

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta stavební

Katedra ocelových a dřevěných konstrukcí

Diplomová práce

Analýza monitoringu interakce most-kolej na železničním mostě

Analysis of the SHM data and interaction of the track-bridge on the railway bridge

Vedoucí práce: prof. Ing. Pavel Ryjáček Ph.D.

2024

Bc. Robert Pour

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta stavební

Thákurova 7, 166 29 Praha 6

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení: <u>Pour</u>	Jméno: Robert	Osobní číslo: 483228		
Zadávající katedra: <u>K13</u>	4 - Katedra ocelových a dřevěných konstrukcí			
Studijní program: <u>Stavební inženýrství</u>				
Studijní obor/specializac	: Konstrukce a dopravní stavby			

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce: Analýza monitoringu iterakce	e most-kolej na železničním mostě				
Název diplomové práce anglicky: Analysis of the SHM bridge	data and interaction of the track-bridge on the railway				
Pokyny pro vypracování: Analýza provedené SZZ na mostě Soběslav, dat monitoringu a srovnání s numerickým modelem. √yhodnocení podélného odporu a chování mostu.					
Seznam doporučené literatury: ČSN EN 1991-2, ČSN EN 1993-2					
Jméno vedoucího diplomové práce: prof. Ing. Pavel R	Ryjáček, Ph.D.				
Datum zadání diplomové práce: <u>6. 10. 2023</u>	Termín odevzdání DP v IS KOS: 8. 1. 2024 Údaj uveďte v souladu s datem v časovém plánu příslušného ak. roku				
Podpis vedoucího práce	Podpis vedoucího katedry				

III. PŘEVZETÍ ZADÁNÍ

Beru na vědomí, že jsem povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je nutné uvést v diplomové práci a při citování postupovat v souladu s metodickou příručkou ČVUT "Jak psát vysokoškolské závěrečné práce" a metodickým pokynem ČVUT "O dodržování etických principů při přípravě vysokoškolských závěrečných prací".

Datum převzetí zadání

Podpis studenta(ky)

Čestné prohlášení:

Prohlašuji, že jsem diplomovou práci vypracoval samostatně, že jsem řádně citoval všechny informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací.

V Plzni, dne 7. ledna 2024

••••••

Bc. Robert Pour

Poděkování

Chtěl bych tímto poděkovat panu prof. Ing. Pavlu Ryjáčkovi Ph.D. za příkladné vedení této práce. Díky jeho poznatkům a připomínkám jsem byl schopen práci vypracovat.

Abstrakt

Hlavním cílem této práce byla analýza chování vybraného mostu a bezstykové koleje způsobeného vzájemnou interakcí. Zkoumaná novostavba mostu o 7 polích se nachází na trati IV. tranzitního železničního koridoru v úseku Veselí nad Lužnicí – Doubí u Tábora. Podklady k této analýze byly čerpány z dat snímačů kontinuálního monitoringu probíhajícího od zahájení statické zatěžovací zkoušky dne 13. 7. 2022. Součástí této práce bylo určení podélných odporů koleje na mostu v nezatíženém a zatíženém stavu. V rámci práce byl pro oba tyto stavy využitý nelineární numerický 3D model simulující interakci mostu a bezstykové koleje, který byl vytvořen jako součást mé bakalářské práce [15] týkající se posouzení interakce mostu a koleje na tomto mostě. Byla provedena validace a verifikace modelů k přiblížení skutečného chování mostu. Byl stanoven přírůstek v pružné části podélného odporu koleje od svislého zatížení při statické zatěžovací zkoušce mostu. Dále byl určen přibližný podélný odpor nezatížené koleje z dat monitoringu. Tento podélný odpor nezatížené koleje je zjištěn kompletně s pružnou i plastickou částí. Z dat získaných během statické zatěžovací zkoušky mostu byly vytvořeny průběhy teplot nosné konstrukce a kolejnice, podélných posunů nosné konstrukce, napětí v kolejnici a relativního posunu koleje a mostu. Následně bylo provedeno srovnání průběhu napětí v kolejnici po mostě při statické zatěžovací zkoušce s výsledky modelu.

Klíčová slova

teplota, interakce, odpor, bezstyková kolej (BK), model, doprava, kolejové lože, tuhost, napětí, posun

Abstract

The principal objective of this thesis was analysis of the behaviour of the selected bridge and continuous welded rail caused by mutual interaction. The investigated new construction of the 7-span bridge is located on the line of the IV transit railway corridor in the section of Veselí nad Lužnicí – Doubí u Tábora. The basis for this analysis was drawn from the sensor data of the continuous monitoring that has been ongoing since the start of the static load test on 13/07/2022. Part of this work was dedicated to the determination of the longitudinal resistances of the track on the bridge in an unloaded and loaded state. As part of the work, a non-linear numerical 3D model simulating the interaction of a bridge and a continuous welded rail was used for both of these states, which was created as part of my bachelor's thesis [15] regarding the assessment of the interaction of the bridge and the track on this bridge. The models were validated and verified to approximate the actual behavior of the bridge. The increase in the elastic part of the longitudinal resistance of the track from the vertical load from static load test of the bridge was determined. Furthermore, the approximate longitudinal resistance of the unloaded track was determined from the monitoring data. This longitudinal resistance of the unloaded track is determined completely with the elastic and plastic part. From the data obtained during the static load test of the bridge, the courses of the temperatures of supporting structure and rail, longitudinal displacements of supporting structure, stress in the rail and relative displacement of the rail and the bridge were created. Subsequently, a comparison was made of the course of stress in the rail along the bridge during static load test of the bridge with the model results.

Keywords

temperature, interaction, resistance, continuous welded rail (CWR), model, traffic, ballast, stiffness, stress, displacement

Obsah

1	Úvod		1
2	Kombir	novaná odezva mostu a koleje	1
	2.1 Bezs	tyková kolej	1
	2.1.1	Dýchající konec (BK)	1
	2.1.2	Střední část (BK)	2
	2.1.3	Upínací teplota	2
	2.2 Stab	ilita koleje	2
	2.2.1	Typické tvary vybočení	3
	2.2.2	Podélný odpor koleje	4
	2.2.3	Příčný odpor koleje	6
	2.2.4	Osové síly v bezstykové koleji	6
	2.3 Pron	něnná zatížení	9
	2.3.1	Zatížení změnou teploty mostní konstrukce	9
	2.3.2	Zatížení brzdnými a rozjezdovými silami	9
	2.3.3	Svislé zatížení od dopravy	. 10
	2.4 Posu	izování interakce BK a NK mostu	. 11
	2.4.1	Posouzení dle ČSN EN 1991-2 [7]	. 11
	2.4.2	Posouzení Metodou komplexní analýzy	. 13
	2.5 Mod	lelovaní pro posouzení interakce BK a NK	. 13
	2.6 Přípu	ustné dilatující délky mostní konstrukce s ložisky pro zřízení průběžné B	K15
3	Popis m	nostního objektu	. 16
	3.1 Umís	stění objektu	. 16
	3.2 Zákla	adní popis mostu	. 17
	3.3 Popi	s NK mostu	. 18
	3.3.1	Ocelová část NK	. 19
	3.3.2	Železobetonová část NK	. 19
	3.3.3	Ložiska	. 20
	3.4 Stave	ební výkresy mostu	. 20

3.5 F	Popis p	převáděné železniční trati	24
4 Mo	nitori	ng	25
4.1 N	Měřicí	technika	25
4.1	1.1	Tenzometry	26
4.1	L.2 F	Potenciometrické snímače dráhy	29
4.1	L.3 S	Snímače teploty	30
4.1	L.4 M	Měřicí ústředny	32
4.1	L.5 F	Rozmístění snímačů	33
5 Stat	tická z	zatěžovací zkouška (SZZ)	35
5.1 Z	Zkušet	oní zatížení	35
5.1	L.1 F	Program SZZ	36
6 Zpr	acová	ní dat ze SZZ mostu z pohledu interakce BK a NK	37
6.1 k	Kalibra	ace a oprava naměřených hodnot	38
6.1	1.1	Tenzometry	38
6.1	L.2 S	Snímače teploty kolejnice	40
6.2 F	Průběł	hy napětí v kolejnici	41
6.2	2.1 F	Průběhy napětí v kolejnici po polích	41
6.2	2.2 F	Průběh napětí v kolejnici po mostě	43
6.3 F	Průběł	hy podélného posunu	48
6.3	8.1 F	Průběhy podélného posunu SS : NK	48
6.3	8.2 F	Průběhy relativního podélného posunu kolej : most	50
6.4 F	Průběł	hy teplot	51
6.4	I.1 F	Průběhy teplot NK	51
6.4	I.2 F	Průběhy teplot kolejnice	53
6.5 5	Stanov	vení podélného odporu zatížené koleje	54
6.5	5.1 \	Výpočet	56
7 Nur	merick	ký model	58
7.1 Z	Základ	ní popis modelu	58
7.2 5	Skladb	a modelu	61
7.3 F	Průřez	y modelu	62

7	.4	Vlast	nosti nelineárních prutů kolejového lože65
7	.5	Vlast	nosti nelineárních pružin v místech pevných ložisek66
8	Nu	umeri	cká analýza67
8	8.1	Analy	za SZZ67
	8.	1.1	Srovnání průběhů napětí v kolejnici po mostě s výsledky modelu 68
8	8.2	Analy	íza monitoringu ke stanovení podélného odporu dopravou nezatížené
koleje	9	72	
	8.	2.1	Výběr dnů a zpracování změřených hodnot k podrobné analýze72
	8.	.2.2	Popis výpočtu80
9	Zá	věr	
10	Se	znam	použité literatury a zdrojů 102
11	Se	znam	obrázků 103
12	Se	znam	tabulek 106
13	Se	znam	zkratek 107
Příl	oha	a 1 – S	ZZ - Průběhy napětí v kolejnici po polích

Předmluva

Téma práce bylo vybráno z důvodu praktického využití pro účely analýzy statické zatěžovací zkoušky a monitoringu mostu z pohledu interakce mostu a bezstykové koleje. Součástí práce je určení podélného odporu koleje na mostu, která je v prvním případě zatížena a v druhém nezatížena svislými silami od dopravy. Pro první případ stanovení podélného odporu koleje v zatíženém stavu byla použita změřená data ze statické zatěžovací zkoušky (dále SZZ). Pro druhý případ stanovení podélného odporu koleje v nezatíženém stavu byla použita změřená data z monitoringu. Proběhlo také zpracování změřených veličin ze SZZ. Bylo provedeno srovnání průběhu napětí v kolejnici po mostě v průběhu SZZ s modelem. V práci je nejprve vysvětlena základní problematika k tématu: "kombinovaná odezva mostu a koleje", následně je uveden popis sledovaného mostu. Poté je práce zaměřena na monitoring, na SZZ a zpracování dat z této zkoušky, které vede k určení přírůstku podélného odporu koleje na mostu od svislého zatížení. Dále je popsán numerický model. Následně je popsána numerická analýza použitá k určení podélného odporu nezatížené koleje na mostu a k srovnání změřených hodnot. Metodologie o interakci mostu a bezstykové koleje je čerpána z normy ČSN EN 1991-2 (Eurokód 1 Zatížení konstrukcí - Část 2 Zatížení mostů dopravou) [7], mostního vzorového listu MVL 150 Kombinovaná odezva mostu a koleje [8].

1 Úvod

Pro účel této práce je rozumné začít vysvětlením hlavní problematiky interakce most-kolej. Základními prvky tohoto komplexního tématu jsou bezstyková kolej, vliv na její stabilitu, normový základ potřebný k posouzení bezstykové koleje na mostu. Podélný odpor koleje je závislý na množství proměnných, které jsou dále popsány.

2 Kombinovaná odezva mostu a koleje

Interakce most - kolej je také jinak nazývaná kombinovanou odezvou konstrukce a koleje, tento termín je například využit v normě ČSN EN 1991-2 [7] či MVL 150 [8]. Jedná se o vzájemné působení mostní konstrukce a BK za daných proměnných zatíženích, která jsou popsána v následujících kapitolách. Na základě podmínek daných normou [7] je nutné posoudit kolejnici resp. mostní konstrukci na kombinovanou odezvu konstrukce a koleje od účinků proměnných zatížení. Dle [8] je kombinovaná odezva mostu a koleje chování, kde síly a posunutí v koleji a mostní konstrukci mají vzájemný vliv v důsledku jejich deformačního chování a existencí diskontinuit. Pro interakci mostu a bezstykové koleje je důležité rozumět problematikám bezstykové koleje, podélného odporu koleje, a uvažovaných proměnných zatíženích daných normou [7], proto jsou tato témata níže vysvětlena. Obecně lze konstatovat, že je třeba zkontrolovat stabilitu BK na mostě, případná ztráta stability BK může vést k fatálním následkům.

2.1 Bezstyková kolej

Bezstyková kolej je kolej s průběžně svařenými kolejnicemi, které musí splňovat podmínku svaření za dovolené upínací teploty. Dle MVL 150 [8] a předpisu SŽDC S3/2 [13] je kolej považována za bezstykovou pokud jsou kolejnice v koleji svařené v délce alespoň 150 m. Délka alespoň 150 m vychází ze součtu dvou minimálních délek dýchajících konců o velikosti 75 m.

2.1.1 Dýchající konec (BK)

Je koncovou částí BK, kde se projevuje dilatační pohyb kolejnice v důsledku teplotních změn. Každá BK má dva dýchající konce, kde vlivem teplotních změn dochází

k prokluzu v upevňovadlech. Důsledkem těchto pohybů je uzavírání nebo rozevírání dilatační spáry na konci kolejnice, což vyvolává vodorovnou reakci v kolejnicových spojkách. Délka dýchajícího konce je dle MVL 150 [8] závislá na velikosti podélného odporu koleje, odporu proti posunutí v koncovém průřezu, teplotní změně a historii teplotního a dalšího zatížení. Nicméně běžně se délka dýchajícího konce se uvažuje 75 m. Kromě části bezstykové koleje, ve které není podélné posunutí rovno nule (u \neq 0), se bezstyková kolej skládá také z části ve které se u = 0. Tato část se nazývá střední část bezstykové koleje.

2.1.2 Střední část (BK)

Část BK mezi dýchajícími konci, která nevykazuje pohyb kolejnic (např. z důvodu dilatace mostní konstrukce) za následujících podmínek. Tyto podmínky jsou potřebná velikost podélného odporu koleje, konstantním teplotní zatížení po délce koleje a vyloučení ostatních podélných zatížení.

2.1.3 Upínací teplota

Touto teplotou je myšlena teplota za jaké byl proveden závěrný svar na upínaných kolejnicových pásech při vytváření BK. Pro spolehlivé upnutí kolejnic je stanovené rozmezí teplot, za kterých je možné provést trvalé svaření kolejnic do BK bez nutnosti dodatečných úprav napětí. Toto spolehlivé rozmezí je nazýváno jako dovolená upínací teplota. Dle předpisu SŽDC S3/2 Bezstyková kolej je dovolená upínací teplota 17 až 23 °C přičemž maximální dovolená teplotní změna mezi dvěma svařovanými pásy je 3 °C. Při teplotě kolejnicových pásů nesplňující dané dovolené rozmezí teplot, je možné u nižších teplot provést dodatečné napínání nebo ohřev, při vyšších teplotách se BK nesmí zřizovat. V době zřízení BK je upínací teplota také teplotou neutrální, kdy za této teploty je v kolejnici nulová podélná síla. Nicméně neutrální teplota se časem vlivem provozu mění. Pro správnou předpověď chování BK je nutné neutrální teplotu znát, jinak by mohlo vzniknout nepředvídatelné namáhání kolejnicových pásů.

2.2 Stabilita koleje

Aby kolej byla stabilní, musí mít schopnost zachovat požadovanou polohu koleje při působení podélných a příčných sil na kolejový rošt. Tyto účinky jsou vyvolané provozem vozidel a teplotními změnami. Stabilitu koleje zajišťuje svislý, podélný a příčný odpor koleje, hmotnost kolejového roštu a její prostorové (směrové a sklonové) vedení. V důsledku tahových sil může dojít k lomu kolejnic. Tento jev zde není dále popsán. V důsledku síly tlakové je kolejový rošt namáhán na vzpěr a může dojít k jeho vybočení. K vybočení může dojít jak ve vodorovném tak i svislém směru, což je nicméně málo pravděpodobné kvůli hmotnosti kolejového roštu a ohybové tuhosti kolejnic. Vybočení ve vodorovném směru brání příčný a podélný odpor pražců v kolejovém loži a rámová tuhost koleje. Významný vliv na stabilitu koleje má mimo dříve zmíněné faktory také upínací teplota, stav kolejového lože, druh pražců a také počáteční imperfekce kolejového roštu.

Dle [1] se vybočení dělí na dva typy, dle charakteru působícího zatížení. Prvním typem je statické vybočení, které je důsledkem pouze teplotního zatížení. Druhým typem je dynamické vybočení způsobené kombinací teplotní zatížení a zatížení kolejovou dopravou. Odolnost proti dynamickému vybočení je nižší než proti statickému, z čehož vyplývá, že zatížení kolejovou dopravou má rovněž významný vliv na odolnost proti vybočení bezstykové koleje. [1]

2.2.1 Typické tvary vybočení

Vybočení koleje má většinou tvar sinusových vln. Vlny mohou být symetrické nebo antisymetrické vůči středu deformace. Na celkový tvar deformace má vliv průběh počátečních imperfekcí po délce koleje. Jednotlivé tvary vybočení popisují následující obrázky. [1]

Obr. 1 Vybočení kolejového roštu ve svislé rovině [1]

Obr. 2 Tvary vybočení bezstykové koleje ve vodorovné rovině [1]

Dojde-li k vybočení, potom se nedeformované části bezstykové koleje, nacházející se za částmi deformovanými, chovají jako dýchající konce. [1]

2.2.2 Podélný odpor koleje

Tento odpor brání dle [8] dilatačním pohybům a změnám délky kolejnic od teplotních změn. Skládá se ze dvou odporů: odporu proti posunutí kolejnice v upevňovadlech a odporu proti podélnému posunutí kolejového roštu v kolejovém loži. Vliv na jeho velikost mají hmotnost a tuhost kolejového roštu, stav a typ (otevřené, zapuštěné) kolejového lože, svislé přitížení. Velikost podélného odporu koleje se uvažuje obecně podle principu normy ČSN EN 1991-2 [7] na následujícím obrázku.

Obr. 3 Závislost podélného odporu na relativním posunu koleje [8]

Kde:

- (1) podélný odpor v koleji na jednotku délky
- (2) posunutí kolejnice vzhledem k hornímu povrchu podporující nosné konstrukce
 (dnu žlabu kolejového lože)
- (3) podélný odpor koleje (zatížená kolej) 60 kN/m
 (zamrzlé kolejové lože nebo kolej bez kolejového lože s běžnými upevněními)
- (4) podélný odpor koleje v kolejovém loži (zatížená kolej) 60 kN/m
- (5) podélný odpor koleje (nezatížená kolej) 30 kN/m
 (zamrzlé kolejové lože nebo kolej bez kolejového lože s běžnými upevněními)
- (6) podélný odpor koleje v kolejovém loži (nezatížená kolej) 20 kN/m

Dle předpisů ČD je standardní hodnota podélného odporu na kolejnici v upevnění 7 kN/m a 10 kN/m proti posunutí kolejového roštu v kolejovém loži. Norma ČSN EN 1991-2 [7] udává podélný plastický smykový odpor k koleje pro:

- 1) nezatíženou kolej k_{nezat} = 20 ÷ 40 kN/m
- 2) zatíženou kolej k_{zat} = 60 kN/m

a při těchto odporech dochází k plastické deformaci při 2 ÷ 3 mm pro kolejnice s běžným upevněním v kolejovém loži dle stejné normy. Pro přímé uložení kolejnic je uvažována plastická deformace při 0,5 mm. Norma UIC 774-3 [14] říká, že podélný odpor je závislý na

kvalitě údržby, kdy dříve zmíněné hodnoty podélného odporu nezatížené koleje jsou dle této normy při dobré údržbě, pro průměrnou údržbu norma uvažuje k_{nezat} = 12 kN/m.

2.2.3 Příčný odpor koleje

Tento odpor brání dle [8] směrovému posunutí koleje. Vliv na jeho velikost mají stejně jako u podélného odporu hmotnost a tuhost kolejového roštu, stav a typ (otevřené, zapuštěné) kolejového lože, svislé přitížení případně použití pražcových kotev. Velikost příčného se podle standardu Českých drah bere jako průměrná hodnota příčných odporů r₀ = 7 kN · m⁻¹ (4,2 kN na pražec) u koleje s betonovými pražci. Velikost příčného odporu závisí na hmotnosti a druhu pražců a na vlastnostech kolejového lože. Typický průběh příčného odporu ukazuje následující obrázek.

