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Abstrakt
Výzkum nukleace, jakožto procesu fázové přeměny, má v termodynamice dlouhou tradici, sahající
až k prvním pozorování kondenzace vodních par. Zájem o samotný proces byl ještě zesílen s
nástupem molekulární dynamiky (MD), díky níž lze proces nukleace sledovat napřímo ve větším
přiblížení, nežli je možné v přírodě. Avšak tyto ambice naráží na výpočetní omezení spojená
s velikostí simulovatelného systému. V důsledku toho jsou výsledky simulací, experimentů a
teoretických modelů porovnatelné pouze kvalitativně, přičemž rozdíl mezi jednotlivými výsledky
je i několik řádů. Hlavním cílem této práce je rozšířit pole působnosti molekulárních simulací
zabývajících se nukleací. Tohoto cíle je dosaženo pomocí paralelizace algoritmů na grafických
procesorech (GPGPU), což umožňuje zvýšení rychlosti simulace. Proto je poté možné provádět
simulace rozsáhlejších systémů, a tím zlepšit prediktivní schopnost simulací nukleace. Druhým
úkolem je výzkum clusterů vytvořených v průběhu simulace. Tyto poznatky jsou využity k
vytvoření kritérií vhodných pro klasifikaci metastabilní (přechodně stabilní) kapaliny a páry.
Použití těchto kriterií umožňuje detekci nukleace, pomoci níž lze procesu nukleace lépe porozumět.
Termofyzikální data shromážděná během před-nukleační fáze simulace mohou být rovněž použita
k vytvoření nových stavových rovnic.

Abstract
Theoretical exploration of nucleation as a kind of phase transition process represents
a longstanding tradition in thermodynamics, dating from the first observations of droplet
nucleation. The research potential in this field has been further propelled by computational tools
like Molecular Dynamics (MD), which facilitate a more direct investigation of nucleation processes
in contrast to their observation in the natural environment. However, these simulation ambitions
encounter computational limitations tied to the scale of the problem. As a result, existing
experimental outcomes, simulation outputs, and theoretical models agree only qualitatively,
while substantial quantitative disparities spanning multiple orders of magnitude persist. The
principal objective of this study is to expand the horizons of simulations pertaining to nucleation.
This will be accomplished by harnessing parallelization methodologies within general-purpose
programming for graphics processing units (GPGPU), thereby enhancing the speed of calculation.
The realization of this objective bears the potential to conduct calculations on larger systems
and to enhance the predictive accuracy of nucleation simulations. The secondary goals are to
investigate cluster formation during simulation and to develop cluster criteria for metastable
(temporary stable) liquid and vapor regions. The establishment of such criteria will enable
the classification of nucleating systems, thereby offering profound insights into the underlying
processes. The thermophysical data collected during the pre-nucleation phase can be used to
construct a novel set of equations of state.
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Introduction 1
The process of nucleation is a prevalent cornerstone of the physics of condensed matter from
the eighteenth century, when the phenomenon of nucleation was first indirectly observed in
supercooled water by Fahrenheit [69]. Nucleation was afterwards experimentally and theoretically
indirectly investigated [82,184] followed in 1926 by the theoretical work on nucleation published by
Volmer and Weber [249] and later extended by Becker and Döring [21] leading to the formulation
of classical nucleation theory (CNT). Lately, a number of books have been published [113,116,
118,239] due to the wide occurrence of the nucleation phenomenon. The wide applicability is a
consequence of nucleation processes close connection with thermophysical properties, atmospheric
processes, uses in industry, or interdisciplinary similarities with other processes occurring in
nature. The prominent applications are connected with carbon capture and storage (CCS), first
outlined in the IPCC report [165] and stressed again in the recent ICCP report regarding the
limits of warming [38]. This is an important motivation for the modeling of CO2 and equations of
state research, which leads to technologies for lowering carbon dioxide in the atmosphere. Other
applications include methods for the preparation of platinum nanoparticles used in polymer
electrolyte membrane (PEM) fuel cells [30, 256].

1.1 State of the art

1.1.1 Phase interface

The initial theoretical investigation of the structure of the phase interface were performed already
by van der Waals [234] in 1894. His findings were later extended by Cahn and Hilliard [34,35] who
formulated a feasible density gradient theory (DGT). The theory introduced by Cahn and Hilliard
describes the free energy of the non-uniform system as an expansion around the uniform system
energy. This leads to the expansion of the uniform energy with an additional local disturbance
described by so-called gradient energy. The system is modeled in thermodynamic equilibrium;
therefore, the investigation of the vapor-liquid equilibrium (VLE) represents an important part
of the model. The knowledge of the nonuniform energy is vital in formulating a set of conditions
for finding the most probable density distribution within a system containing two fluid phases.
Following the method of Cahn and Hilliard [36] coupled with VLE, the investigated system can
be solved for the density profile, the work of formation, and interfacial properties such as surface
tension. These properties can be further utilized in various nucleation models, e.g., those used in
atmospheric research or in engineering applications such as the design of CCS technologies.

The density gradient theory framework presented in this study was initially used to predict
the interface properties of pure substances. Predictive models were originally supplied with a
simple cubic equation of state (EoS), such as the Peng-Robinson (PR) EoS [51], or the Soave-
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Redlich-Kwong (SRK) EoS [210, 271]. For simple systems, such as lower alkanes, cubic EoSs
provide reasonable VLE predictions. However, when considering more complex components,
cubic EoSs become imprecise, and volume-translated variations [147,167] or more complex EoSs
need to be employed. The predictive capability was enhanced by introducing an association term
into EoS [132]. Therefore, the cubic plus association (CPA) EoS [121] or the statistical associating
fluid theory (SAFT) equations are preferably used in order to model more complex systems.
These equations were used in multiple models [112,171,238] aligning well with experimental data.
The SAFT-EoSs are commonly used in combination with the DGT to model the density profile
and the interfacial properties, as these EoSs provide good prediction for VLE and the saturated
liquid density for a large variety of substances, including mixtures [154].

Through the years (2016–2018), when the author focused on the topic, the above mentioned
description of the one-component system was extended to binary and multicomponent mixtures,
e.g., refs. [145, 155, 170, 171, 189]. In these works, the authors derived the formulas and key
equation for the multicomponent problems and provided comparisons with available experimental
data. To the best of the authors’ knowledge, the multicomponent studies are restricted to the
planar phase interface geometry, leading to a simpler form of the solved problem. Some research
groups, e.g., refs. [1, 106, 181, 198, 259], applied DGT combined with a convenient EoS on the
more complicated spherical interface geometry, i.e., on the description of droplets or bubbles.
However, these studies deal with the calculations of pure systems. No studies, including both the
mathematical problem formulation and the practical calculations using DGT for the spherical
phase geometry in a multicomponent system, were found in the literature in 2018, when this
research took place.

1.1.2 Supersonic expansion

Expansion is a process where a vapor transits from a region of high pressure into a region of
low pressure. This is usually done through a nozzle, where the expanding vapor cools down
while reaching speeds that may reach the speed of sound. This is the case for the supersonic
expansion investigated in this work, where the cooling of vapor creates suitable conditions for
the nucleation of droplets.

The origins of this field of research can be found in the work of Becker and Döring [21] which
laid the basics for the Theory of Nucleation. Theoretical groundwork propelled experimental
investigation of expansion in nozzles first conducted by Oswatitsch [185], Kantrowitz [114], and
Wegener [254] using both water and wet air as expanding media with pre-1960 technological
limitations. Hill [99] and subsequently Wegener [255] investigated the effects of nozzles on the
expansion. Continued in 1967 by Stein and Wegener [219], who first used Rayleigh scattering of
a beam of helium-neon lasers to measure the concentrations and nucleation rate of expansion.
This opened a new era of optical measurements in expansion experiments, which has prevailed to
this day.

Molecular simulations of nucleation were first performed for the case of static systems with
foundational works from Thompson et al. [230], Wolde and Frenkel [228], and Yasuoka and
Matsumoto [265,266]. Simulation of nucleation rates in large systems was continued in work by
Diemand et al. [59], Tanaka et al. [225] and later Angelil [8]. The role of a thermostat and carrier
gas was of concern for Wedekind et al. [253] and later Halonen et al. [95]. Recent experimental
investigations focus on cluster temperature with work by Becker et al. [20] and pickup cross
section of the clusters by Fárník et al. [70].

Expansion was only scarcely addressed in a few studies, one by Zhong et al. [270] utilizing a
long simulation volume with an artificial boundary condition emulating a saturated system on
one side and a vacuum on the other. The second was done later by Li et al. [143], who used the
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elipsoid statistical theory to model the water nucleation in an expanding system with the help of
molecular simulation.

More recent research by Dingilian et al. [60] uses classical nucleation theory to investigate
the supersonic expansion of carbon dioxide with carrier gas in comparison with experimental
data. A theoretical approach utilizing Navier-Stokes equations was used by Xu et al. [263] for
direct numerical simulation of supersonic expansion optimized for multiple GPUs.

1.1.3 Properties of metastable systems

Continuing with the literature review of nucleation, CNT, and expansion, the question about the
properties of the system is interlaced within. In this review, we focus on the experimental and
later simulation investigations of the metastable states, which are the foundation for nucleation
to occur.

The first experimental setups included the cloud chamber invented by Wilson [260] in
1897, which achieved supersaturation and enabled measurements utilizing only the resistance
thermometry of the employed carrier gas. Other measurements were done on already mentioned
expanding systems developed by the group of Wegener [219,254,255]. The initial experiments
were also performed on co-called diffusion chambers developed by Franck and Hetz [76]. During
the later years 1968–1992, measurement of nucleation received much more attention, as reported
in the review of nucleation experiments from vapor to liquid by Heist and He [97]. Thirteen new
measurement methods were proposed across 60 different fluids, capturing supersaturation rations
and nucleation rates for unary as well as binary systems.

For the case of bubble formation, the research begins with the works of Tucker and Ward [232]
focusing on the critical size of bubbles in relation to CNT, and Hemmingsen [98] who investigated
the supersaturation rates of liquids in contact with walls. The nucleation rate of bubbles was
studied by Lubetkin and Backwell [150] which was later continued by Strey et al. [224] for both
heterogeneous and homogeneous cases using light scattering.

With the development of computers, experimental research shifted in the direction of molecular
simulation. Using the Monte Carlo (MC) technique, authors Lee Barker and Abraham [2,
124] were able to contribute to the theoretical investigation of nucleation theory by providing
initial estimates for cluster densities, Helmholtz energies, and the most probable cluster shapes.
Simultaneously, molecular dynamic studies were performed by McGinty [161] to obtain the radial
distribution function of argon droplets, Rusanov and Brodskaya [202] to determine the density
profiles of droplets, and Kristensen et al. [135] who focused on pair distribution within the
droplets.

Simulation investigation was extended with the increased computational power available,
allowing for the simulation of larger molecular systems investigating phenomena concerning
nucleation. The foundation of large system simulation of nucleation was laid by works from
Yasuoka and Matsumoto [265,266]. Together with large system simulation, alternative methods
were proposed, i.e., employing a thermodynamic daemon to investigate nucleation in the steady
state by Horsch et al. [105]. Cluster growth during nucleation was investigated by Napari et
al. [173] and later by Ayuba et al. [12] including further analysis of kinetics.

For molecular simulations of bubbles, there is a substantially fewer publication on the topic
compared to the droplet investigation. Initial works from Kinjo et al. [122] extend investigation
from droplet to bubble formation observation based on pressure. Later, Wu and Pan [262]
investigated bubble size evolution and changes in radial distribution function due to nucleation.
Niemark and Vishnyakov [174] utilized MC to look into thermodynamic potential and used
Voronoi-Delaunay tessellation to detect the vapor cavity. A more comprehensive study of single
bubbles surrounded by saturated liquid was performed by Horsch and Hasse [103]. Cavitation
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was investigated by Baidakov [14] combining DGT and molecular dynamics.
To our knowledge, the metastability investigation was only briefly mentioned as a side note in

most of the works. Direct investigation of metastable regions for Lennard-Jones fluid (LJF) was
performed by a few authors, i.e., Linhart et al. [148]. This field was most extensively investigated
by a group led by Baidakov [13,15–17].

1.2 Research goals

1.2.1 Chronology of the research

This work is in line with the author’s previous research in the field of nucleation and gradient
theory [44,192,244]. While the gradient theory was used to describe phase interfaces, the obtained
results also provide insight into nucleation processes, which was the starting point in 2016.

Research on the phase of interface continued in the 2016–2018 period, supervised by Ing. Jan
Hrubý, CSc. in the Institute of Thermomechanics of the CAS, v. v. i. The primary focus was
on potentially generalizing across various phase interface geometries and identifying any issues
with the current model. During the year 2018, the author closed the topic of phase interface and
decided to pursue questions related to nucleation, which were discovered during the previous
research.

The first problem identified is the effect of small droplets and their shape evolution during
nucleation. This topic was investigated in the by a group of Statistical thermodynamics and
simulation at the department of physical chemistry led by prof. RNDr. Jiří Kolafa CSc., who
supervised this portion of the research. The primary task was the development of a more
effective, parallel molecular simulation package for heterogeneous systems, particularly supersonic
expansion simulation. The author was intensively working on this task in 2018 and later in the
2019–2021 period, developing the tools necessary to perform the supersonic expansion simulation
on a sufficiently large scale. Focusing on the initial phases of nucleation, this line of research
currently offers insights into nucleation, in particular the cluster characteristics modeled in
non-equilibrium conditions.

The second big question is the onset of nucleation. More specifically, the condition of the
system before the nucleation process even takes place. This research was founded in cooperation
with a team from Ruhr Universität Bochum, Lehrstuhl für Thermodynamik, led by prof. Dr-
Ing. Roland Span. This group focuses on multiparametric equations of state including both
experiments and modeling. The initial investigation of the problem was done as part of the
student exchange program, which took place from September 2018 until September 2019. After
the program finished, the author have returned to the topic of supersonic expansion. Nucleation
onset research was resumed at the end of 2021 and continues until 2023. The knowledge of small
droplets from supersonic expansion research was utilized to develop a method for nucleation
event detection for both droplets and bubbles. This is an interesting area that opens the door
for researching metastable conditions for use in EoS development. It is currently being prepared
for publication.

The research on these questions is not considered finished, and the tools are not only
maintained but extended in functionality to allow for a future work on our understanding of
pre-nucleation and the initial phase of nucleation. This required a certain level of parallelism not
only on the part of the algorithms used but from the author as well.
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1.2.2 List of tasks

Tasks received during the span of the thesis are collected into the following list.

1. Phase interface research

• Generalize the model of phase interface calculation into a unified form applicable to
two main types of interface geometries for multiple components.

• Develop and maintain the PC(P)-SAFT equation of state in FORTRAN 95, primarily
oriented on speed.

• Apply the developed tools for equilibrium calculation and equation fitting, to model
CO2 mixtures.

• Validate the model prediction on experimental measurements and density functional
theory. Discuss the effect of the developed equation of state.

2. Supersonic expansion research

• Understand the model for supersonic expansion. Identify key requirements for paral-
lelization.

• Based on these requirements, design and implement an independent parallel solu-
tion utilizing the supersonic expansion model that will achieve at around ten-fold
speedup against the currently used implementation and enable large single-component
simulations.

– Develop an independent molecular dynamics simulation package tailored for
GPUs.

– Implement mechanisms for high energy conservation.
– Implement the expansion model in the package.
– Certify that the developed package speedup has been achieved.

• Simulate expansion with system with 2024,4048 molecules over periods of 1ţ s
• Analyze the cluster cross sections and compare the results with the experiment. Discuss

the results.

3. Metastable properties research

• Design and develop a method to obtain the properties of metastable fluids.
– Research the cluster definition and clustering algorithms.
– Study the available software used by the group (TREND, ms2)
– Develop criteria to identify both cluster and void structures.
– Adapt the method for runtime parallel execution and implement it into the

molecular simulation package ms2
• Calculate the metastable properties of Lennard-Jones fluids using the proposed method.

– Design and develop an automatic tool for sampling metastable conditions from
the equation of state

– Design and develop tools for managing large amounts of simulation used for local
machines as well as supercomputers.

• Compare the calculated data with the equation of state as well as the data available
in the literature.

• Discuss the achieved results in the context of improving the Lenard-Jones multipa-
rameter equation of state.
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1.3 Content of the thesis

The thesis is organized as follows:

• Chapter 1 provides an overview of the research, discussing the current state of the art,
research objectives, outline of the thesis content, and research outlook.

• Chapter 2 introduces essential thermodynamic concepts, including potentials, phase tran-
sitions, and equations of state. Nucleation and related concepts are introduced in more
detail, culminating in derivation of CNT for a single component case. The chapter also
touches on the Cahn-Hilliard gradient theory.

• Chapter 3 introduces molecular simulation techniques, including a brief overview of Monte
Carlo and a more elaborate introduction to molecular dynamics. This chapter provides
the theoretical background required to create custom molecular simulation software. This
includes a description of integration schemes, constraints, and temperature control mecha-
nisms, as well as a general form of a solver procedure.

• Chapter 4 explores clustering methods, explaining criteria used in unsupervised and physical
clustering, with a focus on the properties of the algorithms and relations between them.

• Chapter 5 presents how nucleation can be investigated from an equilibrium perspective
using the Cahn-Hilliard gradient theory. A unified method for modeling interfacial geometry
is formulated. Solved problems for planar and spherical geometries are shown together
with comparison to literature data for three CO2-rich binary mixtures.

• Chapter 6 investigates the molecular dynamics simulation of supersonic expansion. The
problem formulation is presented and later extended for the use of parallel execution on
GPUs. The solution includes a more detailed explanation of the optimization performed
and the structure of the parallel solution. Results discuss the validation of the parallel
solution, the relation of supersonic expansion with classical nucleation theory assumptions,
and comparisons with experimental data.

• Chapter 7 delves into metastable system properties. The chapter focuses on outlining
challenges for the problem and proposes a general solution that is adjusted for runtime
execution within molecular dynamics software. Parametrization of the method and proper-
ties of metastable simulation are discussed in detail. Results include the application of the
method to both metastable regions and comparisons with equation of state and simulation
results from the literature.

• Chapter 8 summarizes the key research findings.
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1.4 Achieved results

This is a summary of the achieved results including author’s contribution in impacted publications
and student thesis.

1. Phase Interface Research

• A unified model of interface has been developed. The proposed method enables the
calculation of surface tension and related properties for multicomponent mixtures.
The model shows a good agreement with the experimental data for three investigated
CO2-rich binary mixtures. The effects of polarity are well captured by the PCP-
SAFT EoS developed alongside the performed research. The achieved results were
summarized in Celný et al. [43].

– David Celný was the leading author, developed the model, implemented the
method and EoS, and produced the main body of the text and figures.

• The developed PC(P)-SAFT EoS was further utilized in the research of more compli-
cated hydrofluoroethers, as presented in a bachelor thesis by Spilková [218].

– David Celný was the consultant responsible for the PC(P)-SAFT EoS, Python
interface, and equilibrium calculation methods, and provided consultations related
to programming and EoS.

• Equation and surface tension modeling for HFE are also present in the work by Vinš
et al. [243].

– David Celný was a co-author, contributed the equation of state, supported the
surface tension calculation, and wrote the portions of the text concerning EoS
and density gradient theory.

2. Supersonic Expansion Research

• An independent molecular dynamics package was successfully developed, primarily
designed for GPU utilization. An existing model from Klíma and Kolafa [124] was
extended and optimized for the MD package. The GPU implementation is 10×
faster than the previous conventional CPU code. This acceleration was achieved for
the double precision calculation, guaranteeing sufficient energy conservation of the
developed model. The results showing simulations for systems with 2048 and 4096
molecules over 1 µs as well as the comparison with experiments have been presented
in the work by Celný et al. [41].

– David Celný was the leading author, extended the model for use on GPUs,
implemented most of the method, performed part of the simulations, and produced
most of the text and figures.

• The algorithms proposed were further optimized into the form presented in this
work, leading to a substantial speed-up forty times faster than the software used
in [124]. This has allowed us to simulate systems with 10240 molecules and enabled
further research with a focus on cluster temperature evolution and the effect of pickup
cross-sections presented in the work by Klíma et al. [123].

– David Celný was a co-author, contributed the optimized parallel method, imple-
mented most of the parallel method, helped with the simulation, and wrote the
portion of the text concerning the use of GPUs together with one figure.
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3. Metastable Properties Research

• The problem of obtaining properties of metastable states has been thoroughly in-
vestigated, leading to the development of universal grid criteria for the detection of
voids and clusters. This allowed efficient detection of the onset of nucleation during
the runtime of the molecular dynamics simulation, keeping the simulated system
within metastable conditions. The developed criteria were implemented into parallel
simulation software ms2. The behavior of the initial version of criteria was examined
in the publication by Fingerhut et al. [73].

– David Celný was a co-author, contributed the cluster criteria, implemented
the whole cluster criteria method into the package, helped with ms2 package
development, performed all simulations related to cluster criteria, and wrote the
portion of the text concerning the cluster criteria with related figures.

• The developed criteria were integrated with the thermodynamic property package
TREND and the simulation package ms2. This enabled the sampling of valid
metastable state conditions. With the refinement of criteria parametrization, both
metastable vapor and more scarcely investigated metastable liquid were successfully
sampled. Results produced from the designed method were compared with EoS and
literature data for the case of LJF. This part of the research is submitted by Celný et
al. in [42].

– David Celný was the leading author, developed the model, implemented the
complete method, helped with the development of TREND, performed all the
simulations, and produced the main body of the text and all figures except the
deviation graphs where he provided the data.

1.5 Future Research

Beyond this thesis and its results, there exist related intriguing problems that require attention.
The tools developed for phase interface research are already being applied to study more complex
substances. In light of this, we propose areas concerning supersonic expansion and metastable
properties research.

1. Supersonic Expansion Research

• According to our preliminary investigation and the currently available experimental
data, there is a need for development of efficient parallel implementation of the method
for multicomponent systems. This presents a challenge, given that certain optimiza-
tions were built with the assumption of a single component system. Nevertheless,
achieving this will be an accomplishment, which will enable comparisons with recent
studies and lead to collaboration with researchers utilizing different apparatus designs.

• Further research is also required to provide a full explanation of the creation mechanism
behind the clusters with high sphericity from the work of Lengyel et al. [142].

• There is also potential for researching the assumptions made by CNT. This regards
the bouncing phenomenon and the merging of larger clusters. This research area may
hold the answers to modifications of CNT necessary for better alignment of nucleation
theory with molecular simulation and experiments.
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2. Metastable Properties Research

• In the area of metastable properties research, a concern for the immediate future
involves expanding the methodology to encompass more complex real fluids.

• Furthermore, there is potential for investigating spinodal decomposition and further
extension allowing for the simulation at a wider range of metastable conditions.

• The third direction concerns the inclusion of the fitting algorithm for the EoS. This
would enable the development of an overarching method for improving the EoS. An
improvement in metastable regions would have a direct impact on mixture modeling
and phase interface modeling.



Thermodynamics of
nucleation 2

Thermodynamics is a branch of physics with extension into chemistry that focuses on the
relationships between heat, work, temperature, and energy. This is by no means limited in scope,
as effects related to heat and temperature constitute a prominent portion of the physical world.
Because of this, thermodynamics finds its use in many scientific and engineering fields, including
but not limited to chemistry, mechanical engineering, and space research.

With a long history spanning from Sadi Carnot and Lord Kelvin, thermodynamics developed
into a multidisciplinary field area encompassing multiple branches of thermodynamics, e.g.,
classical, statistical, chemical, and biological. Given this wide scope, thermodynamics is no longer
a purely physics discipline but relies on mathematical modeling and molecular simulations to
tackle the current problems. One of these problems is the process of droplet formation, a common
occurrence in nature with profound implications in multiple areas like atmosphere modeling,
power generation, surface treatment, and the modern topic of carbon capture and storage.
The process of droplet formation has a long tradition, with initial observations dating back to
Fahrenheit [69], followed by investigations from Gibbs [82] over the currently utilized kinetic
theory by Volmer and Weber [249] into modern day, where scientists are trying to understand the
precise working principle and conciliate experimental measurements with theoretical prediction.

Scientific interest in nucleation persists, driving further theoretical investigations that currently
reach over 2, 400, 000 results on Google Scholar. One specific area of focus is the extension of
understanding homogeneous nucleation principles in fluids, which is also the field of our study.

During the research of phase interfaces and nucleation, it became apparent that further
research of metastability is required. This led us into our current state, where metastability is
presented as a precursor for nucleation.

The aim of this chapter is to provide a review of theoretical concepts required for understanding
metastability and nucleation research presented in later parts of this thesis. We start with an
introduction of the thermodynamic formalism, which is then used to summarize the knowledge
about thermodynamic potentials, equations of state, and phase. These concepts are utilized to
introduce the effects of phase interface, metastability, and finally homogeneous nucleation with
its primary theory, classical nucleation theory (CNT).

2.1 Concepts of thermodynamics

The fundamentals start with the formalization of the term system. In most generic thermodynamic
sense, system is a portion of physical space separated from its surroundings by a boundary. With
a permeable boundary, the system is called open system, and conversely, an impervious boundary

10
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to any flow of energy or matter results in isolated system.
In thermodynamics, an independent set of state variables is used to describe system state in

an instance of time. Examples of state variables include experimentally well-known properties
like temperature T with unit of [K], pressure p [Pa] or volume V [m3]. Volume is often expressed
as molar quantity: molar volume Vm [m3/mol], where the Avogadro constant is used to define
the number of molecules contained in one mol. The state function relates multiple state variables
to provide further characterization of the system state, e.g., internal energy U , entropy S, and
entalphy H. All of the state functions are independent of the path the system has taken, contrary
to path functions, which are dependent, like mechanical work W and heat Q. This distinction is
particularly important for the characterization of static and dynamic processes.

For any closed system or open system, where boundary conditions are constant for long
enough time without any macroscopical change of matter and energy, the system will settle in
the entropy maximum according to the maximum entropy principle. System in this conditions
and sometimes only the conditions are then called thermodynamic equilibrium.

Another important concept is that of phase which denotes a region with the same uniform
chemical and physical properties. There are confusion with state of matter which are physically
distinctive (like gas, liquid, solid, and plasma). But phases are more general terms with patterns,
that can be microscopically observable, leading to the meaning of phase used in this thesis as a
distinct microscopically observable uniform structure.

It is important to realize that system states can be described by different combinations of
state variables and state functions. The number of independent thermodynamics degrees of
freedom can be formulated in the case of equilibrium systems with the Gibbs rule, relating the
degrees of freedom count to the number of components and phases as follows:

DoF = ncomp − nphase + 2 (2.1)

Lastly the concept of thermodynamic ensemble is formalized as a collection of a large number
of systems in different states with common macroscopic attributes. The thermodynamic ensemble
is used to describe the statistical behavior of a system, and it is characterized by a set of
macroscopic variables. Examples of include microcanonical (NV E), canonical (NV T ), and grand
canonical (µV T ) ensemble, where variables in parentheses are the fixed properties like number of
molecules N , total energy E, and chemical potential µ.

2.1.1 Thermodynamic potentials

In this section, we will start from the knowledge of the laws of thermodynamics following [37,131]
with the formulation of internal energy differential for system with ncomp components where only
work considered is the pressure-volume work:

dU = TdS − PdV +
ncomp∑
i=1

µidNi (2.2)

where internal energy is a function of temperature, pressure, and the chemical potentials of
individual components µi. These variables are also called conjugate to the natural variables of
internal energy which are entropy, volume and number of molecules of each component i ∈ n̂comp.
This provides the first thermodynamic function (further called thermodynamic potential), which
relates entropy, volume, and number of molecules to produce the total energy of the system. With
the aforementioned redundancy, we can use the Legendre transformation to change variables and
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produce a set of known thermodynamic potentials

A(T, V,N) = U − TS → dA = −SdT − PdV +
ncomp∑
i=1

µidNi (2.3)

H(S, p,N) = U + pV → dH = TdS + V dp+
ncomp∑
i=1

µidNi (2.4)

G(T, p,N) = U − TS + pV → dG = −SdT + V dp+
ncomp∑
i=1

µidNi (2.5)

Ω(T, V,µ) = U − TS −
n∑

i=1
µiNi → dΩ = −SdT − pdV −

ncomp∑
i=1

Nidµi, (2.6)

where A is the Helmholtz energy, H is the enthalpy, G is the Gibbs energy and Ω is the grand
potential.

Performing two types of Legendre transformation is the maximum number possible, leading
to a new potential. In the case where all properties are transformed and the differential
dU = TdS − pdV +

∑n
i=1 µidNi is applied, the following equations are obtained:

U = TS − pV +
ncomp∑
i=1

µiNi (2.7)

dU = TdS + SdT − pdV − V dp+
ncomp∑
i=1

µidNi +
ncomp∑
i=1

Nidµi (2.8)

ncomp∑
i=1

Nidµi = −SdT + V dp (2.9)

The last equation is called the Gibbs-Duhem equation and relates the chemical potential changes
to temperature and pressure changes.

Continuing with the derivation of thermodynamic relations, the form of potentials with new
variables leads to the partial derivatives relations, which can be formulated with respect to the
natural variables as shown for the example of Helmholtz energy (analogous can be performed for
other potentials):

S(T, V,N) = −∂A

∂T
(T, V,N) (2.10)

p(T, V,N) = −∂A

∂V
(T, V,N) (2.11)

µi(T, V,N) = ∂A

∂Ni
(T, V,N) (2.12)

Notice eq. (2.11), which provides a formula for the pressure of the system from the Helmholtz
energy with is further used in Helmholtz formalism.

These equations are not the only relations; from the comparison of inter-changeable second
partial derivatives, Maxwell relations are produced. We show only a selection of all
(npot(npot − 1)/2) possible combinations:

− ∂p

∂S
(S, V,N) = ∂T

∂V
(S, V,N) (2.13)

∂S

∂V
(T, V,N) = ∂P

∂T
(T, V,N) (2.14)

∂S

∂P
(T, P,N) = ∂V

∂T
(T, P,N) (2.15)
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We notice again some useful equations based on partial derivatives that allow the calculation of
potentially problematically measured entropic properties. A more generic approach is presented
next in section 2.1.1.1.

2.1.1.1 Helmholtz energy formalism

Similar observations led to the realization that system information can be obtained from partial
differentiation of the thermodynamic potentials. This concept has strong theoretical meaning,
but for practical utilization, the caloric property derivatives are hard to perform. With the
previous section and eq. (2.10), an alternative formulation using Helmholtz energy is used instead,
introducing the following notation generally accepted in the EoS fitting community:

Ai,j = ∂i+jA

∂iT∂jV
(2.16)

In this formalism, thermodynamic properties can be written as a combination of Ai,j terms,
assuming that Helmholtz energy is a sufficiently differentiable function and i, j ∈ N0. In the
case when index is zero, the particular partial derivative is avoided, which means the original
Helmholtz energy is A0,0. With this formalism, the formulas from the previous section for
pressure, entropy, internal energy, enthalpy, and Gibbs energy are easily written as:

p = −A0,1 (2.17)
S = −A1,0 (2.18)
U = A0,0 + TA1,0 (2.19)
H = A0,0 + TA1,0 − V A0,1 (2.20)
G = A0,0 − V A0,1 (2.21)

Lustig formalism [151] then provides connection with molecular simulation, allowing to
express Helmholtz energy partial derivatives from simulated ensemble properties. Combination
of both formalisms is a powerful tool widely used in the field of equation of state fitting and
thermodynamic properties modeling.

The comprehensive list of thermodynamics relations using Helmholtz energy formalism can
be found in book by Spaan [215]. In the reference reduced temperature, eq. (2.35), reduced
density, eq. (2.36), as well as separation of Helmholtz energy into ideal and the residual part,
eq. (2.37), were used to list the thermodynamic properties and formulas using the formalism.

2.1.2 Equation of state

The equation of state (EoS) is a function that relates state variables for a given set of physical
conditions (thermodynamic state). An easy example was already shown in eq. (2.11), which
gives a formula for pressure from the knowledge of the Helmholtz energy. This and similar
formulations are used to describe the properties of pure substances and mixtures in liquids and
gases, generally denoted as fluids. Equations of state have a wide range of applications and uses
in many fields, including fluid modeling, a wide range of engineering and industrial applications
(any systems operating with fluids), materials science, and chemistry. It is important to note
that a wide variety of equations of state are available, each of which is intended to address a
particular scenario. In this thesis, we show, cubic equation, SAFT (Statistical Associating Fluid
Theory) equation, and the multiparameter equation. All of the introduced equations have been
used in this thesis.
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2.1.2.1 Van der Walls EoS

The van der Waals equation of state (vdW EoS) is an equation that extends the ideal gas law to
account for the effects of intermolecular forces and the finite volume of gas molecules. It was
developed by Johannes Diderik van der Waals in 1873 [236].

p = RT

Vm − b
− a

V 2
m
, (2.22)

where R is gas constant and pressure p is expressed terms of temperature T , and molar volume Vm.
This equation established the family of cubic equation of state, because of cubic polynomial form
of 0 = f(p, V, T ). This is easily seen when fractions are removed from the equation and everything
is transferred to right hand side. There are alos two main substance–specific parameters a, b in
the VdW equation. Their purpose is to represent the substance behavior with the attraction
parameter a and can be related to the critical point properties of the liquid with

a = 27(RTc)2

64pc
. (2.23)

Second is the repulsion parameter b creating the effect of a finite volume of gas, expressed again
in therms of critical temperature and pressure as

b = RTc
8pc

. (2.24)

This equation holds strong theoretical meaning because many thermodynamic properties are
analytically calculable with a, b as parameters because of its simple shape. VdW EoS is also
used as an approximation of non-ideal gas behavior. The equation has a known deficiency in
prediction in high pressure and temperature regions as well as liquid phase prediction. But its
beauty is in the simplicity and ease of calculation.

2.1.2.2 Peng Robinson EoS

The Peng-Robinson equation of state (PR EOS) is a cubic equation of state developed by Ding-Yu
Peng and Donald Robinson in 1976 [188]. The standard form of PR EoS is:

p = RT

Vm − b
− aκ

V 2
m + 2bVm − b2 (2.25)

This equation has two main thermodynamical parameters, a and b, similar in meaning to VdW
EoS. Parameters are also adjusted to the critical properties of the modeled fluid. An additional
structural parameter, κ is related to the acentric factor, ω1 which characterizes the non-spehricity
of the molecule of the modeled fluid.

a = 0.45724(RTc)2

pc
(2.26)

b = 0.07780RTc
pc

(2.27)

κ =
(

1 + ω

(
1 −

√
T

Tc

))2

(2.28)

1The factor is defined as ω = − log(peq/pc) calculated at the reduced termperature equal to T/Tc = 0.7
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In this form, PR is a versatile EoS that one can use as a good approximation or valid model
based on knowledge of critical parameters and the molecular structure of the targeted fluid. The
structure parameter in particular enhances the predictive capabilities of the VdW.

The simple structure enables further extension: Important to mention is the volume translation
of PR (VTPR) proposed by Péneloux et al. [187], which improves the prediction of liquid density.

This relatively simple model is good for the calculation of non-polar pure fluid properties.
The equation provide good prediction for the critical point and is even sufficient for vapor-liquid
equilibrium calculations when VTPR is used. This makes it a suitable equation for alkane
modelling [153].

Adding simple mixing rules for the parameters a, b

a =
∑

i

∑
j

xixjai,j (2.29)

b =
∑

i

∑
j

xixjbi,j , (2.30)

where xi, xj are the mole fractions of individual components and ai,j , bi,j follows the van der
Waals combining rules [235] with optionally one or two additional adjustable mixture pair–specific
parameters ki,j , li,j .

ai,j = √
aiaj(1 − ki,j) (2.31)

bi,j = bi + bj

2 (1 − li,j) (2.32)

enables the calculation of mixture properties based only on the pure substance knowledge,
optionally adjusted with ki,j , li,j parameters fitted to avaliable experimental data. The simple
equation allows for fast calculation, enabling evaluation of multicomponent mixtures, which is
the case in the petroleum industry, where the equation still finds its main use [2, 10, 169]. Other
areas PR is actively used are investigated by Shardt et al. [213].

2.1.2.3 PC-SAFT EoS

The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state is a
member of the SAFT family of EoS developed by Chapman et al. [47]. Perturbation theory
has been used to quantify the relationship between well-defined site-site interactions of bulk
liquid behavior [257]. The Helmholtz energy has been expanded into a series of integrals of the
molecular distribution function and the associated potential, which, with the use of perturbation
theory, was simplified into the following form based on the individual contributions:

A = Aig +Ares = Aig +Aseg +Achain +Aassoc (2.33)

Here the first split of the Helmholtz energy into ideal and residual parts is performed, which is
then continued for the residual part according to Chapman [48] into terms for segments, chains,
and association interactions (relevant for substances exhibiting association, e.g., alcohols).

For PC-SAFT developed by Gross and Sadowski, [87] Wertheim’s perturbation theory was
used on the hard sphere reference fluid equation from Boublík [28] and Mansoori [157] and
rewrote the Helmholtz energy as expansion around the hard sphere fluid:

A = Aig +Ahs +Ahc +Adisp (2.34)

Here the terms represent the hard sphere reference, the hard chain, and the dispersion term
containing the rest of the perturbation. Where the original integration was either solved exactly,
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i.e., the hard sphere and hard chain terms, or approximated, as is the case for the dispersion
term. The individual formulations are provided in the appendix of the original paper from Gross
and Sadowski [87].

This approach is also readily extensible, as new interactions can be incorporated in terms of
Helmholtz energy contribution. In this way, dipole interaction Adpol by Gross and Vrabec [90],
quadrupole interaction Aqpol by Vrabec and Gross [250] and association interaction Aassoc by
Gross and Sadowski [89] were all introduced into the equation. The SAFT equation accounitng
for polarity is often called PCP-SAFT

This construction allows for a large quantity of fluids to be modeled by SAFT type equations,
where equation building relies only partially on experimental data to adjust the empirical
parameters within the equation. In the end, a relatively low amount2 of parameters is required
to capture the behavior of very complicated fluids like coolants (for example Hydrofluoroethers
investigated by Vinš et al. [243] ). Given the complicated structure of the numerical evaluation
of some integrals, the equation’s performance is its weak point. There is also reliance on
experimental data for adjustable parameter evaluation, which may be an issue with scarcely
measured substances. On the other hand, the equation provides very accurate results for pure
fluid and viscous liquid equilibria for many classes of interaction, which makes it popular in both
the scientific and engineering areas, as certified by thermodynamic packages implementing the
equation like Coolprop [22] or TREND [216].

During the research on nucleation, I wrote my own implementation of PC-SAFT in FORTRAN
95, aiming for fast execution by utilizing internal equation state switching to prevent unnecessary
recalculation of the coefficients. The equation has been utilized for substance modeling and as
a reference equation of state for experiments performed at the Laboratory of Thermophysical
Properties of the Institute of Thermomechanics of the CAS .

2.1.2.4 Multiparameter EoS

During the introduction of the previous equation, theoretical knowledge was primarily used to
construct the mathematical formulation that would closely represent the data obtained from
experimental measurements and computer simulation. But this is not the only option, as the
equation can be constructed purely to reflect the experimental data and adjusted later to account
for known behavior. In this way, no precise molecular model is required, as the heavy lifting
is performed by a wide range of experimental data used for reference of the behavior of the
examined fluid.

For the following description, we will adhere to the formalism of critically scaled temperature
and density with consequent application on Helmholtz energy

τ = Tc
T

(2.35)

δ = ρ

ρc
(2.36)

α(τ, δ) = A(T, ρ)
RT

= Aig(T, ρ) +Ares(T, ρ)
RT

. (2.37)

Notice that τ is an inverted reduced temperature. This helps in simplificaiton of notation in
eq. (2.38) where all terms are expressed as multiplicative factors.

The equation construction is based on data collection from all available experiments, where
the particular focus is given to VLE data, heat capacities, and speed of sound measurements.
All of these data sets aid in fitting to obtain Highly accurate equation. Vapor-liquid equilibrium

2ten parameters are used to represent a non associating polar fluid

https://www.it.cas.cz/en/d2/l021/
https://www.it.cas.cz/en/d2/l021/
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measurements capture equilibrium properties and the relationship between vapor and liquid. In
particular, pressure-density information helps in fixing the interfacial curve prediction. Heat
capacities are important because of their relation to Helmholtz energy as a second derivative,
which provides information about the curvature of the Helmholtz function. The speed of sound
is then an important verification parameter, combining multiple derivatives of Helmholtz energy,
which makes it very sensitive to errors in the Helmholtz energy function.

The equation then combines the data into a weighted set, on which an optimization algorithm
searches for the best choice of adjustable parameters. The Helmholtz energy is split according to
eq. (2.37) into an ideal gas part and a residual part.

For category of simple fluids, the ideal gas part Aig can be analytically obtained or obtained
by the use of quantum simulation and incorporated into the equation independently as a fluid
parameter. For complex fluids, one can use the approximation with a rigid harmonic oscillator
modeled according to Span [215]. This model offers a way how to calculate parametrization from
the ideal gas part form isobaric heat capacity experimental data. For lower temperatures, this
ideal gas part model provides a sufficiently accurate prediction. In higher temperatures, further
corrections are required [215]. This construction allows independent inclusion of the ideal gas
part of Helmholtz’s energy without the need for unified fitting of whole Helmholtz energy.

To remove the shape optimization problem from the fitting procedure, the from of the residual
part of the equation is fixed to contain npol polynomial terms, nexp exponential terms, and nGauss
Gaussian terms:

Ares
r (τ, δ) =

npol∑
i=1

niτ
tiδdi +

nexp∑
i=1

niτ
tiδdi exp(−δli) +

nGauss∑
i=1

niτ
tiδdi exp

[
−µi(δ − ϵi)2 − βi(τ − γi)2

]
(2.38)

where the set of parameters di, ti, li, µi, ϵi, βi, γi is to be determined for the specified choice
of the number of individual terms, i.e., npol = 6, nexp = 6, nGauss = 11 used in the equation
for Lennard-Jones fluid by Thol et al. [229]. For this task, an optimization algorithm looks
for a sufficiently low local minimum in the high-dimensional parametric space. Not much is
known beforehand about the error function being minimized, which makes it an arduous process,
where the human insight and experience play an important role in constraining the parametric
space. Expertise in fitting leads to the creation of an equation of state that represents physically
measured behavior while agreeing with the theoretically known properties of the equation of
state.

When all terms are tabulated, the evaluation of the equation is fast and can provide predictions
over a wide ranges of conditions for which experimental data are available. The primary feature
of multiparameter equations of state is their high precision, which is of particular importance
for a wide range of practical applications, making these equation particularly interesting for
industrial utilization. Therefore, a lot of effort is put into making these equation not only precise
in regions of data availability but also to extrapolate well outside of measured data.

Multiple van der Waals loops This brings the discussion to the multiple van der Waals
(vdW) loops issue of Multiparameter EoS. The term van der Waals loop or alternatively Maxwell
loop refers to the behavior of the equation of state inside binodal region of the phase diagram,
where the calculated isotherm exhibits a single sinusoidal swing like in the case of vdW EOS.
When the isotherm exhibit more than one of these swings or even discontinuities we call it
equation with multiple van der Waals loops [215]. Example of multiple vdW loops is shown
in fig. 7.4. It can be argued that multiple loops are the consequence of the employed fitting
technique [258] or may be the result of a lack of knowledge in the metastable region. The
underlying change in nature from liquid and vapor behavior is therefore not captured well enough,
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leading to erratic swings in the two-phase region. This issue can be safely neglected in the case of
pure fluid evaluation, but in the case of mixtures, it is not necessarily the case [258]. Therefore,
discrepancies around the phase equilibrium line can lead to the incorrect prediction of the phase
equilibrium of mixtures. This is currently viewed as drawback of many multiparametric equations
of state motivating researchers to develop methods to diminish this issue of multiple van der
Waals loops like Pohl et al. [194].

2.2 Concepts of phase
The phase introduced in section 2.1 is here related to thermodynamic potential to derive the
globally observed process. In particular we are interested in phase transitions. The internal
structure, or microstate, is not of particular concern in this description, as the focus is on the
static systems found in equilibrium.

We start the description from phase equilibrium, illustrating the driving force behind the
transition and the related description of stability. In latter part of the section the effect of
curvature is introduced.

