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Abstract

This thesis concerns the autonomous navigation and coordination of multi-rotor
Unmanned Aerial Vehicle (UAV) teams in cooperative sensing tasks. Multi-rotor
UAVs have become a very popular tool in a variety of tasks requiring gathering
sensory measurements from diverse locations. The range of possible applications has
been further increased by progress in the development of localization and control
algorithms that enable deployment of UAVs in environments with high obstacle den-
sity. Cooperative sensing offers advantages over single-robot systems by distributing
sensory equipment and tasks to be solved among multiple robots, thus overcoming
the limited payload of UAVs and enabling more effective data collection including
obtaining simultaneous measurements from distant locations. This thesis focuses on
cooperative sensing methods that necessitate tight cooperation between robots and
cannot be performed by a single robot. These methods bring new challenges in co-
ordination and cooperative motion planning of UAVs in constrained environments
required to perform the missions effectively. The first part of the thesis details the
design and development of a software stack for autonomous navigation of multi-rotor
UAVs in indoor, GNSS-denied environments motivated mainly by search and rescue
operations. The proposed UAV system was verified in a DARPA SubT challenge
robotic competition, where the designed technology was among the top-performing
UAV-based systems. In the second part of the thesis, the focus is on the develop-
ment of a novel, worldwide unique technology for cooperative sensing, tailored for
advanced documentation techniques. This innovative approach utilizes a team of
tightly cooperating multi-rotor UAVs, equipped with a varying sensory and lighting
tools, for realization of documentation techniques applied in the field of restora-
tion and historical science. This technology, leveraging the developed autonomous
indoor navigation system, was used to document eighteen valuable historical struc-
tures, such as churches, historical halls, and chapels, including monuments listed
among UNESCO World Heritage sites. The last part of the thesis tackles the prob-
lem of time-optimal formation reshaping in three-dimensional environments with
guarantees of inter-agent collision avoidance. The efficient solution to this problem
provides the basis for expanding the previously proposed cooperative sensing meth-
ods to large-scale scenarios involving multiple cooperating formations of UAVs in a
shared operational space. Besides the development and design of novel methodolo-
gies and frameworks to tackle diverse research problems, particular emphasis is put
on the evaluation and experimental verification of all of the proposed algorithms and
technologies towards their applicability onboard light-weight UAVs in real-world ap-
plications. To this end, all algorithms and technologies presented in this thesis have
been verified in real-world scenarios and often also deployed in targeted applications,
helping to perform required tasks with increased efficiency compared to conventional
methods.

Keywords Unmanned Aerial Vehicles, Remote Sensing, Cooperative Motion Plan-
ning, Autonomous GNSS-denied Navigation, Formation Reshaping, Automated In-
spection, Documentation of Historical Buildings
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Abstrakt

Tato práce se zabývá autonomńı navigaćı a koordinaćı týmu v́ıcerotorových bezpi-
lotńıch helikoptér (UAV) v úlohách kooperativńıho sńımáńı. Vı́cerotorové UAV
se staly velmi obĺıbeným nástrojem v řadě úloh vyžaduj́ıćıch shromažďováńı sen-
zorických měřeńı ze zadaných mı́st. Rozsah možných aplikaćı byl dále rozš́ı̌ren
pokrokem ve vývoji lokalizačńıch a ř́ıdićıch algoritmů, které umožňuj́ı nasazeńı UAV
v prostřed́ıch s vysokou hustotou překážek. Oproti systémům s jedńım robotem,
kooperativńı sńımáńı umožňuje rozdělit senzorické vybaveńı a požadované úkoly
mezi v́ıce agent̊u, č́ımž překonává nevýhodu omezeného užitečného zat́ıžeńı UAV
a umožňuje zvýšit efektivitu sběru dat včetně prováděńı simultánńıch měřeńı ve
v́ıcero vzdálených mı́stech. Tato práce se zaměřuje předevš́ım na metody koopera-
tivńıho sńımáńı, které vyžaduj́ı úzkou spolupráci mezi jednotlivými roboty a z prin-
cipu je neńı možné realizovat pomoćı jediného robota. Tyto metody přináš́ı nové
výzvy v podobě koordinace robot̊u a př́ıstup̊u ke kooperativńımu plánováńı pohybu
v prostřed́ı s překážkami, jejichž řešeńı je základem efektivńı realizace požadovaných
úloh. Prvńı část práce podrobně popisuje návrh a vývoj metod pro autonomńı nav-
igaci v́ıcerotorových UAV ve vnitřńıch prostřed́ıch motivovaný předevš́ım pátraćımi
a záchrannými operacemi. Navržený systém byl ověřen v rámci robotické soutěže
DARPA SubT Challenge, kde vyvinutá technologie patřila k nejlepš́ım systémům na
bázi UAV. Druhá část práce se zabývá návrhem celosvětově unikátńı technologie pro
realizaci pokročilých technik kooperativńıho sńımáńı. Navržený inovativńı př́ıstup
využ́ıvá týmu úzce spolupracuj́ıćıch v́ıcerotorových UAV, vybavených r̊uznými zdroji
osvětleńı a senzory pro sběr dat, pro realizaci dokumentačńıch technik apliko-
vaných v oblasti restaurováńı a památkové ochrany. Tato technologie, využ́ıvaj́ıćı
systém pro autonomńı navigaci UAV v interiérech budov, byla použita k doku-
mentaci osmnácti hodnotných historických staveb, např́ıklad kostel̊u, historických
hal a kapĺı, včetně památek zapsaných na seznamu světového dědictv́ı UNESCO.
Posledńı část práce se zabývá problémem časově optimálńı změny tvaru formace v
trojrozměrných prostřed́ıch s garanćı vyhýbáńı se koliźım mezi jednotlivými roboty.
Efektivńı řešeńı tohoto problému poskytuje základ pro rozš́ı̌reńı navrhovaných ko-
operativńıch metod sńımáńı na rozsáhlé scénáře zahrnuj́ıćı v́ıce spolupracuj́ıćıch for-
maćı UAV ve sd́ıleném operačńım prostoru. Kromě vývoje a návrhu nových algo-
ritmů a technologíı práce klade zvláštńı d̊uraz na hodnoceńı a experimentálńı ověřeńı
všech navržených postup̊u a systémů, a jejich využitelnosti na palubě malých kom-
paktńıch UAV v rámci reálných aplikaćı. Všechny algoritmy a technologie prezen-
tované v této práci byly ověřeny v reálných scénář́ıch a často rovněž nasazeny v
ćılových aplikaćıch, kde pomohly plnit požadované úkoly s vyšš́ı efektivitou než
které je možné dosáhnout s konvenčńımi technologiemi.

Kĺıčová slova Bezpilotńı letecké prostředky, dálkové sńımáńı, kooperativńı
plánováńı pohybu, autonomńı navigace v interiérech, změna tvaru formace, autom-
atizovaná inspekce, dokumentace historických budov
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Chapter 1

Introduction

The rapid advancements in artificial intelligence and computational robotics, as well
as in sensory and computational technologies, have enabled robots to move beyond well-
established automated production lines and research laboratories to the general outdoor and
indoor environments closer to everyday life. The miniaturization of various sensors and com-
putational devices have also facilitated the increasing popularity of multi-rotor Unmanned
Aerial Vehicles (UAVs), which have recently found utilization in various fields ranging from
monitoring and inspection tasks [4c], [23], [24], to aerial cinematography [25], [26], Search &
Rescue (S&R) scenarios [14a], [27], [28], and protection of critical structures against aerial
intruders [29], [30] (Figure 1.1). However, the transition from well-controlled environments,
often tailor-made for robotic operations, to the general dynamically-evolving real world im-
poses special demands on the perception, localization, and navigation capabilities of mobile
robots, as well as their reliability.

Just as humans form social relationships to build communities and enhance their collec-
tive abilities and competitive edge, mobile robots similarly benefit from being organized into
teams. Establishing robot teams augments their overall capabilities, reliability, fault tolerance,
and operational efficiency, far surpassing the limitations of single-robot operations (e.g., lim-
ited payload in manipulation tasks, limited operational time in data collection missions, and
lack of redundancy in safety-critical operations). The advantages of multi-robot teams have
allowed UAVs to extend to various applications in professional domains, such as distributed
remote sensing [31], cooperative monitoring of environmental disaster areas [24], [32], precision
agriculture [33], and inspection tasks [34], [35]. A unique family of tasks is composed by those
that go inherently beyond the scope of a single robot due to temporal and spatial constraints
and thus the use of a team of UAVs is essential (e.g., cooperative manipulation [36], [37] and
cooperative tracking or sensing in dynamic environments [5c], [24], [32]). These tasks deserve
special attention as they require much tighter cooperation that goes beyond a simple alloca-
tion of goals and sharing data among team members, which is a typical level of cooperation
in current multi-robot systems. These complex tasks necessitate a high degree of cooperation
with precise coordination and maintenance of low inter-robot distances, rendering manual
control and teleoperation practically unfeasible. Therefore, while autonomy in single-robot
systems is a beneficial feature, it becomes an essential component for successful operation in
the context of closely cooperating multi-robot teams.

The goal of this thesis is to develop algorithms for the realization of cooperative sensing
tasks by a team of UAVs in cluttered real-world environments with possible extension to mul-
tiple cooperating UAV-teams sharing operational space. Further in this work, we deliberately
omit cooperative sensing tasks that necessitate simultaneous visits to distant locations (e.g.,
data collection missions), focusing instead on tasks that demand close collaboration between
particular UAVs. These tasks include, e.g., cooperative documentation techniques where part
of the robotic team provides lighting to actively influence the quality of captured data by

CTU in Prague Department of Cybernetics
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other members of the team. The specifics of these applications lie particularly in the demand
for the synergy between robots and in unavoidable dynamics of the environment formed by
the presence of multiple UAVs in a shared operational space. The need to coordinate the
actions of individual UAVs has given rise to the development of cooperative motion planning
algorithms and formation control theory, which are comprehensively reviewed in [38]. How-
ever, while many algorithmic solutions to this problem have already been developed, most of
them deal only with a general formation, lacking in-depth inter-robot cooperation and not
assigning specific roles to individual agents [39]–[42]. This thesis addresses the full range of
challenges associated with these scenarios, from ensuring the reliable navigation of a single
UAV in complex environments [1c], [2c], [6c], [8a] to developing algorithms for the coordina-
tion of UAV teams during cooperative sensing tasks [3c]–[5c], [18a], and even taking initial
steps toward the deployment of multiple UAV teams with interchangeable agents [7c]. The
thesis is structured around seven core publications [1c]–[7c], which are divided into three the-
matic sections. These publications collectively pursue a unified objective: to facilitate a safe
deployment of UAV teams in complex sensing tasks that necessitate close cooperation among
the UAVs. The achieved results are further supported by additional authored publications
[8a-22a].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.1: Example outcomes of authors’ contributions presented in this thesis — (a) deploy-
ment of the UAV system for navigation in Global Navigation Satellite System (GNSS)-denied
environments in an unfinished nuclear power plant [1c], (b) in cavern systems [2c], and (g) in
multi-robot cooperative exploration scenario during DARPA SubT Challenge finals [6c], (c)
realization of the Reflectance Transformation Imaging (RTI) documentation technique by a
team of UAVs using the method proposed in [3c], (d), (f) deployment of the proposed frame-
work [4c] for documentation of historical buildings in St. Maurice Church in Olomouc and
the National Museum in Prague, (e) deployment of the proposed algorithm for collision-aware
time-optimal formation reshaping [7c], (b), (i) deployment of cooperative motion planning and
formation control algorithms [5c], [18a] in power-line infrastructure inspection and monitoring
of a human worker.
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The first set of core publications[1c], [2c], [6c] deals with single- and multi-robot au-
tonomous navigation and exploration of GNSS-denied environments. This research was pri-
marily inspired by the DARPA SubTerranean Challenge (SubT Challenge) whose goal was to
detect and precisely localize objects of interest (e.g., survivors, their belongings, or a gas leak)
in complex, previously unknown environments with human access forbidden. The challenge
was held in three diverse environments simulating likely emergency scenarios where robots
can assist rescue squads in initial reconnaissance of post-disaster sites, such as man-made
tunnels, urban structures, and natural caves. During the competition, the deployed robots
were exposed to adverse time- and space-varying real-world conditions that negatively af-
fected both the traversability of the environment and perception of the robots (e.g., dust,
humidity, mud, water, dynamic obstacles). The apriori unknown conditions and given limited
deployment time within the competition forced participating teams to focus on the reliability
of the deployed systems and their robustness with respect to all anticipated challenges.

While the SubT Challenge did not necessitate close cooperation among UAVs, the de-
velopment of reliable autonomous navigation for a single UAV in indoor spaces lays a crucial
foundation for all systems requiring autonomous operation in cluttered indoor environments,
including realization of cooperative sensing tasks. In the relevant publications [1c], [2c], [6c],
we introduced a novel UAV-based system designed for S&R scenarios featuring computation-
ally efficient planning, exploration, and high-level mission planning algorithms that allowed
for running the entire pipeline onboard lightweight UAV. The frequent deployment and test-
ing of individual algorithms and the entire UAV-system in demanding and often completely
unknown GNSS-denied environments helped to identify numerous challenges imposed by spe-
cific real-world conditions and unique characteristics of environments, such as high-humidity
and dark cavern systems, abandoned buildings with transparent windows and extreme dusti-
ness, and narrow man-made tunnels with repetitive visual and geometric features. Addressing
these challenges in the development of the algorithms significantly increased the reliability
of the system and the range of the environments and applications where the system can be
effectively utilized.

The second collection of publications focuses on algorithms developed for advanced coop-
erative sensing tasks, particularly for the inspection and documentation of historical buildings.
Documentation techniques applied in restoration and historical sciences often require captur-
ing images with specific lighting angles to emphasize fine details, reveal three-dimensional
structure, or enhance the overall quality of the captured materials. UAVs proved to be invalu-
able in such contexts, especially when dealing with large historical monuments characterized
by areas that are challenging for humans to access, such as the most upper parts of altars,
and fresco and murals located in cupolas of cathedrals and churches. The documentation tasks
usually take place in environments that are either completely or partially known. However,
the invaluable nature of these historical sites, with their priceless artifacts, requires a high
level of operational safety. Therefore, we leveraged the expertise and algorithms developed for
autonomous navigation in unknown indoor environments to design a UAV-based framework
sufficiently reliable for use within historical structures. The specifics of the documentation
techniques required to be performed in such environments imply the necessity of utilizing
multiple tightly cooperating UAVs deploying algorithms that achieve safe and efficient opera-
tion of the UAVs in historical structures. In the relevant core publications [3c]–[5c], we present
the entire framework for documenting historical buildings using UAVs along with particular
methods for cooperative motion planning and coordination of UAV teams for realizing ad-
vanced documentation techniques, such as Reflectance Transformation Imaging (RTI) [43] and
raking light. This framework has gained recognition, being incorporated into the methodology
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officially approved by the Ministry of Culture of the Czech Republic for the use of UAVs in
documenting historical monuments.

The final set of publications presents a singular study [7c] on collision-aware formation
reshaping, a crucial aspect of various practical applications involving large groups of mobile
robots. Tasks, such as monitoring wildfires [44], cooperative object transport [36], drone light
shows [45], [46], and maneuvering formations through cluttered environments [47], [48], all
require adaptive changes of formation shape. Given the constrained operational duration of
mobile robots, particularly multi-rotor UAVs, time efficiency is a critical concern when deploy-
ing robotic systems in real-world settings. Therefore, when the formation shape adaptation
becomes part of a robotic mission, it is crucial to minimize the time required to complete
this process. In the presented publication [7c], we introduce an algorithm designed to solve
the problem of time-optimal formation reshaping, while ensuring collision avoidance between
agents. We consider an efficient solution to this problem as one of foundational steps toward
the efficient, long-term deployment of multiple collaborative robotic teams in shared oper-
ational spaces. Moreover, the problem of altering formations is not unique to the field of
robotics. Thus, the significant results yielded by our algorithm have implications extending
beyond the robotics community, impacting broader domains that require dynamic structural
adjustments.

The remainder of this thesis is organized as follows. First, Chapter 2 summarizes the
state of the art across relevant fields together with contributions of the thesis. Following
this, Chapter 3 introduces works published in the domain of autonomous navigation within
GNSS-denied environments, while Chapter 4 presents the core publications pertaining to
cooperative sensing. Chapter 5 introduces the final core publication, focusing on the time-
optimal formation reshaping. Next, Chapter 6 provides a detailed discussion, summary of
the results achieved, and outlines potential future work. Finally, the thesis concludes with
Chapter 7, which offers closing remarks.

CTU in Prague Department of Cybernetics
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Chapter 2

Contributions and Related Work

In this chapter, we highlight the contributions of this thesis, focusing primarily on the
core publications [1c]–[7c]. These contributions are contextualized within the framework of
related works in respective fields. The chapter is structured into three distinct sections, each
aligning with the categorization of the core publications as outlined in the previous chapter.

2.1 Autonomous navigation and exploration of GNSS-denied
environments

The tasks of autonomous navigation, exploration, and target search in GNSS-denied
environments are often related to searching and inspecting post-disaster areas that are dan-
gerous to enter due to potential structural instability, fire risks, or gas leaks. Automated
vehicles equipped with various sensors are ideal for initial surveys of the areas of interest,
being less vulnerable to potential risks imposed by the scenarios. Given the collected data,
rescue personnel can assess the potential dangers or localize survivors to limit the time that
human rescuers must spend at a potentially dangerous site. However, the technology currently
used by joint emergency systems is mostly limited to teleoperated vehicles with a restricted
operational range and stressful workload placed on human operators, further limiting the
scalability of such an approach.

The problem of autonomous navigation of UAVs in GNSS-denied environments requires
solutions to many challenges tackled in literature as self-standing research problems, start-
ing with control algorithms [49], [50], through state estimation [51], localization and map-
ping [9a], path planning and trajectory generation [52]–[56], up to goal selection [57], com-
munication [58], and high-level mission planning. Although literature offers high-performance
solutions to these individual challenges [9a], [49]–[57], they often lack focus on real-world ap-
plication performance metrics, such as reliability, robustness with respect to uncertainties in
outputs of individual algorithms, resilience, and also the interconnections with other mod-
ules [59]. Therefore, the pure combination of the individual high-performance algorithms does
not guarantee the highest performance in navigation and exploration tasks. Moreover, it often
does not lead to a feasible solution due to computational demands and incompatibilities of
individual modules.

The extreme complexity of the autonomous navigation task and requirements on the
reliability in target scenarios allows for considering the design of autonomous systems for
navigation and exploration of GNSS-denied environments as a distinct research topic, rather
than an engineering system integration work. UAV-based systems capable of autonomous op-
eration and exploration of unknown environments were presented in recent years, but often
deployed and tested only in well-controlled environments with UAV-friendly conditions [60]–
[66]. Significant advancements in this field are related to the teams that have participated
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in the SubT Challenge [67], [68] robotic competition organized by the Defense Advanced Re-
search Projects Agency (DARPA). Due to the requirements on the payload, the extent of
the environments, and narrow passages, the system’s track of the SubT Challenge encourages
teams to focus on the deployment of Unmanned Ground Vehicle (UGV)-based systems. How-
ever, the most successful teams in DARPA SubT Challenge competition took advantage of
deploying diverse robots, including UAVs, to improve the overall mobility and agility of their
robotic teams.

The winner of the challenge, team CERBERUS, designed a system based on the syn-
ergy of legged and aerial robots [69], [70]. The system deploys unified software stacks for
tackling exploration path planning and local motion planning [71] and an onboard comple-
mentary multi-modal localization and mapping approach [72]. The unified software across
the platforms allowed the team to narrow the focus of development and extensive testing,
which were identified as crucial for achieving reliable operation in varying environments. The
heterogeneity of environments was approached by deploying a team of robots with diverse mo-
bility, payload and endurance, also by the second-best team in SubT Challenge, team CSIRO
Data61 [73], that deployed tracked, wheeled, legged and aerial platforms utilizing a common
sensor suite that consists of a spinning 3D Light Detection And Ranging (LiDAR), and RGBD
cameras. All robots in the team processed the obtained data using CSIRO’s Wildcat real-time
multi-agent Simultaneous Localization And Mapping (SLAM)1 and ran a frontier-based ex-
ploration approach utilizing direct point cloud visibility algorithm [74]. Team CSIRO Data61
also took advantage of using marsupial robotic systems to transfer the UAVs to areas that
were suitable and advantageous for their deployment from the UGVs.

Team Marble presents their autonomous system deployed during preliminary circuits of
the SubT Challenge in [75] followed by a description of the system designed for SubT Challenge
finals together with achieved results in [76]. During the tunnel and urban circuit, the aerial
part of the team relied on global map-based path planning with local reactive control based
on direct high-resolution depth information to improve the resilience to dynamic environ-
ment, localization uncertainty, and imperfect trajectory tracking [75]. However, they decided
to cease the development and deployment of aerial robots towards SubT Challenge finals.
Team Explorer, on the other hand, employed both wheeled and legged UGVs along with
collision-tolerant aerial platforms that could operate as selfstanding platforms, but could also
be launched from wheeled UGVs [77], [78]. A detailed description of the UAV-based approach
that focus on efficient connection of exploration using a range sensor with surface coverage
by a cameras’ Field of View (FoV) is provided in [79]. The authors combine behavior-tree
for high-level decisions, RRT-connect-based [80] global planning maximizing the coverage of
surfaces while exploring an environment, and fast local planning with adaptable speed based
on distance to the closest obstacle. The proposed system demonstrated high resilience and
reliability under adverse conditions, achieving the best performance in terms of the area ex-
plored in DARPA SubT Challenge Finals. Team CoSTAR deployed the developed Network
Belief-aware perceptual autonomy (NeBula) framework, focusing on achieving resilience and
intelligent decision-making through uncertainty-awareness [81]. The NeBula was deployed on
legged, wheeled, and aerial platforms. The UAVs further utilize a multi-level rapid frontier
exploration approach to effectively leverage the limited flight time of multi-rotor UAVs [82].

Our solution to UAV-based autonomous multi-robot exploration of unknown subter-
ranean environments has been introduced in publications [1c], [2c], [6c]. The solution is based
on the extensively tested multi-rotor UAV control and estimation system presented in [83] and

1https://www.csiro.au/en/research/technology-space/robotics/wildcat-slam
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long-term multi-rotor platform development [10a], [15a]. The design of the proposed frame-
work balances the flight time of the UAV platforms and the perception and computational
capabilities key for reliable operation in complex environments. Considering these criteria, the
designed system outperforms all UAV-based systems referred to in previous paragraphs, as its
flight time is approximately double that of the maximum flight-time among other UAV-based
systems participating in SubT Challenge, while having qualitatively comparable capabilities
in performing required tasks in S&R scenarios. This result was achieved also through de-
veloping a computationally efficient software stack composed of tens of individual modules
incorporated in such a way that restricts the computationally demanding data transfer and
processing, which is essential for running such complex system onboard lightweight UAV. The
list of developed individual modules comprises, but is not limited to, risk-aware, computation-
ally efficient planning and exploration approaches avoiding demanding preprocessing of envi-
ronment representation coupled with lightweight mapping and detection pipelines [1c], [6c],
a graph-based multi-robot homing strategy for increasing the communication range of multi-
robot systems [2c], a multi-robot cooperative exploration strategy utilizing SphereMap [84] (an
effective representation of the environment for risk-aware planning), and sharing lightweight
topological maps to facilitate efficient coordination of the robots [6c] under constraints on a
bandwidth and range of communication.

Throughout development, the proposed system was deployed in the systems track of the
Urban Circuit of SubT Challenge, where it explored the largest area among all aerial systems
deployed from the starting gate. Further, the system was utilized both in the virtual track
of the Cave Circuit and within the actual caves in Moravian Karst. Finally, the proposed
system was deployed as part of the CTU-CRAS-NORLAB team in both the systems and
virtual track of the SubT Challenge finals (see Figure 2.1) with minimal changes in software
configuration for particular domains. As a key component of the virtual robotic team, the
proposed UAV system achieved second place in the virtual competition, and was the second-
best performing aerial system in the systems track of the DARPA SubT Challenge when
considering the explored area and scored artifacts, and the best performing aerial system
considering the operation time.

Although our solution has explored the narrowest areas among all deployed aerial plat-
forms in the final round of SubT Challenge, the dimensions of the platform did not allow it to
enter all areas of the environment safely. However, further reduction of dimensions would lead
to unavoidable reduction in the payload, which would negatively affect the perception capa-
bilities or endurance of the aerial platform. We have further addressed this problem through
a cooperative exploration approach where a larger UAV with the full sensor stack navigates
a smaller UAV with limited payload to constrained areas using relative localization based on
detections in onboard 3D LiDAR data [19a].

2.2 Cooperative sensing by robotic teams

Thanks to their agility and the ability for reaching and hovering at difficult-to-access
locations in constrained environments, multi-rotor UAVs have been commonly used as carriers
of various sensory equipment since their introduction on the market. The UAV-based remote
sensing applications, well-summarized in [85], [86], range from environmental surveys in out-
door open space [33], and the inspection of bridges [87], [88], power lines [34], and pressure
vessels [89], to safety-critical documentation of historical buildings [90]. A common applica-
tion in single-UAV remote sensing is the inspection and documentation of various structures,
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Figure 2.1: The UAV-based system for GNSS-denied navigation and exploration deployed as
part of the CTU-CRAS-NORLAB team within both virtual and systems track of the DARPA
SubT Challenge. The snapshots were taken from the official DARPA videos.

aiming to gather data for accurate 3D reconstruction or to capture detailed information in
specific areas of interest. Much of the research in 3D scene reconstruction focuses on the
Coverage Path Planning (CPP), where the objective is to generate paths efficiently connect-
ing positions for scanning or capturing objects of interest to ensure adequate surface coverage
for its later reconstruction, such as with photogrammetry methods [91]. Various approaches
to solve the CPP have been applied for inspection of airplanes [92], radio and TV towers [93],
power lines [94], castles [95] and bridges [96].

While a wide range of publications focus on the inspection of various structures [34],
[87]–[90], [92]–[96], only a few address the entire problem of realizing inspection tasks in
cluttered real-world environments. Some of these works present the entire process of realization
of inspection relying on a GNSS. For instance, the authors of [23] propose an algorithm
for large-scale aerial 3D scanning tested in various scenarios, including scanning of a barn.
Similarly, in [97], a GNSS-based localization system is used to follow preplanned trajectories
in inspection tasks performed by a fixed formation of UAVs. However, from a real-world point
of view, the problem of an inspection task lies in flying relatively close to the inspected objects,
often located in built-up areas where GNSS reliability for pose estimation is compromised.
Therefore, several studies present automatic inspection systems that either rely entirely on
non-GNSS localization systems or combine them with GNSS. An example solution relying
solely on non-GNSS is presented in [35], which applies Ultra Wide Band (UWB) modules in
uncooperative inspection of wind turbines by a team of UAVs. A fusion of multiple localization
sources, including GNSS, is exploited in [87], where GNSS-based localization combined with
pose estimation via the tracking of a prism mounted on the UAV by a ground total station is
applied in the autonomous inspection of a bridge.

Considering indoor environments, UAV autonomy for inspection becomes rare, even
though some applications strictly require such autonomy due to the characteristics of the
environment not allowing for manual control of the UAV. In [98], the authors demonstrate
a complete UAV system with vision-based localization applied to inspect a boiler inside a
thermal power plant. In [99], an autonomous UAV is deployed to inspect cylindrical structures
like penstocks and tunnels. Similar challenges are addressed in [100] and [101], where UAVs are
used for inspecting empty gas vessels and chimneys, respectively. Beyond academic research,
several commercial solutions have emerged for UAV-based realization of inspection tasks.
These solutions, such as DJI2 and Flyability Elios-33, typically offer outstanding assistance

2https://www.dji.com/cz/products/enterprise
3https://www.flyability.com/elios-3
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features for manually controlled flights, but their autonomy remains limited. Systems tackling
full autonomy within this application were recently presented by the Skydio4 and DONECLE5

company. The level of autonomy and reliability of these solutions is impressive, but inter-agent
cooperation has yet to be introduced into these systems. Unfortunately, detailed information
about the internal workings of these commercial products is often scarce, and their closed
systems do not facilitate a fair comparison with other existing research and solutions in the
field.

Although a single UAV can provide a large number of measurements during a single
flight covering a vast area, the relatively low cost of UAVs enables to further speed up the
process of data acquisition by employing a fleet of UAVs [35], [102]–[104]. This approach not
only increases the speed of data gathering, but also enhances the fault tolerance of UAV-
based remote sensing systems through redundancy. Furthermore, the distribution of sensing
locations among particular UAVs allows to collect the sample measurements simultaneously
at distinct locations. This capability is particularly beneficial for mapping dynamic events
or localizing dynamic sources. Multi-UAV remote sensing has been applied in various fields,
including the localization of radiation sources [31], monitoring of wildfires [24], and observation
of oil spills [32]. However, in these applications, the level of cooperation is typically limited
to simultaneous navigation to distant positions and more integrated forms of collaboration
are not exploited. Such deployments emphasize efficiency and fault tolerance, but do not fully
explore the potential of tight cooperative strategies among UAVs.

A specific application of remote sensing is cultural heritage documentation and preser-
vation, where the use of UAVs is quite frequent. However, experts in the field of restoration
and historical sciences primarily rely on commercial solutions, with their autonomy limited
to following direct paths between predefined GPS positions [105], [106]. To the best of our
knowledge, only a few works [90], [107], [108] address the UAV-based inspection of interiors
of historical buildings. In [90], [107], the authors present an assistive system for the manual
control of the UAV during inspection tasks, together with experimental deployment of the sys-
tem in outdoor and indoor areas of historical buildings. The specialized platform for assisting
in cultural heritage monitoring called HeritageBot is introduced in [108], but no evidence on
the deployment of this platform in historical monuments is presented. Our work on documen-
tation of historical buildings [3c], [4c], [8a], [11a], [16a] goes beyond these works in multiple
aspects. First, we propose an autonomous system for the documentation of historical buildings
that does not put additional requirements on the environment in which it is deployed [4c],
[11a], [8a]. Further, in our recent publications [3c], [5c], [16a], we pushed cooperative sensing
in indoor environments beyond the state of the art by presenting algorithms for performing
documentation techniques that require the UAVs to fly in compact formations with low mu-
tual distances. In these scenarios, the cooperation lies in an active influence of the perceived
scene by part of a team in order to increase the quality of gathered data by the leading UAV
(see Figure 2.2). To the best of our knowledge, such tight cooperation of UAVs for a single
goal has been applied only in tasks of cooperative manipulation and transportation [36], [37]
before.

4https://www.skydio.com/
5https://www.donecle.com/
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(a) (b)

Figure 2.2: Methods of cooperative sensing, including tight cooperation between individual
agents, are applicable both in image capturing with distributed lighting (a) and simultaneous
capturing of a dynamic scene from distinct directions (b).

2.3 Formation shape adaptation

The formation shape adaptation problem can be viewed as a particular case of coop-
erative motion planning, where the set of unassigned goals to be visited is provided to the
group of robots instead of specific goals for each particular robot. Such a task essentially im-
plies a necessity to combine the solution of the robot-to-goal assignment with the generation
of collision-free trajectories for multiple robots. The formation reshaping task further shows
two specifics with respect to the general assignment problem. Firstly, each robot must be
matched with a single goal. This confines the problem to what is known as single-robot tasks,
single-task robots, and instantaneous assignment (ST-SR-IA) task assignment problems [109].
Secondly, the existence of robots as physical entities in a shared environment requires con-
sidering mutual collision avoidance during the assignment process. This consideration implies
that, in general, the individual cost of assigning two pairs of nodes in matching is not inde-
pendent of the rest of the assigned pairs. This prevents direct use of general task assignment
algorithms [110] for the solution of the formation reshaping problem.

The approaches applicable for solving the formation reshaping problem in robotics vary
across several factors: the level of decentralization, environmental complexity and dimensions,
optimization criteria, and the methodologies used. Centralized approaches [111]–[116] preva-
lent in the current literature mostly leverage the complete information to generate optimal
solutions, but often operate under the assumption of a collision-free environment. In [111],
the authors introduce a centralized method based on the concurrent solution of assignment
of goals and planning of trajectories (CAPT algorithm), which is further extended to a de-
centralized approach. The CAPT combines the solution of the Linear Sum Assignment Prob-
lem (LSAP) [117], minimizing the sum of squared traveled distances with the implementation
of constant-velocity and minimum-snap trajectories, which was proved to yield collision-free
trajectories under the assumption on a minimum initial distance between agents. The prob-
lem is extended to a variable goal formation (variable scale and translation) in [112], where
the authors show that the problem of goal assignment with variable goal formation can be
transformed to LSAP via cost substitution. However, the approach is limited to 2D, and the
mutual collisions are prevented by adapting the scale of the final formation.

Unlike the centralized solutions, the distributed approaches often suffer from incomplete
information, leading to suboptimal solutions. For instance, a method involving local task
swapping, as presented in [118], may not achieve optimal solutions due to its reliance on
local information. Similarly, learning-based approaches [119] may offer limited guarantees on
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solution quality due to the inherent uncertainties in learning processes. Several studies have
addressed the robot-to-goal assignment problem in the context of distributed control of multi-
rotor UAV formations, both in obstacle-free areas [120] and complex environments [47], [48].
These works apply distributed task assignment algorithms [121], [122] to assign the robots
to local goals during the alignment to the target formation. Although [47], [48], [120] are
proposed primarily for multi-rotor UAVs, they utilize the sum of squared distances as the
minimization criterion for the assignment problem. Such choice provides certain guarantees
on the mutual distance of trajectories if solved optimally [111]. However, it does not reflect the
requirements on the efficient operation of UAVs since minimizing squared traveled distances
for in-flight multi-rotor UAVs is neither optimal from the point of view of flight duration nor
energy consumption.

The time criterion, crucial for operational efficiency, is considered only in a few works
dealing with formation reshaping. In [116], the authors prioritize minimizing the total time
in motion and base the solution of an assignment problem on durations of time-optimal
trajectories. The algorithm relies on collision resolution via a combination of time delays and
altitude adaptation, which limits its application to 3D environments. The algorithm presented
in [114] directly approaches the minimization of the makespan by defining the problem as a
Linear Bottleneck Assignment Problem (LBAP). The proposed solution considers a variable
goal formation, but is limited to 2D and does not account for inter-agent collisions. Another
study addressing the minimization of the makespan is found in [115], which also formulates the
assignment as LBAP, but considers constant-velocity trajectories only. The authors provide
proof of collision avoidance guarantees; however, these are only valid under limitations to
2D with initial and final configurations constrained to the grid. These examples highlight a
gap in the current research on formation shape adaptation, particularly in terms of efficiently
combining time optimization and collision avoidance in an algorithm suitable for realistic
environments and real-time onboard computation.

In the core publication [7c], we have introduced an optimal algorithm for solution of
the time-optimal formation reshaping problem in a 3D environment, while considering inter-
agent collision avoidance. The computational complexity of the algorithm allows its deploy-
ment on onboard autonomous vehicles in real-world missions, while significantly decreasing
the makespan of the formation reshaping process. This result holds significant implications
for enhancing existing methodologies and inspiring future research in the area of formation
reshaping, particularly in the context of autonomous multi-robot systems in diverse real-world
settings and limited operational time. The obvious target application for this algorithm is a
spatial reorganization of a group of robots in various tasks, such as area monitoring [44],
drone light shows [45], [46], precision agriculture [123], or active drug delivery systems [124],
[125]. However, it also finds relevance in other fields where achieving specific spatial configura-
tions or reorganizations is crucial for task performance, such as collision-free motion planning
of discrete chemical droplets in analytical chemistry and biomedical diagnostics [126]–[128].
The broad applicability of this algorithm underscores its potential to impact various areas of
robotics and automation, offering a versatile tool for complex spatial organization challenges.
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Chapter 3

Autonomous Navigation in
GNSS-denied Environments

In the first core publication [1c], we presented a complete framework for autonomous
navigation of UAVs in GNSS-denied environments, that creates a basis for moving the UAVs
from open, outdoor spaces into complex, cluttered environments. As an integral part of this
framework, we developed a grid-based path planning approach and a frontier-based multi-
robot exploration strategy specifically designed for scenarios with limited or completely un-
available communication. The proposed path-planning approach directly utilizes the output
from the mapping module, eliminating the need for any time-consuming pre-processing of the
map of the environment. This enables frequent global planning using the most recent represen-
tation of the environment, and thus timely reaction on an occurrence of dynamic obstacles.
The iterative path post-processing increases the UAV-obstacles margin of the initial path
to enhance the robustness of the system to imprecision of mapping, localization, trajectory
tracking, and position control, all of which are inevitable in real-world environments.

The designed frontier-based exploration approach addresses the challenge of a time con-
strained multi-robot exploration in 3D environments, which can be considered as unbounded
relative to the expected flight time of UAVs. The frontiers are selected based on assigned
priorities influenced by a deviation from a given preferred absolute or relative direction of
exploration, which varies across the robots. Such an approach enables achieving a cooperative
exploration behavior in scenarios where communication is completely forbidden or impossi-
ble [2c]. The proposed framework integrating the aforementioned path-planning and explo-
ration strategies, along with all remaining modules from low-level control and state estimation
to high level planning, was deployed during the Urban Circuit of SubT Challenge where it
achieved one of the best performances among UAV-based systems. As part of the CTU-CRAS-
NORLAB team, the framework contributed to the team’s success, securing first place among
self-funded teams and third place overall in the Urban Circuit.

The contribution of the author of this thesis on the manuscript is 55%, which includes
writing the manuscript, designing the computationally efficient planning and exploration ap-
proaches and high-level mission control, system integration, and experimental evaluation.

[1c] V. Krátký, P. Petráček, T. Báča, and M. Saska, “An autonomous unmanned
aerial vehicle system for fast exploration of large complex indoor environments,”
Journal of Field Robotics, vol. 38, no. 8, pp. 1036–1058, 2021

The algorithms and methods initially proposed and integrated for autonomous UAV
operations were further refined with a specific emphasis on the cooperative multi-robot ex-
ploration of cave environments. This enhanced system was deployed in the Moravian Karst,
a significant and complex cave system, and also participated in the Cave Circuit of the vir-
tual track of SubT Challenge, which was held in a simulated environment inspired by natural
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cave conditions. In our subsequent core publication [2c], we detailed the advancements in
our algorithms that improved inter-robot cooperation through introducing multi-robot hom-
ing strategy that significantly increases the operation range in the case that homing of all
robots to an initial location is not required. We also described the results achieved during the
Cave Circuit of SubT Challenge, along with a series of experiments conducted in real-world
caves. The research showcased in this publication not only highlights the capabilities of UAVs
in subterranean exploration, but also underscores the importance of cooperative multi-robot
systems in effectively navigating and mapping complex, unstructured environments.

The author of this thesis contributed 20% to the manuscript [2c], including the imple-
mentation of planning and trajectory generation approach, system integration, writing path
planning section of the manuscript, and participation in extensive experimental evaluation.

[2c] P. Petráček, V. Krátký, M. Petrĺık, T. Báča, R. Kratochv́ıl, and M. Saska,
“Large-scale exploration of cave environments by unmanned aerial vehicles,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7596–7603, 2021

The last core publication related to the topic of autonomous navigation in GNSS-
denied environments summarizes the system developed over two years in preparation for
the final round of the SubT Challenge [6c]. The manuscript contains both the description
of applied methodology and the presentation of results achieved during this final stage of
the SubT Challenge as part of CTU-CRAS-NORLAB team. In addition to other contribu-
tions, this manuscript introduces a multi-robot frontier-based exploration strategy utilizing
lightweight topological volumetric maps that facilitate an efficient coordination of multiple
robots in vast and complex environments, even under restricted communication. Further-
more, it details a complete pipeline for the detection, localization, and reporting of the found
objects of interest. This includes a method for aggregating detection hypotheses, both within
a single robot and across the entire robotic team. As an essential part of the fully autonomous
multi-robot system deployed in the virtual track of the competition, the manuscript also de-
scribes an approach for an autonomous arbiter responsible for selecting the most confident
hypotheses for reporting. This process can help to further filter data for human operators,
thereby reducing their workload in real-world scenarios. While many components of the system
were introduced in earlier publications, the system as presented in [6c] represents a signifi-
cant advancement over its predecessors. It demonstrates superior functionality, adaptability
to a variety of challenging environments, and overall performance in target search scenarios.
Among teams composed from prestigious universities, research institutes, and companies spe-
cializing in S&R robotics, team CTU-CRAS-NORLAB achieved sixth place in the systems
track and second place in the virtual track of the competition.

The contribution of the author of this thesis on this work is 15%, consisting of signif-
icant contributions in the system design, including design and implementation of high-level
mission control, and autonomous arbiter for artifact reporting. Further, the author’s main
contributions reside in transferring the system to the DARPA virtual environment, system
integration, simulation and real-world testing, and participation in writing the manuscript.

[6c] M. Petrĺık, P. Petráček, V. Krátký, T. Musil, Y. Stasinchuk, M. Vrba, T. Báča,
D. Heřt, M. Pecka, T. Svoboda, and M. Saska, “UAVs beneath the surface: Co-
operative autonomy for subterranean search and rescue in DARPA SubT,” Field
Robotics, vol. 3, no. 1, pp. 1–68, 2023
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Abstract

This paper introduces an autonomous system employing multi-rotor unmanned aerial vehicles for fast 3D
exploration and inspection of vast, unknown, dynamic, and complex environments containing large open
spaces as well as narrow passages. The system exploits the advantage of small-size aerial vehicles capable
of carrying all necessary sensors and computational power while providing full autonomy and mobility
in constrained unknown environments. Particular emphasis is put on the robustness of the algorithms
with respect to challenging real-world conditions and the real-time performance of all algorithms that
enable fast reactions to changes in environment and thus also provide effective use of limited flight time.
The system presented here was employed as a part of a heterogeneous ground and aerial system in the
modelled Search & Rescue scenario in an unfinished nuclear power plant during the Urban Circuit of
the Subterranean Challenge (SubT Challenge) organized by the Defense Advanced Research Projects
Agency (DARPA). The main goal of this simulated disastrous scenario is to autonomously explore and
precisely localize specified objects in a completely unknown environment and to report their position
before the end of the mission. The proposed system was part of the multi-robot team that finished
in third place overall and in first place among the self-funded teams. The proposed Unmanned Aerial
Vehicle (UAV) system outperformed all aerial systems participating in the SubT Challenge with respect
to versatility, and it was also the self-deployable autonomous aerial system that explored the largest part
of the environment.

1 INTRODUCTION

Robotic systems have been employed for exploration, inspection and Search & Rescue (S&R) scenarios in unknown
environments for decades. From the very beginning of their deployment in these tasks, teleoperated robots were intended
to substitute a human rescue squad in hazardous, life-threatening tasks such as inspecting post-earthquake sites, places
with a risk of explosion, underwater tunnels and the exteriors of high-rise buildings. The diversity of possible environments

∗http://mrs.felk.cvut.cz
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of exploration, inspection and S&R scenarios, leads to the use of various robotic platforms. Mostly ground vehicles, aerial
vehicles and underwater vehicles, where each of these types has mostly clear pros and cons.

Although fully teleoperated robots are very useful in these scenarios, they suffer from their dependency on operator
commands and on the communication interface. This limits the number of deployed robots as well as their operational
range. The ongoing development of algorithms and sensors has enabled the application of robots with a higher level of
autonomy and has overcome some of the problems of teleoperation, has sped up the start of the systems and has made
the systems more resistant to human misguidance. However, it has significantly increased the requirements on robustness
of the system, on its reliability and on autonomous decision making, which are all crucial in the scenarios mentioned
here.

In this paper, we present an autonomous aerial system designed for fast exploration and inspection of vast unknown
dynamic environments, motivated by the DARPA Subterranean Challenge Urban Circuit (SubT Challenge)1. The goal
of this challenge is to explore a previously unseen environment, to find specified objects and survivors, together referred
as to artifacts, and to report their position in the map within a precision of 5 meters. During each run of the competition,
20 objects of five different types were located in the unfinished nuclear power plant. This challenging task is restricted
by a one-hour time limit. One human member of the team is allowed to communicate with the robots on the course and
remotely teleoperate them, but all physical manipulation with the robots on the course is forbidden. Competitors were
even not allowed to enter the competition course before the end of the entire Urban Circuit challenge that truthfully
reflects the conditions in real S&R missions.

These rules simulate real-world conditions of S&R scenarios, and encourage the participating teams to develop and deploy
highly reliable, robust, and autonomous systems. Various types of tracked, wheeled or legged ground vehicles are more
favorable for long missions than Unmanned Aerial Vehicles (UAVs), since they can operate for several hours without
battery replacement and are able to carry a heavy payload. However, UAVs have an indisputable advantage in overcoming
obstacles, due to their remarkable agility and the speed with which they can move within a complex environment.
Thanks to these features, UAVs have become an almost irreplaceable part of heterogeneous systems operating in complex
environments. They can perform fast initial mapping, they can serve as quickly deployable communication translators,
and they can explore parts of the environment that are completely unreachable by ground robots.

The proposed UAV system design aims to achieve maximum suitability for deployment in three-dimensional real-world
unknown environments where no map exists and even the characteristics of the environment were unknown prior to
deployment of the system. It therefore respects the requirements on resistance to challenging conditions, such as extreme
dustiness and uncertain illumination, which are common for the intended scenarios. Particular emphasis is also put on
minimizing the preparation time prior to the mission, since a fast and reliable start is for obvious reasons highly desirable
for robotic systems applied in real-world challenges of S&R scenarios.

As part of the system, the novel approach to a grid-based path planning with path post-processing and a frontier-based
exploration approach is presented. The proposed path planning approach with iterative post-processing directly uses the
output of a mapping module and does not require any time-consuming pre-processing. This enables frequent updates of
the map for global planning. The aim of the iterative post-processing is to increase the robustness of the system with
respect to imprecision of localization, mapping, trajectory tracking, and position control, all of which are inevitable in the
real-world. The designed frontier-based exploration approach aims to solve the problem of a time-constrained exploration
task within apriori unknown 3D environment, which can be considered as unbounded with respect to the expected flight
time of UAVs. The exploration approach is designed to be deployed within a multi-robot exploration task with limited
or completely unavailable communication.

To evaluate the capabilities and properties of the system, an analysis of the real-time performance of particular subsystems
is presented. The analysis includes a detailed inquiry into the contributions of the proposed approaches to verify and
validate its influence on the robustness of a real-world system. The performance of the entire system is evaluated in
numerous simulations in general 3D environments, including the virtual urban, and cave environments of the DARPA
Subterranean Challenge. Moreover, the system was deployed within the real-world urban circuit track of the same
competition, where it was a part of a multi-robot team deployed for a challenging scenario held in the unfinished Satsop
Nuclear Power Plant located in Washington state, USA. In one of the real-world scenarios, the proposed system consisting
of two UAVs explored the surroundings of the reactor hall with a total area of 1351m2 in a total time of 453 s. In the
second scenario, we successfully tested the capability of our system to fly through narrow passages that are only 34%
wider than the footprint of the aerial platform. To show the applicability and to further showcase the seamless transition
of the proposed methodology between various 3D environments, the system was also deployed during an exploration task
in the Byci skala cave system of the Moravian Karst in the Czech Republic.

1 https://subtchallenge.com/
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(a) Alpha course (b) Beta course

Figure 1: The proposed system operating in a simulated disastrous scenario during the Urban Circuit of the Subterranean Challenge.
The figure shows the UAV platform as a part of a multi-robot team deployed within open spaces (a) and confined corridors (b) of
the unfinished nuclear power plant in the Satsop Business Park, USA, WA.

1.1 Contributions

The absence of robustness, large-scale deployability, and utilization in demanding real-world environments, were identified
by the DARPA as the main bottlenecks of current robotic technology developed for S&R scenarios. The DARPA
organisers team, together with representatives of S&R-technology end-users, therefore designed three DARPA SubT
Challenges with gradually escalating demands on robotic systems that push the current robotics state of the art towards
the requirements for real-world deployment. The aim is to design a methodology that can be used without the need to
tune the system parameters for particular experimental trials and without tuning the environment itself.

The participants in the SubT Challenge are not allowed to enter or even to see the environment of the competition trials
before the robots are deployed. The participants know only the general characteristics of the workspace, similarly as in
the case of real S&R missions. The real conditions of S&R scenarios are further emulated by the rules of the competition,
which state that the one-hour mission starts according to a fixed schedule and teams can use only a very limited time
for preparation before their trials. In the first SubT Challenge (tunnel systems of underground mines), the participating
teams presented solutions going far beyond the current state of the art in terms of robustness and deployability in
demanding environments, mainly for UAVs, since the real underground mine tunnels were dusty and full of unexpected
obstacles [Miller et al., 2020,Ebadi et al., 2020,Rouček et al., 2019,Huang et al., 2019,Dang et al., 2019]. Although the
tunnel circuit of the SubT Challenge was a very challenging task that pushed frontiers of field and S&R robotics, the
environment was expected to be flat and constrained by tunnels that reduced navigation and motion planning problems
into 2D space and often almost 1D space, as the obviously best strategy for Unmanned Aerial Systems (UAS) was to
follow the longitudinal axis of a tunnel keeping maximum distance from its walls. For the second circuit of the SubT
Challenge (indoor Urban Circuit), the aerial systems had to be completely redesigned in terms of both, HW and SW to
allow full 3D motion in the completely unknown environment of a nuclear power plant.

Solving this new robotic problem of S&R coming from a plain and constrained environment into full 3D, where UAVs are
more suited for use, together with the enforced large-scale deployability, is the main contribution of the SubT Challenge
Urban Circuit. These are also the main contributions of this paper that presents a novel UAV system that achieved the
best performance among all self-deployable aerial robots in the competition. Since the rules of the competition allow all
types of inter-robot cooperation, several of the aerial platforms of other competitors were designed to be deployed from
ground robots at some advantageous place on the course. In this paper, the term self-deployable is used to mark robots
which do not need any assistance from other robots to enter the course, and so they can be deployed independently
from any other system. To the best of our knowledge, the UAVs driven by this system travelled the longest distance
in comparison with the self-deployable UAVs of other competitors, explored the largest area in the shortest time, and
were able to traverse the narrowest passages relative to the size of the vehicles that were employed. In addition, a novel
autonomous exploration and planning approach was designed for deployment in a demanding underground environment
was designed to explore the largest possible amount of space in the shortest time, while simultaneously being able to fly
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through narrow passages. This is also a common requirement in most S&R missions, where no prior information on the
positions of human survivors is available.

The main contributions of this paper are as follows:

❼ A complete fully-autonomous system for fast exploration of general apriori unknown 3D environments is pre-
sented. The performance of the system is objectively examined with respect to various experimental deployments
in virtual, as well as real-world, S&R conditions in challenging urban and cave environments.

❼ A novel approach combining original grid-based path planning and path post-processing approaches is presented,
increasing the robustness of the system with respect to imprecision of localization, mapping, trajectory tracking,
and position control, all of which are inevitable in the real-world.

❼ To tackle the challenge of exploration of general 3D environments with limited time, a frontier-based strategy
designed for use in multi-robot scenarios with limited or completely absent communication is presented.

❼ Extensive experimental analyses of aerial system in varying environments is presented, validating our approach
during single and multi-UAV deployments, as well as in small and large-scale experiments in simulated and
real-world urban and cave environments.

2 RELATED WORK

2.1 Localization and Mapping

In S&R scenarios, the disaster environments are mostly unknown (although floor plans of the object may be available
to serve as a semantic reference for a mission operator). The mapping therefore has to be solved simultaneously with
the localization of a mobile robot. The simultaneous localization and mapping (SLAM) is one of the most extensively
studied and also one of the most complex problems in the field of robotics due to integration of two mutually reliant
systems, both integrating various errors of sensory discrepancies and algorithmic approximations. The problem is further
complicated for mobile robots, especially for dynamically unstable aerial vehicles, as these robots require a perpetual and
real-time estimate of their state (the pose and its derivatives) in order to stabilize and control their motion. The SLAM
algorithms have to run onboard these robots, using only onboard sensors and providing their outputs in real-time. In this
section, we will, for obvious reasons of a S&R task, focus on related work on recent approaches to the SLAM problem
suitable for real-time systems without access to Global Navigation Satellite Systems (GNSS).

Visual-inertial SLAM (VI-SLAM) [Cvǐsić et al., 2018,Zuo et al., 2020,Cadena et al., 2016,Mur-Artal and Tardós, 2017]
and visual-inertial odometry (VIO) [Delmerico and Scaramuzza, 2018] approaches estimate ego-motion from the image
streams of a lightweight mono- or stereo-camera, enabling the dimensions of robots to be minimized and allowing for
deployment in unknown environments. However, visual methods require feasible lighting conditions [Alismail et al.,
2017], which cannot be guaranteed during a disaster scenario. The mapping pipeline of visual approaches associates
salient visual features, which are, however, unfeasible for other high-level systems, such as spatial planning and spatial
exploration. This problem can be overcome by estimating the depth in a stereo-camera image stream, which is however,
a computationally expensive process and limits the perception range to the resolution of the camera that is used. These
two drawbacks make the sole use of visual systems for SLAM in S&R scenarios insufficient. Recent visual SLAM methods
are analyzed and are well summarized in [Abouzahir et al., 2018] and in [Huang, 2019].

More robust methods with respect to lighting conditions use active laser sensors (LIDARs) as the primary source for
ego-motion estimation. Laser-inertial SLAM (LI-SLAM) may employ various types of laser sensors, ranging from 2D
methods [Petrĺık et al., 2020] and 3D methods utilizing 2D LIDAR [Petráček et al., 2020] to approaches utilizing com-
parably heavyweight 3D sensors [Zhang and Singh, 2014,Ye et al., 2019,Geneva et al., 2018,Nieuwenhuisen et al., 2017].
The main advantages of LIDARs in SLAM are their high measurement range, the ability to measure the intensity of the
reflected light beams and to estimate the reflectivity of the observed materials, as well as the high granularity of the
data. The high granularity and the omnidirectional horizontal field of view allow more detailed volumetric maps to be
constructed than when visual systems are used. These properties, however, come at the cost of a high computational
load during processing and reasoning over the data. The high data throughput requires sufficient computational power
onboard the robots, and efficient implementation of the entire SLAM pipeline. In section 3.2, we show that real-time
performance can be achieved with efficient implementation of [Zhang and Singh, 2014] adapted for use on aerial vehicles.
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2.2 Planning

Path planning is a widely studied problem in the field of robotics, and numerous approaches and their variants for
3D environments have already been developed [Yang et al., 2016,Mac et al., 2016, Zhao et al., 2018]. The approaches
differ in the desired representation of environments, their time complexity as well as their optimality criterion, and their
performance in varying environments. While many of the classical planning approaches aim to generate the shortest
path or to maximize obstacle clearance, path planning for UAVs in cluttered unknown environments imposes special
requirements. The requirements demand real-time performance and extended obstacle clearance to enable frequent
replanning and to increase the robustness of the system, while maintaining the ability to travel through narrow passages
and also to navigate within large open spaces.

Due to the high computational complexity of planning algorithms in a 3D environment, some of the algorithms applied for
the planning of UAV motion in a cluttered environment decrease the computational complexity by reducing the number
of dimensions of the planning space [Quan et al., 2020,Heng et al., 2014,Kothari and Postlethwaite, 2013]. In [Heng et al.,
2014], the authors build a 3D occupancy map as a representation of an environment, but they use only 2D slices of this
map for the planning. In [Kothari and Postlethwaite, 2013], the authors present a fast planning method based on RRT∗,
but their method is also limited to two-dimensional space. Reducing the planning space decreases the computational
time and hence enables online planning, but it suppresses the advantage of the larger operational space of UAVs. The
methods can therefore become inapplicable with increasing complexity of the environment.

Approaches using a 3D representation of environments are therefore favourable for UAV path planning. For outdoor
applications, the authors in [Nieuwenhuisen and Behnke, 2015] presented a grid-based planning method with gradient-
based motion optimization for planning in large outdoor areas. A similar problem is addressed in [Achtelik et al., 2014],
where the authors introduced a path planning approach that respects the uncertainty of localization in featureless parts of
the environment. However, the computational time, including the pre-processing phase of the environment representation,
does not allow the use of these methods for online planning in unknown environments.

Methods focused on constrained indoor environments mostly aim to generate trajectories taking into account kinematic
and dynamic constraints, leading to the introduction of planning approaches employing optimization methods [Ratliff
et al., 2009,Richter et al., 2016,Usenko et al., 2017,Zhou et al., 2019,Mohta et al., 2018]. In contrast to traditional grid-
based methods, this approach enables the application of kinematic and dynamic constraints on the resulting trajectories.
As a result this enables the generation of high-speed trajectories. This advantage is fully exploited in [Mohta et al., 2018]
where the authors present a trajectory generation approach for flying in an indoor environment at speeds up to 7m s❂1.
However, the approach utilizes a bounded map of the environment for local planning and 2D environment representation
for global planning. The trajectory-optimizing approaches to high-speed navigation in unknown environments proposed
in [Gao et al., 2018,Zhou et al., 2019,Zhou et al., 2020] shows very impressive results in constrained indoor environments,
as well as in small-scale real-world experiments in forests. The authors use the optimistic assumption that the unknown
part of the environment is free of obstacles. Although this assumption is advantageous and enables navigation to a goal
located in an unknown part of the environment, it decreases the safety of the system. Since the approach produces paths
which can potentially collide with obstacles, any delay in the production of a replanned path or temporary inability of
UAV to perform an avoidance manoeuvre will result in collision with an obstacle.

The most suitable approaches for the intended application of S&R are presented in [Cover et al., 2013,Droeschel et al.,
2016, Lin et al., 2018, Perez-Grau et al., 2018, Zhou et al., 2020]. In [Perez-Grau et al., 2018], the authors apply an
online planning approach with frequent replanning based on the lazy theta star algorithm. However, the approach
does not implement any mechanism to increase obstacle clearance, which is a crucial property of planning algorithms
for application in real-world scenarios. The approach in [Droeschel et al., 2016] respects the requirements on obstacle
clearance. However, it uses a known map of the environment to generate an initial path with a grid-based planner, and
it applies the local planner only for avoiding newly explored obstacles. In [Cover et al., 2013], the authors present a
multi-layer planning approach that uses a sampling-based path-searching method to obtain a global plan and then uses
a gradient-based optimization method to ensure trajectory smoothness and dynamic feasibility. A similar approach is
presented in [Lin et al., 2018], where replanning is realized only locally in a receding horizon manner. The approach
in [Zhou et al., 2020] addresses the previously mentioned problem of treating the unknown space as free and proposes the
perception-aware replanning strategy which significantly increases the success rate of trajectory generation in comparison
to previously published methods. Another way of approaching this problem is presented in [Tordesillas et al., 2019], where
fast trajectories are generated in an unknown space while always having a backup trajectory exclusively within a known
free space. Although the approaches mentioned here are well suited for particular applications, none of them complies
with all of the requirements imposed by S&R missions in a completely unknown indoor environment.

The planning approach proposed for S&R applications in this work is exceptional in accounting for all the challenges
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imposed by real-world conditions, and also for its thorough testing and validation in complex real-world environments
(see section 5). The method also does not impose any assumptions on the environment for the intended S&R scenarios and
does not require computationally demanding pre-processing of the environment map, which further decrease the required
planning time of local as well as global planning. These properties allow a rapid reaction to dynamic obstacles that may
appear and also the exploitation of any newly-discovered unoccupied space in a continuously-built map for shortening
the paths or for increasing the obstacle clearance. Although the proposed planning approach works with a grid-based
representation of an environment, it does not require computation of the distance transform field for the planning. This
further decreases the computational time required for planning, and thus enables more frequent replanning onboard
UAVs. In addition, all parameters used in the proposed method directly express real-world constraints or requirements
on obstacle clearance. The method is therefore not dependent on the tuning of any of its parameters. This makes it
universally applicable to various environments without any change. A qualitative comparison of the proposed planning
approach with the state-of-the-art planning approaches for UAVs is presented in Tab. 1.

Table 1: Comparison of other planning approaches for UAVs ([Petrĺık et al., 2020], [Perez-Grau et al., 2018], [Droeschel et al.,
2016], [Lin et al., 2018], [Cover et al., 2013], [Tordesillas et al., 2019], [Zhou et al., 2020]) with the planning approach proposed in
this paper. Each feature was assessed on the basis of information obtained from presented papers,to the best of our knowledge and
belief. Feature (4) stands for the requirement on pre-processing the representation of the environment for planning. Approaches
marked with (×) use the output of the mapping modules directly. Feature (7) represents verification in an environment with no
specific structures such as tunnels, a vast open space, or a forest. Feature (8) represents verification in an environment which has
not been seen prior to deployment of the system, and it therefore does not enable any pre-tuning of the parameters. Feature (9)
stands for verification in a dense environment with a large number of various obstacles. Feature (10) represents the ability of the
algorithm to fly through narrow passages while maintaining bigger distance from obstacles in an open space.

Feature ours Petrĺık P.-G. Droeschel Lin Cover Tord. Zhou

(1) Full 3D environment representation X × X X X X X X
(2) Real-time performance X X X X X X X X
(3) Global planning on an evolving map X X × × × X X X
(4) Map pre-processing not required X × × X X × × X
(5) Free from tuning coefficients X × × × × × × ×
(6) Real-world experiment X X X X X X X X
(7) Verified in general complex 3D env. X × × X × × × ×
(8) Verified in completely unknown env. X X × × × × × ×
(9) Verified in a cluttered environment X X × × X × X X
(10) Narrow passages flight X X × × X X X X

2.3 Robotic Systems for Exploration and Inspection

Exploration-like applications of robot systems in real-world scenarios vary from an inspection of known structures such
as chimneys [Nieuwenhuisen et al., 2017], bridges [Jung et al., 2019] or historical buildings [Saska et al., 2017,Krátký
et al., 2020], through aerial monitoring of large areas [Yuan et al., 2015, Lindner et al., 2015, Rokhmana and Andaru,
2016, Casagli et al., 2017,Ma et al., 2018] up to S&R scenarios in completely unknown environments [Rouček et al.,
2019,Petrĺık et al., 2020,Miller et al., 2020]. These systems differ in the level of autonomy and also in their requirements
for an external infrastructure.

In applications where the robots operate in an open space outdoor environment, many of these systems rely on teleoper-
ation and on the use of GNSS. This type of setup is used in [Ma et al., 2018,Rokhmana and Andaru, 2016,Angermann
et al., 2012], where UAVs are used to monitor agricultural areas affected by a natural disaster, to assess the state of a
terrain damaged by an ammunition explosion, and to track the state of a recently-erupted volcano.

Teleoperated robot systems have also been deployed successfully in GNSS-denied environments. A system using Un-
manned Ground Vehicles (UGVs), which is applied for inspecting contaminated areas of the Fukushima Daichi nuclear
power plant after the natural disaster in 2011, is presented in [Nagatani et al., 2013]. In [Michael et al., 2012], the authors
exploit the capabilities of cooperative UAV and UGV systems and present a similar system for mapping an earthquake-
damaged building. With a similar motivation, the systems presented in [Kruijff et al., 2012] and in [Kruijff-Korbayova
et al., 2015] were designed for inspecting post-disaster environments with the use of UAVs and UGVs in human-robot
cooperation.

Several works introduce autonomous systems to overcome problems with teleoperation and communication with robots.
The level of autonomy is increased in [Cantelli et al., 2013], where a formation of a UGV and a UAV is used in a
surveying operation in humanitarian demining. The UGV that carries the UAV autonomously tracks the given path and
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transmits data to the operator, who decides about the necessity of autonomous takeoff of the UAV to provide additional
information in obstructed areas. Fully autonomous behavior is achieved in [Qin et al., 2019], where the authors introduce
a cooperative team of UGVs and UAVs capable of exploring a small office-like environment.

Algorithms for exploration applied to UAVs have also been intensively studied in recent years [Bircher et al., 2016,Dang
et al., 2018,Selin et al., 2019]. However, most of these works aim at minimizing the distance travelled or exploration time
required to explore the environment completely. This approach leads to a thorough exploration but does not maximize
the explored space within a limited time, especially if the algorithm generates jerky trajectories, which are inefficient for
UAVs. This problem is addressed in [Cieslewski et al., 2017], where navigation points are selected in the field of view
of an onboard depth camera pointing in the direction of flight. This approach results in a smoother trajectory without
sharp turns. This enables faster UAV motion and thus increases the explored space.

The deployment of UAV systems in cluttered indoor environments imposes additional requirements on the ability of
UAVs to fly through narrow passages. This problem has been addressed in three different ways in recently published
works. In [Falanga et al., 2019], the authors present a UAV with modifiable geometry, which increases the flight time
by maintaining the most efficient shape whenever possible and diminishing its size in narrow passages. The second
approach [Loianno et al., 2017] is based on aggressive manoeuvres. However, it is applicable only for window-like narrow
passages and not for long narrow halls. The approach proposed in [Briod et al., 2014] introduces a collision-resilient UAV
equipped with a mechanical structure that ensures resistance to collisions. However, all these approaches suffer from
a short flight time and from strongly limited sensory equipment, which makes them unsuitable for exploring large and
complex areas.

Although the works mentioned above are closely related to our system, they have tended to be tested in small office-like
environments, without considering any external disturbances such as wind gusts, ventilators, smoke or dusty conditions,
and variable illumination. The most closely related works from the perspective of real-world deployment and testing
are [Petrĺık et al., 2020] and [Fang et al., 2016]. In [Fang et al., 2016], an autonomous drone is applied to explore
a vessel and to find fires. The approach is tested in a real-world scenario with narrow corridors and a hazy, smoky
environment. The authors present several impressive experiments, but the navigation and planning approach is reduced
to two-dimensional space. A state-of-the-art autonomous UAV system [Petrĺık et al., 2020], designed for indoor aerial
monitoring and inspection in S&R operations, is based on a lightweight aerial platform with a 2D mapping approach.
Although the system shows high robustness and performance in the man-made tunnel environments of the SubT Challenge
Tunnel circuit, its performance in general 3D environments is limited.

3 SYSTEM ARCHITECTURE

The architecture of the system presented here, including the interconnections among the components, is illustrated
in Fig. 2. The underlying control pipeline is available open-source 2.
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Figure 2: The architecture of the proposed system, where P stands for the point cloud obtained by 3D LIDAR, PF stands for the
filtered point cloud, M represents the map of the environment, eb is the current best exploration node, Psafe stands for the planned
path, TMPC is the current trajectory generated by the MPC tracker, O is the odometry information, R are inertial measurements
of the linear velocity, the linear acceleration, and the angular rate, x is the current pose estimate, I stands for images from cameras,
and Dc represents confirmed hypotheses of object detections. Dashed arrows represent mission specifications and the commands
produced by the finite state machine handling the mission control.

3.1 Environment Perception

To perceive and map the unknown dynamic environment for high-level subsystems, the UAV platform relies mainly on
Ouster OS1-16 3D laser scanner (henceforth LIDAR). The LIDAR sensor measures distance in 16 vertical planes with
horizontal resolution of up to 2048 samples per plane. It weighs 425 g and has a 120m range, 33.2◦ vertical field of view,
10–20Hz update rate, and 14–20W power draw.

2 https://github.com/ctu-mrs/mrs_uav_system
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As has been verified experimentally, the targeted environments (mines, demolished structures, tunnels, abandoned build-
ings) can be characterized by a set of common features, namely by the presence of narrow passages and dynamic obstacles,
by the presence of adverse and changing lighting conditions, and by the presence of whirling clouds of dust arising from
wind gusts and from the aerodynamic influence of the UAV platform. To navigate an autonomous vehicle in such harsh
conditions, the perception of the environment has to be extremely robust and adaptable, particularly for camera and
LIDAR-based systems.

