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Abstract

One of the main goals of experiments at the Large Hadron Collider in CERN and the
Relativistic Heavy Ion Collider (RHIC) in BNL is to study hot and dense nuclear matter,
quark-gluon plasma (QGP), that could be created in collisions of heavy ions. The QGP
is expected to be present in the �rst phases of the Big Bang, where all of the matter in
the Universe was created. Furthermore, its studies give insight into the various aspects of
quantum-chromodynamics (QCD). It mainly helps exploit various phase transitions in the
nuclear matter phase diagram. At RHIC energies, heavy-�avor (charm and beauty) quarks
are primarily produced in the hard partonic scatterings in the initial stages of heavy-ion colli-
sions. Thanks to this, they are an excellent probe of the whole evolution of the created QGP.
However, the particle production measurements in heavy-ion collisions, compared to those in
the collisions of protons (p+p), are also a�ected by the Cold Nuclear Matter (CNM) e�ects.
The CNM e�ects arise from the dense nuclear environment in the collisions, not from the
hot medium presence. Small collision systems, such as collisions of protons or deuterons with
heavy ions, are a great tool for investigating CNM e�ects.

In 2014�2016, the Heavy Flavor Tracker (HFT) silicon detector was installed in the STAR
detector at RHIC. Its track-pointing resolution enabled the precise and detailed studies of
open heavy-�avor production in the collisions of gold ions (Au+Au) at energy per colliding
nucleon

√
sNN = 200 GeV. Modi�cation of the production compared to the p+p collisions,

accessed via nuclear modi�cation factor measurements, was studied for D0, D± mesons and
electrons from beauty and charm decays. Open heavy-�avor elliptic �ow (v2) and directed
�ow (v1) were also measured.

This thesis studies the production of D0 meson in deuteron-gold (d+Au) collisions at√
sNN = 200 GeV, measured in 2016. This measurement complements the studies done in

the Au+Au collisions and aims to help isolate the CNM e�ect from the e�ects of the QGP.
Thanks to the excellent impact parameter resolution provided by the HFT, D0(D0) mesons
are reconstructed from their hadronic decay to kaon and pion, D0(D0) → K−π+(K+π−).
Topological properties of D0 mesons decays are used to extract D0 meson raw yield.

The performance of the three classi�cation machine learning algorithms, boosted decision
trees (BDT), random forest, and deep neural network, was studied on the simulated data.
The BDT was selected to separate the signal from the background in the correct-sign pairs of
kaons and pions, and the D0 meson peak signi�cance at the level of 7σ was achieved. Statistics
allowed us to reconstruct D0 meson in the three transverse momentum intervals: 1�2, 2�3,
and 3�5 GeV/c.

Measured D0 meson production is compared to the previous measurements done in 2003.
Furthermore, it was compared to the results from p+p collisions in the form of the nuclear
modi�cation factor. Within uncertainties, the measured nuclear modi�cation factor agrees
with the results from light hadrons in d+Au collisions and, for low transverse momentum, D0

mesons in the Au+Au collisions.





Abstrakt

Jedným z hlavných cie©ov experimentov na Ve©kom hadrónovom urých©ova£i (Large Hadron
Collider, LHC) v CERNe a Relativistickom urých©ova£i ´aºkých jadier (Relativistic Heavy Ion
Collider, RHIC) v BNL je ²túdium horúcej a hustej jadrovej hmoty, kvark gluónovej plazmy
(quark-gluon plasma, QGP), ktorá môºe vznika´ v zráºkach ´aºkých iontov. Predpokladá sa, ºe
QGP bola prítomná v prvých fázach ve©kého tresku, kedy vznikla v²etka hmota vo vesmíre.
Naviac, v¤aka ²túdiu jej vlastností, je moºné nahliada´ na rôzne aspekty kvantovej chro-
modynamiky popisujúcej silnú interakciu elementárnych £astíc. Jedným z nich je aj popis fá-
zových prechodov jadrovej hmoty. Pri energiách dosahovaných na RHICu, kvarky ´aºkých vôní
(krásny a pôvabný) sú vytvárané najmä v tvrdých partónových interakciách v po£iato£ných
fázach zráºok ´aºkých iontov. V¤aka tomu sú jedine£nou sondou celej evolúcie vzniknutej
QGP. Av²ak produkcia £astíc v zráºkach ´aºkých jadier je v porovnaní so zráºkami protónov
(p+p) ovplyvnená aj efektami studenej jadrovej hmoty (Cold Nuclear Matter, CNM). CNM
efekty sú dôsledkom hustého prostredia v zráºajúcich sa jadrách a nie sú dôsledkom prítom-
nosti horúcej jadrovej hmoty. Malé zráºkové systémy, ako sú zráºky protónov alebo deuterónov
s ´aºkými iónmi, sú výborným nástrojom na skúmanie CNM efektov.

V rokoch 2014�2016 bol v detektore STAR na RHICu nain²talovaný kremíkový detektor
s názvom Heavy Flavor Tracker (HFT). Jeho rozlí²enie rekon²trukcie dráh £astíc umoºnilo
presné a detailné ²túdie produkcie ´aºkých kvarkov v kolíziách iónov zlata (Au+Au) pri en-
ergii na jeden zráºaný nukleón

√
sNN = 200 GeV. Modi�kácia produkcie v porovnaní s kolízi-

ami p+p, ktorá bola prístupná prostredníctvom meraní faktora jadrovej modi�kácie, bola
²tudovaná pre D0, D± mezóny a elektróny z rozpadov krásnych a pôvabných kvarkov. Bol tieº
meraný eliptický anizotropný tok (v2) a priamy tok (v1) otvorených ´aºkých mezónov.

Táto dizerta£ná práca ²tuduje produkciu D0 mezónov v zráºkach deuterón-zlato (d+Au)
pri

√
sNN = 200 GeV meraných v roku 2016. Toto meranie dop¨¬a ²túdie vykonané v Au+Au

a má za cie© pomôc´ izolova´ CNM efekty od efektov QGP. V¤aka vynikajúcemu rozlí²eniu
merania vzdialenosti £astíc od miesta zráºky poskytovaného HFT, sú D0 mezóny rekon²truo-
vané z ich hadronického rozpadu na kaón a pión, D0(D0) → K−π+(K+π−). Topologické
vlastnosti rozpadov D0 mezónov sa pouºívajú na získanie produkcie D0 mezónov.

Výkon troch klasi�ka£ných algoritmov strojového u£enia, a to posilnených stromov rozhod-
ovania (boosted decision trees, BDT), náhodných lesov (random forest) a hlbokých neurón-
ových sietí, bol ²tudovaný na simulovaných dátach. BDT bol vybraný na separáciu signálu
od pozadia v pároch kaónov a piónov s opa£ným nábojom. Meraný vý´aºok D0 mezónov
dosiahol ²tatistickú signi�kanciu na úrovni 7σ. Mnoºstvo nameraných zráºok nám umoºnilo
rekon²truova´ D0 mezóny v troch intervaloch prie£nej hybnosti: 1�2, 2�3, a 3�5 GeV/c.

Nameraná produkcia D0 mezónov bola porovnaná s predchádzajúcimi meraniami z roku
2003. �alej sa porovnávala s výsledkami z p+p vo forme faktora jadrovej modi�kácie. V rámci
neistôt sa nameraný faktor jadrovej modi�kácie zhodoval s výsledkami pre ©ahké hadróny v
d+Au a D0 mezóny s nízkou prie£nou hybnos´ou v Au+Au.
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Introduction

In the 1970s, the new state of nuclear matter, the quark-gluon plasma (QGP), was pre-
dicted. This hot and dense state most likely existed shortly after the Big Bang, and it is
investigated by laboratories that can detect collisions of heavy ions since enormous energy
is needed for its creation. Its presence in central heavy-ion collisions in particle accelerators
was �nally con�rmed in 2004 by the Relativistic Heavy Ion Collider (RHIC) experiments.
Understanding the properties of the QGP could also result in a more precise theoretical de-
scription of the strong interaction of elementary particles in the Standard Model and their
creation. In the QGP, the large temperature and energy densities cause the melting of bound
hadrons. Therefore, their constituent quarks, and gluons, become quasi-free particles. Since
2004, multiple probes of the QGP creation have been measured by experiments in both RHIC
and the Large Hadron Collider (LHC). These probes are mainly collectivity of the particles
in heavy-ion collisions, suppression of particle's production compared with the one in proton-
proton (p+p) collisions, where QGP is not expected to be created, or di�erent hadronization
(hadron forming) processes in heavy-ion and p+p collisions.

Heavy-�avor (charm and bottom) quarks are produced primarily in the early stages of
collisions [1] and thus experience their entire evolution. The study of open-charm meson yields
probes the quark mass dependence of energy loss in the QGP and hadronization in the heavy-
ion collisions. Furthermore, understanding the sensitivity of heavy quarks to the collective
motion of the system, re�ected in the elliptic �ow of heavy mesons, can provide information
on the degree of their thermalization in the QGP and help to constrain the heavy quark
di�usion coe�cient. The Solenoidal Tracker at RHIC (STAR) experiment at the Relativistic
Heavy Ion Collider (RHIC) performed extensive studies of heavy-�avor hadron production
in gold-gold (Au+Au) collisions at

√
sNN = 200 GeV recorded in years 2014�2016. In this

period, the Heavy Flavor Tracker (HFT) [2], the high-precision silicon vertex detector, was
installed at the center of the STAR apparatus. Signi�cant suppression of D0 and D± meson
production in these collisions compared to p+p collisions at the same energy was measured.
Furthermore, the STAR measured signi�cant D0 meson collectivity in Au+Au collisions.

However, it is crucial to separate various processes a�ecting the hot medium probes to
study QGP properties in the relativistic collisions at accelerators quantitatively. These are
initial state e�ects before QGP creation and �nal state e�ects after QGP cooldown. The most
signi�cant ones are caused by the heavy nuclei in the collisions and dense environment after the
hadronization. Collectively, these are called cold nuclear matter (CNM) e�ects. They include
mainly modi�cation of parton distribution functions of nucleons in colliding nuclei, multiple
scatterings of the partons by the dense target, and parton scatterings in the nucleus, resulting
in their energy loss and the broadening of the transverse momentum distribution (Cronin ef-
fect). The CNM e�ects are studied mainly in asymmetric proton-nucleus or deuteron-nucleus
(p/d+A) collisions. At RHIC, these are proton-gold (p+Au) and deuteron-gold (d+Au) col-
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Introduction

lisions at various energies. In 2016, the STAR measured d+Au collisions at
√
sNN = 200 GeV

with the HFT installed. The primary analysis in this thesis aims to study D0 mesons pro-
duction in these collisions and its comparison with the one in p+p collisions. Thanks to the
excellent HFT spatial resolution, topological reconstruction of the hadronic decay of D0 me-
son to K− and π+ with branching ratio 3.89 ± 0.04 % [3] is used. This measurement results
aim to constraint models predicting the CNM e�ects that would better control charm quark
behavior in the QGP measured in Au+Au collisions.

To further improve the separation of D0 meson signal and combinatorial background Kπ

pairs, the Boosted Decision Trees (BDT) machine learning algorithm from the Toolkit for Mul-
tivariate Data Analysis (TMVA) package [4] is applied. The performance of other machine-
learning methods, deep neural network, and random forest are compared to the BDT on the
simulated data. The architecture of methods is carefully designed to maximize the classi�ca-
tion performance of signal from background separation. Such comparison proves the decision
to use the BDT. Furthermore, it shows that other methods, not only the widely used BDT,
should be considered for the signal extraction in the high-energy physics. Together with my
colleagues, we missed detailed description of the machine-learning algorithm setup and indi-
vidual steps in their application on the high-energy data, thus we decided to publish it for D0

meson signal extraction in the Journal of Instrumentation (JINST).

This thesis is organized as follows. The �rst chapter overviews the physics background for
D0 measurements in heavy-ion and p/d+A collisions and published measurements of open-
charm connected to it. Next, an introduction to supervised machine-learning methods and
their application to the experimental data is presented in the second chapter. The third
chapter introduces the STAR detector apparatus, mainly as it operated in 2014�2016 when
the data for the primary analysis were recorded. The last chapter demonstrates all steps in D0

meson reconstruction, its e�ciency corrections, and systematic uncertainties calculations done
by the author of this thesis. All �gures in the last chapter are for this thesis. Although the
analysis was discussed within the STAR heavy-�avor analytics team, they were not o�cially
approved and published by the STAR collaboration.

Author's contribution

Machine-learning methods for D0 meson signal extraction

I am a co-author of the article (J. Biel£ík, K. Hladká, L. Kramárik and V. K·s, Machine
learning classi�cation for D0 meson signal extraction in d+Au collisions, JINST 17 (2022)
02, P02017) that describes in detail the application of machine-learning methods on the data.
The simulation of the d+Au collisions, which setup I tested, is used to demonstrate the
con�guration of the algorithms. We designed the parameters of the random forest and deep
neural network classi�ers to compare with the typical BDT setup. Application of the BDT on
the STAR data to reconstruct invariant mass peaks was also published in a separate article
(L. Kramárik, for the STAR Collaboration, Reconstruction of D0 meson in d+Au collisions at
200 GeV by the STAR experiment, 2020 Phys. Scr. 95 074010). These articles are in App. B.
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Data analysis at the STAR experiment

As a member of the STAR collaboration, my work during my Ph.D. studies mainly aimed
to study D0 meson production in d+Au collisions. All heavy �avor analyses at STAR are
consulted within the Heavy-Flavor Physics Working Group. Regular updates on the D0 meson
analysis were discussed at the phone meetings of this group. Usually, several analyzers work
on the same dataset to optimize analysis and results. I was leading the e�orts related to D0

meson production in d+Au collisions since most of the analysis steps were done solely by me.

In addition, I participated in several analysis and collaboration meetings of the STAR
experiment, where I discussed the current status of my work with more STAR collaboration
members. Details of the D meson reconstruction were also discussed during the one-month-long
internship at Lawrence Berkeley National Laboratory. In addition, I performed preliminary
reconstruction and analysis of D0 mesons in p+Au collisions, which is not presented in this
thesis. Furthermore, I contributed with the trigger and tracking e�ciencies in the measurement
of D0 and D∗ meson in p+p collisions at

√
sNN = 500 GeV, recorded in 2011. The article with

these results, titled Measurements of D0 and D∗ production in p+p collisions at
√
sNN =

500 GeV, is in the STAR collaboration review and will be published soon in the Physical
Review D journal. I am one of its primary authors. A list of my public presentations and
posters on the topic of this thesis is in App. B. Most of them were presented for the STAR
collaboration, resulting in the publications of the proceedings.

Zero Degree Calorimeter maintenance

Zero Degree Calorimeter (ZDC) is one of the STAR's subdetectors. It was built to detect
particles in very forward rapidities. In addition, the signal from ZDC is a part of the STAR
trigger system and Relativistic Heavy Ion Collider (RHIC) luminosity measurements. Thus,
monitoring ZDC during the data taking and tuning it before and during the run is essential.
As a service task, I worked as an expert on the ZDC detector, monitoring its performance and
calibrating the supply voltage of photomultipliers. I was a member of ZDC experts from 2017
to 2020. During data taking in 2019 and 2020, I was the on-call for critical support escalations
of the ZDC.

Furthermore, before data taking in the year 2018, together with my colleagues, we disas-
sembled ZDC and tested installed photomultipliers. For this, we assembled the special testing
kit. We also tested STAR's spare photomultiplier tubes (PMT) to choose those with the best
performance. As a result of this work, two PMTs in the ZDC were replaced. During the data
taking, it was concluded that the detector's performance improved. Finally, we established
the ZDC documentation with all of the software and hardware information needed for future
experts and regularly updated it.

Last but not least, I participated in data-taking shifts as the detector operator. The
main goal of these shifts is to turn on and monitor STAR subdetectors directly in the STAR
detector control room during the data taking. In total, I spent together approx. 10 weeks in
this position.

Student advisory

As a part of my work, I helped supervise students during their bachelor's and master's
degrees. These students worked on di�erent open charm analyses at the STAR experiment. I
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Introduction

was a consultant to Tomá² Truhlá°, who �nished his bachelor thesis on multivariate analysis
of D0 in d+Au collisions [5]. Then, it was Zuzana Moravcová. In her bachelor thesis and
during master studies, she worked on the training of Boosted Decision Trees machine learning
method for reconstruction of D± mesons in Au+Au collisions [6]. Furthermore, I consulted her
D0 elliptic �ow studies in d+Au collisions in her diploma thesis [7]. Finally, I was a consultant
to Robert Lí£eník in applying the BDT to calculate invariant yields of D± meson in Au+Au
collisions [8].
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Chapter 1

Cold nuclear matter e�ects

1.1 Elementary particles and interactions

The Universe is expected to be created from a hot and dense singularity 14 billion years
ago. This singularity was a hot and dense matter, the quark-gluon plasma (QGP), which was
present 10−10 to 10−6 s after the Big Bang. In the current Universe, visible matter comprises
protons, neutrons, and electrons, forming atoms. However, according to Lambda Cold Dark
Matter (λCDM) cosmology model [9], this ordinary matter makes only approx. 5 % of the
energy density in the Universe. The rest includes dark energy (approx. 68 %) and dark matter
(approx. 27 %).

The Standard Model is a theory that describes elementary particles of ordinary matter and
their interaction via three fundamental forces: electromagnetic, weak, and strong. Fundamen-
tal forces are described by the exchange of gauge bosons with integer spin. Particles carrying
electromagnetic interaction, described by Quantum Electrodynamics (QED), are photons.
They have no mass and are charge neutral. Electrically charged bosons W±, possessing mass
of 80.377±0.012 GeV/c2 [3], and neutral Z0, with mass 91.1876±0.0021 GeV/c2 [3], mediate
weak interaction. Finally, gluons are massless carriers of the strong interaction, described by
the theory called Quantum Chromodynamics (QCD). This interaction pertains to the color
charge that both gluons and quarks possess.

Quarks and leptons are elementary particles forming matter. All of them are fermions
since they have half-integer spin. Quarks carry both color and electric charge, while leptons
do not have the color charge. Electrons, muons, tauons, and their antiparticles carry an electric
charge, unlike neutrinos that remain neutral. This is why neutrinos have a lower chance of
interaction. Although the original Standard Model predicts that neutrinos have no mass, it was
experimentally proved that neutrinos oscillate between their �avors, so they should have very
low but non-zero mass [10,11]. This oscillation was �rstly measured by experiments detecting
neutrinos in cosmic rays. The current goal of the neutrino experiments is to measure neutrino
mass precisely or to detect new, so-called sterile neutrino that would help theoretically explain
their non-zero mass in the Standard Model [12].

Last but not least, another fundamental principle of the Standard Model is the Higgs
mechanism. It describes observed masses of gauge bosons in the Standard Model via breaking
the electroweak force symmetry. This mechanism is assured by the Higgs boson, the last
experimentally con�rmed particle of the Standard Model [13]. Higgs boson is a scalar particle
and posses mass of 125.22± 0.14 GeV/c2 [14].
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Nowadays, multiple supersymmetry theories predict new elementary particles. These mod-
els are based on the new symmetry, causing that every matter particle (fermion) of the Stan-
dard Model has its boson counterpart and vice versa [15]. Dark matter in the Universe might
be composed of such exotic particles. Despite the signi�cant e�ort to measure them, they are
yet to be observed. Dark matter particles are expected to not interact via strong or electro-
magnetic interaction and have very low mass. These particles are known in most models as
weakly interacting massive particles (WIMPs) [16].

Dark matter could be detected by its gravitational e�ects. However, the Standard Model
does not describe the gravitational force. General relativity predicts that massive objects cause
the warping of spacetime. Acceleration of such objects disrupts this spacetime and propagates
as gravitational waves with the speed of light. Einstein predicted this phenomenon in 1916 [17].
In 2016, the �rst measurement of gravitational waves was announced by LIGO and Virgo
collaborations [18]. The particle that might be a carrier of the gravitation, graviton, has not
yet been measured or observed, but it might be imagined as the smallest gravitational wave
possible. Due to the in�nite range of the gravitational force, it would have zero mass and,
because of the general relativity properties, spin 2.

Despite the success of the Standard Model in describing matter around us, more is needed
to provide a successful description of the matter-antimatter asymmetry. If the physics pro-
cesses obeyed the Standard Model theory during the Universe's creation, the amount of matter
and antimatter in the Universe would be the same. This symmetry was broken during the
early phases of the Universe in the process called baryogenesis. It still needs to be clari�ed
how exactly this process occurred. The matter-antimatter asymmetry might be caused by a
violation of the charge-conjugation parity-reversal (CP) symmetry, which predicts the same
behavior of a particle and its antiparticle in the mirror image of its spatial coordinates. Strong
and electromagnetic interactions are CP invariant, but the violation was measured in weak
decays. It was �rst observed in 1964 in K0 decay at Alternating Gradient Synchrotron (AGS)
accelerator in Brookhaven National Laboratory (BNL) [19]. This discovery was awarded the
Nobel Prize in 1980. From then, CP violation was studied in the weak decays of charm and
beauty mesons [3].

Another baryogenesis scenarios describe the transition between the high-temperature elec-
troweak symmetric phase of matter to the low-temperature matter with broken symmetry.
This transition has yet to be measured. However, the planned Future Circular Collider (FCC)
in CERN may allow studying such theories via new interactions at mass scale at the level of
100 TeV [12].

1.2 Phase diagram of the QCD matter

Gluons, carriers of the strong interaction, contrary to photons carrying electromagnetic
interactions described by the QED, have a color charge. The color charge results in self-
interactions of the gluon �eld, bringing several new features to the QCD compared to the
QED. In the QED, negatively charged electrons in the vacuum emit virtual photons that could
transform to electron-positron pairs. Because of this virtual pair creation and annihilation,
the electron is surrounded by the polarized medium, or the cloud of photons, electrons, and
positrons. Because of the electron's negative charge, positrons are attracted by the bare charge
and thus are close to the center of the cloud. This distribution of the electric charge around
the electron naturally causes so-called screening of the electric charge� the measured electric
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charge depends on how far from the center of the cloud it is tested. The measured charge is
higher if the test probe penetrates the cloud. In the QED, electric charge is calculated as the
combination of all the possible variations of the cloud. Such calculation consists of summating
all the possible vacuum polarization loops, bringing divergent intervals. These integrals are
then regularized, and the theory is renormalized to describe physically measurable quantities.

However, if the same procedure is applied in QCD, additional self-interaction of gluons
(carrying color charge) should be taken into account. This leads to the formation of a cloud
of gluons with the same color and corresponding anticolor as the quark they surround and
quarks of the same color. If the quark in the center of the cloud is tested the same way as it
is done for electrons, a probe that penetrates the color cloud charge measures a lower color
charge. This antiscreening of the color charge causes the so-called asymptotic freedom. Quarks
close to each other are free, noninteracting particles. However, the larger the distance from
the bare quark, the stronger the interaction is. If more energy is fed to a quark-antiquark
pair bind, their distance could be larger. However, at a large enough distance, generating
quark-antiquark pair from the vacuum is energetically more favorable.

In the 1970s, Hagedron �rst predicted that at su�ciently high temperatures, a QCDmatter
phase transition occurs [20]. Hagedron's statistical model is based on the thermodynamics of
strong interactions at large temperatures. At the critical temperature, hadrons are melted, and
quarks become decon�ned and quasi-free particles. Created hot and dense nuclear matter is
the quark-gluon plasma (QGP). Energy densities and temperatures su�ciently high to create
the QGP are accessed in collisions of heavy ions at accelerator experiments.

One of the �rst measured observable of the QGP was the strangeness enhancement in
sulfur-sulfur collisions, measured by the NA35 Collaboration in CERN [21]. However, in stud-
ies of asymmetric proton-ion collisions in 1992, such enhancement was not measured [22].
These di�erences in the strangeness productions indicated the di�erent particle production
processes in heavy-ion and p-A collisions. Creation of the QGP in heavy-ion collisions [23] was
�nally con�rmed by the experiments at Relativistic Heavy Ion Collider (RHIC) in 2004 [24�27].
One of the main QGP observables is the collectivity of the particles produced in heavy-ion
collisions. It is accessed via momentum anisotropy of the �nal state particles (anisotropic �ow)
and is caused by initial spatial anisotropy in the overlap region of colliding hadrons.

Furthermore, other probes of the QGP in the collisions are both distribution and modi�-
cation of produced particle jets (collimated sprays of particles). If the pair of jets (di-jet) is
created in the collision, where no hot medium is expected, both of the jets are observed with
nearly the same energy, but the opposite direction. In the case of heavy-ion collision, di-jet
asymmetry is observed. Thus one of the observed jets has lower energy and a more distorted
shape than its counterpart [28, 29].

Another striking evidence of the QGP creation is the suppression of quarkonia states1 in
heavy-ion collisions compared to the p+p. The con�nement inside quarkonia is expected to be
screened by the free color charges (quarks and gluons) in the hot medium. This phenomenon
is the so-called color Debye screening [30]. If the screening is strong enough, quarkonia are
�melted�, and their production is suppressed. The Debye screening depends on the medium
temperature and the binding energy of quarkonia. Therefore, with known binding energy, a
comparison of quarkonia measurements probes the temperature and energy density reached
in the QGP.

1Quarkonium is meson with valence quark and antiquark having the same �avor.
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1 Cold nuclear matter e�ects

Figure 1.1: Sketch of the QCD phase diagram indicating the range in baryon chemical potential
µB and temperature that di�erent experiments cover. Taken from Ref. [31].

Figure 1.1 displays the so-called QCD phase diagram, representing states of QCD matter
for given baryochemical potential (energy needed to add one baryon to the system) and
temperature of the system. There are three di�erent states of the QCD matter. Quarks and
gluons are con�ned in the hadron gas and decon�ned in the QGP phase. For high baryon
chemical potential and low temperature, there is a color superconductor state [32]. There are
two predicted transitions from hadrons to the QGP. For low baryochemical potential and high
temperature, lattice QCD calculations predict rapid cross-over transition [33]. On the other
hand, for higher baryochemical potential and low temperatures, the �rst-order transition is
predicted [34]. There is a so-called critical point between these two types of transitions. The
search for this point is one of the goals for heavy-ions physics since its precise position in the
phase diagram still needs to be discovered. When cross-over transition occurs for zero baryon
chemical potential, the critical temperature is currently calculated to be 154± 9 MeV [35].

In the collisions in experiments, �rstly, there are inelastic collisions between colliding
nucleons. The QGP might be created if the energy density is high enough and the system
becomes nearly stable. The system starts to expand, lowering its temperature. Thus, as seen
in the QCD diagram in Fig. 1.1, the con�ned nuclear matter starts forming in a process called
hadronization. After that, inelastic collisions between hadrons occur. When the system cools
down enough, it freeze-out and there are no inelastic collisions between hadrons.

Additionally, Fig. 1.1 shows the coverage of the experiments measuring properties of the
QCD matter. One of the most crucial experimental programs that study the QCD phase
diagram is the Beam Energy Scan (BES) at the STAR experiment, which �rst phase was
measured mainly in years 2010�2011 [36] and the second in 2019�2020 [37]. Collecting data
from Au+Au collisions with di�erent energies allows covering baryon chemical potential from
20 to 400 MeV.

1.3 Cold nuclear matter e�ects in p/d+A collisions

In heavy-ion collisions, the created hot matter is expected to modify the particle spectra.
Various observables, such as described collectivity of produced particles, di-jet asymmetry,
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Figure 1.2: Modi�cation of parton distribution functions in colliding nuclei, expressed as
dependency of shadowing factor RA

i on the parton momentum fraction x in the nucleus, with
di�erent regimes indicated. Taken from Ref. [38].

and suppression of particle production, could help calculate the QGP properties. However,
to study these QGP e�ects, a quantitative understanding of the e�ects of the heavy nuclei
in the initial stages of collisions is needed. Asymmetric collisions are studied to isolate these
so-called cold nuclear matter (CNM) e�ects. These asymmetric collisions are mainly proton-
lead (p+Pb) collisions at the Large Hadron Collider (LHC) in CERN, proton-gold (p+Au)
and deuteron-gold (d+Au) collisions at the RHIC in BNL. At RHIC, the maximum energy of
the collision is

√
sNN = 200 GeV. Therefore, the energy density in such collisions is expected

to be too low to create the thermalized medium. Nevertheless, a dense nuclear environment
could alter colliding nucleons. At LHC, p+Pb collisional energies go up to

√
sNN = 8.16 TeV.

Parton distribution functions (PDF) describe the probability to �nd a given parton (quark
or gluon) with parton momentum fraction x (fraction of the nucleon momentum carried by
the parton) in a nucleon. The dynamics of partons and mainly PDF are expected to di�er for
free protons and nucleons in colliding nuclei. In relativistic heavy ions, the density of partons
could largely grow. Nuclear modi�cation of PDF depends on the x regime and on the scale
of parton-parton interaction Q2. In the case of deep inelastic scattering, the process of the
probing nucleon by lepton, Q2 is the square of momentum transfer between the nucleon and
the probe. Generally, it could be considered as a resolution scale of the process. The nuclear
modi�cation factor of the PDF could be expressed by a shadowing factor

RA
i (x,Q

2) =
fAi (x,Q2)

Afnucleoni (x,Q2)
, (1.1)

where fAi is the bound nucleon PDF (nPDF) for parton �avor i and fnucleoni is the free nucleon
PDF. The value of RA

i for di�erent x is shown in Fig. 1.2. Four di�erent regions of nuclear
modi�cations are shown.

At small x, there is a so-called nuclear shadowing regime [39]. The number of partons in
the nucleon saturates, and sea quarks and gluons dominate PDF. At su�ciently high energy,
called saturation scale, the gluon radiation probability is lower than the probability of the
gluon fusion. A low number of gluons induces lower particle production cross-section. This
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phenomenon is described by the color glass condensate (CGC) theoretical framework [40].
Additionally, due to the saturation, interactions with the target nucleus are limited to the
nucleons on its surface since the inner ones are shadowed.

Multiple soft interactions of the partons in the initial stages of the collisions result in the so-
called nuclear broadening of the initial beam parton transverse momentum (kT-broadening).
Such broadening is the source of another CNM e�ect, the Cronin e�ect [41], also called
antishadowing, discovered in 1974. When �rst observed, the particle production in proton-
nucleus collisions was enhanced compared to the p+p case for hadron transverse momentum
2 < pT < 6 GeV/c. Generally, it is observed as an enhancement of the particle production in
the intermediate pT region that increases with the mass of the measured hadron.

Additionally, the interactions of the hadrons in the �nal state might contribute to the CNM
e�ects. Bound states, especially quarkonium, could be absorbed when passing through the
nucleons [42]. Furthermore, quarkonia could be dissociated by comovers� partons or hadrons
created or moving in their proximity. Since quarkonia suppression is considered an essential
probe of the QGP created in heavy-ion collisions, measuring how much of this suppression is
caused by the �nal state interactions with the cold matter is crucial.