2.2.1 Phase transition

Let us first start with a system in phase equilibrium at fixed pressure and temperature. Following
the reasoning of [94], this system is best described with the Gibbs potential which for the
equilibrium should occupy its minimum according to the minimum principle [212]. For the system
setting, the total Gibbs potential can be written as the sum of individual contributions for all
nphase for ncomp as:

G =
nphase∑

i=1
G(i) =

nphase∑
i=1

ncomp∑
j=1

µ
(i)
j N

(i)
j (2.39)

Because the number of particles of one component is not changing, it is always possible to express
one selected j′ as a complement to the rest of the components. Utilizing this together with the
Gibbs potential alternative to eq. (2.12), the condition for neq phases in equilibrium reads as:

µj =
(
∂G

∂Nj

)
p,T,Nj′ ̸=j

=

 ∂G

∂N
(i)
j


p,T,Nj′ ̸=j ,N

(i′ ̸=i)
j

= µ
(i)
j (2.40)

given that the choice of j is arbitrary, we obtain the equality of chemical potentials of a given
component across all neq coexisting phases. This has importance not only for the equilibrium
characterization but also for the process leading to equilibrium.

Let us now restrict ourselves to the simple case of two-phase coexistence. With the knowledge
of the Gibbs phase rule in eq. (2.1), we know that for a single component and two phases, only
one degree of freedom remains, i.e., one independent property describes the phase coexistence.
The system temperature and pressure are important controlling factors, and it is also possible
that under some parameters, no coexistence of phases is possible. This is illustrated in fig. 2.1,
where the jump in chemical potential is visible between the gas and liquid regions of the curve.
The case where no coexistence is observed is visible with point c.

Figure 2.1 illustrates three scenarios of transitions. The continuously differentiable path (a)
where no phase transition occurs because the system is found in the supercritical region. The
critical case with critical point (c) where first derivative is continuous but there is discontinuity
in second derivative shown in the change in curvature. Last example is first order transition
commonly known as phase transition with path through points (b,d,e,b). In this case there is
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Figure 2.1: Shape of the chemical potential for changing reduced pressure. Van der Waals EoS is
used to show supercritical fluid T/Tc > 1 (blue dotted line), critical fluid T/Tc = 1 (red dashed
line) and below critical fluid T/Tc = 0.85 (black line) transitions. The imporant crossing points
are marked with letters as well as regions related to the stability of the fluid.

discontinuity also in the first derivative shown with the point (b) that is being crossed twice.
The first crossing is from the vapor branch of the curve, which extends until point (d) and the
second crossing is from the liquid branch, which extends into point (e). For the the last case a
stability regions were also denoted, which becomes relevant in section 2.3.1 where the meaning of
points (b,d,e) is explained.

2.2.2 Driving force

To answer the question of what force drives the establishment of phase equilibrium, system
potential like the ones introduced in section 2.1.1 needs to be chosen. For the case of constant
pressure and temperature, the Gibbs energy from eq. (2.5) is a good candidate.

∆G = Gold −Gnew = (µold − µnew)N = N∆µ (2.41)

Here the subscripts are phase-independent, denoting the direction of transition. For a constant
number of particles, we see that the chemical potential difference is the driving force of the
transition. For further derivation, we need to specify the phases. In this study, we focus on
fluids and consider the transition from gas (also called vapor) into liquid and vice versa. These
transitions are further denoted with arrows, i.e., vapor→liquid.

The assumption of ideal gas behavior of the vapor phase and incompressible liquid model [249]
can now be used to formulate a substance–agnostic approximation of the chemical potential
difference. This is one of the accepted approximations for the driving force. In situation where
the assumptions are not fulfilled ideal gas equation can be replaced with a more precise EoS
from section 2.1.2. An alternative formulation can also be made using fugacities, but for the
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purposes of our introduction, the commonly used formulation is sufficient. The driving force

∆µ ≈ kBT ln(p/peq) − v1(p− peq), (2.42)

where peq = peq(T ) is the temperature dependent equilibrium pressure and v1 is volume of single
molecule. Further simplification can be made for cases v1peq ≪ kBT , where the second term can
be removed. This leads to a form one can usually see in literature [116,118,239], which reads

∆µv = kBT ln(p/peq) = kBT ln(S). (2.43)

Here S is called saturation, a dimensionless number used to specify how far from equilibrium the
system resides. This is also indirectly related to the time frame in which phase transitions occur.

In the case S = 1, the chemical potential difference is zero and no phase change occurs. In
the case of S < 1, the system does not even have phase coexistence as there is no promoting force
to create it with. This case has a theoretically negative chemical potential difference. In the last
case where S > 1, we talk about supersaturated system, in which phase transition is promoted.
The magnitude of the supersaturation increases until a condition of instability is reached. In the
region of instability, the term supersaturation loses its physical meaning, as discussed in the next
section.

2.2.3 Phase equilibrium considering interface curvature

The phase equilibrium in general imposes a set of equalities of the chemical potential of each
component in the liquid and vapour phases. The simplest case is the planar interface, for which
the pressures of both phases have to be equal, i.e., pv = pl. The set of algebraic equations can be
iteratively solved for thermodynamic conditions of phase equilibrium at a given temperature and
total pressure in this case.

In case of spherical interface, the Young-Laplace equation replaces the equality of pressures.
The pressure equation is formulated with the help of Laplace pressure ∆p describing the
mechanical equilibrium of a surface separating two phases

∆p = 2σ/rcurvature . (2.44)

Here, rcurvature is the radius of curvature and σ denotes the surface tension. The Laplace pressure
is a difference between the pressure inside a spherical cluster, i.e., a droplet or a bubble, and
within the surrounding phase ∆p = pl − pv. The Laplace pressure can be used for the definition
of the supersaturation of the metastable bulk phase. This means the supersaturation provides
some sort of information about how far from binodal the system is.

From the model perspective, the Laplace pressure enables to form a description of curved
phase interface. Therefore, using the Laplace pressure formulation for equilibrium calculation, a
generalized set of equations applicable on both the planar and the spherical phase interfaces is
expressed as follows

µl
1 − µv

1 = 0
...

µl
n − µv

n = 0
apl + bpv − c = 0, (2.45)

where the pressure equation is parametrized by three parameters allowing for a universal definition
of the solved profile geometry. Parameters a and b are dimensionless. Parameter c represents the
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Laplace pressure, which equals zero for the planar case with an infinite radius of the interface
curvature. Values of parameters a and b vary according to the definition of input quantities;
e.g., for spherical interface and prescribed pl, the parameters have values of a = 1, b = −1, and
c = ∆p.

2.3 Concepts of nucleation
Nucleation is the process of formation of a new thermodynamic phase within an existing phase of
a different structure. This process is naturally occurring in every day life, for example, raindrops
forming in the clouds or bubbles created in carbonated drinks.

In thermodynamic terms, nucleation is the process during first-order phase transition. The
investigated case in this study restricts the transition between vapor↔liquid phases.

Building upon the concepts of phase transition, the introduction into system stability is given
with illustration of construction of phase diagram and important stability curves. We also derive
the work of formation as well as the critical cluster properties. All these concepts are utilized in
section 2.4, where the derivation of the commonly used form of the classical nucleation theory
(CNT) is performed.

2.3.1 Stability

Another important aspect of phase transition is the path taken to reach the desired state. In
the case of the here investigated vapor↔liquid phase transition, the process is not immediate
but undergoes several stages of progression. We can already see hints of this in fig. 2.1, where
the gas phase line continues over point (b) until point (d) from which the transition through
unstable region is made into liquid phase at (e), which then continues on the liquid branch
through (b) into the stable liquid. If the process was immediate, everything would happen at
point (b) without any detours like it can be seen for critical case illustrated with point (c). In
this case a smooth transition is made between undetermined phases.

This phenomenon arises due to the presence of an energy barrier for the transition, as
illustrated in fig. 2.2. For metastable states, the system resides in the locally convex portion
of the graph, characterized by a higher attributed Gibbs energy. For metastable states the
perturbations of system configuration may crossing the energy barrier which transforms the
system into stable phase. The process of the transformation is called nucleation. Metastable
system’s behavior is determined by the magnitude of perturbation in comparison with the size of
the energy barrier. This energy barrier is, in end effect, the energy required to form a transition
structure from which the system can grow into the target phase (see configuration 3 in fig. 2.2).

Stability curve Analyzing the barrier height, we can restrict the metastable state to the
conditions of the existence of an energy barrier. In this sense, the first limiting case is when no
barrier exists because the system is already in phase equilibrium. This line is called correspondence
line, and the condition for it is provided by eq. (2.40). For the system with a single component
and two phases found in equilibrium, a fixed temperature results in a single free parameter.
Binodal is then characterized, as a pressure curve peq(T ).

Evaluation of binodal is usually performed by solving the alternative condition of equality
of pressures pv(T, ρv) = pl(T, ρl) rather than chemical potentials, as the former is more readily
available from the equation of state. With this search done across a range of temperatures, the
two branches of the binodal are obtained. From this construction, it is obvious that the curves
meet at the critical point where differences between phases vanish. The final shape is visible in
fig. 2.3, shown as a black solid line connected at the critical point.
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Figure 2.2: Illustration of system stability related to system configuration displayed in graph
of Gibbs energy over mole fraction of liquid. Transition to a more favorable state in terms of
Gibbs energy means decreasing Gibbs energy to the green tangent. For this transition the energy
barrier has to be traversed. The figure also shows several configuration representing vapor system
(1), metastable system with cluster (2), unstable system with phase transition occurring in whole
volume (3) and finally the liquid system (4).

Instability curve The curve separating the metastable and unstable states is called instability
line or spinodal. For its localization we have to consider situations, where the energy barrier is
lowered to the point it vanishes. There are no obstruction for even the smallest perturbation
to induce for transition which generates a chaotic non-localized phase transitions throughout
whole system. In terms of underlying Gibbs potential, the previous local minimum becomes an
inflection point while the global minimum is preserved. With the Gibbs potential as a function
of pressure at a fixed temperature and a constant number of particles, the original condition can
be transformed with the knowledge of the Gibbs potential differential, eq. (2.5), into:

0 = d2G

dρ2 = dp
dρ. (2.46)

Therefore, examining the local extrema of the isotherm p(T, V ) can be used to construct both
of the spinodal curve branches. The procedure for finding the extrema is done using stable
vapor and liquid densities and finding the first extremum point, as illustrated in fig. 2.3. In this
way, the artifacts of EoS with multiple Maxwell loops are avoided. The spinodal curves (black
dashed line in fig. 2.3) are also joined at a critical point where there is no barrier separating the
coexisting phases, as shown in fig. 2.1 by point (c).

In this way, the phase diagram in reduced pressure and reduced density can be constructed
from isotherms and consequently separated into stable, metastable, and unstable regions like
in fig. 2.3. The binodal, spinodal, and critical isotherm p(Tc, ρ) are used as separation curves.
The vapor region is then restricted by the vapor binodal and critical isotherm. The stable liquid
region is found between critical isotherm and the liquid binodal. In this case, the solid phase



2.3. Concepts of nucleation 23

m
e
ta

st
a

b
le

 v
a

p
o

r m
e
ta

sta
b

le
 liq

u
id

stable liquid

st
a
b

le
 v

a
p

o
r

unstable

supercritical fluid

critical

 point

vapor
binodal

 liquid
binodal

vapor
spinodal

 liquid
spinodal

critical
isothrem

Figure 2.3: Phase diagram of the Lennard-Jones fluid (EoS of Thol et al. [229]) in dimensionless
variables appendix A.1: pressure over density for varying temperatures. Regions are separated
by solid black binodal and dashed black spinodal curves. The red circle shows the critical point.
Critical isotherm is shown in red line corresponding to T ∗ = 1.321.

transition or coexistence is not considered. The region above the critical isotherm is called
supercritical fluid, which does not factor much into our considerations. The metastable regions
are by definition localized in the area between the binodal and spinodal curves and are of prime
concern in this study. In the middle of the phase diagram, an unstable region is localized. This
region is not of concern as very chaotic changes are occurring there and modeling is heavily
restricted.

2.3.2 Cluster

In the previous text, the phrase groups of molecules was used without any closer explanation
of how the particular grouping is constructed. We will now formalize the group with the term
cluster which we specify in thermodynamic terms with the choice of dividing surface (interface)
for the density function capturing the change between phases. Assuming the shape of the cluster
is spherical, the density function is constructed from the center of the sphere, and the dividing
surface is the radius of the sphere separating the cluster from the surroundings.

In fig. 2.4, the choice of interface has been selected at requimolar in a way that minimizes the
excess number of molecules (equimolar dividing surface). This means Ain and Aout in the figure
are of same size.

A practical formulation of the cluster can be constructed in terms of distance with the
Euclidean metric in three dimensional physical space. Under this assumption, we can present
the following formalization of clusters according to the construction method:

Definition 2.1. For set of positions r1, . . . , rk where k ∈ N the nearest neighbor graph is
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Ain

Aout

Bulk liquid

0

Figure 2.4: Density profile of equimolar dividing surface for spherical cluster.

constructed such that each position ri is connected to its nearest position rj and the edge value
is equal to the euclidean distance between the points |ri − rj |

Definition 2.2. Set of k ∈ N molecules c = {m1, . . . ,mk} with position vectors r1, . . . , rk

is called cluster with respect to the neighbor distance rc when the nearest neighbor graph
constructed over position vectors is connected and have all edges smaller than rc.

The cluster is then identified with the recursive procedure of constructing the neighbor tree
and checking the fulfillment of the neighbor distance criterion for each edge of the neighbor graph.
This cluster criterion is called Stillinger [223], an alternative formulation of cluster criteria, and
therefore different variants of clusters are possible.

2.3.3 Work of formation

The nucleation process in fig. 2.2 is also illustrated with an example of 2D microstates of the
nucleating system. The individual stages are shown for vapor→liquid transition, during which
the naturally occurring small clusters are continuously created and dissolved until a large enough
cluster appears within the system. This particular microstate configuration with a cluster of
molecules is an important crossing point in the nucleation process. We will now focus the
derivation on finding out how much energy this molecular group contains, which will be equal to
the height of the energy barrier, as can be seen from fig. 2.2.

We can start by distinguishing two states of the system: the first is the starting state with
homogeneous vapor (configuration (1) in fig. 2.2), while the second is the system with the cluster
(configuration (2) in fig. 2.2). The difference in Gibbs potential characterizing the system is then
the amount of work the system put into creating the cluster with N molecules. This is called the
work of formation and for a single component system, it is expressed as:

W (N2) = G2 −G1 = ∆G (2.47)
= ∆U + σAds − T∆S + p1∆V (2.48)
= [(p1 − p2)V2 − p1∆V + T∆S +N2(µ2(p2, T ) − µ1(p1, T ))] + σAds − T∆S + p1∆V

(2.49)
= (p1 − p2)V2 +N2(µ2(p2, T ) − µ1(p1, T )) + σAds. (2.50)
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In this derivation, we have the internal energy difference and also the surface contribution system
energy that was expended to create the interface of area Ads with surface tension σ. This surface
tension holds the difference of pressures inside p2 and outside p1 of the cluster and also contains
an entropic effect of molecule distribution at the surface, which makes it unsuitable to be included
in the internal energy difference. We have also used the knowledge that temperature is constant
throughout states (1) to (2) in fig. 2.2, as no energy is exchanged with the surroundings. We
can now use the Gibbs-Duhem equation eq. (2.9) for the single component case with a fixed
temperature to get the following relation for the chemical potential difference of the cluster:

Ndµ = V dP (2.51)
N2(µ2(p2, T ) − µ2(p1, T )) = V2(p2 − p1) (2.52)

Substituting eq. (2.52) into eq. (2.50) for the pressure difference, the chemical potential difference
cancels as follows:

W (N2) = N2(µ2(p1, T ) − µ1(p1, T )) + σAds = N2∆µ+ σAds (2.53)

We now know that the energy barrier depends on the difference in chemical potentials and is
promoted by the formation of a dividing interface. When a system with different fixed state
variables is assumed, different potentials need to be used for the derivation. Denoting the number
of molecules in the cluster as N we get the desired formula for the work of formation of the
cluster:

W (N) = N∆µ+ σAds (2.54)

A quick analysis of the formula leads to an interesting conclusion. First, we notice the interface
term σAds is always positive because both area and surface tension are positive numbers. This
means that when nucleation is favored (small work of formation), the potential term ∆µ needs
to be negative. We can further analyze the formula for the limiting cases of small and large
spherical clusters. For this purpose, the volume of the cluster is expressed with the number of
molecules as:

V = 4
3πr

3 = Nv1 (2.55)

r =
(3Nv1

4π

)1/3
(2.56)

A = 4π
(3Nv1

4π

)2/3
= (36π)1/3 (Nv1)2/3 (2.57)

The work of formation for a spherical cluster is then:

W (N) = N∆µ+ (36π)1/3 (Nv1)2/3 σ (2.58)

There is an important factor for evaluating the probability of finding the cluster of size N in the
system as it relates to the probability of finding a cluster of size P (N) as:

P (N) ∝ exp
(

−W (N)
kBT

)
(2.59)

Which directly relate to the size distribution within the well relaxed equilibrium system νeq
usually taken as density expressed in [mol/m3]:

νeq(N) = ν(1) exp
(

−W (N)
kBT

)
(2.60)



26 2. Thermodynamics of nucleation

This is the result of the work of the formation construct, which is later applied to the steady
state system. But there are some notable issues with this construction, such as the need for a
limit case of monomer, which should equal to the initial distribution (in this sense also supply)
of monomers ν(1).

Analyzing eq. (2.58) in the limit of small clusters, the first term vanishes, and the process is
dominated by the N2/3 decrease of the surface term A(N)σ. Conversely, for the limit of a large
cluster, the potential term dominates the process as it scales with N .

lim
N→1+

W (N) = lim
N→1+

(36π)1/3 (Nv1)2/3 = (36π)1/3 (v1)2/3 (2.61)

lim
N→∞

W (N) = lim
N→∞

N = ∞ (2.62)

This means the work of formation as a function of N has a local maximum where the roles of
surface term and potential term are equal.

Critical cluster Searching for first local maximum of work of formation W with respect to N
we obtain:

N∗ = 32
3 πv

2
1

(
σ

∆µ

)3
(2.63)

This cluster is called critical, and it has an equal probability of growth and shrinking caused by
the equal contribution from both terms. The N∗ is then the number of molecules in the critical
cluster.

To obtain the critical radius, we use the expression eq. (2.56) and translate the previous
equation into

r∗ = 2v1σ

∆µ , (2.64)

which gives a formula for the radius of a spherical cluster.

2.4 Homogeneous nucleation kinetics

The term homogeneous nucleation means that no external forces or system impurities (external
agents) are introduced into the system which would modify the work of formation barrier.
However, the real world examples are mostly cases of heterogeneous nucleation, like for example
the nucleation of water droplets on dust particles. Understanding of homogeneous nucleation is
required first before more complicated process can be reliably modeled. For brevity of the following
description, the transition from vapor→liquid, i.e., the formation of droplets, is considered unless
stated otherwise.

2.4.1 Steady state nucleation

In this and the following sections, the processes of cluster growth and shrinking are examined.
From the evaluation, one can then calculate the rates of the respective transitions and search for
the equilibrium value, which leads to the nucleation rate. For this reason, we adopt the ideas of
Volmer and Weber [249] who assumed that the processes of cluster growth (condensation) and
shrinking (evaporation) were only mediated by single molecule clusters. The authors argued
that the probability of collision with a dimer and bigger clusters is small enough to be neglected.
In their terminology as well as our definition, definition 2.2, a monomer is considered a cluster
of size N = 1. Further assumptions include that collision of a monomer with a cluster is the
same as monomer condensation, i.e., no bouncing of the monomer from the cluster is considered.
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Figure 2.5: Steady state nucleation kinetics illustration for water molecules as system particles.
The growth and shrink probabilities are dependent only on cluster sizes.

The final point is the independence of individual condensation and evaporation events from each
other. This collectively means the process described is a Markov chain in section 3.3.3. The
growth and shrinking can then be conceptualized as a reversible reaction:

CN + C1
cN
⇌

eN+1
CN+1, (2.65)

where CN is a cluster of size N , with rate of condensation cN leading to cluster growth and
rate of evaporation eN+1 leading to shrinking of the cluster as shown in fig. 2.5. With a cluster
size distribution function ν(N, t) we can construct the cluster flux of a particular size N by
comparing both condensation and evaporation rates as time independent parameters.

J(N, t) = cNν(N, t) − eN+1ν(N + 1, t) (2.66)

This leads to a differential equation for cluster size distribution:

∂ν(N, t)
∂t

= J(N − 1, t) −J(N, t) = cN−1ν(N − 1, t) − (eN + cN )ν(N, t) + eN+1ν(N + 1, t) (2.67)

The master equation in this form relates the flux difference to the sum of all condensation and
evaporation events. To solve it we require to assume a steady state system, where individual
fluxes are equal. We can imagine the steady state where nucleation takes place creating bigger
clusters, but wia means of Maxwell daemon the clusters of certain size are decomposed back into
monomers keeping a steady supply. When equilibrium is reached in the system the individual
fluxes are equal (because of finite number of molecules), and one universal flux J = J(i), i ∈ N̂
can be identified as nucleation rate. For steady state system the left hand side in eq. (2.67) is
equal to zero. This allows to determine the nucleation rate from knowledge of evaporation and
condensation rates presented in next section.

2.4.2 Classical nucleation theory for dropplet condensation

Following the Becker and Döring [21] approach, we focus on cluster condensation first, which is
easier to model, and later use the detailed balance for the evaluation of condensation rates [113].

We have already assumed that clusters are created by the consequent condensation of
monomers, where single collision depends on the surface of the cluster and the probability of
approaching monomers from the vapor phase. This can be expressed with:

c(N) = νA(N) (2.68)

where ν is the impingement rate and A(N) is the area determined from equation eq. (2.57).
This quantity is determined from gas kinetics [137] with the integration of Maxwell velocity
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distribution, resulting in the commonly used formulation:

ν = pv√
2πm1kBT

(2.69)

where m1 is the mass of a single molecule. The impingement rate is here expressed in relation
to the vapor pressure pv under the assumption that the spherical cluster has similar surface
behavior as the flat surface [118].

Now the result of the steady state system is applied to eq. (2.65), where for the system in
thermodynamic equilibrium condition no nucleation takes place and fluxes are equal to zero. This
means that the coefficients of evaporation can be expressed in terms of the rate of condensation
as:

eN+1 = cn
νeq(N)

νeq(N + 1) . (2.70)

In this way, the nucleation rate J(N) from eq. (2.66) is written as:

J(N) = cnν(N) − cn
ν(N + 1)νeq(N)
νeq(N + 1)

J(N)
cnνeq(N) = ν(N)

νeq(N) − ν(N + 1)
νeq(N + 1) (2.71)

(2.72)

Summation over sizes up to a high enough cluster size m, utilizes the feature of the equation
where consecutive terms cancel out. Steady state condition of equal nucleation rates, then
introduce one universal nucleation rate J as:

J
m−1∑
N=1

1
cnνeq(N) = ν(1)

νeq(1) − N(m)
νeq(m) (2.73)

The known limiting behavior for small clusters, eq. (2.61), means that the first term on the
right-hand side becomes equal to one. For the limit case for large enough m → ∞, the second
term approaches zero. Here the knowledge of eq. (2.62) is used for equilibrium distribution, while
the real distribution has to remain finite because of the finite supply of the monomers as well as
finite time. Rearranging the equation with the known limit behavior yields:

J =
[ ∞∑

N=1

1
cnνeq(N)

]−1

(2.74)

Analyzing the sum, we notice that most contributions to the sum are made by cluster sizes
around N∗. From eq. (2.60) νeq(N)|N = N∗ has its minimum because of the local maximum of
W (N)|N = N∗. Consequently, the inverse value 1/νeq(N)|N = N∗ will be maximal, explaining
the reasoning. The exponential dependency exp(−N) also makes the contribution vanishing
quickly for increasing N . This makes the calculation of this convergent series more convenient
by replacing the sum eq. (2.74) by an integral

J =
[∫ ∞

1

dN

cnνeq(N)

]−1

. (2.75)

The main issue in this integral is the evaluation of νeq(N) because the condensation rate can
be replaced with the condensation rate of the critical cluster without making much error in the
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near-critical clusters. In this sense, we can expand the work of formation around the critical
cluster size, leading to the following relations for the work of formation:

W (N) ≈ W (N∗) + 0 + (N −N∗)2

2

(
∂2W (N)
∂N2

)
N=N∗

= W (N∗) − (N −N∗)2

2 W̃N∗ (2.76)

With the notation, the second partial derivative of formation work at critical cluster size is
−W̃N∗ . From an already performed evaluation of curvature, we know that W̃N∗ > 0. Combining
the approximation into an equilibrium size distribution νeq(N) leads to:

νeq(N) ≈ ν(1)νeq(N∗) exp
(

−(N −N∗)2

2kBT
W̃N∗

)
(2.77)

This form of the equilibrium size distribution is now conveniently prepared for the integration of
eq. (2.75). To obtain the desired Gaussian integral, a continuous extension into negative numbers
for νeq is performed. Because of the localized support around the critical cluster, there is no issue
with the extension into negative values, even though it has no physical representation. With the
critical condensation rate approximation cn ≈ cN∗ , we finally get:

J =

 1
cN∗ν(1)νeq(N∗)

∫ ∞

−∞

dN

exp
(
− (N−N∗)2

2kBT W̃N∗

)
−1

=
[

1
cN∗ν(1)νeq(N∗)

√
2πkBT

W̃N∗

]−1

= cN∗ν(1)νeq(N∗)

√
W̃N∗

2πkBT

= Z cN∗ν(1)νeq(N∗) (2.78)

where presented nucleation rate introduces the Zeldovich factor Z [267]. This factor is obtained
from evaluating the W̃N∗ , see eq. (2.58). Following derivation by Vehkamäki [239], the chain rule
∂W (N)

∂N = ∂W (r)
∂r

∂r(N)
∂N can be used to express the formulas in terms of r∗

W̃N∗ = −
(
∂2W (N)
∂N2

)
N=N∗

= v2
1σ

2π(r∗)4 (2.79)

Z =

√
W̃N∗

2πkBT
= v1

2π(r∗)2

√
σ

kBT
. (2.80)

The most compact form is obtained from combining the equilibrium size distribution from
eq. (2.60) with the condensation rate in eq. (2.68) and replacing the initial size distribution
ν(1) ≈ ρv. The work of formation is usaually expressed in exponential form giving the nucleation
rate as

J = ZνA(N∗)ρv exp
(

−W (N∗)
kBT

)
= J0 exp

(
−W (N∗)

kBT

)
. (2.81)

This is the most commonly used formula with the preexponential factor J0 for the nucleation rate
of a steady state system, according to the assumptions of the classical nucleation theory. Work
of formation used in the expression is given in eq. (2.58). We acknowledge there are alternative
formulations of work of formation that lead to slightly different formulation, i.e., for systems
with different fixed state variables or different cluster structures.
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2.4.3 Known issues of CNT

The developed classical nucleation theory is built around a few key assumptions about the form
of the investigated phenomenon and introduces multiple approximations and simplifications to
derive the universal nucleation rate. Experimental investigations of nucleation rate over the
years have shown significant discrepancies between the model and experiment, motivating further
investigation and analysis of possible model deficiencies. This process is still not finished, as
there is no model in complete agreement with the experiments to the author’s knowledge. In
this section, we discuss the three assumptions and approximations suspected to account for the
limited applicability of the CNT model.

• Capillarity approximation
CNT assumes that the nucleus interior is a bulk, incompressible fluid and ascribes to the
nucleus surface the macroscopic interfacial tension, even though it is not clear that such
macroscopic equilibrium properties apply to a typical nucleus.

• Small cluster description
CNT assumes the shape of small clusters is spherical, which is a poor approximation.
This results in a misrepresentation of the smallest clusters, which are important for the
nucleation process.

• Choice of dividing surface
Closely related is the choice of description of the cluster, which does not reflect the
nonuniform nature of the surface of a cluster of any size.

In summary, the classical nucleation theory has limitations that compromise its applicability
and cause inconsistencies with experimental results. But the CNT is the most widely used model
of the kinetics of nucleation, with important applications in science and industry.

2.5 Cahn-Hilliard gradient theory
The density gradient theory (DGT) was first proposed by Cahn and Hilliard in 1958 [35] as a tool
for obtaining the Helmholtz free energy of an inhomogeneous system. The authors postulated
that the Helmholtz free energy of a non-homogeneous system can be written as Taylor expansion
of the homogeneous one, [35].

The main advantage of this approach is the computational speed and the overall simplicity
compared to the more general Density Functional Theory (DFT) or molecular simulations. The
simplicity of the approach comes at the cost of lowered accuracy in regions with large density
gradients.

DGT formulates the work of formation in terms of grand potential difference ∆Ω. The
potential difference is used to describe the optimal density profile, which is understood as
the most probable profile for the considered multicomponent system conditions. The work of
formation is defined as the difference between the energy of the homogeneous system and the
non-homogeneous system, where the phase interface effects are accounted for. We note that in
case of a spherical cluster with the critical radius r∗ and known surface tension σ, the work of
formation can be determined as follows

∆Ω = 4
3πσ(r∗)2. (2.82)

Similar formulations for work of formation ∆Ω can be derived using different thermodynamic
potentials, but for the case of multicomponent mixtures considered in the later part of the thesis
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the grand potential Ω is the most suitable one

∆Ω(ρ(s)) = Ωinhom(ρ(s)) − Ωhom(ρ(s)). (2.83)

Grand potential Ω depends on the vector of concentration ρ, which can be understood as a
density profile ρ(s). In an arbitrary system, density profile is a function of general system
coordinates ρ = ρ(s1, s2, s3). This formulation leads to the three-dimensional problem of rather
great complexity. Therefore, it is convenient to assume that the system is non-uniform only in
one coordinate denoted further as general coordinate s. Note that this assumption is valid for
both investigated interface geometries in section 2.2.3. In DGT, the Helmholtz energy is further
assumed to be a functional of the density profile ρ(s), i.e. a density function, and its respective
gradients. For the situation investigated further, the gradients are simple derivatives, which is of
direct consequence of the assumed uniformity.

The Helmholtz energy density of the inhomogeneous system can then be expressed as the
Taylor expansion around the homogeneous Helmholtz energy density with higher order terms
omitted

finhom(ρ) = fhom(ρ) + C1 · ∇2ρ+ 1
2 C2 · (∇ρ)2 . . . (2.84)

where C1 and C2 are the independent Taylor coefficients and fhom denotes the Helmholtz energy
density of a hypothetical homogeneous system without the phase interface or a cluster of the new
phase. Helmholtz energy density f can be then integrated over the system volume to produce
the total Helmholtz energy F . Using same approach as Cahn and Hilliard [35] the Helmholtz
energy is obtained

Finhom =
∫

s

[
fhom(ρ) + 1

2 C3

(
∂ρ

∂s

)2]
Sds. (2.85)

Coefficient C3 denotes the collected coefficients C1 and C2 from eq. (2.84). The specific form for
relation between the coefficients is related to the direct correlation function [54].

The integration over the remaining coordinates s2, s3 is denoted as the surface element
S, which is in direct consequence of the uniformity assumption. The Helmholtz energy from
eq. (2.85) is now used to express the grand potential of an inhomogeneous system. Substituting
the inhomogeneous form obtained here into eq. (2.83), the work of formation can be expressed as
follows

∆Ω =
∫

s

[
∆ω (ρ (s)) + 1

2C3

(
∂ρ

∂s

)2]
Sds, (2.86)

where ∆ω is the grand potential density that may be now written as

∆ω (ρ) = fhom (ρ) −
ncomp∑
i=1

µv,i ρi + pv. (2.87)

In eq. (2.87), ρi marks the partial molar concentration ρi = ρxi.
Notice that the work of formation ∆Ω defined in eq. (2.86) was derived for a generalized

type of interface geometry parametrized with general coordinate s and surface element S. This
alows for simple specification of the geometry according to the choice of the coordinate system
best describing the interface geometry. In accordance with section 2.2.3 the two main cases are:
planar geometry best described with Cartesian coordinates and the spherical geometry capturing
spherical droplets or bubbles. This is best illustrated in fig. 2.6 where a comparison of both
considered geometries is given in context of underalying density profile representation as well
as microscopical structure of the interface obtained from molecular simulation. In the figure a
choice of general coordinate s is shown as well underlying density profile description which is
being searched for by the DGT.
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Figure 2.6: Visualization of planar and spherical phase interface geometries, with depicted
governing coordinate in which the system is nonuniform. The molecular picture from simulation
of argon is supplied with the corresponding density distribution graph. The graph shows
comparison between theoretically relevant hyperbolic tangent profile and density histogram using
bins of same volumes (which is important consideration for spherical case).

Following paragraphs provide the final formulas for both types of these interface geometries.
For the planar phase interface, the interface parameter s becomes coordinate z in the

Cartesian coordinate perpendicular to the phase interface and surface element S is replaced with
surface area A, which is orthogonal to z. Work of formation then becomes

∆Ω =
∫ zmax

zmin

∆ω (ρ (z)) + 1
2

ncomp∑
i,j=1

ci,j

(
∂ρi

∂z

)(
∂ρj

∂z

)Adz. (2.88)

In eq. (2.88), integration over the whole z-dimension can be truncated to the interval ⟨zmin, zmax⟩,
which has to envelop the interface region resulting in only negligible error of domain truncation.

For the spherical interface geometry, the general parameter s is defined as radius r of
a sphere, as the system non-uniformity exhibits along this coordinate. Rewriting the integral
eq. (2.86) in spherical coordinates yields the following formula with domain truncated again to
the large enough radius Rmax containing homogeneous mother phase, i.e. the bulk phase.

∆Ω =
∫ rmax

0

∆ω (ρ (r)) + 1
2

ncomp∑
i,j=1

ci,j

(
∂ρi

∂r

)(
∂ρj

∂r

) 4πr2dr. (2.89)

The problem formulated in eqs. (2.88) and (2.89) lies in finding the density distribution
function ρ(s), which has a proper physical meaning and provides an optimal work of formation.
The method for finding the optimum is described in solution section section 5.3.
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3.1 Introduction

Molecular simulation (MS) is a computational technique utilizing mostly classical statistical
physics. It has become a useful tool in many branches of science, from engineering with the heavy
use of simulation of processes and calculation of thermophysical properties to polymers and
colloids to complex biological systems. In recent years, we have observed an increasing demand
for simulations of large systems (millions of atoms), particularly in biochemistry but also in
material science, polymer science, etc. These efforts have been accentuated by big technological
companies such as NVIDIA, leading to their support in the field of biological simulation. The
ongoing acceleration of molecular simulations replaces the classical CPU-based parallelism with
a GPGPU approach, which enables landmark achievements in molecular simulations to simulate
a whole cell [222].

The basic principle of molecular simulation is to approximate the behavior of systems
composed of many particles on an atomistic scale. We can thus get the thermodynamic and
statistical properties of the system and their time evolution. Simulations provide insight into
atom-scale structure not (always) available from an experiment, help interpret the experiment,
and provide observations and predictions of experimentally challenging or even unreachable
phenomena (high pressure). In this sense, simulations are “theory”. In contrast, in many classical
statistical-thermodynamical theories, one starts with a molecular model and then obtains
statistical-thermodynamical results by applying various approximate theoretical procedures (e.g.,
integral equations for the structure of liquids). Then, simulations can provide an “experiment”
(pseudoexperiment) on an exactly defined model and, in turn, solve the problem of whether the
inaccurate results are caused by a bad molecular model or the wrong theory.

Molecular simulation methods can be divided into two main categories: (i) Monte Carlo (MC)
methods utilizing stochastic sampling as a means to calculate ensemble averages (we leave aside
kinetic Monte Carlo based on events and their apriori known probabilities), and (ii) molecular
dynamics (MD) methods based on Newton’s laws of motion relying on trajectory to generate the
system description. In this thesis, MD is favored over MC because of the need for trajectory
generation and the dynamic nature of the observed phenomena. The Monte Carlo method is
employed only on a minor scale to improve the properties of initial configurations.

An important point has to be made that the simulations as tools rely on a model (as the
potential energy surface described by a force field) utilizing certain simplifications as opposed to
the experiment reflecting nature. In turn, model selection is an important factor in the presented
results. Simulation cannot fully replace experiment but in many cases it is the best choice we
currently have.

We begin with a description of the modeled molecules and the construction of interaction
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34 3. Molecular simulation

potentials, which serve as the foundation for any simulation. Then, MC methods are presented
although they are utilized in this thesis only as a form of preconditioning. Lastly, molecular
dynamics is introduced with all the necessary concepts required for the research performed in
this thesis.

3.2 Interaction potential

Any modeling is based on approximations. The field of atomistic modeling relies on the Born–
Oppenheimer approximation. It says that the motion of electrons can be separated from the
motion of much heavier and slower nuclei. In turn, one can uniquely1 express the energy of the
system as a function U(rN ) of positions of atom nuclei, rN = {ri}N

i=1, where N is the number
of atoms. Such a function is called the potential energy surface (PES). Since there is no time
dependence, the corresponding forces are conservative.

The potential energy surface can be obtained by an (approximate) solution of the electronic
Schrödinger equation. This approach is called ab initio molecular dynamics and is computationally
demanding, allowing one to simulate hundreds of atoms at most at a picosecond scale. A modern
compromise approach uses a neural network trained on smaller systems (clusters) calculated by
good quantum methods [134] to reach a considerable speedup. The classical and most efficient
approach (millisecond scale for proteins at the best computers) is based on expressing function
U(rN ) by a formula composed as a sum of many terms. This formula (with the corresponding
forces) is called force field in chemistry, although in physics, term (interatomic) potential or just
(potential) model are common. The potential here is considered in the physical sense i.e. the
force is force F = −∇U .

in this section the interaction potentials are introduced, formalizing the basic properties.
Then we introduce the compounds simulated in this study in relation to the interactions they
exhibit as well as the structure of the fluids. In the latter part, the potential field development
principles are briefly explained. The aim is to explain how the potentials are obtained for
simulation rather than rigorous derivation, which would exceed the focus of this thesis.

3.2.1 Types of interaction potentials

The intermolecular forces are traditionally classified into bonded and nonbonded. With bonded
forces molecular structure is preserved, be it bonds, bond angles, torsion etc. Nonbonded forces
represent the atom–atom interaction involving repulsion and attraction including Coulombic
forces.

3.2.1.1 Neutral atom interaction

In order to describe the interactions between neutral atoms, it is important to consider both the
short-range and long-range contributions and the forces involved. The short-range contribution
is characterized by a strong repulsion occurring for atoms in close proximity. This is the
consequence of Pauli’s exclusive principle and the fact that atoms are not point-like entities.
Quantum calculations indicate an exponential dependence of potential on the interatomic distance
r as follows:

u(r) ≈ e−crepr (3.1)

With crep is a constant to be determined.
1One may consider two different PESs corresponding to two different electron states, e.g., singlet and triplet in

the case of phosphorescence. We will not consider such cases here.
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0

Figure 3.1: The LJ potential describes both the attraction and repulsion between particles with
illustrated role of parameters ϵLJ, σLJ.

The second effect concerns the attraction of neutral atoms over longer distances. A specific
example is the London force, where instantaneous fluctuations in the electron distribution of an
atom induce temporary opposite polarization, resulting in momentary attractive forces. This
belongs to the van der Waals type of forces, which are in chemistry [11] defined by a potential
decaying with distance as 1/r6. The accepted approximation is:

u(r) ≈ catt,6r
−6 + catt,8r

−8 + . . . (3.2)

The combined effects of short-range repulsion and longer-range attraction in neutral atom
interactions can be represented by various mathematical functions. Examples include the Square
Well potential [18] or Buckingham potential [32]. However, for the practical purposes of this
study, the Lennard-Jones(LJ) potential is considered sufficient to accurately model the desired
behavior of neutral atom interactions.

The Lennard-Jones potential shown in fig. 3.1 is mathematically expressed as a function of
the interatomic distance r, involving two parameters: the well depth ϵLJ, which determines the
strength of the interaction, and σ, which is the distance where the potential first reaches zero.
Parameter σ is related to the nearest distance between particles, resulting in the transformation
of both eqs. (3.1) and (3.2) into a formula:

uLJ (r) = 4ϵLJ

[(
σLJ
r

)12
−
(
σLJ
r

)6
]

(3.3)

where the exponential has been replaced by the power of the twelfth order. This potential
realization has proven to be very versatile in modeling the behavior of atom interactions in
various scientific fields.

3.2.1.2 Charged particle interaction

It is a common first approximation if one excludes the effects of polarizability and consider the
charge as localized at a single point. The charge is then typically positioned at the center of the
atom, although some exceptions may apply. The visualization of Coulomb potential in fig. 3.2
shows both attractive and repulsive interactions, which are determined from the combined charges
of interacting particles Q = q1q2 and the interparticle distance r according to the Coulomb
potential.

uele = 1
4πϵ0

q1q2
r

= keQ

r
(3.4)

where ϵ0 is permitivity of a vacuum combined with the other prefactors into the Coulomb constant
ke.
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0

repulsive branch for like charges

attractive branch for oposite charges

Figure 3.2: Coulomb potential for case of like and unlike pair of charged particles.

An important characteristic of the Coulomb potential is its distance dependence, which follows
an inverse relationship represented by r−1. This means that Coulombic forces do not diminish
rapidly like those in the Lennard-Jones potential. Instead, they extend over significant distances,
similar to the way gravitational forces behave. In other words, the influence of Coulombic forces
can be felt even at relatively large separations between charged particles.

The long-range nature of the Coulomb potential poses technical challenges in molecular
simulation. When simulating systems with charged particles, such as polar molecules, the
interaction between distant charges needs to be sufficiently accounted for. This can be achieved by
either including long-range interactions with a long cutoff or employing specialized techniques like
Ewald–Komfeld summation, which account for longer-range interactions. In either case, a balance
needs to be achieved, ensuring both accurate potential evaluation and efficient management of
computational resources during the simulation.

3.2.2 Building interaction potential

To mitigate the computational cost associated with evaluating potentials over their full range,
modifications are often employed to improve efficiency while maintaining accuracy in poten-
tial energy and force calculations. Modification include potential truncation and or shifting.
Alternatively the splines can be used to represent the final potential to further diminish the
computational cost.

3.2.2.1 Truncated and shifted potential

Full-length evaluations of potentials involve considering interactions over wider ranges, resulting
in numerous interactions that only marginally contribute to the total potential energy. As
a solution, shortening of the effective range of potential is proposed with potential function
truncation. To perform this operation rigorously would require the potential function to have
finite support, but due to the quickly vanishing terms, an approximation of the original potential
is created instead, where the associated error is deemed acceptable. In practice, nearly all
potentials are truncated at some distance rcut leading to the alternative potential functions of
form:

uLJ,cut(r) =
{
uLJ(r), r ≤ rcut

0, r > rcut
(3.5)

While the error made in potential evaluation may be negligible, the change in potential strongly
influences the force calculated from it. Because of the differential relation between potential and
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Figure 3.3: Comparison of original potential with the truncated, shifted and smoothed mod-
ifications. The used potential parametrization is comparable to argon with σLJ = 3.4 and
ϵLJ/kB = 120 and cutoff distance is rcut = 3σLJ.

force, F = −∇U , any jump introduced into potential will incur infinite force at the jump point.
This kind of potential cannot be used in molecular dynamics simulation and the jump at cutoff
distance needs to be corrected. A common correction is performing a shift of the whole function
such that the jump is aligned and the function remains continuous at rcut. This moves the whole
potential upwards by a constant, as shown in fig. 3.3 changing the absolute value of the potential
itself into:

uLJ,cut(r) =
{
uLJ(r) − uLJ(rcut), r ≤ rcut

0, r > rcut
(3.6)

In this way the potential can be used in the simulation even with the systematic difference in
potential energy, because the forces and kinetic behavior remain the same. When higher precision
of energy or energy dependent variables is required, a correction for added energy is performed,
effectively subtracting some predetermined value from the final potential energy value as show in
section 3.2.2.3.

