is considered. The batteries used in the competition on our platforms
had the capacity of 177.6 W h, allowing for 10 min of flight with the water bag full and up to 14 min
with the bag empty (see Figure 3). However, the hardware solution described here is a prototype
and a larger UAV platform could allow for greater payloads and longer flight times more suitable
for real missions.

5 https://ctu-mrs.github.io/docs/hardware/motor_tests.html
6 https://terabee.b-cdn.net/wp-content/uploads/2020/05/evo-thermal_specsheet.pdf - Accessed: 03-30-2022
7 http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
- Accessed: 03-30-2022
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Figure 4. A diagram of the control system architecture. A Mission and navigation software supplies a 3D position
and heading reference (rd , ηd ) or a time-parametrized reference trajectory

{
(rd , ηd )1 , (rd , ηd )2 , . . . , (rd , ηd )k

}
to a reference tracker. The Reference tracker creates a smooth and feasible reference χd for a reference feedback
controller. The feedback Reference controller produces desired thrust and angular velocities (Td , ωd ) for the
Pixhawk embedded flight controller. A State estimator fuses data from onboard sensors to create an estimate of
the UAV translation and rotation (x, R, ω).

5. Software System Structure
This section describes the software components of the proposed system. All of the detailed
components are executed on the onboard Intel NUC-i7 PC.

5.1. Control and estimation of the UAV state
The UAV is controlled by a multi-layer control pipeline as depicted in Figure 4. Since the focus
of this paper is for outdoor firefighting, only the basic structure of the control architecture will be
described here. For a more detailed description of the whole control software platform, we refer the
reader to (Baca et al., 2021). The desired trajectory supplied by a Mission and Navigation module
(in our case, by a high-level motion planning and fire extinguishing procedure) is first processed
by the Reference tracker (Baca et al., 2018) based on model predictive control to obtain a smooth
and feasible reference for the Reference controller. The Reference controller uses this reference to
provide the SE(3) geometric state feedback control (Lee et al., 2010) of the translational dynamics
and orientation of the UAV. The attitude rate and thrust commands generated by the Reference
controller are sent to the embedded Attitude rate controller in the flight control unit of the UAV.
The feedback loop of the Reference controller is closed by the State estimator, which fuses data
from onboard sensors with the UAV attitude to obtain a precise and reliable state estimate.

The state estimation process uses Kalman filtering to estimate the 3-D position of the UAV and
its heading angle, along with their respective first and second derivatives. The UAV state is divided
into lateral, altitude, and heading parts. Such decoupling facilitates tuning of the filter and smaller
system matrices save computation resources. The lateral filter uses position corrections from GNSS
and heading filter corrections from magnetometers. The altitude estimation fuses data from the
built-in barometer with measurements from the laser rangefinder.

5.2. Motion planning and exploration
The precise positions of the fire objects are unknown ahead of the mission, therefore the facade must
be surveyed for their localization. The strategy used here was to allow each UAVs to circumnavigate
the building at altitudes corresponding to individual floors at a distance of 4.5 m while aiming their
thermal cameras towards the walls of the building. This gives us thermal coverage (see section 6.1
for the thermal vision) of a vertical strip of the building facade of 9.5× 2.7 m due to the extended
vertical FoV of the three thermal cameras. The detection from the RGB camera (see section 6.2) is
also active, but in this phase it is more likely that the fire objects are located using thermal vision
due to the greater robustness of thermal vision in this subtask.
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Figure 5. A high-level diagram of the main state machine. This figure shows the behavior and decision-making
implemented on the UAV for the facade firefighting from takeoff to return.

Once the fire object is located, the UAV stops circumnavigating and flies in front of the object
at the distance of 1.5 m from its estimated center along the normal of the corresponding wall. After
reaching this position, control is handed over to the extinguishing sub-system (see section 6.4).
As long as the fire object is not lost, the UAV depletes all the water being carried during the
extinguishing maneuver. If the target is lost, the UAV continues to search for fire objects. After
depletion of the water, the UAV flies back to its starting position and lands. In the case of
circumnavigating the building without detecting a fire object, the UAV can change the flying altitude
and start the search for the fires again or it can return to its starting position to land (depending
on user defined settings). The latter option was not used during the competition. The complete
strategy of the task is shown in the diagram in Figure 5.

In the competition, multiple UAVs are deployed in the same environment and may possibly collide
with each other. To avoid this, the UAVs share their future trajectories to detect possible collisions
and react to them. In the case of a threat of collision, the UAVs have different set priorities and
the one with lower priority will replan its trajectory by ascending to a higher flying altitude. This
collision avoidance technique is explained in detail in (Baca et al., 2018).

6. Detection, localization, and extinguishing of fire objects
The most easily detected feature of the fire objects are the real flames produced from their gas pipe
ring. These are shown in the image of the thermal cameras as large blobs of more than 200 ◦C
and if directly observed, they can be consistently detected from a significant distance. Depending
on various factors such as air currents and water being deployed, their appearance in the thermal
images can morph significantly (see Figure 6). The flames are observed by the thermal cameras
as opaque and significantly hotter than the gas pipe rings that produce them. They are in fact
so much hotter than the central aluminium heating element, that the element itself is practically
undetectable (although it does occasionally visibly reflect the heat of the flames). The elements are
heated to 120 ◦C, but our cameras observe them as having approximately 70 ◦C, due to the material
having the emissivity value of 0.55 (Minkina and Dudzik, 2009), as opposed to the value of 0.95
that our cameras8 presume.

Given how the opening that collects the deployed water for evaluation is smaller than the typical
area of the observed flames and is obscured by them, it is nearly impossible to aim accurately into the
opening based on the thermal images alone (see Figure 9 - A1, A2 for example of unsuitable thermal

8 https://terabee.b-cdn.net/wp-content/uploads/2020/05/evo-thermal_specsheet.pdf - Accessed: 03-30-2022
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Figure 6. Thermal images of the fire objects taken with our thermal camera shown in two different thermal
ranges. With the exception of the first image, these were taken within 30 s and the flames themselves are always
visible. Note how different the fire object appears due to the effects of random air flow, pressure from the presence
of a UAV, the water stream (visible in some images as a darker band starting from the right where the nozzle
was), and other factors.

Glass medium

Air medium

Glass medium

Air medium

Figure 7. An example of a significant limitation of thermal vision that RGB vision can address: thermal cameras
do not see heat sources through glass, posing a hurdle when searching for fires behind windows. This motivates
the use of fusion of RGB and thermal vision in robotic firefighting even for the purpose of real deployment. While
such conditions were beyond the scope of the competition where the target was only a small, specific region
behind flames, the RGB vision can be adapted for detection of fires behind surfaces opaque to infrared radiation
as a fallback.

image), despite it being possible to temporarily extinguish the flames. While in theory an applicable
strategy could be to first extinguish the flames and then to aim at the aluminium heating element
in the window when flames are not present, this would waste a significant portion of the limited
amount of carried water and time and would additionally raise the requirement for dynamically
changing detection parameters. Instead, we have decided to combine two modes of vision - thermal
and RGB - to address their relative drawbacks and benefit from the strengths of both. We have
based the additional vision system on an onboard RGB camera to enable aiming at the center of
the opening for collecting water when the UAV has sufficiently closed in on the fire object. Using
such hybrid vision in firefighting is not merely a reaction to the conditions of the competition, it is
additionally motivated by the real-world problem that thermal cameras can not see through glass
that blocks infrared (IR) radiation (see Figure 7) while RGB cameras can compensate by detecting
fires through windows.

6.1. Thermal vision
The primary goal in the design of the thermal vision subsystem was to localize the center of the
opening for water collection in the images from thermal cameras. We have observed in our tests
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that the flame seen in the thermal image often covers the center we are attempting to target and
that the central aluminium heating element is often too dim by itself to be consistently detected.
This was made more challenging by the fact that the small resolution of the lightweight thermal
cameras does not lend itself well to advanced computer vision algorithms. These observations led
us to develop a simple technique for localizing a “best guess” image position for targeting. This
technique was designed after surveying previously recorded datasets of thermal images of the real
fire objects. From these images, we selected samples from such frames where simultaneously:

• The flame was not split into multiple individual flames fully separated by colder regions
• The colder interior of the gas pipe ring was fully enclosed by the higher temperature of the

piping and flames,
• The aluminium heating element is visible and not connected to the surrounding flames and

piping.

For these frames, we tuned a double temperature threshold, such that the binarized image Btemp of
pixels from the thermal image II within these two values makes the pipe and flames a distinct contour
from the aluminium heating element. In order to emphasize small objects such as the aluminium
heating element, we additionally AND-combine the binarized image with thresholded matrix Bdiff
of the thermal image Laplacian IL (representing a required local differential). In our case, these
thresholds were as follows:

• Temperature must be above 60 ◦C - this selected only hot objects in the image
• Temperature must be below 250 ◦C - this is meant to generate additional negative contours in

the hottest areas of the largest flames
• The local differential must be above 10 ◦C - this emphasized thin objects, such as the gas pipe

ring and the heating element to increases robustness to ambient temperature shifts.

We then selected the centroid [x, y] of the innermost contour Dsel as the image target position,
regardless of whether it is a positive or negative value in the binarized image, as long as the contour
is not the background itself. By the innermost contour, we mean to say the one which is enclosed
within the most other contours. If multiple contours DL enclosed by this number of other contours
exist, we select the one with the largest area. This thermal image processing approach is summarized
in the Algorithm 1. The algorithm leads to one of three cases of target selection, as follows: In the
rare case that the image satisfies the requirements we had for the sample images, the output image
position will correspond to the heating element in the center of the opening where we would ideally
deploy water (Figure 8 - A1,A2). Otherwise, when the interior of the pipe ring is fully enclosed in
an area of higher temperature, but the aluminium heating element is either not visible (Figure 8
- B1) or seen as connected to the surrounding higher temperature, the innermost contour will be
the centroid of the enclosed darker section. Although it is not in the center, this is still inside the
opening (Figure 8 - B2) which would usually lead to the successful deployment of water. Lastly,
when the colder center is not visible or not fully enclosed by a hotter temperature, the output will
be the centroid of the hotter visible area (Figure 8 - C1,C2) and will lead to water being deployed
into the flames themselves to temporarily extinguish them. This in turn occasionally leads to the
observed situation being closer to the sample images, due to the flames restarting slowly. As this
occurs, the ring tends to be more clearly visible as enclosing the colder central region. This third
case is also the closest to real firefighting, where the goal is not to precisely target a small, difficult to
see area inside of a flame, but rather to actually extinguish the easier to detect flame itself. Aiming
for the centroid of the heat silhouette is a good strategy for extinguishing the flame by cooling down
its core. Additionally, from a distance the fire object almost always appears as a simple continuous
contour (Figure 8 - C1). This detection represents the direction towards the flame and is useful for
the phases of flight where the UAV is searching for new fire objects.
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Algorithm 1. Retrieval of the estimated center of fire object from thermal images
1: function GET_THERMAL_TARGET_IN_IMAGE
2: II ← GET_LATEST_THERMAL_IMAGE . 32× 32 matrix of Celsius temperatures

3: KL ←

 0 −1 0
−1 4 −1
0 −1 0

 . Convolution kernel for approximating spatial second derivative

4: IL ← CONVOLVE(II,KL) . 32× 32 Laplacian image matrix
5: IL ← IL · 0.25 . Per-element scaling to account for the integer values of KL
6: Btemp ← (250.0◦C > II > 60.0◦C ) . Logical binary 32× 32 matrix -
∀i, j : Bt empi j = (250.0◦C > II i j > 60.0◦C )

7: Bdiff ← IL > 10.0◦C . Logical binary 32× 32 matrix - ∀i, j : Bd if fi j = (ILi j > 10.0◦C )
8: Bcomb ← Btemp ∧ Bdiff . Per matrix element logical AND
9: C ← GET_CONTOURS(Bcomb) . Selects elements Bcombi j with neighbors of

different value and groups their indices into sets of 8-adjacent true elements and 4-adjacent false elements:
C = {C1, C2, ...}, CN = {[iN1, jN1] , [iN2, jN2] , ...}

10: h← 0|C| . Initialize hierarchy vector for count of enclosing contours per contour: h = [h1, h2, ..., hN ]
11: mh ← 0 . An integer to track the current maximum enclosing count
12: for all CN ∈ C do
13: for all CM ∈ C do
14: if M 6= N then
15: if IS_ENCLOSING(CM ,CN) then . Check if CM totally encloses CN
16: hN ← hN + 1 . Increment the appropriate element of hierarchy vector
17: if hN > mh then
18: mh ← mh + 1
19: end if
20: end if
21: end if
22: end for
23: end for
24: D← {CK ∈ C : |CK | = mh} . Get the innermost contours
25: Dsel ← argmax

DL∈D
|DL| . From the innermost contours, select the largest

26: [x , y ]←
∑Dsel
|Dsel |

. Approximate contour centroid as the average x and y coordinate of its elements
return [x , y ]

27: end function . Note: |D| denotes the number of elements in set D

0◦C

60◦C

120◦C

A1 A2 B1 B2 C1 C2

Figure 8. Thermal views (top row) and contour processing (bottom row) of the fire object for the three
mentioned cases. The red dot denotes the selected contour centroid on output. A1 and A2 show cases where
both the colder enclosed center of the ring and the aluminium heating element are visible. B1 and B2 are cases
when only the colder center can be retrieved. C1 and C2 show the most common case where we may only directly
see continuous individual flames and thus select the largest of them.
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6.2. RGB vision
Since the goal of the competition was to deposit the maximum amount of water into the openings
of the fire objects as opposed to extinguishing the flames, the fire itself poses a challenge in this
task. Its shape and size is constantly changing under the influence of various factors such as wind,
air currents from the UAV, local fuel distribution, and the extinguishing procedure. Additionally,
as mentioned above, it obscures static features that we are specifically interested in localizing.
Specifically, in order to locate the center of the opening for collecting water, we had to detect and
localize the opening itself, the aluminium heating element, or the gas pipe ring that surrounded
it. The challenge for RGB vision was, therefore, primarily in how to consistently detect the static
features despite the presence of flames. We had decided to focus our detection on the gas pipe rings.
They were the largest feature to surround the opening and possessed a shape that would allow
us to easily retrieve the center of the opening itself. In order to see “through” the flame when it
obscured the gas pipe ring and center of the opening, we exploited our observation that the flames
were mostly transparent to blue light. Therefore, we have used only the blue channel image matrix
IB to detect the contour of the gas pipe ring around the water collection opening.

The information from the other color channels was used for retrieval of the contours of the flames
(see Figure 9 - C for extracted flame contours). Even though they were not sufficient for precise
aiming, their detection was trivial and allowed the system to crop out the axis-aligned rectangle

A1 A2

B C

D1 D2 E

Figure 9. Steps of target detection with RGB vision in the case that the thermal vision is unsuitable for aiming.
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[sx, sy, wx, wy] within, which was where the gas pipe ring and the opening were most likely located
(see Figure 9 - D1). This rectangle was not a tight bounding box only enclosing the flames, but
rather a rectangle which contained the flames and took into account the possible influence of external
disturbances. The bounding box was used to select a sub-matrix IBsub from the blue channel image
IB for further processing, thus saving processing power and reducing the chance of false detections.
The image IBsub was blurred slightly (see Figure 9 - D2) to suppress traces of the flames still visible
in the form of high-image frequency features. The Canny Edge Detector was used to subsequently
produce a binary image BBsub. Next, contour detection was applied on the image BBsub. For
each positive contour, DM its smallest enclosing circle with a center at [scx, scy] and radius scr

was calculated. Comparison of these circles with their corresponding contours has been done using
area comparison and the IOU (intersection-over-union) approach. Additional filtering was applied,
taking into account the approximate expected image area of the circle ta based on the physical
dimensions of the gas pipe ring and the distance to the wall d that was retrieved from LIDAR
readings. If the contour DM passes through the filtering described above, the center of the enclosing
circle [scx, scy] is used as the image position of the extinguishing target. For cases when more than
one compliant contour existed in the image (meaning some object in addition to the opening was
still in consideration), an additional strategy had to be applied. The following were considered:

• Accept the circle with the center closer to the center of the flame bounding box. This may
be challenging when the wind level is high and, therefore, the flames are moving further away
from the opening

• Discard the detection with a number of enclosing circles above one. Depending on lightning
conditions, this may lead to a significant period without detection of the opening, even when
the UAV is in front of it

• Track the previous detections of the opening and select the enclosing circle with a center that is
closer to previous detections. This case presumes that the UAV is not moving with respect to the
fire object. Alternatively, such motion must be taken into account and may be challenging due
to multiple factors, includinge wind influence, GNSS inaccuracy, or computational complexity.
Such factors make it impossible to include this data within the real-time factor. Additionally,
if a number of previous readings were wrong, this may lead to further error accumulation.

The third approach was chosen for the competition. When the number of enclosing circles was equal
to one, all previous readings were discarded allowing us to overcome the issue of error accumulation.
The steps of the visual detection approach outlined here are expanded upon in the Algorithm 2.
After the enclosing circle was selected, its center was taken as the center of the opening for water
collection (see Figure 9 - E) and the fire extinguishing was directed accordingly.

6.3. Fire localization in 3D
We assumed that the thermal cameras conform to the pinhole camera model and derived their focal
distance from the pixel resolution w per side and their FoV ε per side. Upon detection of the lowest
level contour in the thermal image, we calculate the average image coordinates of the pixels of the
contour as x and y. These coordinates are converted to direction vectors using the assumed camera
model as

vt =



vtx

vty

vtz


 =




1/f 0 −((w − 1)/2)/f
0 1/f −((w − 1)/2)/f
0 0 1


 ·



x
y
1


 , where f = (w/2)

tan(ε/2) . (1)

Subsequently, we normalize vt and transform it into a coordinate frame centered in the optical center
of the camera, with the x-axis pointing forwards, the y-axis to the left, and the z-axis upwards. We
call this coordinate frame the thermal base frame. The direction vector after this transformation is
denoted as v̂f .
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Algorithm 2. Retrieval of the estimated center of a fire object from RGB images
1: function GET_RGB_TARGET_IN_IMAGE
2: O← ∅ . initialize output set
3: II ← GET_LATEST_RGB_IMAGE . 3-channel color image matrix from camera
4: [IR, IG, IB]← SPLIT_RGB_CHANNELS(II) . ∀i, j,X ∈ R,G,B : IX i j ∈ {0, ..., 255}
5: [IH, IS, IV]← CONVERT_TO_HSV(II) . Express the input in terms of hue, saturation and value images:
∀i, j : IH i j ∈ (0, 2π ) ; IS i j ∈ (0, 1) ; IV i j ∈ (0, 1)

6: Bflame ← (0 < IH < 1.22) ∧ (0.52 < IS < 1) ∧ (0.40 < IV < 1) . Binary matrix with true at elements
where the HSV values fall within an empirically obtained ranges for flames

7: Bflame ← MORPHOLOGY_OPEN(Bflame, J3) . Morphological opening with structuring element of 3× 3
matrix of ones to suppress small random blobs

8: C ← GET_POSITIVE_CONTOURS(Bflame) . Selects elements where Bf l amei j = true with neighbors of false
value and groups their indices into 8-adjacent sets: C = {C1, C2, ...}, CN = {[iN1, jN1] , [iN2, jN2] , ...}

9: Csel ← argmax
CM∈C

|CM | . Select the largest contour

10: [sx , sy ,wx ,wy ]← GET_AABB(Csel ) . Smallest axis-aligned bounding box of Csel with center [sx , sy ] and
dimensions [wx ,wy ]

11: wx ← 1.2 · wx . Expand the horizontal range to account for flame scatter by wind
12: wy ← GET_VERTICAL_DIMENSION(II) . Expand the vertical range to account for flame buoyancy
13: sy ← 0.5 · GET_VERTICAL_DIMENSION(II) . Shift center to cover the entire image height
14: IBsub ← SUBMATRIX(IB, [sx , sy ,wx ,wy ]) . Section of IB within the bounding box
15: IBsub ← CONVOLVE(IBsub,GAUSSN_KERNEL(5)) . Apply Gaussian blur with kernel size of 5
16: BBsub ← CANNY(IBsub, 35, 93) . Apply the Canny Edge Detector with the empirically discovered

hysteresis thresholds
17: BBsub ← MORPHOLOGY_DILATE(BBsub, J3) . Morphological dilation with structuring element of 3× 3

matrix of ones
18: D← GET_POSITIVE_CONTOURS(BBsub) . D = {D1,D2, ...}, DM = {[iM1, jM1] , [iM2, jM2] , ...}
19: for all DM ∈ D do
20: [scx , scy , scr ]← MIN_ENCLOSING_CIRCLE(DM ) . Center and radius of smallest enclosing circle
21: aM ← CONTOUR_INNER_AREA(DM ) . Number of elements enclosed by DM
22: aC ← π · scr

2 . Area of the enclosing circle
23: f ← GET_FOCAL_LENGTH . Camera focal length in pixels
24: d ← GET_LIDAR_WALL_DISTANCE . Distance from the wall based on onboard LIDAR
25: ta ← π · (f · (0.125◦C/d ))2 . Expected image area inside the gas pipe ring based on its radius and

observing distance
26: vIoU ← IOU(GET_AABB(DM ), [scx , scy , 2 · r, 2 · r ]) . Intersection over union of rectangles
27: vad if f ←

|aM−aC |
aC

. Relative area difference
28: if (aM > 0.7 · ta) ∧ (vIoU > 0.8) ∧ (vad if f < 0.3) then
29: O← O ∪ {scx , scy } . Add the current enclosing circle center
30: end if
31: end for
32: if |O| > 1 then
33: Oprev ← GET_PREVIOUS_DETECTIONS
34: O← {GET_CLOSEST_DETECTION(O,Oprev )} . Member of O closest to any member of Oprev
35: else if |O| = 1 then
36: DISCARD_PREVIOUS_DETECTIONS . To prevent long-term accumulation of error
37: end if
38: STORE_AMONG_PREVIOUS_DETECTIONS(O)
39: return O
40: end function . Note: |D| denotes the number of elements in set D

For the extinguishing action done by UAVs, we also needed a distance estimate. This was achieved
by combining the direction vectors with a source of surface shape measurement. We used the onboard
2D LIDAR to estimate the outline of the objects in front of the cameras.

It should be noted that the LIDAR output data and the direction vector v̂f have to be expressed
in a common coordinate fame. This was trivial due to our knowledge of the rigid UAV geometry,
and we have chosen to transform all of these into the frame of the front-facing thermal camera. The
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Figure 10. The 3D localization of fires on a wall based on vision and 2D LIDAR data.

time-delays between the different measurements were negligible compared to the UAV dynamics,
with the output rate of the LIDAR being 20 Hz.

The output of the sensor was a set of coplanar 3D points Plidar ordered by their angle from the
sensors (blue, green, and yellow points in Figure 10). Given that the targets were attached to a flat
wall, we can presume that the outline points retrieved by the LIDAR represent the shape of the
surface sufficiently well. However, the set of outline points must first be reduced to their convex
hull in terms of their horizontal coordinates in order to remove measurements behind windows if
they were captured by the LIDAR. This is necessary, since the fire objects can be located above or
below windows, in which case if we tried to obtain their 3D positions, then they may be incorrectly
evaluated as being on an interior wall of the building. The convex hull is obtained by a pseudo
gift-wrapping algorithm as follows: we first remove from Plidar the points that are outside of the
horizontal field of view of the thermal cameras. Next, we expand Plidar with two new points beyond
the leftmost and rightmost of the remaining points in terms of their angle from the LIDAR. These
points (red points in Figure 10) are generated by copying the previous leftmost and rightmost points
and increasing their distance while preserving their bearing. We then select the three leftmost points
(the first of which was just newly added) and check that they form a left-turning angle. If that is
the case, we select the next triplet by sliding one point to the right and repeating the check on
the next triplet. If a right turning point is found, the middle of the three points is discarded from
Plidar. This process is repeated until no right turns remain and we are left with a convex hull
where interior points (yellow points in Figure 10) were removed. We can now describe the surface
in front of the cameras as an extrusion object composed of vertical plane segments defined by
pairs of adjacent points remaining in Plidar (white and green surfaces in Figure 10). For each of
the direction vectors retrieved from the thermal cameras, we select the vertical plane V (green
plane in Figure 10) corresponding to the generating pair of 3D points pi and pi+1 (green points in
Figure 10) from Plidar that it passes in between of in terms of the yaw angle. We select this pair of
points as

{pi ∈ Plidar | atan2(piy , pix) > atan2(vfy , vfx) ∧ atan2(pi+1y , pi+1x) < atan2(vfy , vfx)}. (2)

The 3D position of the estimated target is then obtained by calculating intersection point q of
the line (the orange line in Figure 10) defined by v̂f passing through the origin with the selected
vertical plane V . The plane V is defined by a point and a normal vector, specifically in this case the
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point pi and the normal vector nv, obtained as

nv =



−(pi+1y − piy )
pi+1x − pix

0


 . (3)

The intersection q is then calculated as

q = v̂f · t, (4)

where t is obtained using normalized vector of the surface normal n̂v as

t = n̂v · pi

n̂v · v̂f
. (5)

The estimate of the surface normal is further used to steer the UAV to the ideal perpendicular
position for extinguishing located rd =1.5 m from the fire object position estimate along the normal.

We do not consider single detection of the 3D position to be sufficient. Instead, we implemented
a Kalman filter that stores multiple measurements as an array of trackers and refines each tracker
state using new measurements.

The state vector of the Kalman filter used here is

qk =
[
qkx , qky , qkz , qkη

]T
, (6)

where qkx , qky , and qkz are the coordinates of the fire object in the world coordinate frame. The
qkη represents the azimuth of the surface normal for that fire object. The filtering mechanism stores
multiple such state vectors that are corresponding to multiple different detected fire objects. We
update a specific state vector qk using a new estimate of the fire object position q and normal nv,
if q is closer in the world frame than 1 m to

[
qkx , qky , qkz

]T and at the same time the horizontal
component of nv is closer than 90◦ to qkη .

In that case, the state is refined in the standard Kalman filter correction step. Otherwise, we
generate a new tracker from the measurement. To account for random errors, a state is only
considered validated if at least 10 measurements have been associated with it. Additionally, the
states have a decay time to discard old estimates after 10 s without updates.

Note, that the 3D pose estimation of the target position does not depend on the global
self-localization of the UAV itself, as it directly uses the measurements from onboard sensors.
However, we do use global localization of the UAV in order to convert the measured intersection q
and its normal nv into the world coordinate frame after calculating them. The main goal of this
transformation is for the Kalman filter to better cope with the influence of the ego-motion of the
observing UAV on the filter state vector qk. The global localization of the UAV is based on a sensor
fusion from GNSS and auxiliary sensors, such as an altimeter and the inertial sensor built into the
flight controller (Baca et al., 2021).

The Kalman filter brings three main benefits:

• The discarding of random errors
• The refinement of estimates as we approach the targets
• Preserving targets in memory (even if they are currently out of view).

The last point is especially significant as our thermal cameras only cover 33◦ horizontally at
any moment. In this way, we can use their extended total vertical coverage angle to sweep the
environment for fire objects.

6.4. Fire extinguishing
Upon obtaining the first validated fire object detection state in the Kalman filter array, the UAV is
sent to a position 1.5 m in front of the given target along the estimated normal. The observation
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angles with respect to the front wall from which the fire objects can be reliably seen are limited and
the observation, as well as the extinguishing, has to be done from as close to a perpendicular position
to the wall as possible. It is further useful to maintain perpendicular alignment for extinguishing as
this maximizes robustness of the correct aiming with respect to drifting in an arbitrary direction.

As the UAV flies to the designated position, its estimate of the target position and surface normal
improve thanks to obtaining new detections. Once it reaches the position, the control is given to the
fire extinguishing sub-system. In this state (see Algorithm 3 for a pseudocode on the UAV behavior),
the UAV is steered towards a specific position with respect to the detected fire object, defined the
same way as the position to which the UAV was sent previously at the desired distance rd of 1.5 m
from the target along the estimated surface normal. However, continuously driving the UAV to this
exact position, especially in the face of potential fire object estimation errors and disturbances such
as air currents would lead to rapid tilting in attempts to correct the current position, especially
close to the desired position. In our intial experiments, this lead to the direction of the water stream
being significantly unstable, since the water nozzle is rigidly attached to the body and thus follows
the tilts. To address this issue, we have included a hysteresis to the steering. Specifically, we have
defined two ranges of angle and distance offsets. These are illustrated in Figure 12. The angle ranges
were defined as limits to angles formed by the surface normal and the line connecting the center of
the fire object and the UAV - the inner range αi was set to ±5◦ and the outer range αo to ±10◦.
The distance ranges are offsets from the desired extinguishing distance of 1.5 m, and these were set
to ±0.075 m for the inner range ri and ±0.15 m for the outer range ro. Once the UAV has reached
the inner ranges (red zone in Figure 12, it is forbidden to correct its horizontal (X-Y) coordinates
despite any disturbances and it can only correct its altitude and heading as changing these does
not generate tilt in the UAV. The UAV thus tends to drift or “float”. Continuously correcting the

A B

Figure 11. An onboard view of the fire extinguishing in the first run of the competition (A) and in the final
exhibition (B).

ro

ri

rd

αi αo

Figure 12. Steering hysteresis for fire extinguishing viewed from the top.
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Algorithm 3. High-level control during fire extinguishing
1: function EXTINGUISH_FIRE
2: tqk ← GET_CURRENT_TIME . Initialize the pose estimate time stamp
3: W ← f al se; H ← f al se . Initialize water pump state to off and the pose hysteresis to Controlling
4: wt = wt i . Initialize the remaining water spraying time to measured value (25 s)
5: while wt > 0 & IS_RECENT(tqk ) do . Until the water is depleted or the target tracking is lost
6: qk, tqk ← GET_LATEST_FIRE_ESTIMATE .

[
qkx , qky , qkz , qkη

]T , time stamp
7: vt, tvt ← GET_LATEST_THERMAL_DIRECTION . Target direction form thermal vision, time stamp
8: vv, tvv ← GET_LATEST_RGB_DIRECTION . Target direction form RGB vision, time stamp
9: op ← GET_LATEST_ODOMETRY . UAV pose in world frame

[
opx , opy , opz , opη

]T
10: Wp ←W . Store previous water pump state
11: n̂vk ← ROTATE_ABOUT_Z([1, 0, 0]T , qkh ) . Surface normal from heading in target pose estimate
12: s ←

[
qkx , qky , qkz

]T
+ rd · n̂vk . Calculate the desired extinguishing position

13: Ri ,Ro ← CHECK_INNER_OUTER_RANGE(op, s ) . Check compliance with the ranges in Figure 12.
14: if H = f al se & Ri = t rue then
15: H ← t rue . Set pose hysteresis state to Floating
16: end if
17: if H = t rue & Ro = f al se then
18: H ← f al se . Set pose hysteresis state to Controlling
19: end if
20: if IS_RECENT(tvv ) then . Fresh direction from RGB vision takes priority
21: d← vv
22: ez ← (vvz − zz ) · rd
23: else if IS_RECENT(tvt ) then . Thermal vision is more consistent but less precise
24: d← vt
25: ez ← (vtz − zz ) · rd
26: else . The pose estimate from Kalman filter is a fallback
27: d←

[
qkx , qky , qkz

]T
−
[
opx , opy , opz

]T
28: ez ← dz
29: end if
30: eη ← GET_HEADING_DIFFERENCE(z,d) . z is the direction of the water nozzle
31: if H = t rue then
32: n = 0 . Send only one trajectory point
33: r0 ←

[
opx , opy , opz + ez

]T , η0 ← opη + eη . Control only the heading and altitude
34: W ← t rue . Deploy water
35: else
36: c← [sx , sy ]T −

[
opx , opy

]T
. Get horizontal offset from the desired extinguishing position

37: n← ‖c‖/ (vmax · ts ) . We need n + 1 trajectory points with time step of ts
38: ci ← c · (vmax · ts/ ‖c‖) . We request returning speed of vmax
39: for i = 0 to n do
40: ri ←

[
opx + i · ciy , opy + i · cix , opz + ez

]T , ηi ← opη + eη
41: end for
42: W ← f al se . If pose hysteresis state is not Floating, turn the water pump off
43: end if
44: Pref ← {(r0, η0) , ..., (rn, ηn)}
45: SET_TRAJECTORY_REFERENCE(Pref ) . Send the trajectory points to the reference tracker
46: if W 6=Wp then . If the state has changed, turn the water pump on or off
47: TOGGLE_WATER_PUMP(W )
48: end if
49: if W = t rue then
50: wt ← wt − dt . Keep track of the remaining time of water deployment
51: end if
52: SLEEP(dt ) . Enforce constant time period (0.1 s)
53: end while
54: TOGGLE_WATER_PUMP(f al se)
55: YIELD_CONTROL_TO_STATE_MACHINE
56: end function
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heading was necessary, otherwise the drifting would throw off the aim of the UAV. It is in this
state that the UAV is allowed to spray water. The Z-coordinate and heading are controlled either
to aim at the directly observed target (water collecting opening or significant flames, see section 6.1
and 6.2), or (if it is currently not visible e.g. due to being cooled down by the water) to aim at
its estimated position from the Kalman filter. If the target is directly observed, the aim is more
responsive to disturbances, while if the aim relies on the filter, the precision is lowered. Despite this,
we have determined that for success of the mission it is better to spray water even when we do not
have direct observation, since such observation was often lost and rapidly starting and stopping the
water stream affected the precision more negatively than drifts in the filter. The UAV is only allowed
to correct its X-Y coordinates again once it has been moved outside of the outer ranges (green zone
in Figure 12), at which point spraying water is disabled. Tuning this behavior took a considerable
amount of preparation time as its success was dependent on many variables not present in our
simulation and testing was demanding in terms of time, personnel, and conditions. Apart from the
actuated nozzle approach mentioned in section 4, a notable theoretical alternative to this approach
- a paradigm that currently has the attention of the robotics and UAV communities (Rajappa et al.,
2015; Convens et al., 2017; Tadokoro et al., 2017) - are fully-actuated platforms that allow for direct
tilt control decoupled from horizontal translation. Such platforms are however highly experimental
and we have thus decided for better-tested conventional platforms for this task.

7. Performance Results
7.1. Preparation
Before the competition officially began, the system was incrementally developed and rigorously
tested. The preliminary testing and assembly of hardware components was done in Czech Republic.
However, six weeks before the competition, the team relocated to a desert area in the United
Arab Emirates. The reasons for this were twofold: the weather was unsuitable for flying in Czech
Republic shortly before the competition due to it being winter. Our long-term experience says that
the weather, lighting, and other local conditions have profound effects on the results of robotic
deployment, especially in terms of sensor outputs, and properly preparing a robotic system to
reliably operate in a certain region requires testing in the same region. For instance, the stronger
sunlight and higher temperatures in UAE affected thermal imaging in ways that were not apparent
in our central European country.

In UAE, we performed numerous tests for establishing the right approach to the task as described
in the previous sections, as well as for tuning parameters. Initially, we performed tests with only
the fire extinguishing subsystems on fire analogues (see Figure 15.). In these tests, we had shown
that the aim was correct on an average of 93% of the time when performing the fire extinguishing
actions (Section 6.4 (Spurny et al., 2021)), which shows the effectiveness of the 3D localization
and extinguishing procedures in case of reliable target detection. In one of the latest stages of the
development in the desert environment, we performed successful following of a wall, followed then
by spraying water onto a fire analogue (this was captured on video9 and samples are in Figure 16).
The fire analogue was identical to fire analogues used in other parts of the fire challenge of the
MBZIRC 2020 competition, since we could not safely use open flames. These were detected only
with thermal vision in a significantly less complex mode where only an aluminium heating element
was detected as a small concentrated spot of elevated temperature. However, these tests allowed
us to develop and tune the fire extinguishing procedure described in section 6.4. The plot of the
extinguishing trajectory from such a test, shown in Figure 16, clearly demonstrates compliance of
the UAV motion with the motion hysteresis from Figure 12.

These real-world tests were interspersed with frequent testing in Gazebo simulation (see Fig-
ure 13). This type of simulation testing is a staple of modern robotics and is extremely useful for

9 http://mrs.felk.cvut.cz/fr2020firechallenge-facadefires
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Figure 13. Extinguishing of facade fire objects and building overview in Gazebo simulator using our plugins.

Figure 14. Outputs of the simulated version of our thermal cameras in Gazebo simulator.

