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Abstract. The suboptimal physical design of the integrated circuits
may not only increase the manufacturing costs due to the larger size of
the chip but can also impact its performance by placing interconnected
rectangular devices too far from each other. In the domain of Analog
and Mixed-Signal Integrated Circuits (AMS ICs), placement automa-
tion is lacking behind its digital counterpart, mainly due to the variety
of components and complex constraints the placement needs to satisfy.
Integer Linear Programming (ILP) is a suitable approach to modeling
the placement problem for AMS ICs. However, not even state-of-the-art
solvers can create high-quality placements for large problem instances.
In this paper, we study how to improve the results of our previous ILP
model, first by introducing additional constraints and second by using
matheuristics. Given the initial solution we obtain using our original ILP
model, we use the solver to perform a local search. We try to improve the
criterion by considering only a few spatially close rectangles while keep-
ing the rest of the placement fixed. This local search approach enables us
to significantly improve the quality of instances whose solution space we
could not sufficiently explore before, even when the computation time
reserved for the matheuristic is limited. Finally, we evaluate our revised
approach on synthetically generated instances containing more than 200
independent rectangles and on real-life problems.

Keywords: Matheuristics · Placement Optimization · Analog Circuits.

1 Introduction

The importance of ICs for modern civilization is apparent. Advanced comput-
ing, Internet-of-Things devices, automotive, and consumer electronics rely on
high-performance ICs. Such market pressure further motivates the companies
to shorten the design time and lower the development costs to increase their
profitability and strengthen their market position. One of the crucial steps in
the design of the ICs is the physical design. During this step, the circuit diagram
is converted into the geometrical representation of the final product - positions
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and orientations of the rectangular devices (transistors, resistors, etc.) are deter-
mined during the placement phase, and the interconnections between them are
planned during the routing phase. While these two steps are commonly solved
one after another, the placement phase needs to consider the approximated in-
terconnections to make the final product competitive and high-performant.

AMS components remain crucial nowadays, as operational amplifiers and
analog-to-digital converters are required to convert signals from many sensors
surrounding us. The placement phase for the digital ICs has already been suc-
cessfully automated. Digital devices are in the form of standardized cells, each
sharing the same height, and they are placed in rows rather than freely. These
properties make the digital ICs’ placement similar to the 1D bin packing problem
and enable the automation tools to handle thousands of devices.

On the other hand, AMS ICs usually contain tens or hundreds of devices.
However, the devices may appear in different sizes and aspect ratios and can be
placed freely. They also have different voltage levels, which does not happen in
a digital domain. Furthermore, the presence of noise and other negative effects
inherent to the analog domain significantly influence the overall performance of
the circuits. This is mitigated by additional constraints and rules the engineers
must adhere to. Due to these complications, the placement of the AMS ICs has
not been largely automated and still remains a time-consuming and error-prone
manual process; its automation is pursued by projects funded both by DARPA
[8] and EU [7]. It is further complicated by constraints specific to different tech-
nologies of the ICs. This paper specifically discusses BCD technology (technol-
ogy combining analog, digital, and high-voltage components), which means the
placer has to consider various minimum distances between devices and isolated
pockets, among other features.

ILP offers a formalism to successfully model the placement problem of AMS
ICs. Most constraints regarding the sizes of the devices and their mutual proxim-
ity or connectivity can be described using linear inequalities, while the non-linear
criterion of the circuit’s area might be approximated with its half-perimeter.
Nevertheless, even the state-of-the-art ILP solvers, which improve every year,
cannot sufficiently well explore the space of feasible placements of larger ICs.

In this paper, we build upon our previous work [13], where we used warm-
started ILP to place devices of the AMS ICs. We discuss the effect of additional
symmetry-breaking and redundant constraints on the model’s performance. Fi-
nally, we develop a Matheuristic (MH) local search technique, which iteratively
optimizes the initial solution obtained by solving the entire model, and which
offers significant improvement, especially on the large synthetically generated
instances with more than 200 devices to be placed. This paper is structured as
follows. In Section 2, we mention the previous work done in domains of both
placement and matheuristics. In Section 3, we formulate the placement prob-
lem for BCD technology. Section 4 describes our original ILP model, as well
as additional redundant constraints we experimented with. Section 5 describes
our MH approach. In Section 6, we describe the problem instances and present
the experimental results, which show how well the MH approach performs. Also,
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real-life instances are evaluated and compared with manual benchmarks. Finally,
conclusions are drawn in Section 7.

2 Related Work

Even though the placement of the AMS ICs is not as automated as in the
case of digital ICs, the problem has already been tackled in the past. Many
methods use so-called topological representation - the solution is encoded using
relative positions between the devices. Then, a packing procedure is used to
convert the representation into the actual placement. Sequence pairs are one
such representation. Proposed in [25], two permutations of the devices encode
the relative positions between devices. Importantly, as was demonstrated in [21],
this formulation can be extended to successfully model symmetry groups and
other crucial features. Another example of the topological representation is B*-
trees, which use binary trees to determine the relative positions between the
parent and child nodes. Used in [19,31], this representation offers a low level of
redundancy in its search space.

Other methods consider the absolute coordinates of the devices. This makes
encoding constraints such as symmetry groups easier; however, it also introduces
infeasible solutions to search space. In the early work of [6], the simulated anneal-
ing was used to optimize the coordinates of the devices. The criterion contained
both the area and wire length of the IC, as well as penalty terms for constraint
violations. In [23], a similar approach, using a multi-objective constrained variant
of simulated annealing, was also considered. Alternatively, methods described in
papers [4,20] firstly use the global placement phase, where the approximate posi-
tions of the devices are determined using non-linear programming, and then the
feasible placement without the overlaps is created using Linear Programming
(LP). The mentioned core was extended to accommodate the different manufac-
turing layers of the ICs in [34]. In [17], the neural network was used to estimate
the circuit’s performance, and it was added to the differentiable criterion.