3.2.2.2 Truncated and smoothed potential

An alternative correction is a smooth connection of potential in the region around the jump
point. This is done by means of a crossover function in the area before the cutoff distance rcut.
One example is:

uLJ,smooth(r) =


uLJ(r), r < rsmooth

C1 · (r2 − r2
cut)2, r ∈ [rsmooth, rcut]

0, r > rcut

(3.7)

where constant C1 and smoothing start radius rsmooth are determined from the condition of
continuity of first derivatives at the borders where the crossover function is applied. A comparison
of all modifications is shown in fig. 3.3. If the Ewald summation is not practical for the Coulomb
interactions, a carefully designed short-range approximation can still be an acceptatble option.
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3.2.2.3 Error correction

In the previous section, modifications to the potential function were introduced, inevitably
changing the potential energy of the system and associated properties (i.e., pressure). In some
cases, the error incurred is negligible and can be safely ignored, as is the case for cutoff distances
of rcut ≥ 6σLJ (usually 3σLJ is considered enough for gaseous systems). If the system is
homogeneous beyond the cutoff distance, one can include a correction which for the case of pure
fluid reads as:

In other cases, a correction to total energy is performed to account for the contributions
of molecules further away than cutoff molecules would make within the system. Adding over
all interaction between molecules i, j in the system, the energy lost due to the use of modified
potential instead of full can be evaluated by integrating the difference in the used potentials
∆ui,j(r) = ui,j − ucut,i,j.

∆U =
∑
i<j

∆Ui,j =
∑
i<j

4πρ
∫ ∞

rcut
∆ui,jdr (3.8)

The fundamental problem is that the system utilizing the modified potential is used by a small,
finite number of entities (molecules in the system), and the exact calculation of error is of the same
complexity as the original problem. Therefore, the generally accepted mean field approximation
is used, which states that at a sufficient distance, the system already behaves homogeneously.
This approximation yields good results in homogeneous simulation and holds reasonably well
for the bulk portion of the system. Therefore, density can be assumed to be a constant equal
to the number density of all sites in the system ρ = N/V . In this way, the energy correction is
obtained as ∆UV .

3.2.3 Considered molecules

The main objective of this work is to investigate the phenomenon of nucleation. To ensure clarity
and focus on the phenomenon itself, a class of simple fluids is chosen for research purposes,
avoiding any complexities that could potentially obscure the investigation. In this section,
substances of increasing complexity will be discussed, beginning with an artificial Lennard-Jones
fluid and progressing to the examination of water. In the context of this thesis, water is referred to
by the model name in order to emphasize the variations the model introduces into the description
of the substance.

Lennard Jones fluid The Lennard-Jones fluid (LJF) is a simplified model of a monoatomic
electro-neutral fluid used in a wide range of applications. The primary research method is
molecular simulation or, alternatively, extrapolations from experimentally obtained properties of
noble gases.

The LJF has garnered considerable attention due to its general simplicity and low compu-
tational demands resulting from the specific form of its interaction potential. By utilizing the
inter-particle interaction from eq. (3.3) and setting the parameters set to unity σLJ = 1.0, ϵLJ = 1.0,
the LJF fluid in dimensionless units is obtained. The outcomes of these evaluations find practical
use in the research of more complex phenomena, often serving as a reference fluid for perturbation
theories of liquids, a basis for model extensions, or a validation fluid within thermodynamically
related software. The extensive research conducted on LJF covers a wide range of properties,
spanning over 35,000 data points obtained from simulations. Rather than highlighting individual
studies, we refer to the comprehensive summary by Stephan et al. in [221]. A common modifica-
tion of LJF is the truncation and shift of the potential, referred to as LJTS, which has also been
thoroughly investigated by Stephan in [220].
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Table 3.1: Default paramterization of argon model used within the MACSIMUS, Mac_module,
and ms2 software.

molar mass [g/mol] σLJ [Å] ϵLJ/kB [K]

MACSIMUS 39.948 3.405 119.8

Mac_module 39.948 3.4 120

ms2 39.948 3.3952 116.79

Argon In the context of this study, argon can be viewed as a real fluid alternative to LJF. Being
a noble gas of simple monoatomic structure, the LJ parametric model can be immediately used
for its description. Three parametrizations used by packages utilized in this study are provided
in table 3.1. MACSIMUS [126] and ms2 [73] are standalone molecular simulation packages and
Mac_module is software implemented for the research of supersonic nucleation as a part of this
study. The availability of accurate experimental data for argon further enhances its utility as a
model system for a wide range of thermodynamic studies. The uses include a reference system for
testing simulation methodologies, assessing force fields, and validating computational techniques.
The inert nature of argon allows its use as a moderator of heat transfer medium in mixtures,
further stressing the need for accurate thermophysical properties and associated modeling of
argon. Because of its close relationship with LJF, improvements made in the understanding of
either argon or LJF lead to better force fields for other fluids.

Nitrogen Nitrogen is a fundamental component of the Earth’s atmosphere, and because of
its low reactivity and stability, it is a favored gas in many experiments. This motivates both
the measurement [108] and modeling [217] of the thermophysical properties of nitrogen. From a
modeling perspective, nitrogen is a diatomic molecule with a rigid bond between atoms, with
structure shown in fig. 3.4. The linear nature of the molecule also limits the degrees of freedom,

N N
1.089A°A

Figure 3.4: Visualization of molecule of nitrogen with the bond length.

making it an interesting test substance in molecular simulation tools, in particular for selective
testing of bond preservation mechanisms and verifying proper transformation of kinetic energy
into rotation of molecules.

Model parametrization using LJ potential and general structural properties of nitrogen are
presented in table 3.2. Nitrogen parameterization for both MACSIMUS and Mac_module follows
values proposed by Fisher et al. [74]. Distinction between atomic and molecular properties is
made in subscript.

SPC/E water model Water poses significant challenges for molecular modeling due to its
complex nature and the multitude of properties it exhibits. It is complicated to accurately include
interactions caused by hydrogen bonding that influence basic properties like density, viscosity,
or heat capacity. Water also exhibits solid-liquid-vapor in a relatively narrow temperature and
pressure range, leading to rapid changes in the underlying structure of hydrogen bonds. Moreover,
water poses several anomalous properties, which complicate the matter of modeling even further.
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Table 3.2: Default parametrization of nitrogen model withing different simulation software.

bond length [Å] molar massN2 [g/mol] σLJ,N [Å] ϵLJ,N/kB [K]

MACSIMUS 1.08892776 28.0134 3.3078 36.6727

Mac_module 1.08892776 28.0134 3.3078 36.6727

ms2 1.0464 28.014 3.3211 34.897

Table 3.3: Default parametrization of SPC/E model withing different simulation software.

OH bond
length [Å]

HOH angle
[rad]

molar
massSPC/E
[g/mol]

σLJ,O [Å] ϵLJ,O/kB [K] δH [e]

MACSIMUS 1.0 arccos(−1/3) 18.0154 3.1655 78.1974 0.4238

Mac_module 1.0 arccos(−1/3) 18.0154 3.1655 78.1974 0.4238

ms2 - - 18.0154 - - -

There is a known maximum of density around 4 °C maxima in heat capacity, speed of sound and
other properties. Another anomalous points are suspected in the super-cooled liquid region of
water as investigated by Vinš et al. [245].

In response to these complications, multiple models have been developed, trying to address
specific temperature ranges and selected thermophysical properties that they could model with
a higher precision while inevitably avoiding the rest. It is therefore crucial to be aware of the
strengths of the selected model and account for its inaccuracies.

We will now address a predominately used Simple Point Charge Extended (SPC/E) water
model [23] a successor of Simple Point Charge [24]. The original SPC and SPC/E follow
the geometrical shape of water, which corresponds to the tetrahedral structure given by sp3
hybridization. The structure with bond lengths and angles is presented in fig. 3.5. The model
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Figure 3.5: Visualization of the SPC/E water model with bond and angle specification. Partial
charge on atoms is shown using δ±.

contains three atoms with rigid bonds and angles. Molecules interact through the LJ potential, and
because of partial charges present on oxygen and both hydrogen atoms, electrostatic interaction
is also required. There is no LJ term on hydrogen. The details of the parametrization for
MACSIMUS and Mac_module are presented in the table 3.3, for ms2 user have to supply own
parametrization for specified water model.
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Even with low complexity of SPC/E inter-molecular (SPC/E–SPC/E) interaction result in
a one LJ evaluation and 32 electrostatic evaluation for all combination of charged sites. The
Coulomb potential for the interaction is parametrized for H–H interaction with elementary charge
e.

The main advantage of SPC/E is its simplicity and, therefore, the speed of simulation. The
model performs well in the vapor region of the phase diagram but is not suitable for VLE
calculation, where the original SPC model performs better, and is completely out of scope for
solid prediction.

3.3 Monte Carlo simulation

3.3.1 Working principle

The goal of the methods is to evaluate a thermodynamic property (expectation value), ⟨X⟩, as
an ensemble average of a quantity of interest, X, which is a function of configuration.

In the context of equilibrium thermodynamics, the system is described by a Hamiltonian
defined in a phase space with position and momenta as variables. If we are interested only
in time-independent quantities, the integration over momenta can be performed in advance,
resulting in generalized position dependence, i.e., configuration space. Therefore, the target
property is in the form of a mean over a configuration space, which in the canonical (NV T )
ensemble reads as:

⟨X(rN )⟩ =
∫
X(rN )ρ(rN )drN =

∫
X(rN )e−βU(rN )drN∫

e−βU(rN )drN
(3.9)

The integration runs over 3N degrees of freedom, i.e., N vectors rN . For β we follow the notation
from the thermodynamic chapter. The denominator is the configuration integral. In general,
the analytical solution of the integrals is prohibitively complex for increasing N . Therefore, a
numerical solution is sought using the sampling method. We will focus on a description of a
widely utilized extension of this idea first described by Metropolis [164] as this is the entry point
in the Monte Carlo simulation of thermodynamic properties that is used in this thesis. For the
working principle description, we will now introduce two concepts utilized in generic Monte Carlo
methods, of which the Metropolis algorithm is no exception.

3.3.2 Ergodicity

A mathematically rigorous definition of ergodicity [65, 199] is too complex for our purposes.
Instead, we will focus on two generally accepted physically-based formulations: [72, 197,233].

Definition 3.1. Let us consider a system with prescribed energy with microstates forming a
hypersurface in the phase space. If such a system fulfills the condition that a neighborhood of
any state is reachable from any state in finite time, then the system is called ergodic.

This definition can be formulated alternatively [233] as:

Definition 3.2. Dynamic system evolving according to Hamilton’s equations is called ergodic,
when it visits all points on the constant energy hypersurface in an infinite time.

Note here the use of infinite time for the whole system as opposed to finite time reachability in
the case of two microstates. The reason is the uncountable amount of microstates within the same
energy hypersurface. The important consequence of these definitions is that the hypersurface
does not have isolated or unreachable subregions.
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Ergodicity is an important condition for molecular simulations. In the case of Monte Carlo,
ergodicity makes the replacement of the integral for a sum meaningful because the whole system
can be explored from the sampled states [72]. From the practical point of view, this assures the
convergence of simulation (MD or MC) approximate evaluation of quantity of interest, i.e., for
every ϵ > 0 there exists simulation time or number of steps so that the standard error of the
simulation averages is better than ϵ.

In general, the ergodic condition is assumed as always fulfilled. However, when studying
energy barriers, especially in small systems, this assumption can be less clear. The ergodic
condition often works within thermodynamic limit introduced by statistical mechanics. The limit
effectively changes the perspective from microscopic to macroscopic by the means of using the
central limit theorem in conjunction with increasingly large system where N → ∞,V → ∞ but
density is held constant. In sufficiently big system the fluctuation become negligible because
their magnitude decrease with 1/

√
N and the phenomenological Thermodynamics is obtained in

form introduced in chapter 2.

3.3.3 Markov Chain

To introduce the Markov process in full would again extend beyond the scope of this study.
We therefore limit ourselves to discrete case of Markov chain an introduce important concepts
required for explanation of nucleation in fig. 2.5 and the Metropolis algorithm, which is primarily
utilized throughout this study. Let us first note the definition of Markov Chain by Brooks et
al. [31]:

Definition 3.3. A sequence X1, X2, . . . of random variables of some finite set is a Markov chain
if the conditional distribution of Xn+1 given X1, . . . , Xn depends on Xn only. The set in which
the Xi take values is called the state space of the Markov chain.

Notation and properties used in Monte Carlo methods are provided below.

Definition 3.4. The onditional distribution of Xn+1 given Xn will be called the transition
probability distribution and denoted as (Xn+1, Xn).

Another common terms for transition probability are stochastic matrix or transition matrix.

Definition 3.5. The transition probability distribution is called reversible with respect to an
initial marginal distribution of X1 if (Xk, Xk+1) = (Xk+1, Xk) for the Markov chain X1, X2, . . .
and k ∈ N.

Definition 3.6. A Markov chain is stationary if for k ∈ n the conditional distribution of
(Xn+2, . . . , Xn+k) given Xn+1 does not depend on n.

Now we will formulate an important theorem that allows replacing integration with summation
for the integral, as in the case of eq. (3.9). The proof can be found in [31].

Theorem 3.7 (strong law of large numbers). If ⟨|X|⟩ < ∞, then 1
n

∑n−1
k=0 Xk → ⟨X⟩ almost

surely as k → ∞.

3.3.4 Metropolis algorithm

Following the reasoning of section 3.3.1, the investigated ergodic system and reversible Markov
chain with stationary transition distribution section 3.3.3 transforms the integral in eq. (3.9) into
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a sum of the generated samples.

⟨X(rN )⟩ =
∑ksamples

k=1 Xk(rN )e−βUk(rN )∑ksamples
k=1 e−βUk(rN )

(3.10)

The Markovian stationary and reversible sequence of sampled configurations rN is constructed
according to definition 3.3. The Metropolis algorithm described below ensures that the constructed
Markov chain fulfills the reversibility and stationarity conditions and that the definition 3.7 is
valid. For more complex analysis, these conditions can be used in error estimation done within
the Monte Carlo method. Error estimation in Monte Carlo is not of concern in this study as
molecular dynamics is utilized for the presented result data calculation.

We can finally proceed to the explanation of the method proposed by Metropolis in 1953 [164]
and still in use today. First, a trial configuration, rN

trial, is generated by a small change from rN so
that the conditional probability density of the opposite move is the same. The new configuration
(step k + 1) is

rN
k+1 =

rN
trial,

ρ(rN
k )

ρ(rN
trial)

> ϕ

rN
k , otherwise

(3.11)

where ϕ ∈ [0, 1) is a uniformly distributed (pseudo)random number. Note that if the probability
of the trial configuration is greater than that of the old one, it is always accepted; otherwise, the
trial configuration is rejected when it is unlikely and rN

k+1 = rN
k .

3.4 Molecular dynamics

The second simulation method able to calculate the expectation values of thermodynamic
quantities from a microscopic description is molecular dynamics. A sample set of configurations
(so called trajectory) is obtained from an (in principle deterministic) time evolution instead of
from stochastic sampling described in section 3.3. The fact that both methods give the same
expectation values is the result of the Ergodic hypothesis section 3.3.2. Moreover, the time
evolution of the trajectory is generated, which is often of interest.

We start with a general description of molecular dynamics in the frame of classical (analytical)
mechanics, where important properties of the system are shown. Then, the most popular
integration methods (Verlet and Gear) are covered, discussing the error propagation and stability
of the schemas. Afterwards, constrained mechanics is introduced, and the method of preserving
the bonds lengths is explained with the SHAKE algorithm. Methods required for the simulation
of more complicated ensembles are also sketched. The focus is given to thermostats; methods that
control the temperature of the system. A more detailed explanation of the core principles and
related methods used in MD can be found in reference material [77, 197,206]. The fundamentals
presented here provide a mathematical outlook on molecular dynamics and provide insight
required for introducing the GPU paradigm into the simulation, which will be the task in later
chapter.

To simplify the description, the universal term element will be used for a molecule or atom. In
this way, monoatomic argon and triatomic water molecules can be interchanged in the description
without loss of generality in the first few sections before structural concerns are answered with
constrained mechanics. The word system is used here for a set of interacting particles under
prescribed force field and initial conditions.
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3.4.1 Practical formulation of the problem

Here we first introduce the general case of molecular dynamics of system in Cartesian coordinates
with the usually employed assumptions. The purpose is to give reader unfamiliar with MD a
quick overview in simple terms, which is later formalized.

The modeled system of N molecules gets its mechanical behavior from classical physics with
interaction potential in the form presented in section 3.2. In this framework, the force field is
traditionally composed of bonded forces and non-bonded forces,

U = Ub + Unb. (3.12)

The bonded forces, Ub, include chemical bonds, bond angles, and torsions. The non-bonded
forces include interactions of atoms at two different molecules for simple fluids considered here 2.
External forces affecting the system may also be included in the non-bonded contribution.

For the common case without external forces, the non-bonded forces are most often approxi-
mated by the pairwise-additive or two-body approximation as

Unb(rN ) =
N∑

i=1

i−1∑
j=1

uP (rij) = 1
2

N∑
i=1

N∑
j=1,j ̸=i

uP (ri, rj) (3.13)

where rij = |rj − ri| is the interatomic distance, and the sum is over all atoms except for bonded
ones (1–2 and 1–3). In practice, attempts for a more precise description beyond pair additivity
are rare because of large computational demands. They may include polarizability, short-range
three-body forces (as Axilrod–Teller potential), etc. We remind in passing that the second form
of eq. (3.13) has its application in GPU-based implementation.

When all potential energy contributions are known, the force can be directly evaluated as a
negative gradient. The force acting on particle i then becomes

fi = − ∂

∂ri
U(rN ) = −

∑
i ̸=j

u′(ri, rj) rij

|rij |
(3.14)

with the derivative analytically available. Molecular dynamics is then based on the numerical
integration of Newton’s (or equivalent) equations of motion using the forces calculated in this
manner.

3.4.2 Hamiltonian and its properties

In this section, the general working principle from section 3.4 is formalized using the Hamiltonian
formalism [233]. The use of the formalism allows for inspection of error propagation and
derivation of important properties like conservation laws used for validation of the simulation.
The Hamilton’s equations of motion read as:

q̇α = ∂H
∂pα

(3.15)

ṗα = − ∂H
∂qα

(3.16)

where q and p denote the generalized coordinates and momenta, respectively, and the subscript
α denotes the elements of the vector variables q and p. The Hamiltonian H is formulated using

2For more complicated substances, the self-interaction can’t be neglected. Examples are hydrocarbons where
interactions are separated by more than three bonds (the case of three bonds, i.e., 1–4, can include both torsions
and rescaled non-bonded terms)
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Lagrangian L, which is typically expressed in the Carthesian system predominately used in MD.
The Hamiltonian

H(q,p) =
N∑

α=1
pαq̇α − L =

N∑
α=1

q̇2
α

2mα
+ U(q) (3.17)

contains the kinetic and potential contribution. Following from the formulation of H in eq. (3.17),
fundamental conservation laws are derived next. For this purpose, Noether’s theorem [176] and
its formulations can be applied when the underlaying symmetries are known. This leads to three
conservation laws with a direct application in simulation itself.

3.4.2.1 Conservation of energy

The first symmetry of the Hamiltonian is with respect to time. The conservation can be proven
in general (independent of the coordinate system used) by taking the time-derivative of the
Hamiltonian,

dH
dt

=
N∑

α=1

∂H
∂qα

q̇α + ∂H
∂pα

ṗα =
N∑

α=1

∂H
∂qα

∂H
∂pα

− ∂H
∂pα

∂H
∂qα

= 0 (3.18)

where the properties of eq. (3.17) and symmetry of second derivatives of the Hamiltonian were
used to show the conservation of the Hamiltonian.

From a practical point of view, total energy, or Hamiltonian conservation, is an important
test of numerical integration methods (the integrator or propagator) for stability, noise, and
secular energy drift. This is especially important in our study, where adiabatic nucleation is
considered.

3.4.2.2 Conservation of total momentum

For other conservation laws, one can either know the conserved property and prove and verify it,
like it has been done in section 3.4.2.1, or discover the conserved property from the knowledge of
the invariant. Here, Noether’s theorem is reformulated using perturbation theory [208]. Following
the notation of perturbation or infinitesimal transformation of the time t′ = t + δt(t, q) and
coordinates q′

α = qα + δqα(t, q) states that for each Noether’s perturbation and some perturbed
motion function f(t, q) 3 term Cm(t, q, q̇) corresponds to the constant of motion

Cm(t, q, q̇) =
(
∂L
∂q̇α

q̇α − L
)
δt(t, q) − ∂L

∂q̇α
δqα(t, q) + f(t, q) (3.19)

In the context of this study, it can be understood as a sort of blueprint for converting known
invariants into perturbation formalism and, with eq. (3.19) into conserved properties. For a more
detailed explanation, refer to chapter 6.3 in the book by Lovelock and Rund [149].

To apply the shown procedure to total momentum, we start with the invariance of the system
with respect to the translation group. This particular invariance is a direct consequence of the ab-
sence of any external field, as discussed in section 3.4.1. Continuing the perturbation formulation,
we note that time is not affected by the transformation, removing the time perturbation from
the formula. Nonetheless, the perturbation of the generalized coordinate reads as q′ = q + δq.
Due to the translational invariance the perturbation made can be understood as if the resulting
perturbations do not matter and could be set to unity, i.e. q′ = q + 1. Substituting into the

3the function needs to be differentiable and satisfy the intragral condition in equation (8) from Sarlet [208] but
for here considered case it is equal to zero as only subclass of perturbation is used.
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perturbation eq. (3.19) and with a motion function equal to zero, we find out that a system with
translational invariance leads to the conservation of generalized momentum

∂L
∂q̇α

= pα (3.20)

Similarly to the conservation of total energy (the value of the Hamiltonian in time), the
conservation of total momentum P represents a test of a numerical simulation algorithm (the
integrator or propagator). Note that the translational symmetry is also preserved when the
periodic boundary conditions are used.

3.4.2.3 Conservation of angular momentum

For a system with the Lagrangian insensitive to a small rotation δφ around arbitrary axis a,
we can formulate another conservation law. Utilizing the formalism from section 3.4.2.2, the
change incurred by the rotation only affects the Cartesian coordinates, resulting in removed
time perturbation and leaving coordinate perturbation in the form q′

α = qα + (a × q)δφ. By
substituting into eq. (3.19) and utilizing circular shift property of triple product, a · (b× c) =
b · (c × a) = c · (a × b), we obtain the conserved property of angular momentum Lα with a
similar choice of motion function:

∂L
∂q̇α

· (a× qα) = pα · (a× q) = a · (qα × pα) = a · Lα (3.21)

Analogously to the total momentum, the angular momentum observation is an important property
for validation of the integrator in the free space (vacuum) boundary condition.

3.4.2.4 Time reversibility

When talking about time reversibility, the Hamiltonian formalism is not even required, yet it
clearly illustrates that changing the direction of time has no effect on the form of the equation
generated. Consider eq. (3.17), where time t is replaced with −t; therefore, the first time
derivative also switches sign:

H(q,p(−t)) =
N∑

α=1

(−q̇α)2

2mα
+ U(q) = H(q,p(t)) (3.22)

This property is closely connected to energy conservation. A numerical finite-difference method
for integration of the equations of motion that is time-reversible cannot exhibit a secular drift
of total energy for a system in equilibrium. One would generally expect that small numerical
errors are independent random variables (let us say δE in one time step of length ∆t); then, the
expected energy conservation error is δE

√
t/∆t and can be both positive and negative. In the

section 3.4.3 better methods will be shown.

3.4.2.5 Symplectic property

For this particular property, the Hamiltonian presented in section 3.4.2 needs to be transformed
into matrix formalism. First, let us agglomerate generalized coordinates and momenta under one
vector and transcribe the set of eq. (3.17) into vector form

x = (q,p) = (q1, . . . , q3N , p1, . . . , p3N ) (3.23)

ẋ =
(
∂H
∂p1

, . . . ,
∂H
∂p3N

,−∂H
∂q1

, . . . ,− ∂H
∂q3N

)
(3.24)
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In concise block matrix notation this reads

ẋ = M
∂H
∂x

(3.25)

M =

 0 I

−I 0

 , (3.26)

where I is the square identity matrix of rank 3N . We can see that M is regular, its transposition
equals its inverse and its negative: MT = M−1 = −M ; i.e., it is orthogonal. The initial value
problem, eqs. (3.25) and (3.26), leads to a unique solution which also means that a unique
transformation exists, giving solution x0 from xt. The Jacobian elements for this transformation
are:

Jk,l = ∂xk
t

∂xl
0
. (3.27)

The properties of the Jacobian can be used to obtain information about the errors of the
associated solution transformation and their propagation. For the Jacobian matrix eq. (3.27) of
the described system eq. (3.25), we show that the following property JTMJ = M is satisfied.
For this reason, we apply the Hamilton formalism and search for the solution of eqs. (3.15)
and (3.16) which can be rewritten for our conservative system as:

q̇α = pα

mα
(3.28)

ṗα = Fα(q) (3.29)

As expected from section 3.4.1, we obtain the Newton equation of motion for which the solution
is integrated up to the order of O(t2) as:

qα(t) = Fα(q)t2

2mα
+ pα(0)t

2mα
+ qα(0) (3.30)

pα(t) = Fα(q)t+ pα(0), (3.31)

where the formula for momentum was substituted into the final formula for position. The solution
is then used to express the partial derivatives using the Kronecker delta notation:

∂qα(t)
∂qβ(0) = δα,β ,

∂qα(t)
∂pβ(0) = t

2mα
δα,β (3.32)

∂pα(t)
∂qβ(0) = 0 , ∂pα(t)

∂pβ(0) = δα,β. (3.33)

Finaly, the Jacobian matrix is constructed from the partial derivatives in the block shape of the
same dimensions as matrix M .

J =

 I 0
t

2mα
· I I

 (3.34)

The proof of the property M = JTMJ now follows in a straightforward manner using blockwise
multiplication

JT ·M · J =

I t
2mα

· I

0 I

 ·

 0 I

−I 0

 ·

 I 0
t

2mα
· I I

 =

=

I t
2mα

· I

0 I

 ·

 t
2mα

· I I

−I 0

 =

0 −I

I 0

 = M (3.35)
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With this key property in eq. (3.35), the symplectic property is formalized in the following
definition using the obtained result for M and J .

Definition 3.8. Square matrix S of size 2n is called symplectic if and only if it satifies condition

ST ·M · S = M , where M is the nonsingular square matrix with block form

0 −I

I 0

.

For simplicity, we refer to the Hamiltonian of the system as symplectic when the corresponding
matrix J is symplectic. Similarly, a finite-difference integrator may also be symplectic, which in
some cases leads to the existence of a perturbed Hamiltonian; in turn, the total energy differs
from the exact solution by a bounded function, as discussed further in section 3.4.3.4.

3.4.3 Integration schema

For a pure molecular system (i.e., not a mixture), the problem is formulated as a set of equations
of motion consisting of N ·m second-order differential equations. Here, N represents the number
of molecules, and m represents the number of atoms per molecule, as each atom’s position needs
to be calculated.

As discussed in the previous section on the properties of the Hamiltonian (Section 3.4.2),
the precision of predictions can be enhanced, and error propagation can be mitigated within
acceptable limits when the schema fulfills reversibility and symplectic properties. Therefore, the
design of schemas that meet these conditions plays a pivotal role in the solution process.

With the aforementioned conditions in mind, a section on integration schemas will be presented
with Verlet’s and Gear’s algorithms. The overall structure of an iterative schema is shown, along
with further information such as bond preservation and temperature control. Furthermore, the
explicit solution method for preserving constraints imposed by bonds and fixed angles within
individual molecules will be demonstrated using the SHAKE algorithm.

3.4.3.1 Verlet

Let us start with the simple integration schema called the Verlet method [241]. The desired
update of position qα can be derived from the Taylor expansion around t by ±∆t (backward and
forward),

qα(t± ∆t) = qα(t) ± q̇α(t)∆t+ 1
2 q̈α(t)∆t2 ± 1

6
...
q α(t)∆t3 + O(∆t4), (3.36)

where q̈α(t) = Fα(q(t))/mα (and q̇α = pα/mα if needed). The velocity term can be removed
from the equations by adding the two variants together:

qα(t+ ∆t) + qα(t− ∆t) = 2qα(t) + Fα(q(t))
mα

∆t2 + O(∆t3) (3.37)

This formula contains an error of fourth order and can be rearranged into the shape of a solution
schema used in molecular simulation. This form provides an explicit formula for the calculation
of the next time step,

qα(t+ ∆t) = 2qα(t) − qα(t− ∆t) +
[
Fα(q(t))
mα

+ O(∆t2)
]

∆t2, (3.38)

from which it is apparent that the method is of second order if O(∆t2) is neglected. A single
force evaluation is required per time step.
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The algorithm requires knowledge of qα(0) and qα(−∆t) for a start at time t = 0. The latter
value can be obtained from the usual initial conditions, qα(0) and q̇α(0), using Taylor expansion,
eq. (3.36), to the second order; often, the first order suffices.

Even though the schema is simple, it fulfills the requirements for time reversibility, see
section 3.4.2.4. The symplectic property (described for the Hamiltonian in section 3.4.2.5) is also
preserved.

In the same spirit, velocities at time t are not know at the time the forces are evaluated.
They can be evaluated after a step is finished using the second-order formula

q̇α(t) = qα(t+ ∆t) − qα(t− ∆t)
2 . (3.39)

The equivalent set of equations called “Velocity Verlet” is defined by two steps containing the
velocity explicitly written here in momenta pα = mαq̇α as:

qα(t+ ∆t) =qα(t) + pα(t)
mα

∆t+ Fα(t)
mα

∆t2

2 (3.40)

pα(t+ ∆t) =pα(t) + Fα(t) + Fα(t+ ∆t)∆t
2 (3.41)

Although the formulas contain the velocity explicitly, velocity qα(t+ ∆t) is still available after
the evaluation of F (t+ ∆t).

3.4.3.2 Leap-frog

Another schema giving trajectory identical to both algorithms is called Leap-frog:

pα

(
t+ ∆t

2

)
= pα

(
t− ∆t

2

)
+ Fα(q(t))∆t (3.42)

qα (t+ ∆t) = qα(t)mα + pα

(
t+ ∆t

2

)
∆t (3.43)

In this approach, the update of momenta is carried out half a timestep before the update of
positions. The position update, in turn, utilizes the obtained momenta, which makes the order
of execution particularly important to preserve the beneficial properties of the schema. The
velocity of eqs. (3.39) and (3.41) is equivalent to

pα(t) =
pα(t− ∆t

2 ) + pα(t+ ∆t
2 )

2 (3.44)

Although the trajectories of all the above methods are identical (with the appropriate initial
conditions), there is a difference in the per element kinetic energies. The “Velocity Verlet” (VV)
kinetic energy ELF at time t is based directly on velocities eqs. (3.39) and (3.41), whereas the
“Leap-frog” (LF) kinetic energy Ekin,LF is the arithmetic average of the energies calculated at
half-times:

Ekin,VV(t) = pα(t)2

2mα
(3.45)

Ekin,LF(t) =
pα(t− ∆t

2 )2 + pα(t+ ∆t
2 )2

4mα
. (3.46)

The total value is obtained as a sum over all elements in the system. Both versions of the kinetic
energy calculation differ by O(∆t2). In case when a thermostat is included (see below), the
trajectories no longer differ.
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According to Kolafa and Lísal [127], the LF schema is slightly more accurate for most
quantities of interest. The LF schema is equivalent to the Verlet method, which means that the
desirable properties of time reversibility and symplecticity are retained. This modified schema is
favored for its fast performance and explicit nature, offering a balance between computational
efficiency and precision.

3.4.3.3 Gear

An alternative to the direct propagator introduced by Verlet relies on the utilization of past
positions and momenta (the “history”). In this way, previously calculated configurations are used
to construct a multiple steps predictor-corrector method. One of such methods was originally
introduced by Curtiss [52] and later formalized and named after Gear [80]. Because of the
computational demand posed by the evaluation of forces, only a subclass of all schemas with a
single RHS evaluation is of interest for use in MD. Depending on the number of time steps kept
in the history, different order schemas can be designed. In this study, the Gear schema of the
fourth order is employed; therefore, the following description focuses on this case.

History can be kept in the form of past timesteps t, t− ∆t, t− 2∆t, t− 3∆t or alternatively
in form of numerical differences expressed in time t as:

Qα(t) =


qα(t)

q̇α(t)∆t

q̈α(t)∆t2

2
...
q α(t)∆t3

6

 . (3.47)

This description is equivalent, because the sum of the elements with arbitrary ∆t gives the
polynomial spanning of the aforementioned points. With this history vector, the predictor schema
is constructed similarly, utilizing the Taylor expansion, here up to the fourth order. Collecting
the terms into a matrix yields an easy-to-read formula for the predictor:

Qα,predictor(t+ ∆t) =


1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

Qα(t) (3.48)

Predicted positions can be used to calculate forces and evaluate the RHS of equation eq. (3.52),
which can alternatively be calculated from the third row containing predictions for the forces.
The difference can be interpreted as the error of the predictor:

Qα,error(t+ ∆(t)) = Fα(q(t+ ∆t))
2mα

∆t2 −Qα,predictor(t+ ∆t) (3.49)

The corrector is:

Q(t+ ∆t) = Qα,predictor(t+ ∆t) +


a0 = 1/6

a1 = 5/6

a2 = 1

a3 = 1/3

 ·Qα,error(t+ ∆(t)) (3.50)
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Δt=0.0005 ps
Δt=0.001 ps
Δt=0.002 ps

Figure 3.6: Leap-frog integrator

Δt=0.0005 ps
Δt=0.001 ps
Δt=0.002 ps

Figure 3.7: Gear integrator of fourth order

Figure 3.8: Energy conservation for decreasing integration step ∆t. Energy evolutions are shifted
by the same value for each integration step.

where constants {a0, a1, a2, a3} are determined [80] using the conditions of maximum stability of
the iterations. To be more precise: By linearizing the predictor-corrector schema, we get a set of
linear recurrence equations for error propagation. The explicit solution of such a set contains the
roots of the characteristic equation. If any of the roots were (on absolute value) greater than 1,
the method would be unstable because any error would exponentially grow. The above set of
constants guarantees that the roots are zero or unity (the latter correspond to the errors in the
initial conditions which cannot be avoided).

The Gear method offers an effective integration schema with a higher order of accuracy which
makes accurate MD simulations more efficient (longer time step). However, it’s important to note
that the Gear method lacks time reversibility (hence, it is not symplectic) due to its asymmetric
nature. It necessitates the implementation of additional control mechanisms to maintain energy
balance within the system. Despite these limitations, the Gear method is particularly valuable
for NVT ensembles and also for rotating hard bodies with the equations of motion expressed by
quaternions. Recently Janek and Kolafa [111] have reexamined the coefficients to improve time
reversibility at the expense of the order of the method. For the above method, a = (0, 2/3, 1, 1/3).

3.4.3.4 Properties of the schema and their effects on precision

In section 3.4.2, the fundamental properties have been discussed without the context of their
immediate use. Here we discuss several particular examples to elucidate the properties of various
integrators.

The invariance to the change of the direction of time was shown for the system of section 3.4.2.4.
In the numerical integration methods, this is also an important property, ensuring the accuracy
of prediction and the propagation of error. It can be easily seen that any version of the Verlet
method is time-reversible (it is even symplectic). In contrast, the Gear schema, like many other
predictor-corrector schemas, does not fulfill the time reversibility condition 4. The reason is the
difference of result after application of the schema in the following forward-backward sequence:
t → t + ∆t → t. The associated error propagation can be observed in fig. 3.8, where various
integration schemas for error propagation are compared. The symplectic property of the system
section 3.4.2.5 is related to the preservation of the phase space. Because of this, if the schema

4The second-order Gear method is an exception because it is equivalent to Verlet and Leap-frog.
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also fulfills the symplectic condition, then the generated trajectory will remain bound in the
phase space packet. This means that the associated error will be bound as well. Therefore,
the symplectic property ensures that error does not drift out of proportion, as illustrated by
Leap-frog integrator in fig. 3.6. In comparison Gear schema is example of integrator not fulfilling
time reversibility leading to rapid drift of energy shown in fig. 3.7.

3.4.4 Constraints

In our previous discussions, we have focused on an unconstrained system of interacting particles,
referring to them as elements rather than atoms. However, it is important to introduce the
distinction between atoms and molecules in this section. A molecule is a collection of atoms that
possess a specific structure. While the concept of structure has not been significant in the earlier
discussions, it becomes important when modeling more complicated substances. In this study,
we will specifically focus on a narrower aspect of constrained molecular dynamics, addressing the
following points of interest:

1. Modeling chemical bonds by a harmonic or other continuous function introduces high-
frequency vibrations, especially for light hydrogen atoms, which require short time steps
to integrate properly. This loss of efficiency can be to some extend alleviated using
multiple-timesteps schemas.

2. Moreover, these fast vibrations are weakly coupled to the rest of the system. From the
perspective of quantum theory, such vibrations are rarely excited anyway. Thus, vibrating
hydrogen bonds are often replaced by fixed ones. In consequence, no energy is stored in
the bonds.

3. The same argument applies for small molecules (such as water), which can be replaced by a
rigid body. Although special equations for rigid body dynamics can be applied (e.g., based
on quaternions), using constraints is a valid option.

4. It is often the case that positions or distances in a molecule need to be fixed; hence, the force
is also of interest. Some temperature, pressure, or polarizability control mechanisms [26]
may impose constraints on the generalized coordinates (q,p).

5. For model molecules, the angle constraints can be transformed into bond constraints. For
example, in the SPC/E water model section 3.2.3, the angle H − O − H is preserved by
fixing the H–H distance with an artificial bond.

In this section, the theory of holonomic constraints is used to derive mechanisms for bond
preservation. These constraints are applied to maintain the fixed bonds and angles between atoms
within a molecule during the simulation. To accomplish this during simulation, an algorithm
called SHAKE (or its variants) is employed.

3.4.4.1 Holonomic constraints for rigid molecules

First, the definition of holonomic constraints, which are independent of the generalized momenta
is written as follows:

ci(q) = 0, i ∈ ô (3.51)

The rigid bond in the nitrogen molecule fig. 3.4, can be used as the simplest example
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With the set of o constraints, the task of bond preservation can be transformed into a problem
of Langrangian multiplier using the Hamilton formalism, eqs. (3.28) and (3.29):

q̇α = pα

mα
(3.52)

ṗα = Fα(q) −
o∑

β=1
λβ
∂cβ(q)
∂qα

(3.53)

In this formulation, the Hamilton equations depend on 3N − o generalized coordinates and o
constraints of the form of eq. (3.51). This can be formalized into a new changed Hamiltonian
Hc where a point transformation from original coordinates to the modified ones generates a
canonical transformation [83]. In theory, using the Hamilton formulation is preferred as opposed
to Lagrange because it is possible to transform the system with constraints into the standard
form of Hamilton equations eqs. (3.15) and (3.16) with a constrained Hamiltonian Hc. This is
by no means straightforward as demonstrated by Ciccotti and Ferrario [49]. In the field of MD
simulations, it is possible to use both the Lagrange and Hamilton formalism [55]; however, the
Hamilton formalism leads to a loss of numerical precision because of the linear growth of the
Lagrange multipliers in time.

Therefore, in the following section section 3.4.4.2, a more direct iterative approach is introduced
using the Lagrange formalism [204].

3.4.4.2 Constrained dynamics

The constrained dynamics algorithm can be formulated specifically for the integration method
like the Verlet method, which is often utilized in practical applications. But here a more general
approach is preferred that illustrates the working mechanism of the algorithm as introduced in
the previous section.

Let us start from an extended Lagrangian with Lagrange multipliers accounting for o holonomic
constraints:

L =
N∑
α

Ekin − U(q) +
o∑

β=1
λβ
∂cβ(q)
∂qα

(3.54)

Continuing in the derivation of the modified equations of motion from the Lagrangian, the
following second order differential equation with unknown parameters λβ is obtained:

q̈α = Fα

mα
+ 1
mα

o∑
β=1

λβ
∂cβ(q)
∂qα

(3.55)

Solving for λβ we can utilize the knowledge that any constraints cγ(q) are constants in time,
therefore their second time derivatives are zero.

d2cγ(q)
dt2 =

N∑
i

q̈i

∂cγ(q)
∂qi

+
N∑
i

N∑
j=1
q̇i

∂cγ(q)
∂qi∂qj

q̇i = 0 (3.56)

The second derivative contains terms similar to those in the modified equation of motion.
Substituting them from eq. (3.55) into eq. (3.56) with the change to i, j indices notation is
generated:

N∑
i=1

Fi

mi

∂cγ(q)
∂qi

+
N∑

i=1

1
mi

o∑
β=1

λβ
∂cβ(q)
∂qi

∂cγ(q)
∂qi

+
N∑

i=1

N∑
j=1
q̇i

∂cγ(q)
∂qi∂qj

q̇i = 0 (3.57)
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Rearranging the terms and shortening notations with mass matrix Mβ,γ and force term Fγ , the
final set of equations can be written in simple form:

o∑
β=1

Mβ,γλβ + Fγ = 0 (3.58)

Mβ,γ =
N∑

i=1

1
mi

∂cβ(q)
∂qi

∂cγ(q)
∂qi

(3.59)

Fγ =
N∑

i=1

Fi

mi

∂cγ(q)
∂qi

+
N∑

i=1

N∑
j=1
q̇i

∂cγ(q)
∂qi∂qj

q̇i (3.60)

Solving the set of o unknown Lagrange multiplies from eq. (3.58) is the final step in the algorithm.
Depending on the structure of the molecule, this procedure may require a sparse matrix solver
like the conjugated gradients method in the case of large protein molecules. The constraint forces
equal the Lagrange multipliers. In addition, the algorithm guarantees the constraints with the
integrator precision only. Such errors would explosively grow in time; therefore, another step
(fortunately with the same matrix) must be added to guarantee the constraints.

SHAKE In contrast, the SHAKE algorithm merges both steps to one. While constrained
dynamics solves the matrix for all Lagrange coefficients at once, SHAKE iterates through
individual constraints.

SHAKE algorithm is closely related to the Verlet (or equivalent) method building upon
already derived position update, eqs. (3.40) and (3.43). The basic principle of the algorithm is:

1. For past configuration q(t), where constraints are satisfied, perform the update of position
into q(t+ ∆t) without considering constraints.

2. Correct the positions of two involved particles qj , qk to preserve the constraint ci.

3. If i > 1, repeat step 2 for all constraints ci, i ∈ ô, until they are all satisfied. Note that
multiple iterations may be required as correcting one constraint may break other.

The correction is done with a fictive force acting in direction qjk = qk − qj , and the scale of this
force is acaled with λ (converges to the Lagrange multiplicator). This parameter is evaluated
from the condition that constraint [qjk(t + ∆t) + λqjk(t)]2 = l2 where l is bond lenght of the
desired qjk. The approximate result neglecting terms of higher order O(∆t2) is:

λ = |qjk(t+ ∆t)|2 − |qjk(t)|2

2qjk(t+ ∆t) · qjk(t) = |qjk(t+ ∆t)|2 − l2

2qjk(t+ ∆t) · qjk(t) (3.61)

The positions are then updated taking into account individual masses of the elements.

qj,SHAKE(t+ ∆t) = q(t+ ∆t) + λ
1/mj

1/mj + 1/mk
qjk (3.62)

qk,SHAKE(t+ ∆t) = q(t+ ∆t) − λ
1/mk

1/mk + 1/mj
qjk (3.63)

The symmetrical nature of this change ensures preservation of the center of mass and momenta.
An important benefit of the method is time reversibility, when constructed with already time
reversible method of a Verlet kind.
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3.4.5 Non-microcanonical ensemble consideration

Until this point, most of the explanations have required mathematical principles and have not
included much of the physical nature of the problem. Terms like thermodynamic ensembles were
not incorporated into the derivation of the method’s principles. Our assumptions – constant
energy (the Hamiltonian is the integral of motion), constant number of molecules, and constant
volume (or a system of finite size in a vacuum) correspond to the microcanonical ensemble (for
definition see 2.1), also referred to as NV E 5. It is more practical to fix temperature, as it is
done in most experiments. For this sake, the canonical ensemble is denoted as NV T .

3.4.5.1 NVT ensemble

In theoretical thermodynamics, the transformation from constant-entropy (or thermal energy in
equilibrium) to constant temperature is achieved with the Legendre transformation. If a MD
simulation is allowed to exchange energy with some external thermal bath, the total energy
will fluctuate. It can be shown that under specific conditions, some of these methods generate
samples of the NV T ensemble or do so in the thermodynamic limit. Three main examples are
discussed next.

