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Abstract  

Wireless Sensor Network (WSN) is an important technology in the field of telecommunication offering 
a wide range of applications across various sectors. It is used for monitoring, data collection, and 
measuring physical signals in both natural and artificial environments. A WSN consists of numerous 
distributed sensors, strategically placed in various locations. These sensors work in unison to gather 
data from their surroundings and share this information via wireless connections. The collective data is 
then utilized for decision-making processes or continuous monitoring purposes. WSNs find their 
application in a range of scenarios, from compact system implementations to extensive environmental 
monitoring. Energy management in Wireless Sensor Networks (WSN) is crucial, given that the nodes 
are typically powered by batteries with limited energy capacity. The primary goal of WSN energy 
management systems is to extend the network's operational lifespan while maintaining its 
communication efficiency at acceptable levels. This is achieved by optimizing energy consumption 
through various strategies. Key methods include extending the sleep periods in the duty cycling 
approach, which alternates between active and inactive states to conserve power. Data aggregation 
from multiple sensors is employed to reduce the frequency of transmissions, thereby saving energy. 
Additionally, the implementation of energy-efficient routing protocols, such as LEACH (Low-Energy 
Adaptive Clustering Hierarchy), further contributes to minimizing energy expenditure during data 
transmission. Another pivotal aspect is the use of energy harvesting technologies, either to recharge 
the batteries or to facilitate battery-less operation of sensors, thus significantly enhancing the 
sustainability and endurance of the network. In this dissertation, a novel approach for an energy 
management system in Wireless Sensor Networks (WSN) is presented. This system uniquely integrates 
two energy harvesting methods: photovoltaic (PV) and mechanical vibration, specifically using 
piezoelectric PZT materials, alongside a conventional battery. This integration aims to significantly 
extend the battery's lifespan and enhance the communication efficiency of the network. By harnessing 
energy from two distinct renewable sources, the system effectively mitigates the issue of unreliability 
associated with individual renewable sources, as the energy harvesters rely on different types of 
renewable energy. The core of this system lies in its intelligent selection mechanism for the energy 
source powering each node. This selection is based on real-time data regarding the status of the PV 
harvester, the piezoelectric harvester, and the battery's state of charge (SoC). For the PV harvester, the 
dissertation introduces an innovative hybrid solar energy prediction algorithm. This algorithm 
combines statistical methods and deep learning techniques to forecast the availability of solar energy 
for the upcoming hour. This forecast is then compared with the energy data from the PZT harvester, 
derived from a lookup table based on vibration resources, alongside the current SoC of the battery. To 
optimize the Quality of Service (QoS) of the network, a novel algorithm is proposed. This algorithm 
dynamically adjusts the transmission power level, data rate, and duty cycle based on the available 
energy resources. It aims to maintain the minimum QoS requirements while simultaneously addressing 
a multi-objective optimization problem. This problem focuses on maximizing QoS and prolonging the 
battery's lifespan. The proposed system thus presents a holistic approach to energy management in 
WSNs, leveraging the synergy of multiple energy sources and advanced algorithmic strategies to 
achieve superior network performance and sustainability. 

Keywords: Telecommunication, WSN, Energy Management System, Solare Energy Prediction, Energy 
Harvesting, Piezoelectric, Battery, QoS, Deep Learning. 
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Abstrakt 

Bezdrátová senzorová síť (Wireless Sensor Network – WSN) je důležitou technologií pro monitorování, 

sběr dat a měření fyzikálních signálů v přírodních i umělých prostředích. WSN se skládá z mnoha 

distribuovaných senzorů, strategicky umístěných na různých místech. Tyto senzory společně pracují na 

sběru dat ze svého okolí a sdílení těchto informací prostřednictvím bezdrátových komunikačních 

prostředků. Sběr dat je poté využíván pro rozhodovací procesy nebo pro nepřetržitý monitoring. WSN 

nacházejí uplatnění v řadě scénářů, od kompaktních systémových implementací po rozsáhlý 

environmentální monitoring. Správa energie v bezdrátových senzorových sítích (WSN) je klíčová, 

vzhledem k tomu, že komunikující uzly jsou typicky napájeny bateriemi s omezenou kapacitou. Hlavním 

cílem systémů pro správu energie WSN je prodloužit operační životnost sítě při zachování její funkčnosti 

na přijatelné úrovni. Toho je dosaženo optimalizací spotřeby energie s využitím různých strategií. 

Klíčové metody zahrnují prodloužení doby spánku v přístupu duty cycling, který střídá aktivní a 

neaktivní stavy za účelem šetření energie. Agregace dat z více senzorů je použita k snížení frekvence 

přenosů, čímž se šetří energie. Dále implementace energeticky účinných směrovacích protokolů, jako 

je (Low-Energy Adaptive Clustering Hierarchy– LEACH), přispívá k minimalizaci energetických výdajů 

během přenosu dat.  Dalším klíčovým aspektem je využití technologií pro sběr energie, buď pro dobíjení 

baterií, nebo pro usnadnění provozu senzorů bez baterií, čímž se významně zvyšuje udržitelnost a výdrž 

sítě. V této disertační práci je prezentován nový přístup k systému pro správu energie v bezdrátových 

senzorových sítích (WSN). Tento systém inovativním způsobem integruje dvě metody sběru energie: 

fotovoltaickou (PV) a z mechanických vibrací, konkrétně s využitím piezoelektrických materiálů PZT, v 

kombinaci s konvenční baterií. Tato integrace má za cíl výrazně prodloužit životnost baterie a zvýšit 

celkovou efektivitu sítě. Využíváním energie ze dvou odlišných obnovitelných zdrojů navrhovaný systém 

vhodně řeší problém nespolehlivosti spojený s jednotlivými obnovitelnými zdroji, jelikož sběrače 

energie spoléhají na různé, vzájemně se doplňující, druhy obnovitelné energie. Jádrem tohoto systému 

je inteligentní mechanismus pro volbu zdroje energie napájející každý uzel sítě. Volba je založena na 

reálných datech o stavu fotovoltaického sběrače, piezoelektrického sběrače a stavu nabití baterie (SoC). 

Pro fotovoltaický sběrač disertace navíc představuje inovativní hybridní algoritmus pro predikci 

dostupného výkonu. 

Klíčová slova: Telekomunikace, WSN, systém pro správu energie, predikce solární energie, sběr energie, 

piezoelektrický, baterie, QoS, hluboké učení.
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 INTRODUCTION 

Wireless Sensor Network (WSN) is a set of distributed wireless sensors called nodes or motes 

collaborating to collect and share data from the surrounding area over wireless links. Its stimulation 

feature to the physical and chemical signals can measure and detect physical and chemical conditions 

like temperature, humidity, light, gases, etc., and convert them to data suitable for analysis and 

decision-making [1]. WSN is an integral component in the Internet of Things (IoT) applications in various 

domains like industry, healthcare, military, transportation, smart building, etc. [2]. The wireless sensor 

node consists of the sensing subsystem, which includes the physical sensors that capture data from the 

environment. The processing subsystem comprises a microcontroller and memory for processing and 

saving data. The communication subsystem consists of a transceiver module for transmitting and 

receiving that supports wireless protocols like Wi-Fi, Bluetooth, Zigbee, LoRa, etc. The power subsystem 

comprises energy sources (battery, supercapacitor, or energy harvesting) and a power management 

unit, which can be a simple circuit or a Power Management Integrated Circuit (PIMC).  

WSN faces many challenges, like energy constraints, limited computing and storage resources, security 

and privacy, Quality of Service (QoS), etc. [3]. The common factor in most challenges is the energy 

constraints because the WSN nodes are commonly battery-powered, and the high number of WSN 

nodes makes replacing the battery costly and complex. This thesis is focusing on energy constraints and 

QoS problems. 

For energy constraints problem researchers proposed providing another energy resource by using an 

energy harvesting system as an alternative to the battery or having a hybrid system that combines the 

energy from both resources. However, the battery has a significant disadvantage: degradation when its 

capacity decreases after each charging/discharging cycle. Also, the disrupted nature of renewable 

energy sources makes designing an efficient Energy Management System (EMS) critical. The efficient 

EMS combines energy from several renewable energy sources, leading to less battery use and 

consequently extending its life span. An efficient method to combine the energy of several resources is 

crucial since the portability of missing harvesting available energy is high. A prediction algorithm can 

forecast the available energy to be harvested is a good solution, and researchers proposed several 

methods for this goal that can be grouped into physical, statistical, hybrid, and adaptive methods. The 
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accuracy and computational requirements vary according to the application and environment. So, an 

accurate and optimal prediction algorithm is crucial to design an efficient EMS.  

For QoS problem researchers proposed several methods: transmission power selection, data rate 

adjustments, duty cycle adaptation, data compression, sensing rate adjustment, channel selection, and 

signal power modification. All methods aim to minimize the QoS to save energy consumption in the 

WSN. An efficient adaptive QoS algorithm to maximize the QoS is crucial since accurate data demand 

is increasing with modern applications. 

The thesis aims to maximize the network’s QoS and extend the life span of the network by 

implementing an EMS combines the energy from two harvesters Photovoltaic (PV) and Piezoelectric 

(PZT) to provide a sustainable energy resource to the WSN node. The contributions in this thesis in brief: 

• A novel Energy Management System combines the energy from two resources PV and PZT 

harvesters based on the prediction algorithm is introduced and validated. And, a new algorithm 

to estimate the battery’s State of Charge (SoC) is introduced. 

• A novel hybrid forecasting algorithm for solar energy using statistical and machine learning 

methods is introduced and optimized for embedded devices. 

• A novel algorithm to maximize the QoS while efficiently using the battery to extend the 

operational life time and lifespan of the IoT device and consequently the WSN. 

 Objectives 

The general objective of this thesis is to enhance the Quality of Service (QoS) and extend the lifespan 

of the Wireless Sensor Network (WSN) by designing an efficient Energy Management System (EMS) for 

the WSN node and an adaptive control of the QoS. The detailed objectives of the thesis are as follows: 

Objective 1: To design a novel Energy Management System (EMS) that combines the energy from two 

harvesters, Photovoltaic and Piezoelectric, to extend the life span of WSN node batteries.  
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Objective 2: To study various solar energy forecasting methods, including physical, statistical, adaptive, 

and hybrid models, focusing on their effectiveness and accuracy, mainly through machine learning and 

deep learning techniques. 

Objective 3: To develop and validate a novel hybrid forecasting algorithm that integrates a Random 

Forest classifier with a Convolutional Neural Network (CNN) model, aiming to enhance the precision 

and efficiency of solar energy predictions, focusing on optimizing the model for potential deployment 

in Wireless Sensor Network node. 

Objective 4: To develop an algorithm and a framework that ensures high Quality of Service QoS while 

efficiently using the battery to extend the operational life and lifespan of the wireless sensor node. And 

validate the proposed algorithm with actual data using realistic Energy Management System (EMS) 

hardware and Wireless Sensor Network. 

 Thesis Overview 

This thesis consists of seven chapters as follows: 

Chapter 1 is an introduction to WSN technology and the challenges facing this technology. The necessity 

to enhance the quality of service and the energy management system is addressed. The main 

contributions and the thesis objectives are presented. 

Chapter 2 presents the theoretical background of the WSN technology and the energy management 

system for WSN. The theory of energy storage devices and their characteristics, pros, and cons are 

illustrated. The theoretical background of a single energy harvesting system as a power supply for IoT 

devices is presented, and a comparison between the different kinds of this technology and their 

characteristics, advantages, and disadvantages are illustrated. The state of the art of combining 

multiple energy harvesting techniques is presented with comparisons between the variant techniques 

is done. 

In Chapter 3, the requirements of EMS for IoT devices are mentioned. The theoretical background of 

the PV, PZT harvesters, and battery management system are explained. The novel EMS for IoT device is 

presented, which combines the energy from PV and PZT harvester to extend the life operational time 

of the IoT device and prolong the lifespan of the battery. The dynamic behavior of the EMS is illustrated. 
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In Chapter 4, an analysis of photovoltaic energy forecasts is done using multiple models and methods 

with a focus on the common approaches to solar energy forecasting over the short term, including 

physical, statistical, adaptive, and hybrid methods, and their advantages and disadvantages. A study of 

the effectiveness of deep learning techniques in solar energy forecasting, including Deep Neural 

Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and 

Convolutional Neural Networks (CNN), is presented. To improve the CNN model's precision and 

effectiveness, a novel hybrid approach that combines a Random Forest classifier with a CNN model is 

designed. The validation results are presented, which show that the hybrid approach reduced errors by 

about 7% when compared to the CNN model used alone. The optimization of the CNN model size while 

maintaining its performance, making it appropriate for Internet of Things (IoT) devices, is performed. 

In Chapter 5, the study of Quality of Service (QoS) in Wireless Sensor Networks (WSNs) is done with a 

focus on the duty cycle and transmission power. A novel algorithm is presented for adaptive 

management of power transmission and duty cycle, based on the availability of energy from multiple 

sources, which can enhance QoS in IoT devices without compromising energy conservation. A solution 

for a multi-objects optimization problem is presented to provide the balance between QoS and energy 

sustainability in WSN. 

In Chapter 6, The validation is done over 15 years for the proposed EMS and adaptive management of 

power transmission and duty cycle is done for different values of channel pathlosses. The results are 

shown for different used energy resources scenarios: battery only, PV harvester only, PZT harvester only, 

and Hybrid system (battery, PV, and PZT). 

In Chapter 7, The experiments with real hardware are done. The results for one week with the same 

scenarios in discussed and compared to simulation. 

In Chapter 8, the conclusion is presented with a summary of the thesis results. And the future work in 

the field of enhancing the QoS and EMS in WSN is suggested. 
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 STATE OF THE ART 

 Wireless Sensor Network (WSN) 

Wireless Sensor Network (WSN) is a group of small embedded devices with sensing features called 

nodes or motes. Each node has a location in the sensing area, which can be small or vast according to 

the application requirements to collect the required data. The nodes can communicate wirelessly to 

collaborate and deliver the data to the sink and then to the goal network for processing as shown in 

Figure 2.1. Its stimulation feature to the physical signal can measure and detect physical and chemical 

conditions and convert them to data suitable for analysis and decision-making [1]. WSN is an integral 

component in IoT applications and has applications in various domains like:  

• In industry, it provides real-time and self-work for industrial operations, monitoring the "health 

state" of the machines and integrating the physical properties and the control system to reduce 

power consumption and gas emissions, increasing efficiency and productivity [4]. 

• In military and security applications, the WSN allows monitoring the boundaries of countries, 

detecting and classifying parasitic objects to reduce soldiers' workload. Also, they help break 

into restricted areas and spy operations [5]. 

• In the intelligent building, WSN introduces complete control, monitoring, and management of 

lighting, temperature, humidity, and all other user requirements to make their life much easier 

and safer and minimize efforts and energy consumption [6].  

• In the healthcare field, WSN monitors the atmosphere and the temperature in the hospital. 

Also, it reports and observes the health status of the patients [7]. 

• In the environment and agriculture, the WSN plays a critical role in observing the different 

physical and chemical data to decrease pollution, study the behavior of the organisms, and 

early detect disasters [8]. Also, it contributes to improving crops by providing the ability to 

implement automated agriculture, which is more efficient and productive than traditional 

agriculture [9]. 
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Figure 2.1 Wireless Sensor Network (WSN) Architecture 

The architecture of WSN node as shown in Figure 2.2 consists of: 

• Sensing subsystem includes the physical sensors that capture data from the environment. It 

may involve various types of sensors, such as temperature, humidity, light, motion, gas, etc. 

• The processing subsystem consists of a microcontroller or microprocessor responsible for 

executing instructions and processing the sensor data. 

• The communication subsystem enables wireless communication between nodes and 

facilitates data exchange. It includes a transceiver module for transmitting and receiving that 

supports wireless protocols like Wi-Fi, Bluetooth, Zigbee, or Long Range (LoRa). 

• The power subsystem provides the necessary electrical power to the WSN node for its 

operation. It typically includes a power source, such as batteries or energy harvesting modules 

 

Figure 2.2 WSN Node Architecture 
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 Energy Management of WSN 

Energy Management System Definition 

Energy management in Wireless Sensor Networks (WSN) is a group of policies and strategies managing 

the network's operation. These are designed to align with the application's requirements to adapt the 

network's behaviour based on the currently available energy level, guarantee the optimal operation of 

the WSN, and protect it from energy depletion or inefficiencies. Energy management is essential in 

maintaining the balance between operational demands and energy conservation, consequently 

ensuring the high efficiency and sustainability of the WSN. The complexity of this task comes from the 

efficiency required for a high quality of service (QoS), where the price is high energy consumption. 

Energy Management System Techniques  

Energy Management System (EMS) techniques is classified into two main groups based on the dealing 

with the energy either for providing or consume it as show in Figure 2.3 [10]: 

1- Energy Consumption: This method focuses on saving the energy and optimizing the energy 

usage by following one or more of the following techniques: 

a. Duty Cycle: This method involves managing the active, idle sleep time of devices to 

conserve energy. It regulates the intervals during which a device operates and the 

periods when it rests in order to optimize the energy consumption [11]. 

b. Mobility Based: This technique leverages the movement patterns of mobile devices to 

optimize energy consumption. By understanding and predicting mobility, it can 

manage the energy usage of devices more efficiently [12].  

c. Data Driven: This approach uses data analytics to optimize energy consumption. It 

predicts the data in a certain level of accuracy to save the energy required for 

measuring it [13]. 

2- Energy Provision:  This method focuses on energy resources and increase its efficiency by 

following one or more of the following techniques: 
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a. Harvesting: This involves using one or more harvester to capture and convert the 

ambient energy from the environment, such as solar, vibration, wind, or thermal 

energy, into electrical energy. This method is increasingly popular for powering small 

devices and sensors [14]. 

b. Storage Device: This technique focuses on choosing and optimizing the energy storage 

device which can be a battery (fixed, replicable, rechargeable), supercapacitor, or 

ultracapacitor [15]. 

c. Transferring: This method deals with transfer the energy from the resource to the 

sensor node using wire or wireless technique [16].  

 

Figure 2.3 Energy Management System Techniques in WSN 

Energy management in WSN can be performed in two levels: the network level, and sensor node level. 

In the network level EMS focuses on the overall energy of the network involving routing (LEACH, 

PEGASIS), and data aggregation [17]. While in the sensor node level, the focus on optimizing the energy 

usage of the individual node to increase its and life span extension by using techniques like duty cycling, 

power management, and energy harvesting.  

This thesis focuses on Energy Management System control the energy consumption where adapting 

the Duty Cycle based on the level of available energy and Energy Provision where a multi-input energy 

harvesting is used and Battery Management System for the storage Device provides the protection for 

the battery and prolong its life span. 
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 Energy Storage Devices 

Energy storage in portable devices like sensor nodes is critically important. The efficiency of energy 

storage significantly influences the size, cost, and lifespan of a sensor node. Broadly, there are two 

primary energy storage technologies used in sensor nodes: 

1. Supercapacitors: Ideal for energy harvesting systems in low-powered and compact applications due 

to their specific characteristics in charge storage density, lifespan, discharging rate, leakage, and 

size. 

2. Rechargeable Batteries: More suited for long-lasting and task-intensive implementations, offering 

different trade-offs in terms of energy density and operational longevity. 

Additionally, a hybrid approach combining both supercapacitors and rechargeable batteries can be 

employed. This method leverages the strengths of both technologies to meet specific requirements. 

Choosing the most effective energy storage method for a particular application necessitates a thorough 

understanding of the differences between these energy storage technologies, considering factors like 

charge storage density, lifecycle, discharge capabilities, potential leakage, and physical dimensions [15]. 

 Batteries  

Batteries are the most traditional form of energy storage in wireless sensor networks (WSNs). They are 

favoured for their excellent high-energy density and availability in a wide range of sizes. Another 

advantage of batteries is their ability to supply energy at specific voltage levels directly aligning with 

the requirements of IoT device, eliminating the need for external voltage converters. There are various 

types of batteries being developed specifically for WSN applications. Among the most advanced are 

Nickel-Metal Hydride (NiMH), Lithium Ion (Li-Ion), and Lithium Polymer (Li-polymer) batteries. These 

types have been refined for optimal performance in WSN contexts [15]. 

1. Nickel-Metal Hydride (NiMH) 

Nickel-Metal Hydride (NiMH) batteries consist of an anode made of nickel metal hydride, a cathode 

composed of a hydrogen storage alloy or metal hydride, and an electrolyte primarily containing 

hydroxide potassium. Advantages of NiMH batteries include a 30-40% higher capacity compared to 
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standard Nickel-Cadmium (NiCd) batteries. They don't require special regulations for storage and 

transport. However, NiMH batteries have their drawbacks. They necessitate complex charging 

algorithms and are sensitive to overcharging. Rapid charging and excessive discharging can cause an 

increase in heat. They also suffer from high self-discharge rates and have a limited-service life. NiMH 

batteries are a suitable choice in scenarios where low energy density, short service life, and affordability 

are key requirements [18]. 

2. Lithium Ion (Li-Ion) 

A Lithium Ion (Li-Ion) battery is composed of an anode made from carbon, a cathode from Li-transition 

metal oxide, and a separator. During the charging phase, Lithium hex carbide (LiC6) is formed due to 

the intercalation of lithium ions between the graphene layers of the anode. In the discharge phase, 

lithium ions migrate into the cathode, as illustrated in Figure 2.4Error! Reference source not found.. 

Advantages of Li-Ion batteries include high energy density and a low self-discharge rate. They don't 

require priming after the initial charge and need minimal maintenance. However, Li-Ion batteries also 

have several disadvantages. They are sensitive to overcharging, and high charging currents can be 

detrimental. Overload discharging is another concern, and they require special care during 

transportation, particularly by air. Moreover, these batteries have a limited lifecycle and are relatively 

expensive. Li-Ion batteries are an optimal choice in scenarios where high energy density and medium 

service life are priorities, and cost is not a major concern [19]. 

               

Figure 2.4 Lithium Ion: Structure, Charging and Discharging 



11 

 

3. Lithium Polymer (Li-polymer) 

The Lithium Polymer (Li-polymer) battery shares a similar structure to standard lithium batteries, with 

a crucial distinction being its polymer-based separator, as depicted in Figure 2.5. It has a nominal 

voltage of 3.6 V and can sustain up to 500 charging cycles. The load current is below 1C, and it boasts 

an energy density of about 160Wh/kg. Typically, a full charge takes around four hours, and the 

discharge rate is approximately 10 percent per month when in storage. Advantages of Li-polymer 

batteries include their slim profile, flexibility in form, lightweight nature, and enhanced resistance to 

overcharging and overload discharging. These features make them particularly suitable for applications 

where space and weight are critical factors. However, there are notable disadvantages to Li-polymer 

batteries. They tend to have a shorter service life compared to other types and are more expensive to 

manufacture. Additionally, they usually have a larger volume, which might be a limiting factor in 

compact device designs [20]. 

 

Figure 2.5 Lithium Plymer: Structure, Charging and Discharging 

Choosing the proper battery is based on the application requirements and the operational 

environment. The comparison between the batteries is presented in Table 2.1:  

• Recharge Cycles: These refer to the number of total charges (0 to 100%) and discharge (100% 

to 0) cycles a battery can operate before its total capacity degrades to a specific percentage 

(for lithium-ion batteries, 80%) of its original capacity. 

• Efficiency: It is the ratio of the energy delivered by the battery to the energy put into it during 

charging. 
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• Nominal Voltage in Volts is the output voltage of the battery when it is connected to the load.  

• The Capacity in mA is the amount of electric charge which a battery can deliver. The higher 

capacity, the longer the battery can power the load before the need for recharging.  

• Energy in W is the total amount of energy a battery can store and deliver over time. It's 

calculated by multiplying the battery's voltage (in volts) by its capacity (in ampere-hours). This 

value indicates the battery's performance than just voltage or capacity. 

• Self-Discharge Percentage: It refers to the rate at which a battery loses its charge when the load 

is disconnected. A lower self-discharge rate means the battery keeps its charge longer when no 

load is connected. 

• Recharge Cycles: These refer to the number of total charges (0 to 100%) and discharge (100% 

to 0) cycles a battery can operate before its total capacity degrades to a specific percentage 

(for lithium-ion batteries, 80%) of its original capacity. 

• Efficiency: It is the ratio of the energy delivered by the battery to the energy put into it during 

charging.  

Table 2.1 Rechargeable Batteries Comparison 

Battery Nominal 

voltage(V) 

Capacity 

[mA] 

Energy 

[W] 

Self discharge Recharge 

Cycle 

Efficiency 

NiMH 1.2 2500 3.0 5% /month 500-2000 66% 

Li-ion 3.7 730 2.7 1.5% /month 400-1200 99% 

LiPo 3.7 930 3.4 5% /month 500-1000 99% 

 Supercapacitor 

Supercapacitor also knew as ultracapacitor or Electric Double- Layer Capacitor (EDLC) is an 

electrochemical capacitor with a large capacitance [21]. The supercapacitor has a construction like the 
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battery. It has two conductor electrodes immersed in an electrolyte with a porous membrane separator 

between the electrodes. The electrodes are manufactured from a high surface area; porous material 

of the separator has pores of diameter in the nanometre (nm) range. The electrode in ultracapacitor is 

fabricated from a material which its surface area is greater than the surface area of the material which 

is used in battery electrodes being 500–2000 m²/g as shown in Figure 2.6. Supercapacitors are divided 

into two different types: 

1. Electrochemical double-layer capacitors: which stores its charge electrostatically, so the electrical 

energy is stored in the static electric field in the micropores between the electrodes and the ions 

in the electrolyte. 

2. Supercapacitors based on pseudo-capacitance That is counted on the adsorption of the active ions 

or appears from Faradaic redox reaction that is located at a transition metal oxide surface or in a 

doped electrically conducting polymer. 