The force-directed approach was successfully applied to placement in [30],
where the attractive and repulsive forces between the devices were derived from
the connectivity of the IC and the devices’ overlaps, respectively. Machine learn-
ing found its applications as well. An end-to-end pipeline of [24] was utilized as
a placer of macros, while the learned model performed fine-optimization of the
already-placed IC in [22].

While the methods outlined in the previous paragraphs successfully solved
their associated placement problems, we cannot directly apply them to BCD
technology ICs; these ICs rely on various minimum allowed distances between
devices, isolated pockets, and other features that were rather omitted in the
previous works. This was also a reason why we used the ILP, which allowed us
to model these crucial features easily.

The ILP was applied to placement problems in the past. In [35], the authors
used hierarchical decomposition to improve the solver’s performance and created
high-quality placements. In our previous work [13], we employed Force-Directed
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Graph Drawing-based (FDGD) method to warm start the solver instead of rely-
ing on decomposition. Our proposed MH offers to improve the results produced
by other methods even when the warm starting the solver or decomposing the
problem is not sufficient or leads to low-quality solutions. Furthermore, ILP is
often used to solve subproblems that arise within the problem of placement, such
as the determination of the number of fingers of transistors [27].

The placement of AMS ICs much resembles other problems encountered
within the domain of operations research. Rectangle packing can be viewed as
a simplification of this paper’s topic due to the rectangular shape of the de-
vices. Papers [2,16] used constraint programming to solve the rectangle packing
problem. In [14], a genetic algorithm was used together with a Bottom-Left first
packing heuristic. Later, the GRASP metaheuristic was applied to strip packing
[1]. Even more closely related to our problem is Facility Layout Problem (FLP),
where the task is to determine the positions of the facilities while minimizing
the travel distances between them. This can be perceived as an analogy to the
interconnectivity of the devices. ILP formulations of the FLP were investigated
in [15,33]. The latter work optimized the paths between the departments si-
multaneously with the layout, which resembles the simultaneous optimization of
placement and routing in the case of ICs.

MHs, heuristics based on mathematical programming, have been recently
successfully applied to many combinatorial problems [12], especially with the
ever-increasing performance of the black-box ILP solvers. While the solvers of-
ten cannot solve the industrial-size instances, their search capabilities when the
model is smaller cannot be ignored. The MHs were used successfully in the do-
mains of scheduling or routing, but the literature regarding their use for packing
and cutting is rather sparse [28]. There are many ways how to build the heuris-
tic around the ILP solver. The constructive MHs iteratively solve a series of
simpler subproblems and construct the final solution by combining the interme-
diate results. This was used both for rostering problems [29], as well as for FLP
[32]. In the latter, authors fix the relative positions between the already placed
facilities and iteratively add the remaining ones until the layout is completed.
Evolutionary MHs use mathematical programming to tackle the efficiently solv-
able subproblems encountered while using metaheuristics. In [26], parallel batch
processing scheduling is tackled using a genetic algorithm, and LP is used to
improve the solution by solving the minimum cost flow problem.

Finally, the MHs are often used to perform the local search. Given a starting
solution to a problem, we try to improve it by solving the restricted variant of
the original ILP model. There are several ways how to achieve such restriction.
The first way, called local branching, limits how many variables can change its
value. Assuming the ILP model only contains binary variables, then the following
constraint can be introduced [12]:∑

i∈B0

xi +
∑
i∈B1

(1− xi) ≤ k (1)

where variable xi was originally assigned to 0, if i ∈ B0 and vice versa. The
restrictiveness depends on the value of k. Local branching was successfully used
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in the improvement phase of [29]. In [36], the flow-shop problem with time win-
dows was tackled, and local branching was even used to construct the feasible
solution from the initial infeasible one.

Another way to restrict the search space is to explicitly fix a subset of vari-
ables of the model. This application is very close to Large Neighborhood Search
[11] or Ruin and Recreate heuristics [5]; the damaged solution (i.e., the free vari-
ables in the restricted ILP model) is repaired using the exact solver. Variable-
fixing local search MHs were successfully applied to the scheduling domain, such
as in the case of university timetabling [18], flow-shop scheduling [10], and evac-
uations scheduling [9]. In these works, the choice of free and fixed variables
is crucial for the successful application of MHs and often depends on domain-
specific information. In this paper, we decided to apply such variable-fixing MH
to our placement problem.

3 Problem Formulation

During the placement phase of the physical design of the AMS ICs, the positions
and orientations of the devices are determined. The input of the problem, the
netlist, contains information about the sizes of the devices, their voltage level,
and interconnectivity. The devices have a rectangular shape of fixed size and
can be rotated. Furthermore, we need to consider topological structures. These
are higher-level building blocks, such as differential pairs or current mirrors, and
they consist of several devices that have to be placed in a regular pattern (see two
columns of darker rectangles in Fig. 1). Thus, we enumerate all possible variants
(with a varying number of rows and columns into which the devices are orga-
nized) of such topological structures beforehand, using algorithms based on list
scheduling [13]. Afterward, we treat both the single devices and the topological
structures as rectangles with multiple variants (in the case of single devices, the
only alternative variant is rotation). Further in the text, we refer to both types
of these building blocks as rectangles. Given a task to place n rectangles, we
describe each one of them with the coordinates of its bottom-left corner (xi, yi)
and its size (wi, hi), which corresponds to one of its mi variants.

Since we want to create as small a placement as possible, we would like to
minimize its area W ·H. However, due to our use of ILP, we minimize the half
perimeter of the placement’s bounding box W +H instead.