Andersen thermostat Andersen [7] proposed the selected particle velocity to be sampled
from the Maxwell-Boltzmann distribution. In this way, the method is similar to Monte Carlo,
and the generation of a canonical ensemble average is produced, as Andersen demonstrated in
ref. [7]. Interaction time and molecule(s) affected by the thermostat are selected in accordance
with the Poisson process. A normal distribution is then utilized to obtain the new velocity with
the pseudo-random number generator.

In practice, the Andersen thermostat is not often used because of its slow convergence and
discontinuities in trajectories.

Berendsen thermostat Another approach to adjusting the temperature during molecular
dynamics (MD) simulations is to utilize the relation that the instantaneous temperature is in
equilibrium given by the total kinetic energy of molecules in the system via the equipartition
principle. By scaling the velocities of the molecules according to the desired temperature, the
temperature can be effectively controlled. The scaling factor is [175]:√

T

Tkin
=
√√√√T · DoF · kB∑N

i=1
p2

i
2mi

(3.64)

Here the kinetic temperature is calculated from the equipartition theorem, where DoF denotes
the number of (ergodic) degrees of freedom. In practice, a single update is enough to adjust the
temperature to the desired value and may only be required occasionally. For continuous rescaling
in each timestep, only a subset of molecules is selected to provide more gradual temperature
control. This “velocity-rescaling” method is a primitive way of controlling temperature. The
produced ensemble is not canonical.

A more flexible version of velocity rescaling is the common Berendsen method. In the
most usual implementation, the rescaling is embedded to the equations of motion. Using the

5There is a small inaccuracy in this statement. The usual definition of the microcanonical ensemble does not
fix other integrals of motion except the total energy, whereas momentum and angular momentum (depending on
the symmetry of the external potential) are conserved in the “MD-NVE” and do not fluctuate.
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linearization of eq. (3.64), we get the equivalent form:

r̈α = F α

mα
− κ(Tkin − T )ṙα, α ∈ N̂ (3.65)

where the “friction parameter” κ can be adjusted to set the temperature relaxation time.
This thermostat offers greater control over the speed of convergence, but once again, the

generated ensemble is not canonical. The benefit is generally its fast (exponential) convergence,
as heat is quickly removed from fast moving molecules in the system. Both the Berendsen and
direct velocity-scaling thermostats can lead to the artifact called the “flying ice cube”. In such
scenario, a group of molecules in a fixed structure referred to as an ice cube is rotating to balance
out the targeted kinetic temperature requirement.

Canonical Sampling through Velocity Rescaling In this method by Bussi et al. [33], the
friction parameter κ is a random variable with the probability distribution selected in a way that
the canonical ensemble is obtained. The thermostat can still relax exponentially to the target
temperature as in previous case. This method is called Canonical Sampling through Velocity
Rescaling (CSVR) and it is commonly used in computational biochemistry.

Nosé-Hoover thermostat Extending upon the versatility of the Berendsen method, another
well-known modification of the equation of motion was proposed by Nosé [177], where the system
is coupled with an artificial thermostat by means of another variable. The method belong to a
group of methods called “Extended Lagrangian”.

In his first article, Nosé added a pair of variables s = (qs, q̇s) in the Lagrange formalism to
link the system with the thermal bath. Variable qs is the scaling factor of velocities; in addition,
potential energy DoFNosekBT ln(qs) and kinetic energy Qq̇s

2/2 are added to the Lagrangian:

L(q, q̇) =
N∑

α=1

mαq̇
2
α

2q2
s

+ Qq̇2
s

2 − U(q) − DoFNosekBT ln(qs) (3.66)

where DoFNose is the number of degrees of freedom (conserved properties subtracted) plus one
for s. Parameter Q affects the timescale of the interaction with the heat bath; it is sometimes
called “thermostat mass” because of its place in the kinetic energy term. The Hamiltonian is
easily obtained from the Lagrangian using eq. (3.17) as:

H(q,p) =
N∑

α=1

p2
α

2mαq2
s

+ U(q) + DoFNosekBT ln(qs) + p2
s

2Q (3.67)

with conjugate momenta pα = mαq̇α/q
2
s , ps = Qq̇s. By integrating the partition function (or the

mean value of any observable) over the whole hypersurface of the constant value Hamiltonian,
Nosé [178] demonstrated that the Hamiltonian in the eq. (3.67) form indeed generates the
canonical distribution. The equations of motion from the modified Nosé Hamiltonian then read:

q̇α = pα

mαq2
s

(3.68)

ṗα = Fα (3.69)

q̇s = ps

Q
(3.70)

ṗs =
∑

α

p2
α

mαq3
s

− DoFNosekBT

qs
(3.71)
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Since scaling qs in the kinetic energy causes practical problems if variable qs drifts out of
unity for any reason (integrator errors, changes caused by cooling), Hoover [102] later proposed
the following non-canonical variables: dt = dtold = qsdtnew = qsdt̃ transforming the previous set
of variables into unscaled real time here denoted with a tilde:

dt̃ = dt

qs
(3.72)

q̃α = qα, p̃α = pα

qs
(3.73)

q̃s = qs, p̃s = ps

qs
(3.74)

This unscaling returns to a more straightforward interpretation of the quantities, where problems
with time drift from the original Nosé method are alleviated and time-step does not need to be
adjusted as it was the case in Nosé formulation.

Finally, it is more convenient according to Nezbeda et al. [175] to transform s = (qs, q̇s) into
ln s = η. Applying this transformation to eqs. (3.68) to (3.71), we get the practical Nose-Hoover
equation of motion used in molecular dynamics as follows:

q̇α = pα

mα
(3.75)

ṗα = Fα − pη

Q
pα (3.76)

η̇ = pη

Q
(3.77)

ṗη =
∑

α

p2
α

mα
− DoFNosekBT (3.78)

Since non-canonical transformations have been used, the conserved property calculated from
these equations is not a Hamiltonian. The Nosé–Hoover thermostat is sometimes extended to
several added variables which improves egodicity. For use in this thesis, the thermostat in the
form of eqs. (3.75) to (3.78) is sufficient.

3.4.6 Solver procedure

In this section, we discuss more technical issues of the implementation of the above theory to
systems of molecules interacting via a force field.

Let us first assume that software for translating the user input into molecular structure,
simulation parameters including the force field, and placement of the molecules into the initial
structure within the system volume are all available. For simplicity, we further assume that the
equilibration of the initial configuration is performed in a similar manner to the solver procedure
described now. This effectively means that the initial conditions (starting positions and starting
velocities of all atoms in the system) have been relaxed into a more probable configuration,
whose properties can now be calculated in the so-called production run. During production, the
simulation is performed with the evaluation of system properties like pressure, and either saved
or written to the console. This is repeated until the requested simulation time is reached. The
description now proceeds with individual tasks performed during a single timestep. For clarity,
one of possible solver structure sequence is given in the form of a list:

I. Initialization or update of interaction structure
For more efficient force evaluation, it is common to use an interaction storage structure
which reduces the O(N2) complexity of the naive treatment of pairwise-additive forces
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by two nested loops. Two main approaches are the Verlet neighbor list and the domain
decomposition, which preserve information about close molecules that have a chance for
interaction. This structure is updated during this step to reflect the configuration of the
system.

II. Force evaluation
In this step, individual interactions between atoms in the system are evaluated from the
holding structure. This is the most expensive operation within the solver procedure. The
forces F (t) calculated at time t are accumulated into the force vector used in the integration
schema.

III. Integrator step
Following the chosen integration schema, previous positions, velocities, and currently
calculated forces are used in the prediction of the next positions. In this section, Leap-frog
schema is chosen as an example of the internal structure.

1. Velocity update
Calculate velocities at time t+ ∆t/2, eq. (3.42).

2. Position update
Calculate the new positions at time t+ ∆t, eq. (3.43)

3. Constraints
If there are constraint bonds, run the SHAKE algoritm until converged. Positions at
time t+ ∆t are updated.

4. Velocity correction
If SHAKE has been used, calculate new velocities at time t + ∆t/2 from positions
at t+ ∆t and t. (This and the previous two steps can be merged together into the
algorithm called RATTLE.)

5. Velocity rescaling
Velocity-rescaling thermostat can be implemented here.

Note that the Nosé–Hoover thermostat and similarly a barostat, and also the algorithm
used in the supersonic expansion simulation, require a knowledge of velocities at the II
force evaluation stage, where they are not known. This issue can be solved by several
means. The above steps excluding force evaluation may be iterated; if fully converged, the
algorithm is time-reversible (but not symplectic). There are tailored exactly time-reversible
methods using half and quarter-steps [160]; again, the most demanding forces are evaluated
only once. Finally, it is possible to use predicted velocities [111].

IV. Properties evaluation
Evaluate the total kinetic and potential energy as well as other requested thermodynamic
properties and outputs.



Clustering 4
Clustering is the technique of separating a set of objects or data points into similarity groups
called clusters. The similarity within groups is determined with criteria or classifiers based on
the property or feature of individual data points. When no previous characteristic or external
information is employed and the criterion operates on unrefined data, the process is called
unsupervised classification. In this way, clustering may reveal previously unknown structures
within the data, making it a very useful technique with a wide range of applications. These
include machine learning, data mining, image analysis, bioinformatics, and research on nucleation.

One of the key characteristics of clustering is the ambiguity of the cluster definition, which
varies according to the criteria used. In consequence there are many variants of clusters that
do not need to be equivalent in characteristics (amount of points,shape,cross section). This is
especially the case for different families of criteria. For example; clustering used in the machine
learning detects more spread cluster patterns as opposed to the compact ones produced from
molecular systems. Both fields also pose their own challenges for the criteria used, such as the
data points with tenths of dimensions or the large amounts of data. To account for the ambiguity
of cluster definitions in the text, in cases where the type of cluster is not clear from the context,
a specification about the criterion is supplied, i.e., the Stillinger cluster.

Cluster analysis is a challenging problem not only because of the definition ambiguity but
also because of the general need to consider multiple factors like similarity measures, criterion
complexity, efficiency, and stability of detection with respect to the initial conditions. This creates
a complicated field to navigate generally, and specific clustering methods need to be specially
designed based on problem formulation to account for the mentioned aspects. Furthermore, it is
well known [133] that no clustering method is capable of handling every type of cluster structure
(including shape, size, and density). And the solution using combination of clustering methods is
still a challenging problem [133]. This motivates the design problem specific cluster criteria.

Following sections introduce various criteria for clustering, starting with a review of criteria
used for unsupervised clustering. Unsupervised clustering is usually employed in clustering
applications and data analysis tools. The main characteristic for these use-cases is the higher
dimensionality (see definition 4.2) of the space in which the data are located. The general
introduction is then continued into the criteria used for physical cluster detection, applicated
primarily to the spatial data generated from molecular simulation. This difference in the data is
also major reason why unsupervised and physical clustering are not mentioned together in the
literature [109,133,182,264] creating separation between these categories.

It is the opinion of the author that there is a lot of inspiration to be obtained from comparing
those two fields. The signs of the inspiration are shown in the text as some of the techniques
naturally permeate through the research fields.

59
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4.1 Unsupervised clustering algorithms

Cluster analysis is the organization of a set of observations, usually represented as a vector of
measurements. The vector alternatively represents a point in a multidimensional space. The
clustering algorithm is a procedure that assigns a label to each point in space based on the
point’s location with respect to other surrounding points. The procedure often relies on point
similarity (closeness to other points) to make the decision, but no other apriori information is
usually provided.

In this section, the used mathematical notation is formalized. Afterwards, a brief summary
of the main categories of clustering algorithms is presented. The categories follow naming used
by Kotsiantis and Pintelas [133], who designed category names based on the main concept of
the criteria in the category. In this section, focus is given to introducing the general idea and
properties of the criteria family with an illustration of the family member algorithm. For a more
detailed review, please refer to the summary paper by Xu and Tian [264].

4.1.1 Terminology of clustering

To be able to capture the general nature of the solved problem, the following notation is introduced
based on the publication by Jain et al. [109]. The first concepts to introduce are observation and
attribute.

Definition 4.1. An observation is the vector x = (x1, . . . , xo) of o attributes (measurements) xi.

where the vector of atributes is called an Observation. Then for given observation

Definition 4.2. The total number of attributes xi, denoted as o is the dimensionality of given
observation x.

Following the notation a set of n observations is X = (x1, . . . ,xn). Individual attribute j
of the observation i in the set is denoted using double indexing xi,j . In this way, the set of
observations can be understood as a rectangular matrix of attributes with rank n, o. A clustering
is then defined for the attribute matrix as follows:

Definition 4.3. For a set of observations X clustering is mapping of observations to integer
labeled clusters li ∈ k̂. Integer number k is then the total number of clusters (labels).

The clustering, which is also a function, is then called hard clustering and allows for labels
to be unified with clusters. This situation occurs when outliners (or noise) are not assigned to
any cluster during the classification. The most common case in unsupervised hard clustering is
to use the bijective clustering function. The case where mapping is not injective is called fuzzy
clustering.

The individual attributes of observation can be both quantitative and qualitative entities
like numbers, intervals, or enumerations of properties (e.g., colors). Depending on the attributes
quantifiability, a metric can be constructed to compare the similarity of two observations. In
further text, observations located in parametric (feature) space are denoted as points, and the
metric is denoted as distance with the notation d(xi,xj).

The most common distance is the Minkowski metric:

dp(xi,xj) =
(

o∑
k=1

|xi,k − xj,k|p
)1/p

. (4.1)
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With the Euclidean metric for p = 2 and the Manhattan metric for p = 1. These are simple
examples that rely only on observations. More advanced distance evaluation can also include the
surrounding points of the examined d(xi,xj), introducing the attribute matrix as an additional
input d(xi,xj ,X ). Refer to [109], for more examples of metric.

4.1.2 Density based clustering

Since proximity plays a key role in an intuitive notion of a cluster, methods utilizing the nearest
neighbor (NN) classification based on the minimum distance from all points in the surrounding
area are the first set of algorithms naturally considered candidates for clustering. The NN is also
essential portion of more complicated algorithms presented in further sections. One of the first
iterative procedures of this kind was proposed by Lu and Fu [79], where the NN technique with
threshold was used to categorize graphemes 1. In a sense density based clustering algorithms
are constructed as a generalization of the nearest neighbor approach. Clusters are then based
on the spatial coverage of data points in a region. The key idea of density-based clustering is
that for each instance of a cluster, the neighborhood of a given radius r has to contain at least a
minimum number of instances nmin,r, which directly relate to nmin NN identification.

DBSCAN algorithm The DBSCAN stands for Density Based Spatial Clustering of Applica-
tions with Noise and was introduced by Ester et al. [67]. DBSCAN uses the previous notation
of distance to construct clusters based on the closeness of the points, utilizing again principle
of NN for the identification. The identification is formalized into the following direct density
reachability:

Definition 4.4. A point x is directly density reachable from point y when distance separating
them is smaller than radius parameter of the algorithm d(x,x) < rDBSCAN and number of points
in neighborhood of x is greater than nmin,r.

The neighborhood is a generally accepted set of all points with a distance lower than the
neighborhood radius. In principle this is a single step of the NN algorithm with additional
condition specifying the minimal number of neighbors. To follow this parallel, density reachability
is defined as:

Definition 4.5. A point x is density reachable from point y, when there exists chain of direct
density reachable points zii ∈ n̂ connecting both points x = z1, . . . ,zn = y.

By this approach, the notion of the nearest neighbor chain is extended to include sufficient
density until the last element, which may not fulfill the second condition from definition 4.4.
Such construction allows clustering of high density point structures as clusters while avoiding
paths of loose conection in between. The DBSCAN therefore differentiates between three sets of
points: core points fulfilling density and connectivity conditions; border points only fulfilling the
connection; and noise points not fulfilling any of the conditions.

Algorithm is then initiated from an arbitrary point and iteratively extended using the
condition of definition 4.4 to classify the points into the three cathegories. When there are no
further inclusions possible from the initially selected point (to either core cluster or border), the
algorithm proceeds to the next unclassified point. Points that do not fulfill any condition during
the procedure are classified as noise.

1written characters representing letters
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Properties of density based algorithms

• Has medium level of complexity O(n logn) where n is number of points.

• Exhibits high clustering efficiency of arbitrary shape of data, but is sensitive to systems
with nonhomogeneous density.

• Contains implicit noise filtering.

• Has increased sensitivity to parametrization of criterion. This is especially important with
regards to density of investigated system.

4.1.3 Partitioning based clustering

A distinct feature of the partitional clustering algorithm is the construction of a partitioning
structure, which is a set of dividing hyperplanes in o dimensional space. This division is usually
created by optimizing the error distance function to accommodate the initially specified number
of clusters. During the method operation, the partitioning is constructed around the centeroid,
which is an artificially created point representing the center of the cluster. Finding an optimal
placement for the centroids then defines the clustering. This is done iteratively constructing a
partitioning structure around the centroids during the iteration.

An alternative construction of the partitioning introduced by Kaufman and Rousseeuw [117]
can be done using medoids. Artificially added centroids are replaced with actual points called
medoids, which are used as representatives of a cluster. For more detail, please refer to the
authors book [117], which introduces the algorithm in the context of its implementation.

k-means algorithm The best-known method of utilizing centroids is the k-means algorithm
[163]. At the start of the k-means, nclust initial centroids are randomly placed in the parameter
space. Then all the remaining points are assigned to the closest centroid.

fk−means(xi) = p ⇐⇒ ||xi − cp||2 ≤ ||xi − cj ||2 ∀ ∈ j ∈ n̂clust (4.2)

Then a search for the optimal placement of centroids is initiated, where the value of the following
error function

err(X ,L) =
(

nclust∑
k=1

nj∑
k=1

||x(j)
i − cj ||2

)1/2

(4.3)

is minimized. The Euclidean metric is used here to compare the distance between all nj points
of j-th cluster x(

ij) with the cluster’s centroid cj . This minimization is done by updating the
centroids positions as the mean of all points within the cluster

cj = 1
nj

nj∑
k=1

xj , (4.4)

and calculating the update point assignment with eq. (4.2) until all position of the centroids
converge.

Properties of k-means algorithm

• Is efficient in processing large data sets with complexity of O(nclustnt), where n is number
of points and t is number of iterations.
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• Can become trapped at the local optimum. More elaborate initial centroid placement were
developed to ammend this issue.

• Is oriented towards finding spherical–shaped clusters.

• It is sensitive to noise and all data need to be available at the start.

Relation to Voronoi tesselation Of note is the relation of the k-mean algorithm to Voronoi
tessellation, visible from the point assignment in eq. (4.2). We can illustrate this with a model
case where each point of Voronoi tessellation is chosen to represent a centroid for k-means. The
resulting Voronoi cells then exactly corresponds to the clustering constructed by the k-means in
that particular iteration.

4.1.4 Hierarchical based clustering

These methods group data instances into a tree of clusters using two main approaches: agglomer-
ative and divisive. The agglomerative methods build clusters incrementally until one big cluster
is created at the root. The divisive methods split the space until only monomer clusters remain
at the leaf nodes. The tree terminology was used intentionally because both approaches yield
tree data structures called dendrograms.

The main difference between the realizations of the hierarchical algorithms is the different
formulation of the similarity metric. The metric is this family of algorithms called proximity,
including single-link, complete-link, and average-link definitions.

Single-link similarity considers the similarity between the two most similar instances, one
from each cluster. It handles non-elliptical shapes well but is sensitive to noise and outliers.

Complete-link similarity, on the other hand, measures the similarity between the two most
dissimilar instances from different clusters. It is less affected by noise and outliers but may break
large clusters and struggle with convex shapes.

Average-link similarity strikes a compromise between the two, allowing for the balance of
features from the previous two cases. This approach is used to tailor solution specific to the
solved problem.

Single link agglomerative algorithm A comprehensive description of the algorithm is given
by Sneath and Sokal [214], where the single link algorithm is a context of complete and average
linking with different underlying metrics used.

The basic operational principle of the algorithm is to construct a tree from the list of links
produced by proximity metric. At first, each point is assigned a leaf node of tree 2 with distinct
labeling. This creates bottom level representing the primitive monomer clustering. Then a
list of links between points is constructed, where each link contains participating points and
the associated proximity value. In the single-link case, proximity can be the nearest neighbor
Euclidean distance. Sorting this list by proximities in ascending order provides a construction
manual for the dendrogram. Each new level of the tree then includes links with a step-wise
increase in the considered proximity cutoff dk. For floor k, then all links with proximity less
than dk are already represented by edges in the dendrogram. The sorted list labels are updated
during the process, allowing reuse of the ordered list until all the points contain the same label,
which completes the dendrogram construction.

2the node of tree that is only connected to parent but not child
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Properties of hierarchical clustering algorithms

• Is fast to construct and has complexity of O(n).

• There is no apriori need for cluster specification.

• Porides an easy visualization via the dendrogram. Multiple cluster partitionings can be
created by cutting the dendrogram at different levels.

• Proximity definition can be constructed to fawor certain shapes of clusters.

Realation to partitioning algorithm Considering divisive algorithms, a similarity with
the space partitioning algorithms, like binary splitting tree, can be observed. In both types of
algorithms a tree of volumes (clusters) are constructed. The tree structures are also similar in
the representation of the root3 node as all-encompassing volume (cluster) and the leaf nodes as
volumes (clusters) containing individual monomers. The notable difference is the used proximity
definition, which, in the case of a binary splitting tree, is a simple halving of volume. In the case
of a k-d tree, the median of points contained in the volume is chosen as the dividing structure4.

Further examples of hierarchical algorithm Some of the more sophisticated hierarchical
clustering algorithms, as reviewed by Xu and Tian [264] include: Balanced Iterative Reducing
and Clustering using Hierarchies (BIRCH) [269], Clustering Using REpresentatives (CURE) [92]
and (CHAMELEON) [115] which relies on graph partitioning.

4.1.5 Grid based clustering

Expanding on the concepts of the density-based clustering, this approach introduces the concept
of a grid. The quantized space is divided into a finite number of cells (hyper-rectangles), and
necessary operations are performed within this artificial grid. Thus, many operations can be
simplified, leading to more efficient algorithms. For example, distance can be determined purely
from the cell indexes instead of the original attribute vectors (i.e., by using the Manhattan
metric). The typical algorithms based on grids are STatistical INformation Grid-based method
(STING) [252] and CLustering In QUEst (CLIQUE) [4].

The core idea of STING is to use the rectangular grid as partitioning and construct hierarchical
structure like in section 4.1.4. The data within single levels is then iteratively clustered, navigating
the tree structure. This also means only voxel-like clusters can be created, connected solely
through the rectangular neighboring faces.

CLIQUE takes advantage of the grid to follow the construction of density-based clustering
section 4.1.2. The algorithm identifies dense cells in lower dimensions and expands into higher
dimensions, utilizing the identified dense cells as guesses. This is particularly beneficial for
data with high dimensionality, or data where principal components are hard to identify. When
all dense cells are identified, CLIQUE forms a graph of dense cells and performs a depth-first
search to find all connected components of the graph. These components are then labeled as the
resulting clusters.

Properties of grid based clustering algorithm

• Have low time complexity of O(n) as well as high efficiency of calculation.
3node of the tree that has no parent but only child connection
4This is again a choice that can be linked to the idea of the k-means algorithm.
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• Show a high potential for parallelization with good scalability on the size of the grid.

• The detection is sensitive to mesh granularity. With similar concern for the accuracy of
the cluster detection.

• The choice of grid edge parameter has to be adjusted to detected objects for best results.
And there results are represented with voxels.

4.1.6 Model based clustering

The basic idea is to select models for each cluster and find the best fit for the model. The
particular model can be, for example, a mixture of Gaussian distributions where individual
clusters are located by the individual Gaussian distributions. The parameters of the model
(Gaussian mixture model) are estimated from the points used as data.

There are two main types of model-based clustering classes: statistical learning (e.g., EM,
COBWEB and GMM) and neural network learning (e.g., SOM and ART) which have received a
lot of attention in recent years.

The concept of the model based clustering is introduced with one of the first examples of
statistical learning: the expectation-maximization (EM) algorithm by Dempster et al. [56] using
a mixture model.

Expectation maximization The input data for the algorithm are observations yi, i ∈ n̂ with
dimensionality o which are understood as random realizations from some unknown parametrization
of the model distribution. The algorithm then adjusts the parametrization to fit the data with
maximum confidence. The selected model, in this case, is the multivariate Gaussian density
mixture. Because of the underlying clustering task, the model is multinodal and composed of
ngm density distributions, where a single distribution has the following structure:

ϕk(yi|µk,Σk) = 1√
(2π)odet(Σk)

exp
(

−1
2(yi − µk)Σ−1

k (yi − µk)
)
. (4.5)

The single multivariate distribution is parametrized with a means vector µk of size o and a
square covariance matrix Σk of rank o. By manipulating the covariance matrix, the model can
be adjusted from general shaped cluster detection to, i.e., targeting only spherical clusters with
Σk = λI. To shorten further notation, the parametrization of a single density distribution is
often collected under a single parametric structure denoted with θ. This means that the mixture
is expressed as

ngm∑
k=1

τkϕk(yi|θk), (4.6)

with weights τk stating how likely it is the observation yi belong to the k-th distribution. This
means the weights are probabilities and need to satisfy τk ≤ 0 and Σngm

k=1τk = 1.
The likelihood that the given parametric structure θ and weights τ correspond to the set of

observations Y is given by

L(θ, τ |Y) =
n∏

i=1

ngm∑
k=1

τkϕk(yi|θk). (4.7)

The EM algorithm operates on the observation as if it was an incomplete set sampled from
the full data set X , where the subset Z contains the unobserved elements. Assuming the X data
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set is independent and with the same distribution [75] as the observed Y the observed likelihood,
which is searched by the EM algorithm, is specified as:

Lo (Y|θ, τ ) =
∫

L (X |θ, τ ) dz, (4.8)

and the complete data log-likelihood of the observed data yi based on zi is

l(θ, τ , zi,k|X ) =
n∑

i=1

ngm∑
k=1

zik log τkϕk(yi|θk), (4.9)

where coefficients zik identify whether xi belongs to nodal group k.
With the specified observed log-likelihood, the EM algorithm [56] contains two steps: the

expectation step (E-step) and the maximalization step (M-step). Expected value is then con-
structed [75] as follows:

z̃ik = τ̃kϕ̃k(yi|θ̃k)∑ngm
j=1 τ̃jϕ̃j(yi|θ̃j)

. (4.10)

The tilde used for parameters represents the expected parameterization of the following iteration
of the algorithm. In the maximization step, the optimal parametrization is searched, giving the
maximal log-likelihood eq. (4.9). For a multivariate normal mixture, the estimate for the M step
can be expressed as:

τ̃k = nk

n
(4.11)

µ̃k =
∑n

i=1 z̃ikyi

nk
(4.12)

nk =
n∑

i=1
z̃ik, (4.13)

where covariance matrix Σ̃k depends on the type of parametrization used. Specific shapes are
given shown in the work by Celeux et al. [39].

The complete algorithm gives the means and covariance matrices of the model, which localize
the clusters. Choosing the confidence level, the isosurface boundary can be drawn to representing
the clusters.

Properties of model based clustering algorithm

• Has generally high time complexity reaching up to O(n2) where n is number of points. This
complexity primarily depends on the choice of model and the optional use of heuristics.

• There is a wide range of models to select from. Moreover, a custom model can be designed
to fit the particular problem.

• Have issues to solve problems without apriori knowledge. For case where number of clusters
is unknown another model needs to be used for estimation.

• Have a high accuracy of prediction with attributed confidenece.
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4.2 Physical clustering algorithms

From general case of the unsupervised clustering, the physical clustering first adjusts the supposed
data dimensionality, number of data points, and metric.

Observations are based on data obtained mostly by molecular simulation and can be comprised
of spatial data, velocity data, and, optionally, potential energy. The dimension of the space
is reduced to 3, which results in low dimensionality for the observations. On the other hand,
the number of observations is equal to the number of molecules in the system, which can make
the datasets substantially large. The metric used for spacial and velocity data is the Euclidean
distance, and for the case of potential energy, the absolute difference is usually sufficient.

The previous specification would still fit within the framework of unsupervised clustering
but there are thermodynamic considerations that need to be included. The algorithms need
to identify the clusters and not classify noise as a separate cluster, meaning that only hard
clustering algorithms with outliers removed are considered (see section 4.1 for specifics).

From the theory of physical cluster [140] follows another important condition, which is the
unique division. The condition states in simple terms that physically observed distinct groups
are also classified as two clusters. In consequence, the loose contention of groups of molecules5

cannot be classified as a single cluster even though it is a single group.
Another concern is related to the non-uniformity of the detected objects. During the

nucleation, various sizes and, more importantly, shapes of clusters are present in the system. This
is further considered for purposes of CNT, where similar configurations are deemed equivalent.
Fulfilling these conditions enables the development of a nucleation theory from the physical
cluster definition [140]. For the physical clusters, a certain balance needs to be struck between
proper cluster identification and individual cluster configuration.

In the following text, the term criterion is used for physical based clustering algorithms
to differentiate from the algorithm introduced for unsupervised clustering. Some of the most
commonly used formulations of cluster criteria operating on the vapor→liquid transition are
presented. The criteria are mostly based only on the spatial data [211] but attempts have been
made to introduce potential energy into the detection,i.e., in the work by Hill [100].

4.2.1 Naive criterion

A close relationship between the physical clustering and the density based clustering is leveraged
in this cluster criterion operational principle. The physical cluster is understood as a close
grouping of molecules, relying on density as the main factor for the classification.

One of the simplest approaches, called “naive” is mainly used for illustrative purposes. The
idea of the criterion is to evaluate the density on the neighborhood with radius rnaive around
each molecule. The clusters are identified with a number density value, deciding whether the
molecule is densely or sparsely surrounded. Clusters can be identified as densely surrounded
molecules. This, in principle, can work well when the homogeneous distribution of uniform
clusters is being investigated and only the molecules at the center of the molecular groups are
identified, as visualized in fig. 4.1. Arrows from atom centers are used to represente belonging to
the cluster illustrated in the fig. 4.1.

This is the “naive” assumption, which is rarely fulfilled. In consequence, this criterion makes
it difficult to parametrize the choice for rnaive ∈ (2σLJ, 10σLJ). Furthermore, when heterogeneous
cluster sizes are present in the system, the criterion reports more clusters than there are physically
present in the system (see red molecule in fig. 4.1). This overcounting contradicts the requirement
of unique cluster division, meaning nucleation theory cannot be developed.

5Can be imagined as Christmas lights where lights are the clusters and loose conection is the electric cable.
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Naive

3
          r

Figure 4.1: Example of naive criteria cluster classification with N = 4 molecules. Black molecule
was used to detect the cluster with three neighbors within radius r. Red molecule report the
same cluster as black.

To correct the overcounting issue of the naive approach, the following modification is proposed.
In the labeling step, an agglomeration of the densely surrounded molecules removes the extra
reporting. The agglomeration can be done hierarchically or, like in the case of the density
algorithm with the nearest neighbor approach. The agglomeration is described in section 4.1.4
and section 4.1.2 respectively.

4.2.2 Stillinger criterion

One of the most widely used definitions of a physical cluster is the one presented by Stillinger [223].
In this criterion, a cluster is defined as groups of molecules where each is reachable from another.
The corner molecules are reached using a chain of interconnected molecules no further apart
than some apriori set radius rstillinger. The operation principle is illustrated in fig. 4.2, where the
neighboring range is visualized using circles and arrows that point to the point centers used for
the detection.

For reference, a more rigorous definition of the criterion was used in definition 2.2. There is
also a relation with the nearest neighbor technique as well as the formulation of denity reachability
from section 4.1.2. The Stillinger criterion is then implemented using recursion as a way to grow
the clusters from the monomers used for initialization. This iterative approach is reason why the
criterion is sometimes referred to as the Stillinger chain.

Addressing the conditions required for physical cluster to construct a nucleation theory we
start with the unique separation. Given the choice of rstillinger a clear separation between clusters
can achieved. The usual starting choice is rstillinger = 1.5σLJ of underlying LJ potential for the
investigated substance or the first peak of radial distribution function. The bigger concern is the
role of the configuration. Stillinger has formulated an expression for the excluded volume of the
system based on a specific cluster of length only. There is an argument to be made [140] that for
the Stillinger cluster, the configuration of molecules in the chain also plays a significant role, not
only the chain length. This has led to improvements extending the Stillinger criterion with N/V
volume concepts section 4.2.3 leading to the N/V-Stillinger criterion.
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Stillinger

4
      r

Figure 4.2: Example of Stillinger criterion cluster identification with N = 5. Detection radius r
is shown for performed recursion with arrows denoting the parent molecule.

4.2.3 i/V and N/V criteria

This criterion builds upon the foundation idea of the i/V criterion proposed by Lee et al. [140].
They considered a cluster of i particles, that are confined to the spherical volume V . The
enclosure sphere is constructed around the center of mass of the involved i particles, as illustrated
in section 4.2.3 left. This approach enabled the calculation of some properties of a cluster, like
its free energy or radial distribution function, but for use in the nucleation theory, it was deemed
not too useful. The reason being the arbitrary choice of confining volume, which made the cluster
definition not unique. The history of further modification is presented in the work of Ellerby et
al. [66], with a more detailed analysis of the confining volume.

One way to resolve this confinement issue is presented by Schaaf et al. [209]. They proposed
an energy barrier condition where molecules within the cluster require a total potential energy
contribution from other molecules in the cluster to be below an apriori set bound α. The outside
molecules are classified as those with the energy contribution above α. To achieve the desired
behavior the potential is modified into:

uN/V(r) =
{
u(r), r > rmin

−u(rmin), r ≤ rmin
(4.14)

This resembles a proximity criterion in the form of interaction energy, but the high energy
particles are excluded (classified as part of the vapor phase). This allows the particles of the
clusters to be determined, allowing the calculation of the center of mass. A sphere can be then
constructed with a radius equal to the distance of the furthest molecule in cluster from the
center of mass. This way, N − 1 molecules are part of the cluster interior, and one molecules is
removed to the cluster shell. Cluster shell is still counted as part of the cluster, as illustrated in
section 4.2.3.

The presented construction ensures unique division. Furthermore, each cluster represents a
class of configuration sharing the same center of mass, volume and energy barrier α.

This enables the creation of an equilibrium cluster, forming the basis for the work of formation
derivation. Nucleation theory based on the N/V cluster is shown in the work of Schaaf [209].
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i/V

4
          r

Figure 4.3: Example configuration of i /V
cluster with N = 4 shown in the center of
mass. The issue with arbitrary bounding vol-
ume choice is illustrated by red dashed line.

N/V

5
          r

shell layer

Figure 4.4: Example configuration of N /V
cluster with N = 5 shown in the center of
mass. Shell layer is visualized in gray with the
furthest molecule at the border of the bounding
volume.
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5.1 Introduction

Accurate modelling of vapour-liquid phase interfaces is important for better understanding of
various natural processes, such as formation of droplets in atmosphere or bubbles in liquid water,
but also for an improved design of many engineering applications, e.g., in the purification of
natural gas, design of combustion processes, modelling of cavitation, or in development of new
carbon capture and storage (CCS) technologies. In particular, the prediction of a non-equilibrium
phase transition, connected with formation of a new phase out of a mother phase in a metastable
state, requires a detailed knowledge of the phase interface and its properties. The phase interface
can primarily be defined by its shape, which is in a basic case planar or in case of nucleation
of droplets and bubbles spherical. Even though the phase interfaces play a crucial role in
phase transitions their description is still far from being satisfactory. This work focuses on
semi-empirical modelling of phase interfaces that can be used in engineering applications rather
than on more comprehensive and computationally demanding approaches such as molecular
simulations.

This research task represents a culmination of a long-term research of group at the Institute
of Thermomechanics of the Czech Academy of Sciences. Modelling of a planar phase interface
of a multicomponent system was in the department of Thermodynamics first investigated by
Vinš [247] which was later reexamined for the spherical interface geometry of one component
system [106,193]. The main aim of this work was to develop solution method of GT combined
with SAFT-type EoS for the spherical phase interface geometry of a multicomponent systems with
initially outlined in Celný et. al. [45]. The method is extended into derivation of a computational
approach for more general interface geometry in multicomponent system including additional
important properties with experimental relevance.

A brief introduction to the gradient theory was already given in sections 2.2.3 and 2.5, where
both planar and spherical geometry is shown. This allows for the derivation of the related core
problem in section 5.2. The core problem is subsequently solved in section 5.3 with a so-called
split scheme, which divides the problem into an algebraic and a differential part. These parts are
described in section 5.3.1 and section 5.3.2, respectively. The solution occurs as a fixed sequence
according to constrains imposed by the core problem formulation. Output quantities of the model
are primarily the concentration profiles and other quantities describing the phase interface, i.e.
the surface tension, the work of formation and the surface adsorption. The important formulas
used for the computation of additional properties are described in section 5.3.3. In section 5.4,
the results are discussed in detail and compared with the available experimental data for the
examined CO2 relevant mixtures with n–butane and SF6 and with the predictions of a more

71
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general Density Functional Theory by Ebner and Evans [64, 68]. The theoretical results were
validated on experimental measurements performed in the department by Vinš et al. [248] and
available in the literature.

5.2 Problem formulation
The problem is formulated for general case of vapor→liquid phase transition of multicomponent
system. Starting from the theoretical investigation of work of formation the condition of most
probable density profile representing the system can also understood as a problem of finding the
saddle point of the work of formation functional ∆Ω. Type of this saddle point present in the
work of formation functional space is further influenced by underlying interface geometry. The
riding-like saddle point is characteristic for the spherical phase interface, while the ravine-like
saddle point is characteristic for the planar phase interface.

The variational calculus provides a reliable framework for this kind of problem definition.
In this context the criterion for the optimal density profile is in terms of variation of work of
formation

δ∆Ω [ρ(s)]ρ=ρ0
= 0. (5.1)

The variation is performed over density profiles ρ(s) around some profile ρ0 with general coordinate
s. We have employed notation from section 2.5 and utilized the assumption of homogeneity of
the system in the other two spatial coordinates leaving only s where the density inhomogeneity
across the phase interface is expressed. The condition eq. (5.1) for extremum is then found as a
solution of the Euler-Lagrange equations written for a system with ncomp components

S
∂∆ω (ρ (s))

∂ρk
+ S

2

ncomp∑
i,j=1

∂ci,j

∂ρk

(
∂ρi

∂s

)(
∂ρj

∂s

)
− d

dsS
ncomp∑
i=1

ci,k

(
∂ρi

∂s

)
= 0, k ∈ n̂comp. (5.2)

In the formula S denotes the saturation for the vapor→liquid transition and grand potential
density difference of homogeneous and inhomogeneous systems ∆ω is used. This set of ncomp
equations 1 is further simplified rewriting the partial derivative to capture the meaning behind
the driving force of the transition with

∂∆ω (ρ (s))
∂ρk

= ∆µk. (5.3)

The eq. (5.2) contains a new variable ci,j called the influence parameter, which in essence tries to
quantify the effect of an individual component on the phase interface. The influence parameter
for a pure component ci,i can be obtained from models or most commonly from the correlation of
experimental data for the surface tension. In case of multicomponent systems no straightforward
option is available and the mixed influence parameter ci,j with non-equal subscripts i ̸= j is
therefore evaluated mostly as a geometric mean

ci,k
.= √

ci,i · ck,k. (5.4)

Consequently, the influence parameters in mixtures are expected to be similar to those of
one-component system. However for some systems, this assumption is not sufficient and eq. (5.4)
is multiplied by (1 − γij), where γij is an adjustable binary parameter. In this study we can omit
the possible extension as it does not influence the developed mathematical model , i.e. γij = 0 is
assumed in further calculations. We note that the influence parameter shows in general a certain

1hat notation n̂ represent the set of integers 1, . . . , n
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density dependence [53]. Nevertheless in most cases, the density dependence of ci,j is rather
small and can be neglected leading to

∂ci,j

∂ρk
= 0, k ∈ n̂comp, (5.5)

which is also the case in this work. Combining eqs. (5.3) to (5.5) together with derivative notation
ρ′

i = ∂ρi/∂s the set of Euler-Lagrange equations eq. (5.2) is transformed into

∆µk −
ncomp∑
i=1

√
ci,i · ck,k

( 1
S

dS

ds
ρ′

i + ρ′′
i

)
= 0, k ∈ n̂comp. (5.6)

The eq. (5.6) represents the core problem of the mathematical model formulated as a set of
ncomp second order differential equations. The equations are supplied with Dirichlet boundary
conditions obtained from the phase equilibrium calculation.

5.3 Problem solution
Term ∆µk in eq. (5.6) is in general analytically non-integrable due to the fact that it is computed
from complex EoS. No explicit relation for this term can be usually obtained as most od the
EoSs do not lead to the analytically expression for ∆µk. Additionally, the left hand side in
eq. (5.6) contains factor dS/ds dependent on the interface geometry. To overcome both problems
simultaneously an extension to authors previous work [40] was performed and an unified numerical
method for arbitrary geometry was developed.

Reorganizing the shape of eq. (5.6) to move the non-integrable term to the right hand
side(RHS).

ncomp∑
i=1

√
ci,i

( 1
S

dS

ds
ρ′

i + ρ′′
i

)
= ∆µk√

ck,k
, k ∈ n̂comp. (5.7)

Solution of the core problem given by eq. (5.7) is possible in this form, however a considerable
computational effort would be required. The defined problem require to solve ncomp mutually
interconnected differential equations. Moreover, problem complexity greatly increase with the
number of components making a direct solution prohibitivly expensive for ncomp > 2.

It is therefore favourable to further modify the form of the core problem eq. (5.7) to
overcome the cumbersome fully differential solution. In this study, a similar approach as in
refs. [51, 136, 166, 167] was used to transform the original set of equations into an algebraic
problem and a simplified differential problem. A similar approach is to take the structure in
eq. (5.7) where all elements with component index k were transferred to RHS. This allows to
substract the first equation k = 1 from the remaining equations k ∈ 2 . . . ncomp. Because all the
equations have the same sum term at the left hand sized, the original set eq. (5.7) is transformed
into

ncomp∑
i=1

√
ci,i

( 1
S

dS

ds
ρ′

i + ρ′′
i

)
= ∆µ1√

c1,1
(5.8)

∆µk√
ck,k

= ∆µ1√
c1,1

, k ∈ 2 . . . ncomp, (5.9)

consisting of a single differential equation in eq. (5.8) and a set of algebraic equations in eq. (5.9).
The differential equation is the first equation from the original problem and the algebraic part
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comprises of ncomp − 1 nonlinear equations with identical RHS. This new formulation allows for a
so-called split solution. Both parts are to be solved in a fixed order beginning with the algebraic
and continuing to the differential part. Continuity between both parts is facilitated by the RHS
of the equation which is being passed between solvers. The order of execution cannot be changed
so the new formulation given in eqs. (5.8) and (5.9) preserves the connections between original
differential formulation in eq. (5.7).

As a part of the proposed solution the the following notation with artificial variable X as the
linking value for both types of solved sub-problems is employed.

X = ∆µ1√
c1,1

(5.10)

In addition to variable X, the partial molar densities also need to be treated. Following
modification is inspired by the problem of a monotonous density. In the original formulation
of DGT by Cahn and Hilliard [34], multiple component systems required at least one partial
density having a monotonous character along the main coordinate axis s. The monotonous
condition implies that the remaining molar concentrations have to be expressed as functions of
the selected monotonous density. Therefore, a problem with the selection of mixture components
and their common relations arises. The order of components influence the solution method and
in worse case even the obtained results. Moreover, the partial density of the first component
is expressed in terms of the dimensional coordinate, while the other components are given as
functions of the first component density. These issues leads to cumbersome description that have
consequences in usability of the method and creates a preferential (unequal) treatment of some
of the component densities.

We note that the proposed approach is similar to the work of Liang et. al. [146]. However,
both studies were carried out independently. Major focus of this work has been the modelling
of spherical phase interfaces of multicomponent systems. Both studies introduce a modified
density ρ̃, which allows for softening the problem with the monotonous density selection as well
as processing all partial densities in the same manner. In this case, all partial densities are
described as functions of ρ̃ in the following way

ρ̃ =
∑ncomp

i=1
√
ci,iρi∑ncomp

i=1
√
ci,i

, (5.11)

where ncomp is the number of components in a mixture and ci,i is the influence parameter of
the i-th pure component. The modified density can be understood as a weighted mean density,
where the weights are the influence parameters of individual components. The idea of this type
of density is motivated by the form of eq. (5.7).