Finally, to properly evaluate the e�ects of the hot medium, it is important to compare
particle yields in proton-proton (p+p) and the heavy-ion (A+A), proton-nucleus (p+A) or
deuteron-nucleus (d+A) collisions. Nuclear modi�cation factor measurements could quantify
such a comparison of particle production in di�erent collisional systems. In case of a compar-
ison of given particle yield dN/dpT in d+A and in p+p collisions, it is de�ned as

Rp+A =

dN
dpT

∣∣∣∣∣
p+A

⟨Ncoll⟩
dN
dpT

∣∣∣∣∣
p+p

, (1.2)

where ⟨Ncoll⟩ is the average number if binary nucleon-nucleon collisions in p+A collision,
usually obtained with the Glauber model [43]. The nuclear modi�cation factor is similarly
de�ned for A+A collision or any collision type if ⟨Ncoll⟩ is calculated accordingly.Ncoll depends
on the overlap of the colliding nucleus and nucleon (nucleus in the case of A+A collisions).
Figure 1.3 shows the schematic view of the collision in the collider, where the projectile and
target could be nucleon or nucleus. Nucleons participating in the collisions are those in the
region where projectile and target overlap. The higher the distance of their centers (size of
the impact parameter vector b), the lower the number of participants and thus lower Ncoll.
Every collision system could be divided into centrality classes, from those with the lowest
(central collisions) to those with the highest impact parameter size (peripheral collisions).
For the studies separated into centrality classes, Ncoll is averaged for the collisions in the
given centrality interval. Impact parameter, number of participants, and Ncoll could not be
directly measured, so the simulated collisions are matched to the observables, such as the
collision multiplicity (number of tracks detected in the mid-rapidity region) or the signal in
the detectors situated at high rapidities, measuring the signal from non-participating nucleons.

If the p+p reference is unavailable, particle production modi�cation could be studied with
the ratio of yields in central and peripheral collisions. Additionally, if the detector acceptance
allows for p/d+A collisions, forward production could be compared with the backward one.
Nuclear modi�cation factor equal to unity means that production in compared collision types
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Figure 1.3: Schematic representation of the collision geometry (used in the Optical Glauber
Model), with transverse (left) and longitudinal (right) views. Impact parameter b is the vector
between the projectile and the target centers. Taken from Ref. [43].

Figure 1.4: Nuclear modi�cation factor RAB vs. transverse momentum pT for inclusive
hadrons, measured in minimum-bias and central d+Au and central Au+Au collisions at√
sNN = 200 GeV by the STAR experiment. Taken from Ref. [44].

is equivalent and that the p+A or A+A collision is a superposition of ⟨Ncoll⟩ p+p collisions.
However, for example, the production of light particles is suppressed in the central A+A
collisions at su�ciently high energies, thus RA+A < 1.

Figure 1.4 shows the nuclear modi�cation factor of inclusive hadrons as a function of their
transverse momentum pT in minimum-bias and central d+Au and central Au+Au collisions
at

√
sNN = 200 GeV.2 Hadron production is suppressed in Au+Au collisions, since for pT

larger than 5 GeV/c RAu+Au is at the level of 0.3. For lower pT, a clear peak is mainly caused
by the Cronin e�ect. In d+Au collisions, this e�ect is even more evident. The Cronin peak is
much broader, and Rd+Au goes up to 1.5. As can be seen, it is important to measure nuclear
modi�cation factors in p/d+A collisions to separate initial state and hot-medium-induced
e�ects properly.

In the same d+Au collisions, the PHENIX experiment measured the Rd+Au for identi�ed

2pT =
√

p2x + p2y, where particle momentum vector p = (px, py, pz), while pz denotes momentum in the
direction of beam (colliding nucleons).
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Figure 1.5: Nuclear modi�cation factor RdA vs. transverse momentum pT for identi�ed
hadrons, measured in d+Au collisions centralities and at

√
sNN = 200 GeV by the PHENIX

experiment. Taken from Ref. [46].

particles and various collision centralities. Results are shown in Fig. 1.5. As can be seen,
the Cronin peak enhancement disappears in more peripheral collisions. In the central d+Au
collisions, for pions and kaons, the maximum Rd+Au is at the level of 1.2. However, for protons,
it goes up to 2. This baryon enhancement (also referenced as baryon anomaly) was also
observed in Au+Au collisions [45], and it is another e�ect that needs to be studied in p/d+A
collisions.

To summarize, measurements of the asymmetric collisions thus have crucial importance
in the QGP studies. Anisotropic �ow and the suppression observed in heavy-ion collisions
have been the main proofs of the QGP creation. However, it is essential to measure these
observables in the small collisional systems to isolate di�erent sources of these e�ects, which
might be initial-state interactions, multiple light scatterings of the colliding partons, possible
modi�cation of the hot QCD matter, di�erent hadronization processes, or the �nal-state
interactions.

1.4 Measurement of open-charm hadrons

Thanks to their large mass, heavy (charm c with mass of 1.27±0.02 GeV/c2 and beauty b
with mass of 4.18+0.03

−0.02 GeV/c
2 [3]) quarks are created mainly in the initial stages of heavy-ion

collisions and then travel through the hot and dense matter. Thus, they are excellent probes
of the properties of the QGP, such as its temperature, the density of the partons, and their
hadronization process. Measurements of charm meson production in heavy-ion collisions also
allow studies of the charm quark energy loss in the hot medium, which is directly related to
the transport coe�cients of the QGP. There are two main sources of energy loss of quark
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in the medium. One is collisional energy loss, which is important for traversing parton with
low transverse momentum. The other one is inelastic energy loss via gluon radiation, which is
expected to depend on the quark color and mass [47]. The mass ordering is expected in this
energy loss, so for gluons and light quarks, it is higher than for charm quarks, and for them,
it is higher than for b quarks. Furthermore, the collective behavior of charm quarks in the
QGP is sensitive to the degree of thermalization in the medium. It can be used to constrain
the heavy-�avor quark spatial di�usion coe�cient.

Charm quark was discovered in 1974 when J/ψ, the bound state of c quark and its an-
tiparticle c was measured by experiments in SLAC [48] and at AGS accelerator in BNL [49].
This discovery was awarded the 1976 Nobel Prize. In 1976, in SLAC, the �rst mesons with one
c quark were reconstructed via their decays to kaons and pions [50,51]. Mesons that have one
c or c quark are D mesons. This thesis aims to study the production of D0 mesons formed of c
and u quarks. D0 meson antiparticle, D0, is composed of u and c quarks and is usually studied
together with D0 meson. Invariant mass of D0 meson is measured to be 1864.83±0.05 MeV/c2

and its lifetime τ is (410.1± 1.5)× 10−15 s, that corresponds to cτ = 122.90± 0.45 µm [3].

In analyzing data from collisions of heavy ions, if the detector resolution of the primary
vertex and track position is su�cient, hadronic decays of D mesons are used to reconstruct
them and measure their production invariant yield. Charged D+ meson (composed of valence
c and d quarks) is reconstructed via its decay to K− and two π+ with branching ratio 8.98±
0.28 % and cτ = 311.8 ± 2.1 µm [3]. D∗+ meson, that has resonance width 83.4 ± 1.8 keV
[3], decays in the primary vertex and is reconstructed via its decay to D0 meson and π+

with branching ratio 67.7 ± 0.5 % [3]. In the main analysis of this thesis, decay channel
D0(D0) → K−π+(K+π−) with branching ratio 3.89 ± 0.04 % [3] is used. Kaons and pions
could be directly detected at experiments, which allows full reconstruction of D mesons.

1.4.1 D0 meson topological reconstruction

The STAR detector can track charged particles with great precision. Thanks to this,
topological properties of D0 meson decay are used to reconstruct this meson. In this section,
topological decay variables used in the main analysis of this thesis, reconstruction of D0 meson
in d+Au collisions at

√
sNN = 200 GeV, are described. These variables are common for open-

charm hadron analyses across high-energy physics experiments. Figure 1.6 shows schematic
decay of D0 meson together with used variables:

� primary vertex (PV) is the reconstructed place of the collision, where D0 meson is
created;

� kaon and pion distance of the closest approach (DCA) to PV, DCAK and DCAπ;
� DCA between daughter particles (K and π), DCAdaughters;
� D0 meson decay vertex (SV, secondary vertex), reconstructed as the midpoint of the
line corresponding to DCAdaughters;

� decay length of D0 meson candidate corresponding to the lifetime of D0 meson, calcu-
lated as the distance between PV and SV;

� reconstructed D0 meson distance of the closest approach to primary vertex, DCAD0 ;
� angle θ between reconstructed D0 (Kπ pair) momentum pKπ and decay length vector;
� angle ζ between reconstructed pKπ and kaon momentum.

Since origins of kaons and pions tracks coming from D0 meson decays are expected to be
shifted from PV, DCAK and DCAπ are expected to be larger than 0 µm and thus have
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Figure 1.6: Schematic representation of D0 meson decay. D0 is created in the primary vertex
(PV) and decays in the secondary vertex (SV) to kaon and pion, whose distances of closest
approach (DCA) to PV (DCAK and DCAπ) and between them (DCAdaughters), together with
reconstructed decay length and D0 meson distance of closest approach to PV (DCAD0) are used
for D0 meson topological reconstruction. Curvatures of K and π tracks are exaggerated.

signi�cant classi�cation power. Thanks to the great HFT spatial resolution, the reconstructed
decay length is also expected to be shifted from 0 µm, even after the smearing caused by
�nite detector resolution. Omitting detector smearing e�ects, the momentum of D0 before
the decay has the same direction as the momentum of the Kπ pair. Therefore, the cosine of
θ is expected to be close to the unity. It is expected that most of the D0 mesons in d+Au
collisions at

√
sNN = 200 GeV are produced relatively close to the PV. Reconstructed Kπ pairs

with high DCAD0 are mainly from the combinatorial background because at such energies,
non-prompt (coming from B meson decays) D0 production is minimal. Generally, machine-
learning algorithms signi�cantly pro�t from uncorrelated variables. Because of this and to
further suppress combinatorial background, we also decided to use the cosine of angle ζ.

1.4.2 Open-charm results from the STAR

STAR measured D0 and D∗ meson production in p+p collision at
√
sNN = 200 GeV,

recorded in 2009 [52]. D mesons were reconstructed via their hadronic decays to kaons and
pions. From D meson production, overall charm production in these collisions was calcu-
lated. Together with theoretical calculations, the resulting charm production cross section is
shown in Fig. 1.7 (left). In Fig. 1.7 (left top), measurements are compared with Fixed-Order
Next-to-Leading-Log (FONLL) perturbative QCD calculations limits [53]. As can be seen,
the results are on the model's upper limits, consistent with CDF and ALICE experiments
results [52]. Figure 1.7 (left bottom) displays a comparison of the results with three di�erent
PYTHIA tunes. PHENIX tune was used in charm contribution estimation from dielectron
measurements. PYTHIA con�guration modi�ed to match measured heavy-�avor production
in low transverse momentum region is labeled as �this tune�. This was the �rst direct D meson
measurement for such low transverse momentum, so it helped with models' constraints.

Additionally, STAR studied D0 and D∗ in p+p at
√
sNN = 500 GeV, recorded in 2011.

Analysis steps and results in progress are described in detail in [54]. Resulting charm produc-
tion calculated using various D mesons is shown in Fig. 1.7 (right), together with comparison
to the FONLL calculations. Charm production results accessed via D mesons reconstruction
in p+p at

√
sNN = 500 GeV are in the STAR publication committee review and will be

published soon. The author of this thesis is one of the primary authors of this future article.
The main contribution is in the calculations of the trigger-bias e�ciency (described for the
D0 in d+Au analysis in Sec. 4.6.7). E�ciencies of individual triggers and their impact on
the calculated D0 meson spectra were estimated from simulated collisions embedded in the
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Figure 1.7: Charm productions cross section calculated from D0 and D∗ production in p+p
collisions at

√
sNN = 200 GeV (left plots) and

√
sNN = 500 GeV (right), compared with FONL

calculation [53] (left) and various PYTHIA tunes (right). Taken from Ref. [52] and [54].
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recorded data. Resulting corrections are used to correct the D0 and D∗ mesons raw yields.

Furthermore, high transverse momentum electrons produced from heavy-�avor decays were
measured in p+p collisions at

√
sNN = 200 GeV in STAR [55]. Results are again consistent

with FONLL calculations with uncertainties. To conclude the open heavy-�avor measurements
in p+p collisions at STAR, models describe the measurements of both charm cross-section and
electron from the open-charm decays. Therefore, open charm and mainly D0 meson production
is well understood in this collision system.

In the years 2014�2016, a detector built from precise silicon sensors, Heavy Flavor Tracker
(HFT) (further described in Sec. 3.2.4), was installed at STAR, which enabled detailed mea-
surements of the open-charm hadrons in Au+Au and d+Au collisions at

√
sNN = 200 GeV.

An overview of results from these measurements was presented by the author of the thesis
at the International Conference in High Energy Physics [56] (proceedings are in App.B). D0,
D±, Ds mesons and Λc baryon were reconstructed using the topological reconstruction of their
decays to kaons, pions, and protons in a similar way as described in Sec. 1.4.1. Additionally,
measurements of electrons coming from the decays of the heavy-�avor hadrons are enabled
using template �tting of their DCA distributions.

Energy loss in Au+Au collisions is accessed via measurements of the nuclear modi�cation
factor RAA. RAA was measured for D0 [57] and (for the �rst time at the STAR) D± [58]
mesons using their hadronic decays for various collision centralities. Results for both mesons
are consistent with each other. RAA of D0 meson is shown in Fig. 1.8. D meson production
is suppressed at high transverse momentum pT > 3 GeV/c and for central collisions. Fig-
ure 1.8 (right) shows that this suppression is similar to the one measured for light hadrons
and to the D0 mesons measured at the LHC in Pb+Pb collisions at

√
sNN−2.76 TeV. Towards

more peripheral collisions, suppression at high pT is lower. For low pT, there is no signi�cant
collision centrality dependence.

Thanks to the excellent DCA resolution of the HFT, RAA of electrons from both charm and
beauty decays was measured, and it is shown in Fig. 1.9 (left). Charm-decayed electrons show
suppression at high pT, consistent with the measurements of D mesons. Measured beauty-
decayed electrons suppression is smaller than charm-decayed electrons with signi�cance > 3σ,
as can be seen in Fig. 1.9 (right) when comparing the data with the null hypothesis. From
this, it can be concluded that the energy loss of beauty is smaller than for charm hadrons.

Both D0 meson and heavy-�avor decay electron RAA results are compared to the theo-
retical calculations. RAA of D0 meson comparison to the Duke model [59] and the Linearized
Boltzmann Transport (LBT) model [60] is shown in Fig. 1.8 (right). Figure 1.9 shows compar-
ison of heavy-�avor electron RAA with the Duke and Parton-Hadron-String-Dynamic (PHSD)
model [61, 62]. These models use the same approach for hadronization modeling, combining
coalescence and fragmentation mechanisms. Furthermore, they include heavy quark di�usion
in the decon�ned medium and mass-dependent energy loss mechanisms in the QGP. The
Duke model uses a Langevin stochastic simulation to trace the charm quark propagation in-
side the QGP medium and incorporates collisional and radiative energy losses. The medium
parameters have been constrained by �tting the previous experimental data. In the LBT, the
transport calculation includes elastic scattering processes for collisional energy loss and the
higher-twist formalism for medium-induced radiative energy loss. The heavy quark transport
is coupled with a 3D viscous hydrodynamic evolution tuned for light-�avor hadron data.

The collectivity of particles produced in collisions is measured through angular anisotropies
in the �nal-state momentum distributions and is described by Fourier expansion of the third
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Figure 1.8: Left: the nuclear modi�cation factor RAA of D0 meson as a function of transverse
momentum pT in di�erent centrality classes measured with (year 2014) and without (years
2010/11) the HFT detector installed in Au+Au collisions at

√
sNN = 200 GeV. Right: RAA of

D0 mesons measured in central collisions, compared to the RAA of pions and to the ALICE
results in Pb+Pb collisions at

√
sNN = 2.76 TeV. Taken from Ref. [57].

Figure 1.9: The nuclear modi�cation factor RAA of charm and bottom decay electron as a
function of transverse momentum pT (left) and their ratio (right), compared to the DUKE [59]
and PHSD [61,62] model predictions. Taken from Ref. [63].
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1 Cold nuclear matter e�ects

Figure 1.10: Schema of the non-central heavy-ion collision in the reaction (left) and transverse
(right) plane. Taken from Ref. [66]

derivation of the particle distribution,

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

(
1 + 2

∞∑
n=1

vn cos [n(ϕ− ψRP)]

)
,

vn(pT, y) = ⟨cos [n(ϕ− ψRP)]⟩,
(1.3)

where E is energy, p is momentum, pT is transverse momentum, ϕ is azimuthal angle, y ra-
pidity of produced particle and ψRP denotes the reaction plane angle. The reaction plane is
de�ned by the beam axis and impact parameter of colliding nuclei. Figure 1.10 shows the
schema of the non-central heavy-ion collision in the reaction plane (left) and transverse plane
(right). Spectators are nucleons not participating in the collision. As seen in Fig. 1.10 (left),
the spectators are de�ected from the beam line. This de�ection is signi�cant for measure-
ments at forward rapidities further from the place of the collision. Measurements of produced
particles' v1 enable quantitative studies of initial �elds created by the spectator's and partic-
ipant's matter. Contrarily, v2 measurements probe the e�ects of high energy density in the
participant zone, where colliding nuclei overlap. As displayed in Fig. 1.10 (right), this overlap
region has an elliptical (almond) shape. Due to the large number of nucleons in this region,
for high collisional energies, the energy density in this region causes the creation of a hot
medium with high internal pressure. The expansion of this medium is su�ciently high to in-
duce the collectivity of the produced particles. Experimentally, ψRP is usually approximated
independently for each term of the series in Eq. 1.3, ψn. Several methods can be used. For
example, for v1 measurements, ψ1 could be approximated using the azimuthal distribution of
spectators in the forward rapidity [64]. For v2 studies, ψ2 could be, e.g., reconstructed using
all prompt particles expected to be created in the collisions. More details on methods for �ow
analyses are in [65].

At STAR, D0 meson collectivity measurements were done for the �rst two coe�cients in
Eq. 1.3, v1 [64] and v2 [67]. These results are shown in Fig. 1.11. Furthermore, v1 and v2 were
also studied for electrons from charm hadrons decays. The elliptic �ow v2 of these electrons
and for D0 mesons is similar to the one measured for light hadrons. D0 meson results are shown
in Fig. 1.11 (left). Thus, charm quarks gain signi�cant �ow in the QGP and may achieve local
thermal equilibrium. Directed �ow v1 studies access the constraints of initial conditions of
the heavy-ion collisions. Furthermore, the initial electromagnetic �eld is predicted to induce
larger v1 for charm quarks than light �avor quarks due to the early production of charm
quarks. It gives opposite contributions to charm and anti-charm quarks. Measured D0 meson
v1 are shown in Fig. 1.11 (right). Measured v1 is signi�cantly larger for D0 meson than for
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Figure 1.11: Elliptic v2 (left, taken from Ref. [67]) and directed v1 (right, taken from Ref. [64])
�ow of D0 meson. D0 v2 transverse momentum pT dependency is displayed together with results
for light hadrons. Directed �ow v1 results are rapidity dependent and calculated for D0 with
pT > 1.5 GeV/c, compared to that of kaons for pT > 0.2 GeV/c. Additionally, the bottom left
plot displays v1 particle-antiparticle di�erence.

light hadrons. Additionally, the magnitude of v1 of charm-decayed electrons is consistent with
D0 mesons.

The charm quark hadronization properties are studied by measuring the yield ratios of
charm hadrons. At STAR, baryon-to-meson ratio for charm quark is accessed with Λc/D0 mea-
surements [68]. The resulting yield ratio is shown in Fig. 1.12 (left). As seen in Fig. 1.12 (left
top), it is comparable with the baryon-to-meson ratios for light and strange �avor hadrons.
Additionally, this ratio increases towards more central collisions, which is consistent with the
prediction of the coalescence hadronization model calculations. Comparison of the measure-
ment with various model predictions is shown in Fig. 1.12. Models di�er mainly in the charm
quark hadronization mechanism and QGP medium properties. The model that best describes
the data is the Catania model, which includes coalescence and fragmentation hadronization
of charm quarks [69].

To probe both strangeness enhancement and coalescence of charm quarks with strange
quarks in the QGP, D+

s /D
0 yield ratio was measured [70]. As can be seen in Fig. 1.12 (right

top), this ratio has no signi�cant centrality dependence. Moreover, it is signi�cantly larger
than the fragmentation baseline, represented by a PYTHIA8 calculation. Figure 1.12 (right
bottom) shows the comparison with the ALICE measurements in central Pb+Pb collisions
at

√
sNN = 5.02 TeV. The results from both experiments are consistent in the overlapping

region.

The mentioned measurements in Au+Au collisions at
√
sNN = 200 GeV are combined

to calculate total open charm hadron production and compare with the one in p+p. This
calculation is described in more detail in [58]. In Au+Au collision with 10�40% central-
ity, STAR measured open-charm hadron production cross section per binary collision as
113.3 ± 6.2(stat) ± 27.2(sys) µb. In p+p collisions, charm quark production results have
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Figure 1.12: Left: Λ+
c /D

0 yield ratio as a function of pT compared to light-hadron results
(top) and di�erent model calculations (bottom). Taken from Ref. [68]. Right: D+

s /D
0 yield

ratio as a function of pT in di�erent centralities of Au+Au collisions compared to PYTHIA
p+p calculations and to an ALICE measurement [71,72]. Taken from Ref. [70].

the consistent value of 130± 30(stat)± 26(sys) µb. Such agreement, together with D meson
suppression measured with RAA and yield ratios di�ering in p+p and Au+Au collisions, sug-
gests di�erent distribution of charm quarks among open-charm hadron species in Au+Au and
p+p collisions. Furthermore, these results indicate that the charm quark participates in the
coalescence hadronization in the QGP.

In 2016, STAR recorded d+Au collisions at
√
sNN = 200 GeV with the HFT installed.

However, open-charm measurement results from these collisions have yet to be published.
Such results would complement the open-charm studies and help to compare di�erent physics
e�ects in d+Au, Au+Au, and p+p collisions. This thesis presents measurement of D0 meson
production in these d+Au collisions.

1.5 Open charm measurements in p/d+A collisions

High-energy physics experiments extensively measure D0 meson. In addition to the STAR
measurements in heavy-ion collisions, the nuclear modi�cation factor was measured in Pb+Pb
collisions by CMS [73] and ALICE experiment [74]. ATLAS extensively studied D0 meson
production in p+Pb collisions at

√
sNN = 8.16 TeV [75]. The LHCb collaboration published

detailed studies of the D0 meson production dependency on the rapidity in p+Pb collisions
at

√
sNN = 5.02 TeV [76]. Furthermore, elliptic �ow of D0 meson was published by CMS in

p+Pb collisions at
√
sNN = 5.02 and 8.16 TeV [77].

The ALICE experiment also measured D meson species in p+Pb collisions at
√
sNN =

5.02 TeV using the topological reconstruction similar as described in Sec. 1.4.1. Results of the
nuclear modi�cation RpPb for D0, D± and D∗ are shown in Fig. 1.13 (left). For pT > 3 GeV/c,
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Figure 1.13: Nuclear modi�cation factor vs. transverse momentum pT of D0 mesons in p+Pb
collisions at

√
sNN = 5.02 TeV measured by the ALICE. The left �gure separately displays

results for D0, D±, and D∗. The results for D meson species are averaged on the right plot,
and one D0 meson point at low pT is displayed. Results are compared with various theoretical
predictions. Taken from Ref. [78].

RpPb is consistent with unity for all measured D mesons. For lower pT, RpPb decreases,
and there is a hint of modi�cation by the CNM. Figure 1.13 (right) compares the species-
averaged RpPb with the model calculations incorporating various CNM e�ects. All models
except the one by Kang et al., consisting of incoherent multiple scatterings, describe data
within uncertainties. Successful models are based on the CGC theory, then kT-broadening
combined with nuclear shadowing, energy loss of the charm in the CNM, and various nPDF
parametrizations.

Figure 1.14 shows transverse momentum dependence of nuclear modi�cation factor in
d+Au collisions at PHENIX for leptons from heavy �avor decays in two centrality classes
(central and peripheral) and for three rapidity intervals (midrapidity, forward and backward
rapidity). In this �gure and other following �gures, forward (positive) rapidity is in the direc-
tion of the colliding proton (deuteron). As it could be seen in Fig. 1.14 (right), the nuclear
modi�cation factor for leptons from heavy-�avor decays is consistent with unity for all of
the three shown rapidity ranges in peripheral collision (centrality 60-88%). However, for the
central collisions shown in Fig. 1.14 (left), nuclear modi�cation factors in forward and back-
ward rapidities strongly deviate from each other and unity. As described in [79], although the
measurements at forward rapidity are described both by the model considering nPDFs, kT-
broadening and the CNM energy loss (ELOSS model) or by nPDFs alone, nuclear modi�cation
factor at backward rapidity cannot be described considering only the nPDFs.

In the measurements, it is also possible to distinguish leptons from beauty hadron decays
and others. Nuclear modi�cation factors of leptons from beauty decays in p+Pb collisions
RpPb at

√
sNN = 5.02 TeV and in Pb+Pb collisions at

√
sNN = 2.76 TeV, both measured by

ALICE, is displayed in Fig. 1.15. Within uncertainties, RpPb is consistent with unity. Thus,
the production of electrons from beauty hadrons in p+Pb scales with that in p+p collisions.
This measurement con�rms that initial-state e�ects due to the presence of CNM are minor in
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Figure 1.14: Nuclear modi�cation factor of leptons from heavy �avor decays in d+Au collisions
at

√
sNN = 200 GeV as a function of transverse momentum in the 0�20% (left) and 60�88%

(right) centrality classes, measured by PHENIX. Taken from Ref. [79].

the measured transverse momentum range at LHC energies.

The STAR experiment recently published J/ψ measurements in p+Au collisions at
√
sNN =

200 GeV recorded in 2015. Resulting nuclear modi�cation factor RpA is displayed in Fig. 1.16
(top) together with results from d+Au collisions measured by PHENIX and central Au+Au
collisions measured by STAR, both at

√
sNN = 200 GeV. For pT < 3 GeV/c, the RpA is

consistent with unity, indicating no CNM e�ects in this region. For lower pT, it drops to 0.7,
contributing signi�cantly to the nuclear modi�cation factor in central Au+Au collisions. The
new measurement in p+Au is consistent with the previously measured d+Au results. How-
ever, the precision of the new measurement is higher. The bottom plot of Fig. 1.16 compares
p+Au results with the theoretical model predictions. All models agree with the measurements,
except the comover model for pT > 3.5 GeV/c [81]. The ICEM and Lansberg calculations in-
clude the e�ects of nuclear modi�cation of the PDF. The TAMU model extends the transport
model for heavy-ion collisions to p+Au collisions [82].

Figure 1.17 shows the STAR measurement of D0 meson production from the data recorded
in 2003. D0 mesons were reconstructed using reconstruction of Kπ pairs, but the detector
resolution was signi�cantly worse than in runs recorded with the HFT. Together with D0

meson spectra, Fig. 1.17 shows results from non-photonic electrons. These were calculated
by subtracting photonic spectra from the inclusive ones. Additionally, Fig. 1.17 displays �ts
of both D0 and non-photonic electrons. Furthermore, the dotted line shows the electron �t
results divided by the number of binary collisions in d+Au collisions. For lower transverse
momentum pT, the results in d+Au are consistent with those in p+p. For pT > 2.5 GeV/c,
these lines are at the upper bound of uncertainty in p+p measurement.

The CNM e�ects on D0 production were extensively measured in p+Pb collisions at LHC
at

√
sNN = 5.02 and 8.16 TeV. At RHIC, where the energy of the p/d+Au collisions is much

smaller,
√
sNN = 200 GeV, only measured D0 meson spectra in d+Au collisions were recorded

in 2003. However, the precision of these measurements did not allow us to study CNM e�ects
in more detail. In order to study all regimes of the nuclear modi�cation of initial PDF in

40



Figure 1.15: Nuclear modi�cation factors RpPb and RPbPb of electrons from beauty-hadron
decays at mid-rapidity as a function of transverse momentum for minimum-bias p+Pb collisions
at

√
sNN = 5.02 TeV and 20% most central Pb+Pb collisions at

√
sNN = 2.76 TeV, measured

by ALICE. The data points of the p+Pb analysis were shifted by 0.05 GeV/c to the left along
the pT axis for better visibility. Taken from Ref. [80].

Figure 1.16: Top: nuclear modi�cation factor of J/ψ RpA/dA/AA as a function of transverse
momentum pT, measured in p+Au, d+Au and central Au+Au collisions at

√
sNN = 200 GeV.

Bottom: J/ψ RpA in p+Au collisions compared the various theoretical model calculations. Taken
from Ref. [83].
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Figure 1.17: D0 transverse momentum pT distributions from d+Au collisions at
√
sNN =

200 Gev, measured in 2003, together with non-photonic electron pT distributions in p+p colli-
sions and d+Au collisions. Solid and dashed lines are the �t results from both D0 and electron
spectra in d+Au collisions. The dotted line is scaled down by a factor of Nbin = 7.5± 0.4 from
d+Au to p+p collisions. Taken from Ref. [84].

collisions where the QGP is not created, it is necessary to complement LHC results with the
results at the RHIC energies. Furthermore, to complement measurements of CNM e�ects on
the J/ψ production in p+Au collisions, results of D0 meson in either p+Au or d+Au collisions
at the same energy are needed. At STAR in 2016, d+Au collisions were recorded with the
high-precision HFT detector, which allows for studying D0 meson in more detail.
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Chapter 2

Supervised machine-learning methods

for signal extraction

This chapter will introduce machine learning methods and typical steps involved in their
application. The references in this chapter contain a more detailed description of the methods
and their further mathematical proofs. To learn the machine-learning and the data analytics
work�ow, it is suggested to directly try to implement various tests on data known to an
analyzer after understanding the basics mentioned in this chapter.

Supervised statistical machine-learning methods are generally used to predict a target
based on the relations between variables and the target observed in the training data. The
training data consists of multiple samples composed of the variables, also known as features,
whose values are known in the prediction, and the target, whose values are known only for
the training sample. Generally, these methods are separated into classi�ers and regressors. As
the name suggests, classi�ers classify input data into two or more classes. For each sample,
they either directly predict a class where it most-likely belongs or a probability-like value
(score) that might be used to decide the sample class further. An example of a classi�er
algorithm problem might be a method that separates collisions into central and peripheral
based on the input variables, such as the signal in the forward detectors, the multiplicity of
the event, or the signal in the calorimeters. On the other hand, regressors are used to predict
a continuous value. The regressor model would be used in the aforementioned example to
predict the centrality value using the same features.