To improve the performance of all high-level systems in the proposed LIDAR-based perception, the raw data of the
LIDAR are filtered with respect to the intensity of the measured points, as shown in Fig. 3. Assuming solely partial
light energy reflection from a dust particle and significant energy dissipation of distant reflections, a local intensity filter
is applied to a set of all points P such that a subset of points PF ⊂ P is preserved. The set is given as PF = PD ∪ PI ,
where

PD = {p | ||p|| ≥ κ, p ∈ P} , (1)

PI = {p | I(p) > λ10%(P \ PD), p ∈ P \ PD} .
I(p) is the intensity of the reflected light from point p, κ is a user-specified distance threshold (10m was used for the
robotic platform in experiments presented here), and λ10%(·) is the 10th percentile of the intensity data. The 10m
threshold and the 10th percentile are determined according to a set of empirical real-world tests with the OS1-16 3D
laser scanner in dusty conditions. The idea behind the local filtering is to remove dust particles gusting through the
surrounding air due to the aerodynamic influence of the fast-rotating propellers. As the aerodynamic influence of UAV
is mostly local (hence the 10m distance threshold), the filtration of data in the vicinity of the robot is sufficient for two
reasons: the density of far dust clouds is low (assuming that there is no dust cloud generated by any other robot) and
the probabilistic mapping filters out non-consistent spatial measurements in principle.

(a) Example of the targeted en-
vironment within the competi-
tion, including whirling clouds
of dust and adverse lighting
conditions

(b) Presence of a dust cloud
(red) in a single-scan data item
prior to intensity-based filtra-
tion (black & red) and after fil-
tration (black)
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Figure 3: Data pre-processing of Ouster OS1-16 LIDAR based on light beam energy. 10% of the points with the least reflected
light intensity within distance κ are removed. The condition on distance κ preserves distant reflections with dissipated energy.

3.2 Localization and Mapping

For localization within an unknown environment, the LIDAR Odometry and Mapping in Real-time (LOAM) algo-
rithm [Zhang and Singh, 2014] of SLAM is adapted for the use with OS1-16 LIDAR and tuned for the use in the
position control feedback loop running onboard a fast-moving UAV. This method first estimates the odometry of the
LIDAR from two subsequent data frames. Then, it matches and registers this initial estimate to update its inner rep-
resentation of a map (a point-cloud of features). The method considers the intrinsic motion of a fast-rotating LIDAR,
which is compensated by a constant angular velocity model of the LIDAR. By applying this model in the odometry
estimation, which matches salient feature points that are on the edges and on the planar surfaces using a non-linear
variant of the Iterative Closest Point (ICP) algorithm, the method has been shown to improve the robustness of the
feature registration process onboard a fast-moving vehicle. Although the method does not provide loop closure during
the map registration phase, it yields minimum drift, as evaluated on the Kitti dataset, where the method ranks second
in accuracy among more than a hundred algorithms3. The qualitative and quantitative performance of the localization
methodology during an internal experimental validation, as well as during the DARPA SubT competition is available in
section 5. The analysis is further supported with attached multimedia materials. The above-mentioned tuning consists
of setting parameters of the method (mainly the resolution of the feature map) to yield accurate results while still being
able to run in real-time onboard a light-weight UAV.

3 http://cvlibs.net/datasets/kitti/eval_odometry.php (visited on May 6, 2020)
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For online mapping of the environment, a single global probabilistic volumetric grid is continuously built given the
estimated transformation between two consecutive LIDAR frames and the filtered LIDAR data. In the inner octree
representation of the map, the voxels are updated according to the Bayes theorem, while higher-level systems access
this representation in the form of a 3D occupancy octree. The inner map representation is granular enough to preserve
sufficiently detailed information, while the depth of the output octree is pruned to a certain depth, representing the
desired resolution of the map. The dynamic depth of the octree hence allows for a map representation with adaptive
resolution. The occupied and unoccupied cells of this map then serve as a baseline for safe collision-less navigation within
a previously unknown environment (see section 3.4).

The volumetric mapping fuses all the onboard sensors whose data can be converted to a 3D point cloud (e.g., time of
flight cameras or depth cameras) to maximize the environmental perception capabilities of the robot. Such integration
of data outside the field of view of the main LIDAR used for localization consequently enables efficient exploration of
vertical shafts and small rooms, which could not be ensured using only a horizontal LIDAR with a small vertical field of
view. This exact scenario is showcased in Fig. 4, where an upwards-oriented depth camera enables the exploration of a
vertical shaft.

Figure 4: Modularity of the sensory setup employed in the volumetric mapping (bottom row). Example of two sensors (rigidly
attached onboard a UAV) used in exploration of a vertical shaft — a horizontally-mounted OS1-16 LIDAR and an upwards-oriented
RealSense D435 (the aggregated data are highlighted in black and red in the upper row). Presented data come from a real-world
experiment performed in Byci skala cave system in Moravian Carst.

3.3 Automatic Control and Tracking

The concepts of UAV stabilization, control, and state estimation utilize our previous research on the stabilization of
autonomous aerial vehicles [Báča et al., 2018,Petrĺık et al., 2020,Báča et al., 2021]. The control pipeline uses a model
predictive control (MPC) trajectory tracker [Báča et al., 2018,Báča et al., 2021] (MPC tracker), which takes the desired
trajectory and produces a feasible reference obeying the model dynamics up to snap and jerk derivatives. This reference
is supplied to the MPC controller [Petrĺık et al., 2020, Báča et al., 2021] to determine the desired linear and angular
acceleration for an acceleration controller. The acceleration controller then takes the desired acceleration and the current
attitude and orientation from the state estimation pipeline to produce the desired angular rate and thrust reference for
an embedded attitude rate controller. The state estimation pipeline fuses the inertial measurements from the onboard
inertial measurement unit (IMU) with an estimate of the local or global state. In our case, this state estimate is the
localization output of the approach described in section 3.2.

3.4 Planning

A navigation approach suited for the S&R missions has to combine real-time responsiveness in dynamic, diverse, and
complex 3D environments with fast global planning to effectively and safely exploit the limited time of flight of a UAV.
For this purpose, a grid-based planning algorithm with iterative path post-processing was designed and was integrated
into the complex system presented here.

The inputs for the planning procedure are the map of the environment in the form of a 3D volumetric occupancy grid
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and the desired start and goal positions, which are updated in real time by the online mapping and high-level exploration
modules. Given these inputs, an informed heuristic search is applied to find the initial path between the start and goal
positions.

In contrast to traditional grid-based path-finding approaches, several changes were introduced to improve the real-time
performance of the hereafter presented algorithm. Firstly, the point cloud formed by centers of occupied and unknown
cells in the global 3D volumetric occupancy grid is converted to a KD-Tree structure forming the representation of
obstacles. The KD-Tree representation of a point cloud allows for a fast search of the nearest occupied voxel. This
information is used to conclude the feasibility of particular cells during the heuristic search. This step enables us to
completely avoid the computationally expensive obstacle growing procedures at the beginning of each planning iteration
and thus to use the single global map for path planning. However, this shifts part of the computational requirement of
the pre-processing phase to the planning phase. In practice, this significantly reduces the total computation time. This
is especially true for simpler planning instances that do not require search over a significant part of the environment.

The informed heuristic search applies Euclidean distance as heuristics and uses the set of all 26 adjacent voxels as the
neighborhood of a single voxel. This set of cubical voxels sharing at least one common face, edge, or corner is further
referred to as the ”26-neighborhood” in this paper. To continue to improve the real-time capabilities of the graph search
algorithm, the number of expanded nodes is decreased by pruning the expansions of cells that cannot lead to a better
solution. This procedure is based on the node-pruning approach within Jump Point Search (JPS) algorithm [Harabor
and Grastien, 2011], but the rules are applied on the three-dimensional grid. The influence of node pruning on the
computational requirements of the path searching algorithm is shown in Fig. 10.

In contrast to the vanilla versions of grid-based algorithms, our method further introduces a mechanism to improve
the overall applicability and robustness in real-world autonomous systems working with incomplete and noisy data. The
proposed mechanism is based on sub-path production and an estimate of the proper local movement direction if the global
plans cannot be achieved (due to as-yet unavailable or sparse sensory data) or if a specified planning timeout is exceeded
(1 s timeout is used in the presented experiments). In both cases, a sub-path is generated to an already expanded node
with the minimal Euclidean distance to the goal. This approach prevents idle hovering caused by repeated attempts to
find a path to unreachable exploration nodes, while it is sufficient to reach their vicinity.

Required preliminary knowledge of environment properties is another issue of state-of-the-art methods related to their
deployment in real-world unstructured workspaces. Classical occupancy grid-based approaches require a parameter
that represents the minimum allowed distance between the center of the robot and the nearest obstacle. The threshold
usually incorporates the dimensions of the robot as well as an additional safety distance representing the required obstacle
clearance. The distance from a particular node to the nearest obstacle is then compared to the threshold, and the result
implies the tractability of the cells. Since the threshold has to be specified prior to the application of the algorithm
and is usually constant for the entire path, it is difficult to define this threshold for an unknown environment. The
threshold has to be set to a sufficiently low value to enable navigation through narrow corridors (e.g., doors or narrow
halls), which might be essential for reaching parts of the environment. However, this distance between a UAV and
obstacles is maintained throughout most parts of the generated path. The threshold should therefore be sufficiently high
to avoid generating paths that are unnecessarily close to obstacles, and that therefore reduce the safety when navigating
a UAV within the environment. We therefore propose and apply an iterative path enhancement process that increases
the obstacle clearance in all parts of the generated path up to a minimum distance, while maintaining the ability to pass
through narrow corridors. The minimum UAV-obstacle distance is based on the size of the UAV and the sensing and
controller performance. The pseudocode of this iterative process is presented in Algorithm 1.

As the first step of the path enhancement process, a KD-Tree is generated from the point cloud representation of the
environment in the surroundings of the initial path. Then, an enhanced new path Pnew is found in the following way.
The algorithm consecutively passes all nodes forming the initial path, and for each node that is closer to the nearest
obstacle than distance ds, it finds its neighboring node Nbest with the maximum distance to the nearest obstacle. When
node Nbest is found, the algorithm checks whether it is in the neighborhood of the last node in Pnew. If yes, Nbest is
inserted at the end of the list of nodes that forms Pnew. Otherwise, nodes connecting Nbest with the last node in the new
path with maximum distance from the obstacles are inserted into Pnew together with Nbest. Thus the connectivity of the
path after each iteration is preserved. When the last node of the initial path is reached, the algorithm proceeds to the
next iteration in which the previously found Pnew substitutes the initial path. The algorithm ends when the maximum
number of iterations is reached, or when the path has not changed during the iteration.

The function getBestNeighbor(N), in Algorithm 1, returns a node from the set of adjacent 26 nodes of node N with the
maximum Euclidean distance to the closest obstacle or the node itself if N is further from the obstacle than any of its
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Algorithm 1 Pseudocode of the iterative path enhancement process enlarging the obstacle clearance
of a given path.

1: procedure ENLARGE OBSTACLE CLEARANCE
2: Input:

3: PA∗ ⊲ the original A* path
4: Otree ⊲ KD tree representation of environment

5: Output:

6: Psafe ⊲ path with enlarged obstacle clearance

7: n iteration← 0
8: path current← PA∗
9: while n iteration < max iteration do
10: path next← []
11: path next.Add(path current[0])
12: for node in path current[1 : end] do
13: if node in path next then ⊲ current node is already in plan
14: continue
15: if dist(node, Otree) ≥ ds then ⊲ current node is far from obstacles
16: if isInNeighborhood(node, path next[end]) then
17: path next.Add(node)
18: else
19: cn← getConnectingNodes(node, path next[end])
20: path next.Add(cn)
21: path next.Add(node)

22: continue
23: Nbest ← getBestNeighbor(node)
24: if Nbest = path next[end] orNbest = node then
25: continue
26: else if not isInNeighborhood(node, path next) then
27: con nodes← getConnectingNodes(path next[end], Nbest)
28: path next.Add(con nodes)

29: path next.Add(Nbest)

30: if path current = path next then
31: break
32: path current← path next
33: n iteration← n iteration + 1

34: Psafe ← path current
35: return Psafe

neighbors. If the distance to the closest obstacle is equal for two nodes, then the secondary key is defined as

R(Nn) = −dist(Nn, Nprev), (2)

where Nprev is the last node on the current path and nodes with a greater value of R(·) are preferred. The secondary key
helps to prevent path lengthening while not increasing the distance from obstacles. The function getConnectingNodes(·)
returns the sequence of nodes that connects two nodes given as arguments with the greatest minimum distance from
obstacles. The function considers only the sequences containing the lowest possible number of connecting nodes, which
means a single node or pair of nodes in the applications of this paper. The proposed algorithm maintains the connected
path at the end of each iteration and, in each iteration, every node can be shifted only to one of its neighboring nodes.
Therefore the function getConnectingNodes(·) is always called on a pair of nodes whose predecessors were the neighbors
in the previous iteration. Therefore, the predecessors (eventually one of the predecessors) compose the lower bound on
the best feasible connecting nodes. Consequently, given the initial feasible path, the function getConnectingNodes(·)
always produces a connection resulting in a feasible path with minimum distance from obstacles equal to or greater than
the previous iteration.

Due to noise in the 3D LIDAR data, imprecision of the real-time localization and mapping module, and the discretization
deficiency of the global map, the path generated by Algorithm 1 is often noisy and requires further post-processing. For
this purpose, we apply a simple filtering approach where any two nodes in the path that are closer than a user-specified
threshold df and are at a mutual distance along the generated path smaller than the size of a filtering window are
removed from the path. Since no collision checking is applied during the filtering phase, the threshold df has to be set
so that the filtering approach can only decrease the safety margin and cannot lead to a collision. The post-processed
path is then segmented and is sent to the MPC-based trajectory tracking system. The tracking system then produces
a smooth reference taking into account the kinematic and dynamic constraints of the aerial platform. An example of a
path in particular processing phases is shown in Fig. 5.

The crucial part of path planning in unknown dynamic real-world environments is reactive replanning, which is partic-
ularly important for agile UAVs. Within the presented system we apply the replanning approach (see Fig. 6 for the
scheme), which is triggered by two distinct events. First, replanning is triggered after a collision is detected between
the planned trajectory and a newly discovered environment (dynamic obstacles). This is handled by a 2Hz low-level
loop that checks the feasibility of the trajectory generated by the MPC tracker with respect to the current map on the
tf seconds long horizon. If the trajectory is evaluated as infeasible, tracking of trajectory is stopped, and a new path

24/191

CTU in Prague Department of Cybernetics



➞ Wiley Periodicals LLC 2021. Accepted to Journal of Field Robotics. DOI: 10.1002/rob.22021 12

(a) grid resolution: 10 cm (b) grid resolution: 15 cm

(c) grid resolution: 20 cm (d) grid resolution: 30 cm

Figure 5: A visualization of the initial A∗ path (yellow), the enhanced path increasing the obstacle clearance (red), and the final
filtered path (green) for maps with varying resolution.

starting at the current position is generated. Second, replanning is called periodically every tp seconds (3 s are used
in presented experiments) to exploit a newly-discovered non-collision space, allowing the path to be shortened or the
obstacle clearance to be extended even if the previous plan does not collide with the obstacles. The periodic replanning
is introduced in order to decrease the computational load of the onboard computer.
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Figure 6: Illustration of the online replanning approach described in section 3.4. TMPC is a trajectory produced by the MPC
tracker, tc is the length of the time horizon in which the first collision is detected, and T is the threshold for an immediate stop of
the trajectory following, and for restart of replanning from the current position.

To ensure smooth transitional behavior of the UAV during online replanning, the start point Ps is taken from the
currently-tracked MPC-based trajectory which consists of 40 transition points on a prediction horizon 8 s in length. The
point which will be reached in tm is selected. Then the whole planning procedure is performed, including the initial
grid-based planning. Although starting this pipeline with Algorithm 1 is sufficient to get a feasible path, running the
planning pipeline from its beginning fully exploits newly discovered free cells and therefore shortens the path. A new
path is then composed of the remaining segments of the MPC trajectory up to Ps, followed by the filtered path generated
by the planning algorithm.

The limited time for global planning mostly does not allow for planning paths longer than tens of meters. This becomes
insufficient for planning the return to starting position, as the starting position can be much further from the final
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position reached during the exploration phase. To overcome this problem, a global-navigation homing tree is iteratively
built from the poses visited by the UAV during the exploration phase. This homing tree is used to estimate the needed
time to return, and to find a sequence of temporary planning goals successively leading the UAV to a starting position.

The proposed planning approach can hardly be compared with existing planning approaches, since it does not aim to
be optimal in relation to the length of the path or in relation to maximization of the obstacle clearance. However, it
fulfills all the requirements on a planning system that can be used in general real-world environments, such as real-time
performance, event-triggered replanning, independence from environment characteristics, and the generation of robust
paths with respect to uncertainties in localization, mapping, and control, all of which are inevitable in the real-world.
It further reveals several additional advantages over recently published works. First, the only variable parameters that
constrain the method are the requirements on obstacle clearance, on the smoothness of the path and the timeout for
planning. These parameters explicitly depend on the dimensions of the UAV, the performance of the controller and the
available computational power. This makes the method independent from the environment characteristics and it remains
dependent only on the specifications of the vehicles. Second, the proposed planning method utilizes the output directly
from the mapping pipeline, and does not require any computationally demanding pre-processing before the start of the
planning algorithm. This enables fast global replanning, and therefore fast reactions to newly discovered parts of the
environment and dynamic obstacles. The short replanning period also facilitates the use of adaptive map resolution.
This enables the use of a high-resolution map for flights through narrow corridors while maintaining low computational
demands in large open spaces, where lower resolution is sufficient. Last but not least, enlarging the obstacle clearance in
open space areas of the environment significantly increases the robustness of the entire system.

3.5 Autonomous Exploration

Another crucial part of a fully autonomous mission in an unknown environment is the automatic exploration executed
by following paths generated between a set of navigational goals (exploration nodes). In the proposed system, the basic
set of exploration nodes Eb is identified in the volumetric map provided by the mapping subsystem as

Eb = {c |Noc(c) = 0, Nun(c) ≥ Tun, c ∈ Ofree}, (3)

where Ofree is the set of all free voxels in the voxel occupancy grid, Noc(·) and Nun(·) are the number of occupied
and unknown cells in the 26-neighborhood of a particular cell, and Tun ∈ {1, 2, . . . , 26} is a user-specified threshold
(Tun = 16 for the presented experiments). To reduce the number of exploration nodes, the nodes are clustered according
to their mutual Euclidean distance. To avoid unnecessary computational demands and to achieve real-time performance,
a reduced set of exploration nodes Er is created by iterating over cells in Eb and applying the following rule

Er =

{
Er if dist(c, Er) ≤ Tdist,
Er ∪ c otherwise,

(4)

where dist(c, Er) stands for the Euclidean distance between the center of the cell c and the center of the closest cell in set
Er. This grouping method can be understood as a simplified version of the DBSCAN spatial clustering method [Ester
et al., 1996]. The clustering procedure is followed by removing the set of already-visited exploration nodes Ev. This
process is defined as

Er = Er \ {cg | dist(cg, Ev) ≤ Tdist, cg ∈ Er}. (5)

Given the set of Er, a simple cost function is applied to evaluate the exploration nodes. The cost function is defined as

Ecost(c) =α dist(c, R) + β distxy(c, R) + γ distz(c, R)+

+ δ adiffxy(c, R) + ǫ adiffz(c, R), (6)

where R is the current pose of the UAV, dist(·), distxy(·) and distz(·) are functions returning the Euclidean distance,
the Euclidean distance omitting the difference in height, and the difference in height respectively. The adiffz(·) is a
function returning the angle between the ground plane and the line segment defined by two points given as an argument
of function. α, β, γ, δ, and ǫ are the weights of particular summands. The value of adiffxy(·) is given as

adiffxy(c, R) = mindiff(atan2(cy −Ry, cx −Rx)− ϕ), (7)

where ϕ is the preferred direction of exploration. The value of ϕ can be set to either a constant value equal to the
user-defined preferred direction of exploration or to the direction given by the last two used exploration goals.

Function mindiff(·) is used for conversion of the difference in angles to interval 〈0, π). The function is defined as

mindiff(̺) =

{
|̺| if |̺| ≤ π,
2π − |̺| otherwise.

(8)
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The next exploration node cbest is then chosen with respect to the cost function defined in (6) as

cbest = arg min
c∈Er

Ecost(c). (9)

The coefficients used in the cost function defined in (6), together with the choice of a preferred direction of flight ϕ,
enable UAVs to have different behaviors even though they are running the same exploration approach. This option
is advantageous especially when certain UAVs participating in the mission are not able to communicate directly with
each other due to the environment constraints that are usually encountered in subterranean environments. During the
exploration phase of the mission, the UAV switches to a new exploration node after reaching the previous exploration
goal, or if the planner does not find a path to the exploration goal or has produced a sub-path of a zero length. The
analysis of the computational requirements of the method for generation of exploration nodes is provided in Fig. 12. The
computational time is independent to the size of the map as the search space for new exploration nodes is limited based
on the assumption that new exploration nodes cannot be generated outside the perceptive field of view.

3.6 Artifact Detection

One of the main goals of UAVs in S&R scenarios is to find objects of interest (usually victims and their belongings), and
to localize them in an unknown environment. Although the primary focus of this paper is on planning and exploration,
artifact detection is a computationally expensive process that adds additional load on the available computational re-
sources of the system. In the SubT Challenge, the objects of interest need to be detected and localized in relation to the
entrance to the facility within an allowed error of 5m. Precision in 3D coordinates enables a rescue team to be navigated
to the location identified by an autonomous system. Objects of interest (called artifacts in SubT) may be identified in
the visual spectrum (a cell phone, a backpack, a survivor in a protective vest, or a vent), or in the thermal spectrum
(a survivor), or may also be identified non-visually (the WiFi signal of a cell phone, a carbon dioxide (CO2) leak). To
visually detect the artifacts, two RGB detection cameras with a combined 90◦ vertical and 180◦ horizontal field of view
are carried onboard each UAV. In the object detection approach, the image is processed by a pre-trained YOLOv3 neural
network (NN) object detector. The spatial detection hypotheses are then tracked in time, are localized in 3D space,
and are eventually reported to other robots or back to the ground station. Object detection runs onboard the UAVs in
real-time at 0.5Hz, which is sufficient for flights up to 1m s❂1.

3.7 Mission Control

In order to keep the proposed system easy and fast to use, while preserving its ability to perform a range of tasks, we
introduce a mission controller for high-level planning of the mission. It is implemented as a finite state machine with
parametrized transitions providing configurable employment of various mission strategies. A simplified scheme of this
state machine is presented in Fig. 7.

Initialization Booting systems Ready for takeoff

Performing takeoffFlying through gateFlying to first pose

Exploration Landing

Flying back to start

Data re-translation

Mission finished

Figure 7: Illustration of a transition diagram among the most prominent blocks of the mission controller. The state machine can
be adapted for various mission strategies, it supervises the operating conditions of all the important subsystems, and it may react
to faulty scenarios by triggering a safety procedure such as controlled landing.

Use of the mission controller enables fully autonomous deployment of the system. It requires only two user actions. These
are not necessary for correct behaviour of the system, but they widen the range of possible deployment scenarios. The
first voluntary user action is to specify the desired landing position and to customize the requirements on returning to
the start location, the first exploration position and other mission-related preferences. Setting these preferences allows
us to configure the desired behavior of the UAV and enables the use of any available prior knowledge of the mission. This
information may be gained from floor plans of a disaster environment (such plans are usually available for general S&R
missions, but were not provided at the SubT Challenge) and from a visual analysis of the environment right at the S&R
site. The second intervention is human-operator approval of the commencement of the mission. This serves as a safety
feature to prevent an unexpected takeoff of the system. The human operator can also override the entire autonomous
mission by pushing a safety button to trigger a safety procedure. Apart from the supervising the exploration mission,
the mission controller manages the operation state of some subsystems that are not necessary for certain parts of the
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mission — the power state of onboard lights or restrictions on artifact detection in certain phases of the mission. This
saves a certain amount of energy and therefore increases the available flight time.

4 System Performance Analysis

The real-time performance of all subsystems is essential for all robotic systems that are meant to be deployed in real-world
environments. Several experiments supporting the statements about real-time performance of particular subsystems and
several experiments analyzing the benefits of particular algorithms are presented in this section. For a more objective
evaluation of the real-time performance of the whole system, the presented computational times were mostly measured
on the onboard computer of the UAV during the experiments performed in real-world scenarios.

4.1 Localization and Mapping

As discussed in section 3.2, the employed SLAM approach does not perform loop closure detection, nor global op-
timization. This would typically be required in order to obtain global consistency, especially in complex subterranean
environments. However, the results presented in section 5.1.1 and section 5.2 show the employed state estimation pipeline
yields low drift. The advantages of global optimization in terms of global consistency and localization accuracy are un-
deniable, however the low-drift performance allows disregarding global optimization in order to reduce computational
load. This highly correlates with the designed purpose of the proposed system suited for use on-board real-world UAVs,
where constrained computational resources must be available to run all other real-time subsystems necessary for mid-air
stabilization and navigation.

To show the resulting performance after the trade-off between consistency and accuracy, Fig. 8 shows the required
computational time for procedures within the localization pipeline. The maximum overall computational times are close
to 90ms allowing it to run in real-time with only small time reserves for data coming at 10Hz. Extending the pipeline
with other computationally heavy features (e.g., a global optimization) would slack up the real-time performance of the
system. This is the most crucial property on-board fast-moving aerial robots requiring real-time feedback in order to
stabilize mid-air. Moreover, Fig. 8 also shows that the system is not dependent on the size of the map as the SLAM
methodology optimizes only locally the incoming data. The quantitative analysis of the localization accuracy is provided
further in Table 3.
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Figure 8: Computational time of particular procedures related to localization and mapping during 475m long flight with an
explored volume of 7463m3. The whole pipeline is triggered by incoming data with update rate 10Hz. The average total runtime
is 53.41ms. The system was run on-board the UAV with computational unit Intel Core i7-10710U.

4.2 Planning

The real-time performance of the planning module is essential for performing frequent replanning of both local and global
plans and thus essential for effective use of limited flight time of the UAV. The planning procedure can be divided into
three steps — conversion of a 3D occupancy grid to KD-Tree, path planning, and path post-processing. The conversion
of the 3D occupancy grid produced by a mapping module to KD-Tree structure is the only step required prior to the start
of the planning phase. The detailed analysis of the dependence of the computational time required for this operation on
the size of the environment is provided in Fig. 9. Data presented in this figure show that the computational requirements
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depend linearly on the size of the map. Although the computational time is tractable even after 15 minutes of flight
time during which the aerial system flies 1200m within a deep cave system, a large portion of the converted space would
not be used by the planning algorithm. Therefore, only a local part of the environment is converted to the KD-Tree
representation and consequently used in path planning. As shown in Fig. 9, this approach makes the computational time
required for conversion independent on the size of space that has already been explored.
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Figure 9: The dependence of the computational time required for conversion of the 3D occupancy grid to a KD-tree structure
on the number of cells which are considered to be occupied in the original volumetric global map. The graph also shows the
comparison between computational requirements for the conversion of the entire global map (a resolution of 20 cm is used in this
experiment) and for the conversion of a local subspace surrounding only the given starting position (a cuboid of 120x120x40m is
used in this experiment). Data were gathered during a 15 minute long flight in the simulation environment, with the entire system
running on Intel Core i7-10510U CPU.

To illustrate the computational gain or loss associated with particular modifications applied to a classical grid-based path
searching algorithm, we present an analysis in Fig. 10. The analysis shows that the usage of precomputed distances from
obstacles for all voxels in an occupancy grid speeds up the path searching process more than two times as much when
compared to the proposed approach using KD-Tree for evaluation of the feasibility of particular voxels. However, this loss
in computational efficiency is compensated for by the replacement of the computationally demanding obstacle growing
algorithms with usage of the KD-Tree representation of the environment. For the method of building an occupancy map
with inflated obstacles as applied in [Liu et al., 2017], the computational demand depends linearly on the size of set of
points representing the occupied part of the environment. For an average number of occupied cells within the map during
the autonomous exploration, the map conversion lasts approximately 70ms. However, by considering the unknown part
of the map as well, the computational time increases up to 10 s, which makes the method impractical for the real-time
planning. On the other hand, the KD-Tree representation can be obtained without any approximations from a global
voxel map within 100ms even for maps containing 7.2 · 107 cells.

Replacement of the KD-Tree representing the entire environment by the KD-Tree representing only the subspace of the
environment does not have such a significant influence on the path searching process as it does on the computational
requirements in building the KD-Tree. This results is consistent with the theoretical asymptotic complexity of building a
KD-Tree (O(n log n)) and searching for the nearest neighbor in the KD-Tree (O(log n)), where n is the number of nodes
in the tree.

The significant improvement of the computational requirements were achieved by applying the pruning algorithm that
effectively reduces the number of expanded nodes that cannot be part of the optimal path. This procedure speeds up
the planning process by 49% on average. Detailed analysis presenting the average ratio between particular approaches
for different complexity of planning problems is presented in Fig. 10. The presented results were generated on the set of
planning problems solved during the deployment of the system in large-scale simulation scenarios.

The analysis of the computational requirements of the path post-processing method is presented in Fig. 11. The com-
putational requirements of the iterative post-processing depends on the number of waypoints processed and also on the
complexity of the environment, which further influences the length of the processed path in particular iterations and the
total number of iterations. The data obtained during simulated flights shows that the whole post-processing, including
the filtering step, does not exceed 64ms for paths consisting of up to sixty way-points. For the setting used in most
of the experiments (tp = 3 s and grid resolution 0.2m), this number of way-points enables post-processing of paths of
a minimum length of 12m that guarantees safety for allowed maximum velocities up to 4m s❂1, which is above the
reasonable maximum velocity for UAVs in an unknown cluttered environment.

The computational time required for the conversion of the 3D occupancy grid to KD-Tree, which is necessary to evaluate
the distance of particular cells, is presented separately as the post-processing can make use of the KD-Tree previously
converted for the purpose of global planning.
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Figure 10: The analysis of influence of particular modifications of the path planning subsystem on computational requirements.
The graph shows the average change of computational requirements achieved for the path planning method when applying node
pruning (blue), by using KD-Tree representation of obstacles instead of a grid with precomputed distances from obstacles (red),
and by using KD-Tree created only from subspace of the map instead of the whole map (green). The data are divided into several
bins based on the computational complexity of the planning problem to show how important the particular modifications are for
planning problems of different complexity. The computational time of the approach when not applying the particular feature is
used as division criterion. The data were collected on a set of more than 300 planning instances corresponding to instances solved
during autonomous missions.
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Figure 11: The computational requirements of the proposed path post-processing. Figure (a) shows the dependence of the
average computational requirements on the number of post-processed way-points. The green points stand for the computational
requirements of the conversion of the 3D occupancy grid to a KD-tree structure. This operation is performed only on the
surroundings of the initial path. Blue points show the computational requirements of the whole post-processing including the
filtering. Figure (b) shows the distribution of the computational times required for path post-processing. The dashed lines in (b)
stand for the average computational time. Data for both figures were gathered during flights in the simulator with total duration
of 60 minutes which includes more than 1000 planning iterations. The simulation, including the whole system, was running on the
computational unit Intel Core i7-10510U.

4.3 Exploration

The time performance of the exploration module was evaluated based on data collected during seven flights in real-world
scenarios including urban and cave environments. The computational time required for getting the next navigation goal
depends primarily on the portion of the unknown environment and thus on the size of the basic set of exploration nodes
Eb. The distribution of the computational times needed for finding the next navigation goal is shown in Fig. 12.

5 Experimental evaluation

The presented system was evaluated in numerous simulations in the realistic Gazebo simulator, in experiments in sim-
ulated indoor and outdoor mockups, and finally in the real environment during the DARPA SubT Challenge Urban
Circuit robotic competition. In this section, we analyze the results of these experiments and the performance of partic-
ular subsystems.
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Figure 12: Distribution of the computational time needed for finding the next exploration node. The presented data were collected
during seven flights in urban and cave environments with average duration of 10 minutes. The exploration module was run on an
onboard computer with computational unit Intel Core i7-10710 along with the rest of the presented system.

5.1 Simulation Analysis

The influence of path post-processing (see section 3.4) on the output trajectory is examined with respect to obstacle
clearance. For this purpose, multiple paths were generated in the virtual environment (see Fig. 16) containing dimension-
constrained passages, steep corridors, and small obstacles. The quantitative results presented in Fig. 13 show significant
growth in the obstacle clearance of the post-processed paths in comparison with the initial A∗ path. Although the filtering
process may decrease the obstacle clearance in principle, the quantitative results do not show significant decrease in the
average obstacle clearance after filtration has been applied to the post-processed path.
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Figure 13: Influence of path processing (see section 3.4) on obstacle clearance. The data were obtained from the set of sampled
paths generated in the constrained virtual environment (Fig. 16) with the desired obstacle clearance ds = 1.6m. The dashed lines
show the average obstacle distance throughout all UAV positions on segmented paths.

To examine the performance of the proposed system regarding maneuverability within confined corridors, an artificial
scenario with various types of narrow passages was used for simulation analysis (see Fig. 14). This analysis showed
the capability of the system to fly through passages that were extremely narrow in relation to the diameter of the UAV
platform. The main cause of the unsuccessful attempts within the results was a physical collision emerging from inaccurate
trajectory tracking due to external disturbances, constraints on the maximum allowed velocity and acceleration of the
UAV.

To showcase the ability of the system to respond to the presence of dynamic obstacles, we present an experiment
demonstrating how the path planning module behaves towards a moving obstacle. The experiment, shown in Fig. 15,
displays the online path re-planning after a collision between the initial navigation plan and a newly-perceived obstacle
has been detected.

5.1.1 Virtual Track of DARPA Subterranean Challenge

As a representative of long-term complex validation, we showcase the system performance on an autonomous UAV
exploration of urban and cave indoor environments provided by DARPA for the virtual track of the competition. In
the urban variation, a single UAV exploration using the proposed methodology is showcased. In the cave variation, a
multi-UAV team is deployed to cooperatively explore the environment while the system runs independently unchanged
on each robot apart from the parameters of exploration. A selected example of an urban world is shown in Fig. 16, where
a two-floor structure combines narrow halls, stairs, steep corridors, a large open space, and obstacles such as a railing or
lights hanging from the ceiling. The proposed system managed to autonomously explore the entire virtual object with a
total space of 5819m3 in 474 s, while traveling a distance of 207.75m. The onboard-built map created by the autonomous
UAV and its exploration trajectory within the environment are shown in Fig. 16.
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(a) Types of dimension-constrained passages.
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(b) Dependence of the number of successful passes through narrow passages on the size of these
passages d. Fail represents unsuccessful passes of a UAV with a physical diameter of 0.65m through
the constrained passages. Data were collected during flights through the constrained environment
containing a sequence of dimension-constrained passages presented in (a). First fifty passes through
each type of passage were included in presented results.

Figure 14: An analysis of the maneuverability of the presented system through tight passages with constrained dimensions. The
analysis was performed using the realistic Gazebo simulator.

1 s 3 s

5 s 11 s

13 s 19 s

Figure 15: Navigation response to the detection of a dynamic obstacle. The experiment illustrates the reaction to the occurrence
of a dynamic obstacle colliding with the current navigation path. As analyzed in Fig. 13, the figure shows the generated A∗ path
(blue), the processed and filtered path (red), and the trajectory of the UAV (purple) up to the current UAV position.

A selected example of a cave world (taken from the set of virtual worlds of DARPA SubT Challenge) is showcased in
Fig. 17. This environment consists of long, wide passages as well as narrow passages, vertical shafts, loops, and large open
spaces. A heterogeneous team of UAVs 4 with different sensory setup and flight time was deployed within this testing
world. In this experimental validation, no robot had communicated with other robots its exploration strategy nor reused
any apriori information about the environment. This correlates with the requirements of real-world deployments assuming

4 Specifications of robot highlighted in blue: 10min flight time, OS1-16 LiDAR, upward and downward oriented depth camera. Specifications
of robots highlighted in red and green: 20min flight time, OS1-16 LiDAR.
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low reliability of any communication infrastructure, making the entire system applicable in fully communication-less
applications. Within the cave exploration scenario in Fig. 17, all robots had explored a large portion of the environment
over the course of their mission duration and returned back to communication range of the base station located next to
the common start area. The robot highlighted in red in Fig. 17a had performed an approximately 650m long trajectory
loop starting at 180 s and ending by visiting a previously uncovered location at 750 s. As discussed in section 4.1, the
pose and the map information is associated only locally without the need for global optimization, which is verified by
the performance of the system in the trajectory loop of the robot highlighted in red in Fig. 17a.

(a) Virtual environment (b) Onboard-built map

Figure 16: An urban environment used for simulation analysis of long-term exploration. The figure shows the simulated object
(a), and the traveled trajectory of the UAV (red) within the onboard-built map (b).
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(a) Overview of the cave environment (the Five Fingers virtual cave
world of the DARPA Subterranean Challenge) composed of three
maps built onboard a team of aerial robots. The robot with a tra-
jectory highlighted in red performed a round-way exploration and re-
turned back to a previously visited location at approximately 752 s.
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(b) Localization accuracy of all three robots colored with respect to
(a).
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(c) Position drift in each axis of a robot highlighted in red in (a),
where the robot spatially visited a previously uncovered location after
830 traveled meters. As our SLAM approach yields low-drift without
a global optimization, the pose and the map information is associated
to the old part of the environment using only the local optimization.

Figure 17: Autonomous exploration of a virtual cave environment by a team of three UAVs (distinctively colored). The figure
shows the maps of the environment, the UAV trajectories, and the onboard-built maps of the cave built by a team of three aerial
vehicles (a). The localization accuracy of the SLAM subsystem during this selected virtual mission is shown for all robots (b),
while the position drift per each spatial axis of a single robot highlighted in red is also shown (c).

5.1.2 Comparison with a state-of-the-art approach

The importance of the proposed path post-processing applied for increasing the obstacle clearance is showcased on
comparison with the state-of-the-art method FASTER [Tordesillas et al., 2019]. FASTER (Fast and safe trajectory
planner) applies an optimistic assumption that the unknown part of the environment is free of obstacles to allow for
the generation of trajectories lying partially in an unknown space. It also improves safety by maintaining a feasible and
safe back-up trajectory in a known free space. FASTER was originally designed for use with a depth camera; however,
the mapping module could be modified to enable the integration of FASTER into the presented system using the 3D
LIDAR. The comparison is based on 50 flights of total length 2000m through the environment presented in Fig. 14a with
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narrow passages of 100 cm width. The maximum velocity of both planners was limited, and the minimum UAV-obstacle
distance was set to a similar value for both planners. The experimental results presented in Fig. 18 show that the herein
proposed approach produces trajectories that are, on average, significantly further from the obstacles than the trajectories
produced by FASTER. Moreover, the analysis showed that when working with the data provided by the applied mapping
module, the FASTER algorithm is more computationally demanding than the approach proposed here. The average
computational time consumed by our approach was 0.95 s, while one replanning step of the FASTER algorithm using the
local map of size 8m× 8m× 4m with resolution 0.1m took 1.34 s on average. The complete statistics obtained from
presented comparison are presented in Table 2.
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Figure 18: The comparison of the UAV-obstacle distance of the trajectories generated by FASTER algorithm [Tordesillas et al.,
2019] and planning approach presented herein (see section 3.4). The data were obtained during the flights in the constrained
virtual environment (see Fig. 14). The dashed lines show the average UAV-obstacle distance throughout all UAV positions.

We are aware that the main objective of the FASTER algorithm is not increasing the distance to obstacles but the
generation of very fast but still safe trajectories. However, by making this comparison, we intend to demonstrate that
even though the state-of-the-art approaches to trajectory generation show very impressive performance in simulation
scenarios and also in artificial real world environments, they are not suited for all applications in an imperfect real
world where UAV position estimation and distance to obstacles measurements are influenced by precision of real sensors.
Particularly, this comparison shows the importance of increasing the distance to obstacles above the minimum threshold
for safety and reliability of the whole system. All trajectories produced by the FASTER algorithm were collision-free
with respect to the current map. Nevertheless, the natural imperfections of the mapping, trajectory tracking, and UAV
control caused that the UAV following trajectories produced by FASTER resulted in 22 collisions over 50 flights, while
the UAV following trajectories produced by the proposed approach encountered only three failures.

Table 2: Quantitative results of the comparison with FASTER algorithm.

Planning approach ours FASTER

computational time - mean (s) 0.95 1.34

computational time - std. (s) 0.35 0.30

UAV-obstacle distance - mean (m) 0.55 0.37

UAV-obstacle distance - std. (m) 0.19 0.21

total number of collisions (-) 3 22

total number of getting stuck (-) 0 13

5.2 Experiments in Testing Facilities

To validate the integration of all the subsystems presented in section 3 during an entire autonomous mission, several
experiments were performed within controlled real-world indoor and outdoor environments. During this validation phase,
particular emphasis was put on experimental verification of all the subsystems, namely localization and mapping, safe
navigation (dynamic replanning and generation of exploration points), localization of artifacts, and the ability to return
to a starting location in order to report the obtained data (maps, artifacts detections) back to a ground station. This
experimental phase is crucial, particularly in fully-autonomous systems and in time-constrained applications requiring a
fast, reliable, and effective response to a hazardous scenarios, such as the targeted scenario of S&R.

A small-scale validation was performed in a constrained outdoor environment shown in Fig. 19. This experimental
deployment shows the ability to perform the entire mission with limited time while detecting and localizing an object of
interest and returning the object’s position back to a ground station. A large-scale validation, shown in Fig. 20, presents
three separate testing deployments in an apriori unknown cave environment. The first deployment (highlighted in blue
in Fig. 20a) verifies performance over the course of the mission, similar to the experiment in Fig. 19, while additionally
showing the seamless transition of the system between highly differing environments (from urban to cave). The second

34/191

CTU in Prague Department of Cybernetics



➞ Wiley Periodicals LLC 2021. Accepted to Journal of Field Robotics. DOI: 10.1002/rob.22021 22

and third flights (highlighted in red and green in Fig. 20a, respectively) show the system performance during deep-cave
exploration tasks. In all experiments, the UAVs did not re-use any previously-built maps nor any information about
the previous flights. The onboard-built maps were globally registered to a reference map of the cave during an offline
post-processing phase. The reference map of the cave was built by registering over 100 largely-overlapped scans taken
by Leica BLK360 terrestrial 3D scanner. The characteristics of the three experimental flights are quantified in Table 3.
The ground truth data for the quantitative analysis in Table 3 and Fig. 20 were obtained by sequential registration of
a local map of each trajectory sample to the precise and highly granular 3D map of the environment obtained with the
terrestrial 3D scanner.

Fig. 20b shows the absolute position error of the localization over the course of each particular mission. The data show
that the employed SLAM approach yields low drift in environments with high numbers of salient features for extraction
within all axes of the structured laser data. Due to the organization of the data in principle of a rotational laser scanner
(dense horizontally, sparse vertically), this is not always ensured however. In instances with degraded data in the vertical
axis, the information gain during a vertical ego-motion is low, causing the estimated robot pose drift. The occurrence
of drift is showcased in Fig. 20c, where the pose drifts due to degradation of vertical information while the UAV flies
through a steep narrow corridor. In this scenario, the information gain from the extracted features is low during a large
portion of the elevation change, which is the source of position drift at around 300m in Fig. 20c. However, the possible
drift in position is not challenging from the point of mission navigation, which works locally over the map with integrated
drift. As the experimental analysis showcases, the accuracy of the SLAM approach is less than the required accuracy
for artifacts detection (below 5m). This makes the approach feasible for short missions (typical of UAVs due to battery
constraints), even though it can be improved by employing global optimization at the cost of larger computational load
onboard a lightweight UAV.

1 s

17 s

45 s

126 s

323 s

345 s

351 s

(a) In-mission snapshots of the identical UAV in time within an
experimental environment containing an a priori unknown artifact
(red backpack).

(b) Onboard-built volumetric map of the environment with spatial
detection of the unknown artifact from an onboard RGB camera and
the YOLOv3 neural network (see section 3.6).

Figure 19: Experimental validation of the entire system. In the experimental outdoor scenario, the system autonomously explored
in 361 s a free-space volume of approximately 3665m3 (via 3D LIDAR) after a 117.20m long flight, while it successfully finished
the mission by returning to the starting location and landing at the original takeoff spot.

Table 3: Quantitative results of the SLAM performance over the three separate flights shown in Fig. 20.

Trajectory Trial 1 Trial 2 Trial 3
Color in Fig. 20a Blue Red Green

trajectory length (m) 241 376 423
flight time (s) 441 641 938
avg linear velocity (m s❂1) 0.55 0.59 0.45
explored volume (m3) 3055 7463 11 403

mean translation error (m) 0.33 0.61 0.93
median translation error (m) 0.29 0.54 0.55
translation RMS error (m) 0.36 0.69 1.36
max translation error (m) 0.73 1.66 4.38

5.3 Experiments in Nuclear Power Plant

The performance of the entire system was objectively examined during the SubT Challenge in an unfinished nuclear
power plant in the Satsop Business Park, WA, USA. The competition presented a diverse operation space (confined halls,
small rooms, large open spaces) with omnipresent challenges of water pools, layers of dust, hanging ropes, and altering
lighting conditions. During four runs on two different courses (Alpha and Beta – see Fig. 1), our system was deployed
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(a) Overview of the cave environment. The ground truth map (highlighted in black) was built by registering of over 100 largely-overlapped
scans taken by Leica BLK360 terrestrial 3D scanner. The trajectories of the three separate flights and the onboard-built maps are
highlighted in blue, red, and green respectively. The global registration of the maps was done in the post-processing phase.
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(b) Localization accuracy during all three separate exploration
deployments colored with respect to (a). The quantification of
mission durations is given in Table 3.
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(c) Localization accuracy during a simulated mission highlighted
in green: showcase of a position drift in the z-axis due to lack of
salient features in structured laser data.

Figure 20: Autonomous exploration of an apriori unknown cave environment by a single UAV in three separate flights. The figure
(a) shows the map of the environment, the UAV trajectories, and the onboard-built maps of the cave during the three independent
exploration tasks. The localization accuracy of the employed SLAM (see section 3.2) is shown during all the three deployments
(b). The figure (c) shows the position drift per each spatial axis appearing in an environment lacking salient features in structured
laser data.

as part of a multi-robot rescue team. The robot count of the team reached a maximum of 6 UGV and 2 UAV vehicles
deployed at once. As part of the CTU-CRAS-NORLAB team, the proposed UAV system helped to win first place among
DARPA non-funded teams and third place overall within the Urban Circuit of the competition.

The Alpha course was an open space scenario reachable through wide hallways and gates. The artificial terrain barriers in
this course extended the time required for navigation of ground robots, but this did not affect the proposed aerial system.
This showed the superior advantage of the presented UAV system in the fast exploration of open-space environments, as
it managed to travel 93m inside the building in just 200 s. Within this short period of time, a single fully-autonomous
UAV explored the space of approximately 2867m3 of one floor of the reactor building. On the other hand, it took about
half an hour to reach the same distance with the semi-autonomously operated ground robots. The flight trajectory of a
single UAV and the volumetric onboard-built map obtained during the flight lasting less than 240 s is shown in Fig. 21a.

The Beta course is characterized by a confined corridor with two 100 cm wide doors at 10m and at 30m right after
the starting gate. Although the systems of most of the participating teams managed to navigate through these narrow
entrances with ground robots (often teleoperated), none of the other teams succeeded in flying through with multi-rotor
aerial robots. To the best of our knowledge, only the system proposed here was capable of taking off autonomously
with aerial robots at the start location and of reaching the area behind the first extremely narrow gate (see Fig. 21b
and Fig. 22). However, since the dimensions of the UAV with propeller guards were only 26 cm less than the width of
the door, the performance of the system was tested to its limits, as analyzed in Fig. 14b.

Different deployment strategies were used for the two runs on the Alpha course. In the first run (see Fig. 21a), the
exploration policy maximized the amount of explored space and relied on communication with the ground station via a
low-bandwidth mesh network. Due to the poor reliability of this network, the strategy changed significantly for the second
run. As other members of the multi-robot team relied on the communication network, the first UAV was delegated to
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Figure 21: Single UAV flights within the first run on the Alpha course (a) and within the second run on the Beta course (b).
Figure (a) shows the onboard-built map and in-mission snapshots of the UAV with its flight trajectory (pink) and path-planning
output – vanilla A∗ (blue) and its post-processed path (red). Figure (b) shows the onboard-built maps, and in-mission snapshots
of the UAV (upper row) navigating through the confined hallway containing narrow passages, which are only 26 cm wider than the
footprint of the UAV. The bottom row of figure (b) shows the onboard-built map together with the UAV trajectory (pink) and
the path-planning output – vanilla A∗ (green) and the post-processed path (red).
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Figure 22: Distance between the center of the UAV and the nearest obstacle throughout the flight during the second run on the
Beta course.

land at an advantageous position specified by the mission operator, and served as a data re-translation node for the rest
of the team. The first UAV navigated autonomously to a position located approximately 30m away from the staging area
in 72 s after the entire system was booted, it landed, and it re-translated data from all the robots to the ground-station
till the end of the mission (1 hour). This strategy significantly increased the range of communication for the ground
robots, allowing them to explore further areas of the course. The second UAV followed an exploration policy with the
intention of returning to the starting location, transmitting the onboard-built map and detection data to the ground
station, and repeating the mission. This robot flew approximately 163m in 393 s; however, the robot was affected by a
hardware failure during the returning phase and its mission was interrupted.

6 CONCLUSION

In this paper, we have presented UAV system for fast autonomous exploration and inspection of large complex unknown
indoor environments. The entire system has been developed with a view to combining the required ability to pass through
narrow passages, to react properly to the presence of dynamic obstacles, and to withstand real-world conditions. As a
part of the presented system, we have introduced a computationally undemanding algorithm for UAV path planning in
general 3D cluttered environments, which has a key role in the increase of robustness of the entire system. Further, we
have presented a frontier-based exploration strategy that can be applied by a team of robots in fully communication-less
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environment. The proposed system has been evaluated in a highly thorough experimental analysis of the aerial system in
varying environments. The extensive validation was performed by the deployment of the system in single and multi-UAV
scenarios, as well as in small and large-scale experiments in simulated and real-world urban and cave environments.
In addition to complex validation, the system was evaluated in numerous experiments focused on real-time properties
of the system and on thorough evaluation of the ability of the system to fly through confined areas and to withstand
challenging real-world conditions including dynamic obstacles. The computational requirements analysis verifies that
none of the subsystems show a significant dependence on the size of the explored environment. Thus, the system proves
to be applicable independently on the length of the missions. The performance of the entire system was showcased in
the DARPA SubT Challenge Urban Circuit where the system was part of the UGV-UAV team that won 1st place among
self-funded teams and 3rd place overall.

MULTIMEDIA MATERIALS

The multimedia materials are available at http://mrs.felk.cvut.cz/papers/darpa-urban. The underlying control
pipeline is available as an open-source at https://github.com/ctu-mrs/. The planning and exploration part of the
system will be also available as an open-source at https://github.com/ctu-mrs/ after the final round of the DARPA
SubT challenge.
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Large-Scale Exploration of Cave Environments by
Unmanned Aerial Vehicles

Pavel Petráčeka , Vı́t Krátkýa , Matěj Petrlı́ka , Tomáš Báčaa , Radim Kratochvı́lb , and Martin Saskaa

Abstract—This paper presents a self-contained system for the
robust utilization of aerial robots in the autonomous exploration
of cave environments to help human explorers, first responders,
and speleologists. The proposed system is generally applicable
to an arbitrary exploration task within an unknown and un-
structured subterranean environment and interconnects crucial
robotic subsystems to provide full autonomy of the robots.
Such subsystems primarily include mapping, path and trajectory
planning, localization, control, and decision making. Due to the
diversity, complexity, and structural uncertainty of natural cave
environments, the proposed system allows for the possible use of
any arbitrary exploration strategy for a single robot, as well as
for a cooperating team. A multi-robot cooperation strategy that
maximizes the limited flight time of each aerial robot is proposed
for exploration and search & rescue scenarios where the homing
of all deployed robots back to an initial location is not required.
The entire system is validated in a comprehensive experimental
analysis comprising of hours of flight time in a real-world cave
environment, as well as by hundreds of hours within a state-
of-the-art virtual testbed that was developed for the DARPA
Subterranean Challenge robotic competition. Among others, ex-
perimental results include multiple real-world exploration flights
traveling over 470 m on a single battery in a demanding unknown
cave environment.

Index Terms—Aerial Systems: Applications; Field Robots;
Aerial Systems: Perception and Autonomy; Multi-Robot Systems;
Mapping

MULTIMEDIA MATERIALS

The paper is supported by the multimedia materials avail-
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I. INTRODUCTION

HUMAN exploration of complex cave systems has oc-
curred for thousands of years. However, there are still

entire cave systems and individual subterranean voids, shafts,
and cavities that are yet uncovered. This is primarily due
to the dangerous nature of subterranean exploration in en-
vironments like natural caves, although man-made cellars,
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Fig. 1: Robotic exploration of the Bull Rock Cave (central Moravian Karst,
Czech Republic) by a fully autonomous aerial vehicle.

drainages, and mines pose similar risks. These environments
contain sediments such as debris, rocks, sand, clay, ice, decom-
posed organic matter, human waste, and even various forms
of speleothems in limestone caves. Considering the absolute
darkness, lack of GNSS signals, flowing and dripping water,
humid air, and the possible presence of poisonous gases, wind
gusts, hanging ropes, and wildlife, there is excessive risk to
the lives of human explorers in the exploration of new envi-
ronments, as well as in search & rescue missions. Given the
current state-of-the-art technology in robotics, many danger-
ous areas of subterranean systems are safely reachable using
mobile robots, with the greatest focus being on vertical explo-
ration using aerial vehicles. In contrast to human exploration,
the use of such technology presents several advantages in the
form of accessibility, safety, speed, instantaneous environment
visualization, and precise quantification. On the other hand,
challenges to the operation of mobile robots in such an envi-
ronment lies in the uncertainty, lack of light, high humidity,
and diversity of space in the form of narrow and/or low pas-
sages, canyons, large domes, high chimneys, and deep abysses.

The challenges to deployment of aerial vehicles in subter-
ranean environments with respect to robot control, communi-
cation, sensor fusion, and positioning are described thoroughly
in [1]. These specific challenges continue to be relevant even
after substantial progress in the field of mobile robotics. How-
ever, in contrast to [1], our motivation includes minimizing
the need for communications required for operator control and
instead focuses on the full autonomy of robots and autonomous
cooperation among members of a robotic team. The restriction
of communication in subterranean environments introduces
challenges to the maximization of system robustness and the
use of efficient decision making in the form of adaptable
exploration strategies in harsh unknown environments.
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A. Related work

In a non-robotic context, wild caves are explored by mod-
ernly termed cavers. However, the human surveying and map-
ping of caves is known to have existed for thousands of years
for purposes ranging from dwelling to speleology. The signif-
icance of cave exploration and cave mapping to scientific re-
search is a thoroughly studied inquiry in literature, e.g., in [2].

In the work presented here, we focus mainly on the robotic
point of view within the scope of the application domain. One
of the first cave-mapping approaches using robotic solutions
was proposed in [3], where the authors employed hand-held
laser scanners, which are limited in speed, accuracy, and safety.
In the context of mobile robotics, topics like the automatic
control of an unstable dynamic system such as an aerial multi-
rotor vehicle [4], the fusion of inertial, visual, and laser in-
formation for localization and mapping [5], and path planning
in dynamic environments [6] have been addressed in order to
achieve faster and safer methodology than mapping done with
hand-held devices, as proposed in [3].

Within the scope of subterranean environments, the DARPA
Subterranean Challenge competition has pushed the state of
the art of autonomous exploration in human-made mines [7]–
[10]. Although these systems have provided interesting solu-
tions with great potential, the authors of [7]–[10] rely on the
predictable structure of underground mines, such as using the
protraction of human-made tunnels to mark the furthest depth
data as frontiers or predefining turns at junctions in [9]. Since
the complexity and diversity of natural caves is extensive, more
robust solutions with a minimum number of environmental
assumptions are required. This was tackled in [11] where the
authors introduced a possible way for applying autonomous
drones as a technology to assist speleologists and archaeolo-
gists. Although an interesting read, the proposed methods only
constitute a preliminary discussion that presents neither novel
technology nor applied results. A similar discussion focusing
on the state of robotic problems within the application of sub-
terranean exploration with UAVs is presented in [12]. In con-
trast to [11], the authors of [12] present a set of preliminary ex-
periments in laboratory conditions and two dimensional space.
Unfortunately, the assumption of a planar world is highly
restrictive within the scope of real-world deployment due to
the complex character of natural subterranean environments.

The precise localization of mobile robots is crucial to au-
tonomous navigation in such complex environments. Among
existing state-of-the-art literature, the LOCUS algorithm [13]
achieves the lowest localization error at the cost of high com-
putational demands. Unlike with ground robots, this method
might be unsuitable for aerial robots as the computational
resources on lightweight UAVs are scarce due to their limited
payload. In [14], the authors demonstrated that localization
performance can be further improved by dropping range bea-
cons. This is a viable strategy for heterogeneous robotic teams,
but unfeasible for teams of only lightweight UAVs.

The use of robotic teams for cooperative exploration has
been addressed mostly in planar worlds with recurrent connec-
tivity constraints [15] or with the requirement of a centralized
element [16]. A similarly defined task to our problem of team
homing — respecting intermittent communication, need for

decentralization, and limited operation time of aerial robots
— is proposed in [17], where the robots gather and share
data during the mission and return all the way back to the
base before their operation times out. In contrast to [17], we
propose homing coordination that lands each aerial robot at
a position expanding a communication relay graph, thereby
increasing the time for mere exploration in tasks where return
to the starting position is not required. Related to the scope
of search & rescue, the authors in [18] propose to re-posi-
tion robots in a relay-chain formation to enable data trans-
mission over longer distances once an object of interest is
found. Our solution reports the position of the objects once
the explorer robot connects to the relay graph during hom-
ing. The recently developed fast exploration technique in [19]
maximizes explored volume over battery-limited flight time.
The method is based on data only from an RGBD camera
with a limited field of view (FoV). In comparison to LiDAR-
based methods, we have experimentally verified that RGBD
cameras are sub-optimal sensors for the exploration of large-
scale caves due to their limited range and FoV.

B. Contributions

First, we propose a fully autonomous system enabling multi-
modal mapping, fast and efficient planning with sensoric field-
of-view constraints for safe movement in 3D, robust localiza-
tion, and adaptable decision making. Second, a multi-robot
cooperation for the efficient homing of a team of autonomous
explorer robots is proposed. Third, the system has been vali-
dated through hundreds of hours of testing in a state-of-the-
art virtual testbed developed for the DARPA Subterranean
Challenge robotic competition, as well as through hours of
flight time in the real world. To the best of our knowledge, the
presented large-scale experimental deployment of autonomous
aerial robots in a natural cave environment goes beyond the
current state of the art in autonomous robotics. Lastly, we
present and share the experience obtained during this compre-
hensive experimental deployment that was carried out in close
cooperation with speleologists.

II. EXPERIENCE GAINED

A. Speleology motivation

From the speleological point of view, aerial systems are
crucial for pushing exploratory state-of-the-art methods to pro-
vide assistance in efficient scouting of difficult-to-access areas
in vertical environments, as well as for the quick inspection
of known areas using onboard sensors only. These systems
minimize risks for humans by reducing the need to climb or to
swim in cold water reservoirs, and also through the detection
of poisonous gases or even radioactive waste. Furthermore,
this enables the preservation and protection of natural envi-
ronments against human influence, including ancient sediment
forms, floor dripstone formations, paleontological and archae-
ological sites, and sources of potable water.

In contrast to well-established methods of subterranean doc-
umentation (i.e., theodolite and level/distance meter, compass,
and clinometer), modern technology employs stationary and
mobile laser scanners to produce a dense 3D model of the
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environment. Due to the complexity of natural environments,
the use of stationary scanners is time-consuming because of
the necessity of eliminating occluded spaces. Although hand-
held mobile scanners are more time-efficient in this context,
their use is limited to areas accessible to humans. This limita-
tion opens the door for mobile robotics which is able to tackle
this challenge and to provide optimized 3D mapping. State-of-
the-art mapping in such environments reaches decimeter level
precision, which is less precise than stationary scanners, yet
sufficient for the majority of speleological needs. Moreover,
the common issue of mapping drift accumulation in long-
corridor spaces can be minimized using reference measure-
ments by precise stationary scanners or man-measured control
points to obtain accurate results.

B. System requirements
The primary prerequisite of a team of aerial explorers that

can be deployed in caves involves the ability to adapt to di-
verse, unknown environments lacking sources of light and ac-
cess to GNSS. This general description requires the abilities to
• be deployed in constrained cavities, as well as in open

caverns of natural caves,
• map and visualize the environment in a fast, quantified

manner in the form of dense point clouds and image
streams,

• seamlessly infuse an arbitrary exploration strategy for
more efficient mission operation within the scope of
individual environments (policy selection is discussed
in Sec. IV),

• return to the mission operator and promptly visualize the
environment for human supervision, and

• maximize operation capabilities in terms of coverage
when a team of robots is employed.

C. Depth estimation in high humidity
The performance of the PMD pico flexx time-of-flight (ToF)

camera and the Intel Realsense D435 stereo camera have been
analyzed as complementary sensors to the primary LiDAR for
the purpose of improving the sensory FoV coverage. Although
ToF cameras generally outperform stereo cameras in terms of
distance measurement precision and density of measurement
points [20], the high humidity typically present in natural caves
causes dispersion of light emitted from ToF cameras by small
water droplets. This effect significantly degrades the acquired
measurements. As was verified empirically, ToF cameras can
produce false-negative measurements of obstacles situated be-
hind clouds of water droplets. The use of stereo cameras (e.g.,
Realsense) is recommended for its robustness to environmental
conditions within natural caves. Nevertheless for large cave
systems, such a sensor needs to be combined with 3D LiDARs
in order to comply with the requirements of speleologists and
first responders.

III. SYSTEM ARCHITECTURE

The system of the proposed autonomous explorer robot
is divided into multiple groups of individual interconnected
modules to be described in this section. All components and
their relations are visualized in Fig. 2.

Td xd

ωd

ωIMU,RIMU

RLOAM

rLOAM

r, ω, R

High-level planning Tracking & control

Perception

Autopilot

Mission
control

Navigation &
planning

Reference
tracker

Reference
controller

Attitude rate
controllerActuators

State estimation

Mapping

LOAMLiDAR

IMU

RGBD

Fig. 2: Individual interconnected modules form the system architecture of
the autonomous explorer robot. The High-level planning modules focus on
achieving the mission objectives by generating references for the Tracking &
control modules based on the map built by the Perception modules. This also
provides a state estimate for closing the control feedback loop. All modules
except the Autopilot group are handled by the main onboard computer.

A. Perception

The perception of the proposed system is based on a multi-
channel LiDAR sensor that is used for both building the spatial
representation of the surrounding environment in the Mapping
module, as well as for the motion estimation in the LOAM
module. Obtaining the full-state estimate is realized within the
State estimation module, where multiple sources of incom-
plete state measurements are fused together using a bank-of-
filters estimator.

The vertical navigation capabilities of the system can be
greatly improved by equipping the robot with vertically-facing
RGBD cameras that are able to fill in the blind spots in the
limited vertical FoV of the LiDAR. Apart from navigation,
these optional sensors may be used for detecting objects of
interest in caves in search & rescue scenarios or for visual
documentation of newly explored cave systems.

1) LiDAR: Even though our system is not tied to a specific
LiDAR model, there are certain important parameters that can
affect the performance and capabilities of the platform.

To reliably stabilize the UAV, the time delay of the estimated
state must stay below the threshold of a certain critical value
depending on the type of controller and gains. When this
threshold is exceeded, the UAV begins oscillating and even-
tually automatically lands when the control error is too large
to continue the mission safely. We have found experimentally
that for most combinations of localization methods and con-
trollers, the critical value ranges from 100 ms to 200 ms. Thus,
10 Hz is the lowest rotation frequency that can be used without
employing methods of delay compensation.

The typical values of a vertical field of view (VFoV) of 3D
LiDARs are in the 30◦ to 90◦ range. The higher VFoV values
improve vertical mobility in constrained spaces, however with
a low VFoV, it is impossible to safely navigate narrow vertical
shafts as it is not known whether the space above the UAV is
free and safe to fly through, or whether it contains an obstacle.

2) RGBD: The regions above and below the UAV that are
not covered by the LiDAR can be captured using a depth
camera or by spinning the LiDAR sensor around a vector
that is orthogonal to the axis of scanning, as seen in [21].
However, such a solution adds additional weight to the sensor,
which decreases the available flight time. A blind spot also
still remains as part of the laser rays is blocked by the frame
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of the UAV. Alternatively, lightweight depth cameras can be
mounted on opposite sides of the body frame in order to cover
most blind spots of the LiDAR. Additional sensing modality
is gained by combining an RGB and depth camera in a single
sensor (RGBD) with a slight weight increase.

3) Localization: For localization of the UAV, we have
adapted the LOAM algorithm [22]. This state-of-the-art
method is very precise (0.55 % translation error [23]) while
attaining real-time performance. In our adapted version of the
open-source implementation, the algorithm is optimized on
CPU and employs parallel computing, which enables us to
deploy and use the localization in the real-time position control
feedback loop onboard fast-moving aerial vehicles.

4) Mapping: The LOAM-based algorithm builds a sparse
internal representation of the environment consisting of edge
and planar features. However, this sparse map is unsuitable
for navigation purposes. Additionally, the LOAM map does
not consider the probabilistic nature of the sensor, nor does
it distinguish free and unknown space. Both of these factors
are necessary in exploration techniques for reliable navigation
and consistent frontier selection.

In the proposed system, the environment is represented by
a dense probabilistic volumetric map, which consists of cubic
cells with one of 3 states: free, occupied, or unknown. The
map is kept in the octree structure to facilitate the Bayesian
integration of new measurements and efficient access to indi-
vidual cells of the probabilistic map. The high-level systems,
such as grid-based path planning or inter-robot map registra-
tion, also benefit from quick access to the dense environment
representation. This approach is capable of multi-modal fusion
by integrating the data from all available onboard sensors
and outputting point-cloud measurements. If high-level path
planning is constrained by the field of view of onboard sensors
(tackled in [24] and also in Sec. III-C), the multi-modality of
mapping enables arbitrary movement in 3D.

5) Sensor processing: The targeted subterranean environ-
ments may have high humidity or may contain large clouds
of whirling dust. The water and dust particles can then pro-
duce erroneous measurements for the LiDAR-based sensors.
Assuming a partial reflection from water or dust particles and a
large energy dissipation of distant reflections, these erroneous
measurements can be filtered with respect to the measured in-
tensity of returning light rays. As has been empirically verified,
a simple threshold-based filtration over the intensity channel
within the local neighborhood of the sensor is sufficient for
filtering out false-positive measurements. The idea of the local
filtration is to filter out particles gusting through the surround-
ing air due to the aerodynamic influence of the propellers.
Although the cutoff threshold of the intensity magnitude is
environment-specific, filtering out measurements below the
10th percentile of the intensity distribution per each laser scan
proved to be a reliable solution, even in the dustiest real-world
environments. Such processing is unavailable for camera-
based systems that may require thorough, computationally-
expensive solutions to overcome these challenges.