The monotonous character is justified by the monotonous condition mandatining the existence
of monotonous component with high value of the influence parameter. Visualization in fig. 5.1
shows an example for a binary mixture with c1 of the monotonous component being almost
7-times higher than c2 of the second component. In spite of the influence parameter involvement
the benefit of modified density lies in its shape. It can be easily proven that the shape of the
modified density remains the same for the first and the second coordinate derivatives. The proof
relies on fact that the influence parameters are independent of dimensional coordinate.

With the density modified in terms of eq. (5.11) and variable X given by eq. (5.10), the
differential part of eq. (5.8) can be written in the following way

1
S

dS

ds
ρ̃′ + ρ̃′′ = X∑ncomp

i=1
√
ci,i

. (5.12)
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Figure 5.1: Illustration of the modified density profile over the planar phase interface. Influence
parameters are c1

.= 1.608 · 10−19J m5 mol−2 for the monotonous component and c2
.= 2.398 ·

10−20J m5 mol−2 for the second component.

The eq. (5.12) is valid for the arbitrary geometry, i.e. shape of the phase interface for the solved
problem see the examples illustrated in fig. 2.6. Hence a generalized solver can be used for the
both geometry-types. When numerical efficiency and speed are of concern a specialized solvers
can be developed for each geometry allowing for further optimization. For example, when the
factor dS/ds equals 1, the problem can be numerically integrated, which corresponds to the the
planar phase interface case.

The algebraic part given by eq. (5.9) is also treated using notations eq. (5.10) and eq. (5.11).
Consequently, the equation for the modified density ρ̃ has to be added to the algebraic system,
which subsequently composes of ncomp nonlinear equations

∆µ2√
c2,2

= −X

...
∆µncomp√
cncomp,ncomp

= −X

ncomp∑
i=1

√
ci,iρi = ρ̃

ncomp∑
i=1

√
ci,i. (5.13)

It is easily observed that the algebraic system of equations in eq. (5.13) does not depend on
the type of the interface geometry as no direct reference to parameter s or S is present. This
feature permits the independent solution of problem regardless of the geometry type which can
be further used for optimization in an simultaneous solution of multiple algebraic parts. The
algebraic system is computed at first as variable X is the link between the algebraic part and
the subsequently solved in the differential part of the problem.

5.3.1 Algebraic system solution

Given the nonlinear character of the algebraic part eq. (5.13) the solution is based on the
Newton-Raphson. System properties can be further improved by rearranging the algebraic
equations into form that yields a symmetric Jacobian Matrix. This is a direct consequence of the



76 5. Nucleation from the equilibrium view

partial derivatives interchangeability shown previously by Liang et. al. [146]. The form used for
solution is then

∆µ2 +X
√
c2,2 = 0

...
∆µncomp +X

√
cncomp,ncomp = 0

ncomp∑
i=1

√
ci,iρi − ρ̃

ncomp∑
i=1

√
ci,i = 0 (5.14)

The computational procedure is developed around the Newton-Raphson iterator utilizing the
Jacobian inversion method.

The whole procedure operates across the modified density discretization. The schema is step-
ping over the individual modified densities for which the solutions are found. The discretization
also helps for the initial estimate choice required by the solver. While the first density relies on
equilibrium estimate each consequent sampled density uses the previous solution as an estimate.
In this way a number of iterations are significantly decreased further enhancing the speed of
solution.

The solution values are coupled into the data structure with modified density sampling
ρ̃(1), ρ̃(2), . . . ρ̃(disc) that can be understood as a table of properties sampled at the discretization
points.
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ncomp
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ncomp

(
ρ̃(2)
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· · · ρ

(disc)
ncomp

(
ρ̃(disc)

)
X(1)

(
ρ̃(1)

)
X(2)

(
ρ̃(2)

)
· · · X(disc)

(
ρ̃(disc)

)
(5.15)

For the data structure shown here the superscripts are used to denote the discretization index of
the points instead of the component numbers used in the rest of the chapter.

This data structure in eq. (5.15) represents the basis for a piecewise cubic interpolation used
in the subsequent step. The piecewise cubic interpolation brings two important benefits: (a) fewer
discretization points are required to hold comparable level of accuracy, (b) brevity and overall
simplification of the differential solver. It often happens that the differential solver requests a
value not present in the discretized sampling in eq. (5.15). With the interpolation method, such
value can easily be computed from the data structure saving more expensive iterations of the
algebraic solver.

The intermediate interpolation step can be therefore understood as a transformation of the
sampled data structure in eq. (5.15) into set of functions ρ1 (ρ̃) , ρ2 (ρ̃) , . . . , ρncomp (ρ̃) , X (ρ̃). The
function dependencies are shown in fig. 5.2 for one example of such algebraic solution procedure.
The last benefit of interpolation is that simpler density dependencies can be modeled sufficiently
with lesser amount of points while retain the same numerical accuracy of conseqent differencial
step.

The main reason behind the Newton-Raphson iterator in the algebraic solver is the overall
simplicity and solution speed of the solver. One can argue that with the use of interpolation
method other more sophisticated solvers can also be employed. However, this could result in
performance constrain directed on the discretization, which is better to be avoided.
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Figure 5.2: Example of the interpolated results from the algebraic solver, i.e. eq. (5.14). For
comparison purposes, the quantities X, ρ1, and ρ2 are shown dimensionless (see appendix A.2).
The monotonous component 1 of the binary mixture is represented by green pointed line − −,
non-monotonous component 2 is depicted by red squared line −2−, and the binary variable X
is represented as black stared line −A−.

One could also object against the initial estimate quality used in the iterator. The worst case
can lead to the over-iteration, which would reduce the speed benefits but due to the employed
stepping approach this is no longer the issue. This approach ensures quality of the estimate for
sufficiently fine discretization which is not so hard requirement as the usage of more sophisticated
solvers would be.

Our analysis of solver behavior has revealed that refinement of discretization brings notable
benefits for first few refinements. It was empirically found that about 100 discretization points
are sufficient in most cases. It is reasonable to expect that finer discretizations do not extend the
knowledge of eq. (5.15) more than the interpolation.

In this way the data structure provides a description of densities and X dependencies required
for the differential equation solver.

5.3.2 Differential equation solution

The algebraic solution is followed by the differential solver, in which an interpolation of variable
X(ρ̃) is primarily used as it forms RHS of the differential equation eq. (5.12). Utilising the
previous knowledge of the selected interface geometry, a specialized differential is developed.
This feature is especially useful for planar geometry case, where the solution can be found even
analytically allowing for higher precision to be achieved. The analytical solution is presented in
section 5.3.3. The more general solution method, primarily used for the spherical phase geometry,
is described here. The differential equation in eq. (5.12) with the general factor dS/ds can be
modified for the spherical phase interface as follows

2
r
ρ̃′ + ρ̃′′ = X(ρ̃)∑ncomp

i=1
√
ci,i

, (5.16)

where the general coordinate s was replaced for the radius r.
A numerical solution method is required for eq. (5.16). The general analysis determined that

the mathematical problem exhibits three attractors to which the solution tends to evolve. From
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the thermodynamic perspective there should be only two attractors corresponding to systems of
bulk liquid phase, bulk vapor phase. The third atractor is consequence of asssumption of static
system without any disturbances where a hypothetical third attractor corresponds to critical
density in between of the bulk phases. This is better shown in fig. 5.3, where red profile aligns to
bulk liquid attractor, black (desired) profile to bulk vapor attractor and teal profile is skewed by
the third attractor corresponding to the unstable system.

Considering this behavior of three attractors, the solution method has to be robust enough to
overcome this obstacle. The testing of the solution method, often via the trial and error, pointed
out that the shooting method coupled with the predictor–corrector type of solver provides a
convenient and robust solution. Wide range of methods were tested and deemed not to be
applicable due to the widespread convergence issues caused mainly by the physical nature of the
problem. Unfortunately, in some cases the selected method even failed to converge. The possible
reasons are discussed below in more detail.

The chosen shooting method translates the original boundary value problem into the initial
value problem which is easier to solve in this setting. Main aim of the shooting method is to
find the initial density in the centre of a new phase, i.e. a droplet, that yields the density profile
aligning with apriori known mother phase density, i.e. vapor. An important condition for the
shooting method is that the density derivative in the center of a droplet equals zero, which is a
required by assumed spherical symmetry of the droplet.

Proposed scheme utilizes the shooting method coupled with the MATLAB® implementation
of the predictor–corrector differential solver called "ODE45". This solver was developed from the
method proposed by Dormand and Prince [63] for Runge-Kutta type of iterative solvers.

The shooting method is further supplied with a decision criterion responsible for the selection
of the next value of the shooting parameter αnext. It was found that a bisection method constructs
a reliable criterion and is capable to cope with the steep nature of the investigated searching
task for the optimal shooting parameter αoptimal and other attractors of the problem. In theory
this criterion is guaranteed to converge to the optimum when the optimum is located within the
starting interval used for bisection.

The shooting method criterion is based on a minimum value search for a difference between
the vapour density at the end of the droplet density profile and the bulk density of the surrounding
mother phase. In this way we specifically target at the correct attractor in the density of the
mother phase. If an incorrect attractor is reached, the shooting parameter of the following step
is chosen accordingly. The illustration of the density profiles for various values of the shooting
parameter α leading to different attractors of the problem are shown in fig. 5.3. In this figure we
can notice that the attractors at the vapour and liquid density exhibit only one sided attraction
(within the vapour-liquid density band). Outside this band the profiles are unphysical and strong
repulsion is observed instead.

A droplet in a supersaturated vapour, forming from the mother phase, is handled similarly.
The initial shooting parameter α corresponds to the liquid density within the droplet centre in
this case. For complete information the method also work from the opposite transition where
bubbles form within liquid. In such situation the criterion remains same while supplying the new
meaning for the mother phase now liquid and initial density estimate now bulk vapor.

5.3.3 Calculation of density profile and related properties

The developed solving procedure allows the calculation of the density profile for the targeted
interface geometry. The profile gives a information about the properties of the interface itself like
surface tension, but also indicate whether adsorption takes place in case of multiple component
mixture.
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Figure 5.3: Density profiles for binary mixture of CO2 + n-nonane for shooting parameters
α = ρ̃0. Selected case provides discernible differences of profiles for large variations of shooting
parameter.

As already mentioned for the planar phase interface, the core problem can be also solved
analytically [112,147,167]. The planar case results in the form of following integral for the density
profile expressed with the axial coordinate z as

z(ρ) = z0 +
∫ ρ

ρ0

√√√√∑ncomp
i,j=1 ci,j

(
∂ρi
∂z

) (
∂ρj

∂z

)
2∆ω dρ, (5.17)

where ρ0 stands for the initial density of integration at the spatial coordinate z0. The initial values
are chosen based on the equilibrium calculation setting the ρ0 to bulk density and consequently
z0 to location in the interfacial region, where the bulk density is reached. It is important to note
that the choice of ρ0 and z0 determines the profile orientation based the location of the starting
point, e.g. starting from bulk density of mother phase.

In eq. (5.17), only the partial densities are left to be determined. These values are readily
available from the inverted data structure in eq. (5.15). Performing a backward conversion from
the modified density ρ̃ in terms of eq. (5.11) the partial densities are obtained. This method is
reliable but the condition of injectivity of transformation has to be fulfilled, e.g. the modified
density is monotonous. In cases where the modified density would not be monotonous the
backward transformation would then becomes ambiguous.

For the spherical phase interface, the differential solver produces results in a form of the
modified density as a function of radius ρ̃(r), which is further transformed to the partial densities
ρi(r). The transformation is performed with the piecewise cubic interpolation functions ρi(ρ̃)
applied on the discretized points along the phase interface data in form of eq. (5.15).

The surface tension in case of the vapour→liquid phase interface, represents another
important property describing the forces exerted onto the dividing interface that hold the phases
separate from each other. For the systems with the planar interface geometry, the following
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expression for the surface tension σ can be used [166,168,271]

σplanar =
∫ ρL

ρV

√√√√2 ∆ω
ncomp∑
i,j=1

ci,j

(
∂ρi

∂z

)(
∂ρj

∂z

)
dρ. (5.18)

According to Liang et. al. [146], the integration of eq. (5.18) can be performed using the modified
density ρ̃(r), which slightly improves the accuracy, as no additional backward transformation is
required.

When considering the spherical case, the direct integration is not possible for the evaluation
of the surface tension. But the curved surface can be described by the Young-Laplace equation
in eq. (2.44) relating the surface tension to the curvature and the Laplace pressure ∆p. After a
simple treatment [246], an equation for the surface tension on a spherical phase interface can be
obtained

σspherical =
3

√
3∆Ω∆p2

16π , (5.19)

where ∆Ω denotes the work of formation determined from eq. (2.89).
Another important property related to the phase interface research is the surface of tension2.

The surface of tension interprets the DGT results in terms of the Gibbsian surface thermodynamics,
in which the relevant quantities are defined with a reference model of a simple sphere with radius
rsot. For a curved interface, the surface of tension is a surface at which the surface tension acts
according to the Laplace pressure ∆p given by eq. (2.44). For the planar geometry, the surface
of tension can be understood as the centre of force for the surface tension similarly as the centre
of mass is for the gravity. The governing equation for the surface of tension over a planar phase
interface is given as follows.

zsot =
∫ ∞

−∞

ncomp∑
i,j=1

ci,j

(
∂ρi

∂z

)(
∂ρj

∂z

) z dz. (5.20)

Here the integration bounds are expressed as infinity, however the real computation is performed
only for sufficiently large interval to envelop the region of interest of the computed density profile.

Similarly to the surface tension σ, the surface of tension for the spherical phase interface can
also be expressed from the Young-Laplace equation and the work of formation ∆Ω, i.e. from
eq. (2.44) and eq. (2.82).

rsot = 3

√
3∆Ω
2π∆p (5.21)

where ∆Ω can be obtained from eq. (2.89).
While the surface of tension is thought concept it gives the option of computing the properties

originally introduced by the CNT such as the excess number of molecules ∆N and the adsorption
Γ. The excess number of molecules gives the information about the excess amount of
molecules compared to the homogeneous gaseous system. For illustration see fig. 2.4 where the
excess number of molecules is used for choice of equimolar dividing surface. The adsorption
or also the surface excess number of molecules connects the excess number of molecules with a
surface area to provide information about the amount of molecules localized at the surface. The
amount of adsorbed molecules is usually computed in moles and thus the results of following

2Not to confuse with surface tension
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formulas are scaled with Avogadro constant (not expressed in defining formulas). The following
integration is performed for the general spatial coordinate s.

∆Ni =
∫ smax

smin

[
ρi(s) − ρV

i

]
ds (5.22)

Similarly to the surface of tension, the coordinate limits should be set to envelop the whole
computed density profile in a way that omitted area has negligible influence on the final result
accuracy.

The adsorption can be then again expressed in an unified manner for the planar and spherical
phase interfaces using a general coordinate s as follows.

Γi =
∫ ssot

smin

[
ρi(s) − ρL

i

]
Sds+

∫ smax

ssot

[
ρi(s) − ρV

i

]
Sds (5.23)

The formulation eq. (5.23) shows the integration is divided into two regions: one preceding and
other following the location of the surface of tension ssot. Depending on the orientation of the
density profile, the bounds of integration are flipped to correspond with the profile calculated
direction.

For the spherical geometry case smin = 0, smax ≫ rsot, the formula reflects the choice of a
spherical dividing surface (rsot) and the adsorption transforms into following formula

Γi = ∆Ni

4πr2
sot

− rsot(ρL − ρV)
3 . (5.24)

5.4 Results

In the previous work of the author in [40] focus was given spherical interface case applied
illustrated with mixture of nitrogen and carbon dioxide. The primary goal of the study was
calculation of the density profiles. In this extension a broader view is employed with the
generalized interfacial geometry approach applied on two mixtures relevant for CCS: n-butane
+ CO2 and SF6 + CO2. The topic is extended into other properties including surface tension,
surface of tension and adsorption. We also provide comparison with more general theory and
experimental data to verify the correct operation of the proposed method.

5.4.1 Artificial variable X

An overview of the computed results obtained with the described model for both phase interface
geometries is provided here. The variable X , playing an important role in the developed solution,
is discussed at first. In figs. 5.4 and 5.5, the dependency of X on the modified density ρ̃ is shown
for various values of the Laplace pressure ∆p for mixtures SF6 + CO2 and n-butane + CO2,
respectively. The base shape of variable X corresponding to the planar geometry with ∆p = 0 Pa
and further evolves with the increasing Laplace pressure preserving the boundary values. These
end values of X(ρ̃) are equal to zero, which is a direct consequence of the equilibrium condition
and the definition of X according to eq. (5.10).

It should be noted that even though the variable X changes for different systems, its shape
remains wave-like function, however with different amplitudes. In figs. 5.4 and 5.5, the greyscale
lines decreasing hue corresponding to increasing values of the Laplace pressure. The black
dashed line, representing the planar geometry (i.e. the non-supersaturated system), is added for
comparison.
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5.4.2 Density profile

Density profiles describing the phase interfaces are computed either directly from eq. (5.17) for the
planar geometry or according to the general method described in section 5.3.1 and section 5.3.2.
Examples of the density profiles for n-butane + CO2 mixture are shown in figs. 5.6 and 5.7 for
the planar and the spherical type of geometry, respectively. The total density ρ, the modified
density ρ̃, the partial densities of individual components ρi, and the surface of tension ssot ,
that would be employed in CNT, are depicted in the figures. Distinct feature of both profiles
is the substantial adsorption of CO2 within the interface predicted by the PCP-SAFT + DGT
model. The adsorption becomes more pronounced with increasing ∆p as can be seen from the
comparison of selected cases with ∆p = 0 and ∆p = 5.53 MPa. We note that the profiles are
computed until the stop criteria of the solution method is reached, which in the spherical case
results in rather long vapour part of the profile. Due to a direct computation of the planar case,
the vapour part is considerably shorter in fig. 5.6. The planar geometry has an arbitrary selected
onset of computation at z = 0. This point is used only as a reference for the interface thickness,
while in case of the spherical geometry the radial distance is directly related to the droplet size.

Graphs depicted in figs. 5.8 and 5.9 show the density profiles in terms of the the modified
density ρ̃ for two binary mixtures n-butane + CO2 and SF6 + CO2 at various values of the
Laplace pressure ∆p. The profiles are aligned according to the surface of tension set to s = 0 nm.

It can be seen in fig. 5.8 that for n-butane + CO2 mixture the density profiles are closely
attached to the planar profile corresponding to ∆p = 0. The only considerable difference
between the profiles can be seen on the vapour side where the bulk density increases with higher
supersaturation, i.e. with higher ∆p. Results in fig. 5.9 computed for SF6 + CO2 mixture show
similar behaviour except for one misaligned profile for the highest Laplace pressure of 21 MPa.
This is an illustration of a small size droplet of a limited dimension. At high supersaturations,
the droplet shrinks in diameter and the density in its centre becomes significantly smaller than
the bulk liquid density. Consequently, the small size droplet is solely composed of the phase
interface and the associated surface of tension cannot be easily compared to larger droplets.
The research of behavior of small droplets is a challanging topic that is not well aligned with
assumptions made by the here develop solution method.
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5.4.3 Surface tension

Graphics in figs. 5.10 and 5.11 show the surface tension depending on the Laplace pressure
corresponding to the density profiles provided in figs. 5.8 and 5.9, respectively. The computations
abide the approach given by eqs. (5.18) and (5.19). The PCP-SAFT + DGT results are compared
with a more general Density Functional Theory (DFT) proposed by Ebner [64] and further
developed by Evans [68]. DFT does not fundamentally require the gradient assumption and
provides more general results at a cost of substantially slower computation. From the comparisons
in figs. 5.10 and 5.11, it can be seen that the presented DGT-model slightly under-predicts the
surface tension compared to DFT. However, the difference lies within a reasonably small range.
In fig. 5.11, the difference between DGT and DFT becomes more pronounced due to a rather
problematic nature of the SF6 + CO2 mixture as the two components have quite close critical
temperatures of Tc(SF6) = 318.7 K and Tc(CO2) = 304.1 K. The SF6 + CO2 system was selected
in order to test the robustness of the developed model. The solution algorithm can treat this
mixture in the same manner as the system with a clear monotonous component such as the
n-butane + CO2 mixture.

As can be seen in figs. 5.10 and 5.11, the model behaves according to the theory with a
characteristic arc-shaped dependency of the surface tension on the increasing ∆p. This trend can
be well observed in one-component systems [106,193], which can be solved even for the miniscule
droplets typical of a rapid drop in the surface tension; see , e.g., figure 15 in ref [193]. The results
provided in figs. 5.10 and 5.11 could also be calculated at higher values of ∆p however with
rather significant error caused by the miniscule concentrations of both phases, which would lead
to a badly conditioned problem both for the equilibrium and the algebraic solvers.

5.4.4 Adsorption

In fig. 5.12 adsorption Γ is shown representing another important property of the phase interface,
depending on Laplace pressure ∆p . The example is provided for n-butane + CO2 mixture at a
constant temperature of 300 K. As can be seen, CO2 shows relatively high adsorption within the
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Figure 5.12: Adsorption of individual components of n-butane + CO2 mixture depending on
Laplace pressure ∆p at a constant temperature T = 300 K.

interface already at ∆p = 0, i.e. for the planar phase interface, which is further continuously
increasing with increasing ∆p. The increase of Γ(CO2) can also be seen from the comparison of
figs. 5.6 and 5.7 showing the density profiles at two different values of ∆p at the same temperature
of 300 K. It is notable that with increasing ∆p, the adsorption of butane is also increasing from
the negative values for the planar and large spherical interfaces to the positive values for smaller
droplets. An increase of Γ(butane) is a direct consequence of the higher supersaturation of the
system.

5.4.5 Comparison with experiments

Theoretical validation of the presented model and comparison with the DFT theory was showed in
figs. 5.10 to 5.12. A brief comparison with the experimental data for the surface tension over the
planar phase interfaces of CO2 mixtures is provided further. The depicted results were obtained
by DGT combined with the PCP-SAFT equation of state accounting for quadrupolar CO2. All
mixtures were modelled with a zero binary interaction parameter kij in the Lorentz-Berthelot
combining rule for the PC-SAFT energy parameter [88].

Data for the surface tension of n-butane + CO2 mixture by Brauer and Haugh [29] and Hsu et.
al. [107], are shown in figs. 5.13 and 5.14. A relatively good agreement between the experimental
data by Brauer and Haugh [29] and the model can be seen in fig. 5.13. The DGT + PCP-SAFT
model is qualitatively well aligned to the data with a constant over-prediction under 10 %. At
temperatures 310.93 and 319.26 K, the calculation was aborted at pressures above approximately
0.63 and 0.73 MPa, respectively. The computation was terminated prematurely at these points
due to an inaccurate prediction of the phase equilibrium. The predicted phase equilibrium for
n-butane + CO2 mixture does not correspond to the experimental data at the given temperatures
and pressures. This discrepancy can be partially improved by adjusting the binary interaction
parameter kij that shall be set to 0.125 for PC-SAFT and to 0.036 for PCP-SAFT in this case [86].
However as the main purpose of this work is to introduce a new DGT-based model, a constant
kij = 0 is considered out of demonstrative reasons.

In the second comparison for n-butane + CO2 mixture shown in fig. 5.14, three experimental
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the PCP-SAFT + DGT model (solid lines) and the PC-SAFT + DGT model (dashed lines) both
with kij = 0.

datasets by Hsu et al. [107] are presented. System conditions are well reproduced by the PCP-
SAFT + DGT model with a very good precision over wide pressure range even with the binary
interaction parameter kij equal to zero. However at the lowest temperature of 319.3 K, the model
slightly deviates from the experimental data in the low pressure region below approximately
0.35 MPa. Slight discrepancies between the model and the experimental data for n-butane + CO2
can be attributed to the quadrupolarity of CO2 and to a significant adsorption of CO2 within
the phase interface.

Comparison of the experimental data by Nagarajan and Robinson [172] for n–decane + CO2
with the PCP-SAFT + DGT model and the PC-SAFT + DGT model is shown in fig. 5.15. In
both cases a zero binary interaction parameter kij is considered. The model with PCP-SAFT
EoS provides slightly better prediction. The average deviation (AD) and the average absolute
deviation (AAD) from the experimental data, given as

AD = 1
N

N∑
i=1

(σi,exp − σi,mod) , (5.25)

AAD = 1
N

N∑
i=1

|σi,exp − σi,mod| , (5.26)

have values of 0.29 mN m−1 and 0.36,mN m−1 for PCP-SAFT + DGT and 0.38 mN m−1

and 0.44,mN m−1 for PC-SAFT + DGT, respectively. However, as can be seen both models
underpredict the experimental surface tension especially at lower pressures. The model predictions
can be improved by considering a non-zero binary interaction leading to a better prediction of
the phase equilibrium, i.e. more accurate phase compositions at given T and p; see, e.g., ref [246],
where the non-zero values for kij were employed.
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Figure 5.16: Surface tension for SF6 + CO2 mixture predicted by the PCP-SAFT + DGT model
(solid lines) and the PC-SAFT + DGT model (dashed lines) compared with the experimental
data by Do and Straub [62] at three constant mixture compositions. Temperature of the data
lies between 210 and 310 K.

Data for the surface tension of SF6 + CO2 system measured by Do and Straub [62] for three
different mixtures of a given overall composition are shown in fig. 5.16. We note that the data
were taken from diagrams in the article and can therefore suffer of slightly higher uncertainty.
The PCP-SAFT + DGT model shows quite good agreement also with this system, which is, unlike
n-butane + CO2, typical of rather close critical temperatures of both components. The only
discrepancy between the data and the model can be seen for the mixture with the highest content
of CO2 of around 85 % at lower pressures. Results of the introduced PCP-SAFT + DGT model
can in general be treated as quite reliable also for SF6 + CO2 system as no additional parameter,
i.e. the binary interaction parameter kij or binary parameter γij for the influence parameter
ci,j , was adjusted to the mixture data. In fig. 5.16 results are shown for the PC-SAFT + DGT,
which does not consider quadrupolar CO2. The PC-SAFT + DGT model overpredicts the surface
tension compared both to the experimental data and the PCP-SAFT + DGT model. The largest
difference can be seen for the middle composition of 49.3 % CO2. The average deviation and the
absolute average deviation are 0.40 mN m−1 and 0.48 mN m−1 for the PCP-SAFT + DGT model
and −0.77 mN m−1 and 0.78 mN m−1 for the PC-SAFT + DGT model, respectively.

5.5 Conclusions

A new model for multicomponent mixtures with various phase interface geometries was devel-
oped in this work. The model is based on the density gradient theory (DGT) describing the
phase interface and the PC-SAFT equation of state employed on the thermophysical properties
computations. The DGT formulation was modified to allow for solution of both planar and
spherical phase interface geometries. This approach enabled a unified derivation of the core
problem described in section 5.2. The core problem of the density profile solution in its plain
form would require substantial computational resources therefore an innovative solution approach
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was proposed in section 5.3. The new solution approach utilizes the shape of the core problem
and divides it into an algebraic part and a differential part. Both parts are solved with a help of
a transition variable according to the shape of the prescribed interface geometry. Unlike for the
spherical interface, a direct solution can be used in case of the planar interface geometry.

The formulas for properties describing the phase interface , i.e. the density profile, the
adsorption and the surface tension, were also derived. All the formulas were analyzed from the
theoretical background and compared with other theories, i.e. Gibbsian thermodynamics for
the interface profiles and DFT for the surface tension prediction. The DGT-based model was
found to provide comparable results to DFT for the surface tension at the planar phase interface.
The predictive ability of the introduced model was investigated on selected mixtures with CO2.
The model predictions are in good agreement with the experimental data for the surface tension
over relatively wide ranges, even though no additional parameter was correlated to the mixture
data. A considerable influence of the improved PCP-SAFT EoS accounting for quadrupolarity
compared to original PC-SAFT EoS was detected when combined with the DGT-based model.
The PCP-SAFT + DGT model provides significantly better predictions especially for the mixture
of SF6 + CO2.

The developed model is being used in the planning and evaluation of experimental mea-
surements of droplet nucleation in CO2-rich systems. Elements of this research are further
utilized in investigation of the thermophysical properties of Hydrofluoroethers (HFE) [6,218,243].
These fluids nonflamable, dielectric and low Global warming potential fluids are an interesting
replacement for currently used coolants and working fluids across wide range of applications like
electronic cooling, cascade refrigeration, heat transfer fluids, lubricant carriers or rinsing agents.



Simulation of supersonic
expansion 6

6.1 Introduction

Water clusters ready for photochemical and other experiments can be obtained via supersonic
expansion [27]. During the expansion, saturated water vapor expands through a nozzle into a
vacuum, reaches supersonic speed, cools down, and nucleates into clusters. These clusters are
similar to atmospheric aerosol particles; therefore, their properties have a great meaning in the
chemistry of the atmosphere [9].

The cross-section of water clusters can be estimated [71,141] by their capability to pickup
other particles on their surface. After considering polarization and other phenomena that usually
cause the pickup cross-section to be larger than the geometric cross-section, it has been deduced
that there is still an unexplained increase for large clusters, which has been attributed to clusters
of irregular shape [71,142] rather than spherical. This is, to some extent, counterintuitive and
indicative of complex phenomena that may take place. One possibility is the aggregation of
smaller frozen clusters later in the apparatus as a consequence of turbulent flow and/or sonic
boom [124]. Similarly, twin xenon clusters were identified in supersonic expansion in very narrow
and long nozzles [201]. Most experiments detect frozen clusters [156], which may serve as
precursors for aggregates such as snowflakes [19].

A number of experiments have determined the nucleation rates during expansion [81,120,226].
These measurements were performed typically in Laval nozzles where smooth walls best guarantee
isentropic expansion. Conical nozzles were considered in other theoretical work [101].

Atomistic molecular simulations have been applied to homogeneous nucleation for years
[8,59,61,144,190]. These works focused mostly on testing theoretical predictions of the nucleation
rate. Other works dealt with the characterization of developing particles. Typically, a constant
volume simulation cell with some cooling protocol (with or without carrier gas) is applied in
these works [152,205]. Such computer experiments as well as the classical nucleation theory are
based on the assumption of almost equilibrium during cluster growth [95], at least since the stage
of a critical cluster. Such clusters are naturally spherical (which does not rule out the possible
aggregation of frozen clusters later in their flight). This assumption is to some extent valid
in wide and long Laval nozzles, but is inappropriate in micrometer-wide nozzles of millimeter
lengths with microsecond time of flight.

90



6.2. Problem formulation 91

Figure 6.1: Geometry of the nozzle with diameter r, opening angle α and cross-section A.
Direction of expansion is shown with +z. Figure is adapted from [124].

6.2 Problem formulation
The problem formulation was motivated by the experiments performed on a medium expanding
through a nozzle. With the theoretical knowledge of thermodynamics and fluid dynamics, a
model is designed that can be evaluated using molecular dynamics simulation. Because of the
nature of the solved problem, the common simulation software is not suitable for the problem,
as discussed after the conditions for the simulated system are introduced. The novel nature (in
standards for the year 2018) of the implementation is further pronounced with the use of graphics
processing units as the main computational resource. To explain our reasoning for the presented
solution, a brief overview of GPGPU is provided at the end of the problem formulation.

6.2.1 System conditions

The experimental setup is based on two chambers with different pressures (typically one is
saturated vapor and the other is vacuum) separated by a nozzle. When the nozzle is opened,
vapor flows from the storage chamber to a vacuum. The geometry of the nozzle, fig. 6.1, allows
for gas to expand, filling the available volume. This consequently cools down the vapor crossing
to the metastable region, where the formation of droplets is stimulated.

The particular shape of the nozzle is designed for adiabatic expansion, meaning no heat is
removed from the system. This is due to the rapid expansion, where the effects of thermal motion
on the walls are assumed to be without friction. The shape of the nozzle cross-section A(z) can
be formalized as

A(z) =
{
π(r2 − πrz + 2z2) z < 0
π(r + z tan (α/2))2 z ≥ 0

. (6.1)

The vapor is first assumed to behave like ideal gas, allowing for the model to be developed,
but for real vapor behavior, a correction mechanism is proposed in the later part of the study.

p(z) = ρ(z)RT (z)
M

, (6.2)

where R is gas constant, M is molar mass, and ρ is density (not molar). Ideal gas allows us
to use the Mayer formula to relate the heat capacities CV and Cp as CV = Cp − R. Further,
because the process is also adiabatic, it can be described using a polytrope with a coefficient
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ξ = Cp/CV
1. For the purposes of later derivation, the known adiabatic conditions with the

polytropic coefficient ξ are transformed into the differential form through differentiation of the
logarithm of the original condition (the shown formulas are equivalent):

pρ−ξ = const → ∂p

∂z

1
p

= ξ
∂ρ

∂z

1
ρ

(6.3)

Tρ1−ξ = const → ∂T

∂z

1
T

= (ξ − 1)∂ρ
∂z

1
ρ

(6.4)

T ξp1−ξ = const → ∂T

∂z

1
T

= (γ − 1)∂p
∂z

1
p

(6.5)

Related to the adiabatic expansion is the conservation of total mass flux. This means no
particles are lost, e.g., due to deposition on walls. This means that the equation of continuity is
satisfied in the form

Jw(z) = v(z)ρ(z)A(z), (6.6)

where the mass flux Jw depends on the velocity v, density ρ and cross-section A.
The experiment is designed to allow for a continuous stream without interruptions, and

because there are no barriers in the flow, it is considered non-turbulent when in the nozzle. To
anchor the problem in fluid dynamics, the flow is considered to be a compressible stationary flow.
Neglecting further the role of elevation, the Bernoulli equation in the form used by Landau and
Lifshitz [139] as:

0 = ∂

∂z

(
v2

2 +H

)
= ∂

∂z

(
v2

2 + p

ρ

)
(6.7)

Where the original enthalpy H = U + p/ρ is simplified because of the constant internal energy U
leading to the final form of the equation. The Bernoulli equation expresses the preservation of
energy, which is comprised of the kinetic part v2/2 and the enthalpic part. Integrating eq. (6.7)
yields the energy of the simulated system moving through the nozzle with velocity v. This is
useful for verification as well as the derivation of formulas in the next section.

This completes the problem description, where four functions T (z), p(z), ρ(z), and v(z), are
tied together with four eqs. (6.2) and (6.5) to (6.7), which enables the problem solution.

6.2.2 Design aim

The typical nozzle lengths used in this type of experiment are millimeters, and speeds reach
1 km/s (for nitrogen expanding from 500K [138]); therefore, trajectories several µs long are
needed. However, common parallel implementations of molecular dynamics (MD) based on
domain decomposition are inefficient for inhomogeneous systems containing a few clusters in
dilute gas. Most highly efficient codes are oriented on biological systems (e.g., Gromacs) and are
almost always performed at constant temperature; therefore, the single precision arithmetic is
sufficient, and the algorithm may often forget a small interaction close to the potential cutoff
because the thermostat easily fixes such disruptions. In contrast, the expansion is an adiabatic
process, meaning long-term energy conservation is very important. In the previous work of
Klíma and Kolafa [124], that only 1000 molecules were used. This was not sufficient for a good
statistical representation for clusters of sizes up to several hundred molecules.

Therefore, the implicitly parallel MD software developed specifically for highly inhomogeneous
systems was requested. Considering the computational resources available and imposed demands
on the simulation, the Nvidia Graphics processors were selected for the task, partly also because

1Instead of commonly used γ to not confuse with the surface tension
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of the availability of the well-documented CUDA framework [179] at the beginning of the
development.

At the start of the development cycle in 2018, the primary philosophy of the Mac_module
was established. The aim was to reach at least tenfold wall time speedup against the original
serial (or parallel with bad load balancing) implementation in MACSIMUS [126]. Additionally,
the relative energy conservation has to be better than 10−3J/mol ps. The primary focus of
the software was on pure systems of water molecules, followed by testing substances such as
nitrogen or argon (see section 3.2.3 for parametrizations used). These assumptions allowed for
different organization of the data holding structure, potential construction and evaluation, as
well as specifics of individual calculation routines (kernels) to be more adjusted for use on GPUs.
Solving these problems, which are presented in section 6.4, allowed the author to create software
that calculates the given task of supersonic expansion for large heterogeneous systems with a
simulated time span of 1 µs.

6.2.3 Architecture consideration

The GPU (graphics processing unit) and GPGPU (general purpose GPU) hardware specification
and parallel paradigm have to be reflected in the design of the code; otherwise, the performance
gains do not outweigh the invested work. This paradigm is represented with the generally known
rules: throughput-first, coalesced memory accesses, GPU saturation, and branch-less code with
reasonable kernel launch strategies as advised by the CUDA toolkit documentation [180]. With
the basic terminology, here are four specially targeted areas of importance for the solved case. For
specific GPU microarchitecture specifications, consult chapter 19.2 of the documentation [180].

6.2.3.1 Thread divergence

There is a significant difference in the employed parallel paradigm that values memory locality
more than in the CPU case. The reported theoretical scale of parallelism is when groups up
to 32 threads (a group of 32 threads is called a warp) execute the instructions together. This
explains the name single instruction multiple threads (SIMT), which is the parallel architecture
of the NVIDIA GPU’s [180]. This is important when branching in the executed kernel code is
encountered. In that case, the branch (if-then-else statement) execution is serialized, leading to
a decrease in performance due to some threads waiting. We can call this a divergent case as the
condition in code divides threads into two groups that need to be executed.

6.2.3.2 Coalesced access

Another related topic is the coalescing of memory reads and writes. Quoting the CUDA-
programming guide 12.2 [180]: “Global memory resides in device memory, and device memory is
accessed via 32-, 64-, or 128-byte memory transactions.” This means that misaligned data or
data scattered across the memory require more memory loads than just the total size of memory
requested divided by 32 (or 64, or 128). Before the data are available, the warp is asleep or
trying to evaluate other warps for which the data were available. Proper data access pattern,
so-called coalesced access, is a significant factor during optimization. The programmer is tasked
with designing the kernels (or the whole algorithm) in a way that allows threads to read and
write the data into memory in sequential 32, 64, and 128-bit chunks. As will be described later,
this requirement poses a significant issue for any many-body problem as the interaction between
bodies is determined by the Euclidean distance of moving elements, resulting in a scattered
access pattern.
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6.2.3.3 Load balancing

A programatically controled collection of threads is called block. During the execution, these
blocks are allocated to the chip on the different physical Streaming Multiprocessor (SM) where
they are executed. This leads to a heterogeneous nature of execution on the GPU, where the
programmer does not have a direct control over which blocks are executed first. This changing
order of execution of blocks from run to run explains why direct error propagation investigation
is a very complicated problem. Given the essentially random distribution of blocks on SMs, the
task of achieving the desired performance demands that the work is equally distributed among
the available SMs. This is called load balancing, and because of the lack of direct control over
block allocation, it is the task for the programmer to designing blocks with a similar amount of
work in them to fulfill this load balancing requirement.

6.2.3.4 Computational units

One of the downsides of the GPU processor that is relevant to the implementation in this study
is the disparity between the different processing units available. The observed throughput for
double precision operations is up to 64 times less than for single precision ones for low-end
(e.g., GeForce desktop series but also for the recent RTX series) GPUs that are widely available.
Even GPUs dedicated to scientific calculation (e.g., the TESLA series) still have half the double
precision throughput as compared to floating operations. The disparity in precision calculation
is a direct consequence of the original purpose of the GPU, and it has to be accounted for in
any software that requires high numerical precision. The scenario is much worse when special
function units are responsible for the evaluation of trigonometric, exponential, logarithmic, and
square root functions. The programmer has to pay close attention to this disparity when higher
precision is required because most of the functions are approximated to the accuracy of single
precision.

6.3 Problem solution

The initial problem solution was developed in the group led by the author’s supervisor, Jiří
Kolafa, and coleague Martin Klíma during the years 2017–2018 [124]. We will now formulate
the original solution, which was later extended and modified for the purpose of the parallel
implementation by the author. The goal was to remove the low efficiency issue reported by Klíma
and Kolafa in [124]. Higher efficiency enables the simulation of larger systems for a longer period
of time.

The proposed idea for molecular simulation was to design a protocol allowing the simulation
of a system within the expanding medium. The simulated system does not know about the
rest of the medium, while its properties are externally controlled during the expansion. The
primary parameter is the expansion axis coordinate z later related to time. The controlled
properties like the system density (volume) are then evolved based on the simulation time. The
novel approach is the departure from the NV T ensemble, where effects caused by the use of
thermostat cannot be neglected, allowing only the study of the system under equilibrium. The
proposed approach instead enables to perform adiabatic simulations similar to NV E2, where
the expansion is governed in such a way that the adiabatic evolution of the system is preserved.
This expansion protocol then allows for the study of non-equilibrium evolution.

We will now develop the equation necessary for the design of such an expansion protocol.
Relying on the publication by Klíma and Kolafa in [124]. The author’s extension primarily

2The energy conserved is in form of sum of Enthalpy and kinetic energy of the moving system.
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concerns the parallelization and consequent implementation of the protocol into standalone
molecular dynamics simulation software using GPGPU, as presented in section 6.4.

6.3.1 Expansion of ideal gas

The goal of the solution is to obtain an evolution equation for important properties like temper-
ature, density, and velocity. Using the velocity functions, the coordinates can then be related
to time dependence. In this way, the simulation time determines where the simulation box is
located in the nozzle and what the density of the system should be.

The first step is to determine the characteristics of the governing functions to verify that the
used model corresponds to the observed experimental knowledge. For that reason, the Bernoulli
equation for compressible flow in eq. (6.7) is formulated for the ideal gas case

0 = ∂

∂z

[
v2

2 + RTξ

M(ξ − 1)

]
. (6.8)

which is differentiated into:

0 = v
∂v

∂z
+ Rξ

M(ξ − 1)
∂T

∂z
(6.9)

= v
∂v

∂z
+ RTξ

M

∂ρ

∂z

1
ρ
, (6.10)

where the adiabatic condition from eq. (6.4) was used to transform the differencial from tempera-
ture to density.

Taking the continuity eq. (6.6) and transforming it also into the differential form in the same
way as the adiabatic condition gives expression for the density derivative

∂ρ

∂z

1
ρ

= −∂v

∂z

1
v

− ∂A
∂z

1
A
. (6.11)

Inserting eq. (6.11) into eq. (6.10) leads to

0 = v
∂v

∂z
− ξRT

M

(
∂v

∂z

1
v

+ ∂A
∂z

1
A

)
= v

∂v

∂z
− c2

(
∂v

∂z

1
v

+ ∂A
∂z

1
A

)
, (6.12)

where c =
√
ξRT/M represents the speed of sound.

Rewriting the derivatives as logarithms collects the prefactors into the following:

0 = v2∂ ln v
∂z

− c2∂ ln v
∂z

− c2∂ ln A
∂z

∂ ln v
∂z

= 1
(v/c)2 − 1

∂ ln A
∂z

(6.13)

where the final formulation allows to examine the behavior in the region before the nozzle z < 0
and inside the nozzle z > 0. From analysis of eq. (6.13) for z < 0 in conjunction with the
cross-section term ∂ ln A/dz < 0 it follows that v < c. For the eq. (6.13) to be satisfied at z = 0,
the velocity has to be equal to the speed of sound, v(0) = c(0). This provides an important
condition for the flow entering the nozzle. As the flow continues into the nozzle and z increases,
the temperature decreases and the fraction v/c > 1. This means the flow reaches supersonic
velocities. In this way, the ideal gas model agrees with the physical idea of the supersonic
expansion process.
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With the condition v(0) = c(0), the equation for temperature evolution can be derived.
Integrating eq. (6.8) gives the content of the bracket on the left-hand side. Where the initial
enthalpic term for the ideal gas is expressed on the right hand.

v2

2 + RTξ

M(ξ − 1) = RT0ξ

M(ξ − 1) (6.14)

Where T0 is the initial temperature equal to the vapor medium before the valve is released.
Inserting the condition v(0) = c(0) with the formula for the speed of sound defined in eq. (6.12)
and simultaneously holding z = 0 leads to:

ξRT (0)
M

+ RT (0)ξ
M(ξ − 1) = RT0ξ

M(ξ − 1) , (6.15)

which can produce an equation for the temperature of the medium at the nozzle throat.