Various machine-learning methods might be used to solve a given problem. From the most
basic ones, such as the linear methods, to the most complex deep neural networks, each method
has its pros and cons. For the given problem, the best performance might not be obtained
with the most sophisticated methods, and the basic linear model might provide satisfying
results. Each algorithm has a di�erent structure and, thus, parameters optimised in training.
Parameters that are set before the model training and that are not generally optimized byt the
model are so-called hyperparameters. They set the method's structure, optimization function,
or how the algorithm should approach its intermediate results. These parameters signi�cantly
in�uence the method performance, so they must be chosen carefully. The most common way
of choosing the hyperparameters is the grid search. The grid is the set of hyperparameters
and their values intended to be tested. Then, the model is trained for each hyperparameter
combination, and its performance is evaluated. Finally, the analyzer chooses the model with
the best results or re�nes the hyperparameter grid.
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2 Supervised machine-learning methods for signal extraction

2.1 D0 meson decay simulated data

Based on the published article, which the author of this thesis co-authored [85], individual
steps and methods discussed in this chapter will be demonstrated on the D0 meson reconstruc-
tion. This article presents the detailed description of the machine-learning algorithms setup
and individual steps in their application on the high-energy data. Furthermore, it concludes
that not only the widely used BDT, but also other methods should be tested for the signal
extraction analyses.

Data from the full d+Au at
√
sNN = 200 GeV event simulation are used. The d+Au

events generated with the HIJING [86] simulator are fed to the GEANT [87] simulation of
the STAR detector response. Next, resulting tracks are reconstructed similarly and with a
comparable detector response as in the recorded data. Additionally, collision evolution is
known. Thus to each reconstructed track, its origin is well-known. Further technical details
of the implementation of this simulation are in Sec. 4.2.2.

The resulting reconstructed kaon and pion tracks are within each event combined into
like-sign (correct) charge and unlike-sign (wrong) charge combination Kπ pairs. Pairs with
invariant mass from 1.7 GeV/c2 to 2 GeV/c2 are further analyzed. Thanks to the information
from the simulation, for each correct-charge Kπ pair, it is known if it comes from D0 meson
decay or not. Kπ pairs from the D0 meson are tagged as the signal, while others are the
background. The goal of D0 meson reconstruction analysis in the recorded data is to construct
a method that will take correct-charge Kπ and classify them to signal and background. Wrong-
charge pairs are used to estimate the combinatorial background left after such classi�cation.
The study presented in this chapter aims to evaluate the performance of various machine
learning methods on the such signal from background separation.

In tested classi�cation models, D0 meson topological decay properties, shown in Sec. 1.4.1
are calculated for all Kπ pairs and used as features. The target is the simulation information,
whether or not the Kπ pair comes from D0 meson. Only correct-charge pairs are used in
training. Distributions of topological variables in the simulated data are shown in Fig. 2.1 for
correct-charge and wrong-charge pairs with transverse momentum 1 < pT,Kπ < 2 GeV/c. Dif-
ferences between correct-charge signal and background distributions are observed from which
the algorithm might bene�t. However, distributions of all correct charge pairs, correct-charge
background and wrong-charge background are very close and overlapping. In the recorded
data, there is only a tiny fraction of signal pairs in the correct-charge pairs, and the sig-
nal distribution is unknown. Thus, correct-charge and wrong-charge pair distributions have
a nearly similar shape. Furthermore, as it could be observed from shown background ratios,
there is no signi�cant distributional di�erence between correct-charge background pairs that
are not coming from D0 meson decay in our data and wrong-charge pairs.

All methods are tested separately in 5 Kπ transverse momentum intervals pT,Kπ: 0�1,
1�2, 2�3, 3�5, and 5�8 GeV/c. Kπ transverse momentum corresponds to the reconstructed D0

meson transverse momentum pT,D0 . In what follows, classi�cation performance is evaluated
using the area under the receiver operating characteristic curves (ROC), AUC. ROC represents
the dependency of signal e�ciency on background e�ciency for di�erent thresholds on the
output of the classi�cation predictions.
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Figure 2.1: Distributions of topological variables for Kπ pair transverse momentum 1 <
pT,Kπ < 2 GeV/c and for correct-charge and wrong-charge Kπ pairs, together with correspond-
ing ratios of correct-charge and wrong-charge backgrounds Kπ pairs distributions. Kπ pairs are
from data simulated with HIJING and GEANT, and have invariant mass from 1.7 GeV/c2 to
2 GeV/c2. Taken from Ref. [85].
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2 Supervised machine-learning methods for signal extraction

2.2 Train, test and validation set preparation

For the model's training and proper evaluation, input data must be split into train and
test sets. Additionally, some algorithms require a so-called validation data set. As the name
suggests, the training sample is used to train the model - optimize all parameters. The other
two sets are often called hold-out sets. Samples in these sets are not used to build a model.

Since the method is trained on the training set, predictions calculated on the same samples
might be signi�cantly better than for the unseen data. For example, a very trivial algorithm
that would remember all training data would have the maximum score but will not re�ect
the actual performance on the unseen data. Because of this, the test set, unseen in the model
training, is used. The trained model generates its predictions, which are evaluated using the
known target. Some implementations also require a validation sample of data. This set is
used in training, e.g., to evaluate intermediate results during the �tting of the method. For
example, thanks to this, training could stop to avoid over�tting the training sample. The
validation sample indirectly in�uences selected parameters in such a case. Thus, it needs to
be split apart from the test sample.

Composition of features and targets in the three sets must be similarly balanced to train
and evaluate the model correctly. Additionally, for each dataset to work appropriately, the
number of samples in each set must be large enough for its function. A small number of
samples in the hold-out sets might not represent the data statistically correctly and thus lead
to the wrong evaluation results (bias). On the other hand, too many samples reserved as
hold-out can limit the size of the train set and, thus, decrease the performance of the trained
model.

2.3 Input data engineering

Before the training, the input dataset, consisting of all the features and corresponding
target values, should be carefully engineered. Outliers, samples with signi�cantly lower or
higher values of features or targets, should be checked, and their removal from the training
set should be considered. Additionally, irrelevant or unimportant samples might be removed
or their weight in training lowered. Such analyses can help the model to learn the relations
between the features and the target that are more probable in the unseen data in the predic-
tion.

In particle reconstruction analyzes, it is not essential to identify all signal samples. How-
ever, any selection (classi�cation) should lead to a set samples with a statistically signi�cant
signal-to-background ratio. By cutting out the feature-space subset with low signal density,
signal-searching algorithms are forced to focus on the region where the signal number is high
on the one hand but, on the other hand, hard to set apart from the background. In the study
done with the simulated D0 meson pairs, the decay properties of the meson and our detector's
known resolution can hint at the region where the D0 meson signal could not be observed.
Based on this knowledge, various precuts sets on the training data are tested to �nd the ones
that suppress background signi�cantly more than signal. Signal and background e�ciencies
are calculated for three sets of rectangular cuts on D0 meson decay properties. These cuts are
shown in Table 2.1 and are similar in all pT,D0 intervals. Signal and background e�ciencies
corresponding to these cuts are in Fig. 2.2. As can be seen, the background e�ciencies of loose
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Figure 2.2: Signal (left) and background (right) e�ciencies vs. reconstructed transverse mo-
mentum of Kπ pairs (D0 meson candidates) pT,D0 for selection cuts listed in Table 2.1.

cuts are nearly similar to the signal ones'. However, tighter cuts suppress the background sig-
ni�cantly more than the signal. It is expected to obtain algorithms precise in higher signal
density regions using tight precuts. In what follows, all steps are done separately for two data
sample scenarios - one with no preselection cuts applied and another with tight precuts.

Table 2.1: Sets of preselection cuts applied to topological variables of D0 meson decay before
classi�cation methods have been trained.

Loose cuts Intermediate cuts Tight cuts

Variable Min. Max. Min. Max. Min. Max.

DCAK,π [mm] 0.0 10.0 0.0 1.0 0.002 2.0

DCAdaughters [mm] 0.0 5.0 0.0 0.3 0.0 0.2

decay length [mm] 0.0 5.0 0.0 1.5 0.005 2.0

DCAD0 [mm] 0.0 5.0 0.0 0.3 0.0 0.5

cos θ [-] -1.0 1.0 0.0 1.0 0.7 1.0

Some methods bene�t from the standardization and the normalization of the input sets.
The normalization converts the numerical variable x to xnorm, which has values in the range
[0, 1], as

xnorm =
x− xmin

xmax − xmin
, (2.1)

where xmin and xmax are minimum and maximum values of x.

The standardization rescales the data so that the distribution of every rescaled feature
has zero mean and standard deviation equal to one to align feature ranges. It transforms the
value of variable x to xstand as

xstand =
x− µ

σ
, (2.2)

where µ is the mean of the feature original distribution and σ is its standard deviation.
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2.4 Linear optimization methods

After the input data are prepared, the selected machine-learning method is applied. Linear
methods are one of the most fundamental groups of models on the market. Linear regression
is a model to predict the continuous target. On the other hand, logistic regression, despite the
name suggests, is a classi�cation model. The optimization of parameters done in the model
training will be presented in the example of these two methods.

2.4.1 Linear regression

Linear regression model prediction is calculated as

f(x,w, b) =
d∑

i=1

xiwi + b = xw + b, (2.3)

where x is a feature vector of dimension d, w are weights and b is bias. Bias b is usually
considered and optimized as another weight, so in what follows, w will note all weights
together with b. Model training is a series of steps that aim to calculate the weights with
the best precision, which is done by minimizing an objective function. In machine learning,
the objective function that re�ects the uncertainty of the model predictions compared to the
known model targets is called the cost function. The most common cost function for regression
models is the mean squared error (MSE), de�ned as

EMSE(w) =
1

N

N∑
i=1

(f(xi,w)− yi)
2 , (2.4)

where N is the number of samples in the train set, and y is the model target. Usually, the
sum of squares, the minor modi�cation of MSE that results in the same minimizing, is used,

ESS(w) =
1

2

N∑
i=1

(f(xi,w)− yi)
2 . (2.5)

Generally, f(xi,w) can be any regression model prediction. The term (f(xi,w)− yi)
2 is

called the loss function, and it calculates the error of the single data sample prediction. The
cost function aggregates these losses in a desired way. In the case of MSE, it calculates their
mean. However, a more complex model penalty might be necessary to regularize (generalize)
the model.

In training, the machine learning method optimizes the parameters by iterating through
training samples and minimizing the cost function. Mathematically, the minimum of a function
is a point where the derivation is equal to zero. The gradient descent is one of the algorithms
for �nding these minimums. After each training iteration step, it measures the change in all
weights regarding the di�erence in the cost function for the whole training sample. Using the
gradient of the cost function, E, from iteration i to (i+ 1), parameters w are updated as

wi+1 = wi − γ∇E(wi), (2.6)

where γ is the learning rate, which de�nes how big the parameters change between iterations
should be. Gradient calculation for each sample in the training set and in each update of the
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weights might require signi�cant resources. Thus, update of the weights might be calculated
iteratively for smaller batch of the training data, or for a singly randomly chosen sample.
In the case, the minimizing method is called stochastic gradient descent (SGD). Stochastic
gradient descent requires more iteration steps, but it signi�cantly speeds up convergence for
large datasets.

The learning rate is one of the hyperparameters set by the analyzer. If it is set too high,
gradient descent might miss the minimum of the cost function, overshoot it, and the training
might not converge. If the training converges too quickly, it could also indicate a too-big
learning rate. Small learning rate results in long training. Usually, it is hard to estimate what
is the ideal learning rate. In practice, cost function evaluation is observed after each training
epoch (one pass through all training samples), and, based on its evolution, the analyzer decides
if the learning rate is set satisfyingly. Additionally, some optimizers (Adam, AdaMax [88])
implement the adaptive learning rate, which makes the big steps in gradient descent far from
the global minima and small steps close to it. Adaptive change of learning rate enables the
optimizer to recognize and escape local minima of the loss function more e�ciently. More
detailed explanations of di�erent gradient descent and learning rate strategies are in [89].

As can be seen, there are many setup options that an analyzer may use to test. The
linear regression can be easily replaced by the polynomial regression by adding polynomial
terms in Eq. 2.3. Various cost and loss functions might be used, and di�erent optimization
algorithms to �nd their minima. Generally, the cost and loss functions and minimizer are the
basic building block of any machine learning algorithm.

2.4.2 Logistic regression

Logistic regression is a linear classi�cation model that predicts the class's probability.
In the case of binomial classi�cation, the logistic regression modi�es the linear regression
prediction equation (Eq. 2.3) with a sigmoid function, de�ned as

S(x) =
1

1 + e−x
, (2.7)

The resulting probabilities for the feature vector (sample) to be in class A and B are then
de�ned as

p(A|x) = S

(
d∑

i=1

xiwi + b

)
p(B|x) = 1− p(A|x).

(2.8)

Figure 2.3 shows how the sigmoid function modi�es the input function to range from 0 to
1. As can be seen, there is some decision boundary (f(x) = 0), where the probability is 0.5.
Around this boundary is a region where the probability is rapidly growing. For the analyzer,
following the slope of this linear part is essential. Sometimes, a big slope, and thus a model
with too con�dent predictions in the training data, might hint at an overtraining issue.

Since the target is a class (value 0 or 1) and the prediction is continuous, the cost function
for classi�cation algorithms di�ers from those used in the regression. In the classi�cation prob-
lems, model performance is evaluated as a product of likelihoods for each sample prediction
fw(xi) according to the target y, so the cost function is

EL(w) =

N∏
i=1

fw(xi)
yi(1− fw(xi))

1−yi . (2.9)
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Figure 2.3: Example of the sigmoid function shape�estimated probability calculated with the
logistic regression. Taken from Ref. [90].

The algorithm aims to maximize this function (or minimize −EL(w)), that's why this criterion
is called maximum likelihood.

The logistic regression model has an exponential function in the de�nition, so mathemat-
ically, using log-likelihood is more convenient. It is de�ned as

ElogL(w) = lnEL(w) =
N∑
i=1

yi ln fw(xi) + (1− yi) ln(1− fw(xi)). (2.10)

2.5 Over�tting and under�tting of the model

After the model is trained, predictions might be generated for all three data sets (train,
test, validate) and compared with the real target. In the ideal hyperparameter setup, perfor-
mance is similar for all three sets. Suppose the performance on the training set is signi�cantly
better than on the testing data. In that case, the model is overtrained (remember the example
of the model that only remembers all training data). Overtraining is caused by, e.g., too many
iterations of model �tting, too complicated model architecture compared to the complexity
of the problem to be solved, or relatively many features compared to the size of the training
data. Overtraining might also be observed in individual steps in training. If the model error is
evaluated after each training iteration, the training error and error on the test set (so-called
generalization error) get smaller after every new iteration. After multiple iterations, the gen-
eralization error stops decreasing and, on the contrary, starts to get larger, and the model is in
the over�tting regime. At this stage, the algorithm is sensitive and learns irrelevant noise, los-
ing its ability to generalize predictions. Another problem is the under�tting regime when the
model's performance is relatively low due to the wrong hyperparameter setup. However, low
performance might also be caused just by the complexity of the problem, and, of course, the
best score that could be achieved for the given problem is hard to estimate. Thus under�tting
in training is generally hard to detect.

The same training and generalization error behavior is observed with the increasing model
capacity, and the corresponding schema is shown in Fig. 2.4. The model capacity is the

50



Figure 2.4: Schema of training and generalization error vs. model capacity with under�tting
and over�tting zones displayed. Taken from Ref. [91].

ability of the model to �nd more sophisticated dependencies in the training set. This ability
is given by the set of functions from which to model can choose in the optimization. For
example, linear regression has a smaller capacity than polynomial regression, and the higher
the degree of the polynomial, the higher the model capacity. However, the model will not
always �nd the best-suiting function from its options. Selection is undoubtedly limited by the
selected hyperparameters (such as optimization method, learning rate, etc.), the quality and
the quantity of the data, which can lead �t to converge into non-ideal conditions. Usually, the
model selection with the appropriate capacity results from the analyzer's knowledge of the
problem and input dataset and the expected quality of the output prediction. More details
on the model capacity, under�tting, and over�tting are in [91].

2.6 Cross-validation

Properly constructing training, validation, and test sets is essential to evaluate the model
performance and estimate the �tting procedure's correctness. The generalization error, cal-
culated on the validation or the test set and used to decide the model quality, should be
calculated on a large enough sample of the data. Additionally, these data should adequately
represent the whole dataset in terms of the distributions of features and targets. A common
technique to ensure reliable evaluation is cross-validation. The schema of the cross-validation
steps is in Fig. 2.5. In the training phase, cross-validation �rst splits the dataset into multi-
ple folds. Then, one of the folds is the hold-out set, and the model is trained on the rest of
the sample. Afterward, the trained model calculates the predictions on the hold-out set to
compute the test performance. This train and predict process is repeated until all folds are
the hold-out sets and the validation (test) predictions are calculated for the whole dataset.
Finally, the model performance and the generalization error are calculated by comparing the
test predictions and the target values.

Since the models trained in the di�erent folds might converge to various parameters, the
test performance is more reliable with more folds. However, the number of samples in one
training should not limit the model capacity. Usually, the cross-validation is done with at
least three and less than ten folds. The number of folds setup is chosen by the analyzers.
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Figure 2.5: Cross-validation schema for input dataset split to �ve folds. Five model trainings
are done, each with di�erent fold as the hould-out set to evaluate the model performance. Taken
from Ref. [90].

Cross-validation is commonly used in grid search to �nd the optimal model hyperparameters.

2.7 Decision tree

The decision tree is a graph-like structure that partitions the input data space and, thanks
to this, tries solving the problem in each subregion using a simpler model. An example of a
single decision tree and its splitting of the two-dimensional input dataset is in Fig. 2.6. Data
in the root node correspond to the whole (training) dataset t0. Then, a decision on one of
the features is made. In the example shown, data are split into those having X1 larger than
0.7 and others. Two new nodes are created and further split dataset, according to di�erent
criteria on features. The terminal nodes split the input dataset into three sets, t2, t3, and
t4. These terminal nodes are then tagged based on the target values in them. In the case
of classi�cation targets, these are tagged based on the major class in the node�c1 or c2. For
regression, nodes are tagged by the target's mean value in the terminal node. In the prediction
phase, the data sample goes through the decision process from the root to the terminal node.
The �nal prediction is the value based on the tag from the training. The decision tree's depth
is the maximum number of decisions taken between the root and the terminal node. The
decision tree in Fig. 2.6 thus has a depth equal to two.

In constructing a decision tree, it is essential how the method chooses the best split s of
the node to maximize its information gain. Information gain of the split of the node t0 with
Nt0 samples to nodes t1 and t2 is the impurity decrease ∆is, de�ned as

∆is = i(t0)− i(t1)
Nt1

Nt0

− i(t2)
Nt2

Nt0

, (2.11)

where i are the nodes impurities, Nt1 and Nt2 are number of samples in the nodes t1 and t2.
Di�erent methods are used to calculate the impurity of the node. These methods di�er for
classi�cation and regression problems.
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Figure 2.6: Example of the decision tree (left) and the corresponding partitioning of the input
feature space (right). In the root node, all of the input data t0 are split using variable X1.
Terminal nodes split the input dataset to subsets t2, t3 and t4. Each terminal node is tagged
by major class (c1 or c2) in these subsets. Taken from Ref. [92].

For classi�cation, entropy and Gini impurities are mostly used. The thermodynamics-
inspired entropy is de�ned as

iH(t) = −
∑
k

pk(t) log2 pk(t), (2.12)

where pk(t) is a probability of sample in t to belong to class k. Entropy iH has values in
[0, 1], which the algorithm aims to minimize. The shape of the entropy function for various
compositions of a two-class set is shown in Fig. 2.7.

Another impurity measure is Gini impurity, de�ned as

iG(t) =
∑
k

pk(t) (1− pk(t)) . (2.13)

It can have values from 0 to 0.5.

For regression, one of the commonly used impurities is the variance in the node, de�ned
as

ir(t) =
1

Nt

∑
x,y∈t

(y − yt)
2 , (2.14)

where the sum is over all samples in the node t, Nt is the number of samples in the node, y
is the training target, and yt is the tag for the given node (mean value of all y in the node).
Variance is zero in the case of a completely homogenous node, achieved by the same target
values of the samples in the node.

2.8 Random forest

An ensemble of the models is a good way to generalize the predictions. Various models with
di�erent training data or architecture could be connected using some ensemble method. Since
every model architecture has strengths and weaknesses, aggregated predictions of multiple
well-trained models are usually better than the individual model's prediction.
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Figure 2.7: Entropy function shape for two-class set as function of probability of one of the
classes in the dataset. Taken from Ref. [90].

A single decision tree, presented in the previous section, easily over�ts with the increasing
depth. Given the binary decisions, it can easily focus only on a small part of the phase space
of training data. The solution is the random forest ensemble method that combines multiple,
usually shallow, decision trees trained independently. Each decision tree is trained on a slightly
di�erent subset of the training set. This subset is constructed by randomly picking samples
from the training set with repetitions allowed so that a selection might occur multiple times.
The picking stops when the maximum number of samples per subset, usually equal to the
size of the training set, is achieved. The number of such generated subsets equals the required
number of decision trees.

In the prediction, all trained trees evaluate every feature vector sample. Finally, indi-
vidual predictions (tags) of individual trees are aggregated to obtain the prediction of the
random forest method. The described construction method of the training subsets and their
aggregation in the prediction is called bootstrap aggregating (bagging).

There are di�erent ways how to aggregate decisions of the trees. In the case of regression
targets, predictions of trees might be just averaged. For the classi�ers, every decision tree
votes for a class, and the majority of votes is taken as the prediction. A more sophisticated
way to combine models in the ensemble is stacked generalization (stacking) [93]. Predictions
of models in the ensemble are combined in the higher-level model that calculates the �nal
prediction. For an example of stacking in the random forest, predictions of individual decision
trees might be combined in the linear regression to optimize their weights and calculate the
�nal prediction (in the case of a simple average, all of the trees have similar weight equal to
one over the number of trees in the ensemble).

2.8.1 Application to the D0 meson dataset

In our example of D0 meson reconstruction, scikit-learn [94] random forest implementation
is applied. All steps are done separately for described studied scenarios (datasets with di�erent
precut selections and pT,D0 intervals). Firstly, input data in all datasets are divided into
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training and test sets in the 6:4 ratio, and feature standardization is �tted on the training set
and applied on both test and training sets. Then, grid search over multiple combinations of
the random forest hyperparameters, such as the number of the decision trees, their maximum
depth, and impurity measure, is done separately for studied transverse momentum intervals
using 3-fold cross-validation on the training set. The input training set is balanced for all
model training, so the same number of samples per class (signal and background) is used in
the optimization. Hyperparameters with the best classi�cation performance, evaluated with
the AUC, are summarized in Table 2.2. As can be seen, entropy impurity (Eq. 2.12) is selected
as the one with the best performance for all datasets. In the scenario where precuts are not
applied, optimization selects deeper trees within the ensemble since more complex input space
partitioning is needed. Finally, the classi�er set with the best hyperparameters is trained over
the whole training set and later validated over the test set.

Table 2.2: Optimized parameters (number of trees Ntrees, maximum tree depth dmax, impurity
measure) of random forest classi�ers for Kπ pair transverse momentum pT,D0 intervals with and
without precuts application. Entropy (E) impurity measure is selected for all input data setups.

With precuts Without precuts

pT,D0 [GeV/c] 0�1 1�2 2�3 3�5 5�8 0�1 1�2 2�3 3�5 5�8

dmax 10 13 12 10 7 15 15 12 12 7

Ntrees 1200 600 1000 200 200 1200 600 1000 1200 200

Impurity E E E E E E E E E E

2.9 Boosted decision trees

The random forest method combines decision trees trained independently on a slightly
di�erent subset of the training set. Another way to construct an ensemble method is boosting.
In the boosting, base models (typically weak learners) are trained consecutively, and input
to the training of the individual base model depends on the performance of the previously
trained learner.

In the Adaptive Boosting (AdaBoost) method [95], the �rst base model is trained using
all training samples with the same weight. Then, this model's predictions are evaluated,
and weights are assigned to each training sample. Higher the model prediction error on the
sample, the higher the assigned weight. The following base model is trained using the weighted
samples. Thanks to this, the individual base model focuses on the region where the previous
one does not perform well, thus improving its prediction. Additionally, weight, calculated from
its classi�cation performance, is calculated for each base learner. This weight is used in the
application phase of the trained ensemble model, where the base models are aggregated using
weighted mean. Generally, the number of boosting iterations depends on the stopping criteria
the analyzer sets, e.g., the maximum number of base models or the performance of the last
base learner. In the AdaBoost method usage, it is essential to work with well-prepared input
data since, for example, outliers may lead to the model focusing on the region of data that
does not properly represent the data in the application phase.

Another boosting method is gradient boosting [96]. The �rst base model is trained using
the target values as in AdaBoost. However, every other base model is trained on the residuals
of the aggregated predictions of the previous models. Thus each iteration helps to bring
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the predictions closer to the target. The residuals are calculated as the gradient of the loss
function with respect to the predictions. Base model predictions are added to the ensemble
model multiplied by a learning rate coe�cient, which impacts the number of iterations the
algorithm needs to converge. Extreme gradient boosting (XGBoost) [97] is the extension of
gradient boosting that implements multiple methods to prevent over�tting and handling of
the missing data in the input dataset and is designed to perform faster. A more detailed
summary of the boosting algorithm is in [98].

2.9.1 Application to the D0 meson dataset

Boosted decision trees (BDT) machine learning algorithm from the Toolkit for Multivariate
Data Analysis (TMVA) package [4] is applied to classify signal and background Kπ pairs. This
method uses the AdaBoost algorithm. Over�tting is prevented by setting the maximum tree
depth to three. Moreover, the decision tree node is not further split if it contains less than
2.5% of the input training samples. Each tree is trained with randomly selected 50 % of the
training samples. The split impurity is calculated with Gini (Eq. 2.13).

Data in all pT,D0 intervals are divided into training and test sets in the 6:4 ratio, in the same
way as it was done for the random forest algorithm. Signal and background sets are balanced
using the class weights. In the TMVA implementation of the BDT, classi�er prediction is
calculated as the BDT response value. This value ranges from -1 to 1, and the higher the
value, the higher the probability of the sample being the signal. For each base decision tree
model, the error fraction is calculated as how much signal training samples have positive BDT
response and vice-versa for the background samples. As more trees are trained, their error
fraction increases and converges, as shown in Fig. 2.8. The error fraction equal to 0.5 means
the classi�cation is similar to random guesses, and such trees are weak classi�ers. At �rst, in
all pT,D0 intervals, BDT with 1000 trees is trained. Error fraction for 1 < pT,D0 < 2 GeV/c is
displayed in Fig. 2.8, and it is similar also in other intervals. A simple moving average of the
error fraction shows that it converges around 300 trained trees. Our study used 500 trees in
the BDT model for all intervals.

2.10 Neural networks

The sigmoid function ensures the prediction has a probability value in logistic regression.
The single layer of the neural network is a generalization of the logistic regression, where other
non-linear functions may replace the sigmoid function. This function is called an activation
function and allows the neural network to model more complex relationships between the input
features and the output. Such a generalization of logistic regression leads to the de�nition of
the perceptron architecture. Perceptron is the simplest neural network that contains an input
layer and an output layer with a single node (neuron). Its architecture is shown in Fig. 2.9.
The input layer consists of nodes whose number is equal to the dimensionality of the feature
vector. On the way to the output node, weights are assigned to the input features' values,
and their linear combinations are summed in the output node. This part is similar to linear
regression. Finally, the activation function transforms this sum into the prediction of the
perceptron.

The de�nition of perceptron architecture helps to build a more sophisticated multi-layer
perceptron (MLP) neural network with multiple layers. Hidden layers, added between the
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Figure 2.8: Error fraction of gradually trained boosted decision trees and simple moving
average (SMA) of error fraction for the last 50 trees for 1 < pT,D0 < 2 GeV/c. Taken from
Ref. [85].

Figure 2.9: Schema of the perceptron, the simplest neural network. Taken from Ref. [89].
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input and output layers, help to learn more complicated relations between the features and
the targets. Each layer contains multiple nodes, and each node is represented by a single
perceptron. Outputs from all the nodes in the layer are passed as the input to the next layer.
Hidden layers can have any number of nodes. However, the number of nodes in the output
layer equals the expected dimensionality of the prediction. The output of a hidden layer is
de�ned by a vector function

hl(z) = al (Wlz + bl) , (2.15)

where z is the vector of inputs, al(z) is the activation function for given layer, Wl is the
weights matrix and bl is the bias vector. Two di�erent representation schemas of the such
network are shown in Fig. 2.10. The left plot shows the scalar representation, where each line
re�ects a weight given to the output of the single node. The right plot shows the vector form
corresponding to Eq. 2.15, where the connector weights are generalized in the matrices. MLP
is an example of the most vanilla neural network, but there are various neural networks on the
market. A clear review of commonly used neural networks and a comprehensive explanation
of various hyperparameters and their setup is in [89]. Further detailed explanation using more
mathematical background is in [99].

Figure 2.10: General schemas of the multi-layer perceptron neural network architecture. The
left schema shows the scalar and the right vector notation. Taken from Ref. [89].

The analyzer de�nes the neural network's architecture: the number of hidden layers and
nodes in them. Additionally, the activation function per layer is de�ned. If the activation
function is linear, the neural network would be linear, and non-linearities in the training data
would not be discovered in the optimization. The most commonly used activation functions
are tanh,

atanh(z) = tanh(z) =
ez − e−z

ez + e−z
, (2.16)

and RELU, de�ned as

aReLU(z) =

{
z, if z ≥ 0

0, otherwise
(2.17)

The activation function of the output node depends on the target properties. For classi�cation,
it is a sigmoid function.

Dropout is one of the techniques used to prevent the neural network from over�tting. In
training, after a hidden layer is constructed, the outputs of some random nodes are set to
0, so they are not used. The dropout rate hyperparameter gives the ratio of dropped nodes.
An equivalent de�nition of the dropout rate is the probability of each node being removed.
Dropout helps the network to learn more complicated relations in the data and not to rely
only on a few strong features.
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Another commonly set hyperparameter is batch size. The batch is a subset of the training
data with a user-de�ned size. Weights in the network are recalculated after each batch is
processed. In one training epoch, the number of batches is equal to the ratio of the training
set size and the size of one batch, de�ned by the analyzer. The small batch size can lead to
a more accurate estimate of the gradients in the optimization but can also result in longer
training times.

There are multiple ways for weight initialization in the neural network to ensure smooth
convergence and avoid unwanted symmetries. Too small (or too big) initial weights might
lead to the signi�cant layer output signal lowering (raising) as it goes through layers, so at
the output node, it is signi�cantly out of the target. One option is to choose initial weights
from the uniform distribution within some limits. Another is to sample them randomly from
the Gaussian distribution with a mean at 0 and some small sigma. The choice of the limits
(sigma) is crucial and highly depends on the activation function, the number of inputs nin,
and outputs nout of the layer. For example, in He kernel initialization [100], the sigma is√
2/nin and in Lecun initialization [101] it is

√
1/nin. Xavier initialization [102] considers the

number of outputs from the layer. In this case, the sigma is equal to
√
2/nin + nout, where

n is the number of inputs to the layer. For all mentioned initializations, both uniform and
gaussian versions are used. More detailed mathematical explanations of the initializations of
the weight are in [102].