6) State estimation: The reference controller (see
Sec. III-B2) requires a position estimate of the UAV body
frame in the world frame r = (x, y, z), the velocity of the

body frame ṙ, rotation R from the UAV body frame to the
world frame, and angular velocity ω in the body frame in order
to close the feedback loop. The LOAM localization method
provides 6-DoF pose estimate, i.e., rLOAM, RLOAM, which
are fused in the State estimation block with interoceptive
measurements from the IMU of the Autopilot to obtain the
rest of the state variables.

The details about the estimation process are described
in [25]. Nevertheless, it is worth highlighting the importance
of the fusion of orientation RIMU and RLOAM in cave envi-
ronments. While RIMU is very precise and without delay, the
heading of the UAV (i.e., the measured direction of the body-
fixed, forward-facing axis) is unreliable due to the presence of
ferromagnetic ores in the cave rocks that cause deviations in
the magnetometer measurements. By correcting these errors
with the heading from RLOAM in the estimation process, the
resulting orientation R is robust to changes in the erratic
magnetic field in subterranean environments.

B. Tracking & control

The safe navigation of constrained environments with low
obstacle clearance imposes the requirements of precise trajec-
tory tracking with minimal control error, as any deviation from
the desired state could potentially result in a collision. The
Reference controller is responsible for minimizing the control
error around the desired control reference that is provided
by the Reference tracker. The controller outputs an attitude
rate reference for the low-level Attitude rate controller in the
Autopilot.

1) Reference tracker: The Reference tracker is essential in
providing the Reference controller with smooth and feasible
references to ensure a safe flight. The tracker based on the
model predictive control (MPC) simulates an ideal virtual
model of the UAV with constrained translational states up to
jerk, together with heading and heading rate. The input can be
either a single pair of desired 3D position pd and heading ηd,
or a trajectory Td in the form of a sequence of such pairs with
a specified sampling rate. The full state of the virtual model is
then sampled at 100 Hz, and rd, ṙd, r̈d, ˙̈rd, ηd, η̇d are passed
to the Reference controller as reference xd.

2) Reference controller: The agile SE(3) geometric state
feedback controller [26] minimizes the position and velocity
errors. To compensate imperfect calibration and external forces
acting upon the UAV, the controller is extended with the body
and world disturbance terms described in [25]. The output
attitude rate reference ωd is tracked by the Autopilot.

C. Path planning

The planning approach used to safely navigate through apri-
ori unknown environments must fulfill requirements of real-
time responsiveness and efficient global planning in order to
fully exploit the limited flight time of UAVs. For this pur-
pose, fast iterative post-processing is applied to the output of
an optimal grid-based planner in order to increase the UAV-
obstacle distance above a minimum threshold [27]. The grid-
based planner and the iterative post-processing do not apply
an optimistic assumption that the unknown space is collision-
free. Although this visibility-constrained precondition requires
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high sensory coverage around the robot to allow for arbitrary
movement in 3D, it consequently prevents collisions of the
trajectory being followed, even if replanning would fail. This
methodology improves safety and robustness of the overall
flight, allows for deployment in completely unknown environ-
ments without any apriori information, and permits seamless
navigation in open spaces, as well as safe movement through
narrow passages.

Common grid-based planning methods require pre-
processing of an employed map representation, such as deter-
mining and applying the 3D distance transform for obstacle
growing. This may introduce significant computational over-
head by bottle-necking system performance, as the map must
then be processed in every planning step. Such a computation-
ally expensive task contradicts the requirements for respon-
siveness within evolving dynamic environments. To minimize
the overall time required for a single planning iteration, a
local KD-tree representation of the environment is used to
decide the feasibility of particular cells within a voxel grid.
This approach shifts the largest load from the pre-processing
phase to the planning phase, which is beneficial especially to
shorter plans that require searching only a small part of the
environment. The low computational demands of the applied
planning approach enable frequent replanning the global plan,
which is also crucial for the efficient use of newly-discovered
collision-free space.

To effectively exploit the limited flight time of aerial ex-
plorers, all mid-flight stops are eliminated by computing in
parallel the next exploration goal during path following. The
path to the next goal is efficiently appended to the rest of the
current reference trajectory Td using the prediction horizon of
the MPC (see Sec. III-B). The need for precise locomotion
control in complex natural caves makes uniform path-sampling
unfeasible with respect to the dynamic constraints of a UAV
and fast, collision-free trajectory tracking. Therefore, the ref-
erence trajectory Td provided by the Navigation & planning
module to the Reference tracker is computed based on the
following process.

Given the dynamical constraints of the robot, the generated
path is uniformly sampled with a sampling distance adapted
to the maximum velocity magnitude vmax of the UAV. Based
on this initial trajectory Ti, the required acceleration magni-
tudes an between consequent transition points are computed
by velocity differentiation as

an(k) =
||vi(k + 1)− vi(k)||2

ts
, (1)

where vi(k) is the required velocity vector for transition from
a transition point ti(k) to ti(k+1) on the initial trajectory Ti

and ts is a constant sampling period. The new velocity for a
k-th segment is then given by

vk =

{
max

(
vmax

amax

an
, vmin

)
if an(k) > amax,

vmax if an(k) ≤ amax,
(2)

where the minimum velocity vmin serves as a parameter bal-
ancing the precision and the time needed for trajectory track-
ing. By this step, the velocities for particular segments are set
so that the maximum velocity is applied in straight segments,
while lower velocities are applied in curved segments of any

given path.
To further improve trajectory sampling and to achieve

smoother changes in velocities, the sampling distance on par-
ticular segments is computed so that the motion along each
segment has the constant acceleration

ak =
|vk+1 − vk|

tacc,k
, (3)

where tacc,k is the time available for acceleration on the k-th
segment. The time tacc,k is obtained from the length lk of
the segment k and the required change of the velocity. The
number of transition points Nk on the k-th segment of the
initial trajectory Ti is given as

Nk =





⌈
lk

vkts

⌉
if ak = 0,

⌈
tacc

ts

⌉
if ak > 0,

(4)

where the desired constant acceleration is adapted to meet the
velocity vk+1 at the end of each segment as

ak =
ak

Nkts
. (5)

The sequence of sampling distances for the k-th segment of
Ti is then given by

dk,i = vkts + iakts
2, i ∈ {1, · · · , Nk}. (6)

The trajectory sampled with sampling distances defined
by (6) is passed to the Reference tracker [25] as a reference
trajectory Td in order to generate a feasible reference xd for
the Reference controller. Despite its simplicity, the described
sampling method achieves better results within the scope of
the proposed application than the optimization-based trajectory
generation methods proposed in [28], [29]. In contrast to the
proposed method, the problem in [28], [29] is defined in such
a way that the exact positions of all the path waypoints must
be visited, generating significantly slower trajectories.

IV. EXPLORATION POLICY

Cave environments are naturally diverse and require various
different mission strategies suitable for specific environments.
Deriving the optimal policy is thereby dependent on various
factors, such as the expected mission output, mission-specific
constraints, the complexity and the specifics of the environ-
ment, and the number of available robots. For this reason, our
system is designed so that any arbitrary policy can be utilized
within the scope of an autonomous mission.

Nevertheless, two exploratory mission types are of the most
use in practice: deep cave exploration and full-coverage ex-
ploration. These missions are used for scouting previously
uncovered areas in order to obtain a general overview of
the environment, monitor environmental changes such as gas
leaks, detect natural water reservoirs, discover new possible
passages, or assess the structural state of cavern walls and
other objects of interest. The former approach maximizes the
explored volume of space in the entire environment, while the
latter minimizes the blind spots missed by onboard cameras
with a constrained FoV.

The capabilities of a robotic mission are furthered with the
use of multiple cooperating robots. To show an example of
such improvement using a team of agents as opposed to a
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single agent, a homing strategy that maximizes the flight time
of aerial robots during a multi-robotic mission is proposed
in the following subsection. During the proposed coordina-
tion, continuous exploration is not assumed and distance-con-
strained ad-hoc communication is used. The robots are homo-
geneous and generate their behaviors in a decentralized man-
ner based on their current state and the available information
from other robots (only positions in a shared frame are re-
quired).

A. Multi-robot homing strategy

A cooperative operation maximizing the flight time of a
multi-robot team is proposed for applications where homing
all the deployed robots to an initial location is not required.
This strategy is suitable for tasks where the possible gained
information is superior to the cost of the robots, such as in
search & rescue scenarios. This method assumes there is ac-
cess to a low-bandwidth communication link among any two
robots within an omnidirectional communication radius.

To maximize the flight time, the robots utilize local commu-
nication to plan the homing path such that a group of robots
is able to build up a communication tree with the base station
as the root communication node. This allows the robots to
optimize their flight time by navigating back to a location in
the proximity of another communication node (a landed robot,
base station, or self-sustaining communication node deployed
by other robots) when the battery capacity becomes drained.
This entire homing strategy is showcased in an example sce-
nario for two independent robots in Fig. 3.

In the proposed strategy, each robot constructs a navigation
homing tree using nodes created from the set of past poses
of the robot. This online-built tree has edges valued by the
required flight time between two nodes and is used to estimate
required homing time to the proximity of a communication
node. The pose nodes are connected such that each path leaf-
to-communication is the shortest (see Fig. 3a). A homing path
is constructed recursively as a sequence of tree nodes from the
current robot position (a leaf) to the nearest communication
node, with the landing position being within communication
range of the nearest communication node (see Fig. 3b). The
tree is shared among the robots deployed in the same mission.
The knowledge from the previous explorers is integrated to
prolong their flight time (see Fig. 3c), thus causally maximiz-
ing the time capacity for the exploration task. When a commu-
nication node (e.g., a robot landing pose) is integrated into the
homing tree, it is linked exclusively to another communication
node to join the retranslation chain (see Fig. 3d). Consequently,
the parents of neighboring pose nodes are updated so that
each pose node has a parent with the minimal accumulated
cost to any communication node (see Fig. 3b and Fig. 3d).
The process of inserting pose nodes as well as communication
nodes into the homing tree is described in Alg. 1.

V. EXPERIMENTAL ANALYSIS

The entire proposed system has been validated through
hours of flight time in the real world, as well as in hundreds of
hours in various virtual subterranean environments. The results
of these experimental analyses are presented hereafter.

B a) B

C1

b)

B

C1

c) B

C1

C2

d)

B base station C communication node (range incl.) homing tree

Fig. 3: An example scenario of the homing strategy for two robots (red and
blue) that maximizes flight time by landing at feasible positions while building
a communication chain to a base station.

Algorithm 1: Insertion of a node into the onboard-built homing tree. Function
cost(na, nb) returns an estimate of flight time among nodes na and nb,
function accumulatedCost(na) returns the required flight time from node na

to the nearest communication node, and function freeRay(na, nb) returns true
if a linear path between nodes na and nb is collision-free in 3D.

1: procedure INSERTNODETOHOMINGTREE
2: Input:
3: N ⊲ Node to be inserted
4: C,P ⊲ Sets of communication and pose nodes
5: de ⊲ Minimum edge length
6: if N.type == COMMUNICATION then
7: N.parent← argminc∈C cost(N, c)
8: for p ∈ P do ⊲ Update parents of neighboring pose nodes
9: if cost(N, p) < accumulatedCost(p) then

10: p.parent← N

11: C ← C ∪ N
12: else
13: V ← C ∪ P
14: if minv∈V (||N− v||2) ≥ de then
15: V = {v | freeRay(N, v), ∀v ∈ V}
16: if V 6= ∅ then
17: N.parent← argminv∈V [cost(N, v) + accumulatedCost(v)]
18: P ← P ∪ N

A. Real-world environment

To analyze the properties of the system, a fully autonomous
aerial robot (see Fig. 4) was deployed for several hours of
flight time in the Bull Rock Cave located in the central Mora-
vian Karst of the Czech Republic (see Fig. 1 and the attached
multimedia materials).

During multiple autonomous exploratory missions, a single
explorer (see the hardware components of the robot in Fig. 4)
was deployed to validate the proposed system in various ex-
ploratory scenarios. The flight trajectories from all missions
are visualized in Fig. 5a and the mission statistics and perfor-
mance metrics of the mapping module are summarized in Ta-
ble I. A greedy frontier-navigation policy was employed such
that the frontier closest to the lateral direction of flight (A,
B), the highest frontier (C), and frontier with the largest ratio
of unknown to free cells in a bounded area (D) was selected
as the next goal. With respect to these experiments in a harsh
subterranean environment, we have
• validated the performance of the system by flying in large

cave domes, as well as in narrow corridors just 70 cm
wider than the dimensions of the robot,
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Mapping accuracy

Trial
Flight

time (s)

Trajectory
length (m)

Explored
volume

(
m3

) µ (m) σ (m)

A 731 476 7463 0.57 0.59
B 935 473 11 403 0.53 0.56
C 359 71 551 0.23 0.26
D 749 602 3756 0.33 0.38

E 386 233 3055 0.39 0.39
F 633 256 2579 0.21 0.22
G 638 261 3650 0.27 0.33
H 297 142 1682 0.25 0.41
I 129 121 3326 0.19 0.22
J 425 233 4388 0.25 0.29

TABLE I: Quantitative evaluation on multiple autonomous exploratory mis-
sions within the Bull Rock Cave system. The flight trajectories and qualitative
analysis of the mapping accuracy are shown in Fig. 5.

• validated the real-time performance and robustness of the
system in multiple autonomous horizontally-deep flights
longer than 470 m using just a single battery and reaching
a maximal velocity up to 2 m s−1,

• validated the ability to autonomously explore natural
domes in terms of vertical depth,

• verified the ability to perform a full mission and return
to an initial location with the obtained information,

• quantified the accuracy of the onboard-built maps with
respect to a ground truth map of the environment, and

• obtained feedback from speleologists in order to design
the system following their requirements.

The dense onboard-built maps (20 cm resolution) from all
the experiments were merged (manual global registration with
local ICP refinement) during post-processing to obtain the map
of the environment M. The reference ground truth map Mgt

was built by registering over 100 largely overlapping scans
taken by a Leica BLK360 terrestrial 3D scanner. The mapping
accuracy over all the experiments reached mean µ = 0.37m
and standard deviation σ = 0.46m using the point-to-point
Euclidean error metric between each point in M and the
corresponding closest point in Mgt. The distribution of the
mapping errors throughout all flights is visualized in Fig. 5b.
As specified by the end-users, the decimeter-level mapping
precision achieved over the course of these exceptionally fast
and extensive flights is sufficient for the majority of speleo-
logical needs.

Ouster OS1-16

Intel RealSense D435

Pixhawk autopilot
LED lights

RGB cameras

Intel NUC i7

Fig. 4: General hardware components of an autonomous explorer robot. All
data are processed and reasoned over with an onboard processing unit. The
main source of data comes from the top-mounted LiDAR.

B. Virtual environment
To validate the proposed methodology for multi-robot coor-

dination using a local low-bandwidth communication network,
a team of aerial robots was deployed for hundreds of hours
of flight in a virtual environment using a virtual testbed de-
veloped for the DARPA Subterranean Challenge competition.

x (m)

y
(m

)
z

(m
)

A B C D others

(a) Overview of the cave environment with the trajectories of all exploration
missions (see Table I) performed within Bull Rock Cave. The figure shows
deep cave missions (A, B), vertical flight (C), and the thorough exploration of
a bounded area (D).

x (m)
y

(m
)

z
(m

)
(b) Visual analysis on the mapping accuracy – the distribution of mapping
errors during all autonomous exploration tasks as summarized in Table I. The
color bar legend represents the mapping error in meters using the point-to-point
euclidean error metric.

Fig. 5: Full-coverage exploration of the Bull Rock Cave system (located in the
central Moravian Karst, Czech Republic) with autonomous aerial explorers.
Full resolution figure is available within the attached multimedia.

This state-of-the-art testbed consists of several large-scale cave
environments containing dynamic obstacles and models of
real-world interference, such as sensor discrepancies, commu-
nication schemes, and battery longevity.

In contrast to real-world experiments, the virtual environ-
ment is larger and allows for the seamless verification of multi-
robotic cooperation. To demonstrate the performance of the
proposed homing strategy, a selected example scenario of such
an operation is presented in Fig. 6. This experiment highlights
the positive influence of the homing strategy in a search & res-
cue scenario where the three explorers were able to exploit the
increased flight time. With a 50 m communication range and
1.2 m s−1 average velocity for each robot, the homing coopera-
tion increased the available flight time for exploration by 40 s
and 80 s, respectively. Moreover, the experiment shows the
influence of multi-sensor mapping, which allowed the black
robot to single-handedly explore the upper floor of the virtual
environment. The final exploratory trajectories of the cooper-
ating robots during the presented mission reached lengths of
715 m, 1349 m, and 1405 m.

The influence of the homing strategy on the time available
for mere exploration is also quantitatively analyzed in Table II.
The results were averaged over six separate deployments,
each with five cooperating robots. Identical mission parameters
were set to all the robots for the baseline [17], as well as for
the proposed method. The data show an increasing trend in
the available mission time for belated explorers for which the
effective exploration phase is consequently prolonged during
their entire operation time.

VI. CONCLUSION

This letter presents a comprehensive study on the use of
autonomous aerial explorers as an assisting technology for
the exploration of natural cave environments. This study also
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Fig. 6: Three autonomous explorers deployed in a virtual cave world within
the DARPA simulation testbed. The robots finished their missions by building
a communication tree with maximal edge length of dc = 50m.

Robot 1st 2nd 3rd 4th 5th

Exploration time before homing (secs) 316 330 360 380 389
Exploration time increase (%) −1.5 2.8 12.2 18.4 21.0

TABLE II: Influence of the homing strategy on the flight time available for
mere exploration. Comparison with a baseline time of 321 s (averaged over
10 flights) where a robot returned to base before its operation timed out.

shares the experience acquired during the technology’s de-
velopment in close cooperation with a team of speleologists,
cavers, and first responders.

The proposed self-sustaining system interconnects solutions
for all crucial robotic tasks in order to enable full autonomy in
complex unknown subterranean environments without access
to GNSS. Among others, this includes laser-data processing
which copes with high humidity and dustiness within subter-
ranean environments and robust path-planning for unknown
dynamic environments to allow for flights in constrained cav-
ities, as well as in open caverns of natural caves. Moreover,
a multi-robot cooperation is proposed for the efficient hom-
ing of a team of robots for applications where the possible
information gain is superior to the costs of the robots, such as
search & rescue scenarios in cave systems. The performance of
the entire applicable system was validated in one of the most
large-scale experimental analyses ever conducted, consisting
of hours of flight time in Bull Rock Cave (Czech Republic,
Moravian Karst) and in hundreds of hours in the state-of-
the-art virtual testbed developed for the DARPA Subterranean
Challenge. This presented analysis of the entire system proves
that it is a robust solution capable of reliable planning with
sensoric field-of-view constraints and accurate mapping. The
accuracy of localization and mapping was evaluated with re-
spect to a ground-truth map of the cave environment and
reached mean precision below 40 cm in real-world conditions.
This performance has satisfied the requirements of speleolo-
gists and first responders.
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Abstract: This paper presents a novel approach for autonomous cooperating UAVs in search and
rescue operations in subterranean domains with complex topology. The proposed system was ranked
second in the Virtual Track of the DARPA SubT Finals as part of the team CTU-CRAS-NORLAB.
In contrast to the winning solution that was developed specifically for the Virtual Track, the
proposed solution also proved to be a robust system for deployment onboard physical UAVs flying in
the extremely harsh and confined environment of the real-world competition. The proposed approach
enables fully autonomous and decentralized deployment of a UAV team with seamless simulation-to-
world transfer, and proves its advantage over less mobile UGV teams in the flyable space of diverse
environments. The main contributions of the paper are present in the mapping and navigation
pipelines. The mapping approach employs novel map representations—SphereMap for efficient
risk-aware long-distance planning, FacetMap for surface coverage, and the compressed topological-
volumetric LTVMap for allowing multirobot cooperation under low-bandwidth communication.
These representations are used in navigation together with novel methods for visibility-constrained
informed search in a general 3D environment with no assumptions about the environment structure,
while balancing deep exploration with sensor-coverage exploitation. The proposed solution also
includes a visual-perception pipeline for on-board detection and localization of objects of interest in
four RGB stream at 5 Hz each without a dedicated GPU. Apart from participation in the DARPA
SubT, the performance of the UAV system is supported by extensive experimental verification in
diverse environments with both qualitative and quantitative evaluation.
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mrs_uav_system. The SLAM datasets are available at github.com/ctu-mrs/slam_datasets. The
visual detection datasets are available at github.com/ctu-mrs/vision_datasets.

1. Introduction
The research of new robotic technologies and solutions is accelerating at an unprecedented rate
mainly in case of aerial robotics. Technological development is improving many areas of our lives
and, hopefully, even the future of humanity. The authors of (Shakhatreh et al., 2019) reviewed
current research trends and future insights on potential Unmanned Aerial Vehicle (UAV) use for
reducing risks and costs in civil infrastructure. The survey of UAV applications is accompanied by
a discussion of arising research challenges and possible ways to approach them.

This paper focuses on a robotic system developed to autonomously search subterranean en-
vironments. The motivation behind searching subterranean environments is to gain situational
awareness and assist specialized personnel in specific missions. Such missions may include: assessing
the structural integrity of collapsed buildings, tunnels, or mines; exploration of a newly discovered
branch in a cave network; or searching for lost persons. These tasks can often be life-threatening
to human workers as many hazards are present in subterranean environments. In order to reach
survivors quickly in unstable caves or partially collapsed burning buildings, first responders, such as
emergency rescuers and firefighters, may potentially put their lives at risk. In firefighting tasks, fires
can be either localized and reported to personnel by robots or the robots can even directly begin
extinguishing flames if the presence of human firefighters is too risky (Spurny et al., 2021; Pritzl
et al., 2021; Martinez-Rozas et al., 2022). In such scenarios, ceilings can suddenly collapse, toxic gas
can appear in a mine, flames can extend to an escape corridor, or a cave cavity can flood with water.
In distress situations, it is essential to swiftly coordinate the rescue operation as the survivors of a
catastrophe might need acute medical assistance or have a limited amount of resources available,
namely oxygen and water. However, without conducting a proper reconnaissance of the environment
and assessing the potential risks prior to the rescue mission, the involved rescuers are exposed to a
much higher probability of injury.

To reduce the possibility of bodily harm or to avoid risks altogether, a robotic system can be
sent on-site before the rescuers in order to either quickly scout the environment and report any
hazards detected by the onboard sensors, or directly search for the survivors. The rescue mission
can be further sped up by deploying a team of robots capable of covering larger areas and offer
redundancy in case of losses of some robot units in harsh environments. Multirobot teams can
also consist of heterogeneous agents with unique locomotion modalities to ensure traversability of
various terrains, including muddy ground, stairs, and windows, which is discussed in the overview of
collaborative Search and Rescue (S&R) systems (Queralta et al., 2020). Similarly, sensing modalities
can be distributed among individual robots to detect various signs of hazards, such as increased
methane levels or the potential presence of survivors deduced from visual or audio cues. Mounting
all sensors on a single platform would negatively affect its dimensions and, consequently, its terrain
traversability as it may not be able to fit into narrow passages, such as crawlspace-sized tunnels or
doorways. It would also mean a single point of failure for the rescue operation. On the other hand,
the operation of a single robot can be managed by just one person, while commanding a robot team
may be unfeasible for a single operator. Assigning each robot to an individual operator would also
be an ineffective allocation of resources. Moreover, the range of the robot would be limited by the
communication link to the operator. To provide a valuable tool for the rescue team, the robots must
be able to move through the environment on their own and infer about the environment using their
sensor data. The rescuer can then also act as an operator, providing only high-level inputs to the
robotic system to bias their behavior based on a priori information (e.g., someone was last seen
on the east side of the third floor). The research and development of such autonomous systems for
assisting first responders is the primary focus of the S&R robotics, and also the motivation for the
S&R UAV system presented in this paper.

The robotic platforms typically considered for S&R tasks are categorized into wheeled, tracked,
legged, marine, and aerial platforms (Delmerico et al., 2019). Among these locomotive modalities,
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aerial robots are considered to have the highest traversal capabilities since they can fly over most
obstacles which are untraversable by other platforms. One example of an autonomous aerial research
platform for S&R is found in (Tomic et al., 2012). The mobility of UAVs also surpasses other
robot types thanks to its dynamic flight which can achieve large velocities and accelerations. These
qualities make UAVs ideal for swift environmental scouting for gaining initial knowledge about a
situation. As such, the aerial platform is predetermined to be deployed as the first robot during the
first minutes of the rescue operation. A team deployed in an outdoor multi-UAV disaster response
task (Alotaibi et al., 2019) can effectively cover a large search area and minimize the time to find
and reach survivors. On the other hand, UAVs cannot operate for extended periods of time due
to their limited flight time, and the sensory equipment is limited by the maximum payload of the
UAV. Some sensing modalities might even be unsuitable for the use on aerial robots due to their
propulsion system, e.g., detecting gas due to the aerodynamic effects of the propellers, or sound
detection due to noisy operation. Due to the aforementioned pros and cons of UAV platforms, it is
convenient to combine the capabilities of other robot types to form a heterogeneous robotic team.

This manuscript proposes an autonomous cooperative UAV approach for S&R. The approach used
by Unmanned Ground Vehicles (UGVs) is not presented here because it is vastly different from the
UAV system and as such would not fit into the scope of this article, which is already moderately
extensive as we did not want to omit any details about the deployed system. The UGV solution
was developed by our colleagues who are acknowledged at the end of this article. The proposed
UAV together with legged, wheeled, and tracked UGVs formed the CTU-CRAS-NORLAB team,
which participated in the Defense Advanced Research Projects Agency (DARPA) Subterranean
Challenge (SubT). The team consisted of Czech Technical University in Prague (CTU) and Laval
University.

1.1. DARPA SubT challenge
After major success in accelerating the development of self-driving cars in the Grand Challenges of
2004 and 2005 and the Urban Challenge in 2007, DARPA announced the Subterranean Challenge
(SubT) (Orekhov and Chung, 2022) for the years 2017-2021 to advance the state of the art of S&R
robotics. Participants had to develop robotic solutions for searching subterranean environments for
specific objects that would yield points if reported with sufficient accuracy. To achieve the task
at hand, the competitors had to develop complex multirobot systems spanning nearly all research
areas of mobile robotics, from design of the robotic platforms to high-level mission planning and
decision-making.

The rules of the competition can be summarized in a few points. Each team has a dedicated time
slot, or run, to send their robots into a previously unvisited course and search for specific objects,
referred to as artifacts (Figure 1). Each run starts at a predefined time and ends exactly one hour
later. A single team is present on the course at a time during which they can deploy an unconstrained
number of robots of arbitrary size. The movement of team personnel and their handling of robots
is allowed only in the area in front of the entrance to the course, as shown in Figure 2. Only robots
can enter the course and only one human operator/supervisor can command the robots and access

Figure 1. All 10 artifacts searched for in the Final Event of DARPA SubT (image courtesy of DARPA). The
operator had to submit the position of the identified artifact with accuracy better than 5 m. While the first three
artifacts (survivor, cellphone, and backpack) were present in all circuits, the drill and the fire extinguisher were
tunnel-specific. Similarly, the gas and vent were located in the urban environment, and the helmet with rope
could be found in the caves. The last artifact (the cube) was introduced only for the Final Event.
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Figure 2. The bounded staging area (image courtesy of DARPA) is the only place where the human crew
members can handle the robots. The person sitting behind the displays is the operator who is the only one
allowed to issue commands to the team of robots, and also to view and interpret mission data.

Table 1. The prize money awarded for achieving the
first three places in the Final Event.
Place Systems Track Virtual Track
1. $2M $750K
2. $1M $500K
3. $500K $250K

the data they acquire during the run. These conditions should mimic the conditions of a real S&R
robotic mission. The operator can report the type and position of an artifact. If the type was correct
and the reported position was not further than 5 m from the true position, the team was awarded
one point. The team with the highest score wins the prize according to Table 1. For a more detailed
description of the challenge, see (Orekhov and Chung, 2022).

To encourage the development of high-level components without worrying about the resilience of
the hardware in harsh subterranean conditions and also to enable teams without many resources
and/or physical robots to compete, a virtual version (Virtual Track) of the competition was run in
parallel to the physical Systems Track. The solutions of the Virtual Track were uploaded as Docker
images (one image per robot) to the Gazebo-based Cloudsim simulation environment, where the
entire run was simulated. Every team could use the Cloudsim simulator to test their approaches in
practice worlds prior to the actual competition.

The competition was further subdivided into individual circuits, which were events in the specific
subterranean environments of a tunnel, cave, and urban space. Examples of each environment are
shown in Figure 3. The surroundings were chosen to correlate with typical real S&R sites to assure
the applicability of the systems developed during the competition. Every type of environment differs
in size, geometric dimensions, traversability conditions, and requirements on perception modalities.
The specifics of tunnel-like environments are summarized in (Tardioli et al., 2019) with 10 years
of experience in S&R ground robots research. The role of mobile robots in rescue missions after
mine disasters is discussed in (Murphy et al., 2009). The Final Event combined all of the previous
environments for the ultimate challenge.

We participated in the competition first as a nonsponsored team. In the Tunnel Circuit, we won
1st place among the nonsponsored teams and 3rd place in total, which earned us $200 000. The
aerial robots explored 340 m of tunnels and found 3 artifacts out of the 10 artifacts discovered by
all our robots (Petrlik et al., 2020). This success was repeated in the Urban Circuit with the same
place achieved but this with time larger prize money $500 000. The UAVs proved their suitability
for quick scouting of the environment thanks to their advantage in mobility when the first deployed
UAV managed to travel 93 m inside the building in just 200 s while it took about half an hour to
reach the same area with the semi autonomously operated ground robots as reported in (Kratky
et al., 2021a). One of the deployed UAVs also served as a retranslating station for other robots

Field Robotics, January, 2023 · 3:1–68

CHAPTER 3. AUTONOMOUS NAVIGATION IN GNSS-DENIED ENVIRONMENTS 53/191

CTU in Prague Department of Cybernetics



UAVs beneath the surface: Cooperative autonomy for subterranean search and rescue in DARPA SubT · 5

Figure 3. Three types of subterranean environments found in the competition, each challenging for the robot
team in a different way. From left to right: tunnel, urban, and cave. The top row shows examples of environments
from the Systems Track of the Final Event, while the virtual worlds are pictured in the bottom row.

after navigating to and landing at a strategic position. Thanks to consistent performance in both
circuits, DARPA awarded our team the funding for the Final Event, which allowed us to acquire
more capable hardware. In the Virtual Track, the UAVs were used as the primary platform for
finding artifacts thanks to their high travel speed and the ability to fly over terrain untraversable by
UGVs. The ground robots supported longer flights of the UAVs by extending the communication
network with breadcrumbs. In total, 215 artifacts were found by the UAVs in the competition
worlds (8 artifacts less than the winner). The performance of UAVs in the confined environment
of the Systems Track was worse than in the Virtual Track. Nevertheless, while the UGVs detected
5 out of 7 scored artifacts, the aerial robots managed to add 2 unique artifacts not seen by other
robots but 1 of them had the wrong class and image and thus could not score. The last point was
scored manually by the operator by matching a detection from a UGV that had inconsistent map
with the same position in a correct map. The approach presented in this paper is the result of UAV
research, development, and testing over the whole 3-year-long period.

2. Related work
The state of the art in rescue robotics is coherently summarized in the survey (Delmerico et al., 2019),
which concerns both hardware and software. On the hardware side, different robot morphologies,
locomotion types, and platform designs are categorized. Regarding software, the survey concerns
perception and control algorithms. The authors interviewed experts on disaster response and
humanitarian aid to understand the situation and needs of rescuers.

Here, we provide an overview of the solutions for perception in adverse conditions of the
underground environments, methods of localization and mapping for precise and reliable navigation,
and techniques for safe traversal of narrow corridors. A summary of systems deployed in previous
circuits of DARPA SubT follows. Finally, relevant datasets are referenced in order to prompt further
research effort in the S&R area.

2.1. Degraded sensing
Perception in subterranean environments faces constant degradation of the sensor outputs due to
the harsh conditions of such places. The underground climate is often filled with impervious dust
(particularly in mines), where any movement agitates the settled layer of fine dirt and mineral
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particles. On the other hand, caves are typically humid ecosystems, where dense mud replaces the
dust layer found in mines. However, the elevated humidity forms droplets of fog, which corrupt the
measurements of most visible or Near Infrared (NIR) light-based sensor modalities, and also causes
frequent reflections on wet surfaces. Radars can reliably penetrate smoke, dust, and fog, and after
postprocessing using, e.g., Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), a 2D
occupancy grid for navigation (Lu et al., 2020) can be constructed. Another reliable sensing modality
for when images from color (RGB) cameras are polluted by dust or fog is thermal imaging, which,
in (Khattak et al., 2019), is used for the localization of robots in areas with airborne obscurants.
Our approach goes beyond these works by employing intensity-based filtering of the Light Detection
and Ranging (LiDAR) data, and thus no additional sensors are necessary even in dense clouds
of dust.

2.2. Localization and mapping
Recent developments in S&R robotics sparked the research of more precise local pose estimation
algorithms (also referred to as odometry), as well as long-term globally consistent trajectory and
multirobot map fusion of all agents of the robotic team. The state-of-the-art methods were published
in (Cadena et al., 2016), where the challenges and future direction of the Simultaneous Localization
and Mapping (SLAM) development are also identified. The demands on low control error and
robustness to degraded sensor data in the narrow subterranean environments present in the DARPA
SubT pushed all contesting teams to either adapt and improve an existing method to be usable in
the extreme conditions, or to develop a new SLAM tailored to this specific domain. SLAM methods
used by the teams in the Final Event are summarized in (Ebadi et al., 2022) along with expert
opinions about the present maturity and future outlook of the field.

Team CoSTAR developed a LiDAR odometry solution (Palieri et al., 2020) based on Generalized
Iterative Closest Point (GICP) matching of LiDAR scans with initialization from Inertial Measure-
ment Unit (IMU) and wheel odometry, including the possibility of extension to other odometry
sources, such as Visual-Inertial Odometry (VIO). The method is shown to outperform state-of-the-
art localization methods on the datasets from Tunnel and Urban circuits. An ablation study presents
the influence of individual components on the total Absolute Position Error (APE). The second
improved version (Reinke et al., 2022), which was released as open-source is less computationally
demanding, less memory intensive, and more robust to sensor failures. All presented experiments
are conducted with ground robots. The localization of aerial vehicles is handled by a resilient HeRo
state estimation system (Santamaria-Navarro et al., 2019). The state estimation stack considers
heterogeneity and redundancy in both sensing and state estimation algorithms in order to ensure safe
operation, even under the failure of some modules. Failures are detected by performing confidence
tests on both data and algorithm health. If a check does not pass successfully, the resiliency logic
switches to the algorithm with the best confidence, similar to our previous solution published
in (Baca et al., 2021). The local odometry of (Palieri et al., 2020; Santamaria-Navarro et al., 2019)
is accompanied by loop closure detection and pose graph optimization locally on each robot, as
well as globally on the base station. This optimizes the trajectories of all robots for a multirobot
centralized SLAM solution (Ebadi et al., 2020). After improving the performance of the multirobot
loop closure generation and pose estimation, especially in large-scale underground environments, the
solution was open-sourced (Chang et al., 2022) and released together with a multirobot dataset from
the subterranean environment. A technique for loop closure prioritization (Denniston et al., 2022)
improves the Absolute Trajectory Error (ATE) of the multirobot SLAM by prioritizing loop closures
based on observability, graph information, and Received Signal Strength Indicator (RSSI) criteria.
A decentralized SLAM solution for UAVs (Lajoie et al., 2020) performs distributed outlier-resilient
pose graph optimization when another agent is within communication range. This method can be
used with either a stereo camera or a LiDAR, and is evaluated on a dataset from the Tunnel Circuit.

The long, featureless corridors that are often present in man-made tunnels lead to unobservability
of the motion along the degenerate direction, which leads to significant drift. Promising approaches,
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such as (Shan et al., 2020; Xu et al., 2022), constrain the solution of the optimization problem using
the preintegrated IMU measurements. This helps to reduce the localization drift under unfavorable
environmental geometry. Nevertheless, the vibrations induced by spinning propellers degrade the
inertial measurements, and can thus negatively affect the localization precision. Approaches, such
as those seen in (Ebadi et al., 2021), detect the geometrical degeneracy using the ratio of the most
observable and the least observable directions. This ratio is then used to determine loop closure
candidates to reduce the drift along the degenerate direction. Similarly, (Zhang et al., 2016) handles
environment degeneracy in state estimation by not updating the solution in detected degenerate
directions. Another possibility is to combine the 3D LiDAR method with a direct visual odometry
method [e.g., (Alismail et al., 2016)], which tracks image patches by minimizing the photometric
error. This approach, which is shown in (Shin et al., 2020), has the advantage over feature-based
methods like that of (Zhang and Singh, 2015) in that it provides low drift, even when salient image
and geometric features are lacking. The disadvantage is that localization performance is worsened
when whirling dust is present in the camera image, as reported in (Petrlik et al., 2020).

Team CERBERUS developed a complementary multimodal sensor fusion (Khattak et al., 2020).
The odometry estimated by visual/thermal inertial odometry is used as a prior for LiDAR scan-
to-scan and scan-to-map matching. The VIO/TIO priors constrain the scan matching optimization
problem, thus reducing drift in a degenerate environment significantly, which is demonstrated in an
experiment conducted in a self-similar environment.

Another multimodal approach is the Super Odometry (Zhao et al., 2021) of team Explorer,
which was deployed on aerial robots in the tunnel and urban circuits of DARPA SubT. The core
of the method is the IMU odometry with biases constrained by VIO and LiDAR-Inertial Odometry
(LIO), which are initialized with preintegrated inertial measurements of the constrained IMU. The
relative pose factors of VIO and LIO are weighted based on the visual and geometrical degradation,
respectively.

Team MARBLE first relied on visual SLAM (Kramer et al., 2021), but after Subterranean
Integration Exercise (STIX), they transitioned to the LiDAR-based Cartographer (Hess et al.,
2016) due to unstable tracking of motion under poor illumination, reflections, dust, and other visual
degradation.

Wildcat SLAM (Hudson et al., 2022) of the CSIRO Data61 team is a multiagent decentralized
solution, where each agent computes a global map using the currently available data shared among
the robots. The odometry of each agent is based on the work of (Bosse et al., 2012).

Our approach is similar to the other teams’ as we also use primarily LiDAR for localization and
mapping. An improvement over the state of the art is the compensation of the delay (Pritzl et al.,
2022a) caused by the LiDAR scan processing and the delay of the localization itself.

2.3. Mobility
Deploying aerial robots has one great advantage over ground robots due to their full terrain
traversability. A UAV can fly over terrain that would compromise the safety of an UGV, e.g., steep
decline, mud, water, etc. This allows to neglect the traversability problem necessarily tackled in
solutions to UGV navigation (Fan et al., 2021), as the only movement constraint of aerial platforms
flying through an enclosed environment is the minimum size of a passage that the robot can safely
pass through. The dimensions of such passages depend largely on the size of the UAV, but also
on the precision of the pose estimation, the control error of onboard regulators, the map quality,
and the reactive behavior in close vicinity of obstacles. Some platforms also tolerate contact with
obstacles in the sense that the contact does not endanger the continuation of the mission (Huang
et al., 2019). Other types of platforms adapt their morphology and/or locomotion modality to their
current surroundings and obstacles (Fabris et al., 2021). In voxel-based map representations, the
size of a narrow passage is represented too conservatively, i.e., the size of the narrow passage in the
voxel map is the lower bound of the true size. However, in practice, the narrow passage can be up
to twice the map resolution larger than its voxel representation, which prevents traversing passages
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that are well within the physical limits of the UAV. To better approximate the true shape of the
narrow passage, (O’Meadhra et al., 2018) propose continuous representation based on Gaussian
Mixture Models (GMM) (Reynolds, 2009), which is converted to a voxel map of arbitrary resolution
when queried. However, the information about the exact structure of the environment is lost due to
the approximation by Gaussian distribution. We took another approach of locally increasing the
resolution of the occupancy voxel map when the size of the environment requires it, which preserves
all details.

To fully exploit the capabilities of UAV’s full terrain traversability, the path planning and
trajectory generation algorithms have to work with a full 3D representation of the environment
and fulfil the real-time requirements. Although several excellent works on planning in constrained
environments were recently published (Zhou et al., 2021a; Tordesillas et al., 2022), they focus
primarily on generating fast trajectories while the presented application requires maximizing the
reliability of the system in the presence of uncertainties imposed by a harsh dynamic environment.
In addition, deploying the planning algorithm as part of the complex system running on board UAV
with limited computational resources motivates the use of computationally undemanding algorithms.
Similarly to team Explorer (Scherer et al., 2022), we make use of a multistage approach consisting
of extensively validated computationally undemanding algorithms well-integrated into presented
system (Baca et al., 2021; Kratky et al., 2021a).

2.4. DARPA SubT approaches
This paper primarily focuses on the approach developed for and experimentally verified in the Final
Event of DARPA SubT. As mentioned, these results are built upon the experience in using the
approaches developed for the tunnel and urban circuits. The practical verification of the developed
solutions in challenging environments justifies the robustness of these algorithms. Valuable insights
on the future of S&R robotics can be drawn from lessons learned by the teams.

Team CoSTAR relied on their uncertainty-aware framework, NeBula, in the tunnel and urban
circuits (Agha et al., 2021). The framework supports multimodal perception and localization
including radar, sonar, and thermal cameras. Aerial robots were part of their heterogeneous team
in STIX and the tunnel circuit, mainly for exploring areas inaccessible to ground robots and data
muling with distributed data sharing (Ginting et al., 2021; Saboia et al., 2022). A reactive autonomy
approach COMPRA (Lindqvist et al., 2021) was also proposed for UAV underground S&R missions.
Their solution gained 2nd and 1st place in the tunnel and urban circuits respectively.

Team Explorer developed a system (Scherer et al., 2022) that achieved 1st place in the tunnel
circuit and 2nd place in the urban circuit. Their collision-tolerant platform “DS” with flight time
of 13 min was carried on top of a UGV and could be launched by the operator when needed.
The authors identified the challenge of combined exploration and coverage problem when their
UAVs with limited camera Field Of View (FOV) missed some artifacts along their flight path. The
frontier-based exploration pipeline used a custom OpenVDB mapping structure (Museth, 2013) for
sampling frontier-clearing viewpoints. Paths to found viewpoints were planned using bidirectional
RRT-Connect.

Team CERBERUS deployed legged ANYMAL robots and aerial DJI Matrice M100 robots
in the tunnel circuit. Their graph-based system for the autonomous exploration of subterranean
environments called GBPlanner was deployed in multiple locations. The exploration of Edgar mine
during STIX and the National Institute for Occupational Safety & Health (NIOSH) mine during the
tunnel circuit are documented in (Dang et al., 2020b). Specifically, the exploration method for aerial
robots (Dang et al., 2019a) consists of a local fast-response layer for planning short collision-free
paths and a global layer that steers the exploration towards unvisited parts of the map. This method
is part of the solution for underground search by aerial robots found in (Dang et al., 2020a). A
mapping and navigation approach (Papachristos et al., 2019a) for autonomous aerial robots based
on the next-best-view planner (Papachristos et al., 2017; Bircher et al., 2016) was also proposed,
but was later outperformed by the GBPlanner (Dang et al., 2020b). The uncertainty in localization
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and mapping is taken into account during the planning in (Papachristos et al., 2019b) in such a way
that among all trajectories arriving to the reference waypoint, the one that minimizes the expected
localization and mapping uncertainty is selected. To unify the exploration framework across both
legged and aerial platforms, (Kulkarni et al., 2021) have revised (Dang et al., 2020b) and added a
cooperation framework that identifies global frontiers in a global graph built from the sub-maps of
individual robots. The unified strategy for subterranean exploration using legged and aerial robots
in tunnel and urban circuits is presented in (Tranzatto et al., 2022b). Team CERBERUS won in
the Systems Track of the Final Event and (Tranzatto et al., 2022a) describes their approach that
led to this success.

Team MARBLE presents their system deployed to STIX, the tunnel circuit, and the urban circuit
in (Ohradzansky et al., 2021). The aerial robots relied on direct vision-based local reactive control
and map-based global path planning. Global path planning is common with ground and aerial robots.
Viewpoints are selected based on the frontier voxels covered by the camera FOV and the approximate
travel time. In the tunnel circuit, the local reactive control generates velocity commands by steering
the UAV towards a look-ahead point from the global path, while being repulsed by nearby obstacles.
With this planner, traversing narrow passages was problematic due to noise in the depth image.
Thus a new planner was developed for the urban circuit based on voxel-based probabilistic tracking
of obstacles (Ahmad et al., 2021). In the Systems Track of the Final Event, team MARBLE gained
3rd place.

A heterogeneous team of robots including UAVs was also deployed by team CSIRO Data61 (Hud-
son et al., 2022), both in the tunnel and urban circuits. The aerial part of the team consisted
of a DJI M210 equipped with the commercially available payload of Emesent Hovermap, and a
custom gimballed camera. To explore the environment of the urban circuit, the autonomy utilized
an approach based on the direct point cloud visibility (Williams et al., 2020). Team CSIRO Data61
achieved 2nd place in the Systems Track of the Final Event.

Although team NCTU did not participate in the Final Event, their solution (Chen-Lung et al.,
2022) to the tunnel and urban circuit showcased originality in the form of autonomous visually
localized blimps (Huang et al., 2019). Their navigation was based on policies learned by deep
reinforcement learning with simulation-to-world transfer.

Our CTU-CRAS-NORLAB team first participated in the STIX event with a hexarotor platform
localized by optic flow (Walter et al., 2018) of the downward-facing camera. The reactive navi-
gation used LiDAR scans to stay in the middle of the tunnel and move forward in a preferred
direction at an intersection. The predictive controller (Baca et al., 2016) was forgiving to imprecise
localization caused by strenuous optic flow estimation in the whirling dust of the tunnels. The
heterogeneous team that secured 3rd place in the tunnel circuit (Roucek et al., 2019) consisted
of wheeled, tracked, and aerial robots with different sensor payloads. Instead of unreliable optic
flow, the localization of the UAV system (Petrlik et al., 2020) was revamped to rely on 2D LiDAR,
HectorSLAM (Kohlbrecher et al., 2011), and state estimation (Petrlik et al., 2021). The hardware
platform was also downscaled to a 450 mm diameter quadrotor. The vertical element of the urban
circuit called for upgrading the LiDAR to a 3D one, which consequently required a redesign of the
whole navigation pipeline (Kratky et al., 2021a) to allow for six Degrees of Freedom (DOF) mobility
through the 3D environment. Physically, the platform was based on the same frame as what was
used in the tunnel circuit, however prop guards were added to reduce the chance of destructive
collision while flying through doors. The CTU-CRAS-NORLAB approach to the urban circuit,
which we completed in 3rd place, is described in (Roucek et al., 2020). Although the cave circuit
was canceled, extensive preparations were still performed in the sizable Bull Rock cave in South
Moravia (Petracek et al., 2021). The exploration depth of the UAV team was greatly extended by a
multirobot coordinated homing strategy that focused on extending the communication range of the
base station by landing the returning UAVs on the edge of the signal. Based on the lessons learned
during these competition and testing deployments (during the 3 years of development UAVs of the
CTU-CRAS-NORLAB team achieved > 400 flights and traveled > 50 km in demanding real world
environments) the new approaches presented in this paper were designed.
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2.5. Datasets
Due to the challenging nature of the subterranean environments, such as narrow passages, degenerate
geometry, and perception degradation, datasets that were collected by the competing teams are
valuable to the community as the algorithms can be evaluated on demanding data degraded by the
previously mentioned issues. In contrast to the verification often conducted under artificially ideal
lab conditions, these datasets present a fair way to compare algorithms in realistic conditions. A
SLAM dataset (Rogers et al., 2020a) collected during the tunnel circuit and STIX consists of LiDAR
scans, images from a stereo camera and thermal camera, IMU measurements, and RSSI, together
with a professionally surveyed ground truth map and measured artifact positions. The dataset from
the urban circuit (Rogers et al., 2020b) was recorded using the same sensors with the exception of
an added carbon dioxide (CO2) sensor and the lack of a thermal camera. Data from sensors used
for autonomous navigation including color-depth (RGBD) camera, event camera, thermal camera,
2D and 3D LiDARs, IMU, and Ultra-Wide Band (UWB) positioning systems were collected (Koval
et al., 2022) by a mobile robotic platform moving through a subterranean environment. Another
dataset (Kasper et al., 2019) for comparison of VIO methods contains outdoor, indoor, tunnel, and
mine sequences, with ground truth poses obtained by laser tracking the sensors rig. Aerial datasets
consisting of unsynchronized LiDAR scans and IMU measurements from UAVs flying in the cave,
tunnel, and mine environments are included in this paper,1 with ground truth poses estimated using
a professionally surveyed ground truth map. We also publish the labeled visual detection datasets2

consisting of images from both UAV and UGV cameras that were used for training of the artifact
detection Convolutional Neural Network (CNN). Images from the Tunnel and Urban circuits, Bull
Rock Cave, and industrial buildings are included.

3. Contributions
An approach for cooperative exploration of demanding subterranean environments by a team of
fully autonomous UAVs in S&R tasks is presented in this paper. Deployment of this approach in
the DARPA SubT virtual competition was awarded by 2nd place. The simulation model of the UAV
platform designed by our team was used by seven out of nine teams. The crucial contributions of
the developed system can be summarized in the following list:

• A complex approach that can serve as a guide for building a system for Global
Navigation Satellite System (GNSS)-denied operations. The proposed approach was
extensively verified in numerous simulated worlds and real physical environments ranging from
vast caves, industrial buildings, tunnels, and mines to large outdoor openings. Most importantly,
the UAVs were deployed into the intentionally harsh conditions of the DARPA SubT to push
them to their limits. The experience gained from hundreds of flights in such conditions are
condensed into the lessons learned presented in this paper, which we deem valuable for the
field robotics community.

• Novel mapping structures are proposed for safety-aware reactive planning over large
distances, for compact volumetric inter-robot information sharing, for storing coverage of
surfaces by onboard sensors, and for finding a suitable landing spot.

• Maximization of the probability of detecting a nearby artifact by searching not only
the unexplored space, but also visually covering known surfaces while respecting the limited
field of view of the onboard sensors. The detection is coupled with probabilistic estimation of
artifact positions based on multitarget tracking and detection-to-hypothesis association, which
improves the precision of artifact localization while the robot is moving around the artifact.

• A novel safety-aware approach to planning that considers the risk of planned trajectories
in addition to the path length in the optimized cost function. In contrast to the state-of-the-art

1 github.com/ctu-mrs/slam_datasets
2 github.com/ctu-mrs/vision_datasets
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Figure 4. The diagram shows individual modules of the UAV system architecture (as deployed on the hardware
platform) grouped into logical categories. Hardware modules are filled with gray, and red distinguishes open source
modules not developed by us. The modules marked by dashed lines were used only in Systems Track but not in
Virtual Track.

methods, longer paths are selected if the estimated risk of collision is lower than the risk of a
shorter path.

• Full autonomy of the UAV allows for scalability of the size of the deployed fleet without
placing additional workload on the operator. Nevertheless, the operator can override the
autonomy with one of the available special commands to change the default search behavior
when the UAV is in communication range.

• The multirobot autonomous search benefits from a higher number of deployed UAVs that
share their topological representations of the environment to cooperatively cover a larger area
by biasing the search towards parts unvisited by other agents.

4. System architecture overview
The whole autonomous system of a single UAV consists of software modules, each with different
inputs, outputs, and purpose. These modules and their interconnections are depicted in Figure 4
with the individual modules grouped into more general logical categories. The first category includes
the physical Sensors (Section 5) of the UAV—the IMU, LiDAR, RGB, and RGBD cameras. The
description of the important parameters of the used sensors is available in Section 12. Measurements
from IMU and LiDAR enter the Localization group (Section 6), where a full-state estimate of the
UAV is obtained. LiDAR is also used in combination with the RGBD camera for building maps in
the Mapping module group (Section 7). The Perception (Section 10) category focuses on detection
and localization of artifacts using all the available sensor data.

Autonomous search through the environment is governed by the Mission control category (Sec-
tion 11), which selects goals (Section 8) based on the current state of the state machine, models of
the environment from the Mapping group, and possibly also commands from the operator. A coarse
path consisting of waypoints to the selected goals is found by the Navigation (Section 9.1) and
further refined and time-parametrized in the Planning modules (Section 9) in order to produce
a safe and dynamically feasible trajectory. The Control blocks (Baca et al., 2021) track the
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trajectory and generate attitude rate references for the low-level Autopilot that controls the actuators
(Section 12).

The operator receives crucial mission status data, topological maps, and, most importantly,
detected artifacts through the Communication layer (Roucek et al., 2020). This also allows the
operator to influence or override the autonomous behavior of the UAV. All transmitted data are
received by other UAVs (or other robots, in the case of a heterogeneous team) in the communication
range, which serves two purposes: one, the receiving agent can propagate the message further down
the network, and, two, the topological maps allow penalizing goals already visited by other robots
to better allocate resources over a large area.

5. Spatial perception
The equipment on board UAV platforms within our research group is modular and replaceable to
support a wide spectrum of research areas (Hert et al., 2022). In the proposed system for agile
subterranean navigation, however, the aerial platform is fixed to ease fine-tuning of the on-board-
running algorithms. From the point of perception, it relies heavily on 3D LiDAR from Ouster
(SLAM, dense mapping, and artifact localization), and utilizes vertically oriented RGBD cameras
for filling space out of FOV of the primary LiDAR sensor, and uses two RGB Basler cameras for
artifact detection, supported by powerful LEDs illuminating the scene. The flow of sensory data
within the entire system are shown directly in Figure 4.

5.1. Sensors calibration
The intrinsics of LiDAR sensor and RGBD cameras are factory-calibrated whilst monocular RGB
cameras are calibrated with standard OpenCV calibration tools, assuming the pinhole camera model.
The extrinsics of the sensors (cameras-to-LiDAR and LiDAR to the flight control unit) are given
by the CAD model of the robot. To mitigate the effects of inaccuracies in 3D printing, modeling,
and assembly, all the camera-to-LiDAR extrinsics are fine-calibrated using a checkerboard camera
calibration pattern with known dimensions. The fine-calibration pipeline detects the pattern in
both modalities (LiDAR data and RGB image), finds mutual correspondences, and estimates the
extrinsics by defining the problem as perspective-n-point optimization minimizing the reprojection
error of the mutual correspondences with Levenberg-Marquardt method.

5.2. Filtering observation noise
The aerodynamic influence of a multirotor UAV on the environment is not negligible, particularly in
confined settings. The fast-rotating propellers generate airflow lifting up light particles of dust and
whirling them up in clouds. In environments where the clouds are not blown away but are rather
rebounded back to the UAV, the effect on sensory performance might be crippling. To minimize
deterioration in perception and its dependent systems (e.g., mapping, localization), the incident
noise is filtered out from local LiDAR data.

The idea of robust filtering of dust is based on the method presented in (Kratky et al., 2021a)
in which LiDAR data are sorted by the intensity field (measured intensity of the reflected light for
a given point) and 10 % of the lowest-intensity data in a local radius from the sensor are removed.
In contrast to the baseline method, simpler thresholding is adopted such that a subset PF ⊆ P of
LiDAR data P is preserved. The absence of data sorting lowers the computational load and reduces
delay in data processing. The set is given as PF = PD ∪ PI , where

PD = {p | ‖p‖ ≥ κ, p ∈ P} , (1)
PI = {p | I(p) > Υ, p ∈ P \ PD} . (2)

I(p)
(
W m−2)

is the intensity of the reflected light from a point p, κ (m) is a local radius of a filtering
sphere with LiDAR data origin at its center, and Υ

(
W m−2)

is the minimal intensity of preserved
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(a) Dense cloud dust around
the UAV as viewed in onboard
RGB camera at time 330 s.
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(b) Top view on the UAV trajectory.
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(c) Performance of noise classification in
LiDAR data in 3 m local radius from the
sensor. Average recall reached 99 %.

Figure 5. LiDAR-data noise filtration running onboard a UAV during a 154 m flight in the mine part (the dustiest
part) of the DARPA SubT finals environment. The true positive classification in (c) denotes the ratio of correctly
classified noise whereas the false negative represents the ratio of noise preserved after the filtration process (i.e.,
the unfiltered noise) to the size of the point cloud. The data for the classification analysis (c) were obtained by
spatially comparing the sensor measurements with the map of the environment provided by the organizers.

data points. With n data points within a radius κ, the computational complexity is reduced to
O (n) from baseline O (n log(n)). Although to achieve optimal performance the method requires
calibration to given environmental conditions, a set of reasonable parameters (κ = 5 m and Υ =
30 W m−2 throughout many of our real-world deployments in the harshest dust conditions) suffices
in the majority of applications. The performance of the dust filtering is analyzed in Figure 5 on an
example UAV flight in the mine part (the dustiest zone) of the DARPA SubT finals environment.

The above method is utilizable only for sensory data containing information about the intensity
of the reflected light. The rest of the sensors (RGBD cameras) are not processed, but their fusion
and utilization are controlled by the amount of filtered noise in the primary LiDAR. Having the
cardinality of the point sets defined in (2), the estimated amount of noise can be represented as

rd = 1 − |PI |
|P \ PD| , (3)

where rd ∈ 〈0, 1〉 is the ratio of the filtered-out observations to all the observations within the local
radius κ. The RGBD cameras are then classified as unreliable (and not used in mapping or for
detecting landing feasibility, as marked in Figure 4) if

rd > λd, (4)

where λd ∈ 〈0, 1〉 is a unitless user-specified threshold. The lower value of λd the less amount of noise
is integrated into mapping, while greater λd lets the connected modules handle the noise themselves.
We empirically set the threshold high to λd = 0.4 in our final setup, since our probabilistic mapping
pipeline is quite robust to the stochastic noise.

5.2.1. Detecting artificial fog in the virtual environment
The virtual competition contained a fog emitter plugin (see Figure 6) to mimic environmental
perception degradation arising from observing smoke, dust, and fog. The plugin spawned a fog
cloud when a robot reached the proximity of the emitter. Although our localization pipeline was
able to cope with local noise, the inability to filter out the fog particles in a robust way led to
a degradation of the local DenseMap, and consequently to blocking local planning which respects
strict requirements on collision-free path planning. Thus, in our setup for the virtual challenge, the
navigation stack did not try to enter through the fog areas but detected them, maneuvered out of
them, and blocked the areas for global planning.

To detect the presence of the UAV within such a fog cloud, a discretized occupancy voxel grid is
built from a set of data within a local radius (example data within a radius are shown in Figure 6c).
Within this radius is compared the occupancy ratio r (number of occupied voxels to all voxels in
the local grid) with maximum occupancy R given by the field of view of the sensor producing the
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(a) Visualization of virtual fog in
Ignition Gazebo.

(b) Example 3D LiDAR data outside
fog.

(c) Example 3D LiDAR data inside
fog (fog colored locally in red).

Figure 6. Simulated fog and its effect on sensory perception in the virtual environment. A fog cloud (a) spawns
when a robot reaches its proximity. The cloud then affects the sensory inputs such that a uniform-distribution
noise emerges in LiDAR data corresponding to the fog (c).

data. For each LiDAR or depth sensor, the sensor is classified as being in fog if

rf > λf R, (5)

where λf ∈ 〈0, 1〉 is a unitless multiplier converting λf R to a maximal occupancy ratio threshold.
The multiplier was set empirically to λf = 0.7 in our final setup.

For depth cameras that are not used for self-localization of the UAV, the in-fog classification
solely controls whether the depth data are integrated within the mapping pipeline. However, if a
localization-crucial 3D LiDAR is classified to be in fog, a backtracking behavior is triggered within
the mission supervisor (see Section 11). The primary purpose of the backtracking is to prevent
being stuck in fog and thus the UAV is blindly navigated out of the fog through the recent history
of collision-free poses, ignoring occupied cells in the DenseMap (including possible noise from fog
measurements). Lastly, detection of fog in a 3D LiDAR blocks the area in global planning.

5.3. Detecting spots safe for landing
For purposes of artifact detection and spatial mapping, the UAV carries a downward-facing RGBD
camera, shown in Figure 7a. Apart from mapping the space below the UAV, the depth data of
this camera are used in locating areas safe for landing throughout the UAV flight. If the sensor is
marked as reliable according to (4), its depth-data frames are continuously fitted with a plane model
whose coefficients are used in the binary classification of safe or unsafe landability respecting the
plane-fit quality and deviation of its normal vector from the gravitational vector. The process of
deciding on safe landability given a single depth-data frame is visualized in Figure 7 and described
in Algorithm 1. The classification assumes that the data frame can be transformed into a gravity-
aligned world coordinate frame. Inputs to Algorithm 1 are the square size of safe landing spots
s (m), the minimal ratio of inliers in RANSAC plane fitting Imin ∈ 〈0, 1〉, and the minimal z-axis
component of unit plane-normal vector Nz

min ∈ 〈0, 1〉. The square size s specifies the width of an
area on which a UAV can land safely. Selection of s constraints the minimal height above the ground
in which a safe landing spot detection may occur. Having a sensor with the minimal field of view
θmin observing an even planar surface, the condition on line 12 in Algorithm 1 will be true for
distance of the camera from the surface d > dmin, where

dmin = s

2 tan
(

θmin
2

) . (6)

The maximal distance dmax is then given by the maximal range of the sensor. In our setup, we
utilized Realsense D435 camera with θmin = 58◦ and set s = 1.2 m to be marginally greater than the
dimensions of our UAV platform (approximately 0.8 m wide). According to (6), the given parameters
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Algorithm 1. Detecting spots safe for UAV landing in downward-facing RGBD camera.
1: Input:
2: D ⊲ Depth-data frame in sensor coordinate frame
3: Output:
4: L ⊲ Binary classification for landing: {SAFE, UNSAFE}

5: pW ⊲ Position of landing area in the world coordinate frame
6: Parameters:
7: s ⊲ Square-size of safe landing spot in meters
8: Imin ⊲ Minimal ratio of inliers in plane fitting
9: Nz

min ⊲ Minimal z-axis component of the normalized plane-normal vector
10: Begin:
11: S := cropFrameAtCenter (D, s ) ⊲ Crop frame-centered square with size s
12: if height (S) < s or width (S) < s then
13: return: {L = UNSAFE, pW = N/A} ⊲ Not safe to land: too close to the ground to decide
14: P := fitPlaneWithRANSAC (S) ⊲ Fit data with plane using RANSAC
15: if inliers (P ) / count (S) < Imin then
16: return: {L = UNSAFE, pW = N/A} ⊲ Not safe to land: data are not planar
17: PW := transformToWorldFrame (P ) ⊲ Transform plane to gravity-aligned frame
18: if |normal (PW ) .z | < Nz

min then
19: return: {L = UNSAFE, pW = N/A} ⊲ Not safe to land: ground is too steep for landing
20: SW := transformToWorldFrame (S)
21: pW := centroid (SW ) ⊲ Express landing spot as the centroid of the depth data in the world
22: return: {L = SAFE, pW }

Realsense D435 camera

(a) Downward-facing RGBD cam-
era used for landability detection
mounted on our UAV platform.

(b) Even planar sur-
face: safe for landing.

(c) Nonplanar surface
(rails): unsafe for land-
ing.

(d) Uneven surface: un-
safe for landing.

Figure 7. Deciding on landability of a UAV from downward-facing depth data—binary classification to safe (b)
and unsafe [(c) and (d)] landing areas. In [(b)–(d)], the UAV is represented by Cartesian axes whereas the depth
data are colored in black. The blue sphere in the safe classification (b) denotes the centroid of the plane inliers
(colored in green) passed as a feasible landing position to LandMap (see Section 7.5).

yield the minimal distance of the sensor from the ground in detecting the landability to dmin =
1.08 m, with dmax = 10 m specified by the manufacturer. If the input data frame D contain noise
with nonplanar distribution, the condition on line 15 will classify the data as unsafe. The plane-fit
and landability classification parameters Imin = 0.9 and Nz

min = 0.7 were found empirically for
the given sensory setup. Positions classified as safe for landing on line 21 are passed to LandMap
described in Section 7.5.

6. Localization
Accurate and reliable localization is critical for most other parts of the system. The ability of
the reference controller to track the desired state depends largely on the quality of the available
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Table 2. Approximate distribution of the environ-
ment cross-section as announced by the organizers
before the Final Event.
Cross-section (m2) Distribution
<5 65%
5-100 20%
>100 15%

Figure 8. The diagram shows the flow of data among individual localization modules for the Systems Track
(left) and Virtual Track (right). The 3D LiDAR supplies A-LOAM or LIO-SAM with the laser scans in the point
cloud form P. Assisted by the orientation R from the IMU, A-LOAM produces a position estimate r = [x , y, z ]T
that is fed into the State estimation block, which outputs the full state estimate. In the case of the virtual pipeline,
the IMU data fusion is executed in LIO-SAM, and thus the state estimation module is not needed thanks to the
sufficient accuracy of both lateral and heading components.

state estimate. In the narrow environments which are often present in subterranean environments
(see Table 2 for cross-section distribution in the Final Event), minimizing the control error is crucial
to avoid collisions. Multirobot cooperation assumes the consistency of maps created by individual
robots. If the maps of two robots are not consistent due to errors in localization, the multirobot
search might be suboptimal. For example, an unvisited goal can be rejected as already reached by
a robot with an inconsistent map. Moreover, the localization accuracy influences the position error
of a reported artifact. A UAV with localization drift over 5 m can detect and perfectly estimate the
position of an artifact. Nevertheless, the report may never score a point since the position of the
UAV itself is incorrect.

Our approach relies on a LiDAR sensor for localization as the laser technology proved to be more
robust to the harsh conditions of the subterranean environment than the vision-based methods. We
have been using LiDAR since the Tunnel circuit (Petrlik et al., 2020) where a lightweight 2D LiDAR
aided by a rangefinder for measuring above ground level (AGL) height was sufficient for navigation
in tunnels with a rectangular cross-section. The more vertical environment of the urban circuit
required redesigning the localization system to use 3D LiDAR for navigating in 3D space (Kratky
et al., 2021a).

The localization system deployed in the Final Event and presented in this manuscript builds upon
the solution proposed in (Kratky et al., 2021a) and is divided into two modules: the localization
algorithm and the state estimation method. Figure 8 shows the data flow in the localization pipeline.
We have based the localization on the A-LOAM implementation of the LiDAR Odometry and
Mapping (LOAM) algorithm (Zhang and Singh, 2014) for the Systems Track and the LiDAR
Inertial Odometry via Smoothing and Mapping (LIO-SAM) (Shan et al., 2020) for the Virtual
Track. Our implementation3 has been tested in a real-time UAV control pipeline throughout multiple
experimental deployments as part of our preliminary works (Kratky et al., 2021a; Petracek et al.,
2021) and in the DARPA SubT competition.

3 github.com/ctu-mrs/aloam

Field Robotics, January, 2023 · 3:1–68

CHAPTER 3. AUTONOMOUS NAVIGATION IN GNSS-DENIED ENVIRONMENTS 65/191

CTU in Prague Department of Cybernetics



UAVs beneath the surface: Cooperative autonomy for subterranean search and rescue in DARPA SubT · 17

6.1. A-LOAM
The A-LOAM implementation of the LOAM (Zhang and Singh, 2014) algorithm utilizes the laser
scans from a multiline LiDAR to obtain its 6-DOF pose. To achieve real-time performance and
accurate pose estimation at the same time, the method is divided into two parts.