Figure 15. Preliminary test in the desert with only fire extinguishing on a fire analogue.

saving resources and time when testing new changes to a system. In the simulator, in addition
to emulating all the hardware onboard our T650 -based UAVs, we have developed a plugin for
emulating thermal cameras with outputs tuned to closely match the outputs of our real thermal
cameras (see Figure 14), as well as the water spraying system. This software is open-source and is
available online10. This allowed us to run the very same software, including the thermal vision, on
the simulated UAVs as on the real UAVs, streamlining the development.

10 https://github.com/ctu-mrs
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Figure 16. Extinguishing of fire analogue during our preparations in the desert. Green section of the trajectory
on the left are points from which the water pump was activated, while blue lines represent the theoretical lines
of water stream.

Figure 17. Bottom view of the UAV detecting a fire object during rehearsals of the competition.

7.2. Competition
Before the competition, we had been testing flights in the competition arena during rehearsal runs
(Figure 17). This allowed us to check for potential negative effects of the environment, as well as
to record datasets of the real fire objects. In the competition itself, we flew in two main trials of
Challenge 3, as well as in the Grand Challenge of the competition and in the Final exhibition before
the award ceremony. In the two rounds of trials, our team competed in the subtask of extinguishing
the real fire objects described in this paper with two UAVs. We also competed in the subtasks of
extinguishing ground fires with fire blankets with one UAV and extinguishing interior fires with a
UGV.

Trial 1
In the first trial of the competition, one of our UAVs successfully sprayed water into one of the facade
fire objects. This can be seen in Figures 18 and 11 - A. Unfortunately, this amount was very small
and registered as 8 mL. This result was due to the conditions for spraying water being too strict
in this phase. Specifically, the UAV was only permitted to spray water if both thermal and RGB
vision provided fresh target localization to prevent wasting the limited capacity of carried water, as
opposed to merely having active tracking from previous detection. This requirement was relaxed in
subsequent runs to allow spraying in case of direct observation with either thermal vision or RGB
vision, as long as the UAV was within the Floating phase of the pose hysteresis (see Algorithm 3).
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Figure 18. Active extinguishing of a facade fire object in the first trial of the competition.

Additionally, water spraying was allowed regardless of the directional offset between the water nozzle
and the estimated target direction. This meant that in the subsequent runs, water would more often
be sprayed off-target, but the target was more likely to be hit with significantly more water (see
subsection Final Exhibition below). In this trial, we also lost a significant amount of time due to
high interference with the GNSS signal. Because of this, one of the water spraying UAVs did not
take off after an emergency landing and another for more than 5 min. The primary culprit was
the influence of sensors connected using USB 3.x. One of these devices onboard our UAVs was a
Realsense D435 camera. The precision of most GNSS localization systems can be severely affected
by the components transmitting data via the cable at frequencies close to those used by GNSS. See
sheet11 for a detailed description of USB 3 frequency interference. However, we had observed these
effects before and made some changes to our UAVs to mitigate them. Notably, we added multiple
layers of aluminium foil between the GNSS and the rest of the components, but we could not fully
overcome the severity of this interference. Our team did, however, successfully deploy over 1 L of
water into a fire analogue using a UGV.

Trial 2
In the second trial, we did not successfully deploy water into the fire objects due to two separate
incidents. The GNSS of one of the UAVs recorded a large sudden jump of position estimation while
close to the building. Even though we have implemented a virtual repulsion force based on the
LIDAR data, the jump was too large for this safeguard to overcome and the UAV hit the wall of
the building in an attempt to correct its perceived erroneous position. The second incident occurred
when the other UAV correctly detected and approached a fire object above the roof of a lower part
of the building. The onboard laser altimeter of the UAV suddenly detected the change in perceived
altitude when crossing over the edge of the roof. The UAV did not immediately crash, but started
to oscillate in altitude which was exacerbated by the flexible textile lining of the roof oscillating
due to the air pressure from the propellers of this UAV. Additionally, the fire object that the UAV
approached had its air blowers active. Upon approach, the two combined sources of disturbance
fatally destabilized the UAV, making it crash on top of the roof. Despite these problems, our team
did score seven points with our blanket placing UAV.

While the total maximum possible score in Challenge 3 was 100 points, the achieved score of the
victorious team was only 12.2626. This was followed by two teams tied at 10 points each, and our
team tied in fourth place with another team at 7 points. The time left when a team declares the
end of their turn was used as a rank tie-breaker when possible.

11 https://www.intel.com/content/www/us/en/products/docs/io/universal-serial-bus/usb3-frequency-interference-
paper.html - Accessed: 03-30-2022
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Grand Challenge
The Grand Challenge of the competition consisted of performing selected subtasks of each of the
three challenges of the MBZIRC 2020 in one time-slot of 25 min. We had prepared two UAVs for
tasks from Challenge 1, one UAV for the task from Challenge 2, and one UGV and one UAV for
tasks from Challenge 3 since our team had participated in all three challenges with full robotic
autonomy in each. The last UAV was equipped to perform the liquid-based fire extinguishing
described in this paper. In order to qualify for the financial award, a team had to score at least some
points autonomously from each of the three reduced challenges. Unfortunately, we had to suspend
deployment of the fire extinguishing UAV in favor of repeated attempts at successful scoring points
in the reduced Challenge 2. At this point of planning, we had already scored 72 points in the reduced
Challenge 1, as well as 12.5 points in the reduced Challenge 3 thanks to the success of the UGV.
Only points from Challenge 2 were absent due to various complications with the associated UAV.
Having the water-spraying UAV in air could interfere in various ways with this UAV, and therefore
we recalled it shortly after takeoff and grounded it for the rest of the Grand Challenge. Overall,
we did not score points in the reduced Challenge 2. Regardless, we ended up with the best total
ranking in the Grand Challenge, making us the victorious team.

Final exhibition
After the Grand Challenge and before the award ceremony where the rankings were to be announced,
the teams with the best results so far were offered the chance to perform a final exhibition of their
systems. As our team qualified, we prepared one UGV and one UAV for repetition of Challenge
2, and one UGV and two UAVs for repetition of Challenge 3. The last two UAVs were once again
prepared to do the task described in this paper and did so successfully in this last run. The UAVs
found one facade fire object each and proceeded to deploy water into them, even simultaneously
for a short time. Despite one of them hitting the wall at the end of this attempt due to the same
type of GNSS jump as in Trial 2, by that point they deposited 56 mL and 61 mL respectively
into the openings. Lastly, after the other UAV had depleted its water onto the fire object, it safely
returned to the landing area without damage. This UAV is shown extinguishing fire during the final
exhibition in Figures 11 - B and 20 with its trajectory in this attempt shown in Figure 19.

8. Beyond the MBZIRC and Future Work
Based on the lessons learned in MBZIRC, we are currently working on various improvements to the
system for realistic firefighting in order to address the main drawbacks of the solution optimized
for the competition trials. During the competition, it was also notable that of the two deployed
fire extinguishing UAVs, one had a 3D-printed water nozzle made with less precision. This resulted
in the side effect of its water stream being spread noticeably wider (see Figure 11) which was
detrimental in terms of the competition. This has even lead to more water spillage outside of the
measuring receptacle during preliminary testing. However, in practical terms this appears to be the
superior design as the more spread-out water stream tended to extinguish the actual flames more
consistently.

Another observation made during the competition concerns the nozzle aiming procedure. The
nozzle, which was rigidly attached to the UAV body, made the aiming complex due to the need to
use the already constrained degrees of freedom of the UAV. The fire extinguishing was less flexible
than with a gimballed nozzle and was noticeably disturbed by drifting. We have previously addressed
this issue by temporarily allowing the UAV to drift while only correcting the altitude and heading,
but this solution solves the problem only partially in a real application. One potential solution to this
problem would be to decouple the aiming from the UAV position control by using a gimballed nozzle
actuated by servos based on target localization. If that had been the case, hovering in front of the
fire objects would have been significantly smoother and the extinguishing would have become more
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Figure 19. The trajectory of one of the extinguishing UAVs during the final exhibition, as recorded based on
onboard GNSS receiver. The UAV took off at the designated area, circled around the building until it made
a detection, and then localized a fire object. It then proceeded to approach it, spray water until the water was
depleted, and then returned to the assumed position of the take-off area. The green section of the trajectory shows
where the water pump was active. The notable drift during this time is difficult to analyze post-hoc and the most
likely explanation for it is merely drift of the GNSS itself being dynamically compensated for by the sensor-based
fire object position estimate. This also means that the shown position of the building is only approximate.

Figure 20. External views of the fire extinguishing in the final exhibition of MBZIRC 2020. The trajectory the
UAV took is shown in Figure 19. The view from the onboard RGB camera for this flight is in Figure 11 - B and
onboard thermal camera views from this flight are used in Figure 6.
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Figure 21. Our working prototype of a firefighting UAV designed for using gas-based extinguishing capsule
launcher - an evolution of the system developed for the MBZIRC 2020 competition.

consistent with fewer interruptions. We have not used this approach for the considerations discussed
previously, but for a more stable UAV of larger scale equipped for a real firefighting deployment,
this could also be a viable alternative to our approach, provided that the effects of the additional
degrees of freedom in the system are properly studied.

However, we realized together with our industrial partners that spraying a liquid agent with a
nozzle is altogether a sub-optimal approach to the task regardless, as it induces the need to involve
a precisely-controlled UAV in situ for an extended period of time. Moreover, the firefighting agent
needs to be dispersed throughout the entire inflamed room all at once to prevent re-ignition. To
solve these requirements, we propose deploying capsules with a rigidly enclosed fire extinguishing
agent into a localized fire using an onboard gas-based launcher. Such a solution makes it necessary to
correctly aim using the thermal-based detection and servoing only for the instant before deployment
of the capsule. The temporary disturbance that the launcher enacts on the UAV will not affect the
firefighting effort itself. An overview of a prototype UAV with such a highly effective firefighting
launching device can be seen in Figure 21.

9. Conclusion
A system designed for the fast extinguishing of fires on buildings by autonomous aerial robots
equipped with onboard sensors and processing power was presented in this paper. The proposed
solution enables scanning of a facade of a building while searching for hot regions indicating the
presence of fire, localization of the fire source, and alignment of an onboard firefighting mechanism
to precisely apply a liquid fire extinguishing agent. The novelty of the system lies in its onboard
hybrid vision used for localizing facade fires, its capability of additionally observing surfaces behind
flames, and the deployment of an extinguishing liquid based on body-pose-based dynamic aiming. In
addition to the firefighting maneuvers, the system performs complex missions, takeoff to landing with
full autonomy by exploiting onboard subsystems for UAV state estimation, localization, stabilization,
and motion planning.

The fire localization and extinguishing systems of this solution are suitable for practical de-
ployment, as was demonstrated during the MBZIRC 2020 competition that sought to emulate a
real first-responders mission. According to the best of our knowledge, it was the only approach
that achieved successful UAV-based firefighting of real fires in the MBZIRC 2020 without using
RTK-GNSS or manual intervention - both of which were penalized in the competition as they
do not follow the requirements of real-world applications. The presented solution was one of
the key components of the system designed by our team - CTU-UPENN-NYU - that won the
Grand challenge of the competition and was also successful in all three individual challenges. More
importantly, the performance of the system in the MBZIRC 2020 competition motivated further
research and development towards an industrial solution of this important task, as was the main
goal of the MBZIRC 2020 organizers and its technical committee.
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Figure 22. Photos from the MBZIRC 2020 competition in Abu Dhabi, United Arab Emirates.

Besides the system design itself, this paper also documents several practical observations made
during the development and the competition itself on the performance of the equipment used. We
believe that these can be of additional value for the future development of similar systems. We have
documented the need for computer vision that is robust to the highly dynamic appearance of fires in
RGB and thermal vision, while highlighting the individual drawbacks of each. For RGB vision, we
have pointed out how the transparency of flames to blue light can be useful for observing surfaces
of interest hidden behind flames. Lastly, we have shown the need for robust aiming and localization
that is resistant to various types of platform drifting and have documented more specific adverse
effects, such as the interference of USB 3.x connected devices with the onboard GNSS receivers.
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Extinguishing of Ground Fires by Fully Autonomous UAVs
motivated by the MBZIRC 2020 Competition

Viktor Walter∗, Vojtěch Spurný∗, Matěj Petrlík∗, Tomáš Báča∗, David Žaitlík∗ and Martin Saska∗

Abstract— In this paper, a system for autonomous extin-
guishing of ground fires using the placement of fire blankets
by Multi-rotor Unmanned Aerial Vehicles (UAVs) is proposed.
The proposed system, relying on the fusion of multiple on-
board sensors using only onboard computers, is infrastructure
independent with a focus on high reliability in safety-critical
missions that require power-on-and-go full autonomy. This task
was part of the third challenge of MBZIRC 2020 aimed at the
development of autonomous robotic systems for extinguishing
fires inside and outside of buildings. The MBZIRC competition
promotes the development of such robotics applications that
are highly demanded by society and, due to their complexity
and required robot abilities, go beyond the current robotic
state of the art. As far as we are aware, our team was one
of only two teams to achieve successful system for placement
of fire blankets fully autonomously with vision-based target
localization without using Real-time kinematic (RTK)-global
navigation satellite system (GNSS), as was required in the
competition and also for the real missions of first responders.

I. INTRODUCTION

The task of protecting life and property is at the forefront
of robotics research. However, realistic deployment of au-
tonomous aerial robotics systems for physical interaction in
such a task still seems to be a matter for the distant future.
Systems that demonstrate the required cognitive capabilities
are almost exclusively confined to laboratory settings. This is
due to the numerous difficult challenges for robotic systems
interacting with real-world hazardous conditions, especially
when health or lives are at stake.

In first responder missions, deployed units must have high
speed and mobility in order to reach remote or inaccessible
areas quickly. This is the primary strength of Multi-rotor
Unmanned Aerial Vehicle (UAV)s which are finding an
increasing number of applications in recent years. However,
their limited payload makes using them for firefighting with
standard liquid fire extinguisher a challenging endeavor. One
of the most practical options for how these systems can be
deployed is to use them to smother ground fires with fire
blankets. Such fire blankets are a very effective and non-
destructive fire extinguishing method (see Fig. 21) that is
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Fig. 1: The proposed system is based on target detection and pose
estimation using thermal computer vision and a blanket unrolling
maneuver informed by the retrieved pose of the target.

Fig. 2: Fire blanket used to extinguish a burning automobile.The
footage was used as motivation for designing the firefighting ma-
neuver presented in this paper. This task can now be accomplished
autonomously by an upscaled version of the proposed system.

well suited for execution by Multi-rotor UAVs, as blankets
are much lighter than the amount of liquid agent sufficient
for extinguishment and they additionally prevent further re-
ignition of flames where they are deployed. Challenge 3 of
the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) 2020 competition was inspired by the need to
extinguish fires in locations that are difficult to access by
people. A subtask of the challenge was directly motivated
by deploying fire blankets on outdoor ground fires by a fully
autonomous UAV system. This paper describes our approach
to successfully fulfill this task in the competition, as well
as in the real missions discussed. The proposed approach
is based on using a combination of new thermal vision,
perception and estimation subsystem, and a blanket unrolling
procedure coupled with a proposed spreading maneuver
inspired by real firefighting missions - see Fig. 1 and 2
for illustration. To our best knowledge, in this subtask our
CTU-UPENN-NYU team was one of only two successful
teams to use full autonomy in flight and to rely solely on
onboard sensors for localization of the targets, while also not
using RTK-GNSS or pre-measured target positions. Reliance
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on the latter especially would render our system completely
impractical for our main focus of future application in real
fire-fighting, since if an operator had the option to physically
access the fire for measurement of its coordinates, then using
Multi-rotor UAVs would not be necessary.

II. STATE OF THE ART

The idea of using UAVs to support firefighting has already
been extensively discussed in previous research. The simplest
situation where UAVs can be applied is outdoor fire detection
and monitoring. A system of multiple UAVs was used in [1]
for automatic forest fire monitoring using visual and infrared
cameras. Real experiments with forest fire monitoring in a
national park have already been conducted by the Hungarian
fire department [2]. The authors of [3] describe a task
allocation strategy for distributed cooperation of ground
and aerial robot teams in fire detection and extinguishing.
In [4], a UAV system is designed for the delivery of fire-
extinguishing bombs to a target area on remote control, using
various internal and external data sources. Similarly, in [5]
the authors employ a UAV system for delivering liquid fire-
extinguishing agent by an extreme dynamic dropping ma-
neuver maximizing the release velocity to reduce dispersion.
However, this method of firefighting is only suitable for use
in open space settings such as desert fires, without any tall or
vulnerable structures. The development of firefighting UAVs
has already been a topic of robotic competitions as well.
[6] describes the design and implementation of a firefighting
UAV for outdoor applications designed specifically for the
IMAV 2015 competition. This system is based on collecting
water into a carried receptacle and pouring it on a ground
target - a solution that is of interest for research, but in
practice only effective for vehicles with high payload, such
as full-scale airplanes and helicopters. The employment of
UAVs could prove particularly beneficial and life-saving in
urban environments. Experiments have already been done on
urban fire detection using a thermal camera which could be
carried by a UAV [7]. UAVs capable of entering buildings
through doors and windows would then be especially helpful
with their ability to reach the target location much earlier
than human firefighters. [8] contains the design of a semi-
autonomous indoor firefighting UAV. The authors have de-
signed a fireproof, thermoelectrically cooled UAV equipped
with visual and thermal cameras, collision avoidance, and
first person view system. However, the UAV was controlled
remotely and no autonomy was demonstrated here, making
it dependent on high-bandwidth radio transmissions and a
fully engaged remote pilot. The solution discussed in this
paper - placing fire blankets on top of a detected target -
requires the ability of Multi-rotor UAVs to autonomously
carry and deploy objects while precisely navigating towards
a detected target. Carrying and dropping objects has been
extensively researched in recent literature [9]–[11]. Object
transportation by Multi-rotor UAVs [12], [13], as well as
precise navigation of Multi-rotor UAV towards a visually
localized target [14], has even been a task in MBZIRC 2017
where teams - including ours - competed in gathering of

scattered objects and landing on a moving vehicle using
vision-based tracking.

However, in comparison to the previous work, the ap-
proach proposed in this paper requires additional new ca-
pabilities. The UAV is required to precisely localize a target
by fusing thermal imaging-based computer vision instead of
simplistic color detection. Additionally, instead of merely
carrying and detaching over a designated area, the trans-
ported blanket has to be deployed in multiple steps on an
object of comparable size. In doing so, the system has to not
only address, but actually exploit physical interaction with
the ground and the target - a challenge rarely addressed in
practical deployment of Multi-rotor UAVs.

III. TASK SPECIFICATION

Challenge 3 of the MBZIRC comprised four distinct parts:
extinguishing real fires on the exterior of a building by Multi-
rotor UAVs using water, extinguishing fire analogues using
water in the interior of a building by Multi-rotor UAVs and
by Unmanned Ground Vehicle (UGV), and extinguishing
free-standing fire analogues by Multi-rotor UAV with fire
blankets. This paper presents a solution for firefighting by
fire blanket placement.

The fire analogues for the competition (see Fig. 5) were
designed as square platforms with 1 m sides and 0.35 m in
height. All edges of the top surface were framed with reflec-
tive metal sheets 0.1 m wide. Each side of the empty square
formed by these sheets was studded with three electrical
heating elements made of anodized aluminium - twelve in
total - with one in the center of the edge and two spread
0.25 m to each side. When active, each of the elements
was set to maintain a temperature of 120 ◦C. The center of
the square surface additionally contained a silkflame with a
series of LED light sources in its center. Three of these fire
analogues were spread out in an area of 19.5×17.5 m and
two of them were randomly switched on for each trial. The
goal was to locate these objects with a Multi-rotor UAV and
to cover the whole top surface of the fire analogue objects
with a standard fire blanket 1.2 × 1.2 m in size. For each
placement, a specific number of points are awarded for each
covered corner and side as follows:

• Covering the entire top surface of the fire analogue by
the blanket awards a team 10 points.

• Covering any part of the top surface of a fire analogue
is worth 20 % of the total = 2 points.

• Covering any of the four corners or overlaying any of
the four sides is worth 10 % = 1 point.

All teams scoring in autonomous mode are ranked above
all teams solving manually, reflecting the significantly higher
difficulty and relevance of autonomous solutions. Addition-
ally, teams were allowed to use RTK-GNSS in any of the
competition arenas, but a penalty of 25 % was applied to
teams if they did since the solution would be less relevant to
real firefighting in inaccessible areas without the option of
establishing a calibrated local base station. In such a case, the
teams would have the option of pre-measuring the positions
of the targets, lowering the need for sensing-based navigation
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Fig. 3: Front view of the blanket dropping gripper below the body
of the UAV (left) and the layout of the thermal cameras (right).

and target localization - the main focus of this paper and key
component of a real system.

IV. PLATFORM DESCRIPTION

Our UAV for the blanket dropping challenge was based
on the Tarot T650 platform, equipped with Intel NUC on-
board computer and the Pixhawk flight controller. On the
onboard computer, the UAV runs a multi-layered system
stack developed by our group [15], that allows optimal
following of pre-defined and dynamically generated trajec-
tories using Model predictive control (MPC). For odometry,
the UAV was also equipped with a GNSS module with
Ublox Neo-M8N receiver. The sensory equipment of the
UAV comprised RPLIDAR rotary rangefinder, Garmin laser
rangefinder used as altimeter, BlueFOX-MLC200wC camera
used for calculation of optical flow from the ground, and two
Teraranger EVO thermal 33 thermal cameras with a field of
view (FoV) of 33°×33°. One of the thermal cameras was
pointed downwards and the other was tilted 30° upwards
from the first, facing towards the front of the UAV (see
Fig. 3 on the right). The two cameras could then be used in
place of a single camera with increased resolution and FoV.
The downward-facing thermal camera was useful for getting
precise estimates, while the front-facing one improved the
capability of searching for undiscovered fire analogues by
extending visibility further outwards.

This modular approach of using multiple simpler cameras
was also beneficial in our work on two different types
of Multi-rotor UAVs for Challenge 3. For example, we
attached three thermal cameras of the same type onto a
Multi-rotor UAVs meant for extinguishing fires on vertical
surfaces with a water stream. Thus, we could address the
diverging needs of observation coverage between the two
tasks without the need for different sensors or working with
different input data. Such modularity is also beneficial for
real deployment as a single platform can be used for various
firefighting tasks. For dropping the blanket, we developed
a specialized mechanized claw that carries a rolled up fire
blanket, one side of which is studded with a wooden rod.
This mechanism releases the blanket in two phases. First,
one servo releases the rolled up blanket such that it unfolds
and remains attached to the UAV only by one side by the
attached wooden rod. In the second phase, the wooden rod
itself is released by the second part of the servomechanism,
concluding the deployment. The system used two Dynamixel
AX-12A servomotors.

0°C

60°C

120°C

0°C

240°C

480°C

Fig. 4: An example of the view of a real fire with the thermal
camera used in the competition at two different thermal ranges.
Note the high contrast of the fire compared to the background, in
addition to the large size of the fires in the image. In the range of
temperatures used in the competition, the fire itself is completely
saturated in the image. Detection and targeting of such objects is
significantly easier to achieve than the fire analogues.

V. VISION

The output from the thermal cameras comprises a matrix
of 32 × 32 pixels each, where the value of a pixel is
supposed to represent the temperature of the corresponding
region in degrees Celsius. This is, however, an oversim-
plification. The thermal cameras capture the intensity of
infrared (IR) radiation. This intensity is converted using the
Stefan-Boltzman law into a temperature reading, presuming
a surface emissivity of 0.95 [16]. Such value is similar to
the emissivity of a wide range of materials, such as iron or
plastic, but differs significantly with other materials such as
aluminium which has significantly lower emissivity, leading
to lower temperature readings. Additionally, if the material in
question is highly reflective in the given IR range, the thermal
camera output in that region will represent properties of the
reflected surfaces instead of the reflective material itself, akin
to a mirror. In our experiments, as a real fire (see Fig. 4) is
evaluated by a thermal camera as being over 250 ◦C, the
thermal cameras would be sufficient to detect real fires from
a significant distance and with good reliability, because such
hot objects will likely be detected and will not be outliers.

Unfortunately, the heating elements used in MBZIRC
were made of anodized aluminium, with emissivity index
of approximately 0.55 [17]. Therefore, detection of the
heating elements set to maintain a temperature of 120 ◦C
was significantly more complicated, since the cameras parse
them as having approximately only 78 ◦C when viewed from
up close. Each element was a rectangle 60 × 35 mm. This
small size combined with the small resolution compared
to the FoV of the applied thermal cameras, as well as
the typical searching distance of approx. 3 m above ground
level, made it often project as less than a full pixel in the
image. This effect further decreased the temperature read
out of the pixels containing the heating elements, as the
camera effectively averages the temperatures of the entire
surface captured within a single pixel. In relatively cold and
shaded surroundings, these elements may be distinguishable
as concentrated patches of elevated temperature. However, in
the real-world conditions of the competition (desert climate
and sun-heated ground) these were barely noticeable, which
would not be the case for real fires (compare Fig. 4 with
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∼0.5 m, morning 3.0 m, morning 3.0 m, noon 0°C

45°C

90°C

Fig. 5: Views of a fire analogue from a color camera and a thermal
camera. In the later stages, the wooden sides were lined with
rock facsimiles. Note that while up-close, the heating elements
are recognizable as being measured with greater temperate than
the surroundings (measured as approx. 78 ◦C in the left image),
from 3m above the object where the whole square is captured,
their contrast w.r.t. the surroundings decreases significantly. This
decrease is so severe that in the right image, captured at noon
when the sun was directly above the area, the heating elements
are indistinguishable based on temperature measurement alone
as the temperature of the ground itself was 55 ◦C. Even in the
middle thermal image captured in the morning, the brightest pixels
correspond to a measurement of 40 ◦C - only 10 ◦C more than
the surroundings. In contrast, the pixels corresponding to the metal
plates have a value of 0 ◦C when captured up close and 10 ◦C from
farther above for both cases shown here.

Fig. 5). In our preliminary tests and as was subsequently
confirmed in the rehearsals with the fire analogues, we
discovered that the reflective metal sheets underlying the
heating elements themselves appeared as extremely cold
(approx. 0 ◦C). This was due to their high IR reflectivity,
making them reflect the sky instead of emitting their own
detectable radiation.

For brevity, we will be calling pixels with such temper-
atures as "dark". It is significantly more efficient to detect
these reflective metal sheets due to their high contrast with
the surrounding surfaces and relatively large surface area.
While it is assumed that these plates were meant to spread
the heat of the elements over a larger area for detection, in
terms of the thermal image they did the very opposite. We
have exploited this fact to achieve sensitivity in detection
comparable to that of real fires.

The metal sheets were segmented into smaller sections
by placement of the heating elements that were without
such reflectivity. This allowed us to detect the position
and precise orientation of the fire analogues by the distinct
square arrangement of dark patches on the edges of the fire
analogues. Refer to Fig. 5 for the appearance of the fire
analogues in the thermal camera images.

A. Shape fitting

The fire blanket required to be used in the competition
had the dimensions 1.2 × 1.2 m. This blanket needed to
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Fig. 6: The detection and localization pipeline for the blanket
deployment subtask.

cover a fire analogue platform with the dimensions of 1.0×
1.0 m. Therefore, it became necessary to estimate not only
the precise position of the center of the platform, but also its
orientation in order to align our UAV with its sides and cover
as large a portion of the platform as possible. As mentioned
above, the thermal camera captured the metal frame of the
top surface of the platform as a set of dark patches arranged
in a square. We took the image centroid of each of these
patches (Fig. 6a) and estimated a 3D point it corresponds to.
This 3D point is the centroid of the segment of the metal
sheet defined by intersecting its corresponding optical ray
with the estimated top surface plane of the platform (Fig.
6b).

The optical ray - the line defined by the coordinates of
the camera center and a direction vector vt - is obtained
using odometry and the image coordinates of the centroid at
x, y, combined with the assumed camera matrix for the used
thermal cameras with pixel resolution w per side and FoV ε
per side:

vt =

1/f 0 −((w − 1)/2)/f
0 1/f −((w − 1)/2)/f
0 0 1

 ·
xy

1

 , (1)

where

f =
(w/2)

tan(ε/2)
≈ 54.015. (2)

In 3D, the detections from both cameras that are oriented
differently w.r.t. each other were translated using their known
poses within the UAV frame into a unified set of points in a
single coordinate frame. These 3D points were accumulated
from all detections from both thermal cameras from the last
3 s (Fig. 6c) and were then used for the target pose estimation
step.

It should be noted that the primary source of the height
estimate of our UAV w.r.t. the ground was a laser altimeter.
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MAV
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fire anologues

zigzag

path

Fig. 7: Boustrophedon coverage of the competition arena.

Therefore, if the UAV is presumed not to be above the
platform, we shift the intersecting plane by 0.35 m upwards
to account for the height of the platform. While this was
only possible to know after the pose of the target had been
estimated, in practice this method quickly led to convergence
to the correct pose. This is because, even with offset of the
height of the platform, the estimated points form roughly the
same shape, only scaled up and distorted when accumulating
them from a time segment when the UAV transitioned above
the target.

The next step involved applying a 2D Iterative Closest
Point (ICP) algorithm to fit a square (Fig. 6d) of known size
(0.9 × 0.9 m, accounting for the width of the metal frame)
onto the accumulated points. The specific implementation of
the ICP used was based on minimizing the sum of squares
of distances of estimated points from the line segments
representing the sides of the square.

The best precision of this estimation technique can be
achieved when the UAV observes the platform from directly
above. This is due to the ability to view the whole square
shape in a single image frame, increasing the likelihood
of seeing the dark reflections mentioned in section V and
the negation of effects in this specific viewpoint, such as
foreshortening and height estimate error.

This estimate is then sent to a linear Kalman filter to refine
precision using multiple detections.

The state qk of the Kalman filter comprises the 3D
position of the platform surface (world frame in meters),
as well as its 2D orientation qkη (azimuth in radians):

qk =
[
qkx , qky , qkz , qkη

]T
. (3)

In the case that new measurement α is close to 90° from
the qkη , we rotate α by 90° towards qkη , once again taking
into account the symmetry of the platform. In this way, the
filter state is seamlessly updated even in cases when the target
platform is rotated diagonally w.r.t. the world axes, where α
would tend to oscillate between two expressions of the same
pose and thus would otherwise corrupt qkη .

VI. SEARCH FOR FIRE ANALOGUES

A diagram of the state machine is shown in Fig. 8. The
path planning for localization of the fire analogues in a
predefined area can be described as Coverage Path Planning

Wait for start
Prepare MAV
and take off

Fly to trajectory
start position

Zigzag path following
&

Detect and estimate fire

Fly above
the detected fire

Extinguish the fire
using blanket

Return home
and Land

success success

success

no
detection

fire position
estimated

success

fire
detected

fire lost

Fig. 8: Diagram of the mission state machine.

(CPP) [18]. The plan is found using Boustrophedon cover-
age [19], which creates a zigzag path as shown in Fig. 7, such
that the reduced FoV of onboard thermal cameras entirely
covers the area from the height of 3 m. The reduced FoV
is calculated based on the required overlap in the coverage
(set to 5% during the competition) and on the camera FoV
projected from flight height to the ground plane. The UAV
then follows this path with heading in the direction of its
movement while trying to detect and estimate the position
of the fire analogues.

After successful detection, the UAV stops following the
path and moves to a position 3.5 m above the estimated
position of the fire analogue to better observe its pose. As
the horizontal distance decreases, the visibility of the target
increases and thus the estimate is improved. The UAV steers
above the center of the target, where it hovers until the
estimate reaches a desired precision. This requirement is
evaluated based on the state covariance matrix Σ of the
Kalman filter. The sufficiency of the precision of the position
estimation is determined by the norm of eigenvalues of Σ33

- the 3 × 3 upper left submatrix of Σ representing the 3D
position coordinates - and the last element of Σ representing
the heading. The estimation is thus concluded once

λX = ‖λ(Σ33)‖ <0.1 m (4)
λη = Σ44 <(π/180) · 5°. (5)

If λX and λη is smaller than such values, it is an indicator
that multiple consistent measurements have contributed to
the filter state qk and thus qk represents a reliable-enough
estimate for blanket placement.

Once the desired precision is achieved, the blanket place-
ment maneuver is initiated. In the case of no detection, the
UAV flies back to the takeoff position to land, as would have
been the case if the blanket placement was successful. If the
target was detected but subsequently lost, the UAV continues
the path following from the last visited point.

VII. PLACEMENT MANEUVER

Upon reaching the desired estimation precision, the UAV
activates its blanket placement maneuver. This begins with
selecting a direction from which to place the blanket. Since
the maneuver entails flight parallel to the sides of the square
platform for optimal coverage, there are four options for the
starting position. These positions are all 4 m from the center
of the estimated target and positioned along the estimated
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Fig. 9: Our UAV approaching the fire analogue in the placement
maneuver. The fire blanket is unrolled when the UAV is 3m from
the target. The second end of the blanket held straight by a wooden
rod is released after the target has been covered. The third figure
shows the resulting placement - the offset is due to a combination of
GNSS drift during the placement maneuver and the blanket sliding
off after being placed, due to the air flow from the fire analogue.

axes of its square platform and 1 m above the ground.
Initially, all four of these positions are checked against a
predefined safety area in order to prevent collisions with
walls or the safety net. Of the starting positions that pass this
check, the closest one to the current position of the UAV is
selected.

The UAV flies to the position, orienting itself s.t. the
UAV faces the estimated target. Since no measurement of
the target is possible at this point due to the low altitude,
the maneuver is executed without feedback based on the
previous target pose estimate. The UAV then flies towards
the target at the constant speed of 1 m s−1. When it reaches
the distance of 3 m from the target, the blanket is unrolled
as shown in Fig. 9. This is done by releasing the first of
the two servo-controlled claws in the blanket holder on its
underside and letting the blanket fall free. As it flies on,
the blanket is fully unrolled by friction with the ground. The
UAV then seamlessly spreads the blanket over the target as it
passes over its estimated center. Once it reaches a point 0.6 m
beyond the center - half the length of the blanket - the second
claw is released, dropping the rod attaching the blanket to
the UAV and thus concluding the placement. Afterwards,
the UAV ascends to the safer height of 2 m, and is set to
return to the takeoff point for checkup, replacement of the
blanket, and potentially also for replacement of the battery.
In real firefighting, e.g., for extinguishing a burning vehicle,
the maneuver would be the same, with the only difference
being that the UAV would have to be upscaled to be able to
carry a sufficiently large blanket - e.g., the fire blanket used
in Fig. 2 with the size 6×8 m - in order to sufficiently cover
the entire target and block access to oxygen to the fire.

VIII. RESULTS

Before the competition, our team was performing nu-
merous tests alternating between simulation and real world
deployment. Simulation is faster and cheaper to prepare, but
contains unaccounted-for differences due to simplifications
when compared to the real world. Real world testing allowed
us to address these, as well as to incrementally adjust
the simulation to better correspond to observed reality. For
simulations, we used the Gazebo simulator - a part of the
Robot Operating System (ROS) package. In this simulator,
we built the fire analogues used in the competition based on
the provided specifications.

All the software developed for the competition, including
the Gazebo plugins, is open-source and is available on-line2.

In simulation, we could obtain a rough evaluation of the
precision of the fire analogue localization precision thanks
to the availability of the exact ground truth positions . Out
of 10 deployments, the average position error was 0.139 m
and the average orientation error was 0.125 rad (7.2°). The
worst position error was only 0.175 m and the worst orien-
tation error was 0.275 rad (15.8°), showing that the target
localization method is sufficient for deployment.

Real world tests of this system were done in a desert
location in the United Arab Emirates where we were based
for six weeks prior to the competition. Our stay there was
motivated by practical considerations - in our long-term
experience, lighting and other local environmental conditions
significantly affect real-world robotic deployment, partic-
ularly the sensor outputs. Therefore, preparing a robotic
system for reliable operation in a certain location and climate
requires testing in equivalent conditions. For instance, the
stronger sunlight and higher temperatures in UAE affected
thermal imaging in ways that were not apparent in our central
European country.

In the UAE, we tested the blanket deployment against the
local wind conditions as well as thermal detection.