2.10.1 Application to the D0 meson dataset

The neural network to be studied on our example dataset is constructed with the Keras
package with the TensorFlow backend [103]. The architecture of the neural network that is
tested is shown in Fig. 2.11, with the hyperparameters to be optimized in the grid search
written in blue. The input layer contains seven nodes, which corresponds to the number
of topological variables. There are four hidden layers and one output node with a sigmoid
activation function.

input layer of 7 neurons

hidden layer of w neurons, BN, a, dropout(p)

output layer of 1 neuron, activation fuction (a) = sigmoid

hidden layer of w neurons, BN, a, dropout(p)

hidden layer of w neurons, BN, a, dropout(p)

hidden layer of w neurons, BN, a, dropout(p)

Figure 2.11: Schema of selected neural network architecture with description of the setup
of layers. Parameters of hidden layers in blue are left to grid search optimization: number of
neurons w, activation function a and dropout rate p. Batch normalization (BN) is applied in
all hidden layers. Taken from Ref. [85].

Before entering each hidden layer, batch normalization (BN) is applied, meaning that fea-
ture data are normalized according to the sigma and mean calculated in training to accelerate
the convergence. The number of nodes w in the hidden layer is left to be optimized in the grid
search, together with their activation function a and dropout probability p. Additionally, an
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optimizer for minimalization, batch size B, learning rate γ (or its initial value), and type of
kernel initialization are optimized. Tested values of hyperparameters are shown in Table 2.3.

Table 2.3: Hyperparameter space for neural network grid search optimization, to classify Kπ
pairs in D0 meson reconstruction. Options for activation function of hidden layers a, learning
rate γ, dropout rate in hidden layers p, optimizer, kernel initialization, batch size B, and number
of neurons in hidden layers w are shown.

Parameter a γ [·10−5] p Optimizer Kernel init. B w

Options
ReLU 0.1 0.2 Adam Lecun uniform 64 64

tanh 0.5 0.3 SGD He normal 128 128

1.0 0.4 AdaMax He uniform 256

Training data are divided into training, validation, and test sets in the 6:2:2 ratio. For
each pT,D0 interval, balancing of the training set is performed. Before the training, feature
standardization is �tted and applied to the training data and then applied to the validation
and test sets. After the data are prepared, the best hyperparameter combination is found
separately for each pT,D0 interval with the grid search over parameters in Table 2.3. In the
grid search, for each combination of hyperparameters, the model is trained with 70 epochs.

In all cases, w = 256 nodes in the hidden layer, batch size B = 64, dropout p = 0.2
and Adam optimizer starting at initial learning rate γ = 1 · 10−5 are selected. For data in
5 < pT,D0 < 8 GeV/c where precuts are not applied, tanh activation function achieves the best
performance. For the rest of the data, ReLU activation is selected. The performance is maximal
under He normal kernel initialization for 0 < pT,D0 < 1 GeV/c and with Lecun uniform
kernel initialization for pT,D0 > 2 GeV/c, when precuts are applied as well as for pT,D0 >
1 GeV/c, when no precuts are used. He uniform kernel initialization results in the best model
performance for the data pre-processed with precuts in the 1 < pT,D0 < 2 GeV/c interval.

Finally, the training with selected hyperparameters is done. After each epoch, the accuracy
is evaluated on the validation set. If it is not signi�cantly improving for the last 60 epochs,
training is stopped. The �nal evaluation of the model performance is done on the test set.

2.11 Performance of the methods on the D0 meson decay data

In what precedes, the con�guration of the random forest from the scikit-learn package, the
boosted decision trees from the TMVA, and the neural network implemented with the Keras
framework were described. In this section, their performance on the test sets is summarized.
Figure 2.12 shows ROC curves for all studied pT,D0 intervals, methods, and both setups with
and without precuts applied. Table 2.4 compares performance in terms of AUC. The AUC
ranges from 0.81 to 0.96 throughout all the precut D0 meson transverse momentum intervals,
which is su�cient to carry out any relevant subsequent physical analysis of D0 mesons.

Machine-learning classi�cation methods bene�t from the precut application mainly for
pT,D0 < 5 GeV/c. Classi�cation ability naturally increase with pT,D0 , since in this region, D0

mesons decay later. D0 mesons with low pT,D0 decay closer to the primary vertex, resulting
in low DCAK, DCAπ, and DCAD0. In such cases, the topological variables' properties of the
signal and the combinatorial background are more similar since the tracks created in the
primary vertex have low DCA, too.
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Table 2.4: Area under receiver operating characteristic (ROC) curve of tested machine learning
methods on test samples of datasets in D0 meson candidate transverse momentum pT,D0 inter-
vals.

With precuts Without precuts

pT,D0 [GeV/c] 0�1 1�2 2�3 3�5 5�8 0�1 1�2 2�3 3�5 5�8

Random forest 0.81 0.87 0.94 0.95 0.96 0.73 0.79 0.82 0.90 0.94

Boosted dec. trees 0.78 0.84 0.90 0.93 0.93 0.70 0.76 0.83 0.89 0.94

Neural network 0.79 0.83 0.90 0.93 0.91 0.70 0.76 0.83 0.89 0.92
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Figure 2.12: The receiver operating characteristic (ROC) curves for random forests (RF), deep
neural networks (DNN) and boosted decision trees (BDT) in D0 meson candidate transverse
momentum pT,D0 intervals, with and without precuts application. Taken from Ref. [85].

As can be seen from ROC curves in Fig. 2.12, random forest, not common in high-energy
physics, classi�es pairs signi�cantly better than other methods for data with precuts applied
and 1 < pT,D0 < 5 GeV/c. In the case of no precuts applied, random forest performance is
not signi�cantly better, but it is still slightly more successful. The boosted decision trees and
the neural network are similar in terms of both ROC and AUC. In the future, we plan to
investigate the performance of studied algorithms for three body decays and, e.g., separation
of prompt and non-prompt (coming from B meson decays) D0 mesons, where the separation
of background from a signal is even more di�cult with standard analysis methods.
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Chapter 3

Experimental setup

3.1 Relativistic Heavy-Ion Collider

The Relativistic Heavy-Ion Collider (RHIC) accelerator is placed at Brookhaven National
Laboratory (BNL) in New York. Collisions studied in the primary analysis of this thesis were
recorded in 2016 with the Solenoidal Tracker at RHIC (STAR). The schema of the RHIC and
its pre-accelerators is shown in Fig. 3.1. Other experiments that measured collisions of beam
accelerated at RHIC were the PHOBOS (ended operation in 2005), the Broad RAnge Hadron
Magnetic Spectrometers Experiment (BRAHMS, completed operation in 2006), and the Pi-
oneering High Energy Nuclear Interaction eXperiment (PHENIX). In 2023, the sPHENIX
detector started to operate, and together with the STAR, it will focus on detailed studies of
the QGP.

RHIC is very versatile thanks to its capability to accelerate and collide various nuclei
species, such as gold, uranium or copper, protons, and deuterons, all at energies from

√
sNN =

7.7 GeV to 200 GeV and for p+p collisions up to
√
s = 510 GeV. Furthermore, it is the only

machine able to accelerate and collide beams of polarised protons. Additionally, to achieve
very low

√
sNN, needed to investigate the nuclear matter at the high baryochemical potential

region of the QCD phase diagram, the STAR is capable of working in a �xed target regime, in
which gold foil is bombarded by gold or aluminum beam, achieving

√
sNN down to 3.9 GeV.

The summary of all RHIC collisions until 2022, together with their energies and luminosities,
is shown in Fig. 3.2. Figure 3.3 shows integrated luminosities and duration of data-taking for
these collisions. Among other asymmetric collisions, studied d+Au collisions recorded in 2016
are shown in the right plot. As can be seen, physics data recording took approximately two
weeks and achieved integrated luminosity of around 60 pb−1.

The source of various ion beams to the RHIC is the Electron Beam Ion Source (EBIS) [105].
The EBIS is also used as the source of ions for the NASA Space Research Laboratory. The
source of low-charge ions is the Laser Ion Source (LION), where the laser irradiation of the
solid target generates the ions. Then, the ion beam enters the EBIS, where the electron beam
strips electrons from low-charge ions. Optically Pumped Polarised Ion Source (OPPIS) [106]
generates polarised proton beams by ionizing the polarised hydrogen atoms. These are created
in low-energy collisions of protons and rubidium vapor. Such created low-energy beams are
accelerated in the radio frequency quadrupole (RFQ) and the linear accelerator (LINAC).
The �rst circular accelerator on the way to the RHIC is the Alternating Gradient Synchrotron
(AGS) Booster [107] with a circumference of 201.78 m. Subsequently, the beam continues into
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3 Experimental setup

Figure 3.1: Schema of the Relativistic Heavy-Ion Collider (RHIC) accelerator complex.

Figure 3.2: Summarry of the collisions at RHIC, recorded till year 2022. Taken from Ref. [104].
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Figure 3.3: Integrated nucleon-pair luminosity of Au+Au collisions (left) and of assymetric
collisions and collisions of other ion species (right). Taken from Ref. [104].

the AGS, a circular accelerator with a four-times larger circumference than the AGS Booster,
807.12 m. Finally, a beam is transferred to one of the two RHIC rings via a 770-meter-
long AGS-to-RHIC transfer line. The RHIC has a circumference of 3.8 km and six possible
interaction points. The beams are bunched, with the bunch crossing rate at the STAR of
approximately 9 MHz.

3.2 The Solenoidal Tracker at RHIC

This section describes the STAR detector as it operated from 2014 till 2016, when the ana-
lyzed d+Au collisions were recorded. In this period, the STAR detector design focuses mainly
on measurements of heavy-ion and polarised protons collisions. It mainly aims to measure
tracks produced in the mid-rapidity region. Figure 3.4 shows the STAR schema. Detectors
in the central barrel, enclosed in a 0.5 T solenoidal magnetic �eld, are Heavy Flavor Tracker
(HFT), Time Projection Chamber (TPC), Time Of Flight (TOF), Barrel Electromagnetic
Calorimeter (BEMC) and Muon Telescope Detector (MTD). The main tracking detectors are
the HFT and the TPC, further described in more detail. The TOF measures track velocity
and enhances the STAR particle identi�cation capabilities. The BEMC aims to measure and
track high transverse momentum electrons. The outermost detector in the central barrel is the
MTD which helps mainly with the reconstruction of charmonium and bottomonium decays
to muons.

Particles produced in a forward and backward rapidity are detected by Vertex Position
Detector (VPD), Beam Beam Counters (BBC), and Zero Degree Calorimeter (ZDC). These
detectors have east and west parts, each on the opposite side of the central barrel. The coin-
cidence of the signals in the two parts is used as a trigger for a collision event, and the time
di�erence between signals gives an estimate of the interaction point position. Particle travers-
ing these detectors generates a signal in the scintillators connected to fast photomultiplier
tubes. The BBC covers 3.3 < |η| < 5.0, and additionally to the triggering, it helps measure
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Figure 3.4: The STAR experiment schema with subdetectors denoted.

interaction point position and event-plane shape. The VPD is an essential fast trigger detec-
tor with 3.7 < |η| < 4.9. It complements the TOF measurements of the track velocity by a
high-precision measurement of the collision start time by detecting the arrival time of prompt
photons from π0 decays. The furthermost detector, placed 18 m from the STAR center, is the
ZDC. Thanks to its position, it detects the spectators from the collisions. Additionally, it can
measure the luminosity of the beam accelerated in the RHIC.

Endcap Electromagnetic Calorimeter (EEMC) and Forward Meson Spectrometer (FMS)
are forward detectors placed only on one side of the STAR and assure continuous coverage
of the full azimuth in 1.1 < |η| < 4 region. The EEMC, with 1.1 < |η| < 2, complements
the BEMC measurements of the high-energy electrons and photons. It is essential in the spin
physics studied in polarised p+p collisions. The FMS covers 2.5 < |η| < 4 in pseudorapidity.
Additionally, it helps to measure the event-plane geometry for particle �ow studies.

3.2.1 Trigger of the data recording

This section summarizes information about the trigger system at the STAR as it worked
till 2018 and is based on the article [108]. Since the TPC, STAR's primary tracking detector
is a gaseous detector, it is relatively slow. Thus, like other detectors, it can not detect all
collisions provided by the RHIC. However, interactions with a good chance of having valuable
physics information should be recorded. The STAR trigger system decides whether a collision
has to be saved or not, with inputs from the fast detectors. At STAR, electronics should take
this decision in approx. 1.5 µs time window.

In the STAR, there are three di�erent types of trigger algorithms based on measurements
of the vertex position, event multiplicity, or jets. The vertex-�nding triggers use the ZDC,
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the VPD, the BBC, or the MTD. The main idea of vertex triggers is to record only events
with a chance of good reconstruction and that have as many as possible tracks in the rapidity
acceptance of the detectors. The collision is recorded if the vertex is close enough to the center
of the STAR central barrel. Thus, the goal is to use fast information on the collision position.
In the case of the ZDC, the BBC, and the VPD, there are two ways to measure the vertex
position. Both are based on comparing the coincidence signal in the detectors' east and west
side. In the case of p+p collisions, the summed signal of all hits in the towers and the arrival
time of the �rst hit are sent to the trigger electronics from each side. In heavy-ion collisions,
the trigger electronics use the mean arrival time of the hits in the detector towers separately
for each side. Based on the time di�erences, fast electronics calculate the interaction point
position. In the case of the MTD vertex trigger, time information from the VPD is compared
to the time of the �rst hit in the MTD to trigger using the muons created in the collision.
The so-called VPD-5 trigger is used to analyze D0 meson in d+Au collision. This trigger
records only events within ±5 cm from the STAR center. Such a requirement is common in
HFT-based analyses due to the physical dimensions of the HFT. This trigger is also the so-
called minimum-bias trigger since, by its de�nition, it does not explicitly �lter out any physics
phenomenon (that is the case for the various centrality triggers, jet triggers, etc.).

The multiplicity trigger uses the number of hits in the TOF detector; thus, event selec-
tion based on centrality is made. Additionally, the electronics can distinguish the cosmic ray
traversing the STAR or the ultra-peripheral collision. The triggering by the jet is done with
the STAR calorimeter system. There are multiple jet-triggering setups based on the calorime-
ter towers with signi�cantly high detected signal (�hot� towers), or high sum of signal in the
pre-de�ned group of calorimeter towers.

3.2.2 Time Projection Chamber

STAR's primary tracking detector is Time Projection Chamber [109], which determines
momentum and identi�es particles via speci�c energy loss dE/dx. An example of such mea-
surement is shown in Fig. 3.5. The schema of the TPC is in Fig. 3.6. Thanks to its cylindrical
shape with an inner diameter of 1 m, an outer diameter of 4 m, and a length of 4.2 m, the
TPC provides coverage over the full azimuthal angle and has a pseudorapidity acceptance of
|η| < 1.

The TPC is a gaseous detector �lled with argon and methane (P10 gas). Traversing charged
particles ionizes the gas molecules, and detached electrons drift through the TPC volume into
the readout planes, placed in the opposite ends of the TPC. The TPC is split into two parts by
the central membrane. It is a cathode with a voltage of -28 kV. Readout planes are segmented
into 12 sectors, each having 45 rows of pad planes. Each pad plane is a single multi-wire
proportional chamber (MWPC). The MWPC consists of a pad plane and three wire planes.
The �rst plane drifting electrons meet on their way is the gated grid, which works as a shutter
and, based on the trigger information, allows the entry of electrons into the MWPC. Then,
electrons pass through the shield plane, which blocks positive ions, created in the MWPC
from entering the TPC drift volume. Finally, thanks to the anode wire plan, the avalanche of
electrons is created, and the pads detect its electric �eld. The higher the number of electrons
entering the MWPC, the higher signal is measured by the pad, which ensures the TPC ability
of energy-loss measurement.

The position of the track in the plane transverse to the beam direction is given by the
position of the pads that detected its signal. In the beam direction, the position is given by
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3 Experimental setup

Figure 3.5: The energy loss in the TPC dE/dx vs. track momentum p in Au+Au collision at√
sNN = 200 GeV. Taken from Ref. [57].

Figure 3.6: Schema of the Time Projection Chamber at STAR. Taken from Ref. [109].
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the drifting time of the electrons. The drifting speed of the electrons in the TPC is measured
in the calibrations with a laser beam. Depending on the crossing angle of the track in the
TPC, the resolution in the transverse plane varies from 0.4 to 2.2 mm (the best resolution is
achieved for the track parallel to the readout planes) and in the beam direction from 0.8 to
3.1 mm. The TPC measures track with transverse momentum pT > 0.125 MeV/c.

In the analysis, to identify the track as corresponding to particle X, normalised dE/dx is
used. It expresses the uncertainty that the reconstructed track is particle X, and it is calculated
as

nσ
dE/dx
X =

1

RdE/dx
ln

dE/dx

⟨dE/dx⟩X
, (3.1)

where RdE/dx is the TPC resolution and ⟨dE/dx⟩X is the mean value of ionization loss in the
TPC for particle X, given by the Bichsel function [110].

3.2.3 Time Of Flight

As seen in Fig. 3.5, for tracks with momentum higher than 1 GeV, particle identi�cation
with solely TPC is challenging. Another detector that helps to identify particles is the Time
Of Flight [111]. It measures the velocity of the particle β, measuring the time interval that
the particle needs to reach it traveling from the interaction point. The time of a collision is
determined with the fast VPD, which detect particles produced in the forward directions. The
TOF is built from multiple multi-gap resistive plate chambers (MRPC). In MRPC, charged
particles ionize the gas, and the high voltage accelerates the resulting electrons to create a
detectable avalanche. The TOF time resolution is at the level of 100 ps. Measured 1/β for
tracks in Au+Au collisions at

√
sNN = 200 GeV is displayed in Fig. 3.7. Particle species can

be distinguishable up to a momentum of 3 GeV/c.

Analogically to the TPC, normalised 1/β, noted nσ
1/β
X , is used to identify tracks in the

analyses and is de�ned as

nσ
1/β
X =

∆1/β

R1/β
=

1
βmeas

− 1
βteo

R1/β
=

1
βmeas

−
√

m2
X

p2X
+ 1

R1/β
, (3.2)

where βmeas is measured track velocity, βteo is theoretical (expected) velocity of the track if it
corresponds to the particle X,mX is expected mass of a particle X, pX is measured momentum,
R1/β is the TOF resolution. Sometimes, for TOF particle identi�cation, selection based only
on ∆1/β solely is used.

3.2.4 Heavy Flavor Tracker

The detector closest to the interaction point is the Heavy Flavor Tracker [2], which was
installed in the STAR only in years 2014�2016. As the name suggests, its proximity to the
beam pipe and the silicon sensors' excellent resolution allow reconstruction of the secondary
vertices coming from the heavy-�avor hadron decays. Figure 3.8 displays HFT track-pointing
resolution in the plane transverse to the beam direction for protons, kaons, and pions. The
resolution of the distance of the closest approach (DCA) at the level of 30 µm for particles
with a momentum of 1.5 GeV/c is achieved. A similar resolution is achieved in the beam
direction.
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Figure 3.7: The measured inverse velocity 1/β vs. momentum p for tracks in Au+Au collision
at

√
sNN = 200 GeV. Taken from Ref. [57].

Figure 3.8: Track pointing resolution in the azimuthal direction σxy as a function of the
particle momentum, measured for the overall detector. Taken from Ref. [2].
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Figure 3.9: Schema of the Heavy Flavor Tracker (HFT) and its subsystems: the PiXeL detector
(PXL), the Silicon Strip Detector (SSD) and the Intermediate Silicon Tracker (IST).

The HFT comprises three subsystems, schematically displayed in Fig. 3.9. The PiXeL
detector (PXL) consists of two CMOS Monolithic Active Pixel Sensors (MAPS) sensors layers,
situated only 2.7 cm and 8 cm from the beam axis. The PXL at STAR was the �rst time
MAPS sensors were employed in a vertex detector at a collider experiment. The pixel size
of these sensors is only 20.7 × 20.7 µm, resulting in a hit spatial resolution of 6 µm, which
can be further improved with clustering reconstruction methods [112]. Thanks to their low
power dissipation, sensors are operated at room temperature and only air-cooled. Another
subdetector is the Intermediate Silicon Tracker (IST), placed at 14 cm from the beam axis.
It is a layer of fast, single-sided, silicon strip detectors that �lter pile-up events and increase
tracking resolution. The outermost layer of the HFT, situated 22 cm from the beam axis, is
the Silicon Strip Detector (SSD). It is composed of two-sided silicon drift sensors. In the track
reconstruction, requirements on the number of hits in the HFT are used. Typically, track must
have hits in both PXL layers since its resolution is crucial for secondary vertices.

3.3 The STAR detector after 2016

In 2017 and 2018, isobar collisions (Ru+Ru and Zr+Zr) were collected to measure chiral
magnetic e�ect [113]). From 2019 to 2021, the Beam Energy Scan program was running,
and its primary goal was to study the QCD phase diagram further. Additionally, in 2017 and
2022, beams of polarised protons were colliding to study the proton spin. Main upgrades of the
STAR detector are shown in Fig. 3.10. In 2018, BBC was replaced by the Event Plane Detector
(EPD) [114]. As the name suggests, it improves the reconstruction of the event planes for �ow
measurements. It detects particles on the west side of the STAR in 2.1 < |η| < 5.1 acceptance.
Additionally, it helps with the triggering and background suppression in the measurements.

In 2019, the TPC was signi�cantly upgraded to track particles in wider pseudorapidity
region |η| < 1.5 and with lower pT > 60 MeV/c. New, more segmented sectors replaced
all inner TPC sectors. This upgrade doubled the number of measured hit points per track.
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FST FTT EPD ECal HCaleTOF

Figure 3.10: The STAR experiment schema with denoted subdetectors, which were upgraded
after 2016.

Furthermore, resolution in both momentum and energy loss is approved. More details on the
upgrade can be found in [115]. The Endcap Time Of Flight (eTOF) detector was installed
in the same year. Situated at the east side of the STAR, the eTOF allows the identi�cation
of particles in the forward acceptance of 1.1 < |η| < 1.6. It is especially crucial for particle
identi�cation in �xed-target collisions.

The west side of the STAR was upgraded by multiple forward detector systems, displayed
in Fig. 3.10. High-precision tracking with relative pT resolution at 20�30% level is enabled
by Forward Silicon Tracker (FST) and Forward Small-strip Thin Gap Chambers Tracker
(FTT) [116]. Both were installed in the STAR in 2021. The FST consists of three silicon
discs situated at 152, 165, and 179 cm from the place of the collision (interaction point).
At 307 cm from the interaction point, the �rst of four FTT disks is placed. There is an
18 cm gap between individual disks, so the last is 361 cm from the interaction point. The
forward calorimeter system, installed in 2020, comprises Electromagnetic Calorimeter (ECal)
and Hadronic Calorimeter (HCal). These are placed in a platform 7 m from the interaction
point.
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Chapter 4

D0 meson production in d+Au

collisions at
√
sNN = 200 GeV

4.1 D0 meson reconstruction strategy

Hadronic decay of D0 meson to K− and π+ with branching ratio 3.89 ± 0.04 % [3] is
used for D0 reconstruction. The observed signal is enhanced by considering both unlike-sign
combinations of pion and kaon (K−π+ and K+π−) as correct charge combinations, so D0 are
reconstructed together with D0 mesons. In this analysis, the wrong (like-sign) charge combina-
tion of pion and kaon (K+π+ and K−π−) are considered as combinatorial background pairs.
D0 mesons are reconstructed and analyzed in three transverse momentum pT,D0 intervals:
1�2, 2�3 and 3�5 GeV/c. Ranges of pT,D0 correspond to the intervals of Kπ pairs transverse
momentum pT,Kπ.

In the analysis, recorded collision events are checked for their properties and trigger in-
formation to analyze those with relevant and reliable detector information. If they pass these
requirements, pions and kaons detected in these events are selected with quality and particle
identi�cation criteria. Then, for each event, pions and kaons are combined into unlike-sign
and like-sign pairs. For each of these pairs, topological variables are calculated. After that,
the Boosted Decision Trees classi�cation is trained and applied to �nd the raw yield of D0

mesons. Finally, e�ciency corrections are applied to the raw yield to calculate invariant yield
and nuclear modi�cation factor of D0 meson in d+Au collisions.

4.2 Simulations used to calculate D0 meson spectra

4.2.1 Data-driven fast Monte Carlo simulation (FastSim)

Data-driven fast Monte Carlo simulation (FastSim) was developed for STAR heavy-�avor
analyzes. It was further modi�ed and set up to analyze the D0 meson in d+Au collisions. In
the FastSim, D0 meson decay to kaon and pion is simulated with PYTHIA [117]. D0 mesons
are generated in �at transverse momentum range 0 < pT,D0 < 8 GeV/c and rapidity is taken
randomly from �at |y| < 1 distributions.
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4 D0 meson production in d+Au collisions

Then, kaon and pions tracks are smeared according to momentum resolution, calculated
using the single-particle TPC and HFT embedding (Sec. 4.6.1). Other smearing inputs to the
simulation are distributions from recorded data. These data are the same events as those used
for D0 meson reconstruction analysis. They are separated into four vertex positions Vz and
six event multiplicity intervals that de�ne 24 event classes together. From each event class,
these distributions are extracted separately for kaons and pions:

� DCAxy vs. DCAz; separately for �ve track η and 15 track pT intervals (together 75
distributions for each event class and both track species),

� ratio of HFT tracks to all TPC tracks (HFT ratio) vs. track pT; separately for 10 η and
11 azimuthal angle intervals to re�ect the HFT layout (together 110 distributions for
each event class and both track species).

For each D0 generated in the simulation, the event class is randomly Taken from Ref. Vz and
multiplicity distributions for data. DCA of the track is then smeared according to distributions
from data for a given event class and smeared track pT and η. The HFT ratio from data is
expected to re�ect the e�ciency of HFT for tracks that pass the TPC selection criteria.
Additionally, it is expected to have better precision than the simulated HFT response since
it concerns HFT spatial resolution in the recorded data.

Finally, as done in the recorded collisions, D0 mesons are reconstructed back from these
smeared tracks. These D0 mesons are expected to have nearly the same distribution of topo-
logical properties as the real D0 mesons, whose daughter particles are detected. The FastSim
is used to properly convolute pT-dependend single particle e�ciencies to D0 meson pT to cal-
culate total D0 meson reconstruction e�ciency. Additionally, the output from this simulation
is taken as a signal sample to train classi�cation methods for �nding D0 meson raw yield.

4.2.2 Full-event simulation

Full-event simulation and embedding to the real data are done to estimate the recon-
struction performance in the speci�c conditions of d+Au collisions. Simulation of the d+Au
collisions is done with the HIJING simulator [86] and the detector response is simulated by
the GEANT [87] with o�cial STAR software. Such events are then embedded in the so-called
zero-bias (events not �ltered by any trigger) recorded d+Au collisions to be as close as pos-
sible to the real collision environment. Thanks to this full detector simulation, the e�ciency
of individual event selection cuts and triggers might be tested. Three di�erent samples were
produced:

1. minimum-bias (MB) events,
2. events with at least one simulated D0 meson in the detector acceptance (D0 events),
3. D0 events with primary vertex position in beam direction Vz < 6 cm.

For the D0 events, hard scatterings in the initial state are enhanced in the HIJING setup. This
simulation is produced to compare speci�c properties of such collisions with minimum-bias
data.

4.3 Event selection

In 2016, approximately 350 million of d+Au collisions at
√
sNN = 200 GeV were recorded.

The minimum-bias trigger, which requires coincidence in both VPD East and West detectors,
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is used for this analysis. Only events with the reconstructed position of the primary vertex in
the beam direction Vz less than 6 cm and events with correlated primary vertices reconstructed
with TPC and VPD (|Vz,TPC − Vz,VPD| < 3 cm) are further analyzed.

Analyzed d+Au collisions su�er from many pileup tracks created in multiple bunch cross-
ing per recorded TPC event. The number of bunch crossings is re�ected in the BBC or ZDC
detector's coincidence rate at the time of the recorded collision. The HFT detector is turned
o� for the BBC rate higher than 900 kHz to protect its electronics. Together with the require-
ments on the tracks, it decreases the pileup e�ect in the D0 meson analysis.

All recorded d+Au events are then tested for quality when individual variables and prop-
erties are compared and tested for consistency within runs. Those runs, whose variables'
averages are out of ±4σ range from the average overall recorded runs in d+Au, are rejected
for further analysis.

Additionally, a cut on the vertex position in the xy-plane, which is perpendicular to the
beam direction and where the detector center is at Vx,y = 0 cm, is applied. Due to the technical
conditions, the beam of colliding particles is not going through the exact center of the STAR
detector, and its position changes between di�erent runs. However, it had the same position
during d+Au collisions data taking. Separate measurement of the beamline position is one
of the constraints in the vertex reconstruction at STAR [118], and it helps to improve the
resulting primary vertex resolution. Therefore, only primary vertices close to the beamline
are used due to the need for good primary vertices for the topological reconstruction of D0

meson decay. These are selected with cut −0.25 < Vx,y < −0.16 cm.

In general, 2016 d+Au collisions have good quality since they were recorded after the long
Au+Au collisions run. After applying trigger selection, event cuts, and rejecting bad runs,
approximately 90 million d+Au events remain for D0 meson analysis.

4.4 Track selection

Tracks of daughter particles must have at least 15 space points used for track reconstruction
in the TPC. In addition, these are required to have hit in both HFT PXL layers and at
least one in the IST or SSD layers (such tracks are so-called HFT tracks). Only tracks with
pseudorapidity |η| < 1 and transverse momentum pT > 0.15 GeV/c are used in further
analysis.

For TPC particle identi�cation, |nσdE/dx
X | < 3 is used for pions, and |nσdE/dx

X | < 2 is
used for kaons. For TOF identi�cation, the so-called hybrid TOF strategy is used. For both
kaons and pions, ∆1/βTOF < 0.03 cut is required only in the case track has information in
the TOF detector. If there is no TOF information, only TPC is used for daughter particle
identi�cation.

4.5 Raw yield extraction

Reconstructed kaons and pions that pass selection criteria in the same event are com-
bined into wrong and correct charge pairs. Then, described topological variables described
in Sec. 1.4.1 are calculated for all Kπ pairs. Before training and applying machine-learning
classi�cation, relatively wide topological precuts are applied to all pairs to cut-out regions,
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where the relevant D0 signal is not expected. These cuts are listed in Tab. 4.1. Distributions of
described topological variables after application of these precuts are displayed in Fig. 4.1 for
1 < pT,Kπ < 2 GeV/c. Projections for other analyzed pT,Kπ intervals are in App. A. As can be
seen, there is no di�erence between projections from unlike-sign and like-sign Kπ pairs. Since
correct charge pairs su�er from the signi�cant combinatorial background and D0 meson could
not be directly observed, the Boosted Decision Trees (BDT) machine learning classi�cation,
implemented in the Toolkit for Multivariate Analysis (TMVA) [4] is used. TMVA package
is integrated with the ROOT environment and includes multiple algorithms and methods
designed for the needs of high-energy physics.