Obr. 4 Typický průběh příčného odporu v závislosti na příčné výchylce koleje [1]

2.2.4 Osové síly v bezstykové koleji

Dle [1] působením teplotních změn a vnějšího zatížení, například od kolejových vozidel, na bezstykovou kolej, vznikají v kolejnicích osové síly a napětí. Osové síly mohou být kladné nebo záporné, tedy tahové nebo tlakové. Vlivem velkých poklesů teplot v zimním období dochází ke smršťování kolejnice a vzniku velké tahové síly, která přináší riziko lomu kolejnice, při kterém však z pravidla nedochází k vykolejení vozidel. Nejnepříznivějšími silami jsou síly tlakové, v jejichž důsledku může dojít k vybočení koleje a následně k vykolejení vozidel, což může mít ve většině případů katastrofické následky. Výpočet osových sil vychází ze základních vztahů pružnostní analýzy prutů a z rovnováhy

sil na elementárním dílu prutu, který představuje kolejový rošt, tj. dvě kolejnice, upevnění a pražce.

Dle [1] ve střední části bezstykové koleje platí pro posunutí u

 $u = \Delta l = 0$

Prodloužení prutu například stykované kolejnice délky l vlivem teplotního zatížení, pokud může volně dilatovat, vychází ze vztahu

$$\Delta l = l \cdot \alpha \cdot (t - t_0) = l \cdot \alpha \cdot \Delta t$$

kde

 Δl je prodloužení kolejnice,

α je součinitel teplotní roztažnosti,

t je aktuální teplota kolejnice,

*t*₀ je neutrální teplota kolejnice.

Zabráníme-li kolejnici na obou koncích dilatovat, můžeme poměrnou deformaci kolejnice vypočítat jako

$$\varepsilon_t = -\frac{\Delta l}{l} = -\frac{l \cdot \alpha \cdot (t - t_0)}{l} = -\alpha \cdot (t - t_0)$$

Z poměrné deformace můžeme dále vypočítat odpovídající normálové napětí v kolejnici a odpovídající normálovou sílu

 $\sigma_x = E \cdot \varepsilon_t = -E \cdot \alpha \cdot (t - t_0)$ $N_x = \sigma \cdot A = -A \cdot E \cdot \alpha \cdot (t - t_0)$

kde

E je modul pružnosti materiálu kolejnice [Pa],

 α je průřezová plocha kolejnice [m].

Tyto vztahy odpovídají střední části bezstykové koleje, kde je posunutí $u = \Delta l = 0$.

Z předchozích vztahů je patrné, že osová síla resp. napětí v kolejnici není závislé na délce koleje. Celková normálová síla při uvážení dalších vlivů můžeme vyjádřit dle teorie pružnosti vztahem

$$N_x = E \cdot A \cdot (\varepsilon - \varepsilon_t) = E \cdot A \cdot \left(\frac{du}{dx} - \alpha \cdot \Delta t\right) \tag{1}$$

Obr. 5 Průběh normálové síly po délce bezstykové koleje

Podmínku rovnováhy sil na elementárním dílu prutu z kolejového roštu z následujícího obrázku, uloženém ve štěrkovém loži můžeme zapsat takto

Obr. 6 Elementární díl prutu

Po dosazení (1) a derivování získáme diferenciální rovnici

$$E \cdot A \cdot \frac{d^2 u}{dx^2} = r_x - q_x$$

kde

- *rx* je odpor proti posunutí koleje na metr délky koleje daný odporem proti posunutí kolejnic v upevňovadlech a odporem proti posunutí kolejového roštu v kolejovém loži [kN/m],
- *qx* je vnější zatížení koleje, dané např. bržděním nebo rozjezdem kolejových vozidel,
 na metr délky koleje [kN/m].

Průběhy osových sil a posunů po délce dýchajícího konce popisuje následující obrázek.

Obr. 7 Průběh osových sil posunů na dýchajícím konci [1]

2.3 Proměnná zatížení

Dle normy [7] jsou pro posuzování kombinované odezvy mostu a BK uvažována proměnná zatížení:

- teplotní změny mostní konstrukce
- brzdné a rozjezdové síly
- svislé zatížení od dopravy

2.3.1 Zatížení změnou teploty mostní konstrukce

Dle MVL 150 [8] změnou teploty mostní konstrukce dochází k vzájemnému působení mostu a koleje, které je úměrné podélné tuhosti uložení koleje. Tuhost uložení koleje je závislá na způsobu uložení koleje, zda je použito kolejové lože, přímé uložení či mostnice. Pro tento typ zatížení je důležitým faktorem materiál NK, kdy zejména ocelové mosty obvykle dosahují větších teplotních změn než mosty betonové či spřažené. Ocel má větší teplotní vodivost oproti betonu a je tak více citlivá na teplotní změny. Dle typu nosné konstrukce je normou [7] přidělený teplotní rozdíl horního a dolního povrchu konstrukce při horkém a studeném stavu. Nicméně z pohledu účinků na bezstykovou kolej je rozhodující teplotní změna mostní konstrukce od okamžiku zhotovení bezstykové koleje na mostě. Pro zjištění maximálních a minimálních teplot s možným výskytem v lokalitě je využíváno teplotní mapy z normy ČSN EN 1991-1-5 [12].

2.3.2 Zatížení brzdnými a rozjezdovými silami

Toto vodorovné zatížení působící na kolej je na rozdíl od teplotních změn krátkodobého charakteru. Zatížení je přenášeno přes kolejový rošt a kolejové lože (je-li na

mostu) do NK, z NK je dále převedeno do spodní stavby. Síly od tohoto zatížení jsou závislé na tření při kontaktu kola s kolejnicí. Důsledkem tohoto vodorovného zatížení jsou tlakové a tahové síly v kolejnici. Z hlediska návrhu jsou dominantní brzdné síly, které svého maxima dosahují v krátkém časovém intervalu. Tento fakt je způsoben nejčastějším použitím vzduchových brzd, kdy tyto brzdy mají určitou prodlevu než se brzdný impuls přenese z přední části na konec soupravy. [8]

Dle ČSN EN 1991-2 [7] brzdné a rozjezdové síly působí v podélném směru koleje v úrovni temene kolejnic. Tyto síly se musí uvažovat jako rovnoměrně rozložené po přičiňující délce L_{a,b}.

Podle [7]:

3)	Rozjezdová síla:	Q _{lak} = 33 kN/m	kde max L _{a,b} = 1000/33 = 33,3 m
		pro modely zatížení 7	71, SW/0, SW/2 a HSLM
4)	Brzdná síla:	Q _{lbk} = 20 kN/m	kde max L _{a,b} = 6000/20 = 300 m
		pro modely zatížení 7	71, SW/0 a HSLM

Pokud jsou na mostě alespoň dvě koleje, je třeba uvažovat brzdné síly v jedné koleji s rozjezdovými silami na jedné další podle ČSN EN 1991-2 [7]. V této normě také zmíněný požadavek při vedené BK po mostě, kolej přenáší na NK pouze část brzdné/rozjezdové síly, zbytek této síly je přenesen kolejí za opěry. Proto se má část síly přenášená NK do ložisek stanovit s uvážením kombinované odezvy konstrukce a koleje.

2.3.3 Svislé zatížení od dopravy

Bylo již uvedeno, že na stabilitu bezstykové koleje má zásadní vliv zatížení kolejovou dopravou. Při pohybu kolejových vozidel po bezstykové koleji mohou nastat kritické okamžiky hned v několika případech a to při brzdění nebo rozjezdu vlaků a při jízdě. Vlivem dynamického svislého zatížení dochází před přední nápravou kolejového vozidla a mezi jeho nápravami ke zdvihu kolejového roštu, což vyvolává vynulování třecí síly na ložné ploše pražce, kde štěrk není schopen přenášet tahové napětí a tím také dochází ke snížení příčného odporu. Tyto okamžiky jsou potenciálně nebezpečné z

hlediska stability koleje. Na následujícím obrázku jsou ukázány oblasti, ve kterých dochází ke snížení příčného odporu a zdvihu kolejového roštu pod jedoucím vozidlem.

Obr. 8 Průběh svislého zatlačení koleje pod jedoucím vlakem [1]

Dle [1] mají na velikost a průběh svislého zatlačení vliv jednak parametry vozidel,

tj. nápravové zatížení, vzdálenost náprav a rozvor podvozků, a jednak typy kolejnic a pražců, tuhost upevnění a deformační modul pražcového podloží.

Pro modelování lze využít dle normy [7] modely zatížení dopravou 71, SW/0, SW/2 a HSLM.

Obr. 9 Model zatížení 71 [7]

2.4 Posuzování interakce BK a NK mostu

V následujících podkapitolách jsou popsány náležitosti posuzování interakce mostu a BK dle normy ČSN EN 1991-2 a její alternativu Metodu komplexní analýzy.

2.4.1 Posouzení dle ČSN EN 1991-2 [7]

Toto posouzení interakce mostu a BK se provádí dle normy jejíž plný název je ČSN EN 1991-2 Eurokód 1 Zatížení konstrukcí - Část 2 Zatížení mostů dopravou. Dle této normy [7] mají být přídavná namáhaní kolejnic na mostě a přilehlé opěře od proměnných zatížení od interakce most – kolej omezena následujícími návrhovými hodnotami:

pro tah: 92 MPa

pro tlak: 72 MPa pro kolej s kolejovým ložem, 92 MPa pro přímé uložení

Tyto hodnoty platí pro koleje jež jsou vybaveny kolejnicemi UIC 60 s pevností v tahu nejméně 900 MPa a zároveň pro tyto koleje platí:

- přímá kolej nebo kolej o poloměru 1500 m a větším
- kolej s kolejovým ložem s nejméně 30 cm vrstvou konsolidovaného kolejového lože pod pražcem
- kolej s kolejovým ložem s betonovými pražci s maximální osovou vzdáleností 65 cm

Pro uspořádání mostu s využitím Metody pro stanovení kombinované odezvy konstrukce a koleje na proměnná zatížení podle normy [7] musí platit následující:

pro spřažené ocelobetonové konstrukce: dilatační délka LT ≤ 90 m

Všechny dříve zmíněné podmínky jsou pro tento most splněny, koleje mají poloměr 2604 m v koleji 1 resp. 2600 m v koleji 2, jsou zde také splněny požadavky na kolejové lože. Betonové pražce jsou normálního rozdělení v osové vzdálenosti 0,6 m. Dilatační délka konstrukce dosahuje maximálně 80 m.

Dle ČSN EN 1991-2 [7] nesmí podélná deformace konstrukce δ_B při rozjezdu a brzdění přesáhnout 5 mm, pokud je kolej na konstrukci vedena jako bezstyková bez kolejnicových dilatačních zařízení.

Dle ČSN EN 1991-2 [7] nesmí podélné posunutí horního povrchu nosné konstrukce δ_{H} při svislém zatížení dopravou přesáhnout 8 mm, pokud je kolej na konstrukci vedena jako bezstyková s jedním nebo žádným kolejnicovým dilatačním zařízení.

2.4.2 Posouzení Metodou komplexní analýzy

Pokud dříve zmíněný posudek dle normy ČSN EN 1991-2 na přídavná namáhaní kolejnic na mostě a přilehlé opěře od proměnných zatížení od kombinované odezvy konstrukce a koleje nevyhoví, je zde možnost využití posouzení dle metody komplexní analýzy. Použití alternativních metod je dáno ve změně Z4 ČSN EN 1991-2 čl. NA.2.76 Článek 6.5.4.5 Návrhová kritéria. Metodou komplexní analýzy se rozumí posouzení celkového napětí v kolejnici od všech působících účinků dle principů normy ČSN EN 1993-2 [10].

Celkové napětí v kolejnici při posuzování se skládá dle MVL 150 [8]:

- 1) z vlastního pnutí od výroby (lze uvažovat ±100 MPa)
- 2) napětí od teplotní změny kolejnice v trati (lze uvažovat $\Delta T_R = -53 \text{ °C}$ až +43 °C)
- 3) napětí od teplotní změny mostu
- 4) napětí od brzdných a rozjezdových sil
- 5) lokální a globální napětí vzniklé působením svislých sil od dopravy
- 6) vliv půdorysného zakřivení oblouku pro poloměr R < 1000 m
- 7) Průřezové charakteristiky kolejnice se srovnaným ojetím

2.5 Modelovaní pro posouzení interakce BK a NK

Dle normy ČSN EN 1991-2 [7] se bezstyková kolej na mostní konstrukci modeluje na principu následujícího schématu.

Obr. 10 Příklad modelu systému most/kolej [7]

Kde:

- (1) kolej
- (2) nosná konstrukce (znázorněn spojitý nosník o dvou polích a prostý nosník)

- (3) těleso železničního spodku
- (4) kolejnicové dilatační zařízení (je-li vloženo)
- podélné nelineární pružiny vyjadřující průběh závislosti podélné zatížení/posunutí koleje
- (6) podélné pružiny vyjadřující podélnou tuhost K pevného uložení nosné konstrukce s uvážením tuhosti základů, pilířů a ložisek atd.

Je důležité si uvědomit, že vodorovné tuhosti koleje jsou závislé na svislém přitížení. Vodorovná tuhost zatížené koleje je vyšší než nezatížené, štěrk kolejového lože se při zatížení více zaklesne. Z tohoto vychází potřeba rozlišovat v modelování část koleje zatíženou a nezatíženou. V obrázku níže je uveden princip aplikace podélného odporu pro různé části koleje.

Obr. 11 Princip aplikace podélného odporu [8]

Popis obrázku:

V označených oblastech je použit podélný odpor odpovídající

- A širá trať nezatížená kolej
- B širá trať zatížená kolej
- C kolej na mostě nezatížená kolej
- D kolej na mostě zatížená kolej

Nicméně je nutné uvažovat i změnu svislého a příčného odporu koleje vlivem přitížení. Odpor zatížené koleje je využíván nejen u svislého zatížení od dopravy, ale také u brzdných a rozjezdových sil.

2.6 Přípustné dilatující délky mostní konstrukce s ložisky pro zřízení průběžné BK

Předpis SŽDC S3 [18] udává přípustné dilatující délky L_T mostní konstrukce pro zřízení průběžné BK při určitých statických schématech a dle použití kolejového svršku (viz Tab. 1.). V případě jiného statického uspořádání konstrukce či větší dilatační délky než je zmíněna v Tab. 1 nebo nejasného dilatačního chování konstrukce, je nutné mostní konstrukci a BK posoudit na interakci most – BK. Tento případ se týkal i mostu, kterého se týká tato práce. Statické uspořádání mostu umožňuje na pilíři P4 pohyb dvou NK proti sobě.

					Mosty	/ s nosi	nými kor	nstrukce	mi		
Případ č.	Uspořádání mostních ložisek a dilatující délka	Tvar kolejnice 2)	ocelovými					ocelobetonovými		betonovými	
	LT		s kolejov	m ložem	s mostnicemi s		s přimým	s kolejovým ložem		s kolejovým ložem	
I			pra	žce	uloženými u		uložením	n pražce		pražce	
1	<u> </u>		dřevěné	betonové	centricky	plošně	koleje	dřevěné	betonové	dřevěné	betonové
							L _T [m]				
1	2	3	4	_5	6	. 7	8	9	10	11	12
1											
2	[⊙] L ₁₁ △ ○ L ₁₂ ○ ○ * * *	R 65 UIC 60 T,S 49	125 110 85	90 80 60	70 66 60	23 23 23	20 20 20	160 140 100	120 103 70	180 156 110	130 113 80
3	<u>∧ L₁ 0∧ L₁ 0∧ L₁ 0 * t₁ * t₁ * t₁ 0 ∧ L₁ 0</u>	R 65 UIC 60 T,S 49	125 108 75	86 74 51	70 63 50	25 25 25	23 23 23	160 136 90	110 93 60	180 153 100	125 106 70
	1)										
4		R 65 UIC 60 T,S 49	65 61 55	46 44 40	35 35 35	19 19 19	17 17 17	100 86 60	70 61 45	110 96 70	80 70 50

Při kombinaci jednotlivých případů rozhoduje přisnější kritérium. 1) Pro nové mosty nepřipustný případ 2) Kolejnice tv. T jen u dosavadního stavu.

Tab.1 platí pro zřízení BK ve směrových obloucích R ≥ 400m.

Případy neuvedené v tab. 1 musí být projednány a odsouhlaseny s OTH.

Tab. 1 Největší přípustné dilatující délky L_T NK mostů pro zřízení BK [18]

3 Popis mostního objektu

V následujících podkapitolách je uveden popis postaveného dvojkolejného železničního mostu, o němž pojednává tato práce. Tento most se nachází na km 67,130 trati IV. tranzitního železničního koridoru ČR. Byl postaven jako SO 52-20-03 Most v km 67,130 v rámci stavby Modernizace trati Veselí n. L. – Tábor - II. část. Níže na obrázku lze vidět stavebně dokončený most před zahájením provozu.

Obr. 12 Fotka mostu přes Kamenný rybník, červenec 2022

3.1 Umístění objektu

Mostní objekt se nachází v širé trati v extravilánu na nově zřízené přeložce trati Soběslav – Doubí u Tábora. Objekt je umístěn v blízkosti obce Myslkovice v Jihočeském kraji a přemosťuje pro stavbu vypuštěný Myslkovický rybník (také zvaný Kamenný rybník) a lesní cestu. Nová železniční přeložka vede v souběhu s dříve vybudovanou dálnicí D3 (nacházející se cca 70 metrů východně). Trať je součástí IV. tranzitního železničního koridoru.

Obr. 13 Územní podmínky (situace přístupových tras) [2]

3.2 Základní popis mostu

Mostní objekt se skládá z jednoho samostatně stojícího mostu převádějícího dvojkolejnou železniční trať. Most je rozdělen na jedno prosté pole a dva spojité nosníky o třech polích. Nosná konstrukce je tvořena dvěma svařovanými plnostěnnými nosníky spřaženými s horní železobetonovou deskou mostovky. [2]

Obr. 14 Statické schéma mostní konstrukce [2]

Typ nosné konstrukce:	Trámová spřažená ocelobetonová s plnostěnnými		
	hlavn	ími nosníky	
Materiál:	ocel:	S355N na hlavní plnostěnné nosníky	
		S235J2+C450 na spřahovací trny	
	ŽВ:	C30/37 - XC3, XF3	
Mostovka:	horní,	, železobetonová deska	

Rozpětí nosné konstrukce:	NK1: 27,0 m				
	NK2: 36,0 m + 44,0 m + 36,0 m				
	NK3: 36,0 m + 44,0 m + 36,0 m				
	Pozn.: délky rozpětí: rozvin v ose mostu				
Délky dilatačních celků:	28,4 m + 117,4 m + 117,4 m = 263,2 m				
Stavební výška mostu:	4,379 m k TK1				
Nutná tloušťka kolejového lože:	510 mm + rezerva 40 mm k ochraně izolace				
Nutná šířka kolejového lože:	vlevo 2200 mm + 60 mm dodržena				
	vpravo 2200 mm + 60 mm dodržena				
Spodní stavba:	Opěry: železobetonové s rovnoběžnými křídly				
	OP1 - založena plošně (změna dle [8])				
	OP2 - založená na velkoprůměrových pilotách				
	Pilíře: železobetonové založené				
	na velkoprůměrových pilotách				
Počet mostních otvorů:	7				
Délka přemostění (mezi líci opěr):	259,000 m (rozvin v ose mostu)				
Kolmá světlost otvorů:	24,4 + 33,4 + 40,7 + 2x 32,9 + 40,7 + 33,2 [m]				
Volná výška pod mostem:	6,3 - 8,7 m				
Volná šířka mostu:	10,270 m				
Šířka mostu:	10,800 m (11,600 m – v místě stožárů TV)				
Počet kolejí na mostě:	2				
Šikmost mostu:	90° - kolmý				

3.3 Popis NK mostu

Nosná konstrukce je tvořena dvěma svařovanými ocelovými nosníky nesymetrického svařovaného I průřezu, které jsou propojeny ŽB deskou mostovky a také příčným a příhradovým ztužením, která jsou rozmístěna s roztečí 6,0 m v pilířové oblasti a 8,0 m v oblasti v poli. Nosná konstrukce je plynule zakřivena v poloměru 2604,7 m u levého nosníku resp. 2599,3 m u pravého nosníku dle zakřivení trati. V nacházejících podkapitolách je uveden popis částí NK, které jsou nezbytné pro vytvoření numerického modelu.