The most significant testing results were shown in the
competition challenge itself. Each of the three challenges
progressed as follows: First, each participating team was
given three rehearsal runs at 15 min each. Afterwards, two
graded attempts were taken as part of the competition proper,
15 min each, and the final team result was selected as the
better result of the two attempts.

In the competition, we were the one of only two teams to
place a fire blanket on the fire analogue fully autonomously
without RTK penalization (see Fig. 9 and videos3). In ad-
dition to the points achieved for this subtask of MBZIRC
2020, we demonstrated a fully functional system of the
same complexity as would be required for real firefighting
missions.

The most successful opposing team, University of Seville,
IST Lisbon and CATEC, used a solution based on dropping
the blankets from above with an attached rigging that spread
the blankets upon impact with the target akin to a parasol.
This solution was more efficient in achieving maximum
possible overlap with the surface of the fire analogues
compared to our dynamic spreading that induces drift w.r.t.
the initial estimated target position. This approach benefited
from releasing the blanket immediately after reaching a
position above the target in combination with rapid dropping
of the blanket in its folded form. However, it also shows
less potential for subsequent real world firefighting, since
the deployed rigging keeps the blankets taut in a horizontal
plane as opposed to letting them fall over the target ob-
ject to block oxygenation of the fire. The weight of the
rigging further challenges the carrying capacity of Multi-

2https://github.com/ctu-mrs
3
http://mrs.felk.cvut.cz/mbzirc-2020-blanket-placement
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rotor UAVs, making it necessary to use larger units than
would otherwise be the case. Lastly, the deployment method
necessitates hovering for an extended period of time above a
fire in its convection column, endangering the UAV itself. It
should also be noted that this solution used RTK-GNSS for
localization, with the positions of the fire analogues being
pre-measured as opposed to located with onboard sensing
- an approach that is not applicable for real firefighting and
was therefore penalized in the competition as a solution with
lower technology readiness level.

Another team that managed to place a blanket on the
target, Polytechnic University of Madrid, University Pablo
Olvide, Poznan University of Technology, CNRS, did so
without using RTK-GNSS. Their target localization tech-
nique was based on thermal imaging similar to ours, using
significantly heavier UAV platform. However, their method
of blanket placement constituted dropping it directly from
above the target, without any visible method designed to
unroll and spread it out it first [20]. This is sub-optimal, as
part of the limited size of the blanket is very likely to remain
folded without extinguishing the fire.

Without an RTK base station, the precision of GNSS
localization depends on the quality of the signal from satel-
lites. GNSS satellites broadcast their signals from space, but
what is received depends on additional factors including, for
instance, signal blockage and its reflection and atmospheric
conditions. For this reason, we have delegated the sensing
necessary for obstacle avoidance on 2D LIDAR data to
employ a virtual bumper that did not allow flight closer to
obstacles than 5 m.

Out of the 5 attempted blanket placements by our team
in the entire competition, the average offset of the placed
blankets from the center of the selected fire analogue was
∼1.0 m. Given how the video documentation shows that the
UAV hovered correctly above the selected fire analogue in
the estimation phase, we can presume that the precision of
the estimation was comparable to simulation. Considering
these observed effects, it is desirable to have constant visual
feedback during the placement maneuver for correction. Our
system relying solely on thermal cameras was not suited
for this with the fire analogues used in the competition, but
in case of a real firefighting, a front-facing thermal camera
would be sufficient to correct the drifting course of the UAV
towards an object on fire.

IX. CONCLUSION

In this paper, an approach to extinguishing ground fires
with fire blankets deployed by autonomous Multi-rotor
UAVs was proposed. The system comprised an advanced
autonomous UAV control, localization based on sensory
fusion from multiple sources, thermovision and its spe-
cialized processing, target estimation, and a purpose-built
blanket deployment hardware subsystem. This approach was
shown as effective in the MBZIRC competition, but it also
appears to be practical for real firefighting scenarios, in many
cases over-performing classical concepts of spraying liquid
fire extinguishing agents limited by the payload capacity

of Multi-rotor UAVs. For the MBZIRC competition, this
approach and system contributed to winning the overall first
place in the Grand Challenge.
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Chapter 4

Research motivated by the UVDAR system

The development of the UVDAR system enabled the performance of a wide range
of complex multi-UAV operations in real-world conditions. Such operations were previously
either only theoretical, or were tested in non-realistic simulations or strictly controlled con-
ditions [15], often using explicit global localization system in the loop as a substitute for true
distributed relative localization systems [40]–[43].

This localization can only be provided by an external infrastructure, severely limiting
the scope of applications for multi-UAV systems.

Deploying multi-UAV flights with UVDAR revealed several practical limitations of such
systems not previously considered, making us aware of specific properties of the system that
needed to be taken into account with novel algorithms. Additionally, beneficial properties
of the system not previously expected organically arose, allowing us to enact novel flight
behaviors and to solve tangentially related robotic challenges.

Swarm flight

A very often discussed modality of multi-UAV deployment is the swarm, where each unit
- in literature referred to as an agent or particle - follows the same simplistic set of rules that
forces it to maintain a certain relative distance or orientation w.r.t. its neighbors in a strictly
decentralized manner. This kind of behavior has various emergent phenomena of interest to
both robotics and biology communities[44], [45]. Among other beneficial properties, a swarm
is inherently robust to failure of individual units and the computational requirements for its
implementation are typically lower than for more explicit cooperation approaches. Due to
these properties, swarm flights were investigated extensively in the robotics community. This
modality was chosen as a baseline benchmark for establishing the suitability of UVDAR in
real-world UAV cooperation.

To the best of our knowledge, we were the first group to have successfully enacted
a multi-UAV swarm flight operating exclusively using the onboard sensors and processing
of the agents without any dependence on communication or external infrastructure - a feat
made possible with UVDAR. This flight was more challenging than expected by the previous
theoretical research, since the precision of a real-world relative localization sensor is lower and
less isotropic than in simulation models. This work is shown in the attached paper

P. Petráček, V. Walter, T. Báča, and M. Saska, “Bio-Inspired Compact Swarms of
Unmanned Aerial Vehicles without Communication and External Localization,” Bioin-
spiration & Biomimetics, vol. 16, no. 2, p. 026 009, Dec. 2020. doi: https://doi.org/
10.1088/1748-3190/abc6b3.

The swarm deployment had numerous follow-up research endeavors, where we not only
refined the quality of the sensor processing, improved the flight behavior reliability, and scaled
up the swarm size [27], but we also reached another unique achievement - we were the first
group to fly a swarm of UAVs within the cluttered, collision-prone environment of a forest
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without any communication required for group stabilization [26]. In another work [25], we
showed how temporarily changing the blinking signal allows a swarm member to use UVDAR
to notify other members of the presence of an intruder, and thus to propagate a change in
their behavior. The property of UVDAR that it inherently transmits digital data as identifiers
was further exploited in [46], where we used the system for explicit optical data communica-
tion. This method allows for low-bandwidth transmission that is entirely resistant to radio
interference and can be used in specialized sensitive cooperative tasks.

Automatically annotated image dataset for ML-based vision

In recent years [22], there was an explosive growth of ML-based computer vision systems,
particularly based on artificial neural networks. Of interest among these technologies is image
recognition of objects, made suitable for deployment onboard UAVs by miniaturization of
computational acceleration hardware. This technology therefore had the potential to be used
for VRL of UAVs, and our group was among the first to implement ML for the real-world
aerial interaction of UAVs [23]. Due to the limited onboard computational resources, the
ML-vision system used by a UAV needs to be constrained to address the specific application.
This was, in our case, the detection of a nearby UAV target. A significant challenge in ML-
based VRL systems is that their reliability is strongly informed by the quality of the training
image dataset used. These detectors work well if the deployment environment and the target
objects of interest are visually close to their equivalent in the training dataset. In general,
this was highly challenging to achieve - obtaining such an annotated dataset required manual
annotation of thousands of images for each environment of interest.

To address this challenge, we used UVDAR to generate a practical, real-world dataset of
RGB images with annotated positions of UAVs in various environments viewed from the per-
spective of other UAVs. Automated annotation of images captured in flight was not previously
possible, since global localization and ego-pose estimation systems are not currently precise
enough to correctly reproject global UAVs positions obtained by systems such as GNSS onto
the camera image space. The main issues involved include the drifting of the relative position
due to GNSS error and, even more significantly, the drifting and hysteresis of orientation
estimates of UAVs. The advantage of UVDAR in this context is that the system can be at-
tached to the same rigid body as the dataset-gathering RGB camera, removing the need for
transforming multiple noisy body pose measurements into the camera frame. Both cameras
are, in essence, relative bearing estimators located at nearly the same position, eliminating
the localization error of the observer from the reprojection of a detected target onto the RGB
camera. Additionally, the UVDAR markers only minimally alter the visual appearance of a
target UAV. Their lights can be optically filtered out from visible color images, making the
dataset suitable for subsequent detection of UAVs without the markers. The dataset made
using this technique was published with the attached paper

V. Walter, M. Vrba, and M. Saska, “On training datasets for machine learning-based
visual relative localization of micro-scale UAVs,” in 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), © 2020 IEEE. Reprinted, with permission.,
Aug. 2020, pp. 10 674–10 680. doi: 10.1109/ICRA40945.2020.9196947,

where the techniques used in producing it are described in detail. The publication of such
a dataset promotes the use of multi-UAV flight algorithms with various VRL systems, es-
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pecially with popular ML technologies. The dataset was used by researchers for analysis of
the performance of ML vision algorithms for appearance-based [47] and motion-based [48]
detection of UAVs.

Cooperative flight using relative orientation estimate

Another interesting property of UVDAR that we have exploited is that the individual
markers on a single UAV can not only be distinguished to obtain the approximate distance
of the UAV from the camera, but they can also each carry a different signal ID. Thus, among
onboard relative localization systems for UAVs, our system provides the unique ability to
estimate the relative orientation of a target unit through the knowledge of side-specific IDs.
We have implemented a variation of the classical leader-follower flight with the unusual mod-
ification that the leader is followed directionally, meaning that the follower always attempts
to remain not only at a specific distance from the leader, but also on a specific side. Such a
flight made it necessary to design a specialized flight behavior that respects a minimum safety
distance constraint, in order for the follower not to attempt to reach its designated pose by
colliding with the leader. This research is shown in the attached journal paper

V. Walter, N. Staub, A. Franchi, and M. Saska, “Uvdar system for visual relative
localization with application to leader–follower formations of multirotor uavs,” IEEE
Robotics and Automation Letters, vol. 4, no. 3, pp. 2637–2644, Jul. 2019, issn: 2377-
3766. doi: 10.1109/LRA.2019.2901683.

This paper was also presented in the ICRA conference in 2019 and promoted the
UVDAR system in the multi-robot community, as evidenced by it being my most cited paper.

Formation flight robust to sensory noise

An important stream of research in the multi-robot community concerns formation
flight. This is a type of cooperative flight that, in comparison to a swarm, strives to maintain
a specific shape for the UAV group. It is, however, more challenging than swarm flights
due to the significantly stricter requirements on precision, both in the terms of sensing and
of actuation. Research previously done in this field made significant progress in terms of
theoretical flight control systems, but was lacking in not considering the properties of a real-
world relative localization system, often assuming it to be perfectly precise or by assuming
a shared knowledge of global poses of individual UAVs [32], [49]–[51]. Knowledge of the
statistical properties of the UVDAR system output measurements allowed us to advance
prior theoretical flight formation methodology to applicability in real world flights, which we
have demonstrated in my latest paper

V. Walter, M. Vrba, D. B. Licea, and M. Saska, “Distributed formation-enforcing con-
trol for uavs robust to observation noise in relative pose measurements,” 2023. arXiv:
2304.03057 [cs.RO] Under review in Transactions on Robotics,

currently under review. In this work, the theory of formation-enforcing control together with
the known theoretical and practical properties of UVDAR were used in the design of a method
for how the distributed formation-enforcing control (FEC) action derived from formation error
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gradient descent [52] can be modified to take into account the noise of a relative localization
system. The proposed method is based on modifying “set-points” of the control action, such
that they enforce a specific limit on the statistical probability of overshooting the desired for-
mation by the UAVs. Testing in both simulation and in real world deployment shows that this
method outperforms naive gradient descent, thus showing great promise for future applica-
tions. Notably, the tests also show that if the noise is too large, the UAVs may altogether fail
to achieve a formation without the proposed method. I plan to follow this research direction
in the future as there are many potential improvements to be made to the proposed FEC, and
there is also much space for analytical work to model and address the complex interaction of
a FEC with noisy sensor inputs.
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Abstract.
This article presents a unique framework for deploying decentralized and infrastructure-

independent swarms of homogeneous aerial vehicles in the real world without explicit communication.
This is a requirement in swarm research, which anticipates that global knowledge and communication
will not scale well with the number of robots. The system architecture proposed in this article
employs the UltraViolet Direction And Ranging (UVDAR) technique to directly perceive the
local neighborhood for direct mutual localization of swarm members. The technique allows for
decentralization and high scalability of swarm systems, such as can be observed in fish schools,
bird flocks or cattle herds. The bio-inspired swarming model that has been developed is suited for
real-world deployment of large particle groups in outdoor and indoor environments with obstacles.
The collective behavior of the model emerges from a set of local rules based on direct observation of
the neighborhood using onboard sensors only. The model is scalable, requires only local perception of
agents and the environment, and requires no communication among the agents. Apart from simulated
scenarios, the performance and usability of the entire framework is analyzed in several real-world
experiments with a fully-decentralized swarm of unmanned aerial vehicles (UAVs) deployed in outdoor
conditions. To the best of our knowledge, these experiments are the first deployment of decentralized
bio-inspired compact swarms of UAVs without the use of a communication network or shared absolute
localization. The entire system is available as open source at https://github.com/ctu-mrs.
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1. Introduction

Use of a team instead of a single robot may yield
several general advantages in tasks that either benefit
from the multi-robot configuration or are altogether
unsolvable by a single robot. The main advantages
of robot teams are reduced task execution time,
improved robustness, redundancy, fault tolerance,
and convenience of cooperative abilities, such as
increased precision of measurements with a stochastic
element (e.g., localizing ionizing radiation sources [1]),
distributing the application payload, and dynamic
collaboration (e.g., cooperative object transport [2]).

Deployment of a single UAV requires a complex
system composed of several intricate subsystems han-
dling the vehicle control, environment perception, ab-
solute or relative localization, mapping, navigation,
and communication. A system scaled to a set of tightly
cooperating UAVs must additionally introduce decen-
tralized behavior generation, fault detection, informa-
tion sharing in an often low-to-none bandwidth com-
munication network, and detection and localization of
inter-swarm members. Furthermore, the characteris-
tic environments in the context of aerial swarms suited
for real-world challenges may be unknown in advance,
they incorporate high density of complex obstacles,
they provide none-to-low access to mutual intercom-
munication between the team agents, and they allow
either no access or unreliable access to a global naviga-
tion satellite system (GNSS). Each of these concepts
is a complex challenge on its own. However, overcom-
ing all the challenges opens the way to applications
requiring distributed sensing and acting, such as coop-
erative area coverage for search & rescue, exploration,
or surveillance tasks.

In this article, we present a complete swarm
system framework, which respects the swarm and
environment characteristics. The properties of the
framework presented here correspond closely with the
definition of autonomous swarms, as listed in [3].
The properties are: scalability for large groups, high
redundancy and fault tolerance, usability in tasks
unsolvable by a single robot, and locally limited sensing
and communication abilities. Inspired by the self-
organizing behavior of large swarms of homogeneous
units with limited local information that is found
among biological systems, our framework goes even
further beyond the swarm requirements from [3]
by dealing with all centralized and decentralized

communication with the use of the UVDAR local
perception method. The elimination of communication
is particularly important in dense swarms of fast-
moving aerial vehicles, where time-based delays
in mutual localization might disturb the collective
behavior of swarms and thus may induce mutual
collisions. The independence from communication
makes the system also applicable as a backup
solution for swarm stabilization in scenarios where
communication is required, but suffers from outages.

This allows us to employ a fully decentralized sys-
tem architecture not limited by scalability constraints.
This decentralization is advantageously robust towards
a single-point of failure, reduces the hardware demands
for individuals, and distributes the sensing and act-
ing properties. We have been inspired mainly by or-
dinary representatives of biological systems: common
starlings sturnus vulgaris, which exhibit a remarkable
ability to maintain cohesion as a group in highly un-
certain environments and with limited, noisy informa-
tion [4]. Similarly to starlings (and numerous other
biological species), the proposed swarming system re-
lies on sensing organs that look on two sides (cameras
in our case), observing close-proximity neighbors only
and responding to these sensory inputs by a local be-
havior which together forms a swarm intelligence that
reaches beyond the abilities of a single particle.

The UVDAR method tackles the problem of
mutual perception of swarm particles by localizing the
bearing and the relative 3D position of their artificial
ultraviolet (UV) light emission in time, using passive
UV-sensitive cameras. The method is deployable in
indoor and outdoor environments with no need for
mutual communication or for a heavy-weight sensory
setup. In addition, it is real-time, low-cost, scalable,
and easy to plug into existing swarm systems. To
verify the feasibility of the UVDAR technique in an
aerial communication-less swarm system, we employed
UVDAR to generate a decentralized bio-inspired
swarming behavior employing local information about
neighboring agents and close-proximity obstacles
in real-world conditions. As verified in real-
world experiments, the proposed system for relative
localization is accurate, robust, and reliable for use
in decentralized local-information based swarming
models.
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Figure 1: A compact aerial swarm of 3 UAVs in a controlled
outdoor environment filled with artificial obstacles, as
viewed by an outside observer. The decentralized
approach, described in detail in section 4, applies a set
of local rules contributing to safe navigation and self-
organization of the swarm structure among obstacles. The
UAVs are homogeneous units with solely local sensing.

Figure 2: Onboard detection of 3 UAVs in the UV
spectrum using UVDAR in a member of the aerial swarm.
The method directly localizes the neighbors within a
swarm in indoor and outdoor environments. Here, the
method detects neighbors in an outdoor environment
affected by a powerful source of ambient UV radiation.
The processing is possible due to periodic blinking of the
members with a specific frequency, here with 6Hz, 15Hz
and 30Hz.

1.1. Related Work

1.1.1. Relative Localization

In most recent work concerning swarms and formation
flight [5], the proposed algorithms have only been
validated either in simulation or in laboratory-like
conditions with the presence of absolute localization.
This was merely converted to relative measurements
virtually, using systems such as real-time kinematic
(RTK)-GNSS or Motion capture (mo-cap). It is
well known that mo-cap is impractical for real-world
deployment of mobile vehicles (either outdoors or
indoors), as it requires the installation of an expensive
infrastructure. These absolute localization sources
can provide the full pose of tracked objects, which
oversimplifies the whole task with respect to the
reality of practical deployment. Even if only partial
information derived from absolute measurements is
passed to the UAVs (e.g., distance or bearing), the
continuous stream of such information is produced
without realistic errors, which is unrepresentative of
real-world conditions.

Some more practical approaches consider infra-
structure-less sensing such as ranging based on a radio
signal [6]. This only allows for distance-based follow-
ing, without any orientation information, and requires
a specific motion for sufficient state observability. An-
other approach [7], for the 2D case, wirelessly commu-
nicates the intentions of the leader. This proves to be
feasible since there are fewer degrees of freedom and

there is less drift than in a general 3D case. These two
approaches rely on radio transmission, which is subject
to the effects of network congestion and interference.
For this reason, we consider vision-based approaches
more suitable for multi-robot groups, especially in un-
controlled outdoor environments.

This approach has previously been explored by
the authors’ research group, relying on true outdoor
relative localization, see [8]. The source of the relative
localization was an onboard vision-based system using
passive circular markers, as described in [9]. There
were, however, drawbacks: high sensitivity to the
external lighting conditions and to partial occlusion,
and substantial size for an acceptable detection range.

The use of active infrared (IR) markers has also
been explored (see [10–12]) for the ability to suppress
backgrounds using optical filtering. These methods
are however suitable solely for indoor, laboratory-like
conditions, since solar radiation excessively pollutes
the IR spectrum, and subsequently the signal tends to
deteriorate. In [12], the authors employed IR markers
with blinking frequency in the kilohertz range, which
required event-based cameras to detect micro-scale
changes. These cameras are capable of detecting micro-
scale changes. However, they typically do not provide
sufficiently high field of view and resolution, and they
are not suitable for scalable swarms due to their size
and cost. The IR spectrum has also been utilized
in a passive manner [13], but this approach, though
simple, is even less robust to the outdoor conditions
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and distances applicable to UAVs.
It is also feasible to visually detect and localize un-

marked UAVs using machine learning (ML) methods
such as Convolutional Neural Networks (CNNs). How-
ever, these approaches require meticulously annotated
datasets with a specific UAV and with an environ-
ment similar to the intended operational space [14,15].
The computational complexity and the dependency on
satisfactory lighting conditions of such ML systems
precludes their deployment onboard lightweight UAVs
suitable for swarming. This motivated the develop-
ment of the UVDAR system, which is more robust to
real-world conditions, because it reduces the computa-
tional load by optically filtering out visual information
that is not of interest. In contrast to [14,15], UVDAR
also provides target identities. The whole sensor is
small, lightweight, and does not depend on the exter-
nal lighting conditions.

1.1.2. System Architecture

To date, deployments of real-world aerial teams have
not used any of the methodologies of direct localization
described here in order to deal with the mesh-
communication between the team members or with the
communication link with a centralization element. The
record in terms of the number of UAVs cooperating
at the same time is currently held by Intel➤ [16]
with its fleet of Shooting Star quad-rotors. Intel’s
centralized solution performs spectacular artistic light
shows. However in Intel’s arrangement, each team
member follows a pre-programmed trajectory, relying
on GNSS and a communication link with a ground
station. A similar methodology is employed in [17–19],
where the authors deployed swarms of UAVs in order
to verify bio-inspired flocking behaviors in known
confined environments. In comparison with [16], their
methods are decentralized; however, the UAVs still
communicate their global states obtained by GNSS
within a radio-frequency mesh network. This is not
a realistic assumption in most application scenarios.

Recent successful real-world deployments are
summarized in table 1. Observe that some kind of
communication (either ground station to unit or unit-
to-unit) is employed in most of the related work.
The dependency on a communication network lowers
the upper limit for swarm scalability, due to the
bandwidth limitations, and significantly reduces the
fault tolerance of the entire system. The UVDAR
relative visual perception system, described in detail
in section 3, is designed to remove this dependency.
Its use may allow working swarm systems to mimic
the local behavioral mechanisms found in biological
systems, ranging from general flocking to leader-
follower scenarios.

1.1.3. Swarm Stabilization

To enable short-term stabilization of an autonomous
UAV, an onboard inertial measurement unit (IMU)
directly measures its linear acceleration, the attitude
and the angular rate, using a combination of
accelerometers, gyroscopes, and magnetometers. To
obtain long-term stabilization of an UAV, however, it
is not sufficient to use only the onboard IMU, due
to the inevitable measurement noises and drifts. It
is common practice to provide an additional estimate
of the state vector variables (typically position or
velocity), which is fused together with all the inertial
measurements. The most common approach is to
estimate the global position using a GNSS. However,
GNSS signal availability is limited strictly to outdoor
environments, and the accuracy of GNSS is affected
by an error of up to 5m [27]. Although the accuracy
can be improved to 2 cm with the use of RTK-GNSS,
this makes aerial swarms deployable solely in controlled
environments and is in contradiction with the bio-
mimicking premise, since precise global localization
is uncommon in biological systems. Other common
methods of state estimation are local, and they
typically employ onboard laser- or vision-based sensors
to produce local estimates of the state variables.
Vision-based methods may compute the optical flow
to estimate the velocity of the camera relative to the
projected image plane [28], or may apply algorithms
of simultaneous localization and mapping (SLAM) to
visual data [29]. Laser-based sensors are mostly used
to estimate the relative motion between two frames of
generated point-cloud data [30].

There are structurally two approaches for stabiliz-
ing a swarm in a decentralized manner. The first group
of methods distributes the state estimates determined
for individual self-stabilization throughout the swarm
(see table 1). In addition to restricting the communica-
tion infrastructure, this methodology has a major de-
pendency between the swarm density and the accuracy
of the global localization (e.g., GNSS). In addition, it
requires knowledge of individual transformations amid
the coordination frames for distributed local state es-
timation methods. The second group of methods does
not adopt a communication network to distribute the
state estimates, but rather estimates the states directly
from the relative onboard observations. This approach
makes the swarm independent from the infrastructure,
but it makes direct detection, estimation, and decision
making with limited information more challenging. As
further shown in section 5, the developed framework is
part of the second group, perceiving the local neigh-
borhood with visual organs and deploying a swarm of
UAVs in fully-decentralized manner.
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Work Decentralized Communication Relative localization

Intel➤ [16] No Yes∗ Shared global position (WiFi)
EHang, Inc. [20] No Yes∗ Shared global position (WiFi)
Hauert et. al [21] Yes Yes Shared global position (WiFi)
Bürkle et. al [22] Yes Yes Shared global position (WiFi)
Kushleyev et. al [23] No Yes∗ Shared global position (ZigBee)
Vásárhelyi et. al [17–19] Yes Yes Shared global position (XBee)
Weinstein et. al [24] No Yes∗ Shared global position (WiFi)

Stirling et. al [25] Yes Yes Infrared (IR) ranging
Nguyen et. al [6] N/A Yes Ultra-Wideband ranging (UWB)
Nägeli et. al [26] Yes Yes Visual markers
This work Yes No UVDAR

Table 1: A brief comparison of aerial swarm systems with successful recent deployments outside of laboratory-
like conditions. Methods marked with (∗) employ communication with a centralized ground station.

1.1.4. Swarming without Communication

Decentralized swarming models accounting for com-
plete or partial absence of communication were ex-
plored exclusively for 2D systems in the past (this is
also implied in table 1). The majority of the state-of-
the-art works within this field are biologically-inspired
and emphasize self-organizing behavior of large-scale
swarms of simple units with highly limited sensory ca-
pabilities. Highlighted is the Beeclust [31] approach,
which uses probabilistic finite state machines and a
primitive motion model to mimic the collective behav-
ior of honeybees. The Beeclust can be applied to com-
plex tasks where information exchange among units is
not required, such as in underwater exploration us-
ing a swarm of underwater robots [32]. A different
method [33] analyzes the aggregation of agents towards
a common spatial goal while avoiding inter-agent col-
lisions. The authors of [33] show that their method
with limited sensing properties of the agents performs
similarly to methods employing complete pose infor-
mation. All of these decentralized algorithms require
some form of mutual relative localization (even limited
to binary detections), making them suitable for the
use of UVDAR localization. Overall review of the 2D
approaches is systematically described in [34], which
further highlights the lack of research focus in the field
of aerial swarming in 3D space.

1.2. Contributions

This article addresses problems of the deployment of
real-world aerial swarms with no allowed communi-
cation or position sharing. This potential problem
is overcome with the use of the novel vision-based
UVDAR system for direct mutual perception of team
members. The stability of the UVDAR system for use
in aerial swarming is the outcome of thorough real-
world experimental verification in an outdoor environ-

ment with and without obstacles. The main features
of this article are as follows:

(i) It provides an enabling technology for swarm
research, often bio-inspired, by introducing
a system that achieves fundamental swarm
properties, as defined in [3].

(ii) It introduces the UVDAR system as an off-the-
shelf tool for relative localization and identifica-
tion of teammates suited for mutual perception of
agents in robotic systems, such as aerial swarms.

(iii) It introduces a decentralized bio-inspired swarm-
ing approach suited for obstacle-filled real-world
environments, which requires only local relative
information and no mutual communication.

(iv) It verifies the feasibility and analyses the usability
of aerial flocking relying on direct localization,
which is the most frequent mechanism in
biological systems.

(v) It is based on several real-world deployments of
aerial swarms.

(vi) It presents, to the best of our knowledge, the
first autonomous deployments of aerial swarms
with no centralized element and no mutual
communication.

(vii) It discloses the entire system as open source at
https://github.com/ctu-mrs.

2. Motivation

The lack of a communication-independent approach
has put a constraint on much of the work done until
now in the field of deploying teams of unmanned
vehicles in challenging environments. Our work
here is motivated by the need for a communication-
independent approach, and presents solutions that we
have developed. The insights into the development
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of the real-world deployments presented here tackle
the motivations and constraints of the vast majority
of related work restrained by the heretofore lack of
communication-independent approaches.

Focusing on dense swarms of UAVs with short
mutual distances, most of the swarming approaches
reported in the literature have not been tested in real-
world conditions. Theoretical derivations, software
simulations, and occasional experiments in laboratory
conditions have formed the target for most of the
related literature, as analyzed in [5] and [35]. However,
this research milestone is far away from a meaningful
real-world verification needed for an applicability of
aerial swarms. Real world interference cannot be
neglected, as the integration of a swarming intelligence
onto a multi-robot system yields constraints that need
to be characterized directly in models of swarming
behavior.

Instigated by biologically-inspired swarming mod-
els [35, 36] capable of achieving complex tasks (e.g.,
navigation, cohesion, food scouting, nest guarding, and
predator avoidance) with a team of simple units, our
aim was to imitate these models with the use of local
information, as is widely observed in nature. To allow
the deployment of an infrastructure-independent (com-
munication, environment) model, we had identified the
most crucial factor impeding this type of deployment
of a decentralized architecture – the mutual relative
localization between team members, which is also the
most crucial information for animals in flocks in nature.
This motivated the development of the UVDAR system
(see section 3), designed as a light-weight off-the-shelf
plugin providing the local localization of neighboring
swarm particles. The usability of UVDAR in dense
swarms is analyzed in detail in section 6.

3. UVDAR

Inspired by our extensive prior experimental experience
with vision-based relative localization of UAVs (see
[9, 37]), we developed a novel relative localization
sensor that tackles various limitations of previous
solutions, namely the unpredictability of outdoor
lighting and limits on the size and weight of onboard
equipment. The sensor, named UVDAR, is a UV
vision-based system comprising a UV-sensitive camera
and active UV LED markers. These lightweight,
unobtrusive markers, attached to extreme points of
a target UAV, are seen as unique bright points
in the UV camera image (see figure 3). This
allows computationally simple detection [38] and yields
directly the relative bearing information of each marker
from the perspective of the camera. The fish-eye
lenses that are used with the UV camera provide a
180➦ horizontal overview of the surroundings. Known

camera calibration, together with the geometrical
layout of the markers on the target, allows us also to
retrieve an estimate of the distance (see [38, 39] for
details).

In order to provide specific markers that would
be distinguishable from others, and also to provide a
further increase in robustness with respect to outliers,
we set the markers to blink with a specific sequence.
Using our specialized implementation of the 3D time-
position Hough transform (see [38] for details), we can
retrieve this signal for each observed marker, giving
them identities. In this project, we use these IDs to
simplify the separation of multiple observed neighbor
UAVs, but they can also be used to retrieve the
relative orientation of the neighbors [39]. In addition
to the swarming application described in this paper,
UVDARmay be used for e.g., a directed leader-follower
flight [39], where the use of the retrieved orientation
is essential. In addition, the neighbors’ orientation
estimate can be exploited for automatic generation of
a dataset for training ML vision for UAV detection, as
applied in [40], where UVDAR was used for annotating
color camera images.

In swarms and in multi-UAV systems in general,
the blinking frequency of the onboard LEDs can be
configured to encode information for optical data
transmission between swarm units, in addition to using
LED blinking directly for relative localization. An
example of such an application is in exploration, where
a scouting unit can indicate the presence and the
relative position of a discovered target to other units by
combining various blinking signals and the unit’s own
orientation. A further use is in cooperative voting in a
group, where each unit expresses the current selection
with blinking signals, and adjusts its vote on the basis
of observing the selections of others.

In this paper, we go beyond our preliminary
works with UVDAR [38–40], and also beyond other
state-of-the-art literature, by incorporating direct
mutual localization of UAVs into the position control
feedback loop of a fully-decentralized swarming system
without any kind of communication and external
localization. To the best of our knowledge, this
paper presents the first real-world deployments of
fully-decentralized bio-inspired swarms of UAVs using
direct local localization for collective navigation in an
uncontrolled environment. This is what UVDAR was
intended for.

3.1. Safety

The use of UV radiation in the system has understand-
ably raised some health concerns in the past. We have
verified the safety of this application by consulting the
International Commission on Non-Ionizing Radiation
Protection (ICNIRP) ”Guidelines on limits of exposure
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Figure 3: An example of the unprocessed view from the UV-sensitive camera as a part of UVDAR in a member of an
aerial swarm. Note the extreme contrast of the LED markers in comparison to the background. A combination of the
specific blinking frequency of the LED markers and the high contrast makes them simple to extract from background for
processing.

to ultraviolet radiation of wavelengths between 180
nm and 400 nm” [41]. According to these guidelines,
the exposure to UV radiation (both to the eyes and
to the skin) should not exceed 30 Jm❂2 weighted by
the relative spectral effectiveness (unitless wavelength-
specific factor). In our case of 395 nm radiation, this
factor equals to 0.000036, making the actual limit
8.3× 105 Jm❂2. This means that our LEDs, produc-
ing 230mW of total radiated power [42] at the given
driving current, can be safely viewed from the distance
of 1m from the frontal direction (with the highest in-
tensity in its Lambertian radiation pattern) for over
3000 h, making it effectively harmless.

3.2. Scalability

In the context of a robotic swarm, scalability of
the whole system is an important factor. Using a
communication network in large groups of robots limits
the scalability by an upper bound defined by the total
bandwidth, by the number of available channels, by
the network architecture, or by the required data flow.
Employing a local perception method such as UVDAR,
the state of swarm particles (team members, swarm
units) is shared via direct observations, as is common
in swarms in nature. This system therefore does not
need an explicit radio communication network.

As a vision-based method, UVDAR suffers
from natural restrictions, namely visual occlusions,
camera resolution, and the detection, separation, and
identification of image objects. The upper scalability
bound is determined by the ability to filter out the
UV markers belonging to a given swarm agent. If the
markers of all UAVs in the swarm are set to blink
with the same frequency, individual agents have to
be distinguished by separating their positions in the

UV image and in the constellations that they form.
In this case, we estimate that each agent should be
capable of distinguishing up to 30 neighboring agents
within the range of the UVDAR system, bounded by
the computational limitations. This is however not
the ideal mode of operation, as it becomes problematic
when there are occlusions between agents, or when the
agents are in close proximity in the observed image.

To tackle this challenge, we apply different
blinking frequencies to different agents. The UVDAR
system in its current configuration can accommodate
up to 6 different frequencies of blinking that can be
reliably distinguished from each other. This allows us
to mitigate the issue of overlapping agents - indeed,
even agents that are directly behind each other can
often be separated, if extreme markers of the further
agent protrude into the image. However, since the
number of usable blinking frequencies is limited, we
need to devise a method for spreading them evenly in
the swarm, such that the likelihood of image separation
of overlapping agents based on different frequencies
between them is maximized for the whole swarm. This
has to be done in a decentralized manner, in order not
to violate the swarming paradigm.

One way to solve this for dense UAV swarms is
to have each agent dynamically re-assign its blinking
frequency to differ as much as possible from the
neighbors that it observes. This challenge definition
can be likewise defined as the constraint satisfaction
problem solved within a decentralized swarm of UAVs
using direct observations only. The idea of this
method is to maximize the local frequency diversity
and additionally to allow all of the agents to initiate
with the same ID (encoded by the blinking frequency
of onboard markers). This opposes the current
methodology of manually pre-setting the frequencies
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before deployment (see section 6). The analysis and
the theoretical limits on the convergence of such an
approach towards a stable final state maximizing the
scalability bound is still underway.

Another approach to increase the scalability
bound, while carrying the identical ID on all the
agents, lies in the design of UVDAR itself. It is
possible to introduce an additional omnidirectional
UV source on top of each agent. This additional
source is called a beacon and it blinks with a specific
frequency unique to the rest of the onboard markers
on an agent. This allows for the separation of pixels
in the image stream based on their image distance
as well as their association with the singular beacon
marker. The presence of at least two beacons in one
region of the observer’s image clearly implies a partial
mutual occlusion. The use of beacons hence provides a
limited ability to separate even agents in partial mutual
occlusion relative to an observer if the beacons of both
agents are visible.