 

 

Figure 2.6 Supercapacitor Structure  

There are three types of pseudo-capacitance: 

1. The ions adsorption from the electrolyte by the surface. 

2. The second one involves the ions from the electrolyte by redox reactions. 

3. The third one is doping electrically conducting polymers in the electrode. 

The comparison between different types of supercapacitors is presented in Table 2.2. For some 

applications where self-discharge is not considered, a supercapacitor is a good alternative solution to 

batteries due to its long lifetime. 
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Table 2.2 Supercapacitors Used in IoT Devices 

Supercapacitors Capacity 

(F) 

Nominal 

voltage (V) 

Specific energy  

(Wh/L) 

Self-discharge 

per day 

Weight (g) Cyclelifetime 

Maxwell 

BCAP0350 

350 2.5 5.73 20% 60 500,000 

Maxwell PC10 10 2.5 1.4 30% 6.3 500,000 

Green-cap 

EDLC(DB) 

50 2.7 4.4 50%  10 >100, 000 

NEC 

TokinFT0H105Z 

1 1 NA 10min 10 1000 

Conclusion 

Batteries and supercapacitors are simple solutions for applications where the lifespan and operational 

time of Wireless Sensor Networks (WSN) are not critical so they can lead to network degradation and 

eventual failure. Also, they have environmental drawbacks. Their environmental impact is also 

significant due to complex recycling processes and high carbon emissions from production and raw 

material mining [22]. 

 Energy Harvesting 

For years, many researchers have presented energy harvesting as a power supply for IoT devices to 

overcome the limitations of batteries and supercapacitors and reduce their harmful environmental side 

effects. Energy Harvesting refers to collecting energy from the surrounding environment to charge 

energy storage devices or serve as an alternative to them. This technology is gaining prominence due 

to its cost-effectiveness and environmental friendliness. As illustrated in the Figure 2.7, IoT devices are 

equipped with various energy harvesters and are categorized based on the nature of the energy they 

harvest. This diversity allows for harnessing different forms of ambient energy, such as thermal, 
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mechanical, or solar, making energy harvesting a versatile and sustainable solution for various 

applications.  

Mechanical Energy Harvesting  

This process involves converting mechanical energy into electrical energy by various means, such as 

vibrations, mechanical stress, and pressure [23]. The most common types of mechanical harvesters are 

piezoelectric, electrostatic, or electromagnetic. 

1. Piezoelectric Energy Harvesting 

This method generates electrical energy through the piezoelectric effect. Mechanical energy from 

pressure, force, or vibrations is converted into electrical energy by straining a piezoelectric material. 

Typically, a cantilever structure with a seismic mass attached to a piezoelectric beam is used. When 

strained, the piezoelectric material produces an electric field due to charge separation, with the 

generated voltage being proportional to the stress [24]. 

2. Electromagnetic Energy Harvesting 

Based on Faraday's law of electromagnetic induction, this method uses an inductive spring mass system 

to convert mechanical energy into electrical energy. Movement of a magnetic material through a 

stationary magnetic field induces voltage. The vibration of a magnet attached to a spring within a coil 

alters the flux, generating voltage [25]. 
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Figure 2.7 Energy Harvesting Resources 

Photovoltaic Energy Harvesting 

Photovoltaic energy harvesting involves transforming light photons from the sun or artificial sources 

into electrical energy. This process utilizes photovoltaic (PV) cells, composed of two types of 

semiconducting materials: N-type and P-type. At the junction of these materials, known as the P-N 

junction, an electrical field is created. When light hits the photovoltaic cell, electrons are released, 

facilitating energy conversion [26]. 

Thermal Energy Harvesting 

Thermal energy is harvested through two primary methods: thermoelectric and pyroelectric energy 

harvesting.  

1. Thermoelectric energy harvesting 

The main component of this harvester is the Thermoelectric Power Generator (TEG), which use thermal 

gradients to generate electrical power. TEG includes a thermopile made of p-type and n-type 

semiconductors connected in series between hot and cold plates. The Seebeck effect causes the 

generated electrical energy and is proportional to the temperature difference between the plates. [27]. 

2. Pyroelectric Energy Harvesting 
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Pyroelectric energy harvesting generates voltage by heating or cooling pyroelectric materials. Unlike 

thermocouples, which require a temperature difference, pyroelectric materials rely on time-varying 

temperature changes. These changes modify the atomic positions within the crystal structure of the 

pyroelectric material, resulting in voltage generation [28]. 

Wireless Energy Harvesting 

This technique falls into two primary categories:  

1. RF Energy Harvesting 

This method involves the use of a rectifying antenna, commonly known as a rectenna, to transform 

Electromagnetic (EM) waves into electrical energy. Energy can be harvested from various surrounding 

RF sources such as cell phones, radio and television broadcasts, Wi-Fi communications, and microwaves. 

It can also be drawn from EM signals emitted at specific wavelengths [29]. 

2. Resonant Energy Harvesting 

Resonant energy harvesting is a method of wirelessly transferring and harvesting electrical energy 

through two coils resonating at the same frequency. This process involves an external inductive 

transformer device connected to a primary coil, capable of transmitting power through the air to a 

device equipped with a secondary coil. The primary coil generates a time-varying magnetic flux, which 

passes through the secondary coil and induces a voltage [30]. 

Wind Energy Harvesting 

This method involves transforming the kinetic energy of airflow into electrical energy. It uses a wind 

turbine, appropriately sized, to harness the linear motion produced by wind [31].   

Biochemical Energy Harvesting 

This technique involves converting oxygen and endogenous substances into electrical energy through 

electrochemical reactions. Biofuel cells, utilizing active enzymes and catalysts, can harness the 

biochemical energy in biofluids and convert it into electrical energy [32]. 
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Acoustic Energy Harvesting 

This technique utilizes an acoustic transformer or resonator to convert continuous, high-intensity 

acoustic waves from the surrounding environment into electrical energy [33].  

 Energy Harvesting Techniques comparison 

When selecting the optimal energy harvester, both the application and the surrounding environment 

play pivotal roles. The choice can generally be made by comparing energy harvesting techniques based 

on two key factors as presented in Table 2.3: 

1. Power Density: This refers to the amount of energy harvested per unit volume, area, or mass. It's 

expressed in watts per cubic centimeters, watts per square centimeters, or watts per gram. This 

metric measures the intensity of energy generation in relation to the size or mass of the energy 

harvester. 

2. Conversion Efficiency: This is the ratio of the electrical power harvested to the total power available 

for harvesting. It's a unitless metric and ranges from 0 to 100. This measure indicates how 

effectively the energy harvester can convert the available energy (like mechanical, thermal, or solar 

energy) into electrical energy. 

Table 2.3 Energy Harvesting Comparsion 

EH Technique Power Density Conversion Efficiency 

Photovoltaic 

 

Outdoors (direct sun): 15 𝑚𝑊/𝑐𝑚2 

Outdoors (cloudy day): 0.15 𝑚𝑊/𝑐𝑚2 

Indoors: <10 µ𝑊/𝑐𝑚2 

Highest: 32 _ 1:5% 

Typical: 25 _ 1:5% 

Piezoelectric 

 

250 µ𝑊/𝑐𝑚3 

330 µ𝑊/𝑐𝑚3 

Maximum power and 

efficiency are source 

dependent 

Thermoelectric 

 

Human 30 µ𝑊/𝑐𝑚2 

Industrial 1 to 10  𝑚𝑊/𝑐𝑚2 

±0:1% 

± 3% 

Pyroelectric 

 

8.64 µ𝑊 /𝑐𝑚2  at the temperature rate of 

8.5º C/s 
3.5% 
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Electromagnetic 

 

Human motion: 1 to 4 µ𝑊/𝑐𝑚3 

Industrial: 300 µ𝑊/𝑐𝑚3 

Maximum power and 

efficiency are source 

dependent 

Electrostatic 50 to 100 µ𝑊/𝑐𝑚3 

Maximum power and 

efficiency are source 

dependent 

RF 

 

GSM 900/1800 MHz: 0.1 µ𝑊/𝑐𝑚2 

WiFi 2.4 GHz: 0.01 µ𝑊/𝑐𝑚2 

50% Excluding transmission 

efficiency. 

Wind 

 
380 µ𝑊/𝑐𝑚3 at speed of 5 m/s 5% 

Acoustic noise 
0.96 µ𝑊/𝑐𝑚3 at 100 dB 

0.003 µ𝑊/𝑐𝑚3 at 75 dB 

Noise power densities are 

theoretical values. 

According to Table 2.3, photovoltaic and piezoelectric energy harvesting technologies demonstrate the 

highest values in both power density and conversion efficiency. This implies that they are particularly 

efficient in converting available energy into electrical power and do so with a high intensity relative to 

their size or mass. 

 Energy Harvesting Challenges  

Energy harvesting techniques face several challenges, but the most important one is the instability of 

the energy source to be harvested [34]. The photovoltaic energy harvesting system accounts mainly for 

solar irradiation, which varies during the day and disappears at night, creating a nonsecure energy 

source for the IoT device. The Figure 2.8 shows the irradiation during the 24 hours when the PV 

harvester can gather available solar energy from 7:00 AM to approximately 15:00 where the data is 

gained form [35]. 
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Figure 2.8 Daily Irradiance in 24 Hours 

The piezoelectric harvester can also harvest the energy from vibration when available. Still, as shown 

in the Figure 2.9, which is the magnitude of the vibrational acceleration on Chicago North Suspension 

Bridge, the data is gained from Real Vibrations database [36], the vibration is intermittent. Hence, the 

piezoelectric harvester is not a stable energy source for the IoT device. 

 

Figure 2.9 Magnitude of the Vibrational Acceleration on Chicago North Bridge 

The energy harvesting system architecture which is used as a power supply for IoT device consists of 

the harvester, conditioning and interfacing, and energy storage device as shown in Figure 2.10. The 

energy storage device can be a buffer like capacitor and supercapacitor to use the accumulated energy 

in the near future in the battery less systems. Or, it can be a rechargeable battery which will be keep 

the energy for long time due to its low leakage current comparing to capacitor and supercapacitor as 

presented in Table 2.1  
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Figure 2.10 Single Energy Harvesting System for IoT Device 

The minimum capacity of the energy storage device to power the IoT device can be calculated as: 

 
𝐶𝑆𝑇,𝑚𝑖𝑛 =

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 . 𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑉𝑆𝑇,𝑚𝑎𝑥 − 𝑉𝑆𝑇,𝑚𝑖𝑚
 

(1) 

Where: 

• 𝐶𝑆𝑇,𝑚𝑖𝑛 is the capacity of the energy storage device. 

• 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the current consumption of the IoT device. 

• 𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the time period of current consumption which can be the duty cycle period. 

• 𝑉𝑆𝑇,𝑚𝑎𝑥 is the maximum output voltage of the energy storage device. 

• 𝑉𝑆𝑇,𝑚𝑖𝑚 is the minimum output voltage of the energy storage device. 

The minimum time required to charge the energy storage device to be ready to operate with its 

maximum voltage level can be calculated as:  

 
𝑡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑖𝑛 =

𝐶𝑆𝑇,𝑚𝑖𝑛 . (𝑉𝑆𝑇,𝑚𝑎𝑥 − 𝑉𝑆𝑇,𝑚𝑖𝑚)

𝐼𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
  

(2) 

Where: 

• 𝑡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑖𝑛 is the minimum charging time to reach to the maximum output voltage level 

• 𝐼𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 is the charging current. 

In case of energy storage device is a buffer (capacitor, supercapacitor) a stable charging current 

𝐼𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 required to reach the maximum output voltage 𝑉𝑆𝑇,𝑚𝑎𝑥 of the energy storage device so if the 

PV harvester is used then the IoT device will operate during the irradiation period. If the PZT harvester 
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is used then there is risk to reach the maximum output voltage 𝑉𝑆𝑇,𝑚𝑎𝑥 or the IoT device will work on 

short periods. 

In case of energy storage device is a battery the operational life time of IoT device will be increased but 

the lifespan of the battery will decrease since the main limitation of the battery is the limited number 

of life cycles. The battery capacity degrades after each complete life cycle then the battery will not be 

able to store the harvested energy. 

Conclusion 

Using a multiple energy harvesting with battery is a good solution to extend the life span of the battery 

especially when the harvesters are gathering the energy from different ambient resources. Which will 

ensure the availability of energy resource and reduce the relay on the battery as a result the lifespan 

of the battery will be extended [37]. 

 Multi Input Energy Harvesting 

The multi-input energy harvesting technique is an energy management method that prolongs batteries' 

lifetime and lifespan. This technique combines energy from various sources in the ambient 

environment (light, wind, mechanical, wireless, etc.) to reduce reliance on a single resource and 

increase the consistency of energy supply. Consequently, it enhances IoT devices' reliability, efficiency, 

and sustainability [38]. 

Supplementary Use of Different Energy Sources 

The concept of utilizing supplementary energy resources in wireless sensor networks involves 

employing a primary energy harvester, complemented by one or more secondary harvesters. These 

secondary harvesters either contribute energy directly to certain system components or enhance the 

efficiency of the primary harvester. This technique's primary advantage is its straightforward design, 

though it requires careful tailoring to align with specific application needs and environmental 

conditions. A case study in reference [39] demonstrates this approach. Here, a photovoltaic transducer 

is employed as the main energy harvester, charging a supercapacitor via a DC–DC converter. 

Additionally, a piezoelectric transducer serves as a secondary energy source. This secondary harvester 

primarily supplies power for the system's self-start-up phase, a period characterized by higher energy 
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consumption due to the initial requirements of the electronic components. Another application of this 

technique is reported in [40]. In this instance, a thermal generator functions as the primary energy 

harvester, powering a battery-less sensor. Complementing this, a piezoelectric transducer is used as the 

secondary energy source. Its role is to provide the necessary bias for the rectifier circuit, which is 

integral to the operation of the thermal generator. It also supplies energy to certain components of the 

wireless sensor node. This example illustrates the versatility and adaptability of using supplementary 

energy harvesters in enhancing the energy efficiency and operational reliability of wireless sensor 

networks. 

Power Oring 

The Power ORing topology connects multiple energy sources in parallel, utilizing conventional diodes, 

Schottky diodes, or MOSFETs. This design combines the energy from different harvesters, isolates each 

power source and provides protection against problems from shunt-connected sources and other 

detrimental factors. The principle of this technique is that the energy source with the highest output 

voltage will supply power to the load, while the others remain isolated. A key advantage of Power ORing 

is its capability to link an unlimited number of resources. Additionally, it can be used with MPPT circuits 

or a rectifier in series with each energy source, enhancing the system's overall redundancy, reliability, 

stability, and effectiveness, as illustrated in Figure 2.11. In study [41], researchers employ conventional 

diodes to amalgamate energy from solar, heat, and wind harvesters for charging a supercapacitor. 

Similarly, in study [42], this approach is adapted to merge energy from various piezoelectric harvesters. 

In another instance, study [43] also utilizes this design but incorporates an independent Maximum 

Power Point Tracking (MPPT) circuit for each harvester, enhancing the efficiency of energy collection.  

In research [44], a Power ORing topology is developed by combining energy from thermal and light 

harvesters using Schottky diodes. This setup benefits from a low forward voltage drop and simplicity in 

the circuit design. However, it still experiences energy wastage when other connected harvesters have 

lower voltage outputs, a challenge common to similar configurations. Conversely, in study [45], 

researchers opt for Power MOSFETs in their Power ORing system due to their lower forward voltage 

drop compared to both Schottky and conventional diodes. Additionally, this arrangement allows for full 

control over switching thresholds and speeds. Despite these advantages, the main drawback of using 

Power MOSFETs is the increased complexity and size of the circuit. 
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Figure 2.11 Power ORing Scheme 

Voltage Level Detection Method 

The voltage level detection technique employs a controller to manage switches connected to individual 

energy harvesters. This controller can implement various algorithms and methods, designed to the 

specific application and type of harvester used. The complexity of this system increases with the 

number of components involved. In some instances, this complexity can adversely affect efficiency due 

to the high energy consumption of the system's components. Typically, voltage level detection operates 

by comparing the output voltage of each harvester against a predetermined threshold, ensuring 

efficient energy management [46] [47]. 

Multiple-Input Boost Converter (MIBC) 

A boost converter is a DC-DC power converter specifically used to step up the output voltage. Also, it 

can be used in integrating energy from diverse sources. Various topologies of this converter can be 

customized to align with specific application needs. This adaptability allows for efficient energy 

management in systems that require elevated voltage levels from multiple energy inputs. 

1. Serial Form: 

In research [48], a DC-DC converter topology is introduced for merging wind and photovoltaic energy. 

This involves connecting two switch-mode, Pulse Width Modulation Controlled (PWM) step-up 

converters in series. This series connection caters to the low voltage outputs of wind and photovoltaic 

harvesters (illustrated in Figure 2.12Figure 2.12), providing an output voltage equal to the input voltage, 
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which enhances switch utilization compared to parallel connections. However, a significant drawback 

of this topology is its sensitivity to voltage drops at either source, which can lead to an unregulated 

output state. Maintaining input voltage variation is crucial for producing a regulated output in a boost 

converter. 

 

Figure 2.12 Multiple Input Boost Converter Scheme – Serial Form 

2. Magnetic Form: 

Study [49] suggests using a multiple-input DC-DC converter to merge energy from two sources in 

magnetic form. This converter is based on flux additivity, utilizing phase-shifted PWM control to 

combine input DC sources in the magnetic core through the addition of produced magnetic flux. This 

topology (shown in Figure 2.13Figure 2.13) offers advantages such as combining energy from two 

sources irrespective of their input voltage magnitudes and the ability for each input to independently 

and simultaneously deliver energy. The downsides include limitations on the input sources and a larger 

size of the setup. 
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Figure 2.13 Multiple Input Boost Converter Scheme – Magnetic Form 

3. Parallel Form: 

Research [50] and [51] explore a topology that combines energy from two sources connected in parallel 

via a Multiple Input Boost Converter (MIBC). The control strategy is based on alternating time division 

between the sources. A significant limitation of this strategy is energy wastage, as the sources cannot 

deliver energy simultaneously. 

Linear Regulator 

A Low Drop Out (LDO) regulator is responsible for regulating output voltage. These regulators are 

notable for their lack of switching noise, compact size, and straightforward design as shown in Figure 

2.14. However, a primary drawback of LDO regulators is their tendency to produce waste heat. The 

energy combining technique involving LDO regulators works by ensuring that each energy harvester 

outputs the same voltage value, allowing for simultaneous charging of the storage device. However, 

this approach necessitates an LDO for each input, leading to increased heat production and higher costs, 

which are directly proportional to the complexity of the device. Research [52] presents a design for 
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energy harvesting that combines four sources: indoor light, mechanical vibration, electromagnetic 

fields, and thermal energy. In this design, each energy branch is equipped with an LDO (Low-Dropout 

regulator), a conditioning circuit, and a storage device. The system is battery-less and capable of 

simultaneously collecting energy from all these resources. However, the application of this system is 

limited to a maximum voltage of 2.5V. Additionally, the use of LDOs in each branch leads to the 

generation of high temperatures, which is a notable limitation of this design. 

 

Figure 2.14 Linear Regulator Scheme 

Multiplexing Techniques 

A multiplexing technique involves merging energy from various sources by sequentially allowing each 

harvester to charge the storage device for predetermined time intervals. This process is governed by a 

control algorithm and utilizes a combination of a controller, controllable switches, and a 

synchronization oscillator to facilitate the multiplexing. The efficiency of this method is closely tied to 

the specific algorithm used. However, a notable drawback of this technique is the increased complexity 

of the system and the additional energy consumed by the components responsible for executing the 

multiplexing process. In study [53], researchers introduce a system that combines energy from two 

harvesters using Maximum Power Point Tracking (MPPT). This system operates by time-division, 

allocating specific intervals for each resource to efficiently transfer energy to an inductor. The setup 

includes four PMOS and NMOS transistors for switching, five capacitors, an inductor, and a controller. 

The controller establishes three distinct time periods: ON-time (TON) for energizing the inductor, OFF-

time (TOFF) to transfer energy to the load, and idle-time (TIDLE) where the inductor is set to float, 

minimizing energy leakage. Additionally, the system features three operating modes: single-source 
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mode (SSM), dual-source mode (DSM), and backup mode (BM), each with a unique switch 

configuration. The choice of mode is contingent on the availability of energy resources, with SSM 

activated for one available resource, DSM for two, and BM in the absence of resources. This approach 

allows the system to adapt to varying ambient environmental conditions, optimizing energy harvesting 

and usage. 

Switched Capacitors 

A switched capacitor is a simple electronic circuit consisting of switches and capacitors, illustrated in 

Figure 2.15. Its basic configuration includes two switches (S1 and S2) and a capacitor, operating in two 

phases: the charging phase, where S1 is closed and S2 is open, allowing energy storage in the capacitor, 

and the discharging phase, where S1 opens and S2 closes, releasing the stored energy. This technique 

of using a switched capacitor for energy combination involves converting the current from one 

harvester to AC, merging it via the capacitors, and then rectifying it with transistors. In study [54], a 

design using the switched capacitor technique is proposed. This system comprises five primary 

subsystems: a passive start-up (PSU), ranking and level detection, Maximum Power Point Tracking 

(MPPT) control, a combiner core, and control logic. An external under-voltage lockout (UVLO) circuit is 

also included to enable operation. The energy storage is managed with two capacitors: a high-capacity 

main capacitor for storing harvested energy for the load, and a secondary capacitor to expedite the 

start-up process. The PSU initially charges the secondary capacitor using the harvester generating the 

most energy. Upon full charging, the UVLO generates a power good (PG) signal to activate the system. 

The system then reassesses the inputs during a brief waiting cycle, identifying Open Circuit Conditions 

(OCC). The control logic selects two out of four inputs to connect them to the combiner core, where a 

differential low-power oscillator converts the current (I2) of the second harvester to AC. This pulse-

shaped current is coupled by charging capacitors C1 and C2. The switched capacitor's output charges 

one capacitor, resulting in the voltage (VC) being equal to the sum of V1 and V2. The switched capacitor 

offers the advantage of concurrent energy combining, eliminating the need for time-division 

multiplexing. Additionally, it represents an integrated solution, characterized by its compact size and 

ease of packaging. This makes it a practical and efficient choice for systems where space-saving and 

integration are priorities. 
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Figure 2.15 Switched Capacitors Scheme 

Shared Inductor 

The shared inductor method for energy combining uses a single inductor within a buck-boost converter 

to accumulate energy from different sources, as shown in Figure 2.16. This buck-boost converter can 

operate in Discontinuous Conduction Mode (DCM), with the potential to implement Maximum Power 

Point Tracking (MPPT) by controlling the frequency of the converter's switches. While this method is 

effective in low-power applications, a notable drawback is the size of the inductor, which increases the 

overall circuit size and, consequently, the total costs. In study [55], a design is proposed to merge energy 

from three harvesters: a thermoelectric generator (TEG), a Biofuel Cell (BFC), and a photovoltaic (PV) 

panel, using a single-stage shared inductor. This design includes controllable switches, a shared MPPT 

controller, a shared output regulator, the shared inductor, a battery, and a controller. The control 

method allocates a charging interval (T1) to each harvester branch for charging the shared inductor, 

with a switching frequency determined by the harvester output comparator, based on MPPT and 

ambient energy availability. After T1, a zero-current detector (ZCD) checks for zero inductor current, 

and the controller then assesses other harvesters, giving the selected branch a second charging interval 

(T2) if necessary. If both remaining harvesters have low output, the process restarts.  Another design 

in [56] combines energy from three sources: vibration, PV, and RF. It includes controllable switches, 

comparators, an MPPT circuit, oscillators, a shared inductor, and capacitors. The aim is to achieve DCM 

in three phases: energizing the inductor, dumping stored energy into a capacitor to maintain constant 

peak inductor current, and a waiting phase for charging each transducer's capacitor.  



30 

 

 

Figure 2.16 Shared Inductor Scheme 

 Multi Input Energy Harvesting Techniques Comparison 

A comparison of multi-input energy harvesting techniques is presented in Table 2.4 based on the 

following criteria:  

1. Complexity: define the level of system complexity. The possible values are High, Medium, and Low, 

where High indicates difficulties with the device introduced by its size, price, reliability, etc. 

2. Simultaneity states refer to the ability of the system to harvest the energy from the input resources 

at the same time (binary criterion – Yes/No). 

3. A typical number of inputs indicates the maximum number of resources that can be connected to 

the system. 

4. The typical efficiency of an energy harvester is based on the ratio between the input and output 

energy, considering losses. 

5. MPPT indicates whether Maximum PowerPoint Tracking can be implemented in the system. 

The application and environment play an important role in choosing the optimal techniques. Also, the 

typical efficiency is varying based on the used control algorithm. 
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Table 2.4 Multi Input Energy Harvesting Techniques Comparison 

Method Complexity Simultaneity 

Typical 

number of 

inputs 

Typical 

Efficiency 
MPPT References 

Supplementary use of 

energy sources 
Low Yes 2 90.5% No [39], [40] 

Power ORing Low No unlimited 80-94% Yes [43], [44] 

Voltage level detection High No unlimited 72- 94.67% Yes [46] 

Multiple-input boost 

converter  
Medium Yes 2 85% Yes 

[48], [49], 

[50], [51] 

Linear regulator Medium Yes 3 80% Yes [52] 

Multiplexing 

techniques 
High No 3 80-90% Yes [47] 

Switched capacitors High Yes 2 72-87.2% Yes [54] 

Shared inductor High No 3 87-89% Yes  [55], [56] 
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Conclusion 

The main disadvantages of combining energy harvested from different resources are the delay in 

choosing the energy resource and the waste of harvested energy since all the proposed energy 

combining systems rely on sensors to measure the voltage level, which leads to delay in energy waste. 