3.3.1 Ocelová část NK

Rozměry hlavních nosníků:

Nosníky svařovaného průřezu I jsou odlišné výšky, levý 3,21 m a pravý 3,12 m, nicméně oba jsou uloženy ve stejné výšce. Stojiny nosníku jsou v horní části vyztuženy podélnými trapézovými výztuhami ke zvýšení smykové únosnosti štíhlé stěny. Pozvolná změna tlouštěk plechů pásnic a stěn je výhradně na vnitřní stranu, vnější líc nosníku je stále stejný.

Výška levého hlavního nosníku: 3210 mm Výška pravého hlavního nosníku: 3120 mm Šířka dolní pásnice: 1050 mm v poli: nad pilíři: 1250 mm Tloušťka dolní pásnice: v poli: 35 - 50 mm nad pilíři: 45 - 62 mm Šířka horní pásnice: v poli: 700 mm nad pilíři: 900 mm, lamela 650 mm Tloušťka horní pásnice: 30 - 40 mm v poli: nad pilíři: 45 - 62 mm, lamela 30 mm 20 - 22 mm Tloušťka stěny nosníku: v poli: nad podporou: 26 - 30 mm Výška trapézové výztuhy stojiny: 250 mm Tloušťka trapézové výztuhy stojiny: v poli: 6 mm nad podporou: 8 mm

3.3.2 Železobetonová část NK

Tloušťka železobetonové desky mostovky je proměnná v příčném směru (lze vidět na Obr. 17) - v místech nad osami hlavních nosníku dosahuje tloušťky 415 mm (s krčkem 430 mm), v místě úžlabí mezi hlavními nosníky 365 mm a 280 mm v místě konců desky za nosníky. Deska má při horním povrchu z pravé strany dostředný sklon 2,0 % a zleva 3,0 % směrem k excentricky umístěnému úžlabí. Rozdílné sklony byly zvoleny z důvodu minimalizace tíhy kolejového lože. Šířka desky 10,300 m je po délce konstantní. V celé své délce je deska zakřivena do poloměru trati r = 2602 m v ose trati (osa os). Podélný sklon desky je po délce mostu konstantní 4,000 ‰ a je stejný jako podélný sklon trati.

3.3.3 Ložiska

Nosná konstrukce mostu je usazena na dvou všesměrných ložiscích, jedno se nachází na opěře OP1 na straně do Českých Budějovic a druhé na opěře OP2 na straně do Prahy. Zbylá ložiska jsou rozdělena počtem 6 pevných ložisek a 12 podélně posuvných. Rozmístění ložisek je možné vidět na Obr. 15. Ložiska pro uložení NK1 až NK3 byla projektantem vybrána kalotového typu s životností 100 let.

3.4 Stavební výkresy mostu

Dále zobrazené obrázky stavebních výkresů jsou zde z důvodu poskytnutí představy o prostorovém uspořádání mostu.

Obr. 15 Půdorys mostu (vlevo) a půdorysné schéma rozmístění ložisek (vpravo) [4]

Obr. 16 Podélný řez (vlevo) a pohled zprava na most (vpravo) [4]

Obr. 17 Vzorový příčný řez v poli [4]

3.5 Popis převáděné železniční trati

Obě traťové koleje na mostě jsou směrově vedeny pravostranným obloukem, kdy osa koleje číslo 1 je v poloměru 2604 m a osa koleje číslo 2 je v poloměru 2600 m.

Osová vzdálenost těchto kolejí je konstantní na hodnotě 4000 mm.

Převýšení koleje D = 65 mm je pro obě koleje stejné. Také výškové vedení mají obě koleje totožné jejich stoupání je 4,000 ‰. Na mostě je dodržen volný mostní průřez VMP 3,0. Maximální provozní rychlost je nyní 160 km/h, ale později může být zvýšena na 200 km/h se zavedením ETCS (Evropský vlakový zabezpečovací systém).

Na následujícím obrázku lze vidět ve staničení km 67,0 mostní objekt, kterým se zabývá tato práce.

Železniční svršek:

kolejnice tvaru 60 E 2, bezstyková kolej na betonových pražcích, pružné bezpodkladnicové upevnění

Obr. 18 Nově vybudovaná trasa [3]

4 Monitoring

Investor Správa železnic, s. o., měl požadavek na osazení jednoho mostu na stavbě "Modernizace trati Veselí nad Lužnicí - Tábor - II. část" snímači monitoringu pro účely analýzy interakce kolej-most a experimentálního zjištění hodnoty podélného odporu koleje. Tento most byl vybrán z důvodu rozumné celkové délky mostu, relativně velkých dilatačních celků a umístění dvou podélně pohyblivých ložisek za sebou na jednom pilíři (tj. dvě NK dilatující proti sobě). Je měřeno několik závislých veličin pro potřeby analýzy chování mostu. Tyto veličiny jsou posuny, přetvoření a teploty. Na základě měřených veličin lze například zjistit přídavnou napjatost od teplotních změn konstrukce a její posun. Plánová doba kontinuálního měření je 5 let (předpoklad 08/2022 - 07/2027). Dle technologického postupu monitoringu [9] jsou zprávy z měření naplánovány v prvním roce v počtu 2 x ročně, v dalších letech v počtu 1 x ročně.

4.1 Měřicí technika

Bylo instalováno přes 70 snímačů zapojených do 8 měřicích ústředen. Níže jsou popsány jednotlivé typy snímačů a měřicích ústředen a jejich rozmístění po mostu. Monitoring je zaměřen na pravou stranu NK. Snímače dráhy jsou umístěny vpravo, jak u ložisek, tak v oblasti kolejového roštu je měřena pouze kolej 2. Pro měření dat (teploty, posunu, přetvoření) na kolejnici byla vybrána převážně pravá kolejnice v koleji 2, několik míst je pro kontrolu měřeno i na levé kolejnici. Pouze snímače teploty NK jsou rozmístěny 2 řezech rovnoměrně vpravo a vlevo. Tato měřící technika byla částečně dána do provozu před zahájením a při průběhu SZZ. Z toho důvodu je zde možnost analýzy interakce mostu a BK při SZZ.

Obr. 19 Připojení snímačů na kolejnici

Obr. 20 Zakrytí snímačů na kolejnici

4.1.1 Tenzometry

U těchto snímačů je důležité brát zřetel na pevné spojení s měřeným povrchem. Odporové tenzometry mohou být spojeny s povrchem lepidlem na bázi epoxidové pryskyřice nebo při měření na ocelové konstrukci lze snímač bodově přivařit. Správné spojení určuje správné snímání deformace povrchu. Princip měření je založený na vztahu mezi napětím (U) a měrným odporem vodiče (R). Tento vztah říká, že měrný odpor každého vodiče se mění s mechanickým napětím. Změna je způsobena deformací vodiče nebo změnami ve struktuře materiálu vodiče. Při SZZ bylo nainstalováno celkem 28 tenzometrů, z toho byly 4 dočasné pro účely SZZ. Jejich popis má kódové jméno TK a číslo (tj. TK1 až TK 24), pro dočasné tenzometry je kódové jméno TKD a číslo (tj. TK1 až TKD4). Nicméně tenzometry TK8, TK9 a TK18 nebyly při SZZ zapojeny z technických důvodů. Tyto snímače měřily poměrné přetvoření kolejnice v podélném směru, z těchto hodnot lze dopočíst normálové napětí v kolejnici. Snímače jsou rozmístěny převážně na pravé kolejnici v koleji 2, pouze 2 místa jsou pro srovnání měřena i na levé kolejnici. Každý měřený bod je snímán v tenzometrickém polomostu, toto zapojení je dále vysvětleno. Snímače jsou umístěny na vnitřní stranu kolejnice v místě těžiště (viz obrázek níže). Jednotkou měření jsou [µm/m].

Obr. 21 Připojení tenzometru kolej-polomost

4.1.1.1 Systémy zapojení do mostu

V této podkapitole jsou vysvětleny způsoby zapojení tenzometrů do mostu ke zpřesnění měření a kompenzaci chyb měření.

Obr. 22 Systémy zapojení odporových tenzometrů

- Celý most

Využívá 6 vodičové připojení umožňucí měření úbytků napětí způsobených vedením. Zapojení je dáno 2 konstantními a 4 proměnnými odpory, umožňující teplotní kompenzaci. Využítí v měření, kde je kladen velký důraz na přesnost.

- Polomost (tento typ zapojení byl použit)

Využívá 5 vodičové připojení. Zapojení je dáno 2 konstantními a 2 proměnnými odpory, umožňující kompenzaci teploty. Lze využít jeden z tenzometrů jako kompenzační, tento tenzometr je ve stejné teplotě jako tenzometr snímající deformaci, ale není na stejné součásti. Je umístěn na nenamáháném pomocném místě. Tento tenzometr pak snímá pouze deformaci způsobenou teplotou. Teplotní deformaci lze pak odečíst od deformace měřícího tenzometru a získat pouze deformaci způsobenou namáháním měřené součásti. Při měření jednoosé deformace (tento případ) je možné umístit jeden tenzometr kolmo k druhému. Díky této orientaci je změřena příčná deformace. Deformace způsobené teplotou se odečtou a získaný signál je (1+v)krát větší. Použití je možné pouze u izotropních materiálů.

- Čtvrtmost

Je zapojen pomocí 3-4 vodičového připojení. Je dán 1 proměnným a 3 konstantními odpory. Toto zapojení je využíváno u jednoosých namáhání a ohybů, u kterých není potřeba kompenzovat teplotu. Když je výstupní signál malý, lze zapojit do můstku dva tenzometry a výstupní signál tak dvakrát zesílit. Zapojení je používáno při měření velkých deformací. Finanční a časová náročnost je výhodou oproti předchozím variantám zapojení.

U zapojení do polomostu a čtvrtmostu se během měření mění jen některé odpory. Ostatní odpory jsou konstantní, mají dlouhodobou stabilitu a co nejmenší ovlivnitelnost teplotou. Lze využít také kompenzační odpory na místo konstantních. Zapojení do polomostu a čtvrtmostu jsou nejběžnější. [5]

4.1.2 Potenciometrické snímače dráhy

Na mostu byly instalovány dva typy snímačů dráhy od společnosti Megatron, první typ MSLPC je pro sledování posunů ložisek (označení PSD), druhý typ MSLPS je pro sledování relativního posunu mezi kolejí a nosnou konstrukcí (označení PSDK). Data z těchto snímačů jsou dále analyzovány. Snímače PSDK1-2 jsou umístěny nad pilířem P1 a opěrou OP2, snímající relativní posun kolejnice a NK2 resp. NK3. Jsou na koncích dvou nejdelších dilatačních celků NK (oba 80 m od pevného ložiska). Snímače PSD1-2 jsou umístěny na pilířích P1 a P4, snímají relativní posun NK2 a spodní stavby. Snímače PSD3-4 jsou umístěny na pilíři P4 a opěře OP2, snímají relativní posun NK3 a spodní stavby. Jednotkou měření jsou milimetry.

Obr. 23 Připojení potenciometrického snímače dráhy (SS:NK)(SS = spodní stavba)

Obr. 24 Připojení potenciometrického snímače dráhy (most:kolejnice) ke kolejnici

Obr. 25 Připojení potenciometrického snímače dráhy (most:kolejnice)

4.1.3 Snímače teploty

Tyto snímače jsou instalovány na kolejnicích a na NK mostu pro účely analýzy ovlivnění chování mostu změnou teploty. Její důsledek je důležitý pro správný odhad interakce mostu a koleje. Na mostu je také umístěn jeden snímač teploty vzduchu. Jednotkou měření jsou stupně Celsia.

Snímače teploty kolejnice (označení STK)

Těchto snímačů je na mostu 27, nicméně bylo měřeno 9 řezů kolejnice v koleji 2, převážně v pravé kolejnici (7 řezů), pouze 2 řezy jsou měřeny v levé kolejnici. V každém měřeném řezu jsou měřeny 3 body (viz schéma vpravo).

1) levý líc stěny kolejnice

- 2) spodní líc paty kolejnice
- 3) pravý líc stěny kolejnice

Obr. 26 Připojení snímače teploty na kolejnici

STKi−1 STKi−3 STKi-2

Snímače teploty NK (označení ST)

Těchto snímačů je na mostu 12 umístěných ve 2 řezech, z toho 6 nad pilířem P1 a 6 nad pilířem P4 (viz tabulka níže). Jsou použity teplotní snímače r255a.

Sníma	Snímače teploty NK2 na pilíři P1		
Označení Umístění			
ST1	dolní pásnice levého nosníku		
ST2 dolní pásnice pravého nosníku			
ST3	stěna levého nosníku		
ST4	stěna pravého nosníku		
сте	betonová deska u levého		
212	nosníku		
CTC	betonová deska u pravého		
310	nosníku		

Tab. 2 Popis snímačů teploty NK

Sníma	Snímače teploty NK3 na pilíři P4				
Označení	Umístění				
ST11	dolní pásnice levého nosníku				
ST12 dolní pásnice pravého nosníku					
ST13	stěna levého nosníku				
ST14	stěna pravého nosníku				
CT1E	betonová deska u levého				
5115	nosníku				
CT1C	betonová deska u pravého				
3110	nosníku				

Obr. 27 Schéma umístění snímačů teploty NK (př. nad pilířem P1) [9]

4.1.4 Měřicí ústředny

Byly využity dva druhy měřících ústředen, DataTaker a Statotest. Dále je vysvětlena jejich specifikace.

Měřicí ústředny DataTaker

Univerzální ústředna, která lze využít k měření posunu, přetvoření a teploty. Na mostě jsou umístěny 2 sestavy (označení DT1 a DT2) těchto ústředen v úrovni kolejového lože (mimo nutný obrys). Každá tato sestava se skládá:

- 1) DataTaker DT80 Series 4
 - 5 analogových vstupů + 8 digitálních vstupů
- 2) rozšiřující modul CEM20
 - 20 analogových vstupů
- 3) modem LTE

Obr. 28 DataTaker DT80 Series 4 [9]

Na ústřednu DT1 umístěnou ve 3. poli mostu jsou připojeny snímače teploty kolejnice (STK1-4) v počtu 12 ks, potenciometrický snímač dráhy kolej:NK (PSDK1) v počtu 1 ks, 12 ks tenzometrických snímačů kolejnice (TK1-12). Na ústřednu DT2 umístěnou ve 6. poli mostu jsou připojeny snímače teploty kolejnice (STK5-9) v počtu 15 ks, potenciometrický snímač dráhy kolej:NK (PSDK2) v počtu 1 ks, 12 ks tenzometrických snímačů kolejnice (TK13-24).

Měřící ústředny StatoTest (označení STT)

Na mostě je umístěno 6 ústředen od společnosti StatoTest, s. r. o. Byly využity dva typy těchto ústředen.

- 1) Ústředna s 6 prostupy
 - lze zaznamenávat údaje ze 6 snímačů teploty
- 2) StatoTest D21
 - 1 prostup, záznam z 1 potenciometrického snímače dráhy

Data jsou nahrávána na internetové uložiště (tzv. cloud).

Tyto ústředny jsou osazeny na horní líc dolní pásnice pravého hlavního nosníku (viz foto níže). Na ústředny STT1-4 jsou připojeny potenciometrické snímače dráhy SS:NK (PSD1-4) v počtu 4 ks. Na ústředny STT5-6 jsou připojeny snímače teploty NK (ST1-6; ST11-16) v počtu 12 ks.

Obr. 29 Umístění potenciometrického snímače dráhy (SS:NK) a měřicích ústředen typu StatoTest na pilíři P4 a NK2 a NK3.

4.1.5 Rozmístění snímačů

LEG	ENDA:	<u>VÝKAZ MĚŘECÍ TECHNIKY:</u>		
	- POTENCIOMETRICKÝ SNÍMAČ DRÁHY (SS : NK)	<u>SNÍMAČ:</u>	TYP SNÍMAČE:	POČET:
	- POTENCIOMETRICKÝ SNÍMAČ DRÁHY KOLEJE (SS : KOLEJ)	POTENCIOMETRICKÝ SNÍMAČ DRÁHY (SS : NK)	MSLPC 100 + 150	2 + 2 = 4 ks
Φ	TENZOMETRY, KOLEJ-POLOMOST	POTENCIOMETRICKÝ SNÍMAČ DRÁHY KOLEJE (KOLEJ : NK)	MSLPS 50	2 ks
	TENZONETRY KOLEL_POLONOST (DOČASNE_SZZ DZZ)	TENZOMETRY KOLEJ-POLOMOST	HBM 10/120 LY11	24 ks
	PUTULA TER ATH AN AN	TENZOMETRY KOLEJ-POLOMOST (DOCASNE)	HBM 10/120 LY11	4 ks
42	SNIMAC TEPLOTY NA NK	SNÍMAČ TEPLOTY NA KOLEJI	r255a	9 x 3 = 27 ks
\$	SNÍMAČ TEPLOTY NA KOLEJNICI	SNÍMAČ TEPLOTY NA NK	r255a	6 x 2 + 2 x 1 = 14 ks
	SNÍMAČ TERLOTV VZDUCUU	SNÍMAČ TEPLOTY VZDUCHU	r255a	2 ks
~	SNIMAC TEPLOIT VZDUCHU	MĚŘÍCÍ ÚSTŘEDNA TYPU DATATAKER	DT	2 ks
	MĚŘÍCÍ ÚSTŘEDNY – DATATAKER	MĚŘÍCÍ ÚSTŘEDNA TYPU STATOTEST	STT	4 + 2 = 6 ks
	MĚŘÍCÍ ÚSTŘEDNY – STATOTEST			

Obr. 30 Legenda a výkaz měřicí techniky [9]

Obr. 33 Podélné rozmístění snímačů u NK3 (Pole 5 – 7) [9]

5 Statická zatěžovací zkouška (SZZ)

Obecně je třeba provést SZZ mostu pro splnění požadavků k povolení zkušebního provozu z důvodu ověření požadovaného chování mostní konstrukce. SZZ na mostu proběhla ve dnech 13. – 14. 7. 2022. V rámci ní se měřily pro účely analýzy interakce mostu a BK podélné posuny nosné konstrukce vůči spodní stavbě, a také byl měřen relativní posun koleje a mostu nad ložiskem na opěře OP2. Byly měřeny teploty vzduchu, nosné konstrukce a kolejnic v koleji 2. Toto měření poskytlo množství dat k analýze chování interakce mostu a koleje. Pro každé ze 7 polí bylo navrženo postavení zatěžovací sestavy pro největší průhyb v daném poli.

5.1 Zkušební zatížení

Hlavní zajímavostí těchto zkušebních zatížení byla parní lokomotiva s označením 475.1 zvaná Šlechtična. Dále byly využity lokomotiva 741, 3x Chopper, 2x vozík s betonovými panely s hmotností 64 tun. Tyto sestavy se po mostu pohybovaly rychlostí přibližně 5 km/h mezi jednotlivými polohami. Umístění sestav se pohybovalo maximálně do 20 cm od referenčního bodu polohy.