The maximum range of detection should be taken
into account for scalability in the geometrical sense.
With the current UVDAR setup, detection is possible
for targets up to 15m away from the sensor. However,
for improved reliability and robustness, a maximum
range of 10m is recommended. For determining the
theoretical accuracy and range limitations, see [38].
For a quantitative analysis on real-world accuracy, see
section 6.3. Filtering out distant targets, the limited
detection range makes the method suitable for dense
swarms, which place emphasis on a number of entities
in a local neighborhood rather than on the swarm
as a whole. In biological systems, this perception
characteristic allows for swarms of utmost magnitude,
such as fish schools [43] with thousands of entities.

4. Swarming Intelligence

In this article, we follow the swarm concept defined in
section 1, in which the group is composed of swarm
units with limited computational power and a short-
term memory. The concept is decentralized and uses
autonomous self-organizing groups of homogeneous
aerial vehicles operating in a 3D space.

The proposed flocking approach works entirely
with local information, with no requirement for any
form of radio communication between the homoge-
neous swarm particles, and in an environment with
convex obstacles. The approach is inspired by bio-
logical systems, where global cooperative behavior can
be found to emerge from elementary local interactions.
We will show that this phenomenon of cooperative be-
havior may yield collision-free stabilization in cluttered
environments, self-organization of the swarm structure,
and an ability to navigate in tasks suited for real UAVs.

The proposed swarming framework is founded on pre-
viously developed models [44,45], which have been en-
hanced to suit the demands of real-world interference
by extending them with concepts of obstacle avoidance,
perception, and navigation. The introduction of such
extension concepts is highly important as the assump-
tions of dimensionless particles and an ideal world as
in [44, 45] do not apply in the real world. The main
idea of the swarming behavior presented here is to
verify the feasibility, to perform an analysis, and to
derive the properties of the UVDAR system for use
in swarm systems. Bear in mind that UVDAR is a
general system and any swarming model [17, 33, 46],
formation control approach [47], or obstacle/predator
avoidance method [48] utilizing local relative informa-
tion can be employed to generate intelligent behavior
when employing the UVDAR system.

4.1. Behavior Generation

The behavioral model used throughout this article is
defined in discrete time step k for a homogeneous
swarm unit i with an observation radius Ri

n ∈ R>0,
an obstacle detection radius Ri

o ∈ R>0, a swarming
velocity vi

[k] ∈ R3×1, and a set of locally detected

neighbors N i
[k] within the observation radius Ri

n, as
follows. Bear in mind that all the relative observations
in particle i are given in the body frame of particle i
at time step k.

The individual detected neighbor particles j ∈ N i
[k]

are represented by vectors of relative position xij
[k] ∈

R3×1 and relative velocity vij
[k] ∈ R3×1, ∀j ∈

{1, . . . , |N i
[k]|}, defined as

xij
[k] =

[
xij
[k], y

ij
[k], z

ij
[k]

]T
, (1)

vij
[k] =

1

∆tij[k]

(
xij
[k] − xij

[k−1]

)
− vi

[k−1], (2)

where xij
[k], y

ij
[k], z

ij
[k] are Cartesian coordinates of a

neighbor particle j represented in the body frame of
agent i in time step k, ∆tij[k] = tij[k] − tij[k−1] is the time

elapsed since the last direct detection of neighbor j,
and vi

[k=0] = vij
[k=0] = 0. The swarming model is then

defined as a sum of elementary forces

f i
[k]

(
N i

[k],Oi
[k]

)
= f b,i

[k]

(
N i

[k]

)
+ fn,i

[k]

(
N i

[k],Oi
[k]

)
,

(3)

where f b,i
[k] (·) ∈ R3×1 embodies the baseline forces as

an interpretation of the Boids model [44] flocking rules
cohesion, alignment, and separation, modified for real
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UAVs as

f b,i
[k]

(
N i

[k]

)
=

1∣∣∣N i
[k]

∣∣∣

∣∣∣N i
[k]

∣∣∣∑

j=1

[
xij

[k] +
vij
[k]

λ
− κ

(
xij

[k], R
i
n

)
xij

[k]

]
.

(4)

The scalar λ [Hz] is the update rate of direct
localization (camera rate) and the weighting function

κ(x, r) = max

(
0;

√
‖x‖2
‖x‖2

−
√
r

r

)
(5)

represents a nonlinear weight coefficient scaling the
repulsion behavior by the mutual distance between two
neighbors. As the original model [44] was designed
for swarms of dimensionless particles, function κ(·) is
particularly important for a swarm of real UAVs, in
order to prevent mutual collisions while maintaining
flexibility of the swarm as a whole. The force
fn,i
[k] (N i

[k],Oi
[k]) ∈ R3×1 in (3) is an extension to

the simple model [44] in the form of an additional
navigation rule in an environment composed of N i

[k]

and a set of obstaclesOi
[k] detected within the detection

radius Ri
o.

The navigation rule can exploit any local multi-
robot planning method [49–51] in order to optimize
the swarm motion parameters and to prevent a
deadlock situation, or can include an obstacle
avoidance mechanism and a navigation mechanism
by introducing them as additional simplistic rules.
To provide an example of the system performance,
we introduce a simple attraction force vn,i

[k] ∈ R3×1

towards a specified goal, together with a local reactive
obstacle avoidance rule. To represent the obstacles,
we introduce the concept of a virtual swarm particle,
which efficiently replaces a general geometric obstacle
by a virtual entity. This dimensionless particle is
represented by a state comprised of a position and
velocity relative to particle i, similarly as defined in
(1) and (2). The methodology for finding the state
of a virtual swarm particle is derived in the following
section. The navigation rule is then derived as

fn,i
[k]

(
Oi

[k]

)
=

1∣∣∣Oi
[k]

∣∣∣

∣∣∣Oi
[k]

∣∣∣∑

v=1

[
viv
[k]

λ
− κ

(
xiv

[k], R
i
o

)
xiv

[k]

]
+
vn,i
[k]

λ
,

(6)

where the vectors of the relative position xiv
[k] ∈ R3×1

and the relative velocity viv
[k] ∈ R3×1 constitute the

state of a v-th virtual swarm particle.
The swarming model defined in (3) represents the

steering force of a particle i, which is used to compute
the swarming velocity of particle i as

vi
[k] = γ

(
f i
[k]

(
N i

[k],Oi
[k]

)) f i
[k]

(
N i

[k],Oi
[k]

)

∥∥∥f i
[k]

(
N i

[k],Oi
[k]

)∥∥∥
2

, (7)

where
γ (f) = min {vm; λ ‖f‖2} (8)

bounds the magnitude of the velocity below the
maximum allowed speed vm [m s−1]. The swarming
velocity is then used in real-world applications to
compute the desired position setpoint as

rd,i[k] =
vi
[k]

λ
(9)

represented in the body frame of UAV i.

4.2. Obstacle Detection

To achieve flocking in the targeted environment (e.g.,
a forest environment and an indoor environment), the
obstacles in the local neighborhood are generalized
into two geometrical classes (circles and lines), based
on their cross-sections with the horizontal plane of a
particle, as portrayed in figure 4. This assumption
allows us to model more complex settings (e.g., a forest
or an office-like environment) on the grounds of these
two geometrical classes, while it throttles down the
perception and the computational complexity onboard
a lightweight UAV. Detection of these obstacles is
assumed to be provided for a particle i from any kind of
an onboard sensor with an obstacle detection distance
Ri

o.
Having in time step k a detected circular

obstacle v with a radius rv[k] ∈ R>0 and a center

at civ[k] ∈ R3×1 referenced in the body frame of
particle i, the state of a v-th virtual swarm particle
is derived as

xiv
[k] =

(
1−

rv[k]

‖civ[k]‖2

)
civ[k], (10)

viv
[k] =

rv[k]

‖civ[k]‖2

(
I − µiv

[k]

(
µiv

[k]

)T)
vi
[k], (11)

where ‖·‖2 is the L2 norm, I ∈ R3×3 is an identity

matrix, and µiv = civ

‖civ‖2
. By analogy, the virtual

swarm agent state can be derived for a linear obstacle
defined by its normal vector niv

[k] ∈ R3×1 and a set of

observed points Piv
[k] as

xiv
[k] = (I − P iv

[k]) p̂
iv
[k] (12)

viv
[k] =

1

‖p̂iv
[k]‖2

P iv
[k] v

i
[k], (13)

where

P iv
[k] = I − niv

[k]

(
niv

[k]

)T
, (14)

p̂iv
[k] = arg min

p∈Piv
[k]

{‖p‖2}. (15)
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k = 0.2s∣∣∣Oi
[k]

∣∣∣ = 2

i

f i
[k]xi1

[k] xi2
[k]

vi1
[k]

vi2
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Figure 4: An autonomous UAV navigating among artificial obstacles according to the swarming model described in
section 4. The UAV flies in the Gazebo robotic simulator (upper row), while it continuously detects geometrical obstacles
represented as circles and lines in the onboard 2D laser-scanner data with a limited obstacle detection radius (gray circle).
The states of virtual particles, consisting of position xiv

[k] (red dots) and velocity viv
[k] (blue arrows) relative to UAV i, are

visualized in the bottom image row. The steering force f i
[k] (red arrow) of the swarming model represents the desired

velocity.

The state of a virtual swarm particle for both
geometrical classes is visualized in figure 4, where
an autonomous UAV navigates among artificial
obstacles within an environment of the Gazebo robotic
simulator.

5. System Architecture

In addition to the method for direct onboard local-
ization presented in section 3 and the decentralized
swarming approach presented in section 4, we will now
present here system architecture of the entire UAV sys-
tem, supplemented by the concepts of UAV stabiliza-
tion, control, and state estimation. These concepts
are based on our previous research (see [1, 37, 52]) fo-
cused on cooperation among autonomous aerial vehi-
cles. They have been adapted for swarming research
described in this article. The control pipeline, suited
for stabilizing and controlling UAV swarms using lin-
ear model predictive control (MPC) and the non-linear
SO(3) state feedback controller [53], is depicted in the
high-level scheme in figure 5. The stabilization and
control pipeline is based entirely on [52].

In addition, a decentralized collision avoidance
system [55] is adapted in the proposed system
for safe research on compact aerial swarms. A
long prediction horizon of linear MPC is used to
detect collisions among trajectories of robots. The

known collision trajectories are then altered prior
their execution. This allows us to implement the
collision avoidance system in a decentralized manner.
Decentralized collision avoidance is necessary for safe
verification of bio-inspired swarming models in the real
world. Although the use of mutual communication for
collision avoidance is in contradiction with the system
architecture presented in this article, it can be used as
a low-level safety supervisor with no direct dependency
on the architecture of the tested swarming model.
This may prevent inadmissible collisions when there
is undesired demeanor of dense swarm members, and
therefore protect the hardware during the initial phases
of experimental swarm deployment. However, the use
of collision avoidance is not mandatory and its use is
appropriate only during the initial testing phase.

To stabilize UAVs using the system in figure 5, the
individual UAVs estimate their state vector

x = [r, ṙ, r̈, R, ω]
T
, (16)

where R ∈ SO(3) is the attitude and r = [xw, yw, zw]
T

is the position in the world coordinate frame. The
vector ṙ ∈ R3×1 is the linear velocity, r̈ ∈ R3×1

is the linear acceleration, and ω ∈ R3×1 is the
angular rate with respect to the UAV body coordinate
frame. The PixHawk autopilot [56] is embedded to
handle the low-level attitude rate and actuator control,
and an IMU is used to directly measure the linear
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Figure 5: The high-level system pipeline (the schematic is based on the system pipeline diagram published in [54]) of a
single homogeneous UAV swarm unit i in time step k. The stabilization & control pipeline [52] takes reference position
setpoint r[k] for the MPC in the MPC tracker, which outputs a command r̈d, ψ̈d (ψ̈ is the heading acceleration) for the
acceleration tracking SO(3) controller [53]. The acceleration controller produces the desired angular rate ωd and thrust
reference Td for the embedded attitude rate controller. A state estimation pipeline outputs the current state estimate x
based on the sensory data y and the onboard measurements of linear velocity ṙ, angular rate ω, and attitude R. Note
that the time indices of the stabilization & control and the state estimation pipelines are omitted in the diagram, since
their timeline matches the rate of the inertial measurements (typically 100Hz), which differs from the timeline of the
detection cameras (10–20Hz). Local perception of neighboring units using the UVDAR sensor is described in detail in
section 3, while the decentralized swarming approach is described thoroughly in section 4.

acceleration r̈, the attitude R, and the angular rate ω,
using a combination of accelerometers, gyroscopes, and
magnetometers. The embedded autopilot integrates
the measurements of r̈ to ṙ and employs the Extended
Kalman Filter (EKF) to produce optimal estimates
of the specific state variables with respect to the
measurement noise.

To self-localize an individual UAV, its global
position measured by GNSS is fused together with
the inertial measurements in order to stabilize the
flight of this dynamically unstable system. However,
the global state is not shared to other swarm agents
throughout our final experimental analysis presented
in section 6. Instead, the framework uses UVDAR
to directly observe the relative position and the
relative velocity (see (1) and (2)) of particles in the
local neighborhood, and it generates a navigation
decision based on the set of simple rules described
in section 4. Although the use of GNSS for self-
localization limits the system exclusively to outdoor
environments, this dependency can be replaced by
any local state estimation method with respect to
the desired application and environment – e.g., the
deployment of our decentralized system in a real-world
forest, which was highlighted by the IEEE Spectrum ‡.
‡ https://spectrum.ieee.org/automaton/robotics/drones/

video-friday-dji-mavic-mini-palm-sized-foldable-drone

5.1. Properties

The combination of the system decentralization and
the local perception of individual agents makes
the system as a whole robust towards failures of
individuals. In the swarming model (see section 4),
each agent decides on its actions in real time only
from current observations or a short-past history of
observations. This makes the system robust towards
a single-point of failure, such as a failure of some
centralized control element or the communication
infrastructure. Unless the employed local perception
method generates false negative detections, the
swarming model (see section 4) ensures no mutual
collisions between the agents. The rate of false negative
detections in UVDAR is minimal as there are no
objects blinking at specific rates in the given near-
visible UV spectrum. In case of a hardware failure of
an aerial agent (e.g., the agent lands unexpectedly), the
agent disappears from the visibility field of other units
resulting in emergent self-organization of the collective
configuration.

As UVDAR is a vision-based system, it naturally
suffers from visual occlusions generating blind spots in
overcrowded situations. As discussed in section 3.2, the
number of visual occlusions in UVDAR is mitigated
with the use of different blinking frequencies of
overlapping UAVs. As the neighborhood for perception
is also locally limited in the swarming model (see
section 4), the distant blind spots are filtered out
in principle. The remaining occluded agents are
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neglected. This is feasible in the employed model, as
the information about the units’ presence is propagated
through direct observations of the motion of the
middle agents (i.e., the agents causing the occlusions).
Based on our empirical experience, this does not
destabilize the swarm, but rather rearranges the agents
to positions where the number of visual occlusions is
reduced.

The navigational features of the system as a
whole are controlled in a decentralized manner. A
decentralized navigation is possible with a swarming
model capable of navigational decision making using
only the perceived data onboard the units. This
is the case of our swarming model (see section 4),
which employs a simple steering towards a pre-specified
set of global positions, hence eliminating the need
for navigation managed by a centralized controller.
Although our later experiments (see section 6) navigate
each UAV individually, the model may navigate only
a single unit with the rest of the swarm naturally
following the leader – a behavior emerging from the
cohesion and the alignment premises.

5.2. Hardware Platform

The use of UVDAR is not dependent on the dimensions
or the configuration of a multi-rotor platform. The
payload (onboard equipment) requirements of a single-
UAV unit employing UVDAR are: an autopilot, a self-
localization source (e.g., a GNSS receiver), 1-2 UV-
sensitive cameras, computational power to control the
flight and to process the data (one camera at 20Hz
requires approximately a 30% single-thread load on
Intel-Core i7 7567U, 3.5GHz), and a set of UV LED
markers placed at known extreme points of the UAV.

To verify this statement, an axiomatic function-
ality validation of UVDAR was performed on two in-
dependent multi-rotor platforms as shown in figure 6.
The general hardware configuration of UAVs exhibited
in the figure consists of

• the Pixhawk 4 autopilot,

• onboard computer Intel NUC i7 7567U,

• ProLight Opto PM2B-1LLE near-UV LEDs radi-
ating at 390–410 nm wavelength [42],

• mvBlueFOX-MLC cameras with

– a MidOpt BP365 near-UV band-pass filter
and

– Sunnex DSL215 fish-eye lenses,

• a GNSS receiver (the hexa-rotor platform only),
and

• the Slamtec RPLiDAR-A3 laser scanner (the
quad-rotor platform only).

The weight of this hardware configuration is 370 g
(or 540 g with the laser scanner required either

for an obstacle detection or for a local localization
replacing the GNSS dependency). The onboard Intel
NUC computer weighing 225 g provides exaggerated
processing power useful particularly in our case for
general research purposes. For use in highly specialized
applications, a feasible replacement of this payload
with a microprocessor technology would allow for even
further minimization of the aerial platform dimensions
and cost expenses.

Further miniaturization of infrastructure-indepen-
dent UAVs is limited by current technology required
for local self-localization. Vision-based algorithms em-
ploy lightweight cameras minimizing the weight; how-
ever, it comes at the cost of high processing power and
thus increased weight of the processing unit. On the
other hand, laser-based localization generally requires
less processing power, but the sensors are heavier than
cameras – approximately 170 g for planar scanners and
475 g for 3D LiDARs.

6. Experimental Analysis

The primary aim of the experimental analysis is to
verify the general functionality and to evaluate the
performance of the entire framework exploiting direct
localization rather than communication. The objec-
tives of the experiments are focused primarily on de-
termining the accuracy of the UVDAR direct localiza-
tion, and on the stabilization and spatial navigation of
an aerial swarm in real-world environments with and
without obstacles. The entire experimental analysis is
supported by multimedia materials available at http:
//mrs.felk.cvut.cz/research/swarm-robotics.

6.1. Swarming Model Analysis

To rule out the influence of UVDAR in a position
control feedback loop of an aerial swarm, the Boids-
based swarming intelligence (see section 4) is analyzed
independently from the direct localization. For this
purpose, the UAVs replace direct visual localization
by sharing their global GNSS positions in an ad-hoc
network in order to determine the relative arrangement
in the local neighborhood. This configuration
was necessary in order to deploy UAVs without
direct localization using UVDAR, as discussed in
section 1.1. The analysis showcases the usability of
the proposed fully-decentralized swarming framework
both in simulations and in real-world scenarios, and in
environments with and without obstacles. The global
positions of the obstacles are apriori available to the
UAVs.

First, the collective dynamics of the swarming
model are analyzed thoroughly in the Gazebo robotic
simulator [57], shown in figure 4, coupled with the
Robot Operating System (ROS) [58]. This simulation
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Figure 6: Two distinct multi-rotor (hexa- and quad-rotor) UAV platforms, here equipped with UV-sensitive cameras (red)
and with active UV markers (green), comprising the hardware components of the UVDAR system for relative localization
of neighboring UAVs. The diagonal dimension (without propellers) of the platforms are 550mm (left) and 450mm (right).
The hexa-rotor platform was used throughout our experimental verification presented in section 6.

environment emulates real-world physics, and allows
us to use identical low-level controllers and state
estimation methods (see section 5) for the real UAVs
and also for the simulated UAVs, without simplifying
assumptions. This makes the configuration ideal
for effortless deployment of theoretical bio-inspired
swarming approaches onto a group of real-world robots.
Simulation deployment of a swarm of homogeneous
units in a 3D environment with obstacles (see figure 7)
verifies the qualitative performance of the reactive
obstacle avoidance methodology presented in section 4.
The emerging collective dynamics show the properties
of the 3D shape flexibility during navigation through a
narrow passage and in collision-free bypassing of static
obstacles. The properties of safe navigation and high
flexibility are also showcased during the simulation
deployment of a compact swarm of 9 homogeneous
units in a dense 3D forest-like environment, according
to figure 8.

Second, an aerial swarm of 3 UAVs was
experimentally deployed in a real-world forest-like
environment similar to figure 8, in order to verify the
abilities of the fully-decentralized swarming model to
stabilize a set of UAVs in a decentralized manner,
provide self-organizing behavior, and to navigate
through an obstacle-filled environment. As explicitly
shown in figure 9, even such a simplistic swarming
model with only local information yields collision-free
navigation (the minimum distance to an obstacle or to
another UAV was 2.2m) throughout the environment,
and self-organizing compactness of the whole swarm
during the entire flight. The experiment likewise
shows the ability of the model to divide the group
when overcoming an obstacle and to unite back again
afterwards. This level of flexibility is important for fast
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(a) Flexible and effective navigation of a decentralized swarm
of 5 UAVs through a 4m wide narrow passage.
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(b) Fast and efficient maneuvering of 6 UAVs emerging solely
from local interactions during avoidance of a static obstacle.

Figure 7: A fully-decentralized swarm of homogeneous
units in a simulated 3D environment with static obstacles.
The swarming model yields enough flexibility for the
compact team to deviate from its aggregated structure in
order to pass safely through a narrow gap (a) or to avoid
an obstacle in an efficient and fast manner (b).
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Figure 8: Navigation of a decentralized swarm of 9
homogeneous UAVs in a forest-like environment with a
high density of circular obstacles – tree trunks (a). The
experiment showcases the cooperative steering within the
environment and the emerging properties of mutual long-
term cohesion (b), safe mutual separation (c), and reliable
obstacle avoidance (d).

and safe navigation within more complex environments
in order to maximize the motion effectiveness. The
flexibility is highlighted by dotted triangles, which
represent the geometric configuration of the swarm
in time. Let us call this flock geometry an α-
lattice according to [45] and use it to represent
a self-organizing structure, where individual inter-
particle distances converge to a common value. This
geometric configuration allows for small deviations
from the expected structure (especially for particles

(a) Swarm of 3 UAVs navigating through an artificial forest.

(b) Onboard RGB view from one of the homogeneous units.
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(c) Trajectories of individual UAVs (coded by color). The
dotted triangles represent the swarm constellation (α-lattices)
at a given time, which highlights the compactness and the
flexibility of the swarm navigating amidst obstacles.
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(d) Euclidean distance to the nearest UAV and obstacle for
each swarm agent (coded by color). The minimum distance
reached is 2.18m.

Figure 9: Aerial swarm of 3 homogeneous UAVs in a real-
world forest-like environment filled with artificial obstacles.

in an environment with obstacles), which can be
further quantified by deviation energy and can be used
to evaluate the swarming model convergence. The
deviation energy is derived in [45] and represents a non-
smooth potential function of a set of particles, where
the α-lattice configuration lies at its global minimum.

6.2. UVDAR in Control Feedback

To verify the feasibility of the complete system defined
in figure 5, UVDAR vision-based mutual relative
localization is deployed in the position control feedback
loop of each homogeneous swarm agent. Throughout
the experiment, the individual UAVs employ GNSS
for self-state estimation. This is required to stabilize
the flight of each dynamically unstable UAV mid-
flight in a large open-space, where the swarm was
deployed. However, the agents do not share any
information through a communication network and
instead they directly perceive the neighboring particles
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using UVDAR. The blinking frequencies of the
UAVs (IDs) within the experiment were static and
unique. This improves the performance of the UVDAR
localization as unique IDs in the image stream help
to separate occluded detections and track the units in
time. To the best of our knowledge, this is the first
deployment of a fully decentralized aerial swarming
system in a real environment (outside laboratory-
like conditions) with direct localization and with no
communication or position sharing allowed.

As explicitly shown in figure 10, use of a
local sensing method maintains the abilities of the
bio-inspired swarming model, namely self-organizing
behavior, together with collision-free and cohered
navigation. The swarm is capable of navigation
throughout the environment in a compact structural
constellation without any external interference to a
sequence of global navigation goals. The figure shows
the ability to preserve a compact structure emerging
from local UVDAR-based perception (figure 2 and
figure 3 show the perceived data of a single swarm agent
in this particular experiment) and the elementary rules
presented in section 4, while the homogeneous units do
not share any information among themselves.

6.3. Analysis on Direct Observation Accuracy

In real-world conditions, all estimation subsystems are
incorporated with various measurements containing
a stochastic noise element. The origin of this
stochastic part is of numerous types (e.g., vibrations,
discretization, approximations, sensor non-linearity,
time desynchronization, lack of motion compensation,
or optical discrepancies) and most of these inaccuracies
need to be accounted for. For example, the
stabilization and control system of UAVs requires a
continuous stream of inertial measurements to cope
with hardware-based and synchronization inaccuracies,
in order to stabilize the dynamically unstable system in
mid-flight. The influence of these inaccuracies needs to
be carefully analyzed, and the results of the analyses
must be incorporated into the design of a swarming
model in order to compensate for the uncertainties of
real-world systems.

As discussed in the review of the related literature
(see section 1.1), dense robotic swarms candidly
communicate either external positioning estimates or
individual global state estimates amid the swarm units.
In addition to the requirements of the communication
infrastructure, this methodology imitates the bio-
inspired design of mutual localization by establishing
the relative relations from the global data. This
incorporates the global self-localization error, and
can lead to dangerous decision making, and also to
communication-based failures. However, our approach
imitates biological systems by relying solely on direct

t = 0 s t = 30 s

t = 150 s

(a) Aerial view on the decentralized swarm of 4 UAVs (red) and
a static reference to assist with the scale perception (blue).
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(b) Average and minimal Euclidean distance among the
homogeneous agents. The minimum distance reached is 2.04m.

Figure 10: A fully-decentralized swarm of 4 homogeneous
UAVs navigating through an obstacle-less environment
with UVDAR integrated into the position control feedback,
as outlined by the scheme in figure 5.

localization without the need for known global states
of the neighbors or of the unit itself. This bounds
the overall performance of the system solely to
the accuracy of the direct localization. It entirely
removes the need for a communication infrastructure,
and allows for full decentralization of the system
architecture.

To analyze the impact of direct localization
accuracy on the overall performance of our swarming
framework, we present two inquiries: the influence of
the error degree on the stability of a decentralized
swarm, and the data-based accuracy of UVDAR in
real-world conditions. As our focus applies to vision-
based direct localization, the error of 3D relative
localization can be expressed in spherical coordinates
– radial distance, azimuth, and elevation – separately.
Bear in mind that due to the vision-based nature
of UVDAR discussed in section 3, the statistical
characteristics of the elevation error are assumed to
be identical with the azimuthal error. To maintain
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Figure 11: Dependency of the direct localization accuracy
on the stability of an aerial swarm. The plot shows
exponential decline of the minimum distance amid the
swarm units with a growing degree of the localization error.
The localization error is modeled as a multivariate normal
distribution with uncorrelated zero-mean variables: the
radial distance (standard deviation σr) and the relative
azimuth (standard deviation σΨ).

simplicity, the elevation error is therefore omitted from
the presentation of the results.

The impact of a direct localization error on
the stability of a swarm was analyzed on a set of
computational simulations. A decentralized swarm
of UAVs with simulated dynamics, control & state
estimation disturbances, and sensory inaccuracies, was
deployed in scenarios with various degrees of the direct
localization error according to figure 11. Although the
data show the minimum influence of the error on the
average distance among the swarm units, the stochastic
element induces oscillations of the mutual distances.
These deviations from a consensual mutual distance
arise directly from the inaccuracy of direct localization
and from time-based and dynamics-based delays. This
has a negative impact on the stability properties of the
entire swarm, as shown by the exponential decline of
the minimal distance amid the swarm units with the
increasing degree of the radial distance and the relative
azimuth error in figure 11. In real-world systems, a
suitable swarm density must be thoroughly considered
with respect to the accuracy and the reliability of
the direct localization in order to prevent undesired
collisions.

The accuracy of UVDAR in real-world conditions
during the deployment of the decentralized swarm of
4 UAV units in an open environment (see figure 10) is
expressed by the error histograms in figure 12. During
this experiment, the self-localization of the individual
UAVs was arranged by GNSS. The statistical analysis
uses global positioning for a quantitative evaluation
of the direct localization accuracy. Although global
positioning yields a relatively high error, the state
estimation module (see section 5) fuses this global
state estimate with inertial measurements, which
makes the output estimate robust towards sudden
short-term changes. The positioning is still prone
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Figure 12: Quantitative accuracy of UVDAR direct
localization with respect to GNSS positioning in real-world
conditions. The figure shows error histograms and their
normalized normal distribution N (µ, σ) approximations
of the directly estimated relative distance, the relative
azimuth, and the global 3D position.

to long-term drift, which is minimal in terms of
GNSS and therefore does not significantly impact the
evaluation of the direct localization within a dense
swarm. The fused global estimate is therefore used
as ground truth data for the quantitative evaluation
in figure 12. This evaluation on real-world data
shows the ability of UVDAR to estimate the relative
distance with 1.16m root mean square error (RMSE)
and the relative azimuth with RMSE of 0.17 rad.
These separated errors then combine together with the
elevation estimate to anticipate the relative 3D position
of the neighboring particles within a moving aerial
swarm with RMSE of 1.7m.

The accuracy of UVDAR in real-world conditions
is further analyzed in a controlled outdoor environ-
ment. During an independent experiment, a position of
a single mid-air UAV was tracked in data from a static
ground camera equipped with UVDAR and was com-
pared to a precise RTK-GNSS (2 cm accuracy) serving
as a ground-truth. The comparison of the relative lo-
calization with the ground-truth data is shown in fig-
ure 13. The data show the property of UVDAR to
localize an aerial unit with RMSE of 1.11m.

The concluded accuracy is particularly important
for the design of bio-inspired systems employing the

CHAPTER 4. RESEARCH MOTIVATED BY THE UVDAR SYSTEM

Final version is available at https://iopscience.iop.org/article/10.1088/1748-3190/abc6b3

122

https://iopscience.iop.org/article/10.1088/1748-3190/abc6b3


PREPRINT. Property of IOP Publishing. Do not distribute. 17

5

10

ra
n
g
e
(m

)

RTK UVDAR

-2

-1

a
z
im

u
th

(r
a
d
)

0 100 200 300 400 500 600

−1

0

1

time (s)

e
le
v
a
ti
o
n

(r
a
d
)

(a) Relative localization represented by the spherical
coordinates (expressed in the origin of the camera)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

n-th quantile (-)

lo
c
.
e
rr
o
r
(m

)

(b) Quantiles of the absolute 3D localization error

Figure 13: Real-world accuracy of UVDAR direct
localization in a controlled environment — tracking of
a single mid-flight UAV relative to a static ground
UV camera. The UVDAR localization is compared to
ground-truth data obtained with the use of RTK-GNSS.
The absolute RMSE of the relative 3D localization in
this experiment reached 1.11m (the median is 0.81m).

UVDAR sensor as a source of direct localization
of neighboring units. The quantitative results of
this analysis allow for appropriate compensation of
the inaccuracies and credible verification of swarming
models in a simulator, which necessarily precede real-
world applications.

7. Conclusion

This article has presented a framework for deploying
fully-decentralized aerial swarms in real-world condi-
tions with the use of vision-based UV mutual relative
localization of neighboring swarm units. The frame-
work architecture, as well as the off-the-shelf UVDAR
system for direct localization within an aerial swarm,
has been thoroughly discussed, has been deployed on
a decentralized swarm of UAVs in real-world environ-
ments, and its performance has been analyzed. The
experimental analysis verified the stability of UVDAR
as an input into a fully-decentralized swarming archi-
tecture, which embodies the communication-free and

local-information swarming models that are commonly
found among biological systems. The set of real-world
experiments is, to the best of our knowledge, the first
deployment of a decentralized swarm of UAVs with no
use of a communication network or of external local-
ization. The system is provided as open source, and
is designed for simple integration and verification of
flocking techniques (often bio-inspired), respecting the
requirements of the swarming paradigm.
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T, Faigl J, Loianno G and Kumar V 2017 System
for deployment of groups of unmanned micro aerial
vehicles in GPS-denied environments using onboard
visual relative localization Auton. Robot. 41 919–944
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[51] Mohamed E F, El-Metwally K and Hanafy A R 2011 An
improved Tangent Bug method integrated with artificial
potential field for multi-robot path planning Int. Symp.
on Innovations in Intelligent Systems and Applications
pp 555–559
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On training datasets for machine learning-based
visual relative localization of micro-scale UAVs

Viktor Walter∗, Matouš Vrba∗ and Martin Saska∗

Abstract— By leveraging our relative Micro-scale Unmanned
Aerial Vehicle localization sensor UVDAR, we generated an
automatically annotated dataset MIDGARD, which the com-
munity is invited to use for training and testing their machine
learning systems for the detection and localization of Micro-
scale Unmanned Aerial Vehicles (MAVs) by other MAVs.
Furthermore, we provide our system as a mechanism for rapidly
generating custom annotated datasets specifically tailored for
the needs of a given application. The recent literature is rich in
applications of machine learning methods in automation and
robotics. One particular subset of these methods is visual object
detection and localization, using means such as Convolutional
Neural Networks, which nowadays enable objects to be detected
and classified with previously inconceivable precision and reli-
ability. Most of these applications, however, rely on a carefully
crafted training dataset of annotated camera footage. These
must contain the objects of interest in environments similar
to those where the detector is expected to operate. Notably,
the positions of the objects must be provided in annotations.
For non-laboratory settings, the construction of such datasets
requires many man-hours of manual annotation, which is espe-
cially the case for use onboard Micro-scale Unmanned Aerial
Vehicles. In this paper, we are providing for the community a
practical alternative to that kind of approach.

I. INTRODUCTION

The growing amount of processing resources sufficiently
portable for deployment onboard lightweight MAVs has
made it possible to run machine learning-based image pro-
cessing on these devices in real time. This development is a
crucial step towards visual relative localization of unmarked
MAVs by other MAVs. This kind of localization is primarily
useful for two applications: first, for detecting of cooperating
MAVs in a swarm, a formation or otherwise operating
friendly units, without the need to equip them with explicit
markers or transmitters.

A second, more significant application is for detecting
non-cooperating units, where marking them is not possible.
These applications include, but are not limited to, report-
ing or eliminating MAVs intruding into a protected area,
avoiding collisions in areas with unrelated active MAVs, or
establishing cooperation with foreign units that the observer
MAV encounters, if these are open to such a rapport.

For these reasons, markerless detection and relative local-
ization of nearby flying aerial vehicles are topics that have
been recently attracting interest of the robotic community

∗Faculty of Electrical Engineering, CTU in Prague, Technická 2,
Prague 6, {viktor.walter|matous.vrba}@fel.cvut.cz
martin.saska@fel.cvut.cz
This research was supported by the by the Grant Agency of the Czech
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Fig. 1: Examples of annotated footage from the proposed dataset
from a disparity of environments. The bounding boxes were gener-
ated automatically, using our relative localization system UVDAR.

[1]–[8]. Deep-learning based detectors have surpassed tradi-
tional detection methods in detection precision and robust-
ness in general detection problems [9]–[11]. However, not
many researchers are working on the use of deep-learning
methods for the detection and relative localization of MAV.
MAVs can be used in large quantities due to their low cost
and their greater safeness than large UAVs. A large, varied
and labeled dataset is a prerequisite for using any deep-
learning based methods to train the classifier or regressor.
These datasets are usually meticulously labeled manually,
which is an arduous task. In this paper, we will address what
we see as a significant reason why deep-learning is not used
more often for MAV detection and relative localization, i.e.,
the lack of suitable datasets and the lack of a simple and
automatic way to generate such datasets.

In addition to machine learning (ML)-based vision, rel-
ative localization can be retrieved from absolute positions,
obtained by a Real-time kinematic (RTK) global navigation
satellite system (GNSS) [12] or by Motion capture (mo-cap)
systems [13]. We deem this approach entirely unsuitable for
field deployment, since both systems require lengthy setup
and direct access of the operators to the operational space,
which limits the size of this space. Other methods include
measuring the relative strength of a radio signal, such as in
[14], which however requires multiple observers or specific
motion [15] to retrieve the full relative position. In addition,
these systems are susceptible to interference.

Another relevant technology is LIDAR, which captures the
surrounding surfaces as angularly distributed sample points,
represented as a point cloud. These points are obtained
by rapidly reorienting laser range sensor or sensors in a
rotary manner and combining their measurements with the
known current orientation. Using such system for relative
localization of MAVs is problematic due to the small size
and thin structures of these targets compared to the typical
angular density of LIDAR rays, as well as due to the
need to distinguish the small clusters representing MAVs
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from noise and background. Approaches that are better
suited for full onboard operation are based on vision. If a
stereoscopic system with a sufficiently wide baseline [1]
is available, flying MAVs may be retrieved on the basis
of their distance from the surroundings. These systems are
unfortunately expensive, large and require a great amount
of processing power. A simpler approach is to mark MAVs
with easy-to-detect passive visual markers, as in [16], [17].
These are inexpensive and are easily manufactured, but for
the typical mutual distances of flying MAVs they need to
be impractically large and are susceptible to adverse lighting
conditions, particularly bright outdoor sunlight and shadows.

