
1

Online Camera-LiDAR Calibration Monitoring and
Rotational Drift Tracking

Jaroslav Moravec and Radim Šára

1941-0468 ©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/TRO.2023.3347130

Abstract—The relative poses of visual perception sensors
distributed over a vehicle’s body may vary due to dynamic
forces, thermal dilations, or minor accidents. This paper pro-
poses two methods, OCAMO and LTO, that monitor and track
the LiDAR-Camera extrinsic calibration parameters online.
Calibration monitoring provides a certificate for reference-
calibration parameters validity. Tracking follows the calibration
parameters drift in time. OCAMO is based on an adaptive
online stochastic optimization with a memory of past evolution.
LTO uses a fixed-grid search for the optimal parameters per
frame and without memory. Both methods use low-level point-
like features, a robust kernel-based loss function, and work
with a small memory footprint and computational overhead.
Both include a preselection of informative data that limits their
divergence.

The statistical accuracy of both calibration monitoring meth-
ods is over 98 %, whereas OCAMO monitoring can detect
small decalibrations better, and LTO monitoring reacts faster
on abrupt decalibrations. The tracking variants of both methods
follow random calibration drift with an accuracy of about 0.03◦

in the yaw angle.

Index Terms—Computer Vision for Transportation, LiDAR-
Camera Systems, Calibration and Identification, Sensor Fusion

I. INTRODUCTION

Like the human driver, an autonomous vehicle gathers
information about the scene to interpret the current situation
and correctly plan subsequent actions. For this purpose, it is
equipped with several types of sensors [2]. Most researchers
use a combination of LiDARs and cameras [3]. The sensing
abilities of cameras and LiDARs complement each other,
which allows for a more robust perception [3].

Supported by the OP VVV MEYS project ‘Research Center for
Informatics’ [Grant CZ.02.1.01/0.0/0.0/16019/0000765], by the Czech
Technical University in Prague [Grant SGS22/111/OHK3/2T/13] and in
part by the Technology Agency of the Czech Republic under the National
Competence Centres II Programme [Project #TN02000054 ‘Božek Vehicle
Engineering NCC-II’ (BOVENAC)]. (Corresponding author: Jaroslav
Moravec.)

The authors are with the Department of Cybernetics, Faculty of Electrical
Engineering, Czech Technical University in Prague, Czech Republic
(e-mail: moravj34@fel.cvut.cz; sara@fel.cvut.cz).

Published as: J. Moravec and R. Šára, “Online Camera–LiDAR Calibration
Monitoring and Rotational Drift Tracking,” in IEEE Transactions on
Robotics, vol. 40, pp. 1527–1545, 2024, DOI: 10.1109/TRO.2023.3347130.
Available [online]: https://ieeexplore.ieee.org/document/10374278.

Fig. 1: Calibration parameter drift tracking between a camera
and a LiDAR as a pre-requisite for calibration monitoring.
The tracking result of a simulated calibration drift is shown
on data from [1] after 1500 data frames. The tracker opti-
mizes the distance of the red dots from the green curves, see
the legend.

A successful sensor fusion in such multi-sensor setups
requires accurately calibrating their intrinsic and extrinsic
parameters. However, the extrinsic parameters (the relative
translation and rotation between the sensors) are not tem-
porally stable in a distributed sensor system due to small
dynamic deformations of the vehicle’s frame or body [4] and
due to thermal dilations [5]. Depending on the camera type,
the intrinsic calibration parameters may also vary in a non-
negligible way in time and with temperature [6], [7]. We call
the time-varying calibration parameters the calibration drift;
as first conceptualized in [8].

The standard calibration procedure of such a sensor system
is offline, performed once, in a batch optimization manner,
before deploying the sensor system. Offline calibration can
be performed accurately in controlled spaces using optimally
designed arrangements of suitable reference targets [9] or
from infrastructure using a targetless method [3].

In contrast, online calibration tracks the dynamically
changing calibration parameters in real time during the sys-
tem’s normal function in the field [8]. However, we argue that
an online update of the calibration may result in instability
or an ultimate decalibration1 of the sensor system under a
temporary loss of the calibrating information, for instance,
when the geometric structure of the scene degenerates or the
sensors get temporarily blinded. Therefore, we first consider

1 Decalibration is the process of altering calibration parameters due to
physical damage, thermal dilation, synthetic change, etc. Calibration is a
procedure for finding the correct calibration parameters.

https://ieeexplore.ieee.org/document/10374278

2

a weaker variant: calibration monitoring. The monitor does
not update the calibration; it only reports the deviation of the
calibration parameters from a reference.

The monitor may (or may not) track the calibration param-
eters in time. If it does, it performs an online calibration only
internally. We call such internal mechanism calibration track-
ing, see Figure 1. The design of the tracking algorithm should
be optimized for the sequential character of data acquisition
and the dynamic character of the tracking task, emphasising
a fast response time. Therefore, batch optimization with its
long latency should be avoided. Instead, we propose an online
optimization method for the task.

The tracker may still diverge due to the lack of cali-
brating information in the current data frame. Therefore,
we introduce the mechanism of frame preselection, which
automatically decides if the input data frame is suitable for
stable calibration monitoring/tracking.

In summary, we distinguish three intertwined mechanisms:
(1) incremental calibration tracking, which follows the evo-
lution of calibration parameters, (2) calibration-frame pre-
selection, which limits the calibration tracker divergence,
and (3) calibration monitoring, which provides a validity
certificate for the reference calibration.

We consider two kinds of dynamic decalibrations: (a) an
abrupt decalibration event, and (b) slow calibration drift, and
introduce several methods, based on local low-level features
that are (weakly) correlated across the modalities. We pro-
pose an information-theoretic objective function based on
kernel correlation and an online gradient-descent algorithm
with adaptive learning for calibration parameter tracking. The
methods discussed in this paper have small computational
overhead and small memory footprint.

The focus is on a single multi-modal LiDAR–camera pair.
An extension to multi-LiDAR multi-camera systems is trivial.

II. RELATED WORK

We assume that the intrinsic calibration parameters of the
camera [10] and the LiDAR [11] are known, and we focus
only on the extrinsic parameters for LiDAR-camera systems.

Usually, extrinsic calibration methods rely on predefined
calibration targets with known dimensions and patterns [12]–
[14]. Correspondences are obtained by acquiring several
frames of those targets in both modalities. These methods
optimize reprojection and/or point-to-plane registration er-
rors, possibly using constraints on the transformation. They
achieve a good precision of calibration parameters, although
they are not very versatile due to a long setup time. Hence, to
avoid these limitations, there has recently been an interest in
automatic, targetless approaches [3]. We review them here as
they describe image and LiDAR features and the optimization
of objective functions suitable for the calibration tracking and
monitoring introduced above.

As discussed in [3] and elsewhere, targetless methods can
be broadly classified into the following categories:

Information Theory-Based: These methods maximize a
similarity measure between image features and the projected
point cloud. The most straightforward methods employ Li-
DAR intensity (the return strength of a laser beam) and
image grayscale intensity. In [15], they maximized mutual
information in terms of Shannon entropy. The kernel density
estimator is used for the marginal and joint probability
densities. In our experience, reliable LiDAR intensity features
are typically too sparse in traffic scenes to be used alone in
an online calibration mechanism, and a combination of 3D
point and its intensity is needed.

Besides the LiDAR intensity, one can also extract semi-
local features from LiDAR point clouds, such as surface
normals. In [16], the normals are estimated using the point
difference between consecutive points in the scanline and its
angle relative to the x–z plane. Instead of Shannon entropy,
they used normalized mutual information, which lowers the
too-strong relative influence of data with a smaller overlap
in the field of view (FoV).

One can also maximize the alignment between the gradient
orientation and magnitude of LiDAR points and image pixels.
Taylor et al. [17] extracted image gradients using the Sobel
operator [18]. Obtaining the point cloud gradients from the
sparse LiDAR data required a projection onto a camera-
centred sphere. The mean gradient orientation and magnitude
were estimated from the eight neighbors there. Although this
yields good calibration results, it has an extra computational
overhead since the sphere needs to be re-centred in every
iteration of the procedure.

High-level features, such as object semantic labels, can
also be used for automatic calibration purposes [19], [20]. In
[19], the authors optimized the mutual information between
the 3D point semantic label and its 2D-projection semantic
label. This method highly depends on the quality of semantic
labels. Obtaining them is quite time-consuming to be used in
an online calibration procedure. A combination of segmen-
tation and structure-from-motion (SfM) is proposed in [20].

Motion-Based: These methods do not look for direct sim-
ilarities between modalities but rather compute the odometry
from each sensor individually and then estimate the relative
extrinsic calibration by solving the hand-eye calibration (HE)
problem, as in [21]. They used the iterative closest point
(ICP) algorithm to estimate the trajectory in LiDAR and a
standard SfM procedure for the cameras. The rotation accu-
racy was good, but the translation accuracy was low since
the observability of rotational decalibration in automotive
traffic scenes is better than that of translational decalibration,
which depends on the scene distance from the sensors. This
approach can calibrate sensors without any overlap in their
field of view. However, the trajectories required for the HE
calibration have to exhaust all six degrees of freedom. It may
be challenging (especially for a car) to perform complex-
enough movements. These properties make the motion-based
methods less suitable for calibration monitoring.

3

End-to-End Learning-Based: With the advent of neural
networks, a new group of methods, which employ end-to-end
learning of extrinsic calibration parameters, arises [22]–[24].
These methods are automatic and targetless, but rely heavily
on the training data. They also require high-performance
hardware for training and inference to achieve real-time
performance. These requirements might make their use in the
automotive domain problematic, as those processing units are
usually allocated for segmentation, object detection or optical
flow estimation.

Feature-Based: Last but not least, one can also extract
some significant local features from both modalities and
optimize their alignment based on some metric.

The correspondence-based methods of this class use a
descriptor similarity. One can find features using various
methods (Förstner operator [25], Sobel operator [26] or SIFT
[27]). The descriptors of these features are then matched
using some robust estimator (e.g., RANSAC). These methods
need high-density range finders (e.g., terrestrial laser scan-
ners) to obtain easily detectable features in both modalities.
Hence, they are unsuitable for the automotive domain, where
fast-spinning LiDARs with sparse point clouds are typically
used.

The other sub-class of feature-based methods is not based
on one-to-one correspondences. These methods also align
extracted features between modalities but use ICP-like spatial
geometrical relation rather than descriptor similarity. This
makes these methods highly efficient, as the low-level fea-
tures and the geometrical error are generally easier to work
with.

One of the very first methods that used the relation between
depth discontinuities in LiDAR data and changes of intensity
in the camera was [8]. Their method maximizes the alignment
of extracted features from the LiDAR and the camera and is
efficient enough to be run in real time. They were also the
first to introduce the problem of online calibration monitoring
and tracking. We will use a slight modification of this method
(referred to as LT) as a baseline for comparison, and we will
describe this method in greater detail in Section III-D.

Lines, instead of points, are used in [28]. The method
is based on the alignment between 3D line segments from
the LiDAR point cloud and 2D line segments from the
camera image. The 2D line segments are extracted using
Hough Transform [29] on Canny edges [30]. The 3D line
segments are found by intersections of fitted planes and
detected 3D boundaries of objects. The method is automatic
and not limited to any sensor configuration, but it relies on
the existence of sufficiently many detectable lines.

Recently, a new method, based on the alignment between
image and LiDAR local features, was introduced in [31].
Their model is based on the Gaussian mixture model (GMM),
which is a richer model than the kernel correlation con-
sidered in this paper since the GMM weights explicitly
encode feature strengths (as also implicitly done in [8]).

