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Study programme: P2612 Electrical Engineering & Information Technology

Specialization: 2601V013 Telecommunication Engineering

Year of submission: 2023





Declaration

Hereby, I declare that I have written this thesis on my own, citing all relevant work of others, and
I state that it has not been submitted, in whole or in part, for any other degree or professional
qualification.

In Prague, August 2023

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jakub Klemsa

iii





Abstract

Fully Homomorphic Encryption (FHE) is a technique that ensures data confidentiality and en-
ables processing them at the same time. In other words, anyone can evaluate an arbitrary
(computable) function over encrypted data, without ever decrypting it. After evaluation, only
the legitimate holder of the secret key is capable of decryption – what she finds is the same result
as if the function were evaluated over plain, unencrypted data.

The history of FHE dates back to 1978 when Rivest et al. proposed the existence of an FHE
scheme as a challenge. After more than 30 years, the challenge was resolved by Gentry in 2009
who gives a positive answer with his first-ever (publicly known) FHE scheme. However, the
first-generation FHE schemes suffer from rather impractical computational overhead: reported
by Gentry et al., a primitive bit-wise operation took around 30 minutes to evaluate on ordinary
hardware. Since then, FHE schemes, as well as their implementations, made a tremendous
progress: with state-of-the-art implementations, a similar operation only takes lower tens of
milliseconds on ordinary hardware or about 500µs on a specialized hardware (as of Q2/2023).
Despite those speed-ups, the computational overhead of homomorphic evaluation using FHE over
plain evaluation still remains significant.

This thesis studies manifold aspects of fully homomorphic encryption. In particular, it aims
at improving FHE: (i) correctness-wise: analyze the error growth which is intrinsic to most
existing FHE schemes; (ii) performance-wise: enhance the performance of selected homomorphic
operations; and (iii) scalability-wise: enable multiple holders of the secret keying material.

One of the main contributions of this thesis is fast integer arithmetic over encrypted data,
using the TFHE Scheme (Chillotti et al., Asiacrypt ’16) which is one of the state-of-the-art FHE
schemes. Integer arithmetic operations are among the most fundamental ones, implemented as
part of most microprocessors’ instruction set. Therefore, there is a strong motivation to push the
latency of their homomorphic counterparts as low as possible. The proposed approach employs
a certain non-standard integer representation for which there exists a parallel addition algorithm,
upon which other arithmetic operations are constructed. The benefit of parallelization of arith-
metic operations stems from the parallelization-unfriendliness of the most expensive operation
of TFHE. On the one hand, this approach may reduce the latency significantly – in particular
for long inputs and with a sufficient amount of parallel resources. On the other hand, certain
computational overhead is imposed which implies spending more overall processor time.

Besides improving the performance of fundamental homomorphic operations, a variant of
FHE where multiple parties hold shares of the secret key is studied in this thesis and a new
scheme is proposed. Compared to previous attempts, the new scheme not only outperforms
them in terms of latency, it is also capable of a practical instantiation with an order of hundreds
of parties—which the previous ones were not—thanks to its low error growth. Last but not least,
a new method for a practical error assessment is proposed: based on noise measurements and
two types of evaluation errors, this method captures even very low or overlapping probability
distributions of incorrect homomorphic evaluation.
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Abstrakt

Plně homomorfńı šifrováńı (FHE z anglického Fully Homomorphic Encryption) je technika, která
zajǐst’uje d̊uvěrnost dat a zároveň umožňuje jejich zpracováńı. Jinými slovy, kdokolivmůže vyhod-
notit libovolnou (vyč́ıslitelnou) funkci nad zašifrovanými daty, aniž by ta musela být dešifrována.
Výstup vyhodnoceńı pak dokáže dešifrovat pouze legitimńı držitel soukromého kĺıče – touto ces-
tou obdrž́ı stejný výsledek, jako kdyby byla tato funkce vyhodnocena nad nezašifrovanými daty.

Historie FHE se ṕı̌se od roku 1978, kdy Rivest a kol. představili otázku existence FHE jakožto
výzvu. V roce 2009 byla tato výzva po v́ıce jak 30 letech úspěšně vyřešena Gentrym, který
představil úplně prvńı (veřejně známé) FHE schéma. Nicméně prvńı generace FHE schémat trṕı
sṕı̌se nepraktickými výpočetńımi nároky: dle reportu Gentryho a kol. zabere výpočet jednoduché
bitové operace okolo 30 minut na běžné výpočetńı technice. Od té doby doznala FHE schémata,
včetně jejich implementaćı, významného pokroku: s využit́ım dnešńıch předńıch implementaćı
zabere podobná operace pouhé nižš́ı deśıtky milisekund na běžné výpočetńı technice nebo okolo
500 µs na specializované technice (stav ke 2. čtvrtlet́ı 2023). Navzdory těmto urychleńım z̊ustávaj́ı
výpočetńı nároky homomorfńıho vyhodnocováńı za použit́ı FHE značné.

Tato práce studuje rozličné aspekty FHE. Jmenovitě se zabývá vylepšeńım FHE z pohled̊u: (i)
korektnosti: analýza r̊ustu chyb, které jsou vlastńı většině existuj́ıćıch FHE schémat; (ii) výpočetńı
náročnosti: vylepšeńı výkonu vybraných homomorfńıch operaćı; a (iii) škálovatelnosti: umožněńı
rozděleńı soukromého kĺıče mezi v́ıce držitel̊u.

Jedńım z hlavńıch př́ınos̊u této práce je rychleǰśı celoč́ıselná aritmetika nad zašifrovanými daty
použ́ıvaj́ıćı schéma TFHE (Chillotti a kol., Asiacrypt ’16), které je jedńım ze současných předńıch
FHE schémat. Operace celoč́ıselné aritmetiky se řad́ı mezi ty nejzákladněǰśı a jsou součást́ı in-
strukčńı sady většiny mikroprocesor̊u, proto je zde silná motivace sńıžit časovou náročnost jejich
homomorfńıch protěǰsk̊u jak jen to bude možné. Navržený př́ıstup využ́ıvá jistou nestandardńı
č́ıselnou reprezentaci, pro kterou existuje paralelńı sč́ıtaćı algoritmus, na základě kterého jsou po-
staveny daľśı aritmetické operace. Př́ınos paralelizace aritmetických operaćı je umocněn nepř́ılǐs
dobrou paralelizovatelnost́ı nejnáročněǰśı operace v TFHE. Na jednu stranu může tento př́ıstup
značně sńıžit časovou náročnost, obzvláště pro dlouhé vstupy a při velkém množstv́ı paralelńıch
zdroj̊u, na druhou stranu jsou vynuceny vyšš́ı výpočetńı nároky, což může znamenat v́ıce cel-
kového procesorového času.

Vedle zlepšováńı výkonu základńıch homomorfńıch operaćı studuje tato práce variantu FHE,
ve které drž́ı pod́ıly soukromého kĺıče v́ıce stran, pro což je navrženo nové schéma. V po-
rovnáńı s předchoźımi návrhy takovýchto schémat je toto nové schéma překoná nejen v ohledu
časové náročnosti, ale je schopné praktického sestaveńı s řádově stovkami stran—čehož předchoźı
schémata schopná nebyla—d́ıky jeho ńızkému r̊ustu šumu. Nav́ıc je navržena nová metoda pro
praktické vyhodnoceńı množstv́ı chyb založená na měřeńıch šumu a dvouch typech vyhodnoco-
vaćıch chyb. Tato metoda tak zvládá zachytit i velmi ńızké nebo překrývaj́ıćı se pravděpodob-
nostńı rozděleńı nesprávného homomorfńıho vyhodnoceńı.

Kĺıčová slova—Plně homomorfńı šifrováńı; Bezpečné výpočty v cloudu; TFHE schéma.
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Preface

1 Foreword

Cryptography is a discipline that aims at securing information from undesirable abuse by third
parties. From primitive ciphers used already in ancient civilizations, cryptography has undergone
great development and has become an essential part of modern life. Indeed, from phone calls,
instant messaging, or Internet banking to government-level communications – all are secured
with cryptographic techniques.

State-of-the-art cryptographic methods are believed to be practically unbreakable: even for
the hypothetical presence of a powerful quantum computer (which is anticipated to become
true in a more or less distant future), there already exist symmetric as well as asymmetric
cryptographic schemes for which no quantum attack is known1. However, although we may rely
on the practical strength of cryptography, we are witnessing ever-lasting leaks of sensitive data2.

Why is that?
The answer is not unambiguous: e.g., there might occur—either intended or unintended—

misconduct of a responsible individual, like information disclosure, software bug, etc., possibly
induced by social engineering, or a sophisticated attack that involves cracking the physical im-
plementation might be mounted. What such attacks have in common is that they never aim at
breaking the underlying cryptography.

A possible way to mitigate such attacks is to deploy countermeasures that may range from
organizational to technical. Another way of protection is to decrease the attack surface by keeping
the data encrypted end-to-end – let us outline a typical data lifecycle in its entirety.

Assume that a user holds a piece of data which she sends to a cloud. This enables the user
to access her data from multiple devices or locations. Now, what if the data is very sensitive
and/or the cloud is not fully trusted? The user may employ traditional cryptographic tools to
protect her data before sending it for storage in the cloud – this prevents the data from being
read or manipulated without being detected.

This way, things work perfectly fine until the cloud is supposed to process that data as part
of a service offered by that cloud – for instance, we may think of photo-editing tools or advanced
genome analytics using neural network inference. Such a scenario poses an Achilles’ heel of
traditional cryptography: indeed, data protection is limited to data at rest and data in transit
while one important phase of a typical life-cycle of data is missing – data in use.

Fully Homomorphic Encryption (FHE) resolves this particular issue: it allows a third party
(a cloud) to evaluate an arbitrary computable function over encrypted data, without ever de-
crypting it. This means that only the holder of the secret key can decrypt the result, and what

1More on the Post-Quantum Cryptography (PQC) standardization process can be found at https://csrc.

nist.gov/projects/post-quantum-cryptography. Accessed: 2023-06-08.
2A review of data breaches of 2022 by Verizon can be found at https://www.verizon.com/business/

resources/reports/dbir/2023/wrap-up/. Accessed: 2023-06-08.

xi
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User Cloud

in:

out:

= f(in)

evaluate f

encrypt in

decrypt

??
with FHE

evaluate f homomorphically

result

Figure 1: Example use-case of FHE: homomorphic evaluation of market prediction function f
over encrypted input data at Cloud. After User decrypts the result, she obtains the same as if
the function f was evaluated over the plain input in (see the dotted arrow).

she obtains is the same as if the function was evaluated right over the plain input data – provided
that the cloud performs the computation honestly. Find an illustration of a basic use-case of
FHE in Figure 1.

For the first time proposed as a challenge by Rivest et al. in 1978 [115], the existence of
an FHE scheme remained an open question for more than 30 years until 2009 when Gentry
presented his first-ever construction of an FHE scheme [58]. Although FHE would improve the
security of various applications, the major obstacle that prevents FHE from massive deployment
is its fairly high resource consumption and long evaluation times. From the initial attempts [59],
which required around 30 minutes to evaluate a simple binary operation on ordinary hardware,
FHE schemes and their implementations have been improved significantly over the years, pushing
timing down to tens of milliseconds [132]. Additional speed-ups are expected, in particular with
emerging attempts to design and build specialized hardware [126].

2 Basic Literature Overview

Below, we summarize the evolution of FHE schemes, followed by an overview of the state-of-the-
art in a particular research branch relevant to this thesis.

2.1 Evolution of FHE Schemes

The evolution of FHE schemes is often divided into four generations, preceded by “pre-FHE”
attempts.

Pre-FHE attempts

Before the discovery of the first fully homomorphic encryption scheme, there appear various
schemes with certain (limited) homomorphic properties. Actually, the famous RSA scheme
by Rivest et al. [116], presented in 1978, allows the multiplication of encrypted plaintexts3.
This probably led Rivest et al. to suggest a hypothetical scheme [115] that would not only
allow the multiplication of encrypted plaintexts but which would allow the evaluation of any

3Using a variant without padding, which is not semantically secure.
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computable function over encrypted data. Note that (ring) multiplication is not sufficient: e.g.,
either (ring) addition and multiplication, or the Boolean gates AND and OR, or just the Boolean
NAND gate is needed. Apart from RSA, other schemes satisfy a homomorphic property: e.g.,
ElGamal’s cryptosystem [52] from 1985 which is multiplicatively homomorphic4, or Paillier’s
cryptosystem [107] from 1999 which is additively homomorphic5.

The first attempt towards the full homomorphism is a scheme by Boneh et al. [16] which
enables the homomorphic evaluation of one level of multiplication, followed by any number
of additions (represented by, e.g., a quadratic multi-variate polynomial). Other schemes by
Sanders et al. [117] or by Ishai et al. [73] cover branching programs [12]. These schemes are
referred to as somewhat homomorphic (SHE) and they paved the way towards the first actual
fully homomorphic scheme.

On the presence of noise An important characteristic of SHE schemes—which is inherited
by fully homomorphic schemes, too—is the presence of noise. In SHE, a small amount of noise,
usually added to the encrypted message, is needed to achieve security. With each homomorphic
operation, such noises accumulate – hence, on average, the noise grows. Ultimately, the noise
may exceed a certain bound and damage the plaintext encoding, i.e., the result would not decrypt
correctly. This is the main reason why the set of circuits that can be evaluated by SHE is fairly
restricted. Also, the intrinsic presence of noise is the central difficulty that fully homomorphic
schemes need to deal with.

1st generation

As outlined, the first publicly known construction of an FHE scheme was proposed by Gentry [58]
in 2009, and it builds upon existing somewhat homomorphic schemes and ideal lattices. The
paramount idea of Gentry’s construction is to employ a somewhat homomorphic scheme that
evaluates (i) a (couple of) homomorphic operation(s), followed by (ii) the decryption circuit. In
the second step, the noise gets refreshed to an—on average—constant level. Such procedure is
referred to as bootstrapping.

In an implementation report [59], authors present the performance of Gentry’s scheme (in-
cluding partial enhancements): for the presumably “most secure” set of parameters—which still
achieves at most λ = 72 bits of security—one step comparable to the evaluation of a Boolean
gate takes 30 minutes on an ordinary hardware6. A simplified variant of Gentry’s scheme, which
uses integers instead of ideal lattices in the underlying somewhat homomorphic scheme, was
presented in 2011 by Van Dijk et al. (aka. DGHV; [127]).

2nd generation

Based on the Learning With Errors problem (LWE; [113]) and its ring variant (RLWE; [98]),
a series of schemes have been proposed: most notably BGV [23] and B/FV [22, 53], which vastly
improve the efficiency of FHE compared to the first generation. These schemes are still actively
developed [4], in particular in the leveled mode—in which only a limited (multiplicative) depth
of evaluated circuits is allowed—they remain competitive.

Other schemes of the 2nd generation build upon the NTRU cryptosystem [71] (e.g., LTV [97] or
BLNN [19]), however, the underlying overstretched NTRU assumption has been shown vulnerable
to attacks [6, 32].

4Shown to be IND-CCA1 secure [96] under a flavour of the decisional Diffie-Hellman assumption.
5Shown to be IND-CCA1 secure [10] under a flavour of the decisional composite residuosity assumption.
6Authors were using Intel Xeon E5450 processor (quad-core, introduced in 2007).
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3rd generation

Another, (R)LWE-based scheme by Gentry et al. [61] (aka. GSW) laid the foundations for a branch
of FHE schemes known for its fast bootstrapping. In particular, the FHEW scheme by Ducas
et al. [50] is the first FHE scheme to achieve the bootstrapping time under a second, further
reduced by the TFHE scheme [34, 35] which builds upon FHEW. With the state-of-the-art im-
plementation [132] of TFHE, named tfhe-rs, bootstrapping only takes low tens of milliseconds
(version v0.2).

There exist very recent results that aim at further improving the performance of bootstrap-
ping; we choose to present two interesting lines of research that use fundamentally different
approaches. First, the FINAL scheme [111], which is based on both LWE and NTRU7, is an-
ticipated to outperform TFHE by 28% in the bootstrapping time and by 45% in the key size8.
Second, Lee et al. [95] suggest employing ring automorphisms which may lead to savings in any
FHEW-based scheme, including TFHE. However, it has not been yet shown in a comparable
setting whether any of these constructions practically outperforms the state-of-the-art tfhe-rs
library.

4th generation

A scheme that directly implements (approximate) fixed-point arithmetic of real and complex
numbers is known as CKKS [33], introduced in 2017. This is particularly useful for tasks of
machine learning since such applications tolerate small errors. Due to its relatively costly boot-
strapping procedure (introduced later in [30, 26]), CKKS is mostly used in the leveled mode.
Another limitation is its relatively complex noise-propagation analysis, only given by Costache
et al. [44] in 2022.

2.2 On the Comparison of FHE Schemes

Due to fundamental differences between FHE schemes across generations, there is no “absolute
winner” FHE scheme. Indeed, each scheme has its strengths and weaknesses, and it usually
depends on the particular use case which scheme is the most suitable. E.g., as already outlined,
the CKKS scheme is useful when it comes to approximate arithmetic (e.g., in machine learning
tasks), on the other hand, the TFHE scheme is useful for discrete computations when a bounded
probability of errors is required (e.g., encrypted computations in a blockchain).

Besides that, it is hard to compare even similar schemes (or their implementations) fairly,
for a variety of reasons:

• the performance of most FHE schemes depends heavily on the choice of parameters (there
are usually tons of them), which is a non-trivial optimization task itself [13];

• FHE schemes (or their implementations) might offer different plaintext spaces and/or dif-
ferent homomorphic operations, e.g., Boolean plaintext space & the NAND gate [111] vs.
a small additive group & look-up table evaluation [37];

• some schemes offer multiple plaintext “slots” in a single ciphertext (e.g., the CKKS scheme),
which enables to process data in the SIMD manner (single instruction, multiple data);

• there might exist a highly optimized implementation for one scheme (e.g., an FPGA accel-
erator [126] for TFHE) which might not exist for any other scheme.

In this thesis, we primarily focus on the TFHE scheme.

7FINAL explicitly avoids the attacks on overstretched NTRU parameters (as outlined before).
8Authors compared both schemes with the binary plaintext space.
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2.3 Limitations of Homomorphic Schemes

Below, we outline selected limitations of current homomorphic schemes:

Slow & erroneous evaluation. Compared to the evaluation over plaintext data, the compu-
tational overhead over encrypted data is still enormous, even though recent advances push
it down significantly [132].

In addition, in selected implementations, there emerge implementation errors that might—
under certain circumstances—exceed the inherent noise, in particular in TFHE. Namely,
rounding errors are introduced by the use of a finite representation of real/complex num-
bers, which are employed within Fast Fourier Transform (FFT) that is used for fast modular
polynomial multiplication.

Limited support for multiple parties. The construction of an FHE scheme that involves
multiple holders of the private key (shares of the key) is not straightforward.

We discuss each topic in more detail in the next section.

3 Problem Statement

Currently, the TFHE scheme [34, 35] appears to be the most promising general-purpose FHE
scheme: recall that TFHE is capable of evaluating any computable function (represented by
an evaluation circuit of a certain form) over encrypted data. In particular, TFHE does not
restrict the depth of the circuit—as opposed to leveled schemes—and it also achieves the best
bootstrapping times among FHE schemes [68, 77]9. On top of that, TFHE parameters can be
practically tuned in such a way that the error probability of a single bootstrapping is as low as
2−50 [13]. We provide a comprehensive overview of the TFHE scheme in Chapter 1.

3.1 Erroneous Evaluation

As already outlined, selected TFHE implementations [105, 106, 124, 132] employ (a modified
version of) FFT for fast modular polynomial multiplication. Since FFT works with real/complex
numbers, their (finite) representation in a computer imposes rounding errors. To understand
properly the origin and propagation of these rounding errors, we analyze the modified FFT
algorithm in Chapter 2.

Note that besides FFT, some implementations [94, 125] employ Number-Theoretic Transform
(NTT; [112]) instead of FFT (nuFHE [105] implements both). NTT is a derivative of FFT that
works over finite fields which gives the advantage to represent the transformed image without loss
of precision. Experiments show that FFT achieves better performance than NTT10, however,
optimizations might be introduced in the future to improve either approach.

3.2 Speeding-up Homomorphic Arithmetic (and more)

Although the performance of homomorphic evaluation of a function over encrypted data has been
vastly improved since the first attempt by Gentry [59], fully homomorphic computations still
consume a huge amount of resources. Indeed—roughly speaking—, within tens of milliseconds
on an ordinary CPU, one may either run 108 operations with 64-bit integers, or a single TFHE

9Summarized by Nigel Smart at https://zama.ai/post/what-is-bootstrapping-homomorphic-encryption.
Accessed 2023-05-07.

10E.g., as measured by authors of nuFHE [105], the same setup with FFT is around 3× faster than with NTT.

https://zama.ai/post/what-is-bootstrapping-homomorphic-encryption
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bootstrapping which is capable of processing only a couple of bits. Besides computation costs,
which melt down to electricity bills and the price of hardware, possibly the most important
measure of effectivity of homomorphic computations is the latency, i.e., how long time one needs
to wait for the result. Therefore, there is a strong aim at parallelization whenever possible, even
if this comes with a certain rise in computation costs.

Unfortunately, the central operation of TFHE’s bootstrapping is not multi-thread friendly
(except parallelization of polynomial multiplication itself), hence, it is worth considering par-
allelization at a higher level, running multiple bootstraps simultaneously. However, the same
problem might re-emerge – the homomorphically evaluated function might not be multi-thread
friendly. One such operation is among the most trivial ones, taught already at elementary schools:
that is addition with carry.

In general, arithmetic operations with integers are among the most fundamental ones, sup-
ported by instruction sets of most microprocessors. This gives a strong motivation to implement
them as efficiently as possible. However, using a standard (radix-based) representation, no al-
gorithm for parallel multi-precision addition can exist [91]. Thankfully, in certain non-standard
integer representations, parallel addition algorithm does exist, as shown by Avizienis [11] in 1961,
later extended by Chow et al. [38].

Prior to our work [87], there were no attempts to employ a redundant representation to
accelerate homomorphic arithmetic. Other works [124, 66, 132] suggest/implement the standard
addition with carry while the tfhe-rs library [132] further implements arithmetic operations
in a residual system based on the Chinese Remainder Theorem (CRT), their method is covered
theoretically in [13].

In Chapter 3, we present a method that solves this particular problem: it employs the re-
stricted “instruction set” of TFHE to implement parallel addition of (encrypted) multi-precision
integers. Recall that TFHE is only capable of working with fairly short integers (practically up to
8 bits [13]), hence multi-precision is truly needed. On top of parallel addition, other arithmetic
and selected comparison-based operations are proposed and implemented.

3.3 Multi-Key/Multi-Party Homomorphic Encryption

In the constructions discussed so far, the secret (decryption) key is held by a single party. To allow
homomorphic evaluations over data encrypted with keys held by multiple parties—e.g., data may
originate from multiple sources or the secret key is distributed in shares across multiple parties—,
multi-key or multi-party homomorphic encryption comes into play.

• In the multi-key setup, defined by López-Alt et al. [97], parties may generate their keys
independently of each other, and the result of the homomorphic evaluation is only encrypted
with the keys of parties whose ciphertexts were involved in the computation.

• The multi-party scenario is a special case of threshold encryption where the threshold equals
the number of parties. In this setup, parties need to collaborate to obtain the common
public key, and also the result can only be decrypted using the secret keys of all parties.

First attempts to design an FHE scheme with multiple parties [40, 24, 29] are rather impractical
(and never implemented). The first practical11 multi-key scheme is proposed by Chen et al. [27].
Recently, a scheme by Kim et al. [79] improves the evaluation complexity from quadratic to
quasi-linear in the number of involved parties.

In Chapter 4, we propose a new (somehow hybrid) multi-key scheme based on TFHE. Not
only achieves our scheme linear evaluation time with a lower constant factor than [79], it also

11Proof-of-concept implementation is available at https://github.com/ilachill/MK-TFHE.

https://github.com/ilachill/MK-TFHE
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enjoys a low error growth which allows us to practically instantiate our scheme with up to 128
parties, compared to maximums of 16 and 32 for [27] and [79], respectively. Last but not least,
we show that the scheme by Kim et al. suffers from an enormous error growth due to FFT which
is used in their proof-of-concept implementation12.

12Available at https://github.com/SNUCP/MKTFHE.

https://github.com/SNUCP/MKTFHE
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Chapter 1

A Guide to the TFHE Scheme

Also referred to as the holy grail of cryptography, Fully Homomorphic Encryption (FHE) allows
for arbitrary calculations over encrypted data. First proposed as a challenge by Rivest et al.
in 1978, the existence of an FHE scheme has only been shown by Gentry in 2009. However,
until these days, existing general-purpose FHE schemes suffer from a substantial computational
overhead, which has been vastly reduced since the original construction of Gentry, but it still
poses an obstacle that prevents a massive practical deployment of FHE. The TFHE scheme by
Chillotti et al. represents the state-of-the-art among general-purpose FHE schemes. This chapter
aims to serve as a thorough guide to the TFHE scheme, with a strong focus on the reliability of
computations over encrypted data, and help researchers and developers understand the internal
mechanisms of TFHE in detail. In particular, it may serve as a baseline for future improvements
and/or modifications of TFHE or related schemes.

1.1 Introduction to (T)FHE

Fully Homomorphic Encryption (FHE), first discovered by Gentry [58] in 2009, enables the
evaluation of an arbitrary (computable) function over encrypted data. As a basic use-case of
FHE, we outline a secure cloud-aided computation: we describe how a user (U) may delegate
a computation over her sensitive data to a semi-trusted cloud (C):

• U generates secret keys sk, and (public) evaluation keys ek, which she sends to C;

• U encrypts her sensitive data d with sk, and sends the encrypted data to C;

• C employs ek to evaluate function f , homomorphically, over the encrypted data (i.e.,
without ever decrypting it), yielding an encryption of f(d), which it sends back to U;

• U decrypts the message from C with sk, obtaining the desired result: f(d) in plain.

We illustrate the concept of homomorphic evaluation of a function over the plain vs. over the
encrypted data in Figure 1.1.

Among existing FHE schemes, two main means of homomorphic evaluation can be identified:
(i) the leveled approach (e.g., [23, 33]), and (ii) the bootstrapped approach (e.g., [58, 35]), while
a combination of both is also possible [30]. The leveled approach (i) is particularly useful for
functions that are represented by an evaluation circuit of limited depth which is known in advance.
After evaluating it, no additional operation can be performed with the result, otherwise, the
data might be corrupted. Based on the circuit’s depth and other properties, parameters must be

1



2 CHAPTER 1. A GUIDE TO THE TFHE SCHEME

Plain data d
FHE encryption−−−−−−−−−−→ Encrypted data Encr(d)

↓ ↓
User evaluate f evaluate f homomorphically Cloud

↓ ↓
Plain result f(d)

FHE decryption←−−−−−−−−−− Encrypted result Encr
(
f(d)

)
Figure 1.1: Illustration of an evaluation of function f over the plain and over the encrypted data
in the User’s and in the Cloud’s domain, respectively. In both ways, the same result is obtained.

chosen accordingly. On the other hand, for the bootstrapped approach (ii), there is no limit on
the circuit depth, which also means that the circuit does not need to be known in advance. The
TFHE scheme by Chillotti et al. [35] is currently considered as the state-of-the-art FHE scheme
that follows the bootstrapped approach.

For a basic overview of the evolution of FHE schemes, we refer to a survey by Acar et al. [2]
(from 2018; in particular for implementations, much progress has been made since then).

1.1.1 Basic Overview of TFHE

First, let us provide a high-level overview of TFHE and its abilities, and let us outline its structure.

Similar to many other FHE schemes, the TFHE scheme builds upon the Learning With Errors
(LWE) encryption scheme, first introduced by Regev [113]. There are two important properties
of LWE: additive homomorphism, and the presence of noise; let us comment on either:

Additive homomorphism: LWE ciphertexts, also referred to as samples, are represented by
vectors of (additive) group elements. By the nature of LWE encryption, LWE samples are
additively homomorphic, which means that—roughly speaking—for two samples c1 and
c2, which encrypt respectively µ1 and µ2, it holds that c1 + c2 encrypts µ1 + µ2.

Noise: To achieve security, LWE samples need to contain a certain amount of noise. However,
with each homomorphic addition, noises also add up, which may ultimately destroy the
accuracy/correctness of the plaintext.

Like many other FHE schemes, TFHE deals with the noise growth by defining a procedure referred
to as bootstrapping. Bootstrapping aims at resetting the noise to an—on average—fixed level.
Otherwise, if the noise exceeded a certain bound, the probability of correct decryption would
drop rapidly.

To sum up, TFHE offers two operations: (i) homomorphic addition, and (ii) bootstrapping. Ho-
momorphic addition (i) is a very cheap operation, however, the noise accumulates. On the other
hand, bootstrapping (ii) is a costly operation, but it refreshes the noise and—in case of TFHE—it
is inherently capable of evaluating homomorphically a custom Look-Up Table (LUT), which can
be moreover encrypted. These two operations are sufficient for the full homomorphism, i.e., the
possibility to evaluate any computable function over encrypted data. In Figure 1.2, we introduce
the TFHE gate, which comprises (i) homomorphic addition(s), grouped into a homomorphic dot-
product with integer weights, followed by (ii) TFHE bootstrapping. For bootstrapping, we outline
its internal structure that consists of four sub-operations: KeySwitch, ModSwitch, BlindRotate
and SampleExtract.
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Figure 1.2: TFHE gate: homomorphic addition(s) and bootstrapping, which comprises four sub-
operations. The sample (b′,a′) may proceed to another TFHE gate, or it may go to the output
and decryption.

1.1.2 Aim of this Chapter

The aim of this chapter is to provide the reader—mainly intended for FHE researchers and
developers—with a comprehensive and intelligible guide to the TFHE scheme. In particular, in
this chapter, we thoroughly analyze the noise growth of TFHE’s operations, which is decisive for
the correctness and reliability of homomorphic evaluations in the wild. Besides that, we comment
on the purpose of selected tricks that are intended to decrease the noise growth. Therefore, our
TFHE guide is supposed to provide useful insights for any prospective improvements and/or
design modifications to TFHE(-related schemes).

Related Work The original full paper on TFHE [35] is followed by other papers that recall
or redefine TFHE in numerous ways [66, 37, 27, 93], while changing the notation as well as the
approach to describe the bootstrapping procedure.

Joye [75] provides a SoK paper on TFHE, supported by many examples with concrete values.
Our TFHE guide complements their SoK in particular by providing a thorough noise growth
analysis, which is one of its pillars.

1.1.3 Chapter Outline

We introduce building blocks of the TFHE scheme in Section 1.2. Next, in Section 3.2.1, we
describe the construction of TFHE in detail with a particular focus on noise propagation. We
further focus on the correctness of homomorphic evaluation in Section 1.4. In Section 1.5, we
briefly comment on implementation aspects of TFHE. We conclude this chapter in Section 4.6.
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1.2 Building Blocks of TFHE

In this section, we first briefly outline flavors of LWE, we outline a technical notion, referred to as
the concentrated distribution, and we provide a list of symbols and notation. Then, we introduce
in detail a generalized variant of LWE, denoted GLWE, and we comment on its additive homo-
morphism, security and other properties. Finally, we define the decomposition operation that we
use to build up a compound scheme called GGSW, which enables multiplicative homomorphism.

The Torus and the Ring Variant of LWE Internally, TFHE employs two variants of LWE,
originally referred to as TLWE and TRLWE, which stand for (Ring) LWE over the Torus. In
a nutshell, let us outline what torus and ring mean in this context.

The torus is the underlying additive group of LWE that is used in TFHE, denoted T and
defined as T := R/Z with the addition operation. The torus can be represented by the interval
[0, 1), with each addition followed by reduction mod 1, e.g., 0.3+0.8 = 0.1. Since T is an abelian
group, we may perceive T as an algebraic Z-module, i.e., we further have scalar multiplication
Z× T→ T, defined as repeated addition.

The ring variant of LWE, introduced by Lyubashevsky et al. [98], extends the module’s ring to
a ring of polynomials with a bounded degree. In TFHE, we will work with the ring Z[X]/(XN+1),
denoted Z(N)[X], with N a power of two. Then, the underlying Z(N)[X]-module comprises torus
polynomials modulo XN + 1, denoted T(N)[X].

Concentrated Distribution Unlike (scalar) multiplication, the division of a torus element
by an integer cannot be defined without ambiguity, the same holds for the expectation of a dis-
tribution over the torus. However, this can be fixed for a concentrated distribution [35], which is
a distribution with support limited to a ball of radius 1/4, up to a negligible subset. For further
details, we refer to [35].

Symbols & Notation Throughout this chapter, we use the following symbols & notation; we
denote:

• B := {0, 1} ⊂ Z the set of binary coefficients,

• T the additive group R/Z, referred to as the torus (i.e., real numbers modulo 1),

• Zn the quotient ring Z/nZ (or its additive group),

• ⌊·⌉ : R→ Z the standard rounding function,

• for vector v, vi stands for its i-th coordinate,

• ⟨u,v⟩ the dot product of two vectors u and v,

• M (N)[X] the additive group (or ring) of polynomials modulo XN +1 with coefficients from
M , where N ∈ N is a power of two,

• for polynomial p(X), p(i) stands for the coefficient of p at Xi,

• for vector of polynomials w, w
(j)
i stands for the coefficient at Xj of the i-th coordinate of

w,

• ∥p(X)∥22 the square of the l2-norm of polynomial p(X) (i.e., the sum of squared coefficients),

• a
$←M the uniform draw of random variable a from M ,
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• a
α←M the draw of random variable a from M with distribution α (for α ∈ R, we consider

the zero-centered /discrete/ Gaussian draw with standard deviation α),

• E[X], Var[X] the expectation and the variance of random variable X, respectively.

1.2.1 Generalized LWE

First, we define a generalized variant of the LWE scheme, referred to as GLWE, which com-
bines plain LWE with its ring variant. We define GLWE solely over the torus, although another
underlying structure might be used, e.g., Zq with prime q that is taken in some other schemes.

Definition 1.1 (GLWE Sample). Let k ∈ N be the dimension, N ∈ N, N a power of two, be the
degree, α ∈ R+

0 be the standard deviation of the noise, and let the plaintext space P = T(N)[X],
the ciphertext (sample) space C = T(N)[X]1+k and the key space K = Z(N)[X]k. For µ ∈ P
and z

χ← K, where χ is a key distribution, we call c̄ = (b,a) =: GLWEz(µ) the GLWE sample of
message µ under key z, if

b = µ− ⟨z,a⟩+ e, (1.1)

where a
$← T(N)[X]k and e

α← T(N)[X].

If a = 0, we call the sample trivial, and if µ = 0, we call the sample homogeneous. We denote
z̄ := (1, z) ∈ Z(N)[X]1+k, referred to as the extended key. For N = 1, we have the (plain) LWE
sample and we usually denote its dimension by n. We also generalize GLWE sampling to vector
messages, yielding a matrix of 1 + k columns, with one GLWE sample per row.

GLWE sampling is actually encryption: in TFHE, plaintext data is encrypted using the plain
LWE, while GLWE is used internally. To decrypt, we apply the GLWE phase function (followed
by rounding if applicable).

Definition 1.2 (GLWE phase). Let k, N and α be GLWE parameters as per Definition 1.1, and
let c̄ = (b,a) be a GLWE sample of µ under GLWE key z. We call the function φz : T(N)[X] ×
T(N)[X]k → T(N)[X],

φz(b,a) = b+ ⟨z,a⟩ = ⟨z̄, c̄⟩, (= µ+ e), (1.2)

the GLWE phase. We call the sample c̄ valid iff the distribution of φz(c̄) is concentrated. Finally,
for valid sample c̄, we call msgz(c̄) := E

[
φz(c̄)

]
the message of c̄, which equals µ, since the noise

is zero-centered and concentrated.

Remark 1.1. GLWE phase returns µ+ e, i.e., the original message with a small amount of noise.
We may define GLWE decryption as either:

1. an erroneous decryption via GLWE phase – we accept some errors in the decrypted result,
which might be considered harmless or even useful, e.g., in the context of differential
privacy [51]; or

2. a correctable decryption – for this purpose, we need to control the amount of noise and
follow GLWE phase by an appropriate rounding step (relevant for this chapter); or

3. an expectation of GLWE phase, i.e., msgz(c̄) – this is useful for formal definitions and
proofs.