In this thesis, I propose a novel technique based on forecasting the available energy from PV harvesters 

and a lookup table of available PZT harvesters to choose the primary source of energy to be harvested. 
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 ENERGY MANAGMENT SYSTEM 

This chapter introduces the system requirements for the Energy Management System (EMS) in IoT 

device. The architecture of the EMS is proposed to meet these requirements, drawing insights from the 

comprehensive review in Chapter 2. The sizing of the PZT and PV harvesters for this purpose is detailed, 

and techniques for battery management within the EMS are implemented. A novel energy combine 

technique is proposed based on multi-input buck boost converter.  Additionally, a novel algorithm is 

introduced to calculate battery degradation. The chapter also covers the design of the dynamic 

behavior of the EMS, showcasing how it adapts to varying conditions and requirements. 

 System Requirements 

The requirements of EMS for IoT device: 

• PV harvester output power is sufficient to power the IoT device Then the PV harvester is the 

power resource in order to extend the battery’ SoC and lifespan. 

• PZT harvester output power is sufficient to power the IoT device Then the PV harvester is the 

power resource in order to extend the battery’ SoC and lifespan. 

• Battery output power is sufficient to power the IoT device. 

• Battery’s SoC will never drop below 40% to avoid deep discharging. 

• If the battery’s voltage exceeds 4.20V, then the EMS must stop the charging process. 

• If the battery’s voltage drops below 2.5V to 3.0V, then the EMS must disconnect the load and 

prevent further discharge. 

• If any battery’s voltage falls below 2.5V, then the EMS must disconnect the battery from the 

load and prevent further discharge. 
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• If the discharge current exceeds the battery's maximum continuous discharge rate, then the 

EMS must disconnect the battery to prevent damage. 

• If the discharge current is abnormally low, indicating a potential fault, then the system must 

alert the user and initiate a diagnostic check. 

• If the battery temperature exceeds a safe limit (45°C to 60°C), then the EMS must suspend 

charging or discharging. 

• If the battery temperature is below 0°C, then the EMS must prevent charging to avoid damage 

due to lithium plating on the anode. 

 Energy Management System Architecture  

The proposed energy management system will provide the following features: 

• Combine the renewable energy from two harvesters. 

• Manage the energy flow from battery and the harvesters to the load based on the available 

energy and the application requirements QoS. 

• Provide the protection to the battery, load, and harvesters.  

The proposed energy Management system consist of:  

• Photovoltaic branch which is the photovoltaic harvester  

• Piezoelectric branch which consists of a Piezoelectric harvester and rectifier since the output 

of the Piezoelectric harvester is Alternative Current (AC) while it is required a Direct Current 

(DC) to power the sensor node and charge the battery. 

• Buck Boost Converter which will combine the harvested energy from the Photovoltaic and 

Piezoelectric harvester and extract the maximum power from the harvesters to charge the 

battery. 



35 

 

• Sensors which are voltage, current, and temperature sensors to provide information about the 

state of the harvesters, battery, and atmosphere.  

• Switches which will connect and disconnect the branches, resources and battery according to 

the control signals to perform the energy management operations. 

• Regulator that will regulate the voltage according to the IoT device energy specifications. 

• Controller that will perform the following tasks: 

1. Choosing the harvester based on the input from sensors, PZT output power lookup 

table and PV output power prediction data. 

2. Choosing the energy source to power the load. 

3. Perform Maximum Power Point Tracking (MPPT) algorithm. 

4. Perform Battery Management System (BMS) operations. 

The Energy Management System (EMS) architecture is presented in the Figure 3.1. 

 

Figure 3.1 EMS Architecture 
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 Piezoelectric Energy Harvesting 

Piezoelectric Converter Theory  

Piezoelectric converters are devices that convert mechanical energy into electrical energy. They 

generate an electric charge on their surface in response to external forces that cause distortion or 

mechanical stress. There are two main types of piezoelectric effects: 

• Direct Piezoelectric Effect: In this effect, the polarity of the induced charge reverses when the 

direction of the applied stress is reversed. This property not only enables the piezoelectric 

transducer to generate electricity but also makes it useful as a sensor. 

• Converse Piezoelectric Effect: This effect involves changes in the dimensions of the material 

due to surface deformation when an electric field is applied. It allows the piezoelectric material 

to function as an actuator. 

The direct piezoelectric effect, which facilitates both electricity generation and sensing capabilities, is 

illustrated in Figure 3.2. 

 

Figure 3.2 Piezoelectric Effect 

In its normal state (without any external force), a piezoelectric material generates zero voltage. 

However, when subjected to tension or compression, it produces voltage. Piezoelectric materials are a 

subset of ferroelectric materials, which are crystals characterized by their inherent polarity even 

without an applied electric field. This piezoelectric effect is commonly found in piezoceramics like 

PbTiO3 (Lead Titanate), PbZrO3 (Lead Zirconate), PVDF (Polyvinylidene Fluoride), and PZT (Lead 
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Zirconate Titanate). Among these materials, PZT is particularly noteworthy in the ceramic piezoelectric 

category. It is preferred over PVDF due to its significantly higher piezoelectric coefficient, which is about 

ten times greater than that of PVDF. This superior characteristic makes PZT a more effective choice for 

use in various models and applications. The behaviour and properties of piezoelectric materials are 

further defined by the constitutive relations set out in the IEEE Standard of 1987 [18]. 

Direct piezoelectric effect: 

 

 𝐷𝑖 = 𝑒𝑖𝑗
𝜎𝐸𝑗 + 𝑑𝑖𝑚

𝑑 𝜎𝑚 (3.1) 

Converse piezoelectric effect: 

 𝜀𝑘 = 𝑑𝑗𝑘
𝑐 𝐸𝑗 + 𝑠𝑘𝑚

𝐸 𝜎𝑚 (3.2) 

And, it could be written in the form  

 
[
𝐷

𝜀
] = [𝑒

𝜎 𝑑𝑑

𝑑𝑐 𝑆𝐸
] [
𝐸

𝜎
] 

(3.3) 

Where: 

•  D is the electric displacement vector of size (×)  (Coulomb/m²). 

• ε vector (×) is the is the strain (without unit). 

• E vector (×) (Volt/m) is the applied electric field. 

• m  vector (×) (N/m²) is the stress.  

• 


ije   is the dielectric permittivity of size (×) (Farad/m) – Piezo electric constant 

• 
d

imd  is the piezoelectric coefficient (×) – Piezo electric constant 

• 
c

jkd  is the piezoelectric coefficient (×) (Coulomb/N or m/Volt) – Piezo electric constant 
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• 
E

kms  is the elastic compliance of size (6×6) (m²/N) – Piezo electric constant. 

• 
c

jkd  is the piezoelectric coefficient (m/Volt) which defines strain per unit field at constant stress 

• 
d

imd  is the electric displacement per unit stress at constant electric field (Coulomb/N). 

The equivalent circuit of a piezoelectric transducer, as depicted in Figure 3.3, includes both mechanical 

and electrical components. On the mechanical side, the circuit represents elements such as mechanical 

mass, stiffness, and losses. These are connected to the electrical part of the circuit through a 

transformer, which serves the function of converting mechanical strain into electrical current. 

In the electrical domain, the piezoelectric material is modeled as a plate capacitor. When the harvester 

operates within its self-resonant frequency (SRF) range, which is optimal for inducing maximum charge, 

the total equivalent circuit can be simplified and represented purely in electrical terms. In this 

representation, it consists of an alternating current source connected in parallel with a resistance and 

a capacitor. This configuration effectively captures the electrical behavior of the piezoelectric 

transducer under resonant conditions. 

 

Figure 3.3 Equivalent Circuit of Piezoelectric Transducer 

 Piezoelectrical Element Model 

The model of the piezoelectric harvester describes the mechanical and electrical behavior, 
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A. Mechanical model: 

a. Cantilever Beam Dynamics:  

It is Modeled as a spring-mass-damper system. The natural frequency can be represented in the 

following equation: 

 

𝑓𝑛 =
1

2𝜋
√
𝑘

𝑚
 

(3.4) 

Where: 

• 𝑘 is the effective stiffness of the beam  

• 𝑚 is the effective mass.  

b. Vibration Response  

The strain (𝜖) in the piezoelectric material due to deflection under vibration can be represented in the 

following equation: 

 
𝜖 =

𝛿

𝑑
 

(3.5) 

Where:  

• 𝛿 Is the defection 

• 𝑑 is the thickness of the piezoelctric  

B. Piezoelectric Energy Conversion 

a. Piezoelectric Effect 

The strain produces and electric charge (𝑞 ) in the piezoelectric material can be represented in the 

following equation: 
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 𝑞 = 𝑑31. 𝜖. 𝐴 (3.6) 

Where: 

• 𝑑31 is the piezoelectric charge constant  

• 𝐴 is the area of the piezoelectric layer  

b. Generated Voltage 

The voltage (𝑉𝑝) across the piezoelectric material can be calculated as: 

 𝑉𝑝 =
𝑞

𝐶𝑝
 (3.7) 

Where (𝐶𝑝) is the capacitance of the piezoelectric material. 

c. Output Current 

The output current can be calculated as: 

 
𝐼𝑝 = 𝐶𝑝

𝑑𝑉𝑝

𝑑𝑡
 

(3.8) 

 

d. Electrical Output to Load 

The electrical power output (𝑃) to a resistive load (𝑅) is: 

 
𝑃 = 

𝑉2

𝑅
 

(3.9) 

C. Complete System Model 

The complete model of the piezoelectric harvester is the coupling of the differential equations of the 

mechanical vibration and the piezoelectric effect and it is expressed as: 
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 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 =  𝐹𝑒𝑥𝑡 − 𝑑31. 𝐴. 𝑉 (3.10) 

Where: 

• 𝑥 is the displacement  

• 𝑥̈ is the acceleration 

• 𝑥̇ is the velocity 

• 𝑐 is the damping coefficient 

• 𝐹𝑒𝑥𝑡 is the external force (vibration source) 

 Voltage Rectifier 

The output from a piezoelectric harvester is in alternating current (AC), which necessitates conversion 

to direct current (DC) to power a load or charge a battery. Assuming the use of an ideal rectifier, then 

the rectifier's output voltage (𝑉𝐷𝐶) can be approximated as being equal to the amplitude of the AC 

output voltage from the piezoelectric element. This approximation is based on the principle that an 

ideal rectifier efficiently converts the peak AC voltage to a corresponding DC voltage, with minimal loss. 

Consequently, the peak AC voltage becomes a key determinant of the DC output voltage level after 

rectification. 

The DC output voltage (𝑉𝑑𝑐) can be calculated as: 

 𝑉𝑑𝑐 = |𝑉𝑝| (3.11) 

 

The output power of the rectifier is:  

 𝑃𝑜𝑢𝑡 = 𝜂𝑟𝑒𝑐𝑡 × 𝑃𝑚𝑎𝑥  (3.12) 

Where: 

• 𝑃𝑜𝑢𝑡 is the power delivered to the load 
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• 𝜂𝑟𝑒𝑐𝑡 is rectifier efficiency. 

 PV Energy Harvesting  

 Single PV Cell Model  

The equivalent circuit of the PV cell consists the of several components as shown in Figure 3.4. 

1. Current source represents the generated electric current by the incident solar light 𝐼𝐿 connected in 

parallel with a forward biased diode represent the behavior of the semiconductor material of the 

PV panel. 

2. Shunt resistance 𝑅𝑠ℎ models the leakage current path because of the imperfections in the cell’s 

material   

3. Series resistance 𝑅𝑠  models the internal resistance of the PV panel. This represents the 

semiconductor material resistance and the metal connections.   

 

Figure 3.4 Equivalent Circuit of the Photovoltaic Panel 

The light current is proportional to the incident solar irradiance (G) and the area of the PV panel. It can 

be represented as:  

 𝐼𝐿 = 𝐺 ∗ 𝐴 ∗ 𝐼𝐿𝑟𝑒𝑓  (3.13) 

Where: 

• 𝐺 is the solar irradiance (𝑊/𝑚2)  
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• 𝐴 is the area of the PV panel (𝑚2) 

• 𝐼𝐿𝑟𝑒𝑓 is the reference light current at the standard test conditions (STC) which are usually at 

25°C and 1000 𝑊/𝑚2 

The behaviour of the diode in the PV panel can be described in the diode equation which relates the 

diode current to the cell’s voltage and temperature as:  

 
𝐼𝐷 = 𝐼𝑂 ∗ [𝑒

(
𝑞𝑉𝐷
𝑎𝑘𝑇

)
− 1] 

(3.14) 

Where: 

• 𝐼𝐷 is the diode current. 

• 𝐼𝑂 is the reverse saturation current of the diode. 

• 𝑞 is the charge of an electron (= 1.6 × 10−19 𝐶𝑜𝑢𝑙𝑜𝑚𝑏). 

• 𝑉𝐷 is the diode voltage. 

• 𝑎 is the ideality factor (=1 for indirect semiconductor, =2 for direct semiconductor). 

• 𝑘 is the Boltzmann’s constant (= 1.38 × 10−23 𝐽/𝐾). 

• 𝑇 is the absolute temperature (in Kelvin) 

The model of the single PV cell can be expressed in the following equation: 

 𝐼 =  𝐼𝐿 − 𝐼𝐷 − 𝐼𝑠ℎ  (3.15) 

Where: 

• 𝐼 is the output current of the PV cell 

• 𝐼𝑠ℎ is the current through the shunt resistance, representing leakage currents in the cell 
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 Multi Input Buck-Boost DC-DC Converter 

The Buck-Boost converter is a circuit which can step up or step down [57]. The proposed topology 

combines the output energy of photovoltaic (PV) and piezoelectric harvesters. These harvesters are 

connected to a shared capacitor and inductor via switches as shown in the Figure 3.5. A predictive 

algorithm controls the state of switches (open or close) which is designed to select the energy source 

with the highest output based on prediction for the next hour. The converter's output is then directed 

to a load, which could be a sensor node or a battery. This topology ensures a unidirectional flow of 

energy, from the sources to the load. In steady-state operation, the system goes into Continuous 

Conduction Mode (CCM) when the inductor current stays above zero. This condition guarantees that 

either a switch or a diode is continuously conducting, allowing for current flow through the inductor, 

thereby keeping the inductor current consistently above zero during the switching cycle. The output 

voltage (𝑉𝑜𝑢𝑡) is given by: 

 
𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛.

𝐷

1 − 𝐷
 

(3.16) 

Where: 

• 𝑉𝑜𝑢𝑡 is the output voltage of the converter 

• 𝑉𝑖𝑛 is the input voltage form the PV cell or Piezoelectric harvester. 

• 𝐷 is the duty cycle of the Buck-Boost converter which is the ratio of the ON time to the total 

switching period. 
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Figure 3.5 Multi Input Buck Boost Converter 

Sizing DC-DC Converter 

The inductor is sized to limit the ripple in the inductor current (∆𝐼𝐿), The equation for the inductor is: 

 
𝐿 =

𝑉𝑖𝑛 . (1 − 𝐷). 𝐷

𝑓𝑠𝑤 . ∆𝐼𝐿
 

(3.17) 

• 𝑓𝑠𝑤 is Switching frequency. 

• ∆𝐼𝐿 is desired peak to peak ripple current in the inductor. 

A large inductor reduces the current ripple, which can improve efficiency and minimize voltage spikes, 

but at the same time, it leads to an increase in the dimensions of the inductor component. 

The capacitor size affects the ripple in the output voltage (∆𝑉𝑜𝑢𝑡). The equation for the capacitor is: 

 
𝐶 =

𝐼𝑜𝑢𝑡 . 𝐷

𝑓𝑠𝑤 . ∆𝑉𝑜𝑢𝑡
 

(3.18) 

• ∆𝑉𝑜𝑢𝑡 is desired peak to peak ripple voltage in the output. 
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• 𝐼𝑜𝑢𝑡 is output current 

A large capacitor minimizes output voltage ripple. As a result, the output is more stable, but at the 

same time, it increases the capacitor component's dimensions. 

Working Principle of Buck-Boost Converter 

The Buck-Boost Converter operates in two primary modes based on the state of switches: 

1. Switches is Closed (ON): 

• The input voltage is applied on the inductor so the current through the inductor is rising. 

• The diode is preventing current flow to the output 

2. Switches is open (OFF):  

• The inductor current flows through the capacitor to the load via the diode. 

• The energy stored in the inductor is transferred to the capacitor and the load. 

The duty cycle (D) of the switch controls the converter’s operation and define if the converter increasing 

the voltage or decreasing it. 

Maximum Power Point Tracking (MPPT) 

Maximum Power Point Tracking (MPPT) is a technique used to extract the maximum output power from 

the harvester to power the load or charge the battery [58] [59].  

The MPPT algorithm adjusts the duty cycle (D) to maximize the output power as: 

 𝑃𝑚𝑎𝑥 = 𝑉𝑚𝑝𝑝 × 𝐼𝑚𝑝𝑝  (3.19) 

Where: 

• 𝑉𝑚𝑝𝑝 is the voltage at the MPP 
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• 𝐼𝑚𝑝𝑝 is the current at the MPP 

Power Efficiency:  

By taking into consideration the efficiency of the Buck-Boost converter. The the output power can be 

expressed as: 

 𝑃𝑜𝑢𝑡 =  𝜂 × 𝑃𝑚𝑎𝑥  (3.20) 

Where: 

• 𝑃𝑜𝑢𝑡 is the power delivered to the load 

• 𝜂 is the efficiency foactor of the Buck-Boost converter 

 Battery Mangment System (BMS) 

The Battery Management System (BMS) plays a crucial role within the broader scope of an Energy 

Management System (EMS), particularly in systems where battery usage is a significant component. 

The BMS is dedicated to overseeing the state and health of the battery, a task it accomplishes by 

continuously monitoring critical battery parameters such as voltage, current, temperature, and State 

of Charge (SoC). This monitoring is vital for implementing safeguards against conditions like 

overcharging, deep discharging, and overheating, which can compromise both the performance and 

longevity of the battery. Additionally, the BMS actively manages the charging and discharging processes, 

ensuring they are conducted in a manner that optimizes battery life and maintains operational safety. 

The data and control inputs provided by the BMS are integral to the functionality of the EMS. By 

delivering real-time insights into the battery's condition and operational parameters, the BMS enables 

the EMS to make informed decisions regarding energy distribution, storage, and utilization across the 

system. This synergy is especially critical in systems powered by a combination of energy harvesters 

and batteries. 
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 Battery 

The equivalent circuit model (ECM) of battery is illustrated in the Figure 3.6. It represents the electrical 

characteristics. The work voltage of the battery is presented as follow: 

 
𝑈𝐿 = [−1 −1] .  [

𝑈𝑏
𝑈𝑃
] − 𝑅0 . 𝐼𝐿 + 𝑈𝑜𝑐  

(3.21) 

Where: 

• 𝑈𝐿  is the battery voltage. 

• 𝑈𝑃 is capacitance terminal voltage. 

• 𝐼𝐿 is the battery current. 

• 𝑅0 is the internal resistance.  

• The work current is presented as follow:  

 

𝐼𝐿 = 
𝑈𝑇 − √(𝑈𝑇)

1
2⁄ − 4𝑅0𝑃𝐿

2𝑅0
 

(3.22) 

Where 𝑃𝐿 is the load power. 

In the circuit, the voltage 

 𝑈𝑝 = 𝑅𝑝. 𝐼𝑝 (3.23) 

 

   

 
𝐼𝑝,𝑘 = 1 −

𝜃

𝑇
+ 𝑒−𝑇 . 𝐼𝑝,𝑘−1 + {

𝜃

𝑇
− 𝑒−𝑇} . 𝐼𝐿,𝑘−1 

(3.24) 

Where: 

• 𝐼𝑝,𝑘 is the current value of a variable (or signal) at iteration 𝑘 
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• 𝐼𝑝,𝑘−1 is the value of the same variable at the previous iteration (𝑘 − 1) 

• 𝐼𝐿,𝑘−1 is the value of another variable (or signal) at the previous iteration (𝑘 − 1) 

• 𝜃 and 𝑇 are parameters of the system, ∆𝑡 𝜏⁄ = −𝑒−𝑇 + 1𝑇 , 𝜏 = 𝑅𝐶, and ∆𝑡 is the simulation 

step.  

 

Figure 3.6 The Equivalent Circuit Model for Modeling the Battery 

 State of Charge (SoC) Calculation 

The State of Charge (SoC) of a battery is a critical metric, quantitatively defined as the ratio of the 

remaining capacity of the battery to its total capacity, typically expressed as a percentage. 

Mathematically, this relationship can be represented as: 

 
𝑆𝑜𝐶 = (

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
) × 100% 

(3.25) 

Accurate estimation of SoC is akin to a fuel gauge in various applications, offering essential insights into 

the battery's current state and its readiness for use. To calculate SoC, several methodologies have been 

developed, each with unique advantages and limitations, tailored to different application requirements. 

1. Open Circuit Voltage (OCV) Method: Relies on the correlation between the battery's rest voltage 

and its (SoC). While it provides good accuracy without significant computational load, it requires 
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the battery to be in a no-load condition for an accurate measurement, which may not always be 

practical. 

2. Coulomb Counting Method: Involves the integration of current over time to track the charge 

flowing in and out of the battery. This method is straightforward but can accumulate errors over 

time, particularly if not periodically recalibrated. 

3. Model-Based Methods (Kalman Filter and Extended Kalman Filter): These sophisticated methods 

use mathematical models of the battery to estimate (SoC). The Kalman Filter and its non-linear 

variant, the Extended Kalman Filter, are particularly notable for their ability to provide accurate SoC 

estimates even in the presence of system uncertainties and measurement noise. However, they 

require more computational resources and careful tuning of model parameters. 

4. Artificial Intelligence (AI) Methods: AI and machine learning techniques are emerging as powerful 

tools for SoC estimation, capable of learning complex battery behaviors and adapting to changes 

over time. While they can offer high accuracy, they often require extensive training data and 

computational power, which might be a constraint in resource-limited applications. 

Given these constraints, the Coulomb Counting Method emerges as the most suitable algorithm for 

SoC estimation in WSN nodes. This method's primary advantage is its straightforward approach, which 

involves measuring the incoming and outgoing current to and from the battery. It provides real-time 

SoC estimation without imposing significant computational demands. The fundamental principle of 

Coulomb Counting is based on the accumulation of charge over time, with the SoC calculated using the 

following equation: 

 
𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡0) +

1

𝑄
∫ 𝐼(𝑡)𝑑𝑡
𝑡

𝑡0

 
(3.26) 

Where: 

• 𝑆𝑜𝐶(𝑡) is the State of Charge at time 𝑡. 

• 𝑆𝑜𝐶(𝑡0) s the initial State of Charge at the starting time 𝑡0. 

• 𝑄 is the total capacity of the battery (in ampere-hours). 

• 𝐼(𝑡): is the net current flowing into or out of the battery at time 𝑡. 



51 

 

• The integral ∫ 𝐼(𝑡)𝑑𝑡
𝑡

𝑡0
 represents the total charge transferred in or out of the battery over the 

time interval from 𝑡0 to 𝑡. 

The real-time capability, combined with its minimal processing requirements, makes the Coulomb 

Counting Method particularly well-suited for WSN nodes. It effectively balances the need for accurate 

SoC estimation with the inherent limitations of embedded systems in terms of processing power and 

energy efficiency. 

 Capacity and Health Monitoring  

Capacity and Health Monitoring is the prediction the lifespan of a battery by assessing its current state 

and overall health. Various algorithms have been developed for this purpose, each with its specific 

advantages and disadvantages, making them suitable for certain applications. 

1. Voltage Recovery Method: This method is observing information about the battery's internal 

resistance which is an indicator of battery health. It is based on disconnecting the load and then 

measure the time open circuit voltage. It is not a practical method for WSN application since 

disconnecting the load is a condition for this method. 

2. Impedance Spectroscopy: This technique measures the internal impedance of the battery at 

various frequencies. It involves applying an AC signal and measuring the response, which varies in 

relation to the battery's State of Health (SoH). Effective for gaining insights into the internal status 

of the battery, reflecting its health. The special conditions like applying AC signals with different 

frequencies make it complicated to be performed in application such as WSN.  

3. Incremental Capacity Analysis (ICA): It focuses on identifying capacity fade and degradation. It 

analyses the differentiation of the charge capacity curve with respect to voltage. This analysis is 

instrumental in detecting changes in the battery’s capacity over time, indicative of its aging process. 

This method requires additional computing and energy resources to be performed which make it 

not suitable for application where the resources are limited. 

4. Machine Learning-Based Health Estimation: Utilizes historical data, including voltage profiles, 

charge/discharge cycles, temperature, and overall performance to predict the battery’s state using 

machine learning techniques. It offers adaptive predictions based on evolving data, providing a 

dynamic view of the battery's condition. Like (ICA) it is not suitable for WSN due to the restrictions 

of energy and computing resources. 
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Coulomb Counting: This method is calculating the current battery capacity by measuring the incoming 

and outcoming current of the battery and compare it with the original battery capacity.  By adding a 

life cycle counter this method will be a practical solution in WSN application since the same data can 

be used for calculation the (SoC) and Capacity Fade. 

Coulomb Counting Combined Life Cycle Counter Algorithm  

To estimate the current capacity of the battery and calculate its degradation over time a combined 

algorithm of Coulomb Counting and battery life cycle counter is proposed. 

A. Capacity Fade Estimation  

Capacity Fade is used to estimate the battery’s age by comparing the current capacity of the battery to 

its original capacity. To calculate the Capacity Fade the following equation is used: 

 
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑑𝑒 = (1 −

𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

) × 100% 
(3.27) 

Where: 

• 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current maximum charge capacity 

• 𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the original capacity of the battery 

By knowing the typical degradation rate for the battery based on the type or historical data. The 

estimated Cycles can be calculated. For instance, if the used battery is lithium ion, then the typical 

degradation is 20% over 500 cycles then the remaining cycles can be calculated as: 

 
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑦𝑐𝑙𝑒𝑠 =  

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑑𝑒

𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝐶𝑦𝑐𝑙𝑒
× 500 

(3.28) 

For calculation the current Capacity, the degradation should be taken into consideration. Let’s Assume 

a linear degradation model for simplicity then: 

 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑄𝑚𝑎𝑥 − 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × 𝑁 (3.29) 
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𝑁: Number of complete charge-discharge cycles 

Update 𝑄𝑚𝑎𝑥 periodically based on 𝑁 

B. Generalized Cycle Counting Approach: 

Let’s define the variables and the formula: 

• 𝐶𝑠𝑡𝑎𝑟𝑡: State of Charge (SoC) at the start of the charging. 