The first part of the algorithm processes the incoming data at the rate of their arrival and
estimates the rigid motion between the consecutive point clouds Pk and Pk+1 obtained at the
timestamps tk and tk+1, respectively. The process starts with finding geometric features in the
input point cloud Pk+1. The points are first sorted by the smoothness of their local neighborhood,
and then those which are the least and most smooth are selected as edge and planar features,
respectively. To achieve a more uniform distribution of features, the point cloud is divided into
regions of the same size, and each region can contain only a limited number of edge and planar
feature points. A point cannot be chosen as a feature point if there is already a feature point in its
local neighborhood. A correspondence is found in Pk for each edge/planar point from Pk+1. These
correspondences are then weighted by their inverse distance, and correspondences with the distance
larger than a threshold are discarded as outliers. Finally, the pose transform TL

k+1 between Pk+1
and Pk is found by applying the Levenberg-Marquardt method to align the correspondences.

The second part estimates the pose of the sensor in the map Mk, which is continuously built from
the feature points found by the first part of the algorithm. First, Pk+1 is projected into the map
coordinate system to obtain PW

k+1. Then, feature points are searched similarly to as is done in the
first part, with the difference being that 10 times more features are found. Their correspondences
are found in Mk, which is divided into cubes with 10 m edges. The correspondences are searched
for only in the cubes intersected by the PW

k+1 to keep the run-time bounded. The transform TW
k+1

between PW
k+1 and Mk is obtained with the same steps as in the first part. Due to the 10-times

greater amount of correspondences and search through a potentially larger map, this is a much
slower process than the first part.

Thanks to the combination of both parts, the algorithm outputs the pose estimate of the rate of
the LiDAR, with drift bounded by slower corrections that snap the pose to the map.

6.2. State estimation
For precise and collision-free navigation through a cluttered narrow environment, which typically
appears in subterranean S&R scenarios, the control stack requires a smooth and accurate state
estimate at a high rate (100 Hz). The State estimation module provides such an estimate through
the fusion of data from Advanced implementation of LOAM (A-LOAM) and IMU. It also does this
by applying filtering, rejection, and prediction techniques. We provide only a brief description of the
estimation process as it is not viewed as the primary contribution and has already been presented
in (Baca et al., 2021).

The state vector of the UAV is defined as x = [r, ṙ, r̈, R, Ṙ]T . The position r = [x, y, z]T , its
first two derivatives of ṙ and r̈, the orientation in the world frame R, and the angular velocities
Ṙ include all the dynamics required by other onboard algorithms. Even though the position r is
provided by the A-LOAM algorithm, the rate of the position updates is too low for the control loop.
Furthermore, the velocity and acceleration vector is not known, and must thus be estimated. A
Linear Kalman Filter (LKF) of a point mass model with position, velocity, and acceleration states
is employed to estimate the unknown variables at the desired rate.

While the IMU of the onboard autopilot provides the orientation R, the heading4 η is prone
to drift due to the bias of the gyroscopes in Micro-Electromechanical Systems (MEMS) IMUs. We
correct this drift in a standalone heading filter, which fuses Ṙ gyro measurements with A-LOAM

4 Heading is the angle between the heading vector and the first world axis. The heading vector is the direction of the
forward-facing body-fixed axis projected onto the plane formed by the horizontal axes of the world frame, as formally
defined in (Baca et al., 2021).
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Figure 9. The computation time of the most demanding parts of the A-LOAM algorithm is plotted with respect
to the time in the mission that was conducted in simulation. The total time is the sum of all three parts. The
darkest colors depict moving mean, the medium dark bands represent the moving standard deviation, and raw
data are shown by the lightest colors. The moving statistics are calculated over 1 s long time window. On average,
the feature extraction takes 1 ms, the laser odometry 19 ms, the map optimization 91 ms, and, in total, the pose
estimate is obtained in 111 ms.

Figure 10. The left time sequence shows the situation in the filter after the arrival of delayed correction zt0−τ at
time t0. The green arrows represent corrections applied at the correct time. The delayed zt0−τ would be fused at
t0 in a traditional filter, resulting in a suboptimal state estimate. However, thanks to the buffering of state and
correction history, it is fused into the correct state at time t0 − τ . The states after t0 − τ had to be recalculated
to reflect the correction zt0−τ , which is shown by the blue color in the right time sequence.

η corrections. Corrections from the magnetometer are not considered, due to the often-occurring
ferromagnetic materials and compounds in subterranean environments.

The processing of a large quantity of points from each scan and matching them into the map
takes 111 ms on average (see Figure 9 for run time analysis) for the onboard Central Processing
Unit (CPU). The empirical evaluation shows that the controller of the UAV becomes increasingly less
stable when the state estimate is delayed for more than 300 ms. To reduce the negative effect of the
delay on the control performance, we employ the time-varying delay compensation technique (Pritzl
et al., 2022a). We define the delay as τ = tTk+1 − tPk+1 , i.e., the time it took LOAM to compute
the pose transform after receiving the point cloud from LiDAR. The core of the method is a buffer
Qx containing the past states x〈t0−τmax,t0〉, and buffer Qz having the past corrections z〈t0−τmax,t0〉
of the filter. The length of the buffer is not fixed, but data older than the expected maximum delay
τmax are discarded to keep the buffer size bounded. When a new delayed measurement zt0−τ arrives
at time t0, it is applied as a correction to the state xt0−τ in Qx. The corrected state x̄t0−τ replaces
xt0−τ . All subsequent states x(t0−τ,t0〉 are discarded from Qx, and replaced by the states x̄(t0−τ,t0〉
propagated from x̄t0−τ , using regular prediction steps of the filter with all corrections from Qz.
Figure 10 visualizes the sequence of performed actions. Thus we acquire a time-delay compensated
state estimate which, when used in the feedback loop of the UAV controller, allows for stable flight
with a delay of up to 1 s. The effect that increasing the delay has on the control error is plotted
in Figure 11.

6.3. LIO-SAM
LIO-SAM (Shan et al., 2020), used in the Virtual Track approach, utilizes IMU integration on top
of dual factor-graph optimization. The first factor-graph optimization is similar to the A-LOAM
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Figure 11. The box plot shows the median with lower and upper quartiles of the control error with respect to
the delay of the position estimate used in the feedback loop. The data were obtained in simulation by artificially
increasing the delay of ground truth position in 50 ms increments. Without compensation, the system becomes
unstable after exceeding 300 ms delay, which results in oscillation-induced control error at 350 ms. The control
error for the longer delay is not shown, because the high amplitude of oscillations led to a collision of the UAV.
The highest delay with compensation is 1000 ms when the system has over a 5 cm control error, but is still stable.
The UAV stability is lost at 1050 ms delay.

0 240 500 770 1030 1280 1520 1800

0

100

200

trajectory length (m)

x
(m

)

−100

0

100

y
(m

)

−10

−5

0

5

z
(m

)

Ground truth A-LOAM LIO-SAM

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500
0
2
4
6
8

10

max. error for
artifact localization

flight time (s)

a
b
s.

e
rr
.
(m

)

Figure 12. The performance of A-LOAM and LIO-SAM during a single flight within Finals Prize Round World
01 (see Figure 46) of the DARPA SubT virtual environment. A-LOAM does not fuse the inertial measurements
which assist LIO-SAM during LiDAR-scan matching in areas of the environment where such matching suffers
from geometric degeneration, in the context of solving optimization problems. The selected environment contains
a variety of narrow vertical passages where the performance of narrow-FOV LiDAR perception is limited, leading
to drift in the ego-motion estimation that is clearly visible in the A-LOAM method. The LIO-SAM method was
shown to achieve sufficient accuracy and low drift during long-term and arbitrary 3D navigation within a simulated
environment.

mapping pipeline as it first extracts geometrical features out of raw LiDAR data and registers them
to a feature map, with the motion prior given by the second optimization pipeline. The second
factor-graph optimization fuses the mapping output with IMU measurements and outputs fast
odometry used in the state estimation pipeline. The first graph is maintained consistently throughout
the run, whereas the second graph optimization is reset periodically to maintain real-time properties.

In a simulated environment, LIO-SAM yields greater accuracy than A-LOAM for its fusion of
inertial measurements with precisely modeled and known characteristics. A comparison of both
the methods within the simulated environment is summarized in Figure 12. In the real world,
the measurements of an IMU rigidly mounted on board a UAV contain a wide spectrum of large
stochastic noise. During empirical testing, the integration method in LIO-SAM was shown to not be
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(a) (b) (c) (d)

Figure 13. Top view of the used mapping structures from the intersection of the virtual Final Event map.
DenseMap (a) is used for short-distance planning, SphereMap (b) for safety-aware long-distance planning,
FacetMap (c) for storing surface coverage, and LTVMap (d) for compact topological information sharing among
robots.

robust towards the unfiltered noise while frequency-band and pass filters induced significant time
delays, destabilizing the pipeline completely. For the inability to accurately model the noise, real-
world laser-inertial fusion is done manually by smoothing over a short history of past measurements
(see Section 6.2).

7. Mapping
In this section, we present our approach to mapping the explored environments. As each task has spe-
cific requirements on the map properties, we designed multiple spatial representations, each of which
is structured for a particular task. In particular, DenseMap (Figure 13a) is utilized for short-distance
path planning; FacetMap (Figure 13b) for surface coverage tracking; SphereMap (Figure 13c) for
fast and safe long-distance path planning; lightweight topological-volumetric map (LTVMap) (Fig-
ure 13d) for compressed, topological, and mission-specific information sharing between robots in low
bandwidth areas; and LandMap (Figure 15) for representing feasible spots for safe UAV landing.
These maps and the methods for building them are presented in this section.

7.1. DenseMap
Local information of the UAV is combined within a dense map to serve as the basis for the entire
navigation stack, as described in (Kratky et al., 2021a). The map integrates information in a dense,
probabilistic manner using an efficient octree structure implemented within the OctoMap (Hornung
et al., 2013) library. During the map update, the data of each input modality producing spatial
measurements are used to update the map with respect to the pose estimate correlating to the
timestamp of the respective measurement. The data to be integrated are first cleared of any
observation noise (see Section 5). The ray of each remaining spatial measurement is integrated within
a discretized representation of the environment using the Bayes rule and ternary classification to the
unknown, free, and occupied voxels. The output of dense mapping is convertible to other navigation
representations and serves as the fundamental structure for local planning and dynamic obstacle
detection.

To retain maximum information under constraints on real-time performance, the voxelization
resolution is selected such that a scan insertion is processed at 5 Hz, at worst. The resolution can
be locally increased if path planning demands a decrease in discretization errors. This is a useful
feature for improving safety and repeatability in navigating highly narrow passages. To maintain
the map structure, the local resolution is controlled by a factor n such that the local resolution
equals r/2n with r being the default resolution of the dense map. In our sensory and computation
setup, the default resolution is empirically set to 20 cm, reduced by a factor of n = 2 to 5 cm
for navigating narrow passages, if required. The integrated data consist of LiDAR measurements
and depth estimates of two RGBD cameras. These sensors are mounted on-board UAVs so that
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the spatial observations cover roughly all directions around the robot, enabling almost arbitrary
UAV-motion planning in collision-free 3D space.

7.2. SphereMap
To enable the UAV to quickly evaluate the travel time and risk caused by flying near obstacles
while also pursuing any given goal, we developed a multilayer graph structure that uses volumetric
segmentation and path caching, called SphereMap (Musil et al., 2022). All three layers of the
SphereMap are updated near the UAV in every update iteration, which runs at approximately 2 Hz.

Path planning in the SphereMap depends on only one parameter cR, which we call risk avoidance.
It is used to trade path safety for path length. For long-distance planning, we disregard UAV
dynamics and only take into account the path length and obstacle clearance along the path. We
define the path cost between points p1 and p2 as

D(p1, p2) = L + cRR, (7)

where L is the path Euclidean length summed over all edges of the path in the sphere graph, and
R ∈ [0, L] is a risk value computed by examining the radii of the spheres along the path. For
example, a path with all spheres with radii at the minimal allowed distance from obstacles would
have R = L, and a path through open space with large sphere radii would have R = 0.

The lowest layer of the SphereMap is a graph of intersecting spheres, shown in Figure 13b. It is
constructed by filling the free space of an obstacle k-d tree built from the DenseMap with spheres
at randomly sampled points. The graph is continuously built out of intersecting spheres, and then
by pruning the spheres that become unsafe or redundant. The radii of the spheres carry obstacle
clearance information, which is used for path risk evaluation.

The second layer of the SphereMap is a graph of roughly convex segments of the sphere-graph.
It is updated after every update of the sphere graph by creating and merging segments until every
sphere in the graph belongs to a segment.

The third and last layer of the SphereMap is a navigation graph. For every two adjacent segments,
we store one sphere-sphere connection, which we call a portal between the segments, as in (Blochliger
et al., 2018). These portals form the vertices of the navigation graph. At the end of every SphereMap
update iteration, we compute which paths are optimal according to the path cost from (7) between
all pairs of portals of a given segment. The paths are computed only inside that given segment. If
the segments are kept small (tens of meters in length), the recomputation is reasonably fast. The
optimal portal-portal paths form the edges of the navigation graph. The UAV uses the navigation
graph to quickly find long-distance paths between any two points in the known space by planning
over the edges of the navigation graph, and then by only planning over the sphere graph in the first
and last segments of the path.

7.3. FacetMap
The occupancy octree and SphereMap maps are sufficient for volumetric exploration. However, the
goal of the DARPA SubT challenge was to locate artifacts, most of which could be detected only
from cameras. Because the FOV of our UAVs’ cameras did not cover the entire FOV of the LiDAR
and depth cameras, not all occupied voxels in the occupancy map could be considered as “covered
by cameras.” For this reason, we developed another map, called FacetMap, illustrated in Figure 14.
This map is a simple surfel map, with the facets stored in an octree structure, each having an
orientation, a coverage value, and a fixed size. The FacetMap is built by computing the normals of
the occupancy map at sampled occupied points, and creating facets with a set resolution if there
are no existing facets with a similar normal nearby. The facets are updated (i.e., added or deleted)
periodically at approximately 2 Hz in a cube of pre-defined size around the UAV.

Each facet holds a coverage value that is, for simplicity, defined as binary. A facet is marked
as covered if the facet center falls into the FOV of any camera, and the ray from the camera to

Field Robotics, January, 2023 · 3:1–68

70/191

CTU in Prague Department of Cybernetics



22 · Petrlík et al.

Figure 14. Illustration of the FacetMap in simulation as described in Section 7.3. The map is built from
the DenseMap (left) by finding normals of sampled points. The orientation of the visualization discs (right) is
determined by the facet’s normal, and the color by whether the facet was covered by the UAV’s front-facing
cameras or not.

the facet center is at an angle lower than a defined threshold from the facet’s normal, so as to not
mark surfaces as covered if they are viewed at a very skewed angle. The angle threshold was set
empirically to 78◦ in the competition. Angles larger than the threshold reduced the probability of
successfully detecting artifacts. The covered facets stay in the map even if the underlying occupancy
map shifts (e.g., when an obstacle moves). As described in Section 8.2.3, one strategy used in our
system uses this map to cover as much of the surface as possible while flying between volumetric
exploration viewpoints. The strategy in Section 8.2.2 uses this map to completely cover surfaces
of a dead-end corridor before backtracking to search a different area. Coverage of entire regions
of the SphereMap can also be easily computed and then stored in the LTVMap, as described
in Section 7.4.

7.4. LTVMap
Distributing all of the maps described in this chapter among the UAVs would be highly demanding
for the communication network. As such, we have developed the lightweight topological-volumetric
map (LTVMap), which combines the necessary mission-related information from the other maps
and can be quickly extracted from the SphereMap and sent at any time.

This map consists of an undirected graph, where each vertex is created from a free-space segment
in the original SphereMap and the edges are added for all of its adjacent segments. Each vertex
holds an approximation of the segment’s shape. In our implementation, we use four DOF bounding
boxes (with variable size and rotation along the vertical axis) for shape approximation, though any
other shape could be used.

For cooperative exploration purposes, the frontier viewpoints (described in Section 8.1) found
by a given UAV are also sent in the LTVMap, with each viewpoint being assigned an information
value and segment from which the viewpoint is reachable. For surface coverage purposes, every
segment in the LTVMap also holds a single numerical value representing the percentage of relevant
surfaces covered in that segment. This value is computed by projecting points from the facets of the
FacetMap and counting the points that fall into every segment. Further description and analysis of
LTVMaps can be found in (Musil et al., 2022). These LTVMaps are shared among robots, and are
used for cooperative search planning onboard UAVs, as described in Section 8.3.

7.5. LandMap
As described in Section 5.3, a downward-facing RGBD camera detects areas safe for landing. These
areas are continuously collected within an unconnected set and stored in a sparse point-cloud manner
with minimum mutual distance 5.0 m, low enough for avoiding unnecessary long paths to the nearest
landing spot while keeping the LandMap memory-light even for large environment. An example of
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Figure 15. Example of the LandMap with resolution of 5 m built in the beginning of the DARPA SubT systems
Final Event after 70 s of a UAV flight. The UAV is represented by the Cartesian axes with its trajectory colored in
red. The LandMap incorporates the spots classified as safe for UAV landing (green circles) which are used during
the UAV homing phase of the mission to ensure safety during the landing procedure.

the LandMap is shown in Figure 15. During the homing phase of the mission, the UAV navigates to
an area connected to the ground station via the communication network (see Section 11.4). After
reaching this area, the UAV navigates towards a safe landing spot as indicated by the LandMap,
which is closest to its current pose (see mission state machine in Figure 27). While flying towards
the LandMap-selected spot, the UAV lands sooner if the ground below the UAV is classified as
safe-for-landing in the current RGBD data. The landing spots previously identified as safe are, once
more, verified before landing in order to ensure safety in dynamic environments. If the spot is no
longer safe for landing, it is invalidated and the UAV is navigated to the next closest landing spot.

8. Autonomous search
Since communication between robots in subterranean environments can never be ensured, the UAVs
in our system operate completely autonomously and only use information from other robots to
update their goal decision (e.g., blocking frontiers leading to areas explored by other robots). The
system can also be controlled at a very high level by the human operator, which is described
in Section 11.2. This section describes the high-level search autonomy of our system.

8.1. Informative viewpoint computation and caching
For exploration purposes, the UAVs in our system do not consider the information gain along
trajectories, but rather sequences of discrete viewpoints, so that we can have a unified goal
representation for both local and global search planning. These viewpoints are divided into places at
which a UAV could obtain some volumetric information, called frontier viewpoints, and the points
at which a UAV could cover some not-yet-covered surfaces with its cameras, called surface coverage
viewpoints. Each viewpoint ξ, comprising of position pξ and heading ϕξ, is therefore assigned some
information value I(ξ). In our approach, the information gain of frontier viewpoints ξF and surface
viewpoints ξS is computed as

I(ξF ) = cF
nunk
nrays

, I(ξS) = cSnunc, (8)

where nunk/nrays is the ratio of rays cast in the UAV’s depth cameras’ and LIDAR’s FOVs that
hit an unknown cell of the occupancy map before hitting an occupied one or going out of range.
Similarly, nunc is equal to the number of uncovered facets of the FacetMap, hit by rays that are
cast in the UAV’s RGB cameras’ FOVs. The constants cF and cS are empirically tuned to alter the
UAV’s next viewpoint selection and hence, its behavior. Additionally, a positive or negative bias
cF S can be added to the information value of either function to make the UAV prefer one type of
viewpoints more.
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The UAV does not sample and evaluate viewpoints on-demand after reaching some viewpoint,
rather it continually samples viewpoints in its vicinity at a given rate and stores them into a map of
cached viewpoints. Only viewpoints that have I(ξ) above some threshold, are safe, not too close to
another informative viewpoint, and not blocked by mission control are stored. The viewpoints are
also pruned from the map if they become uninformative or if a better viewpoint is nearby. Lastly,
viewpoints that were found in a previous update and are now outside the local update box, are kept
as global goals and are pruned more aggressively than the local goals. This approach continually
produces a map of informative viewpoints that is denser near the UAV and sparse in the rest of the
environment.

8.2. Single-UAV autonomous search planning
In our approach, the UAV can be in three states of autonomous search—locally searching, traveling
to goal or returning, and the goal planning and evaluation is divided into local and global planning,
as in (Dang et al., 2019b). In all of these states, reachability determination and path planning to
any given goal is performed using the rapid long-range path finding provided by the SphereMap,
described in Section 7.2. The transitions between the three states are fairly simple—if there are
informative and reachable viewpoints near the UAV, the UAV is in the locally searching state and
tries to always keep a sequence of two viewpoints. These are given to the trajectory planning pipeline
so that the UAV doesn’t stop at each viewpoint and compute the next best one. This is done by
performing a local replanning of the sequence whenever the UAV is getting close to a viewpoint.

When there are no reachable viewpoints near the UAV or when new information is received from
the operator or other robots, a global replanning is triggered.

The global replanning, inspired by (Dang et al., 2020b), computes paths to all stored informative
viewpoints (not only in the local search box) and evaluates them. The best viewpoint is then set
as a goal to the long-distance navigation pipeline described in Section 9.1. Finally, the returning
state is triggered when the global planning does not find any reachable goals, or if the operator
demands it, or if thome < cHtbattery, where thome is the estimated time of flight needed to return
to the base station, tbattery is the estimated remaining flight time, and cH is an empirically tuned
constant. The value of thome is computed from the UAV’s average flight speed, and a path found
through the SphereMap to the base station. If there is no path to the base station, the UAV will
instead try to return along a tree of visited positions, which is built specifically for this purpose, so
that for example if a path is only temporarily blocked, the UAV will fly to the roadblock, and if
it is removed, will continue flying to the base station. The UAV can also recover from this state, if
it is returning due to having found no reachable goals, and suddenly some goals become reachable
again. When the UAV gets close to the goal, it switches back to the locally searching state.

The reward functions used to evaluate goals govern the behavior of the UAV while searching
the environment, and as such, they define the search strategy of the UAV. For simplicity, we made
the local planner and global planner use the same reward function in a given strategy, with only
one difference, that the local planner can add a penalty to local goals, based on the UAV’s current
momentum and heading, to allow for smoother local search, which is a highly simplified version of the
local viewpoint tour planning done by (Zhou et al., 2021b). These strategies and their corresponding
reward functions were utilized in the challenge:

8.2.1. Greedy search strategy (GS)
The chosen reward function for selecting the next best viewpoint ξ from the current UAV viewpoint
ξUAV (the UAV’s current position and heading) can be written as

RGS(ξUAV, ξ) = I(ξ) − D(ξUAV, ξ), (9)

where I(ξ) is the information value of the viewpoint (described in Section 8.1) and D is the best
path cost computed in the SphereMap (described in Section 7.2). This type of reward was selected
for its simplicity, which allows easy debugging and tuning of UAV behavior. It is also easier to
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extend this reward function to the multi-UAV cooperation reward functions in Section 8.3. This
reward function for controlling the next best goal selection thus depends on the constants cF , cS ,
cF S described in Section 8.1 and the risk-awareness constant cR used in path planning, which
can be used to tune the search based on the desired behavior. The constants cF , cS , cF S control
whether and how much the UAV prefers frontier viewpoints or surface viewpoints, while cR is set
according to the desired risk avoidance. This reward function is very simple and can take the UAV
in various directions, leaving behind uncovered surfaces in faraway places. The next strategy aims to
solve this.

8.2.2. Dead end inspection strategy (DEI)
A more thorough reward function can be written as

RDEI(ξUAV, ξ) = I(ξ) − D(ξUAV, ξ) + (D(pHOME, ξ) − D(pHOME, ξUAV)). (10)

This strategy adds the difference in path costs to the base station position pHOME from the evaluated
viewpoint and from the UAV. This greatly increases the value of viewpoints that are deeper in the
environment, relative to the UAV. Using this reward function, the UAV will most likely first explore
frontiers until reaching a dead-end, and then thoroughly cover surfaces from the dead end back to
the base, analogous to a depth-first search.

8.2.3. Viewpoint path enhancement strategy (VPE)
The third strategy used on the UAVs is not a change of the reward function, but rather a simple
way to increase surface coverage when the UAV is flying through long stretches of explored but not
perfectly covered space, either in the DEI or GS strategy. If VPE is enabled and the UAV is flying
to a distant goal, then we periodically take the short-distance trajectory from the local path planner
(described in Section 9), sample it into multiple viewpoints, and try to perturb these viewpoints to
increase surface coverage, while not increasing the flight time too much. Thus we fully utilize the
agility of quadcopter UAVs, as they can easily turn from side to side while flying in a given direction.

8.2.4. Comparison of the strategies
During pre-competition testing, the three strategies mentioned above proved to be nearly identical
in the total amount of covered volume and surfaces. However, there are serious differences in the
overall behavior and what it means for cooperation. The GS strategy on average covers the most
volume and surfaces but leaves behind many patches of surfaces or frontiers in very far-away places,
due to its greedy nature. The VPE strategy just slightly alters the GS strategy to cover more
surfaces in total at the cost of less explored volume but also leaves unfinished goals behind. This has
generally been very useful in areas with long corridors that have a high amount of short branches
leading off from the main corridor, such as in tunnels or cramped urban areas because the VPE
strategy will force the UAV to peek into the corridors, but not to rigorously explore them as with
the DEI strategy. The DEI strategy usually covers less space and surfaces in total, but what is most
important—it does not leave uncovered and unexplored parts of the environment behind, meaning
that for cooperative missions, no other UAV needs to go to that space again, as that space has
been completely covered. This is essential in longer missions to ensure complete coverage of the
environment.

8.3. Probabilistic cooperative search planning
Our approach to multi-UAV search planning was to make the UAVs completely autonomous and
decentralized by default, while also being able to share important information and use it for their
own planning. Each UAV always keeps the latest version of the LTVMap (described in Section 7.4)
received from a given UAV. When a new LTVMap is received, every newest received map currently
being stored onboard the UAV is updated by every other newest received map, as well as by the
LTVMap constructed from the UAV’s own SphereMap.
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The updating is done so that the frontier viewpoints, sent along with each LTVMap, which
fall into explored space in other LTVMaps, are blocked. This is difficult to do in a deterministic
manner due to map drift and other inaccuracies. Therefore, we approached this problem similarly
as in (Burgard et al., 2005) by gradually decreasing the reward of frontier viewpoints whenever
the viewpoint falls into the explored space of any segment’s bounding box in a received LTVMap.
Because the LTVMap bounding boxes are a very rough approximation of the segments’ true shape,
this reward decreasing is weaker at the edges of the bounding boxes and strongest when the viewpoint
lies deep inside the bounding box. Each frontier viewpoint in any LTVMap is assigned a likelihood
l(ξ ∈ Vexp) to represent how likely it is that the viewpoint has already been visited by any other
UAV. The l(ξ ∈ Vexp) of any viewpoint is the maximum of a function describing the likelihood
that the point lies in a given segment’s bounding box, computed over all segments of all the other
received LTVMaps. This likelihood function can be selected arbitrarily; for our approach, we selected
a function, which is equal to 0 outside of the segment’s bounding box, and grows linearly to 1 the
closer it is to the center of the bounding box. The updates of these l(ξ ∈ Vexp) values for a three
UAV mission can be seen in Figure 17.

For a frontier viewpoint ξL in the UAV’s local map, which has l(ξL ∈ Vexp) > 0, the reward
function changes into

R(ξUAV, ξL,M) = l(ξL ∈ Vexp)RR(ξUAV, ξL,M) + (1 − l(ξL ∈ Vexp))RL(ξUAV, ξL), (11)

where RL is the reward function defined by the employed single-UAV search strategy described
in Section 8.2. This does not take into account any information from other UAVs. RR is a reward
function which takes into account other frontiers in received LTVMaps that could be reachable
through ξL, as illustrated in Figure 16. If l(ξ ∈ Vexp) = 0, it means that the viewpoint does not
fall into the space of any received LTVMap and the UAV only decides based on its own maps. If
l(ξ ∈ Vexp) = 1, the viewpoint surely lies in explored space of another UAV, hence it does not

 

 

 

 

  

 

 

 
 

 

 

UAV

Figure 16. Diagram illustrating the computation of the cooperative exploration reward function, as described
in (12). The image shows a UAV evaluating a frontier viewpoint ξL (orange) in its local occupancy map (black
lines). The UAV has received two LTVMaps M1, M2 from two other UAVs. As the local map frontier ξL falls into
one of the free space segments σML,M1 of M1, it is assigned as belonging to that segment and acts as an edge in
planning paths between the local map and the received map M1. Therefore, the frontier viewpoints ξ1,M1, ξ2,M2
should be reachable through ξL. A path to them is estimated across the centroids of the segments of M1. The
viewpoints ξ3,M1, ξ1,M2 (black) are marked as having l (ξ ∈ Vexp) = 1, since they fall deep into the explored space
of the other received map, and are therefore not considered.
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(a) (b) (c) (d)

Figure 17. Illustration of LTVMap sharing and utilization during a cave exploration mission in simulation with
three UAVs running the DEI strategy (described in Section 8.2.2). The heatmap color of the LTVMap segments
shows surface coverage of the individual segments, with purple signifying complete coverage. The colors of the
exploration viewpoints signify their l (ξ ∈ Vexp) value, with white having a value equal to 1 and black being 0.
Image (a) shows the LTVMap sent by UAV1 after returning to communication range with the base station. This
map is given to UAV2, which then launches and chooses to explore the nearest unexplored frontier in the map
of UAV1. Image (b) shows the LTVMap sent by UAV2 when it is returning. Image (c) then shows how the maps
are co-updated onboard UAV3, which launches after receiving the LTVMap from UAV2. The only nonexplored
viewpoint remaining is in the top part of the image. Image (d) shows the maps received by the base station from
all three UAVs at the end of the mission with no unexplored viewpoints remaining.

bring any volumetric information to the team, so the UAV considers whether exploring it would
eventually lead it to globally unexplored viewpoints. Figure 17 illustrates how sharing the LTVMap
helps UAVs to not explore already explored parts of the environment. The function RR that achieves
this behavior was designed as

RR(ξUAV, ξL,M) = max
M∈M

max
ξR∈M

I(ξR) − D(ξUAV, ξL) − DR(ξL, ξR, σML,M )
1 − l(ξR ∈ Vexp) , (12)

where M is the set of all received LTVMaps, and σML,M is the most likely segment that ξL belongs
to in a map M . The function DR is a special path cost function computed as a sum of Euclidean
distances of segment centers in a given map, spanning from ξL, through the center of σML,M , and
towards a given frontier viewpoint ξR. The value of DR is also scaled by a user-defined parameter.
This is done so as to increase the cost of viewpoints in received maps as there is more uncertainty
about the path to these viewpoints. The division by 1 − l(ξR ∈ Vexp) serves to gradually decrease
the reward of exploring the viewpoint up to −∞ when the viewpoint was surely explored by another
UAV. Computation of this reward function is illustrated in Figure 16.

The percentage of covered surfaces inside segments received in the LTVMap is used for blocking
the surface coverage viewpoints in segments, where the percentage is above a user-defined threshold.
The segments with low surface coverage could be used as additional goals in a similar manner as
shared frontiers in Figure 16. However, for simplicity, this was not implemented.

8.4. Autonomy robustness enhancements
One important problem is that in the case of dark and nonreflective surfaces (common in the DARPA
SubT Finals course) the LiDAR beam does not return with enough energy. Such surfaces will not be
marked as occupied and essentially become permanent frontiers, which means that some informative
viewpoints, as defined in Section 8.2, are noninformative. To solve this, the UAV builds a map of
visited positions. With time spent near a visited position, we linearly decrease the value of nearby
viewpoints. After some time, the sampling is blocked near those positions completely.

Another problem arising is due to highly dynamic obstacles in the occupancy map, such as other
robots, fog, or very narrow corridors where the discretization of occupancy can oscillate. As such,
the reachability of a given viewpoint can oscillate. This was solved by putting a timeout on trying to
reach a given viewpoint and was triggered if the UAV did not get closer to the goal within a defined
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time. After this timeout, an area around the viewpoint is blocked until the end of the mission, or
until a manual reset by the operator. This approach may cause the UAV to block some goals that
are only temporarily blocked by another robot in narrow passages, but it was deemed preferable
rather than having the UAV permanently oscillate in such passages.

The autonomy system can be easily controlled by operator commands (described in Section 11.2)
which can block viewpoints in a set cylinder in space, force the UAV to explore towards some goal,
or simply move to a given position and stay there. In this way, problematic situations not covered by
our solution, such as organizing multiple robots in a tight corridor, can be resolved by the operator.

9. Path planning, trajectory generation and tracking
Planning collision-free paths and generating dynamically feasible trajectories is another vital
component of the presented UAV system operating in a constrained environment. The sequence of
waypoints (a waypoint in this context is either only a point in space, when we do not care about the
heading, or a point in space and heading, for example when using the VPE strategy in Section 8.2.3,
that the local planner should move the UAV through) that efficiently guides the UAV through the
environment is produced by the long-distance navigation module, described in Section 9.1. Given
the navigation waypoints, a computationally undemanding multistage approach is applied to obtain
a trajectory lying at a safe distance from obstacles, while also respecting dynamic constraints
(limits on velocity, acceleration, and jerk) and minimizing the time of trajectory following. In
particular, the solution can be divided into three modules: path planning to obtain the local reference
path, path processing to increase the safety margin of the path, and the trajectory generation
to obtain a time-parametrized trajectory respecting the dynamic constraints of the UAV. The
diagram illustrating connections and data transfer between particular modules in path planning and
trajectory generation pipeline is shown in Figure 18. The long-distance path found in SphereMap,
the local path found in DenseMap, the postprocessed path, and the dynamic trajectory are depicted
in Figure 19.

9.1. Safety-aware long-distance navigation
When a goal, or a sequence of goals, is set to the navigation stack, the long-distance navigation
module computes a path through the SphereMap, optimal according to (7). The module then keeps
this path and utilizes the trajectory planning and tracking modules to follow it. This is done simply
by a “carrot and stick” approach, where the trajectory planning module is given a near waypoint

P

∼0.5 Hz

rd, ηd

on demand

χd

100 Hz

M

10 Hz

ξ

∼0.2 Hz
I
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0.5 Hz

χd (on demand)

Local path
planner

Trajectory
generator

Reference
tracker

Controllers
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trigger
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Figure 18. A diagram of the path planning and trajectory generation pipeline. Given 3D map M provided by
Mapping module, the Local path planner produces path P connecting a start position for planning derived from
full state reference χd provided by Reference tracker, with the viewpoints ξ supplied by Long distance navigation
module. Trajectory generator produces feasible trajectory along the collision-free path P and supplies the position
and heading reference (rd , ηd ) to a Reference tracker. Reference tracker creates a smooth and feasible reference
for the reference feedback controllers. The Local path planner is triggered by a new set of goals, periodic signal
or by an interrupt I generated by Collision checker responsible for detection of collisions with respect to most
recent map of the environment.
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Figure 19. A two-view visualization of the path produced by all stages of the planning pipeline. The cached
long-distance paths ( ) between portals ( ) are found in the SphereMap. A geometric path ( ) is found
in the DenseMap to the next waypoint given by the SphereMap. This path is then postprocessed ( ) to be
further away from obstacles, and a time-parametrized trajectory respecting the dynamics of the UAV is sampled
(small axes). The small axes represent samples from the trajectory with constant time step, so axes further away
from each other mean that the velocity of that part is higher. The current UAV pose is shown as large axes.

(approx. 20 m away from the UAV at maximum, to keep planning time short) on the path. This
temporary goal waypoint is then slid across the path towards the goal.

If the trajectory planning and tracking modules cannot advance along the SphereMap path for
a specified amount of time, which can be caused by a dynamic obstacle such as a rockfall, fog, or
another robot, the SphereMap path following is stopped and an unreachability flag is raised. The
UAV then chooses a different goal or tries to find a new path to the same goal based on the current
state of mission control.

When the search planning requires the UAV to fly through multiple nearby goal viewpoints, such
as when covering the surfaces in a room with cameras or when visiting multiple viewpoints while
traveling and using the VPE strategy described in Section 8.2.3, the local path planning module
is instead given a sequence of waypoints (containing both the goal viewpoints for surface coverage,
which require heading alignment, and waypoints that do not require heading alignment and only
serve to guide the local path planning). Thus the output of this module is always a sequence of one
or more waypoints, which may or may not require heading alignment, and through which the local
path planning module should find a path in a short time, which we can control by changing the
look-ahead distance.

9.2. Local path planning
The grid-based path planner coupled with iterative path processing was adopted from (Kratky
et al., 2021a) to obtain the primary reference path. The proposed approach presents a path planning
and processing algorithm, which is based on the traditional A* algorithm applied on a voxel grid
with several modifications to decrease the computational demands. The first modification lies in
avoiding the computationally demanding preprocessing of the map representation (e.g., obstacle
dilation by Euclidean distance field), which often requires more time than the actual planning on
the grid. This holds true especially for shorter direct paths that leave a significant portion of the
previously processed environment unexploited. For this reason, the presented approach builds a k-d
tree representation of the environment which is then used to conclude the feasibility of particular
cells, based on their distance to the nearest obstacle. As a result, the computational demands
are partially moved from the preprocessing phase to the actual planning phase. This approach
is particularly efficient in the case of paths that do not require exploiting a significant part of the
environment. The second important modification is applying node pruning, similar to the jump point
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search algorithm (Harabor and Grastien, 2011). This modification helps to decrease the number of
unnecessarily expanded nodes. As such, it lowers the computational time required for obtaining the
solution. A detailed analysis of the influence of particular modifications on the performance of the
planning algorithm is provided in (Kratky et al., 2021a).

To allow the generated paths to lead through narrow passages, the limits on safety distance are
set to the dimension of the narrowest opening that is supposed to be safely traversable by the
UAV. However, setting this distance to a value that ensures safety in the event of the maximum
possible deviation from the path caused by any external or internal source would lead to the
preclusion of entering narrow passages of the environment. On the contrary, setting this distance
to a minimum value without considering safety margins would increase the probability of collision
along the whole path. To balance the traversability and safety of the generated path, the minimum
required UAV-obstacle distance applied in the planning process is set to the lowest traversability
limit, and iterative path postprocessing is applied to increase the UAV-obstacle distance in wider
parts of the environment. The employed postprocessing algorithm proposed in (Kratky et al., 2021a)
iteratively shifts the path towards the free part of the environment, while continually maintaining
the path’s connectivity. As such, this anytime algorithm increases the average UAV-obstacle distance
throughout the flight, which significantly improves the reliability of the navigation with respect to
imprecisions in the reference trajectory tracking.

The generated path is periodically replanned at a rate of 0.5 Hz to exploit the newly explored
areas of the environment and handle dynamic obstacles. The continuous path following is achieved
by using the predicted reference generated by the MPC tracker (Baca et al., 2018) to identify the
starting position for the planner at time Ts in the future. Apart from the periodic replanning, the
planning is also triggered by the detection of a potential collision on the prediction horizon of the
trajectory reference produced by the MPC tracker. The potential collisions are checked at a rate
of 5 Hz by comparing the distance of particular transition points of the predicted trajectory to the
nearest obstacle in the most recent map of the environment. Depending on the time left to the time
instant of a potential collision, the UAV is either requested to perform a stopping maneuver or to
trigger replanning with the most up-to-date map.

9.3. Trajectory generation
The path generated by the path planning pipeline is a series of waypoints, each consisting of a 3D
position and heading. A trajectory (a series of dense time-parameterized waypoints) is generated
for each new path, so that the motion of the UAV satisfies translational dynamics and dynamic
constraints up to the 4th derivative of position. The dynamics of the trajectory can be changed
according to the current safety distance limit. However, in the Final Event, this feature was disabled,
as the UAV was already constrained to 1 m s−1 and further slowdown would unnecessarily prolong
the time spent in a narrow passage, where the risk of collision is higher. The trajectory generation
system is based on the polynomial trajectory generation approach (Richter et al., 2016; Burri et al.,
2015), but it was significantly extended to perform in a constrained, real-world environment (Baca
et al., 2021). This approach was modified to minimize the total flight time while still satisfying
the dynamic constraints. Furthermore, an iterative sub-sectioning algorithm was added to force the
resulting trajectory into a feasible corridor along the original path. Moreover, a fallback solver was
added to cope with invalid QP solver results caused by numerical instabilities or in case of the
solver timeout. The QP solver sometimes fails to produce a feasible trajectory, e.g., by violating the
dynamic constraints, or by violating the corridor constraints. In such cases, we find an alternative
solution by linearly sampling each original path segment. The time duration for each segment
is estimated heuristically as an upper bound using the same method as in the initialization of
the polynomial trajectory generation (Baca et al., 2021). Although the trajectory produced by
this method violates the dynamics in each waypoint, the underlying MPC Trajectory tracking
mechanism provides smooth control reference even at these points. Most importantly, despite the
fallback solution not being optimal, it is tractable and is guaranteed to finish within a fraction of the
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Figure 20. A diagram of the system architecture (Baca et al., 2021): Trajectory generation supplies the position
and heading reference (rd , ηd ) to the MPC tracker. The MPC tracker creates a smooth and feasible reference
for the Reference controller. The Reference controller produces the desired angular velocities and thrust (ωd , Td )
for the embedded Attitude rate controller, which sets the desired speed of the motors τd .

time of the polynomial optimization. Finally, a dynamic initialization mechanism and a time-outing
system were added to cope with the nonzero trajectory generation and path planning computation
times. Even though the path planning and the trajectory generation can last for several hundreds of
milliseconds, the resulting trajectory always smoothly connects to the currently tracked trajectory.
Therefore, no undesired motion of the UAV is produced. The updated trajectory generation approach
was released and is maintained as part of the MRS UAV System (Baca et al., 2021).

9.4. Trajectory tracking and feedback control
The low-level guidance of the UAV is provided by a universal UAV control system, as developed by
the authors of (Baca et al., 2021). The onboard control system supports modular execution of UAV
reference generators, feedback controllers, and state estimators. During the SubT Finals, the system
exclusively utilized the geometric tracking control on SE(3) (Lee et al., 2010) to follow the desired
states generated by the MPC Tracker (Baca et al., 2018). First, the MPC Tracker is supplied with a
time-parametrized reference trajectory, from which a smooth and feasible reference state consisting
of position, velocity, acceleration, jerk, heading, and heading rate is generated by controlling a
virtual model of the UAV. Second, the feedback controller minimizes the control error around the
generated reference state and produces an attitude rate reference for the low-level attitude rate
controller embedded in the Flight Control Unit (FCU). Figure 20 depicts the pipeline diagram of
the control system with data flow among individual modules.

10. Artifact detection, localization, and reporting
Objects of interest (artifacts) in the explored area are detected visually using a CNN that processes
images from several onboard RGB cameras covering the frontal, top, and bottom sectors of the UAV.
The CNN detector is trained on our manually labeled dataset and outputs predicted bounding boxes
and corresponding classes of the artifacts in the input images. To estimate the 3D positions of the
detections, we have leveraged the onboard 3D LiDAR sensor and the mapping algorithm described
in Section 7. These positions are processed by an artifact localization filter based on our previous
work (Vrba et al., 2019), which fuses the information over time to filter out sporadic false positives
and improve the localization precision. The artifact detection, localization, and filtering pipeline is
illustrated in Figure 21.

Our approach consolidated into a similar principle of early recall and late precision proposed by
(Lei et al., 2022). The CNN generates a high amount of detections to not miss any artifact at the
cost of a high false positive rate. The false positives are later filtered out by the localization filter
and the resulting hypotheses are further pruned by the human operator to improve the precision of
the pipeline as a whole.

10.1. Artifact detection
The artifact detection is executed in parallel on image streams from all cameras at the same time,
which would require a dedicated Graphical Processing Unit (GPU) onboard the UAV. Therefore,
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Figure 21. Schematic of the artifact detection and localization pipeline.

(a) (b) (c)

Figure 22. Training images containing artifacts captured by the onboard cameras in cave (a), tunnel (b), and
urban (c) environments.

we have chosen the lightweight MobileNetV2 CNN (Sandler et al., 2018), in order to achieve a high
detection rate and keep the load on the onboard computer as low as possible.

The CNN is running on the Intel UHD GPU that is integrated within the onboard CPU of the
UAV. The integrated Intel GPU interfaces with our pipeline using the OpenVino5 framework. The
OpenVino framework together with the Intel GPU achieves more than 5 Hz detection rate on 4
cameras in parallel but due to fixed resource allocation, we are locking the camera rates to 5 Hz.
This artificial throttling of the detection rate avoids issues when the integrated GPU locks the
memory resources for the CPU, which might lead to lag in the control pipeline.

The MobileNetV2 base model is modified for training using the OpenVino open-source tools. The
evaluation of the model is based on the mean average precision metric (mAP) and recall. The mAP
metric is a standard metric for object detection models since it provides information about how
accurate the prediction is. Recall provides an understanding what is the ratio between true positive
predictions and the total number of positive samples in the dataset.

The main challenge for the model is to adapt to different domains—mine, urban, and cave
environments have different lighting and backgrounds (see Figure 22), which affect the detection
performance. Moreover, the angle from which the images were taken is different as part of the images
in the dataset were taken by ground vehicles and the rest by UAVs.

As the whole dataset was initially not available, we had to train the model incrementally whenever
we gathered data from a new type of environment or camera angle to ensure we represented all cases
uniformly in the training data. The incremental training was more time-efficient than retraining on
the whole dataset each time new data was added. Training from scratch or checkpoints took us 2–3
days using our GPU capabilities, while incremental training produced good results in only 4–6 hours

5 docs.openvino.ai/latest/index.html
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of training. Having the possibility to relatively quickly update the model was critical when we were
doing practical experiments or hot-fixing some false-positive detections during competition days or
our experimental campaign.

For training the model on a growing dataset, we used a variety of learning schedulers from the
MMdetection toolbox (Chen et al., 2019). The Cosine scheduler designed by (Loshchilov and Hutter,
2016) is used for warm-restarts of the training pipeline to overcome the loss of learned features. The
main challenge of transfer learning is to overcome the loss of learned distribution on the previous
dataset when training the model on the new dataset (in this case the new dataset is a combination
of the previous dataset and newly collected data).

In our experience, different learning rate schedulers should be used depending on the size of newly
added data:

• Cosine scheduler (Loshchilov and Hutter, 2016) is used during clean model training on the
initial dataset.

• Cyclic scheduler (Smith, 2015) is used when the size of new data is more than 15 % of the size
of the initial dataset.

• Step decay scheduler is used when less than 15 % of the initial dataset size is added.

The model was trained using NVIDIA GeForce RTX 3090 video card with 24 GB of RAM, with
64 images per batch. The training size initially contained around 13 000 images and incrementally
increased to 37 820 as new backgrounds and false negative samples were gradually added. Out of the
37 820 images 31 000 were labeled artifacts and 6820 were background images without any artifact to
reduce the false positive rate. The train and validation split was 70 % to 30 % per training size. We
open-sourced our training pipeline to facilitate replicating the achieved results by the community:
github.com/ctu-mrs/darpa_subt_cnn_training. This method resulted in a score of 49.1 % mAP
on the whole dataset. Such a value is acceptable on the onboard computation unit with limited
resources, due to which a trade-off between accuracy and detection was necessary.

The dataset was collected using the off-the-shelf objects that were specified by the organizers,
see Figure 1. The data have been recorded from the onboard cameras on the UAVs and UGVs, in
particular:

• Intel RealSense D435,
• Basler Dart daA1600,
• Bluefox MLC200w.

The Basler cameras do not have an IR filter installed to maximize the amount of captured captured
light. Altogether the dataset has 37820 images, sometimes with multiple objects in one frame. An
example of images from the dataset is shown in Figure 22.

We publish the labeled detection datasets that were used for training of the neural network at
github.com/ctu-mrs/vision_datasets. In addition, we also publish the tools to convert it into
PASCAL VOC or COCO formats for immediate usage on most of the open-source models.

10.2. Estimation of 3D position of detections
Positions of the detected objects are estimated using data from the onboard LiDAR sensor and
the mapping algorithm. Each detection is represented by four corner points c1, c2, c3, c4 of its
bounding rectangle in the image plane of the corresponding camera, as estimated by the detector
(see Figure 23a). These points are expressed as undistorted pixel coordinates in the image frame I.

The mathematical projection model of the camera fproj : R3 → R2 is assumed to be known. In
our case, we have used the standard pinhole camera model formulated as
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(b) Model of the camera and the point cloud-based sampling method. Rays r1, r2, r3, r4
are projections of c1, c2, c3, c4, respectively. Only the points within the area defined
by these rays are selected. The selected points are colored based on their weight.
Nonselected points are not drawn for clarity.

Figure 23. Illustration of the point sampling for 3D position estimation of detected artifacts with an example
detection of a backpack.

where fu, fv, u0, v0 are parameters of the model (focal length and image center),
[
x, y, z

]⊺ is a 3D
point in the camera coordinate frame C, and u, v are distortion-free pixel coordinates in the image
frame I, corresponding to the 3D point (see Figure 23b for illustration). To model the distortion of
the real-world camera, we have used a standard radial-tangential polynomial distortion model. It is
worth noting that the output of f−1

proj is a 3D ray and not a single point, which is represented in the
model by the free scaling factor k ∈ R.

The input LiDAR scan is represented as a set of 3D points S = {pi} expressed in the camera
coordinate frame C. The occupancy map is represented using the DenseMap data structure that is
described in Section 7, and which provides a raycasting function fraycast : R → R3 where R is the
set of all 3D rays. The function fraycast returns the point, corresponding to the first intersection of
the specified ray with an obstacle in the environment (or nothing if there is no such intersection).

The position of each detected object is estimated from a number of points that are sampled
using two methods: a primary one that utilizes the latest available point cloud from the LiDAR
and a secondary backup method using the latest DenseMap estimated by the mapping algorithm.
The primary method is more accurate and less computationally intensive, but for artifacts lying
outside of the FOV of the LiDAR scan, it may not provide enough samples for accurate 3D position
estimation, which is when the secondary method is employed. For each sampled point si ∈ S, its
weight wi is calculated. The position estimate d and its corresponding uncertainty covariance matrix
Qd are obtained as a weighted mean of the sampled points:

d =
|S|∑

i=1
siwi, Qd = 1

1 − ∑|S|
i=1 w2

i

|S|∑

i=1
wi (si − d) (si − d)⊺ , (14)

where S is the set of sampled points and the weights wi are normalized so that
∑S

i=1 wi = 1.
The weight of a point s is obtained based on the distance of its reprojection to the image

coordinates s′ =
[
su, sv

]⊺ = fproj (s) from the center of the detection’s bounding box c0 =
[
cu, cv

]⊺
using the function

fw (s′, c0) =
(

1 − 2 |su − cu|
wbb

)2 (
1 − 2 |sv − cv|

hbb

)2
, (15)

where wbb, hbb are the width and height of the bounding box, respectively. The weighting function
serves to suppress points further from the center of the bounding box. This is based on our empirical
observation that the center provides the most reliable estimate of the detected object’s position,

Field Robotics, January, 2023 · 3:1–68

CHAPTER 3. AUTONOMOUS NAVIGATION IN GNSS-DENIED ENVIRONMENTS 83/191

CTU in Prague Department of Cybernetics



UAVs beneath the surface: Cooperative autonomy for subterranean search and rescue in DARPA SubT · 35

Algorithm 2. Algorithm for the estimation of a detection’s position and covariance.
1: Input:
2: D = {c1, c2, c3, c4} , ci ∈ R2 ⊲ undistorted coordinates of the detection’s bounding box
3: fproj : R2 → R ⊲ the projection model of the camera
4: P =

{

p1, p2, . . . , p|P|

}

, pi ∈ R3 ⊲ the latest point cloud from the LiDAR
5: fraycast : R → R3 ⊲ the raycasting function of the occupancy map
6: ndesired ∈ N ⊲ the desired number of sampled points
7: Output:
8: d ∈ R3 ⊲ estimated position of the detection
9: Qd ∈ R3×3 ⊲ covariance matrix of the position estimate

10: Begin:
11: ⊲ First, the desired number of points is sampled using the primary and secondary methods.
12: r1 := f −1

proj (c1) , r2 := f −1
proj (c2) , r3 := f −1

proj (c3) , r4 := f −1
proj (c4) ⊲ project the corners of the bounding box to 3D rays

13: S1 := {pi ∈ P | pi within the area defined by edges r1, r2, r3, r4} ⊲ try to sample ndesired points using the primary method
14: nremaining := max (ndesired − |S1|, 0) ⊲ calculate the remaining number of points to be sampled
15: S2 := sampleRectangle ({c1, c2, c3, c4} , nremaining, fproj, fraycast) ⊲ sample any remaining points from the occupancy map
16: S := S1 ∪ S2 ⊲ complement S1 with the remaining points from S2
17: ⊲ Then, the weight of each sampled point is calculated using the weighting function fw.
18: c0 := mean (c1, c2, c3, c4) ⊲ calculate the center of the bounding box
19: for each si ∈ S do
20: s′

i := fproj (si ) ⊲ project the point back to the image frame I
21: wi := fw (s′

i , c0) ⊲ calculate its weight
22: ⊲ Finally, the position and its uncertainty are calculated as a weighted mean and covariance and returned.
23: d :=

∑|S|

i=1 si wi
24: Qd = 1

1−
∑|S|

i=1 w2
i

∑|S|

i=1 wi (si − d) (si − d)⊺

25: return d, Qd

while the bounding box’s corners typically correspond to the background and not the object, as
illustrated in Figure 23a. The whole 3D position estimation algorithm is presented in Algorithm 2.
The sampleRectangle routine used in Algorithm 2 is described in Algorithm 3.

The estimated positions and the corresponding covariance matrices serve as an input to the
artifact localization filter described in the next section (refer to Figure 21). To avoid bias and
numerical singularities in the filter, some special cases of the covariance calculation have to be
handled. Namely, these are the following.

1. All extracted points lie on a plane. This happens, e.g. when all the cast rays of the secondary
position estimation method intersect the same voxel of the DenseMap. The covariance matrix
is then singular, which causes numerical problems with integrating the measurement.

2. All extracted points are too close to each other. This typically happens when the detected
object is too far or too small. The covariance matrix’s eigenvalues are then too small, biasing
the fused position estimate of the artifact.

To avoid these problems, the estimated covariance matrix is rescaled, so that all eigenvalues conform
to a specified minimal threshold before being processed by the artifact localization filter.

10.3. Artifact localization filter
Artifact detections are filtered using an approach based on our previous work, where a multi-
target tracking algorithm was employed for detection, localization, and tracking of micro aerial
vehicles (Vrba et al., 2019). The filtering serves to improve the precision of the artifacts’ estimated
positions and to reject false positives. Only artifacts that are consistently detected multiple times
with sufficient confidence are confirmed, and only the confirmed artifacts are then reported to the
operator to save the limited communication bandwidth. A single step of the algorithm is illustrated
in Figure 24.
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Algorithm 3. The sampleRectangle routine for sampling a number of 3D points from the occupancy map.
1: ⊲ This routine samples points within a rectangle in the image plane I by raycasting pixels on inscribed ellipses with

an increasing radius.
2: Routine sampleRectangle:
3: Input:
4: {c1, c2, c3, c4} , ci ∈ R2 ⊲ corners of the rectangle to be sampled in the image frame I
5: nremaining ∈ N ⊲ the desired number of samples
6: fproj : R2 → R ⊲ the projection model of the camera
7: fraycast : R → R3 ⊲ the raycasting function of the occupancy map
8: Output:
9: S = {si } ⊲ a set of sampled points in the image frame I such that |S| ≤ nremaining

10: Parameters:
11: nr ∈ N, nα ∈ N ⊲ number of radial sampling steps and number of circumferential steps per unit circumference
12: Begin:
13: w := c1,u − c3,u, h := c1,v − c3,v ⊲ calculate the width and height of the rectangle
14: rstep := 1/nr
15: for r ∈

{

0, rstep, 2rstep, . . . , 1
}

do
16: αstep := r/nα

17: 1α := u, u ∼ U (−π, π ) ⊲ generate a random angular offset to avoid biasing some directions
18: for α ∈

{

0, αstep, 2αstep, . . . , 2π
}

do
19: s′ :=

[

wr cos (α + 1α) /2, hr sin (α + 1α) /2
]⊺

⊲ calculate a sample point on an ellipse
20: r := fproj (s′) ⊲ project the point to a 3D ray
21: S := S ∪ fraycast (r ) ⊲ find an intersection of the ray with an obstacle and add it to S
22: if |S| = nremaining then
23: return S
24: return S
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(a) Situation before the update step. The detections
D1 and D2 are associated to the hypotheses H1 and
H3, respectively. The detection D3 is not associated to
any hypothesis. The hypothesis H2 has no detection
associated.
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(b) Situation after the update step. The detections D1
and D2 updated the hypotheses H1 and H3, respec-
tively. The detection D3 initialized a new hypothesis
H4 and the hypothesis H2 remained unchanged.

Figure 24. Illustration of one step of the artifact localization filter (a top-down view). Hypotheses Hi are shown
as covariance ellipsoids with the mean x̂i marked by an “×” symbol. Detections Di are represented in the same
way using dashed lines. Associations between hypotheses and detections are highlighted using color.

The filter keeps a set of hypotheses about objects in the environment. Each hypothesis H is
represented by an estimate of the object’s position x̂, its corresponding covariance matrix P, and a
probability distribution of the object’s class pH : C → [0, 1], where C is the set of considered classes.
For every hypothesis H, up to one detection DH is associated according to the rule

DH =
{

argmaxD l (D | H) , if maxD l (D | H) > lthr,

∅, else,
(16)
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where l (D | H) is the likelihood of observing D given that it corresponds to H, and lthr is a
likelihood threshold. The associated detections are used to update the corresponding hypotheses.
The detections that are not associated initialize new hypotheses.

The position estimate x̂ of a hypothesis H and its covariance P are updated using the Kalman
filter’s update equation and an associated detection DH at time step t as

K[t] = P[t]H⊺ (
HP[t]H⊺ + Qd[t]

)−1
, (17)

x̂[t+1] = x̂[t] + K[t]
(
d[t] − Hx̂[t]

)
, (18)

P[t+1] =
(
I − K[t]H

)
P[t], (19)

where K[t] is a Kalman gain, I is an identity matrix, H is an observation matrix (in our case, equal
to I), d[t] and Qd[t] are the estimated position of DH[t] and its corresponding covariance matrix,
respectively. The class probability distribution pH is updated as

pH[t+1] (c) =
ndets[t]pH[t](c) + pDH[t](c)

ndets[t] + 1 , (20)

where c ∈ C is an object’s class and ndets[t] is the number of detections, associated to H thus far.
Because the artifacts are assumed to be immobile, the Kalman filter’s prediction step is not

performed, which has the effect that the uncertainty of a hypothesis (represented by P) can decrease
without bounds. This can cause the likelihood l (D | H) of new measurements corresponding to the
same object to be below the association threshold, breaking the association algorithm. To avoid
this, the covariance matrix P is rescaled after each update so that its eigenvalues are larger than a
specified minimal value, which enforces a lower bound on the position uncertainty of the hypotheses.

10.3.1. Association likelihood
To calculate the likelihood l

(
D[t] | H[t]

)
of observing a detection D ≡ {d, Qd} given that it

corresponds to a hypothesis H = {x̂, P} at time step t, we use a measurement model

d[t] = Hx + ξ[t], ξ[t] ∼ N
(
0, Qd[t]

)
, (21)

where H is the observation matrix, x is a hidden state (the real position of the artifact), ξ[t] is
measurement noise, and N

(
0, Qd[t]

)
denotes the Gaussian probability distribution with zero mean

and covariance matrix Qd[t]. Using this model, the probability density function of the expected
measurement given x is

p
(
d[t] | x

)
= f

(
d[t] | Hx, Qd[t]

)
, (22)

where f ( · | µ, Σ) denotes the density function of the Gaussian distribution with mean µ and
covariance matrix Σ.

The Kalman filter described by equations (17) to (19) can be interpreted as an estimator of the
probability density of the hidden state given previous measurements. This probability density is
represented as a random variable with a Gaussian distribution:

p
(
x | d[1], . . . , d[t]

)
= f

(
x | x̂[t], P[t]

)
. (23)

The likelihood l
(
d[t]

)
of observing a new measurement d[t] given previous measurements

d[1], . . . , d[t−1] is the value of a probability density function p
(
d | d[1], . . . , d[t−1]

)
at d[t]. By

combining equations (21) and (23), the likelihood may be expressed as

l
(
d[t]

)
= p

(
d[t] | d[1], . . . , d[t−1]

)
=

∫
p

(
d[t] | x

)
p

(
x | d[1], . . . , d[t−1]

)
dx

=
∫

f
(
d[t] | Hx, Qd[t]

)
f

(
x | x̂[t−1], P[t−1]

)
dx

= f
(
d[t] | Hx̂[t−1], Qd[t] + HP[t−1]H⊺)

,

(24)
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Figure 25. Illustration of the automatic reporting process from the Virtual Track.

which is the value of the probability density function of a Gaussian distribution with mean Hx̂[t−1]
and covariance Qd[t] + HP[t−1]H⊺ at d[t]. This expression is used to determine the detection-
to-hypothesis association at each step according to equation (16), as described in the previous
section.

10.4. Arbiter for artifact reporting
In contrast to the system part of the competition, the Virtual Track requires substituting the
human operator with an autonomous arbiter for artifact reporting. The main functionality of the
autonomous base station resides in collecting the hypotheses from the robots and reporting the
location of artifacts. The number of reports in each run is limited and usually lower than the
number of hypotheses collected from all robots. Therefore, a subset of hypotheses needs to be chosen
so that the expected score is maximized. The implemented reporting strategy is based on filtering
the collected hypotheses by considering their location and artifact type, followed by evaluating the
performance index of particular hypotheses. The entire workflow is illustrated in Figure 25.

The autonomous base station collects the hypotheses from individual robots throughout the entire
run. The predefined reporting scheme specifies the maximum allowed number of reports at particular
time instants of the mission. Most of the reports are saved to the last minutes of the mission when
the base station holds most of the information collected from the robots. However, some reports are
allowed sooner during the mission to tackle the problem of unreliable communication and prevent a
failure to report all hypotheses before the time limit exceeds. When the reporting scheme allows for
submitting a report, the collected hypotheses are processed to obtain the best available hypothesis
h∗ in a set of all collected hypotheses H. First, the hypotheses are filtered using information about
previous reports, their validity, location, and per robot limits on the number of reports and minimum
success rate. The final set of filtered hypotheses is obtained as

Hf = H \ {Harea ∪ Hsucc ∪ Hunsucc ∪ Hr}, (25)

where Harea stands for the hypotheses located outside of the competition course, Hsucc stands
for hypotheses in the vicinity of the successful reports of the same artifact class, Hunsucc contain
hypotheses in the vicinity of the unsuccessful reports of the same artifact class, and Hr represents
the hypotheses of robots that have exceeded their own limit on reports and concurrently have
a low success rate of their submitted hypotheses. The performance index for a hypothesis hi is
computed as

P (hi) = αpr + βpc + γpn + δpa, (26)

where the values pr, pc, pn, pa represent the percentile of particular performance indices of hypothesis
hi among all hypotheses in Hf , and α, β, γ, δ are the weight coefficients. The particular performance
indices are related to the number of robots with a similar hypothesis (pr), the overall confidence of
the detections assigned to the hypothesis (pc), the number of detections assigned to the hypothesis
(pn), and the apriori probability of detection of a particular object (pa). The next hypothesis to be
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Figure 26. The distribution of successful reports over particular reporting attempts during all runs of the SubT
Virtual Track Prize Round. The lower success rate of the first attempt in comparison to later attempts is caused
by the early time of the first report, which was allowed 100 s after the start of the mission. By this time, only a
single UAV had already entered the course, and thus the number of available hypotheses to choose from was low.

reported h∗ is chosen based on the following equation:

h∗ = arg max
hi∈Hf

P (hi). (27)

The distribution of successful reports over particular reporting attempts during all runs of the SubT
Virtual Track Prize Round is shown in Figure 26. In the Systems Track, the autonomous arbiter
was not used as the decision-making of the human operator regarding which hypotheses to report
was superior to the autonomous arbiter, which operated based on a fixed set of rules.

11. Mission control
The proposed system is designed for fully autonomous operation, so that the rescue team can benefit
from the autonomous reconnaissance of the UAV without the need for any additional personnel
operating the UAV. The DARPA SubT competition reflects this requirement on autonomy by
allowing only robots without human operators to enter the course. In theory, the robots could be
teleoperated (Moniruzzaman et al., 2022). However, this is not scalable with the number of robots.
Moreover, for teleoperation, a reliable communication link between the robot and the operator
is required, but is often not available, especially deeper in the subterranean environment where
impenetrable walls diminish signal propagation. Thus the correct execution of an autonomous
mission relies on a state machine that governs the high-level actions of the UAV.

11.1. State machine
The state machine applied in the SubT System Finals consists of 12 fundamental states. In the first
state, the status of components that are vital to the mission is checked to ensure that the mission will
be accomplished. Both the software components (localization, mapping, planning, artifact detection,
artifact localization, database) and hardware components (LiDAR, RGB cameras, depth cameras,
mobilicom unit) are checked prior to the mission. This component health check is crucial as, while
still in the staging area, any potential component failures can be addressed, but it is not possible
when the UAV is already flying.

When all components are running correctly, the UAV enables the output of the reference
controller, transits to WAITING FOR TAKEOFF state, and waits for approval from the safety
operator to start the mission. The approval required to guarantee the safety of the personnel moving
in the vicinity of the UAV is given by arming the UAV and transferring the control of the UAV fully
to the onboard computer by toggling the Radio Controller (RC) switch. After the approval to start,
the UAV waits for a specified safety timeout in the READY FOR TAKEOFF state while signaling
the imminent takeoff by flashing LEDs. In this state, the approval can be taken back by the safety
operator. After the timeout elapsed, the PERFORMING TAKEOFF state is entered, during which
the UAV ascends until reaching the desired takeoff height.
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Figure 27. Simplified version of the state machine governing the autonomous mission in SubT Systems Track.

In the next state (FLYING THROUGH GATE), the UAV is navigated to a position inside the
area to be explored. Once this position is reached, the space behind the UAV is virtually closed to
prevent flight back towards the rescue personnel. If the rescuers have some prior knowledge about
the environment, e.g., they see a door to which they want to send the UAV, they can optionally
specify this first position to steer the UAV in that direction. After reaching this first position or if
the flight to the first position is not requested, the UAV enters the EXPLORATION state. In this
state, the UAV fulfills the primary mission goals until the upper bound of the estimated time to
return is equal to the remaining flight time. Then the UAV initiates returning to the takeoff position
in the state FLYING BACK TO START.

The return position is the takeoff position by default, but the operator can request any other po-
sition (e.g., to serve as a communication retranslation node) to which the UAV tries to return. After
the position is reached, the UAV flies to the nearest safe landing spot as described in Section 5.3, and
the LANDING state is entered. The landing is also triggered when the flight time is elapsed during
the FLYING BACK TO START or FLYING TO LANDING SPOT states. When the UAV lands,
it enters the FINISHED state, in which it turns off the motors, Light-Emitting Diodes (LEDs),
LiDAR, and other components except the communication modules to conserve battery power for
retranslating communications.

The required communication between the UAV and its operator during the start of the mission
is limited to signals provided by the RC and visual signals provided by flashing LEDs. This enables
very fast deployment of the UAV that automatically starts all necessary software components once
the onboard computer is powered on and provides the information about being prepared to start by a
single long flash of LEDs. After that, the operator can approve the mission by the remote controller
without the need for any additional communication or commanding of the UAV. Following this
automated procedure, the UAVs are prepared to start one minute after the battery is plugged in.