The optimization procedure is designed for automatic offline
calibration rather than online monitoring or tracking. Since
this offline calibration method can be considered close to the
methods proposed in this paper, we compare the estimated
parameter precision in Section VI-F, and show that we
achieve similar results even though we use a simpler model.

An in-depth analysis of point features in the two modalities
was recently published in [32]. They investigated different
types of natural edges and showed that the usage of depth-
continuous edges helps the accuracy of the calibration. These
edges often occur on plane intersections, so it is harder and
more time-consuming to find them, as a proper plane fitting
needs to be used.

Methods considered in this paper fall into the targetless
feature-based category. We choose features that are present
in all scenes and do not require data segmentation or in-
terpretation, which are processes prone to errors and are
computationally expensive on limited-resource hardware. In
this paper, we propose a method for On-line CAlibration
MOnitoring (OCAMO) of relative LiDAR-camera extrinsic
calibration. Then we propose the LTO method, a blend of
a modification of the LT method from [8] and OCAMO.
Methods considered in this paper are sketched in Figure 2
and explained in Section III.

The main contributions of this paper are: (1) a defini-
tion of calibration tracking as an online learning algorithm,
(2) robust learning loss function based on Gaussian kernel
correlation, (3) adoption of frame preselection concept into
the sensor calibration and demonstration of its effectiveness,
(4) introduction of monitoring and calibration tracking diver-
gences as stability criteria (besides the standard statistical
accuracy and precision), and (5) a thorough experimental
evaluation of the proposed methods based on extensive real
and simulated data.

III. METHODS

A. Problem Formulation, Goals, and Assumptions

Let a reference (initial) calibration parameters obtained,
for example, from a standard factory or lab calibration
procedure, be given. The goal of calibration tracking is
to follow the temporal evolution of calibration parameters
during the data acquisition needed for the normal function
of the vehicle. This will be done by an online maximization
of the alignment of the sensor data using low-level local
features. Since tracking the calibration at the full framerate
is usually unnecessary or temporarily impossible due to
a lack of calibrating information in input data, the frame
preselection mechanism will reduce the divergence of the
tracked parameters due to weak or misleading information.
It works by filtering the incoming data frames based on
a rule learned in a supervised manner. The preselection is
independent of tracking and monitoring; hence it can be used
with any feature-based targetless calibration or calibration

4

Data preprocessing
Section III-B

Frame preselection
(optional)

Section III-G

Filtered LiDAR depths
and saliency map

Section III-D

LT objective function
(14)

LT-based validity
with β distribution (15)

LTβ
monitoring

LTO
monitoring

Grid search
Section III-D

LTO
tracking

LT
tracking

LiDAR corners
and camera edges

Section III-C1

OCAMO loss
(3)

Online stochastic
filter (11)

OCAMO
tracking

OCAMO
validity (13)

OCAMO
monitoring

Fig. 2: The structure of three calibration monitoring and
tracking methods: LT (green path), LTO (red), and OCAMO
(blue). Rectangular boxes are processing blocks; ovals show
outputs. OCAMO and LTO are novel methods proposed in
this paper.

monitoring method. Finally, calibration monitoring will pro-
vide a validity certificate for the reference calibration. It is the
probability that the currently tracked parameters are equal to
the reference parameters, given all the observed (prefiltered)
data so far and an online estimate of the data variance. Again,
a learned rule will be used.

Calibration monitoring requires real-time performance and
high statistical accuracy (low false positive and false negative
rates). Following all the calibration parameters is unnecessary
if the goal is calibration monitoring. In a real-world use
case, the most important part of calibration is the relative
rotation between the sensors. Accurate rotational registration
is essential for multi-modal perception algorithms. We show
(Section VI-A) that decalibrations in some other parameters
will manifest themselves as rotational decalibrations, too.

We consider three calibration tracking and monitoring
methods: (1) An original method referred to as OCAMO,
(2) the reference, state-of-the-art method of Levinson and
Thrun [8] referred to as LT (with minor modifications re-
quired for the monitoring task, that we refer to as LTβ),
(3) and a combination of LT/LTβ and OCAMO, called LTO.

The proposed methods assume that the field of view of
both sensors makes a significant overlap. We also assume
that the LiDAR point clouds are composed of sequentially
acquired scanlines. Our methods require synchronized sen-
sors, and the LiDAR point cloud needs to be compensated for
egomotion and the rolling-shutter effect of the cameras. We
further assume that we know the intrinsic parameters of the
camera and LiDAR and the reference transformation between
sensors monitored by our method in the form of position and
orientation in the vehicle reference frame. We also assume
that data was acquired during the daytime without heavy rain
or other adverse weather conditions.

We first describe data preprocessing common to all the
methods, then the three methods in turn, and finally, the frame
preselection method independent of both OCAMO and LT.
Figure 2 shows a diagram of all three monitoring and tracking
methods for an easier navigation in this section.

B. Data Preprocessing

Image Undistortion: We work with a perspective camera
model with nonlinear distortion using a 3rd-order radial
model with parameters κ1, κ2, κ3 and a 2nd-order tangential
distortion model with parameters p1, p2 [33], [34].

LiDAR Point Cloud Motion Compensation: If the ve-
hicle moves and a rotating LiDAR with a finite framerate
(e.g., 5, 10, 20 Hz) is used, the pose of the vehicle (sensor)
at the start of the frame is different from the ending one [35].
Similarly, if a rolling-shutter camera is used, its first scanline
is exposed earlier than the last scanline [36]. Motion compen-
sation is a standard procedure that corrects the coordinates
of the 3D points in the point cloud to be consistent with the
image [1]. We assume we know the odometric information
of the vehicle carrying the sensors. That motion is measured
in the vehicle reference frame (VRF). Since we know the
reference calibration between the vehicle and each sensor, we
can express the sensor motion in its reference frame (sensor
reference frame, SRF).

To perform the motion correction, we interpolate sensor
rotation and translation independently. Let xi(ti) be i-th 3D
point measured by the LiDAR at time ti, expressed in the
SRF. Let t0, t1 be the interval corresponding to the odometric
server’s framerate. It is assumed that t0 and t1 are close to
the camera and the LiDAR frame acquisition intervals. Let
the sensor translation between time t0 and t1 be t01, which
corresponds to velocity v01 = t01/(t1 − t0). Let the sensor
rotation between t0 and t1 be φ01o, where φ01 is the rotation
angle in radians and o is the unit rotation axis, constituting
the rotational velocity vector ϕ01 = φ01/(t1 − t0)o. Then
the position of point xi motion-compensated to time t is

xi(t) = xi(ti) + (ti − t)v01 +R
(
(ti − t)ϕ01

)
xi(ti) , (1)

in which Rodrigues’ formula [37] is used to map the the
rotational vector (ti − t)ϕ01 to rotation matrix R. When t

5

is the image’s timestamp, we say the point xi is motion-
compensated to the image acquisition time. That would
assume the entire image is acquired at the same time. This is
not the case in rolling-shutter cameras: There, the timestamp
of the point ti and the timestamp of the image scanline l, to
which the point projects, have to be equal. The difference is
small but cannot be neglected because that would result in a
systematic bias in the tracked calibration parameters. Since
the correction depends on where the point projects to the
image, an iterative method [1] is used: Let the initial value
of t correspond to the middle of the image exposure interval.
The point x(t) is projected to the image, the timestamp tl of
the closest scanline is determined, t is updated as t← tl and
xi is re-compensated using (1). Typically only five iterations
are required.

The current image Ij and the current motion-compensated
point cloud Pj constitute a (data-)frame Fj = (Ij , Pj). Then
Fn = {Fj}nj=1 = {(Ij , Pj)}nj=1 will represent a sequence of
n (possibly preselected) frames.

C. The OCAMO Monitoring and Tracking Methods
It is known from the psychology of vision that object

boundaries are often co-located with image edges or texture
boundaries. This observation has already been made in [38].
Therefore, we extract edges as image features and corners
as LiDAR features. The tracking algorithm then maximizes
the alignment of those features by changing the extrinsic
calibration parameters. The alignment is measured as the
entropy of the union of the image edge points and the pro-
jected LiDAR corners, expressed by kernel correlation [39].
Online stochastic optimization minimizing the correlation is
used. This subsection describes the individual steps of the
algorithm.

1) Data Preprocessing: Canny edges [30] are detected in
every image Ij . We use only that part of the image where
there is a (potential) overlap with the LiDAR FoV2. Thus for
an image Ij , we get a so-called edge image Ej ∈ Z2×m,
where m is the total number of edge pixels. Examples are
shown in green in Figure 6, together with the projected
LiDAR corners.

3D LiDAR corners Cj are obtained as follows. Given a
point cloud Pj , we process each horizontal scanline sepa-
rately with 3D points ordered by the azimuth, with collapsed
azimuthal gaps. Let each scanline contain only valid points
uniquely defined by their azimuth φ: p(φ). Each point has
its radial distance d(φ) and reflectance r(φ). We extract
LiDAR corners based on three criteria: (1) a large change
in radial distance, (2) a large change in reflectance, and
(3) wide azimuthal gaps in a scanline. A detailed description
of LiDAR corner extraction is given in Appendix A, and its
parameters are listed in Tab VII in Appendix B, together with
all the other parameters.

2This is approximately known from the design of the system. In this paper,
it is the bottom two-thirds of the image.

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

-8.5

-8

-7.5

-7

-6.5

-6

-5.5
10

-5

Fig. 3: Examples of the OCAMO loss function (3) for
rotational displacements in the roll, pitch, and yaw angles.

2) The OCAMO Calibration Tracking: Extrinsic transla-
tion and rotation are represented as a pair θ = (t,ω), where
t ∈ R3 is the translation vector and ω ∈ R3 is the rotation
vector such that the rotation matrix is R = exp(ω×), in
which ω× is a skew-symmetric 3 × 3 matrix and exp is
the matrix exponential function for which we use Rodrigues’
formula again. See, e.g., [37] for the theory. Let Proj : P3 →
R2 be the image projection function with all the intrinsic
parameters within and let the 3D LiDAR corners Xc ∈ Cj

project to the image as

xc(θ) = Proj (exp (ω×) Xc + t) , (2)

where θ = (t,ω) is the extrinsic calibration and xc(θ) ∈ R2

is the projected point in Cartesian coordinates.
Given the reference parameters θref , calibration tracking

aims to find values of the updated parameters θtrk s.t. the
projected LiDAR corners align with the image edges in
frame Fj . Initially, θtrk = θref . To express a measure of
the alignment, we use kernel correlation [39] between the
discrete set Cp

j of projected corners and the discrete set Ej

of image edge pixels in frame Fj

L(θ | Fj , k, σ) = −
∑

xc ∈Cp
j

∑
xe ∈

kNN(xc, Ej , k)

exp

[
−∥xc(θ)− xe∥2

2σ2

]
,

(3)
where kNN(xc, Ej , k) are the k nearest neighbors of point
xc(θ) in the set of edge pixels and k and σ are the parameters
of the model. The k, typically large, is chosen as a trade-off
between the accuracy of the kernel correlation approximation
and computational efficiency. See Section V-A for parameter
selection and Table VII for the values. An example of the
loss function for rotational displacement is shown in Figure 3
(on a sequence of 200 frames). Note that this is a random
function due to the finiteness of the data sample and the
current content of the scene.

The calibration tracking is then a minimization problem

θ∗ = argmin
θ

EF

[
L(θ | F, k, σ)

]
, (4)

6

where EF [L(·)] is the expectation of L(·) over the set of
all possible frames. We approximate the expectation in (4)
with empirical expectation over the sequence Fn and use
the adaptive stochastic gradient descent (SGD) optimization
algorithm. We chose an on-line algorithm (SGD) because it
has a smaller latency than batch optimization. In the case of
the monitoring problem, time to detection is important.