Active markers can also be used, as in [18], or in our
own system UltraViolet Direction And Ranging (UVDAR)
specialized for use in large compact swarms of cooperating
MAVs. In this project, UVDAR is used for bootstrapping
ML systems (see below). The obvious disadvantage of using
artificial markers is that these methods are unsuitable for
the detection of unmarked units, in addition to the fact that
they are additional equipment that needs to be applied. These
drawbacks do not apply at all to ML.

We hold that it is imperative to mitigate the main drawback
of ML vision - the need for complicated dataset building.

While multiple benchmarking datasets for ML vision are
available [19]–[21], these are primarily aimed at evaluating
various qualities of a given system, and to the best of our
knowledge no dataset has been released with the explicit goal
of real-world deployment of MAV that can localize other
MAV units. In particular, no system for automatic genera-
tion of such a dataset is currently available. An automated
approach for this task can significantly expand the usability
of ML-based vision, where some source of the ground-truth
relative positions of targets has to be used for pointing out
their image positions.

With MAVs, it is very difficult to retrieve reliable and
precise orientation measurements, that are needed for correct
projection of their relative positions into the image space of
an on-board camera. The main challenges in this are the
combination of the hysteretic properties of magnetometric
sensors and their susceptibility to metal in environments,
and also the insufficient scale of MAVs for orientation
measurements from two absolutely localized body points
using GNSS. Since our task primarily requires good relative
bearing estimates, other vision-based systems appear to be
the best candidate for the source of ground-truth.

Large passive visual markers, however, alter the appear-
ance of MAVs too much to be suitable for training ML
systems for detecting unmarked units, as the system would
tend to specialize in detection of these markers, which are
not expected to appear in final deployment. To address this
challenge, we have developed an innovative system that
allows for automated generation of annotated datasets for
training ML systems that can be deployed for detecting
MAVs from other MAVs. The system consists of a color
camera attached to an observer MAV, as the source of the
images for ML training, and also our specialized sensor
for mutual relative localization UVDAR (see section II),

Fig. 2: Experimental platform views, with a passive visual marker
(left) [22] and active ultraviolet markers, on and off, (center – left).
Without the passive marker, the resemblance to arbitrary MAV is
higher, making it more suitable for use in training ML algorithms.

an onboard computer and blinking ultraviolet LED markers
attached to one or more target MAVs. Thanks to their small
size and the fact that they radiate predominantly outside the
visible wavelengths, these markers have minimal effect the
visual appearance of the target (see Fig. 2, 3). This makes it
possible to apply the trained ML system subsequently for
detecting similar MAVs that do not carry these markers.
These elements allow for easy and fast detection, localization
and subsequent annotation of the areas in the camera images
where the target MAVs can be found.

A unique feature of this system is that the above is done
while circumventing requirements such as communication -
liable for interference, blocking, congestion and other issues
- or any source of absolute localization, such as RTK GNSS
or a mo-cap setup. Our system addresses these limitations
by applying relative measurements from one camera-based
sensor into another, thus exploiting their known mutual
orientation and distance, and also the difference in the
wavelength ranges. Additionally, the presented system does
not rely on any pre-existing infrastructure (such as a base-
station and satellite visibility in the case of RTK GNSS or
expensive, pre-calibrated camera setup in the case of mo-cap)
in the deployment area, enabling fast and easy creation
of labeled datasets in new environments. Additionally, the
targets only require small LED markers as opposed to
large antennas of RTK systems, making this approach more
suitable even for very small MAVs. Here, we provide a large
open-ended dataset MAV Identification Dataset Generated
Automatically in Real-world Deployment (MIDGARD) for
use by the community, to enable various ML systems to be
trained and tested. The datasets comprise sets of images from
continuous color camera footage of MAVs in a wide range
of environments and backgrounds, together with annotations
in the form of bounding boxes containing the MAVs in
question, as well as their approximate distances.

II. UVDAR

For relative localization of surrounding MAVs used as
a ground truth for labeling pictures in ML datasets, we
propose to apply our system called UVDAR, described in
detail in [23]–[25]. The system is based on computer vision
in the ultraviolet (UV) range of radiation. This exploits
the observation that sunlight is significantly weaker in UV
than in the visible spectrum, allowing for easy detection
of active UV markers in an effectively arbitrary indoor or
outdoor environment by removing most other data from the
image with the use of simple optical filtering. UVDAR sees
active UV LED markers attached to cooperating MAVs as
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Fig. 3: Example of the view from the UV camera used in our
UVDAR, system compared with a simultaneous view from the color
camera. Note the apparent relative brightness of the markers in UV,
while they are invisible in the color image. ML trained systems on
such a dataset will be able to detect MAVs without markers.

small bright points. If multiple such points, belonging to the
same MAV, are seen, geometrical considerations are used to
estimate the distance of the vehicle from the sensor.

Since the markers would otherwise appear identical to
each other, we enriched their information content by setting
them to blink at a defined frequency, and we used a special-
ized algorithm to retrieve these frequencies as identifiers, in
addition to retrieving the image positions of the markers even
in the off phase of the blinking, when they would otherwise
be invisible. With such information, we can either distinguish
between individual MAVs, as is done in this paper, or we can
retrieve their relative orientations by distinguishing different
sides of the MAV with different frequencies [25].

The UVDAR system provides accurate bearing information
on the neighbors, as well as estimates of their distances
from the sensor. The sensor has a 180° field of view, with
bearing errors of approx. 0.3°, and a detection range of
approx. 15m, with typical error of 10-20 % of the target
distance. Detailed experimental and analytical evaluation of
the precision of relative position estimation by UVDAR is
provided in [23]. Since the specific goal here is to annotate
the image of another camera affixed to the body of the
observer MAV carrying UVDAR, the precision of the bearing
information is more significant. This is because a camera is
essentially a device that converts the bearings of the points
in its surroundings into pixel positions in its output image.

The targets are equipped with the UV LEDs, mounted
on their exreme points, i.e., typically the ends of their arms.
These markers should have their output power set to account
for the maximum expected distance from the observer. With
our configuration, we use LEDs with a peak at 395 nm and
a Lambertian radiation pattern. We drive these at 170mA
to produce 230mW of radiated power. Since these markers
radiate predominantly in the near-UV wavelength outside the
visible spectrum, they have limited influence on the image of
a color camera, which typically separates its color channels
with miniature color band-pass filters applied to its imaging
elements. As stated above, these active markers have to blink
with specified signals. There are three reasons for this: 1) The
signals serve for identifying a specific marker, which enables
multiple targets to be distinguished. 2) It makes the system
more robust to specular reflections of the sun e.g., from
metallic corners, based on the observation that these do not
blink as expected. 3) Specifically for this project, the blinking
reduces the influence of the markers on the appearance of
the targets. Depending on the exposure rate of the color
camera, this is either due to apparently dimming them, or by

producing frames where these markers are invisible because
they were in the off-phase of the blinking.

III. DATASET GENERATOR

The aerial platforms that were used for generating the
MIDGARD dataset also serve as an example of the equip-
ment needed for other users to deploy the proposed system.
Two types of MAV are involved - targets and observers.
Targets are units serving as templates that the ML algorithms
will train to detect. Observers are MAVs equipped with our
special vision-based suite that generates image streams and
annotates the positions of the targets within these images.

The observer units are equipped with two cameras attached
to the same holder, the first being the UVDAR sensor (see
section II) for relative position measurements, while the
second is the camera producing the images for ML training.
Any properly calibrated camera can be used, ideally of the
same type as will be used for ML-based MAV detection.

In our datasets, we used mvBlueFOX MLC200wC camera
sensors with a global shutter, with different lenses for dif-
ferent parts of the dataset. To calibrate them, we used the
OCamCalib [26] omnidirectional calibration suite, since this
toolbox accounts very well for lens distortions near the edges
of the images, allowing for correct annotation across the
whole image plane of the color camera. The two sensors are
attached 8 cm apart along the horizontal plane, perpendicular
to both of their approximately parallel optical axes. Due to
such compact installation, their mutual relative poses will
only affect the projection of the measured positions into the
image by their orientation component.

The processing of the UVDAR sensor data and also storage
of the color camera stream and the performance of flight-
essentials computations, are done with Intel NUC onboard
computer. A short video demonstration of the system can be
found at mrs.felk.cvut.cz/midgard.

A. Data acquisition

The UV camera is set to capture views at least at 70FPS,
to allow for the retrieval of a blinking signal of up to 30Hz,
below the Nyquist frequency. The raw input images do not
need to be stored at this full frame-rate, as performing such
rapid storage access operations tends to reduce the actual
frame-rate of the detection system significantly. Instead, only
detected active maker positions are stored in each frame.

The color camera footage is recorded by default at 3Hz
to avoid producing numerous frames of high similarity, but
it can be increased (e.g., for applications that use inter-frame
tracking). The subsequent processing steps are performed
onboard of the observer in real time, so that the raw datasets
are available immediately after the flight. They can also
be done offline after deployment, if the observer does not
possess sufficient computational resources, or if the operator
wishes to adjust the settings of the consecutive processing
steps, the outputs of which are all stored.
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Fig. 4: Consecutive phases of dataset generation - automatic pose
estimation and reprojection

B. Detection and localization

As described in [25], the annotated markers detected
on a target MAV can be used to retrieve an estimate of
its relative pose. In the proposed system, a new position
estimation approach needed to be designed. Since the camera
producing the dataset views is not synchronized, and is even
potentially delayed w.r.t. the UVDAR sensor, it is necessary
to use a tracking mechanism that allows for the retrieval
of relative pose estimates for the instants when images are
produced. A linear Kalman filter, which additionally provides
robustness to the target being temporarily lost from view
due to occlusion or exiting the field of view of the sensor,
is used as a core mechanism in the proposed system. To
be input into the Kalman filter, the relative measurements
must include covariances, approximating the measurement
noise or a measure of the reliability of a given measurement
(Fig. 4b). The precision of the UVDAR measurement depends
primarily on the ratio between the resolution of the UV
camera, the field of view of its lens and the distance of the

target, due to perspective foreshortening.
The precision of a measurement in the form of a Kalman

filter-compliant multivariate Gaussian distribution is difficult
to express analytically, due to the highly non-linear depen-
dence between the image positions of the markers and the 3D
pose of the object carrying them. Unscented Transform (UT)
[27] is used to translate the known precision of detection
of the markers in the UVDAR image into the approximate
covariance of the 3D pose of the MAV itself. The input to
the transform is a vector containing the image positions of
the markers belonging to a given MAV, mean values of the
variables that express the ambiguities in some cases of the
detection, and also an error covariance matrix for all of these
variables. The values expressing the ambiguities are set to
their mean expected values, e.g., the angle by which the
target MAV is rotated away from perpendicular alignment
if only two markers are seen. The input covariance matrix
thus expresses the error in the image positions stemming
from pixel size and the image processing involved as well
as the approximate ranges in the known ambiguities. For
example, the input vectors for observing two and three
adjacent markers on a hexarotor, as described in [25], are

x2 = [ x1, y1, 1/f1, x2, y2, 1/f2, δ=0, α=0, ϕ=0 ]
T (1)

x3 = [ x1, y1, 1/f1, x2, y2, 1/f2, x3, y3, 1/f3, β=0 ]
T
. (2)

Here, xi,yi and fi are the measured image coordinates of
each marker i and the measured frequency of its blinking,
to account for the possibility of incorrect matching with a
known template. Symbol δ refers to the angle by which two
observed markers differ from the pose where their connecting
line is perpendicular to the line of sight of the observer, while
α represents the ambiguity in orientation when observing two
markers of the same ID on a MAV with six markers of only
two different marker IDs. Element ϕ represents the unknown
amount of tilt that the target has w.r.t. the line of sight of the
observer. Symbol β in three-marker observation, where the
above ambiguities do not apply, resolves an observation of
an ID sequence that does not fit the known marker layout,
by introducing a wide additive orientation component in that
case. The input measurement covariances entering into the
UT for each situation are

P2 = diag
([
ex

2, ex
2, ep

2, ex
2, ex

2, ep
2, eα

2, eδ
2, eϕ

2
]T) (3)

P3 = diag
([
ex

2, ex
2, ep

2, ex
2, ex

2, ep
2, ex

2, ex
2, ep

2, eβ
2
]T) (4)

where diag(x) represents a diagonal matrix with elements
of x on the main diagonal, ex is the mean image position
error in pixels, ep is the mean error of the blinking
period measurement, and the rest of the variables represent
the mean ranges of the associated ambiguities. We set
the values on the basis of geometrical assumptions, and
we refined them empirically to the following values:
ex = 2, ep = 0.2/fc, eα = π/20, eδ = π/3, eϕ = π/18, eβ = 2π/3
where fc is the current UV camera frame-rate.

The input measurement vectors x2, resp. x3, together with
the appropriate input covariance, are used with the UT to
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produce a set of sigma-points, representative of the spread
of the values of the vectors. These sigma-points are each
converted into a relative target pose estimate, as described
in detail in [25], where some are affected by the ambiguity
elements being non-zero. These output poses are combined
into a single weighted average, and their spread is used to
approximate the error covariance of the final pose estimate.
For other marker layouts, we progress equivalently. Note that
measuring a blinking frequency that is close to two expected
values will increase the error covariance, since for certain
sigma-points some of the observed markers can be matched
with different body markers than others in the 3D pose
calculation. The output covariances are invariably strongly
elongated in the direction from the detector to the target,
showing the characteristic property of visual localization that
the distance estimate is significantly less precise than the
bearing of the observed object. Since the detection of only
two markers in the image contains more ambiguity than with
three, the covariances are larger for the former.

If only a single marker is detected (due to an occlusion
or of large distance of the target) no distance information is
retrieved, except for the known detection range that provides
the upper distance limit. The relative position of the marker
can therefore be anywhere along its corresponding optical
line, up to the maximum detection distance. The markers lie
on the extreme points of the target, and the marker that is
currently detected may, from the perspective of the observer,
lie on the silhouette of the target. The center or the target
MAV can therefore reasonably be expected to lie inside a
cylinder, the longitudinal axis of which points towards the
detected marker, with radius equal to the maximum distance
of the markers from the target MAV center. For use in a
Kalman filter, this cylindrical subspace is approximated by an
elongated Gaussian. While this specific case of measurement
is less informative than with multiple markers, it still proves
useful with a Kalman filter if a better prior estimate initiated
the filter with a distance estimate. In that case the change
from the previous bearing can preserve reasonably precise
tracking. Without applying this new information the process
noise of the filter would expand the state covariance beyond
useful size, in addition to the mean value not following the
changing pose of the target at all. Furthermore, for the pur-
poses of image annotation, the lacking distance information
is admissible, since the UVDAR sensor and the color camera
- both essentially bearing sensors - are close enough to each
other for the reprojection of the covariance.

C. Data post-processing

The estimates of the relative poses of the target MAVs
in the frame of the UVDAR camera are input into a linear
Kalman filter, since the estimates are expressed in Cartesian
3D coordinates (Fig. 4c). Since the relative pose between the
UVDAR camera and the color camera is fixed and known, the
transformation into the camera frame from the external frame
will negate the effects of inevitable errors in the absolute
observer pose estimate. This is possible because both the
transformation from the UVDAR frame to an external frame

Fig. 5: The MAV platform used in our experiments, here equipped
both with a UVDAR camera (red) and with a color camera (blue).
The markers (green) do not need to be applied to the observer unit,
and here they merely demonstrate their layout on the target. In the
background, two target MAVs overlap, but are still both detected
since some markers of each are seen by UVDAR.

and the transformation from an external frame to a color
camera frame are burdened by the same error in opposite
directions. Correction step of the Kalman filter is applied
when a new UVDAR measurement is available. A state of
the filter at the time of the measurement is predicted using the
latest available filter state, and then the measurement is used
to correct it. To obtain a state estimate at the current time,
another prediction step is applied to the corrected state. This
approach enables avoiding incorrect estimates due to camera
delays.

The annotations provided by the proposed system with the
camera footage take the form of bounding boxes enclosing
the target MAVs in the image, in addition to the estimated
range of target distances. The last step of converting the
relative pose estimates into these bounding boxes is repro-
jection, which is done by applying the UT to the current
relative position estimates, transformed into the color camera
frame (Fig. 4c), in order to obtain a projection of the
position estimates, including the covariances, into the image
of the color camera (Fig. 4d). This 2D covariance is then
converted into a rotated ellipse, by selecting a boundary
probability level, e.g., 2σ, but since computer vision ML
systems typically [9]–[11] work with rectangular areas, an
axis-aligned rectangular bounding box is derived from the
ellipse, and is then further expanded.

During creating of MIDGARD, over 85% of the images,
containing MAVs in range of the UVDAR system, were
automatically labeled with sufficient precision to be included
in the final dataset. This outcome is representative of the
capabilities of the proposed system, as the values are similar
in all recorded scenarios. The pictures where no UAV was
detected (most of the incorrectly labelled pictures) were
automatically deleted and some remaining outliers were
removed using a GUI software that allows the user to discard
ranges of annotated views that they consider unsuitable for
a specific application.

IV. MIDGARD DATASET

A. Platforms

The experimental platforms used for generating the
MIDGARD dataset are based on the DJI F550 frames,
equipped with Pixhawk flight controllers and Intel NUC
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computers. In theory, for our method of dataset generation
the computers are needed only for the observer units, while
both the targets and the observers can even be piloted
manually if no other option presents itself. For MAVs that are
highly visually dissimilar to the model above, new footage
has to be made. Since MIDGARD is an open-ended dataset,
footage of other models will be provided in the future.

B. Environments

The dataset provided was gathered in indoor and outdoor
environments. The outdoor parts of the dataset were obtained
in various locations, including forest, meadow, fields and
urban facilities. These showcase various backgrounds that
can be found outdoors, including trees and fields as well as
houses and repetitive man-made structures (see table I). The
indoor footage includes complicated indoor backgrounds and
lighting conditions. The trajectories used for the observer and
target MAVs were designed in such a way that the dataset
they produce will contain a number of significant challenging
situations, in addition to normal views with MAVs against a
full variety of backdrops in the given area at a full operational
range of distances from the observer. These situations include
temporary loss of line-of-sight by a target MAV leaving the
field of view of the observer and UAV eclipsing each other
in footage with two targets.

C. Examples of main locations

1) Countryside: The footage gathered in the countryside
involves observation of two target MAVs, presented against
various backdrops - fields, hills, deciduous trees, a distant
village and a coniferous forest. Notably, in this footage
the two targets eclipse each other in the view (Fig. 5).
This is intentional, and was ensured by applying the Model
predictive control (MPC) tracker with predefined trajectories.

2) Semi-urban landscape: This footage includes back-
grounds of wide buildings, distant hills, vehicles and covered
stands. The footage contains one MAV as a target.

3) Classical interiors: Currently contains footages from
a vestibule in our departments with ornate stairwells, arched
windows and stuccoed ceilings and a historical church under
reconstruction, obtained under our DRONUMENT project1.

These represent complex backgrounds that can be encoun-
tered inside and outside of historical buildings. Both footages
have one MAV as a target. Notably, due to the low lighting
in the vestibule, the exposure levels of the color camera
were high enough for the markers to be visible, which was
addressed in the church footage by applying low-pass optical
filter onto the color camera.

4) Modern interiors: This footage represents a modern,
utilitarian architectural background representative of what
can often be seen inside and outside modern buildings, with
one MAV as the target. The first setting here is a transitory
room built inside former courtyard of a building belonging to
the faculty of mechanical engineering of the Czech Technical
University. The room has glass walls, framed by steel beams,

1mrs.felk.cvut.cz/research/historical-monuments-documentation

Background Lighting FoV Frames
Fields, hills Direct sunlight 180° 780
Fields, hills Direct sunlight 96° 554
Coniferous forest Direct sunlight 180° 763
Coniferous forest Direct sunlight 96° 769
Semi-urban Direct sunlight 96° 475
Stands Direct sunlight 96° 586
Modern architecture Strong indirect natural light 96° 534
Historical stairwell Low light through windows 96° 319
Church interior Very low mixed light 96° 984
Church exterior Overcast, late evening sky 96° 697
Warehouse interior Low fluorescent lightbulbs 96° 564
Warehouse exit Changes halfway 96° 272
Appartment buildings Overcast sky 96° 300

TABLE I: Primary characteristics of the current dataset

and an uncovered concrete entrance. The second location
was an industrial warehouse, where we captured both purely
internal footage, as well as footage of transition into the
exterior, showcasing the effects of radical change in lighting.

5) Future additions: Our team is actively involved in
projects involving flights inside industrial and historical
buildings. This will be leveraged to keep the MIDGARD
dataset gradually expanding with footage obtained with the
proposed system from flights in these environments.

V. CONCLUSION

In this paper, we have proposed a new method for fast,
automatic generation of datasets for training ML methods
for visual relative localization of MAVs by other MAVs.
The method uses our specialized system incorporating the
UVDAR system for relative localization, and makes it possi-
ble to develop training datasets on the fly, specifically tailored
for the needs of an ML application, by deploying desired
models of MAVs into arbitrary operational environments.
The software used for the processing is based on Robot Op-
erating System (ROS), and is provided on-line. On demand,
we can also provide the hardware of the UVDAR system.

As an additional contribution, we provide a large dataset
called MIDGARD, which was generated using the proposed
method. We believe that this dataset will promote the de-
velopment of ML approaches for practical field deployment
of multi-robotic flight systems, and also of MAV systems
intended for interaction with other MAVs. The annotated
dataset comprises color camera images with MAVs in various
environments, with their positions and bounding boxes pro-
vided. The dataset, together with a brief video demonstration
of the proposed system, is available at
mrs.felk.cvut.cz/midgard. We are enthusiastic about
the possibility of opening cooperation with peers who can
use our proposed system, which can potentially yield footage
of other unusual MAVs or normally inaccessible flight loca-
tions.
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UVDAR System for Visual Relative Localization
with application to Leader-Follower Formations of

Multirotor UAVs
Viktor Walter1, Nicolas Staub1, Antonio Franchi2 and Martin Saska1

Abstract—A novel onboard relative localization method, based
on ultraviolet light, used for real-time control of a leader-
follower formation of multirotor UAVs is presented in this paper.
A new smart sensor, UVDAR, is employed in an innovative
way, which does not require communication and is extremely
reliable in real-world conditions. This innovative sensing system
exploits UV spectrum and provides relative position and yaw
measurements independently of environment conditions such as
changing illumination and presence of undesirable light sources
and their reflections. The proposed approach exploits this re-
trieved information to steer the follower to a given 3D position
and orientation relative to the leader, which may be considered
as the main building block of any multi-UAV system operating
with small mutual distances among team-members. The proposed
solution was verified in demanding outdoor conditions, validating
usage of UVDAR in real flight scenario and paving the way
for further usage of UVDAR for practical multi-UAV formation
deployments.

Index Terms—Aerial Systems: Perception and Autonomy,
Multi-Robot Systems, Sensor-based Control

I. INTRODUCTION

THE growing interest in compact cooperative flights of
Unmanned Aerial Vehicles (UAVs) [1] motivates an

ongoing pursuit for efficient and embeddable onboard source
of mutual relative localization.

In our previous work [2], we proposed a novel approach
to tackle this issue, relying on vision in the unconventional
ultraviolet spectrum. We named this new onboard sensor
UVDAR for UltraViolet Direction And Ranging, and together
with blinking ultraviolet markers used on its associated targets
these comprise the UVDAR system. Its main advantages w.r.t.
other solutions are twofold. First, the use of UV significantly
increases robustness to challenges of outdoor environments
regardless of the time of day, and second, its use of active
markers allows for retrieval of orientation or identity of a
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Fig. 1: Top view of a directed leader-follower experiment. The leader
rotates by 180◦. This is detected by UVDAR sensor carried by
the follower, triggering it to create a trajectory as per the proposed
algorithm in order to preserve its pose in the leader frame.

target. The availability of such robust sensor is a prerequisite
for decentralized outdoor formation flights and swarming
and is especially crucial when a sufficiently precise absolute
localization source is unavailable, or when it is unfeasible to
prepare the necessary infrastructure [3], such as a motion-
capture system (MoCap) or a base-station for Real-time kine-
matic - Global Navigation Satellite System (RTK-GNSS).

A typical example of multi-UAV flights is the leader-
follower formation, consisting of two members, one following
the other. Typically, the goal in such flight is for the follower
to keep a constant distance from the leader, or to follow
its trajectory [4]. Such following is applicable for various
tasks such as cooperative mapping of historical buildings,
cooperative carrying of objects or cooperative localization
of a moving transmitter [3], [5]. In this paper, we show
how the leader-follower approach has to be designed to be
able to perform the required behavior using the UVDAR
sensor. The presented directed leader-follower method, which
leverages relative orientation information, can be considered as
a guideline for designing complex multi-UAV systems working
in real conditions with this sensor.

The literature on classical leader-follower formations is rich,
see, e.g., [4], [6], [7] for theoretical works backed by simu-
lation. Works addressing the challenges of real experiments
are limited, especially relying on onboard relative localization.
The experimentally validated approaches often rely on either
absolute localization source, e.g., MoCap in [8], or RTK-
GNSS in [9], [10]. As is known, MoCap is not practical
for real-world deployment (neither outdoor or indoor) as it
requires the installation of an expensive infrastructure. The
absolute localization sources can provide full pose of the
leader to the follower, which oversimplifies the problem.
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Fig. 2: Comparison between visible and UV camera footage from
UVDAR, collected during the experiment. The UV image is signifi-
cantly easier to process to retrieve UAV information.

Even if only partial information is passed to the follower
motion controller, like distance or bearing, this type of system
provides continuous stream of such information without errors,
which is unrepresentative of real-world deployment.

Some more practical approaches consider infrastructure-less
sensing, like ranging based on radio signal [11], which only
allows for distance-based following without any orientation
information. Another approach [12], for the 2D case, wire-
lessly communicates the leader intents, which proves feasible
since there are less degrees of freedom and less drift than
in the presented 3D case. These two approaches rely on
radio transmissions, which is subject to the effects of network
congestion and interference. This is why we consider vision-
based approaches more suitable for the multi-robot groups,
especially in uncontrolled outdoor environments.

This direction has been previously explored by the Multi-
robot Systems (MRS) group at CTU-Prague, relying on true
outdoor relative localization, see [13], [14]. The source of
relative localization was an onboard vision-based system using
passive circular markers as described in [15]. That came with
drawbacks: high sensitivity to lighting conditions and partial
occlusion, and substantial size for an acceptable detection
range. A similar approach has been proposed [16], that ex-
tended the usability of passive markers for low light in short
distances by leveraging the infra-red reflection. However, in all
other respects it suffers from the same drawbacks as the visible
passive marker approach. Furthermore, it was tested only
for stable ground vehicles. This motivated the development
of the UVDAR system, which is more robust to real-word
conditions, due to optically filtering out visual information that
is not of interest, reducing the computational load, see Fig. 2
for comparison with visible spectrum. UVDAR also provides
relative orientation measurements and target identities, and the
whole system is small and lightweight.

Our contribution is threefold. We first show how UVDAR
can be used to obtain both the relative position and orientation.
We then propose a directed leader-follower algorithm that
works interactively with the UVDAR sensor and measurement
method. Finally, we validate the performance of the presented
method in outdoor experiments.

II. POSE RETRIEVAL PRINCIPLE FOR UVDAR

The UVDAR sensor, presented in our previous
work [2] [17], retrieves image positions and frequency-

based IDs for individual blinking ultraviolet markers from a
modified camera. This data is used to obtain the relative pose
of the leader.

The blinking markers carried by the leader UAV have a
known layout. We found that six markers arranged in a pattern
of a regular hexagon pose as a good compromise, that ensures
that at least two markers are visible from each direction and the
markers not being too close to each other. This means that they
provide a source of a distance estimation without their images
tending to merge in the operational distances. We instantiate
this arrangement on a regular hexarotor platform with the
markers attached to the ends of its arms, but the arrangement is
easily reproduced for any similar rotorcraft, by e.g., mounting
the six markers onto a horizontal ring attached to the vehicle. If
a different number of markers was to be used, the calculations
used in this section need to be adjusted accordingly. In
particular, if the arrangement will result in different number
of markers being visible from different directions, each case
needs separate equations according to the given geometry. The
relative yaw is obtained by giving these markers two distinct
IDs, retrievable by the UVDAR, one for the three port side
markers and another for the three starboard ones. For other
shapes of UAVs, different configurations may be preferable,
see [17].

In this section we introduce the calculations necessary to
retrieve the relative bearing, the mutual distance and the
relative yaw when UVDAR system is used in conjunction
with regular distribution hexarotors. The relative bearing is the
direction towards the leader in the follower body-frame and the
mutual distance is the distance between the geometrical centers
of the two UAVs. The relative yaw is the angle between the
horizontal components of their connecting line and the tailing
direction, which is in our case the backwards direction in the
leader body-frame.

Note, that for the mutual distance and relative yaw esti-
mation we are assuming a horizontal alignment between the
sensor and the target, since the height difference has negligible
effect on the presented distance estimates and no effect on the
relative yaw estimates

Two basic cases of the UVDAR output occur in practice,
see Fig. 3, it either sees simultaneously two markers (case A,
Fig. 3a) or three markers(case B, Fig. 3b). This depends on the
relative yaw of the leader, because of the Lambertian radiation
pattern of the markers, leading to two different calculations to
retrieve the values of interest. In both cases the distance is
first retrieved based on geometrical considerations and then
the relative yaw based on marker IDs.

A. Distance Retrieval – case A
The pixel coordinates mi of the origin points (the current

expected image position of a blinking marker obtained by
UVDAR, see [2]) is first translated into a 3D unit vector vi

pointing towards the marker,

vi = c2w(mi), (1)

where c2w(·) is a standard function available in a number of
vision libraries, such as the OCamCalib toolbox [18], provided
that the camera has been properly geometrically calibrated.
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Fig. 3: The notation used in relative UAV pose estimation.

As we consider only two markers, the angle their corre-
sponding vectors form is denoted α and obtained via cross-
product, α = arccos (v1 · v2).

This angle is used to calculate the distance lc between the
target UAV geometrical center and the sensor, while presuming
that the line segment between the two markers is perpendicular
to the line connecting the camera with its center point. This
yields

lc =

(
d

2

)
cot
(α

2

)
+
√

0.75 d , (2)

where d is the length of the hexarotor arm, see Fig. 3a.
The relative bearing vector vc, is obtained through the

conversion in (1) applied on the point in between the two
origin points visible. The distance lc and vector vc describe
the relative position of the leader w.r.t. the UVDAR sensor.

Note that with only two markers visible, there is an ambi-
guity on α arising from the simultaneous influence of distance
and relative yaw (orthogonality assumption), which is explored
in depth in [17]. This ambiguity disappears if three markers
are visible.

B. Distance Retrieval – case B

When three markers are visible, see Fig. 3b, the angles αa
and αb are computed via (1) from two adjacent origin points.
The distance lc and angles ϕ and ε are expressed as

lc =

√
b2 + d2 − 2bd cos

(
δ +

π

3

)
(3)

ε = arcsin

(
d

lc
sin
(
δ +

π

3

))
(4)

ϕ = arcsin

(
b

lc
sin
(
δ +

π

3

))
. (5)

Here, b and δ are common terms which correspond respec-
tively to the distance from the sensor to the middle marker
and the angle formed by the left marker, middle marker and
the sensor. They can be expressed as follows

b =
d sin(π − (δ + αa))

sin(αa)
and δ = 2 arctan

(
P√

3B + 3

)
.
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Fig. 4: Left – The layout of the two marker IDs on the considered
hexarotor, denoted as blue (6 Hz) and red (15 Hz). Around it the
frames illustrate the UVDAR view from their corresponding direc-
tion. On the right, the actual view from four different directions from
experiments.

The last equation is a compact form of the analytical solution
of a set of non-linear equations, where

A = cot(αa) B = cot(αb)

P = B

(
2

√
O

(B2 + 2
√

3 + 3)
− 1

)

+

(
6
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O

(
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3B + 3)2

)
+ (2A+

√
3)

O = A2 −AB +
√

3A+B2 +
√

3B + 3.

The relative position is then estimated from lc and the relative
bearing v2 of the middle marker rotated by ε in yaw.

C. Relative Yaw Retrieval – case A

The relative yaw in camera frame ∆ψc is retrieved from the
IDs of the UVDAR markers. Only a finite number of patterns
can be observed, as seen in Fig. 4, which we numbered from
I to XII.

When only two origin points are seen, it corresponds to
six possible relative orientations. If the two IDs differ, the
leader is seen either from the front ( XII and ∆ψc = π) or
from the back (VI and ∆ψc = 0), i.e., the tailing direction.
If the IDs are identical, the orientation is ambiguous (II–IV
and VII–X). We resolve this with an heuristic, by averaging
the two possible interpretations of such observation. Namely,
∆ψc = ±π/3 and ±2π/3, so the average is ∆ψc = π/2 on
starboard side or −π/2 on port side. Note, that resolving the
ambiguity based on previous observations is precluded by the
ability of the target to independently change its rotation rate
at any moment.

D. Relative Yaw Retrieval – case B

When three origin points are seen, we consider the other
six possible relative orientations, see Fig. 4. They correspond
with relative orientation s.t. the follower is roughly facing one
specific arm (∆ψe = ±(π/6 + k(π/3)) : k ∈ {0, 1, 2}).
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Fig. 5: Variables defining our requirements on the leader-follower
system. Red propellers denote the back of the UAV. We want the
leader to be on the circular perimeter with the radius r around the
leader (∆l → 0) at the height of the leader (∆z → 0), while facing
it (∆φ→ 0) from its back (∆ψ → 0).

Imperfect sensor alignment with the corresponding arm is
accounted for by using the angle ϕ obtained from (5) as
∆ψc = ∆ψe − ϕ. Note that typically, for the considered
operational distances greater than 5 m the origin points are
very close in the UVDAR image, which means that αa and
αb are almost identical, and ε and ϕ had negligible effects.

In both cases, before the information retrieved from the
UVDAR, i.e., estimates of the relative position and yaw are
used in our directed leader-follower they are transformed into
the IMU frame of the follower UAV, which compensates not
only for the offset of the sensor but also for the tilt (i.e., roll
and pitch) of the unit. Thus corrected relative yaw is denoted
as ∆ψ, and is used in the following section as tailing error.

III. DIRECTED LEADER-FOLLOWER

The goal of directed leader-follower formation is to simulta-
neously regulate the mutual distance towards a pre-set tailing
distance and to let the follower always face a given leader
side (tailing direction), e.g., its back. Our proposed algorithm
solves such task and takes also into account constraints of
vision-based sensing: 1) forward facing directional sensor and
2) sensitivity to rapid image motion. To address both, the
follower behavior is such that it always attempts to face the
leader. This guarantees that the leader is in the field of view
(FoV) of the sensor and additionally that the leader image
position will not change greatly over short periods of time.
The requirements of the system are therefore to minimize the
control errors illustrated in Fig. 5 as ∆l - the distance error,
∆z - the height error, ∆φ - the heading error and ∆ψ - the
tailing error. These are equal to zero if the follower is in what
we call the target pose w.r.t. the leader. The heading error is
the horizontal angle between the bearing of the leader and the
frontal direction of the follower.

A. Trajectory Generation Strategies

The goal is to steer the follower to the target pose, located
on the back of the leader, at a distance r, tailing distance, by
which we also define a safety perimeter around the leader.

If the follower is steered only with the currently observed
leader pose, changes in the observation lead to rapid changes

Follower Leader

(a) Following

Follower Leader

(b) Orbiting

Follower Leader

T

(c) Flanking

Follower Leader

(d) Retreating

Fig. 6: The four strategies used in our directed leader-follower
experiment. The red propellers denote the back of the UAV.

in the follower target pose. This is detrimental as we consider
under-actuated platforms which have high coupling between
their translational and rotational dynamics. Hence higher trans-
lational acceleration means higher tilting, likely to perturb the
visual localization. To avoid this, we design the algorithm
such that it repeatedly constructs a short-term trajectory, at
fixed rate, whose time horizon is at most 4 s. The trajectory
consists of isochronous points defined by their position and
yaw. Trajectories are naturally constructed in the follower
body-frame, if the follower is localized in the world-frame
it is possible to convert them to world-frame to accommodate
for low-level trajectory trackers.