• 𝐶𝑒𝑛𝑑: State of Charge (SoC) at the end of the charging. 

• 𝐷𝑠𝑡𝑎𝑟𝑡: State of Charge (SoC) at the start of the discharging. 

• 𝐷𝑒𝑛𝑑: State of Charge (SoC) at the end of the discharging. 

• 𝑄: Total capacity of the battery. 

• 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒: Accumulator for the fractional cycles. 

• 𝑓𝑢𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡: Total count of full cycles. 

Each charging or discharging event contributes a fraction of a cycle calculated as: 

• For charging:  

 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒 = |

𝐶𝑒𝑛𝑑− 𝐶𝑠𝑡𝑎𝑟𝑡 
𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

| 
(3.30) 

• For discharging: 

 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒 = |

𝐷𝑒𝑛𝑑− 𝐷𝑠𝑡𝑎𝑟𝑡 
𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

| 
(3.31) 

The absolute value is taken since the magnitude of charge or discharge is needed for this method. 

• The general equations: 
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• For charging: 

 
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒+= |

𝐶𝑒𝑛𝑑− 𝐶𝑠𝑡𝑎𝑟𝑡 
𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

| 
(3.32) 

• For Discharging  

 
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒+= |

𝐷𝑒𝑛𝑑− 𝐷𝑠𝑡𝑎𝑟𝑡 
𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

| 
(3.33) 

• Full Cycle Calculation  

1. If 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒 ≥ 1: 

1. 𝑓𝑢𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡+= 1 

2. 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒−= 1 

 The Proposed Algorithm 

• Assumptions: 

1. The battery (SoC) is 100%.  

2. The total Capacity of the battery is known 𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙. 

3. Battery’s current is measured at the calculation time.  

4. Battery 𝑓𝑢𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡 is zero. 

5. Battery 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒 is zero. 

• Steps: 

1. Initialization: 

1. Set the initial (SoC) to 100% when the battery is full of charge. 
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2. Initialize a variable to count the 𝑓𝑢𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡 starting with zero value. 

3. Initialize a variable to count the 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒 starting with zero value. 

4. Initialize a variable to keep track the current charge state (delivered/extracted) 

since the last full charge 

2. Measurements: 

1. Measure the current flowing into or out of the battery at regular intervals 

(𝐼(𝑡)). 

2. Record the time interval (∆𝑡) for charging and discharging  

3. Charge Integration (Coulomb Counting): 

1. For each interval calculate the charge transferred using 

 𝑄 = 𝐼(𝑡) × ∆𝑡. (3.34) 

2. Add this value to the total charge counter, adjusting the sign based on whether 

the battery is charging or discharging  

3. Update the (SoC) as follows: 

 
𝑆𝑜𝐶 =  𝑆𝑜𝐶𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 +

𝑄

𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
× 100% 

(3.35) 

4. For charging update 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒 as follows: 

 
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒+= |

𝐶𝑒𝑛𝑑− 𝐶𝑠𝑡𝑎𝑟𝑡 
𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

| 
(3.36) 

5. For Discharging update 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒 as follows: 

 
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒+= |

𝐷𝑒𝑛𝑑− 𝐷𝑠𝑡𝑎𝑟𝑡 
𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

| 
(3.37) 

6. Check full Cycle as follows: 
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•  If 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒 ≥ 1: 

o 𝑓𝑢𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡+= 1 

o 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑦𝑐𝑙𝑒−= 1 

o Update the capacity of the battery by taking into consideration 

the degradation due to the life cycle increment as follows: 

 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × 𝑓𝑢𝑙𝑙𝐶𝑦𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡 (3.38) 

4. Resetting and Continuation: 

1. After a full charge cycle, reset the total charge counter and 𝑆𝑜𝐶 to 100% 

2. Continue the measurement and calculation process 

 Protection Mechanisms  

BMS provides many protection mechanisms for the battery according to the application for ensuring 

the safety, reliability, and the extension the life span of the battery. The most common protection 

mechanisms are:  

1. Overcharge/ over-discharge Protection: prevent the battery form exceeding the maximum/ 

minimum voltage limits.    

2. Over Current Protection: keeps the flowing current into or out of the battery in the safe limits. 

3. State of Charge (SoC) Monitoring: Keeps the battery SoC in the safe range. 

 EMS Dynamic Behaviour 

The EMS's dynamic behaviour illustrates the system's response to various scenarios, with the energy 

flow paths depicted in the figures under specific conditions. These scenarios include: 
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Case 1: PV harvester output power is high and sufficient to QoS requirements & PZT harvester power 

is low & Battery SoC is greater than 40%. Then switches (1,3,4) are close and switches (2,3) are open. 

The energy flow from PV Harvester through the Buck Boost converter to the load (IoT device) as shown 

in Figure 3.7. 

 

Figure 3.7 Case1: PV Feeding the IoT Device 

Case 2: PZT harvester output power is high and sufficient to QoS requirements & PV harvester power 

is low & Battery SoC is greater than 40%. Then switches (1,2,4) are close and switches (2,3) are open. 

The energy flow from PZT Harvester through the Buck Boost converter to the load (IoT device) as shown 

in Figure 3.8. 

 

Figure 3.8 Case2: PZT Feeding the IoT Device 
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Case 3: PV harvester output power is low & PZT harvester power is low & Battery SoC is greater than 

40%. Then switch (5) is close and switches (1,2,3,4) are open. The energy flow from the battery to the 

load (IoT device) as shown in Figure 3.9. 

 

Figure 3.9 Case3: Battery Feeding the IoT Device 

Case 4: PV harvester output power is high & PZT harvester power is low & Battery SoC is equal or lower 

than 40%. Then switches (1,3) are close and switches (2,4,5) are open. The energy flow from PV 

Harvester through the Buck Boost converter to charge the battery as shown in Figure 3.10. 

 

Figure 3.10 Case4: PV Charging the Battery 
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Case 5: PV harvester output power is low & PZT harvester power is low & Battery SoC is greater than 

40%. Then switches (2,3) are close and switches (2,4,5) are open. The energy flow from PZT Harvester 

through the Buck Boost converter to charge the battery as shown in Figure 3.11. 

 

Figure 3.11 Case5: PZT Charging the Battery 
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 PV ENERGY PREDECTION 

 Introduction 

One of the most promising and rapidly evolving fields within renewable energy is photovoltaic (PV) 

energy harvesting. This advancement underscores the importance of short-term PV harvester output 

forecasting models. Developing accurate forecasting models is crucial for maximizing the benefits 

offered by this alternative energy source. Nowadays, short-term solar energy output forecasting lacks 

a fully established and validated technique and is frequently linked to significant forecast mistakes, 

which can occasionally approach 60–65%. Simultaneously, an area forecast with more points produces 

a less accurate result; similarly, a forecast for a longer period of time yields a more accurate outcome. 

The amount of solar radiation that solar panels will actually receive is forecasted, not the amount of 

electricity that a solar power plant will produce. This is influenced by many factors, the primary ones 

are the weather and climate, including the sun's position in the sky, the length of daylight, precipitation, 

cloud cover, wind speed, etc. 

Various forecasting models are available, each with unique features constructed within the parameters 

of the chosen short-term forecasting techniques. Evaluating the most commonly used forecasting 

methods is the first step, and then the most promising method will be studied. The accuracy evaluation 

of each short-term forecasting method is essential to decide on the viability of applying and enhancing 

the various techniques. 

 Short-Term Forecasting Methods and Their Classification 

The existing short term forecasting methods is divided into four main groups shown in  Figure 4.1. 

Physical models elucidate the correlations between weather conditions and solar irradiance, derived 

through numerical weather forecasting and the generated electrical energy at the PV station. Statistical 

approaches define the relationship between the flux density of solar radiation, ascertained via 

numerical weather forecasting, and generated electrical energy at the PV station through statistical 

examination of historical data time series, disregarding physical factors. Adaptive techniques employ 

artificial intelligence systems to identify the linkage between forecasted weather conditions and the 
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generated electrical energy at the PV station. Predominantly, hybrid methods integrate physical and 

statistical models, offering a comprehensive framework for analysis. 

 

Figure 4.1 Solar Energy Prediction Methods 

 Physical Methods 

In physical method, the input variables of the model include numerical weather forecasts, local 

meteorological observations, information on terrain and land surface type, and historical data 

regarding the generated energy of the PV station. Also, a satellite systems is used to track the direction 

and speed of cloud movement in some applications [60], which provides the opportunity to forecast 

solar radiation in real time. However, the accuracy of these methods is sensitive to the sudden changes 

in the weather condition and it is high with stable weather [61], [62]. Moreover, the practical 

application of physical models often presents a significant challenge. This is primarily due to their 

inherent complexity and the extensive array of parameters they require for accurate operation [62]. 

Furthermore, these models necessitate the use of sophisticated and costly equipment. Unfortunately, 

such resources are not readily accessible or even available in many regions across the globe, thereby 

limiting the widespread adoption and utilization of these physical models [62]. Thus, these models are 

not as well suited for incorporation into IoT devices. Therefore, for efficient solar energy prediction in 

this context, different approaches that are more compatible with the limitations of IoT devices need to 

be investigated. 

The practical use of various physical models in predicting the generation of electrical energy is shown 

in works [63], [64], [65]. In [63], the influence of the value of aerosol optical depth on the quality of 

forecasting solar radiation using numerical weather forecast models MM5 or Eta is considered. As a 

result of the work, it is shown that when the value of the aerosol optical depth is less than 0.1, the 
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forecasting error is acceptable and is about 3-4%, and when the value of the aerosol optical depth is 

more than 0.1, the average deviation is about 100 W/m2. 

In [64], one of the physical forecasting models is presented, which is based on short-term changes in 

the scale of Oktas and temperature changes to determine the average hourly output power of 

photovoltaic systems at small solar power plants located in the cities of Sanandaj and Rasht. This model 

has acceptable accuracy in predicting the generation of solar energy in cloudy weather, while in sunny 

weather it gives much worse results. 

The study presented in [65] applies physical methods that rely on numerical weather predictions and 

satellite-based cloud motion vectors. The findings indicate that the accuracy of these pure physical 

methods, when used independently without integration with other methods, ranges between 15% and 

21%. 

 Statistical Methods 

For statistical forecasting models, the input data are numerical weather forecast data, in particular 

information about solar radiation and retrospective data on the generation of electrical energy by a 

solar power station. 

Regression Methods 

One of the widely used statistical methods for predicting electrical energy is regression methods. They 

allow taking into account a large number of factors affecting the forecast, including meteorological ones. 

When using regression methods, it is possible to estimate causal relationships and dependencies in the 

data. In addition, the advantage of these methods is that they allow predicting the value of the 

dependent variable by the values of the independent ones, but it is necessary that the feature values 

be uncorrelated. 

The equation of linear regression has the following form: 

 𝒀 = 𝒂 + 𝒃𝟏𝒙𝟏 + 𝒃𝟐𝒙𝟐 +⋯+ 𝒃𝒏𝒙𝒏 + 𝓔 (4.1) 

Where 𝑌  is the resulting feature, 𝑥1, … , 𝑥𝑛  are the factor features, 𝑏1, … , 𝑏𝑛  are the regression 

coefficients, 𝑎 is the free term of the equation, and ℰ is the “error” of the model. 
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The advantage of regression methods lies in the simplicity of their implementation, and the main 

disadvantage is the unpredictability of the parameters that affect the actual values. When sharp 

changes occur in the available retrospective data, the reliability of the forecast will be violated. The use 

of regression methods is well applicable for finding patterns in data and for determining significant 

factors of the model, but they do not provide high accuracy when building short-term models for 

forecasting the generation of electricity output. 

Methods Based on Time Series 

One of the most frequently used methods of time series is the Box-Jenkins ARIMA (Autoregressive 

Integrated Moving Average) model. This model is applied to non-stationary time series, brought to 

stationary, by taking the difference of a certain order from the original values of the time series. For a 

non-stationary time, series 𝑋, the ARIMA model has the following form: 

 

ΔdXt = c +∑ai

P

i=1

ΔdX(t−1) +∑bjℰt−j + ℰt

q

j=1

 

(4.2) 

where ℰ𝑡 is a stationary time series, 𝑐, 𝑎𝑖, 𝑎𝑛𝑑 𝑏𝑗 are the parameters of the model, 𝛥𝑑 is the difference 

operator of the time series of order 𝑑 (sequential taking 𝑑 times differences of the first order - first 

from the time series, then from the obtained differences of the first order, then from the second order, 

etc.) Also, this model is interpreted as ARMA(𝑝 + 𝑑, 𝑞) - a model with 𝑑 unit roots. When 𝑑 = 0, the 

usual ARMA models are used. 

Methods based on time series theory are widely used in building short-term forecasts for electrical 

energy generation, as companies have a large amount of historical data on electrical energy generated 

by PV plants, and methods in this group are aimed at processing large data arrays and allow finding 

patterns in them, as well as using these patterns when building forecast models. The main disadvantage 

of these methods is that they do not provide the required forecasting accuracy. But when using time 

series methods in combination, for example with adaptive models, the required accuracy is achievable, 

but the methods used in this case will belong to hybrid methods. 

In works [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], the practical application of statistical 

models to forecasting electricity generation is shown. In [66], a two-stage method for forecasting solar 
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power plant electricity is described. At the first stage, statistical normalization of solar energy is 

performed utilizing a clear sky model [74]. During the second stage, forecasts for normalized solar 

energy are derived through time series models, explicitly using an autoregressive model and an 

autoregressive model with exogenous input, into which numerical weather forecasts are fed. As a result 

of the work, it is shown that the use of an autoregressive model with an exogenous input gives a 12% 

better result than using a simple autoregressive model when forecasting a short horizon and 23% when 

forecasting the next day. 

In [67], a model for forecasting solar energy is proposed, taking into account the stochasticity of clouds 

by applying various parameters that take into account power attenuation. Based on the statistical 

behavior of the parameters, a simple process of switching between three classes was proposed: 

“sunny”, “cloudy”, “variable cloudiness”. The forecast is built by identifying the current mode and 

assuming it will remain in this mode. In [68], The authors propose a very short-term solar energy 

forecast using the classic concept of “seasonality,” with the allocation of the average value or trend and 

rapid fluctuations around it. The feature of this work is a very short time horizon of 1, 15 and 60 minutes. 

Different statistical models, that aim to predict the solar energy of solar panels that are deployed in 

wireless sensing network, were proposed. In [69], an algorithm known as Solar Energy Predication 

based on Additive Decomposition (SEPAD) is designed to predict solar energy harvesting. It does this 

by identifying the key terms involved in the prediction of solar energy harvesting and analyzing each 

one individually, which are solar diurnal cycle, seasonal effect and recently trend on current day. Once 

this is done, the terms are then amalgamated to determine the predicted energy. In a manner akin to 

basic statistical methods, the day is segmented into timeslots. Within each of these timeslots, the three 

terms can be computed. The performance evaluation results show that SEPAD algorithm achieves 

higher accuracy, lower complexity, and lower communication overhead than the other statistical 

methods, namely EWMA [70], WCMA [71] and AEM [72]. 

In [75], a new energy estimation and forecast scheme for solar powered wireless sensor networks was 

proposed. The scheme is called UD-WCMA (Universal Dynamic Weather Condition Moving Average) 

and it aims to improve the energy efficiency and reliability of wireless sensor networks that use solar 

energy as the power source. The scheme forecasts the future energy level of each sensor node using a 

weighted cumulative moving average method that dynamically adjusts the weights according to the 

uncertainty of the solar energy and the sensor node’s workload. The scheme is evaluated through 

simulations and experiments using real-world data. The results show that the scheme can achieve 

higher accuracy and lower error rate than existing schemes such as  Pro-Energy [73] and WCMA [71]. 
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 Adaptive Methods 

Adaptive models have a learning process based on historical data analysis. Contrary to statistical models, 

adaptive models can implicitly capture complex nonlinear relationships between weather conditions 

and the generated electrical energy by PV harvester. The accuracy of the forecast primarily depends on 

the sample size and structure of the original data utilized in constructing the model. 

Methods Using Neural Networks 

Methods using artificial neural networks have recently become widespread not only in solving short-

term forecasting tasks for solar energy generation, but also in medium- and long-term forecasting. 

Artificial neural networks consist of many neurons of input, hidden, and output layers, interacting with 

each other. Neurons have an activation function that depends on the weight coefficients of the 

connections between neurons and the bias. 

To get a forecast, it is necessary to train the neural network. In the process of training, the values of 

biases and weights are selected for each neuron so that the output signal of the neural network is as 

close as possible to the actual value. There are a large number of neural network training methods, 

which have found application in forecasting the generation of electricity by solar power plants. The 

advantages of neural networks are fast learning algorithms and the ability to work in the presence of 

noisy input signals. Compliance with the requirements for building the structure of a neural network, 

considering neuron redundancy and the quantity and selection of informative attributes developed for 

training a neural network, guarantees the network's high reliability. 

Support Vector Method 

The support vector method is one of the popular methodologies for learning from precedents. The 

support vector method belongs to the family of linear classifiers and is used in regression analysis and 

classification tasks. The main idea of the method is to translate vectors into a space of larger dimension 

and search for a separating hyperplane with the maximum gap in it. From the hyperplane separating 

the classes on both sides, two parallel hyperplanes are constructed. The hyperplane, which has the 

maximum distance between the two parallel planes, will be separating. The primary advantages of the 

support vector method are the ability to derive an accurate solution to the problem in the existence of 

incomplete and distorted data and the ability to consider a large number of additional factors affecting 
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the quality of forecasting. The disadvantage is the need for training and increased requirements for 

hardware and software resources. 

The use of adaptive models for forecasting power generation is shown in works [76], [77], [78], [79]. 

In work [76], the application of decision trees for very short-term forecasting of power generation by 

a solar power plant is demonstrated. The work shows that the accuracy of the forecast using gradient 

boosting was 75-65%. The forecast is built 1 hour ahead. The use of a support vector machine (SVM) 

algorithm to classify clouds into six types based on their shape, color, and texture features extracted 

from total sky images was proposed [80]. The cloud classification results can be used as inputs to a PV 

power forecasting model. 

In [77], The application of an artificial neural network, an adaptive network employing a fuzzy inference 

system, and a generalized neural network. The input variables for the proposed model encompass solar 

radiation level, ambient temperature, wind speed, and module temperature. The findings demonstrate 

that employing a generalized neural network yields the most favorable outcome. In [78], the authors 

use a radial basis function network to forecast solar energy. The input data used are measurements of 

power and meteorological forecasts of solar radiation, relative humidity, and temperature at the 

location. The feature of this work is the preliminary classification of the type of weather (sunny, cloudy, 

rainy) and the use of a different network structure for each class. 

In [79], the use of a deep trust network is proposed for predicting solar energy generation. The input 

parameters for the network are data on the level of solar radiation, ambient temperature, relative 

humidity, and retrospective data on solar energy generation five days before the forecast. The work 

also showed that wind speed has little effect on solar energy generation. As a result of the work, it was 

shown that the model based on a deep trust network shows a better result than the model based on a 

neural network with backpropagation of error. 

 Hybrid Methods 

Hybrid methods combine various combinations of methods from other groups. For example, 

combinations of physical, statistical, and adaptive models are often encountered. The application of 

physical models is not always justified due to the complexity of accurately accounting for certain factors, 

which requires the introduction of a statistical approach to their determination Statistical methods 

have greater precision in calculating average solar radiation values over long periods (day, month, year). 

However, their accuracy diminishes over shorter spans (minutes, hours) where physical conditions like 
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cloud cover cannot be averaged effectively within these intervals. The statistical model is adjusted to 

constantly changing conditions that are described by physical models to enhance hybrid models' 

accuracy. The authors [81] propose a novel method that combines KNN algorithm with weather 

classification and physical model. The method first classifies the weather into different types based on 

historical data, then applies KNN algorithm to find the most similar days in each weather type, and 

finally uses a physical model to adjust the forecast based on the current weather conditions. The 

simulation results show that using a hybrid physical-statistical method can improve the accuracy of 

solar forecasting by 10% to 20% in comparison with physical model. The work in [82] initially analyzes 

previous PV power plant production data to determine the technical parameters of the PV power 

station. The forecasting model then takes past data and estimated physical parameters into account. 

Combining various methods from statistical and adaptive models is also another hybrid methods that 

have prospects, as they allow taking into account the specifics of the physical process and using the 

capabilities of adaptive methods. The methods of this group are developing, and experts find various 

combinations of methods that provide the necessary accuracy. 

In [83], a two-stage model is used, combining the autoregressive integrated moving average model, 

the least squares support vector model, an artificial neural network, and an adaptive network based 

on a fuzzy inference system with a genetic algorithm working at the first stage. The error of the method 

as a result of the study was about 3.43%. 

The authors [84] use ANN to model the nonlinear relationship between weather variables and PV 

power output. They also use an Analog Ensemble (AnEn) technique to generate multiple forecasts from 

different weather scenarios and select the most likely one based on similarity measures. The results 

show that using a hybrid AnEn + ANN model yields best results. 

In [68], the authors present a short-term forecasting procedure for continuous time series using 

regression techniques and machine learning models. The procedure is particularly useful in situations 

where the number of significant independent variables depends on the interval to which the 

observation belongs. A multivariate regression is used to identify relationships in the time series, 

dividing observations into several intervals. The proposed procedure is flexible and can predict the next 

value of the clearness index using independent significant identified variables. The results show a 

significant improvement over classical dynamic regression. 
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 Statistical Adaptive Methods 

Table 4.1 summarizes the previous analysis of different prediction methods. Putting physical models to 

use in real-world scenarios can be quite difficult [62], especially when using constrained IoT devices.  

However, the analysis shows that, using neural networks and statical-adaptive hybrid methods gives 

the best forecasting results and is the most promising direction in the field of building predictive models 

for electricity generation. Moreover, According to the most current published research, deep learning 

models outperform almost all other traditional forecasting methods in terms of yielding precise and 

promising results for solar forecasting with the highest level of accuracy [85]. Therefore, in the coming 

section I discuss the different types of DL networks and their usage in solar energy prediction. 

Table 4.1 - Short-term Prediction Methods and Their Accuracy 

 Deep Learning for Short-Term Prediction 

While typical ML algorithms use a relatively shallow architecture that modifies the input data only once 

or twice, deep learning (DL) is a novel approach that uses a deep architecture to generate exact models. 

Specifically, DL approaches work well in time-series analysis because the input data is changed multiple 

times by a linear or non-linear process, and the output is then recovered from deep architecture. The 

use of DL methods for solar radiation forecasting has attracted a lot of attention lately. The DL 

techniques that have significantly improved solar energy forecasting are given in this section.  

 Deep Neural Networks (DNNs)  

While a neural network with a single layer can still make approximate predictions, additional hidden 

layers can help optimize the results [86].  DNN are neural networks with a certain level of complexity, 

Method Prediction error (%) Presented Models 

Physical 3-45 [39]-[41], [57] 

Statistical 7-40 [42]-[51] 

Adaptive 5-10 [76], [77], [78], [79] 

Hybrid 
physical-statistical 18-35 [81], [82] 

statistical-adaptive 3-9 [68], [83], [84] 
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a neural network with more than two layers. These neural networks are designed to simulate the 

behavior of the human brain, so that it can “learn” from large amounts of data.  

DNNs are typically feedforward networks in which data flows from the input layer to the output layer 

without looping back, as shown in Figure 4.2Table 4.2.Figure 4.2 At first, the system is trained with a 

lot of data. During training, the weights and biases of the network are iteratively adjusted through 

backpropagation. Once trained, DNNs can be used to predict outcomes based on new sets of input data 

[87]. 

Let 𝑥 be the input vector, a hidden layer ℎ𝑖, for 𝑖 = 1,2,… , 𝑛 where 𝑛 is the number of hidden layers, 

is calculates using the input from the previous layer (either input layer or another hidden layer). This is 

done using the following formula: 

 ℎ𝑖 = 𝜎𝑖(𝑊𝑖ℎ𝑖−1 + 𝑏𝑖) (4.3) 

 

where 𝑾𝒊 is the weight matrix for the 𝑖 − 𝑡ℎ layer, 𝑏𝑖 is the bias and 𝜎𝑖 is the activation function. The 

output 𝑦 is calculated using the final hidden layer using the following formula: 

 𝒚 = 𝝈𝒏+𝟏(𝑾𝒏+𝟏𝒉𝒏 + 𝒃𝒏+𝟏) (4.4) 

where 𝑾𝒏+𝟏 is the weight matrix for the output layer and 𝑏𝒏+𝟏 is the bias. During training, the DNN 

uses the error of its predictions to determine the optimal values for the weights and biases. A loss 

function is used to compute the error, and stochastic gradient descent or other optimization algorithms 

are used to update the weights and biases. Backpropagation is the process of changing the weights and 

biases to lower the error. Usually, a type of gradient descent is used to train the network, where the 

derivative of each nested function is determined in relation to its input. 



70 

 

 

Figure 4.2 - DNN Structure 

 Recurrent Neural Networks (RNNs): 

Inspired by the ANN family, Recurrent Neural Networks (RNNs) are DL-based architectures in which a 

link between nodes results in a graph that allows the network to exhibit dynamic activity. This makes 

them applicable to tasks such as unsegmented, connected handwriting recognition or speech 

recognition [88]. 

In an RNN, the information cycles through a loop. Unlike feedforward neural network, each neuron in 

hidden RNN layer has a recurrent connection or a recurrent edge. This loop allows information to be 

passed from one step in the sequence to the next, creating a form of memory, as shown in Figure 4.3. 

When it makes a decision, it considers the current input and also what it has learned from the inputs it 

received previously. Let 𝑥𝑡  be the input vector of the input layer in RNN model, where 𝑡 is the time step. 