The overall connectivity is modeled as Half Perimeter Wire Length (HPWL).
The core concept of connectivity is a set of nets E - each net e ∈ E consists of
a set of connected rectangles Le. Each rectangle can be a member of multiple
nets. The overall connectivity is formulated as follows:

HPWL =
∑
∀e∈E

ce ·
(
max
i∈Le

xc
i − min

i∈Le

xc
i +max

i∈Le

yci − min
i∈Le

yci

)
(2)

where the centroid coordinates are given by:

xc
i = xi + wi/2 (3)
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yci = yi + hi/2 (4)

Multiplied by its cost ce, each net contributes to the overall HPWL metric the
half of the perimeter of the smallest bounding box that contains all of the net’s
rectangles’ centroids [34]. Altogether, our task is to find a feasible placement
that not only minimizes the area of its bounding box but minimizes the HPWL
metric as well.

Fig. 1: Example placement with critical constraints of the BCD technology [13].

The physical devices (darker rectangles surrounded by lighter shells in Fig. 1),
such as transistors, cannot overlap when they are manufactured in the same layer.
Furthermore, an increased minimum distance can be imposed between some
devices, e.g., to mitigate the effect of the noise on sensitive components. We also
need to model additional empty space, or pocket, around the placed structures
and devices (the lighter shells around packed devices in Fig. 1). Pockets are
needed to isolate devices with different voltage levels, which is common for BCD
technology. When the devices do not share their input voltage (BULK) net, and
thus their voltage level may differ, we need to place them so their pockets do not
overlap. Otherwise, their pockets can be merged as long as their internal devices
do not overlap, as the yellow and orange rectangles in Fig. 1 demonstrate.

Additional constraints include the control of the aspect ratio of the final
placement. Also, the engineer can restrict a subset of rectangles from a part of a
canvas; we call this type of constraint a blockage area. An example is shown in
the bottom-left corner of Fig. 1, which remained unoccupied due to the use of
the blockage area. Furthermore, a group of rectangles may belong to a symmetry
group, which shares a common axis of symmetry. An example is a group of darker
rectangles with the vertical axis of symmetry located in the bottom part of Fig. 1.
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4 ILP Model and Extensions

4.1 Baseline Model

We use our model proposed in [13], which was extended from rectangle packing
formulation in [2]. Let I = {1, . . . , n} be set of rectangles’ indices. Four real
variables represent each rectangle; coordinates of its bottom-left corner (xi, yi)
and width and height (wi, hi), which has to correspond to one of the mi pre-
defined variants (wk

i , h
k
i ), k ∈ {1, . . . ,mi}. Note that the sizes of rectangles’

variants are increased to model the use of the pockets. The selection of variants
is made using binary variables ski for each rectangle i and variant k, as is shown
in equations (6), (7). k-th variant is selected if ski = 1. Placement’s width W and
height H are variables constrained by the positions of the placed rectangles.

xi + wi ≤ W, yi + hi ≤ H ∀i ∈ I (5)
mi∑
k=1

ski = 1 ∀i ∈ I (6)

wi =

mi∑
k=1

wk
i · ski , hi =

mi∑
k=1

hk
i · ski ∀i ∈ I (7)

4∑
k=1

rki,j ≥ 1 ∀i, j ∈ I : i < j (8)

xi + wi + ai,j ≤ xj +M(1− r1i,j) ∀i, j ∈ I : i < j (9)

yi + hi + ai,j ≤ yj +M(1− r2i,j) ∀i, j ∈ I : i < j (10)

xj + wj + ai,j ≤ xi +M(1− r3i,j) ∀i, j ∈ I : i < j (11)

yj + hj + ai,j ≤ yi +M(1− r4i,j) ∀i, j ∈ I : i < j (12)

xi, yi, wi, hi ≥ 0 ∀i ∈ I (13)
W, H ≥ 0 (14)

ski ∈ {0, 1} ∀i ∈ I ∀k ≤ mi (15)

rki,j ∈ {0, 1} ∀i, j ∈ I : i < j

∀k ∈ {1, 2, 3, 4} (16)

Non-overlapping of the devices is ensured by binary variables rki,j and in-
equalities (8) - (12), which utilize the big-M approach [3]. At least one of the
inequalities, which corresponds to the relationship (left/right/over/under) be-
tween rectangles, must be valid (rki,j = 1). Parameter ai,j defines the minimum
allowed distance between rectangles. By setting the parameter ai,j to the nega-
tive value, the solver can place associated rectangles with their pockets merged,
similarly to device layer-aware placements [34]. Ultimately, the ILP model for
feasible placement of n rectangles uses

∑n
i=1 mi binary variables to encode vari-

ant selection, and 4 ·
(
n
2

)
= 2 · n · (n− 1) binary variables to encode the relative

positions between rectangles.
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Blockage areas are modeled as additional dummy rectangles. We fix their
positions and sizes and define the minimum allowed distance parameters. ai,b = 0
if the rectangle i is blocked by the blockage area b; if the rectangle is unaffected by
the blockage area b, we simply omit the associated relative position constraints
from the model.

We define the final aspect ratio as AR = min {W,H} /max {W,H}, and we
want to ensure that lR ≤ AR ≤ uR holds for chosen aspect ratio parameters
0 ≤ lR ≤ uR ≤ 1. Then, the following additional constraints are needed. The
binary variable rR is used to handle the non-convex solution space that is induced
when uR ̸= 1. When uR = 1, we omit the associated inequalities entirely.

lR ·W ≤ H ≤ uR ·W +M · (1− rR) (17)
lR ·H ≤ W ≤ uR ·H +M · rR (18)
rR ∈ {0; 1} (19)

To model the symmetry groups, we require another continuous variable per
group to represent the axis of symmetry. Assume that G is the symmetry group
with the vertical axis of symmetry, whose horizontal position is determined by
the real variable xG. The symmetry group consists of self-symmetric rectangles
(i,−) and symmetric pairs (i, j). Then the following equations constrain the
symmetry group’s rectangles to share the same axis of symmetry:

wi = wj ∀(i, j) ∈ G (20)
hi = hj ∀(i, j) ∈ G (21)
yi = yj ∀(i, j) ∈ G (22)

xi + xj + wi = 2 · xG ∀(i, j) ∈ G (23)
2 · xi + wi = 2 · xG ∀(i,−) ∈ G (24)