In the following theorem, we state the additively homomorphic property of GLWE.
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Theorem 1.1 (Additive Homomorphism). Let c̄1, . . . , c̄n be valid and independent GLWE sam-
ples under GLWE key z and let w1, . . . , wn ∈ Z(N)[X] be integer polynomials (weights). In case
c̄ =

∑n
i=1 wi · c̄i is a valid GLWE sample, it holds

msgz

( n∑
i=1

wi · c̄i
)
=

n∑
i=1

wi ·msgz(c̄i) (1.3)

and for the noise variance

Var[c̄] =
n∑

i=1

∥wi∥22 · Var[c̄i]. (1.4)

If all samples c̄i have the same variance V0, we have Var[c̄] = V0 ·
∑n

i=1∥wi∥22 and we define

ν2 :=

n∑
i=1

∥wi∥22, (1.5)

referred to as the quadratic weights. We refer to the operation (1.3) as the (homomorphic) dot
product (DP).

Discrete-Valued Plaintext Space

As outlined in Remark 1.1, item 2, in this chapter, we focus on a variant of GLWE that restricts
its messages to a discrete subspace of the entire torus plaintext space. Denoted by M, we
refer to the plaintext subspace as the cleartext space, leaving the term plaintext space for torus
polynomials.

In this chapter, we only focus on the cleartext space of the formM = 1
2π Z/Z ⊂ T (a subgroup

of T isomorphic to Z2π ), where we refer to the parameter π as the cleartext precision. In terms of
Definition 1.2, if it holds for the noise e that |e| < 1/2π+1, then rounding of the value φz(b,a) ∈ T
to the closest element ofM leads to the correct decryption/recovery of µ.

Discretized Torus

For the sake of simplicity of the noise growth analysis, TFHE is defined over the continuous
torus, whereas in implementation, a discretized finite representation must be used instead. To
cover the unit interval uniformly, TFHE implementations use an integral type—usually 32- or
64-bit (u)int—to represent a torus element, where we denote the bit-precision by τ . E.g., for
τ = 32-bit uint32 type, t ∈ uint32 represents t/232 ∈ T ∼ [0, 1), where the denominator is
usually denoted by q = 2τ (in this case q = 232). Using such a representation, we effectively
restrict the torus T to its submodule Tq := q−1Z/Z ⊂ T.

Distribution of GLWE Keys

For the coefficients of GLWE keys, a ternary distribution χp : (−1, 0, 1) → (p, 1 − 2p, p), param-
eterized by p ∈ (0, 1/2), can be used. In particular, uniform ternary distribution is suggested
by a draft of the homomorphic encryption standard [7], and it also is widely adopted by main
FHE libraries like HElib [72], Lattigo [101], SEAL [99], or HEAAN [121], although they im-
plement other schemes than TFHE. With a fixed GLWE dimension and carefully chosen p, the
distribution χp may achieve better security as well as lower noise growth than uniform binary
U2 : (0, 1) → (1/2, 1/2). On the other hand, it is worth noting that for “small” values of p, such
keys are also referred to as sparse keys (in particular with a fixed/limited Hamming weight), and
there exist specially tailored attacks [31, 123]; we discuss security in the following paragraphs.
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Figure 1.3: Bit-security of LWE as estimated by lattice-estimator by Albrecht et al. [8, 9]
(commit ID f9dc7c), using underlying group size q = 264. Interpolated between grid points.
Raw data can be found at https://github.com/fakub/LWE-Estimates.

Note 1.2. In TFHE, one instance of LWE and one of GLWE is employed. For LWE keys, usually,
uniform binary distribution is used for technical reasons, although attempts to extend the key
space can be found in the literature [76]. For GLWE keys, a ternary distribution can be used
immediately.

Security of (G)LWE

Estimation of the security of (G)LWE encryption is a complex task: it depends on (i) the size
of the secret key (i.e., the dimension and/or the polynomial degree), (ii) the distribution of its
coefficients, (iii) the distribution of the noise, which is usually given by its standard deviation,
denoted by α, and (iv) the underlying structure (usually integers modulo q). As a rule of thumb,
it holds that the longer key, the better security, as well as the greater noise, the better security.

A state-of-the-art tool that implements an LWE security assessment is known as lattice-

-estimator – a tool by Albrecht et al. [8, 9]. Authors aim at considering all known relevant
attacks on LWE, including those targeting sparse keys, as outlined previously. A plot that shows
selected results of lattice-estimator can be found in Figure 1.3. A code example of the usage
of lattice-estimator as well as raw data that were used to generate the figure can be found
in our repository1.

1https://github.com/fakub/LWE-Estimates

https://github.com/fakub/LWE-Estimates
https://github.com/fakub/LWE-Estimates
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Balancing Parameters

The downside of increasing the key size (improves security) is longer evaluation time (reduces
performance), similarly increasing the amount of noise (improves security) leads to an error-
prone evaluation (reduces correctness). Therefore, the goal is to find the best balance within the
triangle of somehow orthogonal goals:

security

performance

correctness

The problem of finding such a balance is thoroughly studied by Bergerat et al. [13], who provide
concrete results that aim at achieving the best performance, without sacrificing security, nor
correctness.

1.2.2 Decomposition

To enable homomorphic multiplication and at the same time to reduce its noise growth, torus
elements get decomposed into a series of integers. The operation is parameterized by (i) the
decomposition base (denoted B; we only consider B = 2γ a power of two), and (ii) by the
decomposition depth (denoted d). We further denote

g := (1/B, 1/B2, . . . , 1/Bd), (1.6)

referred to as the gadget vector. We define gadget decomposition of µ ∈ T ∼ [−1/2, 1/2) ⊂ R,
denoted g−1(µ), as the base-B representation of µ̃ = ⌊Bd · µ⌉ ∈ Z (multiplied in R) in the
alphabet [−B/2,B/2) ∩ Z. Note that such decomposition is unique. For the decomposition error,
it holds that ∣∣µ− ⟨g,g−1(µ)⟩

∣∣ ≤ 1/2Bd. (1.7)

We denote

ε2 :=
1

12B2d
and (1.8)

VB :=
B2 + 2

12
(1.9)

the variance of the decomposition error and the mean of squares of the alphabet [−B/2,B/2) ∩ Z
(n.b., we assume B is even), respectively; for both we consider a uniform distribution. Note that
with the alphabet [0, B) ∩ Z, the respective value of VB would have been higher, i.e., this is one
of the little tricks to reduce later the noise growth.

For k ∈ N, k ≥ 2, we further denote

Gk := Ik ⊗ g, (1.10)

where Ik is identity matrix of size k and⊗ stands for the tensor product, i.e., we haveGk ∈ Tkd×k,
referred to as the gadget matrix.

We generalize g−1 to torus vectors and torus polynomials (and their combination) in a natural
way: for vector t ∈ Tn, g−1(t) is the concatenation of respective component-wise decompositions
g−1(ti), for polynomial t ∈ T(N)[X], g−1(t) proceeds coefficient-wise, i.e., the output is a vector
of integer polynomials. Finally, for a vector of torus polynomials, g−1 outputs a concatenation
of respective vectors of integer polynomials.
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1.2.3 GGSW & Homomorphic Multiplication

Unlike GLWE, which encrypts torus polynomials, GGSW encrypts integer polynomials. The main
aim of GGSW is to allow homomorphic multiplication of a (GLWE-encrypted) torus polynomial by
a (GGSW-encrypted) integer polynomial. The multiplicative homomorphic operation is referred
to as the External Product, denoted by ⊡ : GGSW × GLWE→ GLWE.

Definition 1.3 (GGSW Sample). Let k, N and α be the parameters of a GLWE instance with
key z. We call C̄ = Z̄ + m ·G1+k, C̄ ∈ T(N)[X](1+k)d,1+k, the GGSW sample of m ∈ Z(N)[X]
if rows of Z̄ are mutually independent, homogeneous GLWE samples under the key z. We call
the sample valid iff there exists m ∈ Z(N)[X] such that each row of C̄ − m · G1+k is a valid
homogeneous GLWE sample.

Definition 1.4 (External Product). For GLWE sample c̄ = (b,a) ∈ T(N)[X]1+k and GGSW
sample Ā of corresponding dimensions, we define the External Product, ⊡ : GGSW × GLWE →
GLWE, as

g−1(c̄)T · Ā =: Ā⊡ c̄. (1.11)

In the following theorem, we state the multiplicative homomorphic property of the external
product and we evaluate its excess noise.

Theorem 1.2 (Correctness & Noise Growth of ⊡). Given GLWE sample c̄ of µc ∈ T(N)[X]
under GLWE key z and noise parameter α, and GGSW sample Ā of mA ∈ Z(N)[X] under the
same key and noise parameters, external product returns GLWE sample c̄′ = Ā⊡ c̄, which holds
excess noise e⊡, given by

〈
z̄, c̄′

〉
= mA ·

〈
z̄, c̄
〉
+ e⊡, for which it holds

Var[e⊡] ≈ dNVBα
2(1 + k)

amplified GGSW noise

+

+ ∥mA∥22 · ε2(1 + kNVz)

decomp. errors

, (1.12)

where Vz is the variance of individual coefficients of the GLWE key z and other parameters
are as per previous definitions. If e⊡ and the noise of c̄ are “sufficiently small”, c̄′ encrypts
msgz(c̄

′) = mA · µc, i.e., external product is indeed multiplicatively homomorphic.

Proof. Find the proof in Appendix B.1.

1.3 Constructing the TFHE Scheme

By far, there are two issues with (G)LWE:

1. As shown in Theorem 1.1, each additive homomorphic operation over (G)LWE samples leads
to noise growth in the resulting aggregate sample, which limits the number of additions
and which may also lead to incorrect results if the noise grows “too much”.

2. Besides that, no homomorphic operation other than addition has been defined yet, which
is not sufficient to achieve the full homomorphism.

The procedure referred to as bootstrapping aims at resolving them both at the same time: while
refreshing the noise to a certain, constant-on-average level, bootstrapping also inherently evalu-
ates a function, referred to as the bootstrapping function, represented by a Look-Up Table (LUT).
This makes TFHE fully homomorphic.
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SampleExtr

high noise,

high dim.

refreshed

noise

(after dot-
-product)

T-LWE Z2N -LWE
KeySwitch

reduce
dimension

T-LWE
ModSwitch

↑

“highest”

noise

Bootstrapping:

BlindRotate

T-LWE

T-GLWE

scale &
round to
integers

holds LUT
↓

control
blind-rotation

(∼ Z2N -LWE phase)

T-GLWE

extract
constant
term

“rotated” LUT
↓

(desired value
at const. term)

LUT eval. &
noise refresh

Figure 1.4: Outline of the internal structure of TFHE’s bootstrapping. The aim of KeySwitch
is to improve performance, whereas BlindRotate (inside the gray box) evaluates the LUT and
refreshes the noise.

Note 1.3. An approach that clearly achieves the full homomorphism is presented in the original
paper by Chillotti et al. [35], where authors define several logical gates, including ¬, ∨, and ∧.
We refer to this variant as the binary TFHE, however, in this chapter we rather focus on the
variant of TFHE with a discrete multi-value cleartext space Z2π , as outlined in Section 1.2.1.
Binary TFHE might then be perceived as a special case.

As already outlined in Figure 1.2, TFHE gate is a combination of a homomorphic dot-product
(cf. Theorem 1.1) and the bootstrapping procedure, which consists of four algorithms: KeySwitch,
ModSwitch, BlindRotate and SampleExtract; find a more detailed illustration of bootstrapping in
Figure 1.4. In the rest of this section, we discuss each algorithm in detail (except ModSwitch,
which we cover together with BlindRotate) and we combine them into the Bootstrap algorithm.

According to the results of Bergerat et al. [13], it shows that in most cases, more efficient
TFHE parameters can be found if dot-product is moved before key-switching (originally proposed
by Bourse et al. [20]), as opposed to the original variant of TFHE [35]. I.e., in the new variant,
key-switching appears at the beginning of bootstrapping, whereas in the original variant, key-
switching is the last step. Authors of [13] also consider a variant that omits key-switching, but
they do not find it more efficient either. Hence, we describe solely the new, re-ordered variant
with key-switching in this chapter.

1.3.1 Key-Switching

The first step towards refreshing the noise, which happens in blind-rotate, is key-switching. Since
blind-rotate is a demanding operation, the aim of key-switching is to reduce the dimension of the
input sample. Attempts to omit key-switching were also tested by Bergerat et al. [13], however,
achieving a poorer performance than the variant with key-switching.

The key-switching operation, denoted KeySwitch, effectively changes the encryption key of
LWE sample (b′,a′) from LWE key s′ ∈ Bn′

to LWE key s ∈ Bn. Besides the input LWE sample,
KeySwitch requires a series of key-switching keys, while the j-th key is defined as

KSj := LWEs(s
′
j g

′), j ∈ [1, n′], (1.13)

where g′ is a gadget vector given by decomposition base B′ and depth d′, and where each
component of s′j g

′ produces one LWE sample, independent from others. I.e., KSj ∈ Td′,1+n is
interpreted as a matrix, where rows are actual LWE samples. We denote the set of key-switching
keys from s′ to s as KSs′→s := (KSj)

n′

j=1. Note that key-switching keys consist of LWE samples
and they can therefore be published as a part of evaluation keys.

Given LWE sample (b′,a′) ∈ T1+n′
of µ under s′, key-switching keys KSs′→s, generated with
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gadget vector g′, we define key-switching as

KeySwitchs′→s(b
′,a′) = (b′,0)−

n′∑
j=1

g′−1(a′j)
T · KSj , (1.14)

which returns an LWE sample of µ under s. Note that in fact, KeySwitch homomorphically
evaluates the phase function. In the following theorem, we evaluate the excess noise induced by
KeySwitch.

Theorem 1.3 (Correctness & Noise Growth of Key-Switching). Given LWE sample c̄′ of µ ∈ T
under LWE key s′ and key-switching keys KSs′→s, encrypted with noise parameter α′, KeySwitchs′→s

returns LWE sample c̄, which holds excess noise eKS, given by
〈
s̄, c̄
〉
=
〈
s̄′, c̄′

〉
+ eKS, for which it

holds
Var[eKS] ≈ n′Vs′ε

′2

decomp. errors

+ n′d′VB′α′2

amplif. KS noise

, (1.15)

where ε′2 and VB′ are as per (1.8) and (1.9), respectively, with B′ and d′, Vs′ is the variance of
individual coefficients of the LWE key s′, and other parameters are as per previous definitions. If
eKS and the noise of c̄′ are “sufficiently small”, it holds µ = msgs(c̄) = msgs′(c̄

′), i.e., KeySwitch
indeed changes the key, without modifying the message.

Proof. Find the proof in Appendix B.3.

1.3.2 Blind-Rotate

The blind-rotate operation, denoted BlindRotate, is the cornerstone of bootstrapping since this
is where the noise gets refreshed. It combines two ingredients: the decryption (phase) function
φs(b,a) = µ+ e (cf. (1.2)), and the multiplicative homomorphism of GGSW×GLWE samples (cf.
Theorem 1.2).

Internally, blind-rotate evaluates a relation reminiscent of the phase function φs(b,a). How-
ever, as such, the phase function does not get rid of the noise – indeed, the error term re-
mains present in the original amount; cf. (1.2). Therefore, a rounding step—as outlined in
Section 1.2.1—must be included, too. Blind-rotate achieves rounding using a staircase LUT, i.e.,
a LUT that encodes a staircase function, where the “stairs” are responsible for rounding. Such
a LUT is provided in a form of a (possibly encrypted) polynomial, which is referred to as the test
vector, denoted by tv(X), whose coefficients represent the LUT values.

Roughly speaking, we aim at multiplying tv(X) by X−M , where M holds somehow the
erroneous phase µ + e. This “shifts” the coefficients of tv(X) by M positions towards lower
powers ofX (we can think of discarding the coefficients that underflow for now). Then, evaluating
tv(X) ·X−M at X = 0 (i.e., taking the constant term of the product) yields the originally M -th
coefficient of tv(X).

In the following paragraphs, we outline more concretely how a LUT can be encoded into a torus
polynomial, which we further reduce modulo XN + 1, so that it can be taken as a plaintext for
a (possibly trivial) GLWE sample.

Encoding a LUT into a Polynomial Modulo XN + 1

The product of degree-N polynomial tv(X) and monomial Xm (with 0 ≤ m < N) holds the
coefficients of tv shifted by m positions towards higher degrees. Reducing the product tv(X)·Xm

modulo XN +1 brings the coefficients of powers higher than or equal to N back to lower powers
(namely by N positions) while flipping their sign (e.g., aXN+k is reduced to −aXk). Hence,
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multiplication of a polynomial by a monomial modulo XN +1 yields a negacyclic rotation. These
are the consequences for LUT evaluation in blind-rotate:

• multiplying tv(X) by X−m mod XN + 1 with 0 ≤ m < N results in moving the m-th
coefficient of tv(X) to the constant position, which is then taken as a result of the LUT;

• for N ≤ m < 2N , the result equals to the (m − N)-th coefficient of tv(X) with a flipped
sign, due to the negacyclic rotation; and

• for greater m, it is worth noting that the period is 2N .

Since we assume that tv is a torus polynomial, we have LUT : Z2N → T and it holds

LUT(N +m) = −LUT(m), m ∈ [0, N), (1.16)

i.e., only the first N values of a LUT need to be provided explicitly, while the other N values
are given implicitly by the negacyclic extension, and the rest is periodic with a period of 2N .
Encoded in a test vector tv ∈ T(N)[X] as

tv(m) = LUT(m), m ∈ [0, N), (1.17)

the LUT is evaluated at m ∈ Z as(
X−m · tv(X) mod XN + 1

)(0)
=

= (−1)⌊m/N⌋ · tv(X)(m mod N) =

= LUT(m mod 2N). (1.18)

We illustrate encoding of a LUT into a polynomial (test vector) tv(X) in Figure 1.5. Next, we
outline the overall idea of blind-rotate.

Encoding the Stairs Let us put forward explicitly the process of encoding the desired (ne-
gacyclic) bootstrapping function f̄ : Z2π → Z2π (which acts on cleartexts) into the respective
LUT : Z2N → T, represented by the test vector tv(X), including the “stairs”:

LUT(k) = f̄
(⌊

k · 2
π

2N

⌉)
, k ∈ [0, 2N). (1.19)

We provide an illustration of such an encoding in Figure 1.6. We recall that only the LUT values
for k ∈ [0, N) are actually encoded into the test vector; cf. (1.17), (1.18) and Figure 1.5.

Recall that the “stairs” are supposed to be responsible for rounding, which in turn refreshes
the noise. From 1.19, it follows that the width of such a stair is 1/2π. By Emax, defined as

Emax :=
1

2π+1
, (1.20)

we denote the maximum of error magnitude that leads to the correct LUT evaluation; cf. Fig-
ure 1.6.

Note 1.4. Bootstrapping cannot be applied to only refreshing the noise, i.e., setting identity as
the bootstrapping function, since identity is not negacyclic. A workaround must be made, with
respect to a particular use case. Specifically, many existing implementations prepend an extra
bit of padding, which they set to zero and do not use it. Note that such implementations need
to somehow prevent possible overflows of homomorphic additions.
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tv(X) = 0 +1X −1X2 +2X3 (mod X4 + 1)

. . . provided LUT values

. . . negacyclic extension

Rotation by X−m with m = 3

X−3 · tv(X) = 2 +0X −1X2 +1X3 (mod X4 + 1)

Figure 1.5: Illustration of encoding of a LUT into a polynomial mod XN + 1 that is used in
blind-rotate. We set N = 4 and we evaluate at m = 3, which means “rotation” by X−3. The
desired output value LUT(3) is emphasized in bold. N.b., in this illustration, we omit the “stairs”
for simplicity.
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2× Emax = 1
2π

sta
irc.

LU
T pre

c.
1
2N

clea
rte

xt
pre

c.
1
2π

. . . f̄ : Z2π → Z2π

. . . LUT : Z2N → T

Figure 1.6: Relation between a negacyclic bootstrapping function f̄ and respective staircase LUT
(illustrative). If the evaluated value does not leave its “stair”, i.e., the input’s error magnitude
is lower than Emax, LUT gets evaluated correctly.

Idea of Blind-Rotate

First, let us get back to the phase function, which is responsible for decryption. Originally, with
a LWE sample (b,a) to be bootstrapped, φs(b,a) is (i) evaluated over the torus, and (ii) it is
using known bits of the key s.

For (i): based on previous observations, we first rescale & round the sample (b,a) ∈ T1+n

to the Z2N domain, which preserves periodicity. Therefore, we calculate the scaled and rounded
value of the phase function as

m̃ = b̃+ ⟨s, ã⟩, (1.21)

where b̃ = ⌊2Nb⌉ and ãi = ⌊2Nai⌉, which is also referred to as modulus switching. As outlined
previously, we aim at performing the evaluation of m̃ as per (1.21) in powers of X; cf. (1.18).

For (ii): the secret key s is clearly not known to the evaluator (the cloud). Instead, bits si of
the key are provided in a form of GGSW samples BKi, encrypted with GLWE key z, and referred
to as the bootstrapping keys, denoted by BKs→z = (BKi)

n
i=1.

From (i) and (ii), it follows that given the sample (b,a) and the encrypted bits of the key s
(bootstrapping keys), we can apply homomorphic operations to obtain the (encrypted) monomial
Xm̃ modulo XN +1, which we employ for LUT evaluation as per (1.18). I.e., the test vector gets
blindly rotated.

In the following paragraphs, we provide a full technical overview of modulus-switching and
blind-rotate, respectively.

Modulus-Switching

As outlined, blind-rotate is preceded by a technical step, referred to as modulus-switching and
denoted by ModSwitch, which is parameterized by N ∈ N. ModSwitchN , which inputs LWE
sample (b,a) ∈ T1+n under LWE key s and outputs LWE sample (b̃, ã) ∈ Z1+n

2N under the same
key, is defined as

ModSwitchN (b,a) =
(
⌊2Nb⌉, ⌊2Nai⌉ni=1

)
=: (b̃, ã), (1.22)

where multiplications of type 2N · ai are performed in R (using any unit interval for T), then
rounding brings result back to Z, from where we easily obtain Z2N .
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Due to rounding, additional noise is induced by ModSwitch; we evaluate it in the following
lemma.

Lemma 1.4 (Noise Growth of Modulus-Switching). ModSwitchN induces an excess noise, given
by 1/2N · ⟨s̄, (b̃, ã)⟩ = ⟨s̄, (b,a)⟩+ eMS, for which it holds

Var[eMS] =
1 + n/2

48N2
, (1.23)

where n is the LWE dimension.

Proof. We write

eMS = ⟨(1, s), (b̃/2N − b, ã/2N − a)⟩ =
= b̃/2N − b

∈(−1/4N,1/4N]

+
∑

si · (ãi/2N − ai)

∈(−1/4N,1/4N]

, (1.24)

where each underbraced term is assumed to have a uniform distribution on (−1/4N, 1/4N], i.e.,
the variance of 1/48N2. For si, we have E[s2i ] = 1/2. For independent variables with E[Y ] = 0, it
holds Var[X · Y ] = E[X2] · Var[Y ], which is this case for X = si and Y = ãi/2N − ai. The result
follows.

Description of Blind-Rotate

A description of blind-rotate is given in Algorithm 1. In line 4, if BKi encrypts si = 0, the
line evaluates to (encrypted) ACC = X0·ãi · ACC, if BKi encrypts si = 1, we obtain (encrypted)
X1·ãi · ACC. I.e., after blind-rotation, we obtain an encryption of Xm̃ · tv, where m̃ = ⟨s̄, (b̃, ã)⟩.
Line 4 also mandates si ∈ B, as outlined in Note 1.2, although generalization attempts exist [76].

Algorithm 1 BlindRotate

Input: LWE sample (b,a) of µ ∈ T under LWE key s ∈ Bn, modulus-switched to (b̃, ã) ∈ Z1+n
2N ,

Input: (usually trivial) GLWE sample t̄ ∈ T(N)[X]1+k of tv ∈ T(N)[X] (aka. test vector) under
GLWE key z ∈ Z(N)[X]k,
Input: for i ∈ [1, n], GGSW samples of si under z, referred to as bootstrapping keys, denoted
BKs→z := (BKi)

n
i=1.

Output: GLWE sample of Xm̃ · tv under z, where m̃ = ⟨s̄, (b̃, ã)⟩ ≈ 2Nµ.

1: ACC← X b̃ · t̄ ▷ aka. accumulator
2: for i ∈ [1, n] do
3: ACC← ACC+ BKi ⊡ (X ãi · ACC− ACC)
4: end for
5: return ACC

Remark 1.5. During blind-rotate, the “old” noise is refreshed with a fresh noise, which comes
from the bootstrapping keys and from the (possibly encrypted) test vector – the fresh noise
does not depend on the noise of the input sample. Nevertheless, the “old” noise affects what
value from the test vector is selected (gets rotated to), i.e., at which point the (staircase) LUT is
evaluated; cf. Figure 1.6. We discuss two types of decryption errors later in Section 4.5.

In the following theorem, we evaluate the noise of the output of BlindRotate – i.e., the refreshed
noise, which we denote V0.
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Theorem 1.5 (Correctness & Noise Growth of Blind-Rotate). Given inputs of Algorithm 1,
where bootstrapping keys are encrypted with noise parameter α and test vector is (possibly) en-
crypted with noise parameter αt (i.e., αt = 0 or α), BlindRotate returns the last-step ACC with
noise variance given by

Var[⟨z̄,ACC⟩] ≈ α2
t + ndNVBα

2(1 + k) +

+ nε2(1 + kNVz) =: V0, (1.25)

which we denote by V0, other parameters are as per previous theorems and definitions. If the noise
of ⟨z̄,ACC⟩ is “sufficiently small”, it holds msgz(ACC) = Xm̃ · tv, where m̃ = ⟨s̄, (b̃, ã)⟩ ≈ 2Nµ,
i.e., BlindRotate indeed “rotates” the test vector by the approximate phase of (b,a), scaled to
Z2N .

Proof. Find the proof in Appendix B.2.

1.3.3 Sample-Extract

By far, BlindRotate outputs a GLWE sample of a polynomial (blindly-rotated test vector), which
holds the desired value at its constant term and which is encrypted with a GLWE key. The
goal of SampleExtract is to literally extract a partial LWE sample, which encrypts the constant
term, out of the GLWE sample, which we denote by (b,a) ∈ T(N)[X]1+k (the last-step ACC in
Algorithm 1). Note that a similar thing happens with the key: the new LWE key is also an
“extract” of the original polynomial GLWE key z ∈ Z(N)[X]k. Writing down the constant term
of ⟨z̄, (b,a)⟩, which is a torus polynomial, we obtain

〈
z̄, (b,a)

〉(0)
= b(0) +

k∑
i=1

(
zi(X) · ai(X)

)(0)
=

= b(0) +

k∑
i=1

〈(
z
(0)
i ,−z(N−1)

i , . . . ,−z(1)i

)
i-th partial extr. LWE key z∗

i

,

(
a
(0)
i , a

(1)
i , . . . , a

(N−1)
i

)
i-th partial extr. LWE sample a∗

i

〉
, (1.26)

where we denote the i-th partial extracted LWE key and sample by z∗i ∈ ZN and a∗i ∈ TN ,
respectively. We obtain the full extracted LWE key and sample as their concatenations, denoted
respectively as z∗ ∈ ZkN and (b(0),a∗) ∈ T1+kN , where b(0) is prepended. Note that a∗ is a simple
serialization of polynomial coefficients of a, whereas for z, a rearranging is needed, together with
negative signs. Finally, we have 〈

z̄, (b,a)
〉(0)

=
〈
z̄∗, (b(0),a∗)

〉
, (1.27)

while noise preserves. Note that the extracted key z∗ plays the role of the LWE key s′ that is
supposed to be encrypted in key-switching keys – we compose the four algorithms and we provide
further details in the next section.

1.3.4 TFHE Bootstrapping

Putting the four algorithms together, we obtain the TFHE (Programmable) Bootstrapping algo-
rithm; find it as Algorithm 2, previously outlined in Figure 1.4. It is worth noting that BlindRotate
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(on line 3 of that algorithm) inputs a negative sample: this is due to the LUT encoding that
we use; cf. (1.17) and (1.18), where a negative sign at m is expected, although by Theorem 4.2,
a positive sign appears in the power of X.

Algorithm 2 Bootstrap

Input: LWE sample (b∗,a∗) ∈ T1+kN of µ = m/2π, m ∈ Z2π , under LWE key z∗ ∈ ZkN , extracted
from GLWE key z ∈ Z(N)[X]k,
Input: (possibly trivial) GLWE sample t̄ ∈ T(N)[X]1+k of test vector tv ∈ T(N)[X] under the key
z, where tv encodes negacyclic bootstrapping function f̄ : Z2π → Z2π as per (1.17) and (1.19),
Input: key-switching keys KSz∗→s and bootstrapping keys BKs→z.
Output: LWE sample of f̄(m)/2π under key z∗.

1: (b,a)← KeySwitch
(
(b∗,a∗),KSz∗→s

)
2: (b̃, ã)← ModSwitchN (b,a)
3: (s, r)← BlindRotate

(
(−b̃,−ã), t̄,BKs→z

)
4: return (b′,a′)← SampleExtract

(
(s, r)

)
We provide a summary of parameters in Table 1.1. For an exhaustive technical overview of

blind-rotate, preceded by modulus-switching and followed by sample-extract, we refer to Ap-
pendix B, Figure 9.

Table 1.1: Summary of parameters’ notation. Parameters ε2, ε′2 and VB , VB′ are derived from
respective decomposition parameters; cf. (1.8) and (1.9).

LWE secret key s GLWE secret key z

LWE dimension n GLWE dimension k

GLWE polyn. degree N

LWE noise std-dev α′ GLWE noise std-dev α

KS decomp. base B′ BK decomp. base B

KS decomp. depth d′ BK decomp. depth d

Recall that the noise gets refreshed in BlindRotate (cf. Remark 1.5) and it does not change in
SampleExtract, i.e., the variance of a freshly bootstrapped sample is given by V0 as per (1.25).
N.b., at this point, we do not guarantee the correctness of the output – details will be given in
Section 1.4, where we identify bounds that need to be satisfied so that the bootstrapping function
is evaluated at the correct point.

1.4 Correctness of LUT Evaluation

In this section, we combine the noise growth estimates from the previous section and we derive
a condition for the correct evaluation of the bootstrapping function. As outlined, the noise
propagates throughout various operations, let us provide an overview first.

Overview of Noise Propagation

The noise, which is present in every encrypted sample, evolves during the evaluation of a TFHE
gate, which comprises (i) homomorphic dot-product and (ii) bootstrapping (with its four sub-
operations). Let us comment on either operation:
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Dot-product: Provided that the noise of involved samples is independent, the error variance
of a weighted sum is additive with weights squared (cf. (1.4) in Theorem 1.1).

Bootstrapping: If the noise of the sample-to-be-bootstrapped is smaller than a certain bound,
the blind-rotate step of bootstrapping evaluates the bootstrapping function correctly: i.e.,
the error of m̃ (as per Theorem 4.2 and Algorithm 1) is smaller than the bound Emax; cf.
Figure 1.6. The resulting sample then carries—on average—a fixed amount of noise (inde-
pendent of the original sample), which solely depends on the TFHE parameters (cf. (1.25)
in Theorem 4.2).

In Figure 1.7, we illustrate the error propagation throughout a TFHE gate, where e
(i)
0 denotes

actual noise of the i-th, freshly bootstrapped sample. Note that the overall maximum of relative
average noise is achieved within bootstrapping when the modulus-switched sample (b̃, ã) enters
blind-rotate, which refreshes the noise; cf. Remark 1.5.

e
(1)
0 , e

(2)
0 , . . .

freshly bootstrap-
ped sample(s)

homomorphic−−−−−−−−−→
dot-product

∑
i

e
(i)
0

pre-Bootstrap
(eDP)

Bootstrap︷ ︸︸ ︷
KeySwitch,−−−−−−−→
ModSwitch

eDP + eKS + eMS

pre-BlindRotate (emax),

|emax|
!
<Emax

BlindRotate,−−−−−−−−→
SampleExtract

e′0
bootstrapped

sample

Figure 1.7: Noise propagation from a bunch of freshly bootstrapped samples throughout a TFHE
gate towards a new, freshly bootstrapped sample. If |emax| < Emax, the bootstrapping function
is evaluated correctly.

We denote the maximum error and its variance by emax and Vmax, respectively, and we have

Vmax ≈ ν2max · V0 + VKS + VMS, (1.28)

where ν2max is the maximum of sums of squares of integer weights of dot-products (cf. (1.5)) across
the entire computation, V0, VKS and VMS are respectively the variance of a freshly bootstrapped
sample (cf. (1.25), combined using (1.4)), the variance of the excess noise of key-switching (cf.
(1.15)) and that of modulus-switching (cf. (1.23)). Note that emax is the relative, torus-scaled
error of m̃ ∈ Z2N that enters blind-rotate; cf. Algorithm 2. The magnitude of this error is decisive
for the correctness of the bootstrapping function evaluation as per Figure 1.6.

Note 1.6. Let us outline an intuition that justifies the design where key-switching is moved to the
beginning of bootstrapping (proposed in [20], experimentally shown to be more efficient in [13],
presented in this chapter), as opposed to the original TFHE design [35], where key-switching is
the last step of bootstrapping. The variance of the maximum error of the original variant writes

Vmax ≈ (VBR + VKS

V
(or.)
0

) · ν2 + VMS, (1.29)

whereas in the re-ordered variant, we have

Vmax ≈ VBR

V
(re.)
0

·ν2 + VKS + VMS, (1.30)

where VBR is the variance of the output of BlindRotate. We may notice that the re-ordered variant
is expected to achieve a lower noise growth, in particular for applications with greater ν2. Also,
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note that the re-ordered variant in fact only swaps key-switching and dot-product; let us outline
both, starting after sample-extract:

orig.: (SE)→ KS
V

(or.)
0−−−−→ DP

to bs.−−−→ MS→ . . .

reord.: (SE)
V

(re.)
0−−−→ DP

to bs.−−−→ KS→ MS→ . . .

1.4.1 Correct Evaluation of the Bootstrapping Function

Let us define the quantity κ, which aims at quantifying the probability of correct evaluation of
the bootstrapping function (i.e., |emax| < Emax), as

κ :=
Emax√
Vmax

. (1.31)

The aim of κ is to tell how many times the standard deviation of the maximum error, denoted
σmax =

√
Vmax, fits into the target interval of the size of 2Emax around the expected value.

The probability that a normally distributed random variable falls within the interval of κ times
its standard deviation can be looked-up from standard normal tables (aka. the Z-tables). Note
that by the Central Limit Theorem, we assume a normal distribution for the value of m̃. E.g.,
for κ = 3, we have Pr[·] ≈ 99.73% ≈ 1/370 (aka. rule of 3σ), however, we recommend higher
values of κ (e.g., Bergerat et al. [13] provide their parameters with κ = 4, which gives error rate
≈ 1/15 787). N.b., also the size of the evaluated circuit as well as possible real-world consequences
of an incorrect evaluation shall be taken into account.

From (4.15) and (1.20), we obtain the fundamental condition on the variance of the maximum
error as

Vmax ≤
1

κ2 · 22π+2
, (1.32)

where Vmax can be further broken down by (1.28) and other previous equalities. If the fun-
damental condition is satisfied, the (erroneous) value of m̃ does not leave its “stair” with high
probability (related to κ), and the bootstrapping function f̄ is evaluated correctly; cf. Figure 1.6.

Types of Decryption Errors

Correct blind-rotate does not itself guarantee the correctness of the result after decryption –
indeed, there is a non-zero probability that the freshly bootstrapped sample (or a dot-product
of them) decrypts incorrectly due to the intrinsic LWE noise. Therefore, we define two types of
decryption errors that may occur after a dot-product followed by bootstrapping: one due to LWE
noise (as just outlined), and one due to incorrect blind-rotate.