The trajectory is constructed according to one of four
distinct strategies; 1) following, 2) orbiting, 3) flanking, and
4) retreating, as depicted in Fig. 6.

For each strategy we consider the height error and the lateral
position errors separately, as the height error does not play into
the trajectory selection, and we attempt to bring it to zero as
fast as possible in all four cases. We do this, by setting the
z component of the whole generated trajectory directly to the
z component of the estimated relative position of the leader,
which forces our trajectory tracker to reach this height as fast
as it can, bringing ∆z close to zero.

The appropriate lateral strategy is selected based on the
current situation which is described by the tailing error ∆ψ,
the tangential angle β = arccos (r/lc) and the distance error
∆l, see Fig 7. The decision map is as follows:

∆l < −h → Retreating (6)
∆l ∈ [0,−h] → Orbiting (7)

(∆l > 0) ∧ (|∆ψ| < |β|) → Following (8)
(∆l > 0) ∧ (|∆ψ| ≥ |β|) → Flanking (9)

where h is a tolerance factor, introduced to prevent rapid
switching in boundary cases by creating some hysteresis.

In the following strategy, Fig. 6a, the follower flies directly
to the target pose on the perimeter at its maximum admissible
horizontal speed.
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Fig. 7: Parameters of the observed situation for strategy selection.

In the orbiting strategy, Fig. 6b, as the follower is already
at the tailing distance, it slides along the perimeter to reach
the desired tailing direction.

In the flanking strategy, Fig. 6c, the follower flies straight to
the tangent point T of the perimeter closer to the target pose,
which brings the follower in the orbiting configuration.

In the retreating strategy, Fig. 6d, the follower is inside the
safety perimeter of the leader, hence it is navigated outside of
it radially, at its maximum admissible horizontal speed.

These strategies are devised to generate a fast path toward
the target pose that is continuous up to the first derivative.
Generation of each trajectory is based on the measured relative
poses of the leader and the follower, from which estimates
of the safety perimeter and the target pose lying on it are
calculated. Depending on the current strategy, linear, circular
or a combined trajectory is generated. The employed sampling
of the trajectory ensures that the euclidean distance between
two consecutive positions corresponds to the distance traversed
at the maximum admissible speed during a single time-step,
enforcing constant tangential speed. In order to accommodate
for a leader motion, strategy selection and trajectory generation
are triggered at a fixed rate.

Additionally, for each strategy we enforce that the follower
yaw is such that its camera always faces the estimated leader
position, considering the error ∆φ, by setting the reference
yaw in each step of the trajectory to face the currently
estimated leader position. This ensures continuous observation
without rapid movements in the image as well as preventing
loss of the leader from view in case of limited FoV, in our
case 180◦in the horizontal axis.

The generated trajectories are not accounting for real-world
dynamics of the UAV and should be filtered before being
sent to the low-level trajectory tracker. In our experimental
setup, we leveraged the model predictive control present in our
system [19], making the final trajectory smooth. This alters the
original trajectory, but the optimization procedure used in [19]
minimizes these differences, so that the resulting trajectory
differs from the original only in four specific cases. Firstly, at
the start of the trajectory after the leader was first discovered,
the follower first accelerates to reach the desired tangential
speed. This does not happen if the leader was already being
tracked, since in such case the initial state already includes the
tangential speed. Secondly, if the target pose is reached within
a single trajectory generation period, the follower will decel-
erate, since abrupt stopping is unfeasible. The third situation

occurs during the transition between the linear and circular
phase of the flanking strategy, when the trajectory is adjusted
to achieve continuous acceleration. In this case the resulting
trajectory resembles turns in automobile roads, eliminating
step change in acceleration. This result is possible, because the
flanking strategy contains both phases. An additional benefit is
that if the next strategy is orbiting, after reaching the perimeter,
the initial state will already include appropriate tangential
speed so that the original trajectory will be followed with
minimal change. Lastly, when retreating the trajectory is set
such that the follower retreats according to its maximum speed,
without regards to other conditions, which the model predic-
tive control interprets by applying the maximum admissible
acceleration. As the trajectory is re-generated asynchronously,
following one of the four policies, the current state of the
model is fused with the new trajectory to ensure a smooth
transition. One useful addition for initialization of the leader-
follower task or if the leader is lost, is setting the follower to
slowly spin in place if it has not detected the leader yet, or
has not seen it for pre-defined time.

B. Constraints on the leader motion

In order for the follower not to lose the leader and to prevent
collisions, the motion of the leader must conform to a set of
restrictions.

The blinking signal retrieval in UVDAR limits the max-
imum component of the marker velocity perpendicular to
the associated camera optical ray, in order to ensure consis-
tent tracking. With our typical frame-rate of approx. 72 Hz,
23 frame signal sample and maximum allowed marker shift
between frames of approx. 1 pixel, this limit is 0.3 ∗ l m s−1,
scaling with the real distance l between the UAVs. The limit
also defines the maximum yaw rotation rate of the leader,
corresponding to approx. 0.3 ∗ l/d rad s−1. Additionally,
linearity assumption in the UVDAR [2] limits the maximum
acceleration of the leader in this direction to 0.3 ∗ l m s−2.

While tracking is unaffected by the component of the veloc-
ity along the camera optical rays, the distance measurement
is less precise than the relative bearing. In particular, earlier
experiments [17], showed that in rare conditions the distance
measurement error could get close to 20 %.

The distance estimate is important for the follower to suc-
cessfully retreat from the leader in case of breached perimeter.
This breach must be detected in time despite the distance
estimate possible error. In the adverse case where both UAVs
are flying directly towards each other, the follower at its
following speed of vFmax and the leader at vL, the follower
registers a perimeter breach with delay. Additionally, this delay
is extended by filtering the distance estimate with a moving
average filter of time window ta, when the detection is delayed
by td = ta/2. Note that the detriments of the moving average
filter in this case are balanced by enhanced performance of
the bearing estimate. The perimeter breach is detected at the
distance

lbrake = (r − h) ∗ 0.8− rcoll − (vL + vFmax)td,
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Fig. 8: The UAV platform used in our experiments, here equipped
both with a ultraviolet camera (red) and active markers (green)
comprising the hardware components of UVDAR system.

where rcoll is the collision distance. If aFmax is the maximum
feasible acceleration of the follower in the case of retreating,
then collision in the worst case can be avoided if

vL <
√

2lbrakeaFmax − vFmax,
when l < r. In our experimental setting, this translates
to limiting the approaching speed to vL < 0.61 m s−1 for
distances smaller than r = 5 m. A violation of this restriction
is shown in the red zone of Fig. 10, resulting in the follower
not retreating fast enough.

Evidently for greater safety, the leader should avoid ap-
proaching the follower. The rough direction in which the
follower lies is implicitly known to the leader, since the
follower is set to face a specific side of the leader. If the
leader needs to fly in this direction, a simple way to prevent
approaching the follower is to first rotate, ideally by 90◦, and
thus to steer the follower out of the way into a relative pose
from which it can easily follow in a sideways manner.

Lastly, since the maximum distance for reliable detection
by the UVDAR is 15 m, the leader, when it is further than
12.5 m from the follower, must not retreat from it faster than
vFmax m s−1. This will ensure that the error of distance
measurement will not lead to the follower losing the leader
from sight. In most cases, the following algorithm already
accounts for this, if the following distance is set to less than
12.5 m and enough time is provided for the follower to reach
the target pose at the start of the mission.

IV. OUTDOOR EXPERIMENTAL VALIDATION

A. Experimental Platform

In order to validate the performances of the proposed
formation algorithm, we conducted a campaign of real-world
outdoor flights with two DJI f550-based hexarotors, see Fig 8.
They are each fitted with a Intel NUC7 computer, a PixHawk
flight controller and a Tersus GPS receiver, used with a RTK-
GNSS system to obtain ground truth.

The two units were each equipped with a part of the
UVDAR system. The leader was equipped with ultraviolet
markers attached on the ends of its arms. The markers can
be set with a blinking ID or not. In our setup two IDs are
used as depicted in Fig. 4. Apart from providing IDs, blinking
markers ensure robustness against reflections of the sun.

x [m]
0 10 20 30 40 50

y
[m

]

0 

10
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26
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Fig. 9: Top view of the leader and follower trajectories in the
preliminary experiment without marker identity. For a sense of time,
selected simultaneous positions are marked with the same color.

The follower was equipped with a front facing UVDAR
sensor, with a fisheye lens, allowing for 180◦ of horizontal
FoV. Resolution and typical frame-rate are 752× 480pix and
72 Hz, respectively. With the current UVDAR settings the
detection range is around 15 m, see [17]. The relative positions
and yaws of the leader are cyclically estimated at the rate of
10 Hz.

In order to increase the precision and to suppress the effect
of any spurious errors of detection on the flight, we use a
moving average filter of window 10, on the relative distance
and relative yaw estimate. The relative bearing does not need
filtering, as it is derived from the image position of the target,
which we consider to be sufficiently reliable and precise.

During the experiments we noted that the UVDAR is highly
sensitive to the lens focus. Indeed repeated manipulation
altering the focus made the detection range drastically decrease
to around 6 m, insufficient for practical purposes. Fortunately,
focus can be monitored and adjusted easily.

For visualization, comparison and future analysis, the fol-
lower also carried a front-facing color camera. The views from
the two onboard cameras are recorded a low frame-rate, so as
not to impede the UVDAR.

B. Preliminary Flight – Without Marker Identity

In a first set of experiments, we validated the UVDAR
performances as a distance and relative bearing sensor, before
going further. To do so, a simple leader-follower formation was
tested. The markers of the leader were not blinking and the
follower set to only approach the leader up to a desired tailing
distance. This was implemented as a simple proportional
position controller. Such behavior has been demonstrated with
various other sensors. The distance and relative bearing are
obtained as described in Sec II.

The leader tracked a waving trajectory retreating from the
follower, see Fig. 9. The follower successfully managed to
tail the leader during the whole trajectory, of length 214 m,
demonstrating that UVDAR provides sufficient distance and
relative bearing measuring capabilities for real-world flight.

C. Real-World Flight of the Directed Leader-follower

Since the UVDAR is also able to provide a useful relative
orientation estimate, we have conducted a second real-world
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Fig. 10: (a) The leader trajectory defined by position and yaw ψ.
The height was constant, set to 8 m. (b) From top to bottom - tailing
error, heading error and distance error. Colored zones correspond to
specific leader motions - rapid rotation (green), retreat-approach (red),
left-right (blue), and circle following (purple).

flight where this information is used.
The markers on the leader were set to blink, at 6 and 15 Hz

following the pattern depicted in Fig. 4. The distance, relative
bearing and orientation are obtained as described in Sec II,
and used in the directed leader-follower from Sec. III. The
tailing distance was set to r = 5 m, with maximum hysteresis
h = 2 m. The temporary trajectories are generated at 2 Hz and
their tangential speed is a kept at 2 m s−1.

Before the leader started its trajectory, it waited for the
follower to reach its target pose. The leader trajectory was
devised to highlight the system behavior in four representative
cases. First, the leader makes three rapid rotations in yaw
by 180◦ with 30 s of static hovering in between. Second,
the leader moves linearly at 0.8 m s−1 with static yaw, going
forward 8 m, backward 16 m and then forward 8 m again.

Third, the same retreat-approach motion was performed
from left to right. The fourth case was a car-like following
of a circular trajectory with a radius of 10 m. The height of
the leader was fixed to 8 m for the whole experiment. The
leader motion and follower control errors are plotted for the
full trajectory, with the four cases, in Fig. 10a.

Video of the experiment can be seen online1 and an external
view of the experiment is shown in Fig. 11.

1) Rapid rotation: This highlights the importance and us-
age of relative orientation. Every time the follower detected a
change in the leader orientation, it flew around the leader, see
Fig. 1, to successfully reach the target pose again, demonstrat-
ing that relative yaw retrieval with UVDAR is reliable enough
for real-world applications.

1http://mrs.felk.cvut.cz/directed-following-with-uvdd

Fig. 11: View of directed leader-follower experiment, the leader (red)
is retreating from the follower (green).

2) Retreat-approach: This can be seen as a classical leader-
follower formation. The follower uses the relative position
estimate to maintain a set distance from the leader.

The observed performance is good overall. However, note
that due to the granularity of the distance estimate from
vision, combined with observation averaging, the reaction
of the follower can be delayed, see Fig. 10b, around the
140 s mark. This engaged the follower collision avoidance
mechanism, see [19], forcing it to fly over the follower and
then to resume directed following by turning around and
orbiting, which is the origin of the observed peak in ∆ψ.
This demonstrates that the good following performance can be
jeopardized if the leader flies towards the follower faster than
the admissible limit of 0.61 m s−1 estimated in III-B, since in
this case we set the speed of approach to 0.8 m s−1. A larger
perimeter can be set to mitigate this, trading off visual distance
estimation precision, so a compromise needs to be found for
each application.

3) Left-right: When the leader moves side to side, both
the relative distance and orientation estimates performances
are evaluated. As depicted in Fig. 10b the performances are
good as the max. relative yaw was around 60◦ and the
distance error around 2 m, demonstrating that the follower was
able to deal with a continuous disturbance in both quantities
simultaneously.

4) Circular following: The last part of the trajectory
demonstrated the ability of our system to follow a leader
along an extended trajectory, by tailing a leader flying along
a circular trajectory in a car-like manner. As the plot implies,
while the follower lagged behind the tailing distance by 4 m
on average, it did not lose track of the leader for the whole
trajectory, both in terms of relative yaw and heading.

V. POTENTIAL FUTURE EXTENSIONS

The system performances in the experiments validated our
approach and more importantly pave the way to a wider use
of UVDAR for multi-UAV relative localization.

Other formations can be explored and tested, such as train-
like formation where multiple units are following another one
in front of them. Thanks to the marker IDs provided by the
UVDAR, that can map to leader identities, keeping the leader-
follower order should prove easy. Such formation needs to
guarantee that leader motion can not force followers further
down the line to reach speed or acceleration limits.
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Additional studies on leveraging the marker layout are
necessary. The current layout, with adjacent triplets of same-
ID markers has the drawback that for a pair of same-ID (Fig.
4–II,IV,VIII,X), the relative yaw is ambiguous, e.g., II and IV
appear identical. In Sec. II-D we used a heuristic, averaging
the two possible interpretations. Another available option is
presuming one of the two interpretations based on which leads
to the more favorable dynamics. With the current layout, leader
starboard and port directions (III and IX) can not be chosen
as alternative tailing directions since they are surrounded by
ambiguous observations.

However, with the current layout it is possible to steer a
follower to any of the other alternative tailing directions that
can be uniquely located (Fig. 4-V,VI,VII,XII,XI,I). This allows
for multiple directed followers for a single leader, separated
by different tailing directions. A simpler way to allow for
more followers is to assign them to different relative heights,
although the aerodynamic coupling between the followers
must be taken into account in that case.

For steering towards one of the unique positions the current
layout was sufficient, but for truly arbitrary static formations a
third identity must be introduced, using up more of the limited
number of available IDs.

Filtering distance estimation with simple averaging proved
to be a weak point, imposing strong motion restriction on
the leader, and more advanced filtering techniques, such as
a Kalman filter, should be considered in the future.

VI. CONCLUSION

In this paper, we demonstrated the applicability of our
novel vision-based relative localization system UVDAR for
cooperative UAV flights on a specific implementation of
the leader-follower formation. This directed leader-follower
formation control exploited the relative leader pose obtained
by the UVDAR sensor, comprising position and yaw, to
steer the follower to a target pose pose w.r.t. the body of
a moving leader, while also preserving the conditions for
continued observation by this vision system. The cooperative
combination of UVDAR with a specialized control algorithm
was shown to maintain the desired following behavior, without
direct communication between the two UAVs.

The encouraging performance of the system for various
motions is shown through outdoor experiments. In particular,
the use of UVDAR for a real application is demonstrated for
the first time, in demanding outdoor situations. More complex
formations have to be addressed in future work. Overall, the
UVDAR performance in outdoor conditions should lead to its
wider adoption.
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Distributed formation-enforcing control for UAVs robust to
observation noise in relative pose measurements

Viktor Walter∗, Matouš Vrba∗, Daniel Bonilla Licea∗, Matej Hilmer∗, and Martin Saska∗

Abstract— A technique that allows a formation-enforcing con-
trol (FEC) derived from graph rigidity theory to interface
with a realistic relative localization system onboard lightweight
Unmanned Aerial Vehicles (UAVs) is proposed in this paper. The
proposed methodology enables reliable real-world deployment of
UAVs in tight formation using real relative localization systems
burdened by non-negligible sensory noise, which is typically not
fully taken into account in FEC algorithms. The proposed
solution is based on decomposition of the gradient descent-based
FEC command into interpretable elements, and then modifying
these individually based on the estimated distribution of sensory
noise, such that the resulting action limits the probability of
overshooting the desired formation. The behavior of the system
has been analyzed and the practicality of the proposed solution
has been compared to pure gradient-descent in real-world ex-
periments where it presented significantly better performance
in terms of oscillations, deviation from the desired state and
convergence time.

I. INTRODUCTION

Tight cooperation of multiple robotic Unmanned Aerial
Vehicles (UAVs) sharing operational space requires these units
to be able to obtain localization of UAVs in their proximity.
This information is necessary both for low-level tasks such as
collision avoidance, as well as for enforcing a specific layout
[2] or for stabilization of the desired shape of a formation.
Recent technological developments have rapidly progressed
towards the possibility of accomplishing cooperative robotic
tasks in unstructured environments, such as arbitrary outdoor
spaces or underground tunnels. While in limited cases the
UAVs can obtain mutual localization from sources of pre-
cise global localization, e.g. Real-Time Kinematic - Global
Navigation Satellite System (RTK-GNSS) or Motion capture
(mo-cap) systems, this is extremely limiting for a wide range
of applications where such a source is unavailable or not
reliable enough. Typically, these systems require operators to
directly access the operational space ahead of robotic deploy-
ment in order to prepare the equipment. Additionally, these
are sensitive to environmental conditions and they require
extensive radio communication.

The alternative to global localization infrastructure is to use
onboard sensors for mutual relative localization [2], [3]. The
two most common modalities of these sensors are distance-
based relative localization, which is typically based on the
strength or timing of a selected omnidirectionally broadcasted
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SGS23/177/OHK3/3T/13 and by the Czech Science Foundation (GAČR)
under research project No. 23-07517S.

Fig. 1: An example of our fully autonomous Unmanned Aerial Vehicles (UAVs) [1]
equipped with the mutual relative localization system UltraViolet Direction And Ranging
(UVDAR). The units depicted are based on the MRS F450 platforms. These devices
can cooperate using a mutual relative localization and control scheme, such as the one
proposed here. The output of the relative localization system is subject to observation
noise expressed in terms of covariance of a multivariate Gaussian distribution that is
taken into account in the presented method. An illustration of 3D ellipsoids representing
the distribution of noise in relative position measurement is shown on the right.

signal [4], [5], and vision-based relative localization using
camera systems and image processing. The latter typically pro-
vides accurate information on relative bearing with the option
of obtaining information on distance and relative orientation
with less precision [6]–[14].

Our team has developed an onboard vision-based system
for mutual relative localization called UltraViolet Direction
And Ranging (UVDAR) (visible in Fig. 1). This system can
operate robustly both indoors and outdoors with challenging
conditions (e.g. arbitrary lighting) thanks to its use of emitters
and cameras operating together in a shared narrow band of the
ultraviolet (UV) spectrum [14], [15]. The system is capable
of retrieving the relative position and relative orientation of
marked UAVs [16]. Each of these values is provided with
the covariance of its observation noise [17]. The system esti-
mates the distribution of the observation noise using a multi-
hypothesis reprojection method for each individual measure-
ment, and the retrieved estimates are processed with a Kalman
filter before being used in control. Additionally, the system
can provide robotic units with unique retrievable identities,
and even possesses limited data communication capabilities
without radio transmission [18], [19]. If the odometry of each
agent is shared across an explicit communication channel, the
precision of the overall relative localization can be improved
by fusing this information. However in this paper, we focus
on the more general and demanding case where no such
communication is taking place. Using this type of explicit
communication between numerous UAVs is often challenging
in practice and makes the cooperating UAVs susceptible to
effects such as network congestion and external interference.

A concurrent research direction addresses new challenges
connected with the rise of mutual relative localization systems.
Particularly relevant to the current topic is the development
of mathematical methods that allow cooperating robots to
retrieve, as well as to directly enforce, specific formations
in space [20]–[24]. Formation control can also be dynamic,
steering agents in constant motion towards a specific shape
[25].
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Formation control can be de-centralized [26], which is
advantageous for stand-alone robotic systems where reliance
on external infrastructure is problematic.

The paradigm we base our current research on is built on the
graph rigidity theory [27]. In this work, we will use the term
grap rigidity to denote the rigidity of the framework associated
with an observation graph formed by inter-agent relative pose
measurements.

It has been shown that desired formation can, in theory, be
achieved merely based on the mutual relative localization of
other units if the localization information is only either the
relative distance [28] or the relative bearing [21], [29]. Using
nomenclature from [29], all mutual relative measurements
within a team form a graph. A relative localization-based
formation is said to be rigid if there is no more than one
formation that can generate a given set of observations.

In the proposed technique, we will consider the relative
measurements of multiple neighboring units that can be pro-
vided by the UVDAR system. This includes the 3D relative
position and associated 1D relative orientation comprising the
relative pose measurement, which combines and supersedes
the relative bearing and relative distance measurements. The
relative pose-based formation is always rigid, as long as the
observation graph is connected. This is because each single
relative pose observation in R3 × S1 already represents a
rigid connection. Thus, any two nodes in an observation graph
that are connected through a series of such observations are
connected rigidly as well. However, the information provided
by real sensors is burdened by observation noise, typically
with known statistical properties. This is rarely addressed
in the theoretical research of formation control, although
considering this apriori knowledge could significantly increase
the reliability of multi-robot systems, thereby addressing the
main bottleneck of their applicability.

Applying real relative pose measurements into a formation-
enforcing control (FEC) derived from the graph rigidity theory
while assuming the measurements to be precise leads to unde-
sirable changes in velocity with each new measurement due to
noise. Such rapid accelerations and decelerations perturb the
vision-based localization system - particularly on lightweight
UAV platforms without gimbal or full 6 DoF actuation - by
inducing tilting leading to large shifts in the output camera
image, blurring, loss of tracking, and targets moving outside
of the camera’s field of view. These issues feed back into
the control in a manner that is difficult to predict. Besides
these detrimental effects on measurements, the sensory noise
leads to persistent chaotic oscillations of agents around the
desired formation. This is especially significant when the
relative measurements are obtained in discrete times, since an
observation error will affect the behavior of a formation for
the entire period before the next measurement is taken. The
aim of the presented work was to develop a sensor-based FEC
robust to such observation noise.

Literature dealing with imperfect sensing in the context of
formation control is sparse. In [30], the authors propose a the-
oretical distributed formation control that is shown to be robust
to bounded measurement errors in the sense that it converges
towards a formation close to the desired one. However, the

///

//

//

/// Cij

σψij
pij

pi

pj

ψi

ψj

ψij//

XW

YW

ZW

OW

Fig. 2: Measures involved in the construction of the formation for the presented case.
Lines marked with // or /// are parallel to those with the same marker.

interdependence of noise-induced parasitic motion with the
sensing itself is not addressed, nor does the work attempt to
actively counteract the influence of the measurement errors by
leveraging the knowledge of their distribution. Various works
[31], [32] show stability of FEC under specific singular distur-
bances. However these assume the control to be a continuous
system, in addition to not considering disturbances in the form
of incessant noise.

In prior works [33], [34], if the relative observation noise
is taken into account, it is usually addressed through linear
weighting w.r.t. the distance from the desired values. Not only
does this fail to prevent oscillations in states close to the
desired formation, but it also slows down the convergence to
formation, since such modification alters the motion velocity.
This is the case even when the state is far from the desired
formation, where the noise represents only a minor component
of the FEC action and the agents could safely move faster.

In this paper, we propose a novel distributed formation-
enforcing action derived from the graph rigidity theory. This
action can mitigate the effects of noise in vision based relative
localization on the agent motion, without needlessly sacrificing
the speed of convergence to the desired formation. The main
contributions of this work can be summarized as follows:

• A novel technique for constructing robust distributed
FEC for autonomous UAV teams using onboard relative
localization sensors burdened with noise.

• Theoretical analysis of this technique, allowing the user
to predict its performance under a given configuration.

• Experimental verification results, showing the perfor-
mance of the proposed technique in real-world scenarios.

• Publicly available source code of an implementation of
the proposed technique.

II. FORMATION-ENFORCING CONTROL

In this section, we will derive a formation-enforcing ac-
tion for N UAVs with relative pose measurements of their
neighbors. We will be using steps similar to [22], where
the formation controller was derived for platforms that can
measure only the relative bearings of their neighbors. Our case
differs, since each individual observation in our case represents
a rigid formation in and of itself, the whole formation is rigid
as long as the observation graph is connected.

We first denote the world coordinate axes as
(OWXWYWZW ), where OW is the origin of the coordinate
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frame. The horizontal plane (OWXWYW ) is parallel to the
earth surface and the OWZW axis points vertically in the
opposite direction to gravity. The pose of ith agent in the
world coordinate frame is

qi ,
[
pi
ψi

]
, i = 1, 2, · · · , N, (1)

where pi ∈ R3 is the position of the ith agent and ψi ∈ S1 is
its orientation measured as the angle between the OWXW axis
and the projection of the front-back axis of an agent onto the
horizontal plane. We assume the ith agent follows a first-order
integrator dynamic model

iṗi = ui, (2)
iψ̇i = ωi, (3)

where ui and ωi are the control signals for the velocity and
the heading speed respectively and i·i denotes that the rate is
expressed in the body frame of agent i. We also define the
formation vector

q ,
[
q1
T ,q2

T , ...,qN
T ,
]T
. (4)

The noiseless relative pose of the agent j w.r.t. the agent i
in the local frame coordinate of the agent i is

qij =

[
pij
ψij

]
=

[
R(ψi)

T (pj − pi)
ψj − ψi

]
, (5)

R(ψi) =

[
cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

]
. (6)

Whenever angles are subtracted, the result is unwrapped so
that it lies within [−π, π]. This applies for all such occurrences
in this paper, but to simplify the text, we will not repeat this
again.

We define the set containing all the relative poses observed
by the agent i as:

Qi , {qij : j = 1, · · · , N, j 6= i, cij = 1}, (7)

where cij = 1 if agent j is observed by agent i, and cij = 0
otherwise. Observations ij such that cij = 1 form the edges of
an observation graph G. We also define the set of all observed
relative poses as

Q , ∪Ni=1Qi. (8)

To obtain the formation-enforcing action, we need to first
define the relative pose function κG that transforms the world
poses q into a set of observed relative poses of neighbors in
the body frame of each observing agent as

κG (q) =
[
[Q]T1 , [Q]T2 , ..., [Q]T|Q|

]T
, (9)

where [Q]i is the ith element of Q. Thereafter, a formation-
enforcing action that guides the team to the desired formation
qd is obtained by minimizing the quadratic error between the
current relative poses and the desired relative poses

J (eF ) =
1

2
‖eF ‖2 , (10)

eF = κG (qd)− κG (q) , (11)

where ‖·‖ denotes the Euclidean norm.
To minimize the error described above, we apply the fol-

lowing local action which is expressed in the world coordinate
frame

q̇ = −ke
(
∂J (eF )

∂q

)T

= −ke
(
∂κG (q)

∂q

)T(
∂eF
∂κG

)T(
∂J (eF )

∂eF

)T

= −ke
(
∂κG (q)

∂q

)T
(−I) (eF )

= ke

(
∂κG (q)

∂q

)T
eF ,

(12)

where ke is a constant gain.
If the observation graph G is connected and, as such, rigid

in our case for a single agent i, the FEC can then be expressed
as

ui = ke


 ∑

j∈Ni
cij

(
pij − pdij

)
−

∑

j∈Ni
cjiR(ψji)

T
(
pji − pjid

)

,

ωi = ke


−

∑

j∈Ni
cij

(
pTijS

(
pij − pdij

))

+
∑

j∈Ni
cij

(
ψij − ψdij

)
−

∑

j∈Ni
cji

(
ψji − ψdji

)

,

(13)

where Ni = {1, 2, · · · , N}\{i} andS =
[
0 −1 0
1 0 0
0 0 0

]
. Details of

constructing eq. (13) are clarified in appendix A. We express
all the terms pji and ψji as a function of pij and ψij , which
are available directly from the local sensors of agent i:

ui = ke


 ∑

j∈Ni
cij

(
pij − pdij

)

−
∑

j∈Ni
cijR(ψij)

(
R(ψij)

T (−pij) +R(ψdij)
T
pdij

)

 ,

ωi = ke


 ∑

j∈Ni
cij

(
pdTij STpij

)
+ 2

∑

j∈Ni
cij

(
ψij − ψdij

)

 .

(14)

Eq. (14) can be further simplified to

ui = ke


 ∑

j∈Ni
cij

(
pij − pdij

)
+

∑

j∈Ni
cij

(
pij −R(ψij−ψdij)pdij

)

 ,

ωi = ke


 ∑

j∈Ni
cij

(
pdTij STpij

)
+2

∑

j∈Ni
cij

(
ψij − ψdij

)

 .

(15)
In appendix B, the stability of this formation control is

discussed and proven for an example case. However, we are
not making claims of global stability for a general formation
of arbitrarily connected agents; indeed, initial formations may
exist that are within the region of attraction of a local minimum
of the cost function J (eF ). For example, if local minimization
of the orientation error balances out with the local minimiza-
tion of position error. Such cases are typically rare, since
a stable local minimum of the entire formation implies that
there exists more than one state of κG(q) such that, for
all agents i, all elements of [ui;ωi]

T as per (15) become
zero simultaneously. In practice, initial formations are more
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often unsuitable for use with FEC based on gradient descent,
because such control does not take into account collision
avoidance. This means that the agents may be controlled to
pass through each other to achieve the desired formation,
which can even be the case with a globally stable system.

We now replace pij and ψij with their respective mea-
surements that are contaminated with Gaussian noise pmij ∼
N
(
pij ,Cij

)
and ψmij ∼ N

(
ψij , σ

2
ψij

)
, where Cij is the

error covariance matrix for the relative position and σ2
ij is the

variance for the heading angle difference. It is assumed that
possible outliers were removed previously by the localization
system itself. We then obtain the proportional control scheme
to be applied by each agent

ui = ke




∑

j∈Ni
cij

τp1︷ ︸︸ ︷(
pmij − pdij

)
+
∑

j∈Ni
cij

τp2︷ ︸︸ ︷(
pmij −R(ψmij − ψdij)p

d
ij

)

 ,

ωi = ke




∑

j∈Ni
cij

(
pdTij STpmij

)

︸ ︷︷ ︸
τψ1

+2
∑

j∈Ni
cij

(
ψmij − ψdij

)

︸ ︷︷ ︸
τψ2


 .

(16)
To ensure that the FEC is distributable, the directed obser-

vation graph must have no more than a single local sink,
represented here by an observed agent that does not observe
others. An agent is controlled based only on its own local
observations without which it is passive. For multiple such
agents, the desired relative pose between them will not be
enforced. A single passive agent is permissible and in a
specific application it may be used as the de-facto leader of a
formation.

III. VECTOR COMPONENT ADJUSTMENT

In order to account for observation noise, we interpret the
FEC input as a sum of vectors pointing from the desired
relative pose of a neighbor to its actual measured relative pose.
Examples of these components include the terms

(
pmij − pdij

)

and
(
ψmij − ψdij

)
, where only one operand is subject to noise

with an assumed Gaussian distribution with covariance Cij

and standard deviation σψij , respectively. A more complex
case is represented by the term

(
pmij −R(ψmij − ψdij)p

d
ij

)
,

with both operands burdened by observation noise.
The former case is depicted in Fig. 8. It includes an example

of a 2D relative position measurement pmij that has been
measured by agent i, where the desired relative position of
the neighbor is pdij . The depicted vector dij represents a
translation of agent i that would unify the measured relative
position pmij of neighbor j and its desired relative position
pdij . The measured relative position is burdened by observation
noise with a Gaussian distribution, depicted as a cyan Gaussian
blob.

If the system was continuous, then a normally distributed
observation noise would not be an issue, since its effects
would tend to cancel out before having any observable effect.
However, in a real digital system such as the one discussed
here, the sampling rate of relative-localization sensors is
limited. This means that a given measurement error will affect
the behavior of a formation for a non-infinitesimal time period,

which we need to suppress. The FEC is analyzed primarily
as a discrete-time system, where each agent moves linearly
based on the latest observation. The observations are delivered
with constant rate, as this allows us to take into account
the detrimental effects of sensory noise that scale with the
sampling period.

A. Proportional control with noise

Let us analyze what will be the behavior of a simple single-
agent system if it is subject to proportional control and a
Gaussian observation noise. For the sake of simplicity, we
will present this idea with a one-dimensional version of the
control action represented by the term

(
pmij − pdij

)
.

Consider an agent with a 1D state x with the dynamic model

x[k + 1] = ∆[k] + x[k], (17)

where k is the discrete time index and ∆x[k] is the displace-
ment at time instant k. Consider also a desired value d that the
agent is trying to reach. In a noiseless scenario, the difference
of d from x [k] can be directly observed by the agent. A
simple way to make the agent converge to the desired value
is to use proportional control as seen in eq. (16). In a real
robotic system measurements are retrieved with finite rate f .
Therefore, we can set the control action at each iteration to be
linear regression v based on the proportional factor ke and on
the latest relative measurement of d obtained at time index k.
In this case, displacement will be set equal to

∆[k] =
v [k]

f
=
ke
f

(
d−x [k]

)
=
ke
f
∆d = kef∆d. (18)

Since the dynamics of this system depend only on the ratio
ke
f regardless of the individual scales of these two constants,

we replace them with a single constant kef = ke
f . Then, the

control variable moves towards the desired value according to
the geometric progression

x [k + 1] = d+
(
x [k]− d

) (
1− kef

)
, (19)

which, in this case, resolves to

x [k] = d+
(
x [0]− d

) (
1− kef

)k
. (20)

In reality, the state of x changes in continuous time t in a
piecewise linear motion of the form

k = ⌊tf⌋,
x (t) = kefd (tf − k)

+
(
d+

(
x [0]−d

) (
1−kef

)k)(
1− kef (tf − k)

)
.

(21)

However, the evolution of the state x (t) can be approximated
by the exponential descent function passing through the states
x [k], assuming that k = tf as

x (t) = d+
(
x (0)− d

) (
1− kef

)tf
. (22)

The controlled variable x (t) will clearly converge to the
desired value d if kef ∈ (0, 2). The agent will converge
monotonically if kef ∈ (0, 1). If kef ∈ (1, 2), the agent will
converge to the desired value d, but it will be affected with
damped oscillations passing over d in an alternating direction
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at every iteration, which is contrary to our stated goals. We
will therefore restrict the value of kef to (0, 1).

Consider next that the agent only has a noisy measurement
available of its current state x, denoted m:

m[k] ∼ N
(
x, σm[k]

2
)
, (23)

or
m[k] = x[k] + em[k],

em[k] ∼ N
(
0, σm[k]

2
)
,

(24)

with σm[k] being known. This means that although the relative
position of the desired state ∆d[k] = d − x[k] is also not
exactly known, it is a sample from the known probability
distribution

∆d ∼ N
(
d−m[k], σm[k]

2
)
= N

(
∆m[k], σm[k]

2
)
. (25)

In other words, the probability density function of ∆d is

p∆d[k] (s) =
1

σm[k]
√
2π
e−

1
2
s−∆m
σm[k]

2

, (26)

as shown in Fig. 4. A simple maximum-likelihood approach
is to select the setpoint sml of the state of the agent based on
the measurement m[k] as

sml[k] = m[k] + E
[
∆d[k]

]
,

E
[
∆d[k]

]
= d−m[k] = ∆m[k].