T (0) = 2T0
ξ + 1 . (6.16)

The speed of sound at the entry to the nozzle follows immediately after, when T (0) is substituted
back into the speed of sound c.

c(0) =
√

2ξRT0
(ξ + 1)M (6.17)

To continue developing the formula for velocity from eq. (6.14), expressing the density and
temperature arbitrary z is required. For that reason, the adiabatic condition eq. (6.4) in the
integrated form is used to relate densities with the derived entry temperature T (0) and the initial
temperature T0. The same relation can also be expressed from eq. (6.16) leading to the following
equalities: (

ρ(0)
ρ0

)ξ−1
= T (0)

t0
= 2
ξ + 1 . (6.18)

The first equality can also be used to evaluate density at z from the knowledge of the temperature
at z.

Inserting eqs. (6.17) and (6.18) into eq. (6.14) leads to an equation for the velocity only in
terms of the initial values T0, ρ0 and density ρ:

v2

2 + RT0ξ

M(ξ − 1)

(
ρ

ρ0

)ξ−1
= RT0ξ

M(ξ − 1) (6.19)

The only property left to be determined is density. For that purpose, the continuity equation
in eq. (6.6) can be utilized as ρ = Jw/vA. Remembering the flux Jw is assumed constant, the
initial conditions for flux in the combination with eqs. (6.17) and (6.18) can be used again to
express the flow only with the means apriori known properties as:

Jw =
( 2
ξ + 1

) 1
ξ−1

√
2RT0ξ

M(ξ − 1)ρ0A(0) (6.20)

The dependence of density on velocity makes the eq. (6.19) transcendental in velocity and explains
why no direct solution is povided and the equation is solved numerically. Note that two solutions
are obtained from eq. (6.19); the bigger root is used for the system within the nozzle z > 0, while
the smaller root may be utilized for the system before entering the nozzle z < 0.
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Information about the expanding system is completed with the relation for the simulation
time. The formula follows directly from integration of the obtained velocity

t =
∫ z

0

1
v(s)ds. (6.21)

The integrated coordinate s is used from the entry point to the current location z in the nozzle.
In this way, the problem is now fully determined with the necessary formulas for the evaluation

of temperature, density, velocity, and time. The primary input for the integration method is the
density evolution ρ(t). All the equations are valid in the case of ideal gas expansion which is
adjusted for the real gas in next section.

6.3.2 Model schema

Up to this point, the expansion was assumed to behave like ideal gas; this allowed us to formulate
the necessary equations for flux as well as others to be able to perform simulations of an expanding
system. However, nucleation not only modifies the equation state, but also introduces time
factor. We need an expansion protocol, ρ(t), that would be consistent with the equations of fluid
dynamics.

Since high-precision energy conservation is required, the symplectic Verlet method is required.
We have chosen Leap-frog described in section 3.4.3.2 as an integrator and SHAKE from
section 3.4.4.2 for constraints. Using a box expansion protocol, ρ(t), leads to the same requirement
as for the Nosé–Hoover thermostat and similar methods, namely that velocities are required
before they are calculated. We chose the TRVP method [127] with good time reversibility,
although symplecticity is slightly violated.

Following the model formulation in section 6.2.1 for a simulation cell carved out from an
expanding beam, it means that the cell enthalpy, H, plus the flow kinetic energy, Eflow, of the
cell is constant, eq. (6.7). The sum of these parts is the total energy of the system:

Etot = H + Eflow = const, (6.22)

Note that the simulation box itself is periodic, and its momentum is zero. The energy Eflow can
be obtained by integrating the pressure-volume work using second-order formulas for numerical
derivatives to obtain

Eflow(t+ ∆t) = Eflow(t) − V (t) + V (t+ ∆t)
2 · [p(t+ ∆t) − p(t)] (6.23)

It can be seen that for a very fine sampling of the system, using eq. (6.23) is not a cost-effective
solution because of the configuration pressure calculation required in the formula. For regular
large-scale simulation, this is not suitable, and an alternative approach is proposed that does not
incur significant error.

We have performed several numerical tests to verify that the total energy eq. (6.22) is constant
with sufficient precision (for example, see section 6.6.1). In turn, we can safely use equation
Eflow(t) = H(0) −H(t), where the flow velocity at t = 0 is zero.

From eq. (6.7), kinetic energy of the flow can be directly calculated as Eflow = mż2/2, where
m is the box mass. Expressing the velocity from the two fomulations for Eflow(t) gives

v(t)2 = 2(H(0) −H(t))
m

(6.24)

Form velocity v(t), the position, z, of the simulation box in the nozzle, is gathered as integral

z(t) = z0 +
∫ t

0
v(τ)dτ. (6.25)
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With position, the relations for nozzle cross-section A(z) follow from eq. (6.1) allowing the
evaluation of mass flux Jw according to eq. (6.6). According to the assumed steady state flow,
the flux has to be constant, which is the basis of the adjustment from the ideal gas case to the
real gas represented by the molecular model.

Real gas adjustment The method for the correction was designed by Martin Klíma (for
a more detailed explanation, see [123, 125]). In principle, a predictor in the form of an ideal
gas approximation is being iteratively corrected with short simulation runs of 200 ps to achieve
constant flux Jw.

This iteration is done for smaller systems, where the cost of multiple restarts of the simulation
is manageable. In this way, a density evolution ρ(t) for real gas in the form of piecewise linear
interpolation sampled at 200 ps intervals is obtained. For production systems, this dependence is
scaled to fit the desired system size, making no larger error than ±2.5% in flux conservation.
This accuracy is sufficient to consistently bind the microscopic description obtained from MD
with fluid dynamics. Because the ρ(t) is precalculated, no expansion model needs to be employed.

6.4 Parallel solution

The bottom-up algorithm design was adopted, with most of the work dedicated to the GPU. For
the single component case, where the number of molecules must be multiple of 32. Furthermore,
all the data in matrix form are flattened, which is better for coalescing. The molecular structure
is hardwired into the software and loaded into constant memory before computation. The user
input and output processing are done on the host side and are omitted from the description.

Our MD code customarily (see section 3.4.6) consists of three costly steps. The most time
consuming part is force evaluation. Second is the Verlet list construction (or update), which can
technically become more demanding but is executed less often. The integration of the equations
of motion together with SHAKE follows.

Thanks to using the TRVP predictor, SHAKE is the only remaining iterative method. A fixed
number of iterations SHAKE (15) is used with superrelaxation to guarantee sufficient relative
precision better than 10−10. Note that in the publication by Klíma and Kolafa [124] the accuracy
threshold of only 10−7 was used, which led to a (still acceptable) but suboptimal energy drift of
0.4% per µs.

In this section, the key points of our parallel solution implementation are addressed. The
underlying data structure is addressed first with a discussion of why double precision is necessary.
An explanation of interaction holding structure choice follows next, along with examples of how
the Verlet list is being processed.

6.4.1 Data representation

During the simulation, precision and related energy conservation are of great importance (more
so than execution speed). The design shown in fig. 6.2 of the holding structure for positions
and velocities is therefore designed as a so-called center of mass (CM) scheme with a focus on
precision. The CM scheme describes each molecule, i.e., SPC/E water by the x, y, z center of
mass vectors of length N and x, y, z relative atoms vectors of length N nsites.

This design has several advantages over the commonly employed absolute atomic (x, y, z)
values (positions, velocities), namely:

• Verlet list can be constructed at the molecular level, lowering the complexity while preserving
coalesced access to data.
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atomistic: CoM:

Figure 6.2: Representation of center of mass description in coparison with atomistic description
for SPC/E water model. Vectors show the mutual interaction evaluation for both descriptions.

• A preemptive cutoff distance check at the molecular level can be employed, removing the
need for further inter-molecular distance during force evaluation.

• Rounding errors of potential calculation are diminished.

• A similar error diminishing is observed for SHAKE constraint calculation.

The last error of calculation is less visible with the use of double precision, but it is necessary and
even more so for the mixed single/double approach used in the implementation. To elaborate on
the precision concerns, the errors are incurred for the large box sizes present for dilute systems
in the latter parts of the expansion. In this scenario, distant molecules are being compared
while their intermolecular structure remains the same. This means numbers are compared with
different orders of magnitude, which leads to larger rounding errors.

Even for small systems and boxes this is clearly observable when energy conservation is
studied in an adiabatic simulation for the same simulation conditions but with different precision
and using the CM technique. In fig. 6.3, the case of float precision shows a dramatic difference of
four orders of magnitude in the energy drift of cases with and without CM. This example case
shows why single precision is unfeasible for the adiabatic simulations. Figure 6.3 also shows that
float precision with CM cannot replace double precision because the required energy conservation
below 0.5% per µs is not achieved. Quick calculations yield that more than 2000× improvement
is required, which is achieved only for double precision. To conclude, double precision is required
for adiabatic simulation, where energy conservation is critical. In consequence this condition
limits the potential speedup for some GPUs, which can differ in throughput up to 64× between
single precision and double precision due to the computation units available.

6.4.2 Interaction structure

With the mentioned requirements for performance and taking into account the overview [200], the
initial MD module was designed as a brute force approach to check the efficiency of the available
parallelism and tackle the potential for parallelization available within interaction evaluation. In
the case, where the CM approach is used and only molecular centers are evaluated, this results
in an N2 interaction calculation for the force update during a single iteration.
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Figure 6.3: Total energy conservation graphs from NV E ensemble simulations of bulk SPC/E
water with same conditions N = 2048, T0 = 350 K, ρ0 = 997 kg/m3 and different combination
of precision and scheme settings all using same 1fs timestep . Notice that the single precision
NoCM is drawn with the right-hand side axis

In this sense it can be also thought that brute force is a good fit for a GPU with enough
parallelism and good access. But the available computation resources quickly become insufficient
with increasing N making an optimization of interaction evaluation a necessity. There is also the
issue of the overwhelming number of zero interactions (zero force and zero potential energy),
as shown in fig. 6.4. Memory throughput is therefore being wasted on interactions that do not
contribute to the evolution of the system. The figure shows this effect for two systems with
different densities, one chosen as vapor and the other as liquid for the SPC/E water model. The
examined clustered case is located between the two shown border cases.

There are two popular approaches to mitigate the calculation of zero interactions. Methods
based on domain decomposition (as the linked-cell list method) that divide the system volume with
an artificial grid and evaluate the interaction between molecules based on cell identity. This is a
popular method for homogeneous systems where similar cell occupancy can be guaranteed. For an
inhomogeneous system, domain decomposition becomes inefficient, and additional operations to
preserve load balancing are necessary. Most of the load balancing constitutes sorting algorithms,
which impose additional complexity. Moreover for expanding systems there is a need for increasing
number of domains significantly decreasing the effectivity of this approach.

We have therefore chosen the approach using the Verlet list [5,78]. This has already been tried
with homogeneous system simulation on GPU [84,195]. The Verlet list preserves the information
of the nearest neighbors for each particle in the system. This is similar to the working principle
of the naive criterion described in section 4.2.1. The choice of the Verlet list reach is calculated
as the potential cutoff plus padding. The padding is added to reduce the need to update the list
because its construction complexity is O(n2). This temporal nature and the consequent need for
reconstruction is the known downside of the Verlet list, but it can be amortized when performed
only when necessary and with low frequency. But for expanding system the Verlet list preserve
its structure.

In fig. 6.4 the effectivity of the padded Verlet list in removing the zero interaction is shown in
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Figure 6.4: Visualization of force interactions percentage in different systems sizes and two
densities corresponding to homogeneous vapor and liquid and with cutoffs defined vide infra.
Comparison of strictly necessary interactions (green) with considered interactions in case of full
interaction matrix (blue) and padded Verlet list (orange)

comparison with the actual nonzero interaction. The cutoff padding is chosen as a compromise
between the lifetime of the Verlet list and the zero interactions included in the padded list, and
in practice, it can reach up to 50% of the potential cutoff.

The construction and subsequent reconstructions are performed on GPUs, which eliminates
the need for exchanging position vectors between the host and device. The Verlet list can be
viewed as a sparse matrix of j indexes with a jagged structure, i.e., only the first elements of
each row are valid interaction indices. Index i is inferred from the row during the accession of
the structure. Verlet list structure row lengths remain uneven as molecules have varying number
of neighbors, which is the consequence of system being inhomogeneous. Even with the uneven
structure Verlet list is better candidate for expanding systems. Because as the system expands
and distances between molecules widen the Verlet list contains on average less nonzero interaction
that need to be evaluated. This means the simulation is sped as time progresses up instead of
slowing down as is the case for link cell list method.

For list construction, the original two-loop iteration over all i, j molecule combinations is
replaced by kernel launch in a 2D grid of 1D blocks with the number of threads adjusted for
specific hardware. As shown in listing 1, the block shares molecules j between all threads while
each thread evaluates interaction with its own molecule i. This allows coalescing of the global
memory reads, but the primary reason is the reuse of the loaded memory. For memory writes the
situation is not as simple, because the pair interaction depends on the condition of the nolecular
distance being below the verlet_cutoff. From the performance analysis and with testing of
the different access patterns, the use of atomic operations was chosen as the best option for
incrementing the interaction indices into the Verlet structure.

Notice that only the blocks operating on the same row i can be in conflict during an atomic
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operation. Moreover, all interactions are investigated for Verlet list construction, and not only
half like is the common practice on CPUs. This removes the scatter pattern during writing into
memory. Another reason is the reduction of conflicts during atomic access to memory. As a
consequence, the same molecule interaction with itself is resolved in the condition dr > 0.0 on
line 36 in listing 1.

1 __global__ void verlet_reconstruct ( value_t * d_position_x ,
2 value_t * d_position_y ,
3 value_t * d_position_z ,
4 unsigned int* d_verlet ,
5 unsigned int* d_verlet_occupancy )
6 {
7 extern __shared__ value3_t j_positions [];
8 value3_t i_position ;
9 value_t dx ,dy ,dz ,dr2;

10 int i;
11 int row_id = blockIdx .x * blockDim .x + threadIdx .x;
12 int coll_id = blockIdx .y * blockDim .x + threadIdx .x;
13
14 // all threads load position_i
15 i_position .x = d_position_x [ row_id ];
16 i_position .y = d_position_y [ row_id ];
17 i_position .z = d_position_z [ row_id ];
18
19 // load the data into shared memory
20 j_positions [ threadIdx .x].x = d_position_x [ coll_id ];
21 j_positions [ threadIdx .x].y = d_position_y [ coll_id ];
22 j_positions [ threadIdx .x].z = d_position_z [ coll_id ];
23 __syncthreads ();
24
25 for (i = 0; i < blockDim .x; i++)
26 {
27 dx = i_position .x - j_positions [i].x;
28 dx -= d_lx*round(dx/d_lx);
29 dy = i_position .y - j_positions [i].y;
30 dy -= d_ly*round(dy/d_ly);
31 dz = i_position .z - j_positions [i].z;
32 dz -= d_lz*round(dz/d_lz);
33
34 dr = dx*dx+dy*dy+dz*dz;
35
36 if(dr2 < d_cutoff_verlet * d_cutoff_verlet && dr2 > 0.0)
37 {
38 // save the index the actual position save the index
39 d_verlet [ row_id * VERLET_WIDTH + atomicInc (& d_verlet_occupancy [ row_id ],

VERLET_WIDTH +1)] = blockIdx .y * blockDim .x+i;
40 }
41 }
42 }

Listing 1: Verlet reconstruction kernel for general precision value_t.

Please note that the kernel shown in listing 1 is an example to elucidate the operation
principle, and as such, it is without optimization used in our final simulation code. Further
optimization include: shared memory is also utilized to collect the produced interaction indexes,
leading to a single write into the Verlet structure. To diminish the register intensity of the
kernel, local variables are reused, data types are reduced based on maximal limits, and loops are
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unrolled.

paragraph name A more elaborate optimization technique is aimed at the size of the Verlet
list and its sparsity. Because of the discussed effect the expanding system has on the structure,
it becomes progressively more beneficial to convert the Verlet list into its dense form. This
means the empty tails of the rows are removed. This can be achieved by precalculating or
approximating the size of the Verlet list, which is allocated and then filled with interactions. In
this case, the padding is increased up to 50% to extend the lifetime of the list that is essentially
constructed twice (first is calculating the row lengths, and the second fills the interactions). To
lessen the computational strain, an approximation of the size is used based on the previous list,
and expensive recalculations are done less frequently.

The Verlet list construction is an O(n2) operation, which is amortized by the number of force
evaluations the list remains useful. In our design, we adjust the Verlet list padding so that at
least between 15 − 100 force evaluations can be achieved per one list construction. The list’s
longevity depends on the maximum distance any molecule from the list has traveled. When this
value exceeds the Verlet list padding, the list needs to be reconstructed. This is to prohibit the
loss of interaction due to molecules flying from outside the Verlet list reaching the interaction
cutoff.

6.4.3 Interaction potential

Although the Lennard-Jones and charge–charge terms in the intermolecular potential seem to be
simple enough not to require any special treatment, it is not true if we realize that they must be
not only cut off, but also smoothed for use in molecular dynamics see section 3.2.2.2. However,
this means that the evaluation kernel would need to switch between the short-range (original),
smoothed, and zero part, which slows down the parallel execution. We thus used splines, where
conditions are replaced by cast to integer pointing into a lookup table in constant memory.

As a compromise between the sizes of the spline constant tables and accuracy, a quartic
splines for the potential were used. Another point to consider is whether to use the atom–atom
separation r or its square r2 (which is directly available in the code) as the independent variable.
Since the necessary range to cover is much wider in the latter case, leading to bulky tables, we
decided to opt for square root evaluation and to spline the intermolecular potentials as a function
of r. The quartic polynomial in each interval is constructed from five conditions: the potential
values and derivatives at the interval ends, and the value at the center of the interval.

The Lennard-Jones potential was replaced by splines in the interval [∆r, 3σLJ], where ∆r =
σLJ/32 is the grid and σLJ = 3.165558 Å is the Lennard-Jones collision diameter. The cutoff was
4σLJ. In the interval [3σLJ, 4σLJ], the potential was replaced by a single quartic polynomial (i.e.,
all spline coefficients in this interval were identical) with zero potential and force for 4σLJ and
the additional condition u(3.5σLJ) = 0.2u(3σLJ) which gave the optically smoothest decay to
zero at the cutoff.

The 1/r term in the Coulomb energy is shifted, cut off, and smoothly sewn to zero,

1
r

≈


1/r − S, for r < αc,

(r − αc)3(A+Br), for αc < r < c,

0, for c < r.

(6.26)

A previously tested [129] cutoff c = 12.6875 Å ≈ 4σLJ and α = 142/203 which is close to the
recommended α = 0.7 was used. Parameters S,A,B are determined so that the potential and
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forces are continuous. The potential is expressed by quartic splines as above with grid 1 Å/32;
again, all polynomials for αc < r < c are the same.

The forces are the minus gradients of the potentials; therefore, they are expressed by cubic
splines. Note that these splines do not satisfy the common condition of continuous derivatives.
However, with regard to our concern, jumps in the derivatives of the forces do not impact energy
conservation. The alternative approach, which uses the same order of splines for both forces
and energy, leads to noisy total energy, although this error does not accumulate. This is a less
preferable option. In the possible memory bound problem (the evaluation is restricted by memory
access), a slightly costlier calculation of energy is not an issue.

6.4.4 Force evaluation

The most expensive part is the force evaluation, performed in full (both i, j and redundant j, i
interactions are evaluated) once in each iteration. For a fixed system size N the complexity of
the evaluation is governed by the number of interactions, as shown in fig. 6.4. The interactions
for liquid and vapor systems substantially differ, and nucleating system are initially located in
between (due to the expansion they eventually have less intarection than vapor). This is related
to already discussed jagged structure of the Verlet list, particularly when clusters of higher than
bulk vapor density are present in the system. To effectively access this Verlet list, a multitude
of force evaluation schemes were tried in the initial stages of the development. The results
obtained for older GPU were later deemed irrelevant for more powerful GPUs used later, opting
for a simpler solution that can be extended to adapt to the different GPU microarchitecture
specifications.

In our molecular-based design, the force evaluation proceeds at three conceptual levels. The
top level in listing 2 corresponds to the grid and kernel launches, ensuring the forces from the
last time-step are cleaned. This way, conditions can be removed from the force evaluation kernel.
Top level also calculates grid size for the flattened Verlet structure, with row length being, in
the worst-case scenario, the number of molecules. The individual blocks are 2D rectangles of
threads, where the x dimension corresponds to a row of the Verlet structure and the y dimension
is utilizing the instruction-level parallelism (ILP) technique to increase the amount of work done
by a single thread.

In the second level, the interactions between molecules are calculated according to listing 3.
The holding structure is accessed to obtain the relevant interaction pair, which calculates the
force and potential energy contribution to the i-th (id_i in the listings) molecule from the j-th
molecule (id_j in the listings). This presents a particular challenge with the access pattern.
Coalesced access to the i molecule is achieved, but j-th molecules are accesses through indexes
in the Verlet list. And while Verlet list access is coalesced, the positions of j-th molecules
are scattered. This is not an issue that a different holding structure could correct [85, 195] as
molecules are distributed through the system, which is the consequence of thermal motion. To
amend this issue, we have considered three options:

• The indexes in the Verlet list may be sorted, which may result in less scattered access.

– This is only partially effective and brings benefits for systems with a density close to
that of liquid.

• The indexes in the Verlet list may be replaced with positions.

– Best access pattern fully with coalesced read.
– Is memory demanding because integer index is replaced by 3 ∗ (1 + nsites) double

values.
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1 void force_calculation ( value_t * d_position_x_in ,
2 value_t * d_position_y_in ,
3 value_t * d_position_z_in ,
4 value_t * d_position_ref_x_in ,
5 value_t * d_position_ref_y_in ,
6 value_t * d_position_ref_z_in ,
7 value_t * d_force_ref_x_in ,
8 value_t * d_force_ref_y_in ,
9 value_t * d_force_ref_z_in ,

10 value_t *d_epot_in ,
11 unsigned int* d_verlet )
12 {
13 thread_per_block = 32;
14 nblock = sysp. molecule_count_aligned / thread_per_block
15 WORKLOAD = 16;
16
17 dim3 thread_p_block ( thread_per_block ,sysp. molecule_count_aligned / WORKLOAD );
18
19 // clean force vetors form last iteration
20 set_zero <<< nblock *N_SITES , thread_per_block >>>( d_force_ref_x_in );
21 set_zero <<< nblock *N_SITES , thread_per_block >>>( d_force_ref_y_in );
22 set_zero <<< nblock *N_SITES , thread_per_block >>>( d_force_ref_z_in );
23
24 // clean potential energy vetor form last iteration
25 set_zero <<<nblock , thread_per_block >>>( d_epot_in );
26
27 // calculate new forces
28 n_body_vmk <<<nblock , thread_p_block >>>
29 ( d_position_x_in , d_position_y_in , d_position_z_in ,
30 d_position_ref_x_in , d_position_ref_y_in , d_position_ref_z_in ,
31 d_force_ref_x_in , d_force_ref_y_in , d_force_ref_z_in ,
32 d_epot_in , d_verlet );
33
34 cudaSafeKernell ();
35 return ;
36 }

Listing 2: Force calculation function for general precision value_t equal to double.

– Imposes an update of the Verlet list in each timestep which becomes similarly inefective
like domain decomposition methods.

• Rely on the caching capabilities of the GPU and ensure that even the scattered access
yields useful data.

– Requires optimization of data structure.
– Is very hardware dependent (size of cache).
– Is easiest to implement.

Based on the trial implementation of the three options, the last one was found to be the most
cost-effective when applied to the solution in listing 3. The first option was employed partly in
the optimization of the Verlet list memory writes.

Memory writing can be again performed in a coalesced manner, because contributions are
written only to the molecule i. This means force contributions j are not recycled, as doing so
would incur scatter write into memory with multiple conflicts. Therefore, the locally incremented
force and potential energy are only attributed to the i-th molecules, and the kernel is launched
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on the “whole” Verlet list rather than its “half”. In this design, multiple blocks can operate on a
single row, requiring the use of atomic operations for writing out the results. The use of atomic
operations prevents the data race and is more effective than the synchronization of results into
temporary variables with subsequent reduction. The maximum possible conflict is determined
by the number of molecules divided by the workload, which can be fine-tuned for the examined
system size.

1 __global__ void molecule_interaction ( value_t * d_position_x_in ,
2 value_t * d_position_y_in ,
3 value_t * d_position_z_in ,
4 value_t * d_position_ref_x_in ,
5 value_t * d_position_ref_y_in ,
6 value_t * d_position_ref_z_in ,
7 value_t * d_force_x_in ,
8 value_t * d_force_y_in ,
9 value_t * d_force_z_in ,

10 value_t *d_epot_in ,
11 unsigned int* d_verlet )
12 {
13 unsigned int id_i = ( blockDim .x* blockIdx .x + threadIdx .x);
14 unsigned int id_j = VERLET_WIDTH *id_i+ threadIdx .y;
15 value_t output [3* N_SITES +1] = {0.0}; // store atomistic forces + energy
16 value_t dx ,dy ,dz;
17
18 // processing of sequence j indexes
19 for (int ii= 0; ii < blockDim .y; ii ++)
20 {
21 dx = d_position_x_in [id_i] - d_position_x_in [ d_verlet [id_j ]];
22 dx -= d_lx*round(dx/d_lx);
23 dy = d_position_y_in [id_i] - d_position_y_in [ d_verlet [id_j ]];
24 dy -= d_ly*round(dy/d_ly);
25 dz = d_position_z_in [id_i] - d_position_z_in [ d_verlet [id_j ]];
26 dz -= d_lz*round(dz/d_lz);
27
28 // substance specific interaction evaluation
29 mol_interaction (id_i , d_verlet [id_j],
30 dx , dy , dz ,
31 d_position_ref_x_in ,
32 d_position_ref_y_in ,
33 d_position_ref_z_in ,
34 output );
35 WORKLOAD ++; // increment ro preserve coalesced access for id_j
36 }
37
38 // increment the atomistic forces for sites of molecule i
39 for(int i=0; i< N_SITES ; i++)
40 {
41 atomicAdd (& d_force_x_in [ N_SITES *id_i+i], output [1+3*i]);
42 atomicAdd (& d_force_y_in [ N_SITES *id_i+i], output [2+3*i]);
43 atomicAdd (& d_force_z_in [ N_SITES *id_i+i], output [3+3*i]);
44 }
45 // increment potential energy for molecule i
46 atomicAdd (& d_epot_in [id_i], output [0]);
47
48 return ;
49 }

Listing 3: N-body evaluation kernel for general precision value_t.
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The interactions are being accessed in chunks of the y-dimension of the block and processed.
For each interaction, the molecular distance is calculated and forwarded into the device function,
evaluating interactions between the atoms of the molecules i and j according to the molecular
structure section 3.2.3. The case of SPC/E is shown in listing 4. The partial results are
accumulated into the local variable output. The output contains the force and potential energy
contribution to i from all evaluated j. In the example case, all the conditions for evaluating
the empty interaction are left to the generic mol_interaction function. This is possible for the
single component case, where the Verlet structure uses the same row index to indicate the invalid
interaction. Calculating with the same indices results in zero distance, which results in the zero
contribution, as was desired. This is shown in listing 6 on the line 5.

1 __device__ void spce_interaction ( unsigned int id_i ,
2 unsigned int id_j ,
3 value_t dx ,
4 value_t dy ,
5 value_t dz ,
6 value_t * d_pos_ref_x ,
7 value_t * d_pos_ref_y ,
8 value_t * d_pos_ref_z ,
9 value_t * output )

10 {
11 value_t dx_atm ,dy_atm , dz_atm ;
12
13 dx_atm = dx +( d_pos_ref_x [ N_SITES *id_i] -d_pos_ref_x [ N_SITES *id_j ]);
14 dy_atm = dy +( d_pos_ref_y [ N_SITES *id_i] -d_pos_ref_y [ N_SITES *id_j ]);
15 dz_atm = dz +( d_pos_ref_z [ N_SITES *id_i] -d_pos_ref_z [ N_SITES *id_j ]);
16
17 // LJ interaction between O-O
18 lj_spline (dx_atm , dy_atm , dz_atm , 0, output );
19
20 // electrostatic interaction
21 for (int ii = 0; ii < N_SITES ; ii ++)
22 {
23 for (int jj = 0; jj < N_SITES ; jj ++)
24 {
25 dx_atm = dx +( d_pos_ref_x [ N_SITES *id_i+ii] -d_pos_ref_x [ N_SITES *id_j+jj]);
26 dy_atm = dy +( d_pos_ref_y [ N_SITES *id_i+ii] -d_pos_ref_y [ N_SITES *id_j+jj]);
27 dz_atm = dz +( d_pos_ref_z [ N_SITES *id_i+ii] -d_pos_ref_z [ N_SITES *id_j+jj]);
28
29 lj_elspline (dx_atm , dy_atm , dz_atm ,
30 ii , d_mol_charge_template [ii]* d_mol_charge_template [jj],
31 output );
32 }
33 }
34 }

Listing 4: Evaluation of SPC/E–SPC/E interaction.

The last conceptual level is the forcefield evaluation. At this point, the device functions
are written using macros (see listing 6) to contain all the substance–specific properties of the
spline designed according to section 6.4.3. The example of a macro block for SPC/E is shown in
listing 5. This device function is responsible for accumulating the potential energy and force
from the lowest-level function into the output structure.

The lowest level functions of the potential and force perform a lookup in the table containing
the appropriate spline. The table is stored in the constant memory loaded at the start of the
simulation, along with spline-specific parameters. The grid constant for the potential ∆r named in



108 6. Simulation of supersonic expansion

1 __device__ void lj_spline ( value_t dx_in , value_t dy_in , value_t dz_in ,
2 int i_in , value_t * output )
3 {
4 value_t dr_fr; // dr later recycled to fr value of force
5
6 // for SPCE version lj_force , lj_pot r is required
7 dr_fr = sqrt(dx_in*dx_in +dy_in*dy_in +dz_in*dz_in);
8
9 output [0] += lj_pot (dr_fr);

10 dr_fr = lj_for (dr_fr)/( dr_fr);
11
12 output [1+3* i_in] += dr_fr*dx_in;
13 output [2+3* i_in] += dr_fr*dy_in;
14 output [3+3* i_in] += dr_fr*dz_in;
15
16 return ;
17 }

Listing 5: Spline evaluation for case of SPC/E.

the program as POT_WIDTH and the minimal/maximal effective indices MIN_SIZE/MAX_SIZE
of the spline. For a single component, this has proven to be the best performing solution, allowing
a significant reduction in the number of branches in the program. The end results of the force

1 __device__ value_t lj_pot ( value_t x)
2 {
3 unsigned int i;
4 // get lookup table index
5 i=( unsigned int)(x* POT_WIDTH );
6 if (i< MIN_SIZE || i> MAX_SIZE )
7 {
8 return 0.0;
9 }

10 #if POT_COLL == 3 // case of quadratic spline
11 i *= 3;
12 return d_pot_spline [i] +x*( d_pot_spline [i+1] +x*( d_pot_spline [i+2]));
13 #elif POT_COLL == 4 // case of cubic spline
14 i *= 4;
15 return d_pot_spline [i] +x*( d_pot_spline [i+1] +x*( d_pot_spline [i+2] +x*(

d_pot_spline [i+3])));
16 #elif POT_COLL == 5 // case of biquadratic spline
17 i *= 5;
18 return d_pot_spline [i] +x*( d_pot_spline [i+1] +x*( d_pot_spline [i+2] +x*(

d_pot_spline [i+3] +x*( d_pot_spline [i+4]))));
19 #endif
20 }

Listing 6: Interaction potential in form of lookup table interaction.
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calculation are x, y, z atomistic force vectors and the potential energy calculated for molecule i.
The division shown here represents the code structure, which was designed for feature separation,
aiding in cases of issues or applying optimizations. Similarly, like in the case of the Verlet
structure, the code sample shown here differs from the routines used in our final calculations
lacking further optimizations. The optimization generally makes the program harder to read
and understand, which motivated their removal from the samples. Let us briefly mention a few
further optimization: register strain reduction with variables recycling (illustrated in listing 5
lines 7 and 10), explicit loop unrolling with (i.e., on lines 21 and 23 in listing 4).

6.4.5 Propagator along given density–time dependence

The symplectic (therefore, time-reversible) Verlet-class propagators (including SHAKE for
maintaining bond lengths) are not suitable for integrating the equations of motions with the right-
hand side depending on velocities because velocities v(t) at time t can be calculated only after
the step from t to t+ ∆t has been finished. Such equations appear not only in thermostats and
barostats implemented by the extended Lagrangian approach, but also for expansion controlled
by a given density–time dependence. There are three groups of methods available to overcome
this missing knowledge: (i) time-reversible methods based on the Trotter decomposition on the
Liouville operator [159], (ii) iterations, where the step (including SHAKE) starts with the first
guess of v(t) and is repeated until accurate enough [231], and (iii) predicting the velocities by the
TRVP method [128]. The last method is the simplest and most suitable for GPUs because all
steps (including SHAKE) are performed sequentially only once. We are aware of other potentially
suitable methods, like modified Gear methods with good time reversibility, examined by Janek
and Kolafa in [110]; however, more research is required before they can be applied to models
with constraints.

The schema starts with a prediction of molecular velocities at time t using the time-reversible
velocity predictor [128] of order k = 2 shown in eq. (6.27). The predictor is, in contrast with [124],
applied only to the centers of mass because the relative distances of the centers of mass change
over time. In turn, there is no product of velocities subtracted in eq. (6.34).

Next, the box rescaling parameters Θ and vCM
f are calculated with eqs. (6.28) and (6.29). The

required values of V and l = V 1/3 are simply obtained from the density–time dependence and
not integrated as in isobaric simulations. Forces acting on atoms f j are calculated in eq. (6.38)
using global atom positions rg

j = rCM
i + rj , where CM denotes the center of mass of molecule i

and rj are relative to the CM. Further, the classical Leap-frog schema in eqs. (6.34) and (6.35)
is performed, and the resulting positions are rescaled by Θ(t+ ∆t/2) in eq. (6.36). The periodic
boundary conditions are applied to the resulting centers of mass. Then, the Leap-frog schema is
performed for atomic coordinates in eqs. (6.36) and (6.39). When constraints are present, the
SHAKE algorithm is applied to update the relative positions of atoms in eq. (6.41). The update
ensures constraints but invalidates the velocities of atoms, which are recalculated as differences
in positions according to eq. (3.39). The kinetic energy is then calculated based on updated
atomic velocities and molecular velocity, which, because of the preservation of CM by SHAKE,
remains unchaged.

In the following algorithm given in the form of equations, index i denotes particles and j
interaction sites;

∑
j∈i denotes a sum over all sites of molecule i.
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vCM
i (t) = 5

3v
CM
i (t− ∆t/2) − 5

6v
CM
i (t− 3∆t/2) + 1

6v
CM
i (t− 5∆t/2) (6.27)

Θ(t+ ∆t/2) =
[
V (t+ ∆t)
V (t)

] 1
3

(6.28)

vCM
f (t) = 1

∆t ln
[
l(t+ ∆t/2)
l(t− ∆t/2)

]
(6.29)

f j(t) = − ∂U

∂rjg(t) (6.30)

f CM
i (t) =

∑
j∈i

f j(t) (6.31)

v̇CM
i (t) = f CM

i (t)
mi

− vCM
f (t) · vCM

i (t) (6.32)

v̇j(t) =
f j(t)
mj

− f CM
i (t)
mi

(6.33)

vCM
i (t+ ∆t/2) = vCM

i (t− ∆t/2) + ∆t · v̇CM
i (t) (6.34)

rCM
i (t+ ∆t) = rCM

i (t) + ∆t · vCM
i (t+ ∆t/2) (6.35)

rCM
i (t+ ∆t) = rCM

i (t+ ∆t) · Θ(t+ ∆t/2) (6.36)
l = l · Θ(t+ ∆t/2) (6.37)
Periodic boundary conditions crop (6.38)

vj(t+ ∆t/2) = vj(t− ∆t/2) + ∆t · v̇j(t) (6.39)
rj(t+ ∆t) = rj(t) + ∆t · vj(t+ ∆t/2) (6.40)
rj(t+ ∆t) = SHAKE (rj) (6.41)

vj(t+ ∆t/2) = (rj(t+ ∆t) − rj(t))/∆t (6.42)
Ekin(t+ ∆t/2) (6.43)

6.5 Evaluation of characteristics

6.5.1 Cluster temperature

Connected with the system energy is the temperature, which is readily from the kinetic energy. To
investigate the temperature of a cluster, we first need to define the co-called cluster temperature

Tcl = 2(Ekin,c − Etr,c)
kB(DoFc − 3) . (6.44)

Here the kinetic energy of cluster Ekin,c is divided by the Boltzmann constant and the degrees
of freedom of cluster DoFc from which 3 is subtracted for conserved momenta in the periodic
boundary conditions. Because the cluster is also moving, the kinetic energy caused by this
movement Etr,c needs to be subtracted. The movement of the cluster is calculated from the
center of mass of the cluster, which is substituted into the kinetic energy formula

Etr,c = 1
2mc

∣∣∣∣∣∣
(

Nc∑
i=1

mivi

)2∣∣∣∣∣∣ . (6.45)

In this equation, Nc is the number of molecules in the cluster, and mc is the total mass of the
cluster obtained from the individual masses of molecules mi. For SPC/E water, the masses
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Figure 6.5: Concept of cross-section calculation using a ray and shadow analogy. Rays are
shown as yellow arrows and shadow cast by molecular cluster is grey are shown in grid. Cluster
systematic rotation is shown as black arrows.

are obtained from table 3.3 and DoFc = NcDoFSPC/E. For the rigid model of SPC/E used for
calculation, DoFSPC/E = 6.

6.5.2 Cluster shape characteristics

One of the characteristics of a the cluster obtained from its shape is its (dis)similarity to a sphere.
This particular measure, ψ, was defined by Wadell [251] as a ratio of the surface area of the
object compared to the surface area of a sphere. This also means that if object is similar to
sphere the ψ ≈ 1 and for for increasing values of ψ the object is more dissimilar to a sphere.

ψ = Scluster
Ssphere

, (6.46)

Here, the Ssphere is the cross-section area of a sphere with the same volume as N water
molecules with the water bulk density (ρ = 997 kg/m3). Cluster is therefore compared to the
ideal sphere formed from the same amount of molecules of ideally bulk density water. No closest
packing or interstitial spaces are considered for the sphere surface area.

To evaluate the cross-section of the cluster, which is represented as a set of points with
interaction potentials, the average geometric crossection is used. This quantity can be imagined as
the average shadow the cluster creates when placed between a screen and light, and consequently,
the cluster is rotated as visualized in fig. 6.5.

For the calculation of the cross-section of the simulated object, the Monte Carlo in section 3.3
integration is used. The atoms are replaced by spheres of radii given by the sum of the atom
Lennard-Jones collision radius (σLJ/2) plus the helium probe radius (σLJ/2 = 1.25 Å). This set
of spheres is projected onto a 0.1 Å×0.1 Å grid at a random initial orientation. This is repeated
for another 15 directions according to the dodecahedron-based Gaussian quadrature [162], with
the final crossection evaluated as the average of the covered grid faces.

The average geometric cross-section is another important shape characteristic of the cluster.
Note that the experiment by Lengyel et al. [142] have provided the pickup cross-sections. While
quantitative comparison is hindered by the systematic overestimation of pickup cross-section
compared to geometric cross-section. The qualitative comparison of trends as well as dimensionless
sphericity is valid between both approaches [71].
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6.6 Results and Discussion
The development of custom-built software that actively utilizes the power of GPUs for higher
precision simulation has posed multiple challenges. In this regard, we present here first the
answers to the posed requirements for energy conservation and speedup. After the model
validation, the analysis of clusters is provided. This envelops the cluster shapes, sphericities, and
growth during the expansion simulation. We further discuss the effect of the merging of clusters
and the chance of molecules bouncing from the clusters with regards to CNT. The final part
focuses on the comparison of simulated data with experiments by Lengyel et al. [141,142].

6.6.1 Energy conservation

The first area discussed is the achieved energy conservation for expanding the test system with
N = 256 where energy fluctuations are higher than for the production system sizes. In fig. 6.6 it
can be seen that the calculated total energy eq. (6.22) deviates only slightly from the constant
value. The linear fit has a slope of −2.40 · 10−4 J/(mol ps).
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Figure 6.6: Total energy evolution for a test simulation of expansion with 256 SPC/E molecules
with double precision. One point is shown for each 200 ps

The total slope value across the needed timescale of 1.0 µs is −1 J/mol per a molecule, which
is negligible in comparison with the hydrogen bond energy, 20 to 25 kJ/mol. (per a mole of
simulation boxes). We have therefore proved the molecular dynamics of expanding systems
utilizing the model in section 6.3. This also certifies that the presented parallel solution is precise
enough and that the results generated from it are valid molecular simulation pseudo-experiments.
It further enables the solution to proceed as described in section 6.3.2

6.6.1.1 Achieved speedup

The second concern of the software is execution speed. For this sake, we have compared the
implementation with the previously used sequential code [125] implemented in MACSIMUS.
DL_POLY was added to represent the simulation package used for thermodynamic properties
simulation (choice based on the year 2021). To illustrate the improvement achieved during the
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development, we provide a comparison with an older version of our implementation, which was
presented in [41].

Three system configurations were simulated to compare performance with different initial
conditions. Systems consisting of bulk water, low density vapor containing clusters, and water
vapor were chosen. In this way, method operation is shown for dense systems with the highest
amount of interactions as well as the initial vapor conditions from which the simulations are
started. The cluster case is taken from a simulation of expansion, showing how individual
methods operate for very large simulation boxes with heterogeneous density distributions.

This type of comparison is targeted more at practical use instead of following the definition of
speedup. The aim is to answer the question of which implementation to use in a given situation
and, more importantly, what speed benefits can be expected by doing so. The question of
sequential and parallel comparison is not very relevant for answering this question. We illustrate
the notion with a comparison between the older version and the version presented in this work.

In general, the design strategies significantly differ between CPU and GPU oriented code
(see the GPU-specific optimization in sections 6.4.2 and 6.4.4), using techniques that are not
suited for sequential execution.

The comparison of the different algorithms (optimizations) used by DL_POLY, MACSIMUS3

and Mac_module for bulk, cluster, and vapor configurations with N = 2048, 4096, 10240. The
benchmark simulations were performed in the NV E ensemble for 10 000 timesteps with the same
initial configuration using SPC/E water molecules. The following hardware was used: CPU
Intel(R) Core(TM) i7-8750H 2.20 GHz, GPU NVIDIA GeForce GTX 1060 (Max-Q)4, NVIDIA
GeForce RTX 30905, and NVIDIA TESLA V1006. The comparisons are listed in table 6.1.

GPU-module MACSIMUS DL_POLY

# System GTX 1060 RTX 3090 TESLA V100 i7-8750H i7-8750H
old new old new old new old old

time [s] time [s] time [s] time [s] time [s] time [s] time [s] time [s]

2048
Bulk 364.9 86.0 49.5 23.4 52.4 31.8 650.3 5,237.4

Clusters 34.8 2.5 8.3 1.1 9.2 1.0 50.6 275.9
Vapor 14.0 2.5 4.8 1.2 5.4 1.1 15.2 181.0

4096
Bulk 744.5 207.2 101.4 47.7 102.3 57.5 1,295.0 18,716.6

Clusters 62.0 4.3 14.1 1.5 9.4 1.3 59.8 480.5
Vapor 48.8 4.4 11.7 1.5 6.8 1.3 29.1 393.3

10240
Bulk — 508.3 — 139.5 — 153.9 3,242.2 —

Clusters — 11.8 — 2.6 — 1.8 184.0 —
Vapor — 59.4 — 14.5 — 15.6 73.8 —

Table 6.1: Simulation times (lower is better) in seconds and acceleration of two versions of
GPU–module for 10 000 timesteps. Old version reflect the algorithm as presented in [41] and
new represent the algorithm as described in this work. Listed values are arithmetic means from
10 runs.

3The MACSIMUS software was tested in the single-threaded version utilized in previous work by Klíma and
Kolafa [125].