Fresh Bootstrap Error (Err1) First, let us assume that blind-rotate rotates the test vector
correctly (i.e., |emax| < Emax) and we denote the output LWE sample of bootstrapping as c̄′.
Then, if the distance of ⟨s̄, c̄′⟩ from the expected value is greater than Emax, we refer to this kind
of error as the type-1 error, denoted Err1.

The probability of Err1 relates to the noise of a correctly blind-rotated, freshly bootstrapped
sample, which can be estimated from V0; see (1.25).
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12

3 0

OK

Err1

Err1

Err2

Figure 1.8: Illustration of type-1 and type-2 errors: LUT evaluates correctly and incorrectly to
0 and 3, respectively.

Blind-Rotate Error (Err2) Second, we consider the result of a TFHE gate, i.e., we take a dot-
product of a bunch of independent, freshly bootstrapped samples, with ν2 ≤ ν2max, and we
bootstrap it. Then, if blind-rotate rotates the test vector incorrectly (i.e., |emax| > Emax), we
refer to this kind of error as the type-2 error, denoted Err2. Note that a combination of both
error types may occur2.

The probability of Err2 relates to the error of modulus-switched sample (b̃, ã) that appears
inside bootstrapping, and it can be estimated from Vmax; see (1.28). We outline both error types
in Figure 1.8.

Corollary 1.6. For the probabilities of type-1 and type-2 errors, by (1.28) we have

Pr[Err1] < Pr[Err2]. (1.33)

For common choices of parameters, Pr[Err1] can be neglected. I.e., we may use the fundamental
condition (1.32) to estimate the probability of incorrect evaluation of a single TFHE gate.

1.4.2 Parameter Constraints

Previously, we justified the use of the fundamental condition (1.32) to make error probability
estimates. Next, we identify four high-level parameters that aim at characterizing the properties
of an instance of TFHE. Finally, we combine the fundamental condition to obtain a relation
between the four high-level parameters and actual TFHE parameters (like LWE dimension or
noise amplitude).

Characteristic Parameters

Given a usage scenario, an instance of TFHE can be characterized by the following four (input)
parameters:

1. cleartext space bit-precision, denoted by π (cf. Section 1.2.1);

2. quadratic weights, denoted by ν2 (cf. Theorem 1.1, we take maximum of computation);

3. bit-security level, denoted by λ; and

4. bootstrapping correctness, denoted by η := Pr[Err2] (cf. Corollary 1.6).

Let us provide more (practical) comments on each of the input parameters.

2The result may combine both kinds of errors and decrypt correctly at the same time – in such a case, we
consider that both error types occur simultaneously.
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Cleartext Bit-Precision: π Regarding the choice of an appropriate cleartext bit-precision,
we point out two things: First, it shows that the complexity of the TFHE bootstrapping grows
roughly exponentially with the cleartext bit-precision – reasonable bootstrapping times can be
achieved for up to about π = 8 bits, then, splitting the cleartext into multiple chunks comes into
play. Second, bootstrapping is capable of evaluating a custom bootstrapping function f̄ : Z2π →
Z2π , however, such function must be negacyclic; cf. (1.16) and (1.19), unless a workaround is
adopted as per Note 1.4. Both limitations must be carefully considered before choosing the right
cleartext space bit-precision π: it might make sense to decrease the cleartext space size at the
expense of additional, but cheaper bootstrapping.

Quadratic Weights: ν2 As outlined in (1.28), ν2max := maxg{ν2g} is defined as the maximum
of sums of squares of integer weights of dot-products across the whole circuit that comprises
TFHE gates g ∈ G (with ν2 defined in (1.5)). Note that log(νg) expresses the number of bits of
the standard deviation of the excess noise introduced by the dot-product in gate g.

Security Level: λ We discuss LWE/GLWE security in Section 4.4.1. Recall that the higher
λ is requested, the higher LWE dimension and/or the lower noise must be present, and security
also depends on the distribution of keys.

Bootstrapping Correctness: η Introduced in Section 1.4.1, the parameter κ characterizes
the probability of erroneous blind-rotate. In Corollary 1.6, we use this probability to estimate
the overall probability of correct evaluation of a TFHE gate. Hence, to quantify the probability
of correct evaluation of a single TFHE gate, we take η, and by standard normal tables, we deduce
the value of κ, which we use for the rest of the analysis. Recall that κ relates to the correctness
of a single TFHE gate, i.e., for a circuit that consists of multiple TFHE gates, the value of η needs
to be modified accordingly.

Parameter Relations

To make the fundamental condition (1.32) hold, we may combine (1.28) with (1.25), (1.15) and
(1.23), and mandate

Vmax ≈ ν2 · V0 + VKS + VMS ≈
≈ ν2 ·

(
α2
t + ndNVBα

2(1 + k) +

+ nε2(1 + kNVz)
)
+ kNVzε

′2 +

+ kNd′VB′α′2 +
1 + n/2

48N2

!
≤

!
≤ 1

κ2 · 22π+2
, (1.34)

where the baseline parameters are summarized in Table 1.1, ε2 and VB are defined in (1.8) and
(1.9), respectively, and Vz stands for the variance of coefficients of the internal GLWE secret key
z.

In terms of the security ↔ correctness ↔ performance triangle given in Section 1.2.1, this
inequality only provides a guarantee of correctness, which is given by η (translated into κ), for
prescribed plaintext precision π and quadratic weights ν2. In particular, security is not addressed
and it must be resolved separately, e.g., using lattice-estimator [8]. The combination of con-
straints on TFHE parameters makes it a complex task to generate a set of parameters, which
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is further supposed to achieve a good performance. Authors of [13] claim to have implemented
a generator of efficient TFHE parameters and they provide a comprehensive list of TFHE param-
eters for many input setups. However, at the time of writing, the tool is not publicly available
yet.

1.5 Implementation Remarks

In this section, we briefly comment on various implementation aspects of TFHE, namely

• (negacyclic) polynomial multiplication;

• additional errors (noise) that stem from particular implementation choices;

• estimated complexity & key sizes; and

• existing implementations of TFHE, including recent trends and advances.

1.5.1 Negacyclic Polynomial Multiplication

For performance reasons, modular polynomial multiplication in TFHE—which appears, e.g., in
GLWE encryption (1.1) or in external product (1.11)—is implemented using Fast Fourier Trans-
form (FFT). Recall that polynomials mod XN +1 rotate negacyclically when multiplied by Xk,
unlike polynomials mod XN − 1, which rotate cyclically. Note that in such a case, polynomial
multiplication is equivalent to the standard cyclic convolution, which can be calculated using
Fast Fourier Transform (FFT). However, for polynomials modXN + 1, other tricks need to be
put into place; find a description of negacyclic polynomial multiplication, e.g., in [81].

1.5.2 Implementation Noise

Notably, FFT is the major source of additional errors (noise) that are not captured by the
theoretical noise analysis given in Section 1.4. The magnitude of FFT errors depends particularly
on the number representation that is used by selected FFT implementation; find a study on FFT
errors in [81]. Although for commonly used parameters and FFT implementations, FFT errors
are negligible compared to (G)LWE noises, they shall be kept in mind, in particular in non-
standard constructions or new designs.

In addition, compared to the theoretical results of Section 1.4, torus elements are represented
using a finite representation (as outlined in Section 1.2.1; e.g., with 64-bit integers), which
also changes the errors slightly. However, as long as the torus precision (e.g., 2−64) is much
smaller than the standard deviation of the (G)LWE noise—which is usually the case for common
parameter choices—this contribution can be neglected.

1.5.3 Key Sizes & Bootstrapping Complexity

Below, we provide the sizes of key-switching and bootstrapping keys, as represented in a TFHE
implementation with a τ -bit representation of torus elements. The complexity of TFHE boot-
strapping, which is the dominant operation of TFHE, is roughly proportional to the key sizes.
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Size of Key-Switching Keys Using notation of Table 1.1, key-switching keys consist of N
sub-keys KSj ∈ Td′,1+n; altogether we have∣∣(KSj)Nj=1

∣∣ = Nd′(1 + n)τ [bits]. (1.35)

Note that a common method to store/transmit key-switching keys, which can also be applied
to bootstrapping keys, is to keep just a seed for a pseudo-random number generator (PRNG),
instead of all of the randomness. I.e., for each LWE sample, just the value of b is kept and the
values of a can be re-generated from the seed.

Size of Bootstrapping Keys
Bootstrapping keys consist of n GGSW samples BKi ∈ T(N)[X](1+k)d,1+k; altogether we have∣∣(BKi)

n
i=1

∣∣ = n(1 + k)2dNτ [bits]. (1.36)

Rough Estimate of Bootstrapping Complexity Key-switching is dominated by Nd′(1+n)
torus multiplications, followed by 1+n summations of Nd′ elements, which makes key-switching
O
(
Nd′(1 + n)τ

)
. Blind-rotate is dominated by n(1 + k)2d degree-N polynomial multiplica-

tions, followed by a similar number of additions/subtractions, which makes blind-rotate O
(
n(1+

k)2dNτ
)
. Note that the entire calculation of BlindRotate (cf. Algorithm 1) can be performed

in the Fourier domain – thanks to its linearity and pre-computed bootstrapping keys, i.e., the
O(τN logN) term of FFT can be neglected. In this rough estimate, we neglect modulus-switching
and sample-extract. Also, we do not distinguish the bit-length of τ for LWE and GLWE, as some
implementations do [106].

1.5.4 Existing TFHE Implementations

The original (experimental) TFHE library [124] is not developed anymore, instead, there are
other, more or less active implementations. Here we list selected implementations of TFHE:

TFHE-rs [132]: written in Rust, TFHE-rs implements latest findings by Bergerat et al. [13]
(recently separated from the Concrete Library [42] that implements higher-level operations
and interfaces);

FPT [126]: an experimental FPGA accelerator for TFHE bootstrapping (a benchmark of state-
of-the-art implementations in software/GPU/FPGA/ASIC can also be found in [126]);

nuFHE [105]: a GPU implementation of TFHE.

TFHE is also implemented as a part of more generic libraries like OpenFHE [4], which is a suc-
cessor of PALISADE [108] and which also attempts to incorporate the capabilities of HElib [72]
and HEAAN [121]. There exist many other implementations that are not listed here.

1.6 Conclusion

We believe that our TFHE guide helps many researchers and developers understand the inner
structure of TFHE, in particular probably the most mysterious operation – the negacyclic blind-
rotate – thanks to a step-by-step explanation, which we support with an illustration. Not only
do we provide an intelligible description of each sub-operation of bootstrapping, but we also
highlight what tweaks can be put in place to limit the noise growth at little to no additional cost



24 CHAPTER 1. A GUIDE TO THE TFHE SCHEME

(e.g., the order of key-switch ↔ dot-product or the signed decomposition alphabet). Last but
not least, we provide a comprehensive noise analysis, supported by proofs, where we employ an
easy-to-follow notation of the decomposition operation using g and g−1. Finally, we list selected
implementation remarks that shall be kept in mind when attempting to implement TFHE and
its variants or modifications.

Appendix

A Proofs

A.1 Proof of Theorem 1.2

Theorem 1.2 (Correctness & Noise Growth of ⊡). Given GLWE sample c̄ of µc ∈ T(N)[X] under
GLWE key z and noise parameter α, and GGSW sample Ā of mA ∈ Z(N)[X] under the same key
and noise parameters, external product returns GLWE sample c̄′ = Ā ⊡ c̄, which holds excess
noise e⊡, given by

〈
z̄, c̄′

〉
= mA ·

〈
z̄, c̄
〉
+ e⊡, for which it holds

Var[e⊡] ≈ dNVBα
2(1 + k)

amplified GGSW noise

+

+ ∥mA∥22 · ε2(1 + kNVz)

decomp. errors

, (37)

where Vz is the variance of individual coefficients of the GLWE key z and other parameters
are as per previous definitions. If e⊡ and the noise of c̄ are “sufficiently small”, c̄′ encrypts
msgz(c̄

′) = mA · µc, i.e., external product is indeed multiplicatively homomorphic.

Proof. Let us denote c̄ = (b,a) ∈ T(N)[X]1+k and let us unfold the construction of Ā as

Ā =


−A0z+ e

∣∣ A0

−A1z+ e
∣∣ A1

...
∣∣ ...

−Akz+ e
∣∣ Ak

+


mA g 0 . . . 0
0 mA g . . . 0
...

...
. . .

...
0 0 . . . mA g

 , (38)

where Ai ∈ T(N)[X]d,k with j-th column denoted A
(j)
i . Unfolding the construction of Ā and
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that of external product, we obtain

〈
z̄, c̄′

〉
1+k

=
〈
(1, z),g−1(c̄)T · Ā

〉
1+k

=
〈
g−1(b),mA g−A0z

−♦

+e
〉
d
+

k∑
i=1

〈
g−1(ai),−Aiz

−♥

+e
〉
d
+

+

k∑
j=1

zj

(〈
g−1(b),A

(j)
0

〉
d

+♦

+

k∑
i=1

〈
g−1(ai),A

(j)
i

〉
d

+♥

+
〈
g−1(aj),mA g

〉
d

)
= (39)

= mA ·
(〈

g−1(b),g
〉
d

≈b

±b
)
+mA

k∑
j=1

zj

(〈
g−1(aj),g

〉
d

≈aj

±aj
)
+
〈
g−1(b), e

〉
d
+

+

k∑
i=1

〈
g−1(ai), e

〉
d
=

= mA · (b+ ⟨z,a⟩
⟨z̄,c̄⟩

) +mA ·
(
⟨g−1(b),g⟩d − b+

k∑
j=1

zj
(
⟨g−1(aj),g⟩d − aj

))
decomp. errors: ∥mA∥2

2·ε2(1+kNVz)

+ (40)

+
〈
g−1(b), e

〉
d
+

k∑
i=1

〈
g−1(ai), e

〉
d

amplified GGSW noise: dNVBα2(1+k)

, (41)

while in (39), terms denoted ♦ and ♥ cancel out. Next, in (40), we assume that each decompo-
sition error term (cf. (1.7)) has a uniform distribution on [−1/2Bd, 1/2Bd), hence variance of ε2;
cf. (1.8). Finally, in (41), we assume that the decomposition digits have a uniform distribution
on [−B/2,B/2) ∩ Z, hence their mean of squares equals VB ; cf. (1.9). Evaluating the variance of
each term, the result follows, while ≈ is due to the possible statistical dependency of variables
across terms. Note that we indicate the length of inner products in lower indices.

A.2 Proof of Theorem 4.3

Theorem 4.3 (Correctness & Noise Growth of Key-Switching). Given LWE sample c̄′ of µ ∈ T un-
der LWE key s′ and key-switching keys KSs′→s, encrypted with noise parameter α′, KeySwitchs′→s

returns LWE sample c̄, which holds excess noise eKS, given by
〈
s̄, c̄
〉
=
〈
s̄′, c̄′

〉
+ eKS, for which it

holds

Var[eKS] ≈ n′Vs′ε
′2

decomp. errors

+ n′d′VB′α′2

amplif. KS noise

, (42)

where ε′2 and VB′ are as per (1.8) and (1.9), respectively, with B′ and d′, Vs′ is the variance of
individual coefficients of the LWE key s′, and other parameters are as per previous definitions. If
eKS and the noise of c̄′ are “sufficiently small”, it holds µ = msgs(c̄) = msgs′(c̄

′), i.e., KeySwitch
indeed changes the key, without modifying the message.
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Proof. Similar to the proof of Theorem 1.2, we write

⟨s̄, c̄⟩ =
〈
(1, s), (b′,0)−

n′∑
j=1

g′−1(a′j)
T · KSj

〉
1+n

=

= b′ +
n′∑
j=1

〈(
1, s
)
,g′−1(a′j)

T ·
[
s′j g

′ −Ajs+ ej

∣∣∣ Aj

]
KSj

〉
1+n

=

= b+

n′∑
j=1

s′j
(〈

g′−1(a′j),g
′〉

d′ ± a′j
) −♥

−
n′∑
j=1

〈
g′−1(a′j),Ajs

〉
d′ +

n′∑
j=1

〈
g′−1(a′j), ej

〉
d′

1 · first element of
∑

g′−1(a′
j)

T·KSj

+

+

n′∑
j=1

〈
s,g′−1(a′j)

T ·Aj

〉
n

+♥

=

= b′ + ⟨s′,a′⟩n′

⟨s̄′,c̄′⟩

+

n′∑
j=1

s′j
(〈

g′−1(a′j),g
′〉

d′ − a′j
)

decomp. errors: n′Vs′ε
′2

+

n′∑
j=1

〈
g′−1(a′j), ej

〉
d′

amplified KS noise: n′d′VB′α′2

(43)

and the result follows.

A.3 Proof of Theorem 4.2

Theorem 4.2 (Correctness & Noise Growth of Blind-Rotate). Given inputs of Algorithm 1, where
bootstrapping keys are encrypted with noise parameter α and test vector is (possibly) encrypted
with noise parameter αt (i.e., αt = 0 or α), BlindRotate returns the last-step ACC with noise
variance given by

Var[⟨z̄,ACC⟩] ≈ α2
t + ndNVBα

2(1 + k) +

+ nε2(1 + kNVz) =: V0, (44)

which we denote by V0, other parameters are as per previous theorems and definitions. If the noise
of ⟨z̄,ACC⟩ is “sufficiently small”, it holds msgz(ACC) = Xm̃ · tv, where m̃ = ⟨s̄, (b̃, ã)⟩ ≈ 2Nµ,
i.e., BlindRotate indeed “rotates” the test vector by the approximate phase of (b,a), scaled to
Z2N .

Proof. The core of BlindRotate consists of the sample t̄ being gradually externally-multiplied
by BKi’s (plus some other additions/multiplications). For i-th step with a := ãi ∈ Z2N and
BK := BKi that encrypts s := si ∈ {0, 1}, we write:〈

z̄,ACC+ BK⊡ (Xa · ACC− ACC)
〉
=

=
〈
z̄,ACC

〉
+ s ·

〈
z̄, Xa · ACC− ACC

〉
+ e⊡(s) = (45)

=
〈
z̄, Xs·a · ACC

〉
+ e⊡(s), (46)

where (45) is by Theorem 1.2 and the step towards (23) holds for s ∈ {0, 1}. Hence, with each

such a step, the noise grows by the additive term e⊡(s). The first step X b̃ · t̄ retains the noise of
t̄, hence the result follows.



B. TECHNICAL OVERVIEW 27

B Technical Overview

In Figure 9, we provide an exhaustive technical overview of blind-rotate, preceded by modulus-
switching and followed by sample-extract.
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Figure 9: Technical overview of TFHE Blind-Rotate, preceded by Modulus-Switching and fol-
lowed by Sample-Extract, with a detail on External Product.



Chapter 2

Negacyclic Integer Convolution
using Extended Fourier
Transform

With the rise of lattice cryptography, (negacyclic) convolution has received increased attention.
E.g., the NTRU scheme internally employs cyclic polynomial multiplication, which is equivalent
to the standard convolution, on the other hand, many Ring-LWE-based cryptosystems perform
negacyclic polynomial multiplication. A method by Crandall implements an efficient negacyclic
convolution over a finite field of prime order using an extended Discrete Galois Transform (DGT)
– a finite field analogy to Discrete Fourier Transform (DFT). Compared to DGT, the classical
DFT runs faster by an order of magnitude, however, it suffers from inevitable rounding errors due
to finite floating-point number representation. In a recent Fully Homomorphic Encryption (FHE)
scheme by Chillotti et al. named TFHE, small errors are acceptable (although not welcome),
therefore we decided to investigate the application of DFT for negacyclic convolution.

The primary goal of this chapter is to suggest a method for fast negacyclic convolution over
integer coefficients using an extended DFT. The key contribution is a thorough analysis of error
propagation, as a result of which we derive parameter bounds that can guarantee even error-free
results. We also suggest a setup that admits rare errors, which allows to increase the degree
of the polynomials and/or their maximum norm at a fixed floating-point precision. Finally, we
run benchmarks with parameters derived from a practical TFHE setup. We achieve around 24×
better times than the generic NTL library (comparable to Crandall’s method) and around 4×
better times than a näıve approach with DFT, with no errors.

2.1 Introduction

In 1994, Peter Shor discovered efficient quantum algorithms for discrete logarithm and factor-
ing [119], which started the quest to design novel quantum-proof algorithms, aka. Post-Quantum
Cryptography. Since then, there have emerged many new schemes, which are based on various
problems that are believed to be quantum hard. E.g., supersingular elliptic curve isogeny [74],
multivariate cryptography [48], or lattice cryptography [3], in particular Learning With Er-
rors (LWE) and its variants [113, 98]. In addition, many Fully Homomorphic Encryption (FHE)
schemes (e.g. [23, 35]) belong to lattice-based ones, including Gentry’s first-ever FHE scheme [58].
Most notably, the NIST’s Post-Quantum Cryptography Standardization Program entered the

29
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third “Selection Round” in July 2020 [104], while lattice-based cryptosystems occur among the
selected algorithms.

With the popularity of lattice-based cryptography, the need for its fast implementation has
risen. Besides linear algebra, many schemes require a fast algorithm for cyclic (i.e., mod XN−1)
or negacyclic (i.e., mod XN+1) polynomial multiplication. Some schemes work with polynomial
coefficients modulo an integer (e.g., NTRU [70]), however, our main interest is in the TFHE
scheme [35], where negacyclic multiplication of integer-torus polynomials is performed. Here
the torus refers to reals modulo 1, i.e., the fractional part of a real number. In practice, torus
elements are represented as unsigned integers, which represent the fraction of 1 uniformly in
the interval [0, 1). It follows that integer-torus polynomial multiplication can be performed with
their integer representation. Also note that TFHE accepts small errors – we prefer to avoid them,
but their impact is not fatal for decryption.

Recently, there have emerged efforts to make TFHE work with multivalued plaintexts [25], also
applications of TFHE for homomorphic evaluation of neural networks show promising results [20].
In particular, for neural networks, it holds that they are quite error-tolerant (also verified in [20]),
which supports the acceptability of errors.

Problem Statement

Our goal is to develop a method for fast negacyclic multiplication of univariate integer polyno-
mials. For this method, we aim to estimate and tune its parameters in order to provide certain
guarantees of its correctness. As outlined above, we will not focus solely on an error-free case
and we will also accept the scenario, where errors may rarely occur. Last but not least—as we
intend our method also for an FPGA implementation—we derive all results in a generic manner,
i.e., without sticking to a concrete platform, although we run our tests on an ordinary 64-bit
machine.

Related Work

There is a long and rich history of methods for fast multiplication over various rings, ranging from
Karatsuba’s algorithm [78], through Fast Fourier Transform (FFT; [43]) to Schönhage-Strassen
algorithm [118]. Most of these methods are based on a similar principle as Bernstein pointed out
in his survey [14].

It was the classical cyclic convolution, which was accelerated by FFT and Convolution The-
orem, and which can be employed for polynomial multiplication modulo XN − 1, too. On the
contrary, polynomial multiplication modulo XN + 1 (negacyclic convolution) cannot be directly
calculated via FFT. One possible approach was implemented as a part of the TFHE Library [124],
although not discussed in the paper [35]. However, this method suffers from a four-tuple redun-
dancy in its intermediate results. An effective (non-redundant) method for negacyclic convolution
has been proposed by Crandall [46] and recently improved by Al Badawi et al. [5]. In these meth-
ods, polynomials are considered over a finite ring and both authors employed a number-theoretic
variant of FFT, named DGT, which operates on the field GF(p2). On the one hand, DGT cal-
culates exact results (as opposed to FFT, where rounding errors occur and propagate), on the
other hand, it runs significantly slower as it uses modular arithmetics.

Our Contributions

We propose an efficient algorithm for negacyclic convolution over the reals, for which we derive
estimates of bounds on the maximum error and its variance. Based on our estimates, we show
that our method can be used for an error-free negacyclic convolution over integers. Or—in case
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we admit errors—we suggest to relax the estimates in order to achieve higher performance: either
in terms of shorter number representation (useful in particular for FPGA), longer polynomials,
or larger polynomial coefficients that can be processed. Finally, we provide experimental bench-
marking results of our implementation as well as we evaluate its rounding error magnitudes and
result correctness, even with remarkably underestimated parameters.

Chapter Outline

In Section 2.2, we provide a brief overview of the required mathematical background, i.e., cyclic
and negacyclic convolutions, their relation to modular polynomial multiplication, as well as the
Discrete Fourier Transform and Convolution Theorem. Next, in Section 2.3, we revisit a straight-
forward FFT-based approach for negacyclic polynomial multiplication, and we propose a method
that avoids the calculation of redundant intermediates. We analyze error propagation thoroughly
in Section 2.4, where we suggest lower bounds on floating point type bit-precision in order to
guarantee certain levels of correctness. In Section 2.5, we discuss the implementation details
and we propose a set of testing parameters with respect to TFHE. Using these parameters, we
benchmark our implementation and we also examine the error magnitude and result correctness.
Finally, we conclude this chapter in Section 2.6.

2.2 Preliminaries

In this section, we briefly recall some basic mathematical concepts related to convolution and
Discrete Fourier Transform.

Cyclic & Negacyclic Convolution

Let f ,g ∈ CN for some N ∈ N. As opposed to the classical cyclic convolution defined as

(f ∗ g)k :=

N−1∑
j=0

fjg(k−j) mod N , (2.1)

negacyclic convolution adds a factor of −1 with each wrap of the cyclic index at g, i.e.,

(f ∗̄ g)k :=

N−1∑
j=0

(−1)⌊ k−j
N ⌋fjg(k−j) mod N . (2.2)

With respect to polynomials, it is easy to verify that the cyclic convolution calculates the co-
efficients of a product of two polynomials modulo XN − 1. Indeed, their coefficients can be
considered cyclic since XN = 1. On the other hand, the negacyclic convolution calculates the
coefficients of a product of two polynomials modulo XN +1, since XN = −1 adds a factor of −1
with each wrap.

Convolution Theorem

A relation known as the Convolution Theorem (CT) states an equality between the Fourier image
of convoluted vectors and an element-wise (dyadic) product of their respective Fourier images
(in the discrete variant). CT writes as follows:

F(f ∗ g) = F(f)⊙F(g), (2.3)
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where F(·) stands for the Discrete Fourier Transform (DFT) and ⊙ denotes the dyadic multi-
plication of two vectors. In fact, DFT is a change of basis, defined as

F(f)k :=

N−1∑
j=0

fj exp
(
−2πijk

N

)
= Fk, (2.4)

F -1(F)j =
1

N

N−1∑
k=0

Fk exp
(2πijk

N

)
= fj . (2.5)

Convolution theorem has gained its practical significance after Fast Fourier Transform (FFT)
was (re)invented1 in 1965 by Cooley & Tukey [43]. As opposed to a direct calculation of DFT
coefficients, which requires O(N2) time, FFT runs in O(N logN). Next, by the convolution
theorem, one can calculate the convolution of two vectors as f ∗ g = F -1

(
F(f) ⊙ F(g)

)
, which

spends O(N logN) time, compared to O(N2) needed for a direct calculation.

2.3 Efficient Negacyclic Convolution

First, we describe a method for negacyclic convolution that uses the standard cyclic convolution
and FFT. We identify its redundancy and briefly comment on possible workarounds. Next, we
outline an approach that yields no redundancy and achieves a 4× better performance than the
previous method.

2.3.1 Redundant Approach

Since (negacyclic) convolution is equivalent to (negacyclic) polynomial modular multiplication,
we switch to the polynomial point of view for now. Interested in polynomial multiplication
modulo XN + 1, we note that X2N − 1 = (XN − 1) · (XN + 1). Hence, we can calculate the
product first modulo X2N − 1 (via cyclic convolution of 2N elements) and then only reduce the
result modulo XN + 1. This method can be optimized based on the following observations.

Observation 2.1 (Redundancy of negacyclic extension). Let p ∈ R[X] be a real-valued polyno-
mial of degree N − 1, N ∈ N, and let p̄(X) := p(X)−XN · p(X) be a negacyclic extension of
p(X). Then the Fourier image of coeffs(p̄) contains zeros at eventh positions (indexed from 0).
In addition, the remaining coefficients (at oddth positions) are mirrored and conjugated. I.e.,

F
(
coeffs(p̄)

)
= (0, P1, 0, P3, . . . , 0, PN−1, 0, PN−1, . . . , 0, P3, 0, P1). (2.6)

Note 2.1. Given N input (real-valued) polynomial coefficients, F
(
coeffs(p̄)

)
needs to calculate

2N complex values, i.e., 4N real values. The redundancy is clearly in the N complex zeros and
in the N/2 complex conjugates.

Observation 2.2 (Convolution of negacyclic extensions). Let p, q ∈ R[X] be real-valued poly-
nomials of degree N − 1 for some N ∈ N and let p̄, q̄ be their respective negacyclic extensions.
Then it holds

coeffs
(
p · q mod (XN + 1)

)
=

1

2
F -1
(
F
(
coeffs(p̄)

)
⊙F

(
coeffs(q̄)

))
[0 . . . N − 1]. (2.7)

By Observation 2.1, it follows that the dyadic multiplication in (2.7) can only be performed
at odd positions of the first half, the rest can be copied (with appropriate sign). Also note that
after F -1, the coefficients are negacyclic, hence we can only take the first half of the vector. This
method is implemented in the original TFHE Library [124].

1Goldstine [63] attributes an FFT-like algorithm to C. F. Gauss dating to around 1805.
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Possible Improvements

The clear goal is to omit all calculations leading to redundant values as outlined in Note 2.1.
Digging deeper into FFT, we deduced the same initial step as proposed by Crandall [46] in his
method for negacyclic convolution (namely, the folding step). However, without the additional
twisting step, we ended up with a bunch of numbers, from which we were not able to recover the
original values efficiently. Therefore, we decided to adapt the concept of the method by Crandall.

2.3.2 Non-Redundant Approach

The method for negacyclic polynomial multiplication by Crandall [46] is intended for polynomials
over Zp and it employs internally the Discrete Galois Transform (DGT). DGT is an analogy to
DFT, which operates over the field GF(p2) for a Gaussian prime number p, whereas DFT operates
over C. Note that recently Al Badawi et al. [5] extended the Crandall’s method for non-Gaussian
primes, too. The Crandall’s method prepends DGT with two steps: folding and twisting. In the
following definition we propose an analogous transformation using DFT.

Definition 2.1. Let f ∈ RN for some N ∈ N, N even. We define the Discrete Fourier Negacyclic
Transform (DFNT, denoted F̄) as follows:

F̄(f) := F
((

f [0 . . .N/2− 1] + i · f [N/2 . . . N − 1]

folding

)
⊙
(
ωj
2N

)N/2−1

j=0

twisting

)
, (2.8)

where ωj
2N = exp

(
2πij
2N

)
and F stands for the ordinary DFT. For the inverse DFNT, we have

t := F -1(F)⊙ (ω−j
2N )

N/2−1
j=0 , (2.9)

F̄ -1(F) =
[
ℜ(t),ℑ(t)

]
. (2.10)

Note 2.2. We will refer to DFNT, where DFT is internally calculated via FFT, as the Fast Fourier
Negacyclic Transform (FFNT).

With respect to negacyclic convolution, DFNT has two important properties:

1. given N reals at input, it outputs N/2 complex numbers, i.e., there is no redundancy, unlike
in the previous approach, and

2. it can be used for negacyclic convolution in the same manner as DFT for cyclic convolution,
a theorem follows.

Theorem 2.1 (Negacyclic Convolution Theorem; NCT). Let f ,g ∈ RN for some N ∈ N, N
even. It holds

F̄(f ∗̄ g) = F̄(f)⊙ F̄(g). (2.11)

For a full description of negacyclic convolution over the reals via NCT see Algorithm 3. Next,
we analyze this algorithm from the error propagation point of view, which allows us to apply
this method for negacyclic convolution over integers, too.

2.4 Analysis of Error Propagation

Since Algorithm 3 operates implicitly with real numbers (starting N = 4, ω2N ’s are irrational),
there emerge rounding errors provided that we use a standard finite floating-point representation.
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Algorithm 3 Efficient Negacyclic Convolution over R.
Input: f ,g ∈ RN for some N ∈ N, N even.
Precompute: ωj

2N := exp
(
2πij
2N

)
for j = −N/2 + 1 . . .N/2− 1.

Output: h ∈ RN , h = f ∗̄ g.
1: for j = 0 . . .N/2− 1 do
2: f ′

j = fj + ifj+N/2 // fold
3: g′j = gj + igj+N/2

4: end for
5: for j = 0 . . .N/2− 1 do
6: f ′′

j = f ′
j · ωj

2N // twist

7: g′′j = g′j · ωj
2N

8: end for
9: F = FN/2(f

′′), G = FN/2(g
′′)

10: for j = 0 . . .N/2− 1 do
11: Hj = Fj ·Gj

12: end for
13: h′′ = F -1

N/2(H)
14: for j = 0 . . .N/2− 1 do
15: h′

j = h′′
j · ω−j

2N // untwist
16: end for
17: for j = 0 . . .N/2− 1 do
18: hj = ℜ(h′

j) // unfold
19: hj+N/2 = ℑ(h′

j)
20: end for
21: return h
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In this section, we analyze Algorithm 3 from the error propagation point of view and we derive
estimates of the bounds of errors as well as their variance. Based on our estimates, we derive a
bound for sufficient bit-precision of the employed floating point representation, which guarantees
error-free convolution over the ring of integers. We also provide an estimate of the bit-precision
based on error variance and the 3σ-rule. In addition and as a byproduct, we derive all bounds
for cyclic convolution, too. First of all, we revisit the FFT algorithm, as we will refer to it later.

FFT in Brief

FFT [43] is a recursive algorithm, which builds upon the following observation: for N = n1 · n2

and k = k1 + k2n1, we can write the k-th Fourier coefficient of an f ∈ CN as

F(f)k1+k2n1
=

n2−1∑
j2=0

((
n1−1∑
j1=0

fj2+j1n2
ωj1k1
n1

)
F
(
(fj2+j1n2 )

n1−1
j1=0

)
k1

ω−j2k1

N

)
ω−j2k2
n2

, (2.12)

where

ωj
N = exp

(2πij
N

)
, (2.13)

while ω’s can be precomputed.

Note 2.3. There exist two major FFT data paths for N a power of two: the Cooley-Tukey data
path [43] (aka. decimation-in-time), and the Gentleman-Sande data path [57] (aka. decimation-
in-frequency). At this point, let us describe the decimation-in-time data path, we will discuss
their implementation consequences later in Section 2.5.

For N a power of two, FFT splits its input into two halves and proceeds recursively. Next, it
multiplies the results with ω’s, and finally it proceeds adequate pairs; see (2.14) and (2.15).

At the end of the recursion we have for N = 2:

FFT2 |f0 f1| = |f0 + f1 f0 − f1|. (2.14)

Next, for N ≥ 4 we have

FFTN (f) :

∣∣∣∣∣∣∣∣∣
f0 f1
f2 f3
...

...
fN−2 fN−1

∣∣∣∣∣∣∣∣∣
n1×n2 = N/2×2

FFTN/2 columns
−−−−−−−−−−→

(recursively)

∣∣∣∣∣∣∣∣∣
f ′
0 f ′

1

f ′
2 f ′

3
...

...
f ′
N−2 f ′

N−1

∣∣∣∣∣∣∣∣∣⊙
∣∣∣∣∣∣∣∣∣
1 1
1 ω−1·1

N
...

...

1 ω
−1·(N/2−1)
N

∣∣∣∣∣∣∣∣∣
ω

−j2k1
N

−−−→

→

∣∣∣∣∣∣∣∣∣
f ′′
0 f ′′

1

f ′′
2 f ′′

3
...

...
f ′′
N−2 f ′′

N−1

∣∣∣∣∣∣∣∣∣
FFT2 rows−−−−−−−→

∣∣∣∣∣∣∣∣∣
f ′′
0 + f ′′

1 f ′′
0 − f ′′

1

f ′′
2 + f ′′

3 f ′′
2 − f ′′

3
...

...
f ′′
N−2 + f ′′

N−1 f ′′
N−2 − f ′′

N−1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

F0 FN/2

F1 FN/2+1

...
...