Table 4.1: Sets of preselection cuts applied to topological variables of D0 meson decay before
classi�cation method training and application.

Variable Min. Max.

DCAK,π [mm] 0.02 2

DCAdaughters [mm] 0 0.2

decay length [mm] 0.005 2

DCAD0 [mm] 0 0.5

cos θ [-] 0.7 1

For the training, the BDT, as a standard machine learning algorithm, requires samples of
signal and background D0 meson pairs. As the signal sample, D0 meson pairs from FastSim,
described in Sec. 4.2.1 are used. The background sample consists of the wrong-sign Kπ pairs
from recorded data. Classi�cation training and application are implemented separately for
three analyzed pT,Kπ intervals.

Multiple hyperparameters are tested in order to �nd the set with the best performance.
Overtraining is minimized by requiring the maximum tree depth of 3 and the minimum
number of training events in the tree leaf 2.5 % of the training events in the pT,Kπ interval.
Gini impurity measure is employed to separate tree nodes with an unlimited number of tested
cuts on the topological variables in training. Finally, 50 % of randomly selected training sample
pairs is used for each tree optimization. The number of trained trees is estimated similarly as
shown in Sec. 2.9. For 1 < pT,Kπ < 2 GeV/c and 2 < pT,Kπ < 3 GeV/c analysis bins, the �nal
number of trees used is 150, for 3 < pT,Kπ < 5 GeV/c it is 400.

After the training, BDT response distributions can be displayed for training and test sam-
ples, both for signal and background inputs to the training. One of the checks that BDT is
not over-trained is that test and training BDT distributions do not have signi�cantly di�erent
shapes. Figure 4.2 shows BDT response distributions for three studied pT,Kπ intervals. The
signal pairs typically have positive BDT responses. However, their distributions are signi�-
cantly wider than those for the background. As can be observed, test and train distribution
shapes are close to each other.

Classi�cation is done by selecting a value of the BDT response cut that is applied to all
pairs. Pairs with calculated BDT response higher than the selected cut are considered a signal,
and others are a background. This calculation is done for various BDT response cuts on the
Kπ pairs in the BDT training to calculate signal and background e�ciencies. Figure 4.3 shows
ROC curves (signal vs. background e�ciency) for the three pT,Kπ intervals. Every point on
the shown curves corresponds to the one BDT response cut.
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in Table 4.1.
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Figure 4.2: Response of the trained Boosted Decision Trees (BDT) for training and test
samples, and for both signal and background Kπ pairs in the three analyzed Kπ transverse
momentum intervals.
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BDT response cut to be applied in the recorded data is calculated as the point of the
maximum expected signi�cance of the D0 signal. Expected signal signi�cance is de�ned as

Σ(rBDT) =
NSϵS(rBDT)√

NSϵS(rBDT) +NBϵB(rBDT)
, (4.1)

where rBDT is the selected BDT response cut, NS and NB are estimates of the number of
signal and background pairs in the recorded data before the BDT application, ϵS(rBDT) and
ϵB(rBDT) are signal and background e�ciencies calculated in the BDT training. NS is esti-
mated using scaled D0 invariant yield measured in p+p collisions [52] and the estimates of
detector e�ciencies. NB is evaluated from the number of wrong-sign pairs in the data. Fig-
ure 4.4 displays expected signi�cances, together with ingredients for their calculation using
Eq. 4.1. Finally, signi�cance is �tted, and the BDT response cut, where this �tted function
has maximum, is used for the raw yield extraction. In Fig. 4.4, selected BDT response cuts
are shown by the brown vertical line.

Afterward, the trained classi�er calculates the BDT response for all unlike-sign (signal)
and like-sign (background) pairs from the recorded data. Subsequently, a calculated cut on
the minimum BDT response is applied for both signal and background. Pairs that pass this
cut are used to calculate the D0 meson raw yield.

Invariant mass mKπ distributions of Kπ pairs that pass the calculated BDT response cuts
are shown in Fig. 4.5 for both unlike-sign and like-sign pairs. From these distributions, D0 raw
yield is extracted by two methods: integration of the �tted functions and bin-counting in the
interval de�ned by �tting. In the �rst method, unlike-sign pair distributions are �tted by the
sum of Gaussian and linear functions for 1.7 < mKπ < 2 GeV/c2. The linear function describes
the combinatorial background, which typically drops with mKπ, and the Gaussian function
describes the D0 meson signal. Afterward, to obtain the raw yield Y , the Gaussian part of
the �t is integrated in ±3σ interval around its mean. Resulting �ts are shown in Fig. 4.6. The
resulting signi�cance is calculated as

Σdata =
Y√

Y + 2NB,data

, (4.2)

where NB,data is the number of background pairs calculated as the integral of the linear part
of the �tted function in the same interval as Y is calculated. This method is the default in
the analysis, and its results are used to calculate D0 invariant yield distributions.

The secondary method to extract raw yields uses mKπ distributions resulting from the
subtraction of like-sign pair mKπ distribution from unlike-sign mKπ distribution. Resulting
distributions are shown in Fig. 4.7 by blue points. Afterward, these are �tted by the sum
of Gaussian and linear functions for 1.7 < mKπ < 2 GeV/c2. The linear part of the �t is
considered as the residual background and is subtracted from the distributions, resulting in
distributions plotted by grey points in Fig. 4.7. Finally, these cleaned distributions are �tted
by the Gaussian function. The Gaussian σ and µ are then used to calculate raw yield Y using
bin-counting in the cleaned distributions and in ±3σ region around �tted µ. In this case,
to calculate the signi�cance using Eq. 4.2, NB,data is calculated by bin-counting in the same
interval as the one used for Y . Raw yield results for this method are used for the systematic
uncertainty calculation.

As a cross-check of the results of the simulated signi�cance from the BDT training, shown
in Fig. 4.4, the signi�cances of the raw yields for multiple BDT cuts are calculated. These
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Figure 4.4: The calculation of the optimal BDT response cut that maximizes D0 meson
signi�cance. The blue and red lines show the signal and background e�ciencies from the BDT
training. The green line is the calculated D0 meson signi�cance. The full brown lines show
the �ts around the point of the maximum signi�cance, and the vertical dashed line shows the
selected BDT response cut.
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Figure 4.5: Invariant mass mKπ distributions for like-sign and unlike-sign Kπ pairs after
application of the BDT classi�er, in three analysed Kπ transverse momentum pT intervals.
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Figure 4.6: D0 meson signals in the distributions of the invariant mass of unlike-sign Kπ pairs
mKπ and their �ts by the sum of Gaussian and linear functions, in analysed Kπ transverse
momentum pT intervals. Calculated raw yields Y , signal over background ratios S/B and sig-
ni�cances S/

√
S + 2B from the �t results are displayed on the plots.
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Figure 4.7: D0 meson signals in the distributions of the invariant mass of Kπ pairs mKπ and ingre-
dients to the bin-counting raw yield calculation, in analysed Kπ transverse momentum pT intervals.
Blue circles show results from subtraction of like-sign pairs from unlike-sign pairs distributions and
blue lines show their Gaussian+linear �ts. Grey squares display results from additional subtraction
of the �tted residual background (linear part of the �t, showed by dashed grey line). Solid grey line
shows the Gaussian part of the �t. Calculated raw yields Y , signal over background ratios S/B and
signi�cances S/

√
S + 2B from the �t results are displayed on the plots.
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Figure 4.8: D0 meson raw yield signi�cances for multiple BDT response cuts calculated in
recorded data using bin-counting method, and for analyzed Kπ transverse momentum pT in-
tervals. Vertical lines show optimal BDT cuts calculated in the BDT training and used for the
�nal invariant yield calculations.

signi�cances are calculated using the bin-counting method. Results are shown in Fig. 4.8,
where vertical lines show BDT cuts calculated using signal and background e�ciencies from
the BDT training (the vertical lines in Fig. 4.4). As can be seen, these cuts are close to the
signi�cance maxima, which validates the BDT training and the cut selection.

4.6 E�ciency corrections

To calculate the invariant yield of D0 meson in |η| < 1, the e�ciencies for each step of its
reconstruction are estimated:

� trigger bias e�ciency, that covers the di�erence in the event selection for events with
and without D0 meson;

� detector acceptance and tracking e�ciencies for the HFT and the TPC detectors;
� TOF matching e�ciency;
� particle identi�cation e�ciencies for the TPC and the TOF;
� BDT selection e�ciency;
� vertex reconstruction e�ciency, that corrects the lower e�ciency of primary vertex re-
construction in low-multiplicity d+Au collisions with D0 meson created;

� correction of the double counting, that is caused by the combinatorial construction of
Kπ pairs.

All of the single particle e�ciencies have to be combined with D0 meson decay simulation
from FastSim (Sec. 4.2.1), in order to properly calculate according D0 meson e�ciency vs.
transverse momentum pT,D0 .
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Figure 4.9: Single-particle TPC e�ciencies vs. track transverse momentum pT for kaons (left)
and pions (right), calculated in various event multiplicity classes.

4.6.1 HFT and TPC tracking e�ciency and momentum resolution

The tracking e�ciency of the TPC detector and its momentum resolution is calculated
using the single-particle embedding to the real STAR data.1 In this simulation, 300 thousand
of each K−, K+, π+ and π− tracks are generated using PYTHIA in �at and full η and ϕ
distributions, and in �at pT interval between 0 and 5 GeV/c. Simulated particle tracks enter
the simulators of the TPC and HFT detectors. Additionally, these generated tracks are mixed
into the recorded collision events (one simulated track per event) to have a data sample
similar to the measured data. Thanks to this embedding, track properties are compared at
the simulation level and after the detection system smearing.

The simulated track is considered reconstructed by the detector if it has at least ten
common hits with some real track and reconstructed |η| < 1. TPC e�ciency is then de�ned
as the ratio of the number of such tracks ful�lling additional analysis cuts (nHitsFit > 15 and
reconstructed DCAPV < 1 cm) to the number of all tracks that have simulated |η| < 1.

To test the TPC performance for di�erent event multiplicities, the resulting e�ciencies
are compared for four multiplicity classes, as shown in Fig. 4.9. As can be seen, there is no
signi�cant di�erence between e�ciencies in shown multiplicity classes. Additionally, e�ciency
is compared for positively and negatively charged particles (Fig. 4.10). It is observed that
e�ciencies are similar within particle species.

TPC and HFT momentum resolution is calculated as σ parameter from Gaussian �t of MC
tracks relative pT uncertainty ((pMC

T − precoT )/pMC
T ) distribution. This resolution is calculated

for multiple track pT intervals, and results are shown in Fig. 4.11 for tracks selected with the
same TPC and HFT reconstruction cuts as in the principal analysis.

1Embeddings are produced by the Software and Computing group at the STAR experiment according to
the requirements of the analyzers.
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Figure 4.10: Single-particle TPC e�ciencies vs. track transverse momentum pT for kaons (left)
and pions (right), calculated separately for positively and negatively charged tracks.
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Figure 4.11: TPC and HFT momentum resolution vs. track transverse momentum pT for
kaons (left) and pions (right).
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4.6.2 TOF matching e�ciency

TOF matching e�ciency is de�ned as the probability of a track having any signal (match)
in the TOF detector. It is calculated using the recorded events as the ratio of the number
of tracks with the TOF signal and all tracks in the given sample. This ratio is calculated
separately for K−, K+, π+ and π−. For tracks used in the main D0 analysis (nHitsFit > 15,
DCAPV < 1 cm, HFT tracks), three di�erent TPC identi�ed samples are tested�with |nσTPC|
< 1, 2 and 3. Figure 4.12 shows resulting TOF e�ciencies. As could be observed, there is no
signi�cant di�erence in the three TPC particle identi�cation cut samples. For the �nal TOF
matching correction, tracks with |nσTPC| < 1 are used, to isolate the TOF e�ciency from
the TPC PID e�ciency. However, for pT between 0.6 and 2 GeV/c, there is a drop caused
by hadron contamination in the TPC detector (also observed in the published analysis of
D0 meson in Au+Au collisions), which is worsening particle identi�cation quality. This drop
is excluded from the �tting of the TOF matching distributions. Resulting �ts are shown in
Fig. 4.13 and are further used in the analysis as the TOF matching e�ciencies.

4.6.3 Particle identi�cation e�ciencies

The TOF and the TPC detectors' particle identi�cation (PID) e�ciencies are calculated
using the recorded tracks in the same events as those for the central analysis, with an additional
requirement to have at least 1 HFT track (to reduce pile-up events). It is essential to isolate
samples of �clean� (very high probability of correctly identi�ed) pion and kaon tracks to
separate PID e�ciency from other detector e�ects. For this, K0

s → π+π− and Φ → K+K−

hadronic decays are used. K0
s and Φmesons are reconstructed in the similar way as D0 meson in

the main analysis. Firstly, daughter tracks are selected using the cuts shown in Table 4.2. Then,
these tracks are within events combined to π+π− and K+K− pairs. Additional topological
cuts, shown in Table 4.2, are applied on these pairs. Correct-sign pairs have a total electric
charge equal to zero; wrong-sign pairs are the others. Invariant mass distributions of wrong-
sign pairs are subtracted from those of correct-sign. Resulting distributions are considered as
signal peaks of K0

s and Φ mesons and are �tted by the sum of Gaussian and linear functions.
For further PID e�ciency study, pairs with the invariant mass in the ±2σ region around the
�tted Gaussian function mean are used.

The track is used in the �nal step of the PID e�ciency calculation only if its �partner�
track in the reconstructed pair pass additional selection criteria to make the pion and the
kaon samples even purer. This decision is motivated by the fact that if the ππ (KK) pair
passes the topological criteria and if one of the tracks is identi�ed as pion (kaon), there is a
high probability that the other track is pion (kaon), too. Three di�erent sets of cuts on the
partner track are tested:

� |nσTPC| < 5, ∆1/βTOF < 0.05 and pT > 0.5 GeV/c,
� |nσTPC| < 3, ∆1/βTOF < 0.03 and pT > 0.5 GeV/c,
� no additional cut on partner the partner track. In this case, both tracks in the pair are
further used.

Then, distributions of PID variables (∆1/βTOF and nσTPC) in multiple tracks pT intervals
are used. In each pT bin, wrong-sign pairs ∆1/βTOF distribution is subtracted from the one of
correct-sign pairs. The resulting distribution is again �tted by the sum of Gaussian and linear
functions. Results of the Gaussian part of the �ts are shown in Fig. 4.14. Upper plots show
the results for pions, and lower plots are for kaons. The left plots show sigma, and the right
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Figure 4.12: The TOF matching e�ciency calculated using tracks in the recorded collisions
vs. track transverse momentum pT for three di�erent TPC particle identi�cation cuts. Upper
plots show pions, lower plots kaons, left plots are e�ciencies for positive and right for negative
tracks.
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Figure 4.13: Polynomial �ts of the transverse momentum (pT) dependent TOF matching e�-
ciencies, for the tracks identi�ed in the TPC with cut nσ < 1. Only black points are considered
in the �ts, red circles show region with the strong contamination in the TPC. Upper plots show
pions, lower plots kaons, left plots are e�ciencies for positive and right for negative tracks.
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Figure 4.14: Sigma and mean parameters from the Gaussian �ts of the TOF PID variable
∆1/βTOF vs. track transverse momentum pT, for various cuts on the partner track in the ππ or
KK pairs. The upper plots are for kaons, the lower for pions. Left plots show resulting sigmas,
right plots display means of the Gaussians.

plots display the mean of Gaussians. PID e�ciency is calculated as the ratio of the integral of
the �tted function in the PID interval used in the analysis (−0.03 < ∆1/βTOF < 0.03) to the
total integral of the function. The same procedure is done to calculate TPC PID e�ciency.
Results of the corresponding Gaussian �ts of nσTPC distributions are shown in Fig. 4.15.

Final PID e�ciencies are shown in Fig. 4.16 for the TOF and Fig. 4.17 for the TPC. The
left column shows e�ciencies for three di�erent partner track cuts. Figures in the right column
show e�ciencies and their �ts for the selected data sample (with the most severe cuts on the
partner track). These �ts are used as the PID e�ciency, separately for kaons and pions in the
TOF and the TPC.

4.6.4 Reconstruction e�ciency

Total reconstruction e�ciency is the combined e�ciency of the detector acceptance, HFT
reconstruction, TPC reconstruction, particle identi�cation, and topological reconstruction e�-
ciencies. These e�ciencies are combined in the FastSim (Sec. 4.2.1) to obtain pT,D0-dependent
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Figure 4.15: Sigma and mean parameters from the Gaussian �ts of the TPC PID variable nσ
vs. track transverse momentum pT, for various cuts on the partner track in the ππ or KK pairs.
The upper plots are for kaons, the lower for pions. Left plots show resulting sigmas, right plots
display means of the Gaussians.

Table 4.2: Cuts on topological variables used for Φ and K0
s meson reconstruction. Topological

variables are equivalent to those shown in Fig. 1.6 and described in Sec. 4.5.

Reconstructed decay Φ → K+K− K0
s → π+π−

Variable Min. Max. Min. Max.

DCAK/π [cm] 0 1 0.008 1

Pair pT [GeV/c] 0.2 10 0.5 -

DCAdaughters [cm] 0 1 0 0.6

cos θ [-] 0.85 1 0.7 1

DCAΦ/K0
s
[cm] 0 1 0 0.9

Decay length [cm] 0 25 0.5 6
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4 D0 meson production in d+Au collisions

Figure 4.16: The TOF particle identi�cation e�ciencies vs. track transverse momentum pT.
The upper plots are for kaons, the lower for pions. The left plots results for various cuts on the
partner track in the construction of the clean sample of pions or kaons. The right plots show
the polynomial �ts for the chosen track sample.
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Figure 4.17: The TPC particle identi�cation e�ciencies vs. track transverse momentum pT.
The upper plots are for kaons, the lower for pions. The left plots results for various cuts on the
partner track in the construction of the clean sample of pions or kaons. The right plots show
the polynomial �ts for the chosen track sample.
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Figure 4.18: Distributions of topological variables for Kπ pairs with invariant mass
1.7�2 GeV/c2, transverse momentum pT 1�2 GeV/c after application of precuts shown in Ta-
ble 4.1 and analysis BDT response cut.

D0 reconstruction e�ciency. Distributions of topological variables after application of recon-
struction cuts on Kπ pairs in the recorded data and in the FastSim are compared in Fig. 4.18
for pT,Kπ 1�2 GeV/c. Other studied pT,Kπ intervals are in App. A. As can be seen, the FastSim
successfully simulates the D0 meson decay.

Detector acceptance is calculated as the ratio of the number of simulated D0 mesons with
reconstructed |y| < 1 to the number of D0 mesons with simulated |y| < 1. HFT e�ciency is
substituted by the HFT ratio from reconstructed data, as described in Sec. 4.2.1. TPC recon-
struction e�ciency is described in Sec. 4.6.1, and PID e�ciencies are explained in Sec. 4.6.3.
Topological e�ciency is the ratio of the number of simulated D0 mesons that pass the topo-
logical precuts and the BDT response cut selected for the given pT,D0 interval. A summary
of these e�ciencies and their gradual combinations are shown in Fig. 4.19. Total D0 meson
reconstruction e�ciency in three analyzed pT,D0 intervals is displayed with black points and
lines.
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Figure 4.19: D0 meson reconstruction e�ciency vs. transverse momentum pT. Gradual com-
binations of the corrections are shown.

4.6.5 Double counting correction

In the analysis of D0 mesons, all selected kaons and pions in the event are combined
into Kπ pairs that are further classi�ed as signal or background. Some reconstructed tracks
ful�ll PID criteria for both pions and kaons. Pair combinations are constructed from two
independently created sets of tracks (one set identi�ed as pions, the other as kaons). If Kπ

pair contains pion, which passes PID cuts for kaons as well, and kaon, which satis�es PID cuts
for pions, such pair is calculated (analyzed) twice. If the invariant mass of this pair happens
to be around the D0 meson invariant mass, then it in�uences the measured signal.

This PID misidenti�cation e�ect is studied with ππ and KK pairs from meson decay de-
scribed in Sec. 4.6.3. Pairs that meet topological criteria and have invariant mass in ±2σ region
around �tted Gaussian function mean are tested for TPC and TOF double identi�cation. To
evaluate this correction for pions in the TOF, additional analysis PID cut (∆1/βπTOF < 0.03) is
applied on pairs from reconstructed K0

s decay. Then, the ∆1/βKTOF distribution of wrong-sign
pairs is subtracted from the distribution of the correct-sign pairs, and the Gaussian function
�ts the resulting distribution. Fitted distributions for multiple track pT intervals are shown
in Fig. 4.20 lower right. Vertical lines show the analysis cut on kaons, so all the tracks within
these two lines are identi�ed as both kaons and pions in the TOF.

The equivalent procedure is done for kaons in the TOF and pions and kaons in the TPC.
The resulting �ts are shown in Fig. 4.20. Fit results are shown in Fig. 4.21, where the upper row
shows sigmas and the lower row means from Gaussian �ts vs. track pT. These distributions are
then �tted by polynomial functions. The results for the TPC are �tted in track pT interval
from 0.3 to 2 GeV/c; for the TOF, it is for 0.4 to 3 GeV/c. For track pT higher than the
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4 D0 meson production in d+Au collisions

Figure 4.20: Distributions of particle identi�cation variables,∆1/βTOF and nσTPC, in multiple
track pT intervals. Pion identi�cation variables (∆1/βπ

TOF and nσπ
TPC) are projected from clean

sample of kaons. Kaon identi�cation variables (∆1/βKTOF and nσKTPC) are projected from clean
sample of pions. Upper plots show results projected from clean sample of kaons, lower are for
clean pions. Vertical lines show the variable cuts in the main D0 meson analysis.
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Figure 4.21: Results of the Gaussian �ts of the particle identi�cation variables nσTPC (left
column) and ∆1/βTOF (right column) vs. track pT. Blue points show results from �tting the
variables for kaon identi�cation in the sample of clean pions, red points are for pion identi�cation
in the sample of kaons.

maximum of �tted intervals, values in this maximum are used as a constant function.

Gaussian functions with sigmas and means from polynomial �ts are constructed using these
�ts. For multiple track pT, the integral of the Gaussian function within analysis PID cut (also
shown by horizontal lines in Fig. 4.20) is divided by the total integral of this function to obtain
single track misidenti�cation probability, shown in Fig. 4.22 left. These results are combined
with the TOF matching e�ciency (Fig. 4.13) to obtain total misidenti�cation probability
for kaons and pions identi�ed by the TPC and the hybrid TOF method. Finally, to obtain
correction for D0, single track e�ciencies are combined with decay kinematics from FastSim
(Sec. 4.2.1). For pairs coming from simulated D0 meson decay, pions and kaons are tagged as
misidenti�ed according to the e�ciency shown in Fig. 4.24 left. Figure Fig. 4.22 right shows
total resulting misidenti�cation probability for D0 meson daughter tracks. If both tracks are
tagged as misidenti�ed, the invariant mass of Kπ pair is calculated additionally with swapped
invariant masses of pion and kaon. Distributions of such misidenti�ed pairs and the clean
signals are shown in Fig. 4.23. These distributions are �tted by Gaussians to obtain their σ
and mean. Double counting correction is calculated as the ratio of the count of misidenti�ed to
the sum of misidenti�ed and signal pairs in the same invariant mass interval. These estimates
are done using the bin-counting method in ±2.5σ, ±3σ, and ±3.5σ regions around the �tted
Gaussian mean. Resulting e�ciencies vs. D0 meson pT are shown in Fig. 4.24. As the �nal
correction to the data, counting in ±3σ region around D0 meson invariant mass peaks is used.
The di�erence between this e�ciency to the other e�ciencies shown in Fig. 4.24 is used as
the systematic uncertainty of the method. Raw yield Y is corrected by the displayed double
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Figure 4.22: Misidenti�cation probabilities for kaons and pions vs. track pT. The left plot dis-
plays the single-particle misidenti�cation probabilities coming from the TPC and TOF particle
identi�cation methods. After combining them with the TOF matching e�ciency and convolut-
ing them to the D0 meson decay simulation, probabilities for D0 meson daughter tracks are
obtained and displayed on the right �gure.

counting ratio rdc as
Ycorr = Y (1− rdc). (4.3)

4.6.6 Vertex reconstruction e�ciency

Due to the relatively low number of tracks in d+Au events, it is necessary to consider
the e�ect of lower vertex reconstruction e�ciency. Especially for events that contain heavy
mesons (such as D0), the reconstructed vertex might be �pulled� toward the daughter tracks
coming from decays of such mesons. In the FastSim (described in Sec. 4.2.1), the inputs from
data that partially consider this are DCA distributions of tracks. However, these also contain
a contribution from the track reconstruction resolution and are created using all events since,
in the recorded data, it is unknown whether D0 meson is created in the event. To separate
the e�ect of the vertex reconstruction uncertainty, full-event simulation (HIJING, described
in Sec. 4.2.2) with the requirement to have at least one simulated D0 meson in the event
and primary vertex placed ±6 cm in beam direction around the center of the detector is
used. Events that pass the same cuts as those in the central D0 analysis are used. DCA and
HFT ratio distributions from these simulated events are extracted and fed to the FastSim.
Reconstruction e�ciency from this FastSim setup is compared to the one calculated in the
full-event simulation.

Figure 4.25 shows the reconstruction e�ciency comparison for the two simulations. The left
plot shows the combined e�ciencies for detector acceptance, TPC and HFT reconstruction,
particle identi�cation, and topological precuts. It can be seen that, at this point, there is no
signi�cant vertex reconstruction uncertainty e�ect. However, as shown in the right plot, after
applying the BDT response cut, the e�ciencies for the two simulations diverge. The e�ect
of the vertex resolution causes the di�erences from the unity in the ratio on the lower plot.
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Figure 4.23: Invariant mass mKπ distributions for correct-sign signal Kπ pairs and for Kπ
pairs made up from misidenti�ed kaons and pions, for three studied D0 transverse momentum
pT intervals.
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Figure 4.24: Double counting ratio caused by the tracks identi�ed as both kaons and pions
vs. D0 transverse momentum pT for three di�erent bin-counting intervals, used to count the
number of misidenti�ed and signal pairs in the D0 meson signal region.
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Figure 4.25: The combined reconstruction e�ciencies calculated from the FastSim and the
full-event HIJING simulations and their ratio as a function of D0 meson transverse momentum
pT. The right plot shows the total reconstruction e�ciency; the left shows the reconstruction
e�ciency without considering the BDT response cut. The ratio on the bottom of the right plot
is the correction for the vertex reconstruction uncertainty.

This pT-dependent ratio is used to correct D0 meson spectra. Its statistical uncertainty is
considered as vertex reconstruction systematic uncertainty. These results are consistent with
the e�ciencies calculated for D0 mesons in peripheral Au+Au collisions (Fig. 17 in Ref. [57]).

4.6.7 Trigger bias correction

Events, where D0 meson is created, have di�erent spatial (η) distribution of tracks, typ-
ically higher multiplicity or more energy in the mid-rapidity region. These di�erences are
caused by the creation of heavy mesons in the initial hard scatterings. These e�ects in�uence
vertex �nding e�ciencies and signals in the detectors and thus trigger information. Events with
D0 meson are expected to be more likely to pass event selection criteria than all minimum-bias
(MB) events. However, we aim to calculate the production of D0 meson in the MB events.
The described e�ect is called trigger bias and is evaluated using the full-event simulations
described in Sec. 4.2.2.

Figure 4.26 shows the η distributions of tracks in simulated HIJING MB events, then
events with at least one simulated D0 meson and events with one simulated D0 meson with
the additional requirement on vertex Vz position. It can be seen that tracks with D0 meson
have higher multiplicity in the central region. Vertical lines show the acceptance region of the
VPD detector, which is used as a trigger in the D0 analysis.
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Figure 4.26: Pseudorapidity η distributions of tracks in three di�erent full-event HIJING
simulation setups�minimum bias (MB) events, events with at least one D0 meson, and events
with at least one D0 meson and vertex reconstructed less than 6 cm from the detector centre
in the beam direction. Vertical lines show the acceptance of the VPD detector.

In the analysis of the recorded data, event have to pass the criteria described in Sec. 4.3
to be used. In the trigger bias study, equivalent cuts are tested:

� vertex is reconstructed, that means:
- reconstructed vertex position in the beam direction Vz less than 6 cm from the center
of the STAR,
- di�erence between simulated and reconstructed vertex position in detector x, y and
z directions less than 1.5 cm,

� BBC rate < 900 kHz (for higher event rates, HFT detector is turned o� in order to
protect electronics),

� hit in both VPD East and VPD West detectors.

In what follows, events with D0 meson are those, where:

� D0 daughters have simulated |η| < 1 (in order to be inside the TPC acceptance),
� D0 daughters have simulated pT > 0.15 GeV/c,
� D0 simulated rapidity is |y| < 1.

Figure 4.27 shows e�ciencies of used event cuts vs. BBC rate for MB events (left) and for
events with D0 (right). As it can be observed, vertex e�ciency is smaller for higher BBC rate,
thus higher collision rate. However, there is no signi�cant di�erence in the shape for MB and
D0 events, thus further calculations does not depend on the BBC rate.

The e�ciencies for described event cuts are show in Fig. 4.28 left, for both event classes.
The �nal event reconstruction e�ciency is shown as �Good event�, and it is 0.091± 0.001 for
MB and 0.115 ± 0.001 for D0 events. Total trigger bias is the ratio of these two e�ciencies.
In Fig. 4.28 right, trigger bias is shown for analyzed pT,D0 bins. This e�ciency is calculated
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Figure 4.27: E�ciency of event selection vs. BBC rate measured in the event. The total
vertex reconstruction, the VPD trigger (hit in both VPD East and West), and the total event
e�ciencies are compared. Left plot shows results for simulated HIJING minimum-bias events,
the right is for HIJING events with at least one D0 meson reconstructed.

as the ratio of pT,D0-dependent e�ciency in D0 events and the pT,D0-constant value of event
reconstruction e�ciency in MB collisions. This is used as another correction of D0 meson raw
yield and its statistical error is one of the systematic uncertainties.