HPWL connectivity elements are formulated per net. Thanks to the mini-
mization of the connectivity in the final criterion, no integer variables are needed.
For each net e, we create four continuous variables XM

e , Xm
e , Y M

e , Y m
e ∈ R, which

describe the net’s bounding box. Then, we formulate the connectivity criterion
LC using the following constraints for each net e ∈ E, given the set of the net’s
connected rectangles Le and net cost ce:

XM
e ≥ xi + wi/2 ∀i ∈ Le (25)

Xm
e ≤ xi + wi/2 ∀i ∈ Le (26)

Y M
e ≥ yi + hi/2 ∀i ∈ Le (27)
Y m
e ≤ yi + hi/2 ∀i ∈ Le (28)

LC =
∑
∀e∈E

ce ·
(
XM

e −Xm
e + Y M

e − Y m
e

)
(29)

To minimize the area of the placement, which is a non-linear expression W ·H,
we approximate it using the half perimeter of the placement’s bounding box:

LA = W +H (30)
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We expect that thanks to the correlation between the perimeter and the area
of the bounding rectangle, a solution minimizing LA will have a small area as
well. Ultimately, the final criterion function is defined as:

L = cA · LA +
cC∑

∀e∈E ce
· LC (31)

where the cA, cC are tunable costs; by tuning them, we can achieve a suitable
trade-off between both LA and LC. However, since there are only two criterion
elements, we fix cA = 1 and tune only the connectivity cost. Furthermore, we
divide LC by

∑
∀e∈E ce, so the effect of using a specific value of cC is less sensitive

to a number of nets present in the IC.

4.2 Improving the Performance of the Solver

As we have shown in [13], the presented formulation leads to feasible high-quality
placements, but the performance of even the state-of-the-art ILP solvers is in-
sufficient when the number of rectangles grows. We were able to mitigate this
problem by providing a solver with an FDGD-based solution as a warm start.
In this paper, we want to go even further, and we try to introduce redundant
constraints to the original model that do not affect the optimal solutions but
could potentially improve the performance of the solver.

Symmetry Breaking Firstly, we tried to remove the symmetric solutions from
the search space. Since all of our constraints are rotation invariant (with the
only exception being symmetry groups), we can prune the search space by fixing
the orientations or positions of specific rectangles. Firstly, we select a suitable
rectangle (the largest one as in [16]); let its index be K. Then, to remove the
solutions symmetrical with respect to the y = x axis, we set all variant variables
of rectangle K, which correspond to a rotated variant with index r, to zero.

The second approach is concerned with the solution symmetry achieved by
swapping the quadrants of the bounding box. For example, from the current
solution, another one can be created by simply mirroring it with respect to
either x = W

2 or y = H
2 axes, or by reflecting it with respect to point (W2 ; H

2 )
point. To prune these parts of the search tree, we constrain the coordinates of
rectangle K so its centroid lies within the first quadrant, closest to the origin:

2 · xK + wK ≤ W (32)
2 · yK + hK ≤ H (33)

W+H Constraint If we could predict how large the bounding box of the
optimal solution would be, we could prune the search space using constraint:

W +H ≤ P (34)

where P is the upper bound on the half perimeter of the solution obtained from
the prediction. There are two reasons why this could improve the performance of
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the model. Firstly, such a hard constraint prunes some branches of the search tree
that would otherwise be investigated, especially when the connectivity metric of
the objective function is more emphasized and the LP relaxation does not offer a
tight enough lower bound. Such restriction can also be beneficial by allowing the
model to employ a much smaller big-M constant than previously possible, which
can improve the LP relaxation and mitigate issues with numerical stability.

When the W +H constraint is introduced with a bound P , the big-M value
can be set to M = P+aM without making otherwise feasible solutions infeasible.
We set aM to the maximum of the minimum allowed distances between pairs of
rectangles, aM = max(i,j) ai,j . This way, the constraints (9)-(12) hold even in the
most extreme cases. In experiments regarding the W+H constraint, we set the
P to half the perimeter of the previously found solution with additional slack to
not restrict the solver too much. We discuss the obtained results in Section 6.2.

5 Matheuristic as a Local Search

Given the initial solution, which can be provided either by the ILP solver with
limited computation time or a suitable heuristic, we try to improve it using the
variable-fixing MH. We refer to this improvement phase as intensification.

5.1 Intensification

Rectangle Selection The choice of which variables should be fixed and which
should remain flexible during intensification is crucial. Inspired by the job-
window approach of [10], we select a local group of rectangles G. Given a position
(x, y) within the placement and size of the group g, the set G consists of g rect-
angles closest to the point (x, y). We define the ’proximity’ metric of rectangle i
to point (x, y) as:

proximity(x, y, i) = max {|xi − x|, |xi + wi − x|, |yi − y|, |yi + hi − y|} (35)

This way, selected rectangles should be located spatially close to each other,
and when removed from the placement, mostly unfragmented empty space should
appear. This should enable the solver to locally improve the connectivity by
modifying the spatially local part of the placement. However, the positions and
variants of the selected rectangles are not constrained, giving the solver the
freedom to move them significantly if necessary.

ILP Intensification After the rectangle selection, the solver tries to improve
the solution. The used ILP model corresponds to the one shown in Section 4.1,
so the feasibility of the solution is ensured. We fix the positions and variants
of each rectangle i /∈ G; thus, their respective relative position variables rki,j or
variant variables ski are not necessary. The selected rectangles belonging to G still
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have all their associated variables free. Therefore, the number of binary variables
associated with n rectangles decreases from:

n∑
i=1

mi + 2 · n · (n− 1) (36)

to significantly smaller:∑
i∈G

mi + 2 · g · (g − 1) + 4 · g · (n− g) (37)

Before the optimization, the solver is warm-started with the current place-
ment. For a sufficiently small value of g, the solver is able to solve the restricted
model optimally or at least find an improvement in a short time. Since the grow-
ing number of rectangles n may slower intensification significantly, we impose a
time limit on optimization.