FN/2−1 FN−1

∣∣∣∣∣∣∣∣∣ . (2.15)

FFT-1 proceeds similarly to the direct transformation with the following exceptions:

1. in the second step, it multiplies by ωj2k1

N (i.e., with a positive exponent), and

2. the final result is multiplied by 1/N (only once at the top level).
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2.4.1 Error Propagation through FFT and FFNT

Let us begin with two lemmas, which provide bounds on the error and variance of complex
multiplication and FFT, respectively. Note that we will assume for our estimates of variance
bounds that the rounding errors are uniformly random and independent.

Note 2.4. We will distinguish two types of the maximum norm ∥·∥∞ over CN . For 1. error
vectors, and for 2. other complex vectors, we consider:

1. the maximum of real and imaginary parts (i.e., rectangular), and

2. the maximum of absolute values (i.e., circular), respectively.

Lemma 2.2. Let a, b ∈ C, |a| ≤ A0 and |b| ≤ B0 for some A0, B0 ∈ R+. Then

|a · b| ≤ A0 ·B0, (2.16)

∥Err(a · b)∥∞ ⪅
√
2 ·
(
A0 · ∥Err(b)∥∞ +B0 · ∥Err(a)∥∞

)
, and (2.17)

Var
(
Err(a · b)

)
⪅ 2 ·

(
A2

0 · Var
(
Err(b)

)
+B2

0 · Var
(
Err(a)

))
, (2.18)

where we neglected second-order error terms and for (2.18), we further assumed that the errors
of a and b are independent.

Proof. Let a = (p + Ep) + i(q + Eq) and b = (r + Er) + i(s + Es), where we denote the parts’
bounds as |p| ≤ P0 etc. According to Note 2.4, we split the complex error into parts – we write
for the real part (similarly for the complex part)

Err
(
ℜ(a · b)

)
= pEr + rEp − (qEs + sEq) + negl., (2.19)

which can be bounded as∣∣Err(ℜ(a · b))∣∣ ⪅ P0∥Err(b)∥∞ +R0∥Err(a)∥∞ +Q0∥Err(b)∥∞ + S0∥Err(a)∥∞ ⪅

⪅ (P0 +Q0)∥Err(b)∥∞ + (S0 +R0)∥Err(a)∥∞. (2.20)

Since |p + iq| ⪅ A0, we can bound P0 + Q0 ⪅
√
2A0 and the result (2.17) follows, similarly

for (2.18).

Lemma 2.3. Let f ∈ CN , where N = 2ν for some ν ∈ N, ∥f∥∞ ≤ 2φ0 for some φ0 ∈ N, and
let χ denote the bit-precision of ω’s as well as all intermediate values during the calculation of
FFTN (f) =: F, represented as a floating point type. Then

∥F∥∞ ≤ 2φ0+ν , (2.21)

∥Err(F)∥∞ ⪅ cH ·
(√

2 + 1
)ν

+ cN · 2ν (for ν ≥ 2), and (2.22)

Var
(
Err(F)

)
⪅ dH · 3ν + dN · 4ν (for ν ≥ 2), (2.23)

where

cH = 2(
√
2− 1) · ∥Err(f)∥∞ + (2−

√
2) · 2φ0−χ+1,

dH = 2/3Var
(
Err(f)

)
− 8/27 22φ0−2χ,

cN = −(2 +
√
2) · 2φ0−χ−1,

dN = 1/6 22φ0−2χ.
(2.24)

Proof. We write
FFTN : FFT2 ◦ (⊙ωN ) ◦ FFTN/2, (2.25)

from where we derive recurrence relations for the bounds on absolute value, error and variance.
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In each recursion level, the values propagate to a lower level, then they are multiplied by
a complex unit and two such values are added, or subtracted. Firstly, note that in every level
the initial bound on the absolute value is doubled, hence (2.21) follows.

Regarding the errors, it is important to note that the final FFT2 acts on two values, each
of which has been previously multiplied by ωj2k1

N , where j2 ranges in {0, 1}. I.e., one value is
multiplied by 1 and only the other is multiplied by a (mostly) non-trivial complex unit, which
is rounded to χ bits of precision, i.e., ∥Err(ω)∥∞ ≤ 2−χ−1. Putting things together, we get
the following recurrence relations for the bounds on the error and its variance after ν levels,
respectively:

Eν =
√
2 ·
(
1 · Eν−1 + 2φ0+ν−1 · 2−χ−1

)
+ Eν−1 =

=
(√

2 + 1
)
· Eν−1 +

√
2 · 2φ0+ν−χ−2, (2.26)

E2 = (E1 + 2φ0+1 · Eω4

=0

) ·
√
2 + E1 = (

√
2 + 1)E1 = 2(

√
2 + 1)E0, and (2.27)

Vν = 2 ·
(
12 · Vν−1 + (2φ0+ν−1)2 · 1/12 (2−χ)2

)
+ Vν−1 =

= 3Vν−1 + 1/3 22φ0+2ν−2χ−3, (2.28)

V2 = 3V1 = 6V0, (2.29)

where in (2.27), we applied the fact that ω4 is error-free; cf. (2.13). Also note that the error more
than doubles in each step (while the bound only doubles), therefore the χ bits of precision are
sufficient and rounding errors can be neglected. The results follow by solving (2.26) and (2.27),
and (2.28) and (2.29), respectively.

In the following proposition, we bound the error and variance of the result of cyclic and ne-
gacyclic convolution via FFT /FFNT, respectively. For a quick reference, we provide an overview
of these methods in (2.30) and (2.31), respectively:

f
FFTN−−−→ F

g
FFTN−−−→ G

⊙−→ H
FFT−1

N−−−−→ h = f ∗ g, (2.30)

f
fold−−→ f ′

twist−−−→ f ′′
FFTN/2−−−−−→ F̄

g
fold−−→ g′ twist−−−→ g′′ FFTN/2−−−−−→ Ḡ

⊙−→ H̄
FFT−1

N/2−−−−−→ h′′ untwist−−−−→ h′ unfold−−−−→ h̄ = f ∗̄ g. (2.31)

Proposition 2.4. Let f ,g ∈ RN , where N = 2ν for some ν ∈ N, ∥f∥∞ ≤ 2φ0 and ∥g∥∞ ≤ 2γ0

for some φ0, γ0 ∈ N, and let χ denote the bit-precision of ω’s as well as all intermediate values
during the calculation of FFTN (·) and its inverse, represented as a floating point type. We denote
h := FFT−1

N

(
FFTN (f)⊙FFTN (g)

)
and h̄ := FFNT−1

N

(
FFNTN (f)⊙FFNTN (g)

)
, while we consider

the errors as ∥Err(h)∥∞ = ∥h− f ∗ g∥∞ and ∥Err(h̄)∥∞ = ∥h̄− f ∗̄ g∥∞, respectively. Then

log∥Err(h)∥∞ ⪅ (2ν − 2) · log
(√

2 + 1
)
+ φ0 + γ0 − χ+ 4, (2.32)

logVar
(
Err(h)

)
⪅ 4ν + 2φ0 + 2γ0 − 2χ− 1− log(3), and (2.33)

log∥Err(h̄)∥∞ ⪅ (2ν − 4) · log
(√

2 + 1
)
+ φ0 + γ0 − χ+ 4 + log(3) + 1/2, (2.34)

logVar
(
Err(h̄)

)
⪅ 4ν + 2φ0 + 2γ0 − 2χ− 3. (2.35)

Proof. Find the proof in Appendix A.

We apply our estimates of the error and variance bounds in order to derive two basic param-
eter setups for convolution over integers: an error-free setup and a setup with rare errors based
on the 3σ-rule; see the following corollary.
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Corollary 2.5. Provided that

χ
(c.)
0 ≳ 2 log

(√
2 + 1

)
≈2.54

·ν + φ0 + γ0 + 5− 2 log
(√

2 + 1
)

≈2.46

, or (2.36)

χ
(nc.)
0 ≳ 2 log

(√
2 + 1

)
≈2.54

·ν + φ0 + γ0 + 5 + log(3) + 1/2− 4 log
(√

2 + 1
)

≈2.00

, (2.37)

we have ∥Err(h)∥∞ ≲ 1/2, or ∥Err(h̄)∥∞ ≲ 1/2, which means an error-free cyclic, or negacyclic
convolution on integers via FFTN , or FFNTN , respectively. I.e., for f ,g ∈ ZN , we have⌊

FFT−1
N

(
FFTN (f)⊙ FFTN (g)

)⌉
= f ∗ g, or (2.38)⌊

FFNT−1
N

(
FFNTN (f)⊙ FFNTN (g)

)⌉
= f ∗̄ g, (2.39)

respectively, up to negligible probability.
Next, if

χ
(c.)
3σ ≳ 2ν + φ0 + γ0 + 1/2 log(6)

≈1.29

, or (2.40)

χ
(nc.)
3σ ≳ 2ν + φ0 + γ0 + log(3)− 1/2

≈1.08

, (2.41)

we have 3
√
Var
(
Err(h)

)
≲ 1/2, or 3

√
Var
(
Err(h̄)

)
≲ 1/2, which estimates the required floating

point type precision for the respective convolution variant based on the 3σ-rule.

Note 2.5. In the most common practical setting with the binary64 type as per IEEE 754 stan-
dard [1] (aka. double), we have χ = 53 bits of precision. For the 80-bit variant of the extended
precision format (aka. long double), we have χ = 64 bits of precision.

2.5 Implementation & Experimental Results

In this section, we briefly comment on how we use the data paths in our implementation (as
outlined in Note 2.3), we discuss the choice of parameters with respect to TFHE, and then we
focus on the following:

1. benchmarking with other implementations using chosen parameters,

2. performance on long polynomials using both 64-bit double and 80-bit long double floating
point number representations, and

3. error magnitude and correctness of the results.

Implementation Remarks

In our implementation of the Cooley-Tukey data path [43], we adapted the 4-vector approach
from the Nayuki Project [103], which optimizes the RAM access for the most common 64-bit
architectures. In a similar manner, we implemented the Gentleman-Sande data path [57]. To
calculate FFT properly, both data paths require a specific reordering of their input or output,
respectively. The reordering is based on bit-reversal of position indexes, counting from 0. E.g.,
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for 16 elements (4 bits), we exchange the elements at positions 5 ↔ 10, since 5 = 0b0101 and
10 = 0b1010.

Since our goal is solely convolution, i.e., we do not care about the exact order of the FFT
coefficients, the bit-reverse reordering can be omitted, as pointed out by Crandall and Pomer-
ance [45]. By construction, it follows that the Gentleman-Sande data path must be used for the
direct transformation and the Cooley-Tukey data path for the inverse.

For benchmarking purposes, we also adopted some code from the TFHE Library [124] to
compare the redundant and non-redundant approaches; cf. Sections 2.3.1 and 2.3.2, respectively.

Relation to the TFHE Parameters

The main (cryptographic) motivation of our algorithm for negacyclic convolution over integers is
the negacyclic polynomial multiplication in the TFHE scheme [35]. Below we outline a relation
of the TFHE parameters to the parameters of negacyclic convolution via FFNT. As a result, we
suggest a reasonable parameter setup for benchmarking.

In TFHE, negacyclic polynomial multiplication occurs in the bootstrapping procedure (namely,
in the calculation of the external product), where an integer polynomial is multiplied by a torus
polynomial. The coefficients of the right-hand side (torus) polynomial can be represented as
integers scaled to [0, 1) and bounded by 2 to the power of their bit-precision, denoted by τ . In
the left-hand side (integer) polynomial, the coefficients are bounded by 2γ , where γ is one of
the fundamental TFHE parameters. By construction, the parameter γ is smaller than τ , namely,
γ ≤ τ/l, where l is another TFHE parameter. In a corner case, it can be γ = 1 and the bound
can be hence as low as 20.

Based on our preliminary calculations for multivalue TFHE, we need the degree of TFHE
polynomials to be at least N = 214 for 8-bit plaintexts with 128-bit security, and the torus
precision to be at least τ = 34 (both can be smaller for shorter plaintexts). Finally, we suggest
to run the tests using polynomials with φ0 = γ0 = τ/2 = 17 and N = 210, . . . , 214.

2.5.1 Benchmarking Results

As a reference for benchmarking of our implementation [80] of negacyclic convolution, we have
chosen the NTL Library [120] and the redundant method (as used in the original TFHE Li-
brary [124]; cf. Section 2.3.1), for which we used the same implementation of FFT as for our
non-redundant method. Note that the implementation by Al Badawi et al. [5] shows similar
results to the popular NTL (only about 1.01–1.2× faster) and they also show that NTL is faster
than the concurrent FLINT Library [69]. For NTL, we tested both ZZ pX and ZZ pE classes,
while the latter shows slightly better performance, hence we used that for benchmarking. Find
the results of our benchmarks in Table 2.1.

Note 2.6. During the parameter setup, we silently passed over the fact that χ = 53 (bit-precision
of double) is lower than our 3σ-rule estimates for all tested ν’s, as per (2.41) in Corollary 2.5.

Indeed, they dictate χ
(nc.)
3σ ≳ 2ν + φ0 + γ0 + 1.08 = 55.08 . . . 63.08. For this reason, we reran

the scenario with ν = 14 for 1 000-times, we checked the results for correctness, and we did not
detect any error across all tested polynomials.

2.5.2 Performance on Long Polynomials

As a reference for other prospective applications of our method, we tested our code on longer
polynomials, too. We provide the performance results using both 64-bit double and 80-bit long
double in Figure 2.1.
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Degree (N) 210 211 212 213 214

NTL [ms] 0.617 1.258 2.643 6.132 12.771

FFT2N [ms] 0.122 0.230 0.458 0.982 2.277

FFNTN [ms] 0.036 0.069 0.120 0.243 0.541

FFNTN over FFT2N 3.35× 3.33× 3.82× 4.04× 4.21×

FFNTN avg. error [‰] 0.06 0.08 0.12 0.18 0.27

FFNTN max. error [‰] 0.37 0.55 0.98 1.47 1.95

Table 2.1: Mean time per negacyclic multiplication of uniformly random polynomials with
∥p∥∞ ≤ 217 using NTL (similar times as FLINT), FFT2N on negacyclic extension (implemented
in [124]), and FFNTN , both using 64-bit double. Speedup of FFNTN over FFT2N . Average
and maximum rounding errors of FFNTN . 1 000 runs per degree and method on an Intel Core
i7-8550U CPU @ 1.80GHz.
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Figure 2.1: Mean time per polynomial multiplication modXN +1 and speedup factor of double
over long double. Uniformly random polynomials with ∥p∥∞ ≤ 217, 1 000 measurements.

2.5.3 Error Magnitude & Correctness on Long Polynomials

As outlined in Note 2.6, our experimental setup exceeds the derived theoretical bounds, even for
lower-degree polynomials. Hence, our next goal is to evaluate the error magnitude as well as to
check the correctness of the results. We tested the following input polynomial scenarios:

1. uniformly random coefficients (bounded by ∥p∥∞ ≤ 2φ0), and

2. all coefficients equal to the bound minus one, i.e., 2φ0 − 1.

Find the results of the random polynomial setup in Figure 2.2, where we tested both 64-bit
double and 80-bit long double implementations.

Regarding the setup with all coefficients equal to the bound, we ran the same scenarios as for
random polynomials (cf. Figure 2.2). With 64-bit double, the only correct results were obtained
for the setup with ∥p∥∞ ≤ 217 and N = 214, or N = 215, respectively. With 80-bit long double,
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all scenarios were calculated correctly, with maximum rounding error ≲ 0.109 for ∥p∥∞ ≤ 220

and N = 218.
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Figure 2.2: Median (solid) and Maximum (dashed) rounding errors for uniformly random poly-
nomials. Erroneous results emphasized by empty red circles. 10 measurements per degree, bound
and floating point type.

Discussion

We observed a factor ∼ 4× speedup of FFNTN (i.e., the non-redundant approach) over FFT2N

(i.e., the redundant approach). Compared to NTL, which calculates the coefficients precisely
using a number-theoretic transform, our FFT-based method shows by more than an order of
magnitude better results. Even though we ran our tests with underestimated precision, we
obtained correct results for much larger polynomials with uniformly random coefficients. Note
that random-like polynomials occur in TFHE, hence our benchmarking scenario with random
polynomials is representative for the usage with TFHE.

In addition, we tested our code with the 80-bit long double floating point type. It enabled
error-free calculations with polynomials of higher degree and/or with greater coefficient bound,
yet it was only about 3–4 times slower than the variant with the 64-bit double.

2.6 Conclusion

We showed that FFT-based convolution algorithms can significantly outperform similar algo-
rithms based on number-theoretic transforms, and they can still guarantee error-free results in
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the integer domain. We derived estimates of the lower bound of the employed floating point type
for error-free cyclic and negacyclic convolutions, as well as we suggested the bounds based on
the 3σ-rule.

We suggested a set of testing parameters for negacyclic convolution with particular respect
to the usage with the TFHE Scheme on a multivalue plaintext space. We ran a benchmark that
compares the popular NTL Library, the approach that is used in the TFHE Library, and our
approach. Compared to the generic NTL Library, which employs a number-theoretic transform,
and to the TFHE Library approach, which calculates redundant intermediate values, we achieved
a speedup of around 24× and 4×, respectively.

Finally, our experiments have shown approximate bounds for practical error-free results.
Namely, using double, we could multiply polynomials without errors up to degree N = 217

and norm ∥p∥∞ ≤ 220 with uniformly random coefficients, and up to degree N = 215 with
coefficients equal to 217. To conclude, we find our approach particularly useful for negacyclic
integer polynomial multiplication, not only in TFHE.

Future Directions

Our aim is to implement a version based on the 64-bit signed integer type instead of double,
where we would keep the exponent at one place for the entire array. Such an approach requires
less demanding arithmetics and it would serve as a proof-of-concept for a propective FPGA
implementation.

Acknowledgments

We would like to thank Ahmad Al Badawi and Sergiu Carpov for useful comments and remarks.

Appendix

A Proof of Proposition 2.4

Proof. Let us begin with the cyclic convolution. By (2.30) and Lemma 2.2 and 2.3, we have

∥Err(F⊙G)∥∞ ⪅
(
c
(f)
H ·

(√
2 + 1

)ν
⪆∥Err(F)∥∞

· 2γ0+ν

≥∥G∥∞

+ c
(g)
H ·

(√
2 + 1

)ν · 2φ0+ν
)
·
√
2 =

=
(√

2 + 1
)ν · 2ν+φ0+γ0−χ+2 ·

(
2−
√
2
)
·
√
2 =: EH, and (42)

Var
(
Err(F⊙G)

)
⪅
(

d
(f)
N · 22ν

⪆Var
(
Err(F)

) · 22γ0+2ν

≥∥G∥2
∞

+ d
(g)
N · 22ν · 22φ0+2ν

)
· 2 =

= 2/3 · 24ν+2φ0+2γ0−2χ =: VH, (43)

which we apply as the initial error and variance bound to (2.22) and (2.23), respectively, together
with multiplication by 1/N = 2−ν , which poses the only difference between FFT-1 and FFT from
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the error point of view. We neglect other than leading terms and we get

∥Err(h)∥∞ ⪅ 2−ν · 2(
√
2− 1) · EH

≈ c
(H)
H

·
(√

2 + 1
)ν

⪅

⪅
(√

2 + 1
)2ν−2 · 2φ0+γ0−χ+4, and (44)

Var
(
Err(h)

)
⪅ 2−2ν · 1/6 · 22(φ0+γ0+2ν)−2χ

= d
(H)
N

·4ν = 1/6 · 24ν+2φ0+2γ0−2χ, (45)

and the cyclic results follow.
For the negacyclic convolution, we feed DFT with a folded and twisted input vector; cf. (2.31).

It enters DFT with error bounded as

∥Err(f ′′)∥∞ ⪅ (1 · 0 + 2φ0+1/2 · 2−χ−1) ·
√
2 = 2φ0−χ. (46)

Regarding variance, it shows that the term with Var
(
Err(f ′′)

)
will be neglected. Next, we pre-

compute

c
(f ′′)
H = 2(

√
2− 1) · ∥Err(f ′′)∥∞ + (2−

√
2) · 2φ0+1/2−χ+1 ⪅

⪅ 6(
√
2− 1) · 2φ0−χ, and (47)

d
(f ′′)
N = 1/6 22(φ0+1/2)−2χ, (48)

and apply into

∥Err(F̄⊙ Ḡ)∥∞ ⪅
(
c
(f ′′)
H ·

(√
2 + 1

)ν−1

⪆∥Err(F̄)∥∞

· 2γ0+1/2+ν−1

≥∥Ḡ∥∞

+

+ c
(g′′)
H ·

(√
2 + 1

)ν−1 · 2φ0+1/2+ν−1
)
·
√
2 =

= 3
(√

2 + 1
)ν−2 · 2ν+φ0+γ0−χ+2 =: EH̄, and (49)

Var
(
Err(F̄⊙ Ḡ)

)
⪅
(
d
(f ′′)
N · 4ν−1

⪆Var
(
Err(F̄)

) · 22γ0+1+2ν−2

≥∥Ḡ∥2
∞

+

+ d
(g′′)
N · 4ν−1 · 22φ0+1+2ν−2

)
· 2 =

= 1/3 · 24ν+2φ0+2γ0−2χ−1 =: VH̄. (50)

Next, we apply these estimates as the initial error and variance bound into (2.22) and (2.23),
respectively, together with multiplication by 2/N = 2−ν+1. We have

∥Err(h′′)∥∞ ⪅ 2−ν+1 · 2(
√
2− 1) · EH̄

≈ c
(H̄)
H

·
(√

2 + 1
)ν−1 ≈

≈ 3
(√

2 + 1
)2ν−4 · 2φ0+γ0−χ+4, and (51)

Var
(
Err(h′′)

)
⪅ 2−2ν+2 · 1/6 · 2(2φ0+2γ0+2+4ν−4)−2χ

= d
(H̄)
N

·4ν−1 =

= 1/3 · 24ν+2φ0+2γ0−2χ−3, (52)
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while in (52), it has shown that the term with VH̄ was not the leading term, hence it was
neglected. By (2.31) it remains to untwist and unfold, we have

∥Err(h′)∥∞ ⪅
(
1 · 3(

√
2 + 1)2ν−4 · 2φ0+γ0−χ+4

⪆∥Err(h′′)∥∞

+22ν+φ0+γ0−1

≥∥h′′∥∞

·2−χ−1
)
·
√
2 ≈

≈ 3
√
2 · (
√
2 + 1)2ν−4 · 2φ0+γ0−χ+4, and (53)

Var
(
Err(h′)

)
⪅ (12 · 1/3 · 24ν+2φ0+2γ0−2χ−3

⪆Var
(
Err(h′′)

) +24ν+2φ0+2γ0−2

≥∥h′′∥2
∞

·1/12 · 2−2χ) · 2 =

= 24ν+2φ0+2γ0−2χ−3. (54)

Since the unfolding operation does not change the error, the negacyclic results follow.



Chapter 3

PARMESAN: Parallel
ARithMEticS over ENcrypted
data

Fully Homomorphic Encryption enables the evaluation of an arbitrary computable function over
encrypted data. Among all such functions, particular interest goes for integer arithmetics. In
this chapter, we present a bundle of methods for fast arithmetic operations over encrypted
data: addition/subtraction, multiplication, and some of their special cases. On top of that, we
propose techniques for signum, maximum, and rounding. All methods are specifically tailored for
computations with data encrypted with the TFHE scheme (Chillotti et al., Asiacrypt ’16) and
we mainly focus on parallelization of non-linear homomorphic operations, which are the most
expensive ones. This way, evaluation times can be reduced significantly, provided that sufficient
parallel resources are available. We implement all presented methods in the Parmesan Library
and we provide an experimental evaluation. Compared to integer arithmetics of the Concrete
Library, we achieve considerable speedups for all comparable operations. Major speedups are
achieved for the multiplication of an encrypted integer by a cleartext one, where we employ
special addition-subtraction chains, which save a vast amount of homomorphic operations.

3.1 Introduction

The idea of Fully Homomorphic Encryption (FHE), which allows for arbitrary computations over
encrypted data, was first proposed by Rivest et al. [115] back in 1978. However, the question
of whether such a scheme exists remained open for more than 30 years until 2009 when Gentry
[58] gave a positive answer. Although resolved from the mathematical point of view, initial
FHE schemes suffered from fairly low efficiency. Since then, the performance of FHE is being
constantly improved, either through theoretical advances [60, 23, 33, 61, 50, 35] or with emerging
attempts to develop a dedicated hardware [56, 130].

FHE schemes typically allow the evaluation of addition and a non-linear operation over en-
crypted data. For addition, this means that there exists operation ⊕ over ciphertexts, while for
any pair of plaintexts x, y, it holds

FHE .Encr(x)⊕ FHE .Encr(y) ≈ FHE .Encr(x+ y), (3.1)

45
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where ≈ means “with high probability, encrypts the same”. I.e., FHE .Encr is a plaintext →
ciphertext space additive group homomorphism, up to a randomization of FHE .Encr and up to
a certain (small) probability of error. The other, non-linear operation can be, e.g., multiplication
or Look-Up Table (LUT) evaluation.

In principle, FHE enables evaluation of any computable function over encrypted data, e.g.,
by its decomposition to boolean gates, which may not be very efficient though. For a smooth
practical deployment of FHE, we believe that it is important to develop optimized homomorphic
variants of most common operations, with basic integer arithmetic at the first place. Indeed,
arithmetic is a fundamental part of most CPUs’ instruction sets and integers are one of the
primary data types. Since current FHE schemes have a fairly limited plaintext space size, which
can only be increased at an unfavorable cost, we build operations upon smaller blocks of data.

In this chapter, we put forward tailored and optimized methods for the homomorphic evalu-
ation of basic arithmetic. In addition, we propose homomorphic variants of some other common
operations. Our methods are built on top of a particular digit-based integer representation,
encrypted with the TFHE Scheme by Chillotti et al. [35]. The TFHE scheme enables a limited
number of (very fast) linear operations – these need to be interlaced with another operation
referred to as bootstrapping, which:

• takes much more time to evaluate (currently tens of milliseconds; depends on parameters),

• is inherently capable of evaluating a custom LUT homomorphically, and

• enables evaluation of circuits of arbitrary depth.

Compared to other FHE schemes, bootstrapping of TFHE is among the fastest, which is the
main reason why we choose TFHE. Nevertheless, in our algorithms, the underlying FHE scheme
can be easily replaced with another LUT-based FHE scheme, if that scheme shows to be more
efficient.

Related Work

Many current use-cases of FHE1 focus on a single-purpose application, where FHE operations are
specifically optimized for this purpose. In particular, there is a lot of interest in cloud-assisted
neural network (NN) inference [62, 20, 36], which typically requires expert-level knowledge of
both FHE and NN’s.

On the other hand, there exists a line of research on homomorphic compilers, summarized
in [129], which aims at simplifying the homomorphization effort for ordinary developers. Contri-
butions range from a general-purpose transpiler [64] (translates arithmetic operations into many
boolean gates, “making them quite slow”), through an approximate-arithmetic-based compiler
EVA [47, 39] (whereas we aim at precise arithmetic), to higher-level code optimizations [128].

A scheme known as CKKS [33] (employed in the EVA compiler) enables approximate arith-
metic, which is particularly useful in machine learning tasks. However, due to its approximate
nature, only a limited precision can be considered correct, therefore, it does not compare directly
to our approach. Although there exists a bootstrapped variant of CKKS [30, 26], we are not
aware of any implementation of multi-precision arithmetic based on CKKS.

An approach that covers precise integer arithmetics with arbitrary bit-lengths is proposed
in [37], further developed in [13], and implemented as part of the Concrete Library [42]. Based
on a multitude of previous works on homomorphic integers, authors of [13] provide a thorough
comparison of state-of-the-art techniques, though mainly focusing on low-level optimizations

1An updated list of FHE applications can be found at https://fhe.org/fhe-use-cases.
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of bootstrapping and also on finding the best TFHE parameters for selected approaches. For
homomorphic arithmetics, they suggest extending the message space by a couple of bits to
accommodate the (additive) carry, which allows to evaluate a limited number of additions without
the need for bootstrapping. As soon as the carry bits need to propagate, they employ a standard
(schoolbook) sequential approach. Authors also propose a parallelizable approach based on the
Chinese Remainder Theorem (CRT); however, due to its specificities, we do not compare with
it.

In our recent study [87], we compare selected sequential and parallel addition algorithms
over TFHE-encrypted data: among three sequential and six parallel approaches, we identify the
fastest parallel approach, which outperforms the fastest sequential approach starting from 5-bit
addends. Since the parallel approach requires a non-standard integer representation, we also
demonstrate that other operations like signum and maximum are possible.

Besides integer arithmetics, another important operation is indexing an (encrypted) array
with an encrypted index, i.e., evaluation of a big LUT. Two approaches are proposed by Guima-
rães et al. [66], also studied in [13].

Our Contributions

We propose, implement and evaluate a digit-based integer arithmetic over TFHE-encrypted data,
with a particular focus on parallelization, so that the evaluation time is reduced as much as
possible. Our methods are based on an algorithm for parallel addition, which we select based on
a thorough comparison given in [87]. The list of arithmetic operations includes:

• Addition/Subtraction: a basic operation, upon which other operations are built (the under-
lying algorithm is determined based on the results of [87]). We further identify bootstrap
operations that can be saved.

• Scalar multiplication: a special case of multiplication, where one integer is unencrypted
(demonstrated in [87]). We define a new, presumably hard, computational problem, which
is tied with optimization of the number of additions that are called within scalar multi-
plication (a special type of addition-subtraction chain). Inspired by an approach used in
Elliptic Curve Cryptography, we propose a heuristic solution, within which we evaluate
small instances of the computational problem, achieving an average improvement of about
20% compared to [87].

• Multiplication: the most demanding operation, for which we suggest employing the Karat-
suba algorithm to optimize the number of digit-by-digit multiplications, and where we
also call the parallel addition algorithm. We discuss and evaluate several aspects of this
approach so that the best performance is achieved.

• Squaring: a special case of multiplication, where the input is duplicated. We show that
a dedicated algorithm for squaring achieves about 30% improvements over multiplication.
In addition, we propose a very efficient squaring method for (up to) 3-bit inputs.

We also investigate and optimize other useful operations:

• Signum: a fundamental operation for number comparison and other operations (demon-
strated in [87]). Compared to [87], we reduce the circuit depth by one, which reduces the
number of bootstraps and threads significantly.

• Maximum: gives the greater of two encrypted integers (demonstrated in [87]). Not only
maximum is improved by the faster signum, but we also propose a new way of evaluation,
which only needs half of the threads.
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• Rounding: rounds an encrypted integer at a given bit-position. The rounding algorithm is
non-trivial in the integer representation used by parallel addition.

We accompany each operation with a brief analysis, where we list its requirements (message
space size, the ideal number of threads, etc.).

In the experimental part, we present our implementation (in a form of a library) and we com-
pare it with the Concrete Library [42]. Our benchmarks show that for 32-bit encrypted integers,
our library achieves speed-ups over Concrete ranging from 1.9× for multiplication on an ordi-
nary 12-threaded server processor, through 7.0× for squaring on a 128-threaded supercomputer’s
node, to tens of times (and more) for scalar multiplication with selected inputs.

Chapter Outline

In Section 4.2, we recall the TFHE scheme and its supported homomorphic operations: addition
and LUT evaluation. We also recall a particular algorithm for parallel addition and its specifics.
Next, in Section 3.3, we revisit and/or suggest new algorithms for basic arithmetic operations,
which are suitable for homomorphic evaluation with TFHE, with a particular focus on their
parallelization. In Section 3.4, we revisit and/or suggest other algorithms for comparison-based
integer operations: signum, maximum and, rounding. We introduce our implementation and we
provide and discuss the results of our benchmarks in Section 3.5. We conclude this chapter in
Section 4.6.

3.2 Preliminaries

For reference, we first provide a summary of symbols & notation that we use throughout this
chapter. Then, we recall the TFHE scheme and its homomorphic operations, in particular, we
focus on LUT evaluation. Finally, we discuss integer representations and we recall a selected
algorithm for parallel addition.

Symbols & Notation

N,N0 . . . positive and non-negative integers, i.e., {1, 2, 3, . . .} and {0, 1, 2, . . .},

Z . . . the ring of integers,

R, R+
0 . . . real numbers and non-negative real numbers,

T . . . the real torus: R/Z, i.e., reals modulo 1,

[a, b) . . . interval of reals or integers, which contains a and does not contain b,

x ⋛ ±b . . . comparison of x with ±b, b ∈ N, it outputs {−1, 0,+1} as per (3.3),

x ≡ ±b . . . comparison of x with ±b, b ∈ N, it outputs {−1, 0,+1} as per (3.4),

LUT . . . Look-Up Table,

(a, b, ◦, c ∥ d) . . . notation for a custom negacyclic LUT (cf. Section 3.2.1),

π . . . bit-length of the TFHE message space,

22∆ . . . the sum of squared weights (aka. quadratic weight; cf. Section 3.2.1),
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x = (xn−1 . . . x1x0•)β . . . base-β representation of X =
∑n−1

i=0 βixi, where xi ∈ Z and β ∈ N,
β > 1 (cf. Section 3.2.2),

X = evalβ(x) . . . evaluation of representation x in base β as X =
∑n−1

i=0 βixi,

x̄ . . . negative digit, x̄ = −x, x ∈ N; used in redundant number representations, e.g., (11̄•)2 ∼
2− 1 = 1,

Aβ . . . alphabet of the standard base-β representation, Aβ = {0, 1, . . . , β − 1},
Ā2 . . . signed binary alphabet, Ā2 = {1̄, 0, 1},
MSB/LSB . . . Most/Least Significant Bit,

eval(ACk, X) . . . evaluation of addition chain ACk for integer k and additive group element X
into k ·X (cf. Section 3.3.2),

ASC∗ . . . free-doubling addition-subtraction chain (cf. Section 3.3.2).

3.2.1 The TFHE Scheme & its Multi-Value Operations, Revisited

The TFHE scheme, proposed by Chillotti et al. [35], is thoroughly described in Chapter 1. For
the purposes of this chapter, we recall and further comment on its operations, in particular for
the multi-value variant.

Let Z2π be the desired message space – each message m ∈ Z2π can be represented with
π bits. Then, multi-value TFHE encodes message m ∈ Z2π into the TLWE plaintext space as
µ = m/2π ∈ T. The other way around, decoding handles the error by rounding, i.e., m′ =
⌊(m/2π + e) · 2π⌉ ∈ Z2π . Note that if |e| < 1/2π+1, then m′ = m.

Combining the encoding of multi-value TFHE and the two homomorphic operations of plain
TFHE (i.e., addition and negacyclic LUT evaluation), we obtain a set of homomorphic operations
for the Z2π message space, denoted byM:

• Addition/Subtraction: M+M→M via vector addition/subtraction of TLWE samples;

• Scalar multiplication: Z · M → M via scalar-vector multiplication of a TLWE sample
by an integer (equivalent to repeated additions/subtractions; sometimes we refer to both
operations simply as addition); and

• Negacyclic LUT evaluation: LUT(M)→M via TFHE bootstrapping.

Noise Growth during Addition

As outlined in Section 3.2.1, in the TLWE scheme, a certain amount of noise (error) must be
added to the message, and the error term is additive with respect to homomorphic addition. Let
us assume a set of fresh(ly bootstrapped) independent samples {ci}, with equal error variance
V0. Then, since error variance is additive with squares of weights, we quantify the error growth
after additions using the sum of squared weights:

Var
(∑

wi · ci
)
=
∑

w2
i

22∆

·Var(ci)
V0

, (3.2)

where wi’s are integer weights. We refer to
∑

w2
i as the quadratic weights and we denote it

by 22∆. E.g., for independent samples x, y, z with equal error variance, we have the quadratic
weights of the sum 1 · x − 3 · y + 2 · z equal to 22∆ = 12 + 32 + 22 = 14. Note that ∆ itself is
intended to express the additional bit-length of the noise’s standard deviation.
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(Negacyclic) LUT Evaluation

First, we define a class of functions to make further notation concise and we propose an encoding
of these functions into negacyclic LUTs. Then, we outline how additions can be used to evaluate
some other, non-negacyclic LUTs. Finally, we introduce a notation for negacyclic LUTs, without
explicitly stating them in full.