A FAULT state (not shown in the simplified diagram in Figure 27) can be entered from all states
in which the UAV is in the air (all states except the ones colored red in Figure 27). The FAULT
state is entered only when it is detected that the mission cannot continue safely. In such a case, a
controlled emergency landing is initiated if a position estimate is available. When a position estimate
cannot be provided the emergency landing escalates into the failsafe landing, during which the UAV
gradually lowers its thrust, while maintaining zero tilt. After contact with the ground is detected,
the motors are turned off and the UAV is disarmed. The FAULT state is final, i.e., the mission
cannot continue due to the failures, which triggered the transition into this state. The conditions
for entering the FAULT state are the following.

• Data from a sensor critical for localization are not available for 1 s. This situation can happen
in case of a hardware failure, detached cable, power supply failure, sensor driver bug, etc.

Field Robotics, January, 2023 · 3:1–68

CHAPTER 3. AUTONOMOUS NAVIGATION IN GNSS-DENIED ENVIRONMENTS 89/191

CTU in Prague Department of Cybernetics



UAVs beneath the surface: Cooperative autonomy for subterranean search and rescue in DARPA SubT · 41

• The control error exceeds 2 m, which can occur with a diverging state estimate, overloaded
CPU, or insufficient thrust.

• The state estimate is not available for 0.1 s, which can be caused by a bug in the state estimation
module or an overloaded CPU.

• The innovation of the state estimation exceeds 2 m. Innovation is the difference between current
state and a correction coming from a localization algorithm. Large innovation indicates a
discrete step in the localization algorithm.

• A maximum thrust threshold of 80 % is exceeded for 1 s. This condition is triggered when a
discharged battery cannot provide enough current to perform the desired motion. A faulty or
older battery with many discharge cycles might struggle to provide sufficient current sooner
than is the expected flight time.

• A tilt over 75◦ is detected, which can happen if a discrete step appears in the state estimate
or when the UAV collides with an obstacle.

The state machine applied in the Virtual Track of the SubT Challenge differs only in a few
states given by the specifics of the simulation environment. First, it does not contain the operator
commands states that are not available in a virtual environment. Second, it contains two additional
states, BACKTRACKING and AVOIDING COLLISIONS. The BACKTRACKING state is entered
when the UAV is stuck in a fog and tries to escape from it by backtracking to the most recent
collision-free poses, ignoring the occupied cells in the current map (see Section 5.2.1 for details).
In the AVOIDING COLLISIONS state, the UAV is avoiding collision with the UAVs of higher
priority by stopping the lateral motion and decreasing its altitude. We have decided against using
collision avoidance in the Systems Track due to the low probability of collision, and high probability
of deadlocks in narrow corridors.

11.2. Operator commands
While the UAV is capable of carrying out the mission on its own in the fully autonomous mode,
the operator can intervene by issuing an operator command to influence the behavior of the UAV.
All operator commands can be activated only in the EXPLORATION state and in the operator
command states, in which the UAV performs its primary goal. Allowing operator commands in
other states would interfere with the takeoff, returning, and landing processes. The commands are
transmitted from the operator’s base station to the UAV through the available communication
modalities described in Section 11.4. The following commands are available for the operator:

• Explore to position. The operator can bias the automatic goal selection process by issuing the
Explore to position command. After the command is received by the UAV, the currently used
reward function for evaluating viewpoints is extended by a term that penalizes the Euclidean
distance of the viewpoint from the desired position pD. The term added to the reward function
for a viewpoint ξ is simply

∆R(ξUAV, ξ, pD) = −coc |pξ − pD| . (28)

Such modification of the reward function causes the viewpoints closer to the desired positions
to be preferred over farther viewpoints. The assertiveness of reaching the desired position can
be controlled by the coefficient coc. If this is set too high, it might force the viewpoints with a
minimal distance from obstacles and low information value to be selected.

• Plan to position. The Plan to position command bypasses the viewpoint selection process
and requests the planner to find a path directly to the specified position. When the requested
position is not reachable, i.e., it is in an occupied or unknown space, the planner will find the
path to the closest point using the Euclidean distance heuristic function. Thus this command
should be used primarily for reaching an already visited position, e.g., to land there and
retranslate communication from robots that are already further in the environment, or to
approach a stuck robot to retrieve its data.
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• Set return position. Under normal operation, the UAV returns to the staging area when
its battery is depleted. The operator can change the return position by issuing the Set return
position command. This can save valuable flight time of the UAV when a communication chain
is already established.

• Stop. The operator can also halt the movement of the UAV by issuing the Stop command.
This command is useful when the operator wants to inspect an interesting area in more detail,
prevent the UAV from going into a noninformative or dangerous area, or temporarily retranslate
communications. Moreover, this command is a prerequisite for calling the Land command.

• Land. It is possible to land the UAV prematurely before the end of the mission by issuing the
Land command. The expected use case involves landing the UAV at a position advantageous for
extending the communication network. Before calling the Land command, the Stop command
must be called to prevent an accidental landing at an incorrect location, due to the arbitrary
delay of the command sent through an unreliable network. The system does not guarantee
landing at the exact specified position, as a safe landing spot is found in the vicinity of the
requested position.

• Return home. The Return home command switches the UAV to the returning state, as defined
in Section 8.2. In this state, the UAV uses the navigation module to get as close as possible to
the specified return position.

• Resume autonomy. The last operator command cancels the behavior that was forced by
previous operator commands (except Land and Set return position). This causes the UAV to
resume autonomous exploration, start its return, or land (depending on the flight time left).

11.3. Operator interface
Only a single human (operator) could view the mission-specific data sent by the robots to the base
station. His main task was to analyze the artifact hypotheses and report ones that seemed correct
to the DARPA server to score points. He could also influence the behavior of the robots by issuing
high-level operator commands (Section 11.2).

To facilitate his responsibility, each of the two tasks has a dedicated interface. Commands are
issued from the RViz-based interface with each command mapped to a unique keyboard shortcut.
The operator also often used live camera streams from the robots to get contextual information
about the environment. This information was essential for deciding where each robot should be sent
(e.g., quadrupeds to urban sections) and also for quick assessment of why a robot could be stuck.

The second interface for artifact hypotheses management is also based on RViz with a custom rqt
plugin for viewing the details of each hypothesis including the image, number of detections, class
probabilities, and position. These properties help the operator decide whether to send the hypothesis
to the DARPA scoring server or decline it. Manual refinement of hypotheses poses is also possible
by dragging them on the map.

The GUI was displayed on a semi-mobile workstation with 3 integrated displays and one external
monitor standing on top of the workstation. The arrangement of the 4-displays is shown in Figure 28.
From our experience, the more the operator sees without keyboard and mouse interaction, the better
for his performance.

Apart from the human operator who could view all mission data, the rules also allowed the other
staging area personnel to view status data. We have thus set up a diagnostics console on a computer
outside the staging area. This console showed useful diagnostics information that could be relayed
via voice to the human operator.

11.4. Communication
The developed system assumes an unreliable bidirectional low-bandwidth communication network
with intermittent dropouts. It should be mentioned that two meshing-capable wireless technologies
are used on the hardware level—2.3 GHz Mobilicom and 868 or 915 MHz motes, with details of
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Figure 28. The operator interface display arrangement. Top screen shows live views of cameras from 3 UGVs.
In bottom row, left to right, are screens with another 3 live UGV streams, the control GUI and artifact reporting
GUI. The bottom left screen could also show a terminal window that was used for direct execution of scripts
on the robots (as a fallback for a failure case that was not handled by the control GUI). Figure 2 illustrates the
physical look of the setup of the workstation with 4 displays.

both available in (Roucek et al., 2020). The motes are also dropped by UGVs as deployable
range-extending battery-powered modules (Bayer and Faigl, 2020) similarly to (Ginting et al., 2021;
Saboia et al., 2022) to build a communication mesh network. Our custom-made motes have lower
bandwidth (100 B s−1) than (Ginting et al., 2021; Saboia et al., 2022), which is compensated by
sending only necessary compressed data. Moreover, bandwidth-intensive data are sent through a
1 MB s−1 Mobilicom network. This multimodal communication approach is robust to the failure of
either Mobilicom or motes as both are able to transfer mission-critical data.

This paper focuses on high-level usage of the communication network, which is used as a black
box, and as such the low-level layers of the communication protocol are not discussed.

The developed system benefits from available connections to other agents and the base station in
multiple ways. First, when a robot detects an artifact, the detection with its estimated position is
shared over the network instead of returning physically to the base station, thus saving time valuable
for the success of the mission. Second, the individual agents can share the information about the
already explored volume in the form of a topological-volumetric map (LTVMap) introduced in
Section 7.4. The knowledge of other agents’ topological-volumetric maps penalized regions already
explored by other robots, which encourages splitting of the robot team and covering a larger volume
over the same time period as shown in Figure 29. Third, each robot shares its position with the
base station, so that the operator has an overview of where all robots are located. The operator
can then influence the future behavior of any robot in the communication range by sending an
operator command (Section 11.2). Last, positions of the communication nodes (breadcrumbs or
landed UAVs), which form the communication network shown in Figure 30, are sent to be used for
returning to the communication range when the remaining flight time is low.

11.5. Calibrating global reference frame
The entire navigation system of heterogeneous robots within the CTU-CRAS-NORLAB team is
decentralized under the assumption of a shared coordinate frame—the world coordinate frame OW .
To obtain the transformation of a robot’s local origin within the world frame, the staging area of
the competition environment provides a set of visual tags and a set of reflective markers, both with
precisely known poses within the world (see the markers mounted on the entrance to the environment
in Figure 31). The reflective markers are used within our 6-DOF calibration procedure in which a
Leica TS16 total station is employed to measure 3D points with sub-millimeter accuracy. The origin
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Figure 29. Example of the dispersed exploration of a tunnel system during the first run in world 1 of the virtual
track. Only LTVMap from UAV1 is shown for clarity, other UAVs received this map and maps from the other
UAVs. Instead of exploring again the same places as UAV1, both UAV2 and UAV4 explore previously unvisited
corridors. Dark parts of LTVMap in this figure are not yet fully explored, so UAV3 flies to inspect these areas to
not miss any potentially hidden artifacts.

base
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uav2

uav3meters

0 50 100

Figure 30. A communication network consisting of a base station and 8 breadcrumbs (black) deployed by the
UGVs and 2 UAVs from the 3rd run in world 1 of the virtual track. UAV3 with its trajectory shown in blue could
explore further thanks to the deployed communication nodes. Without the communication network, the UAV
would have to return to the staging area, thus traveling additional 500 m from its final landing position.

TW
T S of the total station in the world is derived from measuring known in-world marker poses and

used in deriving TW
B of a robot B.

To calibrate the pose of a single robot B after TW
T S is known, 4 known points on the robot’s

frame need to be measured, used in estimating TW
B , and sent to the information database (see

Section 11.4) or directly to the robot. As the number of robots in the CTU-CRAS-NORLAB team
deployments reached up to 9 robots per run (see Figure 31), the overhead for robots-to-world
calibration decelerated the rate of robot deployments as well as limited the possibilities for quick
in-situ decision-making. To speed up the calibration pipeline for UAVs with limited flight distance
(and hence with greater room for calibration errors), just a single UAV A needs to be calibrated
with the total station wherein the initial pose of the remaining UAVs B is estimated from on-board
LiDAR data. The known transformation TW

A and pre-takeoff LiDAR data DA of a robot A are shared
throughout the robots and used to estimate TW

B . The transformation TA
B is estimated by registering

source LiDAR data DB onto target data DA using Iterative Closest Point (ICP) with extremely
tight constraints in matching the rotation component of the transformation. The tight rotation
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Figure 31. Example robot distribution (7 UGV robots in blue, 2 UAV robots in green) of team CTU-CRAS-
NORLAB within the staging area of Systems Track environment of DARPA SubT Challenge, 2021. The Right
figure highlights the reference frames of interest—the world origin OW together with the origin of the Leica total
station OT S used for calibrating local robot origins OA and OB within the world.
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Figure 32. The interconnection of hardware components that were used is the Systems Track.

constraints are important as frame-orientation misalignments are the largest source of absolute
error during deep deployments. The pose of robot B in the world is then given by TW

B = TA
BTW

A .

12. Hardware platform
The components of our S&R UAV were carefully selected to optimize the flight time and perception
capabilities based on years of experience with building aerial robots for research (Ahmad et al.,
2021), competitions (Walter et al., 2022), inspection (Silano et al., 2021), documentation (Kratky
et al., 2021b) and aerial filming (Kratky et al., 2021). All platforms we have designed for diverse
tasks and purposes including DARPA SubT are presented in (Hert et al., 2022).

Our platform is built upon the Holybro X500 quadrotor frame. The 500 mm frame is made
entirely of carbon fiber, therefore it is stiff and light. Moreover, the arm length can be changed to
accommodate different propellers. A description of all components that are mounted on the UAV
frame follows. The connections of the components are depicted in Figure 32. Our team designed and
manufactured a custom Printed Circuit Board (PCB) that replaced the top board of the X500 frame.
This PCB (see Figure 34) supplies battery power to individual Electronic Speed Controllers (ESCs),

Field Robotics, January, 2023 · 3:1–68

94/191

CTU in Prague Department of Cybernetics



46 · Petrlík et al.

integrates several independent power supplies and provides a communication interface among the
main computer, the Pixhawk flight controller, and MRS Modules. MRS Modules are small expansion
boards that provide additional functionality and have a standardized electrical and mechanical
interface. The UAV can be configured with different MRS Modules depending on the required
capabilities. The PCB is connected to the main flight 4S lithium-polymer battery, which provides
14.0 V–16.8 V depending on the state of charge. The battery voltage is used to directly power the
ESCs and the Intel NUC main computer. The board then integrates three independent 5 V/3 A
buck converters, two to provide redundant power for the Pixhawk flight controller and one to power
the MRS Modules. One 24 V/2 A boost converter is used to power the Ouster OS0-128 3D LiDAR
scanner. The board has two slots for MRS Modules, one is used to control 12 V LED strips which
provide illumination for the onboard RGB cameras. The second module is an interface for an XBee
radio module, used as an e-stop receiver. Communication among the main computer, Pixhawk,
and MRS Modules is provided by FT4232 Quad USB-UART bridge, which is integrated into the
PCB. We selected MN3510 KV700 motors from T-motor and paired them with 13-inch carbon fiber
propellers for large payload capacity and propulsion efficiency. The motors are driven by Turnigy
Bl-Heli32 51A ESCs, as they are lightweight and easily configurable.

The 3D LiDAR was upgraded to the OS0-128 model, which features 128 scanning lines and
wide 90◦ vertical field of view, which allows for perceiving the surroundings of the UAV in the
challenging underground environments. Despite the wide coverage of the LiDAR sensor, there are
still blind spots above and below the UAV when mounted horizontally. To cover these spots, we use
two Intel Realsense D435 RGBD cameras, facing up and down. This enables the UAV to fly directly
upwards, even in cluttered vertical shafts, without risking collision. Both of the RGBD cameras
are also used for mapping and artifact detection. Additionally, the bottom facing RGBD camera
is used for landing site detection. The platform is equipped with two (left and right) dedicated
artifact detection cameras, the Basler Dart daA1600 with 97◦ horizontal FOV lens, and sufficient
lighting provided by LED strips. All algorithms run on the onboard Intel NUC i7-10710U CPU with
6 physical cores and the detection CNN utilizes the integrated Intel UHD GPU.

The high-power Mobilicom MCU-30 Lite wireless communication module provides long-range
connection between robots and the base station while keeping low weight of 168 g. In some
topologically complex areas, even the high-power Mobilicom cannot assure reliable connection
between the units, so it is supported by smaller communication motes, which are also dropped
as breadcrumbs by the UGVs to improve the signal range. These motes are compact communication
modules based on the RFM69HCW transceiver working at 868 MHz or 915 MHz with 100 mW
transmission power and 100 B s−1 data bandwidth. The performance of the motes was analyzed in
the Bull Rock cave (Bayer and Faigl, 2020) and first deployed at the Urban Circuit (Roucek et al.,
2020). The WiFi unit of the onboard Intel NUC computer was not used for any communication.

Finally, the large payload capacity of the UAV allowed us to extend the flight time by using a
larger battery. We used two 4S 6750 mA h Li-Po batteries in parallel. Instead of a larger battery,
two smaller batteries were used due to the 100 W h limit for aircraft transportation. This gave the
UAV a flight time of 25 min with a total mass of 3.3 kg.

The X500 platform (Figure 33) is capable of flying in dense indoor environments, even in tight
vertical shafts, while being able to localize itself with the required accuracy. It has four different
cameras for artifact detection, is able to communicate and form mesh networks with other robots,
and possesses a long flight time.

Furthermore, this platform was also replicated in the virtual competition with the same param-
eters as the physical counterpart. All of the teams except for two used the X500 platforms in the
Virtual Track due to its long flight time, substantial sensor suit, and agile dynamics.

13. Technical details of hardware deployment
With a few exceptions, the components of the UAV software stack deployed in the Virtual and
Systems tracks are equal, yet the available processing powers are not. The Virtual Track yields a
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Figure 33. X500 platform used in the Systems Track (left) and Virtual Track model counterpart (right).
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Figure 34. Custom PCB replacing the top board of the X500 frame from the front (left) and back (right). The
FCU is powered by a dual redundant 5 V power supply, while the Intel NUC computer is powered directly from the
4-cell battery at 14.0 V–16.8 V. The battery is connected using the XT60 connector and the status of individual
modules of the PCB are signalized by 6 status LEDs. The ESCs are also connected to our PCB.

low real-time simulation factor. Together with the computational capacities of each simulated robot,
it provides almost unlimited computational resources for running all algorithms with any desired
resolution or maximal settings. On the other hand, the simulation-to-world transition requires
the algorithms to run on the onboard processing units. This imposes hard requirements on the
algorithms’ optimization, as well as on minimization of the amount of data transfers and their
latency. These requirements force us to

• compromise between accuracy and real-time performance in the system design (i.e., cutting
out global optimization in on-board running SLAM),

• ensure real-time properties for systems handling critical factors of the mission (i.e., UAV
control),

• optimize the data flow and the priorities of processing order within the software stack, and
• prevent any possible deadlocks from arising from outages of both synchronous, and asyn-

chronous data.

Ensuring real-time settings for all systems of a robotic deployment is implausible, particularly in
complex robotic-research projects where the stack design must allow for the system to function as
a whole under limited real-world conditions. We summarize the specific aspects of the proposed
ROS-based software stack, allowing us to transfer all components to on-board processing capacities.
Thus providing full decentralization within a UAV team.

Software based on ROS 1 allows for connecting components under a nodelet manager in order to
group nodelet plugins. In contrast to node configuration, the nodelets under a manager have shared
memory and do not require copying data, a tool useful particularly in the case of passing large
maps within the navigation stack. Our deployment stack consists of several managers, each of which
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Figure 35. The CPU load of onboard computers of individual UAVs (red , green, blue) during the prize round of
SubT Systems Track. The highlighted parts of the graph correspond to the start of processing onboard images
by the object detection pipeline.

handles a distinctive part of the system. These include UAV control, preprocessing of LiDAR data
and SLAM, preprocessing of RGBD data and dense mapping, navigation and path planning, and
perception. The data flowing between these managers are copied, and thus the rate of sharing is
subject to maximal reduction. To decrease the temporal and memory demands of algorithms, the
resolution of input data and the output maps is decreased as much as possible within the scope and
requirements of the desired application. The rate of saving data for after-mission analyses is also
limited as much as possible, with no postreconstructable data being recorded at all.

In contrast to the system designs for UGV platforms, the delays in state estimation and control
inputs are a critical subject for reduction. This is because excessive delays lead to destabilization
of a multirotor aerial platform (see analysis on delay feasibility in Figure 11) as it is a dynamically
unstable system requiring frequent feedback, even for simple hovering. The nodelet managers
handling such critical parts of the system are prioritized at the CPU level, utilizing the negative
nice values that prioritize the related processes during CPU scheduling. To decrease asynchronous
demands on the CPU, nonprioritized components are penalized with positive nice. Furthermore,
their scheduling is restricted on a predetermined set of threads in a multithreaded CPU. The primary
subject of scheduling restriction is the perception pipeline containing a computationally heavy CNN,
where static allocation reduces its asynchronous influence on the rest of the system at the cost of
a limited processing rate. The effect of switching on the perception pipeline is visible in Figure 35,
showing the CPU load of the three deployed UAVs during the DARPA SubT Systems Track. In other
validation tests, the CPU load reached up to 90 % in 1500 s long missions within vast underground
environments. Such an overloaded CPU results in frequent asynchronous delays, culminating to
unpredictable and destructive behavior.

To limit the power consumption and hence, increase the maximum flight time, unsolicited
hardware and software components can be temporarily powered off. These include switching off
on-board lights in meaningless settings, disabling CNN processing when not needed, or powering
off the LiDAR in the after-landing phase when the UAV is serving solely as a retranslation unit for
communication.

14. System deployment
Throughout the development of the system presented in this paper, the individual components
were extensively tested before integration. Deployments of the whole system were less frequent, but
allowed testing the interaction of individual modules and verifying the ability to fulfill the primary
objective of finding objects of interest in subterranean environments.
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(a) (b)

(c) (d) (e)

Figure 36. The verification of localization and perception in the following scenarios: data degraded by insufficient
lighting and whirling dust (a), traversal of vertical narrow passage (b), performance in humid caves (c), multirobot
exploration (d), and scalability with the environment size (e).

14.1. Continuous field verification
The S&R UAV system was continuously tested to empirically verify the correctness and reliability
of the developed algorithms, strategies, and hardware. The UAVs were deployed into diverse types
of environments, including historical and industrial buildings of varied levels of disintegration, in
humid unstructured caves, a decommissioned underground military fortress, and vast outdoor rural
areas. Some of these environments are shown in Figure 36. Such tests are critical for evaluating
the performance under the stochastic influence of real-world conditions, which are typically not
modeled in simulations. In particular, each perception mode is more or less degraded by ambient
lighting or the lack of it, the fog with microscopic condensed droplets of water, smoke or dust
particles, reflections on water or smooth surfaces, etc. The filtration of LiDAR and depth data
from Section 5.2 therefore had to be tuned correctly to prevent the integration of false positives
into the map, while keeping the actual obstacles. Moreover, the artifact detection system needed to
work under a wide range of visibility conditions and chromatic shifts, for which it was necessary to
collect artifact datasets from the mentioned environments.

14.2. DARPA SubT Final Event Systems Track
The Final Event, which was the culmination of the DARPA SubT competition, was organized in
the Louisville Mega Cavern in Kentucky on September 23, 2021. The course consisted of all three
environments from the previous circuits and contained all artifacts from previous events plus the
cube, which was a new artifact for the Final Event. This section reports on the results achieved
by the aerial part of the CTU-CRAS-NORLAB team. A total of 40 artifacts were distributed over
880 m long course, which was divided into 28 smaller sectors to track the team’s progress. Every
robot starts in the staging area, from which a single corridor leads to an intersection that branches
into three ways. Each of the branches leads to one of the three specific environment types (tunnel,
urban, and cave).
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Figure 37. All robotic platforms used in the Prize Round. (From left to right) X500, Spot, Husky, TRADR,
Marmotte.

Table 3. The summary of deployed robots in the Final Event sorted by deployment times. Operable time means
how long the robot was operable, i.e., its computers were running and it could move. Motion time is the time
the robot was moving faster than 0.1 m s−1. The row Artifacts shows the number of confirmed hypotheses as
defined in Table 5.
Robot Spot 1 Red Spot 2 Marmotte Husky Spot 3 TRADR Blue Green
Locomotion Legged Aerial Legged Tracked Wheeled Legged Tracked Aerial Aerial
Deploy time 0:20 2:00 4:00 7:20 12:40 17:32 28:20 36:00 46:30
Operable time 6:00 3:00 7:00 44:00 20:00 11:00 32:00 22:25 6:10
Motion time 3:00 2:32 2:00 6:00 5:00 9:00 4:00 15:22 4:33
Traveled 111 m 69 m 47 m 181 m 131 m 195 m 97 m 304 m 119 m
Artifacts 4 1 2 1 2 0 3 3 3
Sectors explored 4 2 2 2 2 5 4 4 4

Our team deployed a heterogeneous lineup of robots. A total of 3 legged robots (Spots), 2 tracked
robots (TRADR, Marmotte), 3 aerial robots (X500), and 1 wheeled robot (Husky) robot were
deployed in the Final Event Prize Round (see Figure 37). The Husky robot is a fast wheeled
platform (3.6 km h−1 max. speed) for exploration of easy terrain. Tracked Marmotte was also
fast (4 km h−1 max. speed) but could overcome obstacles larger than Husky could. Spots were
the universal ground platform thanks to the ability to pass most terrain except slippery surfaces
(max speed 5 km h−1). The highest traversability among the ground platforms was offered by the
tracked TRADR robot thanks to its controllable flippers (however, maximum speed is approximately
2 km h−1). The primary role of the aerial robots was to explore areas unreachable by ground robots
such as vertical shafts or paths blocked by obstacles. The detailed composition of the team is
summarized in Table 3 together with deployment times and mission statistics. The payload of all
UGVs consisted of Ouster OS0-128, 5–6× Basler Ace 2 or 1× PointGrey Ladybug 2 cameras, Xsens
MTI-30 IMU, Mobilicom MCU-30 Lite, Nvidia Jetson Xavier AGX, Intel NUC 10i7FNK, LED
illumination, SDC30 gas sensor, and communication motes.

14.2.1. UAV deployment summary
Three UAVs in total (red, green, and blue) were deployed in the 60 min long run. All UAVs
used the Greedy strategy (Section 8.2.2) without VPE for the simplicity of its reward function,
which made it easier to fine-tune the reward function coefficients for the competition environment
and debug the UAVs’ behavior. The UAV performance is summarized in Table 4 and the flight
trajectories are plotted in Figure 44. The first UAV (red) took off just after the first UGV, arrived
to the first intersection, explored 10 m of the tunnel section, returned to the intersection, flew to
the cave branch where it collided with the Spot UGV (Figure 42a). The chronologically second
deployed UAV was blue, which went into the urban branch where it traveled to a vertical alcove
with a phone artifact. Then it returned to the start of the urban section, where it hovered until
exhausting the battery (Figure 42c), because all viewpoints were blocked in its map corrupted
by drift in the featureless urban corridor. The last deployed UAV was green that explored the
tunnel section, where it was blocked by a dynamically added artificial wall (Figure 41). After
flying through a cluttered tunnel corridor, the UAV collided with a metal rod protruding from
the wall (Figure 42b).
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Table 4. The mission statistics from the prize round of the Final Event. The localization accuracy was not
evaluated for UAV blue. Obtaining the ground truth position using scan matching would have been extremely
strenuous due to the degenerate geometry of LiDAR scans in the urban tunnel. This degeneracy also caused the
onboard localization to drift several meters.
UAV Red Green Blue
Localization accuracy:

avg|max error in translation (m) 0.38 | 0.63 0.97 | 2.66 -
avg|max error in heading (◦) 0.64 | 4.06 1.48 | 5.37 -

Safety clearance 0.4 m 0.11 m 0.21 m
Landing cause Collision with UGV Collision with a metal

rod protruding from
the wall

Depleted battery after
being trapped in degraded

map

A B C D

E

F

A

B
C

D

E

F

Figure 38. UAV trajectories and on-board-built maps of the environment from all flights during the prize round
(colored in red) and the postevent testing (colored in blue) overlaid over the ground truth map (colored in black).
The photos from on-board camera highlight the diversity and the narrow confines of the environment.

The maps and the trajectories of all our UAV flights during the prize round and the postevent
testing are shown in Figure 38, together with summary of the mapping errors from these flights
in Figure 39. The distance of the UAVs from the nearest obstacle during all flights in the prize
round are shown in Figure 40.

14.2.2. Artifact detection discussion
The performance of the artifact detection and localization system is summarized in Table 6, and
the number of artifacts detected by each UAV in Table 5. A total of seven artifacts appeared in
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Figure 39. Distribution of mapping errors throughout the prize round and the postevent testing flights (colored
in red and in blue in Figure 38) of DARPA SubT. The absolute mapping error denotes the distance between
the ground truth map and concatenation of DenseMaps built with resolution of 20 cm on-board during particular
UAV flights. The error metric is the Euclidean distance between a point from the on-board maps to its closest
point in the ground truth map.
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Figure 40. Distance between the center of the UAVs and the measured nearest obstacle during the prize round of
the SubT Systems Track. The moving mean and standard deviation are computed over a 10 s long time window.

the camera images, and six artifacts were detected by the CNN. The detections with estimated
bounding boxes from all UAVs are shown in Figure 45. The survivor s2 was seen in three frames
of the bottom camera. However, only a small part of the survivor sleeve was visible and the images
were further degraded by motion blur, as can be seen in Figure 43. Thus the CNN did not manage to
detect the artifact. From the six detections, the cellphone artifact p1 was detected only on one image
frame when the UAV blue peeked into the vertical shaft in the urban part. However, as explained
in Section 10, a total of four detections are necessary to create a hypothesis and to confirm the
position, and thus this single detection was discarded. Another missed point was the survivor s1,
which was detected and localized within the 5 m limit, but the artifact was labeled as a cube instead
of a survivor. The hypothesis was merged with a high number of false positives and, consequently,
the correct image was not sent to the operator, who could not determine the correct class to report.
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(a) (b)

Figure 41. The artificial wall that blocked the way back for UAV green in the map (a) and in the camera image
(b).

(a) (b) (c)

Figure 42. The landing events of all three UAVs. The UAV red (a) collided with the Spot UGV, UAV green (b)
hit a metal rod protruding from the wall, and UAV blue (c) landed after its battery was exhausted by hovering
while being trapped in a map corrupted by drift in the featureless corridor.

Figure 43. The only three image frames of the survivor s2 captured by the downward-facing camera. The
artifact was not detected as there is only a small part of the survivor’s sleeve visible in the image, which is also
degraded by motion blur.

Both vent v1 and drill d1 were detected, localized, and correctly labeled. The drill d4 was incorrectly
classified as a backpack, nevertheless, the operator reported the correct class based on the detection
image. All three UAVs detected the d4 drill, but UAV green provided the highest accuracy, which
is reported in Table 6. In total, four artifact hypotheses arrived to the base station with sufficient
information for obtaining a point for the report.
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Table 5. Statistics of artifact detection for each deployed UAV from the prize round
of the Final Event. The seen column yields the number of artifacts that appeared in
the image of one of the on-board cameras. If the artifact was detected by the CNN, it
is listed in the detected column and the detection is shown in Figure 45. Artifacts that
were confirmed had enough consistent detections to establish a hypothesis. Confirmed
unique artifacts were not detected by another robot, including UGVs.

Artifacts
UAV seen detected confirmed confirmed unique
Red 1 1 1 0
Green 4 3 3 1
Blue 4 4 3 1

Table 6. Unique artifacts detected by lightweight CNN running on-board UAVs in real time. The total error etot
of the artifact position is the sum of the UAV localization drift error eloc and the error of estimating the artifact
position eest from the detected bounding box. Artifacts detected by more UAVs are listed only once with values
from the most accurate hypothesis among the UAVs. The hypothesis was Confirmed when more than four
images were associated with it. Some artifacts were correctly detected and localized, but the wrong label was
assigned to them. This is documented in the Correct class column. Even with a wrong label, the operator could
still deduce the correct class by looking at the image sent with the hypothesis. Only one image was sent with
each hypothesis, and if it was possible to deduce the correct class, then the image was listed as Correct image.
Artifact Frames detected Confirmed Correct class Correct image eloc (m) eest (m) etot (m)
v1 27 X X X 1.94 4.61 3.08
s1 60 X × × 2.93 4.57 2.89
p1 1 × × × - - -
d4 11 X × X 0.77 1.61 1.30
f1 13 X X X 0.85 1.33 1.31
d1 9 X X X 1.46 2.30 1.55

meters
0 10 20 30 40

Figure 44. The map of the Final Event course was obtained by the organizers by scanning the course with a
laser scanner station. The paths traveled by all three UAVs (red , green, and blue) during the Final Event are
depicted by their respective colors. The ground truth positions of artifacts are surrounded by a yellow sphere in
order to visualize the 5 m limit for the reported artifact to be counted as a point in the competition. The five
artifacts that were detected and localized within this 5 m limit are shown as squares colored by the detecting
UAV and highlighted in the magnified sections with red arrows.
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Figure 45. Images of artifacts detected by the UAVs in the Final Event. The color of the rectangle shows which
UAV detected the artifact and at what mission time as shown in the bottom right corner.

14.3. DARPA SubT Final Event Virtual Track
In parallel to the Systems Track, the competition was also running in the simulated form of the
Virtual Track. The teams had to submit a solution consisting of docker images of a robotic team
put together within a limited budget to buy the robots and their sensory packages.

The Systems Track included a single run (with two preliminary rounds) conducted in a single
world and was therefore focused on the reliability of the robots, which had to overcome challenging
terrain with narrow passages and adverse conditions for perception. On the other hand, the virtual
teams were deployed three times in each of the eight worlds, ranging from vast models of artificially
created environments to scanned courses from the previous events, including the Final Event course.
Moreover, in the Virtual Track, the whole mission must be fully autonomous and no human interven-
tions are possible. The purpose of the virtual event was to evaluate the high-level planning, coopera-
tion, decision-making, and efficient coverage of the large worlds. As the cooperative searching strat-
egy is one of the core contributions of this work, we have presented the results from the virtual course
here as most of the worlds allowed for efficient deployment and cooperation of the multirobot teams.

14.3.1. Differences from the Systems Track
The simulation model of the IMU provides much better data compared to the real sensor with
the same parameters. Thus is due to the measurements in the simulation not being corrupted by
propeller-induced vibrations, wind gusts, or saturation, as well as having the IMU rigidly attached
to the UAV body with known extrinsic parameters. The higher quality of the simulated data
allows for the use of LiDAR-inertial odometry. In addition to the LiDAR, it also relies on the IMU
preintegration in its optimization process, thus providing a smooth and drift-free position estimate,
even when there are few geometrically rich features present. Specifically, the LIO-SAM (Shan et al.,
2020) algorithm was chosen for its low drift and high precision over the A-LOAM deployed in the
Systems Track. Both algorithms are detailed in Section 6.

The computation power available for artifact detection in the Virtual Track was not constrained
by the weight of the onboard computation hardware as was the case in the Systems Track. As a
result, compromises of the performance/weight ratio had to be made on the detector in the Systems
Track, as reported in Section 10.
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Reporting of the found artifacts is handled by the operator in the Systems Track, which is not
possible in the fully autonomous Virtual Track. A virtual artifact reporter algorithm was developed
to gather artifact hypotheses from all robots and decide which hypotheses are the most likely to
score a point (described in detail in Section 10.4).

The control interface of the simulated UAV was also different from the real one. While the FCU
of the real UAV accepted attitude rate commands generated by the Special Euclidean group of
dimension 3 (SE(3)) controller, the simulated UAV was controlled on a higher level by velocity
commands. This did not allow for precise control of the UAV motion, as was the case for the
low-level attitude rate control.

The deployment sequence of individual robots in the Systems Track could be decided by the
operator based on the requirements of locomotion modality, dynamics, and sensory payload during
the progress of the mission. In contrast, the sequence in the Virtual Track was fixed before the start
of the run.

LandMap introduced in Section 7.5 was not used in the Virtual Track where the UAV was not
destroyed even after a rough landing. As long as the UAV landed in the communication range of the
network it could send its hypotheses to the base station and further retranslate messages from/to
other robots.

14.3.2. Virtual Track results
In the virtual deployment, our team consisted of five UAVs and two UGVs. The UAVs were the
superior platform in the Virtual Track due to their greater movement speed, smaller form-factor,
and better mobility to fly over terrain untraversable by the UGVs. We deployed two UGVs to build
a communication network consisting of breadcrumbs dropped at the edges of the wireless signal
range. This allowed for the UAVs to maximize the time for searching for artifacts as they could
return to the nearest breadcrumb instead of to the base station back at the staging area. Both
UGVs were deployed at the start of the run. The deployment times and exploration strategies of
individual UAVs are listed in Table 7. Our solution achieved 2nd place with a total of 215 scored
points. Table 8 summarizes the points scored by the top three teams on each world of the Virtual
Track (Figure 46). The lower number of points on worlds 4, 5, 6, and 8 can be explained by the fact
that these worlds were not made of the tiles that were used in the qualification and practice worlds.
The details on traveled distance and collected hypotheses by particular UAVs during all runs of the
SubT Virtual Finals are provided in Figure 47 and Figure 48, respectively.

Table 7. The times of deployment and assigned strategies from Section 8.2 in the
Virtual Track. The second UAV was scheduled to take off after the first UAV returned
to communication range so that it can take advantage of the LTVMap of the first
UAV. Both DEI and Greedy strategies were used as DEI guarantees covering dead-end
corridors at the cost of lower average velocity and lower total surface covered. The
first UAV used DEI so that the rest of the team did not need to return to where the
first UAV already had been. The next two UAVs maximize the searched volume with
the Greedy strategy and the last two UAVs cover any missed surfaces with DEI.
UAV 1 2 3 4 5
Start (s) 60 1560 1680 1800 1920
Strategy DEI Greedy Greedy DEI DEI

Table 8. The score achieved by the top three teams on each world of the Virtual Track. The
reported values are the sums of three runs on each world.
World 1 2 3 4 5 6 7 8 total
Dynamo 21 52 48 18 15 11 44 14 223
CTU-CRAS-NORLAB 31 39 45 16 18 13 36 17 215
Coordinated Robotics 44 41 27 23 17 14 26 20 212
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1 2 3 4

5 6 7 8

Figure 46. All eight worlds used in the Virtual Track of the DARPA SubT Finals. The worlds 1, 2, 3, and 7
are built from tiles that were used in the preliminary and practice rounds. World 4 is the model of the NIOSH
research mine, where the tunnel circuit was held. Similarly, world 5 corresponds to the model of the location of
the urban circuit—the unfinished Satsop nuclear power plant. World 6 is a model of a narrow cave system. World
8 is modeled based on the Systems Track Finals.

15. Lessons learned and future work
In this section, we present our view on the state of the S&R UAVs, the lessons learned, which
problems are solved, and what areas require more research to achieve reliable performance suitable
for deployment as a tool for assisting rescue workers. These findings were collected throughout the
preparation for as well as during the DARPA SubT Competition, which aimed to push the state of
the art of S&R robotics. Furthermore, this discussion should be of some interest to the community
as we highlight aspects that could be explored in future research and development. In general, most
of the individual subproblems, such as localization, mapping, detection, and communication, are
solved to the point of being capable of performing an autonomous mission in extremely challenging
conditions. The developed algorithms are now used in actual field deployment instead of just
laboratories and simulations, which introduces disturbances, noise, dust, and other detrimental
effects that negatively impact the algorithms’ performance and reliability. It is essential to focus on
the reliability of the employed methods to make the UAVs a valuable asset to the S&R team.

The role of the aerial robot in a heterogeneous S&R robotic team is a quickly deployable agent that
can provide swift situation awareness, environment type, and topology information that allows for
informed decision-making about the rest of the mission. Furthermore, areas such as caves, collapsed
buildings or high openings can often be reached only by UAVs. On the other hand, ground robots
have the advantage of higher payload capacity, which results in improved perception capabilities
compared to UAVs.

The localization method based on 3D LiDAR provides precise position estimates, even under
severe degradation by dust. However, as proved by the UAV blue, the estimate can begin to
drift when the solved optimization is ill-conditioned due to low-variance geometry, typically in
long corridors with straight walls. The unpredictable nature of subterranean environments requires
a localization method that is reliable and drift-free under arbitrary conditions. Solutions based
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Figure 47. Overall traveled distance, time of active motion, and average velocity of particular UAVs in all runs
of the SubT Virtual Finals. The maximum traveled distance throughout all runs was achieved by UAV5 in run 1c
(3560 m). The maximum active time was achieved by UAV2 in run 5b (1539 s). The presented average velocity
incorporates the entire flight, including hovering states.

on detecting geometrical degeneracy, and multimodal fusion of LiDAR and visual methods were
described in Section 2.2. The results seem promising but due to high unpredictability and challenges
of subterranean environments more research in localization algorithms is still required for truly
robust pose estimation in arbitrary conditions.

In addition to map drift caused by errors in the localization, the volumetric occupancy grid did
not contain the smaller obstacles like ropes, cables, and thin poles, which led to the collision of UAV
green as seen in Figure 42b. Although some LiDAR rays hit these thin obstacles, the occupied cells
generated by these rays were often changed to free when multiple rays that passed through these
cells hit the wall behind them. As a result, the navigation pipeline planned a path through these
cells that appeared free, but contained a thin metal pole, causing a collision. The ability to traverse
narrow passages is also impaired since the passages appear narrower than they really are due to grid
discretization. We propose to locally increase the resolution of the grid of DenseMap on demand
to approximate the free space more accurately, while keeping the scan integration times bounded.
This approach is however only a partial solution as the need for a more granular resolution might
not always be reliably detected. Consequently, the need arises for a flexible map that is not bound
by fixed cell size, similarly to the SphereMap, possibly based on surfel mapping as seen in (Behley
and Stachniss, 2018), or based on GMM (O’Meadhra et al., 2018).
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Figure 48. Distribution of successful reports among the UAVs in particular runs of SubT Virtual Finals (top) and
the number of valid hypotheses collected throughout particular runs by individual robots (bottom). The number
of successful reports of individual robots is mostly influenced by the ordering of robots and their delayed starts
in the mission.

Related to the narrow passage traversal was also the decision to not include prop guards in the
platform design. With the experience from Urban Circuit (Kratky et al., 2021a) where our platform
featured prop guards, we decided against prop guards in the Final Event as they further increase the
size and mass of the UAV. The advantage of the prop guards is uncertain as they do not automatically
allow the UAV to continue operation after a collision. The control and localization software needs
to be designed to handle these dampened collisions and even then it is not guaranteed that the
UAV will continue in flight as the collision is caused by a failure of a module (perception failure to
detect an obstacle, localization error, etc.), which cannot be solved by prop guards. Nevertheless,
platforms with prop guards were deployed successfully by other teams [e.g., (Scherer et al., 2022;
Agha et al., 2021)] so a consensus on this design choice has not been reached yet.

We experienced a surprising issue when our UAV equipped with the Ouster OS0-128 LiDAR
was passing around a UGV with LeiShen C16 LiDAR. The rays emitted by the LeiShen corrupted
some of the Ouster measurements, which manifested as points in random distance within the FOV
of the LiDAR. These false positives were not filtered out by the intensity filter from Section 5.2,
because the intensities fall into the same range of values as true positives. As a result, the points
get integrated into the map, as shown in Figure 49. Nevertheless, the performance of the UAV was
not degraded as the navigation pipeline is robust to such sparse noise. This experience highlights
the importance of testing the compatibility of robotic platforms deployed in heterogeneous teams.

The flight time of the UAV over 20 min was achieved as the payload was limited only to crucial
components. However, the presence of only a single computational unit without CNN acceleration
or dedicated GPU led to compromises in the artifact detection CNN. Large-size models such as
YOLOv3 (Redmon and Farhadi, 2018) were too slow for achieving satisfactory frame rates on the
CPU, so lighter models had to be used. As explained in Section 10, the lightweight MobileNetV2
CNN allowed for lightweight models (7 MB) that could fit into the cache of the CPU. Furthermore,
the OpenVino framework supports accelerating the CNN on the GPU integrated with the CPU,
which helped to achieve sufficient frame rates. Although the lightweight model successfully detected
all artifact types, the labeling was not very reliable and many false positives were detected.
This impacted the artifact localization process, as the false positives were fused into the artifact
hypotheses, which shifted the estimate further from the true position. Also, the images of these false
positives were sometimes sent as the representative image of the hypothesis. Thus the operator could
not correctly decide the artifact class when the label produced by the CNN was incorrect. When
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(a) (b) (c)

Figure 49. DenseMap before (a) approaching the UGV with LeiShen C16 LiDAR (b) and (c) when it gets
corrupted by random points in the FOV of the LiDAR mounted on the UAV after flying in close vicinity (≈ 1 m)
to the UGV. Notice, a few false positives were integrated into the map even when the UAV was 8 m away from
the UGV (a).

payload capacity prevents the use of more capable hardware, the issue must be compensated by the
sensing strategy. In contrast to UGVs the mobility of UAVs allows reaching closer to the artifact
to verify the detection. Approaches of perception-driven navigation can improve the performance of
the lightweight detector by planning a trajectory to inspect the artifact from a closer distance and
other angles after the initial detection.

Although our platform is quite compact (500 mm without propellers), it could not pass through
all of the narrow passages, even during the postevent testing. Apart from the discrete map and
conservatively set distance from obstacles (see Table 4), the size of the UAV prevented flying through
some of the narrower passages of the circuit. As even smaller passages are to be expected during
deployment of robots in real S&R scenarios, the UAV platforms should be further miniaturized to
allow safe traversal of narrow passages. Deployment of visually localized UAVs could decrease the
size significantly but the capabilities of visual navigation pipelines still underperform compared to
the LiDAR solutions, which was the preferred approach of most teams. A possible workaround that
compensates for the lower flight time of smaller platforms is the marsupial deployment (Lindqvist
et al., 2022; De Petris et al., 2022). When such miniaturization is not possible due to, e.g., insufficient
payload of smaller platforms, a heterogeneous aerial team consisting of both large and small
platforms can be deployed, In such case, the large platform carrying a LiDAR can command and
send position corrections to smaller visually localized UAV that can inspect tight narrow passages
that are unreachable by the large UAV (Pritzl et al., 2022b).

A mutual collision avoidance module is a necessity for any application where multiple robots share
the same workspace. The developed priority-based module uses the already shared information about
the robots’ positions when communication is available, as it should since the risk of collision arises
when robots are in close proximity. This module prevented collisions in the Virtual Track, where
despite the vastness of most of the worlds, the collisions happened often in the practice runs before
implementing the collision avoidance. We decided against using the collision avoidance module in
the Systems Track. This was done as the robots could easily become deadlocked in tight corridors
and also due to the collision probability being reasonably low because of the delay between each
UAVs launch. Additionally, the operator could override the full autonomy to prevent collision, if
necessary. Nevertheless, the UAV red collided with a Spot UGV shortly after the start of the run,
which could have been prevented if collision avoidance was enabled. A deadlock-free solution based
on agent theory approaches can be devised for situations when communication is available, and
behavior prediction methods can provide a backup when communication is not possible.

Even though the organizers did a great job at providing a realistic simulation environment for
the Virtual Track, many phenomena, unexpected situations, and issues from the real world are

Field Robotics, January, 2023 · 3:1–68

CHAPTER 3. AUTONOMOUS NAVIGATION IN GNSS-DENIED ENVIRONMENTS 109/191

CTU in Prague Department of Cybernetics



UAVs beneath the surface: Cooperative autonomy for subterranean search and rescue in DARPA SubT · 61

not present in the simulation. Moreover, the rules of the competition are different for the two
tracks. For example, the absence of a human operator in the virtual team changes the approach
drastically as all decision-making needs to be automated. For details about the differences between
the Systems and Virtual tracks see Section 14.3.1. As a team that participated in both Systems
and Virtual tracks, we want to list the greatest hurdles encountered in the simulation to real-world
transfer:

• Degraded sensor output. The output of real-world sensors is corrupted by various negative
effects. On the other hand, the imperfections in simulated sensors are typically modeled only
by an additive noise, which most algorithms can cope with by smoothing or filtering. The
performance of such algorithms severely deteriorates with input data degraded by the harsh
conditions of underground environments. In the case of laser-based sensors, rays get reflected by
small airborne particles such as dust, smoke, and fog to produce false measurements. Although
the fog was modeled in the simulation, the distribution of fog points in the point cloud did not
coincide with the distribution in the real world, and thus we implemented different approaches
for Virtual and Systems tracks, which are detailed in Section 5.2. Cameras in addition to the
airborne particles suffer from insufficient illumination, high-contrast scenes, motion blur, and
rolling shutter aliasing. Using neural networks for object detection proved to be robust to these
effects when trained on datasets with similar data.

• Environment scale. The scale of the environment was much smaller in the Systems Track than
in the Virtual Track. Most of the simulation worlds spanned several-kilometers-long corridors
with vast caves to challenge the cooperative exploration abilities of the teams. The vastness
and openness of the worlds favored fast flights to cover as much space as possible during flight
time. In contrast, the Systems Track was narrow from the beginning of the course (see the
cross-section distribution in Table 2) and the UAV was closer than 1 m from obstacles for most
of the flight (see the distance to obstacle plot in Figure 40). To minimize the chance of collision,
the velocity of the UAV was constrained to 1 m s−1 instead of 5 m s−1 in simulation and the
control was tuned for low error by commanding the UAV in attitude rates instead of linear
velocities.

• Safety. In simulation, the robots cannot harm anyone and to perform another run after a
collision it is sufficient to restart the simulation. Contrary to that, in the real world, special
care must be taken to make the robots, especially fast aerial robots with quickly spinning
propellers, safe for the environment, operators, and any other humans in the vicinity. To assure
maximum safety during takeoff, status checks are performed automatically but then the safety
operator has to approve the takeoff by toggling a switch on the RC as described in Section 11.1.
During the flight, health checks of the rate of crucial data streams are performed, control errors
are monitored, and innovation of state estimation corrections are analyzed. When any of the
monitored values exceeds a critical threshold, an emergency landing is initiated to minimize the
damage to the platform. A technique based on data from the downward-facing depth camera
was developed to assure safe regular (not emergency) landing on planar low-slope surfaces
stored in LandMap (Section 7.5).

• Decision-making in artifact reporting. Due to the limited payload of the UAV, a
lightweight CNN was used for artifact detection, which forced us to choose a compromise
between precision and recall. Having a human operator to verify the artifact hypotheses allowed
us to maximize recall to not miss any artifact at the cost of a higher false positive count. A
correctly detected but misclassified artifact could still score a point if the operator correctly
deduced the class from the image (see Table 6). This would not have been possible using the
autonomous arbiter and thus the flexibility of a human operator overperforms the autonomous
arbiter, which optimizes a fixed criterion when reporting an artifact hypothesis.

• Computational resources The simulated run in Virtual Track was running only at a fraction
of real time and thus the employed algorithms had more computation time available. In the
Systems Track, the developed algorithms had to run on the onboard processing units in real
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time. Thus, for the simulation to real-world transfer, the algorithms need to be optimized,
critical systems prioritized, and often a compromise between accuracy and computation time
has to be found. We discuss all modifications and optimizations in Section 13.

16. Conclusion
This paper has presented the complex UAV system deployed in the final round of the DARPA SubT
Challenge after 3 years of development and testing in numerous real world demanding environments
(including gold mine, coal mine, abandoned nuclear power plant, caverns, military fortress, natural
caves, old factory hall, subway station, etc.). Based on these unique opportunities and experience,
we have designed both the hardware UAV platform and the multi-UAV software with a focus on
the exploration of such vast, complicated, and varying environments.

In the Systems Track of DARPA SubT Challenge, three UAVs were deployed alongside ground
robots into the competition course consisting of a heterogeneous environment of the tunnel, urban,
and cave sections, where the aerial team detected and localized four artifacts and traveled 492 m in
total. The austere conditions of the circuit, such as narrow passages, dust, featureless corridors, and
dynamic obstacles, tested the reliability of the system as a whole, including the hardware design of
a compact platform with a considerable flight time of 25 min. Most of the testing was realized in
environments where it performed exceptionally well, including a former brewery where the UAV had
to explore an abandoned building with partially collapsed floor and ceiling, or during the exploration
of Byci Skala (Bull Rock Cave) in the Moravian Karst cavern system. Compared to ground robots
the UAVs could search a larger volume of space because they could easily fly over any encountered
problematic terrain such as mud, water, and rubble and thus had an advantage in the exploration
of unknown terrains with unexpected obstacles. Furthermore, the worlds of the Virtual Track of
the competition were also very large; even with our UAV possessing a 25 min flight time and fast
dynamics, they were not able to reach the furthest parts of some worlds. Although our system was
designed primarily for these large-scale environments, its performance in the challengingly tight
corridors of the prize round was also impressive. The difficulty of UAV deployment in such adverse
environments motivated numerous achievements beyond the state of the art that are summarized
in this paper. Many lessons were learned in the process that could facilitate and support designing
complex robotic systems in similar applications in the future.

A larger team of five aerial robots was deployed in the Virtual Track, alongside two UGVs.
By employing the proposed cooperative exploration strategies based on topological map sharing,
the exploration effort of our team was spread out over a wider area. Together with dynamic flight
and reliable artifact detection/localization, this helped to achieve the 2nd place with 215 scored
points. Moreover, seven out of the nine participating teams used our X500 UAV, which was modeled
according to the specification of the physical platform thanks to its long flight time, a wide array
of sensors, modest size, and reasonable price.

Based on the successful deployment in the DARPA SubT, which focused on providing challenging
conditions typically encountered during rescue missions in underground environments, we conclude
that the presented UAV system is a valuable addition to teams of first responders, as it can provide
situational awareness and even find survivors after a catastrophe without risking the lives of rescuers
in dangerous environments.
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Chapter 4

Cooperative sensing by robotic teams

The first core publication [3c] related to the field of cooperative sensing presents a
UAV-based autonomous data collection approach for realization of RTI. The RTI documen-
tation technique [43] involves capturing a set of images of an object taken from a stationary
camera position with each image under illumination from a different, but known direction.
This method is often used in contexts like art conservation and restoration, where detailed
surface texture documentation is of high interest. The author carried out the design of the
novel approach that allows for obtaining the data required for the realization of the RTI
method in areas that are not suitable for conventional approaches [129]–[131], which need the
scanned objects to be directly accessible for humans. The proposed framework utilizes a team
of cooperating UAVs and builds upon the author’s previous work on formation flight in co-
operative sensing scenarios [16a]. The motion planning efficiency of this system was enhanced
in the author’s subsequent research [12a] by formulating the sequence of visits to particular
locations as the Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS). The
introduced framework for the realization of RTI is an essential part of the DRONUMENT1

system, which was developed for the documentation of historical buildings with the use of
multi-rotor UAVs. Although the proposed method is primarily designed for the realization of
the RTI method in high-above-ground locations, it is applicable in general cooperative data
collection scenarios with restrictions on occlusions in the field of view of the documentation
sensor. This adaptability makes it a valuable tool for a wide range of applications beyond its
initial focus on cultural heritage documentation.

The contribution of the author of this thesis on this work is 60%, with co-authors
providing feedback on the designed method and the manuscript, and help with the real-world
experiments.

[3c] V. Krátký, P. Petráček, V. Spurný, and M. Saska, “Autonomous reflectance
transformation imaging by a team of unmanned aerial vehicles,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2302–2309, 2020

The task of documenting historical structures also motivated the second core publi-
cation [4c], which describes a complete framework for documentation and inspection of the
interiors of historical monuments using UAVs. The proposed framework addresses the entire
documentation process from the initial survey through planning of the missions, autonomous
control and navigation software stack deployed in actual documentation process, up to process-
ing of collected data for the end-users. The automation of the documentation process allows
for repeatable, frequent monitoring of the objects’ states, and thus helps to prevent irreversible
damage, while not restricting the regular use of the objects (such as with building scaffold-
ing). The manuscript presents an approach to realization of various advanced documentation

1https://mrs.felk.cvut.cz/dronument
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techniques and achieved results, including application of the framework in the documenta-
tion of historical structures of various size and characteristics. Furthermore, the manuscript
outlines a methodology that has been officially recognized and approved by the Czech Min-
istry of Culture as the standard approach for using multi-rotor UAVs in the documentation
of historical structures. Apart from contributing to the field of UAV-based documentation,
this publication also represents a significant advancement in the preservation and study of
cultural heritage, demonstrating the practical and impactful application of automated UAV
technology in sensitive and historically significant environments.

The contribution of the author of this thesis on this work is 41%, with the author being
one of two co-first authors with an equal contribution to this work. The particular author’s
contributions reside in the methodology, writing the manuscript, designing and implementing
the cooperative documentation techniques and planning documentation missions, including
supporting software, realization of the experiments, and data processing and analysis.

[4c] P. Petráček, V. Krátký, T. Báča, M. Petrĺık, and M. Saska, “New era in cul-
tural heritage preservation: Cooperative aerial autonomy for fast digitalization of
difficult-to-access interiors of historical monuments,” IEEE Robotics & Automa-
tion Magazine, pp. 2–19, 2023

The author’s last core publication oriented towards cooperative sensing is motivated by
autonomous aerial filming with additional lighting provided by a team of UAVs. Generating
trajectories for aerial cinematography that are optimal and satisfy all constraints being im-
posed by a task and the environment is a complex, generally non-convex problem, for which
finding the solution in real-time onboard UAVs is impractical. In the proposed work, the
problem of generating trajectories is decoupled to a sequence of less complex subproblems. As
a result, the proposed method is able to generate trajectories on a longer horizon, enabling
utilization of this approach in applications requiring higher velocities, such as dynamic target
following. A concept of convex decomposition of free space is applied to identify the space of
feasible solutions to make the use of a longer horizon possible without introducing additional
assumptions on the environment. This technique helps in avoiding unnecessary approxima-
tions in the environment representation and also makes the computational requirements for
the whole method independent of the number of UAVs in the team. The method is generally
applicable in coordinated navigation of a formation of UAVs through complex environments,
with a possible application in cooperative monitoring of a static or dynamic target. In the
author’s subsequent work [18a], [20a], the proposed approach was further extended to allow
for simultaneous monitoring of a human worker from various directions and interaction with
a human using gestures.

The author of this thesis contributed 38% to this publication, including the initial idea,
methodology, implementation of the system, simulation and experimental validation of the
method, and writing the manuscript.

[5c] V. Krátký, A. Alcántara, J. Capitán, P. Štěpán, M. Saska, and A. Ollero, “Au-
tonomous aerial filming with distributed lighting by a team of unmanned aerial
vehicles,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7580–7587,
2021
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Autonomous Reflectance Transformation Imaging
by a Team of Unmanned Aerial Vehicles

Vı́t Krátký , Pavel Petráček , Vojtěch Spurný , and Martin Saska

Abstract—A Reflectance Transformation Imaging technique
(RTI) realized by multi-rotor Unmanned Aerial Vehicles (UAVs)
with a focus on deployment in difficult to access buildings is
presented in this paper. RTI is a computational photographic
method that captures a surface shape and color of a subject and
enables its interactive re-lighting from any direction in a software
viewer, revealing details that are not visible with the naked eye.
The input of RTI is a set of images captured by a static camera,
each one under illumination from a different known direction. We
present an innovative approach applying two multi-rotor UAVs
to perform this scanning procedure in locations that are hardly
accessible or even inaccessible for people. The proposed system
is designed for its safe deployment within real-world scenarios
in historical buildings with priceless historical value.

Index Terms—Aerial Systems: Applications, Cooperating
Robots, Multi-Robot Systems

I. INTRODUCTION

REFLECTANCE Transformation Imaging (RTI) is an
image-based rendering method widely used by experts in

the field of archaeology, restoration and historical science [1]–
[7]. Based on the set of images with varying known lighting, a
representation of an image is produced by RTI, that enables to
view a captured object lit from an arbitrary direction and there-
fore to easily inspect the three-dimensional character of the
object without the need to capture thousands of photographs
with lighting from all possible directions.

The most traditional approaches for gathering the desired
set of images is an RTI dome (see Fig. 1a) and the Highlight
RTI method [8]. The RTI dome includes tens of light-emitting
diodes (LEDs) placed on the inner surface of a hemisphere
and a camera placed on its top. During the image capturing
phase, the RTI dome is placed above the scanned object, and
the LEDs are sequentially lit up while the camera is capturing
images. Each image is then labelled with the corresponding
lighting vector computed from the known position of particular
LEDs.

Using the Highlight RTI method (H-RTI), a source of
light is manually placed at unknown positions in a constant
distance from the scanned object, while a camera mounted
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on the tripod is capturing images. Respective lighting vectors
are then computed from the reflection detected on the high
reflective object (metal ball) placed next to the scanned artifact.
An example of a setup for the H-RTI method is illustrated
in Fig. 1b.

(a) RTI dome (b) highlight RTI

Fig. 1: Illustration of traditional approaches to the realization
of RTI method. Image sources: https://www.idigbio.org/wiki/images/7/70/Graham 0429.pdf and https://
historicengland.org.uk/images-books/publications/multi-light-imaging-heritage-applications/heag069-multi-light-imaging/

The drawback of both methods is that the scanned object
has to be directly accessible to humans, which is difficult
to achieve in large historical and sacred buildings. Thus it
significantly limits the usage of this very powerful technique.
We propose to solve this problem by applying two cooperating
multi-rotor UAVs equipped with a camera and light source.
The UAV team is able to gather the set of images with
corresponding lighting vectors of objects located at places
hardly accessible or even inaccessible for people, and much
faster than using the H-RTI approach. During the scanning
process, the UAV carrying a camera is hovering steadily in
the air, while the UAV equipped with a light source is flying
around to provide the lighting from different directions.

Although the scanning process could be performed man-
ually, regardless of the experience of operators, the manual
navigation of UAVs to desired positions is typically less
precise than in the case of autonomous control. Moreover,
the desired scanning locations are assumed to be located
high above the ground and hence far from the operators,
which increases the difficulty and danger of manual con-
trol of two UAVs flying close to each other. Therefore,
the proposed method relies on using two fully autonomous
and self-localized UAVs. Although we present the system as
autonomous, each UAV is supposed to be monitored by an
operator, who is prepared to take over the control in case
of an unexpected behavior. This requirement is given by
the aviation authority for flying outdoors (e.g., for scanning
statues, mosaics and plasters on the exteriors of churches and
castles - see video https://youtu.be/lTRqd1gQOAI) and by the
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heritage institute for flying indoors (see Fig. 2 and videos
from Saint Nicholas Church at Old Town Square in Prague
(https://youtu.be/g1NuPnLCFTg), Grotto Gorzanow, Poland
(https://youtu.be/6mRYxciDLCM), and St. Anne’s and St.
Jacob’s Church in Stará Voda (https://youtu.be/yNc1WfebIag),
where autonomous UAVs have been applied).

The presented application is specific due to cooperation
with experts from the Czech National Heritage Institute
(https://www.npu.cz/en), who have introduced requirements
and constraints, which are untraditional from the robotic point
of view. Therefore, two different approaches to the generation
of lighting positions and determination of an ideal sequence
of these positions to achieve sufficiently good coverage of
lighting for the RTI technique are presented in this paper. One
of them is based on the method using Fibonacci lattice [9] for
achieving approximately equal distribution of points on the
sphere, and it applies the approaches for the solution of the
Traveling Salesman Problem (TSP) to find a path connecting
these positions. The second proposed approach is aimed to
find a compromise among the optimality, robotic constraints,
and requirements of the aviation authorities and the heritage
institute that require paths producing predictable and easy to
follow movement of UAVs, which is optimal regarding the
UAV deployment in historical buildings.

Fig. 2: Deployment of the proposed system for autonomous RTI
by a team of UAVs in Church of St. Mary Magdalene in
Chlumı́n. Multimedia material of the experiment is available at
http://mrs.felk.cvut.cz/papers/rti2020ral.

A. State-of-the-art and contribution

Single manually controlled UAVs are being commercially
used in numerous scenarios, both outdoor and indoor. Nev-
ertheless, the number of possible applications can be sig-
nificantly increased by introducing autonomous cooperative
teams of UAVs, which is the aim of this paper. One of such
applications is the documentation of interiors of historical
buildings with distributed lighting, which is motivated by
the preservation of cultural heritage in the form of digital
documentation [10]. It provides the ability to perform later
reconstructions of already destroyed historical buildings or art
pieces, and also provides the ability to analyze this data and
plan the future restoration work without repetitive direct access
to particular artifacts.

The documentation of buildings is problematic due to its
time complexity and limited accessibility by humans, which
naturally leads to the introduction of semi-autonomous or
autonomous systems developed for this purpose. Works related
to the scanning of buildings are mostly interested in the
planning of the best sensing locations [11]–[13] and only a

few of them aim to exploit autonomous vehicles. In [14],
an unmanned ground vehicle (UGV) equipped with a laser
scanner capable of autonomous planning of scanning locations
and moving through a large scale outdoor environment is
introduced. In [15], authors exploit advantage of UAV systems
to operate in larger space by applying them to autonomous in-
spection of industrial chimneys. Regarding the documentation
of particular artifacts in interiors of historical buildings, the
only work we have found is [16], where technology assisting
an operator of a single UAV explicitly developed for this
application is described.

Regarding the multi-robot systems works presenting sys-
tems deploying UGVs or UAVs for the documentation or
mapping of buildings, the robotic groups are focused on
reducing the overall mission time or on expanding the scanned
area [17], [18], but the direct cooperation of robots is not
exploited. The cooperative lighting by a UAV team introduced
in [10], and extended for use of the RTI technique in this
paper, is unique in comparison to all the aforementioned works
since it employs a team of cooperating UAVs in tasks that
cannot be solved by a single UAV only in principle. The
proposed method in [10] is exceptional in its approach to
actively influence its surrounding environment in order to
increase quality and variety of gathered digital material.

In this work, we introduce the first system for autonomous
realization of the RTI technique independent on the location
of scanned objects, which takes the advantage of our previous
works on formation control [10], [19]–[21].

II. PROBLEM DESCRIPTION
The problem of autonomous realization of Reflectance

Transformation Imaging technique consists of 1) determining
a set of desired positions of a light source, 2) finding a feasible
trajectory so that a UAV can provide illumination from these
positions, 3) precise mutual localization of UAVs, and 4)
processing the captured images for computation of the desired
representation of an image. The team of UAVs consists of one
UAV equipped with a high-resolution camera and one UAV
carrying a light source. Both UAVs are assumed to be capable
of steady hovering in the air and controlling the orientation of
the camera and the light independently of their motion.

We suppose that the UAVs operate in a known environment
represented by a map, obtained from a three-dimensional scan
of the historical building, and they are equipped with necessary
sensors and software for their precise localization and state
estimation [22]. The map of the environment is obtained
from a three-dimensional terrestrial laser scanner, providing
an incomplete map with missing data in occluded out-of-view
locations. Such map is sufficient for localization, however
does not provide sufficiently precise and complete models of
particular artifacts. Requirements on the scanning process of
an object are given by specification of the RTI technique [23]
and a position of the object selected for scanning is known
prior the mission. Both UAVs are able to accurately follow
the trajectory given by the sequence of configurations in an
available map of the environment [24].

The output of the system is the requested representation of
the image computed from the set of images taken with the
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camera carried by the UAV. Corresponding lighting vectors,
which are needed for computation of this representation, are
obtained from a known position of the scanned object and
positions of the UAV carrying the light.

III. PRELIMINARIES
A. Reflectance Transformation Imaging

Reflectance Transformation Imaging (RTI) is an image-
based rendering method used for obtaining a representation
of an image that enables it to be displayed under arbitrary
lighting conditions. One type of such representation is the
Polynomial Texture Map (PTM), which was proposed by
T. Malzbender [23]. In contrast to the common representation
of an image, where each pixel has assigned three static
values for red, green and blue color (RGB), the simplified
version of PTM represents the intensity of each color channel
Ic,x,y, c ∈ {red, green, blue} of the pixel at position (x, y)
by function

Ic,x,y = f(lu, lv), (1)

where lu and lv are elements of lighting vector and the func-
tion f(·) is a second-order bi-quadratic polynomial function
with varying coefficients αi,c for particular pixels (x, y). Thus
the intensity Ic,x,y of each color can be interpreted as

Ic,x,y = α1,cl
2
u + α2,cl

2
v + α3,clulv + α4,clu+

+α5,clv + α6,c, c ∈ {red, green, blue}.
(2)

The input of the RTI method is a set of images taken from
the same viewpoint under varying known lighting conditions,
where each image in the set has assigned corresponding
lighting vector. With the use of this data, coefficients in
equation (2) can be computed for all pixels and their color
channels (see [23] for details).