The update rule of SGD is [40],

θ(j+1) = θ(j) − diag(ν)
∂

∂ θ
L(θ(j) | Fj , k, σ) , (5)

in which ν = (ν1, . . . , ν6) is the learning rate vector forming
a 6×6 diagonal matrix diag(ν), and j is the data frame index.
The learning rate adapts to the local curvature of the manifold
and to the temporal changes of the calibration parameters.
Let L̇i =

∂
∂θi

L(θ | F, k, σ) be the first partial derivative in
parameter i, and similarly, let L̈i be the second derivative.
We use numerical differentiation with a parameter difference
of hθ set uniformly for all3 parameters (Table VII). Let

gi = EF [L̇i], vi = EF [(L̇i)
2], hi = EF [L̈i]. (6)

The per-parameter adaptive learning rate is [40]

νi =
1

hi

g2i
vi

, i = 1, . . . , 6. (7)

The expectations gi, vi, hi are estimated by an adaptive
Robbins-Monro filter

g
(j+1)
i =

m
(j)
i − 1

m
(j)
i

g
(j)
i +

1

m
(j)
i

∂

∂θi
L(θ(j) | Fj , k, σ),

(8)
and similarly for v

(j+1)
i and h

(j+1)
i . Its adaptivity is con-

trolled by the dynamic memory size m
(j)
i per parameter i,

as in [40]:

m
(j+1)
i = 1 +

(
1−

(
g
(j+1)
i

)2
v
(j+1)
i + ε

)
m

(j)
i , (9)

with m
(1)
i = 1 for all i. The constant ε = 10−10 prevents a

stall at the beginning of the memory adaptation process. Its
exact value is not critical.

The current estimates for the learning rate are then gi ≈
g
(j+1)
i , hi ≈ h

(j+1)
i , vi ≈ v

(j+1)
i and (7) can be used in (5).

We now describe our modifications of the SGD method.
If the memory size (9) was following the conditions for

convergence [41], i.e. tending to a large value over time,
the tracking might become slower to respond to calibration
changes, eventually diverging. On the other hand, if the
memory was too small, there could be frequent false alarms
due to short sequences of non-informative frames. Therefore,
we limit the maximum memory size mi to mbnd = 5. This
seems small, but note that a single frame provides hundreds

3Six when the OCAMO tracks all extrinsic parameters or three when
OCAMO tracks rotations only.

to thousands of individual measurements. The mbnd value is
a tradeoff between convergence properties and the ability to
track a nonstationary random process.

The expectations (8) need to aggregate measurements
before the updates (5) can take place. Hence, we introduce
a period of b = 10 frames, during which the estimates θ are
not updated (a burn-in period).

We also need safeguards against a large, irreversible di-
vergence of the tracked parameters, be it false or due to a
(temporary) decalibration. Therefore, we augment the learn-
ing process (5) and the memory adaptation (9) as follows.
Let

δ
(j)
i =

1

h
(j+1)
i

∂

∂ θi
L(θ(j) | Fj , k, σ) .

Consider a clipped update proposal

θ̂
(j+1)
i = θ

(j)
i −

(
g
(j+1)
i

)2
v
(j+1)
i

sign(δ
(j)
i) min

(
|δ(j)i |, θ

upd
i

)
,

(10)
in which we use a vector of update limits θupd. In addition,
the final robust version of the rule (5) also clips the update.
All together,

θ
(j+1)
i =

0 for j ≤ b , (11a)

sign(θ̂
(j+1)
i) θbndi for |θ̂(j+1)

i | > θbndi , (11b)

θ̂
(j+1)
i otherwise, (11c)

in which we have used another limit θbnd in (11b). The three
mechanims in (11) are the burn-in period b in (11a), SGD
robustification in (10) and (11c), and finally, pausing of the
tracking in (11b). These techniques are combined to stabilize
the calibration tracking process.

The robustification using θupd in (10) is an established
approach to robust stochastic estimation [42]. A similar
approach (gradient clipping) is also used in training neural
networks, see, e.g. [43]. The final resort is θbnd. Setting it
reasonably high does not affect the decalibration detection,
and, on the other hand, it helps the speed of recalibration.
We use θbnd = 5σd, where σd is the vector of standard
deviations of the monitoring model, see Section III-C3 for
its definition. See Section V-A for the parameter selec-
tion/learning and Table VII for the values.

The complete algorithm is summarized as the blue path
ending in the ‘OCAMO tracking’ node of the flow diagram
in Fig. 2.

3) OCAMO Monitoring: We represent the reference ex-
trinsic calibration with parameters θref . Given θref and the
data-frame sequence Fn = {Fj}nj=1 up to frame n, we want
to decide in each frame whether the reference parameters are
valid. The validity index V is the probability that the tracked
parameters θtrk def

= θ(j+1) at each frame Fj are equal to the
reference parameters θref .

7

Fig. 4: Examples of saliency map D (green underlying
bitmap) and saliency step S (red crosses) used in the LT
method. Color saturation corresponds to saliency value.

Let θrefi be a single reference parameter and θtrki be the
corresponding tracked value. We use a normal distribution
with variance σ2

di
for the statistical difference between θrefi

and θtrki , assuming that the random variable is θtrki . Let Tθi

be a threshold corresponding to θrefi . The calibration validity
index for reference parameter θrefi is then

Vi(θ
ref
i) = P (θrefi − Tθi ≤ θtrki ≤ θrefi + Tθi | σ2

di
) , (12)

in which P (·) is derived from the CDF of the univariate
normal distribution with variance σ2

di
[44]. This means that

if the true decalibration is smaller than about σdi
for all i,

the validity index will not indicate the decalibration.
The total OCAMO validity index for all reference param-

eters θref is then the product

VOC(θ
ref) =

6∏
i=1

Vi(θ
ref
i) , VOC ∈ [0, 1] . (13)

The selection of the σ2
di

and Tθi hyperparameters is described
in Section V-A.

The complete algorithm is summarized as the blue path
ending in the ‘OCAMO monitoring’ node of the flow diagram
in Fig. 2.

D. The LTβ Monitoring and Tracking Methods

Levinson and Thrun were the first ones to introduce the
concept of calibration monitoring in autonomous vehicles and
published a method to solve the problem [8]. We denote the
original method as LT and the minor modification described
below as LTβ. The original LT method also uses visual
features extracted from LiDAR and camera and optimizes an
objective function of their alignment. Since the LT approach
is closest to our work, we will briefly describe it here and
compare OCAMO to it in Section VI. We have reproduced
the LT method from scratch.

In the image, the edge saliency map D(x) is computed
for every image pixel x [8]. The saliency is maximal at the
image edges. In the LiDAR point cloud, step saliency S(X)
is computed in every 3D point X based on the local change
in radial distance. High-saliency points correspond to jumps

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
10

4

Fig. 5: Examples of the LT objective function (14) for
rotational displacements in the roll, pitch, and yaw angles.

in the radial distance. Low-saliency points are excluded. Ex-
amples of edge saliency map D(x) and LiDAR step saliency
S(X) are shown in Figure 4. Let Fn,w = {Fj}nj=n−w be the
set of the last w frames, Xj be the set of salient LiDAR 3D
points in frame Fj , Proj(·) be the image projection function,
and θ = (t,ω) be the extrinsic calibration parameters as
in (2). The objective function for the LT method is joint
saliency (larger is better)

J(θ) =
∑

j∈Fn,w

∑
X∈Xj

S(X)D
(
Proj (exp (ω×) X+ t)

)
, (14)

An example of J(θ) is shown in Figure 5 (on the same data
as in Figure 3). Notice that the deviation of the maxima from
the reference (zero) is larger than in Figure 3. This means
that the LT objective function (14) is more sensitive to noise
than the OCAMO loss function (3).

Instead of maximizing J(θ), the LT monitoring method
makes a statistical test if J(·) attains a local maximum in
the given parameters θ. This is done by computing the 36−
1 = 728 directional perturbations J(θ + el), l = 1, . . . , 728,
and computing the proportion FC of their values lower than
J(θ). Higher FC is an indication that the calibration θ is
valid. Normal distributions pc(FC) and pd(FC) are learned
for calibrated and decalibrated sensor pairs, respectively. The
calibration validity index VLT is then the posterior probability
of the FC value assuming equal priors

VLT(θ) =
pc
(
FC(θ)

)
pc
(
FC(θ)

)
+ pd

(
FC(θ)

) , VLT(θ) ∈ [0, 1] .

(15)
Our modification of the LT method uses beta distribution

instead of normal distribution for pc and pd. We noticed that
it captures the distribution of FC values better, especially
for the pc. This leads to better performance, as discussed
in Section VI-C. We denote this modification as LTβ, with
VLTβ the corresponding validity index. Unlike in OCAMO,
it is important that LTβ tracks all six degrees of freedom
because that results in a more concentrated distribution pc due
to the definition of FC . That leads to a better discrimination
of calibration/decalibration by LT/LTβ.

8

The complete LT method is shown as the green path ending
in the ‘LTβ monitoring’ node in Figure 2.

The LT does not need to track the calibration parameters
to estimate the validity index. To implement a calibration
drift tracker, LT uses a different procedure: A combination of
parameters is found that is better than the current ones w.r.t.
the joint saliency objective function (14) using the directional
perturbations. LT tries to follow these perturbations to track
the parameters. The LT tracker is shown as the green path
ending in the ‘LT tracking’ node in Figure 2.

E. A Comparison of The OCAMO and LT Methods

The OCAMO method differs from the LT method in sev-
eral key respects. First, OCAMO uses reflectance information
in addition to distance jumps in the 3D data. Therefore,
valuable information from strongly reflecting objects (traffic
signs, road markings, etc.) is used. Second, OCAMO uses
azimuthal gaps (called skylines in [3]) in the 3D data that
occur at object boundaries against distant backgrounds. In
some scenes, it is the only reliable calibration monitoring
information available. We found this as an important factor
that stabilizes rotation parameter monitoring. Third, in place
of the image edge saliency of the LT method, the OCAMO
uses kernel correlation which provides similar information
but can discern finer calibration changes due to aggregating
support from a greater neighborhood. Kernel correlation is
also implicitly robust to outliers in the statistical sense, as
discussed in [39]. Lastly, the definition of the calibration
validity index differs: We use the stochastic gradient descent
method to track the parameters and then perform a statistical
test of equivalence with the reference calibration. On the
other hand, the LT method directly computes the statistical
validity index. At first sight, it is not obvious which validity
index is better. This question led us to introduce the LTO
method below, whose performance is compared to OCAMO
in Section VI.

F. The LTO method

In order to compare the monitoring efficiency of the
OCAMO loss function (3) with respect to the LT objective
function (14), we replaced the OCAMO validity index (13)
with the LT-based validity index (15). Again, we use the
beta distribution instead of the normal distribution in pc and
pd. We call this combination the LTO monitoring method.
The tracking variant of LTO is identical to the LT method
in Section III-D, still with the OCAMO loss function (3), as
illustrated in Figure 2.

G. Frame Preselection

An important question is what kind of data frames provide
information suitable for calibration monitoring. Some scenes
do not provide this information (dark, saturated, degenerate,

(a) Many near objects. (b) Near objects and markings.

(c) Saturated sensor. (d) Ambiguous information.

(e) Altered optical system. (f) Low image quality.

Fig. 6: Frames suitable (a, b) and unsuitable (c–f) for
calibration. LiDAR corners are in red, image edges in green.

etc.). Specifically, any accurate extrinsic calibration or cal-
ibration monitoring method highly depends on near objects
visible in LiDAR point clouds and good lighting conditions
for the camera.