Threshold Functions & Their Encoding into LUTs Let b ∈ N. We introduce the following
functions:

fb(x) =


−1 . . . x ≤ −b,
0 . . . − b < x < +b,

+1 . . . + b ≤ x,

(3.3)

gb(x) =


−1 . . . x = −b,
0 . . . x ̸= ±b,

+1 . . . x = +b.

(3.4)

We use the notations x ⋛ ±b and x ≡ ±b for fb(x) and gb(x), respectively.
Recall that LUTs in TFHE are inherently negacyclic, therefore, we need to deal with this

limitation. As a usual workaround, an additional bit of padding is added. However, this ef-
fectively bloats the message space twice, which in turn induces less efficient TFHE parameters,
hence we prefer to avoid that. Instead—as outlined in [86]—we exploit any possible overlap as
much as possible, which may lead to message space savings, hence better bootstrapping times.
Note that this kind of “overlap optimization” is specific to TFHE – it is also reflected in many
of our algorithms, which are—in certain sense—tailored for TFHE.

To encode x ⋛ ±b or x ≡ ±b on a desired domain [−a,+a] (with a ≥ b > 0) into a negacyclic

LUT, the range [−a− b, a+ b) shows to be the minimal range for x ⋛ ±b and a sufficient range

for x ≡ ±b [87]. For x ⋛ ±b, we define negacyclic function f , f : [−a− b, a+ b)→ {−1, 0, 1}, on
the non-negative part of the domain as

f(x) =


0 x ∈ [0, b− 1],

1 x ∈ [b, a],

0 x ∈ [a+ 1, a+ b− 1].

(3.5)

Such function f contains the function x ⋛ ±b on the domain [−a,+a] and the non-negative part
of f also serves as a prescription for respective LUT. An analogous approach applies to x ≡ ±b.
For more details, we refer to [87].

Evaluating Some Other LUTs Thanks to the cheap additive homomorphism, one may also
shift the function by a constant, if this helps to find a negacyclic extension in a smaller domain;
an example follows.

Example 3.1. The function f : Z4 → Z4, f(0) = 1, f(1) = 2, f(2) = 1, f(3) = 0, is not
negacyclic, but f(x) − 1 is. Therefore, it is not needed to extend the domain to Z8 – it is
sufficient to evaluate the negacyclic f(x)− 1 over Z4 and add +1 to the result.

Moreover, in the plaintext domain of TFHE, i.e., in the torus T, we are not limited to encoding
integers – we may also encode fractions. This allows us to evaluate some other non-negacyclic
functions; an example follows.
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Example 3.2. f : Z4 → Z4, f(0) = 0, f(1) = 0, f(2) = 1, f(3) = 1 can be evaluated using
a shift by −1/2, as outlined in Example 3.1.

In case we consider the first half of Z2π as positive and the rest as negative (i.e., the standard
signed integer representation in computer arithmetics), we may perceive the function from Ex-
ample 3.2 as a non-negativity function over Z4. I.e., a function that outputs 1 or 0 if the input
is non-negative or negative, respectively.

Notation for Negacyclic LUTs Let f : (Z2π ) → Z2π be a negacyclic LUT and let f ∈ Z2π−1

2π

be the list of its values in [0, 2π−1); the rest of f is given by its negacyclicity. For x ∈ Z2π ,
referred to as the selector, we denote f(x) by f [x], meaning that x may exceed the index set of f ,
i.e., the negacyclic extension is considered. In case there are some unused function values (i.e.,
outside of the domain of f), we use the symbol ◦, which can be set to, e.g., zeros in f . Finally,
in case the value of π is not explicitly given, we use (at most once) the symbol ∥ to denote the
place to be filled with an appropriate number of ◦’s. In this case, we do consider the negacyclic
extension in the suffix; an example follows.

Example 3.3. Let π = 3, i.e., we have the message space M = Z8. The list (1, 2, ◦,−3)
represents the negacyclic LUT given by (1, 2, ◦,−3,−1,−2, ◦, 3), whereas the list (1, 2 ∥−3) repre-
sents (1, 2, ◦, 3,−1,−2, ◦,−3). With a selector −1 = 7 in Z8, they evaluate respectively as (1, 2,
◦,−3)[−1] = 3 and (1, 2 ∥−3)[−1] = −3.

3.2.2 Parallel Arithmetics

The main focus of this chapter is the parallelization of arithmetic (and other) operations over
encrypted integers. Many of these operations are based on an algorithm for parallel integer
addition, which requires a non-standard integer representation. We recall one particular parallel
addition algorithm, which we choose based on the results of [87].

Integer Representations

For base β ∈ N, β ≥ 2, and alphabet Aβ = {0, 1, . . . , β−1}, we call x ∈ An
β , x = (xn−1 . . . x1x0•)β ,

the standard base-β representation of X ∈ N iff

X =

n−1∑
i=0

βixi =: evalβ(x). (3.6)

For i out of the range [0, n), we assume xi = 0.
For (finite) alphabet A, other than the standard one, with A ⊂ Z, we talk about the (β,A)-

representation. In particular, parallel addition algorithms typically employ an alphabet that:

1. contains negative digits, represented with bars (i.e., for d ∈ N, d̄ := −d),
2. is symmetric around zero (e.g., Ā = {2̄, 1̄, 0, 1, 2}), and
3. yields a redundant representation.

Point 3 actually states a necessary condition for a parallel addition algorithm to exist, as shown
by Kornerup [91].

Example 3.4. Let us illustrate redundancy on two different representations of 2, using base
β = 4 and the aforementioned alphabet Ā, as follows: (12̄•)4 = 1 · 41+(−2) · 40 = 0 · 41+2 · 40 =
(02•)4.



52 CHAPTER 3. PARMESAN: PARALLEL ARITHMETICS OVER ENCRYPTED DATA

We refer to the (2, Ā2)-representation, where Ā2 = {1̄, 0, 1}, as the signed binary repre-
sentation. For any alphabet, this kind of representation is also referred to as the radix-based
representation.

Parallel Addition Algorithm(s)

A family of parameterizable algorithms for parallel addition of multi-digit integers was introduced
by Avizienis [11] in 1961. Later in 1978, Chow et al. [38] further improved the meta-algorithm
so that it can work with smaller alphabets and even with the minimum integer base β = 2.

In [87], we compare sequential and parallel algorithms for the addition of TFHE-encrypted
integers. We implement three sequential approaches, and two algorithms for parallel addition,
namely those using:

• β = 2, Ā2 = {1̄, 0, 1} (i.e., signed binary), and

• β = 4, Ā4 = {2̄, 1̄, 0, 1, 2}, respectively.

For both parallel algorithms, we develop three strategies, how each algorithm can be turned
into the TFHE-encrypted domain; hence altogether, we compare three + six variants. Based on
our experiments, we observe that although parallel approaches introduce a certain computational
overhead, the fastest parallel approach outperforms the fastest sequential approach starting from
as short as 5-bit integers; for 31-bit integers, it is already more than 6× faster, provided that
a sufficient number of threads is available.

For the development of other arithmetic operations to be presented in this chapter, we choose
the fastest parallel strategy, which uses the signed binary representation; in [87] referred to as
Strategy IIa-F. We recall this parallel addition method in Algorithm 4. Note that in this chapter,
we do not further develop nor compare with any sequential approach.

Algorithm 4 Parallel addition with β = 2 and Ā2 = {1̄, 0, 1}.
Input: (2, Ā2)-representations x,y ∈ Ā2

n
of X,Y ∈ Z, for some n ∈ N,

Output: (2, Ā2)-representation z ∈ Ā2
n+1

of Z = X + Y .

1: for i ∈ {0, 1, . . . , n} in parallel do
2: wi ← xi + yi
3: qi ← wi ⋛ ±2 ∨ (wi ≡ ±1 ∧ wi−1 ⋛ ±1)
4: zi ← wi − 2qi + qi−1 ▷ (refresh)
5: end for
6: return z

Note 3.1. In Algorithm 4 on line 3, we abuse notation and we combine the functions x ⋛ ±b
and/or x ≡ ±b′ with logical operations. Unless +1 meets −1 in such an expression, we treat
+1’s or −1’s as logical 1’s and we keep their positive or negative signs, respectively. In case −1
does meet +1 (e.g., −1∧+1), we evaluate the expression as 0. E.g., for wi = +1 and wi−1 = −2
in Algorithm 4, we have 0 ∨ (+1 ∧ −1) = 0 ∨ 0 = 0.

Conversions & Other Operations in Signed Binary

The conversion from the standard to the signed binary representation is trivial, since A2 ⊂ Ā2.
Note that this does not hold in general for other signed representations that are used for parallel
addition (e.g., A4 ̸⊂ Ā4), where however parallel addition might be employed. For the opposite
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direction, a conversion is needed; in addition, from the impossibility result of Kornerup [91], it
follows that this conversion cannot be parallelized; find more details in Appendix A.

In the signed binary representation, some operations can be implemented fairly straightfor-
wardly: e.g., multiplication, which will be discussed in Section 3.3.3. Other operations require
a more careful approach: e.g., rounding, which will be discussed in Section 3.4.3. Yet other
operations—in particular bit-wise operations—require a conversion to the standard binary, which
we leave as future work.

3.3 Parallel Arithmetics over TFHE-Encrypted Data

In this section, we propose approaches and algorithms for the evaluation of basic arithmetic
operations over TFHE-encrypted multi-digit integers, with particular respect to parallelization.
In contrast to other works, e.g., [66, 21], we provide our algorithms in the cleartext domain, which
simplifies their reading and understanding. To turn an algorithm into the encrypted domain,
operations are simply replaced with their homomorphic counterparts. Indeed, in our algorithms,
either we use basic homomorphic operations of multi-value TFHE (i.e., /weighted/ summation
and LUT evaluation), or we rely on algorithms defined previously. Note that this allows us/others
to replace the underlying TFHE scheme with another compatible scheme if needed.

Bootstrapping Strategy First, let us commit to a bootstrapping strategy: we demand to
always return freshly bootstrapped samples from all arithmetic operations. I.e., these samples are
required to be a direct output of the bootstrapping algorithm, without any further homomorphic
additions. Although this is not always needed—in particular in the last step before decryption—
we make this guarantee so that the results’ correctness is ensured, independent of the operation
flow.

Complexity Measure Let us assume:

1. bootstrapping is the dominant operation and others are negligible,

2. we have an unlimited number of bootstrapping threads,

3. parallelization is ideal, i.e., there is no additional orchestration cost.

As the primary complexity measure, we consider the total running time, expressed in terms of
bootstraps, i.e., the minimal number of consecutive bootstraps in case of ideal parallelization.

Remark 3.2. In some extreme cases, we may resort to a different measure, e.g., the total number
of bootstraps. Note that the total number of bootstraps is equal to the total running time in the
sequential setting (expressed as the number of bootstraps). In practice, it is proportional to the
evaluation costs in terms of processor time or electricity consumption.

3.3.1 Parallel Addition

First, we focus on the cornerstone arithmetic operation, which is multi-digit integer addition.
We recall how the parallel addition algorithm (Algorithm 4) can be turned into the TFHE-
encrypted domain. Based on this algorithm, we build other arithmetic operations in the following
(sub)sections. We also outline how some non-necessary operations can be avoided in parallel
addition.
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Parallel Addition in the TFHE-Encrypted Domain

Let us revisit how the selected parallel addition algorithm (Algorithm 4) can be turned into
the TFHE-encrypted domain (firstly proposed in [87]). To evaluate wi and zi (lines 2 and 4,
respectively), additive homomorphism does the job. The value of qi (line 3) is non-linear in the
inputs wi−1 and wi; we illustrate qi = qi(wi−1, wi) in a table in the left-hand side of Figure 3.1.
We suggest to “linearize” the table into a one-dimensional LUT, using wi−1 + 3wi as a selector;
we provide an illustration in the right-hand side of Figure 3.1 (there is indeed a single value in
each column). It follows that qi(wi−1, wi) can be rewritten as

qi =
(
wi−1 + 3wi ⋛ ±4

)
, (3.7)

which allows to construct respective negacyclic LUT, associated to a threshold function (cf.
Section 3.2.1). Note that in accordance with our bootstrapping strategy, we apply an additional
identity bootstrap on line 4 so that the output consists of freshly bootstrapped samples.

2

1

0

−1

−2

1

0

−1

0 1 2−1−2

wi−1

wi

1 1 1

1 1

1

0

0 0 0

000

0

00

−1

−1 −1 −1 −1 −1

−1

0 1 2−1−2

wi−1 + 3wi

−→

000−1

−1 −1 −1 −1 −1

−3−5 −4 . . .−6−7−8

0 0 000

0 . . .0

Figure 3.1: Left-hand side: values of qi = qi(wi−1, wi) as per Algorithm 4. Right-hand side:
“linearization” of the table into a one-dimensional LUT, using the selector wi−1 + 3wi.

Analysis As shown in [87], we need a message space with π ≥ 5 bits, and we demand quadratic
weights 22∆ ≥ 20. The algorithm further requires 1 bootstrapping thread per instance (usually
per bit of input; a discussion on its optimization follows). It runs in 2 bootstrapping steps,
totaling 2 bootstraps per instance.

Avoiding Non-Necessary Operations

In case the encrypted digits of two addends x and y are not aligned and/or some are unen-
crypted2, there may occur non-necessary operations, including bootstraps. Let us discuss these
situations with respect to their position, either at the Least Significant Bit (LSB) or at the Most
Significant Bit (MSB).

• LSB Part: Suffixes of LSBs of x and y, where it is guaranteed that all wi = xi + yi ∈ Ā2

(e.g., 0 + x with x encrypted, or 1 + 1̄, . . . ), can be separated from both addends before
the calculation and then simply appended back. Note that the “missing” separated digits
must be considered to be zero for the rest of the calculation.

• MSB Part: At the MSB side, the parallel addition algorithm must be performed until
the very end due to the left-propagating local carry. On top of that, an additional bit

2E.g., multiplication of encrypted 3-bit number x = (x2x1x0•)2 by unencrypted 17 = (10001•)2 may result in
(x2x1x00x2x1x0•), which holds unencrypted zero at the position of 23.
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(say of index n) must be prepended: we have qn = 0 and zn = xn + yn − 2qn + qn−1 =
0+0−2 ·0+qn−1, which is a fresh sample. I.e., there is no need for the refreshal bootstrap
of zn (unlike other zi’s; cf. comment on line 4 of Algorithm 4).

We provide an example in Figure 3.2. We refer to bits that need to be bootstrapped as active
bits.

x

y

1̄x4

0 1̄

x5

y5 1 0

0 1̄ x0

1

wi ∈ {1̄, 0, 1}

0

q

0

0 0

0 q5 q4 1̄

z 01 x0

append

LSB’s where

fresh sample

z5 z4 0

calc’ed with
w2 = w1 = 0

. . . encrypted digit

1

y6y7

x8

q6q7q8

q8 z6z8 z7

Figure 3.2: Example of avoiding non-necessary operations (bootstraps) during the addition of
integers that are not aligned and/or contain unencrypted digits.

3.3.2 Scalar Multiplication

By scalar multiplication we mean (homomorphic) multiplication of encrypted integer X by known
integer k:

k ⊙ Encr(X) ≈ Encr(k ·X). (3.8)

By definition, scalar multiplication can be evaluated as (k−1)× repeated additions of Encr(X) to
itself (later simplified to X). However, we can do better and decrease the number of additions.
Let us give a simple example: 4 · X can be calculated either as ((X + X) + X) + X in three
additions, or as (X +X) + (X +X) in just two additions, since X +X can be reused. Hence,
our goal is to minimize the number of additions needed to evaluate scalar multiplication – in our
case, in the radix-based, TFHE-encrypted domain.

Towards Our Method First, we recall an approach adopted in Elliptic Curve Cryptography
(ECC), namely the so-called addition(-subtraction) chains, which aim at minimizing the number
of additions (and subtractions) during scalar multiplication over an elliptic curve. Next, we
extend the definition of these chains by an assumption that doubling goes for free: unlike ECC,
our setup employs a radix-based representation, where the cost of doubling is negligible compared
to addition/subtraction. Finally, due to the anticipated intractability of finding the optimal chain
of our type, we suggest applying the so-called window method. This method splits a particular
(signed binary) representation of the actual scalar into a minimum number of sub-scalars of
a short, fixed length. For those short scalars, it is feasible to pre-compute the (nearly) optimal
chains of our type. Then, we evaluate them and combine the intermediate results with our
parallel addition, obtaining the final result of scalar multiplication.

Addition (Subtraction) Chains

As outlined, the number of additions needed for scalar multiplication may differ from approach to
approach. Hence, given k, our goal is to find a prescription that evaluates scalar multiplication,
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while calling the lowest number of additions. In ECC, this problem is formulated in terms of
Addition Chains, which represent the decomposition of scalar multiplication into additions; let
us recall a simplified definition.

Definition 3.1 (Addition Chain (simplified)). Let k ∈ N, k > 1. We call the tuple (1, k1 . . . ,
kl−1, kl = k), l, ki ∈ N, an Addition Chain for k if ∀i ∈ [1, l] there ∃r, s ∈ [0, i − 1] such that
ki = kr + ks. I.e., every element ki is a sum of some two preceding elements.

To obtain k ·X using an addition chain for k, denoted ACk, we evaluate ACk using the same
series of additions, but starting from X, instead of 1. We denote the result by eval(ACk, X) =
k ·X.

Many variants of this problem have been proposed and many approaches have been suggested
– for a comprehensive overview of these methods, we recommend Chapter 9 of [41]. Here we
point out two of them:

• if subtractions are allowed (i.e., ki = kr ± ks as per Definition 3.1), we refer to Addition-
Subtraction Chains (ASC),

• if multiple integers k(0), . . . , k(t−1) are to be present in the chain (i.e., there is not only one
final k), we refer to Addition Sequences.

Downey et al. [49] show that the set of all tuples of the form (k(0), . . . , k(t−1); l), such that there
exists an addition sequence of length l for {k(0), . . . , k(t−1)}, is NP-complete (as a decision prob-
lem). It is hence widely believed that also finding the optimal/shortest addition(-subtraction)
chain is an intractable task.

Chains with Free Doubling

Between our problem of scalar multiplication and that of ECC, there is a substantial difference: in
our case, doubling goes at a negligible cost, unlike ECC, where doubling is considered as expensive
as addition. Indeed, in our base-2 representation with encrypted digits, doubling melts down
to appending an unencrypted zero to the LSB (equivalent to left bit-shift). For this reason, we
define another class of ASCs.

Definition 3.2 (Free-Doubling Addition-Subtraction Chain (ASC∗)). Let k ∈ N, k is not a power
of 2. We call the tuple ([1], [k1], . . . , [kl]), with l, ki ∈ N, ki odd, a Free-Doubling Addition-
Subtraction Chain for k if the following holds:

• ∃t ∈ N such that k = 2t · kl,
• ∀i ∈ [1, l] there ∃r, s ∈ [0, i− 1], t ∈ N0, such that ki = ±kr ± 2t · ks.

We consider [ki] as a class of numbers of the form 2t · ki.
Example 3.5. An interesting example of ASC∗ goes for 805 = 0b1100100101 – we encourage
the reader to try herself before checking the solution3.

Hence, the problem of finding the order of additions/subtractions and shifts that lead to k ⊙
Encr(X) – with the lowest number of additions/subtractions – melts down to finding the shortest
ASC∗, which we assume to be intractable (more research is needed). For this reason, we resort
to a heuristic approach.

3 ([1],[5=1+1·22],[25=5+5·22],[805=5+25·25]) .
Other similar examples are 1 173, 1 209, 1 305, 1 353, 1 377, 1 595, 1 605, 1 695, 1 743, 2 585, 3 129, 3 143, 3 195,
3 205, 3 633, 3 717 and 3 813; some include subtraction, which makes them even more tricky to discover by a pen
and paper.
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950048719935
KoyamaTsuruokaRecoding−−−−−−−−−−−−−−−−−→

1001̄0001̄01̄1̄
885

00 1̄1̄001̄01̄1̄0001
−3 247

00000 10001000001̄
1 087

WindowValues&Shifts12−−−−−−−−−−−−−−−−→

(885, 30), (−3 247, 16), (1 087, 0), for which it holds

885 · 230 − 3 247 · 216 + 1087 · 20 = 950048719935.

Figure 3.3: Illustration of the window method on top of the Koyama-Tsuruoka recoding.

Rewriting Scalars & Window Method

Due to the anticipated hardness of finding the optimal ASC∗ for scalar k, we suggest applying
the following approach, inspired by methods of ECC:

1. pre-compute (ideally optimal) ASC∗s for all odd integers of small, fixed bit-length wl,

2. rewrite the binary representation of k into a signed binary representation, such that there
are as long sequences of zeros as possible,

3. apply the sliding window method.

Let us explain each step in detail.

Step 1: Pre-computation of Short ASC∗s We pre-compute ASC∗s for all odd 12-bit inte-
gers4. The description of our approach is out of the scope of this work: we leave this for future
work and at this moment, we provide the pre-computed ASC∗s “as is”. Although we use a brute-
force approach, we do not guarantee the optimality, which is rather tricky to show, mainly due
to the unlimited power of two within [ki]’s.

Step 2: Rewriting the Scalar To decrease the number of windows in the subsequent window
method, it is worth using a signed binary representation for k that not only minimizes the
Hamming weight but also maximizes the length of sequences of zeros. For this purpose, we
employ the Koyama-Tsuruoka recoding [92]. This recoding minimizes the resulting Hamming
weight and on average, it achieves 1.42-bit long sequences of zeros, compared to 1.29-bit for the
“traditional” Non-Adjacent Form (NAF; [18]).

Step 3: Sliding Window Method Finally, we apply the sliding window method of length 12,
which we illustrate in Figure 3.3 together with the Koyama-Tsuruoka recoding; find a rigorous
description of the sliding window method in [41], Chapter 9.1.3.

The Overall Algorithm We provide the overall scalar multiplication method in Algorithm 5.
As outlined in the algorithm, any repeated window value can be re-used and also the ASC∗s can
be evaluated in parallel. We comment on the final aggregation on line 8 later in Section 3.3.3.

4Find our ASC∗s for all odd 12-bit integers in our library [109] in the assets/asc-12.yaml file.
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Algorithm 5 Scalar Multiplication.

Input: k,X ∈ Z (k to be cleartext, X to be encrypted)
Input: ASC∗s of length l
Output: Z = k ·X.

1: k← KoyamaTsuruokaRecoding(|k|)
2: (wi, si)

nw
i=1 ←WindowValues&Shiftsl(k)

▷ i.e., |k| =∑nw

i=1 wi · 2si , |wi| < 2l

3: for i ∈ {1, . . . , nw} in parallel do

4: W
(X)
i ← eval(ASC∗

|wi|, X) ▷ do not calc. twice for the same |wi|
5: end for
6: Z ← 0
7: for i = 1 . . . nw do
8: Z ← Z + sgn(wi) ·W (X)

i · 2si ▷ W
(X)
i shifted, (negated)

9: end for
10: return sgn(k) · Z

Average Numbers of Additions For 12-bit windows in the Koyama-Tsuruoka recoding, we
observe that the average number of additions is 3.10 for ASC∗s, as opposed to 3.88 for the standard
double-and-add/sub method, which is suggested in [87] (i.e., about 20% fewer additions). More
details are given in Appendix B.

3.3.3 Multiplication

There exist several (cleartext) algorithms for integer multiplication, most of them extend to
algebraic rings, too; for a comprehensive overview, we refer to a thorough survey by Bernstein [14].
Sorted by their asymptotic complexity, below we provide the most famous ones:

• the schoolbook algorithm, where every pair of digits gets multiplied, followed by a summa-
tion, and which runs in O(n2),

• the Karatsuba algorithm [78], which is based on the Divide-and-Conquer strategy and which
runs in O(nlog 3), and

• the Schönhage-Strassen algorithm [118], which is based on a number-theoretic transform
and which runs in O(n · log n · log log n).

Although the last one achieves the best asymptotic complexity, it is only worth for huge numbers:
e.g., in the GMP Library [65], the threshold MUL FFT THRESHOLD5 switches multiplication to the
Schönhage-Strassen algorithm for integers longer than high thousands of bits.

Therefore, for the encrypted domain, we do not consider Schönhage-Strassen – instead, we
find threshold tM , starting from which Karatsuba outperforms the schoolbook algorithm.

In the following subsections, we recall the Karatsuba algorithm in the clear, we propose
a method for the multiplication of individual encrypted signed bits, and we comment on the
final summation in both the schoolbook and Karatsuba algorithm, which also applies to scalar
multiplication.

5https://gmplib.org/manual/Multiplication-Algorithms, accessed Sep 2022.
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Karatsuba Algorithm

First, let us recall the cleartext version of the Karatsuba algorithm for balanced inputs as Algo-
rithm 6. It follows the Divide and Conquer strategy (cf. line 5) and it switches to the schoolbook
algorithm if the input length is lower than the threshold tM (cf. line 2). Indeed, with short inputs,
the schoolbook algorithm outperforms Karatsuba; find more details in Appendix C. Note that
we do not explicitly recall the schoolbook multiplication algorithm MulSchoolbookβ , which
melts down to pairwise multiplication of individual (signed) digits, followed by a summation.

Algorithm 6 Karatsuba Multiplication.

Input: (β,A)-representations x,y ∈ An of X,Y ∈ Z, for some n ∈ N,
Input: threshold tM ≥ 4,
Output: X · Y .

1: function MulKaratsubaβ(r, s)
2: if len(r) = len(s) < tM then
3: return MulSchoolbookβ(r, s)
4: end if
5: split r, s equally into two parts, s.t. (r1, r0) = r and (s1, s0) = s

▷ little-endian representation
6: n0 ← len(r0) = len(s0)
7: in parallel do
8: A← MulKaratsubaβ(r1, s1)
9: B ← MulKaratsubaβ(r0, s0)

10: C ← MulKaratsubaβ(r1 + r0, s1 + s0)
11: end parallel
12: return A · β2n0 + (C −A−B) · βn0 +B

▷ calc. using additions & base-β shifts
13: end function
14: return MulKaratsubaβ(x,y)

Multiplication of Individual Encrypted Signed Bits

In our integer representation, digits hold signed bits. Let us outline an algorithm that calculates
a product of two encrypted signed bits, using a single LUT evaluation; see Algorithm 7. An
illustration of the LUT together with its selector is given in Figure 3.4. Due to the size of the
LUT, we need π ≥ 5.

Algorithm 7 1×1-bit Multiplication in one LUT.

Input: x, y ∈ Ā2,
Output: x · y.
1: return (0, 0,−1, 0, 1∥ 1, 0,−1, 0)[3x+ y]

Summation of Intermediate Results

Both schoolbook and Karatsuba algorithms are followed by a summation of their intermediate
results.
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3x+ yx · y

Figure 3.4: Values of x · y and those of selector 3x+ y. Find respective LUT in Algorithm 7.

For the schoolbook, we illustrate the summation in Figure 3.5. With each addition, the
intermediate value grows one bit to the left (MSB; cf. Figure 3.2). Therefore, this way, the final
result is exactly twice as long as the inputs. However, if we decide for some parallelization of
the summation, it is worth leaving the last line for the very last step, otherwise, the result gets
longer.
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Figure 3.5: Summation within schoolbook multiplication.

For Karatsuba over n-bit inputs, there are several aspects of the final summation step (cf.
line 12 of Algorithm 6) to comment:

1. The result of Karatsuba is longer than 2n – indeed, the last addition step extends the final
result by at least one bit. Note that it also depends on the length of the nested products
– these might be already longer than twice their input due to a nested Karatsuba.

2. The value of −A − B can be pre-computed in parallel to the calculation of C, which is
more demanding due to the additions r1+ r0 and s1+ s0. Then the value of C+(−A−B)
is calculated in the first place.

3. Depending on the length of B, different approaches may apply to minimize the result’s
length as well as the number of steps:

• if |B| = 2n0, A and B can be simply concatenated to obtain A ·β2n0 +B, then shifted
C −A−B is added;

• otherwise, B is first added to shifted C −A−B, only then shifted A is added.

4. For the first-level Karatsuba (i.e., with all nested schoolbooks), it is worth splitting inputs
of odd length such that the LSB part is one bit longer – this approach leads to a shorter
addition in the final step. However, for a nested Karatsuba, different approaches may
achieve lower bootstrapping complexity; cf. Example 3.6. Finding the optimal approach
for every scenario is out of the scope of this work.
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Example 3.6. For a nested Karatsuba, there might be worth another way of splitting odd numbers
than the one described in point 4: Let us say we have tM = 16. Then, splitting 31 → (16|15)—
which is not proposed by point 4 and which calls schoolbook at the LSB part—leads to the con-
catenation (cf. point 3), and in total, multiplication this way requires 2 497 bootstraps. Whereas
the proposed way of splitting, i.e., 31→ (15|16), which calls Karatsuba at the LSB part, requires
2 531 bootstraps – mainly due to the additional cost of the A · 22n0 +B addition, instead of their
concatenation as in the previous case. This gives a counter-example to the odd-number splitting
argument, which might not hold in case recursive calls of Karatsuba occur.

We provide more details on other complexity measures of multiplication (and squaring) later
in Section 3.5.4 and (in particular) in Appendix D.

3.3.4 Squaring

For integer squaring, which is a special case of multiplication, we implement a dedicated algo-
rithm. Similarly to Karatsuba multiplication, we employ the divide and conquer strategy; find
our method for squaring in Algorithm 8. For the threshold tS (line 2), we obtain the value tS = 4
for our setup, using an approach analogical to multiplication (cf. Appendix C). We comment on
the schoolbook squaring algorithm (line 3) later.

Algorithm 8 Squaring via Divide-and-Conquer.

Input: (β,A)-representation x ∈ An of X ∈ Z, for some n ∈ N,
Input: threshold tS ≥ 4,
Output: X2.

1: function SquDivNConqβ(r)
2: if len(r) < tS then
3: return SquSchoolbookβ(r)
4: end if
5: split r equally into two parts, s.t. (r1, r0) = r

▷ little-endian representation
6: n0 ← len(r0)
7: in parallel do
8: A← SquDivNConqβ(r1)
9: B ← SquDivNConqβ(r0)

10: C ← MulKaratsubaβ(r1, r0)
11: end parallel
12: return A · β2n0 + C · βn0+1 +B ▷ additions & base-β shifts
13: end function
14: return SquDivNConqβ(x)

Compared to multiplication on a duplicated input, our squaring algorithm evaluates fewer
bootstraps in fewer steps, which is mainly achieved thanks to:

• fewer terms to be evaluated:

– two additions on line 10 of Algorithm 6 are not evaluated on line 10 of Algorithm 8,

– instead of C−A−B on line 12 of Algorithm 6, there is only C on line 12 of Algorithm 8;
and

• more efficient squaring of short inputs in case of signed binary representation.
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Squaring of Short, Signed Binary Inputs For short, signed binary input x (namely 2- or
3-bit with π = 5), we suggest to calculate individual bits of the resulting square directly and
in parallel. The idea is to evaluate homomorphically X = eval2(x) as per (3.6), which melts
down to scalar multiplications and additions of TFHE samples (i.e., no bootstrap is needed). To
evaluate a bit of Y = X2, we use X as a selector into a dedicated LUT; find an illustration in
Table 3.1, where columns represent these LUTs. For the full algorithm, we refer to Appendix E,
Algorithm 13.

Table 3.1: Bits of Y = X2 and respective selector X. Columns yi are intended to be encoded
into LUTs.

X
bits of Y = X2

X2

y5 y4 y3 y2 y1 y0
0 0 0 0 0 0 0 0
±1 0 0 0 0 0 1 1
±2 0 0 0 1 0 0 4
...

...
...

...
...

...
...

...
±7 1 1 0 0 0 1 49

Note that in the signed binary, 3 bits may encode X ∈ [−7, 7], and the output is up to 6-bit.
For 2-bit inputs, we only calculate the output bits up to y3. Also note that the bit at 21 position
(i.e., y1) is always zero, which stems from the fact a2 mod 4 ∈ {0, 1}. Hence, for 2- and 3-bit
inputs, we evaluate 3 and 5 LUTs, respectively, and we obtain the result in a single bootstrapping
step. We provide more details on other complexity measures of squaring (and multiplication)
later in Section 3.5.4 and (in particular) in Appendix D.

Recall that we have tS = 4 and we use the signed binary, i.e., SquSchoolbookβ (on line 3
of Algorithm 8) is fully implemented via this method for squaring of short inputs.

3.4 Signum-Based Operations over TFHE-Encrypted Data

In this section, we put forward some other, frequently used, signum-based operations in the signed
binary representation, while bearing in mind the limited set of available homomorphic operations
over the encrypted digits. Namely, we present parallel algorithms for signum and maximum
(improved versions of [87]), and we introduce a new algorithm for rounding at a selected digit
position.

In principle, these algorithms are based on number comparison. However, in the signed
binary representation, the lexicographic comparison may fail6. Therefore, we suggest reducing
the problem of number comparison to signum: we subtract the numbers (in parallel) and we
compare the result with zero. This works in the signed binary as expected, i.e., the sign of the
leading bit determines the sign of the result.

3.4.1 Signum

Amethod for comparison of two integers, given as a series of encrypted digits, was firstly proposed
by Bourse et al. [21]. Later, we adjusted this method to signed integer representations in [87];
we recall it in Algorithm 9.

6As an example, (011•)2 = 3 > 2 = (11̄0•)2, although 0 < 1 at the leading position of each number.
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Algorithm 9 Signum over (β,Aβ −Aβ)-representation ([21]; modified).

Input: (β,Aβ −Aβ)-representation z ∈ (Aβ −Aβ)
n of Z ∈ Z, for some n ∈ N,

Input: message space with bit-length π ≥ 3, such that 2π−1 ≥ β,
Output: sgn(Z).

1: γ ← π − 1
2: function SgnParalReduceγ(a)
3: k ← len(a)
4: if k = 1 then
5: return a0 ⋛ ±1
6: end if
7: for j ∈ {0, 1, . . . , ⌈k/γ⌉ − 1} in parallel do
8: for i ∈ {0, 1, . . . , γ − 1} in parallel do
9: sγj+i ← 2i ·

(
aγj+i ⋛ ±1

)
▷ scale f1 by 2i

10: end for
11: bj ←

∑γ−1
i=0 sγj+i

12: end for
13: return SgnParalReduceγ(b)
14: end function
15: return SgnParalReduceγ(z)

We propose an improvement, which only works in the signed binary representation: we
suggest skipping the bootstrapped (and scaled) comparison aγj+i ⋛ ±1 on line 9 of Algorithm 9
in the first level of recursion since we have already aγj+i ∈ {1̄, 0, 1}. Instead, aγj+i’s get directly
scalar-multiplied by 2i’s and aggregated into bj , which—compared to [87]—saves one level of
bootstrapping and reduces the number of threads by a factor of about four.

Next, note that the comparison function on line 5 can be replaced with another function if
needed – n.b., the value of a0 is only guaranteed to have the same sign as the top-level input.
E.g., one may compute the non-negativity function as outlined in Example 3.2, which is useful
for number comparison.

Analysis The evaluation of a ⋛ ±1 on lines 5 and 9 (i.e., signum of a) requires no extra plain-
text space (over what is needed for the representation of a’s) since signum is already negacyclic.
Indeed, we need the range [−2γ + 1, 2γ − 1], which perfectly fits within π = γ + 1 bits.

The aforementioned optimization (line 9 in the first level of recursion) mandates 22∆ ≥
(20)2+ . . .+(2γ−1)2, which equals 85 for π = 5. Note that this is the largest value of 22∆ within
Parmesan.

For the full parallelization, we need ⌈n/γ⌉ threads (bootstrapping starts from the second level
of recursion; as opposed to [87], which therefore requires n threads), and the algorithm runs in
⌈logγ(n)⌉ bootstrapping steps. The total number of bootstraps can be expressed as

Sγ(n) :=
⌈n
γ

⌉
+
⌈ n

γ2

⌉
+ . . .+

⌈ n

γ⌈logγ(n)⌉

⌉
. (3.9)

3.4.2 Maximum

We present an improved version of the method [87] for maximum of two integers X and Y ,
represented in the signed binary representation and encrypted with π ≥ 5; find it in Algorithm 10.
The function SgnParalReduce+γ on line 3 customizes line 5 of Algorithm 9, so that it evaluates
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the non-negativity function (cf. Example 3.2). Recall the notation introduced in Section 3.2.1,
which is now used on line 5 of the algorithm. We illustrate the LUT creation in Figure 3.6.
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Figure 3.6: Values of i-th bit of max{x, y} for both cases x < y and x ≥ y, and those of respective
selector s+ 2xi + 6yi, where s = (x ≥ y), i.e., the non-negativity function.