B. Localization
Precise determination of position and orientation of UAVs

is a crucial assumption for the good performance of the intro-
duced documentation method. Since we aim at the deploying
of the system mostly in indoor environments, we rely on the
approach presented in [25], which is capable of working in en-
vironments without a sufficient signal from Global Navigation
Satellite Systems (GNSS). The method requires UAVs to be
equipped with one 360◦ laser scanner (such as a lightweight
RP-Lidar), and two distance sensors (e.g., Garmin LIDAR-
Lite v3) oriented downwards and upwards with respect to the
frame of UAV. A combination of Iterative Closest Point (ICP)
and particle filter algorithm is applied to find the position
and orientation of the UAV relative to a three-dimensional
point cloud of the environment obtained from a terrestrial laser
scanner.

IV. DISTANT AUTONOMOUS RTI METHOD
Methods designed for the realization of the RTI scanning

technique by a team of UAVs, which are described in the
following sections, are highly influenced by the requirements
of experts from the field of restoration and historical science,
where key factors are safety and deployability independently
to an external infrastructure.

A. Generation of the set of lighting positions

To achieve a good coverage of lighting to a general object
during RTI scanning, the lighting vectors need be uniformly
distributed over the range defined by the minimum and
maximum lighting angles in horizontal (λh,min, λh,max) and
vertical (λv,min, λv,max) direction. The intensity of lighting
presented at the scanned object should be the same for all
lighting directions.

Given these two requirements and assumption that the
intensity of the light source is constant, we can determine that
the desired positions of light sources are distributed on a cap of
the sphere with its center located at the position of the scanned
object. This task can be defined as the problem of uniform
distribution of points on the sphere. Since this problem has
an exact solution only for particular cases [26], we apply an
approximate approach based on the Fibonacci lattice. Inputs
of this process are the number of desired lighting positions
to be uniformly distributed over the area defined by angles
λd,m, d ∈ {h, v}, m ∈ {min,max}, position of an Object of
Interest (OoI), and the desired lighting distance. The resulting
set of points Λc computed within this process is constructed
as

Λc = Λ ∪ Pi, (3)

where Λ is the set of desired lighting positions and Pi ∈ R3

is the initial position of the UAV carrying the light.

B. Determination of the optimal sequence

An optimal closed path connecting all the desired RTI
lighting positions in the set Λc with respect to a certain
criterion (minimum energy, shortest path, minimum time)
needs to be found. This problem can be defined as TSP,
which is usually solved by splitting it into two subproblems
- finding paths between all possible pairs of positions from
the set Λc and finding the optimal sequence of these paths
with respect to a certain criterion. The final path is then given
as a connection of paths in the optimal sequence. Using this
approach, it is difficult to guarantee feasibility of a composed
path with respect to constraints given by the kinematic model
of a moving robot. Nevertheless, the RTI method requires a
static illumination while capturing an image, and so the UAV
carrying the light has to be static for taking each picture in
the sequence. Therefore, the UAV should stop at every position
from Λc and the problem of an unfeasible path in connections
of curve segments does not need to be considered here.

Considering the expected application of the system, we
propose to use the minimum energy as the optimization
criterion for the solution of proposed alternative of TSP, which
also leads to maximization of possible flight time. Based on
our experiments, the energy consumption along the closed
trajectory flown at constant velocity is proportional to the
length of this trajectory and does not depend on the direction
of flight. By combining the observations mentioned above
and considering an obstacle-free environment, the problem
of finding the optimal sequence of the lighting positions
is completely defined as the Euclidean TSP (ETSP). For
solution of this problem, we have applied the solver using
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Lin-Kernighan heuristic [27] (LKH solver), which belongs to
the most efficient approximate algorithms for solution of TSP.
An example of path produced with the described approach
(further referenced as Fib-LKH) is presented in Fig. 7c.

C. Safety pilot predictable approach (SPPA)

In this section, we present an alternative approach to the ob-
taining of scanning plan that aims at the generation of lighting
positions close to uniform distribution and finding a short path
connecting these positions while complying to requirements
on human predictability of the resulting trajectory. Thus this
method decreases the time needed for recognition of the faulty
behavior by a safety pilot, who monitors the UAV during the
scanning process. This approach is motivated by a technique
used by restorers during the manual acquisition of images for
RTI method in [28].

The proposed method for obtaining the set of desired
lighting positions uses as inputs the border lighting angles
λd,m, d ∈ {h, v}, m ∈ {min,max}, the position of scanned
object POoI ∈ R3, the orientation of camera defined with yaw
and pitch angle (ψcam, ζcam), the desired distance between the
light and scanned object dl, and the desired number of samples
of the lighting angles vs in vertical direction for which holds
vs ≥ 2. In the first step of the method, a set of samples of
vertical lighting angles Λv from interval 〈λv,max, λv,min〉 is
obtained so that they are equally distributed over this interval,
|Λv| = vs, min(Λv) = λv,min and max(Λv) = λv,max. Sub-
sequently one spline on which possible positions of the light lie
is constructed for each sample λv from Λv . These splines are
parts of a circle and with given POoI = [xOoI , yOoI , zOoI ]

T

are defined as

xs = xOoI − dl cos(λv + ζcam) cos(λh + ψcam),

λh ∈ 〈λh,min, λh,max〉
ys = yOoI − dl cos(λv + ζcam) sin(λh + ψcam),

λh ∈ 〈λh,min, λh,max〉
zs = zOoI − dl tan(λv + ζcam).

(4)

The splines defined by equation (4) are graphically illustrated
in Fig. 3a. The desired distance between the lighting positions

OoI

(a) illustration (b) experiment in real environment

Fig. 3: The example of the generated set of RTI goals marked
with green dots and arrows. The yellow rectangle identifies the
scanned object, and the blue curves indicate the horizontal splines,
that represent possible positions of the RTI goals.

on one spline sd is determined by the equation

sd =
dl(λv,max − λv,min)

vs
, (5)

which corresponds to the shortest distance between two neigh-
boring splines traveled on the surface of the spherical cap. The
number of lighting positions on each spline is defined as

ns(λv) = 1 +

⌊
dl cos(λv)(λh,max − λh,min)

sd

⌉
. (6)

The set of sample positions Λh(λv) on spline corresponding
to angle λv is obtained as

Λh(λv) =

{
λh,min +

λh,max − λh,min
2

}
, (7)

if ns(λv) = 1 and

Λh(λv) =

{
λh,min + k

λh,max − λh,min
ns − 1

∣∣∣∣

k ∈ {0, 1, . . . , ns − 1}
}
,

(8)

if ns = (λv) ≥ 2. The complete set of the desired lighting
positions Λc generated with the SPPA is defined as

Λc = {Λh(λv)|λv ∈ Λv} ∪ Pi. (9)

As the first step of the SPPA, the current position of the
UAV carrying the light is added at the beginning of the ideal
sequence of the RTI positions Sp. Then the closest pair of the
RTI positions Ps, Pe ∈ R3 on the vertical boundaries needs
to be found to select the higher one as the start point and the
lower one as the end point among RTI positions. For Ps, Pe
holds

Ps, Pe = arg min
Pi,j ,Pk,l

dist(Pi,j , Pi) + dist(Pk,l, Pi),

s.t. i = k + 1, (10)
(j, l) ∈ {(1, 1), (|λh,i|, |λh,k|)},

where Pi,j stands for the RTI position in the i-th row and
j-th column, function dist(·) returns the Euclidean distance
between two positions given as arguments, and λh,i stands
for the set of RTI positions in the i-th row. The position Ps
is then added to the sequence of positions Sp. After that,
all positions on the vertical boundary on the way up to the
highest row are added to Sp. By these three steps, one of the
corner positions in the highest row is reached. In the following
stages, the procedure depends on the number of rows.

In the case of an even number of horizontal rows, the RTI
positions are added line by line with switching the left-right
and the right-left direction, and omitting the points that lie
on the same vertical boundary as Ps. After reaching the last
admissible position in the most bottom row, the remaining
points are added from the bottom row up to and including
the Pe into Sp. Finally, the Pi is added at the end of the
Sp to ensure the return to the initial position. The graphical
illustration of this process is shown in Figures 4a, 4b and 4c.

The solution for an odd number of horizontal lines is
derived from the solution for even number of rows with
several modifications. Firstly, the pair of consequent horizontal
lines (indicated by pair of indices (ho,1, ho,2)) with minimum
number of RTI positions is determined. Then, the solution
for an odd number of rows is the same as in the case of
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(a) (b) (c)
Fig. 4: Illustration of the procedure of determining the safety pilot
predictable sequence of RTI positions for even number of horizontal
rows. The green dot marks the initial state Pi, the blue dots stand
for the unvisited RTI positions, and the red dots for already visited
RTI positions. The arrows show the transitions between particular
RTI positions, where the red arrows stand for the transitions added
during the last step.

even number of rows until the procedure reaches the pair
(ho,1, ho,2). The particular RTI positions within this pair of
rows are traversed either in an up-side-down-side manner
(see Fig. 7a for example), or by following the positions in
row ho,1 to the opposite side, then flying back to the starting
side of row ho,2 and again following this row to the opposite
side. From there, the situation and also the solution is again
the same as in the case of an even number of rows.

D. Trajectory Generation and Tracking

The desired trajectory for the RTI (Ω) is generated by
the sampling of direct straight paths between consequent RTI
positions with the sampling distance dRTI (computed based
on the desired velocity), without considering any obstacles.
To achieve precise lighting conditions, the UAV carrying the
light is supposed to hover at the desired position while taking
a photo. This requirement is introduced into the presented
system by multiple recurrences of the desired RTI position
as the transition point of Ω after each fly-over to the next RTI
position. The number of these repetitions is proportional to
the time required for the stabilization.

To achieve a reliable following of the desired trajectory
Ω in an environment with obstacles and in the presence of
disturbances, which cannot be omitted in real systems, the
trajectory tracking during the RTI procedure is defined as an
optimization task within the MPC framework in the proposed
system. Thanks to the independence of the position and ori-
entation control in case of multi-rotor UAVs, the optimization
loop can be divided into two separate tasks.

The position control is defined as a nonlinear constrained
optimization task over a sequence of control inputs Up(t)
starting at time t with an objective function Jp, and set of
nonlinear constraints gp(·) on the horizon of length N as

Up(t)∗ = arg min Jp(Up(t)),
s. t. gp(Up(t),O(t)) ≤ 0,

(11)

where O(t) is the set of all obstacles present at time t in the
environment, including the UAV carrying the camera.

The objective function Jp(·) is defined as the weighted sum

Jp = αJpos + βJc + γJobs + δJrti, (12)

where Jpos stands for the part penalizing the deviations from
the desired trajectory, Jc is the part penalizing the changes
in sequence of control inputs, and Jobs responds for the

penalization of trajectories in the proximity of obstacles. The
value of Jp is increased by adding Jrti for trajectories that
lead to occlusions caused by the UAV carrying light or lead
to shades in the image caused by the lighting from behind
the UAV carrying the camera. Coefficients α, β, γ, and δ are
weights used for the scaling of particular parts of the objective
function.

The function Jrti, which was proposed specifically for this
application, is defined as

Jrti =
N∑

k=1

(
min

{
0,
dFoV (k)− rd,FoV
dFoV (k)− ra,FoV

})2

, (13)

where rd,FoV and ra,FoV are detection and avoidance radii
with respect to camera Field of View (FoV), and dFoV (·)
stands for the distance from the nearest border of the FoV.
This distance can be computed according to equations

dxy(k) =
√

(xc(k)− xl(k))2 + (yc(k)− yl(k))2,

βdiff,h(k) = min{αdiff,h(k), π − αdiff,h(k)},
βdiff,v(k) = min{αdiff,v(k), π − αdiff,v(k)},

dFoV,xy(k) = dxy(k) sin

(
βdiff,h(k)− AoVh

2

)
, (14)

dFoV,z(k) = dist(Pl(k), Pc(k)) sin

(
βdiff,v(k)− AoVv

2

)
,

dFoV (k) =
√
dFoV,z(k)2 + dFoV,xy(k)2 − rd,

where Pl(k) = [xl, yl, zl]
T and Pc(k) = [xc, yc, zc]

T is the
position of UAV carrying light and UAV carrying camera at
the time corresponding to k-th transition point. AoVh and
AoVv are horizontal and vertical angles of the camera FoV,
dFoV,xy(k) is the distance to the nearest vertical border of
FoV, dFoV,z(k) is the distance to the nearest horizontal border
of FoV, and rd marks the radius of the UAV. αdiff,h(k) and
αdiff,v(k) stand for the angle between the nearest vertical
respectively horizontal border of the FoV and connecting
line between UAV carrying camera and UAV providing light.
βdiff,h(k) and βdiff,v(k) are equivalent to αdiff,h(k) and
αdiff,v(k), but besides the FoV of the camera, they include
also the FoV of the virtual camera pointed in the exact opposite
direction than the real camera. With this alteration, the Jrti
penalizes not only the occlusion caused by the UAV carrying
the light but also the shadows visible in the FoV caused by
lighting from behind the UAV carrying the camera, which
is important for the RTI image processing. The graphical
illustration of symbols used in equation (14) is shown in Fig. 5.

The set of nonlinear constraints gp(·) ≤ 0 can be broken
down into the following constraints

gc(Up(k)) ≤ 0,∀k ∈ {1, ..., N},
gobs(Pl(k),O(t)) ≤ 0,∀k ∈ {1, ..., N},

grti(Pl(k),O(t), ψc(k)) ≤ 0,∀k ∈ {1, ..., N},
(15)

where ψc(k) stands for the configuration of the UAV carry-
ing camera, gc(·) includes the limitations on control inputs,
gobs(·) defines the infeasibility of trajectories colliding with
obstacles, and grti(·) complements the objective function Jrti
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Fig. 5: Graphical illustration of meaning of particular symbols used
in equations (14) for computation of part of the objective function
penalizing the occlusion caused by the UAV carrying a light

by defining the entire FoV as an unfeasible region.
In a similar manner, the process of finding the optimal

sequence of orientation control inputs Uo(t) on the horizon
of length N can be defined as the quadratic constrained
optimization task with the objective function Jo(·) and set of
nonlinear constraints go(·) as

Uo(t)∗ = arg min Jo(Uo(t)),
s. t. go(uo(k), Oj(k)) ≤ 0,∀k ∈ {1, ..., N}. (16)

The objective function Jo(·) consists of two parts

Jo = ζJor + κJco, (17)

where Jor is the part penalizing the deviation from the desired
orientation of light, Jco stands for the part penalizing the
fast changes in consequent control inputs uo(·), and ζ and
κ are weights used for scaling of parts of the objective
function Jo(·). The set of nonlinear constraints go(·) ≤ 0,
∀k ∈ {1, ..., N} can be split into the following constraints

gco(uo(k)) ≤ 0,∀k ∈ {1, ..., N},
gor(Ol(k)) ≤ 0,∀k ∈ {1, ..., N}, (18)

where Ol(·) is the orientation of the light carried by the
UAV, gco(·) stands for the constraints introducing the limits on
control inputs, and gor(·) introduces the limitations on angles
that define the orientation of the light.

V. EXPERIMENTAL RESULTS

A. Performance of generation of lighting positions sequence

The purpose of this section is to qualitatively and quanti-
tatively compare algorithm SPPA, FIB-LKH and their com-
bination which applies SPPA part for the generation of
the desired lighting positions and LKH solver for find-
ing a path connecting these positions (further referenced
as LKH). The test was performed on the testing case
of 10000 samples, each with randomly chosen parameters
λv,min, λv,max, λh,min, λh,max, dl, vs, and initial position of
the UAV carrying the light Pi.

The quality of solutions was compared regarding time re-
quirements and the length of the resulting path. Concerning the
CPU time, the SPPA is faster than the others. However, since
the total CPU time needed by any method does not exceed
0.5 s for all considered problems (computed on the single-
core CPU Intel CORE i7 8250), this aspect is not important

for our application. More significant parameter is the length
of the paths produced by particular methods. Considering this
criterion as the comparison value, SPPA is better or equals
to LKH solution in 9% of test samples and is not longer
by more than 50% in 98% of test samples. Paths generated
by FIB-LKH approach are mostly the shortest among all
methods. However, they do not fully exploit the borders of the
defined scanning area (see Fig. 7c). More detailed results of
the quantitative comparison are shown in Fig. 6. Examples of
generated sequences by particular methods used for qualitative
comparison are shown in Fig. 7.
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Fig. 6: Comparison of length of paths obtained by SPPA, LKH, and
Fib-LKH approach

(a) (b) (c)
Fig. 7: Comparison of the solution obtained with SPPA (a), the
solution generated by LKH method (b), and the solution generated
by Fib-LKH approach (c). The orange dashed line marks the borders
of the defined scanning area.

B. Verification of the overall RTI approach

The deployability of the SPPA method for the realization
of RTI scanning, which was chosen together with experts
from the Czech National Heritage Institute, who are potential
end users of the proposed system, as the best variant for its
real deployment, was verified through several experiments in
the realistic robotic simulator Gazebo and within real-world
experiments deploying two autonomous UAVs in the interior
of the Church of St. Mary Magdalene in Chlumı́n.

The presented simulation in which the RTI scanning proce-
dure is performed on the statue situated above the altar leads to
the generation of 56 RTI positions and the resulting trajectory
of the overall length 110.55 m. The set of generated points
together with the trajectory flown by the UAV carrying the
light are shown in Figure 8. In compliance with the theory
presented in section IV, the UAV carrying light stops at each
reachable RTI position and waits until an image is taken by the
UAV carrying the camera. In this way, the system collects 56
images of the scanned object under various lighting conditions.
The images are then registered to each other to compensate
for the motion of UAV carrying a camera during the scanning
process. Based on the registered images and the file containing
the information about corresponding lighting directions, the
PTM representation of the image is computed with the use of
program PTM Fitter.
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Fig. 8: The generated RTI positions and the trajectory flown by the
UAV carrying the light during the RTI scanning procedure. The blue
dots mark particular RTI positions, the red dot marks the position of
the scanned object, and the blue line shows the trajectory.

The main advantage of obtaining the PTM from the set
of images is that the image can be displayed under arbitrary
lighting conditions. Since this result can be hardly presented
within the printed work, the resulting PTM representation
of the scanned object, obtained from the images taken by
an onboard camera, is shown in the video available at http:
//mrs.felk.cvut.cz/papers/rti2020ral.

The real experiment was adapted to fit into the restricted
space of the church in Chlumı́n. To enable the comparison
of results of the proposed method and H-RTI, the object
of interest (part of the pulpit) was chosen in the height
accessible by people and it was illuminated from the same
12 positions (see Fig. 3b) by two different approaches - with
the camera carried by an autonomous UAV (see Fig. 2) and
with the camera mounted on a static tripod (see Fig. 12c).
The latter approach eliminates the imprecision caused by the
camera motion and hence enables the objective comparison
of the results obtained from the same set of images with
lighting vectors computed from the reflections on the black
ball (H-RTI) and from the position of the light-carrying UAV
provided by the application-tailored localization system [25].
The images generated based on the PTM representation of the
scanned object are shown in Fig. 9 and in the video available
at http://mrs.felk.cvut.cz/papers/rti2020ral.

(a) upper-left light (b) left light (c) bottom-right light

Fig. 9: Presentation of the PTM representation of the scanned object
obtained from images taken by UAV during the RTI experiment
performed in Church of St. Mary Magdalene in Chlumı́n. For video
see http://mrs.felk.cvut.cz/papers/rti2020ral.

C. Dependence of PTM quality on precision of localization
To examine how the precision of localization affects the

quality of the resulting PTM, a simulation-based quantitative
comparison was conducted. The whole RTI procedure was
performed on a lion statue with localization error sampled
from the normal distribution with zero mean and multiple
distinct values of standard deviation. The normal map obtained
using SPPA (60 positions) and a modelled localization error
is compared to the normal map obtained with SPPA (360
positions and zero localization error) used as ground truth.
The results of this comparison are presented in Fig. 10. The
average difference from the ground truth normals for the nor-
mal map obtained for the precision of localization presented
in [25] is 0.026 rad (see Fig. 11 for details). This value is lower
than the average difference caused by the misplacement of
the reflective ball with respect to the center of the scanned
object within the H-RTI procedure, which is unavoidable in
this method.
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Fig. 10: The dependence of the average error in normals δ on the
simulated localization error represented by N (0, σ2) for positional
error (m) and N (0, ( 2πσ

36
)2) for orientation error (rad). Values of δ

for a particular σ is computed as an average result of 20 experiments.

(a) (b) (c)

Fig. 11: Comparison of the normal map obtained with SPPA (360
positions and zero localization error) (a) used as a ground truth
and normal map obtained with SPPA (60 positions and localization
error (m) modeled by N (0, 0.09) for position and N (0, 0.003) for
orientation) (b). Figure (c) shows the size of angle between normal
vectors in maps (a) and (b) for particular pixels.

D. Comparison of the proposed approach with H-RTI
For comparison of the proposed approach and H-RTI,

results of the RTI method in the form of normal maps are
presented in Fig. 12. These two normal maps were obtained
with lighting vectors computed by H-RTI method and with
lighting vectors computed based on the pose of UAV obtained
by the application-tailored localization system. Although the
ground truth measurement is not available, we can, based
on the known structure of the pulpit, claim that the results
obtained with H-RTI method are more precise especially in
the surroundings of the reflective ball.

However, the proposed method has an undeniable advantage
in realization of the RTI method in hardly accessible places.
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Moreover, under the condition of sufficiently precise localiza-
tion, which is achieved by the applied localization system [25],
the determination of lighting vectors is more precise than
its detection from reflections on the ball, which cannot be
placed directly in the center of a scanned object. The main
drawbacks with respect to manually performed RTI lie in the
inability to eliminate any camera motion. This issue is partially
solved by the image registration process, however, on the high
level of details, the imperfections of the alignment can cause
unsharpness in images generated from the PTM representation.
The camera motion, together with the high exposure time
required in dark conditions, also causes the blur in images
taken by the camera. However, this problem can be suppressed
by the mechanical stabilization of the camera or by use of light
source with higher power output, which enables the reduction
of exposure time.

(a) (b) (c)

Fig. 12: Comparison of the normal map obtained with SPPA (12
positions) with lighting vectors computed by H-RTI method (a)
and with lighting vectors computed based on the pose of UAV (b)
obtained by the application-tailored localization system [25]. The
setup for this experiment is shown in (c).

VI. CONCLUSION

The method for the realization of Reflectance Transforma-
tion Imaging with the use of a team of autonomous cooperative
UAVs is described in this paper. The method is designed
for two multi-rotor UAVs equipped with a camera and light
source that are capable of self-localization within a given
map of an environment. Three approaches to the generation
of sequences of RTI positions are presented, but only one
was approved by representatives of the heritage institute for
its deployment in historical objects. This solution includes
self-designed methods for generation of human-predictable
trajectories to enable simple monitoring of correct behavior
of particular UAVs by safety pilots, while preserving an effort
to generate short trajectories. The compromise between these
two criteria enables the safe deployment of the system in real-
world scenarios. The main advantage of the proposed solution
in comparison to already existing methods is the ability to
perform the RTI scanning procedure in places that are hardly
accessible or even inaccessible to humans.

The proposed approach was integrated into the system for
documentation of historical buildings proposed in [10] and its
practical applicability was tested in numerous experiments in
interiors of churches in realistic simulator Gazebo and within
the real experiment in Church of St. Mary Magdalene in
Chlumı́n. Outputs of these tests were evaluated by experts
from the field of historical science, who found the results
comparable with the results produced by already existing
methods, which are limited to accessible locations.
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Cooperative Aerial Autonomy for Fast Digitalization of Difficult-to-Access Interiors of Historical Monuments

Pavel Petracek∗×, Vit Kratky∗×, Tomas Baca∗, Matej Petrlik∗, and Martin Saska∗

Abstract—Digital documentation of large interiors of historical
buildings is an exhausting task since most of the areas of interest
are beyond typical human reach. We advocate the use of au-
tonomous teams of multi-rotor Unmanned Aerial Vehicles (UAVs)
to speed up the documentation process by several orders of mag-
nitude while allowing for a repeatable, accurate, and condition-
independent solution capable of precise collision-free operation
at great heights. The proposed multi-robot approach allows for
performing tasks requiring dynamic scene illumination in large-
scale real-world scenarios, a process previously applicable only
in small-scale laboratory-like conditions. Extensive experimental
analyses range from single-UAV imaging to specialized lighting
techniques requiring accurate coordination of multiple UAV. The
system’s robustness is demonstrated in more than two hundred
autonomous flights in fifteen historical monuments requiring
superior safety while lacking access to external localization. This
unique experimental campaign, cooperated with restorers and
conservators, brought numerous lessons transferable to other
safety-critical robotic missions in documentation and inspection
tasks.

I. AUTONOMOUS AERIAL ROBOTICS FOR
HERITAGE DIGITALIZATION

Digital documentation of large interiors of historical build-
ings is an exhausting task since most of the areas of interest
are beyond typical human reach. We advocate the use of
fully-autonomous teams of cooperating multi-rotor Unmanned
Aerial Vehicles (UAVs) to speed up the documentation process
by several orders of magnitude while allowing for a repeatable,
accurate, and condition-independent solution capable of pre-
cise collision-free operation at great heights. In particular, we
present a universal autonomy for UAVs cooperating aerially
within a team while documenting the interiors of historical
buildings for the purposes of restoration planning and docu-
mentation works, as well as for assessing the structural state
of aging historical sites. We show that the proposed approach
of active multi-robot cooperation enables performing docu-
mentation tasks requiring dynamic scene illumination in large-
scale real-world scenarios, a process previously applicable
only manually in areas easily accessible by humans.

The presented system was developed in cooperation with
cultural heritage institutions as part of the Dronument
project [1] and was deployed fully autonomously in numerous
characteristically diverse historical monuments, as exhibited
in Fig. 1 and Table III. The included experimental evaluation
utilizes UAVs in multiple real-world documentation tasks, and

∗ Authors are with the Department of Cybernetics, Faculty of Electrical
Engineering, Czech Technical University in Prague, Czech Republic.
× Pavel Petracek and Vit Kratky are co-first authors.
Corresponding author: pavel.petracek@fel.cvut.cz

discusses the quality of the obtained results used in subsequent
restoration works, as well as suitability of particular techniques
for UAVs. The analyses demonstrate the framework’s robust-
ness in single and multi-robot deployments in more than two
hundred fully-autonomous flights in fifteen historical monu-
ments. In these experiments, the aerial robots rely solely on
onboard sensors without access to external localization such
as global navigation satellite systems (GNSSs) or motion cap-
ture systems, which significantly increases deployability of the
system. This unique, extensive, experimental campaign, which
cooperated with restorers and conservators, brought numerous
lessons learned that are transferable to other safety-critical
robotic missions in documentation and inspection tasks. The
system also serves as a large part of an official methodological
study approved by the Czech National Heritage Institute for
its high added value in heritage protection. The methodology
(available at [1]) describes the proper usage of UAVs in histor-
ical structures for the first time and so prescribes the proposed
system to be a standard in this application.

II. BACKGROUND

Often serving educational, cultural, or social purpose, the
preservation of cultural heritage as a valuable reminder of our
history is in the greater interest of society. Cultural manage-
ment and preservation of historical monuments became a rele-
vant topic in the late 19th and 20th centuries when many valu-
able historical monuments were destroyed while establishing
modern infrastructure. By introducing cultural heritage preser-
vation into legislation, the monuments gained protection from
human interference. However, being exposed to real-world
conditions continually degrades historical buildings and arti-
facts within. This has initiated the endeavor to actively prevent
the irreversible damage of cultural heritage by monitoring its
condition and performing restoration and conservation works.

Conservation work on a historical artifact comprises four
consecutive phases: the initial survey, the choice of restoration
steps and costs evaluation, the actual restoration works, and
continued monitoring of the restoration. Both the initial survey
and monitoring phase require providing information about the
artifact in digital form (usually camera imaging). Thus, these
phases are considered a data collection task for which an
aerial vehicle, capable of gathering data in a cost-effective
and fast manner, can be of great help. This is especially true
for areas of interest which are located beyond typical human
reach, a situation often arising in tall historical buildings such
as churches and cathedrals. Apart from planning restoration
works, gathered digital materials can support the reconstruc-
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(a)

(b)

(c)

(d)

(e)

Fig. 1: Illustration of deployment of the presented methodology in selected historical buildings located in the Czech Republic — (a) Church
of the Exaltation of the Holy Cross in Prostějov, (b) St. Anne and St. Jacob the Great Church in Stará Voda by Libavá, (c) Church of St.
Maurice in Olomouc, (d) Church of the Nativity of the Virgin Mary in Nový Malı́n, and (e) Church of St. Bartholomew in Zábřeh. Center
images show the interiors of the churches with highlighted objects of documentation interest. Side images show actual deployment of UAVs
in the particular settings together with example images (highlighted in blue) captured by an onboard camera.
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tion of a structure in the event of its sudden accidental destruc-
tion (e.g., the burning of the Notre-Dame Cathedral in 2019).

III. ROBOTICS AND AUTOMATION IN CULTURAL
HERITAGE PRESERVATION

Documentation and digitalization of historical objects re-
quires gathering various types of data, e.g., camera images
in visible, infrared (IR) and ultraviolet (UV) spectra, and 3D
models. The data gathering is demanding in both time and hu-
man resources, particularly in large buildings. This motivates
the endeavor to automate data gathering by introducing mo-
bile robotic solutions capable of fast autonomous documenta-
tion.The first level of mobile-robot automation can be achieved
by applying Unmanned Ground Vehicles (UGVs) as carriers
of the documentation sensors. A UGV equipped with a laser
scanner and capable of autonomous navigation in constrained
environments can sequentially visit several locations to collect
a set of scans covering the entire operational space [2]. An
advantage of this approach lies primarily in reducing necessary
human participation in the scanning process, allowing for the
collection of scans from potentially dangerous areas. Several
systems applying such an approach were already developed
and deployed for scanning historical monuments [3], [4].

Whereas the operational space of UGVs usually does not
exceed typical human reach, multi-rotor UAVs capable of 3D
navigation in confined environments can be applied for data
collection tasks in difficult-to-access areas. In exteriors, UAV
solutions abundantly utilize predefined GNSS poses for navi-
gation [5]. In contrast to exteriors, the applicability of UAVs
in interiors imposes additional challenges — lack of GNSS
localization, navigation in a confined environment, and non-
negligible aerodynamic effects. Because of that, UAV systems
deployed for indoor data gathering are mainly limited to in-
dustrial inspections, with only a few works targeting UAV-
based documentation of historical buildings. The specifics of
such an application are targeted in this work.

For industrial inspections, the literature typically exploits
the environment structure, such as known profiles of tun-
nels [6] or structured and well-lit warehouses [7]. More general
solutions were introduced in the commercial sector introducing
semi-autonomous UAV inspection systems1— DJI Mavic 3,
Elios 3, or Skydio 2+™. In interiors, DJI provides image-based
UAV stabilization, Elios allows for human-operated flight
with LiDAR and camera-based stabilization and mapping with
guarantees of environmental and mechanical protection, and
Skydio™ offers automated camera-stabilized flight for interac-
tive 3D reconstruction. Although all these solutions provide an
assistive level of autonomy in UAV stabilization, the first two
require human-in-the-loop navigation. None of the mentioned
solutions offer full interior autonomy, repeatability, modularity,
rotor nor sensory redundancy, imaging focusing on capturing
high-quality details, and cooperative multi-robot deployment.

As mentioned, aerial data gathering inside historical build-
ings is rare. A specialized platform for assisting in cultural
heritage monitoring called HeritageBot was introduced in [8].

1DJI Mavic 3: dji.com/cz/mavic-3, Elios 3: flyability.com/elios-3, Sky-
dio 2+™: skydio.com/skydio-2-plus.

However, no evidence of the deployment of this platform in
historical monuments is presented. In [9], the authors propose
an assistive system to manual control of the UAV during in-
spection tasks with the experimental deployment of the system
inside and outside historical sites.

Among introduced solutions, the most advanced UAV-based
systems with the high level of autonomy required for the
interiors of historical buildings were introduced in our re-
cent works [10]–[13]. In these publications, we introduced
a preliminary application-tailored autonomous UAV system
allowing for safe localization and navigation inside histori-
cal structures [10], the methodology and algorithms for the
realization of advanced documentation techniques found in
reflectance transformation imaging (RTI) [11] and raking light
(RAK) [12], and an autonomous single-UAV system for real-
ization of documentation missions [13]. All works provide a
fully autonomous solution and the possibility of performing
documentation techniques in difficult-to-access areas without
using mobile lift platforms or scaffolding installation. Here,
we progress beyond previous works by introducing a full 3D
simultaneous localization and mapping (SLAM) methodology
for indoor localization of robots; by advancing robustness to
localization drifts and hard-to-detect obstacles with additional
sensory redundancy; by improving path, trajectory, and mis-
sion planning; by using a UAV team to realize documentation
techniques that could not be realized with only a single robot
in principle; and by presenting the complete set of results
achieved in the Dronument project that are summarized in
numerous lessons learned during the unique experimental cam-
paign within highly safety-critical missions.

IV. DOCUMENTATION TECHNIQUES AND ASSOCIATED
CONSTRAINTS

The documentation techniques applied in the field of
restoration and cultural heritage preservation aim to capture
the current state of the object, survey a potential structural
or artistic damage, and determine the age, author and possi-
ble dimensions of the elements by identifying the materials
and techniques that have been used. For this purpose, diverse
methods combining conventional photography in the visible
spectrum, photography in invisible spectra making use of dif-
ferent reflective properties of materials, specialized lighting
techniques applied for revealing structural details, and even
invasive methods based on the collection of material samples
are applied. In robotic context, all these methods are associ-
ated with varying requirements on sensory equipment, amount
of cooperation, and external conditions (mainly illuminance).
These relations are summarized in Table I, together with the
studied documentation techniques.

The most common documentation technique providing ini-
tial information about the studied subject is standard visible
spectrum photography (VIS). This technique is applicable to
all types of studied objects, ranging from flat paintings and
frescoes to 3D structures, including statues and altars. Since
the documented areas of historical buildings are often dark,
the obtained images suffer from insufficient lighting condi-
tions. Hence, the VIS method often requires additional ex-
ternal lighting to locally increase illuminance, allowing for
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TABLE I: Recapitulative table of documentation tasks selected as realizable by aerial vehicles in interiors of historical structures. The squared
check marks

(
❑X
)

identify the realizable documentation methods which were experimentally applied in historical structures, as summarized
in section VIII. The last column marks methods for which the ambient light is either required (X), forbidden (✗), or arbitrary (unmarked).

Realizable by Required equipment and lighting conditions

Documentation technique Single robot Multiple robots Onboard camera Onboard light Ambient light

visible spectrum: photography (VIS) ❑X X X X
transmitography (VISTR) X X X
raking light (RAK) ❑X X X X
three point lighting (TPL) ❑X X X
reflectance transformation imaging (RTI) ❑X ❑X X X ✗

light-induced luminescence (VIVL) X X
UV spectrum: reflectography (UVR) ❑X X ✗

fluorescent photography (UVF) ❑X X X X
false-color reflectography (UVRFC) X X ✗

IR spectrum: reflectography (IRR) ❑X X ✗

transmitography (IRRTR) X X ✗

Sp
ec

tr
al

an
al

ys
is

fluorescent photography (IRF) ❑X X X X
false-color reflectography (IRRFC) X X ✗

X-ray: radiography X

3D reconstruction ❑X X X
photogrammetry X X X X

O
th

er
s

environmental monitoring X X

the decreased exposure times required to avoid motion blur
from instabilities of a multi-rotor vehicle.

Similar to aesthetic photography, light plays a significant
role in restoration documentation. Documentation techniques
capturing data in the visible spectrum make use of varying
lighting intensity and illumination angles to enhance the qual-
ity and amount of information that can be derived from the
gathered data. The main group of lighting techniques appli-
cable during documentation tasks aims to highlight the 3D
characteristics of captured objects, with three point lighting
(TPL) being the most routine. TPL illuminates the object with
several sources of luminance, each with different intensity and
orientation with respect to the camera’s optical axis, in order
to provide an aesthetically pleasant and realistic view of the
3D object. Another widely used lighting technique is raking
light (RAK), which focuses on revealing the surface details of
flat objects. While TPL employs several light sources to avoid
overshadowed areas, RAK applies a single light as parallel to
the scene as possible. The illumination angle in RAK exploits
the shadows to highlight the roughness of the surface.

A highly specialized documentation technique used in the
field of restoration is the reflectance transformation imaging
(RTI) — an image-based rendering method used for obtaining
a representation of an image that enables displaying the image
under an arbitrary direction of illumination. The necessary
inputs of this method include a set of images of an object taken
by a static camera, with each image being under illumination
from a different but known direction. The captured images and
the corresponding lighting vectors are then used for the com-
putation of a polynomial texture map (PTM) representation
of the image that enables an interactive illumination and view
of the object. Another specialized documentation technique
is visible spectrum transmitography (VISTR) which requires
a light source to be positioned behind an object of interest

(OoI) to transmit the light through this object. However, this
method is mainly applied for canvas paintings and thus is
rather impractical for realization by UAVs.

Multiple techniques exploit UV and IR lumination and its
effects. While the methods based on the visible light focus
on revealing structural characteristics and colors, the UV and
IR methods aim primarily to identify the materials and hid-
den layers of artworks. The use of different spectra allows
more precise dating of the paintings, as the glow of pig-
ment combinations are unique to certain periods. The first
group of methods applying UV and IR lights is based on
capturing the fluorescent light in the visible spectrum emit-
ted by an object after absorbing UV or IR radiation en-
ergy. These methods are called UV fluorescent photography
(UVF) and IR fluorescent photography (IRF) and are used
for, e.g., detecting zinc and titanium white (UVF) or cad-
mium red and Egyptian blue (IRF). The second group of
methods applying UV and IR lights captures the reflected
light in the corresponding spectra. These methods are called
UV reflectography (UVR) and IR reflectography (IRR) and
are applicable for, e.g., detecting restored areas, highlighting
repairs and re-touchings, enhancing faded paintings (UVR) or
reaching the underdrawing layer of paintings (IRR).

Except for VIS, all the above-mentioned methods require
positioning the light at a certain angle with respect to the cam-
era. Therefore, these methods are not fully realizable by a sin-
gle UAV and require a multi-robot coordination. The particular
methods can be realized in three different configurations de-
pendent on the requirements of the task. The first configuration
employs an autonomous multi-robot team consisting of a UAV
carrying a documentation sensor and a set of supporting UAVs
providing dynamic lighting of the documented scene. The
second configuration applies the UAV as a carrier of the sensor
whilst the light is provided by external sources. The third
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TABLE II: Typical exposure times of the selected documentation
techniques.

Technique Spectrum Exposure time (s)

visible spectrum photography visible ≤ 0.2
raking light visible ≤ 0.2
three point lighting visible ≤ 0.2
reflectance transformation imaging visible ≤ 0.2
UV fluorescent photography UV ≤ 2.0
UV reflectography UV 2.0
visible spectrum transmitography visible 2.0
IR reflectography IR 4.0
IR transmitography IR 20.0
light-induced luminescence visible 25.0
IR fluorescent photography IR 30.0
radiography X-ray ≥ 30.0

configuration uses the UAV for positioning the light whereas
the data are captured by a static sensor from the ground.

The largest problem in realization of the techniques relying
on a UAV carrying a camera is the exposure time required for
sharp and detailed imaging. Table II summarizes that the expo-
sure times for some of the methods reach tens of seconds. With
constraints on image sharpness, such long times and natural
nonstaticity of highly dynamical multi-rotor UAVs prevent the
realization of these techniques in the camera-carrier mode with
satisfactory results. Instead, imaging with a static camera and
aerial lighting was investigated for some of these techniques.

The non-spectral tasks applied in the field of preservation
mostly focus on the 3D reconstruction and environment mon-
itoring through static sensors measuring physical quantities
(e.g., temperature, humidity). The most common techniques
applied in 3D reconstruction use visible spectrum images (pho-
togrammetry) or scans produced by laser sensors. From the
perspective of the proposed system, the data gathering process
for 3D reconstruction does not differ from the realization of
VIS and collection of raw data from onboard sensors used for
localization and mapping. Monitoring the physical quantities
in an environment requires attaching a sensor to the UAV
frame and navigating it to the required area. If the measure-
ment process requires permanent monitoring, the sensor must
be attached at a specific position in the environment (e.g.,
adhered to a wall or placed on a mantel). This process is also
realizable by UAVs but requires fine control, state estimation,
and a mechanism for physical robot-to-environment interac-
tion, as closely tackled in [12].

V. UAV-BASED FRAMEWORK FOR DOCUMENTATION OF
CULTURAL HERITAGE INTERIORS

The overall pipeline of the UAV-based framework for in-
terior documentation in historical monuments is showcased
in Fig. 2. The framework is composed of three main phases —
the pre-deployment phase incorporating pre-flight data gather-
ing and mission planning, the actual deployment of the system
in interiors of historical buildings, and post-deployment phase,
including processing and utilization of the collected data.

A. Pre-deployment Phase

The first step preceding the entire documentation process is
obtaining a model of the environment used for safe navigation
of the UAV, as well as for the specification of OoIs that should
be scanned during documentation missions. For this purpose,
a precise terrestrial 3D scanner Leica BLK360 is employed to
obtain a set of scans that are later used for building a complete
3D representation of the target environment, both in form of a
global point cloud and a 3D model with a colored texture. The
colored 3D model serves for precise specification of the de-
sired camera viewpoints and for presenting the documentation
outputs to the public and the end users. The camera viewpoints
specifications are made by experts of restoration or historical
science who position a virtual camera within the 3D model
of the environment using a viewpoint-selection tool shown
in Fig. 3a. This tool shows a camera and its view and enables
to save the camera viewpoint pose in the global coordinate
frame. The optical properties of the camera can be parame-
terized with respect to the equipment available for real-world
documentation, thus allowing for visualizing the desired photo
to be captured from a given pose in the colored 3D model.

Given the point cloud representation of the environment
and the set of to-be-captured images represented by the re-
spective camera viewpoints in the global coordinate frame,
the documentation mission plan is generated as follows. First,
the problem of finding an optimal sequence σ∗ of camera
poses minimizing the overall traveled distance is defined and
solved as the Traveling Salesman Problem (TSP). Considering
the possible dimensionality of the problem, a solver using an
efficient Lin-Kernighan heuristics [14] is employed for the
solution of TSP to enable on-site plan generation. Constrained
by available computational time, the mutual distance between
particular pairs of poses within the solution of TSP are given
either by the Euclidean distance or by the length of the
collision-free path between the poses. Second, the consequent
poses in σ∗ are connected by the collision-free paths gener-
ated with the use of a grid-based planner [15]. This process
creates a path connecting all the poses which can be generally
unfeasible if limited flight time of a UAV is taken into account.
Hence, the final set of plans P= {P1,P2, . . . ,Pn} is obtained
by splitting σ∗ to a set of subsequences Σ = {σ1,σ2, . . . ,σn},
where σ∗ = σ1 ∪σ2 ∪ . . .∪σn, Pi ∈ P is a collision free path
connecting the initial pose with a sequence of poses in σi, and
equation t(Pi)< tmax holds, ∀i ∈ {1, . . . ,n}, for tmax being the
maximum flight time of the UAV, and t(Pi) being the time
needed for following path Pi.

To increase the mission safety, the final step of the pre-
deployment phase verifies the paths planned for the docu-
mentation mission. First, each plan is verified by humans as
collision-free by visualizing it in the 3D model of the envi-
ronment. Second, the plan feasibility is verified by simulating
the entire mission in the realistic Gazebo simulator using the
virtual model of the environment with the same software and
sensory plugins used during real-world missions. The goal of
this two-stage process is to verify that all the generated paths
are collision-free and do not traverse potentially risky parts of
the environment. The mission specification and plan validation
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Fig. 2: High-level diagram of the three-phase architecture of the system designed for multi-UAV documentation of interiors of historical
buildings. The 3D model of the environment and the mission plan are used as an a-priori generated input for the realization of the
documentation mission itself. After the deployment phase, the data gathered during the mission are processed and provided to the end users.

is showcased in Fig. 3.

B. UAV Deployment

The actual system deployment is influenced by the appli-
cation’s specificity imposing strict safety-guarantee require-
ments. After the necessary hardware checks, all software com-
ponents are initialized on the onboard computer of each UAV.
After successful initialization, all the UAVs automatically align
their reference frame with the common frame of coordination
by matching their sensory data to the sparse interior map avail-
able to each UAV. The outputs of this phase are visually veri-
fied by the operator, who checks the correctness of the frames’
alignment and validates the mission plan for the last time.

During the following autonomous mission, an automatic
centralized supervisor (a ground station) checks the state of all
the UAVs in real-time. This supervisor reacts to faults and al-
lows for revealing many possible failures, even preventatively.
Available safety actions include stopping all the airborne UAVs
at the place at once, navigating them cooperatively to takeoff
locations, and landing them at safe locations. Apart from the
automatic supervisor, all these actions can be triggered by a
human operator supervising the mission in parallel using the
ground station. At last, a human operator serves as the final
safety measure capable of landing the UAVs manually. The
autonomy stack is described in section VI.

C. Post-deployment Phase

To increase the quality and range of the outputs, the data
collected during autonomous flights in historical buildings are
processed before being provided to the end users. This includes

post-processing of onboard sensory data to increase accuracy
of pose referencing associated with the captured data frames,
stitching images into photomaps, or building a 3D model of
the environment in areas occluded in ground-located scans.
The generated data then serve for digitalization and archiva-
tion, pre- and post-restoration analyses, state assessment and
monitoring, material analyses, photogrammetry, and for digital
presentation to the public.

VI. FULLY AUTONOMOUS, COOPERATING UAVS

To benefit from extensively tested and field-verified meth-
ods, the proposed multi-UAV system is based on the open
source MRS UAV system2 developed within the authors’ re-
search group. In this section, let us summarize novel scien-
tific results achieved within the presented project Dronument,
whilst the MRS UAV system is described in detail in [16].

A. Reference Frame Alignment

The reference frames of the robots are aligned once during
a pre-takeoff phase with each robot performing the alignment
independently in four automated phases. This alignment pro-
cess is mandatory for each robot as the supervising controller
does not allow any robot to takeoff unless all robot frames are
aligned with the global coordination frame (i.e., the map).

In the data loading phase, each robot loads the global map
M and a single 3D LiDAR data-frame D to its memory, applies
voxelization to both the objects for dimensionality reduction,
and removes outliers in D using radius outlier filter. The z-
axis of both the point clouds M and D is assumed to be

2github.com/ctu-mrs/mrs uav system
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(a) (b) (c)
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Actual trajectory

Fig. 3: Pre-deployment phase of the proposed framework — (a) specification of the documentation task by selecting a set of camera viewpoints
within the 3D model of the environment, (b) planning trajectory of the robot (in red) which visits all the specified viewpoints (in green),
and (c) verification of the mission plan in Gazebo simulator employing identical software that is used during real-world missions.

approximately parallel to the gravity vector. During global
correlation phase, the origins and orientations of M and D
are approximately matched. First, convex 3D-space hulls HM
and HD are computed using Qhull [17] with a hull being
represented as a set of undirected edges H = {(va,vb)i} (set
of vertex pairs). Translation tM

D ∈ R3 of D to M is given
as tM

D = bM −bD, where bX ∈ R3, X ∈ {M,D}, represents a
polyline barycenter of an edge set X as

bX =
∑(va,vb)∈X [va +(vb −va)/2] ||vb −va||2

∑(va,vb)∈X ||vb −va||2
. (1)

The UAV is assumed to be taking off from ground locations,
hence the grounds are coupled by setting z-axis translation to
tM
D (z) = minp∈M p(z)−minp∈D p(z), where p(z) denotes the z

coordinate of point p. Initial transformation to the consequent
optimization phases is then given as

TI = T(tM
D )T(tD,z,θ) , (2)

where T ∈ R4×4 is a general 3D transformation in the matrix
form and T(tD,z,θ) is the matrix form of a z-axis rotation at
a point tD ∈ R3 (the origin of D) by angle θ . The rotation
angle is given as θ = θM −θD, where θX = arctanξ X

y /ξ X
x ,

ξ X =
(
ξ X

x ,ξ X
y ,ξ X

z
)
= argmaxξ∈Ξ(X)

√
ξ 2

x +ξ 2
y , and Ξ(X) is

the set of covariance matrix eigenvectors of the point cloud X.
The following global registration phase copes with

the lateral symmetry of the environments as typical of
large historical structures. Several Iterative Closest Point
(ICP) routines ICP(T) are performed in this phase,
each with different initializations T and loosely set pa-
rameters for point association and convergence require-
ments. Given a number of desired initializations k, this
phase selects θ ∗ = argminθ∈Θ ICP(TIT(tD,z,θ)) where
Θ = {2πi/k | i ∈ {0,1, . . . ,k−1}}. Final fine-tuning optimiza-
tion phase estimates robot origin in the global coordinate
frame TM

D by running ICP(TIT(tD,z,θ ∗)) optimization set
with high-accuracy parameters and strict convergence criteria.

B. State Estimation, Localization, and Mapping

Estimating the 3D state of a UAV (i.e., pose and its deriva-
tives) in real-time is crucial for the UAV mid-air control
and 3D navigation. To keep the robot steady while airborne,
follow reference trajectories, and avoid obstacles, the envi-
ronment needs to be perceived with robot’s onboard sensors
(e.g., cameras, LiDARs). As state estimation, localization,
and mapping are critical for collision-free flight, the utilized
algorithms are based on well-tested works with implementa-
tion validated in differing real-world scenarios. To estimate
the robot state, a bank of Kalman filters [16] extended with
smoothing over a short past-measurements buffer fuses on-
board inertial measurements with localization outputs, provid-
ing real-time feedback to the position control loop [16]. The
localization and mapping systems utilize low-drift pose esti-
mation LOAM [18]. An extensive evaluation in [15] showed
that fusing LOAM efficiently with [16] provides sufficient ac-
curacy and robustness even in safety-critical applications. The
architecture of the control, state estimation, and localization
pipelines is analogous to [15]. In contrast to [15], the mapping
pipeline uses an a-priori map of the environment to derive a
global frame for the robots’ missions (see its calibration in sub-
section VI-A). The a-priori shared map enables multi-robot
coordination and global mission planning, but also provides
an additional safety level by allowing robust online analysis of
localization drift and cross-checking of sensory measurements.

C. Navigation and Trajectory Tracking

The navigation of the UAVs during the mission fol-
lows a mission plan P ∈ P generated in the pre-
deployment phase, described in subsection V-A. This
collision-free plan is represented by a sequence of triplets
P =

[
(puav,pooi,I)1 , . . . , (puav,pooi,I)|P|

]
, where I ∈ {0,1}

is the acquisition flag. The triplets with I= 1 specify the UAV
poses puav in which capturing an image or illuminating the

134/191

CTU in Prague Department of Cybernetics



8 © IEEE ROBOTICS & AUTOMATION SOCIETY (RAS), 2023. ACCEPTED TO IEEE RA-M. DOI: 10.1109/MRA.2023.3238213

OoI at pose pooi is required. The reference trajectory R is
generated by uniform sampling of the collision-free path given
as sequence of puav ∈ P such that the sampling step respects
the required velocity. The UAV is requested to stop at each
pose puav ∈ P where I = 1 to improve the quality of data
acquisition by minimizing deviation from the desired pose and
reducing the motion blur that would occur in case of non-zero
velocity during image capturing. The reference trajectory R
then serves as an input to the trajectory tracking module using
model predictive control (MPC). This module, described in
our previous works [11], [19], produces a smooth collision-
free trajectory while penalizing deviations from the original
reference trajectory and respecting dynamic constraints of the
UAV. The smooth-sampled reference trajectory is then passed
into a feedback controller (implemented within the MRS UAV
system [16]) handling tracking of the trajectory.

D. Multi-robot Coordination and Cooperation

Since the characteristics of the expected environment enable
reliable use of standard communication channels, the cooper-
ation algorithms rely on the information shared through a Wi-
Fi interface among the UAVs and a ground station. Namely,
the UAVs share their current poses, planned trajectories, and
individual statuses based on the information from their on-
board sensors. The same communication channel is utilized
for commanding the UAVs from the ground station in case of
emergency or a change in the mission plan, and for sharing
specific messages among the UAVs during the realization of
cooperative documentation techniques. The algorithms han-
dling the autonomous flight are computed on board the UAVs.

During the cooperation, the reference trajectories of the
UAVs are generated in a distributed manner on a short horizon
corresponding to the optimization horizon used in the MPC-
based trajectory tracking module [16]. By applying concepts
of leader-follower architectures, the reference trajectories of
supporting UAVs are generated with respect to the optimized
trajectory of the primary UAV (leader), to the position and the
desired distance of the UAV from the OoI, and to the desired
lighting angle with respect to the optical axis of the documen-
tation sensor on board the primary UAV. The coordination
of the UAVs is part of trajectory optimization (see subsec-
tion VI-C) where both the current poses of the UAVs and their
planned trajectories are considered to be part of constrained
unfeasible space [19]. To prevent the downwash effect, this
optimization is also constrained to not allow two nearby UAVs
to fly above each other.

VII. AERIAL PLATFORMS

Two custom-made UAV platforms were designed specifi-
cally for the proposed application of deployment in interiors
of buildings. Both the platforms, as shown in Fig. 4 and
described in more detail in [20], support fully autonomous
deployment within the tackled domain by carrying sensors for
local environment perception together with a powerful com-
putational unit handling the entire autonomous aerial mission.
The primary platform is a heavy-weight (5.5 kg without pay-
load) octo-rotor with dimensions of 78×81×40 cm, capable

of carrying up to 1.5 kg payload — enough for a mirrorless
interchangeable-lens (MIL) camera with a suitable lens and 2-
axis gimbal stabilization, as well as an onboard light source.
This platform minimizes its dimensions while maximizing
the payload capacities, is equipped with mechanical propeller
guards, and carries sensory redundancy for active obstacle
avoidance. The secondary platform is a lightweight (3 kg fully
loaded) quad-rotor with dimensions of 68×68×30 cm suited
for assisting the primary UAV throughout a documentation
process by providing the scene illumination, thus increasing
the quality of the gathered digital materials. While cooper-
ating, the supporting UAVs assist in performing tasks inex-
ecutable by a single UAV in principle. As the primary pay-
load, the secondary platform carries a set of high-power light
sources. Both the platforms support flights in close proximity
to obstacles and to other UAVs. However, relative distances
are limited to a minimum of 2 m to limit the aerodynamic in-
fluence of downwash, ceiling, and ground effects on the UAV,
and the contrary effect of the UAV on the environment (possi-
ble damage of not firmly attached objects and fragile plasters).

A. Sensors for Autonomy

For autonomy in GNSS-denied environments, both plat-
forms rely on onboard sensors only. The primary sensor is
a 3D light detection and ranging (LiDAR) Ouster OS0-128
with 50 m detection range and 90◦ vertical FOV supported
by a thermally-stabilized triple-redundancy inertial measure-
ment unit, downward and upward looking point-distance sen-
sors Garmin LiDAR Lite, and front-facing (primary UAV) or
downward and upward-facing (secondary UAV) color-depth
cameras Intel® Realsense D435 for sensory cross-checking in
active obstacle avoidance. All the sensory data are processed
by an Intel® NUC-i7 onboard computer which utilizes data
in real-time algorithms handling the autonomous aerial mis-
sion. The low-level control (attitude stabilization) is handled
by Pixhawk 2.1, an open-source autopilot used frequently by
the robotic community. For safety reasons, the primary UAV
carries a visible diagnostic RGB LED which indicates a pos-
sible failure to an operator who is authorized to override UAV
autonomy for manual landing.

B. Payload

The payload equipment mountable on board the platforms
is modular — cameras, lenses, and light sources can be easily
interchanged for the purposes of a specific task. For general
purposes, the primary UAV carries a 2-axis gimbal FlyDrotec
capable of stabilizing up to 850 g payload. The stabilized
axes are controllable, a feature useful mainly for controlling
the pitch angle of a camera. Throughout our experiments, a
MIL camera, the Sony Alpha A6500 with varying lenses, has
been used for its integrated image-sensor stabilization, further
minimizing the negative effect of mid-flight vibrations on the
output image quality. Triggering image capture is automated
via the onboard computer, whereas real-time imaging is trans-
mitted to the ground for online visualization for the operator.
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Camera Sony Alpha A6500

Intel® Realsense D435

2-axis gimbal

Propeller guards

FPV transmitter

Garmin rangefinder

RC module

Flight control unit

Computer Intel® NUC-i7Central elements guard3D LiDAR Ouster OS0-128

Diagnostic board

Light

(a) Primary custom-made UAV application-tailored for documentation and inspection tasks in building interiors. The platform carries onboard sensors required
for autonomous flight with equipment for acquiring high-quality documentation data, as well as a processing unit for handling autonomous flight, reasoning
over the sensory data, obstacle avoidance, and the documentation mission.

Adjustable LED panel

LEDs

Intel® Realsense D435

Servo

Flight control unit

Comp. Intel® NUC-i7

Central elements guard

3D LiDAR
Ouster OS0-128

(b) Secondary UAV tailored for supporting documentation tasks in building
interiors. In contrast to the primary UAV (a), this platform is smaller and
carries a high-power light instead of sensors for the documentation task.

(c) Comparison of the custom-made UAV platform (a) with lightweight
commercial drone DJI Mavic Air 2, which carries a small camera sensor and
does not support complex mission planning in building interiors.

Fig. 4: Aerial platforms used for documentation tasks in the Dronument project — primary UAV carrying documentation sensors (a),
secondary UAV assisting in cooperative documentation (b), and commercial drone used for qualitative comparison (c). Both (a) and (b) carry
environment-perception sensors and computational resources allowing fully autonomous deployment in interiors with poor lighting conditions.

VIII. EXPERIMENTS AND RESULTS

The extreme requirements on safety imposed by the nature
of the application requiring the deployment of UAVs in price-
less historical buildings imply thorough validation of all the
developed software and hardware solutions prior to their de-
ployment in real-world missions. The software solutions rang-
ing from the state estimation and control algorithms to high-
level mission control were intensively tested with the use of
Gazebo simulator and the MRS simulation package3 providing
realistic behavior of the UAVs. Running the same software
with identical parametrization in simulation and on real hard-

3github.com/ctu-mrs/simulation

ware significantly simplifies the transfer of algorithms from the
virtual environment to real-world applications. The 3D models
built from the obtained 3D scans are directly used as the simu-
lation environments for algorithms’ testing. Together with sim-
ulated sensory noises and model inaccuracies, this makes the
simulation as analogous to real-world conditions as possible.
This methodology proves to be especially useful for discover-
ing possible failures correlated with specific environments and
validating the entire autonomous missions in an approximate
copy of the real-world scenarios. Although the simulator is
highly realistic, running the system in the real world introduces
additional constraints. Therefore, even after thorough testing
in virtual environments, the first deployments of the system
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TABLE III: Overview of three-phase UAV deployment in historical buildings within the Dronument project. The first phase focused on
specifying the use cases, developing the methodology, designing the system, and performing preliminary experiments, including manually
controlled flights. The second phase investigated autonomous multi-robot coordination in cooperative documentation and experimented with
imaging outside the visible spectrum and with the physical interaction of UAVs with the environment. The third phase deployed the system in
a full-operation mode for gathering data valuable to end users and for validating the methodology and overall performance of the autonomy.
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Vranov nad Dyjı́
State Chateau (410 m2) 18 1049 1:26:44 1020 12.0 3.0 ✗ VIS

Klein Family Mausoleum
in Sobotı́n (30 m2) 7 274 0:17:37 120 3.8 1.6 ✗ VIS

Rondel at State Chateau and Castle
Jindřichův Hradec (140 m2) 8 660 0:51:32 940 7.8 2.1 ✗ VIS

Chapel of All Saints at Chateau
Telč (UNESCO, 84 m2) 6 190 0:14:04 145 4.8 1.7 ✗ VIS

Church of St. Mary Magdalene
in Chlumı́n (224 m2) 8 86 0:23:40 146 4.8 1.5 X RTI
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in Běhařovice (252 m2) 6 56 0:07:10 30 5.2 2.2 ✗ IRF, UVF, IRR
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Church of the Nativity of the Virgin
Mary in Nový Malı́n (282 m2) 2 129 0:06:06 68 8.8 1.8 ✗ VIS

Church of the Holy Trinity
in Kopřivná (367 m2) 4 211 0:17:50 247 11.4 2.0 ✗ VIS

Church of St. Bartholomew
in Zábřeh (616 m2) 4 263 0:18:23 258 12.4 1.4 ✗ VIS

Total (6387 m2) 208 10998 11:32:10 9799 19.5 1.4 X
VIS, TPL, RTI

RAK, UVR, IRR
UVF, IRF

were preceded by test flights in mock-up scenarios and test-
ing interiors in order to reveal potential problems related to
transfer of the system from simulation to real hardware.

The final version of the system, as presented in this
manuscript, builds on preliminary versions and architectures of
both software and hardware stacks and integrates experience
from over a year and a half period of experimental deploy-
ments. During the experimental campaigns, remaining sources
of potential failures were identified and the UAV system up-
graded to reach the desired performance and reliability while
increasing the number of realizable documentation techniques.
The entire system was, to this day, deployed in real-world mis-
sions in fifteen historical buildings of various characteristics
(summarized in Table III), including one of the largest Baroque
halls in the Czech Republic at State Chateau Vranov nad Dyjı́
and the UNESCO World Heritage Sites, Archbishop’s Chateau
in Kroměřı́ž and Chateau Telč. Almost twelve airborne hours
in more than two hundred flights have been performed for pur-
poses of documentation missions in the given structures. Such

an extensive experimental campaign provides an exhaustive
validation of the system in real-world conditions and supports
its applicability in GNSS-denied environments by identifying
and overcoming challenges imposed by specific scenarios.
The following sections describe the documentation techniques
realized by the system in these structures. The OoIs of the
presented documentation missions are showcased in Fig. 1.

A. Visible Spectrum Photography

Imaging in the visible spectrum is the most frequently ap-
plied technique as it includes methods providing the widest
range of practical information while being relatively easy to
perform. Within the fifteen historical structures, OoIs of var-
ious characteristics have been imaged by autonomous UAVs.
These OoIs range from artistic elements, such as paintings,
stained-glass windows, mosaics, stuccoes, and murals located
in the most upper parts of the main naves, to complex 3D
structures, such as window frames and altars up to 20 m high.
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Fig. 5: An example documentation mission in the Church of the Nativity of the Virgin Mary in Nový Malı́n. The documentation mission
was divided into two separate flights (a) focused on documenting the upper part of the altar (d) and baldachin of the pulpit (e). When going
from the top, the rows in (d) and (e) show the minimal distance from the UAV frame to an obstacle, the 3D position error with image
acquisition times (green vertical lines and red dots), and the height above ground. The desired imagery specified in the 3D model and the
images captured on board are compared in (b) and (c). The simulation data are averaged from 5 runs each.

Additionally, objects may include structural damage, such as
crevices, cracks, or fractures.

An example of fully-autonomous documentation of a single
interior is provided in Fig. 5 depicting the documentation of
a baroque church. The specified viewpoints were focused on
documentation of two OoIs — the upper part of the altar
reaching a height of 10 m and the baldachin of the pulpit.
The automated process of viewpoints’ specification and au-
tonomous navigation has enabled fast realization of the docu-
mentation process in just two single-UAV flights lasting only
366 s in total. With mission specification being part of the pre-
deployment phase, the overall time required for in-site deploy-
ment reached only 80 min, including equipment unpacking,
flight test, mission validation and execution, and packing. Such
a high level of autonomy in the process demonstrates supe-
riority via fast, safe, effective, and repeatable data capturing
when compared to the slow, imprecise, and dangerous manual
control of the UAV in obstacle-filled environments by even
a highly trained human operator. Even with assistive systems
(stabilization and collision prevention) guiding the human in

navigation, manual operation is unsafe in losses of line of
sight in the presence of obstacles and inefficient in time and
accuracy required to reach the desired viewpoints. Apart from
higher efficiency and safety of autonomy in contrast to human-
controlled flying, a fully autonomous system allows flight in
close proximity to obstacles, enlarging the operational space of
the UAV. This is advantageous particularly when documenting
elevated OoIs where the inaccuracy in estimating the UAV’s
distance to the ceiling is proportional to the distance from
the human eye, thus making manual navigation in these areas
unsafe.

The VIS method can be performed with commercially
available products (e.g., DJI Mavic) offering semi-autonomous
solutions in small and lightweight packages. However, the
limited level of autonomy and sensory modularity makes the
realization of the missions in large interiors prolonged (the
proposed system is on average ten times faster in the same
task), non-repeatable, or even impossible in conditions unfa-
vorable to onboard perception or the desired documentation
technique. In Fig. 6, the images obtained by the proposed
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(a)

(b)

35 mm, f/5.0, ISO 1000, 1/320s 35 mm, f/5.0, ISO 1000, 1/320s 35 mm, f/5.0, ISO 1000, 1/320s 35 mm, f/5.0, ISO 1000, 1/320s

4.5 mm, f/2.8, ISO 3200, 1/80s 4.5 mm, f/2.8, ISO 3200, 1/60s 4.5 mm, f/2.8, ISO 3200, 1/80s 4.5 mm, f/2.8, ISO 3200, 1/60s

7 cm 7 cm 18 cm 18 cm 19 cm 19 cm 12 cm 12 cm

Fig. 6: Image outputs of VIS methodology as taken by the onboard MIL camera Sony Alpha A6500 (a) and commercial solution DJI Mavic
Air 2 (b). Direct comparison of details of the images in the middle row shows that the proposed solution is superior in capturing high-
quality details. This highlights the last column in which a hole in the painting is visible in top and absent in bottom image. Although the
commercial solution is small and lightweight, its small sensor size of 6.4×4.8mm hinders usability in interior documentation.

system are qualitatively compared to the ones obtained with
a commercial product DJI Mavic Air 2. The figure highlights
the superior performance of MIL camera imaging allowing for
capturing high-resolution details of the OoIs while maintaining
a safer distance from the obstacles.

Although VIS realized by a single UAV is a powerful
technique, a multi-robot approach is often unavoidable if the
lighting conditions are insufficient or documentation of an
OoI requires non-direct lighting. An example OoI requiring
additional lighting is the mural of St. Christopher in the late
Gothic Church of St. Maurice in Olomouc, the documentation
of which is shown in Fig. 7. Insufficient external lighting on
the mural did not allow capturing bright, high-quality images
without the motion blur effect arising from deviations in the
reference pose over a long exposure time. Thus, to improve the
quality of the images, a secondary UAV provides side lighting
(approximately 45◦ with respect to the camera optical axis),
lowering exposure times and highlighting details on the mural,
such as small crevices invisible to the human eye from the
ground. In the same church, 23 stained-glass windows (each
about 8–34 m2 large) were able to be documented with a single
UAV as the windows were well illuminated by the outdoor
light and could be captured with short exposure times without
additional lighting. The individual images of the mural and the
stained-glass windows were rectified and stitched together to
compose singular high-resolution orthophotos of each object.
The orthophotos were used to assess the state of the OoIs for

subsequent restoration works and for enhancing the texture
of the 3D model of the church4. As compared well in [13],
the aerial-based orthophotos outperform the ground-based or-
thophotos in terms of quality of detail, quality of rectification
due to perpendicular optical angles, and absence of occlusions.