Obr. 34 Sestava zkušebních vozidel pro kolej č. 1 (dále Sestava 1) [11]

Obr. 35 Sestava zkušebních vozidel pro kolej č. 2 (dále Sestava 2) [11]

5.1.1 Program SZZ

Každé číslo v označení zatěžovacího stavu má důležitý význam. První číslo znamená zatížené pole, význam druhého čísla je dále vysvětlen. Označení ZSX.1 znamená polohu zatěžovací sestavy 1 v poli X. Označení ZSX.2 znamená polohu obou zatěžovacích sestav v poli X. Označení ZSX.3 znamená polohu zatěžovací sestavy 2 v poli X. Nejprve se umisťovala Sestava 1 na koleji 1 a poté Sestava 2 na koleji 2. Při odjezdu ze zatěžovacího stavu se postupovalo stejným způsobem: nejdřív přesun Sestavy 1 a poté přesun Sestavy 2. Bylo vždy provedeno měření v poli zatíženém Sestavou 1 (značení ZS X.1) a poté měření pole zatíženého oběma sestavami (t. j. Sestava 1 a 2 v poloze, značení ZS X.2). Dále byl proveden odjezd Sestavy 1 do další polohy a provedeno měření (t. j. Sestava 2 je ponechána v původní poloze a Sestava 1 je v poloze další, značení ZS X.1 + ZS Y.3 nebo jen ZS Y.3)

ČAS - ABSOLUTNÍ			ΖΑΤΕΫΟΥΛΟΊ ΣΤΑΥ		
ZAČÁTEK	KONEC	INTERVAL	ZATEZOVACI STAV		
20:45	21:00	0:15	NULTÝ - nulové zat. (ZS 0.1)		
21:04	21:19	0:15	ZS 1.1		
21:23	21:53	0:30	ZS 1.2		
21:59	22:14	0:15	ZS 5.1 + ZS 1.3		
22:19	22:49	0:30	ZS 5.2		
22:52	23:07	0:15	ZS 5.3 - vozidlo 2		
23:10	23:40	0:30	nulové zat. (vozidla před mostem) (ZS 0.2)		
23:47	0:02	0:15	ZS 2.1		
0:05	0:35	0:30	ZS2.2		
0:44	0:59	0:15	ZS 6.1 + ZS 2.3		
1:05	1:35	0:30	ZS 6.2		
1:38	1:53	0:15	ZS 3.1 + ZS 6.3		
1:58	2:28	0:30	ZS 3.2		
2:33	2:48	0:15	ZS 7.1 + ZS 3.3		
2:58	3:28	0:30	ZS 7.2		
3:32	3:47	0:15	ZS 4.1 + ZS 7.3		
3:52	4:22	0:30	ZS 4.2		
4:26	4:41	0:15	ZS 4.3 - vozidlo 2		
4:43	5:13	0:30	nulové zat. (vozidla před mostem)(ZS 0.3)		

Tab. 3 Program SZZ

6 Zpracování dat ze SZZ mostu z pohledu interakce BK a NK

V této kapitole je vysvětlen postup zpracování dat měřených snímači monitoringu při průběhu SZZ mostu. Z důvodu komplikací se zprovozněním některých snímačů na NK3 do zahájení SZZ, zprovoznění snímačů proběhlo v průběhu ZS 5.3, nejsou k dispozici měřená data v předchozích zatěžovacích stavech. Pro jednotlivé snímače byly vytvořeny průběhy měřených hodnot v čase SZZ, počáteční hodnota při měření posunů a přetvoření byla při zahájení SZZ vždy nastavena na 0. Po provedení zpracování těchto dat a vytvoření jejich průběhů při SZZ, byly následně vybrány časy v průběhu jednotlivých zatěžovacích stavů k vytvoření průběhu napětí v kolejnici po mostě při těchto stavech. Srovnání modelu se změřenými průběhy napětí v kolejnici při zatěžovacích stavech je provedeno v kapitole Numerická analýza. Experimentální zjištění tuhosti kolejového lože v podélném směru v dopravou zatíženém stavu je součástí této kapitoly.

6.1 Kalibrace a oprava naměřených hodnot

Pro správné zobrazení skutečných hodnot bylo třeba data ze snímačů dodatečně opravit kalibračními součiniteli u tenzometrických odporových snímačů a rozdíly teplot mezi teplotami změřenými přiloženým teploměrem a teplotami z dat snímačů teploty kolejnice. Nutnost kalibrace dat z odporových snímačů je z důvodu jejich ovlivnění délkou kabeláže, jelikož s délkou kabelu roste elektrický odpor.

Lokální účinky způsobené přejezdy zatěžovacích sestav ve směru kompenzačních tenzometrů jsou pro účel této práce nepodstatné, v rámci této práce bylo rozhodnuto o zanedbání těchto účinků. Pro tento účel bylo třeba vyhladit některá data nahrazením vrcholů v krátkých časových intervalech lineární interpolací od sousedních hodnot. Toto provedení způsobilo zlepšení v přehlednosti průběhů naměřených hodnot, které se tak více blíží realitě.

6.1.1 Tenzometry

Byly zjištěny opravné (kalibrační) součinitele, závislé na délce kabeláže mezi snímačem a měřící ústřednou. Při kalibraci snímačů sázecím odporem byly zjištěny špičkové a stále hodnoty přetvoření, které jsou součástí výpočtu opravného součinitele. Pro správné hodnoty výsledků je nutné snímači změřené hodnoty upravit tímto opravným součinitelem (viz výpočet níže). Také je třeba naměřené hodnoty vydělit číslem 1,3 (odpovídajícím součtu 1 + u; u = Poissonovo číslo; u = 0,3 pro ocel) z důvodu uspořádání snímačů do polomostu. Uspořádání snímačů kolmo k sobě umožňuje kompenzaci příčné deformace, která je zohledněna právě tímto dělitelem "1 + u".

Výpočet opravného součinitele so

$$s_o = -\frac{\Delta \varepsilon_k}{\varepsilon_s}$$

 ε_s = simulované přetvoření [µm/m]

 $\Delta \epsilon_k = \epsilon_{kv} - \epsilon_{ks} = rozdíl přetvoření mezi špičkovou a stálou hodnotou při kalibraci [µm/m]$ $<math>\epsilon_{kv} =$ špičkové přetvoření při kalibraci sázecím odporem [µm/m] $\epsilon_{ks} =$ stálé přetvoření při kalibraci sázecím odporem [µm/m] Výpočet simulovaného přetvoření ɛs

$$\varepsilon_s = \frac{1}{k} \cdot \left(\frac{R_s}{R_s + R} - 1\right) = \frac{1}{2,11} \cdot \left(\frac{29900}{29900 + 120} - 1\right) \cdot 10^6 = -1894,472 \ [\mu m/m]$$

k = k-faktor tenzometru (součinitel deformační citlivosti) = 2,11

 $R_s = sazeci odpor = 29900 \Omega$

R = odpor tenzometru = 120 Ω

Níže můžete vidět výsledky opravných součinitelů jednotlivých tenzometrů.

		TKD1	TKD2	TKD3	TKD4
ε _{kv}	[µm/m]	2448	-1985	-2601	-2081
ε _{ks}	[µm/m]	584	-49	-650	-155
$\Delta \epsilon_k$	[µm/m]	1864	-1936	-1951	-1926
٤s	[µm/m]	-1894,5	-1894,5	-1894,5	-1894,5
So		0,984	1,022	1,030	1,017

Tab. 4 Kalibrace snímačů na měřící ústředně EMS_TKD (dočasné tenzometry při SZZ)

		TK1	TK2	TK3	TK4	TK5
ε _{kv}	[µm/m]	-1950	-2356	-1700	-2121	-2015
ε _{ks}	[µm/m]	-76	-433	195	-140	-41
$\Delta\epsilon_k$	[µm/m]	-1874	-1923	-1895	-1981	-1974
٤s	[µm/m]	-1894,47	-1894,47	-1894,47	-1894,47	-1894,47
So		0,989	1,015	1,000	1,046	1,042

		TK6	TK7	TK10	TK11	TK12
ε _{kv}	[µm/m]	-2582	-1814	-1526	-2010	-2116
ε _{ks}	[µm/m]	-618	122	397	-68	-241
$\Delta \epsilon_k$	[µm/m]	-1964	-1936	-1923	-1942	-1875
٤s	[µm/m]	-1894,47	-1894,47	-1894,47	-1894,47	-1894,47
So		1,037	1,022	1,015	1,025	0,990

		TK13	TK14	TK15	TK16	TK17
ε _{kv}	[µm/m]	-2073	-1994	-2126	-2614	-2080
ε _{ks}	[µm/m]	-120	-19	-108	-609	-47
$\Delta\epsilon_k$	[µm/m]	-1953	-1975	-2018	-2005	-2033
٤s	[µm/m]	-1894,47	-1894,47	-1894,47	-1894,47	-1894,47
So		1,031	1,043	1,065	1,058	1,073

		TK19	TK20	TK21	TK22	TK23	TK24
ε _{kv}	[µm/m]	-2287	-2419	-1899	-2581	-1797	-2792
٤ _{ks}	[µm/m]	-254	-387	120	-601	180	-904
$\Delta\epsilon_k$	[µm/m]	-2033	-2032	-2019	-1980	-1977	-1888
٤s	[µm/m]	-1894,47	-1894,47	-1894,47	-1894,47	-1894,47	-1894,47
So		1,073	1,073	1,066	1,045	1,044	0,997

Tab. 5 Kalibrace snímačů na měřících ústřednách EMS_S_DT1 a EMS_S_DT2

6.1.2 Snímače teploty kolejnice

Z důvodu ovlivnění dat ze snímačů délkou kabelů propojujících snímače s měřicími ústřednami, byla provedena dodatečné kalibrace dne 20. 8. 2022 (viz výsledky níže). Kalibrace byla provedena srovnáním ručně změřených hodnot s hodnotami ukládanými v datové ústředně DataTaker od snímačů teploty kolejnice. Délka kabelů ovlivňuje tato data jejich různým elektrickým odporem závislém na délce kabelu. Data v každém měřeném bodě byla upravena dle měřeného rozdílu teplot na skutečnou hodnotu (viz. výpočet níže). Pro stojinu zleva a zprava byl využit měřený rozdíl v těchto místech, pro patu byl pro dopočet zvolen průměr těchto rozdílů.

STK	Тур	Čas	Příložný teploměr	DataTaker	Rozdíl	Průměr
1L	Ni 10000	9:21	10,70	12,32	1,62	1 4 4
1P	Ni 10000	9:22	11,00	12,26	1,26	1,44
2L	Ni 10000	9:24	11,50	11,38	-0,12	0.12
2P	Ni 10000	9:24	11,50	11,36	-0,14	-0,15
3L	Pt 1000	9:25	11,40	11,40	0,00	0.14
3P	Pt 1000	9:25	11,70	11,42	-0,28	-0,14
4L	Pt 1000	9:26	11,40	12,84	1,44	1 5 1
4P	Pt 1000	9:27	11,20	12,78	1,58	1,51
5L	Ni 10000	9:28	11,30	12,21	0,91	0.95
5P	Ni 10000	9:28	11,40	12,19	0,79	0,85
6L	Ni 10000	9:29	11,30	10,70	-0,60	0.49
6P	Ni 10000	9:29	11,20	10,84	-0,36	-0,48
7L	Pt 1000	9:30	11,30	10,80	-0,50	0.50
7P	Pt 1000	9:30	11,40	10,91	-0,49	-0,50
8L	Pt 1000	9:31	11,20	12,21	1,01	1.06
8P	Pt 1000	9:32	11,20	12,31	1,11	1,00
9L	Ni 10000	9:33	10,90	14,65	3,75	2.64
9P	Ni 10000	9:34	11,00	14,54	3,54	3,64

 $t_{skutečná} = t_{merená} - \Delta t$

Tab. 6 Oprava měřených dat ze snímačů teplot kolejnice

Data ze snímačů NK narozdíl od snímačů teploty kolejnice nejsou potřeba kalibrovat, tyto snímače jsou připojeny digitálně.

6.2 Průběhy napětí v kolejnici

Z naměřených hodnot poměrného přetvoření z tenzometrů z průběhu SZZ byly pomocí vzorce (viz níže) vypočteny hodnoty napětí v kolejnici vzniklé od svislého zatížení. Byly vytvořeny průběhy napětí v kolejnicích v koleji 2, převážně byly snímače umístěny na pravé kolejnici a pouze na 2 místech na levé kolejnici. Pro skutečné výsledky od svislého zatížení byly odečítány vlivy teploty od naměřených hodnot. Tento odečet byl proveden pomocí funkce lineární asymptoty pomocí interpolace a extrapolace (viz vzorec níže) v každém zatěžovacím stavu u každého snímače. Tato úprava byla zvolena s vědomím, že vede k mírné nepřesnosti výsledků z důvodu nelinearity teplotního vlivu. Nicméně tímto odečtením teplotního vlivu od měřených hodnot bylo získáno větší přehlednosti v nárůstech a poklesech napětí při přechodech mezi zatěžovacími stavy.

Vzorec pro interpolaci v časovém rozsahu <t₁; t₂> a extrapolaci v časovém rozsahu (t₂; ∞) $\sigma_j = E \cdot \varepsilon = \sigma_i - \frac{\sigma_2 - \sigma_1}{t_2 - t_1} \cdot (t_i - t_1) - \sigma_1 + \sigma_{j-1}$

 σ_i = hodnota napětí ze vzorce σ_i = E · ϵ_i [MPa]

ε_i = hodnota měřeného poměrného přetvoření zapsaného snímačem v tabulce [µm/m] E = 210 GPa

6.2.1 Průběhy napětí v kolejnici po polích

V příloze 1 této práce jsou uvedeny všechny výsledky průběhů napětí v kolejnicích v koleji 2 v čase v místech jednotlivých tenzometrů po jednotlivých polích a zatěžovacích stavech. Nad grafy je vždy popis zatěžovacího stavu. V této kapitole je uvedeno vysvětlení nezobrazení některých částí průběhu napětí v kolejnici od některých snímačů v grafech. Pro vysvětlení je použit ZS 1 v poli 1 a průběh napětí v kolejnici z tenzometrického snímače TKD4. Z důvodu zprovoznění snímačů na NK3 v průběhu ZS 5.3 nejsou k dispozici měřená data v předchozích zatěžovacích stavech na této NK.

Obr. 36 Průběh napětí v kolejnici od snímačů v 1. poli při ZS1 – zobrazena ovlivněná část měření snímače TKD4

Z důvodu namáhání kompenzačního tenzometru TKD4 ve směru působící síly je od ZS 1.2 ovlivněno měření tohoto tenzometrického snímače (viz skokový nárůst v předchozím grafu). Důvodem tohoto nadměrného namáhání v místě snímače je velmi blízká poloha kola břemene zatěžovací sestavy SZZ. Lokální skoky tohoto charakteru nebudou v dalších grafech zobrazeny, pro téma práce nejsou významné. V grafech tedy nebudou ukázány části průběhů napětí v místech tenzometrů velikostí odskočených od ostatních v jejich okolí. V následujícím grafu je pouze část předchozího grafu v rozmezí svislé osy od -2,5 do 2,0. Právě tyto grafy bez ovlivněných částí průběhu napětí v kolejnici budou v práci zobrazeny. V případě nezobrazení ovlivněných dat bude vždy uvedena poznámka: "ovlivněná data nezobrazena (viz kapitola 6.2.1)".

Obr. 37 Průběh napětí v kolejnici od snímačů v 1. poli při ZS1 – ovlivněná data ze snímače TKD4 nezobrazena (viz kapitola 6.2.1)

6.2.2 Průběh napětí v kolejnici po mostě

Dále jsou v grafech zobrazeny průběhy napětí po mostě v pravé kolejnici v koleji 2 ve zvolených časech po jednotlivých zatěžovacích stavech. Některé vrcholy nejsou zobrazeny z důvodu popsaného v předchozí kapitole. Několik tenzometrických snímačů bylo v průběhu zatěžovací zkoušky ovlivněno působením síly v blízkosti kompenzačního tenzometru. Nulové měření v zatěžovacím stavu ZS 0.1 je u ostatních zatěžovacích stavů odečteno a stav od ZS 0.1 je zobrazen s nulovými napětími v kolejnici. Tento odečet by mohl být zopakován odečtením nulového měření ZS 0.2 od následujících zatěžovacích stavů, které umožňuje odečtení plastického přetvoření kolejnice v předcházejících zatěžovacích stavěch. Nicméně je pro představu o plastickém přetvoření kolejnice v průběhu SZZ ponechán. V kapitole numerická analýze je pak provedeno srovnání těchto průběhů s průběhy modelu.

Poznámka: ovlivněná data ze snímačů TKD4 a TK2 nezobrazena (viz kapitola 6.2.1)

Obr. 39 Průběh napětí po mostě při ZS2

Obr. 40 Průběh napětí po mostě při ZS3

Poznámka: ovlivněná data ze snímače TK7 nezobrazena (viz kapitola 6.2.1)

6.2	2.4	ZS	4

Obr. 41 Průběh napětí po mostě při ZS4

Poznámka: ovlivněná data ze snímačů TKD4 a TK2 nezobrazena (viz kapitola 6.2.1)

6.2.2.6 ZS 6

Obr. 43 Průběh napětí po mostě při ZS6

Poznámka: ovlivněná data ze snímače TK3 nezobrazena (viz kapitola 6.2.1)

Obr. 44 Průběh napětí po mostě při ZS7 Poznámka: ovlivněná data ze snímače TK7 nezobrazena (viz kapitola 6.2.1)

Dle mé bakalářské práci [15] a dle SV projektanta mostu [6] bylo posuzováno kritické místo za opěrou OP2. V tomto místě se jednalo o posouzení přídavného tahového namáhání od interakce mostu a koleje dle požadavků normy [7]. Jednou z nezbytných součástí přídavného namáhaní bylo i započtení zatížení od dopravy. V případě posudku v bakalářské práci bylo využito modelu zatížení 71, který vyvodil maximální tahové namáhání 7,1 MPa v případě samostatného účinku od svislého zatížení. Nicméně lze snížit účinek od přídavného namáhání od svislých sil současným zatížením brzdovými a rozjezdovými silami. Zatěžovací sestavy SZZ nedokázaly při průběhu SZZ v tomto místě vytvořit žádné tahové přídavné namáhání od interakce mostu a koleje. Zatěžovací sestavy SZZ vytvořily v tomto místě pouze tlaková přídavná namáhání od interakce mostu a koleje.

6.3 Průběhy podélného posunu

V této podkapitole jsou ukázány průběhy podélného posunu v místě ložisek NK2 a NK3 (relativní posun SS : NK) a relativního posunu koleje a NK v místě nad ložiskem nad opěrou OP2.

6.3.1 Průběhy podélného posunu SS : NK

Dále jsou zobrazeny průběhy podélného posunu spodní stavby : NK (posun v ložiscích) z potenciometrických snímačů dráhy PSD1 až PSD4 při SZZ. Níže v tabulce je ve vysvětlena poloha těchto snímačů. Tyto posuny zobrazují jak posun NK od svislého zatížení, tak posun od teplotní změny.

Snímač	Poloha měření
PSD1	P1 : NK2
PSD2	P4 : NK2
PSD3	P4 : NK3
PSD4	OP2 : NK3

Tab. 7 Popis polohy potenciometrických snímačů dráhy

Obr. 45 Průběh podélného posunu SS(P1):NK2 ze snímače PSD1 (levý konec NK2) při SZZ

Obr. 46 Průběh podélného posunu SS(P4):NK2 ze snímače PSD2 (pravý konec NK2) při SZZ

Obr. 47 Průběh podélného posunu SS(P4):NK3 ze snímače PSD3 (levý konec NK3) při SZZ

Obr. 48 Průběh podélného posunu SS(OP2):NK3 ze snímače PSD4 (pravý konec NK3) při SZZ

6.3.2 Průběhy relativního podélného posunu kolej : most

Z důvodu nezprovoznění snímače posunu PSDK1 na pilíři P1 ke konání SZZ, nejsou k tomuto snímači k dispozici data k vyhodnocení. Níže je zobrazen průběh relativního podélného posunu kolej : most při SZZ z měřených dat snímače PSDK2. Snímač PSDK2 nad OP2 byl zprovozněn v průběhu ZS 5.3 a tedy od této chvíle jsou k dispozici měřená data.

Obr. 49 Průběh podélného posunu kolej : most ze snímače PSDK2 při SZZ

6.4 Průběhy teplot

V této podkapitole jsou zobrazeny průběhy teplot NK a kolejnice při SZZ.

6.4.1 Průběhy teplot NK

Dále jsou zobrazeny průběhy teplot NK ze snímačů při SZZ. Těchto snímačů je na mostu 12, z toho 6 nad pilířem P1 a 6 nad pilířem P4 (viz tabulka níže). Snímače jsou značeny písmeny ST. Data z těchto snímačů narozdíl od dat ze snímačů teploty kolejnice nejsou potřeba kalibrovat, tyto snímače jsou připojeny digitálně.

Snímače teploty NK na pilíři P1						
Označení	Umístění					
ST1	dolní pásnice levého nosníku					
ST2 dolní pásnice pravého nosní						
ST3	stěna levého nosníku					
ST4	stěna pravého nosníku					
СТГ	betonová deska u levého					
312	nosníku					
CTC	betonová deska u pravého					
310	nosníku					

Snímače teploty NK na pilíři P4						
Označení	Umístění					
ST11	dolní pásnice levého nosníku					
ST12	dolní pásnice pravého nosníku					
ST13	stěna levého nosníku					
ST14	stěna pravého nosníku					
CT1F	betonová deska u levého					
2112	nosníku					
CT16	betonová deska u pravého					
3110	nosníku					

Tab. 8 Popis polohy snímačů teploty NK

Obr. 50 Průběh teploty NK nad pilířem P1 při SZZ – snímače ST1-6

Obr. 51 Průběh teploty NK nad pilířem P4 při SZZ – snímače ST11-16

6.4.2 Průběhy teplot kolejnice

Dále jsou zobrazeny průměry průběhů teplot kolejnice v místě snímačů při SZZ. Těchto snímačů je na mostu 27, nicméně bylo měřeno 9 řezů kolejnice v koleji 2 (označení STK), převážně v pravé kolejnici (7 řezů), pouze 2 řezy jsou měřeny v levé kolejnici. V grafech je zobrazen průběh průměru (tří) teplot měřených v jednom řezu (viz výpočet níže). V každém měřeném řezu jsou měřeny 3 body (viz schéma níže).