Algorithm 10 Maximum over (2, Ā2)-representation with π ≥ 5 bits of plaintext space.

Input: (2, Ā2)-representations x,y ∈ Ā2
n
of X,Y ∈ Z, for some n ∈ N,

Output: max{X,Y }.
1: r← x− y ▷ use favorite parallel alg.
2: γ ← π − 1
3: s← SgnParalReduce+γ (r)
4: for i ∈ {0, 1, . . . , n− 1} in parallel do
5: mi ←

(
0, 0, 0, 1, 1, 1̄, 1, 0, 1, 1∥ (1̄, 1̄), 1̄, 0, 1̄, 1, 0, 1̄

)
[s+ 2xi + 6yi]

6: end for
7: return m

Implementation Remark Note that for π = 5, there is a negacyclic overlap of two values
within the LUT on line 5: 1, 1 before ∥ is directly followed by its own negacyclic image 1̄, 1̄, which
is therefore given in parentheses.

Analysis In addition to the requirements of subtraction and those of SgnParalReduce+γ
(n.b., r is one bit longer than x and y), we have: one bootstrap per bit (as opposed to three
bootstraps in [87]), 22∆ ≥ 12 +22 +62 = 41 due to the selector on line 5, and we need n threads
for the full parallelization (vs. 2n threads in [87]). In total, maximum runs in 2+⌈logγ(n+1)⌉+1
bootstrapping steps with the total number of 2n + Sγ(n + 1) + n bootstraps; cf. (3.9) for the
definition of Sγ(·).

3.4.3 Rounding

Integer rounding operation at a given position (within its binary representation) can be expressed
as function R of two inputs: integer X ∈ Z to be rounded, and position i ∈ N to hold the last
non-zero bit. The function can be written as

R(X, i) :=
⌊X
2i

⌉
· 2i = . . . , (3.10)
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for X = (xn−1 . . . xixi−1 . . . x0•)2 also as

. . . = (xn−1 . . . xi0 . . . 0•)2 + ⌊(•xi−1 . . . x0)2
r

⌉ · 2i. (3.11)

With the standard binary alphabet, the value of ⌊r⌉ = ⌊(•xi−1 . . . x0)2⌉ equals to xi−1.
Indeed, if xi−1 = 0, then the remainder r = (•0xi−2 . . . x0)2 is always lower than 1/2, conversely
for xi−1 = 1, r = (•1xi−2 . . . x0)2 ≥ 1/2.

However, with the signed binary alphabet, the leading bit xi−1 does not determine how r
compares to 1/2. In addition, such r ranges in the interval (−1, 1), unlike [0, 1) for the standard
binary alphabet, therefore, we need to compare with both ±1/2. Altogether nine combinations
occur for xi−1 ∈ Ā2 and for signum of the rest of r, denoted s := sgn

(
(•xi−2 . . . x0)2

)
. The

resulting value of ⌊r⌉ as well as that of respective selector 2xi−1 + s are depicted in Figure 3.7.
Find our method in Algorithm 11.
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Figure 3.7: Values of ⌊r⌉ = ⌊(•xi−1 . . . x0)2⌉ and those of respective selector 2xi−1 + s, where
s = sgn

(
(•xi−2 . . . x0)2

)
.

Algorithm 11 Rounding over (2, Ā2)-representation.

Input: (2, Ā2)-representation x ∈ Ā2
n
of X ∈ Z, for some n ∈ N,

Input: rounding position i ∈ N,
Output: R(X, i) as per (3.10).

1: if i > n then
2: return 0
3: end if
4: if i = 1 then
5: t← x0

6: go to line 11
7: end if
8: γ ← π − 1
9: s← SgnParalReduceγ((xi−2, . . . , x0)) ▷ (xi−2, . . .) might be empty

10: t← (0, 0, 1, 1∥ 1̄, 0, 0)[2xi−1 + s]
11: u← (xn−1 . . . xi•)2 + (t•)2 ▷ use favorite parallel alg.
12: return u≪ i

Analysis Rounding calls signum, evaluates a LUT, and runs parallel addition, while the LUT
evaluation requires neither larger π nor 22∆ than any of those operations. Altogether, for i > 1,
rounding requires max{⌈i−1/γ⌉, n− i} threads, it runs in ⌈logγ(i−1)⌉+1+2 bootstrapping steps,
and in total Sγ(i− 1) + 1 + 2 · (n− i) bootstraps are called; cf. (3.9).
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3.5 Implementation & Experimental Results

In this section, we introduce our library for parallel arithmetics over TFHE-encrypted data. Then,
we comment on its dependency on the Concrete Library and we also compare the abilities of these
libraries in their current versions. Next, we outline an experiment design, covering the choice of
parameters, inputs, and hardware. Finally, we put forward the results of our benchmarks and
we conclude with a brief discussion.

3.5.1 The PARMESAN Library

We implement all operations, presented in the previous sections, in the PARMESAN Library [109].
Parmesan is an experimental library based on an existing implementation of TFHE – the Con-
crete Library [42], which we discuss later. Parmesan, as well as Concrete, are written in Rust7

and they are compatible with the Rust’s ecosystem, i.e., they can be easily added to a custom
project via a standard Rust dependency.

To make the starting point smooth, our library goes with a simple demo (in the README file),
which includes:

• TFHE parameter initialization, which loads a hard-coded parameter set;

• creation of User’s and Cloud’s scopes, which also generates respective keys;

• digit-by-digit encryption of integers a and b, given in a (signed) base-2 representation;

• homomorphic addition Encr(a)⊕ Encr(b);

• decryption of the result; and

• final check if Decr
(
Encr(a)⊕ Encr(b)

)
= a+ b.

All supported operations can be found in the ParmArithmetics trait, which is implemented for
both Parmesan ciphertexts and for signed 64-bit integers (Rust type i64).

3.5.2 The Concrete Library

Among existing implementations of TFHE, we choose the Concrete Library [42] by Zama8: Con-
crete is open-source9, is actively developed, implements state-of-the-art techniques, and also
long-lasting support can be expected. At the time of writing, the latest release of Concrete is
the beta-2 version of v0.2.0, which we later denote as v0.2β . In the beta version, many fea-
tures are not stabilized yet and further improvements are expected to come with the full version
(including a certain level of parallelization).

The Concrete library is written in Rust, where bundles of code are referred to as “crates”.
The concrete crate covers more than the implementation of TFHE (in the concrete-core

sub-crate) – it consists of other three sub-crates: concrete-boolean, concrete-shortint and
concrete-int, which respectively implements booleans, 2- to 7-bit unsigned integers and multi-
precision unsigned integers, including various homomorphic operations for each type.

7https://rust-lang.org
8https://zama.ai
9Under the BSD 3-Clause Clear License.

rust-lang.org
zama.ai
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Relation to Parmesan

Internally, Parmesan’s TFHE ciphertexts and respective homomorphic operations employ struc-
tures and functions of concrete-core. On top of these TFHE-level operations, integer arithmetic
is built from the scratch: starting from the signed, radix-based representation, until the imple-
mentation of various arithmetic operations and their parallelization.

Concrete’s Arithmetics

In concrete-int, various arithmetic as well as bit-level operations are implemented over radix-
based integer representations with selected power-of-two bases. Currently, a limited set of op-
erations is implemented also for the CRT-based10 representation (addition and multiplication;
appears to be under development). In our experiments, we focus solely on the radix-based rep-
resentation, which is by its nature closer to Parmesan. In addition, CRT-based representation
cannot be used to mimic standard computer arithmetics, which operate mod 2n, unlike CRT,
which operates modulo a product of coprime integers; for more details on CRT-based arithmetics,
we refer to [13].

Remark 3.3. Given base β = 2k and digit-length l, the radix-based arithmetic of Concrete is
equivalent to the standard unsigned kl-bit integer arithmetic. For each of the l digits, encrypted
with TFHE, the cleartext space actually consists of two parts: a k-bit message part, which covers
the standard base-β alphabet, and a carry part, which effectively extends the standard alphabet
by a couple of additional bits. This allows performing a certain number of additions without the
need for bootstrapping. In our experiments with Concrete, we run multiple additions until we
reach the first bootstrap and in the results, we amortize the cost.

Multiplication is implemented using the standard schoolbook algorithm without any paral-
lelization and for squaring, there is no special function. For scalar multiplication, there is no
optimization in terms of free doubling (we verify this by calling multiplication by 4 096 = 212),
nor in terms of addition-subtraction chains.

Parmesan’s vs. Concrete’s Arithmetics

We provide a comparison of Parmesan’s and Concrete’s operations in Table 3.2. Usage-wise, the
biggest difference is that Concrete mimics the behavior of native unsigned integer types (i.e., that
of the ring Z2kl), whereas Parmesan natively supports negative integers. Regarding the precision
bound, this is rather a matter of implementation and both libraries could be easily extended.

3.5.3 Experiment Setup

Let us discuss particular choices of parameters, inputs, and hardware.

Choice of Parameters

In Parmesan, we need 5 bits of message space and we do not need any padding. For this
purpose, we choose Concrete’s parameters named PARAM_MESSAGE_2_CARRY_3: there are 2 bits
for the message and 3 extra bits for the carry, altogether 5 bits. Although there is no parameter
corresponding to 22∆ in Concrete, we did not encounter any error during any of our experiments
or tests of Parmesan with this parameter choice, therefore, we consider our choice adequate. All

10Chinese Remainder Theorem.
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Table 3.2: The current state of implementation of arithmetics in Parmesan (experimental library)
and in Concrete v0.2β (some features not yet fully implemented in beta).

Feature Parmesan Concrete v0.2β

Radix-based representation
✓ (signed,
unlimited)

✓ (unsigned,
mod 2kl)

CRT-based representation ✗ (✓)

Addition/subtraction, multiplication ✓(parallel) ✓(sequential)
ASC∗s for scalar multiplication ✓ ✗
Karatsuba multiplication ✓ ✗
Dedicated squaring ✓ ✗

Bit operators ✗ ✓
Signum, maximum, rounding ✓ ✗

parameters in Concrete are claimed to be chosen with the (expected) level of 128-bit security,
which we verify with the lattice-estimator11 [9].

In Concrete, we use the default builder for 2-bit unsigned integers, upon which we build
longer integers. Regarding the digit’s bit-length, there is no clear recommendation, however, our
experiments with parallel addition algorithms [87] as well as an example implementation of the
Game of Life12 tend to prefer shorter message space.

Choice of Inputs

We choose to benchmark 4-, 8-, 16-, and 32-bit values with Addition/Subtraction, Multiplication,
and Squaring. For Signum, Maximum, and Rounding, we only benchmark 32-bit numbers to
spot the effect of recursion.

For Scalar Multiplication, we choose to verify the following scalars: 4 095, 4 096, 4 097, 805,
and 3 195. For 4 096, there shall be no operation needed in any of the bases: 2 (Parmesan), 4 (our
setup of Concrete), 8, or 16. For 4 095 and 4 097, we aim at observing, whether one operation
is used in both cases, i.e., whether both ways 4 095 = 212 − 1 and 4 097 = 212 + 1 are used. If
this is not the case, we would observe a big gap for 4 095, since its Hamming weight is 12, as
opposed to 2 for 4 097. As outlined in Example 3.5, 805 has a very efficient addition chain of
just 3 additions, a similar property goes also for 3 195.

Choice of Hardware

For our experiments, we choose two machines:

• an experimental server with a 12-threaded Intel Core i7-7800X processor (EURECOM’s
internal machine), and

• a supercomputer’s node with two 64-threaded AMD EPYC 7543 processors (operated by
e-INFRA CZ13).

Note that the 128-threaded machine has a sufficient number of threads to achieve the full paral-
lelization for most of the operations (unlike, in particular, the multiplication of long integers).

11https://github.com/malb/lattice-estimator
12https://www.zama.ai/post/the-game-of-life-rebooted-with-concrete-v0-2, accessed Sep 2022.
13https://e-infra.cz/en
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3.5.4 Results & Discussion

With chosen parameters, inputs, and hardware, we benchmark Parmesan using our dedicated
experimental tool14. Since our main aim is to benchmark Parmesan on a highly multi-threaded
processor, we accompany the code with scripts tailored for the Portable Batch System (PBS),
which is a queuing system of many super-computing infrastructures, including e-INFRA CZ.

Observed Quantities

In our experiments, we primarily focus on the total running time (as per our Complexity Mea-
sure; cf. Section 3.3), and we also approximately measure the processor load. Besides that, we
analytically evaluate other quantities:

• (bootstrapping) circuit depth: the minimal number of consecutive bootstraps in case of ideal
parallelization,

• total number of bootstraps (aka. #PBS),

• ideal number of threads: the minimum number of threads required for ideal parallelization,
and

• efficiency of CPU/thread usage: the total number of available bootstrapping slots (i.e., the
ideal number of threads multiplied by the circuit depth) divided by the total number of
bootstraps called.

Example 3.7. Let us evaluate these analytical quantities on an example of 16-bit multiplication
(cf. Algorithm 6). The calculation spreads into three pools of threads to calculate the values of
A, B, and C (cf. lines 8–10), using two instances of 8-bit schoolbook multiplication for A and
B, and two 8-bit additions followed by a 9-bit schoolbook multiplication for C. For each 8-bit
multiplication, we need 64 threads for pairwise multiplications, then we call 7× addition (cf.
Figure 3.5), each with 8 active bits (i.e., 8 threads in 14 steps). For 9-bit multiplication, we need
81 threads (multiplication) followed by 16×9 threads (summation).

The calculation of A and B is followed by their addition (2×16 threads), then A + B is
subtracted from C (2×18 threads) and finally C − (A+B) is added to concatenated A∥B (n.b.,
their length allows that; 2×24 threads). In total, we have 725 bootstraps in 23 steps and it shows
that 81 threads are necessary & sufficient for the full parallelization; see Table 3.3, where columns
A, B and C are later re-used for other calculations. Efficiency evaluates to 725/81·23 ≈ 38.9%.
Find other bit-lengths, also for squaring, in Appendix D.

Remark 3.4. In terms of circuit depth, Karatsuba shows to be worth starting from less than 16
bits, provided that a sufficient number of threads is available (cf. Remark .5 in Appendix C) and
a careful thread scheduling is applied (similar to that of Table 3.3). Recall that the threshold
for Karatsuba (given in Table 6 in Appendix C) is calculated with respect to the total number
of bootstraps, not to the circuit depth. Let us provide an example for 10-bit inputs: we compare
the parameters of Karatsuba and schoolbook in Table 3.4 (more details on 10-bit Karatsuba in
Table 7 in Appendix D).

Although Karatsuba has a lower bootstrapping depth as well as requires a lower number of
threads, such an approach requires careful parallelization (as per Table 7), which is currently
out of the scope. Therefore, we implement the multiplication threshold tM as per Table 6. Also,
a little experiment on a 12-threaded machine shows that 20-bit multiplication is faster with tM
as proposed (i.e., 10- and 11-bit multiplications via schoolbook), compared to calling Karatsuba
starting from 10-bit inputs, achieving 18.0 s and 20.8 s, respectively.

14https://github.com/fakub/bench-parmesan
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Table 3.3: A suggestion of thread scheduling for the calculation of intermediate values A, B, and
C, followed by their aggregation, in 16-bit Karatsuba multiplication, which splits each input into
two 8-bit parts. Using 81 threads in 23 steps, totalling 725 bootstraps.

A B C Total #thr’s Comment

64 − 8|8 80
C: r1 + r0 | s1 + s0− 64 8|8 80

− − 81 81 C: 9-bit pairwise mul.
8 8 9 25

A,B: 8-bit schoolbook
summation (14 rows);

C: 9-bit scb. Σ (+2 rows)

8 8 9 25
...

...
...

...
8 8 9 25
− 16 9 25

B: A+B− 16 9 25

− − 18 18
C: C − (A+B)− − 18 18

− − 24 24
C: A∥B + (C−A−B)∥0− − 24 24

Total #PBS 725

Table 3.4: Parameters of 10-bit multiplication. For 8-bit, the depths become equal to 15.

Algorithm Depth #PBS #thr’s

Karatsuba 17 320 36
Schoolbook 19 280 100

Experimental Results

We summarize the results of our benchmarks in Table 3.5, where one can find a performance
comparison of Parmesan and Concrete v0.2β as well as the analytical quantities for Parmesan.

In Figure 3.8, we display approximate, per-thread processor load measured during a calcu-
lation of the maximum of 32-bit (encrypted) inputs. In that figure, one may spot the expected
behavior of operations called within maximum (cf. Algorithm 10); one may observe high loads
of:

1. 32 threads, 2 steps ∼ 32-bit subtraction (line 1 of that algorithm),

2. 9 threads, 1 step ∼ first step of signum’s recursion (line 3; calls Algorithm 9 with a 33-bit
input),

3. 3 threads, 1 step ∼ second step of signum’s recursion,

4. 1 thread, 1 step ∼ the non-negativity function at the end of signum,

5. 32 threads, 1 step ∼ maximum selector (line 5).
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Figure 3.8: Approximate per-thread processor load measured during a calculation of 32-bit
maximum on a 128-threaded supercomputer node. Other than the first 32 threads are omitted
due to their negligible load.

Discussion

In our benchmarks, we compare two different approaches for basic integer arithmetic over TFHE-
encrypted data, implemented in our Parmesan Library and in the Concrete Library, respectively.

Parmesan’s arithmetic is based on an algorithm for parallel addition, which uses a redundant
integer representation, and in the encrypted domain, it employs a 5-bit message space to hold
one bit of an encrypted integer. Parallel addition takes constant time (independent of input
length), provided that a sufficient number of threads is available. On top of parallel addition,
other arithmetic algorithms are implemented with particular respect to parallelization, including
additional optimizations: ASC∗s and the window method for scalar multiplication, Karatsuba
algorithm for multiplication, divide-and-conquer strategy for squaring, etc.

On the other hand, Concrete’s arithmetics employ the standard sequential algorithm for
addition. In certain sense, its integer representations are also redundant, as it allows buffering
the carry for a limited number of additions, without bootstrapping. However, in the latest
beta version of Concrete, there is neither parallelization nor any other optimization of basic
arithmetic implemented yet. E.g., for scalar multiplication, this we can easily spot if we compare
the results with our particular choices of inputs (cf. Section 3.5.3): namely for k = 4096 = 46, no
bootstrapping would be needed in the base-4 representation (our setup of Concrete), however,
the timing reveals that many bootstraps occur.

Although there are substantial differences between these two libraries, they are both built
upon the same TFHE implementation (that of concrete-core crate), and they both use TFHE
parameters provided in the concrete-int crate (i.e., we may expect the same “quality”). Hence,
in certain sense, our benchmarks provide an insight into the direct comparison of these two
approaches. E.g., for 16-bit squaring on the 12-threaded processor, Parmesan on the one hand
achieves a speed-up by a factor of 2.3, on the other hand, it employs all of the 12 threads, as
opposed to Concrete, which runs on a single thread only. However, as stated in Sections 3.5.1
and 3.5.2, neither of these libraries is in a production version, therefore, our results shall not be
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perceived as definitive.
Generally speaking, the redundant representation, required by parallel addition, introduces

a certain computational overhead, which can be mitigated by a sufficient number of threads.
Therefore, the choice of approach depends on the optimization goal: if minimizing the actual
execution time is the priority, we recommend a parallel approach, if minimizing the computational
cost (in terms of total CPU time) is the priority, we recommend a sequential approach.

3.6 Conclusion

We propose and implement parallel algorithms for a fast integer arithmetic over TFHE-encrypted
data. We compare our library – the Parmesan Library – with the Concrete Library: for 32-bit
inputs on an ordinary 12-threaded server processor, we observe speed-ups by a factor of 2.3
for addition, 1.9 for multiplication, and 2.6 for squaring. On a supercomputer’s node with 128
threads, the speed-ups are even higher.

Particular speed-ups are achieved for scalar multiplication, for which we propose a new tech-
nique based on the window method and a special kind of addition chains denoted ASC∗. E.g.,
the calculation of 4 095 times an encrypted 16-bit integer achieves a 28× speed-up over Concrete
on the 12-threaded machine. The advantage of our technique is a combination of multiple factors
that our method employs:

• subtraction, which goes at the same cost as addition,

• free doubling in the radix-based representation, and

• pre-computed ASC∗s for up to 12-bit windows.

Besides integer arithmetic, we implement three signum-based operations: signum (also used
for number comparison) and maximum, which go with significant optimizations compared to
previous work [87], and rounding. These operations aim at completing the most common integer
operations.

Thanks to the generic form of our algorithms, the underlying TFHE scheme might be easily
replaced with another, LUT-based FHE scheme in the future.

Future Directions & Open Problems

For the Parmesan Library, there are several aspects to be considered:

• finalize the standard computer arithmetic by implementing:

– bit operations (&, |, !, . . . ) and integer division,

– conversions between the standard and the signed binary representation (if needed,
e.g., for bit operations),

– support for (u)intXY-like types, etc.

• algorithms for other common non-atomic operations (like maximum),

• other optimizations taking TFHE batching [35] into account,

• proper thread scheduling (cf. Remark 3.4) and dedicated optimizations with respect to
a fixed number of threads,
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• check how the (very recent) FINAL Scheme [17] compares to TFHE as the underlying FHE
scheme.

From the theoretical point of view, the most interesting open problem is the possible NP-
completeness of ASC∗s. For the moment, we also do not provide any argument of optimality for
our ASC∗s, which we generated by a brute-force method for only up to 12-bit integers.

Comments on a Preliminary Comparison with tfhe-rs

Preliminary experiments show a (not so clear) dominance15 of PARMESAN even over the most
recent version of tfhe-rs v0.2 [132] which is the state-of-the-art implementation of TFHE and
TFHE-based integer arithmetic (as of Q2/2023). Compared to its predecessor Concrete v0.2β ,
the new library tfhe-rs vastly improves the performance of not only bootstrapping (about
4×), but also it employs parallelism whenever possible16 which makes it far more competitive
than Concrete. However, the implicit non-parallelizability of its addition algorithm does not
allow tfhe-rs for pushing the latency further down as soon as sufficient parallel resources are
available, as opposed to PARMESAN.

Appendix

A Conversions Between Binary Representations

Recall that since A2 ⊂ Ā2, no conversion is needed from the standard to the signed binary
representation. Let us discuss the opposite conversion in more detail. First, note that in the
signed binary, the leading bit determines the sign of the represented integer. Therefore, we
outline this conversion only for positive integers; find it in Algorithm 12.

Algorithm 12 Conversion from the signed to the standard binary representation (assuming
a positive input).

Input: (2, Ā2)-representation x̄ ∈ Ā2
n
of X ∈ N, for some n ∈ N (x̄ has a positive leading bit),

Output: (2,A2)-representation x ∈ A2
n of X.

1: x← x̄
2: for i = 0 . . . n− 1 do
3: if xi < 0 then
4: xi ← xi + 2
5: xi+1 ← xi+1 − 1
6: end if
7: end for
8: return x

For negative integers, we suggest two options:

1. We remember the negative sign, we flip all signs and we proceed with Algorithm 12 nor-
mally.

15Due to different operation bounds, results were compared based on estimates because they could not be
compared directly.

16E.g., digit-by-digit multiplication can be parallelized, addition remains sequential with carry.
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2. We extend the (negative) input by zeros to a pre-determined length n̄ ≥ n and we run
Algorithm 12. This gives us a representation with leading 1̄ at the n̄-th position, which we
trim and we obtain x′ ∈ A2

n̄. Such an x′ is a standard complement code of length n̄ for

X < 0. E.g., for an n̄ = 8-bit representation, we have (1̄01̄01̄0•)2 Alg. 12−−−−−→ (1̄11010110•)2 ∼
(int8_t)(0b11'01'01'10) = −42.

Also, recall that for the “opposite” conversion, there does not exist a parallel algorithm.
Indeed, the existence of such a parallel algorithm would allow the following scenario: one may
convert (trivially) from the standard to the signed binary, perform addition, and convert back, all
in parallel. This contradicts the impossibility of parallel addition over a non-redundant integer
representation (in this example the standard binary), as shown by Kornerup [91].

B Average Number of Additions in Scalar Multiplication

We evaluate the average number of additions over 12-bit windows in the Koyama-Tsuruoka
recoding (recall that the Koyama-Tsuruoka recoding achieves minimal Hamming weight) using:

1. our 12-bit ASC∗s, and

2. the standard double-and-add/sub method.

E.g., for k = 885, Koyama-Tsuruoka recoded as 0b1001̄0001̄01̄1̄: the ASC∗ is (1, 7 = −1+1 · 23,
223 = −1+7 ·25, 885 = −7+223 ·22), which requires 3 additions, whereas the standard approach
gives (1, 7 = −1+1 ·23, 111 = −1+7 ·24, 443 = −1+111 ·22, 885 = −1+443 ·21), which requires
4 additions.

First, we evaluate the Koyama-Tsuruoka recoding for all odd integers in the interval [1, 4 095],
we trim them to 12 LSBs and we take the absolute value, obtaining 1 792 unique values. Then, we
evaluate both ASC∗s and double-and-add/sub, totalling 5 558 and 6 956 additions, respectively.
For simplicity, we assume that those 1 792 values are uniformly distributed. This gives us an
average of 3.10 additions for ASC∗s and 3.88 additions for double-and-add/sub.

C Threshold for Karatsuba Algorithm

Karatsuba algorithm has a lower asymptotic complexity than the schoolbook algorithm (O(nlog 3)
vs. O(n2)), however, for short inputs, schoolbook is better. Hence, the aim is to derive threshold
tM , under which the schoolbook algorithm outperforms Karatsuba. In the clear as well as in the
encrypted domain, the threshold tM needs to be evaluated with respect to the complexity of all
involved operations in that domain.

Remark .5. As outlined in Remark 3.2, it is important to choose a complexity measure. For
algorithms like parallel addition/subtraction, we aim at achieving the lowest bootstrapping depth
– they require as many threads as the number of bits, which makes this choice reasonable with
existing (highly) multi-threaded CPUs.

However, for multiplication, parallelization is enormous in the first couple of steps and then
it drops down rapidly. With a limited number of threads, we are closer to the “single-threaded”
scenario, where we aim at minimizing the total number of bootstraps, which we suggest to apply
for multiplication.

Both schoolbook and Karatsuba multiplication can be constructed using just addition (cf.
Algorithm 4) and single-bit multiplication (cf. Algorithm 7), while addition requires A = 2
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Table 6: Bootstrapping complexity of the schoolbook (Scb.) and the Karatsuba (Kar.) multi-
plication algorithms with different input bit-lengths (Bits). In Karatsuba, we consider splitting
odd numbers such that the longer part is at LSB (cf. Section 3.3.3, item 4).

Bits . . . 8 . . . 14 15 16 17 18 19 . . . 32 . . .

Scb. . . . 176 . . . 560 645 736 833 936 1 045 . . . 3 008 . . .
Kar. . . . 221 . . . 572 678 725 843 896 1026 . . . 2 617 . . .

bootstraps (per bit), whereas single-bit multiplication requires M = 1 bootstrap. We evaluate
the bootstrapping complexity of the schoolbook algorithm for n-bit inputs as

B
(s)
× (n) = M · n2 +A · n · (n− 1) = 3n2 − 2n. (12)

We use this result to evaluate the complexity of a first-level Karatsuba, which is sufficient to find
the threshold tM – indeed, recursion emerges for longer inputs, where also the halved input is
longer than tM . We observe that Karatsuba outperforms the schoolbook algorithm starting from
around n = 16-bit inputs; find the concrete bootstrapping complexities in Table 6. It shows that
there is no single threshold tM , instead, there is a slight overlap.

D Thread Scheduling

We suggest thread scheduling for a potential 10-bit Karatsuba multiplication in Table 7. Next,
we suggest thread scheduling for 32-bit multiplication and for 4-, 8-, 16- and 32-bit squarings in
Tables 8, 9, 10, 11 and 12, respectively. Note that 16-bit multiplication is covered in Table 3.3.

Table 7: A suggestion of thread scheduling for the calculation of intermediate values A, B, and C,
followed by their aggregation, in potential 10-bit Karatsuba multiplication (intentionally under
the threshold tM to compare with schoolbook), splitting the input into two 5-bit parts. Using
36 threads in 17 steps, totalling 320 bootstraps.

A B C Total #thr’s Comment

25 − 5|5 35
C: r1 + r0 | s1 + s0− 25 5|5 35

− − 36 36 C: 6-bit pairwise mul.
5 5 6 16

A,B: 5-bit schoolbook
summation (8 rows);

C: 6-bit scb. Σ (+2 rows)

5 5 6 16
...

...
...

...
5 5 6 16
− 10 6 16

B: A+B− 10 6 16

− − 12 12
C: C − (A+B)− − 12 12

− − 15 15
C: A∥B + (C−A−B)∥0− − 15 15

Total #PBS 320



E. ALGORITHM FOR SQUARING OF SHORT INPUTS 77

Table 8: A suggestion of thread scheduling for the calculation of intermediate values A, B, and
C, followed by their aggregation, in 32-bit Karatsuba multiplication, splitting the input into two
16-bit parts. Note that C is calculated via 17-bit schoolbook algorithm; cf. Table 6. Using 289
threads in 41 steps, totalling 2 617 bootstraps.

A B C Total #thr’s Comment

− − 16|16 32
C: r1 + r0 | s1 + s0− − 16|16 32

− − 289 289 C: 17-bit pairwise mul.
80 80 17 177

A,B: 16-bit Karatsuba
(23 rows);

C: 17-bit scb. Σ (+9 rows)

80 80 17 177
...

...
...

...
24 24 17 65
− 33 17 50

B: A+B− 33 17 50
− − 17 17
...

...
...

...
− − 17 17

− − 34 34
C: C − (A+B)− − 34 34

− − 35 35
C: (C−A−B)∥0 +B− − 35 35

− − 33 33
C: . . .+A∥0− − 33 33

Total #PBS 2 617

E Algorithm for Squaring of Short Inputs

We provide the full algorithm for squaring of short inputs as Algorithm 13. Note that columns
of LUTs in that algorithm hold squares of respective selector in binary: e.g., the 5th column
contains 100110, which is a (reversed) binary representation of 52 = 25. The bit at 21 position
(i.e., y1) is always zero thanks to the fact a2 mod 4 ∈ {0, 1}. Due to line 1, we need 22∆ ≥
(22)2 + (21)2 + (20)2 = 21.
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Table 9: A suggestion of thread scheduling for the calculation of intermediate values A, B, and
C, followed by their aggregation, in 4-bit Divide & Conquer squaring. Using 5 threads in 5 steps,
totalling 24 bootstraps.

A B C Total #thr’s Comment

− − 4 4 C: 2-bit pairwise mul.
3 − 2 5 A,B: 2-bit squ. (direct);

C: 2-bit scb. Σ− 3 2 5

− − 5 5
C: A∥B + C∥0− − 5 5

Total #PBS 24

Table 10: A suggestion of thread scheduling for the calculation of intermediate values A, B, and
C, followed by their aggregation, in 8-bit Divide & Conquer squaring. Using 16 threads in 11
steps, totalling 122 bootstraps.

A B C Total #thr’s Comment

− − 16 16 C: 4-bit pairwise mul.
4 4 4 12

A,B: 4-bit D’n’Q
(5 rows);

C: 4-bit scb. Σ (+1 row)

5 5 4 14
...

...
...

...
5 5 4 14
− − 4 4

− − 8 8
C: C∥0 +B− − 8 8

− − 9 9
C: . . .+A∥0− − 9 9

Total #PBS 122

Algorithm 13 Short-Input Squaring.

Input: 3-bit representation (x2x1x0•)2 ∈ (Ā2)
3 of X ∈ Z,

Output: 6-bit representation (y5 . . . y0•)2 ∈ (Ā2)
6 of X2.

1: X ← eval2(x2x1x0•) ▷ no bootstrap needed; cf. (3.6)
2: in parallel do
3: y0 ← (0, 1, 0, 1, 0, 1, 0, 1∥ 1, 0, 1, 0, 1, 0, 1)[X]
4: y1 ← 0 ▷ always 0
5: y2 ← (0, 0, 1, 0, 0, 0, 1, 0∥ 0, 1, 0, 0, 0, 1, 0)[X]
6: y3 ← (0, 0, 0, 1, 0, 1, 0, 0∥ 0, 0, 1, 0, 1, 0, 0)[X]
7: y4 ← (0, 0, 0, 0, 1, 1, 0, 1∥ 1, 0, 1, 1, 0, 0, 0)[X]
8: y5 ← (0, 0, 0, 0, 0, 0, 1, 1∥ 1, 1, 0, 0, 0, 0, 0)[X]
9: end parallel

10: return (y5 . . . y0•)2
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Table 11: A suggestion of thread scheduling for the calculation of intermediate values A, B, and
C, followed by their aggregation, in 16-bit Divide & Conquer squaring. Using 64 threads in 19
steps, totalling 488 bootstraps.

A B C Total #thr’s Comment

− − 64 64 C: 8-bit pairwise mul.
16 16 8 40

A,B: 8-bit D’n’Q
(11 rows);

C: 8-bit scb. Σ

...
...

...
...

9 9 8 26
− − 8 8
− − 8 8
− − 8 8

− − 16 16
C: C∥0 +B− − 16 16

− − 18 18
C: . . .+A∥0− − 18 18

Total #PBS 488

Table 12: A suggestion of thread scheduling for the calculation of intermediate values A, B, and
C, followed by their aggregation, in 32-bit Divide & Conquer squaring. Using 129 threads in 27
steps, totalling 1 837 bootstraps.

A B C Total #thr’s Comment

− − 80 80

A,B: 16-bit D’n’Q
(19 rows);

C: 16-bit Karatsuba
(23 rows)

− − 80 80
− − 81 81
− 64 25 89
64 40 25 129
...

...
...

...
18 18 24 60
18 − 24 42

− − 33 33
C: C∥0 +B− − 33 33

− − 35 35
C: . . .+A∥0− − 35 35

Total #PBS 1 837
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Chapter 4

A Practical TFHE-Based
Multi-Key Homomorphic
Encryption

Fully Homomorphic Encryption enables arbitrary computations over encrypted data and it has
a multitude of applications, e.g., secure cloud computing in healthcare or finance. Multi-Key Ho-
momorphic Encryption (MKHE) further allows to process encrypted data from multiple sources:
the data can be encrypted with keys owned by different parties. In this chapter, we propose
a new variant of MKHE instantiated with the TFHE scheme. Compared to previous attempts
by Chen et al. and by Kwak et al., our scheme achieves computation runtime that is linear in
the number of involved parties and it outperforms the faster scheme by a factor of 4.5-6.9×, at
the cost of a slightly extended pre-computation. In addition, for our scheme, we propose and
practically evaluate parameters for up to 128 parties, which enjoy the same estimated security
as parameters suggested for the previous schemes (100 bits). It is also worth noting that our
scheme—unlike the previous schemes—did not experience any error in any of our nine setups,
each running 1 000 trials.

4.1 Introduction to MKHE

For the first time publicly discovered in 2009 by Gentry [58], Fully Homomorphic Encryption
(FHE) refers to a cryptosystem that allows for an evaluation of an arbitrary computable function
over encrypted data1. With FHE, a secure cloud-aided computation, between a user (U) and
a semi-trusted cloud (C), may proceed as follows:

• U generates secret keys sk, and evaluation keys ek, which she sends to C;

• U encrypts her sensitive data d with sk, and sends the encrypted data to C;

• C employs ek to evaluate function f , homomorphically, over the encrypted user data (with-
out ever decrypting it), yielding an encryption of f(d), which it sends back to U;

• U decrypts the message from C with sk, obtaining the desired result: f(d) in plain.

1For a basic overview of the evolution of FHE schemes, we refer to a survey by Acar et al. [2] (from 2018; note
that for implementations, much progress has been made since then).