(27)

Then the agent is controlled to reach the estimated relative
position of the desired value, which is expected to maximize
the likelihood of reaching d. We will therefore obtain per-
iteration displacement of

∆[k] = kef
(
∆m[k]

)
= kef

(
d−m[k]

)
. (28)

The state transition will be

x [k + 1] = ∆m[k] + x[k] = kef
(
d−m[k]

)
+ x[k]

= kef
(
d− x[k]− em[k]

)
+ x[k]

= d+
(
x [k]− d

) (
1− kef

)
+ kefem[k],

(29)

which is similar to eq. (19) with the additional term of
kefem[k] representing the influence of sensory noise.

Lemma 3.1: Barring infinite measurement rate or a zero
control action, it is impossible to use proportional control to
enforce a stationary stable state if discrete measurements of
this state used in the control law are subject to Gaussian noise.

Proof: If multiple agents follow the control law (without
the modification proposed in this paper), the presented com-
bination of proportional control and observation noise with
Gaussian distribution actually leads to a Gaussian distribution
of agents1. This is due to the fact that linear downscaling of
values (represented by the multiplier

(
1− kef

)
) about a com-

mon origin preserves the overall shape of their displacement,
while only decreasing its scale. At the same time, repeatedly
superposing Gaussian noise on a value (represented by the
noise inherent in kefem [k]) leads to a behavior called random
walk, the uncertainty of which also has Gaussian distribution.
Although the distribution of the noise depends on the current

1In appendix C.2, we show that even with the proposed modification the
resulting poses can be accurately approximated with a Gaussian distribution.

observation, in practice it typically changes continuously with
most relative localization systems. At non-zero distances, the
standard deviation is non-zero. Thus, to obtain an estimate
of the stable-state error of the system, we will assume that
the standard deviation of the measurement is σm,fin, or the
standard deviation associated with the desired distance. Then,
the state in system (29) has a variance evolving according to

Var
[
x [k + 1]

]
= Var

[
kefem [k]

]
+Var

[
(1− kef )x [k]

]

= k2efσ
2
m,fin + (1− kef )

2Var
[
x [k]

]
.

(30)

Using the equation for geometric series, the closed form of
the above is

Var
[
x [k + 1]

]
=
σm,fin

2kef

(
1−

(
1− kef

)2k)

2− kef

+
(
1− kef

)2k
Var

[
x [0]

]
.

(31)

As k approaches infinity, the variance of the system ap-
proaches

Var
[
x [k → ∞]

]
= σss

2 =
σm,fin

2kef
2− kef

. (32)

The two interacting behaviors in the system therefore con-
verge to a Gaussian localization noise of individual agents with
non-zero standard deviation of

σss = σm,fin

√
kef

2− kef
. (33)

This is the negative effect that is mitigated using the proposed
approach.

B. 1D restraining

In order to combat the oscillations while still keeping
the required agility of the multi-robot system, we propose
to exploit the sensory model as follows. Consider that if
the error ∆m[k] is large compared to σm[k] then ∆m[k]
consists predominantly from the true error ∆d[k] with the
additive measurement noise being a minor component. On the
other hand, if the agent is measured to be close to d and
∆m[k] becomes small compared to σm[k], the measured error
becomes likely to stem predominantly from observation noise.
In other words, the closer the agent measures itself to be to
the desired state d, the more likely it is that correcting the
error ∆m is unnecessary and will increase ∆d by retreating
or by overshooting the target. If this is not taken into account,
an agent near d will tend to frequently change its direction of
motion, which is contrary to our goals. Thus, if ∆m[k] is large
compared to σm[k] then the measured difference vector can be
safely applied in a proportional control for rapid convergence,
while if ∆m[k] is small w.r.t. σm[k] then the control action
should be suppressed.

In order to derive a modified action satisfying these require-
ments, we first propose an abstract control scheme with a
region of passivity around the desired state. As before, the
system has dynamics of the form

x[k + 1] = ∆res[k] + x[k] =
vxres [k]

f
+ x[k]. (34)
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sres− d sres+

0

m[k]

v x
re
s
[k
]

Fig. 3: The velocity set with our proposed controller in 1D case. The region within
m[k] ∈ [sres−, sres+] represents a region where the agent remains purposefully
passive.

Here, vxres is a controllable velocity defined by

vxres[k] = ke

(
clamp

(
sres (∆m)−m[k],∆m[k]

))
, (35)

where sres
(
∆m[k]

)
is a position with constant offset |ores|

from d towards m, s.t. ores ∈ R<0,

sres=d+sign
(
∆m[k]

)
ores=

{
sres− if ∆m[k] > 0

sres+ otherwise.
(36)

The function

clamp (y, a) =

{
y if y · a ∈ (0, a2]

0 otherwise,
(37)

nullifies the control action within the region [sres−, sres+].
Thus, vxres[k] is a piecewise-linear function of m[k], as shown
in Fig. 3. This control will steer an agent towards a specific
restrained setpoint sres offset from the desired state d, with a
velocity decreasing to zero. This way the agent will not stop
abruptly at the setpoint.

However, due to the influence of sensory noise on the
measurement m[k], the control will have a stochastic behavior.
The agent may sometimes incorrectly evaluate itself as being
inside the region [sres−, sres+]. Conversely, the agent may
evaluate itself as being outside said region when|d− x| < ores.
This is why the controlled velocity (35) has a dead zone around
the desired state. If sres is set up correctly, it will prevent
the agent from reacting to measurements that are statistically
likely to cause overshooting of the desired state d by the agent.

To take into account the distribution of sensor noise, we
need to condition the restrained setpoint sres on the standard
deviation σm[k] of the current measurement m[k]. Though
using a dead zone for control is intuitive in and of itself, it is
the specific design of this dead zone that we consider to be a
contribution of this paper. We will detail how the setpoint sres
should be set in the following section.

1) Setpoint selection: Let us define overshooting of the
controller as

sign (s[k]− d) 6= sign(x[k]− d), (38)

where s[k] is a future state to be reached by the agent using
a given control - a setpoint. The probability of overshooting
d by reaching setpoint s is

Pover = P
(
sign (s[k]− d) 6= sign (x[k]− d)

)
. (39)

The maximum-likelihood approach in section III-A uses a
setpoint sml based on the current mean of the measured relative
position of d. Since this measurement is subject to Gaussian
noise with the standard deviation σm[k], the controller therein

m sml
0

1
σm

√
2π

∆m σm

s[-]

p
∆
d
(s
)

m sml
0

0.5

1

∆m

s[-]

P
o
v
e
r
(s
)

Fig. 4: A simple case of 1D Gaussian distribution. The example is unitless, as
this consideration applies to any measurement burdened by Gaussian noise. The true
difference ∆d of the desired state d w.r.t. the current state x is unknown, since we only
have a noisy measurement m of x. However, we do assume the distribution of the noise
present in m to be known in the from of a Gaussian distribution with standard deviation
σm[k] centered on x. Conversely, the available measurement of ∆d is represented
by a Gaussian distribution with mean ∆m[k] = d − m[k] and standard deviation
σm[k]. The probability Pover of overshooting the target d depends on the setpoint
s chosen, and is equal to the CDF of the Gaussian distribution of ∆d. If we merely
choose sml = m[k]+∆m[k], then we risk overshooting the target with non-negligible
probability of 0.5.

risks overshooting the actual desired value d with a probability

Pover,ml = Φ

(
sml[k]− d

σm[k]

)

= Φ

(
m[k] + ∆m[k]− d

σm[k]

)

= Φ

(
m[k] + (d−m[k])− d

σm[k]

)

= Φ(0) = 0.5,

(40)

where Φ(·) is the cumulative probability density function of
the Gaussian distribution with zero mean and unit standard
deviation, as illustrated in Fig. 4. Note that, the probability of
0.5 is fairly high and thus the maximum-likelihood approach
will be switching the direction of v[k] often. Combined
with the finite sampling frequency f , this causes stochastic
oscillations of the agent about the desired state d that scale
with kef , as per eq. (33).

Instead of using the maximum-likelihood approach, we can
define a restrained setpoint (Fig. 5) based on a specified
maximum allowed probability ℓ ∈ (0, 0.5] of overshooting, as
defined above. Due to sensory noise having a known statistical
distribution, with mean m = m[k] and σm = σm[k], a sres
conforming to this probability ℓ is

sres (m,σm) = d+ sign (∆m)σmΦ−1(ℓ)

= m+∆m + sign (∆m)σmΦ−1(ℓ),
(41)

where Φ−1(·) is the inverse function of the cumulative proba-
bility function of Gaussian distribution with zero mean and
unit standard deviation. We will use sres in the proposed
control in eq. (34), which makes the state change between
subsequent measurements become

∆[k]res =
vxres [k]

f
=
ke
f

clamp
(
sres −m[k],∆m[k]

)

= kef clamp
(
sign

(
∆m[k]

)
σm[k]Φ−1 (ℓ) + d,∆m

)
.

(42)

This makes for a flexible control that is robust to sensory
noise, without the need for manually tuning the proportional
factor with regards to the specific standard deviation of the
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Fig. 5: If the measured relative value of a target state is subject to observation noise,
controlling the current state of the system towards the mean of that measurement at
sml risks overshooting the target with probability Pover = 0.5. This probability can be
reduced to an arbitrary value ℓ < 0.5 by choosing a restrained setpoint sres that is closer
to the current state than sml by

∣∣∣σm[k]Φ−1(ℓ)
∣∣∣. If ℓ < 0.5, then σm[k]Φ−1(ℓ) < 0.

sensor noise present. The user only needs to set the probability
ℓ. The control will steer the agent to a state defined by the limit
on the probability of overshooting the target, and if it finds
the agent to be located beyond this threshold it will become
inactive. In essence, this acts as a spatial probabilistic motion
filter that allows agents to get closer to the desired state than
sres through the effects of the sensory noise, but it will not
actively steer it there if the probability of overshooting is too
high. The probability that the agent will actively move in a
given iteration decreases with |d− x| according to eq. (87) in
the appendix C.1. Therein, we show that the minimum motion
probability is 2ℓ at x = d. Therefore the state of the agent
is more likely to remain near the desired state, in essence
narrowing the probability distribution of the state of the agent
towards the desired value in comparison with pure proportional
control. The system is statistically stable overall, as is shown
in appendix C.1, and the expected state of the agent converges
towards d while the expected variance at the stable state is

σ2
ss,res =

kefσm,fin
2

2− kef
exp

(
β(kef )Φ

−1(ℓ)
)

(43)

where β (·) is an empirical function with example values found
in table II. Reducing ℓ therefore reduces the stable-state noise
in the system. For example, if kef = 0.5 and ℓ = 0.3 the
agents will be displaced from the target in the stable state by
zero-mean amount with variance

σss,res = 0.8051σss. (44)

If ℓ is set to 0.5, the control will be equal to the naive
proportional control in III-A, as in the case sres = d, with the
dead zone collapsed into a point. Indeed, if |d− x| ≫ σm, the
agent will behave similarly to being driven by a proportional
control, which means that the rate of convergence to the
desired formation is not significantly reduced.

The net effect of the above is that the stable state variance
of the agent’s displacement from d is reduced compared to
σss from eq. (33). The noise reduction is dependent on ℓ and
on kef , and the specifics of the behavior are analyzed in depth
in appendix C.1.

2) Analysis of the control performance: To first demon-
strate the operation of the proposed control scheme in a
simulated 1D system, we establish a large number (10,000)
of virtual agents with one degree of freedom each, as these
agents operate on a scalar variable x. Using a large number

of agents in the case of the presented simulation allows us to
observe statistical properties of the proposed control. Without
loss of generality, we can choose the unit of x to be meters,
so that we may provide an intuitive understanding in terms of
robotic motion control with the position being the controlled
variable. The parameters of the presented simulation are such
that the relevant effects of the proposed control can easily
be demonstrated on reasonably scaled plots. However, the
presented effects persist across a wide range of parameters,
albeit with changes in their relative magnitudes. The agents
were first pseudo-randomly displaced according to a Gaussian
distribution around the mean equal to d, with the standard
deviation of their positions being σI = 100m. Each agent
then measured its distance to the desired value at a rate
f = 10Hz, where each measurement is burdened by pseudo-
random additive noise with a Gaussian distribution of σm =
3m. The whole simulation was executed for a descending
range of thresholds ℓ, starting with ℓ = 0.5. If ℓ = 0.5, the
control is equivalent to the proportional control without the
proposed modification,which is supported by the simulation
where the estimated σt, obtained as the standard deviation
of the agent positions from their mean at a given time step,
converged to the theoretical value from eq. (33) of σss =
1.73m for the selected parameters at ℓ = 0.5. This represents
the upper bound of the stable-state localization noise in the
system. Fig. 6 shows the time evolution of three relevant
variables in the simulation: the average difference ∆v(t) in
rate of change in d between two consecutive measurements,
the average distance ∆d(t) from the desired position d, and
the standard deviation σa(t) of the distribution of the agents.
By only decreasing the threshold ℓ, the rate of change in x
becomes progressively more steady, which is exactly the goal
we set out to achieve. In addition, although the coalescence of
the agents towards a stable distribution gets slower with de-
creasing ℓ, the standard deviation of their distribution actually
becomes smaller. This means that, despite the fact that we are
not controlling them directly towards their measured relative
position ∆m, the agents end up closer to the desired state d
than they would have otherwise. Lastly, we analyzed how the
proposed system compares to a pure proportional control in
terms of the tradeoff between the speed of convergence and
the stable-state distribution and velocity. To do this, we have
performed multiple simulations of the above system for a set
of values of ℓ, including ℓ = 0.5 representing the behavior of
pure proportional control. We have swept through values of
kef ∈ [0.02, 0.97] to show that merely tuning the proportional
control does not provide better results than using the proposed
restraining technique. For each run of the simulation, we have
evaluated three parameters:

• Time tc to convergence to stable-state oscillations
• The standard deviation σt from the desired state in the

stable-state
• Average change ∆v in velocity between subsequent linear

movements based on their latest measurements

To evaluate these parameters, we will define the time of
convergence to the stable state in the simulation data with
M samples as the first instance when the state becomes closer
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Fig. 6: Simulation results of the 1D case of proportional control with the restrained
target value. Each plot is obtained by averaging the motion of 10,000 virtual agents with
pseudo-random initial distribution and observation noise. For reproducibility, the initial
conditions were the same for each value of ℓ. From top, these time plots represent the
average change in velocity between actions from two subsequent target measurements,
the average distance from the target position, and the standard deviation from the target.
The parameter values for these plots were kef = 0.5, σm = 3m and f = 10Hz. The
agents started in a Gaussian distribution centered on the target with a standard deviation
of 100m.

to the desired state than 3 times the standard deviation of the
rest of the recorded states, or:

tc =
kc
f
,

kc = min
{
k ∈ 0..M :

∣∣x[k − 1]− d
∣∣ > 3σk

}
,

σfin[k] =

√
var
({
x[k′]− d : k′ ∈ k..M

})
.

(45)

The stable-state standard deviation σt and average convergence
velocity ∆v are then defined as

σt = σfin[kc], (46)

∆v = mean
({(

x[k]− x[k − 1]
)
f : k ∈ 1..M

})
. (47)

Using the above definitions, we have produced Fig. 7,
where each point in the plots was averaged from 1,000 runs
with the same parameters. The figure shows that using the
proposed technique can obtain better combinations of behavior
properties than what is possible by merely changing the
value of kef . This is evident by all the plots with ℓ < 0.5
contained under the plot of ℓ = 0.5 corresponding to the
pure proportional control. We arbitrarily chose σm = 1 and
f = 10Hz, since these variables merely scale the values of σt
and ∆v across the board.

The lower the value of kef , the lower the improvement
achieved by using restrained target values when compared
to using the measured values directly. Lowering the kef by
reducing ke diminishes the influence of measurement noise on
the control action, although doing so also significantly slows
down convergence towards the desired values.

It must be noted that, in a general formation control, agents
strive to reach a relative displacement with respect to other
agents. If the observed agent is static, the observing agent
behaves as detailed above, where we substitute the desired
state d with the desired displacement with respect to the other
agent. However, two agents may observe each other at the
same time. In case of mutual observation, the agents will
both move towards their desired relative displacement, each
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σ
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∆
v
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Fig. 7: On the left, we show the comparison of the trade-off between stable-state standard
deviation σt from the desired state and the time tc it took to reach the stable-state
oscillation threshold for various values of ℓ. The curves show the presented value
w.r.t. a sweep across values of kef ∈ [0.02, 0.97]. On the right, we show a similar
comparison between the average change in velocity between subsequent measurement-
induced motions and the time of convergence, in the same ranges of kef . These plots
are produced by 1D simulation of the presented dynamic system, with framerate f = 10
and σm = 1 for a specific scale. The plot for ℓ = 0.5 corresponds to pure proportional
control; in either case, we obtain better combination of parameters by applying our
restraining technique, since the other plots are contained under the curve of ℓ = 0.5.

according to their current observation. In appendix D, we show
that in such a case the range of kef for which the system is
generally stable reduces from (0, 2) to (0, 1), which in turn
translates to the range (0, 0.5) for monotonical convergence to
the desired displacement. This is not a stringent requirement,
since kef = 0.5 is in practice an extreme value - for example,
with f = 10Hz this translates to a local proportional factor
ke = 5 times the displacement. The observation does imply
however, that the increasing number of connections in the
formation leads to increased limits on the dynamics that
enable convergence in a controlled manner. As we note in the
appendix, the dynamics of the mutual-observation case will
eventually turn into the behavior of a single-observation case,
since one of the two agents will stop with high probability near
the desired displacement, after which the remaining agent will
move as if with respect a static desired state.

C. Extension to R3 × S1

Returning to the FEC derived from eq. (16), we will now
explore how the restraining technique above can be exploited
for a more complex, multi-dimensional problem.

We propose to mitigate the oscillations introduced in the
controller of proportional control (16) due to the noisy mea-
surements. To do this, we will apply the restraining techniques
developed in section III-B, particularly eqs. (35) and (41).
However, these equations are developed for a one-dimensional
system while (16) is multi-dimensional. Thus, before we apply
(35) and (41) to (16), we will perform some projections to
transform (41) into a one-dimensional function. For each term
in (16) (i.e., τp1 , τp2 , τψ1 , and τψ4 ), we will perform the
following. Through projections, we will reduce the dimen-
sionality to 1, determine the corresponding setpoint (41), and
provide the control velocity based on (35).

Let us next extend the overshooting definition provided for
the one dimensional case in (38) to generalize the higher
dimensional case. We define overshooting as a change from
the original state pij [k] to a new state pij [k + 1], where
its orthogonal projection onto the line connecting pij [k] and
the desired state pdij falls beyond the desired target from the
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d̂ij

pmij Cij

pi pdij

Fig. 8: Simple case of a 2D relative position measurement with Gaussian noise.

perspective of the original position, i.e. if :

〈pij [k + 1]− pij [k],p
d
ij − pij [k]〉 >

∥∥∥pdij − pij [k]
∥∥∥
2

. (48)

where 〈·, ·〉 is the inner product. Additionally, we move the
desired relative poses of neighbors towards their associated
measured poses. This is reversed w.r.t. section III-B, since it
would be counter-intuitive in the simple 1D case presented
therein. The desired relative poses of each agent’s neighbors
are attached to the body frame of said agent, while the
measured poses are located independently in the surroundings.

In cases of bilateral observation, note that two mutually-
observing agents will both follow the proposed control. In
appendix D we show in a 1D case that this behavior will
transform into unilateral observation once one of the agents
enters its own dead zone.

Applying the dead zone directly to the original cost function
is not practical in our case, primarily due to the fact that
the resulting FEC would still depend on ground-truth states
of the agents due to the geometrical interdependence of the
relative position and orientation of agents. We apply the
proposed restraining technique post-hoc directly on the FEC
as formulated for an ideal system, as this allows us to address
the effects of noise on every occurring instance of a noisy
measurement.

D. Term τp1

To see how this will make our multidimensional problem
compatible with our 1D restraining approach, consider that
the measurement has multivariate Gaussian distribution with
a known covariance Cij and mean pij

pmij [k] ∼ N
(
pij ,Cij

)
, (49)

and thus, conversely, given the measurement pmij [k], the like-
lihood that pij is located at the point p is

P
(
pij=p

)
=

1√
(2π)

k∣∣Cij

∣∣
e

1
2 (p−pmij [k])

T
C−1
ij (p−pmij [k]). (50)

If we restrict the point p to lie along the line defined by the
points pdij and pmij [k], then the likelihood function becomes a
1D Gaussian distribution with mean pmij [k] and variance σ2

pij .
To apply the eq. (41), we need to derive the expression for

the standard deviation σpij of the 1D Gaussian distribution
described above. We do this by calculating the Mahalanobis
distance between pmij [k] and pdij , and dividing their Euclidean
distance by it. Thus, we obtain

σpij =

∥∥∥pmij − pdij

∥∥∥
√(

pmij − pdij

)T
Cij

−1
(
pmij − pdij

) . (51)

σψij r

r (1− cos (σψij))

r sin (σψij)

d̂Rij

pmij

pi

pdRij
p̂dRij

Fig. 9: Extended case of 2D relative pose measurement with both ends of the difference
vector being burdened by observation noise.

Consequently, we can express the setpoint sp1 as

sp1 = σpij
pmij − pdij∥∥∥pmij − pdij

∥∥∥

(
Φ−1 (ℓ)

)
+ pmij

=
pmij − pdij√(

pmij − pdij

)T
Cij

−1
(
pmij − pdij

)Φ
−1 (ℓ) + pmij .

(52)

It is with respect to this target position that we derive a partial
positional action that asymptotically approaches a maximum
admissible probability ℓ of overshooting our original desired
relative position.

E. Term τp2

The term τp2 is composed of two parts: a three dimensional
Gaussian random variable (i.e. pmij ) and three dimensional
non-Gaussian random variable (i.e. R(ψmij − ψdij)p

d
ij). The

non-Gaussian variable is the result of a three-dimensional
nonlinear function applied to a single Gaussian variable (ψmij ).
We will hereby refer to this non-Gaussian random variable as
pdRij . This is illustrated in Fig. 9, where the noise of pijm is
illustrated as a cyan Gaussian blob and one standard deviation
of the probability distribution of pdRij is shown in blue.
We start by approximating pdRij with a new Gaussian variable
p̂dRij , such that one standard deviation of the distribution of
p̂dRij encloses one standard deviation of the distribution of pdRij
(Fig. 9). This method differs from the more standard method
of using the first term of the Jacobian, which would not take
into account the true distribution being biased in the direction
of −pdRij . We obtain the mean p̂dRij according to

p̂dRij =

[[
[pdRij ]1 [pdRij ]2

]
cos
(
σψij

)
[pdRij ]3

]T
, (53)

where [·]n denotes the n-th element of a vector.
We then generate a Gaussian distribution centered on this

new starting point, such that its eigenvalue corresponding to
the vertical eigenvector is zero, making this a degenerate or
“flat” distribution. Together with the other two eigenvalues
corresponding to the eigenvectors pointing tangentially and
perpendicularly to horizontal components of p̂dR, respectively,
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the covariance Ctij of the new distribution is constructed as:

vdij1 =
[
[pdRij ]1 [pdRij ]2 0

]T
,

vdij2 =
[
−[pdRij ]2 [pdRij ]1 0

]T
,

vdij3 = [0 0 1]
T
,

Vij =




vdij1∥∥∥vdij1
∥∥∥

vdij2∥∥∥vdij2
∥∥∥

vdij3∥∥∥vdij3
∥∥∥


 ,

σcψij = min

(
σψij ,

π

2

)
,

Lij = diag

(∥∥∥vdij1
∥∥∥
[
1−cos

(
σcψij

)2
sin
(
σcψij

)2
δ2
])
,

Ctij = VijLijV
−1
ij ,

(54)

where δ is an arbitrarily small, non-zero value chosen to
prevent numerical instabilities. This new distribution is shown
in red in Fig. 9 and indicates that the starting point can also
lie inside the circle containing the original distribution, which
is a conservative assumption.

Thus, we approximate the term τp2 with the random Gaus-
sian variable pmij − p̂dRij with covariance matrix:

Ccij = Cij +Ctij . (55)

Then the set point for this term is

sp2 =
pmij − p̂dRij√(

pmij − p̂dRij

)T
Ccij

−1
(
pmij − p̂dRij

)Φ
−1 (ℓ) + pmij .

(56)

F. Term τψ1

Let us start by factorizing this term as follows:
(
pdij

)T
STpmij =

∥∥∥Fpdij
∥∥∥ ·
∥∥∥Fpmij

∥∥∥ · sin (α), (57)

where α is the angle formed by the desired and measured
bearings of agent j from the local perspective of agent i,
with the positive orientation being the same as the positive
orientation of the angles ψ, and with F = diag

([
1 1 0

]T)

removing the vertical components from the two vectors.
Here, we once again chose a non-standard approach instead

of directly calculating the standard deviation of this term by
multiplying the differentiation of the term based on pmij with
the covariance Cij . This was done in order to avoid the
undue scaling of the resulting standard deviation with pdij ,
which would otherwise occur as a side-effect from the prior
linearization used to obtain the local control eq. (16).

Since a change in the orientation of the observing agent
does not affect the norm of pmij , the restraining applied will
depend on sin (α). We will evaluate the Gaussian distribu-
tion function at α. For this purpose, we need to know the
standard deviation σβij of the bearing measurement βij =

atan2
(
pmij (2),p

m
ij (1)

)
. This value is related to the rela-

tive position observation noise, in the sense that the true

1σ
pmij

pi

pdij

√
cr22

α

γ

∥∥∥pdij
∥∥∥

∥∥∥pmij
∥∥∥

Fig. 10: Special case of 2D relative pose measurement for the orientation command based
on the relative bearing error. The ellipse denotes the probability density corresponding
to one standard deviation.

distribution of the bearing measurement noise corresponds
with the projection of the distribution of the relative position
measurement noise onto a circle centered over the observer,
conditioned on the bearing angle. The exact calculation of
such a projection in the general case is complicated and non-
linear. However, for the majority of the practical scenarios
the distances between the observed agents and the observers
are reasonably large with respect to the components of the
covariance matrix Cij . We can thus approximate the projection
by the following orthogonal projection:

Cr = R(−βij)CijR(−βij)T =

[
cr11 cr12
cr21 cr22

. . .

]
,

γ = arctan



√
cr22∥∥∥pmij
∥∥∥


.

(58)

This geometric consideration is illustrated in Fig. 10. Thus, for
our 3D case an approximation σ

′
βij of the standard deviation

σβij of the above distribution can be obtained as

σβij ≈ γ ≈ tan (γ),

σ
′
βij =

√
cr22∥∥∥pmij
∥∥∥
. (59)

Next, we modify the proportional action corresponding to(
pdTij STpmij

)
for an equivalent effect, as with eq. (52), (62),

and (56). We obtain a restrained modification of pmij by rotat-
ing it in a horizontal plane towards the horizontal projection
of pdij , in the sense of the shortest angle. Therefore,

p̂c3ij = R

(
σ

′
βij sign

(
ζ
(
pdij

)
−ζ
(
pmij

))
Φ−1 (ℓ)

)
pmij , (60)

where ζ (·) calculates the horizontal bearing angle of a vector
in the argument as ζ (x) = atan2

(
[x]2, [x]1

)
.

Applying this to eq. (57) yields the modified term:

(
pdTij ST p̂c3ij

)
=
∥∥∥pdij

∥∥∥ ·
∥∥∥pmij

∥∥∥ · sin
(
α− sign (α)σ

′
βijΦ

−1 (ℓ)
)
.

(61)
Since the term approximately scales with the square of the

neighbor distance, care should be taken in order to prevent
divergent rotational behavior by ensuring that the rotational
action it induces when multiplied by kef = ke

f does not exceed
±πrad.
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G. Term τψ2

In this case, the term is one-dimensional Gaussian already,
so we directly apply the eq. (41):

sψ2
= σψij sign

(
ψmij − ψdij

)
Φ−1 (ℓ) + ψmij . (62)

H. Combining terms

We now have a completely modified variant of eq. (16) that
reduces changes in velocity induced by measurement noise,
thus mitigating oscillations:

ui = ke
∑

j=1,...,N
cij=1

clamp
(
sp1 − pdij ,p

m
ij − pdij

)

+ ke
∑

j=1,...,N
cij=1

clamp
(
sp2 − p̂dRij ,p

m
ij − p̂dRij

)

ωi = ke
∑

j=1,...,N
cij=1

clamp
(
pdTij ST p̂c3ij ,p

dT
ij STpmij

)

+ 2ke
∑

j=1,...,N
cij=1

clamp
(
sψ2 − ψdij , ψ

m
ij − ψdij

)
.

(63)

When the arguments of the clamp (·) function are vectors, its
definition is equivalent to (37), such that

clamp (y,a) =

{
y if y · a ∈ (0,‖a‖2]
0 otherwise.

(64)

Note that, the geometrical considerations used with some of
the terms from eq. (16) are reminiscent of those used for
controlling purely bearing-based [21] and distance-based [28],
[31], [32], [35] formations. We believe that our example can
also be used as a template for applying the proposed technique
to such systems.

IV. SIMULATION TESTING

In order to test and showcase the presented technique, we
have implemented a simulation of formation control according
to the discussed assumptions, combined with a simulated
relative localization and characteristics mimicking those mea-
sured in UVDAR [15]–[17]. In this simulation, virtual UAVs
can set their velocity and observe their neighbors with noisy
measurements of their relative positions and relative orienta-
tions about the vertical axis. No blind spots are considered
to exist for the relative localization sensor. If one UAV is
connected to another in a pre-defined observation graph, then
it will successfully detect it in every measurement. Relative
localization measurements are retrieved with a fixed rate. After
each new measurement, every agent calculates the control
action using eq. (63) and sets its velocity accordingly until the
next measurement is obtained. Thus, between two consecutive
measurements, the agents follow a linear trajectory and rotate
at a constant rate. To explore how various formations are
affected by our technique, we have employed four distinct
formation scenarios, as seen in Fig. 12:

• two mutually observing UAVs,

(a) Two mutually observing UAVs.
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(b) Three mutually observing UAVs.
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(c) Six mutually observing UAVs.

0.0

1.0

2.0

t c
p
[s
]

0.0

0.5

1.0

t c
ψ
[s
]

0.0

1.0

2.0

σ
tp

[m
]

0.0

0.2

0.4

σ
tψ

[r
ad

]

0 50 100 150 200
0.0

1.0

2.0

f [Hz]

∆
v
[m

/s
]

0 50 100 150 200
0.0
2.0
4.0
6.0

f [Hz]

∆
ω
[r
ad

/s
]

ℓ=0.5 ℓ=0.35

ℓ=0.2 ℓ=0.05

(d) Six UAVs with incomplete observation graph G.

0.0
2.0
4.0
6.0
8.0

t c
p
[s
]

0.0

5.0

10.0
t c
ψ
[s
]

0.0

0.5

1.0

σ
tp

[m
]

0.00

0.05

0.10

0.15

σ
tψ

[r
ad

]

0 50 100 150 200
0.0
0.5
1.0
1.5

f [Hz]

∆
v
[m

/s
]

0 50 100 150 200
0.0

1.0

2.0

f [Hz]

∆
ω
[r
ad

/s
]

ℓ=0.5 ℓ=0.35

ℓ=0.2 ℓ=0.05

Fig. 11: Simulated formation flight of various configurations.

Fig. 12: Desired formations in our simulated experiments. The distance between the
closest pair of agents is 5m. The latter three formations are based on equilateral triangles.
Blue lines denote observations between agents.

• three mutually observing UAVs with a fully connected
observation graph G and the desired formation in the
shape of an equilateral triangle,

• six mutually observing UAVs with a fully connected
observation graph G and desired formation in the shape
of a flat equilateral triangle, where three units represent
its vertices and three units are in the center of each of its
sides,

• six units with the same desired formation as above, with
half of the edges in the observation graph G randomly
removed such that the graph remains connected.

Each scenario was executed with four values of the param-
eter ℓ: 0.05, 0.2, 0.35, and 0.5. When ℓ = 0.5, the control
is equal to the pure proportional FEC, according to the eq.
(16). The proportional factor ke was set to 0.5. The simulated
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measurement noise was set to emulate the properties of a
real vision-based relative measurement system. Specifically,
each measurement was burdened with noise sampled from a
Gaussian probability distribution, such that:

• the distance component of the measured relative position
had an additive noise with a standard deviation of 10%
of the true distance;

• the bearing component had additive noise corresponding
to 0.03 rad;

• the relative heading measurement noise had a standard
deviation of 0.26 rad.

Additionally, each scenario was tested with measurement
rates from 10Hz to 200Hz in increments of 10Hz. Be-
cause movement between the measurements is simulated with
constant velocity, this change in rate can be alternatively
interpreted as a change in the proportional factor kef from
0.05 to 0.0025, as shown in eq. (18).

In every case, the agents were initialized with random
orientations and positions up to 20m from the origin of the
world coordinate frame. Every test was set to run for 2000

f s
in order to ensure that transient effects have passed. Each of
these tests was evaluated according to three separate criteria
for position (p) and orientation (ψ):

• Convergence time tcp and tcψ approximates the time it
took to reach equilibrium. These values were obtained
according to the definition in (45)

• The stable-state noise σtp and σtψ of the formation are
obtained according to (46)

• Mean control-induced velocity and rotation rate change
∆v and ∆ω are obtained according to (47)

The displacement from the 1D definition was substituted for
the norm of the positional component of the formation error
in case of the position. The results of these tests are shown
in Fig. 11. Decreasing the maximal overshoot probability
parameter ℓ generally decreases the mean velocity change ∆v
and mean rotation rate change ∆ω, as well as the stable-state
standard deviations σtp and σtψ . This comes at the cost of an
increase in the convergence time tcp and tcψ

However, if the measurements are obtained with a rate f
that is too low, the agents do not achieve convergence at all,
which is evident particularly in cases with six agents. They
instead oscillate randomly, much like the behavior of a swarm.
This effect is seen in the plots as very high stable-state errors
and low convergence time at the low rate f . The convergence
time is low for these cases, as the system converges to a
chaotic state that does not improve over time. The agents
in this state move in large linear steps, making them deviate
too far from the region where the local linearization of the
gradient according to eq. (12) is a reasonable approximation.
The results also indicate that increasing the number of agents
in the formation increases this effect, as seen in plots with
more agents where the non-convergent behavior occurs with
a higher f . If the number of agents remains unchanged, the
same seems to be the case with more edges in the observation
graph G. A simple explanation is that with more agents, the
error function eF becomes increasingly non-linear w.r.t. to the
local motion of an agent. Additionally, although more edges

Fig. 13: Three UAV platforms used in the real-world experiments.

in the observation graph lead to a more rigid formation in the
theoretical noise-less case, with noise, more edges can lead to a
more noisy formation control, which may be counter-intuitive.
Because the agents do not share their measurements, each
agent is also negatively influenced by noisy measurements
of the other agents’ poses. Similarly to a sum of Gaussian
random variables, the resulting output has a larger uncertainty
than each of the contributing measurements.

This also explains how the stable-state σtp and σtψ seem to
increase with an increasing number of agents or observations,
even if f is sufficiently high to avoid the aforementioned non-
convergent behavior. Notably, Figures 11c and 11d show that
convergence can be achieved at lower rates if the parameter
ℓ is set to low values, illustrating an additional advantage of
our technique for slower relative localization systems.

V. EXPERIMENTAL VERIFICATION

In order to verify that our algorithm is truly suitable for
real-world robotic deployment, we have conducted a series
of flights with three UAVs outdoors in an open space. Each
unit was equipped with three UV-sensitive cameras, and UV
LED markers comprising the full UVDAR system. These
platforms are shown in Fig. 13. The implementation of the
proposed control technique used for the experiments has been
made available on-line2. It is based on the Robot Operating
System (ROS) and the Multi-robot Systems Group (MRS)
UAV system [36] that provides velocity-tracking functionality.
The MRS UAV system relies on a SE(3) geometric controller
for low-level control of the UAV and a Model Predictive
Control (MPC) trajectory tracker that takes the desired tra-
jectory (or in this case, desired velocity) and pre-shapes it
to provide a dynamically feasible full-state reference for the
SE(3) controller to execute.

In the experiments, we alternated between a series of the
desired formations seen in Fig. 14, which we communicated
to all three UAVs using a wireless network. The UAVs then
applied the presented algorithm in combination with relative
pose measurements from UVDAR to achieve that formation.