Figure 6 shows typical examples of frames of different
suitability for calibration. Suitable frames in Figures 6a and
6b have many near objects (cars, curbs, poles, tree trunks),
and Figure 6b also has well-detected reflective road markings.
On the other hand, the image in Figure 6c is saturated by
direct sunlight. In Figure 6d, all of the objects are too far, and
the features in the trees are too dense to provide unambiguous
registration information. In Figure 6e, raindrops on the lens
alter the optical path, leading to geometric distortion. In
Figure 6f, the image quality is too low at dusk.

We introduce a preselection mechanism to mitigate the
influence of potentially bad frames. We make it independent
of the monitoring method, although it could be considered
another adaptive filter for the paused tracking discussed in
Section III-C2.

We hypothesize that learning an efficient on-line predictor
of frame suitability for calibration is possible. We follow a
standard procedure of supervised learning of a binary classi-
fier by specifying the feature set, creating an automatically
labelled dataset, and training a classifier using k-fold cross-
validation. The learning will be described in Section V-D.
Here we focus on the feature extraction and the automatic
labelling approach.

1) Features: As discussed above, LiDAR corners cor-
respond to 3D object boundaries and, with the help of

9

(a) Thirty LiDAR semi-intervals. (b) Six image regions.

Fig. 7: Feature extraction regions that are used for frame
preselection.

reflectance, to texture changes. Hence, if there are enough
LiDAR corners, these will correspond to some image edges.
Thus, the LiDAR features suitable for the preselection rule
are based on the number of corners in specific range intervals.
Since the reference calibration is known, we consider only
corners in the camera’s field of view. We use five-meter in-
tervals ranging from 0 to 75 m (the maximum radial distance
for the LiDAR used). This set of intervals was selected to
typically contain whole objects (e.g., cars, trees, etc.) but is
small enough to discretize the entire area well. Figure 7a
shows the resulting 15 intervals split into left/right semi-
intervals that yield a total of 30 features from the LiDAR
modality, each feature being the LiDAR corner count in
the respective interval. We experimented with fine azimuthal
intervals, which did not yield good results.

Image edges tend to include many non-object boundaries
and false negatives. We want to capture two situations:
(1) Too low edge density. For example, this happens in the
case of image saturation, as in Figure 6c. (2) Too high edge
density. This typically happens in trees, shrubs or highly
textured regions, as in Figure 6d.

Our first statistical feature counts the number of edges in
an image region, providing density information. The second
feature is related to high-density image regions. For each
edge pixel, we count edge pixels (out of 20 neighbors) in
its vertical nv and horizontal neighborhoods nh. Then the
quotient

max(nv, nh)

min(nv, nh)

tells us how dense a given edge pixel neighborhood is.
Meaningful edge pixels have a high quotient value. The
average quotient over an image region is our second statistical
feature.

The image is partitioned into six regions, as shown in
Figure 7b. The area around the horizon is mainly in the
top regions, and the top quarter of the image is discarded.
Each region has two feature values, which gives a total of
12 feature values per image.

2) Automatic Labeling: We devised an automatic labelling
method based on the shape of the loss function minimum. If
the loss function L(θ | Fj , k, σ) in (3) attains its minimum

in the reference parameters θref on frame Fj , then this frame
is suitable for calibration (note that no tracking is involved).
We evaluate L(·) for each parameter θi independently, in
the interval of

[
θrefi − T al, θref + T al

]
, using T al = 0.05

and the step of 0.005 rad. Frame Fj is labelled unsuitable
for calibration if the minimum in roll, pitch or yaw angle
differs by more than 0.01 rad. This labelling was also done
independently for the LT objective function by examining the
maximum in the same way.

IV. DATA

A. Real Datasets WAYMOA and WAYMOB

For our experiments on real-world data, we selected the
Waymo open dataset [1] (labelled data, perception part,
published in March 2020) as it is a large dataset (over
200,000 frames) with high data quality. We use data from the
front, front-left, and front-right facing rolling-shutter cameras
and the top mid-range LiDAR. All cameras have a horizontal
field of view of 50.4◦ and a resolution of 1920 × 1280 px.
The LiDAR has a 360◦ horizontal field of view with up to
2650 returned points in each scanline and a 20◦ vertical field
of view with 64 scanlines.

The dataset comes in three parts: train (798 sequences),
test (150 sequences) and validation (200 sequences), while
each sequence contains around 200 frames. As the calibration
procedure on arbitrary scenes may depend on the weather
and lighting conditions, we use only sequences taken during
the day and without rain. Since the weather information is
unreliable4, we labelled it manually. Thus, we removed 253
(102 rainy and 151 nightly) sequences from the WAYMOB
dataset. By merging the resulting test and validation subsets
of the Waymo dataset into one, we created two datasets for
the purpose of this paper:

• WAYMOA: 238 sequences from the validation + test
sub-sets (daylight, no rain),

• WAYMOB: 545 sequences from the train subset (day-
light, no rain).

The WAYMOA dataset will be used for parameter learning
(Section V), and the WAYMOB will be used for experiments
(calibration tracking and monitoring) in Section VI.

B. Real KITTI dataset

KITTI is one of the most well-known datasets in automo-
tive [45], containing annotated subsets of high-quality data.
The car is equipped with four global-shutter cameras and a
single top-mounted LiDAR. Camera resolution is 1241×376
pixels after rectification, with around 65◦ horizontal field of
view. All cameras look forward. The LiDAR is Velodyne
HDL-64E, with 64 scanlines, a 26.9◦ vertical field of view,
and approximately 1500 returned points per scanline. We use
the raw, synchronized and rectified data recorded in a city

4see https://github.com/waymo-research/waymo-open-dataset/issues/210

https://github.com/waymo-research/waymo-open-dataset/issues/210

10

Fig. 8: A frame from the CARLA simulator. LiDAR corners
are shown in red, image edges in green.

on the 26th of September 2011.5 We will use this dataset for
experimental evaluation only.

A recent study on visual stereo odometry [4] reported
a rotational decalibration between stereo cameras at the
beginning and end of the Sequence 01 in the Odometry
Dataset.6 We will confirm the decalibration hypothesis on
the LiDAR-Camera pair in Section VI-D.

C. Synthetic Ground-Truth Dataset SYN

As there is currently no suitable public dataset of verified
real decalibrations on realistic scenes, we created a synthetic
decalibration dataset with simulated-world sensor data using
the CARLA open-source simulator [46] based on the Unreal
Engine. We simulated a 1920×1080 px global shutter camera
with a 60◦ horizontal field of view. The simulated LiDAR has
64 scanlines, a 26.9◦ vertical field of view, and 4500 points
per scanline.

We used a pre-created map TOWN10HD OPT, added
100 autopilot agents, and recorded 155 sequences with 200
frames each, starting from a different spawn point on the
map. One frame from this dataset is shown in Figure 8.

V. PARAMETER LEARNING

A. OCAMO Parameters

The preprocessing parameters used for feature extraction
from both modalities were selected empirically. A list is given
in the upper part of Table VII in Appendix B.

Parameters k and σ of the kernel correlation loss func-
tion (3) significantly impact the convergence and accuracy of
tracked calibration parameters θ. We select them to achieve
an accurate minimum of the loss function in the reference
value θref and a large basin of attraction around it. To
this end, we performed a 2D grid search for (k, σ) ∈
{5, 10, . . . , 95, 100} × {1, 2, . . . , 15}, using one frame from
each sequence in the WAYMOA dataset (i.e. 238 frames in
total). On each of these frames, we computed the loss func-
tion (3) for all three rotation parameters independently in the

5Specifically, we use sequences with at least 150 frames: 5, 9, 11, 13, 14,
18, 51, 56, 57, 59, 84, 91, 93, 95, 96, 104, 106, 117.

6Sequence 42 from 3rd of October 2011 in the raw dataset.

15

20

25

30

35

(a) Percentage of diverging frames.

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

(b) Basin of attraction.

Fig. 9: Performance metrics for learning OCAMO parameters
k and σ.

interval of [−0.05, 0.05] rad with 0.005 steps. We evaluated
two metrics: (1) The percentage of diverging frames with
loss-function minima different from θref ; see Figure 9a for
the result (lower is better). (2) The average width of the basin
of attraction over all rotation parameters computed on frames
that achieved loss function minimum at θref , see Figure 9b
(greater is better). The lowest divergence rate (around 15%)
is achieved for σ ∈ [7, 10] pixels and k ∈ [5, 15]. Increasing
σ leads to a larger basin of attraction. However, narrow,
distinguishable minima are more important for calibration
monitoring. Thus, we selected σ = 9 px and k = 10.

In this work, we will track and monitor rotational param-
eters (see Section VI-A). The learning of parameters related
to translation could be performed similarly.

The three rotational variances σ2
di

of the monitoring model
were learned as follows. We executed the tracking method
using the learned tracking parameters on WaymoA data. The
mean quadratic difference between the tracked parameters
θtrk and the reference θref was computed for each sequence.
The σ2

d vector is then obtained as the average over all the
238 sequences of these mean quadratic differences. Table VII
then shows the square-root values σdi

, i = 1, 2, 3.
The users should define the choice of calibration monitor-

ing thresholds Tθ based on their expected sensitivity of the
monitoring system. This work sets these thresholds based
on the estimated variances as Tθ = 3σd. The parameters’
boundary in (11b) is set larger, as θbnd = 5σd.

The last parameter is the update boundary, which we set
as the horizontal resolution of the LiDAR:

θupdi =
2π

2650
≈ 0.0024 rad , i = 1, 2, 3. (16)

B. LTβ Parameters

Experiments in the original LT paper [8] were conducted
with a very different camera and LiDAR; thus, we need to
choose new preprocessing parameters. To estimate the edge
preprocessing parameters α and γ, we use the same approach
as for k and σ in Section V-A. The resulting metrics are
shown in Figure 10. The γ parameter behaves similarly to the
σ in OCAMO: Its increase widens the basin of attraction, but

11

0.82 0.86 0.9 0.94 0.98

0

0.33

0.5

0.67

1

45

50

55

60

65

70

75

80

85

90

(a) Percentage of diverging frames.

0.82 0.86 0.9 0.94 0.98

0

0.33

0.5

0.67

1
0.035

0.04

0.045

0.05

0.055

0.06

(b) Basin of attraction.

Fig. 10: Performance metrics for learning LTβ parameters α
and γ.

it may also negatively affect the sharpness of the maxima.
The α parameter affects the strength of the neighborhood
edges. As in the original paper, we selected α = 1

3 but
decreased γ to 0.86.

For the LiDAR corner preprocessing, we used the original
exponent γ = 0.5, but we filtered out points with depth
discontinuity smaller than 1 m instead of the original value of
0.3 m. We observed that this rule helped improve the results
of the LTβ method. As in the original paper, the number of
frames w is set to nine. The grid size for the computation of
the 728 perturbations el around the reference was selected
as ±0.01 rad for the rotation parameters and ±0.1m for the
translation parameters. These values correspond to the lower
bound of the synthetic decalibration (see (17) below and Sec-
tion VI-C). In the calibration tracking of rotation parameters,
we used perturbations of ±0.0005 rad, corresponding to the
lowest synthetic rotational drift (see Section VI-F).

Parameters (αc, βc) and (αd, βd) of the beta distributions
pc and pd in (15) were learned on WAYMOA calibrated data
with 9-frame window averaging. This gave αc = 8.69 and
βc = 0.367. The parameters of pd were learned on the WAY-
MOA sequences again, each synthetically decalibrated by a
uniformly distributed random decalibration on the interval

[−0.02,−0.01] ∪ [0.01, 0.02] rad in rotations and
[−0.2,−0.1] ∪ [0.1, 0.2] m in translations.