V předchozí kapitole 6.1 o kalibraci byla popsána úprava naměřených hodnot k poskytnutí skutečných hodnot teploty kolejnice.

Výpočet průměru teploty v řezu kolejnice:

$$t_{g} = \frac{t_{stojina, zprava} + t_{stojina, zleva} + t_{pata}}{3}$$

Obr. 52 Průběh průměrů teploty kolejnice při SZZ – snímače STK1-4

Obr. 53 Průběh průměrů teploty kolejnice při SZZ – snímače STK5-9

Poznámka: V předchozích grafech je jiný čas začátku měření snímačů, proto teploty kolejnice nezačínají na stejné hodnotě. V časové ose se hodnoty shodují.

6.5 Stanovení podélného odporu zatížené koleje

Podélný odpor zatížené koleje byl zjišťován z dat snímačů PSDK2, TK22 a TK23. Jedná se o snímače relativního posunu koleje a mostu v případě PSDK resp. tenzometrické odporové snímače v případě TK22 a TK23. Všechny tyto snímače jsou umístěny nad opěrou OP2. Vzdálenost snímačů TK22 a TK23 je 3,000 m. Nejdříve byl vytvořen průběh podélného odporu v průběhu měřené části SZZ mezi řezy TK22-TK23. Nicméně pro účel stanovení podélného odporu zatížené koleje bylo třeba vybrat časový interval, při kterém byl vybraný řez zatížený břemenem zatěžovací sestavy SZZ. Jako tento časový interval byl vybrán ZS 7.2, při kterém stály obě zatěžovací sestavy v poli 7. Nicméně významné pro zatížený stav podélného odporu je, že lokomotiva Šlechtična ze zatěžovací Sestavy 2 SZZ měla tři kola v blízkosti tohoto řezu. Níže je vidět obrázek jak daleko jednotlivá kola jsou od osy opěry OP2

Obr. 54 Poloha zatěžovací sestavy 2 na mostu v koleji 2 při ZS 7.2 – nahoře popis polohy snímačů

Poznámka: reálná poloha zatěžovací sestavy 2 byla o cca 10 cm vpravo dle odhadu z fotky polohy referenčního bodu vůči zatěžovací sestavě 2 při ZS 7.2 SZZ

Na obrázku znamená: černá čárkovaná čára vpravo osu OP2 a také polohu TK23, poloha TK22 je 3,000 m vlevo od TK 23. Červená čárkovaná čára značí polohu konce NK3, který je 0,700 m vzdálen od osy OP2. Dle výpočtu vychází poloha TK22 vlevo vedla kola (32255) se staničením 32097. Nicméně dle reálného postavení sestavy při SZZ bylo toto kolo přibližně 26 cm vzdáleno od tohoto snímače. Postavení kol Šlechtičny zajišťuje zatížení výřezu koleje, pro který bude stanoven přídavný podélný odpor od svislého zatížení.

zatížení [kN]	153				153		151				153
popis místa	kolo		TK22		kolo		kolo		TK23		kolo
plán staničení [mm]	30355		32097		32255		34155		35097		36055
plán [mm]		1742		158		1900		942		958	
realita [mm]		1842		258		2000		1042		1058	

Tab. 9 Tabulka postavení kol Šlechtičny vůči snímačům TK22 a TK23

6.5.1 Výpočet

snímač	ΔΤΚ22		Ĺ	\TK23	ΔTK22-23		PSDK2	ΔPSDK2
	Δσ	$\Delta N = \Delta \sigma \cdot A$	Δσ	$\Delta N = \Delta \sigma \cdot A$	ΔN	p.o. = 2 ·∆N/L	u	Δu
Čas	[MPa]	[kN]	[MPa]	[kN]		[kN/m]	[mm]	[mm]
23:56:10	-0,001	-0,011	-0,002	-0,017	0,006	0,004	0,092	
23:56:15	-0,009	-0,067	-0,182	-1,391	1,323	0,882	0,075	-0,017
23:56:20	-0,016	-0,124	-0,024	-0,185	0,061	0,041	0,078	-0,014
23:56:25	-0,023	-0,180	-0,035	-0,269	0,089	0,060	0,100	0,008

Podélný odpor od vlivu zatížení koleje byl vypočten dle tohoto principu (viz tabulka níže).

Tab. 10 Nastínění postupu výpočtu pro vytvoření průběhu podélného odporu koleje

Poznámka: Plocha kolejnice: A = 7650 mm²; Vzdálenost mezi TK22 a TK23: L = 3,000 m

V prvé řadě byly převzaty hodnoty změny napětí z dříve zpracovaných dat tenzometrů TK22 a TK23. Následně byla pomocí výpočtu stanovena změna normálové síly v kolejnici. V dalším kroku byl vypočten rozdíl změn normálových sil mezi snímači, z kterého se pomocí vzorce dopočetl podélný odpor koleje na metr. Násobení 2 je z důvodu dvou kolejnic v koleji. Byla vypočtena změna relativního posunu ze snímače PSDK2 od počátku měření snímačů TK22 a TK23. Z takto zpracovaných dat byl vytvořen průběh podélného odporu v závislosti na relativním posunu v průběhu měření dotčených snímačů při SZZ.

Obr. 55 Průběh změny podélného odporu v části průběhu SZZ (23:56-5:20)

Tento průběh nicméně ukazuje podélný odpor nejen zatížené koleje, ale z větší části nezatížené. Pro chápání obrázku je dobré vědět, že počátek začíná v nule, počáteční ZS je ZS2 následuje ZS6 poté ZS3 a dále ZS7 a ZS4. Skrumáže bodů v grafu ukazují velké množství naměřených dat při jednotlivých polohách ZS.

Z důvodu výše popsaného je průběh zaměřen pouze na část při ZS7, kdy je vybraný výřez mezi TK22 a TK23 zatížen břemenem zatěžovací sestavy. Jedná se o časové rozmezí 2:55-3:51 tedy o ZS7.2 (obě zatěžovací sestavy v poli 7) a ZS7.3 (zatěžovací sestava koleje 1 se přesunula do pole 4). Jsou zde ukázány i přechody z předchozího ZS3.3=ZS7.1 resp. část přechodu na následující ZS4.1=ZS7.3.

Obr. 56 Průběh změny podélného odporu při ZS7.2 a ZS7.3

Z předchozího grafu vyplývá, že přitížením koleje ve výřezu došlo k nárustu podélného odporu postupně nejdříve o 6 kN/m následně o další 4 kN/m na konečný přírůstek **10 kN/m** podélného odporu od svislého zatížení. Nárůst podélného odporu o 4 kN/m a relativní posun koleje a mostu o cca 0,2 mm vznikl od stabilizace polohy NK3 mostu a vibracemi způsobeného zhutnění kolejového lože při odjetí zatěžovací sestavy 1 do pole 4.

Dle velikosti a průběhu relativních posunů koleje a mostu nedošlo k plastickému přetváření kolejového lože vlivem svislého přitížení v průběhu podélného odporu. Tento přírůstek **10 kN/m** podélného odporu při svislém zatížení koleje je tedy stanoven pouze pro pružnou část tohoto odporu. Pro zjištění celého rozsahu přírůstku podélného odporu
od zatížené koleje by bylo třeba mít svislé zatížení v poloze po delší časový interval a zejména větší teplotní rozdíl než byl dosažen při SZZ. Celým rozsahem je myšleno nalezení plastické větvě přírůstku podélného odporu od zatížené koleje.

7 Numerický model

Pro účely této práce byl využit nelineární numerický 3D model tohoto mostu simulující interakci mostu a bezstykové koleje, který byl vytvořen jako součást mé bakalářské práce [15] týkající se posouzení interakce mostu a koleje na tomto mostě. Součástí mé bakalářské práce bylo pomocí modelování vytvořit odhady průběhu napětí v kolejnici po mostě od jednotlivých zatěžovacích stavů při SZZ. V dalších podkapitolách je uveden popis tohoto modelu.

7.1 Základní popis modelu

Model byl vytvořen v programu CSiBridge 24. Typ modelu je prutový s využitím nelineárních prutů simulujících skutečné chování kolejového roštu v kolejovém loži a skutečnou tuhost spodní stavby v místě pevných ložisek. Nelineární pruty (neboli v programu CSiBridge zvané linky) jsou nehmotné prvky s možností konfigurace nastavení lineárních nebo nelineárních vlastností ve všech 6 stupních volnosti. Například mohou představovat funkci nelineární vazby, pružiny nebo kloubu, jenž spojuje dva různé pruty. Pro správné nasimulování chování bezstykové koleje na mostě bylo k oběma koncům mostu přidáno 100 m koleje, což vytváří model o délce 462,8 m. Nosná konstrukce je řešená jedním podélným prutem s průřezem obsahujícím oba hlavní nosníky a železobetonovou desku spřažené mostovky. Průřez tohoto prutu se po délce měnil podle změny tlouštěk pásnic a stojin hlavních nosníků, bylo využito osm různých průřezů (v Obr. 61 rozlišeny barevně). Deska mostovky byla zjednodušena formou rovnoběžníku. Kolejové lože bylo nasimulováno dříve zmíněnými nelineárními pruty, které byly rozmístěny s roztečí 1,000 m, pouze v místech konců nosných konstrukcí je rozmístění jiné. Zleva od ložiska je link konce NK vzdálen 0,5 m a link druhé NK je od toho samého ložiska vzdálen 0,9 m resp. od druhého ložiska na pilíři 0,5 m. Tímto způsobem je provedeno rozmístění na pilířích P2 a P4. Byl zanedbán sklon mostovky i trati v podélném směru. Také bylo zanedbáno působení koleje v oblouku, kdy ve skutečnosti kolej č. 1 je

v pravostranném oblouku o poloměru 2604 m, kolej č. 2 o poloměru 2600 m. NK je zakřivena v poloměru 2602 m, což je poloměr osy těchto dvou kolejí. Zakřivení NK bylo také zanedbáno. Z důvodu minimálního ovlivnění výsledků těmito zjednodušeními byl model vytvořen jako přímý most s přímými kolejemi. Z důvodu změny vlastností mostu vlivem rozmístění svislého zatížení od dopravy při SZZ bylo vytvořeno v rámci mé bakalářské práce [15] sedm téměř identických modelů z důvodu správného nastavení chování mostu při každém zatěžovacím stavu. Dalším typem modelu je model s využitím fází výstavby, který simuluje chování mostu a bezstykové koleje při hodinových změnách teploty v průběhu vybraných dní změřených monitoringem. Modely monitoringu slouží k analýze vlivu od změny teploty. Za to modely SZZ jsou částečně zatížené krátkodobými náhlými zatíženími, což jsou v případě SZZ svislá zatížení od zatěžovacích sestav SZZ. Z důvodu různého rozmístění zatěžovacích sestav se vlastnosti ve vodorovném směru mění, v přitížených částech dochází k vyšší tuhosti ve vodorovném směru. Jedná se zlepšení vlastností spodní stavby v místě uložení pevných ložisek v zatížené části koleje a NK. Příčný a podélný odpor koleje je ovlivněn tímto přitížením, v místech se zatíženou kolejí vzrůstá její odpor ve vodorovném směru. V následujících podkapitolách je popsána skladba, průřezy a vlastnosti prvků modelu.

Obr. 57 Výpočetní prutový model (462,8 m)

Bc. Robert Pour, Analýza monitoringu interakce most-kolej na železničním mostě

7.2 Skladba modelu

Níže jsou popsány jednotlivé pruty a prvky, z nichž se tento model skládá.

Obr. 59 Výpočetní prutový model (oblast opěry OP1)

LEGENDA k obr.

- 1 tuhý link kolejnice
- 2 link kolejového lože v širé trati
- 3 link kolejového lože na mostě
- 4 link kolejového lože na konci mostu
- 5 prut nosné konstrukce
- 6 tuhý link propojení prutu nosné konstrukce a kolejového lože
- 7 tuhý link propojení prutu nosné konstrukce a tuhého linku k působišti podpory
- 8 tuhý link svisle propojující link (7) s podporou
- 9 podélně posuvná podpora
- 10 všesměrně posuvná podpora
- 11 vetknutí
- 12 prut o průřezu dvou kolejnic 60 E 2

7.3 Průřezy modelu

Na prvních dvou obrázcích je pro lepší představu průřezů zobrazen rendrovaný pohled na model mostu. Dále jsou zde dva průřezy dvojic kolejnic 60 E 2 na sraz k sobě. Pro posouzení interakce most-kolej se uvažuje srovnané 12 mm ojetí těchto kolejnic, což je průřez doporučovaný normou ČSN EN 1991-2 [7], zatímco pro statickou zatěžovací zkoušku mostu a monitoring je třeba plný průřez těchto kolejnic z důvodu provádění zkoušky a monitoringu na skutečném stavu neojetých či lehce ojetých kolejnic.

Obr. 60 Rendrovaný pohled na NK1 v modelu

Obr. 61 Rendrovaný pohled na most v modelu – jednotlivé barvy znázorňují změny průřezu

Obr. 62 Průřez dvou kolejnic 60 E 2 na sraz k sobě pro modely SZZ a monitoringu, $A_1 = 7650 \text{ mm}^2$

Z důvodu malých rozdílů průřezů v tomto měřítku jsou v této práci zobrazeny pouze dva příklady průřezu nosné konstrukce, který se po délce měnil. Díky změně průřezu bylo také těžiště těchto průřezů odlišné, a tak na základě návrhu od vedoucího práce bylo rozhodnuto zjednodušené vedení prutu nosné konstrukce v jedné výškové a příčné linii v průměrných hodnotách těžiště všech průřezů.

Obr. 63 Růžový průřez nosné konstrukce (příklad průřezu 1)

Obr. 64 Šedivý průřez nosné konstrukce (příklad průřezu 2)

7.4 Vlastnosti nelineárních prutů kolejového lože

Na následujících obrázcích jsou ukázány vlastnosti nelineárních prutů kolejového lože v numerickém modelu. Program CSiBridge používá označení "link" pro prut s možností nastavení jeho vlastností. Byly rozlišeny linky v zatížené a v nezatížené části trati od svislého zatížení kolejovými vozidly zatěžovací sestav SZZ.

	Displ	Force
1	-0,02	-4520,
2	0,	0,
3	5,000E-03	16,
4	0,02	16,

Obr. 65 Svislá tuhost linku kolejového lože na mostě [m; kN/m]

	Displ	Force
1	-0,02	-16,
2	-5,000E-03	-16,
3	0,	0,
4	0,02	1000,

Obr. 66 Svislá tuhost linku kolejového lože v širé trati [m; kN/m]

Rozdíly vlastností příčných a podélných odporů koleje byly zanedbány z důvodu přímosti modelu, příčný odpor byl po domluvě s vedoucím práce nastaven ve stejném průběhu jako odpor podélný. Na obrázcích pod tímto odstavcem jsou pak tyto příčné a podélné odpory generalizovány pod pojmem vodorovné tuhosti.

Dle normy ČSN EN 1991-2 [7] je podélný plastický smykový odpor k koleje pro:

nezatíženou kolej k_{nezat} = 20 ÷ 40 kN/m

zatíženou kolej k_{zat} = 60 kN/m

při těchto odporech dochází k plastické deformaci při 2 ÷ 3 mm dle stejné normy.

Z následujících dvou obrázků je zřejmé, že v modelu byl využit podélný odpor pro nezatíženou kolej 20 kN/m resp. 60 kN/m pro kolej zatíženou s počátky plastické deformace při 2 mm pro oba tyto stavy.

	Displ	Force	^		
1	-0,015	-20,			ſ
2	-2,000E-03	-20,			
3	0,	0,			
4	2,000E-03	20,			
-	0.045	00	Y		

Obr. 67 Vodorovná tuhost linku kolejového lože v nezatížené části koleje [m; kN/m]

	Displ	Force	^			Ē
1	-0,015	-60,			ſ	
2	-2,000E-03	-60,			1	E
3	0,	0,			1	
4	2,000E-03	60,			J	
-	0.045	00	- V			t

Obr. 68 Vodorovná tuhost linku kolejového lože v zatížené části koleje [m; kN/m]

Linky kolejového lože na koncích nosných konstrukcí mají sníženou tuhost koeficientem 0,5 nad pilíři P2 a P4 resp. 0,7 nad opěrami OP1 a OP2 z důvodu nerovnoměrného rozmístění těchto linků v těchto polohách.

7.5 Vlastnosti nelineárních pružin v místech pevných ložisek

Tyto vlastnosti jsou závislé na zatíženosti od dopravy, kdy svisle přitížená spodní stavba má lepší vodorovné tuhosti než nepřitížená. Vlastnosti těchto nelineárních pružin v místě ukotvení ložisek do nosné konstrukce mostu byly převzaty ze [6]. Jak je z tabulky patrné tyto nelineární pružiny se nacházejí v místech pevných ložisek na pilířích P1, P3 a P5 pod NK1 resp. NK2 resp. NK3. Jednotlivé nelineární pružiny mají tyto vlastnosti:

	Nezatížen	a spodní stavba	Zatížená	spodní stavba
Umístění	Svislá tuhost [MN/m]	Vodorovná tuhost [MN/m]	Svislá tuhost [MN/m]	Vodorovná tuhost [MN/m]
Pilíř P1 - NK1	100 000	400	nezměněna	500
Pilíř P3 - NK2	100 000	200	nezměněna	250
Pilíř P5 - NK3	100 000	200	nezměněna	250

Tab. 11 Vlastnosti nelineárních pružin v místech pevných ložisek

8 Numerická analýza

Pro účely numerické analýzy byla využit numerický nelineární 3D prutový model, jež je popsaný v předchozí kapitole, jehož základní kostra byla vytvořena pro účely mé bakalářské práce [15]. Zjednodušená forma výpočtu, která nebere v potaz historii zatěžování byla využita pro analýzu SZZ. Analýza s využitím fází výstavby, která bere v potaz blízkou historii zatěžování, byla využita pro analýzu monitoringu.

8.1 Analýza SZZ

Pro každý zatěžovací stav označený ZS X.2 byl proveden samostatný model. Při počtu 7 zatěžovacích stavů ZS X.2 bylo provedeno 7 modelů. Každý z těchto modelů koresponduje se změnami vlastností odporů kolejového lože závislých na svislém přitížení. Pro zjednodušení nebylo využito fází výstavby, ale pouze 7 takto samostatných modelů, simulujících chování při jednotlivém zatěžovacím stavu. Nicméně jsem si vědom, že toto zjednodušení méně odpovídá realitě, nebere v potaz historii zatěžování. Část koleje zatížená svislým přitížením od zatěžovací sestavy měla podélný, příčný a svislý odpor nastavený na odpory v zatížené části koleje, tedy podélná tuhost kolej o velikosti 60 kN/m s plastickou větví deformace začínající při 2 mm. Část koleje nezatížená svislým přitížením od zatěžovací sestavy měla podélný, příčný a svislý odpor v nezatížené části koleje, tedy podélná tuhost kolej o velikosti 60 kN/m

Dle mé bakalářské práci [15] a dle SV projektanta mostu [6] bylo posuzováno kritické místo za opěrou OP2. V tomto místě se jednalo o posouzení přídavného tahového namáhání od interakce mostu a koleje dle požadavků normy [7]. Jednou z nezbytných součástí přídavného namáhaní bylo i započtení zatížení od dopravy. V případě posudku v bakalářské práci bylo využito modelu zatížení 71, který vyvodil maximální tahové namáhání 7,1 MPa v případě samostatného účinku od svislého zatížení. Nicméně lze snížit účinek od přídavného namáhání od svislých sil současným zatížením brzdovými a rozjezdovými silami. Zatěžovací sestavy SZZ nedokázaly při průběhu SZZ v tomto místě vytvořit žádné tahové přídavné namáhání od interakce mostu a koleje. Zatěžovací sestavy

8.1.1 Srovnání průběhů napětí v kolejnici po mostě s výsledky modelu

Dále můžete vidět srovnání modelů se změřenou skutečností na mostě.