4.7 Systematic uncertainty

4.7.1 BDT response cut variation

The stability of the BDT response cut is tested by its variation within some range of
the signal e�ciency output from the BDT training. Figure 4.29 shows the distributions of
signal e�ciency vs. BDT response cuts for studied pT,Kπ intervals. Red vertical lines show the
default BDT cuts used in the analysis, and black lines show BDT cuts where the e�ciency is
50 % and 150 % of the default e�ciency. Then, D0 meson invariant yield is calculated for all
the points between two black vertical lines using the same calculation as the default cut in
the primary analysis. Results are shown in Fig. 4.30, and it could be observed that the results
are stable and there are no signi�cant di�erences compared to the default invariant yield
(shown again with red vertical line). Figure 4.31 shows the di�erences between the individual
invariant yields resulting from the e�ciency cut variation and the default invariant yield. The
purple horizontal line shows these di�erences' root mean square (RMS) and is used as the
BDT reconstruction systematic uncertainty.
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Figure 4.28: Left: E�ciencies of event cuts compared for HIJING simulated minimum-bias
events and for events with at least one reconstructed D0 meson. From left to right, the cuts are:
vertex position in the beam direction less than 6 cm from the detector center, distance between
reconstructed (RC) and simulated (MC) vertex in x direction less than 1.5 cm, distance between
RC and MC vertex in y less than 1.5 cm, distance between RC and MC vertex in z less than
1.5 cm, total vertex reconstruction, the VPD trigger, BBC rate smaller than 900 kHz and total
event e�ciency. Right: Trigger bias e�ciency vs. reconstructed D0 meson transverse momentum
pT.
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Figure 4.29: Signal e�ciency from the BDT training for various BDT response cuts in the
studied D0 meson transverse momentum pT intervals. The red vertical line shows the BDT cut
used in the �nal analysis, and the black lines show the interval where e�ciency is 50�150 %
from the �nal one.
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Figure 4.30: D0 meson invariant yield for various cuts on the BDT response and for the studied
D0 transverse momentum pT intervals. The red vertical line shows the �nal analysis BDT cut.
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Figure 4.31: Di�erence of the invariant yields resulting from various BDT response cuts and
the default invariant yield, for the studied D0 transverse momentum pT intervals. The red
vertical line shows the �nal analysis BDT cut. The purple horizontal line shows the root mean
square of the shown values.
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Figure 4.32: Left: Raw yield calculated using di�erent methods vs. D0 meson transverse
momentum pT. Right: Di�erences of the raw yield calculated with di�erent method to the
default one (from the �tted Gaussian function integration) vs. D0 transverse momentum pT.

4.7.2 Raw yield extraction systematics

Raw yield and its uncertainty may vary with the method used for its calculation. In
Sec. 4.5, raw yield calculations are described. The method that �ts the invariant mass peaks
by the sum of Gaussian and linear functions and then integrates the Gaussian part is used
as the default in the analysis. Another method integrates the invariant mass distributions
to calculate the raw yield (bin-counting). To further estimate the uncertainties, raw yield
is calculated with bin-counting within ±5σ region around the mean of the �tted Gaussian.
Finally, bin-counting is again tested, but all of the �ts of invariant mass distributions are done
for 1.73 < mKπ < 1.97 GeV/c2 (the default is 1.7 < mKπ < 2 GeV/c2).

Raw yields and their uncertainties for all four methods are shown in Fig. 4.32 (left). Fig-
ure 4.32 (right) shows di�erences between the default method and others. The �nal systematic
uncertainty of the raw yield extractions is calculated as RMS of these di�erences and its ratio
to the default raw yield shown in Fig. 4.33.

4.7.3 TPC embedding uncertainty

Another systematic uncertainty comes from the TPC+HFT single-particle embedding and
e�ciency calculation described in Sec. 4.6.1. DCA and nHitsFit distributions of kaon and pion
tracks in multiple track pT intervals, in both recorded data and embedding, are compared to
calculate this uncertainty. Distributions in recorded data are from the HFT tracks that pass
the same PID selection criteria as those in the primary analysis. Firstly, for multiple track pT
intervals, integrals of corresponding distributions are calculated for the analysis cut and the
reference cut. In the case of nHitsFit uncertainty, the analysis cut is nHitsFit > 15, and the
used reference cut is nHitsFit > 20. For DCA, in the analysis, tracks with DCA < 1 cm are
used, and the reference cut is DCA < 1.5 cm. Secondly, pT-dependent ratios are calculated
as:
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Figure 4.33: Total systematic uncertainty of the raw yield extraction vs. D0 transverse mo-
mentum pT.

rDCA =

∫ 1 cm
0 cm

hDCA∫ 1.5 cm

0 cm
hDCA

, (4.4)

rnHitsFit =

∫ 45
20 hnHitsFit∫ 45
15 hnHitsFit

, (4.5)

where hDCA and hnHitsFit are studied distributions of DCA and nHitsFit. Then, these
ratios are compared for distributions in the recorded data and the embedding,

δ(pT) =
rdata(pT)

rembedding(pT)
. (4.6)

In the ideal case, when the embedding is close to the recorded data, δ(pT) = 1. In reality,
δ(pT) di�ers from unity, and this di�erence is the single-particle systematic uncertainty for
simulated DCA and nHitsFit. These ratios are shown in Fig. 4.34 for DCA (left) and nHitsFit
(right) distributions for both kaons (up) and pions (down). The upper parts of the plots
show ratios rpT for data and embedding, and the lower parts show δ(pT). As it can be seen,
thanks to the relatively wide nHitsFit cut used in the analysis (>15), δ(pT) for nHitsFit is
close to the unity for both data and embedding. For DCA, the di�erence between data and
embedding is more signi�cant, especially for low track pT. Then, FastSim is used to convolute
these single-particle e�ciencies to pT-dependent D0 meson e�ciency. This is done separately
for kaons and pions, DCA, and nHitsFit. D0 meson e�ciency for the individual variable is
calculated as the sum of the results of these convolutions for the kaon and the pion daughter
track. Results of such convolution are shown in Fig. 4.35, for DCA (left) and nHitsFit (right).

Finally, the total embedding e�ciency (relative uncertainty) is calculated as

ϵD
0

sys,TPC =

√(
ϵD

0

sys,nHitsFit

)2
+
(
ϵD

0

sys,DCA

)2
. (4.7)
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Table 4.3: Summary of the systematical uncertainties of D0 meson reconstruction in d+Au
collisions at

√
sNN = 200 GeV for studied D0 transverse momentum pT,D0 intervals.

pT,D0 [GeV/c] 1�2 2�3 3�5

Trigger bias [%] 1.52 1.93 2.45

Vertex reconstruction [%] 4.51 3.61 3.43

Raw yield extraction [%] 9.66 6.21 4.20

BDT topological reconstruction [%] 7.01 4.62 7.39

TPC embedding [%] 0.98 1.17 1.30

Double counting [%] 0.45 0.78 1.54

Total [%] 12.9 8.9 9.7

Figure 4.36 shows the �nal relative single-particle embedding systematic uncertainty. As can
be seen, this systematic is small, mainly thanks to the high quality of the HFT tracks used
in the analysis.

4.7.4 Summary of D0 meson reconstruction systematic uncertainties

Trigger bias and vertex reconstruction e�ciency statistical uncertainties are additional
contributions to the D0 meson reconstruction systematics. Total relative systematic uncer-
tainty is calculated as

σtotal sys. =

√∑
i

ϵ2i , (4.8)

where ϵ are individual systematic uncertainty contributions. All systematics are summarized
and shown in Fig. 4.37 and in Table 4.3. As can be seen, due to the relatively low signi�cance
of D0 meson signal, the biggest contribution to systematics is from the raw yield extraction
and BDT topological reconstruction.

4.8 Invariant yield and nuclear modi�cation factor of D0 meson

The invariant yield of D0 meson in d+Au collisions is calculated using all described ingre-
dients as

d2N
2πpTdpTdy

=
1

ϵ BR
Y

Nevt2πpT∆pT∆y
, (4.9)

where ϵ is the total e�ciency of the raw yield extraction, BR is the branching ratio of D0 meson
decay to Kπ (3.89 ± 0.04 % [3]), Y is the D0 meson raw yield for the transverse momentum
interval with center at pT and width ∆pT, ∆y is the studied rapidity window (|y| < 1, so
∆y = 2). Values of used variables and e�ciencies are in Table 4.4.

The resulting invariant yield is shown in Fig. 4.38, with the invariant yield measured in
data recorded in 2003 [84] and the reference from p+p collisions scaled by the number of
binary nucleon+nucleon collisions in d+Au collisions. This reference is calculated from the
measurements of cc cross-section, inferred from D0 and D∗ production measurements [52]. This
cross-section is scaled by the scaling factor f(c → D0)/σinelpp , where fragmentation function
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4 D0 meson production in d+Au collisions

Figure 4.34: Ratios of DCA and nHitsFit distributions integrals for the analysis and the
reference cuts (de�ned in Eq. 4.4 and Eq. 4.5 ), calculated in the recorded data and in the
single-particle embedding, together with their ratio (de�ned in Eq. 4.6).
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Figure 4.35: Relative systematic uncertainty of the single-particle embedding for kaons and
pions, convoluted to D0 transverse momentum pT, and their sum vs. D0 transverse momentum
pT, for DCA (left) and nHitsFit (right).

Figure 4.36: Total relative systematic uncertainty of the single-particle embedding calculated
with DCA and nHitsFit distributions vs. D0 meson transverse momentum pT.
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4 D0 meson production in d+Au collisions

Figure 4.37: Summary of systematic uncertainty sources, together with the total relative
systematic uncertainty vs. D0 transverse momentum pT.

f(c→ D0) = 0.6086 and the total inelastic p+p cross-section σinelpp is 42 mb. The mean number
of binary collisions in d+Au collisions Nbin is 7.5±0.4 [119]. Binned results are shown together
with their �ts by the Levy function. Due to the low number of �tted points, the precision of
the resulting �t parameters could be more satisfying, and resulting functions are not further
used. However, this �ts lead eye on where the bin width correction would place the unbinned
data points. As can be observed, the results presented in this thesis have signi�cantly smaller
uncertainties than those measured in 2003.

Finally, the nuclear modi�cation factor RdAu is calculated using the presented invariant
yield spectra and the p+p reference. Calculated RdAu is shown in Fig. 4.39, together with
results for charged hadrons [119] and various light hadron species [120]. Global uncertainty
for d+Au collisions is the relative uncertainty of Nbin. For p+p collisions, the global uncer-
tainty is caused by the di�erent binning and coverage of the p+p reference. The study for
this uncertainty is done in the published results of D0 meson measurements in Au+Au col-
lisions [57]. The vertical lines represent the statistical (raw yield) uncertainty; the brackets
are the systematics uncertainties. The grey boxes are the uncertainties coming from the sig-
ni�cant uncertainty of the p+p references. All of the plotted results and uncertainties for D0

meson RdAu are in Table 4.4, too.

Figure 4.40 (left) shows the comparison of the studied D0 meson RdAu with D0 nuclear
modi�cation factor in peripheral (40�80% centrality) and central (0�10% centrality) Au+Au
collision at the same collision energy measured by the STAR experiment [57]. As can be seen,
for low pT up to 3 GeV/c the Cronin peak shape in all collisions systems is similar.

In Fig. 4.40 (right), d+Au results are compared to the ALICE results of nuclear modi�-
cation factor in p+Pb collisions at

√
sNN = 5.02 TeV [78]. The ALICE averaged results for D

meson species are shown by the light red triangles, and the dark red triangles show prompt
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Figure 4.38: Invariant yield spectra of D0 mesons measured in d+Au collisions at√
sNN = 200 GeV. Results presented in this thesis (d+Au 2016) are compared to the pub-

lished results from data recorded in 2003 (d+Au 2003) and data from p+p collisions [52] scaled
by the number of binary nucleon+nucleon collisions in d+Au collisions [119]. Lines show Levy
�ts to the data.

Figure 4.39: Nuclear modi�cation factor RdAu of D0 meson in d+Au collisions at√
sNN = 200 GeV. The grey boxes are uncertainties coming from the p+p reference, the vertical

lines are statistical and the brackets are systematical uncertainties. The brown box shows the
global p+p uncertainty and the green is uncertainty of number of binary collisions in d+Au
collisions at

√
sNN = 200 GeV. RdAu is also shown for charged hadrons [119], pions, kaons and

protons [120].
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4 D0 meson production in d+Au collisions

Table 4.4: Summary of all ingredients to the �nal D0 meson invariant yield and nuclear
modi�cation factor RdAu in d+Au collisions at

√
sNN = 200 GeV, together with their results.

D0 pT [GeV/c] 1�2 2�3 3�5

Raw yield 92.0 139.8 122.5

Raw yield relative statistical uncert. 0.26 0.24 0.27

Reconstruction e�ciency ϵreco 0.00285 0.00720 0.0152

Double counting correction ϵdouble 0.972 0.950 0.911

Vertex reconstruction e�ciency ϵvtx 0.505 0.656 0.692

Trigger bias correction ϵTB 0.831 0.823 0.821

Total e�ciency ϵ 0.00116 0.00369 0.00787

Branching ratio [%] 3.89± 0.04

Invariant yield [×10−5(GeV/c)−2] 37.17 10.00 1.17

Invariant yield statistical uncert. [×10−5 (GeV/c)−2] 9.72 2.40 0.32

Invariant yield systematical uncert. [×10−5 (GeV/c)−2] 4.80 0.89 0.11

Number of binary collisions Nbin 7.5± 0.4

Nbin uncert. [%] 5.3

RdAu 0.57 1.10 1.48

RdAu statistical uncert. 0.15 0.26 0.41

RdAu systematical uncert. 0.07 0.10 0.14

RdAu p+p ref. systematical uncert. 0.13 0.26 0.31

RdAu global p+p uncert. [%] 9.6

D0 meson results separately. Higher collisional energy at the ALICE causes a nearly constant
nuclear modi�cation factor equal to the unity. However, the STAR measurements at the lower
energies explore a region with lower quark momentum fraction x and thus the Cronin peak
might be observed.
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Figure 4.40: Nuclear modi�cation factor of D0 mesons in d+Au collisions at
√
sNN = 200 GeV

compared to the STAR results of D0 in peripheral (40�80%) and central (0�10%) Au+Au colli-
sions at the same

√
sNN [57] (left) and the ALICE results of prompt D mesons in p+Pb collisions

at
√
sNN = 5.02 TeV [78] (right). For d+Au results, the grey boxes are uncertainties coming

from the p+p reference, the vertical lines are statistical and the brackets are systematical un-
certainties. The brown box shows the global p+p uncertainty (common for d+Au and Au+Au).
The green, the blue and the red boxes are the uncertainties of number of binary collisions (Nbin)
in d+Au, Au+Au peripheral and Au+Au central collisions, respectively.
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Summary and outlook

Charm and beauty quarks are excellent probes of the hot and dense nuclear matter created
in heavy-ion collisions. They are created mainly in the initial stages of the collisions. Thus,
they probe their whole evolution. Measurements of heavy-�avor production allow exploiting
various QGP properties, such as the transport coe�cient of the QGP, dependency of the quark
energy loss in the medium on its mass, or hadronization of quarks and gluons. Furthermore,
heavy-�avor mesons probe not only QGP but can also be used to investigate a wide range of
CNM e�ects. The CNM e�ects comprise mainly the impact of the heavy nuclei in the initial
stages of collisions and the dense environment after hadronization occurs. Experiments at the
LHC and the RHIC record asymmetric p+Pb, p+Au, and d+Au collisions to exploit these
e�ects. However, data so far do not allow quantitative favor or reject of speci�c theoretical
models based on nuclear PDF, parton saturation, or initial parton energy loss. Furthermore,
it is crucial to separate the CNM e�ects from the QGP ones to properly study the energy loss
of heavy mesons in heavy-ion collisions.

The HFT, silicon vertex and tracking detector, was installed at STAR in 2014�2016. The
detailed study of charm quark production in Au+Au collisions at

√
sNN = 200 GeV was done

using data recorded in this period. The total charm production per binary (nucleon-nucleon)
collisions was found to be similar to the one in p+p collisions at the same energy. However,
D mesons suppression in central Au+Au collisions measured via nuclear modi�cation factor
points to the di�erent charm hadronization in heavy-ion and p+p collisions. Moreover, this
suppression induces strong interactions of charm with the created hot medium. Furthermore,
indications of less suppression of beauty-decayed than charm-decayed electrons were measured
in Au+Au collisions. Results from the charm elliptic �ow measurements show that charm
quarks achieve local thermal equilibrium in the QGP. In Au+Au collisions, the directed �ow
of D0 meson is signi�cantly larger than for light hadrons, which constrains the geometric and
transport parameters of the hot QCD medium.

To further study QGP properties in heavy-ion collisions and quantify CNM e�ects, STAR
measured d+Au collisions at

√
sNN = 200 GeV in 2016 with the HFT detector installed.

Reconstruction of D0 meson in these collisions is the primary goal of this thesis. The CNM
e�ects on heavy-�avor quark production at STAR were measured only for J/Ψ in p+Au
collisions at

√
sNN = 200 GeV. D0 measurements in d+Au collisions recorded in 2016 follow

up the D0 meson production measurement done in 2003 in the same collisions.

Analysis of D0 meson production in d+Au collisions measured in 2016 is completed, and
all the reconstruction and correction steps were presented in the last chapter of this thesis.
Hadronic decay channel D0(D0) → K−π+(K+π−) was used. Firstly, in the events recorded by
the selected minimum-bias trigger, kaon and pion tracks were selected using a selection that
assures the high quality of these input data. Then, these tracks were combined for each event
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to the like-sign charge and unlike-sign charge Kπ pairs. Further analysis was done separately
in three Kπ transverse momentum pT,Kπ bins, 1�2, 2�3 and 3�5 GeV/c.

The distance of the closest approach to the primary vertex was calculated for each track.
Also, D0 meson decay topological properties were calculated for each Kπ pair. These are
DCA between kaon and pion, decay length, DCA of the reconstructed D0 meson candidate
to the place of the collision, the angle between reconstructed Kπ pair momentum and decay
length, and the angle between reconstructed Kπ pair momentum and kaon momentum. The
mentioned topological variables were used in the machine-learning classi�cation model to
separate the signal from the background in the correct charge (unlike-sign) Kπ pairs.

We exploited the boosted decision trees method from the Toolkit for Multivariate Data
Analysis, random forest from scikit-learn package, and deep neural network from the Keras
package. Detailed descriptions of individual steps for the machine-learning algorithm applica-
tion on the data were published and further described in this thesis. A similar setup of the
studied algorithms might be used in future analyses. To further exploit the machine learning
capabilities, it might be bene�cial to generate the simulation of D0 mesons with properties
more similar to the recorded D0 meson candidate Kπ pairs. The better the simulation is,
the better the algorithm identi�es low-probability combinations of decay properties as the
signal ones. Furthermore, constructing the model ensemble, consisting of the studied model
algorithms, could bene�t from combining the individual model qualities. On the simulated
data, the performance of the three algorithms was close, and, mainly due to their growing
popularity in high-energy physics, the BDT algorithm was selected. In D0 meson reconstruc-
tion, a machine-learning classi�er was trained on the simulated unlike-sign signal pairs and
recorded like-sign Kπ pairs. Despite the relatively low number of recorded events, D0 meson
peak signi�cance around six was achieved for 1 < pT,Kπ < 2 GeV/c. The signi�cance goes up
to eight for 2 < pT,Kπ < 5 GeV/c.

The e�ciency of all selection criteria was calculated. Single particle e�ciencies were com-
bined with the PYTHIA D0 meson decay simulation to correctly calculate the D0 meson
e�ciency in all studied pT,D0 intervals. Kaon and pion tracking e�ciencies and momentum
resolution in the HFT and the TPC detector were estimated using the single-particle embed-
ding to the zero-bias data. The TOF matching e�ciency was estimated in the recorded data.
The recorded data were also used for TPC and TOF particle identi�cation e�ciencies. To
calculate these e�ciencies, clean samples of kaons and pions, selected with the reconstruction
of hadronic decays K0

s → π+π− and Φ → K+K−, were used. Generally, particle identi�cation
e�ciency at STAR is at a very high level. Clean samples of kaons and pions were also used to
estimate D0 meson double counting frequency. Double counting occurs when both tracks in
Kπ pair are identi�ed as kaons and pions. Such a pair would be counted twice to the signal.
As importantly, reconstruction e�ciency was calculated by estimating the ratio of D0 mesons
that ful�ll the topological and the BDT selection criteria.

Due to the relatively low multiplicity in d+Au collisions, the creation of D0 meson in-
�uences the rapidity distribution of the created tracks. Thus, the trigger detectors' signal in
forward and backward rapidity di�ers. Trigger bias correction was calculated using the full
d+Au collision HIJING simulation embedded in the zero-bias data. Furthermore, D0 meson
in the low-multiplicity event signi�cantly in�uences the primary vertex reconstruction reso-
lution. Two simulations were compared to estimate this e�ect. One of them is the mentioned
full-event HIJING simulation embedded in the recorded data. The other is the fast simulation,
where DCA of kaon and pion tracks from D0 meson decay simulated in PYTHIA are smeared
according to the response of detectors in the mentioned full-event simulation.
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Systematic uncertainties of the BDT selection, raw yield extraction method, single particle
simulation, trigger bias, primary vertex reconstruction, and double counting are combined.
The raw yield extraction and BDT selection are the highest contributions to the systematics.
The reconstruction method selection does not primarily cause these high contributions from
the peak reconstruction, but it is mainly due to the relatively low statics in the reconstructed
D0 meson peaks.

After all the corrections were applied, the invariant yield of D0 meson in d+Au collisions
and its statistical and systematical uncertainties were calculated. D0 meson invariant yield in
d+Au was compared to the p+p reference to calculate the nuclear modi�cation factor RdAu. In
the �rst pT,D0 interval, 1�2 GeV/c, it is 0.57±0.15(stat.)±0.07(sys.). For 2 < pT,D0 < 3 GeV/c,
RdAu central value is above unity, resulting in RdAu = 1.10 ± 0.26(stat.) ± 0.10(sys.). In the
highest measured pT,D0 interval, 3�5 GeV/c, RdAu goes up to 1.48± 0.41(stat.)± 0.14(sys.).
Further uncertainties are from the number of binary collisions in d+Au collision and p+p
reference measurements. The suppression for pT,D0 < 2 GeV/c is similar with the result in
both central and peripheral Au+Au collisions. Thus, the CNM could explain the RAuAu for
low pT. As can be seen in Fig. 4.39, despite the limited statistics, it could be observed that
the nuclear modi�cation factor of D0 mesons in d+Au collisions follows a similar trend as the
one for light hadrons. A more detailed study of the CNM will be enabled in 2024 when p+Au
collisions at

√
sNN = 200 GeV is requested at the RHIC. Both sPHENIX and STAR detectors

will record those.
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Appendix A

Projections of topological variables

This Appendix complements distributions of topological properties used for D0 meson
reconstruction with projections for Kπ transverse momentum pT,Kπ intervals 2�3 GeV/c and
3�5 GeV/c. Distributions for pT,Kπ interval 1�2 GeV/c are shown in Sec. 4.5 and Sec. 4.6.4.
Only pairs with invariant mass 1.7�2 GeV/c2 are considered. Schema of the D0 meson decay
and the corresponding topological variables is shown n Fig. 1.6 and described at the beginning
of Sec. 4.5.

Figures A.1 and A.2 display projections for like-sign and unlike-sign pairs in the recorded
data after applying precuts shown in Table 4.1. In Fig. A.3 and A.4, distributions in recorded
data and FastSim, with additional application of BDT response cut, are compared.
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A Projections of topological variables
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Figure A.1: Distributions of topological variables for Kπ pairs with invariant mass
1.7�2 GeV/c2, transverse momentum pT 2�3 GeV/c and after application of precuts shown
in Table 4.1.
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Figure A.2: Distributions of topological variables for Kπ pairs with invariant mass
1.7�2 GeV/c2, transverse momentum pT 3�5 GeV/c and after application of precuts shown
in Table 4.1.
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Figure A.3: Distributions of topological variables for Kπ pairs with invariant mass
1.7�2 GeV/c2, transverse momentum pT 2�3 GeV/c after application of precuts shown in Ta-
ble 4.1 and analysis BDT response cut.
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Abstract: In heavy-ion collisions at large particle colliders, such as LHC or RHIC, heavy-flavour
(charm and beauty) quarks are produced mainly through initial hard scatterings. Therefore, they can
serve as the probes of properties of the hot medium created in such collisions. Additionally, in small
collision systems, such as d/p+Au collisions, cold nuclear matter effects can also affect the charm
quark production with respect to p+p collisions.

Hadrons, that contain heavy-flavour quarks, could not be directly detected, thus they are
measured via reconstruction of their decay products. However, due to a large number of particles
produced in such collisions, separation of the decay products from combinatorial background is
challenging and advanced statistical analysis is needed.

In this article, we exploit D0(D0) → K−π+(K+π−) decay in order to investigate performance
of several machine learning algorithms with different implementation approaches to find the most
effective way how to separate signal from random combinatorial background. For this study, we use
HĲING and STAR detector simulation of d+Au collisions at √𝑠NN = 200 GeV embedded to the
collisions recorded with the STAR. In this paper we compare deep neural network implemented
using Keras with TensorFlow backend, random forest model implemented using scikit-learn and
boosted decision trees implemented by means of the Toolkit for Multivariate Data Analysis with
ROOT. Described methods might be applied on reconstruction of any two-body decay in high-energy
physics experiments.
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1 Motivation

In high-energy physics, the reconstruction of particle decays is a common step to search for signals of
particles, that could not be directly observed in detector systems. In order to extend our knowledge
in physics, recorded data need to be exploited as much as possible, thus rare particle decays are
analyzed and all the recorded datasets of collisions are used. These decays represent only a small
fraction of the recorded particles, which leads to the very low signal-to-background ratio in the
analyses [1]. Therefore they could not be identified on an event-by-event basis and consequent
statistical analysis of the complete set of recorded collisions needs to be done.

For the signal from background separation, mainly rectangular cuts on decay properties, such as
the distance from the place of collisions or the angle between decay products, are used [2–4]. In recent
years the data analyzers started applying machine learning (ML) algorithms in order to optimize
the signal and background separation. The particular application of the algorithm is often motivated
by practical arguments such as the existence of an implementation in the Toolkit for Multivariate
Data Analysis (TMVA) package [5], but the comparison of the performance of various algorithms is
missing. Especially the application of the boosted decision trees (BDT) machine learning algorithm
from the TMVA is currently popular [6–11]. Other classification machine learning algorithms, such
as the random forest (RF) of independent trees not linked via boosting, and, on the contrary, more
complex deep neural networks (DNN) are not overall common for signal classification in high-energy
physics. However, their current implementation in scikit-learn [12] and Keras [13] packages enables
their suitable use in wide ranges of problems across numerous research and business fields. When
dealing with specific problems it is difficult to select an appropriate ML algorithm, because of
multidimensionality of the feature space (number of input variables) and impossibility to see it

– 1 –
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as a whole. This causes a priori the selection of appropriate classification algorithm challenging.
The most suitable algorithm is typically identified a posteriori only after a number of optimized
algorithms are applied to the specific data sample and their performance is evaluated.

In this article, we present the step-by-step setup and performance comparisons of the RF,
BDT and DNN algorithms in the search for D0 meson signal using simulated deuteron-gold
(d+Au) collisions at √𝑠NN = 200 GeV from the Solenoidal Tracker at RHIC (STAR) experiment.
Performance of these algorithms is compared using the receiver operating characteristic (ROC)
curves, that show dependency of signal efficiency on background efficiency for different threshold
on output classifications.

D0 meson measurement is challenging due to its short mean lifetime of 𝜏 = (410.1±1.5)×10−15 s,
that corresponds to 𝑐𝜏 = 122.90 ± 0.45µm [14]. In order to determine the yield of D0 meson
produced in collisions, the invariant mass distribution of pairs of daughter particles is used, where a
signal peak, around the invariant mass of the D0 meson (1864.83 ± 0.05 MeV/𝑐2 [14]), is expected
to be observed above the background.1 Without any selection criteria, the signal peak has low
significance because only a small fraction of these pairs is from the D0 meson signal.2

The D0 meson contains a charm quark, which is relatively heavy when compared to the scale of
strong interactions given by ΛQCD. Therefore, in heavy-ion collisions, such as gold-gold (Au+Au) at
the STAR experiment, it probes evolution of the collisions and mainly the quark-gluon plasma, hot
nuclear matter created in such collisions. To separate effects of the hot medium from those induced
by the large number of nucleons present in the collision (so-called Cold Nuclear Matter effects),
asymmetric small-systems collisions are studied. At the Relativistic Heavy-Ion Collider (RHIC),
these are p+Au and d+Au collisions.

2 Data for the analysis

Simulation of collisions is used to generate approximately 3 million of collision events similar to the
real recorded data, but with the additional information on the particles created in the early stage
of collisions that could not be directly detected. For the purpose of this study, d+Au collisions
at √𝑠NN = 200 GeV and tracks in the final state are generated by the HĲING [15] simulator. It
is required that at least one D0 meson per collision with daughter tracks (kaon and pion) in the
STAR detector acceptance is produced. All the simulated tracks enter the GEANT [16] simulation
of the STAR detector response. Additionally, these generated data are mixed with the real events
recorded by STAR in 2016 in order to have a data sample similar to the measured data. Thanks
to this full detector simulation, simulated data are analysed in the same way as done for measured
data and tracks are reconstructed back from hits registered in the detectors. Reconstructed tracks in
this simulation are used to train and test studied machine learning algorithms. All simulations are
produced using the STAR collaboration infrastructure.

The D0 meson signal is analysed using the topological reconstruction of the hadronic decay
D0 → K−π+ with branching ratio of 3.89 ± 0.04 % [14]. The signal is enhanced by combining D0

1Invariant mass 𝑀 of combined particles in natural units is defined as 𝑀2 = (∑𝑖 𝐸𝑖)2 − ‖∑𝑖 p𝑖 ‖2, where 𝐸𝑖 are
energies and p𝑖 momentum vectors of particles.

2Significance is defined as 𝑆/√𝑆 + 2𝐵, where 𝑆 and 𝐵 are number of signal and background in the observed region,
respectively.
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and D0 mesons, thus both unlike-sign charge combinations (K−π+ and K+π−) are considered to be
correct charge pairs.

Firstly, tracks reconstructed by the detector are identified and selected in the same way, as it is
done in the real data analysis. The STAR consists of multiple subdetectors able to track and identify
charged particles down to very low transverse momentum 𝑝T at mid-rapidity (|[ | < 1) with full
azimuthal coverage.3 In this analysis, tracks with 𝑝T larger than 0.15 GeV/𝑐 and in the full space
covered by the STAR detector are used.

Information from the Time Projection Chamber (TPC) [17], the Time of Flight (TOF) [18],
and the Heavy Flavor Tracker (HFT) [19] detectors are used to select kaons and pions that are then
combined to pairs. The TPC is used for both tracking and particle identification using the specific
energy loss d𝐸/d𝑥 deposited inside the detector. Kaons and pions selected for the analysis are
required to have at least 15 measured points in the TPC out of a maximum equal to 45. To identify
tracks, the deviation of the measured d𝐸 /d𝑥 |meas from the expected d𝐸 /d𝑥 |exp is calculated as

𝑛𝜎 =
1
𝑅

ln
d𝐸/d𝑥 |meas
d𝐸/d𝑥 |exp

, (2.1)

where 𝑅 is the ln (d𝐸/d𝑥) resolution of the TPC [17]. Pions are selected with the condition |𝑛𝜎 | < 3
and kaons |𝑛𝜎 | < 2.