(17)

This gave αd = 4.12 and βd = 4.40.

C. LTO Parameters

The preprocessing and model parameters will be the same
as for OCAMO (see Section V-A). Learning (αc, βc) and
(αd, βd) for LT-based monitoring with the OCAMO model
(3) was done as in the previous section (see Section V-B). It
gave: αc = 40.6, βc = 0.203, αd = 4.08, and βd = 3.70.

D. Frame Preselection Parameters

We need to train a classifier that will select input frames
suitable for calibration. The training is performed on the
WAYMOA dataset. We start with the extraction of 42 features

0

0.5

1

1.5

2

2.5

3

3.5

4
10 -3

0
|
5

5
|
10

10
|
15

15
|
20

20
|
25

25
|
30

30
|
35

35
|
40

40
|
45

45
|
50

50
|
55

55
|
60

60
|
65

65
|
70

70
|
75

TL TC TR BL BC BR

Corners Edges

left corners
right corners
number of edges
edge density

Fig. 11: Importance of LiDAR corners (left part) and image
edges (right part) for frame preselection. LiDAR corners
are sorted according to the z-range, and image edges are
organized lexicographically from the top-left segment to the
bottom-right segment.

described in Section III-G1. Afterwards, using the method
from Section III-G2, we automatically label each frame in
the dataset, using (3) for OCAMO/LTO and (14) for LT. This
is done for each camera separately, as the scene views have
different characteristics. This way, we get one set of features
and two sets of labels per camera. We train two distinct frame
preselectors, one per objective/loss function.

There are 47 202 frames in 238 sequences, with around 200
frames each. Since the individual sequences are relatively ho-
mogeneous, we used 5-fold cross-validation over sequences
instead of frames. We trained the LogitBoost [47] classifier
using ensembling methods on classification trees from the
MATLAB® Statistics and Machine Learning Toolbox.

Figure 11 shows the importance of each predictor (feature)
for our trained ensemble (OCAMO and the front camera).
Each predictor is visualized as a particular color dot based on
its type. These results show that the most important corners
are those between 5 to 15 m distance from the vehicle. This
confirms our hypothesis that OCAMO needs near objects
to work well. As we also hypothesized, the most important
image edge predictors were found around the horizon (the top
row of the image features in Figure 7b). In the data we used,
the central part of the image contained the most important
information for the calibration task. Predictors for LT behave
similarly.

Let s : X → [−∞, ∞] be the classification score function
specific for the classifier, where X is the feature vector of a
data frame and positive values of s(X) favor frames suitable
for calibration. Using a threshold Tp, we define a classifier
C : X → {0, 1}

C(x) = 1[s(x) ≥ Tp] . (18)

We call Tp the preselection level and choose it so that the
frame preselector removes a specific percentage of frames
from a given dataset, which we call data loss.

12

VI. EXPERIMENTS

A. Calibration Monitoring based on Rotation Parameters
Tracking

A camera has six extrinsic parameters and additional five
or more intrinsic parameters, depending on the number of
radial/tangential distortion coefficients. It is not necessary to
track all these parameters in real-time. For instance, radial
distortion changes could be partially observed as changes
in focal length. Moreover, sensor fusion with sensor setups
used in the automotive domain is not critically dependent on
small changes in translation parameters, unlike the changes
in rotation parameters, as discussed in [8]. Therefore, we first
test the hypothesis that it is sufficient to monitor rotational
parameters to detect decalibration in translation or focal
length (or, equivalently, the horizontal field of view, HFoV).
We will use OCAMO for this purpose. We empirically
observed that the findings apply to other methods (i.e., LTβ
and LTO), too.

We used the synthetic dataset SYN from Section IV-C.
We decalibrated the sensors between frames 51 and 110, as
described below.

The decalibration will be done in three sets of parame-
ters: (1) rotation parameters δrot, (2) translation parameters
δtr, and (3) horizontal field of view δhfov. We investigate
three different magnitudes of decalibrations: (1) small δs,
(2) medium δm, and (3) large δl. The decalibration is
randomly drawn from a uniform distribution on the interval(

[−2δ,−δ] ∪ [+δ,+2δ]
)d

rad, m, or ◦,

where d = 3 for rotations and translations and d = 1 for
δhfov. The small decalibrations are

δsrot = 0.00125 rad, δstr = 0.05m, and δshfov = 0.5◦.

These are then scaled up as

δm = 2δs and δl = 4δs.

The decalibrations are introduced by altering the camera
projection matrix.

Figure 12 shows the evolution of the calibration validity
index for all three parameter sets and magnitudes (nine par-
tially overlapping curves), averaged over all 155 sequences
from SYN with ten different, random decalibrations, one
per sequence. The smallest-magnitude decalibrations (dotted
lines) demonstrate the breaking point of the validity index.
Although the index is still under 0.5 on average, smaller
decalibrations would no longer be reliably detected by the
index. The smallest magnitude of the translational decali-
bration (0.05 – 0.1 m) reflects the lower sensitivity of the
reprojection error to translation when the scene is distant
from the sensors, as usual in automotive traffic scenes.

Detecting the medium extrinsic decalibration (red and
green dashed lines) is faster than detecting the large-
magnitude one (solid lines). This is caused by the filter (8),

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Rotation Small

Rotation Medium

Rotation Large

Translation Small

Translation Medium

Translation Large

HFoV Small

HFoV Medium

HFoV Large

Fig. 12: OCAMO calibration validity index VOC based on
rotation parameters tracking on the SYN dataset when the
true decalibration is not necessarily rotational. The respective
decalibration starts at frame 51 (solid black line) and ends at
frame 110 (dashed black line).

whose memory needs a shorter time to adapt to the medium
decalibration than the large one. The variant steepness of
the loss function within and outside the basin of attraction
(Figure 3) further influences the behaviour via the memory
update rule (9). After stabilisation, the order of VOC values
is inverse to the order of the decalibration magnitude, as
expected.

We conclude that monitoring decalibration by tracking
rotation parameters is possible. All subsequent results of
OCAMO are therefore reported with rotation parameters
tracking only. This decision is also partly influenced by a
suspicion of a strong correlation between some rotation and
translation parameters (later indicated by the experiments in
Section VI-C).

B. Calibration Monitoring on Real Decalibrations

The WAYMOB dataset was recorded in several locations,
mostly in San Francisco and Phoenix [1]. Even in tempo-
rally consecutive sequences (within a day) from the same
location, the reference calibrations provided with the dataset
were sometimes different. We found 139 such consecutive
sequence pairs from Phoenix and 53 from San Francisco
by examining the reference calibrations. Figure 13 shows
the distribution of LiDAR-Camera decalibrations between the
consecutive sequence pairs. One can see that the translations
were stable, mostly changing by a couple of millimetres,
but the rotation fluctuated considerably even in the short
timespans considered here.

We concatenated the 192 pairs of 200-frame sequences into
600-frame sequences (first, second, and the first again). The
calibration parameters of the first sub-sequence were used
as the reference for the rest of the concatenated sequence.
Hence, each 600-frame sequence becomes decalibrated after
frame 200 and calibrated again after frame 400. The decal-
ibrations are real and pseudo-random. The resulting dataset,

13

Fig. 13: Histogram of real decalibrations in translation (top
axis, red) and rotation (bottom axis, black) occuring in the
WAYMOBDIF dataset.

called WAYMOBDIF, tests the methods’ ability to detect
decalibration and recalibration.

Besides the consecutive sequences of differing calibrations
in WAYMOB, there are also those preserving the calibration,
specifically 17 from Phoenix and 200 from San Francisco.
We call this subset of 217 sequence pairs WAYMOBEQ. Their
calibrations are thus valid throughout.

The remaining pairs of consecutive sequences from WAY-
MOB were from different locations or temporally too distant
(more than a day). These were not considered.

We executed OCAMO, LTβ and LTO on the sequences
from WAYMOBEQ and WAYMOBDIF for several levels of
frame preselection. If the frame preselector does not select
at least 50 frames of one of the two concatenated sequences,
we do not use this sequence pair for that preselection level.

Figure 14 illustrates the performance of all methods on
WAYMOBDIF (w/o frame preselection). The abscissa of each
plot shows the frame index in the sequence. The mean and the
15 % and 85 % quantiles7 of the respective validity index V
over all WAYMOBDIF sequences are shown at each frame.
Ideally, the validity index should be close to unity on the
calibrated parts (frames 1–200 and 401–600) and close to
zero on the decalibrated part (frames 201–400). The further
apart the means relative to the variances in the calibrated
and uncalibrated parts of the sequence, the better the method
performs.

On the calibrated parts of the sequences, OCAMO shows
a higher variance than the other two methods. All three
methods reacted on the decalibration and recalibration (solid
lines). Nevertheless, the LT-based validity indices (LTβ and
LTO) have a much larger variance than OCAMO on the
decalibrated part. Some of the decalibrations (see Figure 13)
were probably too small (hence hard to detect) for these

7This would correspond to ±σ of a Gaussian random variable.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Fig. 14: Calibration validity indices on decalibrated se-
quences from WAYMOBDIF for all tested methods without
any frame preselection.

TABLE I: The statistical accuracy of the calibration moni-
toring decision for all three methods based on thresholding
VOC, VLTβ , and VLTO with 0.5, shown for four frame pre-
selection levels influencing data loss. The best accuracy for
each preselection level is emphasized.

Data Loss WAYMOBEQ WAYMOBDIF Average
O

C
A

M
O 0% 0.9816 0.9589 0.9703

20% 0.9890 0.9595 0.9743
40% 0.9900 0.9702 0.9801
60% 0.9904 0.9650 0.9777

LT
β

0% 0.9669 0.8959 0.9314
20% 0.9700 0.9070 0.9385
40% 0.9726 0.9124 0.9425
60% 0.9851 0.9125 0.9488

LT
O

0% 0.9947 0.9344 0.9646
20% 0.9979 0.9330 0.9655
40% 0.9987 0.9370 0.9679
60% 1.0000 0.9229 0.9615

two methods. Making the search grid finer in the LT-based
validity could improve the results. However, a too-fine grid
would also increase the probability of a false alarm in
calibrated cases or make monitoring more difficult on larger
decalibrations.

Validity indices in Figure 14 are a basis for the decision on
camera-LiDAR system calibration status. We set the decision
threshold to 0.5 (if the index V is higher, the system reports
valid calibration; otherwise, it reports decalibration). For the
WAYMOBEQ dataset, the validity index should be higher than
0.5 everywhere. For WAYMOBDIF, the index should be lower
than 0.5 between frames 201 to 400 of each sequence and
higher otherwise. Using this rule, we evaluated the statistical
accuracy of each tested method, as shown in Table I (higher
values are better). To allow the monitoring methods to adapt
to the calibration change, we did not include the first ten
frames after each change (201–210 and 401–410) in the
accuracy evaluation, as well as frames 1–10 that fall in the
burn-in interval of OCAMO.

Table I reveals noticeable differences between the WAY-
MOBEQ and WAYMOBDIF accuracies. LTO performs best
when the calibration remains constant in WAYMOBEQ and

14

OCAMO when the calibration changes in WAYMOBDIF. Of
the two, OCAMO has a more balanced performance, which
is also the best on average (last column). This is consistent
with our earlier observations from Figure 14 that OCAMO
can detect smaller decalibrations.

Table I also shows that frame preselection does increase
the accuracy of all three methods on the WAYMOBEQ dataset
(second column). On the other hand, due to the removal
of short sequences after preselection in WAYMOBDIF, the
distribution of decalibrations changes. Hence, if the prese-
lection removes too many easy-to-detect decalibrations, the
monitoring becomes harder, resulting in lower accuracy. This
happened for OCAMO and LTO (third column and 60 % data
loss).