LP Fine Optimization To account for gaps between rectangles that can
emerge by the variable fixing approach, we follow the previous step with LP
optimization, which can lead to a lower value of HPWL and make the placement
more compact. For each pair of rectangles, we find the least violated relative
position constraint (9)-(12), and its associated variable rki,j . Then, we optimize
the original model of Section 4.1, fixing the chosen relative position variables to 1
and the variant variables to select the variants present in the current solution.
Thus, the model does not contain binary variables, and the optimization is done
quickly, even for large instances.

Overall Intensification After each successful intensification iteration, the im-
proved solution replaces the previous one. Then, a new selection point (x, y) is
sampled, and the process repeats until the computation budget is exhausted. In
this paper, we generate the selection points by sampling uniformly from interval
⟨0;W ⟩, ⟨0;H⟩ respectively. While such a simplistic strategy performed well, a
more informed approach could yield better results.

The process of ILP intensification is demonstrated in Figs. 2. The current
placement is shown in Fig. 2a. The sampled position (x, y), shown as a black dot,
is located near the top side of the bounding box, and 5 rectangles were selected
(red, purple, green, blue, and yellow). After the ILP intensification step, the new,
improved placement is shown in Fig. 2b. We can see that the selected rectangles
both moved and changed their variants. Both the half perimeter of the bounding
box and the HPWL were decreased by this step, as is reported in the captions.

5.2 Diversification

While the ILP solver guarantees us that the local neighborhood of the current
solution is thoroughly searched, the algorithm can get stuck in the local mini-
mum. In that case, it is beneficial to divert from the current solution significantly
and try to reach another potentially better local minimum.
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(a) LA = 307.9, LC = 3232.0. (b) LA = 301.8, LC = 3208.3.

Fig. 2: Placement before and after ILP intensification. The black dot shows where
the selection position (x, y) was sampled. Rectangles modified during the process
are highlighted. See the decrease in height after intensification.

To perform a diversification step, we try to swap the positions of the rect-
angles so the overall placement changes, but we still try to keep the placement
competitive. To do this, we create a swapping ILP model. In this model, each
rectangle i is associated with its centroid coordinates (xc

i , y
c
i ), as well as its area

Ai = wi · hi. Note that chosen variant and coordinates of the rectangles are
retrieved from the current solution. Then, the ILP model is formed as follows:

min cA · LA +
cC∑
∀e ce

· LC + cξ · ξ (38)

n∑
j=1

pji = 1,
∑
j∈Ti

pji = 1 ∀i ∈ I (39)

n∑
i=1

pji = 1 ∀j ∈ I (40)

xs
i =

n∑
j=1

xc
j · p

j
i , ysi =

n∑
j=1

ycj · p
j
i ∀i ∈ I (41)

ξ ≥ N − (n−
n∑

i=1

pii) (42)

ξ ≥ 0 (43)
xs
i , y

s
i ≥ 0 ∀i ∈ I (44)

pji ∈ {0, 1} ∀i, j ∈ I (45)
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Binary variable pji is equal to one if the rectangle i should be placed to the
position of the rectangle j (thus, pii = 1 means the rectangle i does not move).
To disallow the situation when a large rectangle would be placed in a position of
the small one, we create a set of allowed swapping indices Ti for each rectangle
i. Note that i ∈ Ti for each rectangle i.

Ti =

{
j ∈ I

∣∣∣∣ |Ai −Aj |
min {Ai, Aj}

≤ Adiff

}
(46)

Maximum relative difference (Adiff = 0.25) limits the search space of the
model significantly. Variables xs

i , y
s
i track the new centroid positions of the

swapped rectangles that are used to calculate the half perimeter and connec-
tivity criteria, using additional constraints shown in Section 4.1. Finally, ξ is
used to penalize the insufficient number of swaps performed, i.e., when pii = 1
for too many rectangles. If the less than the expected minimum number of swaps
N is performed (we use N = n/3), additional penalty cξ · ξ is applied; we set the
cost cξ to quite a large value max {W,H}, so the solver is motivated to perform
the swaps.

After determining which swaps should be performed, we modify the current
solution so the centroids of the swapped rectangles are moved to their associated
positions. However, this can make the solution infeasible due to possible overlaps.
To make the solution feasible, we use the original ILP model of Section 4.1
again. As in LP fine optimization of the intensification phase, we find the least
violated relative position constraint for each pair of rectangles, and we warm
start the solver with the corresponding variables set to 1. The values of variant
variables are also obtained from the previous solution. The feasible result of
the diversification phase is obtained by solving the model for a limited time.
Afterward, we continue with intensification.

Since our intensification implementation does not exhaustively search all pos-
sible neighborhoods, we need a mechanism to decide when to perform the di-
versification and when to keep searching locally. Whenever the local search does
not improve the solution’s quality, we increment the counter. When the counter
reaches 10, we perform the diversification and reset the counter. The counter is
also reset when the improvement is achieved during the intensification.

6 Experiments

6.1 Methodology and Data

We utilized the Gurobi ILP solver v9.5.1, using four threads in each experiment.
The project was implemented using Python 3.7. Experiments were performed
on an Intel Xeon E5-2690.

We generated several sets of instances inspired by the structure of real-life
ones. Sets S50 and S100 were already discussed in our previous work [13]. Addi-
tional sets S200 and Ssym

200 contain a larger number of rectangles, and the latter
also contains several symmetry groups as a part of each instance. Each instance
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contains both the smaller rectangles, which only allow rotation, and larger ones
with multiple variants. In total, 120 instances were evaluated. The computation
time was fixed for each instance, depending on its set (shown in Table 1). When
the MH was used, the initial solution was obtained by optimizing the original
ILP model for a third of the computation time, and the rest was reserved for
MH. The time required for warm starting the original model with the FDGD
method was included in the total computation time. The costs in the criterion
function were set to cA = 1.0, and cC ∈ {0.1, 1.0, 8.0} respectively.