4with Intel Core i7-8750H and 16 GB RAM
5with AMD Ryzen Threadripper 3960X and 32 GB RAM
6with Intel XEON Gold 6130 and 96 GB RAM
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It can be seen in table 6.1 that the performance of our algorithm depends on the used GPU
hardware and its features. We have compared three GPU processors (GTX1060, V100, and
RTX3090) of three chip micro-architectures (Pascal, Volta, and Ampere) with different amounts
of SM blocks (10, 80, and 82) achieving varying memory bandwidths (192.2 GB/s, 897.0 GB/s,
and 936.2 GB/s) across different bus widths (192 bit, 4096 bit, and 384 bit). The consequences
of these differences can be noticed in the table.

As expected, the old version using the lower performance GTX1060 does not achieve the
desired performance gain, and for the largest system in the vapor phase, the timing is even
worse than in the original MACSIMUS code. This is a direct consequence of over-saturating
(memory bandwidth) the card calculation capabilities (SM block count) as opposed to the different
optimizations more suited for CPU that are used by MACSIMUS (linked-cell list method). But
many of the issues were removed in the new version, and now even the weakest card consistently
outperforms MACSIMUS, with speedups up to 24× in the case of cluster systems. The saturation
is noticed at N = 10240 where MACSIMUS again approaches the GPU performance for the
vapor configuration. This means that the benefit of GPU implementation is already attainable
on low-end devices, which was a pleasant surprise.

Substantially better results are achieved for the RTX3090 and especially for the A100, with
more memory bandwidth and SMs that can be leveraged for larger problems. Bulk liquid
simulations were improved from ≈ 12× in the original version by a factor of two. The similar
performance field is for vapor configurations, where the speedups for the biggest systems are
only 5× in comparison to MACSIMUS. Here we notice that algorithm benefit more from
bandwidth, and the available SMs on the RTX3090, showing better performance than older Volta
microarchitecture. Interestingly, the amount of double precision units did not factor as relevant
at this stage. The difference in the amount of interaction becomes visible for the system with
N = 10240.

The most noticeable gains are observed for the configurations for which the algorithms are
optimized. Here we see the most substantial speedups of over 100× for the largest system, with
a consistent 7× improvement versus our previous version of the algorithm.

The comments were focused around MACSIMUS because, with our current understanding,
we cannot explain with certainty the reason for the significantly slower single-threaded DL_POLY
calculation. We suspect that the role of system inhomogeneity for which the settings were
adjusted plays a role here, or there may be an issue with how DL_POLY constructs its holding
structure. In contrast, MACSIMUS uses a simple linked-cell list method, with the list newly
constructed around each particle at each timestep.

From the analysis of the algorithm behavior, a difference brought about by the newer
architecture chip was noticed. Using our code as a benchmark, the V100, representing a TESLA
high performance data center type GPU, is being outperformed by the new generation of desktop-
based RTX 3090. In the observed case, the new micro-architecture relies more on faster memory
and scheduler mechanisms instead of double precision throughput than was originally expected to
be more prominent. This finding is important for further investigation and potential improvement
of the algorithm.

In conclusion, the new version of the GPU parallel simulation package Mac_module brings
significant improvements over its predecessor version and the original CPU implementation. This
means that calculating the simulation of expansion is now a matter of days instead of months, as
it was previously. We’d like to remind the reader that during production, the overall speedup is
based on the performance of the vapor configuration during the initial phases, which gradually
transforms into the case of cluster configurations. We believe that the new version makes the
expansion simulation significantly more cost-effective compared to what was considered feasible
in 2018, when the author contemplated implementing the GPU parallel algorithm.
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6.6.2 Cluster Shape

The properties of clusters developed in supersonic expansion were studied in detail. We were
interested in the numbers of molecules in clusters, their cross-section, and the sphericity described
in section 6.5.2. Molecule connectivity to define clusters was defined by a hydrogen–oxygen
distance less than 2.45 Å which corresponds to the first minimum on the radial distribution
function H–O in the liquid phase. This distance is used in the Stilliger cluster criterion section 4.2.2.
This way, the number of all clusters (as well as monomers) can be obtained in each time frame
captured during a simulation. Cluster classification is performed after the simulation is finished.

An example of a few shapes of clusters is shown first to give the general idea of clusters created
during the initial phase of the simulation of the expansion. Two of these small below-critical
clusters are shown in fig. 6.7. We can see that the shapes of these clusters are not spherical, as is
assumed by the CNT.

(a) Cluster with 13 SPC/E (b) Cluster with 11 SPC/E

Figure 6.7: Visualization of two small sized clusters showing the nonspherical shapes.

To further investigate the sphericity described in eq. (6.46), we will use the largest cluster
found in the later section of the simulation. Two typical examples are presented in fig. 6.8
illustrating the used sphericity definition. Note that the shown clusters exhibit a sphericity
difference of ∆ψ = 0.4.
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(a) Cluster of 439 SPC/E molecules with cross-
section 859.8 Å2, the corresponding sphere di-
ameter of 33.1 Å, and sphericity 1.28

(b) Cluster of 21 SPC/E molecules with cross-
section 149.5 Å2, the corresponding sphere di-
ameter of 13.8 Å, and sphericity 1.68

Figure 6.8: Visualization of two differently sized clusters of observably different sphericity sourced
from [41].

With regards to CNT, the cluster in fig. 6.8a exhibits spherical characteristics with a
sphericity of 1.28, while the cluster in fig. 6.8b deviates from the spherical assumption, displaying
a sphericity of 1.68. The observed elongate cluster shapes are prevalent during the initial phase
of expansion simulation, suggesting that the spherical assumption is inaccurate. These cluster
shapes, which were analyzed in this study, can contribute to a further development of the theory.
We acknowledge that while prior research on cluster shapes was performed, that research operated
under equilibrium conditions, which may have influenced the observed shapes.

6.6.3 Evolution of clusters

We have conducted several sized simulations numbering 1000, 2048, 4096, and 10240 molecules in
two prescribed conditions investigated in the experiment [142]. The required number of molecules
is dictated by the maximum size reported in the experiment [142] and the sufficient time is
inferred from the time when the cluster no longer grows. The stored trajectories sampled by
10 ps are analyzed, and cluster information is calculated. The development of the maximal
cluster in the system of 10240 molecules and 4096 molecules are shown in fig. 6.9 and fig. 6.10
respectively. The nucleation process is demonstrated in its entirety, starting from the vapor
phase located before the nozzle throat under the prescribed initial T0, p0. The clear sign of this
effect is the nucleation onset observed after around 0.1 µs, where the simulation box starts to
travel through the nozzle throat. The graphs exhibit noticeable jumps in the sizes around 0.2 µs.
More common upward jumps correspond to merging, as is the case in fig. 6.9 for N = 2048 at
0.31 µs. In contrast, a downward jump signifies breaking a large cluster into parts, see fig. 6.9
for N = 4096 at 0.22 µs. The maximal cluster size is observed to converge at ∼ 0.9 µs, after
which its size slightly fluctuates.

6.6.3.1 Cluster merging

The cluster merging phenomenon was further investigated from the performed simulation. Namely,
the shapes and sizes of the clusters during the process of merging were observed. Sphericity
was also evaluated for the three stages before, during, and after merging. Important for future
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Figure 6.9: Maximal cluster size evolution for T0 = 409 K, p0 = 313.5 kPa
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Figure 6.10: Maximal cluster size evolution for T0 = 424 K, p0 = 474.7 kPa

comparison with the experiment is the change in sphericity between two separate clusters into a
final cluster.

The question here is whether this merging phenomenon can explain the rise of sphericity.
According to the analysis of multiple occurrences of the merge, this does not seem to be the case.
The approaching cluster is fully incorporated and forms a cluster with sphericity corresponding
to its size, as shown in fig. 6.11.

Sidestepping the investigated behavior of sphericity, the merging phenomenon is of interest in
relation to the CNT. The working assumption of CNT is in direct contradiction, only allowing for
single molecule changes to the cluster. But during our simulation of expanding systems, we have
seen multiple occurrences of these phenomena, suggesting an unaccounted process in the cluster
formation. We are aware that our simulation system employs periodic boundary conditions
(PBC), theoretically enabling the collision of clusters that would not meet in a system without
PBC. But employing PBC is not only for technical reasons; there is also thermodynamic reasoning
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Figure 6.11: Clusters evolution during merging phenomenon with corresponding cluster properties.
Snapshots were created with same orientation.

to approximate the behavior of the similarly composed surroundings. Under this argument,
we can assume that a cluster crossing through PBC represents a foreign cluster entering the
carved expanding cell. On the other hand, there is the factor of expansion to account for because
the systems are continuously growing in volume, making the transition through the PBC less
likely. It is of interest that the velocity at which the cluster moves is inversely proportional to
its size. This means that the larger the cluster, the less likely it is that it will cross the PBC.
To conclude this reasoning, there is a potential to point out the possible inconsistency of CNT
through our simulations that are performed far from equilibrium. For certainty of this claim,
further investigation of clusters crossing PBC is required.

6.6.3.2 Cluster bounce

Another phenomenon that is in conflict with the CNT assumption our observation of molecules
bouncing from clusters. During the visualization of simulation configuration evolution, an
occurrence suggesting bouncing was observed. Because the investigation of pickup cross-sections
is performed in the group, tools to calculate and visualize collisions of single molecules and
clusters were developed. The setup is designed by Martin Klíma and operates in the following
manner: The cluster taken from the expansion simulation is fixed by its center of mass in the
system and cooled to that prevent spontaneous evaporation. This cluster is then bombarded
with monomers with varying initial positions and varying initial velocities. At the end, it is
examined whether the molecules were picked up by the cluster or not.

During these experiments, there is a subset of rare events where a molecule is directly bouncing
from the surface of the cluster, as illustrated in fig. 6.12. In the figure, an agglomeration of
multiple frames was performed to show the video playback in one figure, resulting in a distortion
of cluster molecules due to the thermal motion of the cluster. In fig. 6.12, we can see the reflection
of the molecule path in the plane of observation as well as the decrease in velocity after the
contact. The visualization uses the same time step difference between frames, which means the
distance traveled by a molecule is indicative of its velocity. For this particular situation, the
initial velocity was 17.07 Å/ps, which is 1707 m/s. For cases of colision of static probe molecules
with clusters flying in the expanding jet, this is an achievable speed. But the collision inside
the simulation box, with relative velocities equivalent to the temperature of the system, would
require collisions to be observed for velocities below 1000 m/s.

In conclusion, the bouncing phenomenon remains unclear, requiring further investigation of
lower velocity collisions. Cases observed so far correspond to collisions quickly followed by the
evaporation of particles.
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Figure 6.12: Visualization of simulation playback of molecule bouncing from the surface of
the cluster. The visualization was performed with “trace” option of show command from
MACSIMUS [126] utilities.

6.6.4 Evolution of temperature

To determine whether the clusters are frozen, the evolution of the temperature was performed
as part of our ongoing research in work by Klíma et al. [123]. In fig. 6.13 the temperature
distribution of clusters (Nc > 10) during the simulation is shown in comparison with the system
temperature. We can see that the average of the cluster temperatures is above the system, which
is the consequence of slower evaporative cooling of the clusters. Given the used SPC/E model
with a melting point of 215 K [237] we can now prove that most of the clusters (to account
for fluctuating cluster temperatures) are not frozen during the simulation, even though the
simulation temperature is below the melting line at the end of 12 ps.

Based on previous work by Klíma and Kolafa [124], the clusters are below freezing point
(200–215 K), but not sufficiently to nucleate and freeze, as investigated by Bartell and Lennon [19]
and later by Manka et al. [156]. According to research done by Angelil et al. [8] water freezing is
very difficult to achieve in simulations (even with better models than SPC/E). To fully understand
the aggregation of potentially frozen droplets is left to future study. In the current simulation
setup, it is hard to account for freezing with one direct simulation, and more work on the model
will be required first.

6.6.5 Comparison with experiments

Tables 6.2 and 6.3 collect characteristics of the simulated clusters for two respective initial
conditions, and compare them with the experimentally obtained data (bold in the table caption).
In all cases, three categories (main columns) are shown: the geometric mean size corresponding
to the expected log-normal distribution of cluster sizes, the biggest, and the second biggest
cluster. To answer the research question, three parameters are shown for each category: the
number of molecules in cluster N , cross-section S in Å2, and sphericity ψ. Please note that
clusters smaller than 11 molecules are not counted, reflecting the choice in [142] enforced by the
used experimental apparatus.

Table 6.2 contains simulation results for lower T0 = 409 K and p0 = 313.5 kPa resulting in a
lower density of vapor. Therefore, more of smaller clusters are expected, which is reflected in the
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Figure 6.13: Evolution of temperature during the simulation of expansion of 10240 SPC/E
molecules with initial temperature T0 = 409 K. Temperatures of cluster with Nc > 10 is
compared to averaged cluster temperature, system temperature with depicted melting line.
Adjusted from [123]

size of the second biggest cluster. Because of a sharp disproportion in the case of N = 1000, larger
systems were simulated, resulting in much better statistical coverage of cluster sizes. Additionally,
more than one simulation with the same starting conditions were performed for smaller systems
to gain better statistical coverage, especially for large (N ≥ 150) clusters.

It is important to note that in the case of 4096 molecules, the largest simulated cluster is
bigger than the experimental average cluster, and the second largest cluster is comparable to the
first one. This indicates that we are likely close to the sufficient number of molecules needed to
reliably describe the expansion. This was validated by simulation for 10240 molecules, where
even the second biggest cluster is larger (in the number of molecules) than the one observed
experimentally.

As can be seen in both table 6.2 in the geometric mean column and N of the biggest cluster
column, the sphericity of the simulated clusters that achieved sizes above the experimental 337
span from 1.32 to 1.52. This is indicated by both the 4096 simulation and one case of the 2048
run. The biggest 10240 run is located in between with 1.44. This is significantly lower than
the experimentally obtained sphericity of 2.70. A reader can refer to visualizations figs. 6.8a
and 6.8b to see the difference of 0.4 in sphericity, which is approximately half of the difference
discussed here. We can also see the trend for sphericity listed in the colums for the biggest and
second biggest clusters. The trend observed is that the sphericity of the bigger cluster decreases
with increasing size.

The notable discrepancy does not stop at sphericity but is already observable in the associated
cross-section, which needed to be adjusted from the experiment to our observed geometric ones.

The results for higher initial density and temperature, T0 = 424 K and p0 = 474.7 kPa, are
summarized in table 6.3. Here, the higher initial density of vapor leads to significantly larger
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geometric mean the biggest cluster the second biggest cluster

Npart ⟨N⟩ ⟨S⟩ [Å2] ⟨ψ⟩ N S [Å2] ψ N S [Å2] ψ

1000

33 183 1.50 186 513 1.35 18 123 1.53

47 225 1.48 184 502 1.33 12 100 1.65

N ≤ 10 N ≤ 10 N ≤ 10 207 534 1.31 N ≤ 10 N ≤ 10 N ≤ 10

N ≤ 10 N ≤ 10 N ≤ 10 191 501 1.29 N ≤ 10 N ≤ 10 N ≤ 10

N ≤ 10 N ≤ 10 N ≤ 10 195 497 1.27 N ≤ 10 N ≤ 10 N ≤ 10

2048

185 506 1.33 260 622 1.31 132 412 1.36

43 212 1.49 350 764 1.32 17 121 1.56

133 416 1.37 194 517 1.32 162 469 1.35

86 332 1.45 198 526 1.33 192 524 1.35

4096
102 361 1.42 435 860 1.28 159 473 1.38

43 221 1.54 448 870 1.27 219 585 1.38

10 240 69 284 1.44 544 979 1.26 416 853 1.31

Table 6.2: Simulation results performed with the nozzle opening angle α = 30◦ under system
conditions: T0 = 409 K, p0 = 313.5 kPa simulated for 1 µs. Experimental mean cluster
properties from [141,142] for these initial conditions are following: ⟨N⟩ = 337, ⟨Sgeo⟩ = 476
Å2, ⟨Spick⟩ = 1530 Å2, ⟨ψ⟩ = 2.70. The data below the experimental cluster size threshold are
omitted.

clusters in smaller quantities. Although for the 4096 runs the biggest cluster still exceeds the
mean experimental value of 587, the second biggest clusters are significantly smaller. In this case,
we get a really narrow cluster size distribution. Nevertheless, the sphericity for large clusters
again decreases in direction to unity, which is in disagreement with the experiment.

6.7 Conclusions
This part of the thesis presents molecular simulation software developed for the purpose of
calculating nucleation phenomena on GPUs. This task presents its own set of challenges in areas
like energy conservation and efficiency for long simulations of highly inhomogeneous systems. We
have shown that our software is able to answer these challenges and opens a way to use GPUs
even on tasks requiring double precision calculation units. This model and parallel solution fit
into the area of simulation of heterogeneous molecular systems – tasks not available in known
MD simulation packages.

The original motivation of this study was to elucidate the nature of the shapes of clusters
produced in systems expanding through a nozzle. This kind of research has been previously hard
to reach because of the computation demands posed by microsecond-scale simulation runs for
sufficiently large systems that would capture the experimentally measured mean cluster sizes.
We have utilized GPGPU techniques to calculate up to ten times larger systems than in our
previous studies across two starting conditions. The simulated times exceeded ∼ 1 µs. For
statistical evaluation, several runs have been calculated on the GPUs available to our research
team. Although the simulated cluster sizes are in moderate agreement with the experiment, the
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geometric mean the biggest cluster the second biggest cluster

Npart ⟨N⟩ ⟨S⟩ [Å2] ⟨ψ⟩ N S [Å2] ψ N S [Å2] ψ

1000

N ≤ 10 N ≤ 10 N ≤ 10 195 510 1.30 N ≤ 10 N ≤ 10 N ≤ 10

N ≤ 10 N ≤ 10 N ≤ 10 196 512 1.30 N ≤ 10 N ≤ 10 N ≤ 10

N ≤ 10 N ≤ 10 N ≤ 10 209 545 1.33 N ≤ 10 N ≤ 10 N ≤ 10

N ≤ 10 N ≤ 10 N ≤ 10 210 535 1.30 N ≤ 10 N ≤ 10 N ≤ 10

N ≤ 10 N ≤ 10 N ≤ 10 197 521 1.32 N ≤ 10 N ≤ 10 N ≤ 10

2048

58 264 1.51 422 842 1.28 31 180 1.56

32 185 1.57 423 859 1.31 14 117 1.72

N ≤ 10 N ≤ 10 N ≤ 10 439 863 1.28 N ≤ 10 N ≤ 10 N ≤ 10

N ≤ 10 N ≤ 10 N ≤ 10 415 847 1.30 N ≤ 10 N ≤ 10 N ≤ 10

4096
145 445 1.38 780 1231 1.24 27 161 1.53

N ≤ 10 N ≤ 10 N ≤ 10 803 126 1.25 N ≤ 10 N ≤ 10 N ≤ 10

Table 6.3: Simulation results performed with the nozzle opening angle α = 30◦ from initial
conditions: T0 = 424 K, p0 = 474.7 kPa simulated for 1 µs. Experimental mean cluster
properties from [141,142] for these initial conditions are following: ⟨N⟩ = 587, ⟨Sgeo⟩ = 689
Å2, ⟨Spick⟩ = 3332 Å2. The data below the experimental cluster size threshold are omitted.

cross-sections are markedly smaller than the data reported by the experiment. The assumption
that clusters are supercooled liquid droplets would require much longer time to cool enough by
evaporation sufficient for the clusters to freeze. At this point, it is questionable whether increasing
the system size further would bring different results and explain the systematic difference in
the experimentally reported values for cross-section and sphericity. Possible ways to explain
the suggested aggregation of icicles may include diffusion kinetics of (frozen) clusters at times
longer than can be achieved in simulations, as well as performing simulations mimicking directly
the pickup experiment with respect to cluster dipole moments. The investigation of pickup is
continuing in the research group, with the publication [123] accepted for publication.

We conclude that the developed software opens possibilities for long simulations of large,
highly heterogeneous systems. In our future work, we would like to extend the software capabilities
and employ further optimization to provide a more pronounced speedup compared to already
highly optimized CPU implementations.
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Nucleation research has evolved over time, starting with insights from Fahrenheit [69], followed
by contributions from Gibbs [82] into the kinetic theory by Volmer and Weber [249] that
is still in use today. The knowledge related to nucleation finds applications across a wide
range of fields, including energy production [25,130,261], nucleation of droplets in atmospheric
simulation [96,119,268], chemical process engineering [207], and surface treatment [240].

Experimental investigation of nucleation faces challenges due to the short-lived, microscopic
nature of the phenomenon. Nevertheless, various methods were developed to tackle this issue, as
reported by Heist and He [97]. Rising experimental interest spread to water droplets studied
by Viisanen et al. [242], carbon capture and storage (CCS) relevant mixtures shown in work by
Vinš et al. [248] and Čenský et al. [46].

Molecular dynamics (MD) simulations, leveraging increased computational capabilities, have
also emerged as a valuable tool to study the kinetics of nucleation; see, for instance, Neimark
and Vishnyakov [174], Horsch and Vrabec [105] or Kalikmaninov [113].

Scientific interest in nucleation persists, driving further theoretical investigations. One specific
area of focus is the extension of understanding homogeneous nucleation principles in fluids and
the improvement of models used for heterogeneous nucleation.

Our research aims to comprehensively explore the metastable region of the phase diagram,
including the liquid side, and develop a universal mechanism applicable to both vapor and liquid
metastable states. While investigation of metastable states have received attention, there is still
a lack of comprehensive measurements and simulations in this specific area. By bridging this
gap, the goal is to enhance the understanding of nucleation and effects at the interface discussed
in section 5.4 and to improve multiparameter equations of state [215].

7.1 Problem formulation

The core problem is based on the task of section 1.2.2 of obtaining data in the metastable region
of the phase interface diagram. Investigating the metastable region experimentally is challenging
at the microscopic level. In particular, the metastable liquid region is even more challenging due
to the nature of droplets. The currently available data accumulated in both metastable vapor
and metastable liquid, is insufficient for the needs of EoS improvement.

Conversely, the theoretical investigation using CNT to predict the characteristics of metastable
regions faces several issues, as discussed in section 2.4.3. This makes the prediction unsuitable
for the investigated task. Therefore, an intermediary between theory and experiment in the form
of molecular simulation is chosen with the intention of providing pseudo-experiment data and

123
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employing the theory in a form that does not introduce the problems of CNT.
The problem transforms with the use of MD into the detection of phase change in the system,

more specifically the detection of the onset of nucleation. This understanding is further modified
by the request to solve this task with efficiency, allowing runtime execution during the simulation.

First, the problem challenges are presented, which are consequently formalized for the
molecular dynamics approach to the solution presented in the next section section 7.2.

7.1.1 Problem challenges

Based on the theoretical elucidation of nucleation from section 2.3 and more specifically stability
from section 2.3.1, several challenges concerning the investigation of metastable states are
identified.

7.1.1.1 Lifetime of metastable state

The characteristic property of metastability is the lifetime of the state. This lifetime depends
on the stochastic behavior of the studied or simulated system and is based on the likelihood of
developing the critical cluster. While CNT can be used to formulate the prediction based on the
thermodynamic condition of the system using eq. (2.59) with critical cluster size from eq. (2.63),
this approach formulation is not precise enough to provide the solution to the problem.

One of the reasons that contributes to the challenge is that the onset of nucleation separating
the metastable state does not depend on saturation as featured in the previous formulas (eqs. (2.59)
and (2.63)) but also on system size N (as seen in the work of Yasuoka and Matsumoto in [266]).
From a stochastic perspective, it is obvious that larger systems have a higher likelihood of
generating the configuration necessary to cross the energy barrier. But this has significant
consequences for molecular simulation, where system size is an important parameter linked to
the predictive capability of the simulation.

7.1.1.2 Cluster and void

Thermodynamic systems under metastable conditions exhibit, given enough time, phase transition
precursors. These precursors are called clusters for vapor→liquid1 transition direction. For
the common observer on a macroscopic scale, these are also called droplets. For the opposite
liquid→vapor1 transition, voids are formed instead, macroscopically observed as bubbles.

And while most of the theory in section 2.3 can be reused2 for the bubble description, the
physical characterization is particularly difficult to detect. This is illustrated in fig. 7.1 showing
2D representations of both phase precursors.

In the example metastable vapor molecular system (left in fig. 7.1), the problem consists
of detecting the groups of molecules. This is immediately related to clustering, as described in
chapter 4. For a metastable liquid system (right in fig. 7.1), a lack of molecules needs to be
detected instead. But not complete emptiness, as the content of a bubble is composed of vapor.
Considering further that molecular simulation tools represent molecules as a set of points without
any volume, the task of detecting empty spaces is further complicated. This can be confirmed by
the lesser number of works focusing on metastable liquid states.

1Throughout this chapter, the transition direction is used to denote the considered case, e.g., liquid→vapor.
In some cases, the system starting conditions are used instead, i.e., a metastable liquid system (which transits
from liquid into vapor).

2Apart from saturation, which needs to be defined separately.
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Figure 7.1: Visualization of cluster (left) and void (right) in 2D space with denoted imaginary
boundaries of the structure separating the phases.

7.1.1.3 Obtaining the initial conditions

Given the time dependent nature of the metastable state, the initial conditions are of particular
importance. There is a strong emphasis on generating initial conditions for the molecular
simulation that do not introduce the phase interface precursors into the system while providing
an accurate description of the metastable system. This dichotomy needs to be solved within the
simulation protocol; otherwise, a systematic error is introduced into the calculated metastable
state characteristics.

7.1.1.4 Runtime execution

The task of runtime execution is motivated by resource management for the investigation of
the metastable states. Given the not precisely known lifetime of the metastable state, the
performed simulation often suffers from state that is no longer valid, which ends up wasting the
computational resources without providing the desired result. This can be simply stated as MD
software lacking awareness of the change of state in the system.

To amend this, the solution method needs to avoid post–processing (which is the common
case) and perform all necessary operations either before or during the simulation execution. This
means the complexity of the presented solution has to be below the complexity of the force
calculation1.

The solution should also be incorporated into the parallel design of the software. It is also
useful to present a solution with a low impact on the existing implementation.

7.1.2 Mathematical formulation

We first assume the spatial data are provided from the simulation in the form of a vector of the
positions of individual atoms located in three dimensional space. Using the molecular structure,
the atoms can be grouped into molecules. It can then be safely assumed that the simulation
spatial data are also available as molecular positions ri, i ∈ N̂ with N as the number of molecules
and relative positions of atoms according to the CM approach used in section 6.4.1.

Based on our experience with the phase interface described in chapter 5 and cluster shapes
examined in chapter 6, the density was chosen as the main descriptor of the system instead

1Force calculation is generally the most expensive step during iteration, as shown in section 3.4.6
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of the spatial data directly. This means that a three dimensional density function evolving
in time, ρ = ρ(x, y, z, t), is attributed to the particular simulation run. Because our intention
in characterizing the nature of the system state is based on extrema examination, the density
function needs to be sufficiently smooth.

We therefore propose the following construction for the density function using multivariate
distribution from eq. (4.5) for the special case of three dimensional space. The density distributions
are then placed at each molecule’s center of mass, µi = ri. The spherical molecular structure
is achieved with the diagonal covariance matrix, whose elements are based on the interaction
Lennard-Jones potential as Σ = σLJ/2 · I. This approach gives the smooth density function
representation of the spatial data at a single timestep t as a sum over molecules in the system

ρ̃(x, y, z, t) =
N∑
i

ϕ(ri). (7.1)

In this way, the evolution of the spatial data can be transformed into the evolution of the
density function, which we are going to use for the characterization and detection of the onset of
nucleation.

For this model operation, we define the metastable system condition based on knowledge of
the critical cluster or void, which can be obtained without many of the assumptions required for
the derivation of CNT.

Definition 7.1. A system with thermodynamic conditions in the metastable region remains
metastable if the transition precursors remain below the critical size.

After the detection of the precursor with over critical size, we speak about the onset of the
nucleation, and the system is no longer considered metastable. This also defines the lifetime of
the metastable state until the first encounter of the overcritical transition precursor.

Condition of continuous simulation The definition 7.1 is constructed for the case of
continuous simulation strictly adhering to the runtime execution. This is the case for the
simulation software used in this work, where multiple independent simulations are executed in
parallel. This means that the simulation cannot return to previous times. This leads to instances
where the simulation is terminated before the optimal termination point is reached.

The reason is the stochastic nature of the cluster growth shown in fig. 2.5. Following the
critical cluster definition, there is still fifty percent chance of the cluster shrinking. Later, when
the maximal cluster shrinks below the critical size mark, the case of premature termination is
encountered.

With the density formalism and adjusted definition of metastable state, the original problem
of obtaining simulation data for systems in the metastable region is transformed into performing
a molecular simulation until the critical precursor occurs in the simulated system. This provides
a necessary generalization enveloping both types of precursors under one characteristic given by
the density function ρ̃.

7.2 Solution of identification problem
To detect the precursors under the density description, the same transformation needs to be
performed.

The first part of the solution is to characterize the detected objects in the density description
from eq. (7.1). Using the same transformation, the spatial precursors from fig. 7.1 are converted
into the shape shown in fig. 7.2.
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Analyzing the density distributions of the precursors reveals characteristic features that can
be used in the design of the detection method. These features are illustrated in fig. 7.2 using a
solid red line to cut the density distribution with the associated density cross-section provided at
the edge of the figure.

Cluster

vapor

liquid

Vo

vapor

liquid

Figure 7.2: Visualization of the density representation of a system with a cluster (left) and a
density representation of a system with a void (right) in 2D space. Cross-sections of density
distribution in the x and y directions are shown on the sides of the figures, where the cutting
planes are depicted as solid red lines.

In the given example, we can already see that the cluster can be represented as having an
elevated density compared to the surrounding volume. A void can be represented as a depression
in the density of the surrounding volume. This gives the foundation for the design of the runtime
criteria.

7.2.1 Designing a criterion for runtime execution

The density approach has yielded a unified description of the transition precursors. But for the
runtime execution, replacing each point with a density distribution and evaluating the density is
a very costly operation.

To bypass the costly transformation of points into density with multivariate Gaussian, a less
precise density evaluation based on a histogram is used. We can utilize the principle of grid based
clustering from section 4.1.5 and construct a regular grid on which the density is evaluated.

7.2.1.1 Local density fluctuation

To encompass the similarities between both transitions in an efficient manner using the approx-
imation of density on the grid, the term “local density fluctuation” (LDF), is defined next in
detail.

The term LDF incorporates the concept of local system density approximation performed
on regular cubic lattice tilling of the system volume (see fig. 7.3). For criteria operation, it is
important that all cells are of the same volume, regardless of their position within the system
volume. This ensures artifacts are not introduced into the density approximation at the edges.

By prescribing a reference density value for all cells, a universal relative comparison is
established. This approach helps in identifying features of the density function, which are classified
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as density fluctuations. The primary observed characteristic is the presence of fluctuations, rather
than the magnitude of the fluctuations.

In practical terms, this allows us to associate negative deviations from reference with a
scarcity of molecules (voids) and positive deviations with an abundance of molecules (clusters).
By categorizing both cases as fluctuations, a simplified method to capture both transition
precursors is constructed. Where appropriate density reference is used to characterize the system
density from which the fluctuations deviate.

In this construction, both voids and clusters are classified as LDF. Clusters are identified
using an upper bound comparison, while voids are detected using a lower bound comparison.
Two different reference values discussed in section 7.2.1.3 can be used to increase the precision of
the detection for both criteria cases.

7.2.1.2 Designing the criteria

Following the definition of LDF, the universal grid criterion using three parameters a, b, c is
constructed. The following paragraphs elaborate on the role of each parameter and provide
theoretical bounds for their choice, allowing for the construction of criteria with different foci.
The operation principle with the role of parameters a, b, c is shown in fig. 7.3.

In the text, several terms specific to the grid criteria are used. Consider first a regular cubic
tiling of the simulation cell, which is further referred to simply as the grid. Vertices of the grid
are called grid points, and cells are the individual volumes of the tiling; each cell is represented
by a cube with grid points as its vertices. The term neighborhood of grid point refers to all cells
that contain the said grid point as one of their vertices.

The grid is shown in fig. 7.3 with plus signs as grid points, and the neighborhood is visualized
as a green square around the grid point with the number three2.

Grid edge The first value, a, is the grid edge size. The choice of a regular cubic grid allows
for computation complexity mitigation. Using regular cubic allows for local density evaluation
with complexity O(n). This construction enables the run-time execution of the criterion.

The general restricting values for a are derived from the system size, which in the case of a
regular cubic system volume V leads to

a ∈
(
0, 3√

V
]
. (7.2)

In practice, choosing a = kσLJ, k ∈ N leads to the simplification of consequent formulas as well
as the quick transfer of the detection model from parametrization to parametrization as the grid
becomes relative to the interaction potential of the simulated substance σLJ.

In cases where the grid does not align precisely with the system volume, periodic boundary
conditions are used to construct the image of the grid cell to ensure all cells have the same
volume.

Reference bound The second parameter b is denoted as reference bound and used for
fluctuation classification. This parameter represents the reference value against which the
grid point is classified. For performance purposes, the classification is designed in the simplest
possible terms as integer comparison of the number of molecules found within the neighborhood
of every grid point (see fig. 7.3).

For considered R3 space, the construction leads to each molecule being accounted for by
eight grid points. This corresponds to averaging performed over the neighboring cells without

2The only grid point that has three molecules in the neighborhood
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Figure 7.3: 2D visualization of the criteria design and the meaning of the parameters. Grid
points are denoted as plus signs, accounting for the presence of surrounding atoms, shown as
blue circles with black centers. The cell volume for the contribution is shown as a green–filled
rectangle with a dash–dotted border. The system volume is denoted by dashed green lines with
an illustration of the periodic boundary condition. The operation principles of parameters b and
c adjusted for this illustration are explained in the legend.

the division by the number of neighbors. In consequence of the applied averaging, the detection
abilities are enhanced for cases of nonspherical entities as well as entities not aligned with the
detection grid3.

The parameter b is physically constrained by the empty cell as its minimum and the fully
occupied cell as its maximum. While the minimal occupancy is straightforward, for the maximal
occupancy estimate, the nmax

mol,gp(a, r) function is required.

b(r) ∈ [0, nmax
mol,gp(a, r)] (7.3)

The function nmax
mol,gp(a, r) depends on the parameter a and the radius of the molecule r to

return an integer number of the maximum number of spherical molecules with radius r that
can surround a gridpoint within a grid with edge a. Converting the gridpoint quantity to cell
quantity considering the replication, we get nmax

mol,gp = 8 nmax
mol,cell.

The nmax
mol,cell can be calculated with close packing ϕ. Close packing is a fraction of the unit

volume that can be filled with the same spheres in a space-efficient way. The closest arrangement
is an interesting problem, which is not yet fully explored [227], but for lattice based arranging
structures, the value of the closest packing is known [93]. The best lattice packing is attained by
face centered cubic (FCC) lattice, which is also used later in this work (for visualization, see
fig. 7.7). The coefficient of closest pacing for FCC is given by

ϕFCC =
√

2π
6 ≈ 0.740. (7.4)

3imagine cluster with its center at the gridpoint divided into eight cells. Evaluating the gridpoint with the use
of the surroundings ensures this situation is detected.
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Utilizing the closest packing, here estimate the value for nmax
mol,cell(a, r). Radius of hard spheres

is based on the simulated substance as r = σLJ/2. Together with eq. (7.4) an estimate

nmax
mol,cell(a, r) = Vcellϕmax

Vsphere
=
a3 π

√
2

6
4πr3

3

r=0.5σLJ
≤

⌈
a3√

2
8σ3

LJ

⌉
. (7.5)

In this equation, σLJ represents the underlying substance interaction potential. In this work, the
substance is chosen as LJF (see section 3.2.3 for parametrization), and σLJ for the sphere is then
identical to the potential of LJF. For more substances like oxygen or nitrogen, their molecular
interaction potential is used instead4.

We therefore know the limiting values for the bound parameter and can proceed with the
description of the comparison. In the core of the grid criterion procedure, the value of the bound
parameter b is compared against all grid points. Grid points that do not fulfill the comparison
condition are marked (see red grid points in fig. 7.3). The comparison condition is differentiated
(reflecting the LDF) for the cases of cluster and void detection as follows:

cluster detection ⇒ nmol,i(a, r) ≥ b (7.6)
void detection ⇒ nmol,i(a, r) ≤ b, (7.7)

where nmol,gp,i(a, r) is number of molecules surrounding gridpoint i.

Critical count Until now, the parameters were directly connected to the atomistic properties.
For system-wide awareness, the last value c is constructed to operate on the whole system
volume, making a decision based on the number of marked grid points. For simple, robust, and
time-independent values, c is constructed as a level-set parameter. The parameter c called the
critical count and represents the number of density fluctuations permitted to simultaneously exist
within the system. Exceeding the value of c the system is classified as no longer metastable. The
proper choice for c is crucial for criteria operation, as c can also be described as the strictness of
the criteria.

There is an obvious limitation on the value of c for a system with a finite number of molecules.
This directly relates to the number of completely packed cells with molecules. In this thought
scenario, the value of c related to the number of grid points cannot exceed the number of grid
points that the number of molecules N can fill. To again consider the replication in 3D by
multiplying the number of observed molecules across all grid points, the upper bound is obtained
as

c ∈
[
0, 8N
nmax

mol,gp(a, r)

]
=
[
0, N

nmax
mol,cell(a, r)

]
. (7.8)

The condition with c is checked with the prescribed frequency during the simulation. When the
number of fluctuations within the system exceeds parameter c, further simulation is terminated
and simulation results are collected.

7.2.1.3 Parametrization for detection of critical precursor

The broad scope of the criterion allows for the investigation of multiple phenomena related to
the local density5. In this section, the parametrization for the metastable region investigation
is provided with respect to the detection of the precursor in both metastable vapor and liquid
regions. Please note that alternative parametrization are also useful as shown in section 7.4.1.

4Molecular interaction potential in this context represents the σLJ when the molecule is modeled as spherical
instead of structure of atoms.

5Even spinodal decomposition can be contemplated in terms of LDF.
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Because of the general differences in behavior within the metastable region, it is not possible
to prescribe one universal set of parameters a, b, c and the effects of temperature need to be
accounted for. Therefore, a temperature dependent relationship for the parameters is designed
to offer more robust detection.

Observations from chapter 2 are employed as descriptors of the phenomenon, allowing to
bypass the need for prior investigation using simulation. In the case where prior simulation results
are available, methods such as extrapolation or parameter fitting can be used. Nonetheless, the
theoretical investigation provides a reasonable first estimate, which is the desired use-case when
the fluid metastable conditions are investigated.

Grid edge In the case of critical precursor detection, the first step is to incorporate the physical
dimension of the precursor. In both cases, the geometry of the target is assumed to be spherical
in nature, which agrees with our observation of supersonic expansion for large clusters fig. 6.8a.

With the design operating in a neighborhood, the detection or critical precursor can be
directly related to setting the grid distance equal to the critical radius:

av = r∗
v = 2v1σ

kBT ln(p/peq) (7.9)

al = r∗
void = 2σ

p∗
l − p

. (7.10)

where cluster critical radius r∗
v is obtained from eqs. (2.43) and (2.64) and for droplet similar

relation is constructed using difference of pressures instead of the chemical potential as shown in
work of Kaschiev [116]. In that formulation, the pressure inside the void is p∗

void = exp(−v1(peq −
p)/kBT ). This provides two equations dependent on temperature and pressure with surface
tension σ as parameter. All these properties can be calculated from the EoS using temperature
and density as inputs6.

Evaluation bound The bound parameter b is set to reflect the available volume of the cell
determined by a. The first estimate is obtained from the number of molecules in the critical
precursor, using the eq. (2.63). Following the work of Kashchiev [116], a similar equation for
void is obtained

n∗
l = 32πpeqσ

3

3kBT (p∗
l − p) (7.11)

The direct relation of b with the critical cluster number proves to be insufficient because it
does not consider the distribution of molecules within the cell. The model case is the spherical
precursor, while the rest of the cubic cell is filled with molecules with the density of the system.
Adjusting for the surrounding molecules yields:

bv = r∗
v + ∆V ρl (7.12)

bl = r∗
l + ∆V ρv, (7.13)

Where ∆V = (8a)3 − (4/3)πa3 is the available volume outside of the precursor (radius of the
precursor reflects the choice of a = r∗). In the case of metastable vapor, where the reference bulk
density is low, this issue is not well pronounced, and the use of correction is optional. Conversely,
the metastable liquid criterion’s effectiveness is greatly diminished without the correction.

6These values are know because they constitute the simulation inputs for the NVE ensemble
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Critical count The detection of the critical precursor is primarily captured by the parametriza-
tion of a and b. To adhere to our definition of metastable state from definition 7.1, the critical
count becomes straightforward.

c = 1, (7.14)

Note that this is only valid because of the previous construction and the wish to detect a single
such entity. For other discretizations, the parameter c is necessary and therefore cannot be
removed.

This gives a simple set of equations describing the parametrization of the system under
metastable conditions.

It is important to understand that for the described model, the case with a single precursor
surrounded by the system of reference density and the case with multiple smaller precursors located
within the same neighborhood are equivalent. The criterion in the current implementation makes
the decision based on the number of molecules present in the neighborhood. This technical feature
offers less computational complexity and is more optimal for the runtime. From thermodynamics
and simulations, the argument is that situations with multiple precursors in close proximity
quickly combine into one larger precursor, meaning only a minor difference in onset detection is
made.

7.3 Solution Method

In this section, the grid criteria are incorporated into the method proposed for the solution of the
original task of producing data in the metastable region. The intended thermodynamic property
of interest is the pressure of the metastable state obtained for temperature and density sampling.
The procedure consists of four steps: region construction, sampling, simulation using the cluster
criteria just described, and final analysis. Specific information about the algorithmic side of the
method is in appendix B.1, and visualization of the structure is shown in fig. B.1. The solution
method is described using LJF as the substance of choice, utilizing the dimensionless scaling of
properties outlined in appendix A.1.

7.3.1 Phase region construction

With density and temperature being the input state variables, an EoS is used to calculate
pressure for comparison and to support the calculation. This choice is further reflected within
the construction of the phase diagram, as illustrated in fig. 7.4. An EoS is used for the evaluation
of the individual isotherms as well as phase region boundary curves described in section 2.3.1.
From theoretical knowledge, the binodal and spinodal lines need to be constructed first for the
estimation of phase regions. During this process, one needs to be aware that errors following
from an EoS influence the calculation of spinodal and sometimes even the binodal lines. Binodal
curve is calculated with the TREND 4.0 [216] thermophysical properties package. In the case of
a spinodal, the construction is performed as described in section 2.3.1. In this manner, a spinodal
curve can be constructed even for equations with both single and multiple vdW loops. Full
region separation (like the one shown in fig. 2.3) is then completed with the critical isotherm.

It is important to note that this construction is based on EoS predictive capability, and the
resulting regions are subject to artifacts of the EoS. But this is required to use the equation to
be improved as we can have direct control over the sampling and can saturate areas where the
equation is not performing well.
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Figure 7.4: Phase diagram of the Lennard-Jones fluid (EoS of Thol et al. [229]) in dimensionless
variables: pressure over density for varying temperatures. Regions are separated by solid black
binodal and dashed black spinodal curves. The red circle shows the critical point. Isotherms are
rendered in color corresponding to their temperature while the isotherm T ∗ = 1.275 is extended
into unstable region to visualize multiple vdW loops and points used for spinodal calculation.

7.3.2 Sampling of metastable regions

During the construction of the regions, the isotherms were evaluated for a given temperature
and density spacing, representing the isotherm as a series of linear segments. In practical terms,
the curves are best sampled at the calculated points. But this method of sampling is greatly
restricted in cases with coarser refinement, in regions where the isotherm presents fewer points,
and in regions where discretization in density does not align well with the intended sampling.
More issues appear for the intersections of two curves, i.e., border points of regions. Therefore,
all the curves are interpolated and optionally recalculated when higher precision is required.

To obtain samples in the metastable region, further division of the isotherm into stability
regions is needed (i.e., the metastable liquid region of the isotherm). The sampling itself
is performed on the line segments corresponding to the selected stability region. A simple
subdivision of the line segment produces the required number of samples, with points at the
boundary optionally excluded.