81
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In such a setup, there is one party that holds all the secret keying material. In case the data
originate from multiple sources, Multi-Key (Fully) Homomorphic Encryption (MKHE) comes into
play. First proposed by López-Alt et al. [97], MKHE is a primitive that enables the homomorphic
evaluation over data encrypted with multiple different, unrelated keys. This allows to relax
the intrinsic restriction of a standard FHE, which demands a single data owner.

Previous Work

Following the seminal work of López-Alt et al. [97], different approaches to design an MKHE
scheme have emerged: first attempts require a fixed list of parties at the beginning of the protocol
[40, 102], others allow parties to join dynamically [24, 110], Chen et al. [29] extend the plaintext
space from a single bit to a ring. Later, Chen et al. [27] propose an MKHE scheme based on the
TFHE scheme [35], and they claim to be the first to practically implement an MKHE scheme;
in this chapter, we refer to their scheme as CCS. The evaluation complexity of their scheme is
quadratic in the number of parties and authors only run experiments with up to 8 parties. The
CCS scheme is improved in recent work by Kwak et al. [93], who achieve quasi-linear complexity
(actually quadratic, but with a very low coefficient at the quadratic term); in this chapter, we
refer to their scheme as KMS. Parallel to CCS and KMS, which are both based on TFHE, there
exist other promising schemes: e.g., [28], defined for BFV [22, 53] and CKKS [33], improved
in [79] to achieve linear complexity, or [100], implemented in the Lattigo Library [101], which
requires to first construct a common public key; also referred to as the Multi-Party HE (MPHE).
The capabilities/use-cases of TFHE and other schemes are fairly different, therefore we solely
focus on the comparison of TFHE-based MKHE.

Our Contributions

We propose a new TFHE-based MKHE scheme with a linear evaluation complexity and with
a sufficiently low error rate, which allows for a practical instantiation with an order of hundreds
of parties while achieving evaluation times proportional to those of plain TFHE. More concretely,
our scheme builds upon the following technical ideas (k is the number of parties):

Summation of RLWE keys: Instead of concatenation of RLWE keys (in certain sense proposed
in both CCS and KMS), our scheme works with RLWE encryptions under the sum of RLWE

keys of individual parties, i.e., Z =
∑k

q=1 z
(q). As a result, this particular improvement

decreases the evaluation complexity from quadratic to linear.

Ternary distribution for RLWE keys: Widely adopted by existing FHE implementations [67,
101, 99, 121], zero-centered ternary distribution ζ : (−1, 0, 1)→ (p, 1− 2p, p) works well as
a distribution of the coefficients of RLWE keys; we suggest p ≈ 0.1135. It helps reduce
the growth of a certain noise term by a factor of k, which in turn helps find more efficient
TFHE parameters.

Avoid FFT in pre-computations: In our experiments, we notice an unexpected error growth
for higher numbers of parties and we verify that the source of these errors is Fast Fourier
Transform (FFT), which is used for fast polynomial multiplication. To keep the evaluation
times low and to decrease the number of errors at the same time, we suggest replacing FFT
with an exact method just in the pre-computation phase. We also show that FFT causes
a considerable amount of errors in KMS, however, replacing FFT in its pre-computations
is unfortunately not sufficient.

We provide two variants of our scheme:
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Static variant: the list of parties is fixed – the evaluation cost is independent of the number of
parties who provide their inputs and the result is encrypted with all keys; and

Dynamic variant: the computation cost is proportional to the number of participating parties,
and the result is only encrypted with their keys (i.e., any subset of parties can go offline).

The variants only differ in pre-computation algorithms which in turn affect security assumptions.
Performance-wise, given a fixed number of parties, the variants are equivalent (it only depends
on the parameters of TFHE) and the evaluation complexity is linear in the number of involved
parties. The construction of our scheme remains similar to that of plain TFHE, making it possible
to adopt prospective advances of TFHE (or its implementation) to our scheme.

Next, we analyze and practically evaluate our scheme, and we compare it with previous
attempts:

• We support our scheme by a theoretical noise-growth & security analysis. Thanks to the
low noise growth, we instantiate our scheme with as many as 128 parties. We also show
that our scheme is secure in the semi-honest model. In addition, we informally outline
possible countermeasures in case there is a malicious party;

• We design and evaluate a deep experimental study, which may help evaluate future schemes.
In particular, we suggest simulating the NAND gate to measure errors more realistically.
Compared to the KMS scheme, we achieve 4.5-6.9× better bootstrapping times, while
using the same implementation of TFHE and parameters with the same estimated security
(100 bits). The bootstrapping times are around 140ms per party (with an experimental
implementation);

• We extend previous work by providing an experimental evaluation of the probability of
errors. For our scheme, the measured noises fall within the expected bounds, which are
designed to satisfy the rule of 4σ (probability of 1 in 15 787) – we indeed do not encounter
any error in any of our 9 000 trials in total.

Chapter Outline

We recall the TFHE scheme in a form of a detailed technical description in Section 4.2 and
we present our scheme in Section 4.3. We analyze security, correctness & noise growth, and
performance of our scheme in Section 4.4, which is followed by a thorough experimental evaluation
in Section 4.5. We conclude this chapter in Section 4.6.

4.2 Preliminaries

In this section, we recall the basic variant of the TFHE scheme [35]. Later in this chapter, we
refer to some of the algorithms and/or definitions.

Symbols & Notation

Throughout this chapter, we use the following symbols & notation:

• B: the set of binary coefficients {0, 1} ⊂ Z,

• T: the additive group R/Z referred to as the torus (i.e., real numbers modulo 1),

• Zn: the quotient ring Z/nZ (or its additive group),
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• M (N)[X]: the set of polynomials modulo XN+1, with coefficients fromM and with N ∈ N,

• $: the uniform distribution,

• a
α←M : the draw of random variable a from M with distribution α (for α ∈ R, we consider

the zero-centered /discrete/ Gaussian draw with standard deviation α),

• E[X], Var[X]: the expectation and the variance of random variable X, respectively.

We use logarithm base 2 throughout this chapter.

4.2.1 Description of TFHE, Revisited

For convenience, we revisit the TFHE scheme in this chapter in a more technical way than in
Chapter 1, so that our newly proposed algorithms can directly refer to this technical description
of the base-line TFHE. In the rest of this chapter, we focus solely on the basic variant of TFHE
with a Boolean message space: true and false are encoded into T ∼ [−1/2, 1/2) as −1/8 and 1/8,
respectively. To homomorphically evaluate the NAND gate over input samples c1,2, the sum
(1/8,0)− c1 − c2 is bootstrapped with a LUT, which holds 1/8 and −1/8 for the positive and for
the negative half of T, respectively.

Below, we provide a technical description of the TFHE scheme in a form of self-descriptive
algorithms. Parameters and secret keys are considered implicit inputs.

◦ TFHE.Setup(1λ): Given security parameter λ, generate parameters for:

• LWE encryption: dimension n, standard deviation α > 0 (of the noise);

• LWE decomposition: base B′, depth d′;

• set up LWE gadget vector: g′ ← (1/B′, 1/B′2, . . . , 1/B′d′);

• RLWE encryption: polynomial degree N (a power of two), standard deviation β > 0;

• RLWE decomposition: base B, depth d;

• set up RLWE gadget vector: g← (1/B, 1/B2, . . . , 1/Bd).

Other input parameters of the Setup algorithm may include the maximal allowed probability of
error, or the plaintext space size (for other than Boolean circuits).

◦ TFHE.SecKeyGen(): Generate secret keys for:

• LWE encryption: s
$← Bn;

• RLWE encryption: z
$← B(N)[X], (alternatively zi

ζ← {−1, 0, 1} for some distribution ζ).

For LWE key s ∈ Bn, we denote s̄ := (1, s) ∈ B1+n the extended secret key, similarly for an RLWE
key z ∈ Z(N)[X], we denote z̄ := (1, z) ∈ Z(N)[X]2.

◦ TFHE.LweSymEncr(µ): Given message µ ∈ T, sample fresh mask a
$← Tn and noise e

α← T.
Evaluate b ← −⟨s,a⟩ + µ + e and output c̄ = (b,a) ∈ T1+n, an LWE encryption of µ. This
algorithm is used as the main encryption algorithm of the scheme. We generalize this as well as
subsequent algorithms to input vectors and proceed element-by-element.
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◦ TFHE.RLweSymEncr(m, a = ∅, zin = z): Given message m ∈ T(N)[X], sample fresh mask

a
$← T(N)[X], unless explicitly given. If the pair (a, zin) has been used before, output ⊥.

Otherwise, sample fresh noise e ∈ T(N)[X], ei
β← T, and evaluate b← −zin · a+m+ e. Output

c̄ = (b, a) ∈ T(N)[X]2, an RLWE encryption of m. In case a is given, we may limit the output to
only b.

◦ TFHE.(R)LwePhase(c̄): Given (R)LWE sample c̄, evaluate and output φ← ⟨s̄, c̄⟩, where s̄ is
respective (R)LWE extended secret key.

◦ TFHE.EncrBool(b): Set µ = ±1/8 for b true or false, respectively. Output LweSymEncr(µ).

◦ TFHE.DecrBool(c̄): Output LwePhase(c̄) > 0, assuming T ∼ [−1/2, 1/2).

◦ TFHE.RgswEncr(m): Givenm ∈ Z(N)[X], evaluate Z← RLweSymEncr(0), where 0 is a vector

of 2d zero polynomials (i.e., Z ∈ (T(N)[X])2d×2). Output Z+m ·G, an RGSW sample of m.

◦ TFHE.Prod
(
BK, (b, a)

)
: Given RGSW sample BK of s ∈ Z(N)[X], and RLWE sample (b, a) of

m ∈ T(N)[X], evaluate and output:

(b′, a′)←
(
g−1(b)
g−1(a)

)T

· BK =: BK⊡ (b, a), (4.1)

which is an RLWE sample of s ·m ∈ T(N)[X]; in TFHE also referred to as the external product.

◦ TFHE.BlindRotate
(
c̄, {BKi}ni=1, tv

)
: Given c̄ = (b, a1, . . . , an) ∈ T1+n, an LWE sample of

µ ∈ T under key s ∈ Bn; (BKi)
n
i=1, RGSW samples of si under RLWE key z (aka. blind-rotate

keys); and RLWEz(tv) ∈ T(N)[X]2, (usually trivial) RLWE sample of tv ∈ T(N)[X] (aka. test
vector), evaluate:

1: b̃← ⌊2Nb⌉, ãi ← ⌊2Nai⌉ for 1 ≤ i ≤ n

2: ACC← X b̃ · RLWE(tv)
3: for i = 1, . . . , n do
4: ACC← ACC+ Prod

(
BKi, X

ãi ·ACC−ACC
)

▷ ACC or X ãi ·ACC if si = 0 or si = 1, resp.
5: end for

Output ACC = RLWEz(X
φ̃ · tv), an RLWE encryption of test vector “rotated” by φ̃, where

φ̃ = ⌊2Nb⌉+ s1⌊2Na1⌉+ . . .+ sn⌊2Nan⌉ ≈ 2N(s̄ · c̄) ≈ 2Nµ.

◦ TFHE.KeyExtract(z): Given RLWE key z ∈ Z(N)[X], output z∗ ← (z0,−zN−1, . . . ,−z1).

◦ TFHE.SampleExtract(b, a): Given RLWE sample (b, a) ∈ T(N)[X]2 of m ∈ T(N)[X] under

RLWE key z ∈ Z(N)[X], output LWE sample (b′,a′) ← (b0, a1, . . . , aN ) ∈ T1+N of m0 ∈ T (the
constant term of m) under the extracted LWE key z∗ = KeyExtract(z).

◦ TFHE.KeySwitchKeyGen(): For j ∈ [1, N ], evaluate and output a key-switching key for zj

and s: KSj ← LweSymEncr
(
z∗j ·g′), where z∗ ← KeyExtract(z). KSj is a d′-tuple of LWE samples

of g′-respective fractions of z∗j under the key s.
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◦ TFHE.KeySwitch
(
c̄′, {KSj}Nj=1

)
: Given LWE sample c̄′ = (b′, a′1, . . . , a

′
N ) ∈ T1+N (extrac-

tion of an RLWE sample), which encrypts µ ∈ T under the extraction of an RLWE key z∗ =
KeyExtract(z), and a set of key-switching keys for z and s, evaluate and output

c̄′′ ← (b′,0) +
N∑
j=1

g′−1(a′j)
T · KSj , (4.2)

which is an LWE sample of the same µ ∈ T under the LWE key s.

◦ TFHE.Bootstrap
(
c̄, tv, {BKi}ni=1, {KSj}Nj=1

)
: Given LWE sample c̄ of µ ∈ T under LWE key

s, test vector tv ∈ T(N)[X] that encodes a LUT, and two sets of keys for blind-rotate and for
key-switching (aka. bootstrapping keys – the evaluation keys of TFHE), evaluate:

1: c̄′ ← BlindRotate
(
c̄, {BKi}ni=1, tv

)
;

2: c̄′′ ← KeySwitch
(
SampleExtract(c̄′), {KSj}Nj=1

)
.

Output c̄′′, which is an LWE sample of—vaguely speaking—“evaluation of the LUT at µ”, under
the key s, with a refreshed noise. Details on the encoding of the LUT are given in Chapter 1.

◦ TFHE.Add(c1, c2): Output c1 + c2, which encrypts the sum of input plaintexts. Using just
“+”.

◦ TFHE.NAND
(
c1, c2, {BKi}ni=1, {KSj}Nj=1

)
: Given encryptions of bools b1 and b2 under LWE

key s, and bootstrapping keys for s and z, set the test vector as tv ← 1/8 · (1 +X +X2 + . . .+
XN−1). Output c̄′′ ← Bootstrap

(
1/8− c1 − c2, tv, {BKi}ni=1, {KSj}Nj=1

)
, which is an encryption

of ¬(b1 ∧ b2) under the key s.

4.3 Our TFHE-Based Multi-Key Scheme

In this section, we first recall the notion of Multi-Key Homomorphic Encryption (MKHE) and
we propose two variants of MKHE. Then, we summarize ideas and changes that lead from the
standard TFHE scheme [35] towards our proposal of MKHE – we outline the format of multi-
key bootstrapping keys, and we comment on a ternary distribution for RLWE keys. Finally, we
provide a technical description of our scheme, which we denote AKÖ (by authors’ initials).

4.3.1 MKHE and Our Variants

In addition to the capabilities of a standard FHE scheme, given in the introduction, an MKHE
scheme:

(i) runs a homomorphic evaluation over ciphertexts encrypted with unrelated keys of multiple
parties (accompanied by corresponding evaluation keys); and

(ii) requires the collaboration of all involved parties, holding the individual keys, to decrypt
the result.

Note that there exist multiple approaches to reveal the result: e.g., one outlined in [27], referred
to as Distributed Decryption, or one described in [100], referred to as Collective Public-Key
Switching.

We propose our scheme in two variants:
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Static variant: the list of parties is fixed at the beginning of the protocol, then evaluation keys
are jointly calculated – no matter how many parties join a computation, the evaluation
time is also fixed and the result is encrypted with all the keys; and

Dynamic variant: after a “global” list of parties is fixed, evaluation keys are jointly calculated,
however, only a subset of parties may join a computation – the evaluation cost is propor-
tional to the size of the subset and the result is only encrypted with respective keys (i.e., the
remaining parties can go offline). If a party joins later, a part of the joint pre-calculation
of evaluation keys needs to be executed in addition, as opposed to CCS [27] and KMS [93].

Note that in many practical use cases—in particular, if we require semi-honest parties—the
(global) list of parties is fixed, e.g., hospitals may constitute the parties. In addition, the pre-
calculation protocol is indeed lightweight.

4.3.2 Towards the AKÖ Scheme

As outlined in the introduction, our scheme is based on the three following ideas:

(i) create RLWE samples encrypted under the sum of RLWE keys of individual parties,

(ii) use a ternary (zero-centered) distribution for individual RLWE keys, and

(iii) avoid Fast Fourier Transform (FFT) in pre-computations.

Below, we discuss (i) and (ii), leaving (iii) for the experimental part (Section 4.5).

(R)LWE Keys & Bootstrapping Keys

First, we outline the structure of the secret (R)LWE keys, which are unrelated and owned by mul-
tiple parties, based on which we propose a structure of respective bootstrapping keys. Note that
secret keys of individual parties are never revealed to any other party, however, the description
of AKÖ involves all of them.

The underlying (and never reconstructed) LWE key is the concatenation of individual keys,
i.e., s :=

(
s(1), s(2), . . . , s(k)

)
∈ Bkn, where s(p) ∈ Bn are secret LWE keys of individual parties.

We refer to s as the common LWE key. For RLWE keys, we consider their summation, i.e.,
Z :=

∑
p z

(p), which we refer to as the common RLWE key. Note that this particular improvement

decreases the computational complexity (as well as the blind-rotate key sizes) from O(k2) to O(k).
For bootstrapping keys, we follow the original construction of TFHE, where we use the com-

mon (R)LWE keys. For blind-rotate keys, we generate an RGSW sample of each bit of the common
LWE key s =

(
s(1), . . . , s(k)

)
, under the common RLWE key Z =

∑
p z

(p). In addition, any party
shall neither leak its own secrets nor require the secrets of others. For this purpose, we employ
RLWE public key encryption [98]. Let us outline the desired form of a blind-rotate key for bit s:

BKs =

(
b∆ + s · g a∆

b□ a□ + s · g

)
, BKs ∈

(
T(N)[X]

)2d×2
, (4.3)

where (b∆,a∆) and (b□,a□) hold d+d RLWE encryptions of zero under the key Z; cf. TFHE.Rgsw-
Encr. For key-switching keys, we need to generate an LWE sample of the sum of j-th coefficients
of individual RLWE secret keys z(p), under the common LWE key s, for j ∈ [0, N − 1]. Here
a simple concatenation of masks (values a) and a summation of masked values (values b) do the
job. With such keys, bootstrapping itself is identical to that of the original TFHE.
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Ternary Distribution for RLWE Keys

For individual RLWE keys, we suggest to use zero-centered ternary distribution ζp : (−1, 0, 1)→
(p, 1 − 2p, p), parameterized by p ∈ (0, 1/2), which is widely adopted by the main FHE libraries
like HElib [67], Lattigo [101], SEAL [99], or HEAAN [121]. Although not adopted in CCS nor
in KMS, in our scheme, a zero-centered distribution for RLWE keys is particularly useful, since
we sum the keys into a common key, which is then also zero-centered. This helps reduce the
blind-rotate noise from O(k3) to O(k2), which in turn helps find more efficient TFHE parameters.

It is worth noting that for “small” values of p, such keys are also referred to as sparse
keys (in particular with a fixed/limited Hamming weight), and there exist specially tailored
attacks [31, 123]. At this point, we motivate the choice of p solely by keeping the information
entropy of ζp equal to 1 bit, however, there is no intuition—let alone a proof—that the estimated
security would be at least similar (more on concrete security estimates in Section 4.5.1 and
Appendix C.2). For the information entropy of ζp, we have

H(ζp) = −2p log(p)− (1− 2p) log(1− 2p)
!
= 1, (4.4)

which gives a numerical solution of p ≈ 0.1135. For zi ∼ ζp, we have Var[zi] = 2p ≈ 0.227.

4.3.3 Technical Description of AKÖ

We provide a technical description of AKÖ in the same form as for the TFHE scheme in Sec-
tion 4.2.1. We mark algorithms that differ fundamentally from their TFHE counterparts with •,
existing algorithms (possibly slightly modified) are marked with ◦. Algorithms with index q
are executed locally at the respective party. We remind that encryption algorithms naturally
generalize to vector inputs.

Static Variant of AKÖ

Below, we provide algorithms for the static variant of AKÖ:

• AKÖ.Setup(1λ, k): Given security parameter λ and the number of parties k, generate and

distribute to all k parties the same parameters as generated by the TFHE.Setup(1λ) algorithm
(n.b., k is taken into account, hence the parameters differ from those given by TFHE.Setup(1λ)),

and a common random polynomial (CRP) a
$← T(N)[X].

◦ AKÖ.SecKeyGenq(): Generate secret keys s(q)
$← Bn and z(q) ∈ Z(N)[X], s.t. z

(q)
i

ζp← {−1, 0, 1}.

◦ AKÖ...: (R)LweSymEncrq, (R)LwePhaseq, DecrBoolq, KeyExtract, Prod, BlindRotate, Sample-
Extract, KeySwitch, Add, Bootstrap, and NAND are the same as in TFHE.

◦ AKÖ.RLwePubEncr
(
m, (b, a)

)
: Given message m ∈ T(N)[X] and public key (b, a) ∈ T(N)[X]2

(an RLWE sample of 0 ∈ T(N)[X] under key z ∈ Z(N)[X]), generate temporary RLWE key r(q), s.t.

r
(q)
i

ζ← {−1, 0, 1}. Evaluate b′ ← RLweSymEncrq(m, b, r(q)) and a′ ← RLweSymEncrq(0, a, r
(q)).

Output (b′, a′), which is an RLWE sample of m under the key z.



4.3. OUR TFHE-BASED MULTI-KEY SCHEME 89

◦ AKÖ.RLweRevPubEncr
(
m, (b, a)

)
: Proceed as RLwePubEncr, with a difference in the evaluation

of b′ ← RLweSymEncrq(0, b, r
(q)) and a′ ← RLweSymEncrq(m, a, r(q)), where only m and 0 are

swapped, i.e., m is added to the right-hand side instead of the left-hand side.

• AKÖ.BlindRotKeyGenq(): Calculate and broadcast public key b(q) ← RLweSymEncrq(0, a),

using the CRP a as the mask. Evaluate B =
∑k

p=1 b
(p) (n.b., (B, a) is an RLWE sample of zero

under the common RLWE key Z =
∑k

p=1 z
(p), hence it may serve as a common public key).

Finally, for j ∈ [1, n], output the blind-rotate key (related to s
(q)
j and Z):

BK
(q)
j ←

 RLwePubEncrq
(
s
(q)
j · g, (B, a)

)
RLweRevPubEncrq

(
s
(q)
j · g, (B, a)

)
 , (4.5)

which is an RGSW sample of the j-th bit of s(q), under the common RLWE key Z.

• AKÖ.KeySwitchKeyGenq(): For i ∈ [1, N ], broadcast [b
(q)
i |A

(q)
i ] ← LweSymEncrq

(
z
(q)∗
i · g′),

where z(q)∗ ← KeyExtract(z(q)). Aggregate and for i ∈ [1, N ], output the key-switching key (for

Zi =
∑

p z
(p)
i and s = (s(1), . . . , s(k))):

KSi =
[ k∑
p=1

b
(p)
i

bi

∣∣∣ A(1)
i ,A

(2)
i , . . . ,A

(k)
i

Ai

]
, (4.6)

which is a d′-tuple of LWE samples of g′-respective fractions of Z∗
i under the common LWE

key s. Here, Z∗
i is the i-th element of the extraction of the common RLWE key Z =

∑
p z

(p), i.e.,
Z∗ = KeyExtract(Z).

Changes to AKÖ towards the Dynamic Variant

For the dynamic variant, we provide modified versions of BlindRotKeyGen and KeySwitchKeyGen;
other algorithms are the same as in the static variant. Note that, in case we allow a party to
join later, all temporary keys need to be stored permanently and both algorithms need to be
(partially) repeated. This causes a slight pre-computation overhead over CCS and KMS.

• AKÖ.BlindRotKeyGen dynq(): Calculate and broadcast public key b(q) as described in the AKÖ

.BlindRotKeyGenq() algorithm. Then, for j ∈ [1, n]:

1: generate two vectors of d temporary RLWE keys r
(q)
j and r′(q)j (with coefficients distributed ∼

ζp)

2: for p ∈ [1, k], p ̸= q, output b
∆(p)
q,j ← RLweSymEncrq(0, b

(p), r
(q)
j )

3: output b
∆(q)
q,j ← RLweSymEncrq(s

(q)
j · g, b(q), r

(q)
j )

4: output a∆q,j ← RLweSymEncrq(0, a, r
(q)
j )

5: for p ∈ [1, k], output b
□(p)
q,j ← RLweSymEncrq(0, b

(p), r′(q)j )

6: output a□q,j ← RLweSymEncrq(s
(q)
j · g, a, r′

(q)
j )
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To construct the j-th blind-rotate key of party q, related to subset of parties S ∋ q, evaluate

BK
(q)
j,S ←

∑p∈S b
∆(p)
q,j a∆q,j∑

p∈S b
□(p)
q,j a□q,j

 , (4.7)

which is an RGSW sample of s
(q)
j under the subset RLWE key ZS =

∑
p∈S z(p). N.b., BK

(q)
j,S is

only calculated at runtime, once S is known.

• AKÖ.KeySwitchKeyGen dynq(): Proceed as AKÖ.KeySwitchKeyGenq(), while instead of out-
putting aggregated KSi’s, aggregate relevant parts at runtime, once S is known. I.e.,

KSi,S =
[∑
p∈S

b
(p)
i

∣∣∣ (A(p)
i

)
p∈S

]
. (4.8)

Possible Improvements

In [27], authors suggest an improvement that decreases the noise growth of key-switching, which
can also be applied in our scheme; we provide more details in Appendix A.

4.4 Theoretical Analysis of Our Scheme

In this section, we provide a theoretical analysis of our AKÖ scheme with respect to security,
correctness (noise growth), and performance.

4.4.1 Security

We assume that all parties follow the protocol honestly-but-curiously (i.e., we assume the semi-
honest model). Before we comment on each algorithm that may leak secrets, let us recall what
is secure and what is not in LWE (selected methods; also holds for RLWE):

✓ re-use secret key s with fresh mask a and fresh noise e;

✓ re-use common random mask a with multiple distinct secret keys s(p) and fresh noises e(p);

✗ publish ⟨s,a⟩ in any form (e.g., release the phase φ or the noise e);

✗ re-use the pair (s,a) with fresh noises ei.

Below, we show that if all parties act semi-honestly, our scheme is secure in both of its variants.
Note that rather than formal security proofs, we provide informal sketches. In selected cases,
we also briefly discuss what issues may rise with a malicious party and we outline possible
countermeasures.

Public Key Encryption

In AKÖ, there are two algorithms for public key encryption: RLwe(Rev)PubEncr
(
m, (b, a)

)
. Basi-

cally, they re-use a common random mask (the public key pair (b, a)) with fresh temporary key
r(q). Provided that b and a are indistinguishable from random (random-like), it does not play
a role to which part the message m is added/encrypted, i.e., both variants are secure.



4.4. THEORETICAL ANALYSIS OF OUR SCHEME 91

Blind-Rotate Key Generation (static variant)

Provided that CRP a is random-like, which is trivial to achieve in the random oracle model, we
can assume that (our) b(q) is random-like. Assuming that other parties act honestly, also their
b(p)’s are random-like, hence the sum B is random-like, too. With (B, a) random-like, public key
encryption algorithms are secure, hence AKÖ.BlindRotKeyGenq is secure, too.

Blind-Rotate Key Generation (dynamic variant)

In this variant, party q re-uses temporary secret key r(q) for encryption of zeros using public
keys b(p) of other parties, and for encryption of own secret key s(q). This is secure provided that
b(p)’s are random-like, which is true if generated honestly.

Key-Switching Key Generation (both variants)

The AKÖ.KeySwitchKeyGen( dyn)q algorithms employ the standard LWE encryption, hence they
are both secure.

Summary

We have shown that if all parties act semi-honestly, our scheme is secure in both of its vari-
ants. We also outline possible countermeasures if there is a malicious party. However, we leave
a rigorous discussion on threat models that involve malicious actors for the future work.

On the Presence of a Malicious Party

Although we assume that all parties are semi-honest, we comment briefly and informally on the
possible presence of a malicious party. First, note that there is another insecure thing in LWE:

✗ use malicious common mask a (in particular in RLWE).

For this issue, let us outline an RLWE key recovery attack, given an encryption oracle:

1. the attacker provides malicious common mask (public key) a′ = 1/4+0 ·X+ . . .+0 ·XN−1;

2. the victim encrypts 0 with her secret key z as (b = −z · a′ + e, a′) = (−1/4 z + e, 1/4);

3. the attacker rounds the coefficients of 4b ∈ [−2, 2)(N)[X] to integers, yielding the secret
key z.

Blind-Rotate Key Generation (static variant) In case there is malicious party p′, it may
wait for others and collect their b(p)’s, then it may publish malicious b(p

′) = 1/4−∑p ̸=p′ b(p), i.e.,
B = 1/4 (cf. the attack outlined before). However, such an attack can be mitigated easily: each
party p first commits on b(p) before publishing it, i.e., before learning b’s of others. Then, even
if some b’s are malicious, the aggregate B can be considered random-like: indeed, it is sufficient
that one party (us) provides an unpredictable random-like b(q).

Blind-Rotate Key Generation (dynamic variant) In case there is malicious party p′, an
attack with b(p

′) = 1/4 (or similar) could be mounted; let us outline a possible mitigation:

• parties generate and distribute all keys normally;

• a series of bootstraps with some dummy data is performed;
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• the results are checked for correctness: the protocol halts unless everything is correct.

Recall that this is just a proposal of a possible countermeasure and we only provide a brief
reasoning: To generate malicious and functional b(p

′), i.e., b(p
′) of a specific form (e.g., 1/4) and

b(p
′) = −z(p′) · a + e, the attacker p′ would need to find short vectors/polynomials z(p

′) and e
that solve the equation, which is considered intractable. If the attacker finds some solution to
z(p

′) and e, which is not short, the noise growth is expected be enormous, hence it is very likely
to destroy the correctness and the protocol halts.

4.4.2 Correctness & Noise Growth

The most challenging part of all LWE-based schemes is to estimate the noise growth across various
operations. First, we provide estimates of the noise growth of blind-rotate and key-switching,
next, we combine them into an estimate of the noise of a freshly bootstrapped sample. Finally, we
identify the maximum of error, which may cause incorrect bootstrapping. By default, we evaluate
all noises for the static variant, while for the dynamic variant, we provide more comments in the
proofs.

Noise Growth of Blind-Rotate

In the following lemma and theorem, we provide an estimate of the noise growth during blind-
rotate, without considering any implementation aspects.

Lemma 4.1 (Correctness & Noise Growth of AKÖ.Prod). Given RGSW sample BK generated
by the AKÖ.BlindRotKeyGen algorithm, which encrypts constant polynomial s ∈ Z(N)[X] under
the common RLWE key Z =

∑
p z

(p), and RLWE sample c̄ = (b, a) that encrypts m ∈ T(N)[X]

under the same key, the AKÖ.Prod algorithm returns RLWE sample c̄′ = (b′, a′) that encrypts
s ·m under Z with additional noise eProd, given by

〈
Z̄, c̄′

〉
= s ·

〈
Z̄, c̄

〉
+ eProd, for which

Var[e Prod] ≈ NdVBβ
2
(
3 + 6pkN

)
BK error

+ s2ε2
(
1 + 2pkN

)
decomp. error

, (4.9)

where

• ε2 := 1/12B2d is the variance of (real-valued) uniform distribution on [−1/2Bd, 1/2Bd),

• VB := (B2+2)/12 is the mean of squares of (integer valued) uniform distribution on [−B/2,B/2)
(assuming B is even),

• other notation and parameters are as per the AKÖ.Setup algorithm, and

• we refer to the two terms as the blind-rotate key error and the decomposition error, respec-
tively.

If this error is sufficiently small, it holds ⟨Z̄, c̄′⟩ ≈ s · ⟨Z̄, c̄⟩, i.e., the AKÖ.Prod algorithm is
indeed multiplicatively homomorphic.

Proof. Find the proof in Appendix B.1. For the dynamic variant, we have (3 + k · 6pN) →(
1+k(2+6pN)

)
in the BK error term, which we consider practically negligible as 6pN ≈ 700.

Theorem 4.2 (Noise Growth of Blind-Rotate). The AKÖ.BlindRotate algorithm returns a sam-
ple with noise variance given by

Var[⟨Z̄,ACC⟩] ≈ knNdVBβ
2(3 + 6pkN)

BK error

+ 1/2 · knε2(1 + 2pkN)

decomp. error

+ Var[tv]︸ ︷︷ ︸
usually 0

. (4.10)
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The resulting ACC encrypts X⟨s̄,(b̃,ã)⟩ · tv.

Proof. Find the proof in Appendix B.2. For the dynamic variant, (3 + 6pkN) → (1 + 2k +
6pkN).

Noise Growth of Key-Switching

In the following theorem, we provide an estimate of the noise growth during key-switching, which
holds for both variants.

Theorem 4.3 (Noise Growth of Key-Switching). The AKÖ.KeySwitch algorithm returns a sam-
ple that encrypts the same message as the input sample, while changing the key from Z∗ to s,
with additional noise eKS, given by

〈
s̄, c̄′′

〉
=
〈
Z̄∗, c̄′

〉
+ eKS, for which

Var[eKS] ≈ Nkd′VB′β′2

KS error

+ 2pkNε′2

decomp. error

. (4.11)

If the error is sufficiently small, it holds ⟨s̄, c̄′′⟩ ≈ ⟨Z̄∗, c̄′⟩.

Proof. Find the proof in Appendix B.3. For the dynamic variant, key-switching keys are struc-
turally equivalent, hence this estimate holds in the same form.

Noise of a Freshly Bootstrapped Sample

In the following corollary, we combine noise estimates of blind-rotate and key-switching, yielding
a noise estimate of a freshly bootstrapped sample. For the dynamic variant, the BK error term
is changed according to Theorem 4.2.

Corollary 4.4 (Noise of a Freshly Bootstrapped Sample). The AKÖ.Bootstrap algorithm returns
a sample with noise variance given by

V0 ≈ 3knNdVBβ
2(1 + 2pkN)

BK error

+ 1/2knε2(1 + 2pkN)

b.-r. decomp.

+Nkd′VB′β′2

KS error

+ 2pkNε′2

k.-s. decomp.

. (4.12)

For the dynamic variant, the BK error term is changed according to Theorem 4.2.

Maximum of Error

During homomorphic evaluations, freshly bootstrapped samples get homomorphically added/sub-
tracted, before being possibly bootstrapped again. Before a noisy sample gets blindly rotated, it
gets scaled and rounded to Z2N ; cf. line 1 of BlindRotate. In the following lemma, we evaluate
the variance of such a rounding error.

Lemma 4.5 (Rounding Error of Blind-Rotate). The rounding step on line 1 of the AKÖ.Blind-

Rotate algorithm induces an additional error with variance (in the torus scale) given by

Var
[〈
s̄, 1/2N · (b̃, ã)− (b,a)

〉]
=

1 + kn/2

48N2
=: Vround(N,n, k). (4.13)

Proof. Each of the 1 + kn values of (b,a) gets rounded to the closest multiple of 1/2N, i.e., the
error is uniform on the interval (−1/4N, 1/4N]. The result follows.
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After rounding, the noise gets refreshed inside the BlindRotate algorithm. It follows that the
maximum of error across the whole computation appears right after rounding of the sample to-
be-bootstrapped. We focus on this error in the experimental part, since it may cause incorrect
blind-rotation, in turn, incorrect LUT evaluation. In the following corollary, we evaluate the
variance of the maximal error throughout the calculation and we define quantity κ, which is
a scaling factor of normal distribution N(0, 1).

Corollary 4.6 (Maximum of Error). The maximum average error throughout homomorphic
computation is achieved inside the AKÖ.Bootstrap algorithm by the rounded sample 1/2N · (b̃, ã).
Its variance is given by

Vmax ≈ max
{∑

k2i

}
· V0 + Vround, (4.14)

where ki are coefficients of linear combinations of independent, freshly bootstrapped samples,
which are evaluated during homomorphic calculations, before being bootstrapped (e.g.,

∑
k2i = 2

for the NAND gate evaluation). We denote

κ :=
δ/2√
Vmax

=
δ

2σmax
, (4.15)

where δ is the distance of encodings that are to be distinguished (e.g., 1/4 for encoding of bools).