As baseline results, the methods proposed in [13] were used. The baseline
model without any improvement, denoted as ILP, was run only on the instance
set S50 and S100, as it could not recover any solution for larger instances within
the given runtime. FDGD warm-started variant FDGD-ILP solved all the in-
stances.

Table 1: Description of synthetically generated instances.
instance set # instances # rectangles symmetry comp. time

S50 60 20, 30, 50 No 10 min
S100 20 100 No 20 min
S200 20 200 No 40 min
Ssym
200 20 200+ Yes 40 min

To compare the results obtained on the synthetically generated instances, we
use the average relative difference (aRD) of the criterion, calculated for method
m and instance set S as:

aRDm
S =

1

|S|
·
∑
i∈S

Li,m − Li,best

Li,best
· 100 [%] (47)

where Li,m is the value of criterion achieved on instance i by method m, and
Li,best is the lowest value of criterion of among studied methods. Therefore, aRD
refers to the ratio of the method’s and best-known solution’s criterion values
averaged over the entire instance set. The best hits metric (BH) tells us how
many times a specific method achieved the best-known value of the criterion.

6.2 Performance with Redundant Constraints

To study how the additional constraints affect the performance of the ILP solver,
we performed experiments on instance sets S50 and S100. In the case of set S100,
only results for cC ∈ {0.1, 1.0} are reported, as for cC = 8.0, not all methods
found a feasible solution for each instance. The baseline ILP model is compared
with symmetry-breaking one SB-ILP from Section 4.2, and the model WH-
ILP using the W+H constraint from Section 4.2. Note that parameter P used
to define the W+H constraint was derived from the half perimeter of the feasible
solution obtained using FDGD-ILP, which we increased by 20 %. Furthermore,
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the studied instances did not contain symmetry groups; thus, utilizing symmetry
breaking did not cause any problems.

Table 2: Comparison of solutions obtained using baseline ILP model and the
models with additional constraints, with reported values of aRD (BH) for each
instance set and connectivity cost cC .

S50 S100

method cC = 0.1 cC = 1.0 cC = 8.0 cC = 0.1 cC = 1.0

ILP 2.01 (19) 1.69 (20) 4.41 (22) 1.81 (13) 2.29 (11)
SB-ILP 1.90 (21) 3.16 (21) 5.55 (21) 4.56 (12) 6.07 (12)
WH-ILP 0.92 (31) 1.56 (33) 2.81 (29) - -

As shown in Table 2, the results are rather inconclusive. The symmetry-
breaking constraints help a little for cC = 0.1 on S50 scenario, but lead to worse
solutions on average. The W+H constraint leads to better solutions, but we were
not able to find a feasible solution consistently for S100 instances. In the case of
the cC = 0.1 experiment on S100 instance set, the feasible solution was found
only for 10 of 20 instances. Furthermore, the average time needed to find the
first feasible solution was 356 seconds. We concluded that imposing the upper
bound on the half perimeter of the bounding box, and thus also on the big-M
value, can improve the results. However, without passing the initial solution to
a solver, the solver has a problem finding any feasible solution.

6.3 Matheuristics on Synthetic Data

Our MH approaches rely on several parameters which may significantly influence
the outcome of the local search. We fixed several parameters beforehand. When
the diversification is used, we apply it after 10 non-improving intensification
attempts. The maximum time reserved for each intensification and diversification
optimization step was set to 10 seconds.

We performed experiments with four different MH settings. The settings
MH-5, MH-10, and MH-10D used FDGD-ILP to find the initial solution
for local search. Settings MH-5 and MH-10 relied only on intensification and
differed in the number of rectangles g selected to be optimized in each iteration
(see Section 5.1). The first setting MH-5 used g = 5, and the second setting
MH-10 used g = 10. The larger value of g was not used, as the complexity of
the larger model decreased the performance of the ILP solver significantly. The
third setting MH-10D also used g = 10 and employed diversification.

Finally, the remaining setting MH-10B used the baseline ILP method in-
stead of the warm-started one to generate the initial solution. Then, it only uses
intensification with g = 10, thus being comparable to MH-10.

Choice of suitable setting Firstly, we tried to determine how the value of
g and the use of diversification affects the results. We ran the experiments on
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all instance sets for all three values of the cC . The experiments were performed
with MH-5, MH-10, and MH-10D settings, and with FDGD-ILP serving as
a baseline. The results are reported in Table 3.

We can see the baseline FDGD-ILP was outperformed on all instance sets.
Furthermore, the improvement provided by MHs seems to be much more sig-
nificant when the connectivity cost is high. This corresponds to the expected
behavior of the intensification phase. Since we only free up to 10 rectangles
in each iteration, and they are selected locally close to each other, there often
remains a fixed rectangle that keeps the half perimeter of the bounding box un-
changed. On the other hand, the connectivity of a single net can be significantly
changed by moving even a single rectangle.

The improvements provided by the MHs are especially important in the case
of instance set Ssym

200 , where the differences between the baseline results and
the proposed methods are the largest - 30 % on average. We believe that the
main reason is the rigid handling of the symmetry groups our FDGD warm
start uses. To create a feasible initial solution, each symmetry group is handled
as a single entity, which, however, may lead to low-quality placement shown
in Fig. 3a (note, that we do not show internal devices inside the rectangles).
Then, the solver cannot sufficiently improve the solution within the provided
computation time due to the complexity of the model. On the other hand, the
MH approach is able to decrease the value of the criterion significantly, and
the overall placement looks more compact, see Fig. 3b. We also demonstrate
this in Fig. 4, which shows how the criterion value changes as the computation
progresses. We can see that both shown MH settings, after their initialization
phase, lower the criterion rapidly, while the solver optimizing the entire model
struggles. This holds true even from the area-wise point of view; MH transforms
the FDGD-produced circular placement to a more compact rectangular one.