The hidden layer ℎ𝑡 at time step 𝑡 is calculated using the input at the same time step 𝑥𝑡 and the hidden 

layer at the previous time step ℎ𝑡−1 using the following formula: 

 𝒉𝒕 = 𝝈(𝑾𝒉𝒉𝒉𝒕−𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝒃𝒉) (4.5) 

where 𝑊ℎℎ  and 𝑊𝑥ℎ are weight matrices, 𝑏ℎ is the bias and 𝜎 is the activation function. The output 𝑦𝑡 

at time step 𝑡 is calculated using the hidden layer at the same time step. This is done using the following 

formula: 

 𝒚𝒕 = 𝝈(𝑾𝒉𝒚𝒉𝒕 + 𝒃𝒚) (4.6) 
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where 𝑾𝒉𝒚 is the weight matrix for the output layer and 𝑏𝒚 is the bias. 

In theory, RNNs can make use of information in arbitrarily long sequences, but in practice they are 

limited to looking back only a few steps due to the problem known as “vanishing gradients”. The 

problem was explored in depth by Hochreiter [89] and Bengio, et al. [90], who found some pretty 

fundamental reasons why it might be difficult. This might be resolved by implementing what are known 

as "Long Short-Term Memory (LSTM)" networks, which include explicit memory.  

 

Figure 4.3 - RNN Structure 

 Long Short-Term Memory (LSTM)  

They are a type of RNN capable of learning order dependence in sequence prediction problems. This is 

a behavior required in complex problem domains like machine translation, speech recognition, and 

more. LSTMs are a complex area of deep learning. It involves lots of theory and time to understand and 

get comfortable with [91]. 

Unlike traditional feedforward neural networks, LSTM has feedback connections. It can not only process 

single data points like image, but also entire sequences of data like video. LSTM networks are well-

suited to classifying, processing and making predictions based on time series data, since there can be 

lags of unknown duration between important events in a time series. LSTMs were developed to deal 

with the exploding and vanishing gradient problems that can be encountered when training traditional 

RNNs. Relative insensitivity to gap length is an advantage of LSTM over RNNs, hidden Markov models 

and other sequence learning methods in numerous applications [92]. 

In order to determine whether or not the input information is meaningful, the LSTM approach 

incorporates a "processor" into the algorithm. The processor item that has all of the features of LSTM 
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modules is called a "cell", as shown in Figure 4.4. Determining what data from the cell state will be 

discarded is the first stage in the LSTM. The "forget gate layer" is a sigmoid layer that makes this 

determination. It looks at  ℎ𝑡−1 and 𝑥𝑡 and outputs a number between 0 and 1 for each number in the 

cell state 𝐶𝑡−1. A 1 denotes "keep this completely," whereas a 0 denotes "get rid of this completely." 

This can be expressed mathematically as: 

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4.7) 

where 𝑾𝒇  and 𝒃𝒇  are the weights and biases for the forget gate layer, the dot represents the dot 

product operation and [ℎ𝑡−1, 𝑥𝑡] represents the concatenation of the vectors ℎ𝑡−1 and 𝑥𝑡. Choosing 

the new data to be stored in the cell state is the next stage. There are two components to this. First, 

the values to be updated are selected via a sigmoid layer known as the "input gate layer." A vector of 

fresh candidate values is then produced by a hyperbolic tangent activation function (tanh) layer, 𝐶̌𝑡, 

that could be added to the state. I combine these two components to produce a state update in the 

following step. In terms of math, this is expressed as: 

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4.8) 

 

 𝐶̌𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (4.9) 

 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̌𝑡 (4.10) 

where 𝐶𝑡 is the new candidate values, scaled by how much I decided to update each state value, 𝑾𝒊 

and 𝒃𝒊 are the weights and biases for the input gate layer and 𝑾𝑪 and 𝒃𝒄 are the weights and biases 

for the tanh layer. 

 

Figure 4.4 - LSTM Cell Structure 



73 

 

Lastly, I have to select the output to be generated. Cell state will serve as the basis for this output, which 

will be filtered. To determine which portions of the cell state to output, I first run a sigmoid layer. Next, 

in order to output only the portions, I multiply the cell state by the sigmoid gate's output after running 

it through tanh (which pushes the values to be between -1 and 1). This is expressed mathematically as: 

 𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4.11) 

 

 ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (4.12) 

where 𝑊𝑜 and 𝑏𝑜 are the weights and biases for the output gate layer. 

 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a cutting-edge method in the field of deep learning (DL) that 

may uncover hidden structures and information inside a dataset in addition to its conceptual properties. 

Because of the shared-weight architecture of the convolution kernels or filters, which slide along input 

features and produce translation equivariant responses known as feature maps, they are also referred 

to as shift invariant or space invariant artificial neural networks. They have applications in image and 

video recognition, recommender systems, image classification, medical image analysis, natural 

language processing, and financial time series [93]. 

Like a typical multilayer neural network, CNNs are made up of one or more convolutional layers, 

followed by one or more fully linked layers, as shown in Figure 4.5. The input layer to the CNN is a 

matrix 𝑥, which could be an image or a feature map from a previous layer. A collection of learnable 

filters, or kernels, K, are applied to the input by the convolutional layer C. To create a feature map, each 

filter is convolved across the input's width and height (also known as an activation map). This is done 

using the following formula: 

 𝐶𝑖,𝑗 =∑𝑥𝑚,𝑛
𝑚,𝑛

. 𝐾𝑖−𝑚,𝑗−𝑛 + 𝑏 (4.13) 

where the sum of the values is over the kernel's spatial extent, and b represents the bias. The result is 

a feature map that represents the filter's responses at each spatial position. The feature maps are 

subjected to a nonlinear function by the activation layer. Usually, this is the element-wise application 

of the Rectified Linear Unit (ReLU) function: 
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 𝐴𝑖,𝑗 = max(0, 𝐶𝑖,𝑗) (4.14) 

 

 

Figure 4.5 - CNN Structure 

To minimize computational complexity, control overfitting, and reduce spatial dimensions, the feature 

maps are down sampled by the pooling layer. Max pooling is a popular method that takes the maximum 

value of each subregion (such as 2x2-pixel tiles) extracted from the feature map and discards all other 

values: 

 𝑷𝒊,𝒋 = 𝐦𝐚𝐱
𝒎,𝒏

𝑨𝒎,𝒏 (4.15) 

The CNNs uses fully connected layers to do high-level reasoning after multiple convolutional, activation, 

and pooling layers. As observed in typical neural networks, neurons in a completely linked layer have 

complete connections to all activations in the preceding layer. As a result, their activations can be 

calculated using matrix multiplication and bias offset. 

 
Related Work 

The authors [94] propose a model to forecast day-ahead solar irradiance using only weather data, such 

as temperature and humidity, without historical solar irradiance data. They use a deep LSTM-RNN to 

learn the nonlinear relationship between the weather data and the solar irradiance. They use six 

datasets from four different countries with diverse climate types and compare their model with FFNN 

and persistence models. They use RMSE, MAE, and forecast skill as performance metrics. They also 

simulate a one-year operation of a commercial building microgrid to demonstrate the usefulness of 

their model. They achieve an average RMSE of 60.31 𝑊/𝑚2 across the six datasets and show that 

LSTM-RNN outperforms FFNN and persistence models. They also show that their model increases the 

annual energy savings by 2% compared to FFNN. 



75 

 

The authors [95] proposes a hybrid deep learning method that combines the clustering techniques, 

CNN, LSTM, and attention mechanism with the wireless sensor network to overcome the existing 

difficulties of the PV energy generation forecasting problem. Their proposed method consists of three 

stages: clustering, training, and forecasting. In the clustering stage, correlation analysis and self-

organizing mapping are employed to select the highest relevant factors in historical data. In the training 

stage, a CNN, LSTM, and attention mechanism are combined to construct a hybrid deep learning model 

to perform the forecasting task. In the testing stage, the most appropriate training model is selected 

based on the month of the testing data. 

A combined approach utilizing CNN and LSTM network is proposed for predicting the thermal power 

of a solar power tower system, referred to as "Solar Two” in [96]. For this study, three distinct models 

were constructed: a standalone LSTM model, a standalone CNN model, and a combined CNN-LSTM 

model. These models were built for different seasons within a year. The combined CNN-LSTM model 

demonstrated superior performance, yielding a Root Mean Square Error (RMSE) of 5.061 𝑀𝑊𝑡. This 

approach resulted in a 2.154% improvement in RMSE, a 5.503% improvement in MAE, and a 1.324% 

improvement in RMSE, and a 2.995% improvement in MAE when compared with the standalone CNN 

and LSTM models. 

The authors [97] present a scheme for predicting the amount of solar radiation that reaches the earth’s 

surface in different time horizons (3/6/24 hours ahead) using a deep learning model. The model uses 

LSTM to capture the dependence between hours of the same day and other variables such as direct 

horizontal irradiance, direct normal irradiance, relative humidity, dew point, temperature, wind speed, 

and wind direction. The model is applied to forecast solar radiation for four locations in the Thar desert 

region of Rajasthan, India. The model is optimized in terms of number of neurons and is evaluated using 

standard statistical indicators: RMSE and MAPE. The results show low values of RMSE and MAPE, 

indicating the efficacy of the proposed model. 

The authors [98] propose a deep learning model based on LSTM networks for short-term forecasting 

of global horizontal irradiance (GHI), a proxy for solar energy. The authors investigate four design 

choices for LSTM, such as pre-processing, temporal order, batch size, and prediction horizon, and how 

they affect the forecasting performance. The authors use data from three solar stations in India across 

two climatic zones and two seasons. They compare their LSTM model with three recent benchmark 

methods based on random forest, RNN, and LSTM, respectively. They find that their LSTM model 

outperforms the benchmark methods in terms of forecasting accuracy. They also provide some 



76 

 

recommendations for better LSTM design, such as using raw data, preserving temporal order, choosing 

appropriate batch size, and considering input data variability. 

The authors in [99] expanded upon the work of [100] by integrating Photovoltaic (PV) output data with 

sky images into a unified network to predict solar PV values 15 minutes ahead, averaged minute-wise. 

The input sky images were collected using the FSH-EYE camera installed at Stanford University, and the 

PV-based data was collected using poly-crystalline panels located at the Jen-Hsun Huang Engineering 

Center, Stanford’s, for a one-year period between 1st March 2017 and 1st March 2018. The 

performance of the proposed model was evaluated by comparing it with the model in [100], an 

autoregressive model, two models developed using clear sky index values as inputs, a model built with 

PV data, a model developed with sky images input, and a persistence model that assumes constant 

clear sky index values and applies them as input. The proposed model demonstrated significantly 

superior performance with a forecast skill of 15.7% and a RMSE of 2.51. This indicates that the proposed 

model outperformed the other models in terms of both forecast skill and RMSE. 

The authors [101] present a method for predicting the power output of a solar photovoltaic (PV) 

system in Cyprus using a single-layer LSTM model. The network uses only historical PV production data 

as input and forecasts up to 1.5 hours ahead. The performance of their single-layer LSTM network was 

tested using various metrics such nRMSE, mean bias error (MBE), and MAE. They also compare their 

model with a more complex 5-layer LSTM network that was previously developed using the same data. 

The single-layer LSTM model achieved an nRMSE of 10.7%, which is similar to the 5-layer LSTM network 

and lower than most of the published models for solar forecasting. 

In an attempt to identify seasonal trends and diurnal patterns throughout time, the authors in [102] 

The first model, LSTM-1, is engineered to comprehend both short-term and long-term patterns of PV 

power outputs. The second model, LSTM-2, is constructed using meteorological data, excluding any 

information pertaining to seasonal factors. The dataset for this study was procured from a PV operator 

in Gumi, South Korea, spanning a period of 39 months from June 1, 2013, to August 31, 2016. The 

proposed LSTM-1 model was juxtaposed with an ANN, two Deep Neural Network models (DNN, DNN2), 

and ARIMA, S-ARIMA, and LSTM-2 models for comparison. Upon evaluation based on seasons, the 

LSTM model exhibited superior accuracy with a Root Mean Square Error (RMSE) of 0.563 for the 

summer season. 

The recent studies that use deep learning models, especially LSTM networks, to forecast solar energy 

generation or irradiance were introduced in Table 4.2. The studies use different datasets, methods, and 



77 

 

performance metrics to evaluate their models. The study shows that LSTM and CNN networks are able 

to capture the complex and nonlinear relationship between solar energy and various factors, such as 

weather, time, and location. LSTM networks also outperform other models, such as FFNN, ARIMA, and 

persistence models, in terms of forecasting accuracy. 

Table 4.2 Solar Power Prediction Works Using Deep Learning 

Reference Input parameters DL architecture Performance 

[94] dry-bulb temperature, dew 

point temperature, relative 

humidity, hour of the day and 

the month of the year 

LSTM and RNN RMSE: 60.31 𝑊/𝑚2 

[95] Alternating Current 2 (AC2) CNN and LSTM (Time Interval: 30 min) 

RMSE: 2.04 

MAPE: 32.39 

MAE: 1.38 

[96] Atmospheric pressure, Global 

Horizontal Irradiance (GHI), 

Direct Horizontal Irradiance 

(DHI), Direct Normal Irradiance 

(DNI), wind speed, wind 

direction, global tilted 

irradiance, relative humidity, 

ambient temperature, sun 

altitude angle, and sun azimuth 

angle. 

CNN and LSTM RMSE: 5.061 𝑀𝑊𝑡 

MAE: 2.871 𝑀𝑊𝑡 
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[97] Global Horizontal Irradiance, 

temperature, relative 

humidity, wind direction, dew 

point, Horizontal Irradiance 

(DHI) and Direct Normal 

Irradiance (DNI), 

LSTM (3-hour forecasting) 

RMSE: 0.099 

MAE: 4.54% 

[98] Solar irradiation data LSTM In winter: 

nRMSE: 0.023,0.021, 

0.027 

[99] Sky images CNN RMSE: 2.51 

[101] Energy production data from a 

single PV system 

LSTM RMSE: 10.7% 

[102]  LSTM RMSE: 0.563 

 Prediction Algorithm 

In this section I conduct a deep analysis of the dataset that provide historical data of a solar panel with 

temperature, wind and irradiance sensors. Then I develop a prediction algorithm using deep learning 

method. To improve the accuracy of developed model, I combine a statistical method with the 

developed model to remove the noise and reduce the prediction error. 
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 Dataset Analysis 

The dataset contains the 8 different features. They were collected every one hour from 2005-01-01 to 

2020-12-31 from Photovoltaic Geographical Information System database [35]. To gain insights into the 

data trends and understand the impact of various features on the system power, I conducted a 

comprehensive analysis. The features are: 

• P: PV system power (W) 

• Gb(i): Beam (direct) irradiance on the inclined plane (plane of the array) (W/m2) 

• Gd(i): Diffuse irradiance on the inclined plane (plane of the array) (W/m2) 

• Gr(i): Reflected irradiance on the inclined plane (plane of the array) (W/m2) 

• H_sun: Sun height (degree) 

• T2m: 2-m air temperature (degree Celsius) 

• WS10m: 10-m total wind speed (m/s) 

• Int: 1 means solar radiation values are reconstructed 

I plotted the harvested power and other features for January 2015. In Figure 4.6, I present the power, 

solar irradiance and sun height. My analysis reveals that higher values of irradiance (Gb(i), Gd(i), and 

Gr(i)) are generally associated with increased system power output. This finding suggests that solar 

irradiance plays a crucial role in determining the amount of harvested power. Interestingly, I observed 

that sun height values exhibit a periodic pattern without a direct effect on the harvested power. Thus, 

sun height does not directly impact power generation and I will not consider it for predicting the solar 

energy. 

In, the power, temperature, and wind speed features are presented. The Int feature is consistently zero 

and will not be taken into account during the prediction process. Both temperature and wind speed 

have an impact on the harvested power. Any alteration in the power is accompanied by corresponding 

changes in the temperature and wind speed. Based on this analysis, the solar irradiance, temperature, 
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and wind speed (Gb(i), Gd(i), Gr(i), T2m, WS10m) will be considered as potential factors in predicting 

the solar power. 

In Figure 4.7 the context of solar power generation, seasonality refers to the predictable and recurring 

fluctuations in solar power output that occur within each year. These fluctuations can be attributed to 

various factors such as the angle of the sun, length of the day, and weather patterns, which all follow a 

seasonal cycle. To capture this seasonality, I utilized the Fast Fourier Transform (FFT) to analyze the 

system power values denoted as P. This transformation is critical as it enables us to identify the 

dominant frequencies in the used dataset, which essentially represent the main cycles or patterns in 

the used data. The results of this transformation are visually represented in Figure 4.8. It is evident that 

the dominant frequency occurs at the daily level. This observation is of significant importance as it 

suggests a strong daily cycle in the harvested power values. This study implies that the power values 

that were harvested during the previous 24 hours may be a good indicator of the power value that 

would be generated in the next hour. 

 

Figure 4.6 - Harvested Power, Sun Irradiance and Height Values in January, 2015 
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Figure 4.7 Harvested Power, Temperature, Wind Speed and Int Values in January, 2015 

 

Figure 4.8 - Dominant Frequencies pf Power Values 
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Data preparation 

Based on the previous analysis, the solar irradiance, temperature, and wind speed are the suitable 

features that can be used to predict the solar power, in addition to the daily frequency. In the context 

of machine learning, particularly when training neural networks, feature scaling is a crucial 

preprocessing step. This involves adjusting the range of the data to ensure consistency and to prevent 

certain features from dominating others due to their scale. Normalization is a commonly used feature 

scaling technique. It involves transforming the features such that they have a mean of 0 and a standard 

deviation of 1. Figure 4.9 shows the different features value after normalization step. 

Based on the dominant daily frequency, I predict the solar power of the next hour based on the past 

24-hourly observations. I apply a data windowing process to create windows of the dataset, where each 

window contains a consecutive sequence of data points. The input width of each window is 24 and the 

label width is 1. Each time step in the input contains the values of different features. I make the 

windowing process dynamic so that I can select which features to include in the input. The label, which 

is the expected output, is the actual power value of the 25-th time step. The windowing process is 

illustrated in Figure 4.10, that does not show the features axis of the data. 

 

Figure 4.9 - Normalized Features 
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Figure 4.10 - Windowing Process 

 

 DL Model 

Three distinct types of DL have been employed to forecast the solar power for the subsequent hour as 

follows: 

1. DNN model, which comprises four layers: an input layer with 24 units, two hidden layers with 48 

and 24 units respectively, and an output layer with a single output unit. ReLU activation function 

was used for all layers. 

2. LSTM model, which consists of two layers: a recurrent layer housing the actual LSTM cells with 32 

filters, and a fully connected layer that outputs a single continuous value. 

3. The CNN with 32 filters (CNN32) model, which includes a single convolutional layer with 32 filters, 

followed by a fully connected layer consisting of 32 neurons. The output layer consists of a single 

neuron that contains the predicted solar power. 

The three models utilize the windows of 24 hours of the features values from the windowing process 

to predict the value of the label (the power). The performance of the models was assessed by training 

them on various sets of input features, which are: 1) Beam (direct) irradiance Gb(i), 2) Diffuse irradiance 

Gd(i), 3) Reflected irradiance Gr(i), 4) air temperature T2m, 5) wind speed WS10m, 6) Beam (direct) 

irradiance and air temperature Gb(i)+T2m, 7) Diffuse irradiance and air temperature Gd(i)+T2m, 8) 

Reflected irradiance and air temperature Gr(i)+T2m, 9) all features. Each set of features represents a 
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different perspective of the data, and training the models on these diverse sets allows us to understand 

which features are most informative for the prediction task. 

After training, the models' predictions were compared to the actual values in the validation and test 

subsets. Two metrics were used to quantify the performance of the models: the Mean Squared Error 

(MSE) and the Mean Absolute Error (MAE). The Mean Squared Error (MSE) is calculated as follows: 

 
𝐌𝐒𝐄 =

𝟏

𝒏
∑(𝒚𝒊 − 𝒚𝒊̂)

𝟐

𝒏

𝒊=𝟏

 
(4.16) 

where 𝑛  is the number of observations, 𝑦𝑖  is the actual value of the 𝑖 − 𝑡ℎ observation and 𝑦𝑖̂ is the 

predicted value of the 𝑖 − 𝑡ℎ observation. The MSE measures the average of the squares of the errors, 

that is, the average squared difference between the estimated values and the actual value. The Mean 

Absolute Error (MAE) is calculated as follows: 
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𝟏

𝒏
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𝒏

𝒊=𝟏

 
(4.17) 

The MAE measures the average of the absolute differences between the predicted and actual values. 

It provides a linear score, meaning all individual differences are weighted equally. By collecting these 

metrics for the validation and test subsets, I can objectively evaluate and compare the performance of 

the models trained on different feature sets. 

The MAE and MSE for validation and test subsets for different input groups using the aforementioned 

models are presented in Figure 4.11, Figure 4.12, and Figure 4.13. I observe that, DNN model has the 

highest error values (MAE≈0.8, MSE≈1.0) for all features sets. However, only for all features set, MSE 

of DNN model is about 0.3. LSTM model has the same value for MAE and MSE and it approximately 

equals 0.3. Only for WS10m, LSTM model performs better than the other features sets and the error 

values for both MAE and MSE equals 0.32. The CNN32 model demonstrated the lowest error values 

and performed almost equally well for all input groups, where MAE is between 0.16 and 0.18, and MSE 

is between  

0.13 and 0.14. Therefore, the CNN neural network was deemed the most suitable for solar power 

prediction in this research. The performance of the CNN32 is observed to be approximately uniform 

across all feature sets, making the selection of a specific feature set for prediction non-trivial. The 

prediction of solar power output necessitates the provision of the preceding 24-hour data of input 
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features to the model. This data can be acquired via sensor devices. Given the cost-effectiveness and 

ease of deployment of thermal sensors in comparison to wind or irradiance sensors, particularly in the 

context of small Internet of Things (IoT) devices, temperature was chosen as the primary feature to be 

input into the CNN models for the prediction of solar power output. 

  

Figure 4.11 MSE for DNN Model with Different Features as Input 

  

Figure 4.12 MAE and MSE for LSTM Model with Different Features as Input 
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Figure 4.13 MAE and MSE for CNN Model with Different Features as Input 

Model Performance to Complexity Comparison 

In the context of deploying a neural network model on an Internet of Things (IoT) device, the model’s 

size becomes a pivotal consideration due to the typically constrained storage capacity of such devices. 

Consequently, it is crucial to strike an optimal balance between the model’s accuracy and its size. The 

size of DL models is contingent upon the number of hidden layers and neurons within each layer. 

Therefore, while a complex model structure may augment its size, it does not necessarily guarantee an 

enhancement in its accuracy. CNN32 model has 32 filters in the convolutional layer followerd by a fully 

connected layer with 32 neruos. Thus, the size of CNN32 model approximately equals 10 KB which 

consider large for deployment in IoT devices. 

An exhaustive investigation was undertaken to ascertain the trade-off between the accuracy and size 

of CNN models. A multitude of CNN models were trained exclusively using the temperature feature, 

each comprising a single convolutional layer succeeded by a fully connected layer. The quantity of filters 

in the convolutional layer and neurons in the fully connected layer are enumerated in Table 4.3, in 

conjunction with the sizes of the models. To juxtapose these diverse CNN models, the MAE and MSE 

for validation and test subsets were collected. Figure 4.14 and Figure 4.15 delineate the results of the 

training and testing phases. It is observed that even the CNN1 model outperforms the (LSTM model 

with 32 cells, thereby bolstering the credibility of my choice to utilize CNN. Additionally, it is noted that 

the error escalates with a reduction in model complexity, which is an anticipated outcome. However, 

excluding the CNN1 model, the disparity in MAE and MSE values between different models is not 

substantial. 
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Table 4.3 - Number of Filters and Neurons in CNN Models with their Size 

Name Filters 

number 

Neurons Size (kB) 

CNN32 32 32 10.209 

CNN16 16 16 4.913 

CNN8 8 8 2.457 

CNN4 4 4 1.277 

CNN3 3 3 0.987 

CNN2 2 2 0.699 

CNN1 1 1 0.413 

 

Figure 4.14 – Validation and Test MAE Versus Model Size for Different CNN Models 
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Figure 4.15 - Validation and Test MSE Versus Model Size for Different CNN Models 

In the domain of model precision and complexity, Figures 14 and 15 demonstrate the compromise 

between these two parameters. These figures depict the model's complexity in relation to MAE and 

MSE. Both figures substantiate that the ideal balance is attained using the CNN4 or CNN8 models. A 

more detailed scrutiny of Figure 13 indicates that the CNN2 model exhibits similar performance to the 

CNN4 model when the model's complexity is halved relative to the CNN4 model. Therefore, I advocate 

for the use of CNN2, CNN3, and CNN4 models as the most effective solutions to alleviate the 

conundrum between model complexity and its accuracy. The finial selection of the best suitable model 

depends on the IoT device capability. 

Model Prediction Analysis 

In the predictive analysis, the CNN2 model was utilized to forecast solar power generation over a 

specific timeframe. An analysis of the predicted versus actual solar power values is presented in Figure 

15. It is observed that the model predicts non-zero power values during periods where the actual power 

is zero. Two instances are highlighted in Figure 4.16 in yellow boxes. The model predicted a power value 

of 9.8 at 9 pm on the evening of February 14, 2005, while the actual value is zero due to the absence 

of sunlight. Similarly, the predicted value at 2 am on the morning of February 16, 2005, was 5.0. This 

discrepancy can be attributed to the model's inability to account for periods of nighttime when solar 

power is inherently zero. To address this prediction error, I propose integrating an additional statistical 

model that would determine whether the solar power should be zero based on parameters such as 

hour, day, and month. This approach aligns with the use of hybrid models in solar power prediction, 
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which have been found, Table 4.3 in my analysis, to be effective in balancing model stability with 

accuracy. 