We use κ to estimate the probability of correct blind rotation (CBRot). E.g., for κ = 3, we
have Pr[CBRot] ≈ 99.73% ≈ 1/370 (aka. rule of 3σ), however, we rather lean to κ = 4 with
Pr[CBRot] ≈ 1/15 787. Since the maximum of error is achieved within blind-rotate, it domi-
nates the overall probability of correct bootstrapping (CBStrap), i.e., we assume Pr[CBStrap] ≈
Pr[CBRot].

4.4.3 Performance

Since the structure of all components in both variants of AKÖ is equivalent to that of plain TFHE
with only n→ kn (due to LWE key concatenation), we evaluate the performance characteristics
very briefly: AKÖ.BlindRotate is dominated by 4d · kn degree-N polynomial multiplications,
whereas AKÖ.KeySwitch is dominated by Nd′ · (1+ kn) torus multiplications, followed by 1+ kn
summations of Nd′ elements. Using FFT for polynomial multiplication, for bootstrapping, we
have the complexity of O(N logN · 4dkn) +O(Nd′ · (1 + kn)).

For key sizes, we have |BK| = 4dNkn·|TRLWE| and |KS| = d′N(1+kn)·|TLWE|, where |T(R)LWE|
denotes the size of respective torus representation.

4.5 Experimental Evaluation

For a fair comparison, we implement our AKÖ scheme2 side by side with previous schemes CCS [27]
and KMS [93]. These are implemented in a fork [122] of a library3 [106] that implements TFHE
in Julia. For the sake of simplicity, we implement only the static variant on AKÖ – recall that
performance-wise, the two variants are equivalent, for noise growth, the differences are negligible.

In this section, we first comment on errors induced by existing TFHE implementations. Then,
we introduce type-1 and type-2 decryption errors that one may encounter during TFHE-based
homomorphic evaluations. Finally, we provide three kinds of results of our experiments:

2Available at https://gitlab.eurecom.fr/fakub/3-gen-mk-tfhe as the 3gen variant, code mostly written by
Yavuz Akın.

3As noted by the authors, the code serves solely as a proof-of-concept.

https://gitlab.eurecom.fr/fakub/3-gen-mk-tfhe
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1. for all the three schemes (CCS, KMS, and AKÖ) and selected parameter sets, we measure
the performance, the noise variances, and the amount of decryption errors of the two types,

2. we demonstrate the effect of FFT during the pre-computation phase of AKÖ with 32 parties,

3. we compare the performance of all the three schemes with a fixed parameter set tailored
for 16 parties, with different numbers of actually participating parties (i.e., the dynamic
variant).

We run our experiments on a machine with an Intel Core i7-7800X processor and 128GB of
RAM.

Implementation Errors

The major source of errors that stem from a particular implementation of the TFHE scheme
is Fast Fourier Transform (FFT), which is used for fast modular polynomial multiplication in
RLWE; find a study on FFT errors in [81]. Also, the finite representation of the torus (e.g.,
64-bit integers) changes the errors slightly, however, we neglect this contribution as long as the
precision (e.g., 2−64) is smaller than the standard deviation of the (R)LWE noise. Note that these
kinds of errors are not taken into account in Section 4.4.2, which solely focuses on the theoretical
noise growth of the scheme itself.

The magnitude of the FFT error depends on (i) the finite torus representation (i.e., the
precision of coefficients of multiplied polynomials), and on (ii) particular FFT implementation
(e.g., what float representation is chosen); find a study on FFT errors in [81].

Due to the excessive noise that we observe for higher numbers of parties with our scheme,
we suggest replacing FFT in pre-computations (i.e., in blind-rotate key generation) with an
exact method. This leads to an increase of the pre-computation costs (n.b., it has no effect on
the bootstrapping time), however, in Section 4.5.2, we show that the benefit is worth it – the
pre-computation time indeed shows to be slower, yet it is not prohibitive.

Types of Decryption Errors

The ultimate goal of noise analysis is to keep the probability of obtaining an incorrect result
reasonably low. Below, we describe two types of decryption errors, which originate from boot-
strapping, and which we measure in our experiments. N.b., the principle of BlindRotate is the
same across the three schemes, hence it is well-defined for all of them.

Note 4.1. For the notion of correct decryption, we always assume symmetric intervals around
encodings. E.g., for the Boolean variant of TFHE, which encodes true and false as ±1/8, we only
consider the “correct” interval for true as (0, 1/4), although (0, 1/2) would work, too. Hence in
the Boolean variant, actual incorrect decryption & decoding would be half less likely than what
we actually measure.

Fresh Bootstrap Error We bootstrap (ideally) noiseless sample c of µ, i.e., BlindRotate
rotates the test vector “correctly”, meaning that φ̃/2N ≈ µ selects the correct position from the
test vector. Then, we evaluate the probability of the resulting phase φ′ = ⟨s̄, c̄′⟩ falling outside
the correct interval. We refer to this error as the type-1 error, denoted Err1. Note that this
probability relates to the noise of a correctly blind-rotated, freshly bootstrapped sample. It can
be estimated from V0; see (4.12).
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Blind Rotate Error Let us consider a homomorphic sum of two independent, freshly boot-
strapped samples. We evaluate the probability that the sum, after the rounding step inside
BlindRotate, selects a value at an incorrect position from the test vector, which encodes the
LUT (as discussed in Section 4.4.2). We refer to this error as the type-2 error, denoted Err2. It
can be estimated from Vmax; see (4.14). We evaluate Err2 by simulating the NAND gate:

fresh c1
Bootstrap−−−−−−→ c′1

fresh c2
Bootstrap−−−−−−→ c′2

}
(1/8−c′1−c′2)→ eval. φ̃ of BlindRotate→ check φ̃/2N

?∈ (0, 1/4). (4.16)

4.5.1 Experiment #1: Thorough Comparison of Performance & Errors

For the three schemes—CCS, KMS, and AKÖ—we measure the main quantities: the bootstrap-
ping time (median), the variance V0 of a freshly bootstrapped sample (defined in (4.12)), the
scaling factor κ (defined in (4.15)), and the number of errors of both types. We extend the
previous work – there is no experimental evaluation of noises/errors in CCS nor in KMS. In all
experiments, we replace FFT in pre-computations with an exact method. For CCS and KMS, we
employ the parameters suggested by the original authors, and we estimate their security with the
lattice-estimator by Albrecht et al. [8, 9]. We obtain an estimate of about 100 bits, therefore
for our scheme, we also suggest parameters with estimated 100-bit security. We provide more
details on concrete security estimates of the parameters of CCS and KMS, and those of AKÖ in
Appendix C.1 and C.2, respectively. The parameters and the results for CCS, KMS, and AKÖ

can be found in Table 4.1, 4.2 and 4.3, respectively.
In the results for CCS, we may notice that for 2 to 8 parties, the measured value of κ, denoted

κ(m), agrees with the calculated value κ(c), whereas for 16 parties (n.b., parameters added in
KMS [93]), the measured value κ(m) drops significantly, which indicates an unexpected error
growth.

In the results for KMS, we may notice a similar drop of κ – here it occurs for all numbers
of parties – we suppose that this is caused by FFT in bootstrapping (more on FFT later in
Section 4.5.2). For both experiments, we further use κ(m) and Z-values of the normal distribution
to evaluate the expected rate of Err2, which is in perfect accordance with the measured one.

For our AKÖ scheme, the results do not show any error of any type. Regarding the values of
κ (also V0), we measure lower noise than expected – this we suppose to be caused by a certain
statistical dependency of variables – indeed, our estimates of noise variances are based on an
assumption that variables are independent, which is not always fully satisfied. We are able to
run AKÖ with up to 128 parties, while the only limitation for 256 parties appears to be the size of
RAM. We believe that with more RAM (>128GB) or with a more optimized implementation, it
would be possible to practically instantiate the scheme with even more parties. For this purpose,
we provide parameter sets for 256 and even for 512 parties, where other technical limits are
reached: in particular the speed of the lattice-estimator and the size of a machine word,
which efficiently implements the torus.

4.5.2 Experiment #2: The Effect of FFT in Pre-computations

As outlined previously, polynomial multiplication in RLWE—when implemented using FFT—
introduces additional error, on top of the standard RLWE noise. In this experiment, we compare
noises of freshly bootstrapped samples: once with FFT in blind-rotate key generation (induces
additional errors), once without FFT (we use an exact method instead). For this comparison,
we choose our AKÖ scheme with 32 parties; find the results in Figure 4.1. Note that within
bootstrapping, we still employ FFT, i.e., the performance of evaluation is not affected.
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Table 4.3: Parameters, key sizes (calculated), bootstrapping times (tB ; median), noises and
errors of the static variant of AKÖ, without FFT in pre-computations. Running 1 000 trials, no
errors of type Err2 (let alone Err1) experienced.

∗For 256 and 512 parties, we exceed the limit of
RAM (128GB). ∗∗For 512 parties, better parameters could be found – the practical size of the
torus representation (64-bit) poses the limit.

k
LWE RLWE |keys| tB V

(c)
0 V

(m)
0 κ(c) κ(m)

n log2(α) B′ d′ N log2(β) B d [GB] [s] [10−4] [10−4]

2 520 −13.52 23 3

1 024 −30.70

27 2 .08 .19 4.69 4.18 4.04 4.27

3 510 −13.26 22 5 27 2 .13 .31 4.64 4.40 4.04 4.14

4 510 −13.26 22 5 26 3 .24 .56 3.96 2.02 4.33 5.93

5 520 −13.52 22 5 26 3 .31 .73 3.76 1.91 4.41 6.00

8 540 −14.04 22 5 24 4 .66 1.2 4.43 4.20 4.01 4.11

16 590 −15.34 23 4

2 048 −62.00

226 1 .93 1.8 4.56 1.02 4.04 7.90

32 620 −16.12 23 4 226 1 2.0 4.3 3.58 1.21 4.38 6.78

64 650 −16.90 23 4 225 1 4.1 8.6 3.41 1.80 4.20 5.25

128 670 −17.42 23 5 224 1 9.1 18 2.40 .486 4.15 5.47

256∗ 740 −19.24 22 8 218 2 37 – .187 – 4.00 –

512∗∗ 730 −18.98 23 5 4 096 −62.00 227 1 80 – 2.53 – 4.01 –

In the plot, we may notice a tremendous growth of the noise of a freshly bootstrapped sample
in case FFT is employed for blind-rotate key generation: in almost 4% of such cases, even a freshly
bootstrapped sample gets decrypted incorrectly (i.e., Err1 ≈ 4%), which corresponds to violet
bars outside the interval delimited by the red dashed lines. On the other hand, such a growth
does not occur for lower numbers of parties, hence we suggest verifying whether in the particular
case, the effect of FFT is remarkable, or negligible, and then decide accordingly. Recall that
pre-computations with FFT are much faster (e.g., for 64 parties, we have 33 s vs. 212 s of the
total pre-computation time).

Unexpected Error Growth in KMS

For the KMS scheme, we observe an unexpected error growth (cf. Table 4.2), which we suppose
to be caused by FFT in bootstrapping (i.e., evaluation). We replace all FFTs in the entire com-
putation of KMS—including bootstrapping—with an exact method, and we re-run Experiment
#1 with the KMS scheme, using the same setup. Due to a prohibitively slow evaluation (∼ 40×
slower), we only re-run the experiment for 2 parties. We obtain V

(m)
0 ≈ 5.58 · 10−4, which is

still much more than the expected value V
(c)
0 ≈ 0.458 · 10−4, but it already makes the standard

deviation about 30% smaller, compared to the “with FFT in bootstrapping” case. Also, it in-
creases the value of κ(m) from 2.60 to 3.73 and it results in no type-2 errors. At least partially,
this confirms our hypothesis that the unexpected error growth in KMS is caused by FFT in
evaluation.

A possible theoretical explanation can be found in the design of KMS: in the blind-rotate of
KMS, we may observe that there are (up to) four nested FFTs: one in the circled ⋆ product,
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−3s(w)
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−3σ0 +3σ0 +3s
(w)
0

−4s(n)max −3s(n)0 +3s
(n)
0 +4s

(n)
max

estimate
with FFT
w/o FFT

Figure 4.1: Noises of freshly bootstrapped samples of the static variant of AKÖ with 32 parties
(parameters as per Table 4.3), comparing blind-rotate keys generated with and without the use
of FFT, running 2 000 bootstraps. Red dashed lines mark the boundaries of the correct interval;

cf. Note 4.1. The values s
(·)
0 and s

(·)
max refer to the sample standard deviation of a freshly

bootstrapped sample and that of a rounded sample within blind-rotate (cf. (4.14); calculated
from respective s0), respectively. Labels

(w) and (n) refer to with FFT and no FFT, respectively.

N.b., the values ±4s(w)
max are far outside the graph.

followed by three inside ExtProd: one in the ⊙ product and two in NewHbProd. Compared with
AKÖ, where there is just one level of FFT inside blind-rotate in Prod, this is likely the most
significant practical improvement over KMS.

4.5.3 Experiment #3: Performance Comparison

We extend the performance comparison of CCS and KMS, presented in Figure 2 of KMS [93]
(which we re-run on our machine), by the performances of our AKÖ scheme. Note that the setup of
that experiment corresponds to the dynamic variant – recall that performance-wise, the dynamic
variant is equivalent to the static variant, which is implemented in our experimental library. For
each scheme, we employ its own parameter set tailored for 16 parties (cf. Table 4.1, 4.2 and 4.3),
while we instantiate it with different numbers of actually participating parties; find the results
in Figure 4.2.

4.5.4 Discussion

The goal of our experiments is to show the practical usability of our AKÖ scheme: we compare its
performance as well as the probability of errors with previous schemes – CCS [27] and KMS [93].

In terms of bootstrapping time, AKÖ runs faster than both previous attempts (cf. Figure 4.2).
Also, the theoretical complexity of AKÖ is linear in the number of parties (cf. Section 4.4.3), as
opposed to quadratic and quasi-linear for CCS and KMS, respectively.

To evaluate the number of errors that may occur during bootstrapping, we propose a new
method that simulates the rounding step of BlindRotate (cf. (4.16)), which is the same across
all the three schemes. Our experiments show that both CCS and KMS suffer from a considerably
high error rate (cf. Table 4.1 and 4.2, respectively): for CCS, the original parameters are rather
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Figure 4.2: Comparison of median bootstrapping times of the CCS scheme [27], the KMS
scheme [93], and our AKÖ scheme. 100 runs with respective parameters for 16 parties were
executed. N.b., FFT in pre-computations does not affect performance.

poor; for KMS, it seems that there are too many nested FFT’s in bootstrapping – we show that
FFT in evaluation—at least partially—causes the unexpected error growth.

To sum up, AKÖ significantly outperforms both CCS & KMS in terms of bootstrapping time
and/or error rate. The major practical limitation of the CCS scheme is the quadratic growth
of the bootstrapping time, whereas the KMS scheme suffers from the additional error growth
in implementation. A disadvantage of AKÖ is that it requires (a small amount of) additional
pre-computations if a new party decides to join the computation in the dynamic variant. Also
AKÖ does not enable parallelization, as opposed to KMS.

4.6 Conclusion

We propose a new TFHE-based MKHE scheme named AKÖ in two variants, depending on whether
only a subset of parties is desired to take part in a homomorphic computation. We implement
AKÖ side-by-side with other similar schemes CCS and KMS, and we show its practical usability
in thorough experimentation, where we also suggest secure & reliable parameters. Thanks to
its low noise growth, AKÖ can be instantiated with hundreds of parties; namely, we tested up
to 128 parties in our experiments. Compared to previous schemes, AKÖ achieves much faster
bootstrapping times, however, a slight overhead of pre-computations is induced. For KMS, we
show that FFT errors are prohibitive for its practical deployment – unfortunately, replacing FFT
in pre-computations is not enough.

Besides benchmarking, we suggest emulating (a part of) the NAND gate to achieve a more
realistic error analysis: the measured amount of errors shows to be in perfect accordance with the
expected amount. This method may help future schemes to evaluate their practical reliability.

Future Work

We plan to extend the threat model to assume malicious parties, formally. For implementation,
we would like to experimentally verify the improvement of key-switching proposed by [27] (dis-
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cussed in Appendix A). Another interesting topic might be to extend the message space to more
than Boolean.

Appendix

A Possible Improvement of Key-Switching

In [27], authors suggest to pre-compute multiples of key-switching keys: the aim is to decrease
the contribution of noise from the key-switching keys. On the one hand, the performance may
improve by choosing more efficient parameters, on the other hand, the size of key-switching keys
may grow significantly.

Instead of encrypting z
(q)∗
i g′, authors suggest to encrypt its multiples by integers in [1,B

′
/2].

Then, in the KeySwitch algorithm, instead of multiplication of a key-switching key KSi by
decomposition digits of g′−1(a′i), cf. (4.2), an appropriate pre-computed multiple of KSi is used
(with appropriate sign). In case B′ is “too big” for practical considerations, we rather suggest to

encrypt multiples of z
(q)∗
i g′ only by powers of two in [1,B

′
/2], and then combine these multiples to

reach the digits of g′−1(a′i). For this purpose, we suggest to employ a signed binary representation
with the lowest Hamming weight, also referred to as the Non-Adjacent Form (NAF; [18]).

B Proofs of Noise Analysis

B.1 Noise Growth of Homomorphic Product

Lemma 4.1. Given RGSW sample BK generated by the AKÖ.BlindRotKeyGen algorithm, which
encrypts constant polynomial s ∈ Z(N)[X] under the common RLWE key Z =

∑
p z

(p), and

RLWE sample c̄ = (b, a) that encrypts m ∈ T(N)[X] under the same key, the AKÖ.Prod algorithm
returns RLWE sample c̄′ = (b′, a′) that encrypts s ·m under Z with additional noise eProd, given
by
〈
Z̄, c̄′

〉
= s ·

〈
Z̄, c̄

〉
+ eProd, for which

Var[e Prod] ≈ NdVBβ
2
(
3 + 6pkN

)
BK error

+ s2ε2
(
1 + 2pkN

)
decomp. error

, (17)

where

• ε2 := 1/12B2d is the variance of (real-valued) uniform distribution on [−1/2Bd, 1/2Bd),

• VB := (B2+2)/12 is the mean of squares of (integer valued) uniform distribution on [−B/2,B/2)
(assuming B is even),

• other notation and parameters are as per the AKÖ.Setup algorithm, and

• we refer to the two terms as the blind-rotate key error and the decomposition error, respec-
tively.

If this error is sufficiently small, it holds ⟨Z̄, c̄′⟩ ≈ s · ⟨Z̄, c̄⟩, i.e., the AKÖ.Prod algorithm is indeed
multiplicatively homomorphic.
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Proof. We unfold the construction of BK and multiplication within the AKÖ.Prod algorithm:

c̄′ =
(〈

g−1(b),−r ·B+ s · g + e1

〉
+
〈
g−1(a),−r ·B′ + e′1

〉
,〈

g−1(b),−r · a+ e2

〉
+
〈
g−1(a),−r · a′ + s · g + e′2

〉)
. (18)

Then we write〈
Z̄, c̄′

〉
=
〈
g−1(b),−rB+ sg + e1

〉
+
〈
g−1(a),−rB′ + e′1

〉
+

+ Z
〈
g−1(b),−ra+ e2

〉
+ Z

〈
g−1(a),−ra′ + sg + e′2

〉
=

=
〈
g−1(b), r

k∑
p=1

z(p)a− r

k∑
p=1

e(p) + sg + e1

〉
+
〈
g−1(a), r

k∑
p=1

z(p)a′ − r

k∑
p=1

e′
(p)

+ e′1
〉
+

+
〈
g−1(b),−Zra+ e2

〉
+
〈
g−1(a),−Zra′ + Zsg + Ze′2

〉
=

=
〈
g−1(b), sg − r

k∑
p=1

e(p) + e1 + e2

〉
+
〈
g−1(a), Zsg − r

k∑
p=1

e′
(p)

+ e′1 + Ze′2
〉
=

= s
(〈

g−1(b),g
〉

≈b

±b
)
+ Zs

(〈
g−1(a),g

〉
≈a

±a
)
+

+
〈
g−1(b),−r

k∑
p=1

e(p) + e1 + e2

〉
+
〈
g−1(a),−r

k∑
p=1

e′
(p)

+ e′1 + Ze′2
〉
=

= s · (b+ Za

⟨Z̄,c̄⟩
) +

+ s ·
( Var[·]=ε2︷ ︸︸ ︷
⟨g−1(b),g⟩d − b+Z

( Var[·]=ε2︷ ︸︸ ︷
⟨g−1(a),g⟩d − a

)
decomp. errors

)
− (19)

− r

k∑
p=1

⟨g−1(b), e(p)⟩d − r

k∑
p=1

⟨g−1(a), e′
(p)⟩d + (20)

+ ⟨g−1(b), e1 + e2⟩d + ⟨g−1(a), e′1 + Ze′2⟩d. (21)

Note that

• the decomposition error has a uniform distribution on [−1/2Bd, 1/2Bd), hence variance of ε2;

• decomposition digits have a uniform distribution on [−B/2,B/2), hence mean of squares of
VB .

We evaluate the variance for each term and the result follows:

(19): Var[·] = s2ε2
(
1+2pkN

)
, since we multiply the second term by Z =

∑
p z

(p), which is a sum
of k polynomials, each with N coefficients with variance of 2p and zero mean;

(20): Var[·] = 2·2pkN2dVBβ
2, since there are two identical independent terms, where we multiply

a polynomial r, which has N coefficients with variance of 2p, with a sum of k independent
terms, each of which is an inner product of size d, where we multiply two polynomials of
N coefficients: one of them has VB mean of squares and the other has variance of β2 and
zero mean4;

4It holds Var[X · Y ] = E[X2] · Var[Y ] for independent variables with E[Y ] = 0.
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(21): Var[·] = (3 + 2pkN)NdVBβ
2, since we sum four independent error terms with variance of

β2, one of which is multiplied by Z (a sum of k polynomials of N coefficients with variance
of 2p).

For the dynamic variant, we exchange e1 →
∑

p e
(p)
1 , respectively for e′1, in the proof. Here,∑

p e
(p)
1 emerges from the sum of b

∆(p)
q,j ; cf. (4.7). This changes (3 + 2pkN)→ (1 + 2k + 2pkN)

in (21).

B.2 Noise Growth of Blind-Rotate

Theorem 4.2. The AKÖ.BlindRotate algorithm returns a sample with noise variance given by

Var[⟨Z̄,ACC⟩] ≈ knNdVBβ
2(3 + 6pkN)

BK error

+ 1/2 · knε2(1 + 2pkN)

decomp. error

+ Var[tv]︸ ︷︷ ︸
usually 0

. (22)

The resulting ACC encrypts X⟨s̄,(b̃,ã)⟩ · tv.

Proof. In the AKÖ.BlindRotate algorithm, the (usually noiseless) sample tv gets gradually mul-
tiplied by BK’s, we write:

〈
Z̄,ACC+ AKÖ.Prod(BK, Xa · ACC− ACC)

〉
=

=
〈
Z̄,ACC

〉
+ s ·

〈
Z̄, Xa · ACC− ACC

〉
+ e Prod(s) =

=
〈
Z̄, Xs·a · ACC

〉
+ e Prod(s), (23)

i.e., with each step, the noise grows by the additive term e Prod(s). The length of the common
LWE key s is kn, the mean of squares of si is 1/2, hence the result follows.

B.3 Noise Growth of Key-Switching

Theorem 4.3. The AKÖ.KeySwitch algorithm returns a sample that encrypts the same message
as the input sample, while changing the key from Z∗ to s, with additional noise eKS, given by〈
s̄, c̄′′

〉
=
〈
Z̄∗, c̄′

〉
+ eKS, for which

Var[eKS] ≈ Nkd′VB′β′2

KS error

+ 2pkNε′2

decomp. error

. (24)

If the error is sufficiently small, it holds ⟨s̄, c̄′′⟩ ≈ ⟨Z̄∗, c̄′⟩.
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Proof. We write (for clarity with indexes that indicate the length of inner products):

⟨s̄, c̄′′⟩ =
〈
(1, s), (b′,0) +

N∑
j=1

g′−1(a′j)
T · KSj

〉
1+kn

=

= b′ +
N∑
j=1

〈(
1, s
)
,g′−1(a′j)

T ·
[
−Ajs+ Z∗

jg
′ +

k∑
p=1

e
(p)
j

ej

∣∣∣ Aj

]〉
1+kn

=

= b′ −
N∑
j=1

〈
g′−1(a′j),Ajs

〉
d′ +

N∑
j=1

Z∗
j

(〈
g′−1(a′j),g

′〉
d′ ± a′j

)
+

N∑
j=1

〈
g′−1(a′j), ej

〉
d′ +

+

N∑
j=1

〈
s,g′−1(a′j)

T ·Aj

〉
kn

=

= b′ + ⟨Z∗,a′⟩N
⟨Z̄∗,c̄′⟩

+

N∑
j=1

Z∗
j

(〈
g′−1(a′j),g

′〉
d′ − a′j

decomp. error

)
+

N∑
j=1

〈
g′−1(a′j), ej

〉
d′ , (25)

while the decomposition error term has variance of 2pkNε′2 and the other term has variance of
Nkd′VB′β′2 (n.b., ej is a sum of k error terms), where ε′2 := 1/12B′2d′ and VB′ := (B′2+2)/12 are
respectively analogical to ε2 and VB , introduced in Lemma 4.1. The result follows.

C Security Estimates of (R)LWE Parameters

C.1 Parameters of CCS [27] and KMS [93]

We outline the usage of the lattice-estimator [8] for the purpose of security estimation of
parameters of (R)LWE over the torus, considering a finite representation of the torus (the base-
line Julia implementation [106] employs 32 bits for LWE and 64 bits for RLWE). As the final
security estimate, we take the largest rop value – the documentation of the estimator (e.g., in
/estimator/lwe guess.py) states:

rop: Total number of word operations (approx. CPU cycles)

Below, we present a sample output of the estimator on the LWE parameters that are shared by
CCS and KMS:

sage: from estimator import *

from estimator.lwe_parameters import LWEParameters

from estimator.nd import NoiseDistribution as ND

sage: LWE.estimate(LWEParameters(n=560, q=2^32, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(3.05*10^(-5), 2^32), m=sage.all.oo))

# bkw :: rop: approx. 2^144.3, m: ...

# usvp :: rop: approx. 2^103.2, red: ...

# --- other lines with rop higher than 100 ---

# dual_hybrid :: rop: approx. 2^99.4, mem: ...

from which we read 99.4 ≈ 100 bits of security. For the RLWE parameters of CCS and KMS, we
obtain 106.7 and 110.6 bits, respectively, both for the dual hybrid attack.
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C.2 Parameters of Our Scheme

We generate our parameters using our highly experimental tool5, therefore, we provide the pa-
rameters “as-is”, with no guarantees on their optimality. In our tool, we set the target security at
100 bits, which we verify with the lattice-estimator [8]. Recall that for RLWE keys, we suggest
to use a ternary distribution ζp : (−1, 0, 1) → (p, 1 − 2p, p) with p ≈ 0.1135; see Section 4.3.2,
where we also mention some recent attacks on sparse keys [31, 123], both of which are considered
by the estimator.

In case a new attack on sparse keys occurs, we suggest to increase the value of p, until the key
is not “sparse” – e.g., in the lattice-estimator (e.g., in estimator/nd.py), authors consider
“sparse” keys as follows:

We consider a~distribution "sparse" if its density is < 1/2.

Then, new parameters would need to be generated to reflect this change, however, we believe
that this would pose no obstacle. Indeed, the most important property of the ternary keys with
respect to the noise growth is that they are zero-centered, which remains untouched.

Below, we provide an output of the estimator for our RLWE parameters, taking into account
the ternary distribution with p = 0.113546, which corresponds to 116.27 out of 1 024:

# -- N = 1024 ------------------------------------------------------------------

sage: LWE.estimate(LWEParameters(n=1024, q=2^64, Xs=ND.SparseTernary(1024,

p=116.27), Xe=ND.DiscreteGaussianAlpha(2^(-30.7), 2^64), m=sage.all.oo))

# usvp :: rop: approx. 2^99.9 (other /higher/ values omitted)

We also check the estimate for uniform binary key distribution, replacing the ternary distribution,
and we obtain rop: approx. 2^98.3, i.e., the estimate is actually higher for the ternary
distribution. Next, for N = 2048, we obtain:

# -- N = 2048 n.b., runs around 4 hours! ---------------------------------

sage: LWE.estimate(LWEParameters(n=2048, q=2^64, Xs=ND.SparseTernary(2048,

p=2*116.27), Xe=ND.DiscreteGaussianAlpha(2^(-63.0), 2^64), m=sage.all.oo))

# bdd :: rop: approx. 2^101.2

# bdd_hybrid :: rop: approx. 2^101.2

Then, for selected LWE parameters, we obtain:

# -- n = 520 -------------------------------------------------------------------

sage: LWE.estimate(LWEParameters(n=520, q=2^64, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(2^(-13.52), 2^64), m=sage.all.oo))

# dual_hybrid :: rop: approx. 2^100.2 (other /higher/ values omitted)

We verify with q=2^32, so that we may represent torus in LWE with a 32-bit type:

sage: LWE.estimate(LWEParameters(n=520, q=2^32, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(2^(-13.52), 2^32), m=sage.all.oo))

# dual_hybrid :: rop: approx. 2^100.2

Other selected parameters give:

# -- n = 510 -------------------------------------------------------------------

sage: LWE.estimate(LWEParameters(n=510, q=2^64, Xs=ND.Uniform(0,1),

5Available at https://gitlab.eurecom.fr/fakub/tfhe-param-testing in the mk-tfhe branch.

https://gitlab.eurecom.fr/fakub/tfhe-param-testing
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Xe=ND.DiscreteGaussianAlpha(2^(-13.26), 2^64), m=sage.all.oo))

# dual_hybrid :: rop: approx. 2^99.8

# with q=2^32 also rop: approx. 2^99.8

# ...

# -- n = 670 -------------------------------------------------------------------

sage: LWE.estimate(LWEParameters(n=670, q=2^64, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(2^(-17.42), 2^64), m=sage.all.oo))

# dual_hybrid :: rop: approx. 2^104.9

# with q=2^32 also rop: approx. 2^104.9

# -- n = 740 -------------------------------------------------------------------

sage: LWE.estimate(LWEParameters(n=740, q=2^64, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(2^(-19.24), 2^64), m=sage.all.oo))

# dual_hybrid :: rop: approx. 2^106.7

For all parameter combinations, the lattice-estimator gives around or more than 100 bits of
security, even with q=2^32.
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Conclusion

Since the discovery of fully homomorphic encryption in 2009, the performance has gradually im-
proved over the years. However, since the introduction of TFHE in 2016 and CKKS in 2017, no
fundamentally novel approach has been proposed. Hence, recent research efforts and advances in
FHE are leaning towards improvements of these concepts which is no different in this work. For
instance, there is much focus on parallelization (to push down the latency), efficient implemen-
tation (to prevent wasting resources on unnecessary operations/precision), or batching methods
(to process more data at the same cost). Making all of that work together is a challenging task
and there is still a long way until a massive deployment of FHE in the wild, in particular, due
to the specificities of each and every real-world application.

In parallel to the improvements of base-line FHE schemes, we may observe attempts to-
wards their extensions and variants of, or their usage in particular applications. Interestingly,
for instance, the TFHE scheme originates as an effort to employ its predecessor—the FHEW
scheme—in an electronic voting system. Other topics include but are not limited to: verifiabil-
ity [55] (to prevent the cloud from cheating), private information retrieval [131] (PIR; to allow
database access without disclosing the query), or a setup with multiple parties [97] (to allow
processing data from multiple sources or to distribute trust).

Summary of Contributions

The two main contributions of this thesis are the following: (i) fast(est) homomorphic arithmetic
which employs parallelism, and (ii) practical (hybrid) multi-key FHE which enables applications
of FHE for multiple parties.

Fast(est) Homomorphic Arithmetic

Chapter 3 presents the PARMESAN Library (Parallel ARithMEticS over ENcrypted data) which
implements integer arithmetic and other operations over TFHE-encrypted integers of arbitrary
bit-length (aka. multi-precision arithmetic). Using a combination of signed binary integer rep-
resentation, for which there exist parallel algorithms for integer addition, and a state-of-the-art
implementation of the TFHE scheme, PARMESAN outperforms other algorithms that employ
addition algorithm with carry – provided that a sufficient number of threads and long-enough
inputs are given.

Particular speed-ups are achieved for scalar multiplication (i.e., multiplication of an encrypted
number by an unencrypted one) thanks to the use of newly defined and practically evaluated
free-doubling addition-subtraction chains (ASC∗s). The use of ASC∗s saves about 20% of addi-
tions on average, compared to the standard double-and-add/sub method, provided that both
employ the same Koyama-Tsuruoka recoding of the input scalar. The main advantage of the
ASC∗-based method for scalar multiplication is its versatility – it is agnostic of the underlying
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implementation of the addition algorithm, i.e., it can be ported to other implementations of
homomorphic arithmetic.

Practical (Hybrid) Multi-Key FHE

Chapter 4 introduces a hybrid multi-key fully homomophic scheme named AKÖ. Compared to
its predecessors – CCS and KMS schemes – AKÖ not only vastly outperforms them in terms of
latency (in particular the CCS scheme), it can also be practically instantiated with an order of
hundreds of parties and, at the same time, it introduces only a very low rate of evaluation errors.
The drawback of AKÖ is that it imposes a pre-computation overhead which is not present in CCS
nor in KMS.

AKÖ goes with a set of practical parameters for different numbers of parties, which are eval-
uated with respect to reliability in thorough experiments. The evaluation not only captures
predicted errors that stem from the inherent LWE noise, but it also deals with errors imposed
by concrete implementation choices – in particular, rounding errors of Fast Fourier Transform
(FFT) are discussed. Interestingly, these rounding errors are shown to trigger a prohibitively
high probability of an evaluation error in the case of the KMS scheme while the AKÖ scheme
remains untouched by FFT errors (to a certain extent – countermeasures are proposed for more
than 16 parties).

Future Work

Related to the contents of this thesis, the following topics are left for further investigation:

Parallelization. To achieve practical usability of FHE, low latency needs to be achieved. Due
to the still very high computational overhead of homomorphic operations, which does not
seem to be pushed down easily, it is worth considering the distribution of the computational
load among multiple workers (threads). However, not all operations allow for parallelization
(e.g., blind-rotate of TFHE), hence, one may need to resort to parallelization of operations
at a lower level (e.g., that of FFT in polynomial multiplication). On top of that, additional
overhead might be induced (e.g., by switching from binary to signed binary integer rep-
resentation as per Chapter 3), therefore, a careful comparison of various approaches must
always be made.

Multi-key FHE. As pointed out, our scheme is not multi-key in the true sense of the word:
indeed, there is a pre-computation overhead which is not supposed to be present in a truly
multi-key scheme. On the other hand, experiments show that previous attempts are im-
practical for different reasons: CCS is prohibitively slow and KMS suffers from an enormous
error growth, (at least) due to FFT errors. Therefore, the question of whether a practical
truly multi-key fully homomorphic scheme exists is raised.

Other topics. The prospective NP-completeness of ASC∗ decision problem (i.e., the existence
of an ASC∗ of length l for integer k; as discussed in Chapter 3) is left as an open problem.

Other Relevant Research Directions

We believe that FHE is capable of making its way through toward a mass deployment in the
wild in a near future. Until then, we expect that the following research directions would attract
attention and therefore might contribute to the overall improvement of the applicability of FHE.
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Specialized hardware. Very recently, a promising hardware accelerator named FPT [126] has
been presented. Authors employ an FPGA6 and currently, they achieve the lowest la-
tency of TFHE bootstrapping of about 500 µs which is by almost two orders of magnitude
faster than with a CPU. Their approach is based on a careful analysis of error growth in
FFTs which is also the topic of Chapter 2. Another promising approach, which employs
optoelectronics, is developed by Optalysys7.

Verifiability & zero-knowledge proofs. There emerge attempts to provide FHE schemes
with a certain form of verifiability, either based on algebraic properties [54, 15], or based
on zero-knowledge proofs [55]. However, the computational overhead needs to be pushed
down significantly.

6In simple words, Field Programmable Gate Array (FPGA) is a configurable hardware.
7White-papers are available at https://optalysys.com/white-papers. Accessed 2023-05-11.

https://optalysys.com/white-papers
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