B. Reflectance Transformation Imaging

RTI method requires a static camera and a dynamic light
with a known history of poses. To validate whether the pro-
posed system is feasible for RTI, it was applied to document a
vault located 11 m above ground in St. Anne and St. Jacob the
Great Church in Stará Voda (see Fig. 1b). This OoI was specif-
ically selected as it can be photographed from a balcony on the
opposite side of the central nave, thus allowing for the realiza-
tion of the RTI technique in two comparable configurations:
1) with the camera (with telephoto lens) mounted on a static
tripod with a clear, but misaligned view on the vault and 2)
with the camera mounted on board the primary UAV. In both
configurations, the light was carried on board the secondary
UAV, with the directions of illumination being derived from
the poses of this UAV, as estimated on board during the flight.

The comparison of results obtained in each configuration
is presented in Fig. 8. The image representation produced
from images captured by the tripod-mounted camera yields

4Selected OoIs and mapping and 3D reconstruction examples of docu-
mented historical structures can be found at mrs.felk.cvut.cz/3d-model-viewer.
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Fig. 7: Deployment of a multi-robot formation for detailed documentation of the late Gothic mural of St. Christopher using additional lighting
for enhancing the quality of gathered data. The graphs show mutual distance of the UAVs during the cooperative flight and the angle between
the camera optical axis and light, together with the time occasions of image capturing (green lines and circles). The red horizontal line
denotes the required angle of lighting. The red areas mark parts of the mission in which the UAVs are not required to maintain the formation.

higher quality, as the choice of the OoI and usage of a tele-
photo lens fully compensate for the main disadvantages of the
methodology in this particular case. These disadvantages are
primarily smaller operational space, lower detail resolution of
the resulting image caused by the large distance of the camera
from the OoI, and often unavoidable occlusions. Although the
fully UAV-based approach yields lower image quality since
the camera’s pose is not static over time, it has wider oper-
ational space and enables imaging from appropriate angles,
as was verified for other OoIs in the church that could not
be reasonably captured by a static camera at all. The non-
staticity of the camera’s reference pose misaligns the images;
thus, their sub-pixel post-alignment is required to avoid blur
in the resulting PTM. The experiment shows that the fully
UAV-based approach yields comparable results to the single-
UAV approach, which is favorable when the OoI can be pho-
tographed from the ground — an impossible scenario for most
OoIs in difficult-to-reach areas of historical buildings.

C. Raking Light and Environmental Monitoring

A common feature of raking light documentation and mon-
itoring of environmental conditions with UAVs stands in the
need for robot-environment interaction. In the former, a light
is attached to the wall illuminating a planar OoI from a di-
rection perpendicular to the optical axis of the camera. This
method is known to highlight even the smallest crevices and
cracks in the planar surface. For the latter, a wireless sensor
(e.g., for measuring humidity or temperature) is attached to
the wall to measure the environmental conditions over longer
periods of time. For the purpose of physical environment-UAV
interaction itself, we researched a UAV equipped with a system
for admittance-based control allowing for stabilization while

being attached to a planar surface (and possibly interacting
with it) [12]. Before using this technology, the involved risks
must be compared to the payoff, particularly inside historical
buildings. To minimize the risks, it is more convenient to
interact with structural (not artistic) parts of the buildings. The
system was successfully tested in real-world mock-up scenar-
ios (see Fig. 9c) with walls of sufficiently good condition.

D. IR and UV Photography

Realization of UVF and IRF (fluorescent photography) is
methodically similar to VIS with the equipment being a stan-
dard MIL camera and a source of light at appropriate fre-
quency. In contrast to VIS, the light emitted by the object
illuminated by an IR or UV light source in the visible spectrum
is lower. Thus, these methods require higher exposure times,
as specified in Table II. The higher exposure times put stricter
requirements on image stabilization in the presence of onboard
vibrations, inaccuracies, and disturbances that cause UAVs to
deviate from their reference pose.

Realization of the UV and IR reflectography requires a
camera without UV and IR filters and exposure times of tens of
seconds. This makes the use of UAVs for imaging in UV and
IR reflectography unfeasible. However, supporting ground-
based imaging with aerial lighting is applicable. The UAVs can
carry (relatively close to the OoI) high-power LEDs radiating
in the desired spectrum. The IR and UV-based methods were
tested in St. Anne and St. Jacob the Great Church, Stará Voda
(see Fig. 9) and in Church of the Holy Trinity, Běhařovice.
The experiments showed that the proposed system can be used
in realization of the UV and IR-based methods in historical
structures, even in limited lighting conditions.
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Fig. 8: Comparison of polynomial texture maps (PTM) obtained with a fully UAV-based RTI approach with camera carried by a UAV (a)–
(i) and PTM obtained from images taken by a camera mounted on a static tripod (j)–(l). In both cases, the dynamic positioning of light is
provided by the secondary UAV. The bottom row shows the normal maps encoded in RGB for fully UAV-based approach (m) and a single
UAV approach (n).
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(a) (b)

(c)

Fig. 9: Deployment of UAVs carrying IR (a) and UV (b) source of
light, and a frame-extension mechanism for physical attachment and
interaction with static planar surfaces (c).

E. Mapping and 3D Reconstruction
The capacities of UAVs allow capturing the interior under

difficult-to-reach angles, not only for imaging purposes, but
also for spatial mapping of the structures. Although terrestrial
laser scanners yield the most accurate maps, these devices can-
not, in principle, document occluded spaces, whereas the larger
operational space of UAVs allows for minimizing these occlu-
sions. This advantage is showcased in Fig. 10 where above-
ledge areas could not be reconstructed from scans captured at
ground. The potential for accurate 3D mapping using UAVs
is immense; however, is not the main purpose of the proposed
system which outputs dense 3D maps only as a byproduct to
the photo-documentation task. The onboard-UAV-built maps
contain larger amounts of noise as the mobile laser-scanning
technology is less accurate (lightweight, low-power, and mov-
ing while scanning) than static scanners, making it harder to
align the captured scans, even in post-processing. To achieve
the best results for 3D reconstruction, we recommend lever-
aging the advantages of both methodologies simultaneously.

IX. DISCUSSION

The proposed UAV-based system for documenting histori-
cal monuments of differing structures, dimensions, and com-
plexity has demonstrated its wide applicability in real-world
documentation tasks, ranging from RGB photography and 3D
mapping to multi-robot RTI in areas high above the ground.
The high level of autonomy, the ability to fly beyond the
visual line of sight between the UAV and a human opera-
tor, and the deployability in low lighting conditions (using a
worldwide unique method of dynamic illumination by a coop-
erating UAV team) enable to gather crucial data for heritage
protection and documentation that was not possible before.
This universally novel system has been used in the very first
fully-autonomous multi-robot real-world deployments in such
complex and safety-demanding interior structures.

However, deploying mobile robots inherently poses risks to
the environment, humans, and equipment therein. This requires

(a)

(b)

Fig. 10: 3D reconstruction of the altar at the Church of the Nativity
of the Virgin Mary in Nový Malı́n, Czech Republic. The altar re-
constructions were done using scans obtained by (a) terrestrial laser
scanner Leica BLK360 and (b) Ouster OS0-128 mounted on board an
autonomous UAV during the deployment shown in Fig. 5. The meshes
were created with the Poisson surface reconstruction and colored
using the panoramic RGB images captured by the terrestrial scanner.

careful justification of the UAVs’ use that, in our experience,
tends to be needlessly overused — conventional technology
provides a safer and better quality solution in many documen-
tation tasks. A common example is imaging the interior ceiling
or low-height OoIs, where using a static camera with a long-
focus lens was identified to be a more appropriate solution.
Manual-control UAV solutions are also sufficient if the task is
small-scale, the lighting conditions are feasible, repeatability
is not required, and the OoIs are few. The need for multi-
UAV teams in tasks achievable with sufficient quality by a
single UAV, such as the selected example of single-UAV RTI
presented in Fig. 8, should also be considered prior a full-
scale deployment.

X. CONCLUSION

This work has presented a universally novel study on an
autonomous multi-robot UAV-based system for realization of
advanced documentation techniques in culturally valuable en-
vironments. The system showcases the immense potential of
mobile robots for fast, accurate, and mobile digitalization of
difficult-to-access interiors. The hardware and software archi-
tectures of the self-contained autonomous-UAV-based system
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were introduced and experimentally validated through almost
twelve hours of flight time in more than two hundred real-
world flights of single-UAVs and multi-UAV teams in fifteen
historical monuments of varying structures. The system design
has emerged from close cooperation with a team of restorers,
and the data collected during the autonomous missions has
been used by the end users in successive restoration works.

The study also assists in identifying the current challenges
and future directions of research in aerial documentation and
inspection. Based on the high added value for heritage pro-
tection, the system has been approved by the Czech National
Heritage Institute for indoor usage and is accompanied by an
official methodology (available at [1]) describing the proper
usage of UAVs in historical structures. It is the first methodol-
ogy of this authority for using UAVs in historical buildings and
so prescribes the system to be a standard in this application.
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Foundation (GAČR) under research project No. 20-10280S.

The authors would like to thank Nicolas Staub for an
initial survey of the projects’ applicability in documentation
and restoration, Jan Bednar for his assistance in creating 3D
models for public presentation, Pavel Stoudek for preparing
hardware platforms used during the experimental analyses, and
Vojtech Krajicek for technical consultation of the restoration
techniques. At last, we would like to thank to representatives of
the Czech National Heritage Institute, namely Milan Skobrtal
and Michaela Cadilova, for our fruitful cooperation during the
project and for the opportunity to deploy the proposed system
in real-world structures.

REFERENCES

[1] Multi-Robot Systems group, CTU FEE. (2022) Dronument (Dron &
Dronument). [Online]. Available: http://mrs.felk.cvut.cz/dronument

[2] S. Prieto, B. Quintana, A. Adan, and A. Vazquez, “As-is building-
structure reconstruction from a probabilistic next best scan approach,”
Robotics and Autonomous Systems, vol. 94, pp. 186–207, 2017.

[3] P. S. Blaer and P. K. Allen, “Data acquisition and view planning for 3-
D modeling tasks,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007, pp. 417–422.

[4] D. Borrmann, R. Heß, H. R. Houshiar, D. Eck, K. Schilling, and
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Autonomous Aerial Filming with Distributed
Lighting by a Team of Unmanned

Aerial Vehicles
Vı́t Krátký1 , Alfonso Alcántara2 , Jesús Capitán2 , Petr Štěpán1 , Martin Saska1 and Anı́bal Ollero2

Abstract—This paper describes a method for autonomous
aerial cinematography with distributed lighting by a team of un-
manned aerial vehicles (UAVs). Although camera-carrying multi-
rotor helicopters have become commonplace in cinematography,
their usage is limited to scenarios with sufficient natural light
or of lighting provided by static artificial lights. We propose to
use a formation of unmanned aerial vehicles as a tool for filming
a target under illumination from various directions, which is
one of the fundamental techniques of traditional cinematography.
We decompose the multi-UAV trajectory optimization problem to
tackle non-linear cinematographic aspects and obstacle avoidance
at separate stages, which allows us to re-plan in real time and
react to changes in dynamic environments. The performance of
our method has been evaluated in realistic simulation scenarios
and field experiments, where we show how it increases the quality
of the shots and that it is capable of planning safe trajectories
even in cluttered environments.

Index Terms—Multi-Robot Systems, Aerial Systems: Applica-
tions, Motion and Path Planning

I. INTRODUCTION

THE interest in Unmanned Aerial Vehicles (UAVs) for
aerial photography and filming is growing fast [1]–

[5]. This is mainly due to their manoeuvrability and the
capacity to create unique shots when compared to standard
cameras. The use of UAVs as flying cameras presents not only
a remarkable potential for recreational cinematography, but
also for the monitoring of inspection operations in outdoor
infrastructures with complex access. For instance, the EU-
funded project, AERIAL-CORE, proposes UAVs to surveil
the safety of human workers during maintenance operations
of electrical power lines (see Fig. 1). In this industrial setup, a
high-quality video is key, as it is used by supervising ground
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Fig. 1: UAV filming applications to provide external lighting; to
capture smooth shots outdoors; and to monitor dangerous mainte-
nance operations at electrical lines1. Pictures were obtained within
AERIAL-CORE and DRONUMENT projects, for which the proposed
technology is being developed. Videos of the work in this paper
can be seen on the multimedia material page (http://mrs.felk.cvut.
cz/papers/aerial-filming).

operators to monitor safety during the maintenance work.
Multi-UAV teams expand upon these possibilities as they
could provide alternative points of view or even supplementary
illumination. Similarly in our DRONUMENT project of NAKI
II program, efficient variable illumination plays a key role for
documentation of historical buildings interiors.

Proper lighting techniques are fundamental in bringing out
details in an image and in creating more natural-looking film
scenes. Thus, cinematography sets are packed with differ-
ent lighting sources, as digital sensors are not as reactive
to light as the human eye. This can also be relevant in
monitoring maintenance operations scheduled at times of the
day with poor illumination. Although aerial cinematography
has been attractive to the scientific community as of late,
lighting techniques have yet to be applied to improve the
performance of filming. Filmmakers apply many types of
lighting techniques making use of various equipment. In this
work, we only consider direct lighting techniques that do
not require additional equipment apart from light sources.
Although static lights could produce more pleasant footage
in some situations, we believe that UAVs are not optimal for
this purpose. Therefore, we only use UAVs as dynamic sources
of light to provide lighting to a dynamic scene.

In this context, navigating a team of UAVs for filming
tasks with distributed lighting is complex. Smooth and safe
trajectories are required to achieve pleasing shots that do
not compromise safety in dynamic scenarios. We propose

1 https://aerial-core.eu
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a method for online trajectory planning and execution with
multiple UAVs. Our team obeys a leader-follower scheme
where the formation leader carries an onboard camera to film
a moving target and the followers generate trajectories that
enable distributed lighting of the target, while maintaining de-
sired lighting angles. We formulate a non-linear, optimization-
based method that plans visually pleasant trajectories for the
filming UAV and distributes the others in a specified formation.
Moreover, we tackle safety by including a systematic frame-
work for obstacle avoidance. Safe flight corridors for the UAVs
are generated by forming sets of convex polyhedrons that
model free space. Optimal and safe trajectories are thereafter
computed within these convex sets.

A. Related works

There have been several works focusing on filming dynamic
scenes with a single UAV. Commercial products exist (e.g.,
DJI Mavic [6] or Skydio [7]) that implement semi-autonomous
functionalities, such as auto-follow features for tracking an
actor with collision avoidance. However, they do not address
cinematographic principles. An integrated system for outdoor
cinematography combining vision-based target localization
with trajectory planning and collision avoidance has been
proposed [8], [9]. Smoothness is achieved by minimizing
trajectory jerk; shot quality by defining objective curves that
fulfill relative angles with respect to the actor. Optimal trajec-
tories for cinematography have also been computed in real-
time through receding horizon optimization with non-linear
constraints [10]. A user inputs framing objectives for the
targets on the image to minimize errors on the image target
projections, sizes, and relative viewing angles. Some authors
have approached UAV cinematography by applying machine
learning [11], [12]. Particularly, such techniques have been
applied to demonstrations imitating professional cameraman’s
behaviors [13] or for reinforcement learning to achieve visu-
ally pleasant shots [14]. These works have presented valuable
results for online trajectory planning, although they have not
addressed the specific complexities for multi-UAV systems.

Regarding the methodology for multiple UAVs, a non-linear
optimization problem was solved in receding horizon in [15],
where collision avoidance to filmed actors and mutual colli-
sions of UAVs were considered. Aesthetic objectives are intro-
duced by the user as virtual reference trails. A specific camera
parameter space is proposed in [16] to ensure cinematographic
properties and to fulfill dynamic constraints along the trajec-
tories. The motion of multiple UAVs around dynamic targets
is coordinated through a centralized master-slave approach.
A greedy framework for multi-UAV camera coordination is
proposed in [17]. A decentralized planner computes UAV
trajectories considering smoothness, shot diversity, collision
avoidance, and mutual visibility. We have also addressed the
trajectory planning for multi-UAV cinematography in previous
work. We presented an architecture to execute cinematographic
shots (with different types of camera motion) using multiple
UAVs [18] and developed a distributed method to plan optimal
trajectories reducing jerky camera movements [19]. In this
paper, our focus is on the specifics of outdoor and dynamic

settings when compared to indoor scenarios [15]. Therefore,
we have integrated obstacle avoidance in a more fundamental
manner using local maps. Moreover, a novel problem with
respect to previous work has been introduced, as we perform
scene illumination with multiple UAVs to increase the quality
of image shots.

The modification of lighting angles to improve images
is fundamental in cinematography [20]. A camera with an
onboard light on a UAV can compensate for insufficient
lighting, but positioning lights at different angles with respect
to the camera axis would require several UAVs. Despite the un-
questionable importance of lighting for shot quality, its usage
for aerial cinematography is not well-studied. Utilizing UAVs
to provide supplementary illumination has been proposed for
building documentation tasks [21] or tunnel inspection [22].
A formation with a filming UAV and others carrying lights
was deployed to document the overshadowed parts of his-
torical buildings [23]. A similar system has been used to
carry out specialized documentation techniques [24]. However,
these works have proposed lighting for tasks in static scenes,
whereas the present paper deals with filming of moving targets
in dynamic and potentially cluttered environments, e.g., to
monitor inspection operations in large outdoor infrastructures.

In order to guarantee safe trajectories in multi-UAV cine-
matography, most works [15], [16], [19] only consider colli-
sion avoidance with actors, other UAVs, or static objects that
can be modelled with previously known no-fly zones. The
work in [9] integrates local mapping with onboard sensors
to penalize proximity to obstacles and solves an unconstrained
optimization problem. Another approach to obstacle avoidance
applied for standard UAV trajectory planning is to create
a convex representation of free space via a set of linear
inequality constraints [25]–[28], to obtain a QP formulation
for real-time motion planning. We have been inspired by these
single-UAV works to develop a fundamental framework for
the representation of obstacles in our non-linear optimization
problem for multi-UAV cinematography.

B. Contributions

Our main contributions are summarized as the following:
• We formulate a novel optimization problem for aerial

filming with distributed lighting. Using a leader-follower
scheme, we plan and execute trajectories in a distributed
manner. Optimization is run in receding horizon to com-
pute smooth trajectories with pleasing footage for the
UAV filming (the leader), which takes shots of a dy-
namic target indicated by an external user. The followers
compute their trajectories to maintain a formation with
specified lighting angles on the target.

• We propose a new method to tackle non-convex trajectory
optimization with obstacle avoidance in real time. We
decompose the problem in two parts. Non-linear cine-
matographic aspects are formulated in a problem with-
out obstacle avoidance to generate reference trajectories.
These are used to generate collision-free regions which
are convex and to transform the problem into a final QP
optimization task.
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• We present experimental results for different types of
cinematographic shots. We prove that our method is
capable of computing smooth trajectories for reducing
jerky movements and show that the distributed formation
improves the illumination of footage. The system is eval-
uated with field experiments and also in various realistic
simulated scenarios, including the filming of a moving
target in a cluttered environment.

II. SYSTEM OVERVIEW

Fig. 2 depicts the architecture of the entire system. The
leader UAV carries a camera for filming while several oth-
ers carry light sources to provide proper illumination. A
human director specifies the cinematographic parameters for
the scene. These parameters include the shot type (i.e., the
camera motion relative to the target), the camera shooting
angle for the leader, and the desired lighting angles for the
followers. This information, together with an estimation of
the target trajectory, is used to generate reference trajectories
for the UAVs (Section III-B). These initial trajectories do not
consider obstacle avoidance, but only cinematographic aspects.
The leader attempts to execute the commanded shot smoothly,
whereas the followers maintain a surrounding formation with
the desired lighting angles.

Safety is ensured by integrating information from a local
map for collision avoidance (Section III-C). Firstly, a collision-
free path is generated for each UAV using the map and the
initial cinematographic trajectories as guidelines. Then, a safe
corridor along each of these paths is computed, consisting of
a set of obstacle-free polyhedrons generated by the convex
decomposition of free space (see Fig. 5). Finally, the UAV
trajectories are obtained as a result of a trajectory optimiza-
tion process that computes dynamically feasible trajectories
inside each safe corridor (Section III-D). Inter-UAV collision
avoidance is achieved by including the team-mates planned
trajectories as obstacles in the map.

The entire pipeline shown in Fig. 2 (except for the Human
director component) runs on board each UAV in a receding
horizon manner. This enables the online planning to react
properly to changes in the behavior of the target being filmed,
as well as to malfunctioning team-members or previously un-
seen obstacles. Note that either the Cinematographic trajectory
generator or the Lighting trajectory generator is activated on
each UAV, depending on whether it carries a camera or light.
The component for trajectory tracking on each UAV is the
low-level control pipeline described in [29].

III. AUTONOMOUS AERIAL CINEMATOGRAPHY

In this section, we begin by detailing the UAV dynamic
model (Section III-A). Then, we describe our procedure to
generate optimal and safe trajectories for each UAV (Sec-
tions III-B, III-C, and III-D). Lastly, we explain how the
orientation of a UAV is controlled (Section III-E).

A. Multi-rotor aerial vehicle dynamic model

An independent trajectory tracker [29] for UAV attitude
control is used, which allows for planning with a simplified

positional dynamic UAV model. In addition, the orientation of
the camera or light source onboard (depending on the UAV)
needs to be modelled. We assume the existence of a gimbal
mechanism to compensate angle deviations due to changes
in UAV attitude. Therefore, it is assumed that camera roll is
negligible and we only control pitch and heading. Since the
heading of a multi-rotor vehicle can be controlled indepen-
dently of its position, we fix the relative position between the
camera/light and the UAV to always point forward and control
its heading through the UAV heading. The positional part of
the dynamic model is defined as a linear double integrator:

ṗ = v,

v̇ = a,
(1)

where p = [px py pz]
T ∈ R3 is the UAV position, v =

[vx vy vz]
T ∈ R3 the linear velocity, and a = [ax ay az]

T ∈
R3 the linear acceleration. The orientation of the camera/light
may be modelled similarly:

ȯ = ω,

ω̇ = θ,
(2)

where o = [ϕ ξ]T represents an orientation with respect to a
global frame given by its heading and pitch angles, ω ∈ R2

are the corresponding angular rates, and θ ∈ R2 the angular
accelerations. For the description of the proposed method, we
define a full positional state of the UAV xp = [pT vT ]T ∈ R6,
a vector of positional control inputs up = a, an orientation
state xo = [oT ωT ]T ∈ R4, and a vector of orientation control
inputs uo = θ.

B. Generation of reference trajectories

The first step of our method for trajectory planning is to
generate a reference trajectory Dj for each UAV j. The prob-
lem complexity is alleviated by removing collision avoidance
constraints and focusing only on cinematographic aspects. For
the filming UAV, the objective is to reach a position relative to
the target as provided by the shot type Cs, while minimizing
changes in the camera angle to produce pleasant images. A
specific camera shooting angle ψd over the target needs to be
maintained. The following non-linear optimization problem is
formulated2 for the filming UAV:

minimize
u0,...,uN−1

N∑

k=1

(||uk−1||2 + α1Jψ,k) + α2JN , (3)

subject to x0 = x′, (3.a)
xk+1 = fp(xk,uk) ∀k ∈ {0, . . . , N − 1}, (3.b)
vmin ≤ vk ≤ vmax ∀k ∈ {1, . . . , N}, (3.c)
umin ≤ uk ≤ umax ∀k ∈ {0, . . . , N − 1}, (3.d)
qz,min ≤ qz,k ∀k ∈ {1, . . . , N}, (3.e)

where fp(·) represents the positional part of the dynamic model
defined in Section III-A; vmin, vmax are velocity limitations;
and umin, umax control inputs limitations.

The first two terms in the cost function pursue smooth
trajectories by penalizing UAV accelerations and reducing

2 For simplicity of description, x := xp, and u := up. We use the
Runge-Kutta method for numerical integration.
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Fig. 2: The architecture of the proposed system. Cs and Cl represent the desired type of cinematographic shot and lighting configuration
specified by a human director; TT is the target estimated trajectory; DL, DF are reference trajectories for the leader UAV and the follower
UAVs, respectively; PL, PF are collision-free paths generated along the desired trajectories; SL, SF are safe corridors along the collision-free
paths; and TL, TF are optimized trajectories for the camera and lighting UAVs, respectively. The modules enclosed in the blue rectangle
run on both types of UAVs.

gimbal movements. The director specifies an aesthetic objec-
tive through the desired camera shooting angle ψd to film the
target (see Fig. 3). Emphasis is given on positioning the UAV
to keep this angle constant without moving the gimbal. In
doing so, the angular changes in the gimbal are reduced to
favor less jerky camera motion and therefore, pleasant footage.
In order to define Jψ , the relative position between the UAV
camera and the target is introduced as:

q =
[
qx qy qz

]T
= pL − pT . (4)

Then, we define Jψ as:

Jψ,k =


tan(ψd)−

qz,k√
q2x,k + q2y,k




2

. (5)

The target position is predicted within the time horizon with
a motion model (a constant speed model in our experiments).
Prediction errors are tackled by recomputing UAV trajectories
with a receding horizon. By minimizing the previous cost,
we implicitly minimize variations in camera pitch angle as
the relative pitch with respect to the target is kept constant.
Moreover, the camera heading corresponds with the UAV
heading, whose variations are also smoothed as explained
in Section III-D. Therefore, the idea is to generate UAV
trajectories where the gimbal only needs to move slightly to
compensate for small disturbances.

The terminal cost JN = ||xxy,d−xxy,N ||2 guides the UAV
to a desired state imposed by the shot type, e.g., at a certain
distance beside the target’s final position in a lateral shot. Note
that a final UAV height is not imposed, as we want the planner
to compute the optimal pz to maintain the camera shooting
angle commanded by the director. Lastly, the constraint (3.e)
establishes a minimum distance above the target for safety
purposes.

The reference trajectories for the lighting UAVs are com-
puted to achieve a desired leader-follower formation around
the target. The desired position of the followers is influenced
by the corresponding leader position pL and camera orienta-
tion oL, the target position pT , the desired lighting angles of
j-th light χj and %j , and the desired distance of the light to
the target dj . The desired position of j-th follower pj is then

ψd Leader

Global frame Target

pL
q

pT

Fig. 3: Reference frames and camera shooting angle. The origins of
the camera and UAV frames coincide.

given by the equation:

pj = pT + dj



− cos(ϕj) cos(ξj)
− sin(ϕj) cos(ξj)

sin(ξj)


 , (6)

where ϕj = ϕL + χj and ξj = ξL + %j are desired lighting
angles relative to the camera’s optical axis (see Fig. 4). To
avoid jumps in the desired followers’ positions caused by
quick changes in the target position (e.g., due to a transition to
a new target), a virtual target, located in front of the camera at
a certain distance along its optical axis, is used. The position
of this virtual target is given by:

pv = pL + dv



cos(ϕL) cos(ξL)
sin(ϕL) cos(ξL)

sin(ξL)


 , (7)

where dv is the desired distance between the virtual target
and the camera center and pv denotes the virtual target
position. Substituting position pv for pT in (6), a more
consistent formation scheme is acquired, where less aggressive
maneuvers are required; and the lighting always focuses on the
scene in front of the camera, which is relevant in obtaining
pleasant videos.

C. Generation of safe corridors

The initial reference trajectories are computed without
considering obstacles. They are, therefore, used as seed to
generate a safe corridor Sj for each UAV j where collision-
free trajectories can then be computed. Firstly, we convert each
trajectory Dj into a collision-free path Pj . We iterate over
each of the N waypoints in Dj and add it directly to Pj if
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Fig. 4: The leader-follower scheme defined by (6).

it is collision-free. Otherwise, we label the previous collision-
free waypoint as A and keep moving along Dj until we find
the next collision-free waypoint B. Then, we try to find an
alternative collision-free path from A to B, to be appended to
Pj and continue iterating. For that alternative path, we use the
Jump Point Search (JPS) algorithm introduced in [30], [31] and
extended to 3D in [27]. A real-time performance is ensured
by introducing a timeout for the JPS path search.

If the JPS algorithm fails to find a path within the given
timeout from A to B, we run it again to connect A directly
to the last waypoint in Dj (let this waypoint be C). If this
is not found either, we append to Pj the path to the node
closest to C from all those expanded during the JPS search.
Once completed, Pj consists of an arbitrary number of points
equal to or greater than N . Since Pj is used for the generation
of the safety corridors for particular points in Dj , it is post-
processed so that |Pj | = |Dj | = N . Pj is sampled so that the
waypoint distribution is close to the initial points in Dj . Since
these collision-free paths are used as a guide for trajectory
optimization in subsequent steps, the distance sampling step
ds is limited to help avoid the dynamic infeasibility of the
final trajectories. If the sampled Pj consists of more than
N waypoints, the overflowing points are discarded for the
subsequent steps of the trajectory optimization process. The
process to create a collision-free path Pj and its corresponding
safe corridor Sj is illustrated in Fig. 5.

Safe corridors are generated around the collision-free paths
with a prefixed initial position of the UAV (i.e., N + 1
waypoints), using a map of the environment represented by a
point cloud Opcl and the convex decomposition method pro-
posed in [27]. This method is based on an iterative procedure
for the generation of polyhedrons. It begins by inflating an
ellipsoid aligned with each path segment. In the next step,
tangent planes are constructed at the contact points between
the ellipsoid and any obstacles. Afterwards, all points lying
behind this plane are removed from Opcl. Yet again, the next
iteration starts by inflating the ellipsoid up to the nearest
point in Opcl. This procedure is terminated if there are no
remaining points in Opcl. The generated tangent planes define
an obstacle-free polyhedron P enclosing the corresponding
path segment and the set of all polyhedrons along the path
constitutes the safe corridor.

D. Trajectory optimization

Given a collision-free path P and its corresponding safe
corridor S, a final optimal trajectory is computed through a

Obstacle

Obstacle

Initial trajectory
Final trajectory
Collision free path

Fig. 5: The safe corridor generation process. The initial reference
trajectory (green) is converted into a collision-free path (purple), and
the obstacle-free polyhedrons are generated along this path. The final
optimized trajectory within the safe corridor is also shown (blue). We
inflate the obstacles for safety purposes (light red).

QP problem in receding horizon. The particular optimization
task 3 attempts to track a desired trajectory pd corresponding
to the reference trajectory Dj :

minimize
u0,...,uN−1

N∑

k=1

(||pd,k − pk||2 + β||uk−1||2), (8)

subject to x0 = x′, (8.a)
xk+1 = fp(xk,uk) ∀k ∈ {0, . . . , N − 1}, (8.b)
vmin ≤ vk ≤ vmax ∀k ∈ {1, . . . , N}, (8.c)
umin ≤ uk ≤ umax ∀k ∈ {0, . . . , N − 1}, (8.d)

pk ∈ Pk ∀k ∈ {1, . . . , N}, (8.e)

where fp(·) represents the positional part of a dynamic model
defined in Section III-A; vmin, vmax are velocity limitations;
umin, umax control inputs limitations; and Pk is a convex
polyhedron representing a free space associated with k-th
transition point. The last constraint ensures a safe resulting
trajectory without collisions. Given that the constraint (8.e)
can be decoupled in a set of linear constraints, the problem
becomes a quadratic convex program.

The optimization formulation is the same for both the
leader and follower UAVs. However, there are a couple of
relevant differences. First, the desired reference trajectories
are computed in a different manner, following either filming
or lighting criteria (see Section III-B). Second, the followers
encode mutual-collision avoidance through constraint (8.e). To
prevent negative effects on the cinematographic quality of the
performed shot, the entirety of mutual collision avoidance is
left to the followers. A fixed priority scheme is defined for
the UAVs, and the occupied space Opcl of each follower is
updated with the current planned trajectories from the leader
and other followers of a higher priority. Opcl is updated with
spherical objects of the desired collision avoidance radius at
each waypoint of the UAV trajectories to be avoided. A similar
procedure is followed to incorporate the target’s predicted
trajectory (also for the leader in this case). To hold with real-
time performance, the occupied space Opcl is assumed static
for a given horizon time, but it is updated at each planning
step, accommodating all static and dynamic obstacles.

3 For simplicity of description, x := xp, and u := up.
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Another crucial issue for the applications of multi-UAV
cinematography is how to prevent other UAVs from appearing
in the Field of View (FoV) of the filming UAV. However,
including this in the optimization task as either a constraint
or a cost term can remarkably increase the complexity of
the problem. We considered including the FoV of the leader
camera as an obstacle in the local maps of the followers,
so that they may avoid it. Even so, relatively small changes
in camera orientation could result in significant changes in
the map representation and lead to unstable planned trajecto-
ries. Therefore, the camera’s FoV is avoided by the lighting
UAVs only through penalizing deviations from the desired
trajectories pd. Thus, FoV avoidance is mostly determined
by the choice of lighting parameters that describe the desired
formation.

Finally, occlusions caused by obstacles in the FoV of the
camera or the lights are also a relevant aspect when filming.
Occlusion throughout a significant part of the shot renders
the shot useless, and in the case of onboard detection of the
target, it also disables target following. However in most cases,
occlusions are temporary and avoiding them is always a trade-
off between significant deviation from the desired cinemato-
graphic trajectory and having part of the video occluded. In
this work, the trajectories are generated so that they are close
to the desired cinematographic shots specified by a director.
The possible occlusions have to be resolved by redefining the
shot to be performed.

E. Orientation control

In this application, both the camera and the light sources
need to always be pointing at the filmed target. Hence, their
desired orientation is given by:

od =
[
ϕd ξd

]T
=
[
arctan(qy, qx) sin

(
qz
||q||

)]T
. (9)

Orientation control is also formulated as a constrained
quadratic optimization problem in receding horizon in order
to achieve smoother orientation changes. For simplicity of
description, x := xo and u := uo in the following problem
formulation:

minimize
u0,...,uN−1

N∑

k=1

(||od,k − ok||2 + γ||uk−1||2), (10)

subject to x0 = x′, (10.a)
xk+1 = fo(xk,uk) ∀k ∈ {0, . . . , N − 1}, (10.b)
ωmin ≤ ωk ≤ ωmax ∀k ∈ {1, . . . , N}, (10.c)
ξmin ≤ ξk ≤ ξmax ∀k ∈ {1, . . . , N}, (10.d)
umin ≤ uk ≤ umax ∀k ∈ {0, . . . , N − 1}, (10.e)

where fo(·) represents the orientation aspect of the dynamic
model defined in Section III-A; ωmin, ωmax are limitations on
the angular velocities; umin, umax control inputs limitations;
and ξmin, ξmax represent hardware limitations of the gimbal
to adjusting pitch angles. The heading and pitch angles of
the camera or light can be controlled independently. Thus,
Problem (10) was decoupled into two simpler problems. The
optimal solution for each problem can be found analytically

with a standard framework for linear MPC (Model Predictive
Control).

IV. EXPERIMENTAL EVALUATION

In this section, experimental results are presented to demon-
strate the performance of our method for multi-UAV trajectory
planning. We have assessed that the proposed method is
capable of computing smooth cinematographic trajectories in
real-time. Additionally, we have evaluated that the trajectories
of the follower UAVs which provide lighting for the target are
capable of complying with formation constraints to improve
the quality of the shot. The safety of our method has also
been proved through experiments in the presence of multiple
obstacles.

A. Experimental setup

We implemented our architecture described in Section II
in C++ using the ROS framework. The ACADO Toolkit [32]
was used to solve the optimization problems. We conducted
software-in-the-loop simulations using Gazebo to simulate
physics and to equip the UAVs with a camera and lights.
To solve the optimization problems, a horizon length of 8 s
and a time step of 0.2 s were chosen. The cinematographic
parameters were set to ψd = 6◦ and qz,min = 0.5m. The
maximum distance sampling step was set to ds,max = 0.5 m.

B. Simulation - Cinematography trajectories

The objective of this simulation was twofold: to demonstrate
how the method computes smoother camera trajectories for the
leader UAV while complying with cinematographic aspects,
and how the trajectories of the followers keep with formation
constraints to light the target properly. We simulated a human
worker performing a maintenance operation on a transmission
tower while monitored by a team of three UAVs (one filming
and two lighting the worker). While the worker approached
and climbed the tower, the system was commanded to perform
a lateral shot followed by a sequence of fly-over shots.

The fly-over shots were selected to film the operation as
they impose relative motion between the camera and the target.
This feature is regarded as richer from a cinematographic point
of view. We further demonstrate how our method is able to
execute these relative movements more aesthetically than a
baseline approach where the specific term to smooth variations
in camera angles has been removed (i.e., α1 = 0 in Problem
3). Fig. 6 compares the trajectories for the camera carrying
UAV generated with both our method and the baseline ap-
proach. The baseline approach generates straight trajectories,
whereas our method results in orbital trajectories, which have
been used in the cinematography literature to produce more
pleasant videos. For instance, [16], [17], [33] apply the arcball
principle [34] to create a spherical surface around the target
for aesthetic camera motion. We can also see in Fig. 6 that
our method reduces the jerk of the camera angles. Note that in
aerial cinematography literature, the jerk of the camera motion
(third derivative of the angles) has been identified as a key
aspect for shot quality [9], [35]. We measured the root mean
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Fig. 6: Trajectories for the camera carrying UAV while monitoring a
worker on a transmission tower. For simplicity, only the lateral shot
and the first fly-over shot are shown. We compare the trajectories
generated by our method (blue) with those from a baseline approach
without cinematographic costs (green). The upper image displays a
top view of the UAV’s and target’s trajectories. The small white dots
on the trajectories depict transition points sampled every 5 s to give a
notion of the speed. The bottom image depicts the temporal evolution
of the jerk of the camera angles

.

square of the jerk of ϕ and ξ along the full trajectories and
obtained 0.0197 rad s−3 and 0.0048 rad s−3, respectively, for our
method; and 0.0265 rad s−3 and 0.0075 rad s−3, respectively, for
the baseline without the cinematographic cost term.

Fig. 7 shows the trajectories followed by the whole UAV
formation throughout the experiment to film the maintenance
operation. It can be seen that the formation is properly main-
tained to avoid collisions between the UAVs and the tower, and
to provide required lighting of the filmed object. Moreover,
none of the UAVs appear in the camera’s field of view.
The temporal evolution of the deviations from the desired
orientation of each light and their distance from entering the
camera FoV during this simulation are shown in Fig. 8. A
video of the complete simulation can be found at the site with
multimedia materials.

C. Simulation - Cluttered environment

The aim of this simulation was to demonstrate the perfor-
mance of our method for trajectory planning in a cluttered
environment while assessing its scalability with numerous
obstacles. We simulated a forest-like scenario with multiple
trees as obstacles. As a human target walks through the forest,
the filming UAV executes a chase shot from behind while the
lighting UAVs follow the leader side by side. Fig. 9 depicts
the distribution of the obstacles around the forest and the
generated trajectories for the UAVs. In this figure, it is visible
that the UAVs were able to follow the human in formation and
to simultaneously avoid obstacles.

Finally, we analyze the scalability of our method in terms
of computational demand. Simulations were run with a 4-

157 s 178 s

104 s 130 s

74 s94 s
Fig. 7: An illustration of the experiment where an operator is filmed
working on a transmission tower. The trajectories of the camera
carrying leader (orange), both followers carrying lights (blue and
green), and the human worker (red) are shown. The obstacle map
is represented by a point cloud, including the power lines and tower.
The worker is tracked with a lateral shot as he walks to the tower and
then with a sequence of fly-over shots while he climbs up. Several
onboard images taken during the experiment are also shown.
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Fig. 8: Temporal evolution of the distance dF of UAVs carrying lights
from entering the camera FoV, deviation from desired heading ϕd and
deviation from desired pitch angle of light ξd.

core Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz. Table I
shows the results of our method that correspond to the total
planning time for each iteration that was run on the leader
UAV. As expected, most time was spent during the non-convex
optimization step described in Section III-B. The results for the
followers are not included because they skip this non-convex
optimization and thus, consume less time. The results are
similar for the two simulations, although the second scenario
was significantly more cluttered.

Since the map of the environment is transformed into safe
corridors made of convex polyhedrons, cluttered environments
do not represent an increase in the computational demands of
the trajectory optimization method. Therefore, we are able to
plan the leader’s trajectories at a rate of 1 Hz with horizon
lengths of 8 s. This rate is adequate for real-time performance
in the dynamic scenarios that we target. The lower computa-
tional complexity required to generate the initial trajectories
of the followers allows us to plan follower’s trajectories at a
higher rate of 2 Hz, enabling faster reactions to changes of the
leader’s behaviour and thus a more efficient mutual collision
avoidance.

D. Real world experiment

In order to demonstrate our method, we performed field
experiments generating trajectories for a real team of UAVs
(see Fig. 10). Thus, we proved the real-time performance of
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TABLE I: The planning times of our method per iteration. The total
average values are shown for the two experiments. The percentage of
time consumed at each step is shown thereafter. ITG stands for the
procedure indicated in Section III-B, SCG for procedure described
in Section III-C and FTO for trajectory optimization described
in Section III-D.

Time (s)
Total (Avg ± std) ITG (%) SCG (%) FTO (%)

Tower 0.70923± 0.10557 70.9982 11.81564 17.18615
Forest 0.71274± 0.05792 72.41338 8.77989 18.80673
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Fig. 9: A top view of the trajectories generated in the cluttered forest
scenario. The trajectories of the target (red), the leader (orange), and
both followers (blue and green) are shown. The black dots represent
trees.

the proposed approach onboard. A sequence of shots was
commanded to film a dynamic target in an outdoor scenario.
A video of the experiment can be found at the multimedia
material site.

Target

UAVs

Fig. 10: A snapshot of a real experiment in an outdoor scenario. UAVs
were localized using RTK GPS. The target location was generated
from a noisy ground truth, without onboard visual detection.

V. CONCLUSION
This paper has presented a method for autonomous aerial

cinematography with distributed lighting by a team of UAVs.
We have proposed a novel methodology for multi-UAV trajec-
tory planning, addressing non-linear cinematographic aspects
and obstacle avoidance in separate optimization steps. We have
demonstrated that the method is capable of generating smooth
trajectories complying with aesthetic objectives for the filming
UAV; and trajectories for the follower UAVs that allow them
to keep a formation lighting the target properly and staying out
of the camera FoV. Besides, our results indicate that we can
plan trajectories in a distributed and online manner, and that
the method is suitable for obstacle avoidance even in cluttered
environments. As future work, we plan to address occlusions
caused by obstacles within the camera FoV. Our idea is to
compute the regions where these occlusions would take place
and include them in the representation of the occupied space.
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Chapter 5

Collision-Aware Time-Optimal
Formation Reshaping

In this chapter, we present the core publication [7c] introducing an optimal algorithm to
address the time-optimal formation reshaping in three-dimensional environments with guar-
antees on mutual collision avoidance among robots. The proposed deterministic, centralized
Collision-Aware Time-Optimal formation Reshaping Algorithm (CAT-ORA) consists of two
key components: (i) an algorithm for solution of robot-to-goal assignment and (ii) trajectory
generation approach producing trajectories minimizing the total duration of the formation
reshaping process. The robot-to-goal assignment builds upon the Hungarian algorithm [132],
[133], which has been adapted to effectively implement mutual collision avoidance through
direct constraints on mutually exclusive robot-goal pairs. The approach to generate a set
of collision-free reshaping trajectories is based on a closed-form solution to minimum time
trajectory generation problem, while maintaining similar progress along the path for all tra-
jectories, which is crucial for collision avoidance guarantees. The algorithm is structured such
that the robot-to-goal assignment and trajectory generation can be solved in a decoupled
manner without compromising the optimality of the solution.

The proposed algorithm demonstrates superior performance in terms of minimizing the
makespan of the formation reshaping process compared to methods commonly applied in
mobile robotics. It does so while keeping computational demands at a level suitable for real-
time deployment, even for large formations consisting of up to 100 robots. The properties of
CAT-ORA have been evaluated by thorough numerical and theoretical analysis, including the
proof of optimality. The applicability of the algorithm in practical scenarios was validated in
numerous simulations with hundreds of robots and real-world experiments involving up to 19
UAVs. Notably, the results highlight a significant advantage of the robot-to-goal assignment
aspect within the proposed algorithm, which significantly reduces the maximum length of the
assigned paths — by up to 48% compared to methods used in contemporary cooperative mo-
tion planning and formation control. This reduction is especially beneficial for aerial vehicles
with constrained operational time, enhancing their efficiency in real-world scenarios.

The author’s contribution to this work is 70% and lies in designing and implementing
the algorithm, conducting theoretical and numerical analysis, and preparing the manuscript.
The coauthors assisted with the experiments and provided feedback on the proposed method
and the manuscript.

[7c] V. Krátký, R. Pěnička, J. Horyna, P. Štibinger, T. Báča, M. Petrĺık, P. Štěpán,
and M. Saska, “CAT-ORA: Collision-aware time-optimal formation reshaping for
efficient robot coordination in 3D environments,” submitted to Transactions on
Robotics, 2023
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CAT-ORA: Collision-Aware Time-Optimal
Formation Reshaping for Efficient Robot

Coordination in 3D Environments
Vit Kratky∗ , Robert Penicka, Jiri Horyna, Petr Stibinger, Tomas Baca, Matej Petrlik, Petr Stepan, Martin Saska

Abstract—In this paper, we introduce an algorithm designed
to address the problem of time-optimal formation reshaping in
three-dimensional environments while preventing collisions be-
tween agents. The utility of the proposed approach is particularly
evident in the realm of mobile robotics, where the agents benefit
from being organized and navigated in formation for a variety
of real-world applications requiring frequent alterations in for-
mation shape for efficient navigation or task completion. Given
the constrained battery life inherent to mobile robots, the time
needed to complete the formation reshaping process is crucial
for efficient operation, especially for Unmanned Aerial Vehicles
(UAVs). The proposed Collision-Aware Time-Optimal formation
Reshaping Algorithm (CAT-ORA) builds upon the Hungarian
algorithm for the solution of the robot-to-goal assignment im-
plementing the inter-agent collision avoidance through direct
constraints on mutually exclusive robot-goal pairs combined with
a trajectory generation approach minimizing the duration of the
reshaping process. Theoretical validations confirm the optimality
of the proposed CAT-ORA, with its efficacy further showcased
through simulations, and a real-world outdoor experiment involv-
ing 19 UAVs. Thorough numerical analysis shows the potential
of CAT-ORA to decrease the time required to perform complex
formation reshaping tasks by up to 48% compared to commonly
used methods in randomly generated scenarios.

Index Terms—Multi-Robot Systems, Path Planning for Mul-
tiple Mobile Robots or Agents, Collision Avoidance, Formation
Reshaping

SUPPLEMENTARY MATERIAL

Video: https://mrs.felk.cvut.cz/tro2023catora

I. INTRODUCTION

Teams of autonomous mobile robots have found practical
applications in various real-world scenarios, including search
and rescue operations [1], [2], environmental monitoring [3],
and automated warehouse systems [4]. In most cases, these
teams consist of robots working together to achieve a common
objective while independently navigating through the environ-
ment and avoiding collisions. However, in certain applications,
it is advantageous for mobile robots to be arranged in a specific
formation to accomplish desired tasks, such as documenting
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Fig. 1: Deployment of the introduced Collision-Aware Time-Optimal
formation Reshaping Algorithm (CAT-ORA) in a small-scale drone
visual performance with 19 UAVs. The images show the transition
of UAVs guided by the CAT-ORA from a triangular shape (a) to a
ring shape (b). This transition was performed within 7 seconds. The
blue lines highlight the shape of the formation in top view images,
while (c) captures the flying formation from the side.

historical buildings [5], monitoring wildfires [6], or creating
drone light shows [7], [8]. In these scenarios, the robots often
need to adjust their positions relative to one another to achieve
the required formation shape for the mission’s execution. Con-
sidering the formation shape adaptation as part of a robotic
mission, the time efficiency of this process becomes of great
importance. This applies specifically to vehicles with opera-
tional time significantly constrained by battery endurance, such
as multi-rotor Unmanned Aerial Vehicles (UAVs), especially
in time critical missions such as search and rescue and appli-
cations requiring highly dynamic performance, such as drone
light shows.

This paper tackles the Time-Optimal Formation Reshaping
Problem (TOFREP) with collision avoidance guarantees. The
problem involves finding the assignment of robots to goals
coupled with the generation of minimum-time collision-free
trajectories. From the robotics perspective, the formation re-
shaping problem is a specific instance of cooperative motion
planning. However, instead of having specific goals assigned
to individual robots, the group of robots is given a set of
unassigned goals to visit. The algorithms for the solution of as-
signment problems have been widely tackled in literature [9]–
[20]. However, since robots are physical entities sharing an
environment, mutual collision avoidance has to be considered
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during the assignment process. This consideration implies that,
in general, the individual cost of assigning two robot-goal pairs
in a matching depends on the other assigned pairs, preventing a
direct use of algorithms for the solution of general assignment
problems.

Previous works in the field of formation reshaping vary
in the level of decentralization, complexity, dimensions of
the environment, optimization criteria, and applied methodol-
ogy [21]–[28]. Although the completion time of the reshaping
process is a critical factor for algorithms deployed on robots
with limited operational time, only a few works have taken the
time criterion into account [24]–[26]. However, none has ad-
dressed the minimization of completion time while simultane-
ously accounting for mutual collision avoidance among robots
and the dynamic constraints associated with robots as physical
entities. Furthermore, these works lack guarantees regarding
the solution completeness and quality, which is one aspect that
limits the transfer of the algorithms to industrial applications
where we observe a clear tendency to favour robotic systems
with predictable and well-defined behavior guided by clear,
understandable rules.

To this end, we address the problem of the time-efficient
collision-free formation reshaping by introducing a central-
ized, deterministic Collision-Aware Time-Optimal formation
Reshaping Algorithm (CAT-ORA) with guarantees on a mini-
mum mutual distance of involved agents during the reshaping
process (mutual collision avoidance). Our proposed approach
comprises two key components that must be designed to-
gether to allow us to provide theoretical guarantees of the
overall complex robotic system’s behavior: (i) an algorithm
for optimal robot-to-goal assignment considering mutual col-
lision avoidance among robots, and (ii) a computationally
efficient trajectory generation approach minimizing the com-
pletion time of a set of trajectories. CAT-ORA builds upon
the Hungarian algorithm [9], [10] adapted to solve the robot-
to-goal assignment as Linear Bottleneck Assignment Problem
(LBAP) [29] effectively managing potential collisions between
assigned robot-goal pairs. The designed approach to the gen-
eration of a set of trajectories is based on a closed-form so-
lution to the minimum-time single-trajectory generation prob-
lem [30] adapted to generate a set of trajectories minimizing
their makespan, while keeping collision-free properties.

The optimality, efficacy, and other attributes of CAT-ORA
have been confirmed through theoretical validation, statisti-
cal evaluation, and a real-world demonstration of a forma-
tion flight in a small-scale visual entertainment performance
involving up to 19 UAVs (see Fig. 1). The results show
the capability of CAT-ORA to decrease the time required
to perform formation reshaping tasks by up to 48% com-
pared to Linear Sum Assignment Problem (LSAP)-based solu-
tion [9], [10] while providing collision avoidance guarantees.
The CAT-ORA finds a solution within a few milliseconds for
instances of up to 32 robots, making it highly suitable for real-
time applications that require on-the-fly computations.

Building on the capabilities of the CAT-ORA, this work
contributes by directly optimizing the completion time (the
so-called makespan) of the formation reshaping process in a
3D environment, while considering inter-agent collision avoid-

ance. We show that the robot-to-goal assignment problem
can be formulated as LBAP with additional constraints ensur-
ing inter-agent collision avoidance. The proposed algorithm
demonstrates that this problem can be solved in real time while
significantly reducing the makespan of the formation reshaping
process. This outcome holds significant value, especially for
robots with limited operational time, and can be employed to
enhance existing approaches or serve as a foundation for future
research in formation reshaping, particularly concerning the
autonomous deployment of cooperating multi-robot systems
in real-world environments.

We consider the particular contributions of this paper to be:
• We present a lower bound on a minimum mutual dis-

tance of trajectories for the solution of the robot-to-goal
assignment as LBAP along with its theoretical proof.

• We introduce a deterministic, complete algorithm for
solving the robot-to-goal assignment problem, minimiz-
ing the maximum length of the path among assigned
robot-goal pairs while respecting constraints on mutually
exclusive robot-goal pairs.

• We provide a closed-form solution for generating a set of
trajectories connecting given start and goal positions and
minimizing the makespan while preserving the guarantees
of collision-free properties.

• We combine the contributions mentioned above to build
CAT-ORA, the first known complete approach for the
solution of the formation reshaping problem minimizing
the makespan while providing collision avoidance guar-
antees in 3D environments. We provide verification of its
properties through several proofs, numerical analysis, and
a real-world experiment.

• We provide a quantitative and theoretical analysis of the
CAT-ORA solution compared to the LSAP-based solution
in terms of the makespan of a reshaping process, showing
its superior performance.

II. RELATED WORK

The introduced time-optimal formation reshaping problem
can be considered a robot-to-goal assignment problem closely
coupled with a minimum-time trajectory generation. One of
the most frequently used methods for solving assignment
problems is the Hungarian algorithm [9], [10], capable of
providing a solution minimizing the sum of individual asso-
ciations costs with time complexity O(n3), where n is the
number of robots. Since the Hungarian algorithm was intro-
duced, many algorithms tackling the assignment problem and
its variants with different characteristics and performance have
been developed [11]–[15]. Notably, there have been innovative
approaches grounded in game-theory principles [18], swarm-
intelligence [19], reinforcement learning [31], and market-
based methodologies [20]. Despite these advancements, the
Hungarian algorithm remains in use and has been utilized in
many works as an efficient centralized algorithm with provable
properties to solve the assignment problem.

First introduced in [32], a specific case of the assignment
problem minimizing the maximum individual cost (bottleneck)
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is called Linear Bottleneck Assignment Problem (LBAP). Sim-
ilarly to the original problem, LBAP can be solved using the
Hungarian algorithm by modified cost substitutions [32], ap-
plying threshold algorithms [16] or shortest augmenting path
algorithms [17]. An important adaptation of the Hungarian
algorithm, used later in this work, is its dynamic variant [33].
Given the initial assignment, the dynamic variant enables solv-
ing an assignment problem with changed costs in approxi-
mately one hundredth of the computational requirements of the
Hungarian algorithm starting from scratch. Despite the variety
of approaches developed to solve assignment problems, their
direct use to formation reshaping is restricted by neglecting
the collision resolution among robots.

Methods suitable for addressing the formation reshaping
problem exhibit differences in terms of decentralization, guar-
antees on the quality of the solution, and employed methods.
The centralized approaches [21]–[26] mostly take advantage of
the complete information for generating optimal solutions, but
often impose an assumption on the collision-free environment.
In [21], the authors propose a centralized approach based on
the concurrent solution of assignment of goals and planning
of trajectories (CAPT algorithm), which is further extended to
a decentralized approach. The CAPT incorporates a solution
of LSAP minimizing the sum of squared traveled distances
combined with constant-velocity and minimum-snap trajecto-
ries, which was proved to yield collision-free trajectories under
the assumption on a minimum initial distance between agents.
The problem is extended to a variable goal formation (variable
scale and translation) in [22], where the authors show that
the problem of task assignment with variable goal formation
can be transformed to LSAP via cost substitution. However,
the approach is limited to 2D, and the mutual collisions are
prevented by adapting the scale of the final formation.

Unlike the centralized solutions, the distributed approaches
often suffer from incomplete information, leading to sub-
optimal solutions (e.g., approach applying local task swap-
ping [27]) and limited guarantees on its quality (e.g., learning-
based approach [28]). The robot-to-goal assignment problem
is also solved in several works on distributed control of multi-
rotor UAV formation in obstacle-free regions [34], as well
as in complex environments [35], [36]. These works apply
distributed task assignment algorithms [20], [37] to assign the
robots to local goals during alignment to the target formation.
Although [34]–[36] are proposed primarily for multi-rotor he-
licopters, they utilize the sum of squared distances as the min-
imization criterion for the assignment problem. Such choice
provides certain guarantees on the mutual distance of trajec-
tories if solved optimally [21]. However, it does not reflect
the problem being solved since minimizing squared traveled
distances for in-flight multi-rotor UAVs is neither optimal from
the point of view of duration, energy consumption, nor any
other appropriate criterion.

The time criterion was considered only in a few works deal-
ing with formation reshaping. In [24], the authors aim to min-
imize the total time in motion and build the solution of an as-
signment problem on duration of time-optimal trajectories. The
algorithm relies on collision resolution via a combination of
time delays and altitude adaptation, which limits its application

to 3D environments. The algorithm presented in [25] directly
approaches the minimization of the makespan by defining the
problem as LBAP. The proposed solution considers a variable
goal formation but is limited to 2D and ignores inter-agent
collisions. Another algorithm considering the minimization of
the makespan [26] also solves the assignment as a variant
of LBAP, but it considers constant-velocity trajectories only.
The authors provide proof of collision avoidance guarantees;
however, these are only valid in 2D environments with initial
and goal configurations constrained to the grid. Although some
related works show impressive results, the oversight regarding
the mutual collisions or minimum-time objective of the robot-
to-goal assignment limits their efficient use in real-world ap-
plications.

III. PROBLEM DEFINITION

The Time-Optimal Formation Reshaping Problem
(TOFREP), tackled in this manuscript, is defined as follows.
Given the set of initial configurations of n unlabeled
robots S = {s1,s2, · · · ,sn} and set of n goal configurations
G = {g1,g2, · · · ,gn}, find a set of collision-free trajectories
T that guide the robots from S to G while minimizing the
makespan of the reshaping process.

Let us define the makespan of reshaping the formation F
given the assignment φ : S→G as

Mr(S,G,φ) = max
(i, j)∈φ

tf(T(si,g j)), (1)

where tf(T(a,b)) represents the time required to reach posi-
tion b from position a following trajectory T(a,b). Then, the
TOFREP is defined as

minimize
φ∈Φ,T∈T

Mr(S,G,φ),

subject to distmin(T(si,g j),T(sk,gl))≥ ∆,
∀(i, j) ∈ φ ,(k, l) ∈ φ ,(i, j) 6= (k, l),

(2)

where distmin(·) represents the minimum distance between
trajectories given as arguments, ∆ stands for the minimum
acceptable mutual distance of robots, Φ is the set of all pos-
sible assignments from S to G, and T is a class of arbitrary
trajectory generation functions.

In the following sections, we introduce CAT-ORA, an op-
timal algorithm for the solution of problem (2) under the
following assumptions:
(A1) Both the robots and the goals are unlabeled (any robot

can be assigned to an arbitrary goal location).
(A2) The robots are stationary in the initial and goal config-

urations.
(A3) The motion of the robots between the initial and goal

configuration is limited to straight paths with mutually
equivalent time parametrization.

(A4) The robots are considered to be spheres with radius R
for the collision avoidance resolution.

(A5) The minimum distance between the pairs of initial con-
figurations and the pairs of goal configurations δ =
mini, j, i 6= j min(||si− s j||, ||gi−g j||) fulfills the condition
δ ≥ η∆ with η ≥

√
2 being a constant parameter.
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(A6) The convex hull of S∪G is free of obstacles apart from
the robots themselves.

The assumptions (A1) – (A6) are necessary to guarantee
the optimality of the proposed algorithm to the solution of
TOFREP, as defined in (2). However, in Section X, we show
that the assumption (A2) is not strict and that the algorithm
can also be used for reshaping moving formations, and further
that the optimal solution considering assumption (A3) stays
close to the theoretical lower bound of the optimal solution not
considering (A3). The assumptions (A5) and especially (A6)
impose significant limitations, but both (A5) and (A6) may be
easily satisfied in most of the real-world scenarios discussed
in Section I, making the proposed solution practical for real-
world applications.

IV. OVERVIEW OF THE MAXIMUM MATCHING IN
BIPARTITE GRAPHS AND THE HUNGARIAN METHOD

In this section, we overview key terms and definitions from
graph theory applied in a further description of the proposed
methodology and briefly describe the Hungarian method em-
ployed in the proposed algorithm.

A. Maximum matching in bipartite graphs

Key terms related to maximum matching problem in bipar-
tite graphs used in following sections are:
• Bipartite graph: graph G = {V,E} = {Vx,Vy,E}, where

the set of vertices V can be partitioned in two disjoint
subsets Vx,Vy, such that the set of edges E does not con-
tain any edge connecting vertices from the same partition.

• Matching: subset of edges EM ⊂E, such that every vertex
in V is incident to at most one edge in EM .

• Cardinality of the matching: number of edges in a match-
ing CM = |EM|. The matching containing the maximum
possible number of edges is called maximum cardinality
matching. If CM = |Vx| = |Vy|, the matching is called
perfect.

• Matched edge: edge ei j is called matched if it is a part
of the matching, unmatched otherwise.

• Matched vertex: vertex v is matched if it is incident to an
edge in matching EM , and unmatched otherwise.

• Alternating path: path in a graph that starts with an un-
matched vertex and alternates between edges that do not
and do belong to the matching.

• Augmenting path: an alternating path that ends with an
unmatched vertex.

• Minimum weight bipartite matching problem: given bi-
partite graph G= {Vx,Vy,E} and weight function w : E→
R, find a maximum cardinality matching EM , such that
∑ei j∈EM w(ei j) is minimum.

• Dual problem of minimum weight bipartite matching
problem: given bipartite graph G = {V,E} = {Vx,Vy,E},
weight function w : E → R, and vertex labeling function
l f : V → R, find a feasible labeling of a maximum cost
c(l f ) = ∑vx,i∈Vx l f (vx,i) + ∑vy, j∈Vy l f (vy, j), where feasible
labeling is a choice of labels such that l f (vx,i)+ l f (vy, j)≤
w(ei j).

For simplicity of description and without loss of generality,
we assume that the bipartite graph G = {Vx,Vy,E} is complete
and balanced, i.e., |Vx|= |Vy| in the remainder of the paper.

B. Hungarian algorithm

The Hungarian algorithm [9], [10] is widely applied for
the solution of the assignment problem (which can also be
represented as a minimum weight bipartite matching prob-
lem) with proven complexity O(n3), where n is a number of
matched entities. The input of the Hungarian algorithm is a
square biadjacency matrix Md representing a weighted bipar-
tite graph G with weight function w : E → R. The algorithm
exploits the properties of the dual of minimum weight bipartite
matching problem by using dual variables ui = l f (vx,i), v j =
l f (vy, j), i, j∈{0,1, · · · ,N}. These variables are updated during
the run of the algorithm and used to determine the admissi-
bility of edge ei j given by condition

ui + v j = w(ei j). (3)

The Hungarian algorithm starts with an empty matching φ
and repeatedly searches for augmenting paths in an equality
subgraph formed by edges fulfilling condition (3). The search
for an augmenting path is realized by building so-called Hun-
garian trees that are rooted in unmatched nodes. If the Hungar-
ian tree formed by alternating paths in a graph G contains an
augmenting path, the current matching is updated by flipping
the matched and unmatched edges along the found path. This
process always increases the cardinality of current matching
by one in a single step of the algorithm. If the augmenting path
is not found in a current equality subgraph, the values of dual
variables are updated such that the dual task remains feasible
and new edges are introduced into the equality subgraph. Then,
the search for an augmenting path continues. The incremental
increase of the cardinality of the matching ensures that the
algorithm reaches a perfect matching for Md ∈Rn×n in n steps
of a successful search for an augmenting path. We refer to [9],
[10], [29] for a detailed description of the algorithm and proofs
of its properties.

V. COLLISION-AWARE TIME-OPTIMAL FORMATION
RESHAPING ALGORITHM - OVERVIEW

The introduced TOFREP (2) consists of two problems: (i)
the optimal assignment of initial configurations to goal con-
figurations and (ii) the generation of collision-free minimum-
time trajectories. In further description, we assume that these
two problems are completely separable, and that

max
(i, j)∈φa

tf(T(si,g j))≥ max
(i, j)∈φb

tf(T(si,g j)) =⇒

max
(i, j)∈φa

||si−g j|| ≥ max
(i, j)∈φb

||si−g j||
(4)

holds for all assignments φa,φb from S to G. This means that
the assignment minimizing the makespan (1) corresponds to
the assignment minimizing the maximum distance dmax be-
tween the assigned initial and goal configurations

dmax = max
(i, j)∈φ

||si−g j||. (5)
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Initial configuration

Goal configuration
Minimum-maximum-length

robot-to-goal assignment with
collision avoidance guarantees

Minimum-time collision-free
trajectory generation

CAT-ORA

Set of collision-free trajectories
for time-optimal formation

reshaping

Result

Fig. 2: Block diagram of the proposed Collision-Aware Time-Optimal formation Reshaping Algorithm (CAT-ORA). The colors of the
trajectories in the image on the right encode the velocity profile of particular trajectories, with red being equal to zero velocity and yellow
to maximum velocity.

This allows us to design Collision-Aware Time-Optimal for-
mation Reshaping Algorithm (CAT-ORA) such that the robot-
to-goal assignment and generation of collision-free minimum-
time trajectories are tackled in a decoupled way (see Fig. 2 for
block diagram of CAT-ORA). The proof that the proposed de-
coupled approach does not influence the optimal solution and
that (4) is fulfilled within the proposed approach is provided
in Section IX-A.

A. Minimum-weight robot-to-goal assignment

The task of assigning the goal configurations to particular
robots can be defined as an integer linear program

minimize
n

∑
i=1

n

∑
j=1

w(ei j)xi j,

subject to
n

∑
i=1

xi j = 1 ∀ j ∈ {1, . . . ,n},
n

∑
j=1

xi j = 1 ∀i ∈ {1, . . . ,n},

xi j ∈ {0,1} ∀i, j ∈ {1, . . . ,n},

(6)

where w(ei j) is the cost of assignment of the goal configuration
g j to initial configuration si, and xi j = 1 if si is assigned to
g j, xi j = 0 otherwise. The problem (6) is often referred to
as Linear Sum Assignment Problem (LSAP) which can be
efficiently solved by the Hungarian algorithm [9], [10]. Using
the squared Euclidean distances ||si − g j||2 as costs w(ei j),
the solution of (6) was proved to guarantee the collision-free
property of constant-velocity trajectories when δ ≥

√
2R [21],

where R is the safety radius of robots.
In compliance with (4), problem (6) must be reformulated to

minimize the length of the longest trajectory in the assignment
for solving TOFREP (2):

minimize max
i, j∈{0,...,n}

w(ei j)xi j,

subject to
n

∑
i=1

xi j = 1 ∀ j ∈ {1, . . . ,n},
n

∑
j=1

xi j = 1 ∀i ∈ {1, . . . ,n},

xi j ∈ {0,1} ∀i, j ∈ {1, . . . ,n},

(7)

known as Linear Bottleneck Assignment Problem
(LBAP) [32]. The specificity of the robot-to-goal assignment
problem requires augmenting (7) by including constraints on
mutually colliding paths

|Cm|
∑
e=1

xidx(Cm,e) = 1 ∀Cm ∈ C, (8)

where C is a set of constraints represented by sets of mutu-
ally colliding edges, and idx(·) represents the indices of the
corresponding edge.

Solving (7) augmented by (8) using standard optimization
methods would require to compute the whole set of mutual
collision constraints prior to the solution of the problem, which
would require to check collisions among n2(n−1)2

2 pairs of
edges, making it computationally intractable for large n. In
this work, we propose a novel algorithm that combines the
Hungarian algorithm [9], [10] and its dynamic variant [33]
with fast collision checking. The collision checking is built on
the analysis of theoretical guarantees on a minimum mutual
distance of trajectories for an assignment provided as a solu-
tion of LBAP (detailed in Section VI). A thorough description
of the robot-to-goal assignment component of CAT-ORA is
provided in Section VII.