Table 3: Comparison of different MH settings and FDGD-ILP baseline, with
reported values of aRD (BH) for each instance set and connectivity cost cC .

S50 S100

method cC = 0.1 cC = 1.0 cC = 8.0 cC = 0.1 cC = 1.0 cC = 8.0

FDGD-ILP 2.06 (5) 3.51 (0) 10.35 (1) 2.08 (0) 5.50 (0) 12.51 (0)
MH-5 1.71 (6) 2.34 (4) 5.77 (2) 0.85 (9) 1.17 (7) 1.81 (6)
MH-10 0.14 (44) 0.26 (43) 2.48 (15) 0.48 (11) 0.20 (13) 0.26 (14)

MH-10D 2.12 (5) 1.15 (13) 0.70 (42) 3.80 (0) 3.81 (0) 3.82 (0)
S200 Ssym

200

method cC = 0.1 cC = 1.0 cC = 8.0 cC = 0.1 cC = 1.0 cC = 8.0

FDGD-ILP 3.79 (3) 8.02 (1) 15.50 (0) 27.10 (0) 28.72 (0) 31.61 (0)
MH-10 0.33 (16) 0.03 (19) 0.68 (19) 0.68 (15) 0.75 (11) 2.53 (1)

MH-10D 5.38 (1) 5.83 (0) 5.38 (1) 1.51 (5) 0.85 (9) 0.04 (19)

From the experiments on sets with less complex instances S50, S100, we found
out that while freeing only 5 rectangles leads to significant improvements and
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(a) FDGD-ILP result, L = 1190.09, area = 143894, HPWL = 128885.

(b) MH-10 result, L = 911.54, area = 82235, HPWL = 100000.

Fig. 3: Comparison of final placements obtained by FDGD-ILP and MH-10
respectively, on instance from set Ssym

200 with cC = 1.0. Both experiments’ com-
putation time was set to 2400 s.
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Fig. 4: Value of criterion during optimization, for instance shown in Fig. 3. Black
circles show when MH-10D performed diversification.

shorter optimization time per iteration, using g = 10 yields better results on aver-
age. Therefore, we omitted the MH-5 from the experiments on larger instances.
Then we studied the effect of diversification. MH-10 without diversification
worked well in all cases, while the MH-10D was less predictable. However, for
two instance sets with cC = 8.0, the MH-10D offered the best results, as is
shown in Table 3. Also, the larger diversification step can lead to significant im-
provements, as is illustrated in Fig. 4, where the first time the diversification step
is used (computation time 1100), the criterion drops significantly. We concluded
that diversification offers advantages that could be more thoroughly exploited.
However, due to the consistency of its results, we used the MH-10 setting in
the rest of the paper instead.

Importance of the FDGD warm start After the previous experiments, we
wanted to study whether it is still necessary to use the FDGD warm start to find
the initial solution for MH. To do so, evaluated the original ILP model without
warm start ILP, as well as its MH variant MH-10B on instances from S50 and
S100. The results are reported in Table 4.

From the provided table, we can see that the MH local search significantly
improves the ILP baseline; it is even able to outperform the FDGD-ILP setting.
When we compare the MH-10B with our main setting MH-10, we see that the
FDGD warm start still provides some benefits. The warm-started variant of MH
outperforms its non-warm-started counterpart, and this becomes more prevalent
for more complex instances (where the ILP may not even find any solution).
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Table 4: Comparison of FDGD-warm started and non-warm started MHs and
ILP baselines, with reported values of aRD (BH) for each instance set and con-
nectivity cost cC .

S50 S100

method cC = 0.1 cC = 1.0 cC = 8.0 cC = 0.1 cC = 1.0 cC = 8.0

ILP 5.62 (2) 10.29 (1) 19.49 (1) 19.76 (0) 45.16 (0) 46.98 (0)
FDGD-ILP 2.74 (1) 3.78 (0) 9.41 (1) 2.21 (2) 5.36 (0) 12.33 (0)
MH-10B 1.93 (26) 2.43 (15) 2.95 (24) 7.46 (4) 5.60 (4) 7.08 (2)
MH-10 0.82 (31) 0.52 (44) 1.62 (34) 0.62 (14) 0.07 (16) 0.10 (18)

6.4 Improvement on Real Life Instances

Afterward, we studied how well MH works on real-life instances that were pro-
vided by industry partner STMicroelectronics and which we used previously in
[13]. 17 instances were provided, each consisting of up to 60 independent rect-
angles, and we ran two different experimental settings for each instance, either
allowing or forbidding the use of pocket merging. Thus, the total number of
experiments was 34. As in our previous work, the optimization was limited to 8
minutes. Three connectivity costs cC ∈ {0.1, 1.0, 8.0} were considered for each
experiment.

In Table 5, we report the metrics of manual designs and our solutions (the
use of pocket merging depended on the manual design). The shown metrics
are the half perimeter of the bounding box W+H, the placement area, and the
connectivity metric HPWL. We found a solution dominating the metrics of the
manual one for 12 out of 17 instances, matching our previous results. However,
when we focus on the average ratios between automated and manual designs
and compare them to results generated by FDGD-ILP in [13], we can see that
we were able to quite significantly lower the connectivity while keeping the area
and half-perimeter competitive.

To highlight the differences between solutions found by FDGD-ILP and
MH-10, we show Table 6. We can see that with the exception of the cC = 0.1
scenario, the MH approach, on average, reduced the criterion of the final solution
and found the better solution in a majority of the cases. This again corresponds
to the observations we made in Section 6.3. The real-life instances also contain
only up to 60 rectangles, and as we have shown, the effect of the MH shows off
when the instances are more complex.