 

Figure 4.16 - CNN2 Model Prediction Results vs Actual Values over a Specific Timeframe 

 Hybrid Prediction Algorithm 

For the used dataset, I want to classify the power values into two classes: class 1, indicating that the 

power value is zero, and class 2, indicating a non-zero power value. I extracted the hour, day, month 

values to construct the input of the classification model.  Two statistical classification models, namely 

logistic regression and decision tree (Random Forest), were trained to predict the power class based 

on the hour, day, month values. The accuracy of the two classification models on the train and test 

subsets is shown in Table 4.4. Based on the accuracy results, the developed random forest model, with 

test accuracy equals to 0.992 is chosen to be used as a classifier. Logistic Regression model performs 

well during the training phase, but its test accuracy is very low ≈ 0.41. 
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Table 4.4 - Train and test accuracy of Logistic Regression and Random Forest classifiers 

Classification Model Train Accuracy (%) Test Accuracy (%) 

Logistic Regression 0.992 0.41 

Random Forest 0.993 0.992 

 

A hybrid algorithm, Figure 4.17, is constructed by integrating the developed Random Forest classifier 

with CNN2 model. The classifier is initially employed to predict the class of the power, given the values 

of the hour, day, and month of the time slot. If the classifier yields a class of 1, a zero value is returned 

as the power value. Conversely, if the classifier yields a class of 2, the CNN2 model is invoked to predict 

the solar power using the past 24 hourly-values of temperature and harvested solar power. This 

approach significantly reduces the computational and energy costs associated with invoking the CNN2 

model during nighttime when the power value is zero. Furthermore, the hybrid model effectively 

eliminates noise in the final output (predicted power). Figure 4.18 presents a comparison between the 

predicted and actual values of solar power using the hybrid algorithm for the same time period as 

depicted in Figure 4.16. It is observed that the actual and predicted values are both zeros during 

nighttime, and the noise in the prediction is removed. 

To calculate the reduction in prediction error between the CNN2 model alone and the hybrid algorithm, 

I applied the hybrid algorithm on the validation and test subsets and calculated MAE and MSE values. 

The results, Table 4.5 shows that the error reduction is about 7% for MAE and 3.5% for MSE. 

Table 4.5 - Error Reduction Using Hybrid Algorithm in Comparison with CNN2 Model 

Model MAE MSE 

Validation Test Validation Test 

CNN2 0.1847 0.1799 0.1491 0.1410 



91 

 

Hybrid Algorithm 0.1747 0.1742 0.1366 0.1362 

Error Reduction 6.5% 3.2% 8.4% 3.5% 

 

Figure 4.17 - Hybrid Prediction Algorithm 
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Figure 4.18 - Hybrid Algorithm Prediction vs Actual Values over a Specific Timeframe 

Conclusion 

I conducted a thorough analysis of photovoltaic energy forecasts using multiple models and approaches. 

I focused on the common approaches to solar energy forecasting over the short term, including physical, 

statistical, adaptive, and hybrid approaches, and their advantages and disadvantages. The analysis 

showed that using machine learning techniques alone or in combination with statistical techniques 

produces models that are more accurate and have less error than other approaches. 

I studied the effectiveness of deep learning techniques in solar energy forecasting, including Deep 

Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and 

Convolutional Neural Networks (CNN). In order to improve the CNN model's precision and effectiveness, 

I suggested a hybrid approach that combines a Random Forest classifier with a CNN model. The results 

showed that the hybrid approach reduced errors by about 7% when compared to the CNN model used 

alone. In addition, I performed a thorough model analysis to optimize the CNN model size while 

maintaining its performance, making it appropriate for Internet of Things (IoT) device deployment. 
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 WSN'S QUALITY OF SERVICE 

 Quality of Service in Wireless Sensor Networks 

Quality of Service (QoS) can be scientifically articulated as a collection of service criteria that must be 

met during the transmission of a packet from its origin to its endpoint. This concept is synonymous with 

the networking QoS facet, which necessitates the underlying network to offer a suite of service 

attributes. These attributes include parameters such as jitter, latency, bandwidth, and packet loss, 

which are essential for assessing the quality of the service provided. Figure 5.1 illustrates the two main 

QoS perspectives: Network QoS and Application QoS [103]. According to this paradigm, the network 

must offer the necessary service quality for the application and users. The network layer then 

maximizes network resource usage while supplying the necessary QoS level; additionally, the network 

assesses application requirements and implements a variety of network QoS techniques. 

 

Figure 5.1 - QoS Model 

A wireless IoT device is placed in an environment to keep an eye on a physical phenomenon, gather 

information, run light processes and transmit processed or raw data to a specific location. A large 

number of IoT device can be deployed in the environment in WSN network that play a central role in 

achieving the goal of smart environments. WSNs face communication difficulties due to a variety of 

factors, including low bandwidth, high node density, low energy devices, small power transceivers' 

capacity to sense, hardware constraints, and computing power [104]. WSNs should have a simplified 

architecture to reduce the impact of communication. As a result, most WSNs are built using a single 
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hop topology since multi-hop architecture, Figure 5.2, places a lot of demands on the bandwidth and 

routing protocol [105]. 

Strict QoS requirements for emerging WSNs include availability, integrity, timeliness, and high reliability. 

A WSN's capacity to meet these QoS demands is what defines its competence. Particularly in situations 

involving real-time situations, the speed and degree of reliability of data transferred between sensors 

and the control station are critical. The randomness of the communication channel, collisions, 

congestion, and interference all have an impact on how reliable WSNs are. The following are some of 

the main factors that must be addressed to enable efficient communication: 

 

Figure 5.2 - Single-hop vs Multi-hop WSN Network Topology 

1. Data transmission rate (known as bandwidth) is a constraint. Sensor bandwidth is extremely limited, 

thus the network must either discard packets or queue them up in memory if the load exceeds the 

available bandwidth. 

2. Network Dynamics: Node mobility, node status, wireless link failures, and node failures can all lead 

to changes in network dynamics. This frequently makes QoS support more complicated. 

3. Resource Constraints: Energy, memory, processing power, buffer capacity, and other resources are 

severely limited in wireless sensor networks. WSN QoS methods should be created without using 

computationally demanding algorithms that deplete certain nodes. 

4. Buffer Size Limitation: The size of the buffer is crucial for holding data before sending it to the 

following node. Long sessions and data buffering are necessary for multi-hop routing of QoS data. 
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The buffer size makes a difference in the delay that packets experience when traveling over various 

paths. 

5. Data Redundancy: One feature of wireless sensor networks is their high level of data redundancy. 

In multimedia WSNs, aggregation and data fusion techniques may make QoS design more difficult. 

Sensor nodes are grouped into clusters in a sort of network called a Clustered Single-hop WSN, Figure 

5.3. Each node in a single-hop network connects with the cluster head or base station directly, 

eliminating the need for data to travel via any other nodes. This type of network is often used in 

environments where the sensor nodes are densely and randomly deployed [106]. 

 

Figure 5.3 - Clustered Single-hop vs Multi-hop WSN Network Topology 

 QoS of Clustered Single-hop WSN 

In a Clustered Single-hop WSN, the QoS requirements of the link between the sensor nodes and the 

cluster head are crucial for efficient and reliable data transmission. These requirements ensure that the 

network can support the necessary services while maintaining a high level of performance. These 

prerequisites guarantee that the network can uphold the necessary services while preserving superior 

performance. The additional link, which connects the cluster heads and the base station, does not pose 

a bottleneck issue. This is because both the cluster heads and the base station are robust nodes 

equipped with high energy and computational capabilities. Thus, I focused on the QoS requirements of 

the link between sensors and cluster heads. The following are some of these requirements: 
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1. Latency: The delay in data transmission should be minimized. Timely delivery of information is 

essential for real-time applications like health monitoring and catastrophe management. 

2. Reliability: The link should ensure a high packet delivery ratio. Data transmitted by the sensor nodes 

should reach the cluster head without being lost in the network. 

3. Bandwidth: The link should have sufficient bandwidth to support the data rate of the sensor nodes. 

This is especially important in applications that generate a large amount of data, such as 

multimedia surveillance systems. 

4. Energy Efficiency: Since sensor nodes are typically battery-powered, the link should be energy-

efficient to prolong the network lifetime. 

5. Duty Cycle: It is important to optimize the duty cycle. The operational longevity of the sensor nodes 

can be increased with careful management of the duty cycle, which can help balance energy 

consumption and data transmission requirements. 

 Related Works 

The authors [107] survey some strategies and techniques that can be used to improve QoS in WSNs, 

such as data compression, sensing rate adjustment, channel selection, and signal power modification. 

Choosing an optimal power transmission can serve as a strategy to extend both the lifespan of an 

individual node and the network as a whole. The minimum transmit power, which would meet the 

desired Bit Error Rate (BER) threshold, can be determined numerically. The use of multi-channel 

communications can lead to a substantial increase in the throughput of wireless networks. This is in 

contrast to single-channel communications, as the employment of multiple channels can mitigate the 

impact of interference. 

To balance the communication quality and power consumption of sensor nodes using fuzzy logic, the 

authors [108] propose a method that adjusts the data rate and transmission power based on the error 

count and error interval, which reflect the environmental interference and noise. They analyze the 

relationship between power consumption, data rate, and transmission power, and show how to 

calculate the receiver sensitivity and SNR for different data rates for Texas Instruments CC1310 device. 

Their method is compared with a control group with fixed data rate and transmission power. The results 

show that the proposed method can achieve a low Packet Error Rate (PER) of around 1% and a low 
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power consumption of around 19.49 µA. They also estimate the battery life of the sensor nodes with 

the proposed method, which is more than 6.8 years. 

A centralized metaheuristic algorithm that assigns minimum transmission power to each sensor node 

for every transmission link along with a scheduling slot while satisfying the Signal to Interference plus 

Noise Ratio (SINR) constraint is proposed [109]. The authors formulate the optimization problem with 

two objective functions: (1) minimizing the transmission power for each communication link and (2) 

minimizing the required number of scheduling slots. They also define the constraints and the 

parameters of the problem, such as the sensing range, the communication range, the interference 

range, the transmission power, the receiver interference, and the SINR. 

The authors [110] review different hardware-based and software-based metrics to estimate the quality 

of wireless links in IoT networks, such as Received Signal Strength (RSSI), Link Quality Indication (LQI), 

Signal to Noise Ratio (SNR), Packet-Delivery Ratio (PDR), and (Requested Number of Packets) RNP. It 

also defines five classes of link quality based on PDR and RSSI values. They apply two machine learning 

algorithms, K-Nearest Neighbour (KNN) and LSTM, to classify and predict the link quality based on a 

real dataset collected from a testbed IoT network deployed at Grenoble, France. It compares the 

performance of the two algorithms and discusses their advantages and limitations. They conclude that, 

by predicting the link quality, the QoS can be improved especially in the case of critical application. 

The authors [111] propose a link quality estimator (LQE) that uses PDR and RSSI as metrics to measure 

the quality of a wireless link in IoT networks. The LQE can adapt to different network conditions and 

traffic patterns. The authors also propose a link quality predictor (LQP) that uses machine learning 

techniques to forecast the future link quality based on historical data. The LQP can help to optimize 

routing decisions and improve network performance. 

The transmission rate is dependent on the sampling frequency. Therefore, determining the optimal 

sampling frequencies lays the foundation for the best use of wireless bandwidth and prolongs the 

battery life of sensor networks [107]. The sampling frequency is the rate at which samples are taken. It 

directly affects the transmission rate, which in turn impacts the duty cycle. A higher sampling frequency 

can lead to a higher transmission rate, which may require a higher duty cycle to handle the increased 

data. 

A new adaptive duty cycle scheme that enhances the S-MAC protocol with a priority queue where 

packet size is the parameter to adjust the duty cycle is proposed [112]. The idea is to give higher priority 
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to smaller packets and lower priority to larger packets, and to dynamically change the listen period of 

each node according to the network conditions. The results show that the proposed schema 

outperforms the default MAC and S-MAC protocol in all metrics. 

The authors [113] use a continuous-time Markov chain and a Markov decision process (MDP) model to 

balance energy availability and QoS requirements. The adaptive duty cycling works by adjusting the 

duty cycle based on the state of the system, which includes the current battery level, the harvesting 

rate, and the QoS metrics. The system state transitions are modeled as a continuous-time Markov chain, 

and the optimal duty cycle is determined by solving the MDP. The authors conclude that their adaptive 

duty cycling scheme can effectively manage the energy resources in a wireless sensor network and 

meet the QoS requirements. They also show that their algorithm outperforms a random approach in 

terms of energy efficiency and QoS. 

Table 5.1 Presented Work for QoS in WSN 

Work Main Focus Key Techniques/Strategies Results 

[108] 

Balance communication 

quality and power 

consumption 

Fuzzy logic to adjust data rate and 

transmission power 

Achieved low PER and power 

consumption, extended 

battery life 

[109] 

Assign minimum 

transmission power and 

scheduling slot 

Centralized metaheuristic algorithm Satisfies SINR constraint 

[110] 
Estimate and predict link 

quality in IoT networks 

quality in IoT networks Hardware-

based and software-based metrics, 

machine learning algorithms 

Improved QoS in critical 

applications 
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[111] 
Measure and forecast link 

quality in IoT networks 

LQE and LQP using machine 

learning techniques 

Optimized routing decisions, 

improved network 

performance 

[112] 

Enhance S-MAC protocol 

with adaptive duty cycle 

scheme 

Priority queue where packet size is 

the parameter to adjust the duty 

cycle 

Outperforms default MAC and 

S-MAC protocol in all metrics 

[113] 
Balance energy availability 

and QoS requirements 

Continuous-time Markov chain and 

MDP model for adaptive duty 

cycling 

Effectively manages energy 

resources, meets QoS 

requirements, outperforms a 

random approach 

 

In conclusion, QoS in WSNs is a complex field that requires careful consideration of various factors such 

as latency, reliability, bandwidth, energy efficiency, and duty cycle. The use of techniques such as 

optimal power transmission, multi-channel communications, and machine learning for link quality 

estimation and prediction can significantly improve QoS. Nonetheless, there are still hurdles to 

overcome, especially when it comes to balancing the needs of data transmission with the limitations 

of energy and resource availability. As a result, this thesis is centered on developing a method that can 

adaptively adjust the power transmission and duty cycle based on available energy, without sacrificing 

the QoS requirements. 

System Model 

The system under consideration, Figure 5.4, is an Internet of Things (IoT) device that is a node within a 

Wireless Sensor Network (WSN). This IoT device is equipped with a battery and two energy harvesters: 

a solar panel and a mechanical vibration source. The sensing region (a cluster in a clustered WSN) 

contains 𝑁 IoT devices and one sink node that is located in the sensing region and has unlimited energy 

and computational resources. I consider the sink node as a cluster head, as in clustering, low power 

nodes are utilized for sensing, whereas high power nodes can be employed to process detected data 

and interact with other nodes. That’s, achieving greater scalability, longevity, and energy efficiency can 
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be accomplished with the clustering technique [105]. In this way, the IoT devices communicate with 

the sink node using a single-hop transmission to avoid multi-hop architecture that requires high 

demands on the bandwidth and routing protocol [105]. 

The IoT device operates in three distinct states: active 𝐴, idle 𝐼 and sleep 𝑆. 

• Active State: In the active state, the device collects data using its sensors and transmits them 

to the sink node (Base Station). The energy consumption in this state 𝐸𝐴 is primarily due to 

sensing, data processing, and communication activities. 

• Idel State: In the idle state, the device is not transmitting or receiving any data but is ready to 

do so, essentially functioning in a standby mode. The energy consumption in this state 𝐸𝐼 is 

lower than the active state 𝐸𝐼 < 𝐸𝐴. 

• Sleep State: The sleep state is a power-saving state where the device is not active. The energy 

consumption in this state 𝐸𝑆 is minimal 𝐸𝑆 ≪ 𝐸𝐼 < 𝐸𝐴 . 

The device transitions between these states based on the duty cycles 𝐷𝐴, 𝐷𝐼 and 𝐷𝑆, which are defined 

as the portion of time the device is in active, idle or sleep state per hour. The duty cycles and 

transmission power 𝑃𝑡 of the device can be adapted depending on the available energy and Quality of 

Service (QoS) requirements. The goal of the system model is to optimize the battery load without 

compromising the QoS requirements. This involves a trade-off between energy efficiency (to prolong 

the battery life) and QoS (to ensure reliable and timely data transmission). 

I assume that, the IoT device is able to generate and process 𝐿0 bits per seconds. Let donate 𝑇𝑡𝑟,0 as 

the time required to transmit 𝐿0  bits to the sink node, and 𝑇𝑝𝑟𝑜𝑐,0  is the time required to process 

𝐿0  bits, where 𝑇𝑝𝑟𝑜𝑐,0 = 1 𝑠  in the studied case. Thus, the total data, which is generated and 

transmitted by the IoT device in an hour (hourly time slot 𝑡 ∈ 𝑇, where 𝑇 is the total life time of the 

battery), during  

 
𝑳𝒕𝒐𝒕𝒂𝒍,𝒕 = 𝑳𝟎 ∗

𝑫𝑨,𝒕
𝑻𝒕𝒓,𝟎 + 𝑻𝒑𝒓𝒐𝒄,𝟎

 
(5.1) 

the active state can be calculated using the duty cycle 𝐷𝐴 as follows: 

where 𝐷𝐴,𝑡 is the duty cycle at time slot 𝑡. 
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 Channel Model 

The channel model depends on the environment where the wireless signal propagates from the sender 

to the receiver. The reduction in power density of the electromagnetic wave as it propagates through 

space is called the path loss. Therefore, the received signal quality is affected by the path loss and the 

noise in the propagation environment. I consider the widely-used Log-Distance path loss model to 

predict the path loss, which can be used for a wide range of environments [114]. It is formally expressed 

as: 

 

Figure 5.4 - System Model 

 
𝑷𝑳 = 𝑷𝑳𝟎 + 𝟏𝟎𝒏 𝐥𝐨𝐠𝟏𝟎 (

𝒅

𝒅𝟎
) 

(5.2) 

where 𝑃𝐿0  is the path loss at the reference distance 𝑑0 , 𝑑  is the distance between transmitter and 

receiver, and 𝑛 is the path loss exponent that is a key factor in determining how the signal strength 

decreases with distance. The value of n depends on the propagation environment and can be used to 

model different types of environments. For instance: In a free space environment (like an open outdoor 

area), 𝑛  is typically around 2 . In an environment with obstacles present (like an urban area with 

buildings), 𝑛 can range from 2.7 to 3.5. In a dense urban or indoor environment, 𝑛 can be even higher, 

sometimes exceeding 4. Table 5.2 shows the different values for 𝑛 and the environments. Therefore, 

adjusting the value of n allows us to model and predict the path loss and subsequently the quality of 
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wireless communication in various environments. This is crucial in designing and optimizing wireless 

networks such as those involving IoT devices. 

Table 5.2 - Path loss exponent values [114] 

Path loss exponent (n) Environment 

2 Free space 

2.7 to 3.5 Urban area cellular radio 

3 to 5 Shadow urban cellular radio 

1.6 to 1.8 Inside a building – line-of-sight 

4 to 6 Obstructed in building 

2 to 3 Obstructed in factory 

 

Signal to Noise Ratio (SNR) is one of the most used factors to estimate the channel quality [108], [109], 

[110]. Mathematically, SNR at time slot 𝑡 is donated as follows: 

 
𝑺𝑵𝑹𝒕 =

𝑷𝒕𝑮

𝑵𝟎
 

(5.3) 
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where 𝑷𝒕 is the transmission power of the IoT device, G is the channel gain and 𝑵𝟎 is the noise power. 

The channel gain G is expressed as: 

 𝑮 =
𝝆

𝑷𝑳
 (5.4) 

where 𝜌  is the small-scale fading term and 𝑃𝐿  is the path loss. According to the Shannon–Hartley 

theorem, the transmission rate at time slot 𝑡 is given by: 

 𝑹𝒕 = 𝑩 𝐥𝐨𝐠𝟐(𝟏 + 𝑺𝑵𝑹𝒕)  (5.5) 

where 𝐵 is the bandwidth. By boosting the transmission power 𝑷𝒕, I can improve the signal quality. This 

increase in power results in a higher SNR and, consequently, a higher transmission rate 𝑹. 

 Energy Consumption Model 

The energy consumption of the device is dependent on the chosen duty cycle and transmission power. 

I assume that 𝐸𝑰 is constant and 𝐸𝑆 is negligible comparing with 𝐸𝐴 and 𝐸𝐼. 𝐸𝐴 primarily depends on 

the selected transmission power.  

Let {𝑃𝑡1, 𝑃𝑡2, … , 𝑃𝑡𝑁} are predefined transmission power levels that can used by the transmitter. The 

time required to transmit 𝐿 bits depend on the actual data transmission R and is equal to 𝐿/𝑅. Thus, 

using (5.1) and (5.3). I can donate the transmission time as follows: 

 
𝑻𝒕𝒓 =

𝑳𝒕𝒐𝒕𝒂𝒍,𝒕

𝑩 𝐥𝐨𝐠𝟐 (𝟏 +
𝑷𝒕,𝒊𝑮)
𝑵𝟎

) 

, 𝟏 ≤ 𝒊 ≤ 𝑵 
(5.6) 

where 𝑷𝒕,𝒊  is the transmission power level of the transmitter at time slot t. Consequently, the 

processing time and the total active time are given, respectively, by: 

 
𝑇𝑝𝑟𝑜𝑐 = 𝑇𝑝𝑟𝑜𝑐,0 ∗

𝐿𝑡𝑜𝑡𝑎𝑙,𝑡
𝐿0

 
(5.7) 

   

 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑇𝑝𝑟𝑜𝑐 + 𝑇𝑡𝑟  , where 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 ≤ 𝐷𝐴,𝑡 (5.8) 
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Let’s denote the required power consumption for the processing phase during the active state as 𝑃𝑝𝑟𝑜𝑐. 

Therefore, I have: 𝐸𝐴 = 𝑇𝑝𝑟𝑜𝑐 ∗ 𝑃𝑝𝑟𝑜𝑐 + 𝑇𝑡𝑟 ∗  𝑃𝑡. The total energy consumption, 𝐸𝑡𝑜𝑡𝑎𝑙 at time slot 𝑡, can 

be calculated as: 

 𝑬𝒕𝒐𝒕𝒂𝒍,𝒕 = 𝑻𝒑𝒓𝒐𝒄 ∗ 𝑷𝒑𝒓𝒐𝒄 + 𝑻𝒕𝒓 ∗  𝑷𝒕,𝒊 + 𝑬𝑰 (5.9) 

By substituting (5.1), (5.6) and (5.7) into (5.9), I can express the total energy consumption in terms of 

the transmission power 𝑷𝒕,𝒊  and the duty cycle 𝐷𝐴,𝑡: 

 

𝐸𝑡𝑜𝑡𝑎𝑙,𝑡 =
𝐷𝐴,𝑡
𝐿0

𝐵 log2 (1 +
𝑃𝑡,𝑖𝐺)
𝑁0

) 
+ 1

[𝑃𝑝𝑟𝑜𝑐 +
𝐿0

𝐵 log2 (1 +
𝑃𝑡,𝑖𝐺)
𝑁0

) 

𝑃𝑡,𝑖] + 𝐸𝐼  

(5.10) 

 Battery Model 

To maintain a minimum battery capacity, I define 𝑆𝑜𝐶𝑚𝑖𝑛 as the minimum state of charge that should 

be maintained. I propose an efficient hourly mechanism that monitors the battery’s state of charge, 

using Coulomb Counting Method, and chooses how to use the predicted harvesting energy from the 

two harvesters. I define 𝑆𝑒 and 𝑆𝑐 as the outputs of source of energy and source of charging. At the 

beginning of each hour, I predict the harvested solar energy 𝐸𝑠
𝑝𝑟𝑒𝑑

 and mechanical energy 𝐸𝑚
𝑝𝑟𝑒𝑑

 for 

the next hour. I monitor 𝑆𝑜𝐶 and set the charging source to the source with larger predicted value if 

the 𝑆𝑜𝐶 lower than the allowed minimum 𝑆𝑜𝐶𝑚𝑖𝑛, and the source of energy to the other source. If the 

𝑆𝑜𝐶 is larger than the minimum, then the priority is to enhance the QoS and I set the source of energy 

to the source with the larger predicted value. Then, I set 𝑆𝑒 and 𝑆𝑐 as follows: 

 

𝑺𝒆 =

{
 
 

 
 𝑬𝒔  𝒊𝒇 {

𝑺𝒐𝑪 > 𝑺𝒐𝑪𝒎𝒊𝒏 𝒂𝒏𝒅 𝑬𝒔
𝒑𝒓𝒆𝒅

> 𝑬𝒎
𝒑𝒓𝒆𝒅

𝑺𝒐𝑪 ≤ 𝑺𝒐𝑪𝒎𝒊𝒏 𝒂𝒏𝒅 𝑬𝒔
𝒑𝒓𝒆𝒅

≤ 𝑬𝒎
𝒑𝒓𝒆𝒅

 

𝑬𝒎 𝒊𝒇  {
𝑺𝒐𝑪 > 𝑺𝒐𝑪𝒎𝒊𝒏 𝒂𝒏𝒅 𝑬𝒔

𝒑𝒓𝒆𝒅
≤ 𝑬𝒎

𝒑𝒓𝒆𝒅

𝑺𝒐𝑪 ≤ 𝑺𝒐𝑪𝒎𝒊𝒏 𝒂𝒏𝒅 𝑬𝒔
𝒑𝒓𝒆𝒅

> 𝑬𝒎
𝒑𝒓𝒆𝒅

 

(5.11) 
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𝑺𝒄 =

{
 
 

 
 𝑬𝒔   𝒊𝒇 {

𝑺𝒐𝑪 > 𝑺𝒐𝑪𝒎𝒊𝒏 𝒂𝒏𝒅 𝑬𝒔
𝒑𝒓𝒆𝒅

≤ 𝑬𝒎
𝒑𝒓𝒆𝒅

𝑺𝒐𝑪 ≤ 𝑺𝒐𝑪𝒎𝒊𝒏 𝒂𝒏𝒅 𝑬𝒔
𝒑𝒓𝒆𝒅

> 𝑬𝒎
𝒑𝒓𝒆𝒅

 

𝑬𝒎  𝒊𝒇  {
𝑺𝒐𝑪 > 𝑺𝒐𝑪𝒎𝒊𝒏 𝒂𝒏𝒅 𝑬𝒔

𝒑𝒓𝒆𝒅
> 𝑬𝒎

𝒑𝒓𝒆𝒅

𝑺𝒐𝑪 ≤ 𝑺𝒐𝑪𝒎𝒊𝒏 𝒂𝒏𝒅 𝑬𝒔
𝒑𝒓𝒆𝒅

≤ 𝑬𝒎
𝒑𝒓𝒆𝒅

 

(5.12) 

Based on the previous method, the total energy consumption by the sensing, processing and 

transmission of the IoT device could be covered by the suitable source of harvested energy 𝑆𝑒. Thus, 

the battery load could be minimized to cover the remaining required energy that cannot be covered by 

𝑆𝑒. Thus, I can donate the battery load at time slot 𝑡 as: 

 𝑩𝑳𝒕 = {
𝑬𝒕𝒐𝒕𝒂𝒍,𝒕 − 𝑺𝒆,𝒕   𝒊𝒇 𝑬𝒕𝒐𝒕𝒂𝒍,𝒕 > 𝑺𝒆,𝒕 

𝟎                           𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
 (5.13) 

where 𝑺𝑒,𝒕 is the source of energy at time slot t. The state of charge of the battery at time slot 𝑡 depends 

on the total energy consumption and the generated energy of both harvesters at the previous time slot 

𝑡 − 1. Thus, I can rewrite the SoC equation (5.5) as: 

 
𝑺𝒐𝑪𝒕 = 𝑺𝒐𝑪𝒕−𝟏 + 

𝟏

𝑸𝒄𝒖𝒓𝒓𝒆𝒏𝒕
[𝑺𝒄,𝒕−𝟏 − 𝑩𝑳𝒕−𝟏] ∗ 𝟏𝟎𝟎% 

(5.14) 

where 𝑸𝒎𝒂𝒙 is the battery capacity that follows the Capacity Fade Estimation method and 𝑺𝒄,𝑡−1 is the 

output of source of charging at time slot 𝑡 − 1. 