C. Calibration Monitoring on Large Synthetic Decalibra-
tions

The observed decalibrations between temporally close se-
quences discussed in Section VI-B are often very small and
variant. Therefore, we cannot see the monitoring performance
and stability on larger decalibrations. Thus, in this section,
we simulate a larger synthetic decalibration in a time sub-
interval of each WAYMOB sequence individually and com-
pare OCAMO, LTβ and LTO methods on these. Although
the levels of decalibrations considered here are not typical in
real driving scenarios unless an accident occurs, we use them
to demonstrate the robustness and stability of the monitoring
process.

We took all 545 sequences from WAYMOB and decali-
brated the pose of the LiDAR relative to the camera between
frames 51 and 110. Each sequence uses a different synthetic
random decalibration (17), exhausting all rotation and trans-
lation parameters.

This dataset will be denoted as WAYMOBSYNDEC, and
the performance of each method will be compared with
the original calibrated sequences from WAYMOB on several
levels of frame preselection. As in the previous experiment
with consecutive sequences, if some sequence in WAYMOB
and WAYMOBSYNDEC does not have 50 frames after pres-
election, it is not considered for that preselection level in all
subsequent evaluations.

The behaviour of a monitoring method should follow the
same pattern as in the real-data experiments. Figure 15a
shows the performance of OCAMO on WAYMOBSYNDEC.
Let us compare these results with those on WAYMOBDIF in
Figure 14. We can see that OCAMO took longer to notice
and to adapt to the decalibration and the recalibration than
on WAYMOBDIF. The larger decalibration magnitude is the
cause. Still, OCAMO has a well-defined decision boundary
(0.1 – 0.8) between the calibrated and decalibrated parts of
the WAYMOBSYNDEC sequences. Hence, it should yield a
good per-frame accuracy, even on larger decalibrations.

Compared to the real but smaller decalibrations (Fig-
ure 14), the larger synthetic decalibration was easier to detect

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

60 % data loss

40 % data loss

20 % data loss

0 % data loss

(a) OCAMO

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

60 % data loss

40 % data loss

20 % data loss

0 % data loss

(b) LTβ

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

60 % data loss

40 % data loss

20 % data loss

0 % data loss

(c) LTO

Fig. 15: Calibration validity indices on synthetic decalibra-
tions of the WAYMOBSYNDEC sequences for several levels
of frame preselection and the three tested methods.

for both LTβ (Figure 15b) and LTO (Figure 15c). This
corroborates our earlier presumptions. As these two methods
do not have any tracking in the monitoring mechanism, the
detection of decalibration (after frame 50) and recalibration
(after frame 110) is nearly instant (depending on the window
size), compared to OCAMO (Figure 15a). LTO achieved the
fastest and the most stable detections. The frame preselection
helps to increase the lower 15 % quantile on the calibrated
parts of the sequence and the recalibration speed of OCAMO.

As in the previous experiment, we evaluated the accuracy
of all methods using the same validity index threshold of
0.5. On the calibrated sequences of WAYMOB, the validity
index should be larger than 0.5 for all 200 frames. On the
synthetically decalibrated sequences in WAYMOBSYNDEC,
the validity index should be larger than 0.5 on frames 1–50
and 111–200 and smaller than 0.5 between frames 51 and
110. We again did not include the transition phases (51–60
and 111–120) or the burn-in interval (1–10).

The results are shown in Table II. Consistently with
Figure 15, the LTO achieved the best results on both
the calibrated (WAYMOB) and synthetically decalibrated
(WAYMOBSYNDEC) datasets.

On WAYMOB, OCAMO achieved comparable results to

15

TABLE II: Statistical accuracy of the calibration monitoring
decision for all three methods on WAYMOB and WAYMOB-
SYNDEC, shown for four frame preselection levels.

Data Loss WAYMOB WAYMOBSYNDEC Average

O
C

A
M

O 0% 0.9698 0.9491 0.9595
20% 0.9773 0.9559 0.9666
40% 0.9835 0.9610 0.9723
60% 0.9843 0.9682 0.9762

LT
β

0% 0.9495 0.9564 0.9529
20% 0.9656 0.9678 0.9667
40% 0.9741 0.9725 0.9733
60% 0.9882 0.9839 0.9860

LT
O

0% 0.9897 0.9894 0.9895
20% 0.9929 0.9931 0.9930
40% 0.9940 0.9945 0.9943
60% 0.9963 0.9964 0.9963

LTO but did not perform so well on WAYMOBSYNDEC.
In Figure 15a, we already noticed that OCAMO needs more
time to detect decalibration and recalibration than the other
two methods. This is caused by the memory (9) stabilising the
tracker but slowing down the detector. Larger decalibrations
lead to slower transitions, making for the most significant
difference between OCAMO and LTO accuracies on WAY-
MOBSYNDEC. When OCAMO tracks all six parameters,
its monitoring accuracy drops by about 10 % due to the
increased rate of false alarms. We explain this behaviour by
correlations between rotation and translation parameters.

LTβ achieved good results on WAYMOBSYNDEC but did
not perform well on WAYMOB. That was most likely because
the proposed LTβ model did not work correctly on around
2-3 % of sequences. Nevertheless, this issue was solved by
the frame preselector: The LTβ was comparable to LTO after
the removal of 60 % of the data. Overall, the proposed frame
preselection helped all three methods on both datasets.

Besides the statistical accuracy, we also evaluated each
method’s false positive rate (FPR) and true positive rate
(TPR) metrics [48] and visualized the ROC curves in Fig-
ure 16. The worst-performing method is OCAMO (blue),
with the lowest area under the curve (AUC). Again, the
tracking mechanism’s memory is the culprit.8

The original LT (red) method did slightly better than
OCAMO (based on AUC), but its TPR could go no higher at
a certain point. This was caused by a too small standard
deviation σc of the normal distribution proposed in the
original LT method [8]. This insufficiency was solved by
our proposal to use beta distribution. The experiment shows
that the modification LTβ of the original LT method is indeed
effective (compare the red and yellow lines). Overall, the LTO
did achieve the best AUC and the highest statistical accuracy
over both WAYMOB and WAYMOBSYNDEC datasets.

8We discarded only ten frames around the change: 51–60 a 111–120.

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

OCAMO, AUC=0.9846

LT, AUC=0.9866

LT , AUC=0.9913

LTO, AUC=0.9985

Fig. 16: ROC curves for all calibration monitoring methods
on WAYMOBSYNDEC with no frame preselection.

D. Calibration Monitoring on The KITTI Dataset

Besides the Waymo dataset, we also evaluated the cali-
bration monitoring methods on the KITTI data. In order to
verify the portability of each method, we did not re-learn the
parameters of the validity index function σd, (αc, βc), and
(αd, βd). However, we had to change some other parameters,
as the KITTI sensors have different properties. First, as the
horizontal field of view of the KITTI cameras is wider
and the resolution lower, we decreased the σ parameter of
OCAMO (and LTO) to σ = 3 and the γ parameter of
LTβ image preprocessing to γ = 0.4. Second, we observed
too many outliers in the LiDAR corners, so we increased
T cd = 0.03 of OCAMO (and LTO) and filtered out points
with depth discontinuity smaller than 3 m for LTβ.

We constructed 1000-frame series from each of the 18
KITTI sequences (those shorter than 1000 frames were
re-used cyclically). We did not decalibrate the sensors for
the initial 50 frames. The decalibration/recalibration then
alternates every 70 frames until the last frame. In brief,
random decalibration from (17) will be applied on frame i if

i > 50 ∧mod(i− 50, 141) < 71.

We executed all three calibration monitoring methods on
these 1000-frame sequences and evaluated their statistical
accuracy over all frames. As in the case of the WAYMOB, we
did not include the transitions (ten frames) after each change
in the accuracy computation. The statistical accuracies are as
follows:

OCAMO LTβ LTO
0.9267 0.9705 0.9842

One can see that OCAMO could not generalize well on the
KITTI data. Besides the slower change detection, which was
already apparent with the WAYMOBSYNDEC, it is also partly
caused by the σd parameters of the tracking mechanism.
These should have been re-learned for the specific LiDAR-
Camera pair. LTO achieved the best statistical accuracy,
again showing the overall strength of the model (3). These
results indicate that the fixed gridding in LT-based validity
indices has better portability than the OCAMO tracking. This
has to be taken with a grain of salt since when we used
the original LT parameters from [8], the accuracy dropped

16

0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

Fig. 17: LTO calibration monitoring on a highway sequence
from the KITTI dataset discussed in [4].

TABLE III: Statistical accuracy of the calibration monitoring
decision for the LTO on WAYMOBSYNDEC with front-left
(left column) and front-right (right column) cameras, shown
for four frame preselection levels.

Data Loss Front-left Front-right

LT
O

0% 0.9854 0.9688
20% 0.9892 0.9750
40% 0.9889 0.9830
60% 0.9896 0.9853

below 0.9. We conclude that using any of these methods
with parameters trained on some other sensor set limits their
potential calibration monitoring possibilities. The parameters
need to be re-learned for a specific sensor setup.

To confirm a LiDAR-Camera decalibration in the Se-
quence 01 of the Odometry Dataset reported in [4], we
run the LTO monitor on the sequence. Figure 17 shows an
apparent decalibration at the beginning (up to frame 150)
and the end (around frame 1100). We also found Spearman’s
rank correlation of −0.45 between VLTO and the linear
acceleration of the vehicle. A further study would be needed
to identify the exact cause of the decalibration.

E. Calibration Monitoring on Left- and Right-Facing Cam-
eras

So far, we have tested forward-facing cameras in all
experiments. We will now test the calibration monitoring
accuracy on the front-right and front-left facing cameras from
the WAYMOBSYNDEC dataset. We will use only LTO, which
has exhibited superior results in the experiments. We kept
the preprocessing parameters, as the sensors are the same.
Besides the monitoring parameters (αc, βc), (αd, βd), we
also trained new frame preselectors for each camera. We
noticed an interesting difference between these two cameras;
therefore, this experiment will be split into two parts.

1) Front-Left Facing Camera: Table III (left column)
shows the statistical accuracy of LTO monitoring for the
front-left camera on WAYMOBSYNDEC. These results are
similar to those of the front-facing camera in Table II
(WAYMOBSYNDEC column). The difference in statistical
accuracy is 0.3−0.7% (depending on the preselection level).

2) Front-Right Facing Camera: The results for the front-
right camera in Table III are visibly worse. By examining
the data, we can see that it often contains close bushes, trees
or plain walls. These are naturally unsuitable for targetless,
corner-based calibration because they provide ambiguous
or insufficient information. The problematic frames were
mostly removed by the preselection, which resulted in a 1.5%
accuracy increase at the cost of a greater data loss, which
could lead to a slower reaction to a sudden decalibration.

These results illustrate that monitoring other non-front-
facing cameras with only a small drop in efficiency is
possible. The frame preselection also removes problematic
frames that could cause false decalibration alarms.

F. Calibration Drift Tracking

Besides the abrupt decalibration detection of the previous
experiments, we also consider calibration parameter drift:
A slow, gradual change that could be considered a random
process.

Calibration drift tracking was first considered in [8], where
they showed results on a simulated drift. They performed
a synthetic, incremental, random decalibration at each new
frame by ±0.02◦. Their system followed this change with
an average mean absolute error of 0.1◦ for the rotation
parameters. These results were obtained on different data and
would probably not be replicable on WAYMOB, where the
sensors have different resolutions and fields of view.