Particle identification is further improved with the TOF detector that measures the track velocity
𝛽. If the track has hit in this detector, the measured velocity 𝛽meas is compared to the expected 𝛽exp
and is required to fulfill |1/𝛽meas − 1/𝛽exp | < 0.03 in order to be used in the D0 meson reconstruction.

At STAR, the HFT is the crucial detector for the measurements of open heavy-flavor particles
with short lifetimes thanks to its fine track pointing and vertex resolution. It is made up of four layers
of silicon sensors forming three detection systems. The systems ordered from the closest to the
furthest from the place of the collision are: the PIXEL, containing two layers of Monolithic Active
Pixel Sensors, the Intermediate Silicon Tracker (IST), and the Silicon Strip Detector (SSD). In this
analysis, tracks are required to have hits in both layers of PIXEL detector and at least one hit in IST
or SSD layers of the HFT.

3 Inputs to the classification

After passing all of the described selection criteria, the tracks are combined to like-sign and
unlike-sign Kπ pairs. Only the pairs with invariant mass in the region from 1.7 GeV/𝑐2 to 2 GeV/𝑐2

are selected and further analyzed.
Then, topological variables specific for two-particle decays are calculated. Figure 1 shows

the schema for reconstructed D0 meson decay into kaon and pion. Observed topological variables
are smeared due to the finite detector resolution, thus selection criteria or classifier algorithm are
needed to select Kπ pairs coming from D0 decays. The primary vertex (PV) is the reconstructed
position of d+Au collision, whereas the secondary vertex (SV) is the reconstructed point of the
D0 meson decay. It is calculated as the midpoint of the line corresponding to the distance of the

3𝑝T =
√︃
𝑝2

x + 𝑝2
y, where particle momentum vector p =

(
𝑝x, 𝑝y, 𝑝z

)
, while 𝑝z denotes momentum in the direction of

beam (colliding nucleons).
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closest approach (DCA) between kaon and pion tracks, DCAdaughters. Then, the decay length of
reconstructed D0 meson is the distance between the PV and the SV. DCA of D0 meson to the PV
(DCAD0) is calculated using the vector of reconstructed D0 momentum. The cosine of an angle
between D0 momentum and the decay length vector, \, and the cosine of an angle between D0

momentum and kaon momentum, Z , both calculated in the laboratory frame, are other variables
used for classification.

Since the origins of kaon and pion tracks coming from D0 meson decay are expected to be
shifted from the PV, their DCA to the PV, DCAK and DCAπ, are as well expected to have significant
classification power.

decay length

DCAπ

PV

DCAD0 DCAdaughters

DCAK

ζ

K

π

pKπ
SV

θ

Figure 1. Schematic representation of D0 (D0) → K−π+ (K+π−) decay and its topological properties.
Curvatures of K and π tracks are exaggerated.

Additionally, each reconstructed correct-charge Kπ pair is associated to the tracks in the HĲING
simulation in order to identify those coming from the real D0 meson decay. Those tagged as D0

meson daughters enter as signal sample to the classification training, other correct-charge pairs are
considered to be the background. For testing phase of the methods, combined signal and background
correct-charge pairs are used. In the analysis of real data, the combinatorial background left after
classification is usually estimated by wrong-charge (like-sign) pairs and statistically subtracted
from the distributions classified as signal in correct-charge pairs. Figure 2 shows distributions
of topological variables for correct-charge and wrong-charge pairs with transverse momentum
1 < 𝑝T,Kπ < 2 GeV/𝑐. As it could be observed, there is a difference between correct-charge signal
and background distributions, from which the consequent classification algorithm might benefit.
However, in the real data, signal distribution is unknown and there is only a small fraction of signal
pairs in the correct-charge pairs, causing nearly similar shape of correct-charge and wrong-charge
pairs distributions. Furthermore, as it could be observed from shown background ratios, there is no
significant distributional difference between correct-charge background pairs, that are not coming
from D0 meson decay in our data, and wrong-charge pairs.

All classification methods are independently trained and tested in the five D0 meson transverse
momentum 𝑝T,D0 intervals: 0–1, 1–2, 2–3, 3–5, and 5–8 GeV/𝑐. These intervals reflect typical
𝑝T,D0 range measured by the STAR experiment and rapidly falling D0 meson spectra [3, 20, 21].
Ranges of 𝑝T,D0 correspond to the subdivisions of the data according to 𝑝T,Kπ with the same intervals.

Since the signal-to-background ratio in real collisions is typically very low, preselection of pairs
is done before training and application of the classification methods. Main goal is to cut-out regions,
where a massive portion of the good signals of the studied particle is not expected or might be hardly
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Figure 2. Distributions of topological variables for Kπ pair transverse momentum 1 < 𝑝T,Kπ < 2 GeV/𝑐 and
for correct-charge and wrong-charge Kπ pairs, together with corresponding ratios of correct-charge and
wrong-charge backgrounds Kπ pairs distributions.

distinguishable from background due to its significant distortion caused by the detection system.
The goal is to find such preselection that suppress background more than signal. In this analysis,
preselection efficiency is tested with three sets of rectangular cuts on D0 meson decay properties.
These cuts are similar in all 𝑝T,D0 intervals. The cuts are listed in table 1 and resulting efficiencies
in studied 𝑝T,D0 intervals are plotted in figure 3. Signal efficiency is defined as the ratio between
the number of signal pairs, after cut application, and the number of all signal pairs, background
efficiency is defined analogically. As it can be seen, the background efficiencies of loose cuts are
nearly similar to the signal ones’, however, tighter cuts suppress background significantly more than
the signal. For the study of machine learning algorithms performance, we decided to compare tight
cut preselection and the option with no preselection criteria applied. By cutting out the area with low
signal density, algorithms are forced to focus on the region, where the signal density is high on the
one hand, but on the other hand hard to be set apart from the background. Using this approach we
expect to obtain algorithms precise in high signal density region. To summarize, all three supervised
machine learning algorithms are trained over every train set separately resulting in 30 final classifiers
(three types of classification algorithms, five 𝑝T,D0 intervals, with and without precut application).

– 5 –
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Table 1. Sets of preselection cuts applied to topological variables of D0 meson decay before classification
methods have been trained.

Loose cuts Intermediate cuts Tight cuts
Variable Min. Max. Min. Max. Min. Max.
DCAK,π [mm] 0.0 10.0 0.0 1.0 0.002 2.0
DCAdaughters [mm] 0.0 5.0 0.0 0.3 0.0 0.2
decay length [mm] 0.0 5.0 0.0 1.5 0.005 2.0
DCAD0 [mm] 0.0 5.0 0.0 0.3 0.0 0.5
cos \ [-] −1.0 1.0 0.0 1.0 0.7 1.0
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Figure 3. Signal (left) and background (right) efficiencies vs. reconstructed transverse momentum of Kπ pairs
(D0 meson candidates) 𝑝T,D0 for selection cuts listed in table 1.

4 Machine learning algorithms setup and training

4.1 Random Forest

RF is an interpretable robust machine learning algorithm based on the ensemble of decision trees [22].
Additionally, training and optimization of RF is relatively fast compared to DNN. However, for
such classes that can not be separated using linear partitioning, the depth of individual trees of
the ensemble may increase dramatically. The trees, tied up together using bootstrap aggregating
algorithm, ensure partitioning of the observation space and assign class labels to these partitions. In
this study, scikit-learn [12] RF implementation is applied.

Firstly, input data in all 𝑝T,D0 intervals are divided into training and test sets in 6:4 ratio. For the
setup with precuts, this division is done after their application. For each 𝑝T,D0 interval, feature-wise
standardization is fitted for all topological variables over training data and both training and test sets
are transformed by it.4

Next, optimized random forest is trained over balanced training set in terms of number of
samples per class. The corresponding hyper-parameter space for optimization of the classifier is
given in table 2 and is the same for all 𝑝T,D0 intervals. In order to enhance the RF classification

4In machine learning, feature-wise standardization rescales the features to have zero mean and standard deviation
equal to one in order to align feature ranges.
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performance, Gini (G) and Entropy (E) impurity measures for evaluation and selection of possible
sample split inside the tree’s node are tested. We aim to the partitioning of the feature space as
much as possible for sufficient class distinction. However, too fine partitioning results in model
overfitting. Therefore, classification quality dependency on maximum depth of trees 𝑑max is explored
as well. Sufficient information exploitation of all features is ensured with increasing number of trees
𝑁trees. Nevertheless, for the larger values of 𝑁trees, the classification quality improvement may not be
noticeable while the computational complexity is increasing dramatically. During the training phase,
3-fold cross-validation is used to train the RF model taking each combination of hyper-parameters
over each 𝑝T,D0 interval (grid search). The set of hyper-parameters producing trained classifier with
the highest average area value under the ROC curve (AUC) is refitted over the whole training set and
later validated over test set.

The parameters of the optimized classifier resulting from the grid search are presented in table 3.
Entropy is the optimal impurity measure for each scenario. There seemed to be no trend with respect
to 𝑝T,D0 values in selection of 𝑁trees and 𝑑max of the ensemble. In the scenario, where precuts are
not applied, optimization selects deeper trees within the ensemble since more complex input space
partitioning is needed.

Table 2. Hyper-parameter space for random forest optimization — tested options of maximum depth of trees
𝑑max, number of trees 𝑁trees, impurity measure.

Parameter Options
𝑑max 20 17 15 12 10 7 5
𝑁trees 1200 1000 800 600 400 200
Impurity measure Gini (G) Entropy (E)

Table 3. Optimized parameters (number of trees 𝑁trees, maximum tree depth 𝑑max, impurity measure) of
random forest classifiers for Kπ pair transverse momentum 𝑝T,D0 intervals with and without precuts application.
Entropy (E) impurity measure is selected for all input data setups.

With precuts Without precuts
𝑝T,D0 [GeV/𝑐] 0–1 1–2 2–3 3–5 5–8 0–1 1–2 2–3 3–5 5–8
𝑑max 10 13 12 10 7 15 15 12 12 7
𝑁trees 1200 600 1000 200 200 1200 600 1000 1200 200
Impurity measure E E E E E E E E E E

4.2 Boosted Decision Trees

BDT machine learning algorithm from the Toolkit for Multivariate Data Analysis (TMVA) package [5]
is applied in this analysis. Data in all 𝑝T,D0 intervals are divided into training and test set in 6:4 ratio,
in the same way as it was done for RF algorithm. Signal and background sets are balanced using the
class weights.

In the BDT, compared to the RF method, individual trees are not independent, but boosting is
applied, i.e., data misclassified by a tree have higher weight in the training of the next tree. Calculation
of this weight depends on the chosen boosting algorithm and classification error fraction of the

– 7 –
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Figure 4. Error fraction of gradually trained boosted decision trees and simple moving average (SMA) of
error fraction for the last 50 trees for 1 < 𝑝T,D0 < 2 GeV/𝑐.

tree. For boosting, adaptive boosting algorithm (AdaBoost) is chosen. Error fraction of every tree
is determined by calculating how much signal events have positive BDT response (defined in [−1, 1]
range) and vice-versa for the background. As more trees are trained, their error fraction is getting
higher and converges, as it is shown in figure 4. The trees with error fraction close to 0.5 are very
weak classifiers and thus does not significantly help to classify the data. At first, in all 𝑝T,D0 intervals,
BDT with 1000 trees is trained. Error fraction for 1 < 𝑝T,D0 < 2 GeV/𝑐 is displayed in figure 4 and it
is similar also in other intervals. Simple moving average of the error fraction shows that it converges
around 300th tree. Finally, to be on the safe side, we decided to train final models with 500 trees.

Other BDT parameters are set in a usual way in high-energy physics [5]. To minimize
overtraining, maximum tree depth is set to 3 and minimum number of training events required in the
tree leaf is 2.5 % of the training events in the 𝑝T,D0 interval. Gini impurity measure is employed
to separate nodes with not limited number of test cuts on variable in the training sample. Finally,
bagging is applied to minimize overtraining further, so for each tree training, 50 % of randomly
selected training sample pairs is used.

4.3 Deep Neural Networks

To explore more complex machine learning method, DNN’s [23] are tested for the classification
of D0 meson signal, too. DNN are able to perform non-linear transformations of input space.
Hence, DNN may address complex classification problems more effectively when optimized properly.
Additionally, usage of DNN reduces the need of extensive feature engineering. However, DNN
decision process is not easily interpretable. Both training and optimization require large amount of
CPU time, computational power and training data.

To implement the method, Keras with TensorFlow backend is used [13]. Basic architecture of
the model is derived empirically, however, other model’s attributes are left to be optimized. Model
architecture is visualized in figure 5. Blue color shows the parameters to be optimized: size of
the hidden layer 𝑤, activation function of hidden layers 𝑎, and dropout rate 𝑝. Data are fed to
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the input layer with 7 neurons, corresponding to the 7 D0 meson topological decay variables, and
transferred using the network connections (weights) through the hidden layers to the final (output)
layer. For hidden layers, batch normalization (BN) is applied. Outputs of inner and final layers are
not only scaled using the network weights, but also using activation functions. Since the desired
network output is the probability of the sample being signal or background, activation function of the
output layer is set to a sigmoid and the loss function, used for optimization, is binary-crossentropy.
Additionally, common DNN parameters, such as optimizer, batch size 𝐵, learning rate 𝛾 (or its
initial value) and type of kernel initialization are optimized. Range of the hyper-parameter space is
presented in table 4 and it is the same for all 𝑝T,D0 intervals.

Data are divided into three subsets: training, validation and test in 6:2:2 ratio. For each
𝑝T,D0 interval, balancing of the training set is performed. Firstly, feature-wise standardization is
fitted and applied to the training data and then applied to the corresponding validation and test sets.
Then, the training phase over given 𝑝T,D0 interval is performed in two steps. In the first step, for all
combinations of hyper-parameters in table 4, DNN model is trained for 70 epochs. The parameters
of the classification model with the highest AUC are used to perform the second step, where the
training of the model starts all over again with fixed values of parameters. Training is stopped when
the validation accuracy is not improved during the last 60 epochs (early stopping rule). Since the
validation set is already used for hyper-parameters selection thus it influences the classifier training,
binary classification metrics are evaluated over the test set only. Iterative algorithms (optimizers), such
as stochastic gradient descent, are used to find neural network weights that minimize loss function. To
enhance ability of neural network’s convergence, the optimizers with adaptive learning rate (Adam,
AdaMax) are tested as well. Adaptive change of learning rate 𝛾 in the training process enables the
optimizer to recognize and escape local minima of the loss function more efficiently. Appropriate
kernel initializer may further help optimizer to converge smoothly. Therefore, Lecun uniform,
He normal and He uniform initializers of weight values are explored when searching for optimal
hyper-parameter combination of the DNN model. Dropout is used as generalization technique and it
is tested at different rates 𝑝. Additionaly, trade-off between generalization and computational speed
is examined by training the models for several values of batch size 𝐵. Unlike RF, more consistent
parameter combinations are selected as optimal for given 𝑝T,D0 intervals and pre-processing types.

input layer of 7 neurons

hidden layer of w neurons, BN, a, dropout(p)

output layer of 1 neuron, activation fuction (a) = sigmoid

hidden layer of w neurons, BN, a, dropout(p)

hidden layer of w neurons, BN, a, dropout(p)

hidden layer of w neurons, BN, a, dropout(p)

Figure 5. Schema of deep neural network architecture with description of the setup of layers. Parameters of
hidden layers in blue are left to optimization: number of neurons 𝑤, activation function 𝑎 and dropout rate 𝑝.
Batch normalization (BN) is applied in all hidden layers.
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In all cases, 𝑤 = 256 neurons is selected as the optimal width of the inner layer. The training
performs the best at batch size value 𝐵 = 64. Activation function ReLU together with dropout
𝑝 = 0.2 and Adam optimizer starting at initial learning rate 𝛾 = 1 · 10−5 are chosen as the optimal
parameters in all scenarios except interval 5 < 𝑝T,D0 < 8 GeV/𝑐, where precuts were not applied. In
this case tanh activation function achieves better performance. The classification quality is maximal
under He normal kernel initialization for 0 < 𝑝T,D0 < 1 GeV/𝑐 and with Lecun uniform kernel
initialization for 𝑝T,D0 > 2 GeV/𝑐, when precuts are applied, as well as for 𝑝T,D0 > 1 GeV/𝑐, when
no precuts are used. He uniform kernel initialization results in the best model performance for the
data pre-processed with precuts in the 1 < 𝑝T,D0 < 2 GeV/𝑐 interval.

Table 4. Hyper-parameter space for deep neural network setup optimization — options for activation function
of hidden layers 𝑎, learning rate 𝛾, dropout rate in hidden layers 𝑝, optimizer, kernel initialization, batch size
𝐵, number of neurons in hidden layers 𝑤.
Parameter 𝑎 𝛾 [·10−5] 𝑝 Optimizer Kernel init. 𝐵 𝑤

Options
ReLU 0.1 0.2 Adam Lecun uniform (LU) 64 64
tanh 0.5 0.3 Stochastic grad. descent He normal (HN) 128 128

1.0 0.4 AdaMax He uniform (HU) 256

5 Performance evaluation and comparisons

Machine learning classification methods are compared using the ROC curves, that are shown in
figure 6 for data with and without precut application. Resulting AUC’s are in table 5.

Generally, classification ability increases with higher 𝑝T,D0 . This might be caused by physical
properties of the studied decay. D0 meson with low 𝑝T,D0 decays closer to the primary vertex,
which leads to low DCAK, DCAπ and DCAD0. Therefore, these are hardly distinguishable from the
combinatorial background composed mainly from particle coming from PV, thus having low DCAK
and DCAπ, too. With higher 𝑝T,D0 , D0 meson decays later and its topological properties are in the
region with less similar combinatorial background pairs.

For 𝑝T,D0 < 5 GeV/𝑐, classifiers trained over the data after precut application achieve higher
AUC values than those trained without precuts application. This is caused by significant background
suppression under precuts. In this case, the total signal efficiency is also additionally decreased by
the one plotted in figure 3. For 5 < 𝑝T,D0 < 8 GeV/𝑐 the difference in AUC between precut data
and no precut data is relatively small compared to other 𝑝T,D0 intervals, that might be caused by the
described properties of D0 meson with high 𝑝T,D0 .

As it can be seen from ROC curves in figure 6, for data with precuts inside 1 < 𝑝T,D0 < 5 GeV/𝑐,
the RF classification has significantly better performance than other methods. For data without
precuts application, the RF could not extract significantly more information and it is slightly more
successful compared to the BDT and the DNN. This gain is more significant for data with precuts
in 𝑝T intervals 1 < 𝑝T,D0 < 2 GeV/𝑐 and 2 < 𝑝T,D0 < 3 GeV/𝑐, where maximal possible result in
signal separation is achieved thanks to the RF procedure. On the other hand, the BDT and DNN are
almost similar in terms of ROC and AUC.
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Table 5. Area under receiver operating characteristic (ROC) curve of tested machine learning methods on test
samples of datasets in D0 meson candidate transverse momentum 𝑝T,D0 intervals.

With precuts Without precuts
𝑝T,D0 [GeV/𝑐] 0–1 1–2 2–3 3–5 5–8 0–1 1–2 2–3 3–5 5–8
Random forest 0.81 0.87 0.94 0.95 0.96 0.73 0.79 0.82 0.90 0.94

Boosted decision trees 0.78 0.84 0.90 0.93 0.93 0.70 0.76 0.83 0.89 0.94
Deep neural network 0.79 0.83 0.90 0.93 0.91 0.70 0.76 0.83 0.89 0.92

0.0
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5 < pT, D0 < 8 GeV/c5 < pT, D0 < 8 GeV/c

No precuts:      Precuts:
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DNN    
BDT

RF     
DNN    
BDT

Figure 6. The receiver operating characteristic (ROC) curves for random forests (RF), deep neural networks
(DNN) and boosted decision trees (BDT) in D0 meson candidate transverse momentum 𝑝T,D0 intervals, with
and without precuts application.

6 Conclusions

Performance study of the machine learning classification methods for signal extraction in two-body
decay analysis is reported. Simulated d+Au collisions at √𝑠NN = 200 GeV with the STAR experiment
are used to study reconstruction of D0 meson. In order to select D0 meson decay candidates from
Kπ pairs, we test several machine learning classifiers with different implementation approaches:
DNN from Keras, RF from scikit-learn and BDT from TMVA package.

To train classifier with the most efficient separation ability, multistep data pre-processing
approach is used. Precuts application to the data is tested and it significantly improves classification
power of the algorithms. The RF and DNN setup with the best performance is found with grid search
over multiple setups of corresponding machine learning parameters. The overall classification rates
ranges from 0.81 to 0.96 throughout all the precut D0 meson transverse momentum intervals which
is quite sufficient to carry out any relevant subsequent physical analysis of D0 mesons.
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Despite the fact that RF method is not common in high-energy physics, it shows notable
enhancement of signal efficiency compared to the other presented algorithms. Deep neural networks
does not show significant improvement compared to the widely used BDT. However, their performance
is close and the DNN might help to improve signal significance in similar analyses. In future we
plan to investigate the performance of studied algorithms for three body decays and, e.g., separation
of prompt and non-prompt (coming from B meson decays) D0 mesons, where the separation of
background from a signal is even more difficult with standard analysis methods.
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1. Introduction

The quark-gluon plasma (QGP) is the hot and dense nuclear matter of deconfined quarks and
gluons that is formed in ultrarelativistic collisions of heavy ions [1]. Heavy-flavor (HF, charm and
bottom) quarks are produced primarily in the early stages of collisions [2] and thus experience the
entire evolution of the medium. Directed flow of HFmesons allows us to study the initial conditions
of heavy-ion collisions, such as the tilt of the QGP medium [3] and the initial electromagnetic (EM)
field [4]. Furthermore, understanding the sensitivity of HF quarks to the collective motion of the
system, reflected in the elliptic flow of HF mesons, can provide information on the degree of the HF
quark thermalization in the QGP and help to constrain the HF-quark diffusion coefficient. Study of
open-charm meson yields probes not only the quark mass dependence of energy loss in the QGP,
but also its hadronization in the heavy-ion collisions.

The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) performed extensive
studies of HF-hadron production. The results from Au+Au collisions at√BNN = 200 GeV presented
in these proceedingswere obtained thanksmainly to the presence ofHeavy Flavor Tracker (HFT) [5],
the high-precision silicon vertex detector installed at the center of the STAR apparatus for data
taking in years 2014–2016. It greatly improves the track pointing resolution and enables the
topological reconstruction of the secondary vertices of open charm hadron decays through the
hadronic channels, such as D0→K−π+, Λ+c→K−π+p or Ds→ϕπ+→K−K+π+. In addition, the HFT
enables the measurement of electrons from charm and bottom hadron decays with great precision.
HF decay electron fractions are extracted using template fits to distributions of the 3D distance of
closest approach of a track to the collision vertex.

2. Heavy-flavor production in Au+Au collisions

Particle production in Au+Au collisions can be studied using the nuclear modification factor
'AA, defined as the ratio of the invariant particle yields measured in Au+Au and p+p collisions
(where no QGP is expected to be created), scaled by the average number of binary nucleon-nucleon
collisions in the investigated Au+Au collision centrality interval. The D0 meson 'AA measured in
three collision centrality intervals is shown in Fig. 1 (left) [6]. At high transverse momentum, ?T,
the yields are greatly suppressed in central collisions, indicating that charm quarks lose a significant
amount of energy in the QGP. Towards more peripheral collisions, this suppression at high ?T
decreases. However, at low ?T, 'AA has no significant centrality dependence.

Figure 1 (right) shows the charm and bottom decay electron 'AA. The data are consistent with
the DUKE model prediction [7] which contains the mass dependence of energy loss. Furthermore,
bottom decay electron suppression is smaller than that of charm decay electron with a significance
larger than 3f. This suggests a quark mass dependence of the energy loss in the QGP.

In order to understand hadronization of charm quarks, the Λ+c/D0 yield ratio is measured [8]
and results are shown in Fig. 2. In Fig. 2 (left), it can be seen that in the measured ?T interval, the
Λ+c/D0 ratio is comparable to the baryon-to-meson ratios of strange and light flavor hadrons. Addi-
tionally, the data are compared to model calculations including different charm quark hadronization
mechanisms and QGP medium properties. The data, as well as those calculations that include coa-
lescence hadronization of charm quarks show significant enhancements compared to the PYTHIA
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Figure 1: Left: the 'AA of D0 meson as a function of ?T in different centrality classes measured with (year
2014) and without (years 2010/11) the HFT detector installed [6]. Right: the 'AA of charm and bottom
decay electron (top) and their ratio (bottom), compared to the DUKE model prediction [7].

B
a
ry

o
n
/M

e
s
o
n
 R

a
ti
o

)
0

D
+

0
)/

(D
 c

Λ
 +

 
+ c

Λ(

0 2 4 6 8

)c) (GeV/
T

pTransverse Momentum (

1

2

3

Ko et.al: three quark (05%)
Ko et.al: diquark, (05%)
Ko et.al: with flow (010%)
Catania, coal.+frag. (1080%)
Catania, coal. (1080%)
Tshingua (1080%)
Rapp et.al (020%)

PYTHIA

PYTHIA,CR

THERMUS

(b) 2 4 6 8

1

2

0
D+

0
D



cΛ + +
cΛ


π + +π

pp + 
s
02K

Λ + Λ

STAR

 = 200 GeV
NN

sAu+Au, 

1080%

(a)

0 100 200 300
0

1

2

3

B
a

ry
o

n
/M

e
s
o

n
 R

a
ti
o

)
part

Number of Participants (N

c < 6 GeV/
T

p = 200 GeV, 3 < 
NN

s           Au+Au STAR

0
D+

0
D



cΛ + 
+
cΛ


π + +π

pp + 

s
0

2K

Λ + Λ

Catania (coal.)

Catania (coal.+frag.)

PYTHIA

PYTHIA, CR

Figure 2: Left: Λ+2/D0 yield ratio as a function of ?T compared to light-hadron results (top) and different
model calculations (bottom). Right: Λ+2/D0 yield ratio vs number of participants #part, compared to light-
hadron results, PYTHIA calculationwith andwithout color reconnection and the Cataniamodel incorporating
coalescence and fragmentation hadronization of the charm quarks [8].

calculations. As displayed in Fig. 2 (right), the centrality dependence of Λ+c/D0 yield ratio shows
a similar trend as that of light flavor and strange hadron yield ratios. The data are consistent with
the Catania model calculation incorporating coalescence and fragmentation hadronization of charm
quarks [9].

STAR also measured the D+s /D0 yield ratio, which probes both strangeness enhancement and
coalescence of charm quarks with strange quarks in the QGP. Figure 3 (top left) shows that this ratio

3
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Figure 3: D+s /D0 yield ratio as a function of ?T in different centralities of Au+Au collisions compared to
PYTHIA p+p calculations and to an ALICE measurement [10, 11] (left) and to various models incorporating
coalescence and fragmentation hadronization of charm quarks [9, 12, 13] (right).

has no significant centrality dependence and is significantly larger than the fragmentation baseline,
represented by a PYTHIA8 calculation. In Fig. 3 (bottom left), STAR results in central Au+Au
collisions are compared to the ALICE result in central Pb+Pb collisions at √BNN = 5.02 TeV. The
results are consistent in the overlapping region. Additionally, ALICE p+p data at

√
B = 7 TeV are

consistent with a PYTHIA calculation at the same energy.
Figure 3 (right) shows the comparison of the STAR results in central (top right) and semi-central

collisions (bottom right) with model calculations. The Catania model calculation with only coa-
lescence hadronization describes data for ?T > 4 GeV/2, while the Catania model calculation with
both coalescence and fragmentation hadronization describes data for lower ?T. Furthermore, the
Tsinghua model with sequential coalescence hadronization of charm quarks qualitatively describes
data in 10–40% semi-central collisions.

3. Anisotropic flow of heavy-flavor decay electrons

To quantify the transport properties of the hot medium produced in heavy-ion collisions, the
collective motion of partons is studied via the measurement of the elliptic flow E2 of produced par-
ticles [14]. This is the second coefficient of the Fourier decomposition of the azimuthal distribution
of the particle yield with respect to the event plane. The D0 meson E2 measured by STAR in Au+Au
collisions was found to follow the number-of-constituent-quark scaling [15].

Figure 4 shows the HF decay electron E2. In this analysis, non-flow effects are calculated using
electron-hadron correlations with electrons from semileptonic charm and bottom decays simulated
with PYTHIA. Charm decay electron E2, shown in Fig. 4 (left) is consistent with the D0 E2 [15]
folded to account for decay-kinematic effects and the Duke model [7]. For bottom decay electron
E2, shown in Fig. 4 (right), two approaches for the event plane reconstruction are compared. One of
them uses tracks reconstructed in the Time Projection Chamber (TPC) in the pseudorapidity range
of |[ | < 1, the latter one uses hits in the Forward Meson Spectrometer (FMS) in −2.5 < [ < 4. The
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Figure 5: Directed flow E1 of D0 and D0 for ?T > 1.5 GeV/2 compared to that of kaons for ?T > 0.2 GeV/2
[16] (left) and E1 of charm decay positrons and anti-charm decay electron for ?T > 1.2 GeV/2 as a function
of rapidity in 10–80% central Au+Au collisions compared to model calculations (right).

TPC event plane measurement with non-flow subtraction results in non-zero E2 of bottom decay
electrons with a significance of 3.4f. The usage of the FMS significantly reduces the non-flow
contribution to 0.5%. However, this measurement has a larger uncertainty due to the poorer event-
plane resolution and smaller statistics analyzed because the FMS being present only in part of the
data recorded.

The initial conditions of heavy-ion collisions could be accessed via measurement of directed
flow, E1, whose magnitude is affected by the initial tilt of the QGP bulk and viscous drag on charm
quarks. Furthermore, the initial EM field is predicted to induce larger E1 for charm quarks than for
light flavor quarks due to the early production of charm quarks and gives opposite contributions to
charm and anti-charm quarks.

Figure 5 (left) shows the E1 of combined D0 and D0 (top) and the difference between D0 and
D0 E1 (bottom) [16]. A separate measurement of D0 and D0 is done via topological reconstruction
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of decays D0→K−π+ and D0→K+π−. The absolute value of the D0 E1 is observed to be about 25
times larger than that of the kaons with a 3.4f significance. Model calculations with a tilted source
predict the correct sign of dE1/dH, but the E1 magnitudes are lower than in data. Study of the initial
EM field induced splitting for charm decay electrons is shown in Fig. 5 (right). The E1 for charm
and anti-charm is accessed by separate measurements of charm decay e+ and anti-charm decay e−.
Within the uncertainties, no splitting due to EM field is observed in both measurements.