Furthermore, note the values reported in columns DOM. These correspond
to a number of occurrences when the method found a solution that had both
a smaller area and HPWL than the solution found by the other method; such
a solution is objectively better given our two main metrics. We can see that
MH-10 was able to do so in more cases, which again highlights the power of
local search performed by the ILP solver.

We illustrate the mentioned results with Figs.5, which show instance number
14. Three figures correspond to the manual solution, the solution obtained us-
ing FDGD-ILP, and finally using MH-10. Note that the manual design does
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not show the positions of the physical devices within the rectangles. We can see
that both automatically generated solutions dominated the manual design. The
differences between both automated solutions are subtle; their areas are actually
equal. However, even these subtle changes in the positions of smaller rectan-
gles are enough to dramatically decrease the HPWL in the case of the solution
generated by MH-10.

Table 5: Values of W+H in µm, area in µm2 and HPWL in µm for each instance,
and average ratios of automated and manual metrics, obtained using MH-10.
The average ratios obtained by FDGD-ILP in [13] are shown in the last row
for comparison. Solutions dominating the manual one, given all three metrics,
are highlighted.

manual MH-10
cconn = 0.1 cconn = 1.0 cconn = 8.0

instance W+H area HPWL W+H area HPWL W+H area HPWL W+H area HPWL
1 158 6118 1850 157 6172 1636 157 6183 1562 166 6889 1478
2 116 2710 1784 88 1936 1024 91 2070 928 106 2757 797
3 106 2650 906 85 1779 660 89 1968 654 92 2119 547
4 129 4096 812 112 3117 782 114 3256 717 131 4064 662
5 207 8972 13797 159 6351 9955 165 6789 8141 169 7120 7863
6 178 7698 4039 169 7167 3666 167 7009 3647 174 7224 3615
7 168 6580 2908 164 6756 2633 168 7093 2314 173 7466 2307
8 173 7294 1501 160 6399 1224 169 6973 1068 173 7139 1093
9 243 14129 4705 225 12647 4205 234 13664 4003 241 14487 3882
10 205 10214 28386 191 9093 38626 194 9446 32363 236 13714 24930
11 225 9922 28527 197 9356 29074 205 10313 17864 241 13717 13210
12 155 5953 3824 123 3803 2315 126 3937 2162 159 6298 1597
13 162 6511 2061 153 5855 1822 155 6002 1665 155 6008 1693
14 247 15235 2399 193 9212 1720 193 9263 1557 211 10657 1363
15 123 3758 1619 115 3309 1817 113 3178 1852 116 3385 1712
16 232 12397 2676 215 11551 1973 223 12318 1792 221 12143 1944
17 247 12525 4586 225 12172 3313 235 13708 3008 252 15790 2964

avg ratio
MH-10 1.00 1.00 1.00 0.89 0.84 0.86 0.91 0.89 0.77 0.98 1.02 0.71

avg ratio
FDGD-ILP [13] 1.00 1.00 1.00 0.88 0.84 0.93 0.91 0.89 0.82 0.99 1.04 0.74

Table 6: Comparison of FDGD-ILP and MH-10 for all 34 experiments per-
formed on real-life instances. DOM shows in how many cases the method domi-
nated the other one with respect to both the area and HPWL.

cC = 0.1 cC = 1.0 cC = 8.0
aRD (BH) DOM aRD (BH) DOM aRD (BH) DOM

FDGD-ILP 0.46 (22) 1 1.82 (11) 1 3.84 (14) 0
MH-10 0.60 (12) 8 0.11 (23) 10 0.49 (20) 11
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(a) Manual design, area = 15235µm2, HPWL = 2399µm.

(b) FDGD-ILP, area = 9212µm2, HPWL = 1898µm.

(c) MH-10, area = 9212µm2, HPWL = 1720µm.

Fig. 5: Comparison of manual and automated placements, obtained for cC = 0.1.
Shown instance corresponds to the 14th row in Table 5.
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7 Conclusion

In this paper, we extended our previous work on the automation of the placement
of AMS ICs. We studied the effect of additional redundant constraints on the
performance of the state-of-the-art ILP solver. While the symmetry-breaking
constraints did not enhance the solver’s performance, imposing an additional
constraint on the maximum value of half perimeter of the placement led to
improvement on the smaller instances. However, for larger instances, such con-
straint made the solver unable to find any feasible solution in a given computa-
tion time, even though the bound was derived from a known feasible solution.
Therefore, we need to provide a solver with an initial solution if we would like
to exploit the half-perimeter constraint in the future.

Our experiments with MHs were more successful. We proposed applying the
ILP solver to perform a local search in the created placement. The intensifica-
tion phase of the MH relied on freeing variables associated with a few spatially
close rectangles while fixing the other. We showed an additional ILP model that
we used to perform the diversification step, to diverge further from the current
solution when the local minimum is reached. We evaluated several different MH
settings on synthetically generated instances. We concluded that using intensi-
fication only and freeing 10 rectangles in each iteration led to the best results
overall. However, the potential benefits of diversification cannot be overlooked,
but its application would probably require a more advanced control mechanism
than presented in our paper. Ultimately, we significantly improved our previous
results, obtained using FDGD-warm started ILP, on large instances with 200 and
more rectangles, especially when symmetry groups are present in the instance.

Finally, we created automatically generated placements for real-life instances
provided by our industry partner STMicroelectronics. We could compare our
results with the manually created benchmarks and our previous results. We
were again able to outperform both the area and the HPWL in the case of
12 instances; furthermore, we were able to reduce the average value of HPWL
even further while keeping the area metric unaffected. When we analyzed the
improvement against our previous results more closely, we found that the MH
approach dominated its ILP-only counterpart regarding both the HPWL and
area in one-third of the experiments performed on real-life instances. This again
suggests that the use of MH could be beneficial not only in the specific domain
of AMS IC placement but in the domains of packing and cutting as well, where
only the area is minimized.
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