This is shown with the example sampling of metastable regions in fig. 7.5. For the selected
isotherm (thicker lines with temperatures indicated in the color bar), the metastable region is
sampled with three points in the metastable vapor region, omitting the point at the binodal.
And similarly, with four samples per isotherm, again omitting the point at the binodal.

There are several potential modifications that can be applied to enhance the sampling process,
particularly when dealing with narrow stability regions. One useful modification involves sample
reduction. Since sampling is conducted with a fixed quantity. This approach helps conserve
computational resources by reducing the number of samples generated in close proximity to each
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Figure 7.5: Phase diagram of the Lennard-Jones fluid calculated with the EoS of Thol et al. [229].
Selected thicker isotherms are separated into metastable regions. Blue symbols depict the sampled
points in the metastable regions (circles for vapor and squares for liquid).

7.3.3 Simulation of sampled state points

Given the nature of nucleation, the simulation simulation can be systematically split into two
periods separated by the onset of nucleation [116,118,239]. Detecting the onset of nucleation
allows us to simulate the system only within metastable settings, without the effects introduced
by the nucleation taking place.

The simulation is performed in the NV T ensemble, where the input properties are obtained
from the samples generated in section 7.3.2. Temperature T ∗ during the simulation is controlled
with the Nose-Hoover thermostat from section 3.4.5.1, and volume is fixed in correspondence to
the input density ρ∗ and number of simulated molecules N .

The criterion is built into the simulation software as described in section 7.2.1.2 and controls
the simulation termination based on the parametrization from section 7.2.1.3. When the
simulation is completely terminated, the simulation data are collected and exported into data
files used for data analysis and comparison with the literature.

7.4 Properties the of model

In this section, the properties of the designed model and its utilization in the solution method are
discussed. The topics of the discussion include: the choice of custom designed parametrization
in precursor detection, the effect of equilibration for the simulation of metastable states, and
the effect of system size for metastable simulation. These discussions address aspects that are
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sometimes overlooked in the investigation of metastable states but have substantial implications
when disregarded.

7.4.1 Statistical Analysis of Physical Properties for Phase Detection

One of the concerns a user may have is whether parameter c of general criterion is required
for nucleation onset detection. In this section, arguments are presented with two different
parametrization showing c in comparison with pressure and potential energy that could be
considered for the task.

For a typical molecular dynamics simulation of the system, the physical properties can be
understood as random variable observations at each time step (see chapter 3). The average value
and running average of the physical properties are used as the results of the simulation. While the
quality of the simulation data is determined using the standard deviation and running standard
deviation. For the comparison presented in this section, however, the units of the properties
are different. Therefore, the absolute value of the coefficient of variation (CV)7 evaluated for
different property is defined as

CVproperty =
∣∣∣∣ stdev(property)
mean(property)

∣∣∣∣ . (7.15)

Simulations were performed for Lennard-Jones fluid under metastable vapor (T ∗ = 1.0,
ρ∗ = 0.075) and liquid (T ∗ = 1.0, ρ∗ = 0.06) conditions with varying system sizes N . Table 7.1
presents the coefficients of variation for the pressure CVp∗ , the potential energy CVEpot , and
the c parameter CVc. Another parametrization utilizing a fine grid a = 1.0 with bound related
to spinodal density8 b = ρ∗

spinodal was used to display the fluctuation of parameter c. This
parametrization offers a close approximation of the local density of the system but is less capable
of detecting the precursors than the one shown insection 7.2.1.3.

From table 7.1, it can be observed that the coefficient of variance for the potential energy
is the least fluctuating. Simultaneously, the coefficient of c for the fine grid of a = 1.0 shows
the highest values. However, selecting the criterion purely based on fluctuation is not preferred.
Consider, for example, the potential energy, which is directly influenced by the system size.
Moreover, bounds estimation from theory is not readily available, requiring prior simulation data.
Even the potential energy per molecule is therefore considered here as unfeasible for efficient
execution.

The pressure is a better candidate because it remains similar for varying system sizes 9.
However, an issue arises from the required manipulation of the property by the criterion. This
poses a problem for the property that is simultaneously used as a quantity of interest. In this
way, the method is reduced to an iterative predictor corrector schema, which is not very suitable
as a runtime criterion.

The custom-made parameter c, is therefore constructed on an artificial and non-interacting
grid to bypass these issues. It is also independent of the calculated pressure, and the theoretical
estimate can be based only on the critical cluster properties. This set of features enables single
runtime simulation without the prior need for simulated data.

Advantage of critical precursor parametrization The design of the criteria parametrization
described in section 7.2.1.3 results in detection action in the form of the step function (pointed
with the arrow in fig. 7.6). This is the reason why a finer grid was used for showing how c and,
in consequence, the underlying local density fluctuate.

7we are using words for standard deviation and mean to not confuse with already used symbols
8The value of ρ∗

spinodal is obtained during the phase region construction from fig. 7.4.
9This is valid only when a certain size threshold is exceeded, as shown in the following section 7.4.3
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system description coefficient of variation

ρ∗ N CVp∗ CVEpot CVc

metastable liquid 0.06 500 0.3251 0.0067 0.5636

metastable liquid 0.06 864 0.2521 0.0054 0.4304

metastable liquid 0.06 1372 0.2064 0.0049 0.3934

metastable liquid 0.06 2048 0.1755 0.0048 0.3854

metastable liquid 0.06 4000 0.1305 0.0037 0.2896

metastable vapor 0.075 500 0.0874 0.0640 1.2569

metastable vapor 0.075 864 0.0686 0.0540 0.9395

metastable vapor 0.075 1372 0.0547 0.0454 0.8366

metastable vapor 0.075 2048 0.0444 0.0373 0.6708

metastable vapor 0.075 4000 0.0321 0.0299 0.5517

Table 7.1: Comparison of the coefficient of variation for pressure, potential energy, and the
parameter c for the LJF system at the metastable vapor (T ∗ = 1.0, ρ∗ = 0.075) and liquid
(T ∗ = 1.0, ρ∗ = 0.6) conditions. N denotes number of molecules used in the simulation.

Figure 7.6: Comparison of the scaled pressure π(p∗), the potential energy π(Epot), and two
parameters c with different parameterizations π(c 1.0,6), π(c 2.3635,39) for metastable vapor (T ∗ =
1.0, ρ∗ = 0.075) and a system size of N = 4000.

Figure 7.6 illustrates the full evolution of the mentioned properties with added termination
performed by the metastable vapor criterion (using parametrization from section 7.2.1.3). For
the comparison of different properties in the figure, the property values were adjusted to their
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Figure 7.7: Face centered cubic initial placement showing the unit cell of the crystalline structure.
Vertices of unit cell are black points and face centers are grey points. Sub cell in red dashed lines
showing the reproduction of the patter with the alternating pattern.

respective time step interval: ∆t0 = [0.0, 0.26 · 106] with the equation

π(property) = property

mean(property(∆t0)) . (7.16)

Here property represents pressure, potential energy and critical count c.
In fig. 7.6 we see the gradual decline of pressure after the point marked by the metastable

vapor criterion, which signifies the nucleation is taking place. The peak in the potential energy
and finer parametrization is pointed by the arrow. The termination of the simulation is set at
the first peak pointed at by the arrow, as signified by the vertical black line. We can see that the
proposed parametrization provides a significant advantage over the other properties in terms of
calculation and practical use in the simulation.

7.4.2 Initial simulation stage

All MD simulations performed in this study have two stages: equilibration and production.
During the equilibration stage, the system transits from the initially prescribed configuration
into a relaxed state, where the desired parameters can be reliably observed without the effects of
the initial configuration.

7.4.2.1 Initial configuration generation

In this study, the well-established face centered cubic initial configuration(FCC) is used, which
follows the convention of ms2 [57, 73, 203]. The placement is performed in an alternating fashion,
as illustrated in fig. 7.7. This generated initial configurations of the system aligned to sizes
following N = 4k3, where k is the number of red placement cells corresponding to FCC placement
shown in fig. 7.7. The initial configuration structure resembles a crystal and needs to be dissolved
during the equilibration period.

We further discuss the effect of the initial placement. The method described produces an
identical crystal structure, which may be of an issue, when variation in the initial position is
desired. To achieve this in our simulation, the generated structure is randomly perturbed up to
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a maximum distance without molecule contacts. For simple mono-atomic substances within the
FCC, this distance is

√
3a/2 where a is the edge of the FCC cell. This removes any doubt that

two different runs would produce the same results, diminishing the obtained statistics.
The correlation time and consequently the minimal equilibration time can, therefore, be

estimated from this calculated distance with the mean velocity of particles in the system.

7.4.2.2 Equilibration

The equilibration phase of simulation is, in essence, not different from regular simulation, apart
from omitting the production outputs. Therefore, it is possible for a nucleation onset to occur
during this period or, more likely, for nucleation precursors to be created during this stage.
Preexisting of the precursors then influences the simulation, effectively shortening the time for
which the metastable system can be sampled (in extreme cases, preventing the sampling as the
system nucleates during equilibration).

Performing no equilibration is also not an option, as best shown by the example of a low
density system, i.e., ρ∗ = 0.06. In this case, the initial behavior of the system is that of an ideal
gas, where molecules are so far apart (> 7.5σLJ) that no interactions takes place. Therefore,
equilibration cannot be omitted, and the free flight period has to be accounted for as dNN/vmean(T )
with a temperature dependent mean velocity vmean(T ). The nearest neighbor distance dNN in
the initial FCC grid with edge aFCC is equal to:

dNN =
√

3
2 aFCC (7.17)

aFCC = 3

√
N

ρ

1
2k − 1 (7.18)

k = 3

√
N

4 , (7.19)

where k is the number of full FCC cells in one dimension.
With this information, equilibration can be performed past the free flight stage, but for

further simulation, there is an increasing chance that a nucleation precursor can be created.
This technique is known as “quenching”, as explained in the work by Martínez and Müller [158].
The fundamental principle of this technique involves swiftly transitioning the system from one
temperature to another, with minimal time for temperature adjustment during the transition.

Quenching in this study is performed from the equilibration run at temperatures above the
binodal to the metastable state temperature used for the production run. The temperature
drop is performed in a single step, removing the introduction of precursors during temperature
adjustment10. The system volume is unchanged, and because of the thermostat, the velocities
are quickly adjusted to the new temperature. In this way, the initial configuration influence on
the production results is significantly diminished.

In situations where temperature quenching is not desired, i.e., in near-critical regions, one
has to closely follow the designed minimal equilibration time to prevent free flight from occurring
in the production run. In this case, perturbation of the initial grid may be required to introduce
a more varied configuration for the production run.

7.4.3 System size

The system size is an important simulation parameter. For metastable simulations, it plays
an even more significant role because of its influence on the speed of the nucleation onset (see

10Which is, for example, the case for the examined case of supersonic expansion.
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section 7.1.1.1. On this note, it can be further reasoned that a system with N = 500 molecules
cannot exhibit nucleation when N∗ >= 500. It is less obvious what happens when the N is
slightly below N∗.

In both situations, nucleation is restricted by the effect of system size emulated by the
increased evaporation/condensation as a mean to equalize precursor with coexisting mother
phase. It is questionable that a metastable system, where nucleation is like this, is a good
representation. The reason being the difference in kinetic behavior as investigated by Horsch et
al. [104]. Therefore, the usual reasoning for the system size needs to account for not only the
computational power and thermophysical property representation but also whether nucleation is
even possible in a given system.

To illustrate the argument about how well the system represents metastable conditions, a
set of system sizes N = 500, 864, 1372, 2048, 4000 was compared with the EoS prediction. The
temperature was set to T ∗ = 1.0 and two densities roughly in the middle of their respective
metastable regions were selected (vapor: ρ∗ = 0.075 and liquid: ρ∗ = 0.66).
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Figure 7.8: Comparison of pressures from simulations of LJF under metastable vapor (T ∗ =
1.0, ρ∗ = 0.075) and liquid (T ∗ = 1.0, ρ∗ = 0.6) conditions with varying system sizes N =
500, 864, 1372, 2048, 4000.

A comparison of the simulation results is shown in fig. 7.8. Using the criteria, the simulations
were stopped before the nucleation events, and no phase separation or transition was observed
during the analysis of the local density distribution evolution. In consequence, not all simulations
have equal runtimes. Associated errors of the simulation were calculated as a standard deviation
from pressures collected during the simulation rather than the time averaging natively used by
ms2.

Within the simulation experiments, it is observed that small systems (N < 1372 molecules)
seem to be insufficient for predicting the pressure because of issues of self-consistency and
increased deviation.

See the simulation results in the metastable vapor region in fig. 7.8 left. For N = 500, 864
we notice an increased spread of values exceeding the error estimation. This suggests that the
initial configuration either influences the results (which we resolved) or that the system pressure
is fluctuating with higher magnitudes, producing inconsistent results.

The second reason is better shown in the metastable liquid case in fig. 7.8 right. Where an
obvious convergence trend (dashed line) dependent on the size of the system is present. For
smaller systems (N = 500, 864), the significant overprediction of the EoS prediction [229] changes
into a slight underprediction around N = 2048. This illustrated example was observed throughout
the metastable liquid region, leading us to the decision to use N = 2048 as the primary system
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size in the metastable liquid region. The current working assumption for this phenomenon is
related to the inability of the small system to represent the behavior of the targeted liquid under
metastable conditions.

To finalize our statement, we acknowledge that nucleation onset has occurred in any sim-
ulation shown, and the simulated time exceeded 106 time steps for the simulations with
N = 500, 864, 1372, 2048 and 0.5 · 105 time steps for N = 4000.

In conclusion, the commonly held advice that metastable simulations are better performed
with small systems11 is not entirely beneficial. A smaller system also introduces biases into the
predictions. Moreover, the dynamics of the system is changed, which may no longer represent
metastable behavior. Small systems can function as some sort of daemon incentivizing the
evaporation of larger clusters due to the unavailability of molecules in surrounding vapor [104].
Our approach advocates using a bigger system with criteria and replacing longer runs with
multiple runs of varying initial configurations.

7.5 Results and Discussion
In this section, a summary of calculated results is provided as well as a comparison with simulation
results from other studies. In the latter parts of this work, our observations from simulations are
discussed in relation to the multiparameter equation of state for LJF by Thol et al. [229].

7.5.1 Criterion result

With the method from section 7.3 and the tools for sampling metastable regions, the simulation
settings are generated and a simulation is run. The visual illustration of the process from the
region construction in fig. 7.4 continued by sampling in fig. 7.5 is now finished in the result
stage. In fig. 7.9, the sampled points from the EoS are replaced by pressures obtained from our
simulations.

All data shown in the following figs. 7.9 and 7.10 are the simulation results of this work using
the criterion where only the input points were used from different literature. This is marked
in the legend as “from * ref”. Points samples from Baidakov et al. are shown as blue x, points
samples from Linhart et al. are orange circles, and additional points samples from this work are
green stars. Our sampling mechanism is described in section 7.3.2. This choice of data points
was motivated by deviation graphs shown later in section 7.5.2. The error bars shown for the
data points correspond to the duration of the data collection, where a smaller deviation means a
longer simulation. The isotherms, binodal and spinodal, are calculated with the EoS from Thol
et al. [229].

The overall figure presents the data from both metastable vapor and metastable liquid regions.
For visualization reasons, the middle portion p∗ ∈ [0.22, 0.38] of the diagram showing primarily
the empty unstable region as well as the negative pressure range were removed in favor of
metastable regions.

The simulated sampling of all points in fig. 7.9 shows the Thol et al. EoS [229] extrapolates
reasonably well into the metastable region.

Conversely, there are areas where the equation could benefit from the simulated data. Notably,
the spinodal curve prediction could be adjusted. We can notice a bend in the vapor section of
the spinodal around T ∗ = 1.1. This is likely a consequence of the different slope of the isotherm
being predicted by the EoS. The simulation results also suggest that the metastable vapor region
extends further right. Metastable liquid simulation suggests that the first local minima are
located higher than those predicted by the equation. This is illustrated in more detail in fig. 7.10.

11The reason is the longer simulation runs, which mean more data can be collected
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Figure 7.9: p∗, ρ∗ diagram of the Lennard-Jones fluid, including different isotherms. Isotherm
samplings calculated from the references are denoted on the temperature color bar and accented
with a thicker line.

For the metastable liquid region, a similar but less pronounced bend in the spinodal at
T ∗ = 1.1 can be observed in fig. 7.10. For lower temperatures, T ∗ = [0.7, 1.1), this leads to an
increased difference between the predicted isotherms and simulated points. With the added data
set in a lower temperature range, another effect becomes visible. A slight top-right shift of the
first local minimum of metastable liquid isotherms is seen at lower temperatures. The simulation
data corresponding to the minima of the isotherms show density and pressure higher than the
ones predicted by the EoS. No nucleation event took place to influence the simulation.

In the metastable liquid region, an argument for shifting the spinodal righ can also be made.
This is based on the observed decrease in the simulation length for sample points close to the
spinodal calculated with the EoS (as could be seen for points T ∗ = 0.7, 0.75, ρ∗ = [0.65, 0.68).

The original equation by Thol et al. [229] already provides precise results in the stable
region that extrapolate reasonably well into the metastable region for higher temperatures. But
because no metastable data was used for the equation development, the predictive capabilities
are diminished with the spinodal prediction and the related shape of isotherms. This illustrates
author’s point about the benefits that metastable data can bring.

7.5.2 Comparison with the equation of state and literature

One of the tasks of this work is to provide data in the metastable region. This has led to
the creation of an efficient runtime method that can achieve generality of detection over both
metastable regions. Therefore, for the presented comparison with literature data, we will focus
on two works that reflect these features.
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Figure 7.10: Section of the p∗, ρ∗ diagram of the Lennard-Jones fluid pressure over density focused
on the metastable liquid region.

7.5.2.1 Comparison with work of Linhart

The first is the work of Linhart et al. [148] utilizing the older version 1.0 of the same simulation
software package ms2. They focused on the metastable vapor region, and the role of the criterion
was not overly emphasized. We have selected their data here to illustrate the positive effect that
more advanced criteria can bring and the effect of the equilibration as discussed in section 7.4.2.
In the set of graphs in fig. 7.11, relative pressure deviations from the EoS [229] are compared
with simulation data from the work of Linhart et al. and this study. In the case of this work,
two sets of data were produced, denoted as “support” and “production”.

For the available temperature range, observable differences in trends and significant deviations
from the equation predictions can be seen. The support data set does not use quenching
equilibration and generally aligns closer to the data of Linhart et al. [148] (same system size of
N = 2048 were used).

In contrast, the production data set from this study utilizes quenching, and a consistent
deviation from the EoS prediction is observed when the spinodal is approached. The only
alignment of the production data is seen for T ∗ = 1.2.

But this does not mean that it is possible to judge whether the simulation or the equation is
right. Instead, we can draw the conclusion that equilibration (use of quenching) has significant
consequences for the rest of the simulation. The second observation is that simulations agree
with the EoS in the initial near-binodal area of the metastable regions.

For a better understanding of the differences shown in the deviation plots, the simulation
results are visualized in coordinates ρ∗, p∗ in fig. 7.12, where the trends are observed better. In
this figure, we notice the reason for the higher deviation, as the production simulation set shows
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Figure 7.11: Comparison of simulated pressure data of Linhart et al. [148] with N = 2048 and
the two simulation data sets produced in this work with N = 2048 using the cluster criterion in
the metastable vapor region. Reference pressures, binodals, and spinodals, were calculated from
the EoS of Thol et al. [229].

a higher peak of the isotherm than predicted by the EoS.
Furthermore, a suspicious flattening is observed for the data of Linhart et al. [148], especially

for the isotherms T ∗ = 1.15. From the data of Linhart et al. [148] we can notice a consistent
underprediction of the peak of the isotherm versus the EoS, which in some cases leads to a
flattened isotherm. Conversely, the production simulation data set reveals local maxima that
exceed the predictions of the EoS. This observation could be interpreted as the simulation
indicating that the isotherms are more steeply inclined, suggesting that the spinodal should be
situated farther than what is currently predicted by Thol et al. EoS.

Another argument for the extension of the metastable region is visible from simulated results
crossing the predicted spinodal without significant loss in simulation duration (in the graph shown
by the error bars). The smaller the error bar, the longer the production simulation duration.

7.5.2.2 Comparison with work of Baidakov

A second comparison was made with the data of Baidakov et al. [13]. In their work, a sequence
of simulations with a much more controlled mechanism based on observation of system potential
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Figure 7.12: Comparison of the simulation pressure prediction in the metastable vapor region.
The data of Linhart [148] are shown as black markers, binodal (-) and spinodal (- -) were
calculated from the EoS of Thol et al. [229]. This work support data set is shown as blue triangles
and the production data set as orange circles. The data calculated in this study have error bars
corresponding to the length of the simulation.

is utilized to simulate the metastable regions. Badiakov and coauthors perform a sequence of
simulations employing a correction scheme to navigate the isotherm from the binodal.

We present first the deviations graph in fig. 7.13 showing the data of Baidakov et al. [13]
together with the data from this work in relation to the reference provided by EoS from Thol et
al. [229]. In this work, we included simulations of three different system sizes N = 1372, 2048, 4000.
The data of Baidakov et al. include both metastable regions, thus providing a more general
outlook on both metastable regions.

Here we see a good agreement between the simulation datasets of Baidakov et al. [13] and
this study achieved over both metastable regions. This supports the argument that comparable
precision can be achieved with the presented method.

We can further notice the effect of the system size, particularly for systems closer to the
spinodal, and the temperature around T ∗ = 1.15. From this comparison, the system size around
N = 2048 aligns best with the data of Baidakov et al. who utilized the systems of same sizes.

Focusing on the comparison of all simulation data to the equation, we notice that the
agreement with the EoS is not ideal, which can be attributed to a lack of metastable data during
the LJF EoS development. We can identify that the simulation in the vapor region agrees with
the equation in the near binodal region. On the side of metastable liquid, this is not the case.

In fig. 7.13 the right set of graphs shows a shift in deviation between temperatures T ∗ = 1.0
and T ∗ = 1.15. While the data are grouped together, there is a five percent relative difference
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Figure 7.13: Comparison of Baidakov et al. [13] with N = 2048 and simulations in this study
with N = 1372, 2048, 4000 using the cluster criterion in metastable vapor and liquid regions for
selected isotherms. The LJF Eos of Thol et al. [229] have been used to calculate the reference
pressures, binodals, and spinodals.



146 7. Investigation of metastable system properties

in pressures collectively predicted by simulation from the pressures predicted by the EoS for
T ∗ = 1.0. Moreover, a suspicious artifact is identified at the binodal T ∗ = 1.0, ρ∗ = 0.7 where an
unexpectedly high deviation from the EoS for all simulated and reference points is observed.

Further investigation will be required to find the cause of this artifact. But our assumption
is related to the multiple vdW loops that manifest already in the metatable area. If this is true,
then this particular issue may be corrected with the data provided by this method. With the
comparison with the data of Baidakov et al. [13], we have shown that the method can reach
similar accuracy over both metastable regions. But as an added benefit, the method does not
rely on any iterative procedure with post-processing of the system potential but executes along
the simulation. This creates a powerful tool for exploring metastable regions. In consequence,
metastable region data can be supplied to new generations of equations of state and research on
nucleation.

7.6 Conclusions
This part of the dissertation has focused on the metastable state condition. The main aim was to
provide a fast runtime method for system properties of metastable vapor and, more importantly,
liquid conditions. The goal has been realized with the development of a new universal grid based
cluster and void detection criterion. In this way, it is possible to detect the onset of nucleation
during the running molecular dynamics simulation and sample only the metastable conditions of
the system.

The presented method comprises metastable region identification, sampling, and the criteria
implemented into the molecular dynamics package ms2 [73]. The method was also connected
with the thermodynamic package TREND [216] providing access to the EoS for thermophysical
property calculation. With the theoretical properties of critical size and critical number of
molecules, the method operates in both metastable regions without the need for prior simulation
data to classify the clusters and voids.

The proposed method was tested for internal consistency and compared with literature data
and the EoS in the case of the Lennard Jones fluid [229]. The presented method performs better
than alternative simple criteria approach and attains a similar level of accuracy as the more
complicated and time-consuming successive iteration simulation scheme. Furthermore, with
its simple, generalized design, there is a great potential for further extension into the class of
simple fluids. Investigation of other phenomena within the metastable region, like spinodal
decomposition, may also be possible in the future.

This makes the method a strong contender for fast exploration of vapor and liquid metastable
regions using molecular dynamics simulations. The results of this research are of interest for
research of nucleation and the development of new equations of state. A few suggestions have
already been proposed for the tested equation by Thol et al. [229].



Concluding remarks 8
The theoretical foundations of nucleation, molecular simulation, and clustering motivated us
to study three related topics: phase interface research, supersonic expansion simulation, and
the investigation of properties of metastable vapor and liquid system. We have developed or
extended the models necessary for the problem solution. Procedures and utilities facilitating
the solution were implemented as part of the solution. The focus was given to the underlying
challenges related to the development of optimal parallel algorithms for GPUs as well as the
development of highly efficient method that can be integrated into molecular simulation to detect
phase transitions. The proposed methods have been verified and their efficiency measured in
comparison to existing software. The collected results were compared with available literature
data including more general models, molecular simulations, and experiments. The conclusions
pertaining to the individual topics are provided at the end of the respective chapters section 5.5,
section 6.7, and section 7.6. The general conclusion highlighting the key areas of the research
performed in the field of nucleation is presented next.

Nucleation is an important phenomenon present in everyday life, and as such, nucleation
which plays an important role in many natural processes a is utilized in a broad spectrum of
industrial applications. It is a rich field that a single thesis cannot hope to map completely; we
have therefore focused on three interconnected topics related to nucleation. Of particular interest
was the use of molecular simulation to uncover the characteristics of nucleation. During the
simulation of expansion, we have observed the evolution of clusters and characterized their shape.
We have provided insight into the experimentally observed phenomenon of highly nonspherical
clusters. The time period before and during the initial phases of the nucleation were investigated,
utilizing highly efficient methods specifically designed for the purpose. We have identified what
constitutes the onset of nucleation and designed a criterion to consistently detect it. We have
also provided suggestions for improvement of the Lennard-Jones fluid equation of state based on
the data we simulated in the metastable region. We have consistently fulfilled the tasks that
were given.

During the research, cooperation between research groups was fostered by connecting teams
from the Institute of Thermomechanics, the University of Chemistry and Technology, Ruhr
Universität Bochum, Technische Universität Berlin, and Technische Universität Dresden. Author’s
work and contributions has been published, generating ongoing impact in the scientific community.
With the work summarized in this thesis, innovation was brought into the fields of molecular
simulation, equations of state, nucleation and phase interfaces.
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Nucleation from the
equilibrium view A

A.1 Dimensionless scaling used for Lennard-Jones EoS

In the investigated case of the Lennard-Jones fluid, it is common to use dimensionless scaling for
calculations and visualizations. The scaling is based on interaction potential parameters σLJ and
ϵLJ as follows:

T ∗ = kBT

ϵLJ
, (A.1)

ρ∗ = ρσ3
LJ, (A.2)

p∗ = pσ3
LJ

ϵLJ
(A.3)

A.2 Dimensionless scaling used for phase interface

For purposes of the artificial variable X a different scaling is required to transform the property
into dimensionless form. The derivation of the scaling is based on eq. (5.14). The dimensionless
variables are also denoted with an asterisk. There is no need for confusion, as only the artificial
variable X is present in the main body and the rest is utilized internally for the calculation.

In this case, temperature is not scaled, i.e. T ∗ = T .The partial molar densities are scaled
with the critical densities of individual components.

ρ∗
i = ρi

ρi,crit
. (A.4)

Since the temperature is not scaled, the work of formation can be scaled as follows

∆Ω∗ = ∆Ω
kBT

. (A.5)

A general scaling is used for lengths, where a general coordinate s represents either an axial
or a radial coordinate depending on the computed interface geometry

s∗ = s

Ls
. (A.6)

In eq. (A.6), Ls marks a typical magnitude of the investigated phase interface. In our
calculations, it is set to a constant arbitrary value of Ls = 1nm.
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In order to re-scale the algebraic eq. (5.14), the scaling for the artificial variable X and the
influence parameter ci,j is needed. The definition of the work of formation given by eqs. (2.88)
and (2.89) can be used in this case. From these equations, one can see that scaling down the
work of formation ∆Ω leads to the scaling of the influence parameter. The density derivatives in
eqs. (2.88) and (2.89) can be scaled in the following manner(

∂ρi

∂s

)∗
= Ls
ρi,crit

(
∂ρi

∂s

)
. (A.7)

Considering eqs. (A.4), (A.6) and (A.7) and applying them on the original dimensional
equations, one gets the following scaling laws for the influence parameter

c∗
i,j = ρi,critρj,critLs

kBT
ci,j . (A.8)

Scaling of the modified density ρ̃ is performed according to defintion in eq. (5.11), employing
formula for c∗

i,j from eq. (A.8) and ρ∗
i from eq. (A.4).

The grand potential density can be scaled in similar style using previously derived scaling
laws as

∆ω∗ = Ls
3

kBT
∆Ω. (A.9)

Using the definition for the grand potential density given in eq. (2.87), the scaling formula
for the chemical potential is obtained as

(
µV

i

)∗
= ρi,critLs

3

kBT
µV

i . (A.10)

With all equations given above, the scaling formula for the artificial variable X can be derived
as follows

X∗ = Ls
5
2

√
kBT

X. (A.11)

Formulas given in eqs. (A.4), (A.6) to (A.8) and (A.11) represent equations required for the
dimensionless scaling of the algebraic solution. The inverted formulas are also employed in our
calculations in the subsequent backward scaling to dimensional quantities.

A.3 PC-SAFT parameters of the investigated fluids
Table A.1 summarizes parameters of the PC-SAFT equation of state in section 2.1.2.3. For CO2,
two sets of parameters are provided: one for PC-SAFT, and one for PCP-SAFT accounting for
quadrupolarity of CO2, which is denoted as CO2 (Q). Parameters for SF6 were correlated to
the saturated liquid density and the vapor pressure evaluated from the multiparameter EoS by
Guder and Wagner [91] in the temperature range from 223.6 to 317.6 K. For simplicity of initial
investigation mixtures calculation were performed with a binary interaction parameter kij = 0. A
non-zero kij could improve the agreement with the experimental data presented in section 6.6.5,
however more independent data would be needed for fiting the kij .

The influence parameter ci,i was correlated to the experimental data for the surface tension
of pure substances together with the critical point properties and the molar weight are provided
in table A.2.
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Substance Reference m[-] σLJ[Å] ϵLJ
kB

[K] q[D] nq[-]

n-butane [88] 2.34212 3.70240 222.38 0 0

n-nonane [88] 4.20737 3.84480 244.51 0 0

n-decane [88] 4.66325 3.83840 243.87 0 0

CO2 [88] 2.07274 2.78520 169.21 0 0

CO2 (Q) [86] 1.51310 3.18690 163.33 4.4 1

SF6 this work 2.51811 3.31188 160.54 0 0

Table A.1: PC-SAFT and PCP-SAFT parameters for the selected substances.

Substance M [ kg
mol ] Tc[K] pc[Pa] ρc[mol

m3 ] ci,i[J·m5

mol2 ]

n-butane 0.0581222 425.1250 37.960 3922.8 1.8274123E-19

n-nonane 0.1282551 594.5500 22.810 1810.0 7.7169704E-19

n-decane 0.1422817 617.7000 21.030 1640.0 9.6732246E-19

CO2 0.0440095 304.1282 73.773 10624.9 1.8972774E-20

CO2 (Q) 0.0440095 304.1282 73.773 10624.9 2.1338599E-20

SF6 0.14605542 318.7232 37.550 5082.3 7.4922648E-20

Table A.2: Molar weight, critical point properties, and influence parameter for the selected
substances.



Investigation of metastable
system properties B

B.1 Program design structure around the cluster and void
criteria

The developed software design encompasses an overarching control structure capable of managing,
calculating, and analyzing numerous datasets with varying thermodynamic state variables,
simulation properties, and criteria parameters. Configuration files serve as a centralized means
of transferring information between software layers, while a console application facilitates user
input processing.

The method faces two main implementation challenges: fast runtime requirements and a
reliance on various computational packages. To address these challenges, a unifying interface was
developed, allowing the method to visualize data on personal computers and utilize calculation
machines or supercomputers. Python was chosen as the interface language, integrating APIs
written in FORTRAN 95 for performance-critical code, specifically the ms2 v. 4.0 [73] (molecular
simulation) and TREND [216] (used for EoS evaluation). Additional Python libraries, including
Click [186] for command line interface and Signac [3, 58] for data flow organization, were utilized.
In consequence, Linux is the targeted platform for compatibility, other platforms are not actively
supported but should still work when incorporated with the libraries of the packages provided
for Windows.

The method organization structure is shown in fig. B.1. Encapsulated parts are bundled
together into working modules. Interaction between modules is mediated by files in csv, json, or
custom formatting. The data flow from sampled points into the simulation and analysis modules
are managed by Signac, while the simulation module is designed to run on data center. Data
analysis can also be done data center, whereas graphic related outputs need to be generated
locally. For the purpose of transferring images, a separate custom library enabling Matplotlib
figure saving was developed.
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Figure B.1: Execution diagram for the example of the grid cluster criterion. Two line arrows
denote the main operation direction; a dashed arrow shows optional user action; and a wavy
arrow points at optional verification capabilities. Rectangular areas show modules and code
sections, while ellipses are code-unrelated steps in the process.
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[130] M. Kolovratník, J. Hrubỳ, V. Ždímal, O. Bartoš, I. Jiříček, P. Moravec, and
N. Zíková, Nanoparticles found in superheated steam: A quantitative analysis of possible
heterogeneous condensation nuclei, Proceedings of the Institution of Mechanical Engineers,
Part A: Journal of Power and Energy, 228 (2014), pp. 186–193.

[131] D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to
Dissipative Structures, John Wiley & Sons Inc, Chichester, West Sussex Hoboken, NJ,
second edition ed., 2015.

[132] G. Kontogeorgis and I. Economou, Equations of state: From the ideas of van der
waals to association theories, J. Supercrit. Fluids, 55 (2010), pp. 421–437.



Bibliography 165

[133] S. B. Kotsiantis and P. E. Pintelas, Recent Advances in Clustering: A Brief Survey,
1 (2004), pp. 73–81.

[134] A. Krishnamoorthy, K.-i. Nomura, N. Baradwaj, K. Shimamura, P. Ra-
jak, A. Mishra, S. Fukushima, F. Shimojo, R. Kalia, A. Nakano, and
P. Vashishta, Dielectric Constant of Liquid Water Determined with Neural Net-
work Quantum Molecular Dynamics, Physical Review Letters, 126 (2021), p. 216403.
https://link.aps.org/doi/10.1103/PhysRevLett.126.216403.

[135] W. D. Kristensen, E. J. Jensen, and R. M. J. Cotterill, Ther-
modynamics of small clusters of atoms: A molecular dynamics sim-
ulation, The Journal of Chemical Physics, 60 (1974), pp. 4161–4169.
https://pubs.aip.org/jcp/article/60/11/4161/775061/Thermodynamics-of-small-clusters-
of-atoms-A.

L
[136] T. Lafitte, B. Mendiboure, M. Pineiro, D. Bessieres, and C. Miqueu, Interfacial

properties of water/co2: A comprehensive description through a gradient theory-saft-vr mie
approach, J. Phys. Chem. B, 114 (2010), pp. 11110–11116.

[137] L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5, vol. 5, 1980.

[138] L. D. Landau and E. M. Lifshitz, Course of theoretical physics. 6. Fluid mechanics,
2nd ed., Pergamon Press, Oxford, 1987.

[139] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, no. v. 6 in Course of Theoretical
Physics, Pergamon Press, Oxford, England ; New York, 2nd ed., 2nd english ed., rev ed.,
1987.

[140] J. K. Lee, J. A. Barker, and F. F. Abraham, Theory and Monte Carlo simulation
of physical clusters in the imperfect vapor, The Journal of Chemical Physics, 58 (1973),
pp. 3166–3180. https://pubs.aip.org/jcp/article/58/8/3166/462788/Theory-and-Monte-
Carlo-simulation-of-physical.

[141] J. Lengyel, J. Kočišek, V. Poterya, A. Pysanenko, P. Svrčková, M. Fárník,
D. K. Zaouris, and J. Fedor, Uptake of atmospheric molecules by ice nanoparticles:
Pickup cross sections, J. Chem. Phys., 137 (2012), p. 034304.

[142] J. Lengyel, A. Pysanenko, V. Poterya, P. Slavíček, M. Fárník,
J. Kočišek, and J. Fedor, Irregular Shapes of Water Clusters Generated
in Supersonic Expansions, Physical Review Letters, 112 (2014), p. 113401.
https://link.aps.org/doi/10.1103/PhysRevLett.112.113401.

[143] Z. Li, A. Borner, and D. A. Levin, Multi-scale study of condensation in
water jets using ellipsoidal-statistical Bhatnagar-Gross-Krook and molecular dy-
namics modeling, The Journal of Chemical Physics, 140 (2014), p. 224501.
https://pubs.aip.org/jcp/article/140/22/224501/352487/Multi-scale-study-of-
condensation-in-water-jets.

[144] Z. Li, A. Borner, and D. A. Levin, Multi-scale study of condensation in water jets using
ellipsoidal-statistical bhatnagar-gross-krook and molecular dynamics modeling, J. Chem.
Phys., 140 (2014), p. 224501.



166 Bibliography

[145] X. Liang and M. L. Michelsen, General approach for solving the density gradient theory
in the interfacial tension calculations, Fluid Phase Equilibria, 451 (2017), pp. 79–90.

[146] X. Liang, M. L. Michelsen, and G. M. Kontogeorgis, Pitfalls of using the geometric-
mean combining rule in the density gradient theory, Fluid Phase Equilib., 415 (2016),
pp. 75–83.

[147] H. Lin, Y.-Y. Duan, and Q. Min, Gradient theory modeling of surface tension for pure
fluids and binary mixtures, Fluid Phase Equilib., 254 (2007), pp. 75 – 90.

[148] A. Linhart, C.-C. Chen, J. Vrabec, and H. Hasse, Thermal properties of the
metastable supersaturated vapor of the Lennard-Jones fluid, The Journal of Chemical
Physics, 122 (2005), p. 144506. http://aip.scitation.org/doi/10.1063/1.1872774.

[149] D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles,
Courier Corporation, 1989.

[150] S. Lubetkin and M. Blackwell, The nucleation of bubbles in supersaturated
solutions, Journal of Colloid and Interface Science, 126 (1988), pp. 610–615.
https://linkinghub.elsevier.com/retrieve/pii/0021979788901610.

[151] R. Lustig, Statistical thermodynamics in the classical molecular dynamics ensem-
ble. I. Fundamentals, The Journal of Chemical Physics, 100 (1994), pp. 3048–
3059. https://pubs.aip.org/jcp/article/100/4/3048/112740/Statistical-thermodynamics-in-
the-classical.

[152] N. Lümmen and T. Kraska, Investigation of the formation of iron nanoparticles from
the gas phase by molecular dynamics simulation, Nanotech., 15 (2004), pp. 525–533.

M
[153] K. Magoulas and D. Tassios, Thermophysical properties of n-Alkanes from C1 to C20

and their prediction for higher ones, (1990).

[154] J. Mairhofer and J. Gross, Modeling of interfacial properties of multicomponent systems
using density gradient theory and pcp-saft, Fluid Phase Equilib., 439 (2017), pp. 31–42.

[155] , Modeling properties of the one-dimensional vapor-liquid interface: Application of
classical density functional and density gradient theory, Fluid Phase Equilib., 458 (2018),
pp. 243–252.

[156] A. Manka, H. Pathak, S. Tanimura, J. Woelk, R. Strey, and B. E. Wyslouzil,
Freezing water in no-man’s land, Phys. Chem. Chem. Phys., 14 (2012), pp. 4505–4516.

[157] G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Equilibrium
Thermodynamic Properties of the Mixture of Hard Spheres, The Journal of Chemical Physics,
54 (1971), pp. 1523–1525. https://pubs.aip.org/jcp/article/54/4/1523/445610/Equilibrium-
Thermodynamic-Properties-of-the.

[158] F. Martínez-Veracoechea * and E. Müller, Temperature-quench Molecular Dynam-
ics Simulations for Fluid Phase Equilibria, Molecular Simulation, 31 (2005), pp. 33–43.
http://www.tandfonline.com/doi/abs/10.1080/08927020412331298991.



Bibliography 167

[159] G. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Explicit reversible
integrators for extended systems dynamics, Mol. Phys., 87 (1996), pp. 1117–1157.

[160] G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Explicit reversible
integrators for extended systems dynamics, Molecular Physics, 87 (1996), pp. 1117–1157.
http://www.tandfonline.com/doi/abs/10.1080/00268979600100761.

[161] D. J. McGinty, Molecular dynamics studies of the properties of small clus-
ters of argon atoms, The Journal of Chemical Physics, 58 (1973), pp. 4733–
4742. https://pubs.aip.org/jcp/article/58/11/4733/87684/Molecular-dynamics-studies-
of-the-properties-of.

[162] A. D. McLaren, Optimal Numerical Integration on a Sphere, vol. 17, 1963.

[163] J. B. McQueen, Some methods of classification and analysis of multivariate observations,
in Proc. of 5th Berkeley Symposium on Math. Stat. and Prob., 1967, pp. 281–297.

[164] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, Equation of state calculations by fast computing machines, The journal of
chemical physics, 21 (1953), pp. 1087–1092.

[165] B. Metz, O. Davidson, H. Coninck, M. Loos, and L. Meyer, IPCC special report
carbon dioxide capture and storage summary for policymakers, in United Nations Framework
Convention on Climate Change, 2005.

[166] J. M. Miguez, M. G. J., F. J. Blas, H. Segura, A. Mejia, and M. M. Pineiro,
Comprehensive characterization of interfacial behavior for the mixture co2 + h2o + ch4:
Comparison between atomistic and coarse grained molecular simulation models and density
gradient theory, J. Phys. Chem. C, 118 (2014), pp. 24504–24519.

[167] C. Miqueu, B. Mendiboure, A. Graciaa, and J. Lachaise, Modelling of the surface
tension of pure components with the gradient theory of fluid interfaces: a simple and accurate
expression for the influence parameters, Fluid Phase Equilib., 207 (2003), pp. 225–246.

[168] , Modeling of the surface tension of multicomponent mixtures with the gradient theory
of fluid interfaces, Industrial & engineering chemistry research, 44 (2005), pp. 3321–3329.

[169] C. Miqueu, B. Mendiboure, A. Graciaa, and J. Lachaise, Petroleum mixtures: An
efficient predictive method for surface tension estimations at reservoir conditions, Fuel, 87
(2008), pp. 612–621. https://linkinghub.elsevier.com/retrieve/pii/S0016236107002839.

[170] C. Miqueu, B. Mendiboure, C. Graciaa, and J. Lachaise, Modelling of the surface
tension of binary and ternary mixtures with the gradient theory of fluid interfaces, Fluid
Phase Equilibria, 218 (2004), pp. 189 – 203.

[171] E. A. Müller and A. Mejía, Interfacial properties of selected binary mixtures containing
n-alkanes, Fluid Phase Equilibria, 282 (2009), pp. 68 – 81.

N
[172] N. Nagarajan and R. Robinson Jr, Equilibrium phase compositions, phase densities,

and interfacial tensions for carbon dioxide+ hydrocarbon systems. 2. carbon dioxide+
n-decane, Journal of Chemical and Engineering Data, 31 (1986), pp. 168–171.



168 Bibliography

[173] I. Napari, J. Julin, and H. Vehkamäki, Cluster sizes in direct and indirect molecular
dynamics simulations of nucleation, The Journal of Chemical Physics, 131 (2009), p. 244511.
https://pubs.aip.org/aip/jcp/article/190041.

[174] A. V. Neimark and A. Vishnyakov, The birth of a bubble: A molecu-
lar simulation study, The Journal of Chemical Physics, 122 (2005), p. 054707.
https://pubs.aip.org/jcp/article/122/5/054707/187061/The-birth-of-a-bubble-A-
molecular-simulation-study.

[175] I. Nezbeda, M. Kotrla, and J. Kolafa, Úvod Do Počítačovỳch Simulací: Metody
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