In order to showcase the need for addressing the effects of
sensory noise in FEC, we have performed experiments with
our modified action according to eq. (63), and with the original
action without restraining according to eq. (16). We have also
performed experiments where we alternated between the two
modes in order to provide a more direct comparison between
the two behaviors. For each flight, we have recorded the agent
positions derived from the precise GNSS-RTK system used as
a ground truth only for evaluation purposes. The following
values are included in the plots:

2https://github.com/ctu-mrs/difec-ron
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Fig. 14: The desired formations used in our experimental verification. The red propellers denote the tail side of the UAVs. The larger formations Al and Cl contain mutual distances
at which UVDAR, at the used setting, can not reliably provide direct localization between UAV UA and UAV UC , such that the formation is “held together” through UAV UB .

A B C Cl
Fig. 15: Flight with four desired formations. Photographs of the top and side view of the formation are from the time of the closest convergence of each case. The top line of
pictures presents flights without the proposed restraining technique, and flights with restraining are at the bottom. Without restraining, the formation significantly drifted and rotated
in the third desired formation due to an accumulation of noise. It also took significantly longer for convergence to occur for this formation. The fourth desired formation was only
achievable with our restraining technique applied. In the case without restraining, chaotic movement occurred and the achieved formation differed significantly from the desired one.

• The norm eF of the error vector eF from eq. (11), which
was obtained using absolute positions.

• The UAV-wise average norm ep of the relative position
difference between individual current and desired relative
positions of neighbors.

• The UAV-wise average difference eψ between individual
current and desired relative orientations of neighbors.

• The UAV-wise average angular velocity vψ where higher
values are detrimental for visual relative localization.

• The UAV-wise average positional acceleration ap where
higher values are detrimental for relative pose estimation.

• The connectivity of the observation graph G, expressed
through the Fiedler eigenvalue f of the Laplace matrix
L of this graph.

A. Small formations

In these experiments, we have alternated between forma-
tions A, B, and C, as shown in Fig. 14. Formation C has
a relatively large distance between UAVs A and C, leading

to greater noise in estimation of both relative position and
relative orientation. First, we have executed the sequence with
restraining activated according to eq. (63). The results of this
test are shown in Fig. 16a. The proportional factor ke was
set to 0.06, the sensor sampling frequency to 10Hz, and the
threshold ℓ was set to 0.3 - a value we empirically determined
to be an adequate compromise between convergence speed
and restraining reaction to sensory noise. Each time a new
desired formation was selected, the actual formation converged
smoothly towards it.

We have then performed this scenario with restraining
disabled, while only activating at specific intervals to show
that doing so stabilized the oscillating motion of the UAVs.
The results of this experiment are shown in Fig. 16b, with
darker areas signifying where restraining was activated. The
formation had a significantly worse rate of convergence to
the desired formation, as well as exhibiting more unnecessary
accelerations and rotations. In the sections where restraining
was activated, this effect is visibly mitigated.
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formation C. In the left plot, restraining was active during the entire flight time. In the right plot, restraining was disabled for most of the flight and enabled for the intervals marked
by the darker color. Note, how enabling restraining rapidly improves the behavior parameters of the formations.
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Fig. 17: Plots of selected parameters measured during the flight of three UAVs where the desired formations were switched dynamically between formation A and the larger formation
formation Al. Note that, without the proposed restraining technique, the formation rapidly loses adherence to the desired shape.
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Fig. 18: Plots of selected parameters measured during the flight of three UAVs where the desired formations were switched dynamically between formation A, formation B, formation
C, and the larger formation Cl. Without the proposed restraining technique, the UAVs occasionally lost contact while following the largest desired formation Cl. This loss of contact
occurred due to the UAVs reaching undesirably large distances from each other as a consequence of measurement noise and their individual disordered motion. The proposed
restraining technique enabled formation preservation, even in these challenging sensory conditions.
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B. Large formations

To test the real-world limits of the proposed algorithm,
we have performed two sequences that end in the more
extreme formations Al and Cl. Formation Al contains distances
between the UAVs at which UVDAR performs poorly, and its
ability to estimate the relative orientation of the target shows
significant noise. Formation Cl contains the distance between
UAVs UA and UC at the limit of the UVDAR operational range,
leading to a state where the two are only held in formation by
mutual visibility with UAV UB .

We have performed two scenarios, each with FEC according
to eq. (16) and with restraining according to eq. (63), where
the proportional factor ke was set to 0.06, the average sensor
sampling frequency at 10Hz, and the threshold ℓ set to 0.3.

In the first scenario, we set formation A as the desired
formation. Once it converged, we set the desired formation
to Al. The results of this experimental scenario are shown in
Fig. 17. It is evident from the plots that without restraining,
the system took significantly longer for convergence to the
desired formation A, and completely failed to converge to the
desired formation Al due to the larger measurement noise at
greater relative distances.

In the experiment with restraining, the periodic oscillations
seen superposed on the region for formation Al are caused
by the central UAV UB oscillating between minimizing the
formation error with respect to UAV UA and UAV UC . This is
due to UAV UB connecting the other two UAVs by mutual ob-
servations while they individually drift in different directions.
This drift was the result of both neighbors observing UAV
UB with high measurement noise, especially in the relative
heading due to the distance. Despite this detrimental behavior
and under all considered aspects, the overall characteristics of
this flight are better than without restraining.

The second scenario comprised of a sequence of desired
formations A, B, C, and Cl, with and without restraining. The
plots of the results from these experiments are shown in Fig.
18. It is clearly visible in these plots that not only were the
accelerations and angular velocities significantly reduced with
restraining, but convergence to the desired formations was also
more precise in comparison with the experiment using the
original approach. With restraining applied, convergence to
the desired formation was achieved, even in cases where the
convergence entirely failed otherwise. Further, a shorter time
scale was required for convergence in the case with restraining
enabled. The unrestrained FEC even caused the observation
graph to disconnect at one point, evidenced by the Fiedler
eigenvalue dropping to zero.

These experiments are shown in the video documentation3.
The most significant results of the three experimental scenarios
are summarized in Table I, where we show the average rotation
rates and acceleration for all three UAVs during each scenario.
The error change rate was averaged from the whole active FEC
period, excluding the instances of desired formation switching.
For the Small formations flight without restraining, we have
excluded the data where restraining was temporarily activated,
seen as dark areas in figure 16. These results clearly show that

3http://mrs.felk.cvut.cz/difec-ron

Flight Value Without With Improv.restraining restraining
Small vψ

[
rad/s

]
0.4096 0.2056 49.8%

formations ap
[
m/s2

]
0.6403 0.3558 44.4%

A B C dep/dt
[
m/s

]
−0.0420 −0.2085 0.167m/s

Large vψ
[
rad/s

]
0.2769 0.2686 3.0%

formations 1 ap
[
m/s2

]
0.5142 0.3759 26.9%

A Al dep/dt
[
m/s

]
0.0146 −0.0190 0.034m/s

Large vψ
[
rad/s

]
0.2579 0.1571 39.1%

formations 2 ap
[
m/s2

]
0.4965 0.2436 50.9%

A B C Cl dep/dt
[
m/s

]
0.0144 −0.0737 0.088m/s

TABLE I: Improvement evaluation for the three experimental flight scenarios. Average
angular velocities and positional accelerations, as well as the rate of change in average
positional formation error, are shown. For all three variables, lower values are better.
The average acceleration values are a metric that shows the amount of oscillations in the
system, where a higher value leads to degradation of the onboard sensing performance.
These values show how the presented technique significantly reduces the tilting and
accelerations negatively affecting computer vision performance. It is also evident that
the UAV team had a significantly increased ability to converge to the desired formation,
as seen by the lower error change rate.

the proposed technique improves FEC both in terms of reduced
tilting, which is beneficial for computer vision performance,
as well as the overall ability of a UAV team to converge to
a desired formation, especially in cases of significantly noisy
relative pose measurements.

In the video documentation, the overall formation exhibits
drifting over time, as is expected since the FEC does not
account for the positions of agents in the world. Modification
of the original cost function that generated the FEC to contain
terms penalizing agent motion is planned for future work.

VI. CONCLUSION

In this work, we present a novel technique to allow
real-world deployment of the classical distributed formation-
enforcing control (DIFEC) based on relative neighbor obser-
vation derived from the graph rigidity theory. This technique,
called restraining, addresses the problems inherent in such
formation control if the relative measurements by onboard
sensors are obtained in discrete time-steps, and are subject to
noise with a known distribution. Since most of the available
onboard relative localization sensors provide discrete data
with known characteristics, this technique has wide range of
applicability. Our proposal involves designing of the control
action, such that we can exploit the knowledge of the statistical
properties of the observation noise.

The user of a multi-robot system utilizing the proposed
technique can specify a level of probability ℓ for the UAVs
to exceed the desired formation pose during the performed
linear motions based on the current relative measurement.

We have applied our technique to formations based on the
relative pose observations comprising the 3D positions and
headings of UAVs. However, this general principle can also be
applied to other situations, such as bearing-based or distance-
based formations, and even to tasks beyond simple formation
enforcement.

We have verified the performance of the presented technique
both in simulation and in real-world experiments with the use
of the UVDAR sensor. All various experiments demonstrated
significant improvement in flight characteristics - see Table
I - and also numerous situations where formation flight fails
without the proposed technique.
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APPENDIX

A. Formation enforcing action in R3 × S1

We will derive a control action that moves the current for-
mation down the gradient of the overall error of the formation.
As established in section II, such control can be expressed as

q̇ =
[
p
]
ke

(
∂κG (q)

∂q

)T
eF . (65)

We must turn the above into control equations usable in a
group of UAVs that do not explicitly communicate their poses
and individually rely only on their observations. Following
similar steps to those used to obtain bearing-based FEC in
[22], we define the relative pose rigidity matrix HW

G :

HW
G (q) , ∂κG (q)

∂q
. (66)

This matrix expresses how much the formation κG (q) changes
with the agent poses q. Thereafter, the four lines of HW

G
corresponding to the edge e = (i, j) are

HW
Gij (q) =

[
-0-

︸ ︷︷ ︸
∂κG/∂pi

−R(ψi)
T

︸ ︷︷ ︸
∂κG/∂ψi

∂R(ψi)

∂ψi

T
pWij -0-

︸ ︷︷ ︸
∂κG/∂pj

R(ψi)
T

︸ ︷︷ ︸
∂κG/∂ψj

0 -0-
-0- 0 −1 -0- 0 1 -0-

]
.

(67)

This expression can be transformed into the local frame of the
agent i, which is then observing agents j through relative pose
measurements. This transformation yields the matrix Hl

G and
comprises of per-edge sub-matrices as follows:

Hl
Gij (κG) =

[
-0- −I3 STpij -0- −R(ψij) 0 -0-
-0- 0 −1 -0- 0 1 -0-

]
(68)

where S =
[
0 −1 0
1 0 0
0 0 0

]
, pij is the relative position of agent

j measured by agent i in its own body frame, and ψij is
the relative heading of agent j measured by i. Note that, the
columns corresponding to changes in pj in the world frame
were also rotated to express their motion w.r.t. the perspective
of agent i. The action q̇ viewed in the local frames of each
individual agent is converted to q̇l, resolving to

q̇l = keH
l
G
T (κG (qd)− κG (q)

)

= [[u1
T , ω1], [u2

T , ω2], ..., [un
T , ωn]]

T .
(69)

If we presume the relative observation graph G to be con-
nected, we can construct a decentralized control scheme that
will enforce the desired formation shared by all observing
agents. The resulting scheme corresponds to eq. (13):

ui = ke


 ∑

j∈Ni
cij

(
pij − pdij

)
−

∑

j∈Ni
cjiR(ψji)

T
(
pji − pjid

)

 ,

ωi = ke


−

∑

j∈Ni
cij

(
pTijS

(
pij − pdij

))

+
∑

j∈Ni
cij

(
ψij − ψdij

)
−

∑

j∈Ni
cji

(
ψji − ψdji

)

 .

B. Stability analysis

In order to analyze the stability of the FEC system obtained
in section II, we propose the following Lyapunov function:

V (eF ) = eF
TPeF (70)

where P is a positive-definite matrix. The time-derivative of
V is

V̇ = ėF
TPeF + eF

TPėF . (71)

The error dynamics ėF are obtained as

ėF =
∂eF
∂t

=
∂eF
∂κG

∂κG
∂q

∂q

∂t
. (72)

Using (12) and (66), the above resolves to

ėF = −I4H
W
G keH

W
G
T
eF . (73)

For notational simplicity, we will define M , HW
G HW

G
T and

simplify the above to

ėF = −keMeF . (74)

Plugging the above into (71) yields

V̇ = −ke
(
eF

TMPeF + eF
TPMeF

)

= −keeF T (MP+PM) eF .
(75)

For the system to be stable in some neighborhood B of
equilibrium eF = 0, it must hold that

V̇ < 0 ∀eF ∈ B\{0}, (76)

therefore (MP+PM) must be a positive definite matrix.
This condition is difficult to evaluate for a general case, since
M depends on the observation graph, desired formation, and
current state q. We will evaluate the condition for a basic
example formation of two agents where agent 1 observes agent
2. In this case,

HW
G =

[
−R(ψ1)

T STpW12 R(ψ1)
T 03

03
T −1 03

T 1

]
, (77)

and therefore M is

M =




2+
(
[pW12 ]2

)2 −[pW12 ]2[p
W
12 ]1 0 [pW12 ]2

−[pW12 ]2[p
W
12 ]1 2+

(
[pW12 ]1

)2
0 −[pW12 ]1

0 0 2 0

[pW12 ]2 −[pW12 ]1 0 2


. (78)

Since M is symmetric, if its leading principal minors are
positive, then it is positive definite. To prove this is the case,
we evaluate all four leading principal minors. These are

m1 = 2 +

([
pW12

]
2

)2

m2 = 4 + 2

([
pW12

]
2

)2

+ 2

([
pW12

]
1

)2

m3 = 8 + 4

([
pW12

]
2

)2

+ 4

([
pW12

]
1

)2

m4 = 16 + 4

([
pW12

]
2

)2

+ 4

([
pW12

]
1

)2

(79)

In the above, mo denotes the leading principal minor corre-
sponding to the determinant of the upper-left submatrix of size
o × o. All of the above leading principal minors are positive
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for pW12 ∈ R3, and thus M is a positive definite matrix.
Therefore, choosing trivial P = I4 for (75), condition (76)
holds for arbitrary B and thus the system is stable, converging
to eF = 0.

The above can not be trivially generalized to an arbitrary
formation. In general, M will have the format

M=HHT =



E1

E2

...



[
E1

T E2
T . . .

]
=



E11 E12 . . .
E21 E22 . . .

...
...

. . .


, (80)

where Ea is a set of four rows in H corresponding to the
observation graph edge a in the form of (67), and we define
Eab , EaEb

T which is a symmetrical 4×4 matrix. When the
edges a and b do not share a vertex (an agent), then Eab = 04.
Each Eaa has the format of (78), substituting vertex indices
1 and 2 for the indices of vertices connected by edge a. If
edges a and b both lead out of their shared vertex, Eab has
the format

Eab =




1+
(
[pWa ]

2

)2
−[pWa ]

2
[pWa ]

1
0 [pWa ]

2

−[pWa ]
2
[pWa ]

1
1+

(
[pWa ]

1

)2
0 −[pWa ]

1

0 0 1 0

[pWa ]
2

−[pWa ]
1

0 1


, (81)

where pa is the relative position represented by the observation
edge a. If edges a and b both lead into their shared vertex,
Eab has the format of 4×4 identity matrix

Eab = I4. (82)

If edge a leads from vertex i into vertex j and edge b leads
out of vertex j, Eab has the format

Eab =


−R(ψj)TR(ψi)



−[pWa ]

2

[pWa ]
1

0




[ 0 0 0 ] −2


. (83)

Lastly, if edges a and b connect vertices i and j in mutually
opposite directions, Eab has the format

Eab =




−R(ψi)
TR(ψj)−R(ψj)

T
R(ψi)



−[pWa ]

2

[pWa ]
1

0




[
−[pWb ]

2
[pWb ]

1
0
]

−2


. (84)

The above can serve as building blocks for evaluating the
stability of various relative pose-based formations, and general
analysis is out of the scope of this work.

C. 1 active agent and 1 passive agent

We will analyze the performance of our controller in
a simplified scenario with two unidimensional agents with
positions p1[k], p2[k] ∈ R. Agent 2 is static while Agent 1
implements our robust controller, so that its relative position
to Agent 2 (p12[k] , p2 − p1[k]) reaches a desired relative
position pd12. We also introduce the displacement ∆12[k] ,
p12[k] − pd12. Agent 1 has a noisy unbiased measurement
pm12[k] , p12[k]+e12[k] with e12[k] ∼ N (0, σ12[k]

2), and also
has an estimate of σ12[k] denoted σ̂12[k]. We will assume that
σ̂12[k] = σ12[k]. Due to the error, we have a measure of the

displacement δ12[k] , ∆12[k] + e12[k]. The position of Agent
1 is then given by:

p1[k + 1] = kefd1[k] + p1[k],

d1[k] = clamp(y12[k], p12[k]
m − pd12)

=

{
y12[k] if |δ12[k]| > −σ̂12[k]Φ

−1(ℓ),

0 otherwise

y12[k] = sign (δ12[k])σ̂12[k]Φ
−1(ℓ) + δ12[k]

(85)

We assume ℓ ∈ (0, 0.5], and thus Φ−1(ℓ) ≤ 0. Let us start
by calculating the conditional probability that the agent does
not move at time instant k, given ∆12[k]. We refer to this
probability as the conditional stopping probability:

q1[k](∆12[k]) , P
(
d1[k] = 0 |∆12[k]

)

= P
(
|∆12[k] + e12[k]| ≤ −σ̂12[k]Φ

−1(ℓ)
) (86)

Since e12[k] follows a Gaussian distribution, and we are
assuming σ̂12[k] = σ12[k], then it follows that:

q1[k](∆12[k]) = Φ
(
−∆12[k]/σ̂12[k]− Φ−1(ℓ)

)

− Φ
(
−∆12[k]/σ̂12[k] + Φ−1(ℓ)

)
.

(87)

Note that, the arguments of the right-hand side terms of (87)
are antisymmetric. This stopping probability is caused by the
clamping function. From Fig. 19, we can see that clamping
introduces a spatial probabilistic motion filter. The motion
probability of the agent decreases as |∆12[k]| becomes smaller,
with the minimum motion probability:

q̄1[k](0) = 2ℓ, (88)

where q̄1[k](∆12[k]) = 1 − q1[k](∆12[k]). We observe that
the effect of this spatial probabilistic motion filter becomes
negligible for |∆12[k]

′ | ≥ −Φ−1(ℓ) + 3 where ∆12[k]
′ ,

∆12[k]
σ̂12[k]

. Thus, we can approximate the nonlinear system (85)
with the switched system (89).

p1[k+1]=





kefclamp(y12[k], p12[k]
m − pd12) + p1[k]

if |∆12[k]
′ | ≤ −Φ−1(ℓ) + 3,

kefy12[k] + p1[k] otherwise,
(89)

When the agent is close to reaching the target pd12 (i.e., when
∆12[k]

′ ∈ Sℓ where Sℓ =
[
Φ−1(ℓ)− 3,−Φ−1(ℓ) + 3

]
), then

the switched system (89) behaves as the nonlinear system
(85). Otherwise, the switched system (89) behaves like a linear
system.

1) Linear System: When the switched system operates as
a linear system, we have:

p1[k + 1] =

= kef
(
sign (δ12[k])σ̂12[k]Φ

−1(ℓ) + δ12[k]
)
+ p1[k],

= kef
(
sign (∆12[k] + e12[k])σ̂12[k]Φ

−1(ℓ) + ∆12[k]
)

+ kefe12[k] + p1[k],

since p2 − p1[k]− pd12 = ∆12[k], then:

∆12[k + 1] = −kef sign (∆12[k] + e12[k])σ̂12[k]Φ
−1(ℓ)

− kefe12[k] + (1− kef )∆12[k],
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We divide the equation by σ̂12[k]:

∆12[k + 1]

σ̂12[k]
= −kef sign (∆12[k] + e12[k])Φ

−1(ℓ)

− kefe12[k]

σ̂12[k]
+ (1− kef )

∆12[k]

σ̂12[k]
,

Now, σ12[k] varies slowly with the distance |∆12[k]|, and thus
we can say that the standard deviation of the error for two
consecutive instants is approximately constant, i.e., σ12[k] ≈
σ12[k + 1]. Therefore, ∆12[k+1]

σ̂12[k]
≈ ∆12[k+1]

σ̂12[k+1] = ∆
′
12[k + 1].

Lastly, we have:

∆
′
12[k + 1] = −kef sign (∆12[k] + e12[k])Φ

−1(ℓ)

− kefe12[k]

σ̂12[k]
+ (1− kef )∆12[k]

′
,

We then take the expected value w.r.t. the measurement noise

E[∆
′
12[k + 1]] = −kefE[sign (∆12[k] + e12[k])]Φ

−1(ℓ)

+ (1− kef )E[∆12[k]
′
],

where

E[sign (∆12[k] + e12[k])] = sign(∆12[k])p̄e(k)

− sign(∆12[k])pe(k),
(90)

and

pe(k) = P
(
sign(∆12[k]) 6= sign(∆12[k] + e12[k])

)

= P

(
∆12[k] + e12[k]

∆12[k]
< 0

)
= 1− Φ

(∣∣∣∆
′
12[k]

∣∣∣
) (91)

However, this system is valid only for ∆
′
12[k] /∈ Sℓ and

under this condition, pe(∆12[k], k) ≪ 1. As a consequence,
E[sign (∆12[k] + e12[k])] ≈ sign(∆12[k]). In addition, since
σ̂12[k] > 0, then sign(∆12[k]) = sign(∆

′
12[k]). Therefore,

E
[
∆

′
12[k + 1]

]
≈ −kef sign (∆

′
12[k])Φ

−1(ℓ)

+ (1− kef )E
[
∆

′
12[k]

]
,

(92)

Next, we write the iterative eq. (92) as a function of the initial
state ∆

′
12[0]:

E
[
∆

′
12[k+1]

]
= −kefΦ−1(ℓ)

k∑

n=1

sign(∆
′
12[n])(1−kef )n−1

+ (1− kef )
k+1∆

′
12[0].

(93)

Since this system is valid for ∆
′
12[k] /∈ Sℓ and 0 ∈ Sℓ, we

then have that sign(∆
′
12[k]) = sign(∆

′
12[0]) for all k, as long

as this system is valid. Thus, we obtain the following linear
system:

E
[
∆

′
12[k + 1]

]
= −kef sign(∆

′
12[0])Φ

−1(ℓ)
k∑

n=1

(1− kef )
n−1

+ (1− kef )
k+1∆

′
12[0],

(94)
and using the geometric series formula, we obtain:

E
[
∆

′
12[k + 1]

]
= − sign(∆

′
12[0])Φ

−1(ℓ)(1− (1− kef )
k+1)

+ (1− kef )
k+1∆

′
12[0].

(95)

If kef ∈ (0, 2), then |1− kef | < 1 and the system is stable.
Consequently, we have:

lim
k→+∞

E
[
∆

′
12[k + 1]

]
= − sign(∆

′
12[0])Φ

−1(ℓ) (96)

and − sign(∆
′
12[0])Φ

−1(ℓ) ∈ Sℓ. This implies that if ∆
′
12[0] /∈

Sℓ and the system is stable, then for some value k, we will
have ∆

′
12[k] ∈ Sℓ. This demonstrates that if the system is

stable. If it is operating in the linear region, then it will enter
into the clamped region eventually.

2) Nonlinear System: Now, let us focus on ∆12[k] ∈
Sℓ. During this phase, the standard deviation σ12[k] of the
measurement error remains approximately constant, since the
motion of Agent 1 is small w.r.t. its distance to Agent 2. We
will denote this final value of σ12[k] as σ.

∆12[k + 1] = ∆12[k]

− kefclamp(sign (δ12[k])σΦ
−1(ℓ) + δ12[k], p12[k]

m − pd12)
(97)

Then, we take the expected value w.r.t. the measurement noise:

E
[
∆12[k + 1]

]
= E

[
∆12[k]

]

− kefE
[
clamp(sign (δ12[k])σΦ

−1(ℓ) + δ12[k], p12[k]
m − pd12)

]

(98)
which becomes:

E
[
∆12[k + 1]

]
= E

[
∆12[k]

]

+ kefEk

[∫ L−

−∞

(
σΦ−1(ℓ)−∆12[k]− x

)
fe(x)dx

]

− kefEk

[∫ ∞

L+

(
σΦ−1(ℓ) + ∆12[k] + x

)
fe(x)dx

] (99)

where L− = −∆12[k] + σΦ−1(ℓ) and L+− = −∆12[k] −
σΦ−1(ℓ). E[∆12[k]] is the expected value w.r.t. all the mea-
surement errors (i.e., e12[0], e12[1], · · · , e12[k]), but Ek[∆12[k]]
is the expected value w.r.t.all the measurement errors except
the current one (i.e., e12[0], e12[1], · · · , e12[k−1]). Then fe(x) is
the probability density function of e12[k]. After some algebra
and calculating the corresponding integrals, we obtain:

E
[
∆12[k + 1]

]
= E

[
∆12[k]

]

+ kefσΦ
−1(ℓ)E

[
Φ
(
−∆12[k]/σ +Φ−1(ℓ))

)]

+ kefσΦ
−1(ℓ)E

[
Φ
(
−∆12[k]/σ − Φ−1(ℓ)

)]

− kefE
[
∆12[k]

]
− kefσΦ

−1(ℓ)

− kefE
[
∆12[k]Φ

(
−∆12[k]/σ +Φ−1(ℓ)

)]

+ kefE
[
∆12[k]Φ

(
−∆12[k]/σ − Φ−1(ℓ)

)]

+
σkef√
2π

E
[
exp

(
−(−∆12[k] + Φ(ℓ))2/2σ2

)]

− σkef√
2π

E
[
exp

(
−(−∆12[k]− Φ(ℓ))2/2σ2

)]

(100)

We approximate the nonlinear terms in the previous equation
with their first-order Taylor series w.r.t. ∆12[k] and centered
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around ∆12[k] = 0. Thus, we obtain:

E
[
∆12[k + 1]

]
≈ −2kef ℓE[∆12[k]] + E

[
∆12[k]

]

− kef

√
2

π
Φ−1(ℓ) exp

(
− (Φ−1(ℓ))2

2σ2

)
E
[
∆12[k]

]

+ kef

√
2

σ2π
Φ−1(ℓ) exp

(
− (Φ−1(ℓ))2

2σ2

)
E
[
∆12[k]

]

= (1− k
′
ef )E

[
∆12[k]

]

(101)

where

k
′
ef =kef



(
1− 1

σ

)√
2

π
Φ−1(ℓ) exp

(
−(Φ−1(ℓ))2

2σ2

)
+2ℓ


. (102)

As long as |1− k
′
ef | ∈ (0, 1), the system (101) will be stable

and we will have:

lim
k→∞

E
[
∆12[k]

]
= 0 (103)

Nevertheless, if k
′
ef ∈ (0, 1), then the system operates in an

overdamped regime, but if k
′
ef ∈ (1, 2), then it operates in an

underdamped regime.
Calculating the exact variance of the system under its

steady state involves considering extremely long equations
and solving complicated integrals of highly nonlinear func-
tions. Nevertheless, it is possible to analytically calculate the
conditional variance of the system given ∆12[k] = 0, which
corresponds to the expected value of the system in the steady
state and it is given by:

var[∆12[k+1]|∆12[k]=0] = 2k2efσ
2Φ−1(ℓ)ℓ+ 2k2efσ

2ℓ

+ 2k2efσ
2Φ−1(ℓ)/

√
2π exp

(
−(Φ−1(ℓ))2/2

) (104)

This equation was obtained by first setting ∆12[k] = 0 and
following a similar procedure as that used to calculate the
expected value in (100). The conditional variance (104) is a
strictly increasing function of ℓ for ℓ ∈ [0, 0.5].

We refer to the duration T expressing the number of
consecutive time steps in which p1[k] remains constant (∀o ∈
[1, T ] : p1[k+o] = p1[k]) as the coherence time kcoh of
the system. This coherence time conditioned on ∆12[k] is a
random variable that follows a geometrical distribution

P(T = n |∆12[k] = z) = (q1[k](z))
n−1q̄1[k](z), (105)

and conditional expected value

E[T |∆12[k] = z)] =
1

q̄1[k](z)
. (106)

The unconditional distribution and expected values are:

P(T = n) =

∫ +∞

−∞
P(T = n |∆12[k] = z)f∆12 [k](z)dz,

E[T ] =

∫ +∞

−∞

f∆12 [k](z)

q̄1[k](z)
dz, (107)

where f∆12
[k](z) is the probability density function of ∆12[k]

during the steady state. Analytically deriving such a probabil-
ity density function is extremely complicated, but after per-
forming a large numerical analysis on numerical simulations,

kef 0.1 0.5 1.0 1.5 1.9
β(kef ) 0.7251 0.8266 1.043 1.498 3.177

TABLE II: Table for β(kef ).
ℓ 0.45 0.3 0.2 0.1 0.05

From simulations 1.1084 1.6491 2.4722 4.8897 9.6895
From (107), (108) 1.1083 1.6494 .4604 4.8912 9.7489

TABLE III: Expected coherence time kcoh (σm = 0.1, kef = 0.1).

we observed that 1) the steady-state probability distribution
f∆12 [k](z) of the system (97) can be considered Gaussian
for the range {ℓ, kef} ∈ [0.1, 0.5] × [0.1, 1]. This hypothesis
is validated by the extremely low values of the Kullback-
Leiber divergence calculated between the density function
obtained through simulations and the Gaussian distribution,
see Table IV; 2) the variance of ∆12[k] decreases with ℓ; 3)
for kef ∈ [0.1, 1.9] and ℓ ∈ [0.01, 0.5], a good approximation
for the variance of ∆12[k] is4:

σss,res
2 =

kefσ
2

2− kef
exp

(
β(kef )Φ

−1(ℓ)
)

(108)

where β(kef ) is given in table II. We then observe in table
III a comparison of the expected coherence time estimated by
simulation and the numerical approximation.

D. 2 active agents
We consider again the same unidimensional scenario, except

that now Agent 2 is also active and implements the same
controller as Agent 1. This scenario corresponds to the real-
world case when two agents are mutually observing. The
dynamics of such agents is expressed as follows:

p1[k + 1] = kefclamp(y12[k], p12[k]
m − pd12) + p1[k],

p2[k + 1] = kefclamp(y21[k], p21[k]
m − pd21) + p2[k],

yij [k] = sign (δij [k])σ̂ij [k]Φ
−1(ℓ) + δij [k],

δij [k] = ∆ij [k] + eij [k],

∆ij [k] = pj [k]− pi[k]− pdij ,

pij [k]
m = pj [k]− pi[k] + eij [k],

(109)

where eij [k] and eji[k] are statistically independent, but we
will assume for simplicity that they have the same variance.
Thus, pd21 = −pd12, although in general, p21[k]m 6= −p12[k]m.
Next, we analyse the following system:

∆12[k + 1] = kefclamp(y21[k], p21[k]
m − pd21) (110)

− kefclamp(y12[k], p12[k]
m − pd12) + ∆12[k]

Using similar reasoning as in the previous case for 1 Agent, we
approximate system (110) with the following switched system

∆12[k+1]=





kefC12[k] + ∆12[k+1]

if |∆12[k]
′ | ≤ −Φ−1(ℓ) + 3,

kef (y21[k]−y12[k]) + ∆12[k+1] otw.,

C12[k] = clamp(y21[k], p21[k]
m − pd21)

− clamp(y12[k], p12[k]
m − pd12),

(111)

kef = 0.1 kef = 0.5 kef = 1.0
ℓ = 0.1 0.0018 0.0035 0.0122
ℓ = 0.3 0.0005 0.0009 0.0051
ℓ = 0.5 0.0003 0.0002 0.0002

TABLE IV: Kullback-Leibler divergence between the ∆[k] probability density function
measured from simulations pS and pG(z) = 1/(σ̂m

√
2π) exp

(
−z2/2σ̂2

m

)
. σ̂m

is the variance of ∆[k] estimated from simulations.
4This approximation was obtained heuristically by extensive analysis of

simulation data and its error was observed to be significantly low.
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Fig. 19: Conditional stopping probability conditioned on the offset ∆[k] from the
measured target position with measurement variance σm. The red line shows the
symmetric restrained target position derived from ℓ, while the blue lines delimit the
area into which the system state converges akin to proportional control.

with ∆12[k]
′
=∆12[k]/σ[k]. For ∆12[k]

′
/∈ Sℓ using (92), we

obtain:

E
[
∆12[k+1]

′] ≈ kefΦ
−1(ℓ)

(
sign (∆21[k]

′
)− sign (∆12[k]

′
)
)

+ (1− kef )E
[
∆12[k]

′]
+ kefE

[
∆21[k]

′]
,

= −2kefΦ
−1(ℓ) sign (∆12[k]

′
)

+ (1− 2kef )E
[
∆12[k]

′]

(112)
From (112), we observe that this system is stable for |1 −
2kef | ≤ 1, i.e., for kef ∈ [0, 1]. As opposed to the system
(92) that is stable for kef ∈ [0, 2]. This shows that as the
number of agents interacting with each other increases, the
range of the gain kef over which the system is stable shrinks.

Finally, if kef ∈ [0, 1], then the system (112) will enforce
∆12[k] ∈ Sℓ for some k. Once this happens, the probability
that one agent has its input clamped rapidly increases, leading
to the 1 mobile agent case where we have established that
E[∆12[k]] → 0. Eventually, the other agent may stop having its
input clamped, but ∆12[k] will be smaller, and the probability
that any of the agents will have its input clamped will be even
higher. This demonstrates the stability of the system.
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Chapter 5

Conclusion

This thesis has presented my work on the topic of mutual relative localization and
stabilization of UAVs.

The first contribution of my work is to Vision-based Relative Localization (VRL) for
UAVs, represented by the development of the UVDAR system, a unique smart sensor that
became an enabling technology for real-world deployment of closely cooperating UAVs. This
system is presented in this thesis in three publications detailing its core operational principles.
The system was used extensively in research by our group, as outlined in the related sections
of this thesis. Additionally, the system was used in cooperation with researchers from the TII
institute [33]–[37], and it even shows early adoption by independent researchers [38].

The second contribution pertains to relative visual stabilization of UAVs, represented
by development of vision-based fire extinguishing methods. These methods address the bi-
directional interaction of the real UAV motion with the camera image in feedback. The merit
of these methods is highlighted by their successful use in the fire-fighting challenge of the
MBZIRC 2020 competition, as shown in the three publications presented in this thesis.

Lastly, I have contributed to the field of vision-based cooperation of UAVs in various
modalities, as presented in four publications in the last section of this thesis. We have used
UVDAR to create a practical annotated training dataset for aerial VRL of UAVs using Ma-
chine Learning (ML)-based detectors, which have seen a significant increase in popularity,
and this dataset was published for use by the multi-robot community. Additionally, various
cooperation methods were all tested in real deployment in outdoor conditions, which was
enabled by the development of UVDAR. Besides being among the first to perform real out-
door sensor-based swarm flights, we have leveraged the novel features inherent in UVDAR to
perform distributed formation flying. In particular, the last publication in this thesis proposes
and shows a distributed formation-enforcing control (FEC) method in real-world deployment
that takes into account the statistical distribution of the sensory noise inherent in a VRL sys-
tem, which was not taken into consideration in prior literature. This method enables teams
of UAVs to assume a formation, even in cases where the amount of noise in VRL would
otherwise prevent it.

5.1 Future work
The primary direction in which I aim to continue my work is distributed formation

control, as represented by my latest paper. Multiple specific aspects of this topic are yet to
be explored, including a more in-depth analysis of the dynamics of a formation driven with
noisy relative measurements, exploration of non-linear control action for greater optimality
of the overall behavior, integration of collision-avoidance into formation-enforcing control,
consideration of the non-Gaussian noise distribution of a visual relative localization, and
more. Furthermore, the UVDAR system is still being improved by new technologies and
ideas by myself and some of my younger colleagues, including non-linear signal trajectory
extraction, usage of event-based cameras for significantly higher transmission band-width
and tracking speed, and fusion with other sensors, such as UWB range sensors, for better 3D
pose estimation precision.
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Chapter 6
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