 QoS Model 

My goal is to enhance energy efficiency and extend battery life using harvesters, without sacrificing the 

QoS requirements. The duration of a device’s active state, which directly influences the volume of data 

generated and transmitted, is determined by the duty cycle. Therefore, selecting the optimal duty cycle 

for a given time slot is crucial. I aim to leverage harvested energy to extend the active state duration 

whenever feasible. Moreover, the ability to adjust the transmission power enables us to improve signal 

quality by boosting the SNR. 

Let’s denote the minimum duty cycle that satisfies the application layer’s requirement as 𝐷𝐴,𝑚𝑖𝑛 . If 

𝐷𝐴,𝑚𝑖𝑛  is small, it indicates that the application does not demand a large amount of collected data. 

Conversely, a large 𝐷𝐴,𝑚𝑖𝑛 is suitable for scenarios where the application needs to gather as much data 

as possible from the sensing region. let’s denote the minimum SNR that satisfies the network layer’s 
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requirement as 𝑆𝑁𝑅𝑚𝑖𝑛. If 𝑆𝑁𝑅𝑚𝑖𝑛 is small, it indicates that the application can tolerate a higher level 

of noise in the signal, which might be the case for applications with less stringent data quality 

requirements. Conversely, a large 𝑆𝑁𝑅𝑚𝑖𝑛  is suitable for scenarios where the application requires a 

high-quality signal with minimal noise interference, such as in precision sensing applications. 

Based on (5.3) and (5.5), 𝑆𝑁𝑅𝑚𝑖𝑛 can be achieved by changing the transmission power to a certain level. 

Let’s donate the minimum transmission power that achieves 𝑆𝑁𝑅𝑚𝑖𝑛 as 𝑃𝑡,𝑚𝑖𝑛 ∈ {𝑃𝑡1, 𝑃𝑡2, … , 𝑃𝑡𝑁}, the 

minimum achievable transmission rate using 𝑃𝑡,𝑚𝑖𝑛  as 𝑅𝑚𝑖𝑛 . I can represent the minimum QoS 

requirements at time slot t as follows: 

 
{
 𝑷𝒕,𝒊 ≥ 𝑷𝒕,𝒎𝒊𝒏 

𝑫𝑨,𝒕 ≥ 𝑫𝑨,𝒎𝒊𝒏
 

(5.15) 

However, the duty cycle and the SNR can significantly impact both the Packet Delivery Rate (PDR) and 

the Bit Error Rate (BER) metrics, which are given by: 

 
𝑃𝐷𝑅 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑢𝑢𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 

(5.16) 

   

 
𝐵𝐸𝑅 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡 𝑒𝑟𝑟𝑜𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑
 

(5.17) 

The 𝑃𝐷𝑅 can be influenced by the duty cycle. A longer active state duration, facilitated by a larger duty 

cycle, can potentially increase the 𝑃𝐷𝑅 as more data is generated and transmitted. However, this is 

contingent on the quality of the transmission, which is where the 𝑆𝑁𝑅 comes into play. A higher 𝑆𝑁𝑅, 

indicating a stronger signal relative to the background noise, can enhance the quality of the 

transmission and thus improve the 𝑃𝐷𝑅 . On the other hand, the 𝐵𝐸𝑅  is also affected by these 

parameters. A higher duty cycle can lead to more bits being transferred, potentially increasing the 

chance of bit errors, especially in noisy environments. However, a higher 𝑆𝑁𝑅 can help mitigate this by 

reducing the likelihood of bit errors, thereby lowering the 𝐵𝐸𝑅. 

To quantify the QoS requirements, represented in (5.14), I define the QoS enhancement function that 

can measure how much I improve the QoS by setting 𝑃𝑡𝑖 and 𝐷𝐴,𝑡 above the threshold values 𝑃𝑡,𝑚𝑖𝑛 and 

𝐷𝐴,𝑚𝑖𝑛  at time slot t by: 

 𝑸𝒐𝑺𝒕 = 𝜶( 𝑷𝒕,𝒊 − 𝑷𝒕,𝒎𝒊𝒏) + (𝟏 − 𝜶)(𝑫𝑨,𝒕 − 𝑫𝑨,𝒎𝒊𝒏) (5.18) 
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where 𝛼 is a weighting factor in [0,1] range that determines the relative importance of transmission 

power and data cycles in determining QoS. If 𝛼  is set to 1 , the QoS is determined solely by the 

transmission power. This means that the system prioritizes strategies that adjust the transmission 

power to improve QoS. This could potentially allow for more data to be transmitted at a given time, 

but it might also consume more energy and thus reduce the time the device can remain in an active 

state. On the other hand, when α is set to 0, the QoS is determined solely by the duty cycle percentage. 

This means that the system prioritizes strategies that adjust the duty cycle. This could potentially extend 

the time the device can remain in an active state and thus increase the amount of data collected over 

time. However, it might also limit the rate at which data can be transmitted at any given moment. 

Therefore, adjusting α allows us to balance between collecting more data at a faster rate (by prioritizing 

transmission power) and collecting data over a longer period (by prioritizing duty cycles). The optimal 

value of α would depend on the specific requirements of IoT application. 

 Problem Formulation 

The objective is to maximize the QoS while minimizing the battery load to prolong its life time 𝑇 . 

Mathematically, I can represent it as: 

 max
𝛼,𝑃𝑡,𝑖,𝐷𝐴,𝑡

𝑄𝑜𝑆𝑡  (5.19) 

 min
𝐸𝑡𝑜𝑡𝑎𝑙,𝑡,𝑆𝑒,𝑡 

𝐵𝐿𝑡   

 

 s.t. 

𝐶1: 𝑃𝑡,𝑚𝑖𝑛 ≤ 𝑃𝑡,𝑖 ≤ 𝑃𝑡,𝑁 , ∀𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁 

𝐶2: 𝐷𝐴,𝑚𝑖𝑛 ≤ 𝐷𝐴,𝑡 ≤ 3600 − 𝐷𝐼 , ∀𝑡 ≤ 𝑇 

𝐶3: 𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑡 ≤ 100, ∀𝑡 ≤ 𝑇 

𝐶4: 0 ≤ 𝛼 ≤ 1 

 

I notice that (5.19) is a multi-objective optimization problem, each objective is optimized independently. 

The solution to this problem will provide a set of Pareto optimal solutions, where no solution can be 

found that would increase the value of one objective without decreasing the value of another 

objective. 𝐶1 constraint defines the limits of the transmission power, where selection 𝑷𝒕,𝒊 to the level 
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that does not meet the QoS requirements is forbidden and the maximum selectable level is 𝑷𝒕,𝑵 . 

Similarly, in 𝐶2 constrain,  𝐷𝐴,𝑡 value cannot be lesser than 𝐷𝐴,𝑚𝑖𝑛. The upper bound in 𝐶2 comes from 

the fact that the device is in idle state for 𝐷𝐼  each hour. Thus, 𝐷𝐴,𝑡 is bounded by the total duration of 

one hour minus 𝐷𝐼  . 𝐶3  constraint restricts the battery state of the charge to not be lower than the 

minimum allowed state 𝑆𝑜𝐶𝑚𝑖𝑛. Finally, 𝐶4 constraint is the weight factor 𝛼, introduced in (5.18). 

The multi-objective optimization problem can be reformulated as a single-objective optimization 

problem by combining the two objectives into one using a weighted sum approach. I define the profit 

function at time slot 𝑡 as: 

 𝑷𝒓𝒐𝒇𝒊𝒕𝒕 = 𝒘𝟏 ∗ 𝑸𝒐𝑺𝒕 − 𝒘𝟐 ∗ 𝑩𝑳𝒕 (5.20) 

where 𝒘𝟏 and 𝒘𝟐 are the weights assigned to QoS and BL, respectively and 𝒘𝟏 +𝒘𝟐 = 𝟏. When 𝒘𝟏 is 

closer to 1, more weight is given to maximizing the QoS function. This means the optimization problem 

will prioritize strategies that improve QoS, even if it might lead to higher energy consumption. On the 

other hand, when 𝒘𝟐 is closer to 1, more weight is given to minimizing the battery load (energy saving). 

This means the optimization problem will prioritize strategies that reduce energy consumption, even if 

it might lead to a lower QoS. Therefore, by adjusting the value of 𝒘𝟏 and 𝒘𝟐, I can control whether the 

system prioritizes energy saving or QoS improvement. This allows for flexibility in managing the 

performance of the IoT device based on the specific needs and constraints of its operating environment. 

Thus, the weighted factors 𝒘𝟏 , 𝒘𝟐 , and 𝛼  are use case-related factors that can be investigated to 

examine the system behavior for different applications, while  𝑃𝑡,𝑖 and 𝐷𝐴,𝑡 are the factors that directly 

effect the system for specific use case.  I reformulate (35) using (36) as follow: 

 𝐦𝐚𝐱
  𝑷𝒕,𝒊,𝑫𝑨,𝒕

𝑷𝒓𝒐𝒇𝒊𝒕𝒕 (5.21) 

 

 s.t. 

𝐶1: 𝑷𝒕,𝒎𝒊𝒏 ≤ 𝑷𝒕,𝒊 ≤ 𝑷𝒕,𝑵, ∀𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁 

𝐶2: 𝐷𝐴,𝑚𝑖𝑛 ≤ 𝐷𝐴,𝑡 ≤ 3600 − 𝐷𝐼 , ∀𝑡 ≤ 𝑇  

𝐶3: 𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑺𝒐𝑪𝒕 ≤ 100, ∀𝑡 ≤ 𝑇  
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𝐶4: 0 ≤ 𝛼 ≤ 1 

𝐶5: 0 ≤ 𝒘𝟏 ≤ 1, 0 ≤ 𝒘𝟐 ≤ 1,𝒘𝟏 +𝒘𝟐 = 1 

 

 Proposed Energy Management Algorithm 

In the following, I propose an energy management algorithm that adapts the duty cycle 𝑫𝑨,𝒕  and 

transmission power 𝑷𝒕,𝒊 of the device based on the expected energy of the harvesters at each time slot 

𝑡 . Figure 5.5 shows the proposed algorithm diagram. The selected 𝑷𝒕,𝒊  and 𝑫𝑨,𝒕  should achieve the 

maximum value of the proposed profit function (5.20) in the optimization problem.  The algorithm 

assumes certain conditions or constraints that are defined in the problem formulation and uses grid 

search technique to find the optimal  𝑷𝒕,𝒊 and 𝑫𝑨,𝒕 values at each hour. 

 Assumptions 

I assume that the communication channel between the IoT device and the sink node follows the Log-

Distance model (5.2) in a specific environment. The value path loss exponent 𝑛 is determined based on 

Table 5.2, and the distance 𝑑 between IoT device and sink node is known. For small-scale fading term, 

I consider a Rayleigh distribution. 

Regarding energy consumption model, I assume that the energy consumption at the idle state 𝐸𝑰 is 

constant and at the sleep state 𝐸𝑆  is negligible. The energy consumption 𝐸𝑡,𝑖  , for each predefined 

transmission power level 𝑃𝑡,𝑖, is also predefined. The algorithm uses the proposed hybrid prediction 

algorithm to predict the harvested solar energy 𝐸𝑠
𝑝𝑟𝑒𝑑

. For the prediction of the harvested piezoelectric 

energy 𝐸𝑚
𝑝𝑟𝑒𝑑

, the generated electrical energy of the piezoelectric harvester is stored in a lookup table 

over 24 hours/ 7 days a week as shown in Table 5.3. I assume that, the device is aware of the minimum 

accepted signal quality 𝑆𝑁𝑅𝑚𝑖𝑛 and the minimum duty cycle 𝐷𝐴,𝑚𝑖𝑛. 
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Table 5.3 PZT harvested Energy Lookup Table 

Hour Weekday Energy [mJ] Weekend Energy [mJ] 

0 0.54 0.27 

1 0.54 0.27 

2 0.54 0.27 

3 0.54 0.27 

4 0.54 0.27 

5 0.54 0.27 

6 0.54 0.27 

7 1.62 0.27 

8 1.62 0.27 

9 1.62 0.27 

10 0.54 0.27 

11 0.54 0.27 

12 0.54 0.27 

13 0.54 0.27 

14 0.54 0.27 

15 0.54 0.27 

16 0.54 0.27 

17 1.62 0.27 

18 1.62 0.27 

19 1.62 0.27 

20 0.54 0.27 

21 0.54 0.27 

22 0.54 0.27 

23 0.54 0.27 

 

 Steps 

In the initial step, the algorithm begins by setting energy consumption, data processing, battery load, 

QoS and Profit function constants: 

• The path loss exponent 𝑛 and the distance between transmitter and receiver 𝑑. 
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• the path loss 𝑃𝐿0  at the reference distance 𝑑0. 

• The bandwidth 𝐵 and the noise power 𝑁0. 

• The transmission power levels {𝑃𝑡,1, 𝑃𝑡,2, … , 𝑃𝑡,𝑁} and their corresponded energy consumption 

levels {𝐸𝑡,1, 𝐸𝑡,2, … , 𝐸𝑡,𝑁}. 

• The energy consumption at the idle state 𝐸𝐼. 

• The energy consumption of data processing and the generated data length per second  𝐿0. 

• The battery capacity 𝑄original, degradation rate and the minimum state of charge 𝑆𝑜𝐶𝑚𝑖𝑛. 

• The QoS constants: 𝛼, 𝑆𝑁𝑅𝑚𝑖𝑛 and 𝐷𝐴,𝑚𝑖𝑛. 

• The Profit function constants: 𝑤1 and 𝑤2.  

The algorithm also defines the initial values for the different variables, such as the current battery 

capacity 𝑄current, the current state of charge 𝑆𝑜𝐶𝑡 and the full and partial battery life cycle counters. 

In the next steps, based on the initial values, the algorithm calculates the path loss and determines the 

minimum transmission power level 𝑃𝑡,𝑚𝑖𝑛  that achieves the minimum signal quality requirement 

𝑆𝑁𝑅𝑚𝑖𝑛. After that, the algorithm initializes a timer that triggers the following steps at the start of each 

hour: 
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Figure 5.5 Proposed Energy Management Algorithm 
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1. Using the proposed hybrid prediction algorithm and the collected values from the temperature 

sensor and the previously harvested power, the algorithm gets the predicted energy of the solar 

harvester for the next hour. 

2. Using the lookup table, the algorithm gets the predicted energy of the mechanical harvester for 

the next hour. 

3. Using (5.11) and (5.12), the algorithm determines the source of energy 𝑺𝒆,𝒕  and the source of 

charge 𝑆𝑐,𝑡 for the next hour 𝑡. 

4. For each level 𝑃𝑡,𝑖 starting from 𝑃𝑡,𝑚𝑖𝑛: 

a.  Calculate the achieved signal quality and the achieved data transmission rate 

for the current level 𝑃𝑡,𝑖. 

b.  Calculate the maximum duty cycle 𝐷𝐴,𝑚𝑎𝑥 that can be covered by the source 

of energy 𝑺𝒆,𝒕. 

c.  For each duty cycle level 𝐷𝑖 between 𝐷𝐴,𝑚𝑖𝑛 and 𝐷𝐴,𝑚𝑎𝑥: 

i. Calculate the achieved data length and the energy consumption of 

current  𝑃𝑡,𝑖 and 𝐷𝑖. 

ii. Calculate the battery load, the value of QoS and profit functions. 

iii. Store the calculated values for comparison. 

5.  After scanning all possible values transmission power and duty cycle, the algorithm compares the 

collected values of profit function and select 𝑃𝑡,𝑖 and 𝐷𝑖 that achieve the maximum profit value. 

6. Next, the algorithm updates the battery’s state of charge based on the current source of charge 

and the battery load of the selected 𝑃𝑡,𝑖 and 𝐷𝑖. 

7. Finally, the full and partial counters are updated, and the current battery capacity is calculated 

based on the proposed Capacity Fade Estimation method. 
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 IMPLEMENTATION AND VALIDATION 

In this Chapter, a series of simulation experiments are conducted to evaluate the effectiveness of the 

proposed algorithm. These experiments involve running the algorithm with a diverse range of values 

for all variables in the optimization problem. A grid search technique explores how these variables 

impact the algorithm's performance. Furthermore, various simulation scenarios are created to 

compare the algorithm's performance, which utilizes two energy harvesters, against other scenarios 

where either one or no energy harvesters are used. This comparative analysis highlights the proposed 

algorithm's advantages in different energy harvesting contexts. 

 Simulation Setup 

To begin, I establish the values for various parameters required by the proposed algorithm. These 

parameters, along with their corresponding values, are outlined in Table 6.1 which provides a list of the 

device’s power levels and energy consumption. The active-duty cycle 𝐷𝐴,𝑡 has a range of values. It starts 

from 𝐷𝐴,𝑚𝑖𝑛
∗ = 0.1 and goes up to 1 − 𝐷𝐼

∗ = 0.9, where the increment between each value in this range 

is 0.1. The values of path loss exponent 𝑛 are listed in Table 2. The values of the weight factors 𝑤1, 𝑤2 

and α are in the range {0, 0.1, 0.2, … , 1}. 

Table 6.1 Simulation Parameters' values 

𝑩 10 𝐾𝐻𝑧 𝑫𝑰 360 s 

𝑵𝟎 −140 𝑑𝐵 𝑳𝟎 5 𝐾𝐵 

𝑷𝑳𝟎 0 𝑻𝒑𝒓𝒐𝒄,𝟎 1 𝑠 

𝒅𝟎 1 𝑬𝒊𝒅𝒆𝒍 0.735 μJ 

𝒅𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏_𝒓𝒂𝒕𝒆 20% after 500 cycles 𝑸𝑜𝑟𝑔𝑖𝑛𝑎𝑙  2 𝑊 

𝝆 0.5 𝒅 1500 𝑚 
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𝑺𝑵𝑹𝒎𝒊𝒏 10 𝑑𝐵 𝑺𝒐𝑪𝒎𝒊𝒏 40 % 

𝑫𝑨,𝒎𝒊𝒏 360 𝑠 𝑬𝒑𝒓𝒐𝒄  0.049 𝜇𝐽 

 

Table 6.2 Transmission power and energy consumption levels of the device 

𝑷𝒕𝒊 (𝒎𝑾) 15.30 17.35 19.22 21.35 23.60 25.36 27.13 29.20 

𝑬𝒊 (𝝁𝑱) 0.735  0.84 0.93 1.02 1.125 1.215 1.305 1.395 

Table 6.3 Values of the path loss exponent 

𝒏 2.8 3 3.05 3.1 3.15 3.2 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 

 

 Simulation Scenarios 

1. Without harvesters: In this run, I run the algorithm without the harvested energy, which means 

that the device will uses the its battery as the only energy source. Thus, the algorithm sets the 

power transmission and duty cycle to the levels that meet the minimum QoS requirement without 

improving the QoS. The simulation stops when the battery capacity reaches the zero value. 

2. With solar energy harvester: In this run, I run the algorithm with the solar energy harvester. Thus, 

the algorithm tries to enhance the QoS when it is possible using the solar energy. The simulation 

stops when the battery capacity reaches the zero value. 

3. With mechanical energy harvester: In this run, I run the algorithm with the mechanical energy 

harvester. Thus, the algorithm tries to enhance the QoS when it is possible using the mechanical 

energy. The simulation stops when the battery capacity reaches the zero value.  
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4. With Solar and mechanical energy harvesters: In this run, I run the algorithm with the solar and 

mechanical energy harvesters for a period of 15 years. Thus, the algorithm uses one harvester to 

enhance the QoS and the other to charge the device battery. 

 Results 

Impact of path loss (𝒏) 

In Figure 2, I plot the maximum SNR for each value of 𝑛, considering all possible combinations of 𝑤1, 

𝑤2 and 𝛼. I observe that the scenario involving two harvesters yields the highest SNR values across all 

scenarios. This is because it adaptively selects the source of energy to enhance the QoS. When 

comparing the solar-only and mechanical-only scenarios, the former provides superior signal quality. 

Nevertheless, both these scenarios exceed 𝑆𝑁𝑅𝑚𝑖𝑛  up to a certain 𝑛  value. As expected, the no-

harvester scenario archives the lowest SNR values, but it stills larger than 𝑆𝑁𝑅𝑚𝑖𝑛 . However, for 𝑛 

values greater than 3.295, the highest transmission power level of the device cannot achieve 𝑆𝑁𝑅𝑚𝑖𝑛 

for all scenarios. 

 

 

Figure 6.1 - SNR for different scenarios and n values 
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In Figure 6.2, I illustrate heat maps that represent the frequency of transmission power level selection 

for each value of 𝑛. This takes into account all possible combinations of 𝑤1, 𝑤2, and 𝛼 for all scenarios. 

In the scenario without a harvester, the algorithm consistently selects the same level for each 𝑛 value. 

This indicates that the algorithm is choosing the minimum level that satisfies the SNR requirement. In 

contrast, for other scenarios, the algorithm not only selects the minimum level that meets the SNR 

requirement but also the highest level to improve signal quality. Interestingly, in the scenario with two 

harvesters, the algorithm tends to select the highest level more frequently compared to the scenarios 

with only solar or mechanical harvesters due to the higher power availability. As 𝑛  increases the 

algorithm selects the higher level to achieve the SNR requirement. 

The variation in frequency ranges across different scenarios is attributed to the algorithm’s termination 

once the battery capacity depletes completely. This explains why the scenario without a harvester 

exhibits the lowest maximum frequency, approximately 6000 time slots. Conversely, the scenario with 

two harvesters displays the highest maximum frequency, around 140 thousand time slots.   
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Figure 6.2 - Frequency of transmission power level selection for each value of n, across different 

energy harvesting scenarios 

Impact of factor α 

As observed earlier, the number of time slots varies across different scenarios. To understand the 

influence of the factor α on the QoS function, I have graphed the total transmission power and the total 

duty cycle (in seconds) for the initial 6000 hours across all four scenarios, with 𝑛 set to 3.23. In Figure 

6.3, I have plotted the total transmission power for various α values. It’s evident that when 𝛼 is zero, 

the total transmission power reaches its minimum for all scenarios, and it progressively increases as 𝛼 

increases. As for the total duty cycle, it is at its minimum when 𝛼 is one, as depicted in Figure 6.4. This 

is anticipated since the factor α is designed to balance the trade-off between the transmission power 

and the duty cycle. 

 

Figure 6.3 - Total transmission power for various α values 
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Figure 6.4 - Total duty cycle for various α values 

Impact of 𝒘𝟏 and 𝒘𝟐 

As depicted in Figure 6.5, the value of the Profit function escalates as w1 increases in both the two-

harvesters and solar-only scenarios. The two-harvesters scenario slightly outperforms the solar-only 

scenario. Conversely, the mechanical-only and no-harvesters scenarios yield a profit value close to zero 

for all w1 values, indicating that they are not conducive to boosting the system’s profit. Figure 6.6 plots 

the QoS function. It’s evident that the two-harvesters scenario delivers the highest QoS values among 

all scenarios, and these values increase as w1 increases. The solar-only scenario follows a similar trend, 

albeit with slightly lower QoS values than the two-harvesters scenario. The no-harvester and 

mechanical-only scenarios, on the other hand, yield QoS values near zero, implying that they do not 

contribute to the enhancement of the system’s QoS.  

As illustrated in Figure 6.7, while not enhancing the QoS, the no-harvester and mechanical-only 

scenarios impose the greatest strain on the device’s battery. Conversely, the two-harvesters scenario 

exerts the least load on the battery, followed by the solar-only scenario. 
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Figure 6.5 - Profit for various w1 values 

  

Figure 6.6 - QoS for various w1 values 
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Figure 6.7 - Battery load for various w1 values 

Impact on device battery 

To evaluate the effect of the four scenarios on battery life, I charted the State of Charge (SoC) for each 

scenario. As depicted in Figure 6.8: 

• The no-harvester scenario depletes the battery to a zero state of charge in approximately 5000 

hours (around 208 days). 