Obr. 69 Srovnání průběhu napětí v kolejnici po mostě při ZS 1.2 s modelem Poznámka: ovlivněná data ze snímače TKD4 při ZS1.2 nezobrazena (viz kapitola 6.2.1)

Obr. 70 Srovnání průběhu napětí v kolejnici po mostě při ZS 2.2 s modelem

Obr. 71 Srovnání průběhu napětí v kolejnici po mostě při ZS 3.2 s modelem Poznámka: ovlivněná data ze snímače TK7 při ZS3.2 nezobrazena (viz kapitola 6.2.1)

Obr. 72 Srovnání průběhu napětí v kolejnici po mostě při ZS 4.2 s modelem

Obr. 73 Srovnání průběhu napětí v kolejnici po mostě při ZS 5.2 s modelem

Obr. 74 Srovnání průběhu napětí v kolejnici po mostě při ZS 6.2 s modelem

Obr. 75 Srovnání průběhu napětí v kolejnici po mostě při ZS 7.2 s modelem

Model v místě TK23 (osa OP2) tedy těsně u kritického místa (za opěrou OP2), ve kterém byl proveden posudek v mé bakalářské práci [15] a ve SV projektanta [6], dosahoval na hodnotu přídavného tahového namáhání v kolejnici 5,35 MPa. Tato hodnota se blíží hodnotě 7,1 MPa, která byla zjištěna zatížením modelu mostu modelem zatížení 71 v průběhu výpočtu posudku.

V některých polích mostu se skutečný průběh napětí v kolejnici shoduje s průběhem napětí z modelu. Je pravděpodobné, že některé neshody v průbězích napětí modelu a ve skutečnosti jsou způsobeny historií zatěžování, kdy v dříve zatížených polích ve skutečnosti docházelo k plastické deformaci kolejnice. Při odečtení ZS 0.2 od následujících zatěžovacích stavů dochází k mírnému zlepšení těchto neshod. Nicméně tyto odečty nejsou v práci zobrazeny z důvodu přehlednosti v práci.

8.2 Analýza monitoringu ke stanovení podélného odporu dopravou nezatížené koleje

Z důvodu změn v konsolidaci kolejového lože po projetí podbíječky a ladění snímačů bylo pro analýzu monitoringu zvoleno časové rozmezí duben až červenec 2023 (včetně) oproti původnímu plánu vyhodnocení dat po roce provozu. Výsledkem je experimentální zjištění tuhosti kolejového lože v podélném směru v dopravou nezatíženém stavu.

8.2.1 Výběr dnů a zpracování změřených hodnot k podrobné analýze

Pro účely určení podélného odporu nezatížené koleje bylo provedeno srovnání relativních posunů kolej : NK ze dvou snímačů PSDK1 a PSDK2, které se nacházejí na koncích dvou nejdelších dilatačních úsecích NK délky 80 m. V rámci tohoto porovnání bylo rozhodnuto provést vyhodnocení průběhu podélného odporu pouze v místě snímače PSDK2. Tento snímač vykazoval oproti snímači PSDK1 přibližně dvojnásobné relativní podélné posuny kolej : NK (viz tab. 12).

P	SDK1 (pilíř P1)	PSE	OK2 (opěra OF	P2)		
Relativ	/ní posun kole	ej : NK	Relativ	/ní posun kole	ej : NK		
PSDK	(potenciomet	rický	PSDK (potenciometricky				
sníma	ič dráhy kolej	: NK)	snímač dráhy kolej : N				
nořadí	datum	Δu	nořadí	datum	Δu		
poradi	aatum	[mm]	poradi	aatum	[mm]		
1	15.07.2023	2,006	1	18.06.2023	3,635		
2	21.05.2023	1,824	2	21.05.2023	3,589		
3	22.04.2023	1,787	3	15.07.2023	3,504		
4	20.06.2023	1,782	4	01.06.2023	3,403		
5	20.05.2023	1,750	5	22.05.2023	3,390		
6	22.05.2023	1,721	6	05.05.2023	3,322		

Tab. 12 Srovnání maximálních rozdílů denních relativních posunů kolej : NK ze snímačů PSDK1-2

Pro výpočet podélného odporu byly vybrány dva tenzometrické snímače (TK22 a TK23), dva nejblíže snímači PSDK2. Z důvodu větších změn relativních posunů na snímači PSDK2 byly vybrány pro podrobnější analýzu dva dny s maximální denní změnou relativních posunů na tomto snímači. Tyto dny jsou 18. 6. 2023 a 21. 5. 2023. Pro vybrané

dny je dále vypracovaný souhrn s hodnotami měřenými na snímačích v době denních maxim a minim relativních posunů nad opěrou OP2.

Snímač:		PSDK2	2	PS	D4	Průmě	er ST	Průmě	r STK	PSD	K1	
	Rel	ativní		Posun		Průměrná		Průměrn		Relativn		
Datum čas	posi	un nad	Δ	v	Δ	teplota	Δ	á teplota	Δ	í posun	Δ	
	C	DP2		ložisku		NK	NK		kolejnice			
[den hh:mm]		[mm]	[mm]	[mm]	[mm]	[°C]	[°C]	[°C]	[°C]	[mm]		
18.6.23 6:00	max	-0,686	2 625	3,246	6 612	14,193	11 422	12,478	20 027	4,809	1.045	
18.6.23 19:15	min	-4,321	3,035	9,859	0,013	25,615	11,422	42,506	30,027	5,853	1,045	
21.5.23 6:00	max	0,748	2 500	2,134	6 252	13,563	10 702	13,215	24 121	2,604	1 420	
21.5.23 19:00	min	-2,841	3,389	8,386	0,252	24,266	10,703	37,346	24,131	4,043	1,439	

Tab. 13 Souhrn s hodnotami měřenými na snímačích v době denních maxim a minim relativních posunů nad opěrou OP2 – část 1

Snímač:	PSD1		PSD2		PSD3	-	ST	$\overline{\mathbf{v}}$	
Datum čas	Posun NK2 v ložisku na P1	Δ	Posun NK2 v ložisku na P4	Posun NK2 v ožisku na P4		Δ	Teplota vzduchu	Δ	
[den hh:mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[°C]	[°C]	
18.6.23 6:00	4,992	6 077	2,965	2 000	3,308	4 5 2 0	11,875	10.075	
18.6.23 19:15	11,969	0,977	6,063	3,098	7,847	4,559	24,250	12,375	
21.5.23 6:00	3,488	7 007	2,199	2 065	2,723	4 277	13,031	10 210	
21.5.23 19:00	10,495 7,007		5,063	2,805	7,000	4,277	23,250	10,219	

Tab. 14 Souhrn s hodnotami měřenými na snímačích v době denních maxim a minim relativních posunů nad opěrou OP2 – část 2

Dále je proveden souhrn hodnot měřených snímači teploty NK a jejich zpracování k vytvoření simulovaného zatížení teplotou v numerickém modelu. Bylo proveden vypočet průměrné změny teploty ze všech snímačů NK mezi hodinami každého vybraného dne. Níže je zobrazen obecný vzorec výpočtu. Počet snímačů NK je 12, z toho 6 na NK2 a 6 na NK3.

$$\Delta t_{\phi,j} = \frac{\sum \Delta t_{i,j}}{12}$$

t_i = teplota v místě i – tého snímače teploty NK

 $t_i = teplota m$ ěřená v j – té hodině

V následujících tabulkách je zobrazen souhrn vypočtených hodnot po snímačích na NK2 a NK3 pro každý vybraný den. Z hodnot tučně vyznačených průměrných změn teploty NK je dále proveden souhrn a výpočet průměrné výsledné hodnoty změny teploty NK k aplikaci na numerickém modelu. Výpočet průměrné změny NK je tedy proveden ve 2 krocích.

Bc. Robert Pour, Analýza monitoringu interakce most-kolej na železničním mostě

Datum a čas ST1 [*C] ST2 [*C] ST3 [*C] ST4 [*C] ST5 [*C] ST6 [*C] AST1 [*C] AST2 [*C] AST3 [*C] AST4 [*C] AST6 [*C] AST6 [*C] Pr\mmer A 17.6.23 23:00 17,375 16,188 17,000 16,313 17,438 17,250 -														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Datum a čas	ST1 [°C]	ST2 [°C]	ST3 [°C]	ST4 [°C]	ST5 [°C]	ST6 [°C]	∆ST1 [°C]	ΔST2 [°C]	ΔST3 [°C]	∆ST4 [°C]	ΔST5 [°C]	ΔST6 [°C]	průměr ∆
18.6.23 0:00 16,438 15,500 16,000 15,625 17,375 17,125 -0,938 -0,688 -1,000 -0,688 -0,013 -0,125 -0,583 18.6.23 100 15,500 14,813 15,125 14,938 17,188 16,938 -0,938 -0,688 -0,688 -0,125 -0,125 -0,542 18.6.23 100 13,363 13,503 13,503 13,503 13,503 16,938 16,688 -0,563 -0,500 -0,125 -0,125 -0,125 -0,125 -0,125 -0,448 18.6.23 100 13,250 16,813 16,553 -0,625 -0,563 -0,563 -0,125 -0,125 -0,459 18.6.23 12,438 12,438 12,235 16,500 16,313 -0,375 0,438 -0,313 3,250 -0,125 -0,125 -0,459 18.6.23 10.00 13,313 19,813 14,88 16,50 16,313 -0,375 0,438 0,300 0,188 <	17.6.23 23:00	17,375	16,188	17,000	16,313	17,438	17,250							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18.6.23 0:00	16,438	15,500	16,000	15,625	17,375	17,125	-0,938	-0,688	-1,000	-0,688	-0,063	-0,125	-0,583
18.6.23 14,625 14,188 14,313 14,250 17,063 16,813 -0,875 -0,625 -0,813 -0,688 -0,125 -0,125 -0,125 -0,125 -0,125 -0,125 -0,125 -0,125 -0,125 -0,125 -0,125 -0,448 18.6.23 13,313 13,312 13,000 13,250 16,813 16,625 16,438 -0,750 -0,563 -0,563 -0,563 -0,125 -0,447 18.6.23 5:00 12,438 12,252 15,938 16,625 16,438 -0,750 0,563 -0,125 -0,125 -0,4469 18.6.23 12,438 15,625 12,813 22,375 16,500 16,313 -0,375 0,438 -0,313 3,250 -0,125 0,468 18.6.23 10.01 15,188 16,255 17,488 16,750 0,813 3,875 1,438 -0,250 0,250 0,771 18.6.23 10.01 15,188 26,750 17,688 23,125 17,188	18.6.23 1:00	15,500	14,813	15,125	14,938	17,188	16,938	-0,938	-0,688	-0,875	-0,688	-0,188	-0,188	-0,594
18.6.23 3:00 13,938 13,688 13,563 13,750 16,938 16,688 -0,688 -0,500 -0,750 -0,125 -0,469 18.6.23 7:00 12,548 12,503 12,215 15,938 16,500 16,313 -0,375 0,438 -0,433 3,250 -0,125 -0,125 0,458 18.6.23 7:00 12,438 15,655 12,813 22,375 16,688 16,500 0,875 4,188 1,875 3,000 0,188 0,125 1,688 18.6.23 10:00 15,188 26,750 17,688 23,125 17,488 17,603 3,663 1,563 -0,250 0,250 0,250 0,250 0,313 0,510 18.6.23 10:00 15,188 24,625 12,188 23,375 17,488 17,688 <td>18.6.23 2:00</td> <td>14,625</td> <td>14,188</td> <td>14,313</td> <td>14,250</td> <td>17,063</td> <td>16,813</td> <td>-0,875</td> <td>-0,625</td> <td>-0,813</td> <td>-0,688</td> <td>-0,125</td> <td>-0,125</td> <td>-0,542</td>	18.6.23 2:00	14,625	14,188	14,313	14,250	17,063	16,813	-0,875	-0,625	-0,813	-0,688	-0,125	-0,125	-0,542
18.6.23 4:00 13,313 13,125 13,000 13,250 16,813 16,563 -0,625 -0,563 -0,563 -0,125 0,133 0,	18.6.23 3:00	13,938	13,688	13,563	13,750	16,938	16,688	-0,688	-0,500	-0,750	-0,500	-0,125	-0,125	-0,448
18.6.23 5:00 12,563 12,500 12,438 12,688 16,625 16,438 -0,750 -0,625 -0,563 -0,188 -0,125 -0,125 -0,125 0,250 0,	18.6.23 4:00	13,313	13,125	13,000	13,250	16,813	16,563	-0,625	-0,563	-0,563	-0,500	-0,125	-0,125	-0,417
18.6.23 6:00 12,188 12,938 12,125 15,938 16,500 16,313 -0,375 0,438 -0,313 3,250 -0,125 -0,125 0,458 18.6.23 7:00 12,438 15,625 12,813 22,375 16,500 16,375 0,250 2,688 0,688 6,438 0,000 0,063 1,688 18.6.23 8:00 13,313 19,813 14,688 25,375 16,688 16,500 0,875 4,188 1,875 3,000 0,188 0,125 1,708 18.6.23 9:00 14,125 23,688 16,125 23,375 16,938 16,750 0,813 3,875 1,438 -2,000 0,250 0,250 0,771 18.6.23 10:00 15,188 26,750 17,688 17,438 17,313 1,375 -0,750 1,750 0,125 0,325 0,375 0,438 0,375 0,438 0,375 0,438 0,375 0,438 0,375 0,438 0,375 0,438 0,375 0,438 0,375	18.6.23 5:00	12,563	12,500	12,438	12,688	16,625	16,438	-0,750	-0,625	-0,563	-0,563	-0,188	-0,125	-0,469
18.6.23 12,438 15,625 12,813 22,375 16,500 16,375 0,250 2,688 0,688 6,438 0,000 0,063 1,688 18.6.23 13,313 19,813 14,688 25,375 16,688 16,500 0,875 4,188 1,875 3,000 0,188 0,125 1,708 18.6.23 9:00 14,125 23,688 16,125 23,375 16,938 16,750 0,813 3,875 1,438 -2,000 0,250 0,250 0,771 18.6.23 10:00 15,188 26,750 17,688 23,125 17,188 17,000 1,063 3,063 1,563 -0,250 0,250 0,250 0,990 18.6.23 11:00 16,563 26,000 19,438 23,250 17,438 17,313 1,375 -0,750 1,750 0,125 0,375 0,375 0,480 18.6.23 13,001 19,38 24,250 23,000 24,250 18,603 1,688 -0,375	18.6.23 6:00	12,188	12,938	12,125	15,938	16,500	16,313	-0,375	0,438	-0,313	3,250	-0,125	-0,125	0,458
18.6.23 8:00 13,31 19,813 14,688 25,375 16,688 16,500 0,875 4,188 1,875 3,000 0,188 0,125 1,708 18.6.23 9:00 14,125 23,688 16,125 23,375 16,938 16,750 0,813 3,875 1,438 -2,000 0,250 0,250 0,771 18.6.23 10:00 15,188 26,750 17,688 23,125 17,188 17,000 1,063 3,063 1,563 -0,250 0,250 0,250 0,990 18.6.23 11:00 16,563 26,000 19,438 23,250 17,438 17,313 1,375 -0,750 1,750 0,125 0,375 0,375 0,490 18.6.23 12:00 18,250 24,625 21,188 23,375 17,813 1,768 1,688 -1,375 1,750 0,125 0,375 0,375 0,490 18.6.23 13:00 19,138 24,250 23,000 24,250 18,620 1,250 -0,125 1,063 0,375 0,375 0,375 0,480 18.6.23 15:00 22,375 24,425 2	18.6.23 7:00	12,438	15,625	12,813	22,375	16,500	16,375	0,250	2,688	0,688	6,438	0,000	0,063	1,688
18.6.23 9:0014,12523,68816,12523,37516,93816,7500,8133,8751,438-2,0000,2500,2500,77118.6.23 10:0015,18826,75017,68823,12517,18817,0001,0633,0631,563-0,2500,2500,2500,99018.6.23 11:0016,56326,00019,43823,25017,43817,3131,375-0,7501,7500,1250,2500,3130,51018.6.23 12:0018,25024,62521,18823,37517,8131,7681,688-1,3751,7500,1250,3750,3750,49018.6.23 13:0019,93824,25023,00024,25018,25018,6051,888-0,3751,8130,8750,4380,3750,80218.6.23 15:0022,37524,25025,06325,18819,00018,8751,1880,1251,0000,5630,3750,3750,3750,60418.6.23 16:0025,12524,43825,75025,56319,31319,1252,7500,1880,6880,3750,3130,2500,55218.6.23 16:0025,12524,43826,18825,56319,93819,6253,0000,6331,8130,1250,4380,2500,55218.6.23 19:0031,18824,37534,18825,43820,25019,9380,625-0,1256,188-0,2500,3130,3131,17718.6.23 21:0031,18824,	18.6.23 8:00	13,313	19,813	14,688	25,375	16,688	16,500	0,875	4,188	1,875	3,000	0,188	0,125	1,708
18.6.23 10:00 15,188 26,750 17,688 23,125 17,188 17,000 1,063 3,063 1,563 -0,250 0,250 0,250 0,990 18.6.23 11:00 16,563 26,000 19,438 23,250 17,438 17,313 1,375 -0,750 1,750 0,125 0,250 0,313 0,510 18.6.23 12:00 18,250 24,625 21,188 23,375 17,813 17,688 1,688 -1,375 1,750 0,125 0,375 0,375 0,490 18.6.23 19.938 24,250 23,000 24,250 18,250 18,603 1,688 -0,375 1,813 0,875 0,438 0,375 0,438 18.6.23 15:00 22,375 24,250 25,063 25,188 19,000 18,875 1,188 0,125 1,000 0,563 0,375 0,313 0,250 0,760 18.6.23 16:00 25,125 24,438 26,188 25,563 19,1915	18.6.23 9:00	14,125	23,688	16,125	23,375	16,938	16,750	0,813	3,875	1,438	-2,000	0,250	0,250	0,771
18.6.23 11:00 16,563 26,000 19,438 23,250 17,438 17,313 1,375 -0,750 1,750 0,125 0,250 0,313 0,510 18.6.23 12:00 18,250 24,625 21,188 23,375 17,813 17,688 1,688 -1,375 1,750 0,125 0,375 0,375 0,490 18.6.23 19.938 24,250 23,000 24,250 18,250 18,603 1,688 -0,375 1,813 0,875 0,438 0,375 0,438 0,375 0,438 0,563 18.6.23 11:00 21,188 24,125 24,063 24,625 18,625 18,500 1,250 -0,125 1,063 0,375 0,313 0,563 18.6.23 15:00 22,375 24,250 25,063 25,188 19,000 18,875 1,188 0,125 1,000 0,563 0,375 0,313 0,250 0,750 18.6.23 17:00 27,563 24,438 26,188	18.6.23 10:00	15,188	26,750	17,688	23,125	17,188	17,000	1,063	3,063	1,563	-0,250	0,250	0,250	0,990
18.6.23 12:00 18,250 24,625 21,188 23,375 17,813 17,688 1,688 -1,375 1,750 0,125 0,375 0,375 0,490 18.6.23 19,938 24,250 23,000 24,250 18,250 18,063 1,688 -0,375 1,813 0,875 0,438 0,375 0,802 18.6.23 11,188 24,125 24,063 24,625 18,625 18,500 1,250 -0,125 1,063 0,375 0,375 0,438 0,563 18.6.23 15:00 22,375 24,250 25,063 25,188 19,000 18,875 1,188 0,125 1,000 0,563 0,375 0,313 0,250 0,760 18.6.23 16:00 25,125 24,438 26,188 25,563 19,313 19,125 2,750 0,188 0,688 0,375 0,313 0,250 0,552 18.6.23 18:00 30,563 24,438 26,188 19,938 19,625 -0,125	18.6.23 11:00	16,563	26,000	19,438	23,250	17,438	17,313	1,375	-0,750	1,750	0,125	0,250	0,313	0,510
18.6.23 13:00 19,938 24,250 23,000 24,250 18,250 18,063 1,688 -0,375 1,813 0,875 0,438 0,375 0,802 18.6.23 14:00 21,188 24,125 24,063 24,625 18,625 18,500 1,250 -0,125 1,063 0,375 0,375 0,438 0,563 18.6.23 15:00 22,375 24,250 25,063 25,188 19,000 18,875 1,188 0,125 1,000 0,563 0,375 0,313 0,250 0,760 18.6.23 16:00 25,125 24,438 26,188 25,563 19,313 19,125 2,750 0,188 0,688 0,375 0,313 0,250 0,760 18.6.23 17:00 27,563 24,438 26,188 25,563 19,500 19,375 2,438 0,000 0,488 0,020 0,188 0,250 0,552 18.6.23 19,003 30,563 24,438 26,188 25,268	18.6.23 12:00	18,250	24,625	21,188	23,375	17,813	17,688	1,688	-1,375	1,750	0,125	0,375	0,375	0,490
18.6.23 14:00 21,188 24,125 24,063 24,625 18,625 18,500 1,250 -0,125 1,063 0,375 0,375 0,438 0,563 18.6.23 15:00 22,375 24,250 25,063 25,188 19,000 18,875 1,188 0,125 1,000 0,563 0,375 0,375 0,604 18.6.23 16:00 25,125 24,438 25,750 25,563 19,313 19,125 2,750 0,188 0,688 0,375 0,313 0,250 0,760 18.6.23 17:00 27,563 24,438 26,188 25,563 19,500 19,375 2,438 0,000 0,438 0,000 0,188 0,250 0,552 18.6.23 18:00 30,563 24,400 28,000 25,688 19,938 19,625 3,000 0,063 1,813 0,125 0,438 0,250 0,948 18.6.23 03,075 24,000 34,438 20,250 19,938 0,255	18.6.23 13:00	19,938	24,250	23,000	24,250	18,250	18,063	1,688	-0,375	1,813	0,875	0,438	0,375	0,802
18.6.23 15:00 22,375 24,250 25,063 25,188 19,000 18,875 1,188 0,125 1,000 0,563 0,375 0,375 0,604 18.6.23 15:00 25,125 24,438 25,750 25,563 19,313 19,125 2,750 0,188 0,688 0,375 0,313 0,250 0,760 18.6.23 17:00 27,563 24,438 26,188 25,553 19,500 19,375 2,438 0,000 0,438 0,000 0,188 0,250 0,552 18.6.23 19:00 30,563 24,500 28,000 25,688 19,938 19,625 3,000 0,063 1,813 0,125 0,438 0,250 0,948 18.6.23 19:00 31,188 24,375 34,188 20,250 19,938 0,625 -0,125 6,188 -0,250 0,313 0,313 1,177 18.6.23 01:00 34,438 24,433 20,438 20,000 -2,188 -0,250	18.6.23 14:00	21,188	24,125	24,063	24,625	18,625	18,500	1,250	-0,125	1,063	0,375	0,375	0,438	0,563
18.6.23 16:00 25,125 24,438 25,750 25,563 19,313 19,125 2,750 0,188 0,688 0,375 0,313 0,250 0,760 18.6.23 17:00 27,563 24,438 26,188 25,563 19,500 19,375 2,438 0,000 0,438 0,000 0,188 0,250 0,552 18.6.23 18:00 30,563 24,500 28,000 25,688 19,938 19,625 3,000 0,633 1,813 0,125 0,438 0,250 0,948 18.6.23 19:00 31,188 24,375 34,188 25,438 20,250 19,938 0,625 -0,125 6,188 -0,250 0,313 0,313 1,177 18.6.23 0100 30,375 24,000 34,438 24,813 20,438 20,000 -0,813 -0,375 0,250 0,683 0,003 -0,0125 1,88 0,063 -0,000 -1,247 18.6.23 21.000 28,188 30,000	18.6.23 15:00	22,375	24,250	25,063	25,188	19,000	18,875	1,188	0,125	1,000	0,563	0,375	0,375	0,604
18.6.23 17:00 27,53 24,438 26,188 25,563 19,500 19,375 2,438 0,000 0,438 0,000 0,188 0,250 0,552 18.6.23 18:00 30,563 24,500 28,000 25,688 19,938 19,625 3,000 0,063 1,813 0,125 0,438 0,250 0,948 18.6.23 19:00 31,188 24,375 34,188 25,438 20,250 19,938 0,625 -0,125 6,188 -0,250 0,313 0,313 1,177 18.6.23 20:00 30,375 24,000 34,438 24,813 20,438 20,000 -0,813 -0,375 0,250 0,6125 0,188 0,003 -0,219 18.6.23 21:00 28,188 23,188 30,000 23,750 20,375 20,000 -2,188 -0,813 -4,438 -1,063 -0,063 0,000 -1,427 18.6.23 22:00 25,813 22,000 26,188 22,313 20,188 19,813 -2,375 -1,188 -3,813	18.6.23 16:00	25,125	24,438	25,750	25,563	19,313	19,125	2,750	0,188	0,688	0,375	0,313	0,250	0,760
18.6.23 18:00 30,563 24,500 28,000 25,688 19,938 19,625 3,000 0,063 1,813 0,125 0,438 0,250 0,948 18.6.23 19:00 31,188 24,375 34,188 25,438 20,250 19,938 0,625 -0,125 6,188 -0,250 0,313 0,313 1,177 18.6.23 20:00 30,375 24,000 34,438 24,813 20,438 20,000 -0,813 -0,375 0,250 -0,625 0,188 0,063 -0,219 18.6.23 21:00 28,188 23,188 30,000 23,750 20,375 20,000 -2,188 -0,813 -4,438 -1,063 -0,063 0,000 -1,427 18.6.23 22:00 25,813 22,000 26,188 22,313 20,188 19,813 -2,375 -1,188 -3,813 -1,438 -0,188 -0,188 -1,531 18.6.23 23:00 23,813 21,000 23,438 21,063 20,000 19,625 -2,000 -1,000 -2,750	18.6.23 17:00	27,563	24,438	26,188	25,563	19,500	19,375	2,438	0,000	0,438	0,000	0,188	0,250	0,552
18.6.23 19:00 31,188 24,375 34,188 25,438 20,250 19,938 0,625 -0,125 6,188 -0,250 0,313 0,313 1,177 18.6.23 20:00 30,375 24,000 34,438 24,813 20,438 20,000 -0,813 -0,375 0,250 -0,625 0,188 0,063 -0,219 18.6.23 21:00 28,188 23,188 30,000 23,750 20,375 20,000 -2,188 -0,813 -4,438 -1,063 -0,063 0,000 -1,427 18.6.23 22:00 25,813 22,000 26,188 22,313 20,188 19,813 -2,375 -1,188 -3,813 -1,438 -0,188 -0,188 -1,531 18.6.23 23:00 23,813 21,000 23,438 21,063 20,000 19,625 -2,000 -1,000 -2,750 -1,250 -0,188 -0,188 -1,229 19.6.23 0:00 21,813 19,688 21,125 19,688 19,750 19,438 -2,000 -1,313	18.6.23 18:00	30,563	24,500	28,000	25,688	19,938	19,625	3,000	0,063	1,813	0,125	0,438	0,250	0,948
18.6.23 20:00 30,375 24,000 34,438 24,813 20,438 20,000 -0,813 -0,375 0,250 -0,625 0,188 0,063 -0,219 18.6.23 21:00 28,188 23,188 30,000 23,750 20,375 20,000 -2,188 -0,813 -4,438 -1,063 -0,063 0,000 -1,427 18.6.23 22:00 25,813 22,000 26,188 22,313 20,188 19,813 -2,375 -1,188 -3,813 -1,438 -0,188 -0,188 -1,531 18.6.23 23:00 23,813 21,000 23,438 21,063 20,000 19,625 -2,000 -1,000 -2,750 -1,250 -0,188 -0,188 -1,229 19.6.23 0:00 21,813 19,688 21,125 19,688 19,750 19,438 -2,000 -1,313 -2,313 -1,375 -0,250 -0,188 -1,240	18.6.23 19:00	31,188	24,375	34,188	25,438	20,250	19,938	0,625	-0,125	6,188	-0,250	0,313	0,313	1,177
18.6.23 21:00 28,188 23,188 30,000 23,750 20,375 20,000 -2,188 -0,813 -4,438 -1,063 -0,063 0,000 -1,427 18.6.23 22:00 25,813 22,000 26,188 22,313 20,188 19,813 -2,375 -1,188 -3,813 -1,438 -0,188 -0,188 -1,531 18.6.23 23:00 23,813 21,000 23,438 21,063 20,000 19,625 -2,000 -1,000 -2,750 -1,1250 -0,188 -0,188 -1,229 19.6.23 0:00 21,813 19,688 21,125 19,688 19,750 19,438 -2,000 -1,313 -2,313 -1,375 -0,250 -0,188 -1,240	18.6.23 20:00	30,375	24,000	34,438	24,813	20,438	20,000	-0,813	-0,375	0,250	-0,625	0,188	0,063	-0,219
18.6.23 22:00 25,813 22,000 26,188 22,313 20,188 19,813 -2,375 -1,188 -3,813 -1,438 -0,188 -0,188 -1,531 18.6.23 23:00 23,813 21,000 23,438 21,063 20,000 19,625 -2,000 -1,000 -2,750 -1,1250 -0,188 -0,188 -1,229 19.6.23 0:00 21,813 19,688 21,125 19,688 19,750 19,438 -2,000 -1,313 -2,313 -1,375 -0,250 -0,188 -1,240	18.6.23 21:00	28,188	23,188	30,000	23,750	20,375	20,000	-2,188	-0,813	-4,438	-1,063	-0,063	0,000	-1,427
18.6.23 23:00 23,813 21,000 23,438 21,063 20,000 19,625 -2,000 -1,000 -2,750 -1,250 -0,188 -0,188 -1,229 19.6.23 0:00 21,813 19,688 21,125 19,688 19,750 19,438 -2,000 -1,313 -2,313 -1,375 -0,250 -0,188 -1,240	18.6.23 22:00	25,813	22,000	26,188	22,313	20,188	19,813	-2,375	-1,188	-3,813	-1,438	-0,188	-0,188	-1,531
19.6.23 0:00 21,813 19,688 21,125 19,688 19,750 19,438 -2,000 -1,313 -2,313 -1,375 -0,250 -0,188 -1,240	18.6.23 23:00	23,813	21,000	23,438	21,063	20,000	19,625	-2,000	-1,000	-2,750	-1,250	-0,188	-0,188	-1,229
	19.6.23 0:00	21,813	19,688	21,125	19,688	19,750	19,438	-2,000	-1,313	-2,313	-1,375	-0,250	-0,188	-1,240