We created the WAYMOBSYNDRIFT dataset containing
545 sequences from WAYMOB, each 1 500 frames long
(shorter sequences from WAYMOB were extended cyclically,
as in the KITTI data of the experiment in Section VI-D).
We tested the calibration drift tracking at four preselection
levels (0, 20, 40 and 60 % data loss). As before, sequences
with fewer than 50 selected frames were discarded from this
experiment. At each frame, we independently performed an
incremental, random decalibration by ±0.0005 rad in each
rotation parameter.

1) Drift Tracking Precision: We evaluated the mean abso-
lute rotational error (MAE) from the reference calibration for
OCAMO, LT and LTO in Table IV. We also visualized the
average MAE over all the rotation parameters in Figure 18.

Without any preselection, the OCAMO tracker achieves
0.13◦ overall MAE. The easiest-to-track yaw angle achieves
an error of 0.0579◦, about half of the horizontal resolution
of the used LiDAR. The error drops with the preselection
(down to 0.0308◦ for yaw), but removing more than 20 %
of frames does not help significantly: The average MAE is
under 0.1◦.

LT did achieve almost two times higher average MAE
(0.25◦) than OCAMO. The frame preselection was quite
effective in this method, as the average MAE decreased to
0.15◦, with the yaw angle MAE decreasing by more than
half to 0.0428◦. The other angles decreased significantly as
well, especially the pitch.

17

0 20 40 60

Data Loss [%]

0

0.05

0.1

0.15

0.2

0.25

0.3

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

[
°
]

OCAMO

LT

LTO

Fig. 18: Average MAE in the calibration drift tracking of all
rotation parameters on the WAYMOBSYNDRIFT dataset.

TABLE IV: The MAE in the calibration drift tracking of all
rotation parameters on the WAYMOBSYNDRIFT dataset.

Data Loss roll [◦] pitch [◦] yaw [◦]

O
C

A
M

O 0% 0.2155 0.1212 0.0579
20% 0.1571 0.0851 0.0347
40% 0.1584 0.0865 0.0337
60% 0.1517 0.0807 0.0308

LT

0% 0.3365 0.3152 0.1064
20% 0.2687 0.2015 0.0681
40% 0.2690 0.1814 0.0525
60% 0.2522 0.1747 0.0428

LT
O

0% 0.1426 0.0788 0.0263
20% 0.1375 0.0755 0.0253
40% 0.1394 0.0779 0.0243
60% 0.1347 0.0762 0.0217

The LTO results show that the loss function (3) is much
better for drift tracking than LT. LTO did not benefit from
frame preselection, most likely because the grid step of
0.0005 rad was not large enough to walk outside the basin
of attraction (as opposed to OCAMO). LTO results are
slightly better (by 0.01◦) than those of OCAMO with frame
preselection. However, this has to be taken with a grain of salt
since LTO (and LT) benefited from the drift magnitude being
similar to the grid search step. OCAMO performs better when
the decalibration drift variance is unknown and not uniform,
as will be the case in practice.

As calibration tracking and offline calibration are different
mechanisms, we cannot directly compare their geometric
precisions. Nevertheless, the tracking accuracy of the LTO
method is comparable to the accuracy of a feature-based
targetless offline calibration based on a similar model (GMM)
published on Ford data [31]. If we take into account the
different resolutions of cameras σcam (degrees per pixel),
LiDARs σlid (degrees per ray), and the (independently)
combined total resolution σtot, we get the results shown in
Table V. The performance numbers to be compared are the
relative errors yaw/σtot (last column). Since the difference
is small, we can say the results are comparable.

TABLE V: A comparison of precision in yaw angle between
LTO tracking and the calibration method from [31] (last
column).

σcam σli σtot yaw [◦] yaw/σtot

LTO, Waymo 0.027 0.136 0.138 0.026 0.188
[31], Ford 0.352 0.200 0.404 0.223 0.552

TABLE VI: Preselection reduces the drift tracking divergence
(lower is better).

Method Data Loss
0 % 20 % 40 % 60 %

OCAMO 0.1248 0.1069 0.0921 0.0726
LT 0.3101 0.2611 0.2292 0.2143

LTO 0.1064 0.099 0.0813 0.0726

2) Drift Tracking Divergence: We also examined the long-
term stability of drift tracking. To this end, sequences in
which the tracking MAE exceeded 0.25 ◦ in any parameter
were considered diverging. An example of such a sequence
is shown in Figure 6c. One can see in Table VI that the
fraction of sequences from the WAYMOBSYNDRIFT dataset
in which the tracking diverged was consistently decreasing
with the increasing preselection level for all the methods. One
example of such a diverging sequence, which was removed
by the frame preselector, is visualized in Figure 6c.

We conclude that the frame preselection increases both the
statistical accuracy of each tracked parameter and the stability
of the calibration tracking procedure.

G. Frame Preselection Evaluation

The statistical evaluations above show that frame preselec-
tion helps the accuracy and stability of all investigated moni-
toring methods. However, the preselection may eliminate too
many frames, which may result in losing track of the cali-
bration. Preselection may also fail by not eliminating frames
or sequences that we consider unsuitable for calibration, like
in severe rain or insufficient illumination. This section sheds
some light on these two types of failure.

1) Recalibration Divergence: The calibration parameter
tracking might not catch up after extended periods of low-
quality data. We examined the frequency of such failures
by comparing the data loss (fraction of frames removed by
the preselection) in the WAYMOB dataset and the number
of diverging sequences: We say a sequence from WAYMOB-
SYNDEC is diverging if the method’s validity index reported
a value lower than 0.5 on more than 25 % of the frames after
the recalibration (frames 151–200). The lower the divergence
rate, the higher the ability to recalibrate after a decalibration
event. Thus, an efficient frame preselection minimizes the
fraction of diverging sequences while removing as small a
portion of data as possible.

Figure 19a shows the fraction of diverging sequences
(ordinate) as a function of data loss (abscissa) induced by
preselection. The fraction of diverging sequences decreases

18

0 20 40 60

Data Loss [%]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
F

ra
c
ti
o
n
 o

f
d
iv

e
rg

in
g
 s

e
q
u
e
n
c
e
s

OCAMO

LT

LTO

(a) Preselection reduces the recalibration divergence

20 40 60

Data Loss [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
a
c
c
e
p
te

d

Day w/o rain

Rain

Night

(b) Night and rain frames acceptance

Fig. 19: Recalibration divergence versus data loss for all three
methods at four preselection levels (a). Acceptance of night
and rainy frames by frame preselection and the acceptance
on WAYMOB for comparison (day without rain) (b).

with increasing preselection level. Specifically, the fraction
of diverging sequences decreases from 7.5 % to 1 % for LTβ
while removing only 60 % of frames. Frame preselection also
positively affects OCAMO, as the fraction decreased from
5 % to 2 %. LTO has a superior recalibration ability both
with and without frame preselection.

We conclude that preselection is effective for all methods:
Not only it improves calibration accuracy, as shown in the
earlier experiments, but it also improves the tracking success
after a decalibration/recalibration event.

2) Rainy or Night Frame Elimination: We apriori ex-
cluded sequences captured during the night and/or rain, as
discussed in Section IV-A. An interesting question is whether
the frame preselection mechanism can handle such exclusion
automatically. We take the 151 night and 102 rainy sequences
not included in the learning and evaluation data. We then run
the same preselectors used for WAYMOB sequences on them.

Figure 19b shows the corresponding results (red and
orange) and the sequences from WAYMOB for comparison
(blue). The bars show the fraction of accepted frames in
each sub-category. We can see that the night frames have
around half the acceptance rate of the WAYMOB frames

(for all preselection levels). These results show that most
night scenes are probably unsuitable for calibration. Frames
captured during rain have a higher acceptance rate than the
night ones. Most of this data is not heavily corrupted by the
rain, except perhaps when raindrops are stuck to the camera
lens. Frame preselection could remove these cases, and the
calibration might still be possible.

VII. CONCLUSIONS

In this work, we presented two novel methods (OCAMO
and LTO) for online calibration monitoring and tracking
for Camera-LiDAR systems, together with a modification
of the state-of-the-art approach LTβ. We also introduced a
frame preselection concept and have shown that it improved
the accuracy and robustness of the calibration process for
all the studied methods. All three methods use easily ex-
tractable low-level features and have a small computational
and memory overhead, which makes them suitable for real-
time implementation and easy integration into an existing
vision system. The main difference between OCAMO and the
LTO and LTβ is that OCAMO uses parameter learning based
on a formally well-grounded online stochastic optimization
with seven loss function evaluations per frame. In contrast,
the LT-based methods use a simple grid search, requiring 729
objective function evaluations, cf. Figure 2.

Based on the experimental results, we conclude that the
best-performing method in monitoring and tracking tasks was
LTO. This is surprising since it performs no data filtering.
A detailed look shows, however, that the performance of
LTO depends on two critical parameters – the grid step size
and the window size – that significantly affect the precision
and statistical accuracy, as already discussed in the original
paper [8]. We used the grid step equal to the simulated drift
increment (speed), favouring the LT-based methods in the
evaluations. When one does not know how fast the drift will
be in real-world scenarios, the grid step might be set too
small (leading to a slow response) or too large (leading to
imprecisions). Automatic learning of an adaptation rule for
the grid step is a topic for further research, requiring a new
large dedicated dataset with real decalibrations.

In contrast, the OCAMO parameters are not so critical,
except for the memory size that acts as a filter but slows
down the decalibration detection. This slowdown was why
OCAMO did not perform as well as the LTO in the evalua-
tions. A fair comparison would require longer sequences that
were not available to us.

Frame preselection increased the accuracy of all the stud-
ied monitoring methods on both real and synthetic decalibra-
tions. This increase was several percentage points, depending
on the preselection level and the method. The preselection
was also effective for non-front-facing cameras, where it
removed problematic frames, especially from the front-right-
facing one. The preselection also decreased the number of
diverging sequences after recalibration by almost an order of

19

magnitude for LTβ, and for the other methods, it also helped.
We also found it effective for identifying problematic night
and rain frames. However, due to the systematically different
views of the traffic scenes, the preselection did not even out
the differences in the average monitoring accuracy between
the front and front-right-facing cameras.

Better frame preselection, the creation of large datasets
dedicated to online monitoring and calibration tasks, and
performance evaluation strategies are the topics for further
research in calibration monitoring and tracking.

REFERENCES

[1] P. Sun, H. Kretzschmar, X. Dotiwalla et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2446–
2454.

[2] J. Janai, F. Güney, A. Behl, A. Geiger et al., “Computer vision
for autonomous vehicles: Problems, datasets and state of the art,”
Foundations and Trends® in Computer Graphics and Vision, vol. 12,
no. 1–3, pp. 1–308, 2020.

[3] X. Li, Y. Xiao, B. Wang, H. Ren, Y. Zhang, and J. Ji, “Automatic
targetless lidar–camera calibration: a survey,” Artificial Intelligence
Review, pp. 1–39, 2022.

[4] I. Cvišić, I. Marković, and I. Petrović, “SOFT2: Stereo visual odometry
for road vehicles based on a point-to-epipolar-line metric,” IEEE
Transactions on Robotics, vol. 39, no. 1, p. 273–288, 2023.

[5] L. Xing, W. Dai, and Y. Zhang, “Improving displacement measurement
accuracy by compensating for camera motion and thermal effect on
camera sensor,” Mechanical Systems and Signal Processing, vol. 167,
p. 108525, 2022.

[6] M. Elias, A. Eltner, F. Liebold, and H.-G. Maas, “Assessing the influ-
ence of temperature changes on the geometric stability of smartphone-
and Raspberry Pi cameras,” Sensors, vol. 30, no. 3, 2020, Art. no. 643.

[7] T. Läbe and W. Förstner, “Geometric stability of low-cost digital
consumer cameras,” in Proceedings of the ISPRS Congress, 2004, pp.
528–535.