4. Summary

The STAR experiment, thanks to the HFT detector, measured open heavy-flavor production in
Au+Au collisions at √BNN = 200 GeV via the topological reconstruction of charmed hadrons and
extraction of HF decay electrons. The results on the open-charm hadron production suggest that
charm quarks hadronize via coalescence with light quarks in the QGP and strongly interact with
the created medium. Additionally, measurements of charm and beauty decay electron 'AA suggest
that parton energy loss in the QGP depends on quark mass. Charm decay electron E2, consistent
with D0 E2, indicate that charm quarks gain significant flow in the QGP. Firstly observed non-zero
bottom decay electron E2 is consistent with the Duke model incorporating bottom quark transport
in the QGP. The predicted charm and anti-charm splitting due to the initial EM field is not observed
in measured E1 of D0 and D0, as well as charm (anti-charm) decay e+ (e−).
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Abstract
Owing to their large masses, charm quarks are predominantly produced through initial hard
scatterings in heavy-ion collisions. Therefore, they can serve as penetrating probes to study the
intrinsic properties of the hot medium created in heavy-ion collisions. However, Cold Nuclear
Matter effects can also affect the charm quark production in nuclear collisions with respect to
p+p collisions. These effects can be measured in small collision systems such as d/p+Au.
In these proceedings, D0 meson reconstruction in d+Au collisions at =s 200 GeVNN at the
STAR experiment is described. Thanks to the excellent impact parameter resolution provided by
the Heavy Flavor Tracker detector, D0(D0) mesons are topologically reconstructed from their
hadronic decay channel D0 (D0) p - +K ( p+ -K ). The Boosted Decision Trees machine learning
algorithm from the TMVA package is applied in order to improve signal/background separation.

Keywords: cold nuclear matter effects, STAR, BNL, Boosted Decision Trees, D0 meson

(Some figures may appear in colour only in the online journal)

1. Introduction

In ultrarelativistic collisions of heavy ions, hot and dense nuclear
matter, quark-gluon plasma (QGP), could be created [1]. Since
heavy-flavor (charm and beauty) quarks are produced in hard
scatterings at the early stage of such collisions [2], they
experience the entire evolution of the system including the QGP
phase. At Relativistic Heavy Ion Collider (RHIC), strong sup-
pression of open charm mesons at high transverse momentum
(pT) in the 0%–10% most central gold-gold (Au+Au) collisions
was measured [3], indicating substantial energy loss of charm
quarks in the hot medium. In addition, it was measured that
charm quarks exhibit collective behavior [4] that reflects the
degree of thermalization of charm quarks in the medium and
carries information about the transport properties of the QGP.

However, for more detailed study of the QGP effects on
produced particles, quantitative understanding of the effects of

the heavy nuclei in the initial stages of collisions is needed. These
so-called Cold Nuclear Matter effects include mainly modifica-
tion of parton distribution functions of nucleons in colliding
nuclei [5, 6], multiple scatterings of the partons by the dense
target and parton scatterings in the nucleus, resulting in their
energy loss and to the broadening of the transverse momentum
distribution (Cronin effect) [7, 8].

CNM effects are investigated in the asymmetric colli-
sions of protons or deuterons with nuclei. At Large Hadron
Collider (LHC) in CERN, CNM effects on D0 production
were studied in proton-lead (p+Pb) collisions. ALICE
experiment measured that D0 production in such events is not
significantly modified compared to proton-proton collisions
[9]. However, CMS collaboration measured significant col-
lective behavior (large elliptic flow v2) of D

0 mesons in p+Pb
collisions at =s 8.16NN TeV [10]. At RHIC, CNM effects
are accessible via proton-gold (p+Au) and deuteron-gold
(d+Au) collisions. In such collisions, creation of thermalized
medium is not expected, nevertheless the dense nuclear
environment alters colliding nucleons.
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Reconstruction of open charm D0 mesons described in
these proceedings was done in data from d+Au collisions at

=s 200 GeVNN . These were measured by the Solenoidal
Tracker at RHIC (STAR) situated in Brookhaven National
Laboratory (BNL) in the USA. Topological reconstruction of
the hadronic decay of D0 meson to K− and π+ with branching
ratio 3.89±0.04% [11] is used. Shown results are for com-
bined D0 and D0 mesons, thus both unlike-sign combinations of
pion and kaon (K p- + and p+ -K ) are considered to be correct
charge combinations. Furthermore, the Boosted Decision Trees
(BDT) machine learning algorithm from the Toolkit for Multi-
variate Data Analysis (TMVA) package [12] is applied in order
to improve separation of signal and background pK pairs.

2. Experimental setup - STAR detector

STAR consists of multiple subdetectors that are able to track and
identify charged particles down to very low pT at mid-rapidity
(h < 1∣ ∣ ) with the full azimuthal coverage. STAR’s main
tracking sub-system is the Time Projection Chamber (TPC) [13],
a gaseous detector that identifies charged particles via specific
energy loss in it and determines momentum from the curvature
of their trajectories in the 0.5 Tesla solenoidal field.

Another detector that was developed to improve the
particle identification capability for tracks with momenta
between 0.6 and 3GeV/c, is the Time of Flight (TOF) [14]. It
measures the velocity of a particle, β, by measuring the time
interval that the particle needs to reach the TOF from the
point of the collision. Time of a collision is detected with fast
Vertex Position Detectors (VPD) [15], that detects particles
produced in forward directions.

For the analysis presented in these proceedings, the
Heavy Flavor Tracker (HFT) [16] detector has a great
importance. It is the high-precision silicon vertex detector
installed at the center of the STAR for data taking in years
2014–2016. It greatly improves the track pointing resolution
and enables the topological reconstruction of the secondary
vertices of open charm hadron decays through hadronic
channels. It consists of three silicon detectors - the PIXEL
made of two layers of Monolithic Active Pixel Sensors,
Intermediate Silicon Tracker (IST) and Silicon Strip Detector
(SSD). The HFT achieves excellent resolution for distance of
the closest approach (DCA), e.g. 30mm for kaons at trans-
verse momentum =p 1.5GeVT /c [16].

3. Event and track selection

In 2016, approximately 350 million of d+Au minimum bias
collisions at =s 200 GeVNN were recorded. Only events
that are well reconstructed in the HFT geometric acceptance
are accepted for this analysis. This is assured by requiring that
the distance of reconstructed position of the primary vertex in
the beam direction from the center of detector (Vz) is less than
6cm. To reduce pile-up from multiple events, only events
with correlated primary vertices reconstructed by the TPC and
by the VPD ( - <V V 6z z,TPC ,VPD∣ ∣ cm) are further analyzed.

For this analysis, reconstructed tracks with pseudor-
apidity h < 1∣ ∣ and >p 0.15 GeVT /c are used. They are also
required to have at least 15 measured points in the TPC out of
maximum 45, hits in both layers of PIXEL detector and at
least one hit in IST or SSD layers of the HFT. Particles are
identified using the specific energy loss dE/dx in the TPC.
Deviation of the measured energy loss dE/dx meas∣ from the
expected dE/dx exp∣ is calculated for each track as

s =n
R

E x

E x

1
ln

d d

d d
, 1meas

exp

∣
∣ ( )

where R is the E xln d d( ) resolution of the TPC. Pions are
selected with the condition s <n 3∣ ∣ and kaons s <n 2∣ ∣ .
Furthermore, if a track has a matched hit in the TOF, its
measured velocity bmeas is compared to the expected bexp and
the track is required to fulfill b b- <1 1 0.03meas exp∣ ∣ in
order to be used in the analysis.

4. Topological reconstruction of open charm
mesons

STAR equipped with the HFT is able to track charged par-
ticles with great precision and thanks to this, topological
properties of D0 meson decay are used in its reconstruction. In
the analysis, firstly all pions and kaons are combined into
pairs. Then, properties of these pairs are studied in order to
study whether they come from D0 meson decay. Figure 1
shows schematic decay of D0 meson together with topological
variables. D0 is created in the place of collision, primary

Figure 1. Schematic representation of D0 meson decay and its
topological variables [3]: distances of the closest approach of kaon
and pion to primary vertex (DCAK and DCAp) and between them
(DCA12), D0 meson DCA to primary vertex (DCAD0) and pointing
angle θ between reconstructed D0 momentum (P


) and decay length

vector. Reprinted figure with permission from [3], Copyright (2019)
by the American Physical Society.

2

Phys. Scr. 95 (2020) 074010 L Kramárik for the STAR collaboration



vertex, and decays in the secondary vertex into the pair of
daughter particles (kaon and pion). Position of the secondary
vertex is calculated as the point of the closest approach of
these daughter tracks. Topological variables used in this
analysis are:

• DCA between reconstructed daughter particles (DCA12),
• decay length of D0 meson candidate, calculated as
distance between primary and secondary vertex,

• kaon and pion DCA to the primary vertex (DCAK

and DCAp),
• D0 meson DCA to the primary vertex (DCAD0),
• pointing angle θ between reconstructed D0 momentum
and decay length vector,

• angle between reconstructed D0 momentum and kaon
momentum.

5. Machine learning algorithm training

Topological properties of the pairs are used in the Boosted
Decision Trees algorithm to isolate D0 candidates in data. In
this machine learning algorithm classifiers are not individual
variables, but a set of binary structured decision trees con-
structed in the training phase of the algorithm. In the algo-
rithm application phase, every pair is tested by the set of trees
in order to classify it as signal or background. The decision of
trees is then projected to the individual number - BDT
response that has values from −1 (background-like) to 1
(signal-like). In the presented analysis, BDT is trained sepa-
rately in three pair (D0) pT intervals: 1–2, 2–3, 3–5GeV/c.

For the algorithm training, the samples of signal and
background pairs are needed as the input. Signal sample are
D0 decays generated with PYTHIA. Momenta and DCA of
daughter particles from these decays are smeared in accor-
dance with the detector response. Background sample for
training are wrong(like)-sign pairs of kaons and pions ( p- -K
and p+ +K ) from recorded data. In the training part of the
algorithm, input pairs are divided to training and test samples.
After the algorithm is trained and decisions trees are con-
structed, BDT response is calculated for all training and test
pairs. Its distribution is shown in figure 2. It can be seen that
the signal and background are clearly separated. In addition,
since the shapes of BDT response for training and test sam-
ples are the same, the algorithm is not overtrained.

Signal and background efficiencies ( ,S B respectively)
together with their purities and signal significance Σ after
application of different cuts on the BDT response for pairs
with < <p2 3 GeVT /c are shown in figure 3. Signal sig-
nificance is defined as

S =
+


 

N

N N
, 2S

S B

S

S B

( )

where NS and NB are estimates of number of signal and
background pairs before BDT application. NS is estimated
using D0 invariant yield measured in p+p collisions [17]
and the detector reconstruction efficiency. NB is evaluated

from the number of wrong(like)-sign pairs in the data. Signal
efficiency S is used as one of the corrections on D

0 raw yield,
extracted by applying trained BDT on data.

6. BDT application on data

After the machine learning method is trained, it is applied on
both correct(unlike)-sign pairs and wrong(like)-sign pairs
from the data and BDT response is calculated for every pair.
Unweighted invariant mass distributions for pairs that fulfill
the cut on BDT response are further used to evaluate the
significance of signal in data. Background (NB,data) is esti-
mated via wrong-sign pairs and then subtracted from the
correct-sign combinations. Resulting invariant mass dis-
tributions of correct-sign pairs are fitted by the combination of
a Gaussian function for signal and a linear function for the
residual background. D0 raw yield (Y) is extracted using the
bin-counting method in the s3 region around the mean of
the fitted Gaussian function with residual background

Figure 2. Boosted Decision Trees response distributions for signal
and background pairs with transverse momentum
< <p2 3 GeVT /c, for both test and training samples.

Figure 3. Evaluation of BDT response cuts performance for pairs
with transverse momentum < <p2 3 GeVT /c.
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subtracted. Finally, signal significance in data Sdata is calcu-
lated as

S =
+

Y

Y N2
. 3data

B,data

( )

Multiple BDT response cuts are applied on data and sig-
nificances are calculated for all of them. Resulting distribu-
tions for all tested pair pT intervals are in figure 4. In this plot,
vertical lines show the BDT response cuts where significance
calculated from BDT training (equation (2)) is maximal in
three tested D0 pT bins. It can be seen, that the BDT response
cuts with maximum significance in data are consistent with
those calculated in the BDT algorithm training (figure 3).
Finally, signal significance higher than 6 is achieved in all of
the tested pT intervals.

7. Summary

Measurements of open charm mesons are important not only
in heavy-ion collision where QGP is created, but also in the
asymmetric small systems, such as d+Au collisions where
CNM effects are investigated.

At STAR, D0 mesons are reconstructed in d+Au colli-
sions at =s 200 GeVNN . Thanks to the HFT, topological
reconstruction of hadronic decay channel is used. Furthermore,

extraction of the D0 signal has been optimized using the
TMVA Boosted Decision Trees method. This machine learn-
ing method significantly helps to improve the D0 meson
measurement.

Evaluations of the efficiency corrections on D0 raw yields
and systematic uncertainties are under way, to determine the
invariant yield and nuclear modification factor of D0 mesons
in d+Au collisions.
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Charm quarks possess a large mass and thus they are expected to be primarily produced during
the initial stages of heavy-ion collisions. Hot and dense nuclear matter, usually referred to as the
Quark-Gluon Plasma (QGP), can also be created in these collisions. Therefore, properties of the
QGP can be studied via the energy loss and anisotropy of charm quarks, which is closely related
to the nature of interactions between charm quarks and the medium.
In these proceedings, we will report the most recent measurements of D0, D± and Ds production
in Au+Au collisions at

√
sNN = 200 GeV. These open charm mesons are reconstructed via their

hadronic decay channels, where the daughter particles are tracked and identified with excellent
precision by the STAR experiment at RHIC. At high transverse momentum region and in central
Au+Au collisions, D meson production is strongly suppressed compared to that in p+p collisions,
indicating substantial energy loss of charm quarks in the medium. In addition, measurements of
elliptic and triangular anisotropies of D meson azimuthal distributions indicate that charm quarks
have gained significant flow in the QGP. These results are compared to those of light hadrons as
well as theoretical calculations. Moreover, charm quarks participate in coalescence hadronization
in the QGP as suggested by the enhanced Ds to D0 yield ratio in Au+Au collisions compared to
that in p+p collisions.
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1. Introduction

Quark-Gluon Plasma (QGP) is a state of hot and dense nuclear matter composed of deconfined
quarks and gluons. This matter is expected to be present in the early universe and can be currently
created in relativistic heavy-ion collisions at both the Relativistic Heavy Ion Collider (RHIC) and
the Large Hadron Collider (LHC).

Charm quarks are created mainly in the initial stages of heavy-ion collisions and subsequently
travel through the hot, dense matter. Thus they are excellent probes of the properties of the QGP.
Measurements of charm meson production in heavy-ion collisions provide a great opportunity to
study the charm quark energy loss in the hot medium, which is directly related to the transport
coefficients of the QGP. Furthermore, collective behavior of charm quarks in the QGP is sensitive
to the degree of thermalization in the medium, and can be used to constrain the heavy-flavour quark
spatial diffusion coefficient.

2. Experimental setup

Results on open charm meson production in Au+Au collisions at
√

sNN = 200 GeV, with com-
parison to that in p+p collisions at

√
s = 200 GeV, are presented in these proceedings. These were

measured by the Solenoidal Tracker at RHIC (STAR) experiment designed to study the strongly
interacting matter created in heavy-ion collisions. Charged particles emerging from these collisions
are tracked and identified with great precision at STAR. Main sub-systems used for particle recon-
struction and identification are the Time Projection Chamber [1], the Time-Of-Flight detector [2]
and the Heavy Flavor Tracker (HFT) [3]. In particular, HFT, the high-precision silicon vertex de-
tector installed at the center of STAR for data taking in years 2014-2016, was of pivotal importance
for the analyses presented in these proceedings. It greatly improves the track pointing resolution
and enables the topological reconstruction of the secondary vertices of open charm meson decays
through hadronic channels.

3. Energy loss of open charm mesons in Au+Au collisions

A mass and color charge ordering of the parton energy loss in the hot medium is predicted,
i.e. heavy-flavour quarks are expected to lose less energy than light-flavour quarks and gluons.
Such energy losses can be quantitatively studied by using the nuclear modification factor RAA,
defined as the ratio between the invariant particle yields measured in Au+Au and p+p collisions
(where no QGP is expected to be created), scaled by the average number of binary collisions in the
investigated centrality interval.

The nuclear modification factors of open charm mesons in the 0-10% most central Au+Au
collisions are shown in figure 1 [4], and compared to theoretical predictions. The RAA of D0 and
D± are in agreement with each other and can be qualitatively described by the displayed theoretical
predictions, which include strong interactions of the charm quark with the medium. As can be seen,
D0 and D± are strongly suppressed at high transverse momenta (pT) and this suppression decreases
towards lower pT.
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Figure 1: The D0 and D± RAA in the 0-10% most central Au+Au collisions at
√

sNN = 200 GeV compared
to theoretical calculations. Data from 2010/2011 and theoretical predictions are taken from Ref. [4].

4. Elliptic and triangular anisotropies of open charm mesons

In order to study the collective behavior of partons in the QGP, elliptic (v2) and triangular (v3)
anisotropies of hadrons are measured. These are the second and the third coefficients of the Fourier
decomposition of the azimuthal distribution of the particle yield with respect to the event plane.
They are sensitive to the hydrodynamic properties of the hot medium.

In figure 2, D0 meson v2 (left) and v3 (right) in Au+Au collisions are shown as a function of pT,
and compared to those of light hadrons. Both of them are non-zero, indicating that charm quarks
have gained significant flow in the QGP via strong interactions with the medium. Additionally, v2

shows a mass ordering for pT < 2 GeV/c and is consistent between open charm mesons and light
mesons for pT > 2 GeV/c.

Figure 2: The elliptic anisotropy v2 in the 10-40% central Au+Au collisions at
√

sNN = 200 GeV [5] (left)
and triangular anisotropy v3 in the 0-80% central Au+Au collisions at

√
sNN = 200 GeV (right) as a function

of pT for D0 compared to those of light hadrons.

5. Strangeness enhancement for charm mesons

Due to their earlier freeze-out, strange-charm mesons (Ds) are more sensitive to the proper-
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ties of the QGP than non-strange charm mesons (D0). Enhancement of the Ds to D0 yield ratio in
Au+Au collisions compared to that in p+p collisions is expected if the quark coalescence mecha-
nism plays an important role in the charm quark hadronization.

Figure 3 shows the yield ratios of Ds to D0 in 0-10% and 10-40% central Au+Au collisions as a
function of pT, compared to the world-data average of the charm quark fragmentation ratio (0.132)
in elementary collisions [6] and model predictions. Results in the two centrality intervals are com-
parable within uncertainties. The PYTHIA prediction and the fragmentation ratio in elementary
collisions are significantly lower than the Au+Au results in both centrality intervals. The Statistical
Hadronization Model (SHM) [7] is consistent with data, predicting an enhanced yield ratio of about
0.338. The measurement in the 10-40% centrality interval for pT < 4 GeV/c is underestimated by
the TAMU model calculation [8], which includes the coalescence mechanism.
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M. Lisovyi, et al. EPJ C 76 (2016) 397  
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Figure 3: The yield ratios of Ds to D0 in the 0-10% and 10-40% most central Au+Au collisions at√
sNN = 200 GeV as a function of pT, compared to fragmentation baseline [6], PYTHIA, Statistical

Hadronization Model (SHM) [7] and TAMU [8] predictions.

6. Summary

Open charm mesons are reconstructed via their hadronic decay channels thanks to the ex-
cellent track pointing resolution provided by the HFT at the STAR experiment. Results on the
nuclear modification factor in 0-10% central Au+Au collisions show strong suppression of D me-
son production at high pT compared to that in p+p collisions, indicating substantial energy loss
due to strong parton-medium interactions. Comparison of v2 and v3 between D0 and light hadrons
suggests that charm quarks have gained significant flow when traversing the medium. The enhance-
ment of the Ds to D0 yield ratio implies that charm quarks participate in coalescence hadronization
in the QGP.
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MOTIVATION

• Heavy-flavor quarks are produced in hard scatterings at the early stage of nuclear collisions, therefore

they experience the entire evolution of the system including the quark-gluon plasma (QGP) phase.

• Open charm mesons at RHIC exhibit strong suppression at high pT in the 0–10% most central Au+Au

collisions, indicating substantial energy loss of charm quarks in the medium.

• The collective behavior of charm quarks reflects the degree of thermalization of charm quarks in the

medium and carries information about the bulk properties of the QGP.

• For quantitative studies of the QGP properties (e.g. charm transport coefficients), understanding of the

cold nuclear matter effects, accessible via proton-nucleus or deuteron-nucleus collisions, is required.

D0 RAA in Au+Au collisions at sNN = 200 GeV [1]

Elliptic anisotropy v2 for D0 mesons in Au+Au
collisions at sNN = 200 GeV, compared to 

theoretical calculations [2]
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ABSTRACT

Owing to their large mass, charm quarks are predominantly produced through initial hard scatterings in heavy-ion collisions. Therefore, they can serve as penetrating probes to study the intrinsic properties of the hot

medium created in heavy-ion collisions. However, Cold Nuclear Matter (CNM) effects can also affect the charm quark production in nuclear collisions with respect to p+p collisions. These effects can be measured in

small systems such as d+Au collisions. In this poster, we report on the first measurement of D0 production in d+Au collisions at sNN = 200 GeV by the STAR experiment taking advantage of its high-precision Heavy

Flavor Tracker detector. D0 (D0) mesons were topologically reconstructed from their hadronic decay channel D0 (D0) → K–π+ (K+π–). In order to further improve the signal significance, a supervised machine learning

algorithm (Boosted Decision Trees) was used.
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CONCLUSIONS AND OUTLOOK

• D0 mesons are reconstructed via their hadronic decay channels in d+Au collisions thanks to excellent
precision of the Heavy Flavor Tracker at the STAR experiment.

• Extraction of D0 signal from d+Au data has been optimized using the TMVA Boosted Decision Trees
method in different intervals of pT bins.

• Evaluations of the efficiency corrections on D0 raw yields and systematic uncertainties are under way, to
determine the invariant yield and nuclear modification factor RdAu in d+Au collisions.

STAR DETECTOR

• STAR has excellent tracking and charged particles identification at mid-rapidity (|η| < 1) with full
azimuthal coverage.

• Most of the subsystems are immersed in a 0.5 T solenoidal magnetic field.

Time Projection Chamber (TPC):
• main tracking detector, momentum

determination, particle identification via
ionization energy loss (dE/dx).

Time Of Flight (TOF):
• particle identification via velocity (β).

Heavy Flavor Tracker (HFT):
• inner tracking system composed of

three silicon detectors – the PIXEL made
of two layers of Monolithic Active Pixel
Sensors, Intermediate Silicon Tracker
(IST) and Silicon Strip Detector (SSD),

• excellent DCAxy and DCAz resolution:
30 µm for kaons at pT = 1.5 GeV/c,

• installed for data taking in years
2014–2016.
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MACHINE LEARNING ALGORITHM TRAINING

• The TMVA - Boosted Decision Trees (BDT) method was used.
• Classifier is a binary structured decision tree.

Signal sample for training:

• D0 decay is simulated using PYTHIA.

• Momenta and DCA of daughter particles are
smeared in accordance to the detector response.

Classifier output distributions

• Both signal and background input pairs are
divided to training and test samples of equal
size.

• The trained BDT is applied on both samples.

• Overtraining check: if distributions obtained
from training and test samples are consistent,
BDT is not overtrained.

Classifier cut efficiencies

• In order to find the cut with the maximum signal
significance, estimates of number of signal (NS) and
background (NB) before BDT application are needed.

• NS is estimated using D0 invariant yield measured in
p+p collisions and the detector reconstruction
efficiency.

• NB is evaluated from the number of wrong(like)-sign

pairs in the data.

Background sample for training:

• wrong(like)-sign pairs at the D0 mass
region taken directly from data.

2 < pT < 3 GeV/c

Track selection:

• At least 15 space points in the TPC for track reconstruction

• Track pseudorapidity |η|< 1

• Daughter pT > 0.15 GeV/c

• Requirement of hits in both PIXEL layers and at least one of the IST or SSD layer

Particle identification:

• TPC dE/dx: |nσπ|< 3, |nσK|< 2

• TOF used only for tracks which have valid TOF
information: |1/βtheo. – 1/βmeas.| < 0.03

Topological cuts for D0 reconstruction:

• Used topological properties of D0 decays are:

1. decay length
2. daughter DCAK,π to primary vertex (PV)
3. DCA12 between daughter kaon and pion
4. reconstructed D0 candidate DCAD0 to primary vertex
5. pointing angle θ between reconstructed D0 momentum and decay length vector

• Signal and background separation is optimized with the Toolkit for Multivariate Data Analysis (TMVA) 
package [3].

ANALYSIS METHOD

• About 350 million d+Au events at sNN = 200 GeV recorded in 2016 are used for this analysis.

• D0 → K+π–, D0 → K–π+ decay channels with BR = (3.95 ± 0.03) %.

Event selection:

• Pile-up rejection through requirement of correlation of primary vertex reconstructed using TPC and
Vertex Position Detector (VPD) |Vz,VPD – Vz,TPC|< 6 cm

• Vertex position in beam direction|Vz|< 6 cm → HFT coverage

2 < pT < 3 GeV/c

Scan of cut on BDT response on data

• Intervals of pair pT used for analysis:

• 1–2, 2–3, 3–5 GeV/c.

• BDT is trained separately in these intervals.

• Lines shows the cuts with maximum significances
calculated using classifier cut efficiencies and
estimates of NS and NB.

Statistical error projection of RdAu

• Green box: uncertainty in determining Nbin in 
d+Au collisions.

• Grey box: global p+p uncertainty.

BDT APPLICATION ON DATA

• BDT is applied on both correct(unlike)-sign pairs and wrong(like)-sign pairs from the data.

• Distribution of invariant mass of pairs that fulfill the cut on BDT response is used for significance
calculation.

• Background from wrong(like)-sign combinations of daughter particles (K+ π+, K- π–) is subtracted from
the correct(unlike)-sign combinations.

In part supported by



Motivation

• A mass ordering of the parton energy loss in the hot medium is predicted, i.e. heavy-flavor
quarks are expected to lose less energy than light-flavor quarks.

• The nuclear modification factor RAA of open charm mesons exhibits strong suppression
at high pT in Au+Au collisions, indicating substantial energy loss of charm quarks in the
medium.

• The collective behavior of charm quarks reflects the degree of thermalization of charm
quarks in the medium, and is related to the bulk properties of the QGP.

• For quantitative studies of the QGP properties (e.g. charm transport coefficients),
understanding of the cold nuclear matter (CNM) effects, accessed via proton-nucleus or
deuteron-nucleus collisions, is required.

The D0 RAA in Au+Au collisions at sNN = 200 GeV

The elliptic anisotropy v2 for D0 mesons in Au+Au
collisions at sNN = 200 GeV, compared to theoretical

vvvvvvvvvvvvvvvvvvvvcalculations [1]
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Abstract

Charm quarks possess large masses, and thus can serve as penetrating probes to study the intrinsic properties of the hot medium created in heavy-ion collisions. However, Cold Nuclear Matter (CNM)
effects, such as the change in the parton distribution function between a free nucleon and a nucleus, also affect the charm quark production in nuclear collisions with respect to p+p collisions. These
effects can be measured in small systems such as p+A and d+A collisions, where only the CNM effects are present. Furthermore, a sizable azimuthal anisotropy (v2) has been observed in both nucleus-
nucleus collisions and small-system collisions of high multiplicities. To better understand the origin of the flow-like signal in small-system collisions, it is important to study charm quark azimuthal
anisotropy in these systems.

In this poster, we report on the first measurements of D0 production with the Heavy Flavor Tracker in d+Au collisions at sNN = 200 GeV.
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Conclusions and Outlook

• D0 mesons are reconstructed via their hadronic decay channels in d+Au collisions with excellent
precision thanks to the Heavy Flavor Tracker at the STAR experiment.

• Evaluations of the efficiency correction on D0 raw yield and systematic uncertainties are under
way, to determine the nuclear modification factor RdAu and the elliptic anisotropy v2 in d+Au
collisions.

STAR Detector

• STAR has excellent tracking and charged particles identification at mid-rapidity (|η| < 1) with full
azimuthal coverage.

• Most of the subsystems are immersed in a 0.5 T solenoidal magnetic field.

Time Projection Chamber (TPC):
• main tracking device, momentum

determination, particle identification
via energy loss (dE/dx)

Time Of Flight (TOF):
• particle identification via velocity (β)

Heavy Flavor Tracker (HFT):
• inner tracking system composed of

three silicon detectors – the PIXEL
made of two layers of Monolithic
Active Pixel Sensors, Intermediate
Silicon Tracker (IST) and Silicon Strip
Detector (SSD)

• excellent DCAxy and DCAz resolution:
30 µm at pT = 1.5 GeV/c

• installed for data taking in years
2014-2016
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Analysis Method

• About 350 million d+Au events at sNN = 200 GeV recorded in 2016 are used for this analysis.

• Hadronic decay channels are used for D0 reconstruction (D0 → K+π–, D0 → K–π+), whose
branching ratio is (3.89 ± 0.04) %.

• Event selection:
• Vertex position in beam direction|Vz|< 6 cm
• Correlation of primary vertices reconstructed using TPC and 

VPD |Vz,VPD – Vz,TPC|< 3 cm

• Track selection:
• Hits in both PIXEL layers and at least one of the IST or SSD layer
• At least 15 space points in the TPC for track reconstruction
• Track pseudorapidity |η|< 1

• Particle identification:
• Daughter pT > 0.15 GeV/c
• TPC: |nσπ|< 3, |nσK|< 2
• TOF: matching for pions, |1/βtheo. – 1/βmeas.| < 0.03 for kaons

• Topological cuts for D0 reconstruction:
• Optimized separately for different pT intervals using Toolkit for

Multivariate Data Analysis package [2].
• Used topological properties of D0 decays are:

1. decay length
2. daughter DCAK,π to primary vertex (PV)
3. DCA12 between daughter particles
4. pointing angle θ between reconstructed D0 momentum

and decay length vector
5. reconstructed D0 candidate DCAv0ToPV to primary vertex

Tuning Topological Cuts 

• The TMVA - Rectangular Cut optimization was used.
• This mode randomly samples different cut combinations and selects the one with the

largest background rejection for a given signal efficiency.

• Cuts with the greatest significance S/ S + B are used for raw yield extraction.

D0 Raw Yields

• Background is estimated via wrong (like) sign
combinations of daughter particles (K–π –, K+π+)
and is subtracted from the correct (unlike) sign
combinations.

• Invariant mass distribution of unlike-sign pairs
after background subtraction is fitted by the
combination of a Gaussian function for signal
and a linear function for the residual
background.

• Yield is extracted using the bin-counting
method in the ±3 σ region around the mean of
the fitted Gaussian function with residual
background subtracted.

• Intervals of pair pT used for analysis:

• 1–2, 2–3, 3–5 GeV/c

• Significance larger than 5 is achieved in all pT

bins.

• Signal sample for training:
• D0 decay is simulated using PYTHIA
• Momenta and DCA of daughter

particles are smeared in accordance
to the detector response.

• Background sample for training is
taken directly from data:
• wrong (like) sign pairs at the D0 mass

region,
• correct (unlike) sign pairs outside of

the D0 mass region.
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