Tab. 15 Teploty NK2 nad pilířem P1 pro výpočet vstupních hodnot do modelu – 18. 6. 2023

Datum a čas	ST11 [°C]	ST12 [°C]	ST13 [°C]	ST14 [°C]	ST15 [°C]	ST16 [°C]	ΔST11 [°C]	ΔST12 [°C]	∆ST13 [°C]	ΔST14 [°C]	ΔST15 [°C]	ΔST16 [°C]	průměr ∆
17.6.23 23:00	17,781	16,594	17,313	16,469	17,188	17,125							
18.6.23 0:00	16,781	15,906	16,375	15,688	17,063	17,031	-1,000	-0,688	-0,938	-0,781	-0,125	-0,094	-0,604
18.6.23 1:00	15,750	15,125	15,500	15,000	17,000	16,938	-1,031	-0,781	-0,875	-0,688	-0,063	-0,094	-0,589
18.6.23 2:00	14,938	14,563	14,750	14,438	16,875	16,813	-0,813	-0,563	-0,750	-0,563	-0,125	-0,125	-0,490
18.6.23 3:00	14,188	14,063	14,000	13,875	16,750	16,688	-0,750	-0,500	-0,750	-0,563	-0,125	-0,125	-0,469
18.6.23 4:00	13,531	13,500	13,469	13,406	16,531	16,563	-0,656	-0,563	-0,531	-0,469	-0,219	-0,125	-0,427
18.6.23 5:00	12,813	12,813	12,875	12,813	16,438	16,438	-0,719	-0,688	-0,594	-0,594	-0,094	-0,125	-0,469
18.6.23 6:00	12,313	12,813	12,438	14,063	16,375	16,313	-0,500	0,000	-0,438	1,250	-0,063	-0,125	0,021
18.6.23 7:00	12,438	15,000	13,000	20,219	16,344	16,313	0,125	2,188	0,563	6,156	-0,031	0,000	1,500
18.6.23 8:00	13,344	19,188	14,938	25,688	16,500	16,438	0,906	4,188	1,938	5,469	0,156	0,125	2,130
18.6.23 9:00	14,250	23,688	16,188	23,750	16,813	16,688	0,906	4,500	1,250	-1,938	0,313	0,250	0,880
18.6.23 10:00	15,188	27,063	17,375	23,188	17,063	16,938	0,938	3,375	1,188	-0,563	0,250	0,250	0,906
18.6.23 11:00	16,219	27,188	18,563	23,000	17,250	17,156	1,031	0,125	1,188	-0,188	0,188	0,219	0,427
18.6.23 12:00	17,750	25,500	19,781	22,813	17,625	17,438	1,531	-1,688	1,219	-0,188	0,375	0,281	0,255
18.6.23 13:00	19,188	24,563	21,063	23,000	17,938	17,813	1,438	-0,938	1,281	0,188	0,313	0,375	0,443
18.6.23 14:00	20,375	24,188	22,000	23,250	18,250	18,063	1,188	-0,375	0,938	0,250	0,313	0,250	0,427
18.6.23 15:00	21,375	24,063	22,781	23,531	18,531	18,313	1,000	-0,125	0,781	0,281	0,281	0,250	0,411
18.6.23 16:00	23,313	24,063	23,750	23,938	18,875	18,625	1,938	0,000	0,969	0,406	0,344	0,313	0,661
18.6.23 17:00	25,938	24,063	24,375	24,063	19,063	18,813	2,625	0,000	0,625	0,125	0,188	0,188	0,625
18.6.23 18:00	29,125	24,063	25,688	24,188	19,375	19,125	3,188	0,000	1,313	0,125	0,313	0,313	0,875
18.6.23 19:00	30,500	24,094	32,313	24,281	19,688	19,313	1,375	0,031	6,625	0,094	0,313	0,188	1,438
18.6.23 20:00	29,938	23,813	32,250	23,938	19,938	19,500	-0,563	-0,281	-0,063	-0,344	0,250	0,188	-0,135
18.6.23 21:00	27,750	23,063	28,063	23,125	19,875	19,500	-2,188	-0,750	-4,188	-0,813	-0,063	0,000	-1,333
18.6.23 22:00	25,313	21,938	24,563	21,813	19,625	19,375	-2,438	-1,125	-3,500	-1,313	-0,250	-0,125	-1,458
18.6.23 23:00	23,656	21,000	22,781	20,750	19,500	19,219	-1,656	-0,938	-1,781	-1,063	-0,125	-0,156	-0,953
19.6.23 0:00	21,938	20,000	21.063	19,813	19.250	19.125	-1.719	-1.000	-1.719	-0.938	-0.250	-0,094	-0.953

Tab. 16 Teploty NK3 nad pilířem P4 pro výpočet vstupních hodnot do modelu – 18. 6. 2023

Bc. Robert Pour, Analýza monitoringu interakce most-kolej na železničním mostě

Datum a čas ST1 [°C] ST2 [°C] ST3 [°C] ST4 [°C] ST5 [°C] ST6 [°C] ΔST1 [°C] ΔST2 [°C] ΔST3 [°C] ΔST4 [°C] ΔST5 [°C] Δ 20.5.23 23:00 18,438 17,375 18,063 17,250 15,563 15,188	LST6 [°C] průmě	orůměr
20.5.23 23:00 18,438 17,375 18,063 17,250 15,563 15,188		
21.5.23 0:00 17,500 16,563 17,000 16,500 15,375 15,000 -0,938 -0,813 -1,063 -0,750 -0,188 -	-0,188 -0,65	-0,656
21.5.23 1:00 16,750 15,938 16,188 15,813 15,250 14,875 -0,750 -0,625 -0,813 -0,688 -0,125 -	-0,125 -0,52	-0,521
21.5.23 2:00 15,875 15,313 15,438 15,188 15,063 14,688 -0,875 -0,625 -0,750 -0,625 -0,188 -	-0,188 -0,54	-0,542
21.5.23 3:00 15,125 14,688 14,688 14,563 14,938 14,563 -0,750 -0,625 -0,750 -0,625 -0,125 -	-0,125 - 0,50	-0,500
21.5.23 4:00 14,375 13,938 13,938 13,875 14,750 14,438 -0,750 -0,750 -0,750 -0,688 -0,188 -	-0,125 -0,54	-0,542
21.5.23 5:00 13,625 13,188 13,250 13,250 14,625 14,250 -0,750 -0,750 -0,688 -0,625 -0,125 -	-0,188 -0,52	-0,521
21.5.23 6:00 13,063 12,938 12,813 13,938 14,438 14,125 -0,563 -0,250 -0,438 0,688 -0,188 -	-0,125 -0,14	-0,146
21.5.23 7:00 13,250 15,438 13,313 20,938 14,438 14,125 0,188 2,500 0,500 7,000 0,000	0,000 1,69	1,698
21.5.23 8:00 13,938 19,313 14,563 25,875 14,563 14,250 0,688 3,875 1,250 4,938 0,125	0,125 1,83	1,833
21.5.23 9:00 15,313 23,125 16,625 23,063 14,938 14,625 1,375 3,813 2,063 -2,813 0,375	0,375 0,86	0,865
21.5.23 10:00 16,750 25,313 18,563 22,250 15,375 15,000 1,438 2,188 1,938 -0,813 0,438	0,375 0,92	0,927
21.5.23 11:00 18,000 24,063 20,063 21,875 15,875 15,438 1,250 -1,250 1,500 -0,375 0,500	0,438 0,34	0,344
21.5.23 12:00 19,250 22,875 21,500 22,125 16,375 15,875 1,250 -1,188 1,438 0,250 0,500	0,438 0,44	0,448
21.5.23 13:00 20,563 22,563 22,875 22,625 16,875 16,313 1,313 -0,313 1,375 0,500 0,500	0,438 0,63	0,635
21.5.23 14:00 21,688 22,625 23,875 23,125 17,313 16,813 1,125 0,063 1,000 0,500 0,438	0,500 0,60	0,604
21.5.23 15:00 22,500 22,688 24,375 23,375 17,688 17,125 0,813 0,063 0,500 0,250 0,375	0,313 0,38	0,385
21.5.23 16:00 25,063 22,813 24,688 23,500 18,000 17,438 2,563 0,125 0,313 0,125 0,313	0,313 0,62	0,625
21.5.23 17:00 26,063 22,938 24,875 23,625 18,375 17,750 1,000 0,125 0,188 0,125 0,375	0,313 0,35	0,354
21.5.23 18:00 28,750 23,000 29,813 23,813 18,688 18,000 2,688 0,063 4,938 0,188 0,313	0,250 1,40	1,406
21.5.23 19:00 29,563 22,938 33,500 23,625 18,875 18,188 0,813 -0,063 3,688 -0,188 0,188	0,188 0,77	0,771
21.5.23 20:00 28,250 22,563 31,688 23,000 18,938 18,250 -1,313 -0,375 -1,813 -0,625 0,063	0,063 - 0,66	-0,667
21.5.23 21:00 25,875 21,563 26,750 21,813 18,813 18,125 -2,375 -1,000 -4,938 -1,188 -0,125 -	-0,125 -1,62	-1,625
21.5.23 22:00 23,500 20,313 23,500 20,500 18,500 17,875 -2,375 -1,250 -3,250 -1,313 -0,313 -	-0,250 -1,45	-1,458
21.5.23 23:00 21,500 19,000 20,938 19,188 18,188 17,625 -2,000 -1,313 -2,563 -1,313 -0,313 -	-0,250 -1,29	-1,292
22.5.23 0:00 20,313 18,313 19,438 18,250 18,000 17,438 -1,188 -0,688 -1,500 -0,938 -0,188 -	-0,188 -0,78	-0,781

Tab. 17 Teploty NK2 nad pilířem P1 pro výpočet vstupních hodnot do modelu – 21. 5. 2023