• The mechanical-only scenario exhausts the battery after about 8300 hours (roughly 345 days). 

• The solar-only scenario drains the battery after about 9100 hours (approximately 380 days). 

In contrast, the battery SoC in the two-harvesters scenario fluctuates between 90% and 100%, 

indicating more efficient energy usage after approximately 15 years, as shown in Figure 6.9. 

Despite the promising State of Charge (SoC) results in the two-harvesters scenario, it’s crucial to 

examine the effects of charging and discharging on the battery lifespan. Figure 6.10 illustrates the 

battery capacity over time, following the capacity fade estimation method. 
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In my simulation setup, I have defined the degradation rate to be 20% after 500 cycles. Consequently, 

the battery capacity, initially at a maximum of 2 Watt-hours, will decrease to 1.6 Watt-hours after 500 

cycles. 

The battery capacity drops to 80% of its maximum capacity in the different scenarios as follows: 

• Mechanical-only scenario: after 32640 hours (approximately 3.72 years). 

• Solar-only scenario: after 48800 hours (around 5.56 years). 

• Two-harvesters scenario: after 66000 hours (about 7.52 years). 

Figure 6.11 presents similar values, where we’ve plotted the full cycles of the proposed combined 

algorithm of Coulomb Counting and battery life cycle counter for the different scenarios. 

 

Figure 6.8 - SoC for different scenarios 
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Figure 6.9 - SoC for two-harvesters scenario 

 

Figure 6.10 - Battery capacity for different scenarios 
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Figure 6.11 - Full cycle for different scenarios 
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 EXPERIMENTS 

In this chapter, the implementation results of the proposed Energy Management System (EMS) and 

adaptive Quality of Service (QoS) algorithm in an actual Wireless Sensor Network (WSN) node within a 

real-world environment are presented and discussed. This includes an examination of how available 

harvested energy influences the battery's State of Charge (SoC), duty cycle, and transmission power. 

Section 1 details the circuit design and setup of the WSN. Section 2 introduces the laboratory setup 

and the measurement tools used. In Section 3, trials are conducted both with and without the proposed 

EMS and adaptive QoS algorithm to observe their impacts. Finally, Section 4 presents the results, 

discussions, and performance evaluations of the algorithm, providing an in-depth analysis. 

 Laboratory 

 WSN 

The experiment conduct on a clustered single-hop Wireless Sensor Network (WSN) utilizing three 

ESP32S NodeMCU devices which have 32-bit LX6 microprocessor [115]. Among these nodes, one serve 

as the sink which is equipped with an unlimited energy source. The second node is a standard node 

powered by a battery. The third node operates using the proposed EMS with a combination of two 

energy harvesters (Photovoltaic (PV) and Piezoelectric (PZT)) along with a battery as shown in Figure 

Figure 7.1. 
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Figure 7.1 WSN setup 
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 Vibration Part 

The vibration part consists of PZT, function generator, and vibration generator connected as shown in 

Figure 7.2. PZT is S129-H5FR-1803YB which is a piezoelectric energy harvesting moule with dimensions 

of 71 mm x 10.3 mm x 0.74 mm, output power of 4.5mW, output voltage 28.2Vm and weight of 23.375 

g. The function generator is designed to replicate the vibration acceleration signals observed from 

passing trains on a railway [116]. These signals are inputs to a vibration generator, which mimics real-

world vibrations. A PZT harvester, attached to this generator, then produces electrical energy. This setup 

provides accurate laboratory measurements, an essential solution given the practical challenges of 

conducting such experiments on an actual railway. This approach ensures realistic data collection for 

energy harvesting research without the need for on-site railway testing.  

 

Figure 7.2 Vibration Harvesting Part 

 EMS Circuit 

The EMS circuit consists of switching circuit, voltage regulator, sensors, and a buck boost converter. The 

switching circuit is designed using Metal Oxide Semiconductor Field Effect Transistor (MOSFET) type P 

which are used as switches as shown in Figure 7.3. The control signal form microcontroller with open 

and close the transistors to behalf as switches to choose the energy source of the IoT device. 
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Figure 7.3 Switching Circuit 

The chosen voltage regulator AMS1117 will guarantee delivering a fixed 3.3V to the IoT device as shown 

in.  The output voltage is observed by choosing the values of the resistors in the equation:  

 
𝑉𝑂𝑈𝑇 = 𝑉𝑅𝐸𝐹 (1 +

𝑅2

𝑅1
) + 𝐼𝐴𝐷𝐽𝑅2 

(7.1) 

Where: 

• 𝑉𝑂𝑈𝑇 is the output voltage  

• 𝑉𝑅𝐸𝐹 is reference voltage between the output and the adjust terminal and equals 1.25V. 

• 𝐼𝐴𝐷𝐽 is normally the specified minimum load current of 10mA. 

• 𝑅2 and 𝑅1 are the resistors defines the value of output voltage. 
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Figure 7.4 Voltage Regulator Circuit 

The Buck-Boost converter utilized in this setup is the BQ25570, an ultra-low power operation Integrated 

Circuit (IC) from Texas Instruments. It is compatible with both Photovoltaic (PV) and Piezoelectric (PZT) 

harvesters and offers the capability to implement a Maximum Power Point Tracking (MPPT) algorithm. 

The sensors employed in this setup include temperature, voltage, and current sensors. The 

temperature sensor will supply real-time temperature data to the Photovoltaic (PV) prediction 

algorithm and the Energy Management System (EMS) for battery protection. The voltage and current 

sensors are tasked with monitoring the battery's status and the energy flow. This monitoring is crucial 

for calculating the battery's state of charge and assessing its degradation. 

 Photovoltaic 

The PV harvester is Polycrystalline Silicon solar panel with dimensions of 11*6 cm, maximum output 

power of 1W and working current of 0.25A.  

Measurements Tools:  

The measurement tools utilized in this setup include a 100MHz Bandwidth Oscilloscope for capturing 

and storing signal data for further analysis and visualization, along with a Digital Multimeter for reading 

instantaneous values. 

The experiment bench is shown in Figure 7.5 
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Figure 7.5 Experiment bench 

 Setup 

To implement the proposed EMS and QoS algorithm on the IoT device (ESP32S), a Software (SW) has 

been developed that encompasses the components illustrated in Figure 7.6. Upon initiation, this 

program establishes the necessary matrices, including logging temperature and harvested solar power 

values for the preceding 24 hours. Additionally, it sets constant values, such as the distance to the sink 

node and the minimum required Signal-to-Interference-plus-Noise Ratio (SINR). 

Following initialization, the program commences an hourly timer. With each hour, the timer activates 

the subsequent procedure: 

1. Power prediction: The SW employs the proposed hybrid model to forecast solar power for the 

upcoming hour based on the current month, day, hour, recorded temperature, and harvested solar 

energy. Additionally, it utilizes the lookup table to predict the mechanical power. 

2. Energy Management: The SW initiates the proposed energy management algorithm upon 

obtaining the predicted values. It determines the optimal transmission power and duty cycle for 

the current time slot and configures the device to utilize them. 

3. Monitoring: At the conclusion of the current time slot, the program logs various metrics, such as 

the battery’s State of Charge (SoC), life cycle counters, and the actual harvested power. 
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Figure 7.6 Implemented program blocks 

 Scenarios: 

I examine two distinct scenarios involving two separate devices. In the first scenario, the device relies 

solely on the battery for energy. Conversely, in the second scenario, the device utilizes both solar and 

mechanical energy harvesters. Both devices operate for a duration of one week, specifically from the 

15th to the 21st of September, 2023. 

The proposed hybrid model for solar power prediction necessitates data from the preceding 24 hours, 

including temperature and actual harvested solar power. Consequently, the device in the two-harvester 

scenario commences in a passive mode for the initial 24 hours, solely recording the requisite values 

prior to the operation of the battery-only device. Moreover, I used the collected data to run the 

simulation for the same period. 
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 Results 

 Power Predictions 

Initially, I generate a plot of the actual versus predicted solar power, as depicted in Figure 7.7. It is 

evident from the plot that the predicted values align closely with the actual harvested power. Utilizing 

these observed values, I computed various metrics, the results of which are presented in Table 1. It is 

noteworthy that my proposed hybrid model achieved a remarkably low prediction error, with a Root 

Mean Square Error (RMSE) of 0.077 and a coefficient of determination (𝑹𝟐), of 0.958, where an optimal 

𝑹𝟐 value is 1. 

 

Figure 7.7 - Actual and predicted solar power 

Table 7.1 - Prediction Metrics 

Mean Squared 

Error (MSE) 

Mean Absolute Error 

(MAE) 

Root Squared Error 

(RMSE) 

R-squared 

(𝑹𝟐) 
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0.0059 0.03 0.077 0.958 

 

 Transmission Power 

Throughout the entire experiment, I recorded the power level selected at each time slot for both 

devices, in addition to the simulation. The results are illustrated in Figure 7.8, which represents the 

frequency of each selected level for the different scenarios and the cumulative transmission power for 

the entire duration. It is observable that the battery scenario consistently utilizes the lowest level across 

all time slots. In contrast, the two-harvester and simulation scenarios predominantly select the highest 

level, approximately 70% of the time slots, specifically 67% for the two-harvester scenario and 73% for 

the simulation. This is further corroborated by the total transmission power, where the discrepancy 

between the two-harvester and simulation scenarios is approximately 2.5%. 

 
 

 

 

Figure 7.8 - Selected and total transmission power 

 Duty Cycle 

As anticipated, the battery scenario consistently opts for the lowest duty cycle level across all time slots, 

as depicted in Figure 7.9. Conversely, the two-harvester and simulation scenarios select elevated levels 

contingent on the available energy. It is observable that the two-harvester scenario selects the highest 

level more frequently than the simulation, resulting in an increased total duty cycle duration. 

Quantitatively, the total duty cycle duration of the two-harvester scenario surpasses the simulation by 

approximately 2.3%.  
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Figure 7.9 - Selected and total duty cycle 

 Battery Metrics 

I have graphed the battery’s SOC for the three scenarios, as illustrated in Figure 7.10. It is discernible 

that the battery scenario depleted approximately 3.5% of the battery by the conclusion of the 

experiment, while the two-harvester scenario utilized roughly 0.6%, a figure that aligns closely with the 

simulation results. However, the two-harvester scenario employs one of the harvesters to recharge the 

battery, which consequently reduces the battery’s life cycle. 
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Figure 7.10 - SoC for the three scenarios 

Figure 7.11 presents the full cycle metric and battery capacity, indicating that after approximately 140 

hours, the device in the two-harvester scenario exhausts one full cycle. This is comparable to the 

simulation scenario, which reaches this point after about 150 hours.  Contently this decreases the 

maximum battery capacity by 0.04% of its original capacity. 

  

Figure 7.11 - Full cycle and battery capacity 
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 CONCLUSION AND FUTURE WORK 

The dissertation’s goals require exploring various aspects of telecommunications, electrical engineering 

and computer science, focusing on WSN quality of service (QoS), energy harvesting systems, energy 

management systems, circuit design, machine learning, modeling, prediction algorithms, and 

optimization. Each chapter thoroughly describes a particular problem and introduces a novel solution 

as a contribution to the field.  

In Chapter 2, I introduce the primary focus of my study: energy harvesting for Wireless Sensor Networks 

(WSN). The chapter begins with a detailed overview of the fundamentals of WSN, highlighting their 

diverse applications and the architecture of WSN nodes. Then I discuss energy management systems 

techniques in WSN, dividing them into two principal categories: Energy Consumption and Energy 

Provision. Further in the chapter, I concentrate on energy storage resources for WSN nodes; particular 

emphasis is put on batteries and supercapacitors. Through comprehensive comparisons among 

different types, I conclude this segment with a summary, highlighting the batteries and supercapacitor 

as some of the most efficient energy resources for WSN nodes. Then, I explore energy harvesting 

techniques as a viable alternative for energy storage devices in WSN nodes. I present a comparative 

analysis of these techniques, resulting in a summary that identifies Photovoltaic (PV) and Piezoelectric 

(PZT) harvesters as having the highest energy density. However, I also highlight the challenges 

associated with energy harvesting for WSN nodes, mainly due to their intermittent nature. In the final 

section of the chapter, I address the potential of multi-input energy harvesting systems to overcome 

these challenges. Here, I review various techniques utilized in multi-input energy harvesting systems, 

comparing them in order to provide insights into their effectiveness and practicality for application in 

WSN. This comprehensive examination highlights these systems' potential to enhance the efficiency 

and reliability of energy provision in WSN networks. 

In Chapter 3, I deal with Energy Management System (EMS) fundamental requirements for IoT devices. 

To address these requirements, I propose an EMS architecture, drawing on insights from the 

comprehensive review in Chapter 2. This includes an in-depth exploration of piezoelectric and 

photovoltaic energy harvesting theories and an introduction to electrical and mathematical modeling. 

I explain in detail the sizing of Piezoelectric (PZT) and Photovoltaic (PV) harvesters tailored for this 

specific application. Furthermore, I introduce novel energy-combining techniques utilizing a multi-input 

buck-boost converter. This approach allows for selecting an energy source based on the predicted 
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output power. I also present advanced battery management system techniques, including State of 

Charge (SoC) estimation, capacity fade estimation, health monitoring, and protection mechanisms. A 

significant contribution of this chapter is the proposal of a new energy combining technique, employing 

a multi-input buck-boost converter. Besides that, I introduce a novel algorithm designed to calculate 

battery degradation. The chapter is concluded with a comprehensive discussion on the design of the 

dynamic behavior of the EMS and its energy flow. This section emphasizes how the EMS is suitably 

structured to adapt to varying conditions and requirements, underlining the adaptability and 

robustness of the proposed system. 

Chapter 4 explores the motivation behind studying PV energy prediction, explicitly focusing on short-

term forecasting methods. I classify these methods in this chapter and provide a comprehensive state-

of-the-art overview. This overview encompasses physical methods, statistical methods (including 

regression and time series-based approaches), hybrid methods, and adaptive methods. The chapter 

deals with methods that employ Neural Networks and Support Vector Machines. I conclude this section 

by summarizing the advantages and disadvantages of each method, discussing the challenges they 

encounter, and presenting a comparative table of their prediction errors. It is noted that the physical 

method exhibits the highest possible error (45%), while the hybrid method demonstrates the lowest 

prediction error (3%). The chapter then shifts its focus to deep learning for short-term prediction. I 

begin by establishing the rationale for choosing deep learning techniques and proceed to examine 

various methods in this domain, including Deep Neural Networks (DNN), Recurrent Neural Networks 

(RNN), Long Short-Term Memory (LSTM) networks, and Convolutional Neural Networks (CNN). A review 

of the current state-of-the-art applications of these techniques for short-term forecasting is provided, 

along with a comparative analysis of their effectiveness. Furthermore, the chapter presents an in-depth 

dataset analysis that includes historical data from a solar panel equipped with temperature, wind, and 

irradiation sensors. To choose the proper model for the data set, DNN, CNN, and LSTM models are 

developed and compared based on their Mean Absolute Error (MAE) and Mean Squared Error (MSE). 

This analysis reveals that the CNN model features the lowest prediction errors for the chosen dataset. 

Subsequently, I describe the development of a novel prediction algorithm using CNN. I focus on the 

trade-off between model complexity and performance, which is particularly important as the model is 

intended for use in an embedded device with limited size and computing power. I compare the impact 

of the number of filters and model size on both the MAE and MSE. This comparison leads to the 

conclusion that the ideal balance is achieved with the CNN4 or CNN8 models. To further enhance the 

accuracy of the developed model, I combine the statistical method with the CNN model to mitigate 

noise and reduce prediction errors. This integration results in a significant error reduction of 
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approximately 7% in MAE and 3.5% in MSE, illustrating the efficacy of this hybrid approach in improving 

the accuracy of PV energy prediction. 

In Chapter 5, I conduct a comprehensive analysis of the QoS requirements and challenges in WSN, with 

a focus on critical factors such as latency, reliability, bandwidth, energy efficiency, and duty cycle, which 

are essential for effective communication in WSN. The chapter deals with various strategies to enhance 

QoS, including techniques like data compression, power transmission optimization, and machine 

learning. This explains the motivation behind developing a method that adaptively adjusts power 

transmission and duty cycle based on available energy to maintain high QoS standards. To achieve this 

objective, the chapter begins with designing a system model to optimize battery load while preserving 

the QoS. This model balances the need for energy efficiency to prolong battery life against the necessity 

of reliable data transmission. I introduce an equation to quantify the total data transmitted by an IoT 

device in an hour, considering its active state and duty cycles. Following this, I propose a channel model 

that considers the path loss exponent n for different environmental conditions. I also introduce an 

energy consumption model incorporating elements like the duty cycle and transmission power. 

Additionally, I present a detailed battery model, which includes aspects such as the battery's state of 

charge, degradation, and the energy it receives from harvesters. The chapter then moves on to 

introduce a QoS model, defining a QoS enhancement function that includes variables such as duty cycle 

and transmission power. Subsequently, I formulate the multi-objective optimization problem to 

maximize transmission power and duty cycle while minimizing energy consumption. The main 

contribution of this chapter is the development of an adaptive QoS algorithm energy awareness. This 

algorithm is designed to adapt the device's duty cycle and transmission power based on the anticipated 

energy input from the harvesters in each time slot. This approach aligns to efficiently manage energy 

while maintaining robust QoS standards in WSN, thereby addressing one of the critical challenges in 

WSN. 

Chapter 6 outlines the simulation setup for an IoT device, incorporating real-world parameters like 

transmission power, energy consumption, and path loss values. In this chapter, I describe a series of 

simulation experiments conducted to evaluate the effectiveness of the proposed algorithm. These 

experiments involve running the algorithm across various values for all variables in the optimization 

problem, using a grid search technique to determine the impact of these variables on performance. I 

compare the performance of the proposed algorithm, which employs dual energy harvesters, with 

scenarios using either a single energy harvester or none. The results show that the Signal to Noise Ratio 

(SNR) across the different scenarios and for various path loss values reaches its maximum with the 

proposed EMS, outperforming traditional energy harvesting setups and battery-only configurations. I 
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observe the same results in the analysis of transmission power values. To study the impact of the 

proposed algorithm on the battery SoC and SoH, I perform the simulation over 15 years. The data 

demonstrates a significant enhancement in QoS achieved with the proposed QoS adaptive algorithm 

and EMS compared to traditional methods, which show a notable drop in QoS over time. The findings 

indicate that a battery alone powers the IoT device for 5000 hours; a mechanical harvester extends this 

time to 8300 hours; and a solar harvester to 9100 hours. However, under the proposed EMS, the 

battery's SoC remains above 90%, indicating a sustainable operation for the battery's SoH; the results 

indicate that with mechanical harvesters, the battery capacity drops below 80% of its maximum after 

32640 hours, and with solar harvesters after 48800 hours. In contrast, with the implementation of the 

proposed EMS, this reduction in capacity occurs much later, after 66000 hours. This confirms the 

efficacy of the proposed system in not only extending the battery life but also in significantly enhancing 

the QoS of the IoT device. 

In Chapter 7, I describe my implementation of the adaptive QoS algorithm and proposed EMS on an 

IoT device, specifically the ESP32S NodeMCU. The setup begins with a WSN consisting of three nodes 

in a clustered single-hop topology. One node is equipped with the adaptive QoS algorithm and the 

proposed EMS, another one operates traditionally using only a battery, and the third one serves as the 

sink node with an unlimited energy source. The implementation of vibration experiments is detailed 

next, using a vibration generator and function generator to simulate real-world vibrations akin to those 

on train railways. The chapter then introduces the PZT harvester and the PV harvester. Attention is paid 

to the EMS circuits, including switching circuits, the voltage regulator AMS1117, and the buck-boost 

converter, where BQ25570 is used. The sensors used for current, voltage, and temperature 

measurements and the employed measurement tools are mentioned. The setup of the experiments is 

described, highlighting how the proposed QoS algorithm and EMS are implemented on the IoT device 

ESP32S NodeMCU. Two experimental scenarios matching practical applications are mentioned. The 

first scenario involves a device relying on battery power, while the second one utilizes PV and PZT 

energy harvesters. These experiments were conducted over a week. The chapter then discusses the 

observed results, focusing on the IoT device's transmission power and duty cycle with the proposed 

EMS and adaptive QoS algorithms implemented, compared to the battery-powered IoT device. It 

assesses the accuracy of measured results against simulation data, using metrics like Mean Squared 

Error (MSE), Mean Absolute Error (MAE), Root Squared Error (RMSE), and R squared (R2). The results 

reveal a discrepancy of approximately 2.5% for transmission power and 2.3% for duty cycle between 

experiments and simulation scenarios. Finally, the chapter compares the SoC for the IoT device with 

the implemented proposed EMS and adaptive QoS algorithm against the battery-powered IoT device. 

During the week-long experiment, the SoC of the battery-powered IoT device dropped to 96.5%. In 
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comparison, the SoC for the device with the implemented EMS and adaptive QoS algorithm remained 

above 99.5%, demonstrating the effectiveness of the proposed system in maintaining energy efficiency. 

 Main Contributions 

I summarize the main contributions as follows:  

• A novel energy management system EMS design for communication devices, with special 

emphasis on IoT applications. 

• A novel energy combining technique, employing a multi-input buck-boost converter, choosing 

the predicted data's energy source base. 

• A novel algorithm for battery degradation calculation. 

• A novel hybrid energy prediction algorithm using CNN and statistical methods. 

• A novel adaptive QoS algorithm for WSN devices energy awareness. 

 Fulfillment of Dissertation Goals  

Here, all the dissertation goals defined in Chapter 1 are presented again and demonstrate how these 

objectives have been successfully achieved.  

Objective 1: To design a novel Energy Management System (EMS) that combines the energy from two 

harvesters, Photovoltaic and Piezoelectric, to extend the life span of WSN node batteries. The 

achievement of this objective is described in chapter 3 where a novel design of the EMS is introduced. 

EMS combine the energy from PV and PZT harvesters to charge the battery. Chapter 6 shows that the 

life span of WSN node battery will drop by 20% in case of using PZT in 3.7 years, for PV in 5.5 years, and 

for the proposed EMS in 7.5 years.  

Objective 2: To study various solar energy forecasting methods, including physical, statistical, 

adaptive, and hybrid models, focusing on their effectiveness and accuracy, mainly through machine 

learning and deep learning techniques. The achievement of this objective is described in chapter 4, 

where I summarize the advantages and disadvantages of each method, discussing the challenges they 

encounter, and presenting a comparative table of their prediction errors. Then I present the developed 
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models for deep learning methods DNN, CNN, and LSTM and compare them based on their Mean 

Absolute Error (MAE) and Mean Squared Error (MSE). 

Objective 3: To develop and validate a novel hybrid forecasting algorithm that integrates a Random 

Forest classifier with a Convolutional Neural Network (CNN) model, aiming to enhance the precision 

and efficiency of solar energy predictions, focusing on optimizing the model for potential deployment 

in Wireless Sensor Network node. The achievement of this objective is described in Chapter 4, where 

I propose a novel prediction algorithm using CNN. Then, I optimize the model to be used in embedded 

devices by trading between the size and accuracy. Furthermore, I combine a statistical method with the 

CNN model to mitigate noise and reduce prediction errors, which enhance the accuracy. I achieved a 

significant reduction of approximately 7% in MAE and 3.5% in MSE, illustrating the efficacy of this hybrid 

approach in improving the accuracy of PV energy prediction. 

Objective 4: To develop an algorithm and a framework that ensures high Quality of Service QoS while 

efficiently using the battery to extend the operational life and lifespan of the wireless sensor node. 

And validate the proposed algorithm with actual data using realistic Energy Management System 

(EMS) hardware and Wireless Sensor Network. The achievement of this objective is described in  

Chapter 5, where I present the designed algorithm to adapt the device's duty cycle and transmission 

power based on the anticipated energy input from the harvesters in each time slot. I start by creating 

models for data transmission, channel, energy consumption, and detailed battery models. Then, I 

define the QoS enhancement, including transmission power and duty of cycle. After that, I formulate a 

Multi-objective optimization problem to maximize transmission power and duty cycle while minimizing 

energy consumption, and I solve it using the grid search technique. In Chapter 6, I examine the 

algorithm with real data for transition power and path loss (collected for 15 years), and I prove the 

efficiency of the algorithm by comparing different scenarios. In Chapter 7, I describe the experiments 

using WSN mode up of three ESP32S NodeMCU (performed for one week); the results match the 

simulation results very well, differing just by 2.5% to 3%. 

 Future Work 

Future research building on this dissertation could expand in several directions. One key area is the 

investigation of cross-layer design strategies. This approach would consider the interactions between 

network layers, such as physical, MAC, and network layers to optimize overall network performance. 

Additionally, exploring energy efficiency and Quality of Service (QoS) in multi-hop Wireless Sensor 
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Networks (WSN) would be valuable, mainly because the current research focuses on single-hop 

architectures.  

Incorporating more QoS factors, particularly security, is another significant challenge for future work. 

The extra energy available from efficient energy management could enhance network security. This 

aspect becomes increasingly essential as IoT networks expand and integrate into critical infrastructure 

and services. 

Future research should investigate more efficient energy harvesting methods to further enhance the 

sustainability of communication devices, with special emphasis on IoT applications. This could include 

combining energy from unlimited energy harvesters and considering their simultaneous use. Such 

advancements would push the boundaries of energy harvesting and management, leading to more 

robust and long-lasting IoT devices capable of operating in diverse and challenging environments. 

Another important research direction is to enhance the accuracy of the prediction algorithm for 

photovoltaic (PV) systems. This involves refining the algorithm to ensure higher precision in energy 

predictions, which is crucial for effective energy management in future communication networks. 
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