[8] J. Levinson and S. Thrun, “Automatic online calibration of cameras
and lasers,” in Proceedings Robotics: Science and Systems Conference,
2013, Art. no. 29.

[9] J.-K. Huang and J. W. Grizzle, “Improvements to target-based 3D
LiDAR to camera calibration,” IEEE Access, vol. 8, pp. 134 101–
134 110, 2020.

[10] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[11] C. Glennie and D. D. Lichti, “Static calibration and analysis of the
velodyne hdl-64e s2 for high accuracy mobile scanning,” Remote
sensing, vol. 2, no. 6, pp. 1610–1624, 2010.

[12] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser
range finder (improves camera calibration),” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, 2004, pp.
2301–2306.

[13] G. Li, Y. Liu, L. Dong, X. Cai, and D. Zhou, “An algorithm for extrin-
sic parameters calibration of a camera and a laser range finder using
line features,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2007, pp. 3854–3859.

[14] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of a laser
rangefinder to a camera,” Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU-RI-TR-05-09, 2005.

[15] G. Pandey, J. R. McBride, S. Savarese, and R. Eustice, “Automatic
extrinsic calibration of vision and lidar by maximizing mutual infor-
mation,” Journal of Field Robotics, vol. 32, no. 5, pp. 696–722, 2015.

[16] Z. Taylor and J. Nieto, “A mutual information approach to automatic
calibration of camera and lidar in natural environments,” in Australian
Conference on Robotics and Automation, 2012, pp. 3–5.

[17] Z. Taylor, J. Nieto, and D. Johnson, “Automatic calibration of multi-
modal sensor systems using a gradient orientation measure,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013, pp. 1293–1300.

[18] K. K. Pingle, “Visual perception by a computer,” in Automatic inter-
pretation and classification of images, 1969, pp. 277–284.

[19] P. Jiang, P. Osteen, and S. Saripalli, “SemCal: Semantic lidar-camera
calibration using neural mutual information estimator,” in IEEE In-
ternational Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), 2021, pp. 1–7.

[20] B.-H. Yoon, H.-W. Jeong, and K.-S. Choi, “Targetless multiple camera-
lidar extrinsic calibration using object pose estimation,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 13 377–13 383.

[21] Z. Taylor and J. Nieto, “Motion-based calibration of multimodal sensor
arrays,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 4843–4850.

[22] N. Schneider, F. Piewak, C. Stiller, and U. Franke, “RegNet: Mul-
timodal sensor registration using deep neural networks,” in IEEE
Intelligent Vehicles Symposium, 2017, pp. 1803–1810.

[23] G. Iyer, R. K. Ram, J. K. Murthy, and K. M. Krishna, “CalibNet: Geo-
metrically supervised extrinsic calibration using 3D spatial transformer
networks,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2018, pp. 1110–1117.

[24] J. Shi, Z. Zhu, J. Zhang, R. Liu, Z. Wang, S. Chen, and H. Liu,
“CalibRCNN: Calibrating camera and lidar by recurrent convolutional
neural network and geometric constraints,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp.
10 197–10 202.

[25] D. González-Aguilera, P. Rodrı́guez-Gonzálvez, and J. Gómez-Lahoz,
“An automatic procedure for co-registration of terrestrial laser scanners
and digital cameras,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 64, no. 3, pp. 308–316, 2009.

[26] J. Li-Chee-Ming and C. Armenakis, “Fusion of optical and terrestrial
laser scanner data,” in Canadian Geomatics Conference and Sym-
posium of Commission I, ISPRS Convergence in Geomatics-Shaping
Canada’s Competitive Landscape., 2010, pp. 15–18.

[27] J. Böhm and S. Becker, “Automatic marker-free registration of terres-
trial laser scans using reflectance,” in Proceedings of the 8th conference
on optical 3D measurement techniques, 2007, pp. 9–12.

[28] P. Moghadam, M. Bosse, and R. Zlot, “Line-based extrinsic calibration
of range and image sensors,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 2, 2013, pp. 3685–3691.

[29] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Communications of the ACM, vol. 15,
no. 1, pp. 11–15, 1972.

[30] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679–698, 1986.

[31] J. Kang and N. L. Doh, “Automatic targetless camera–LIDAR calibra-
tion by aligning edge with Gaussian mixture model,” Journal of Field
Robotics, vol. 37, no. 1, pp. 158–179, 2020.

[32] C. Yuan, X. Liu, X. Hong, and F. Zhang, “Pixel-level extrinsic self cali-
bration of high resolution lidar and camera in targetless environments,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7517–7524,
2021.

[33] D. C. Brown, “Close-range camera calibration,” Photogrammetric
Engineering, vol. 37, no. 8, pp. 855–866, 1971.

[34] J. Heikkila and O. Silvén, “A four-step camera calibration procedure
with implicit image correction,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1997, pp. 1106–1112.

[35] T. Miyasaka, Y. Ohama, and Y. Ninomiya, “Ego-motion estimation and
moving object tracking using multi-layer LIDAR,” in IEEE Intelligent
Vehicles Symposium, 2009, pp. 151–156.

[36] C.-K. Liang, Y.-C. Peng, and H. Chen, “Rolling shutter distortion
correction,” in Visual Communications and Image Processing, ser.
Proceedings of the SPIE, vol. 5960, 2005, pp. 1315–1322.

[37] J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory for state
estimation in robotics,” 2020, arXiv:1812.01537v9.

20

[38] D. Marr, “Analysis of occluding contour,” Proceedings of the Royal
Society of London. Series B. Biological Sciences, vol. 197, no. 1129,
pp. 441–475, 1977.

[39] Y. Tsin and T. Kanade, “A correlation-based approach to robust point
set registration,” in European Conference on Computer Vision (ECCV),
2004, pp. 558–569.

[40] T. Schaul, S. Zhang, and Y. LeCun, “No more pesky learning rates,” in
International Conference on Machine Learning (ICML), vol. 28, no. 3,
2013, pp. 343–351.

[41] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, vol. 22, no. 3, pp. 400–407, 1951.

[42] R. D. Martin and C. J. Masreliez, “Robust estimation via stochastic
approximation,” IEEE Transactions on Information Theory, vol. 21,
no. 3, pp. 263–271, 1975.

[43] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International Conference on Machine
Learning (ICML), vol. 28, 2013, pp. 1310–1318.

[44] J. Moravec, “Automatic on-line calibration and calibration monitoring
of cameras and lidars,” MSc Thesis, Charles University, Faculty of
Mathematics and Physics, Prague, 2020.

[45] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” International Journal of Robotics Research,
vol. 32, no. 11, p. 1231–1237, 2013.

[46] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[47] J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic regres-
sion: a statistical view of boosting (with discussion and a rejoinder by
the authors),” Annals of Statistics, vol. 28, no. 2, pp. 337–407, 2000.

[48] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

APPENDIX A
LIDAR CORNERS DETECTION

LiDAR corners Cj are extracted from the point cloud Pj

as follows:
a) For each azimuth φi in each LiDAR scanline, the radial

distance data d(φi) is whitened per window d(φi) of
size nm = 11 lpx9 centered on i as d(φi)/∥d(φi)∥.

b) The whitened data is convolved with a discrete
Gaussian-derivative filter m with variance σ2

m = 1 using
a filter of nm elements. The absolute value is taken.

c) Non-maximum suppression with window size wcd =
4 lpx is performed and weak local maxima below T cd =
0.01 are removed. Of the two neighbors forming the
local maximum, the one closer to the LiDAR is taken.

d) With the exception of CARLA simulation, Steps a–c are
repeated for the LiDAR intensity data, with window size
wcr = 6 lpx and a weak-response threshold of T cr =
0.05.

e) Wide gaps in azimuth data are detected when the az-
imuth difference between consecutive, valid 3D points
exceeds a gap threshold of T ca = 0.1 rad. These gaps
typically happen on the skyline. This procedure will
always choose two corners per one azimuth gap.

APPENDIX B
METHODS PARAMETERS

Parameters used by the studied methods are in Table VII.

9We denote LiDAR pixels as lpx.

TABLE VII: Parameters of all the studied methods.

method parameter value reference

O
C

A
M

O
/L

TO

nm 11 lpx Sec. A.a
σm 1 Sec. A.b
T cd 0.01 Sec. A.c
wcd 4 lpx Sec. A.c
T cr 0.05 Sec. A.d
wcr 6 lpx Sec. A.d
T ca 0.1 rad Sec. A.e
hθ 0.001 rad,m (6)
k 10 (3)
σ 9 px (3)

O
C

A
M

O

σd (0.0033, 0.0017, 0.0005) rad (12)
Tθ 3σd (12)
θbnd 5σd (11b)
θupd 0.0024 rad (10), (16)
b 10 frames (11a)

mbnd 5 frames Sec. III-C2

LT
/L

TO grid size mon. 0.01 rad and 0.1m Sec. III-D
grid size trk. 0.0005 rad Sec. III-D

w 9 frames (14)

LT
O (αc, βc) (40.6, 0.203) (15)

(αd, βd) (4.08, 3.70) (15)

LT
(αc, βc) (8.69, 0.367) (15)
(αd, βd) (4.12, 4.40) (15)

α 1
3

Sec. III-D
Image γ 0.86 Sec. III-D
LiDAR γ 0.5 Sec. III-D

LiDAR filter 1m Sec. III-D

APPENDIX C
GITHUB REPOSITORY

This paper has a GitHub repository at: https://github.com/
moravecj/OCaMo.

Jaroslav Moravec received his MSc in Artificial
Intelligence from Charles University, Prague, in
2020. He is pursuing a PhD at the Department of
Cybernetics, Czech Technical University in Prague.
His research interests include autonomous driving,
data fusion and sensor calibration.

Radim Šára has been an associate professor at the
Czech Technical University in Prague (CTU) since
2008. He received his PhD in 1994 from Johannes
Kepler University in Linz, Austria. From 1995 to
1997, he worked at the GRASP Laboratory at The
University of Pennsylvania. He has been a member
of the Department of Cybernetics and the Center
for Machine Perception at CTU since 1998. He
heads the PhD School of Artificial Intelligence and
Biocybernetics at CTU. His main research interest
is 3D computer vision.

https://github.com/moravecj/OCaMo
https://github.com/moravecj/OCaMo

	Introduction
	Related Work
	Methods
	Problem Formulation, Goals, and Assumptions
	Data Preprocessing
	The OCAMO Monitoring and Tracking Methods
	Data Preprocessing
	The OCAMO Calibration Tracking
	OCAMO Monitoring

	The LT Monitoring and Tracking Methods
	A Comparison of The OCAMO and LT Methods
	The LTO method
	Frame Preselection
	Features
	Automatic Labeling

	Data
	Real Datasets WaymoA and WaymoB
	Real KITTI dataset
	Synthetic Ground-Truth Dataset Syn

	Parameter Learning
	OCAMO Parameters
	LT Parameters
	LTO Parameters
	Frame Preselection Parameters

	Experiments
	Calibration Monitoring based on Rotation Parameters Tracking
	Calibration Monitoring on Real Decalibrations
	Calibration Monitoring on Large Synthetic Decalibrations
	Calibration Monitoring on The KITTI Dataset
	Calibration Monitoring on Left- and Right-Facing Cameras
	Front-Left Facing Camera
	Front-Right Facing Camera

	Calibration Drift Tracking
	Drift Tracking Precision
	Drift Tracking Divergence

	Frame Preselection Evaluation
	Recalibration Divergence
	Rainy or Night Frame Elimination

	Conclusions
	References
	Appendix A: LiDAR Corners Detection
	Appendix B: Methods Parameters
	Appendix C: GitHub Repository
	Biographies
	Jaroslav Moravec
	Radim Šára