B. Minimum makespan collision-aware trajectory planning

The generation of collision-free trajectories between pairs
of matched initial and goal configurations that minimize the
makespan of the formation reshaping process requires consid-
ering the generation of individual minimum-time trajectories.
In compliance with assumption (A3), we consider a model
with single-dimension point-mass dynamics p̈ = a, with con-
straints on acceleration control inputs −amax ≤ a≤ amax, and
limits on velocity v = ṗ, 0≤ v≤ vmax. Although the individual
minimum-time trajectories using this model would minimize
the makespan, they do not preserve the guarantees on mutual
collision avoidance. Exploiting the fact that the minimized
makespan is influenced only by the length of the longest
trajectory, we have proposed an approach for generating mu-
tually collision-free minimum-time trajectories, preserving the
theoretical guarantees on minimum mutual distance. The pro-
posed approach, which is based on a closed-form solution of
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the minimum-time trajectory generation problem, is detailed
in Section VIII, along with the proof of theoretical guarantees.

VI. THEORETICAL GUARANTEES OF LBAP SOLUTION

The solution of LSAP using squared Euclidean distances as
costs has been proved to guarantee minimum distance between
trajectories dmin equal to

dmin =

√
2

2
δ , (9)

where δ stands for the minimum distance between any pair of
initial and goal configurations [21]. In the following sections,
similar properties are derived and proved for the application
of LBAP to solve the same problem while minimizing the
maximum distance between the assigned initial and goal con-
figurations (5), thus minimizing the makespan (4).

A. Minimum mutual distance of two trajectories

For the analysis of the guarantees on the minimum distance
between trajectories, we consider the following scenario. With-
out loss of generality, we can assume fixed initial and goal
positions si, s j, gi and an arbitrarily positioned goal position
g j with ||s j−gi||= d, ||s j−gi|| ≥ ||si−g j||, and ||si−gi||=
Md,M ∈ [0,1) (see Fig. 3). For M ≥ 1, the LBAP solution
coincides with the solution to LSAP, thus implicitly providing
the same guarantees on minimum mutual distance.

Md

d
s j

si
g j

gi

si j

gi j

Fig. 3: An example problem consisting of two initial positions si, s j
and two goal locations gi, g j. Without loss of generality, the distance
|s j−gi| is assumed to be equal to d and |si−gi|= Md, where M ∈
[0,1).

Considering the trajectories with constant velocity, the po-
sition of robot xi(t) at time t following the trajectory from
initial position si to goal position gi can be described as

xi(t) = (1−α)si +αgi, (10)

with α = t
td

uniformly sampled on [0,1], where td is the
duration of the trajectory. Hence, the mutual distance between
robots following trajectories Ti and Tj of the same duration td
from si to gi with velocity vi and s j to g j with velocity v j,
respectively, can be expressed as

||x j(t)−xi(t)||=||(1−α)s j +αg j− (1−α)si−αgi||
=||(1−α)(s j− si)+α(g j−gi)||.

(11)

Using the notation introduced at the beginning of this sec-
tion and notations

si j = s j− si, (12)
gi j = g j−gi, (13)

the equation (11) can be written in the following form

||x j(t)−xi(t)||= ||(1−α)si j +αgi j||. (14)

Then, the squared distance is given by

||x j(t)−xi(t)||2 =||(1−α)si j +αgi j||2 = ||si j +α(gi j− si j)||2

=(si j +α(gi j− si j))
T (si j +α(gi j− si j)).

(15)

Remark: In the remainder of this manuscript, the mono-
tonicity of the quadratic function in the positive domain is
exploited as minimization of maximum distance is equivalent
to minimization of the distance squared.

Following the theorem in [21], for notational convenience,
we define:

a≡ sT
i jsi j,

b≡ sT
i jgi j,

c≡ gT
i jgi j.

(16)

This enables us to simplify (15) to

||x j(t)−xi(t)||2 = α2(a−2b+ c)−2α(a−b)+a. (17)

From (17), the value of α minimizing the distance between
trajectories of robots with indices i, j, can be found as

α∗i j =
a−b

a−2b+ c
. (18)

By substituting the value of α∗i j in (17), the minimum squared
distance between trajectories Ti,Tj is given by

||xi−x j||2min =

{
ac−b2

a−2b+c if 0< α∗i j < 1,
δi j, otherwise,

(19)

where
δi j = min(||gi j||, ||si j||)2. (20)

The minimum squared distance (19) was already proved to be
greater than 1

2 δi j for b≥ 0, which is guaranteed for solutions
provided by LSAP [21]. In contrast to the application of LSAP,
the LBAP solution does not directly provide any guarantee
on values a,b,c, (defined in (16)), and thus the worst-case
minimum distance between trajectories is zero. Given the
guarantees ||xi−x j||2min ≥ 1

2 δi j for b≥ 0 [21], we further focus
on analyzing the guarantees of specific case of the LBAP
solutions with b< 0.

Without loss of generality, we assume c = ka,k≥ 1, and the
size of vector si j = const., leading to a also being constant.
Considering b =

√
a
√

ccosλ , where λ is an angle between
vectors si j and gi j, and the constraints a ≥ 0, a ≥ b, c ≥ b
enforced by constraints on α ∈ [0,1] and b< 0, we can rewrite
the first part of (19) to

||xi−x j||2min = a
k(1− cos2(λ ))

k−2
√

k cos(λ )+1
. (21)

Since b< 0 =⇒ cosλ < 0 and a= const., the gradient of (21)
with respect to k is non-negative for all admissible values of k.
Therefore, the squared distance is minimal if a = c. Using the
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substitution (16), this result can be also interpreted as ||si j||=
||gi j||. For a = c, the equation (19) is simplified to

||xi−x j||2min =

{ a+b
2 if 0< α∗i j < 1,

min(||si j||, ||gi j||), otherwise.
(22)

Since a = const., a> 0, the minimum distance is achieved for
minimum b, such that a = c.
Remark: The distance between two trajectories following line
segments is minimal when the trajectories intersect, which
means that they lie in the same plane. For each pair of line
segments (q,r) in three-dimensional space, it holds that either
q||r, and thus q and r lie in the same plane, or we can find a
plane P such that q ∈ P and r||P. The projection r′ of r into
a parallel plane preserves the dimension of r and

||(1−κ)(q(t0)− r(t0))+κ(q(t f )− r(t f ))|| ≥
||(1−κ)(q(t0)− r′(t0))+κ(q(t f )− r′(t f ))|| ∀κ ∈ [0,1],

(23)

where p(t0),r(t0) and p(t f ),r(t f ) stand for the start and end
points of the line segments, respectively, and κ is an indepen-
dent variable. This allows us to solve the rest of the problem
in two-dimensional space without the loss of generality.

Based on the definition (16), the value of b is given by

b = sT
i jgi j = ||si j||||gi j||cos(β + γ), (24)

where β = ∠gis jsi and γ = ∠g jgis j (see Fig. 4). Consider-

Md

β

γ

s j

si

g j

gi
d

si j

gi j

Fig. 4: Illustration of the general case of an assignment problem with
fixed points si,s j,gi and variable point g j.

ing (24) and the limitations on the values of β and γ coming
from M ∈ [0,1), the distance is minimized for β + γ = ±π ,
resulting in the intersection of si− gi and s j− g j, leading to
a minimum mutual distance equal to zero. Since there are no
theoretical guarantees on the limits for the minimum mutual
distance of robots following trajectories Ti,T j for a general
case, we further analyze the guarantees on minimum mutual
distance depending on the value of M. Given the condition

max(||si−gi||, ||s j−g j||)
max(||si−g j||, ||s j−gi||)

≤M, (25)

we can state the following theorem:

Theorem 1: If max(||si−gi||,||s j−g j ||)
max(||si−g j ||,||s j−gi||) ≤M, M ∈ [0,1), then min-

imum mutual distance di j,min ≥
√

1−M2δi j.
Considering the assumption in Theorem 1 and (24), the

mutual distance is minimized when

||si−gi||= ||s j−g j||= M max(||s j−gi||, ||si−g j||), (26)

which maximizes β +γ in range (0,π). This corresponds to a
situation in which the positions si,s j,gi,g j form vertices of an

isosceles trapezoid. The detailed analysis of minimum mutual
distance of robots following trajectories formed by diagonals
of an isosceles trapezoid is provided in Appendix A, along
with proof of Theorem 1.

As a consequence of Theorem 1, a pair of constant-velocity
trajectories for which (25) holds is guaranteed to be collision-
free under the condition

δi j ≥
√

1−M2

1−M2 ∆. (27)

Since we have analyzed the worst-case scenario, the resulting
condition (27) forms a lower bound on the minimum distance
between a pair of trajectories that can be applied for an ef-
ficient mutual collisions check of robots following constant-
velocity trajectories.

VII. ALGORITHM FOR SOLUTION OF LBAP WITH
GUARANTEES ON MINIMUM DISTANCE AND

COLLISION-FREE TRAJECTORIES

As previously stated in Section V, neither the Hungarian
algorithm nor its adaptations for LBAP can be used to di-
rectly solve the LBAP with constraints on mutually colliding
trajectories (8). Using the results obtained in Section VI, we
introduce an optimal algorithm for the solution of (7) with
additional constraints (8). The algorithm which forms the first
component of the proposed CAT-ORA is outlined in Algo-
rithm 1 and detailed in the following sections.

Algorithm 1: Algorithm for robot-to-goal assignment
considering mutual collision constraints
Input: sets of initial and goal configurations S, G
Output: complete, collision-free assignment φ from S

to G, minimizing the length of the trajectories

1 Md, Sd, Gd := preprocessData(S,G)
2 tlb := getThresholdLowerBound(Md)
3 T, tc := initializeThresholds(Md, tlb)
4 B := initializeBoundedMatrix(Md,tc)
5 u,v := initializeDualVariables(Md, B)
6 φ := findInitialAssignment(Md, B)
7 done := false
8 while not done do
9 φ := internalHungarian(φ ,Md,B,u,v)

10 valid := isComplete(φ )
11 if valid then
12 coll edges := getCollidingEdges(Md,Sd,Gd,S,G)
13 if coll edges = None then
14 done := true

15 else
16 φ := branchSolution(φ ,Md,B,u,v)
17 valid := isComplete(φ )

18 if not valid then
19 tc := updateThreshold(T)
20 B,eu := updateBoundedMatrix(tc)
21 u,v := updateMatchingAndDuals(φ ,Md,eu,u,v)
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A. Algorithm for robot-to-goal assignment considering mutual
collision constraints

To simplify the description of the proposed robot-to-goal
assignment algorithm (Algorithm 1), we assume initial and
goal configurations S and G to be of the same size |S|= |G|=
N, even though this is not strictly required. The algorithm
begins with data preprocessing to get the weighted biadjacency
matrix Md ∈RN×N , mi j = ||si−g j||2 and the distance matrices
Sd ∈RN×N , si j = ||si−s j||2, Gd ∈RN×N , gi j = ||gi−g j||2 that
store the squared distances of particular start and goal locations
for efficient collision checking.

Further steps initialize several variables. First, the lower
bound tlb for a threshold of elements in Md that determines
whether edges ei j can be part of the solution is found as an
element of Md

tlb = max(Rmin,Cmin), (28)
where

Rmin = max
i∈1,...,N

min
j∈1,...,N

mi j, (29)

Cmin = max
j∈1,...,N

min
i∈1,...,N

mi j. (30)

Next, the list of thresholds T is formed as a sorted list of
elements mi j in Md which are greater than tlb. The current
threshold tc = tlb is also applied in initialization of a bounding
matrix B ∈ {0,1}N×N , where

bi j =

{
0 if mi j ≤ tc,
1 if mi j > tc.

(31)

The bounding matrix B is used and updated throughout the
whole algorithm to limit the maximum cost of an admissible
edge and also to exclude the restricted edges, being part of
the collision, from the assignment.

As the next step, the vectors of row and column dual
variables u = {u1, . . . ,uN} and v = {v1, . . . ,vN} are initialized
according to the following rule:

v j = min
i∈{q|bq j=0, q∈{1,...,N}}

mi j, ∀ j ∈ {1, . . . ,N}, (32)

ui = min
j∈{q|biq=0, q∈{1,...,N}}

mi j− v j, ∀i ∈ {1, . . . ,N}. (33)

This initialization ensures that at least one admissible edge
is present in each row and column at the beginning of the
algorithm. The final step preceding the main loop of the al-
gorithm finds an initial assignment by a sequential search for
an arbitrary admissible edge that lies in a yet unassigned row
and column. This step is not necessary since the algorithm can
start with a valid matching of arbitrary cardinality (including
the empty matching), but it decreases the number of required
steps in the initial phase of the algorithm.

With the completed initialization, the main loop of the al-
gorithm begins with the internalHungarian() procedure (line 9
of Algorithm 1) detailed in Algorithm 2. This procedure starts
by searching for an augmenting path through growing the
Hungarian trees rooted at the unmatched nodes in a current
equality subgraph. If an augmenting path P is found, the
matching at step k, φk is updated by path P as

φk+1 = (P−φk)∪ (φk−P). (34)

Otherwise, the dual variables are updated using the set of
nodes encountered in the grown Hungarian trees according to
the formula

ui =

{
ui−θ if i ∈Hr,
ui +θ if i /∈Hr,

∀i ∈ {0, . . . ,N}, (35)

v j =

{
v j +θ if j ∈Hc,
v j−θ if j /∈Hc,

∀ j ∈ {0, . . . ,N}, (36)

where
θ =

1
2

min
i/∈Hr , j∈Hc,bi j=0

mi j−ui− v j, (37)

and Hr,Hc are sets of nodes’ indices encountered within the
Hungarian trees corresponding to the rows and columns of
Md , respectively.

Up to this part, the internalHungarian() procedure (Algo-
rithm 2) matches the internal part of the original Hungarian
algorithm with the only difference in (37) which excludes
the edges restricted by the bounding matrix B. However, this
modification can result in an undefined value of θ , indicating
that the assignment problem does not have a solution with the
current threshold tc (line 5 in Algorithm 2). In such a case,
the internalHungarian() procedure is aborted while keeping
the incomplete assignment φ and updating the values of dual
variables u,v for later processing inside the main loop of Al-
gorithm 1.

Algorithm 2: internalHungarian(φ ,Md,B,u,v)
Input: matching φ , matrix of squared distances Md,

bounding matrix B marking the elements
exceeding current threshold tc, row and column
dual variables u,v

Output: updated assignment φ with non-decreased
cardinality, updated row and column dual
variables u, v

1 while not isComplete(φ) do
2 Th := growHungarianTrees(φ ,B,u,v)
3 P := findAugmentingPath(Th)
4 if P = None then
5 if isUpdateFeasible(Th,B) then
6 updateDualVariables(Th,u,v)
7 else
8 break

9 else
10 φ := augmentPath()

Once the matching from the internalHungarian() procedure
is obtained, its completeness is verified (line 10 of Algo-
rithm 1). If the matching is not complete, meaning that its
cardinality card(φ)< N, the threshold tc and bounding matrix
B are updated. As a result of the Hungarian algorithm on an
incomplete graph, the last found matching φ has the maximum
cardinality on a graph excluding edges bounded by B. Thus,
the matching cannot be completed without adding at least
K = N− card(φ) new edges. Based on this observation, the
current threshold tc is updated to the lowest value in T that
decreases the number of bounded elements in B by at least K.
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The change of the elements in matrix B corresponds to the
modifications of values in the original cost matrix Md , which
requires updating the dual variables to maintain the dual task
feasible. For this purpose, we have adapted the method for
updating dual variables in a dynamic (cost-changing) variant of
the task assignment problem proposed in [33]. The updateM-
atchingAndDuals() procedure applied within the proposed al-
gorithm (line 21 of Algorithm 1) is outlined in Algorithm 3.
After the adaptation of dual variables, the algorithm proceeds
to the next run of the internalHungarian() procedure (line 9
of Algorithm 1), starting with the matching of cardinality
card(φk) ≥ card(φk−1) and a decreased number of bounded
elements.

Algorithm 3: updateMatchingAndDuals(φ ,Md,eu,u,v)
Input: matching φ , matrix of squared distances Md,

set of updated edges eu, row and column dual
variables u,v

Output: updated assignment φ , updated row and
column dual variables u, v

1 for ei j ∈ eu do
2 if mi j < ui + v j then
3 ui = mink∈{1,...,N}mik− vk
4 if ei j /∈ φ then
5 φ := φ\{eik,k ∈ {1, . . . ,N}}

6 else
7 φ := φ\ei j

If the matching found by internalHungarian() procedure is
perfect, it is tested for the existence of colliding edges using a
combination of the results derived in Section VI for evaluation
of the majority of the potential collisions, and the precise
collision checking using (19). The collision check is done over
all pairs of edges in the perfect matching φ . The collision
check of edges ei j,ekl ∈ φ starts with the evaluation of

colide(ei j,ekl) =(mi j +mkl)≥ (mil +mk j)∧
max(mi j,mkl)>M2 max(mil ,mk j),

(38)

where the value of M is set based on the value of δ and
the minimum allowed mutual distance ∆ using (27). The first
part of the condition rejects the risk of potential collision by
detecting the equivalence with the LSAP solution with proven
guarantees on the minimum distance of trajectories [21] while
the second part eliminates the collisions using Theorem 1.

Since the condition from Theorem 1 represents the lower
bound on a minimum mutual distance, we further apply the
exact computation of a minimum distance to avoid false pos-
itive detections of collisions if collide(ei j,ekl) = true. Thus,
if the condition (27) is not met, equation (19) is applied for
an exact computation of the minimum mutual distance of
the trajectories being compared to the minimum acceptable
distance ∆. In the case that there is no pair of colliding edges
in a perfect matching φ , the algorithm terminates and returns
φ as a complete assignment from S to G, minimizing the
maximum length of the trajectory while fulfilling the condition
on collision-free assignment with constant-velocity trajectories
(line 14 of Algorithm 1).

If a collision is detected, the branchSolution() procedure
(Algorithm 4) is started to ensure that the algorithm explores
all possibly collision-free matchings for a current threshold
tc before increasing its value and making new elements of
Md feasible (line 16 of Algorithm 1). The proposed method
is based on the depth-first search algorithm performed on a
binary tree graph formed by nodes defined by matching φ ,
pair of colliding edges ec, and vectors of row and column
dual variables u,v. Note that, the branchSolution() method is
used to find any collision-free solution with current threshold
tc that defines the optimal value. Thus, the non-optimality of
the depth-first search does not influence the optimality of the
presented algorithm.

The binary tree, rooted at a node corresponding to initial
perfect matching, is iteratively built during the depth-first
search by expanding the parent node according to the follow-
ing expansion rule. The parent node Np = {φp,ei j,up,vp} with
a maximum matching φp, restricted edge ei j, and dual variables
up,vp is, in the case of detected colliding edges ec = {ekl ,eop},
expanded into two child nodes derived from the task assign-
ment problem of the parent node by adding a single bounded
edge and updating dual variables correspondingly. Thus, the
expansion of a node Np results in new nodes given by

Nc1 = {φp,ekl ,up,vp},
Nc2 = {φp,eop,up,vp}.

(39)

Note that, the matching and dual variables of particular nodes
are always updated during the internalHungarian() procedure
before the child nodes are derived from them.

In every iteration of the branchSolution() procedure, a node
nc = {φc,ei j,uc,vc} is dequeued from the Last In First Out
(LIFO) queue, the bounding matrix B is updated with the
newly restricted edge ei j and the corresponding dual variables
and matching are updated using updateMatchingAndDuals()
(Algorithm 3). After that, the internalHungarian() is run to
find a perfect matching for an updated assignment problem
(line 8 of Algorithm 4). Since the newly restricted edge ei j
is always part of an initial parent matching, the cardinality of
the matching φ after an update is always card(φ) = N − 1.
As mentioned earlier, given the matching of cardinality N−1
and the corresponding dual variables, the internal Hungarian
algorithm terminates after a single step with either a perfect
matching (if an augmenting path exists) or an incomplete
matching. This fact is important for keeping the computational
complexity of the proposed algorithm low.

If a perfect matching is not found by the internalHungar-
ian() method, the solution to an assignment problem with a
set of bounded edges given by B does not exist. Consequently,
it is easy to show that this situation cannot be improved by
restricting additional edges. Hence, we cannot get a valid
solution by expanding such a node and can proceed to the
next iteration. If the computed solution is a perfect matching,
it has to be examined whether it is collision-free. In case a
pair of colliding edges is not found, the perfect matching is
returned as a valid collision-free solution to the main loop
of Algorithm 1. Otherwise, the node is expanded according to
the expansion rule (39), inserted into the queue, and the algo-
rithm proceeds to the next iteration (line 14 of Algorithm 4).
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In case all branches of the tree were explored without finding
a valid, complete solution, the procedure returns to the main
loop of Algorithm 1, where the value of the current threshold
is updated (line 19), and the search for a solution continues.
In the main loop, the algorithm repeats the above-described
steps until a valid, complete solution is found. The valid so-
lution is guaranteed to exist under the assumptions specified
in Section III.

Since the introduced algorithm iteratively increases the
threshold on bounded edges, the number of bounded edges
decreases and the problem becomes less restricted. In a worst-
case scenario, the algorithm reaches a point where none of
the edges are bounded, meaning that also none of the edges
from solution φLSAP minimizing the sum of squared costs are
bounded. Then, φLSAP is an output of the internal Hungarian al-
gorithm. Since the φLSAP solution is guaranteed to be collision-
free with given assumptions, a valid collision-free matching is
always found.

Algorithm 4: branchSolution(ec,φ ,Md,B,u,v,S,G,Sd ,Gd)
Input: colliding edges ec, matching φ , matrix of

squared distances Md, bounding matrix B, row
and column dual variables u,v, initial and goal
configurations S, G, matrices with squared
distances of initial and goal configurations
Sd ,Gd

Output: complete collision-free assignment φ if it
exists, original assignment otherwise

1 Ol := Ø // Last in first out queue
2 Node root := {φ ,ec,u,v}
3 Ol ← expand(root,φ ,ec)
4 while Ol 6= Ø do
5 nc := dequeue(Ol)
6 updateRestrictedNodes(Md,B,nc)
7 updateMatchingAndDuals(φ ,Md,nc,u,v)
8 φ := internalHungarian(φ ,Md,B,u,v)
9 if isComplete(φ) then

10 ec := getCollidingEdges(Md,Sd,Gd,S,G)
11 if ec = None then
12 return φ // solution found

13 else
14 Ol ←expand(nc,φ ,ec)

15 else
16 continue

17 return φ // solution not found

VIII. MINIMUM-MAKESPAN TRAJECTORY GENERATION

The algorithm designed for the solution of the LBAP intro-
duced in Section VII-A guarantees to solve part of TOFREP
by finding an assignment minimizing the length of the longest
path with additional guarantees on the collision-free property
of the constant-velocity trajectories. In this section, we de-
scribe a second component of CAT-ORA that allows us to
generate a set of trajectories connecting the pairs of assigned
positions, while minimizing the makespan of the reshaping

process and preserving the conditions on the collision-free
property derived in Section VI.

A. Minimum-time trajectory generation

The time-optimal control of a model with single-dimension
point-mass dynamics and constraints on maximum velocity
results in a control policy of form

a∗(t) =





amax if t ≤ t1,
0 if t1 < t ≤ t2,

−amax if t2 < t ≤ t3,
(40)

where t3 = t∗ is the overall minimized time of trajectory fol-
lowing [24]. The control policy (40) leads to trajectories that
are described by equations

p1 = p0 + v0t1 +
1
2

amaxt2
1 ,

v1 = v0 +amaxt1,

p2 = p1 + v1(t2− t1),

v2 = v1,

p3 = p2 + v2(t3− t2)−
1
2

amax(t3− t2)2,

v3 = v2−amax(t3− t2),

(41)

with velocities vi and positions pi, i ∈ {0,1,2,3}. With the
known initial and final conditions of p0,v0, p3,v3, the maxi-
mum acceleration amax, and the assumption on reachability of
the maximum velocity v1 = vmax, the number of equations (41)
matches the number of unknown variables (t1, t2, t3, p1, p2,v2),
and (41) has a closed-form solution. By the addition of an as-
sumption that v0 = v3 = 0 and its consequence t1 = t3−t2, (41)
can be modified to

p1 = p0 +
1
2

amaxt2
1 ,

v1 = amaxt1,

p2 = p1 + v1(t2− t1),

v2 = v1,

p3 = p2 + v2(t3− t2)−
1
2

amax(t3− t2)2,

v3 = v2−amax(t3− t2),

t1 = t3− t2.

(42)

With an additional seventh equation, the modified set of equa-
tions (42) allows for relaxing the condition v1 = vmax to v1 ≤
vmax, thus providing a single closed-form solution valid even
when maximum velocity cannot be reached, and the optimal
control policy reduces to bang-bang control [30].

B. Trajectories for minimum-time formation reshaping

By applying time optimal control policy (40), the time nec-
essary for following the trajectory is directly proportional to
the length of the trajectory. Thus, the makespan of the forma-
tion reshaping process is equal to the time tm of following the
trajectory Tm corresponding to the longest path Pm obtained in
the assignment φ

|Pm|= Dm = max
(i, j)∈φ

||si−g j||. (43)
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From the solution of (42) for the longest path Pm, we obtain
the duration tm

1 , t
m
2 and tm

3 of acceleration, constant speed, and
deceleration segments, respectively. Considering the duration
of particular segments t1, t2, t3 to be constant and equal to
tm
1 , t

m
2 , t

m
3 for all trajectories, (42) can be applied for the gen-

eration of the rest of trajectories with defined t1, t2, t3, but
varying |ai| ≤ amax and v1 ≤ vmax. Such an approach results in
trajectories defined by parametrization:

0≤ s≤ t1
t3

: xi(s) = si +

(
Amt2

3
2Dm

s2
)
(g j− si),

t1
t3
< s≤ t2

t3
: xi(s) = si +

(
Vmt3
Dm

s− V 2
m

2AmDm

)
(g j− si),

t2
t3
< s≤ 1 :

xi(s) = si +

(
Amt2

3
2Dm

(2s− s2)− V 4
m +A2

mD2
m

2AmDmV 2
m

)
(g j− si),

(44)

where Vm and Am stand for maximum applied velocity and
maximum applied acceleration of Tm, respectively, and s = t

tm
with t being time elapsed from start of the trajectory. Trajecto-
ries generated according to parametrization (44) are illustrated
in Fig. 5.

-AM

-Ai
0

Ai

AM

a
( m

.s
-2
)

0

Vi

VM

v
( m

.s
-1
)

0 t1 t2 t3
0

Di

DM

Time (s)

p
(m

)

Fig. 5: Acceleration and velocity profiles and position progress along
the path for trajectory Tj with length D j = Dm generated using
time-optimal control policy (40) (red), and for trajectory Ti with
length Di ≤ Dm generated according to parametrization (44) (blue).
The background color distinguishes the acceleration (green), constant
speed (white), and deceleration (red) segments of the trajectories.

Let us define the progress ratio at time t > 0 for a pair of
trajectories Ti,Tj of lengths Di > 0, D j > 0, as

PR(Ti,Tj, t) =
pi(t)
p j(t)

, (45)

where pi(t), p j(t) are the distances traveled along the trajec-
tories Ti,Tj till time t.

Theorem 2: If the progress ratios PRa = PR(Ti,a,Tj,a) and
PRb = PR(Ti,b,Tj,b) of two parametrizations a and b of a
single pair of paths are constant for all t and PRa = PRb, the
following relation holds:

distmin(Ti,a,Tj,a) = distmin(Ti,b,Tj,b). (46)

Proof. The assumption PRa = PRb = const. in Theorem 2 can
be reformulated to equation

pi,a(sata)
p j,a(sata)

=
pi,b(sbtb)
p j,b(sbtb)

, ∀sa,sb ∈ (0,1], (47)

where ta and tb are the duration of trajectories Ti,a,Tj,a and
Ti,b,Tj,b, respectively, and sa,sb are independent variables.
Equation (47) can be simplified to

p j,b(sb) = p j,a(sa)
pi,a(sa)

pi,b(sb)
. (48)

From (48), it follows that for an arbitrary pi,a(sa) with asso-
ciated point p j,a(sa), it holds that

pi,b(sb) = pi,a(sa)⇔ p j,a(sa) = p j,b(sb). (49)

Thus, the set of corresponding points on particular trajectories
is equal for both pairs of trajectories, and their minimum
distances are equal.

By applying Theorem 2, it can be shown that the
progress ratio of trajectories with a constant velocity (10)
and minimum-time trajectories defined by (44) are equal and
constant for all parts of parametrization (44). It follows that
the minimum-time trajectories defined by (44) have the same
properties that were derived for trajectories with constant ve-
locity. Thus, the pair of minimum-time trajectories are guar-

anteed to be collision-free if δ ≥
√

1−M2

1−M2 ∆ and the CAT-ORA
consisting of application of Algorithm 1 together with the tra-
jectory generation approach (44) provides a set of minimum-
time collision-free trajectories as a solution to TOFREP.

IX. THEORETICAL AND STATISTICAL ANALYSIS

In this section, we provide proof of the optimality of the
proposed algorithm and state and prove several theorems that
highlight the significant benefits of the proposed approach, and
advocate the rightfulness of the stated assumptions.

A. The independence of robot-to-goal assignment on trajec-
tory generation approach

The proposed decoupled solution to TOFREP is optimal
under a necessary assumption on the separability of the robot-
to-goal assignment problem and minimum-time trajectory gen-
eration (4). If (4) holds for all assignments and trajectories
generated by the approach described in Section VIII, then the
duration of trajectories can be replaced by Euclidean distances
in the computation of robot-to-goal assignment without affect-
ing the optimality of the solution.

The proof of (4) comes directly from (43), (44) and prop-
erties of applied control policy (40). Based on (43), (44), the
duration of all trajectories for a single assignment depends
only on the length of the longest path in the assignment. Given
the assumptions on stationary initial and goal configurations
(A2), the trajectory generation process generates trajectories
with the same initial and final velocities. In such a case, the
duration of trajectories generated using time-optimal control
policy (40) is a monotonic, increasing function of the length of
the path, which guarantees legitimacy of the assumption (4).
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B. Optimality of the robot-to-goal assignment of CAT-ORA

The proof of the optimality of the proposed algorithm is based
on the following observations:
(B1) The Hungarian algorithm, and thus also the internalHun-

garian() procedure, are optimal (proved in [10]).
(B2) The dynamic variant of the Hungarian algorithm is op-

timal (proved in [33]).
(B3) The bounding of elements mi j > tc of a cost matrix Md

by bounding matrix B is equivalent to substituting con-
stant Q = ∑mi j∈Md

[mi j ≤ tc]mi j for all elements mi j > tc.
(B4) If the element mi j applied in computation of updates to

dual variables (37) is bounded, all unbounded elements
of Md are already admissible, and the cardinality of
the current matching cannot be increased without using
bounded elements (comes from the properties of the
Hungarian algorithm).

(B5) By the addition of k edges, the cardinality of the maxi-
mum matching φ can be increased by at most k. Thus,
the matching φ cannot be completed without the addition
of at least k = N− card(φ) new edges (comes from the
properties of the Hungarian algorithm).

The proof of completeness comes straightforwardly from
(B1) and (B2). By omitting the procedures that do not change
any variables in the main loop of Algorithm 1, the algorithm
reduces to a dynamic variant of the Hungarian algorithm,
solving the assignment problem with iterative change of costs
caused by updates of threshold tc. Based on (B3), the bounded
elements only influence the update of duals once they are
smaller than tc. The threshold is updated until a valid solution
is found, eventually ending with bi j = 0 ∀(i, j) ∈ {1, . . . ,N}2.
If no elements of Md are bounded, the solution exists accord-
ing to assumption (A5). Then, in compliance with (B2), the
solution is found, proving the algorithm’s completeness.

The proof of optimality is built using the fact that the
bounded values cannot be part of the solution, and thus the
optimal value of the solution is bounded by tc. Therefore, it
is sufficient to show that the threshold tc is increased only
if a valid solution does not exist with the current threshold.
According to Algorithm 1, the initial threshold (28) equals
the greatest element among minimum elements of particular
rows and columns. Since the perfect matching has to contain
at least one element from each row and column, the initial
lower bound does not exceed the optimal value. Further, we
branch the proof to two cases: (i) Algorithm 1 never detects
a colliding edge or (ii) Algorithm 1 detects a colliding edge.

In case (i), the algorithm switches between applying the
internalHungarian() procedure and updating the threshold tc.
According to (B1) and (B4), the internalHungarian() proce-
dure always finds a maximum matching with respect to the
current bounded matrix. If a solution found with the current
threshold is a perfect matching, the optimal solution was
found. Otherwise, the threshold is updated. From (B5), we can
conclude that an update of tc to the lowest value that decreases
the number of bounded elements in B by K, cannot increase
the threshold above the value of the optimal solution. Then,
for case (i), the procedure matches the algorithm [33] with
the costs changed by updates of tc. Thus, the guarantees on

optimality for case (i) can be concluded based on (B2) and
the validity of threshold updates given by (B5).

In case (ii), we have to further prove that the procedure
branchSolution() is complete. The constraint on mutually col-
liding edges represents edges er,es from which only one can be
a part of the solution. The branchSolution() procedure exploits
this fact by creating a binary search tree where each branch
is derived from a parent node by restricting exactly one edge
from the colliding pair. As a result, the original instance is
split into two, where one of the instances allows us to find
any solution to the original problem that does not include er,
and the second allows us to find any solution to the original
problem that does not include es. Clearly, this approach cannot
miss any valid solution. During the search for the solution,
each node represented by the instance of an assignment prob-
lem is evaluated using the internalHungarian() and possibly
getCollidingEdges() procedure. For each node, there are three
possible outputs of the evaluation with the corresponding set
of restricted edges: the found matching is not perfect; the
found matching is perfect, but contains colliding edges; and
the found matching is perfect and collision-free. If a perfect
matching is not found, it does not exist ((B1), (B2)), and thus
this branch of the solution does not have to be explored further
since the restriction of an additional edge cannot lead to an
increase in cardinality. If a perfect matching is found and it
contains a pair of colliding edges, the node is split into two
and further explored. If the found matching is perfect and does
not contain any colliding edge, it is bounded by tc, and is thus
optimal with respect to (7), (8).

Since we prove the optimality of the algorithm for the
solution of LBAP with mutual collision constraints, as well as
the independence of robot-to-goal assignment on minimum-
time trajectory generation approach, it can be concluded that
the CAT-ORA is an optimal algorithm for the solution of
TOFREP.

C. Comparison of LBAP and LSAP in terms of maximum path
length

The superior performance of the LBAP-based solution to
robot-to-goal assignment in terms of the length of the longest
path is evident from the LSAP and LBAP problem formula-
tion. With Theorem 3 introduced and proven in this section, we
provide an insight into the significance of this phenomenon,
and thus also the benefit of solving robot-to-goal assignment
as LBAP instead of LSAP. The theorem shows that the LSAP
solution can produce an up to 1.7-times longer longest path
compared to the LBAP solution already for small instances of
3 robots. This ratio further grows with the squared root of a
number of robots, where for 100 robots, it already reaches a
ratio of 10.
Theorem 3: The upper bound on the ratio between the max-
imum length of the path in LSAP assignment φs and LBAP
assignment φb is

√
N, where N is the number of goals. The

lower bound on this ratio equals 1. Thus, the following equa-
tion holds

1≤
max(i, j)∈φs ||si−g j||
max(i, j)∈φb

||si−g j||
≤
√

N. (50)
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Proof. The proof of the first inequality comes directly from the
LBAP algorithm. If no edge could be removed from the LSAP
solution unless the problem becomes unfeasible, the maximum
lengths of the paths of LSAP and LBAP solutions coincide.

The second inequality can be proved by considering a gen-
eral set of paths resulting from assignment φs and a set of paths
resulting from assignment φb. We would like to prove that

max(i, j)∈φs ||si−g j||
max(i, j)∈φb

||si−g j||
≤
√

N, (51)

if ∑
(i, j)∈φs

||si−g j||2 ≤ ∑
(i, j)∈φb

||si−g j||2. (52)

Considering the independence of the expressions in the numer-
ator and denominator, the maximum of this expression can be
found by independent maximization of numerator and mini-
mization of denominator while conforming to constraint (52).
The task can be simplified using the following observations:

i. The paths shorter than max(i, j)∈φs ||si−g j|| do not influ-
ence the value of numerator, but increase the value of the
left side of (52). In the extreme case, this leads to a set of
paths with zero length except for a single path in the set.

ii. The paths shorter than max(i, j)∈φb
||si−g j|| do not influ-

ence the value of the denominator, but increase the value
of the right side of (52). In the extreme case, this leads
to a set of paths with equal lengths.

Based on these observations, (52) can be rewritten into the
least constrained form

(
max

(i, j)∈φs
||si−g j||

)2

≤ N
(

max
(i, j)∈φb

||si−g j||
)2

, (53)

which can be further reformulated to

max(i, j)∈φs ||si−g j||
max(i, j)∈φb

||si−g j||
≤
√

N. (54)

D. Study on suboptimality of the solution to TOFREP neglect-
ing assumption on straight paths

The optimality of the CAT-ORA for the solution of TOFREP
is proved in Section IX-B. However, the assumption (A3)
discriminates the use of collision resolution techniques, such
as time delays and geometric modifications of paths [24],
[38]. Although the use of such techniques mostly leads to
a significant increase in the computational complexity of the
algorithm, they can resolve some collisions that are unsolvable
by the proposed algorithm without increasing the threshold tc.
Thus, neglecting the assumption (A3) can change the optimum
value of TOFREP.

We compare the achieved optimum value of the proposed
algorithm with a theoretical lower bound of TOFREP (see
Theorem 4) to analyze the gap between the optimum value
of the solution while both considering and not considering
assumption (A3). The results presented in Fig. 6 show that the
CAT-ORA yields an optimal solution equal to the theoretical
lower bound (neglecting assumption (A3)) in more than 95%

of instances in dense environments with an average subopti-
mality savg = 1.0008 and maximum suboptimality smax = 1.16.
Theorem 4: The lower bound on the solution of TOFREP
without limitations imposed by assumption (A3) is given by the
duration of the minimum-time trajectory that corresponds to
the longest path in the robot-to-goal assignment, as obtained
by the solution of LBAP without considering mutual collisions.

Proof. Considering an assumption on static initial and goal
configuration, the optimum value of TOFREP equals the dura-
tion of minimum-time trajectory along the longest path among
all reshaping paths. Thus, minimizing the length of the longest
path among all reshaping paths optimizes the original problem.
By applying any technique to resolve the collisions among
trajectories, the optimum value remains the same or increases.
Thus, the solution of LBAP together with the minimum-time
trajectory generation forms a lower bound to TOFREP.
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Fig. 6: Quantitative analysis of the suboptimality of the CAT-ORA to
TOFREP omitting assumption (A3). The presented results are gener-
ated using 105 instances with a density of the environment dr = 0.1
for every number of robots in [5,175]. Qx stands for corresponding
quantiles and µ stands for the mean value. The curve of Q1.0 is
associated with the values on the right axis.

X. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, numerical and experimental results are
presented to demonstrate the performance indicators of the
proposed approach. All results were evaluated in scenarios
with varying numbers and densities of the robots randomly
generated in a 3D environment. The density of robots in the
environment of volume Ve is defined as

dr =
∑N

r=1 Vr

Ve
, (55)

where Vr stands for the volume occupied by particular robots.
All evaluations were performed on a computer with a 4-core
Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz.

A. The effect on length of the path

Although the presented approach is focused on minimizing
the makespan of the formation reshaping process, the compar-
ison based on the duration of the trajectories would depend on
the choice of dynamic constraints. Thus, it would not yield fair
results. Therefore, we compare the solutions provided by our
algorithm for robot-to-goal assignment in terms of maximum
length of the path with the solutions of LSAP used by several
state-of-the-art works [21], [34]–[36]. The results show that,
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on average, the CAT-ORA produces a set of paths with a
maximum length 10% shorter than the LSAP approach. This
highlights the significant benefit of using CAT-ORA instead
of LSAP-based approaches, especially for battery-constrained
robots or time-constrained applications. The detailed results
for various numbers of robots and densities of the environment
are presented in Fig. 7. In compliance with Theorem 3, a more
significant effect is observed for instances with more robots.
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Fig. 7: The ratio between the maximum length of the set of paths
produced by LBAP approach Dm,LBAP and by the LSAP approach
Dm,LSAP for a varying number of robots and density of robots in the
environment dr. The results are generated using 105 instances for
each presented number of robots.

B. Computational time

The introduced procedures and checks guaranteeing the op-
timality of the CAT-ORA come at the cost of higher com-
putational times in comparison to the original Hungarian al-
gorithm. A major increase in the computational burden may
potentially come from the branchSolution() method. However,
reaching its theoretical asymptotic complexity would mean
that all LBAP solution edges mutually collide. The probability
of this situation is limited by the assumption (A5) and by
solving the LBAP as an LSAP with restrictions on certain
edges. This brings the advantage that any pair of edges ei, j,ek,l
is guaranteed to be collision-free if ei,l ≤ tc and ek, j ≤ tc. Thus,
in practice, the branchSolution() method is responsible for
4.7% of the total computational time on average among 105

randomly generated instances with high density.
A detailed analysis has shown that the main part of the

additional time required by CAT-ORA is not consumed by
the collision resolution part, but by the search for a correct
threshold for the feasible solution. Since some algorithms for
the solution of LBAP have lower theoretical complexity than
those for the solution of LSAP, they can be used to increase
the efficiency of a search for the threshold tc. However, their
application in Algorithm 1 is limited by the crucial role of
dual variables that would require running the algorithm from
its initial phase after the threshold is found. Therefore, such
an approach is efficient only for instances with a high number
of robots and an inaccurate initial estimate of threshold tlb.

The detailed comparison of computational times of the al-
gorithm is shown in Fig. 8. Although the ratio between the
maximum computational times of the Hungarian algorithm,
applied for the solution of LSAP and CAT-ORA is significant,
the absolute maximum difference in times does not exceed a

few milliseconds for the instances with up to 32 robots. This
keeps the computational demands sufficiently low for using
CAT-ORA in applications that require real-time computations.
The ratio between computational times decreases with an in-
creasing number of robots since it mitigates the effect of the
more demanding initialization phase.
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Fig. 8: Comparison of computational demands of the LSAP approach
and CAT-ORA approach for varying numbers of robots in an environ-
ment. The presented results are generated using 105 instances with
varying densities of the environment.

C. Formation reshaping

We benchmark the CAT-ORA by comparing the achieved
results with the LSAP and LBAP algorithms coupled with
minimum-time trajectories. Similarly to the detailed results in
the previous section, the algorithms were evaluated on a set of
105 instances representing formation reshaping tasks with var-
ious numbers and densities of robots in an environment. While
the comparison results can be easily inferred from the char-
acteristics of the individual algorithms, the presented results,
as detailed in Table I, quantitatively demonstrate the expected
outcomes. The LBAP-based consistently yields solutions with
shorter maximum path lengths compared to other methods,
resulting in a reduced makespan. However, the generated tra-
jectories lead to collisions in more than 6% of instances.
The CAT-ORA and LSAP-based approach provide collision-
free trajectories for all instances. Yet, while the LSAP-based
solution leads to an average increase of 12% in makespan
and 15% in maximum path length compared to LBAP-based
approach, the CAT-ORA only marginally extends the duration
of reshaping process by an average of 0.06% compared to
LBAP-based approach.

The advantage of the CAT-ORA over the LSAP-based algo-
rithm is showcased in a scenario requiring 200 robots initially
arranged in a rectangular formation to sequentially adapt the
formation shape to represent the letters C, T, and U. Guided
by the CAT-ORA, the entire formation reshaping task is com-
pleted in 36.6 s, which is 5.4 s faster than the solution provided
by the LSAP-based approach. A detailed presentation of a
specific formation reshaping instance is provided in Fig. 9.

D. Real-world experiment

In the real-world experiment, the CAT-ORA was applied in a
scenario simulating a small-scale drone performance. The sce-
nario requires a set of robots to perform 19 transitions between
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TABLE I: Comparison of different approaches for the solution of formation reshaping task. The values were computed from results obtained
for 105 instances of varying density dr ∈ [0.0001,0.1], varying number of robots N ∈ [10,210], vmax = 4ms−1, and amax = 2ms−2. The PDB
value for statistics x and method m is computed as PDB(x,m) = (xm−xbest)/xbest , where xbest is the best value of x among all methods for
a particular instance.

Approach Success rate (%)
Makespan PDB (%) Max. length PDB (%) Total length PDB (%) Comp. time PDB (%)

mean std. dev. mean std.dev mean std.dev mean std.dev

LSAP, min. time 100.0 12.17 8.54 15.82 11.18 0.00 0.00 0.06 1.69
LBAP, min. time 93.19 0.00 0.00 0.00 0.00 3.11 2.82 244.52 346.24
CAT-ORA 100.0 0.06 0.48 0.07 0.63 3.11 2.83 266.23 372.82
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Fig. 9: A qualitative comparison of the formation reshaping process applying CAT-ORA and approach applying LSAP solution coupled
with minimum-time trajectory generation. The formation consists of 200 robots that are initially organized in a rectangular formation
and are consequently required to adapt the shape of the formation to represent letters C, T, and U. The applied dynamic constraints are
vmax = 4.0ms−1, and amax = 2.0ms−2. The height of each letter is 100 m and the scale of the axis is equivalent. The gray lines represent
the reshaping paths, and the colored points represent positions of robots at corresponding times. The color encodes the velocity of particular
robots, with red being equal to zero velocity and yellow to vmax.

formations of diverse shapes (both 2D and 3D) and sizes, while
the center of the formation continuously moves through the
environment. Each formation Fi = {r1, . . . ,rN} is defined by a
set of desired relative positions to the center of the formation
r j ∈ R3 defined in the orthogonal coordinate system H that
coincides with the position and orientation of the center of
the formation. Since the requirement on continuous movement
contradicts the assumption (A2) on robots being stationary
in the initial and goal configurations, CAT-ORA cannot be
directly applied to compute trajectories between the robots’
configurations defined in the world coordinate frame W .

However, the definition of relative positions in an orthog-
onal coordinate system ensures independence of mutual dis-
tances between desired relative positions on the motion of
the formation. Therefore, we apply CAT-ORA to compute
the trajectories in the space of relative positions considering
consecutive formations Fi,Fi+1 as initial and goal configura-
tions, respectively. The generated trajectories then define the
time evolution of r j, leading to continuous adaptation of the
formation shape. The trajectories in the world coordinate frame
are then defined by p j(t) = TH,W r j(t), t ∈ (t0, t f ), where TH,W
is a transformation matrix from formation frame H to world
coordinate frame W . This approach shows that the assump-
tion (A2) is not a strict requirement for the applicability of
CAT-ORA to solve TOFREP. However, the superposition of

the generated trajectories to the trajectory of the center of
the formation requires adapting the dynamic constraints for
the generation of formation reshaping trajectories, such that
the resulting trajectories p j(t), j ∈ {1,2, . . . ,N}, t ∈ (t0, t f ) do
not violate the dynamic constraints. Thus, (A3) is a necessary
assumption for guaranteeing the optimality of the solution.

The real-world experiment was performed with 19 multi-
rotor helicopters [39], [40] using the MRS UAV system for
low-level control and trajectory tracking [41]. The time re-
quired for the whole performance was 294.80 s with the total
time of reshaping 214.8 s and an overall computational time
of 60 ms. Snapshots from the experiment are shown in Fig. 10
and Fig. 1.

XI. CONCLUSION

This paper introduces an algorithm named CAT-ORA
(Collision-Aware Time-Optimal formation Reshaping Algo-
rithm) to address the time-optimal formation reshaping prob-
lem while considering mutual collision avoidance among
robots. It showcases superior performance in terms of the
makespan of the formation reshaping process, while main-
taining computational demands at a level suitable for real-
time deployment, even in formations comprising up to one
hundred robots. The properties of the proposed algorithm have
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Fig. 10: Snapshots from a real-world experiment showing the tran-
sition between a 3D spiral and a pyramid shape. The transition was
completed within 10 seconds during continual rotation of the forma-
tion. The red point represents a missing UAV that failed to start due to
a HW failure. Blue lines highlight the shape of the formation. Since
the images show a 3D formation, the measuring scale is approximate.

been evaluated by thorough numerical and theoretical analy-
sis, including the proof of optimality, and the applicability of
the algorithm in practical scenarios was demonstrated through
simulations and real-world experiments.

Notably, the results highlight a significant advantage of the
robot-to-goal assignment aspect within CAT-ORA. It reduces
the maximum length of the assigned path by up to 48%
compared to the LSAP-based methods utilized by state-of-the-
art approaches in cooperative motion planning and formation
control. This finding holds particular significance for aerial
vehicles with constrained operational time, as it enhances their
performance during a real-world deployment. Moreover, this
outcome has potential implications for future research on for-
mation reshaping focused on the deployment of autonomous
robots in general environments.
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APPENDIX A
MINIMUM DISTANCE ON DIAGONALS OF AN ISOSCELES

TRAPEZOID

For finding the minimum mutual distance of robots following
constant-velocity trajectories on the diagonals of an isosceles
trapezoid, the relation for a minimum value of α∗i j derived for
a general case in (18) can be used. Given that ||si j||= ||gi j||⇔
a = c, (18) can be simplified to

α∗i j =
a−b

2a−2b
=

1
2
. (56)

As a consequence, the minimum distance between two trajec-
tories following the diagonals of an isosceles trapezoid equals
to distance between points cutting the diagonals in two line
segments of equal length (see Fig. 11).

θ

ρ

si ≡ A

s j ≡ D gi ≡C

g j ≡ B

Es ji g ji

di j,min

Fig. 11: Graphical illustration of the minimum distance di j,min of
constant-velocity trajectories lying on the diagonals of an isosceles
trapezoid.

The theoretical guarantees on the minimum distance can be
determined by the relation between minimum distance di j,min
and the value of δi j (20). Using substitutions

si ≡ A,g j ≡ B,gi ≡C,s j ≡ D, (57)

the following relations hold for an isosceles trapezoid

K =
|CD|
|AB| =

|CE|
|AE| =

|DE|
|BE| . (58)

Applying the concept of triangle similarity, the distance
di j,min in an isosceles trapezoid can be expressed as

di j,min =
|AE||AB|− 1

2 |AB||AC|
|AE| . (59)

Based on the assumption from Theorem 1 and (58), we can
determine relations

|AB|= 1
M
|AC|,

|AE|= 1
1+K

|AC|,
(60)

that can be applied to simplify (59) to

di j,min =
(1−K)|AC|

2M
. (61)

Furthermore, we can utilize the properties of the right triangle
and leverage the Law of Cosines to find a system of equations

cosθ =
|AB|− |AB|−K|AB|

2
M|AB| =

1+K
2M

,

cosθ =
|AB|2 +M2|AB|2−δ 2

i j

2M|AB|2 .

(62)

From the system of equations (62), the relation for K can be
derived as

K =
M2(|AC|2−δ 2

i j)

|AC|2 . (63)

By substituting this result into (61), we get the required re-
lation for a minimum distance of two trajectories depending
only on the minimum mutual distance of starts and goals δi j,
the ratio between the length of the trajectories M, and the
length of the trajectory |AC|

di j,min =
|AC|2(1−M2)+M2δ 2

i j

2M|AC| . (64)

To find a minimum distance of trajectories independently on
the length of |AC|, we find the derivative of (64) with respect
to |AC| and set it equal to zero

∂di j,min

∂ |AC| =
(1−M2)|AC|2−M2δ 2

i j

2M|AC|2 = 0. (65)

As a solution of (65) with ∂ 2di j,min
∂ 2|AC| > 0, we get the value of

|AC| minimizing the distance di j,min

|AC|∗min =

√
1−M2Mδi j

1−M2 . (66)

By substituting |AC|∗min into (64) and simplifying this equation,
we get a final relation for di j,min:

di j,min =
√

1−M2δi j, (67)

that proves Theorem 1.
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Chapter 6

Results and Discussion

This chapter summarizes the achieved results and contributions presented in the core
publications included in this thesis and other relevant author’s publications. The summary
is supplied by the discussion on achieved results and an outline of the potential future work.
The chapter is organized into three sections corresponding to thematic sections established in
the introduction of the thesis.

6.1 Autonomous navigation and exploration of GNSS-denied
environments

The results achieved in single- and multi-UAV navigation and exploration of GNSS-
denied environments represent significant advancement, establishing a new state of the art in
the field. Together with solutions of the other teams participating in the SubT Challenge, the
complete system presented in [1c], [2c], [6c] outperforms the existing solutions in terms of re-
liability, robustness, resiliency, and level of autonomy. These advances were achieved through
designing a computationally-efficient software stack, including novel planning and exploration
algorithms, and extensive field testing of the proposed system in a variety of GNSS-denied
structures, each representing unique challenges such as extreme humidity, areas of water, ex-
treme dust concentration, varying lighting conditions, and dynamic settings (see Figure 6.1).
Such focus on the thus-far rather omitted aspects of GNSS-denied navigation and exploration
has pushed the entire field to a new level, where the designed systems are close to achiev-
ing efficient deployment in real-world scenarios, such as post-disaster site reconnaissance or
assistance to emergency services in search and rescue missions.

As an integral part of the heterogeneous multi-robot system of team CTU-CRAS-
NORLAB [14a], the designed UAV-based system significantly contributed to the team’s no-
table achievements in the DARPA SubT Challenge. In the systems track of the Urban Cir-
cuit, the system helped the team to secure first place among self-funded teams and third
place overall. Further, within the systems track of the final round of the SubT Challenge,
the heterogeneous CTU-CRAS-NORLAB robotic team achieved sixth place. In both these
events, our UAV system was one of the top-performing UAV systems among all competing
teams from leading universities and research institutions in the mobile robotics field. Within
the virtual track of SubT Challenge the designed UAV-based exploration pipeline was a key
component of the multi-robot team achieving second place in the final round of the compe-
tition. This makes the proposed system the top-performing system among those deployed in
both the systems and virtual track of the competition.

The particular planning, mapping, and exploration algorithms developed as part of the
designed navigation and exploration pipeline were integrated into the open source MRS UAV
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system1 [83]. As such, the individual modules utilized during the competition are available
for use in education and research activities of the MRS group and other research institu-
tions. Together with the experience gained during the development of this software, these
modules serve as the base for the most of the research projects of the MRS group2 related
to GNSS-denied navigation, including automated remote sensing in indoor environments [4c],
[8a], exploration of multi-level buildings [134], and cooperative guidance of heterogeneous
UAV teams in cluttered environments [19a], [135].

Despite recent advancements in S&R robotics, the effectiveness of single-UAV systems
in general S&R scenarios is constrained by their limited payload capacity and operational
time. Enhancing either of these aspects typically results in a trade-off, such as a reduction in
sensory equipment or an increase in platform size, which in turn limits the operational space
of the aerial platforms. In contrast to UGVs, the coupling between dimensions of the plat-
form, operational time, and effective payload of multi-rotor UAVs is significant. Consequently,
achieving compactness and collision tolerance often means sacrificing flight time and sensory
equipment capabilities, and vice versa. This complex interplay of design factors highlights
that there are still significant challenges to overcome in optimizing the balance between size,
payload, and operational duration of UAVs in S&R robotics.

Two promising research directions are emerging to tackle these challenges. The first
involves advancements in hardware technology and algorithms that could maintain high per-
formance in localization, mapping, and navigation modules while relying on lighter sensors,
such as RGBD cameras or radars, instead of heavy 3D LiDAR systems. The second ap-
proach resides in developing coordination algorithms for efficient cooperation within heteroge-
neous robotic teams featuring diverse specialized sensory setups, dimensions, endurance, and
collision-tolerance characteristics to maximize the utility of individual robots for a specific
role in the team. Although this coordination problem can be tackled as a distributed dynamic
task assignment problem, it shows increased complexity compared to general problems of this
type. This complexity arises from the need to consider factors like limited operational time
and the range, reliability, and bandwidth of communication, all of which are affected by the
robots’ decisions. Moreover, in a heterogeneous robotic setup, the data required for effective
coordination extend beyond merely sharing intentions and plans among individual robots.
This makes the development of coordination algorithms for heterogeneous S&R robotic teams
an intriguing area of research, with the potential to enhance the capabilities and applicability
of UAVs in S&R operations.

6.2 Cooperative sensing by robotic teams

The research performed in the field of cooperative remote sensing by robotic teams [3c],
[5c], [16a], [18a] represents a significant advancement beyond the current state of the art.
While several research works tackle the remote sensing applications where a team of robots is
required to simultaneously visit certain locations [31], [136]–[138], our work uniquely focuses
on the cooperative enhancement of the captured scene — a concept that remains largely
unexplored in existing literature. Thus, the results achieved in the cooperative sensing field
outperform the state-of-the-art methods with respect to the level of cooperation and provide
an important tool for monitoring the state of historical buildings and dynamic target tracking
with additional lighting enhancing the captured scene.

1https://github.com/ctu-mrs/mrs uav system
2https://mrs.felk.cvut.cz/
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Deployment of the developed system for autonomous navigation and explo-
ration of GNSS-denied environments, including an unfinished nuclear power plant during
SubT Challenge Urban Circuit (a), abandoned buildings (e-f), large cave systems (b), and
made-man structures in the DARPA SubT Finals (c-d).

The author’s publications [4c], [8a] present a worldwide unique UAV-based technology
for documentation of historical buildings that allows safe, repeatable, and frequent monitoring
of historical monuments and particular valuable artifacts. The developed technology is based
on application-tailored multi-rotor UAV equipped with a software stack integrating state-
of-the-art methods of autonomous stabilization, localization, and navigation of cooperative
UAVs inside large historical buildings. The presented framework, comprising additional soft-
ware, tackles the whole documentation process, from obtaining an initial approximate model
of the environment, specifying the required data to be captured, planning the missions, and
automated data capturing, up to processing the data and providing outputs to the end-users.
An integral part of the framework is the developed coordination algorithms for UAV-based co-
operative sensing [3c], [16a] tailored for the realization of advanced documentation techniques
in difficult-to-access areas of historical buildings. The high level of autonomy, the ability to fly
beyond the visual line of sight between the UAV and a human operator, and the deployability
in low lighting conditions (using a unique method of distributed illumination by a cooperating
UAV team [5c], [16a]) enable gathering crucial data for heritage protection and documentation.
Based on the high added value for heritage protection, the entire system has been approved
by the Czech Ministry of Culture for indoor usage and accompanied by an official methodol-
ogy describing its proper deployment in historical monuments. As the first methodology for
indoor UAV use in historical buildings, it sets a new standard for such applications, offering
a groundbreaking tool for cultural heritage documentation and preservation.

In cooperation with the Czech National Heritage Institute, the proposed technology for
the realization of advanced documentation techniques was applied in several historical mon-
uments, helping in the process of digitization of cultural heritage, collecting data for planned
restoration works, and assessment of the state of individual artifacts to prevent their irre-
versible damage. So far, the system has been deployed in the documentation mission in 18
historical objects of varying dimensions and characteristics, including two historical structures
listed in UNESCO World Heritage (Chateau Kroměř́ıž and Chateau Telč), and six national
heritage sites. During these documentation missions, the system was employed to perform a
range of specific tasks tailored to the requirements of each site (images from several deploy-
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ments are shown in Figure 6.2). This included photography in the visual, infrared, and ultra-
violet spectra, enhanced by additional lighting provided by cooperating UAVs. Additionally,
the Reflectance Transformation Imaging (RTI) method was used in these campaigns, further
demonstrating the system’s capability to accommodate various documentation techniques.

Figure 6.2: Example deployment of the developed framework for realization of documentation
techniques, including cooperative sensing tasks, in interiors of historical buildings.

The cooperative motion planning approach was further improved in the core publi-
cation [5c], building upon the author’s preliminary work on cooperative motion planning in
cooperative sensing scenarios using Model Predictive Control (MPC) [16a]. This advancement
was achieved by introducing an efficient multi-stage planning methodology based on convex
decomposition of free space [139], enabling UAV formations to operate in more cluttered,
complex, and dynamic environments. The proposed approach is further extended by includ-
ing onboard detection and pose estimation of the human worker, as well as interaction with
the human through onboard detected and processed gestures, as detailed in [18a]. To the best
of our knowledge, this work represents the first instance of a contactless human-multi-robot
interaction approach involving a human and a team of multi-rotor UAVs, incorporating on-
board human state estimation and gesture recognition. The entire framework [5c], [18a] is part
of a technology developed in the AERIAL-CORE3 project, which is dedicated to the design
of technology integrating aerial cognitive robotic systems with unprecedented capabilities in
the operational range and safety. The project is particularly focused on the inspection and
maintenance of large power transmission infrastructures, where interaction with people and
aerial co-workers is highly beneficial.

The field of cooperative sensing offers several promising directions for future research.
One key area involves miniaturizing hardware to enable reducing safe distances between robots
and increasing the range of environments suitable for the deployment of developed cooperative
sensing methods. Apart from miniaturizing hardware components, the potential improvements
lie in implementing methods that decrease the requirements on the payload and heavy sensory
equipment. For instance, a potential improvement is the direct application of the light-weight
relative localization approach. This would further increase the reliability of the system through
an additional means of localization [17a] and also provide an option to decrease the require-
ments on the sensory equipment of individual deployed UAVs [19a]. Advancements in this field

3https://aerial-core.eu/
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can further increase the applicability of the developed framework thanks to lowering costs of
the introduced technology.

A second promising research direction is the large-scale, long-term cooperative sensing
missions that could greatly benefit from efficient solutions to task allocation and coalition
formation problems. While these problems have been extensively studied and a variety of
algorithms have been proposed [140]–[142], to our knowledge, there is no existing method that
integrates path planning in general 3D environments directly into the task allocation process
for multi-robot scenarios. The absence of such a method limits the practical application of
existing algorithms in real-world scenarios, as decoupled sequential methods can lead to less
efficient or even infeasible solutions due to the uncertain feasibility of paths between initial
states and allocated goals. Addressing this problem would not only enhance the operational
capabilities and efficiency of multi-robot systems, but also expand their potential use cases.

6.3 Formation shape adaptation

The core publication [7c] presents a centralized deterministic algorithm for time-optimal
formation reshaping with collision avoidance guarantees, with it being the first publication
presenting a solution to this problem. Despite the importance of time-efficient operation of
robots in real-world applications, none of the approaches dealing with formation reshaping
consider minimizing the makespan of the formation reshaping process while considering inter-
agent collision avoidance in 3D environments [111]–[116], [118], [119]. While initially designed
for mobile robot shape adaptation, the algorithm’s potential applications extend beyond the
realm of robotics. It can be applied to any situation requiring structural changes among
entities at risk of colliding, making it a versatile tool for a variety of fields, such as analytical
chemistry and biomedical diagnostics.

The low computational time of the proposed algorithm, together with the guarantees on
the completeness and optimality of the solution, makes the algorithm suitable for real-world
applications, including frequent onboard computation. We consider the efficient formation
reshaping algorithm to be the fundamental element for extending cooperative sensing sys-
tems to large-scale scenarios comprising multiple cooperating formations with exchangeable
formation members operating in shared environments. To pursue this goal, we plan to evolve
the formation reshaping algorithm for use in environments with obstacles and to develop an
efficient algorithm for formation splitting and merging, building upon the foundation provided
by the proposed formation reshaping algorithm. These advancements have potential to fur-
ther enhance the capabilities of cooperative robotic systems, enabling more complex, dynamic
operations and opening up new possibilities for their deployment in a wide range of practical
applications.
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Chapter 7

Conclusion

This thesis addressed various aspects of cooperative sensing by a team of Unmanned
Aerial Vehicles in complex, real-world environments. In the first part of the thesis, we focused
on the development of a single-UAV system capable of reliable autonomous navigation in clut-
tered indoor environments comprising dynamic and challenging harsh real-world conditions.
The developed UAV-based system, featuring novel planning and exploration algorithms, was
extensively tested and successfully deployed in the DARPA SubT Challenge, where the devel-
oped system achieved one of the best performances among all UAV systems participating in
the competition. The second part of the thesis is dedicated to the development of cooperative
motion planning and multi-robot coordination algorithms for the realization of advanced doc-
umentation techniques and cooperative aerial filming tasks. These algorithms, integrated with
an application-tailored hardware and software stack for autonomous indoor cooperative flight,
are combined into a worldwide unique UAV-based technology for documentation of historical
buildings, enabling safe, repeatable, and frequent monitoring of valuable historical structures.
The entire framework has already been used in numerous documentation missions in histor-
ical monuments belonging to the most valuable historical structures in the Czech Republic,
including UNESCO World Heritage sites. Lastly, the thesis addressed the problem of efficient
structural reorganization of a group of mobile robots by presenting a time-optimal formation
reshaping algorithm with completeness and inter-agent collision avoidance guarantees. The
proposed algorithm, CAT-ORA, showcases superior performance in terms of minimizing the
makespan of the formation reshaping process while maintaining computational demands at a
level suitable for real-time deployment. Throughout the development of the technologies and
algorithms presented in this thesis, a strong emphasis is placed on their practical application
in real-world environments, underlining the goal of advancing the field of robotics in ways
that are beneficial and meaningful for human society.
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[2c] P. Petráček, V. Krátký, M. Petrĺık, T. Báča, R. Kratochv́ıl, and M. Saska, “Large-scale ex-
ploration of cave environments by unmanned aerial vehicles,” IEEE Robotics and Automation
Letters, vol. 6, no. 4, pp. 7596–7603, 2021, Contributions: PP: 42%, VK: 20%, MP: 20%,
BT: 6%, RK: 6%, MS: 6%, IF 3.7 (Q2 in Robotics), citations: 24 in WoS, 26 in
Scopus, 46 in GS.
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[18a] V. Krátký, G. Silano, M. Vrba, C. Papaioannidis, I. Mademlis, R. Pěnička, I. Pitas, and
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Památky, vol. 1, no. 4, pp. 16–33, 2022, 10% contribution, citations: 0 in WoS, 0 in
Scopus, 0 in GS.

Other submitted publications
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operations in a constrained environment,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 2169–2176, 2020.
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[13a] M. Saska, D. Heřt, T. Báča, V. Krátký, and T. Nascimento, “Formation control
of unmanned micro aerial vehicles for straitened environments,” Autonomous
Robots, vol. 44, no. 6, pp. 991–1008, 2020

� Y. T. d. Passos, X. Duquesne, and L. S. Marcolino, “Congestion control algorithms for robotic
swarms with a common target based on the throughput of the target area,” Robotics and Au-
tonomous Systems, vol. 159, 2023.

� H. Chehardoli and A. Ghasemi, “Adaptive size-independent control of uncertain leader following
systems with only relative displacement information,” Physica A - Statistical Mechanics and Its
Applications, vol. 597, 2022.

CTU in Prague Department of Cybernetics



APPENDIX B. CITATIONS OF AUTHOR’S PUBLICATIONS 191/191

� W. Li, X. Zhang, B. Huang, Y. Chen, R. Zhang, and S. BalaMurugan, “Research on the con-
trol method of unmanned helicopter under the background of artificial intelligence,” Journal of
Interconnection Networks, vol. 22, no. SUPP02, 2, 2022.

� S. Vargas, H. M. Becerra, and J.-B. Hayet, “MPC-based distributed formation control of mul-
tiple quadcopters with obstacle avoidance and connectivity maintenance,” Control Engineering
Practice, vol. 121, 2022.

� M. Nasir, M. F. Hayat, A. Jamal, and Z. Ahmed, “Frequency domain consensus control analysis
of the networked multi-agent system with controller area network bus-induced delay,” Journal
of Vibration and Control, vol. 28, no. 19-20, pp. 2900–2912, 2022.
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