Datum a čas	ST11 [°C]	ST12 [°C]	ST13 [°C]	ST14 [°C]	ST15 [°C]	ST16 [°C]	ΔST11 [°C]	∆ST12 [°C]	∆ST13 [°C]	ΔST14 [°C]	ΔST15 [°C]	∆ST16 [°C]	průměr ∆
20.5.23 23:00	18,313	17,563	17,625	17,125	15,500	15,250							
21.5.23 0:00	17,313	16,688	16,625	16,250	15,250	15,063	-1,000	-0,875	-1,000	-0,875	-0,250	-0,188	-0,698
21.5.23 1:00	16,594	16,094	15,938	15,688	15,094	14,938	-0,719	-0,594	-0,688	-0,563	-0,156	-0,125	-0,474
21.5.23 2:00	15,938	15,500	15,313	15,063	14,938	14,750	-0,656	-0,594	-0,625	-0,625	-0,156	-0,188	-0,474
21.5.23 3:00	15,125	14,938	14,688	14,500	14,813	14,625	-0,813	-0,563	-0,625	-0,563	-0,125	-0,125	-0,469
21.5.23 4:00	14,500	14,281	14,094	13,906	14,656	14,531	-0,625	-0,656	-0,594	-0,594	-0,156	-0,094	-0,453
21.5.23 5:00	13,688	13,563	13,375	13,250	14,500	14,375	-0,813	-0,719	-0,719	-0,656	-0,156	-0,156	-0,536
21.5.23 6:00	13,188	13,188	13,000	13,438	14,313	14,313	-0,500	-0,375	-0,375	0,188	-0,188	-0,063	-0,219
21.5.23 7:00	13,188	15,375	13,313	19,938	14,250	14,188	0,000	2,188	0,313	6,500	-0,063	-0,125	1,469
21.5.23 8:00	14,000	19,438	14,750	26,813	14,500	14,313	0,813	4,063	1,438	6,875	0,250	0,125	2,260
21.5.23 9:00	15,063	23,563	16,250	24,063	14,813	14,625	1,063	4,125	1,500	-2,750	0,313	0,313	0,760
21.5.23 10:00	16,625	25,438	18,000	22,313	15,375	15,063	1,563	1,875	1,750	-1,750	0,563	0,438	0,740
21.5.23 11:00	17,813	24,563	19,063	21,438	15,750	15,438	1,188	-0,875	1,063	-0,875	0,375	0,375	0,208
21.5.23 12:00	18,750	22,938	20,063	21,313	16,250	15,813	0,938	-1,625	1,000	-0,125	0,500	0,375	0,177
21.5.23 13:00	19,875	22,438	21,063	21,625	16,688	16,188	1,125	-0,500	1,000	0,313	0,438	0,375	0,458
21.5.23 14:00	20,781	22,344	21,844	21,969	17,094	16,531	0,906	-0,094	0,781	0,344	0,406	0,344	0,448
21.5.23 15:00	21,688	22,438	22,500	22,313	17,500	16,938	0,906	0,094	0,656	0,344	0,406	0,406	0,469
21.5.23 16:00	23,219	22,469	23,000	22,469	17,813	17,219	1,531	0,031	0,500	0,156	0,313	0,281	0,469
21.5.23 17:00	26,125	22,625	23,625	22,688	18,063	17,500	2,906	0,156	0,625	0,219	0,250	0,281	0,740
21.5.23 18:00	28,375	22,813	27,375	23,000	18,438	17,813	2,250	0,188	3,750	0,313	0,375	0,313	1,198
21.5.23 19:00	29,313	22,813	32,750	23,000	18,625	18,000	0,938	0,000	5,375	0,000	0,188	0,188	1,115
21.5.23 20:00	28,000	22,531	30,219	22,594	18,719	18,125	-1,313	-0,281	-2,531	-0,406	0,094	0,125	-0,719
21.5.23 21:00	25,438	21,625	25,313	21,500	18,500	18,000	-2,563	-0,906	-4,906	-1,094	-0,219	-0,125	-1,635
21.5.23 22:00	23,313	20,438	22,813	20,313	18,250	17,813	-2,125	-1,188	-2,500	-1,188	-0,250	-0,188	-1,240
21.5.23 23:00	21,438	19,313	20,563	19,063	17,938	17,625	-1,875	-1,125	-2,250	-1,250	-0,313	-0,188	-1,167
22 5 23 0.00	20.063	18 375	19 000	18 063	17 688	17 375	-1 375	-0.938	-1 563	-1.000	-0.250	-0.250	-0.896

Tab. 18 Teploty NK3 nad pilířem P4 pro výpočet vstupních hodnot do modelu – 21. 5. 2023

	18	3. 6. 2023				2	1. 5. 2023		
	NK2	NK3	n nôm č n			NK2	NK3	na nivera č n	
Datum a čas	průměr ∆	průměr ∆	prumer	ZS	Datum a čas	průměr ∆	průměr ∆	prumer	ZS
	[°C]	[°C]	[°C]			[°C]	[°C]	[°C]	
18.6.23 0:00	-0,583	-0,604	-0,594	teplota1	21.5.23 0:00	-0,656	-0,698	-0,677	teplota26
18.6.23 1:00	-0,594	-0,589	-0,591	teplota2	21.5.23 1:00	-0,521	-0,474	-0,497	teplota27
18.6.23 2:00	-0,542	-0,490	-0,516	teplota3	21.5.23 2:00	-0,542	-0,474	-0,508	teplota28
18.6.23 3:00	-0,448	-0,469	-0,458	teplota4	21.5.23 3:00	-0,500	-0,469	-0,484	teplota29
18.6.23 4:00	-0,417	-0,427	-0,422	teplota5	21.5.23 4:00	-0,542	-0,453	-0,497	teplota30
18.6.23 5:00	-0,469	-0,469	-0,469	teplota6	21.5.23 5:00	-0,521	-0,536	-0,529	teplota31
18.6.23 6:00	0,458	0,021	0,240	teplota7	21.5.23 6:00	-0,146	-0,219	-0,182	teplota32
18.6.23 7:00	1,688	1,500	1,594	teplota8	21.5.23 7:00	1,698	1,469	1,583	teplota33
18.6.23 8:00	1,708	2,130	1,919	teplota9	21.5.23 8:00	1,833	2,260	2,047	teplota34
18.6.23 9:00	0,771	0,880	0,826	teplota10	21.5.23 9:00	0,865	0,760	0,813	teplota35
18.6.23 10:00	0,990	0,906	0,948	teplota11	21.5.23 10:00	0,927	0,740	0,833	teplota36
18.6.23 11:00	0,510	0,427	0,469	teplota12	21.5.23 11:00	0,344	0,208	0,276	teplota37
18.6.23 12:00	0,490	0,255	0,372	teplota13	21.5.23 12:00	0,448	0,177	0,313	teplota38
18.6.23 13:00	0,802	0,443	0,622	teplota14	21.5.23 13:00	0,635	0,458	0,547	teplota39
18.6.23 14:00	0,563	0,427	0,495	teplota15	21.5.23 14:00	0,604	0,448	0,526	teplota40
18.6.23 15:00	0,604	0,411	0,508	teplota16	21.5.23 15:00	0,385	0,469	0,427	teplota41
18.6.23 16:00	0,760	0,661	0,711	teplota17	21.5.23 16:00	0,625	0,469	0,547	teplota42
18.6.23 17:00	0,552	0,625	0,589	teplota18	21.5.23 17:00	0,354	0,740	0,547	teplota43
18.6.23 18:00	0,948	0,875	0,911	teplota19	21.5.23 18:00	1,406	1,198	1,302	teplota44
18.6.23 19:00	1,177	1,438	1,307	teplota20	21.5.23 19:00	0,771	1,115	0,943	teplota45
18.6.23 20:00	-0,219	-0,135	-0,177	teplota21	21.5.23 20:00	-0,667	-0,719	-0,693	teplota46
18.6.23 21:00	-1,427	-1,333	-1,380	teplota22	21.5.23 21:00	-1,625	-1,635	-1,630	teplota47
18.6.23 22:00	-1,531	-1,458	-1,495	teplota23	21.5.23 22:00	-1,458	-1,240	-1,349	teplota48
18.6.23 23:00	-1,229	-0,953	-1,091	teplota24	21.5.23 23:00	-1,292	-1,167	-1,229	teplota49
19.6.23 0:00	-1,240	-0,953	-1,096	teplota25	22.5.23 0:00	-0,781	-0,896	-0,839	teplota50

Tab. 19 Výpočet vstupních hodnot rozdílů teploty NK do modelu

Ve předcházející tabulce jsou výsledné hodnoty průměrných změn teploty NK mezi hodinami vybraných dní. Tyto tučně vyznačené hodnoty byly aplikovány jako teplotní zatížení do numerického modelu. V tabulce je také možno vidět popis a souhrn základních zatěžovacích stavů, které byly dále využity ve fázích výstavby (zatěžování).

Pro účely vyhodnocení vlivu od změny teploty kolejnice byl proveden ruční výpočet dle vzorce, který bude dále zobrazen. V první řadě byl proveden výpočet průměrů teplot z každého řezu kolejnice po hodinách každého vybraného dne. Následně byl proveden výpočet průměrů změn teploty ze všech měřených řezů kolejnice po hodinách každého vybraného dne. Z těchto změn teploty je dále dopočítán průběh změny normálové síly v kolejnici od tohoto teplotního zatížení kolejnice po hodinách každého vybraného dne.

			Průměry	3 hodnot t	eploty z ka	ždého řezu	kolejnice			
Datum a čas	STK1 [°C]	STK2 [°C]	STK3 [°C]	STK4 [°C]	STK5 [°C]	STK6 [°C]	STK7 [°C]	STK8 [°C]	STK9 [°C]	průměr
17.6.23 23:00	16,468	16,689	16,464	16,405	16,219	16,096	16,093	16,028	16,717	16,353
18.6.23 0:00	15,177	15,296	15,096	14,970	14,814	14,682	14,694	14,642	15,410	14,976
18.6.23 1:00	14,339	14,380	14,186	14,012	13,823	13,690	13,707	13,635	14,457	14,026
18.6.23 2:00	13,687	13,720	13,546	13,345	13,146	13,061	13,023	12,910	13,719	13,351
18.6.23 3:00	13,104	13,206	13,004	12,828	12,636	12,512	12,494	12,389	12,936	12,790
18.6.23 4:00	12,400	12,461	12,278	12,072	11,910	11,788	11,766	11,667	12,293	12,070
18.6.23 5:00	11,782	11,807	11,600	11,351	11,177	11,083	11,018	10,875	11,463	11,351
18.6.23 6:00	12,959	13,029	13,149	12,097	12,263	12,039	12,003	11,488	13,278	12,478
18.6.23 7:00	19,180	19,339	19,537	18,190	18,756	18,753	18,002	17,733	20,264	18,862
18.6.23 8:00	26,428	28,503	26,976	25,564	26,263	28,023	25,471	24,756	28,905	26,766
18.6.23 9:00	35,054	35,915	35,437	34,800	35,145	35,672	34,532	33,654	36,428	35,182
18.6.23 10:00	40,579	40,982	40,821	40,594	41,064	41,147	40,574	39,532	41,692	40,776
18.6.23 11:00	43,811	44,171	44,140	43,889	44,211	44,252	44,036	43,170	40,729	43,601
18.6.23 12:00	44,641	45,192	44,800	44,585	45,037	44,779	44,480	43,862	43,231	44,512
18.6.23 13:00	45,715	46,722	46,246	45,975	45,992	45,836	45,454	45,169	45,332	45,827
18.6.23 14:00	45,145	45,825	45,290	45,164	45,238	45,309	44,860	44,272	44,440	45,060
18.6.23 15:00	46,454	47,124	46,363	45,805	45,957	46,001	45,160	44,419	44,758	45,782
18.6.23 16:00	49,002	50,123	49,044	48,292	48,418	48,272	47,472	46,448	46,815	48,210
18.6.23 17:00	46,808	47,623	46,954	46,150	46,185	45,927	45,232	44,394	44,734	46,001
18.6.23 18:00	47,671	48,629	47,913	47,347	47,360	46,967	46,369	46,482	45,258	47,111
18.6.23 19:00	41,747	44,926	44,142	43,981	44,071	43,493	43,083	44,345	43,259	43,672
18.6.23 20:00	38,535	37,151	36,855	37,874	37,564	35,404	35,383	38,339	37,490	37,177
18.6.23 21:00	31,509	30,796	30,480	30,551	30,162	29,226	29,074	31,258	30,463	30,391
18.6.23 22:00	26,071	25,397	25,094	25,106	24,782	24,248	24,276	25,325	25,277	25,064
18.6.23 23:00	22,867	22,450	22,200	22,064	21,765	21,411	21,417	22,034	22,224	22,048
19.6.23 0:00	20,699	20.472	20.273	20.101	19.817	19.440	19,540	19,858	20,050	20.028

Tab. 20 Průměry teploty kolejnice – 18. 6. 2023

Datum a čas	∆STK1 [°C]	ΔSTK2 [°C]	∆STK3 [°C]	∆STK4 [°C]	∆STK5 [°C]	∆STK6 [°C]	∆STK7 [°C]	∆STK8 [°C]	∆STK9 [°C]	průměr ∆
17.6.23 23:00										
18.6.23 0:00	-1,291	-1,393	-1,368	-1,434	-1,404	-1,415	-1,400	-1,385	-1,307	-1,377
18.6.23 1:00	-0,839	-0,915	-0,910	-0,958	-0,991	-0,992	-0,986	-1,007	-0,953	-0,950
18.6.23 2:00	-0,652	-0,660	-0,639	-0,667	-0,677	-0,629	-0,684	-0,726	-0,738	-0,675
18.6.23 3:00	-0,583	-0,514	-0,543	-0,517	-0,510	-0,548	-0,530	-0,521	-0,782	-0,561
18.6.23 4:00	-0,704	-0,745	-0,726	-0,756	-0,726	-0,725	-0,728	-0,722	-0,644	-0,720
18.6.23 5:00	-0,618	-0,654	-0,678	-0,721	-0,733	-0,704	-0,747	-0,792	-0,829	-0,720
18.6.23 6:00	1,177	1,222	1,548	0,747	1,086	0,956	0,985	0,613	1,815	1,128
18.6.23 7:00	6,220	6,310	6,388	6,093	6 <i>,</i> 493	6,714	5,999	6,245	6,986	6,383
18.6.23 8:00	7,248	9,165	7,440	7,373	7,507	9,270	7,469	7,023	8,642	7,904
18.6.23 9:00	8,626	7,412	8,460	9,236	8,882	7,649	9,061	8,898	7,522	8,416
18.6.23 10:00	5,525	5,067	5,384	5,794	5,919	5,475	6,043	5,878	5,264	5,594
18.6.23 11:00	3,232	3,188	3,319	3,295	3,147	3,104	3,461	3,639	-0,963	2,825
18.6.23 12:00	0,831	1,021	0,661	0,697	0,826	0,527	0,444	0,691	2,503	0,911
18.6.23 13:00	1,073	1,530	1,446	1,389	0,955	1,057	0,975	1,307	2,101	1,315
18.6.23 14:00	-0,570	-0,896	-0,956	-0,811	-0,754	-0,527	-0,595	-0,896	-0,893	-0,766
18.6.23 15:00	1,310	1,299	1,073	0,641	0,718	0,692	0,300	0,147	0,318	0,722
18.6.23 16:00	2,548	2,999	2,681	2,487	2,462	2,271	2,313	2,029	2,057	2,427
18.6.23 17:00	-2,194	-2,500	-2,090	-2,142	-2,233	-2,345	-2,240	-2,054	-2,080	-2,209
18.6.23 18:00	0,863	1,005	0,959	1,197	1,175	1,040	1,137	2,087	0,524	1,110
18.6.23 19:00	-5,923	-3,703	-3,770	-3,366	-3,290	-3,474	-3,287	-2,136	-1,999	-3,439
18.6.23 20:00	-3,213	-7,775	-7,288	-6,107	-6,507	-8,090	-7,700	-6,006	-5,769	-6,495
18.6.23 21:00	-7,026	-6,355	-6,375	-7,323	-7,402	-6,178	-6,309	-7,081	-7,027	-6,786
18.6.23 22:00	-5,438	-5,399	-5,385	-5,445	-5,379	-4,978	-4,798	-5,933	-5,186	-5,327
18.6.23 23:00	-3,205	-2,947	-2,895	-3,042	-3,017	-2,836	-2,859	-3,291	-3,053	-3,016
19.6.23 0:00	-2,168	-1,979	-1,927	-1,963	-1,948	-1,971	-1,876	-2,176	-2,174	-2,020

Tab. 21 Průměrné změny teploty kolejnice – 18. 6. 2023

			Průměry	3 hodnot t	eploty z ka	ždého řezu	kolejnice			
Datum a čas	STK1 [°C]	STK2 [°C]	STK3 [°C]	STK4 [°C]	STK5 [°C]	STK6 [°C]	STK7 [°C]	STK8 [°C]	STK9 [°C]	průměr
20.5.23 23:00	18,481	18,664	18,542	18,194	18,175	18,017	18,040	18,109	18,711	18,326
21.5.23 0:00	17,474	17,522	17,445	17,118	17,132	16,994	17,047	17,060	17,839	17,292
21.5.23 1:00	16,809	16,818	16,768	16,525	16,503	16,351	16,427	16,384	17,418	16,667
21.5.23 2:00	16,025	16,108	16,047	15,804	15,758	15,587	15,679	15,617	16,606	15,915
21.5.23 3:00	14,956	15,020	14,981	14,684	14,621	14,443	14,517	14,546	15,364	14,792
21.5.23 4:00	13,929	13,994	13,919	13,652	13,584	13,426	13,495	13,550	14,272	13,758
21.5.23 5:00	13,010	13,088	13,038	12,743	12,641	12,487	12,553	12,613	13,298	12,830
21.5.23 6:00	13,488	13,345	13,466	13,111	13,052	12,787	12,909	12,915	13,861	13,215
21.5.23 7:00	18,676	19,372	19,584	18,310	19,094	19,069	18,195	17,967	20,952	19,024
21.5.23 8:00	26,619	28,422	27,070	26,321	26,357	28,234	25,778	25,652	29,694	27,128
21.5.23 9:00	33,393	34,788	34,356	34,056	34,553	35,497	34,139	33,795	35,844	34,491
21.5.23 10:00	36,411	37,187	36,767	36,266	36,312	36,493	35,681	36,480	35,415	36,335
21.5.23 11:00	38,172	38,186	37,488	37,247	37,337	37,479	36,811	38,097	34,106	37,214
21.5.23 12:00	37,816	38,316	37,570	37,432	37,490	37,401	36,818	38,079	35,128	37,339
21.5.23 13:00	37,302	38,394	37,676	37,794	38,215	38,231	37,480	38,164	35,803	37,673
21.5.23 14:00	37,872	39,328	38,397	38,335	38,879	38,891	37,954	38,694	36,243	38,288
21.5.23 15:00	38,460	39,600	38,650	38,358	38,487	38,406	37,453	38,726	35,677	38,202
21.5.23 16:00	38,882	40,105	38,856	38,927	39,074	39,392	38,250	39,406	36,179	38,786
21.5.23 17:00	38,406	40,685	39,773	39,695	39,763	39,801	38,889	39,710	36,989	39,301
21.5.23 18:00	39,165	41,240	40,376	40,176	40,188	40,713	39,797	40,667	36,556	39,875
21.5.23 19:00	35,083	38,925	38,107	37,768	38,072	37,904	37,165	38,274	34,818	37,346
21.5.23 20:00	31,156	32,396	31,963	31,786	30,710	31,536	30,966	32,475	30,243	31,470
21.5.23 21:00	26,134	26,625	26,318	26,025	25,525	25,708	25,459	26,336	25,003	25,904
21.5.23 22:00	22,792	23,048	22,843	22,626	22,365	22,346	22,278	22,717	21,845	22,540
21.5.23 23:00	20,502	20,577	20,404	20,253	20,144	20,032	20,019	20,283	20,080	20,255
22.5.23 0:00	19,168	19.079	18.947	18.691	18,568	18.309	18.391	18.551	18.704	18,712

Tab. 22 Průměry teploty kolejnice – 21. 5. 2023

Datum a čas	ΔSTK1 [°C]	ΔSTK2 [°C]	∆STK3 [°C]	∆STK4 [°C]	∆STK5 [°C]	∆STK6 [°C]	∆STK7 [°C]	∆STK8 [°C]	∆STK9 [°C]	průměr ∆
20.5.23 23:00										
21.5.23 0:00	-1,007	-1,142	-1,097	-1,076	-1,042	-1,022	-0,994	-1,050	-0,872	-1,034
21.5.23 1:00	-0,665	-0,704	-0,677	-0,593	-0,629	-0,643	-0,619	-0,676	-0,422	-0,625
21.5.23 2:00	-0,783	-0,709	-0,721	-0,721	-0,745	-0,764	-0,749	-0,767	-0,812	-0,752
21.5.23 3:00	-1,069	-1,089	-1,066	-1,120	-1,137	-1,144	-1,162	-1,071	-1,242	-1,122
21.5.23 4:00	-1,027	-1,025	-1,063	-1,032	-1,037	-1,017	-1,022	-0,996	-1,092	-1,035
21.5.23 5:00	-0,919	-0,906	-0,880	-0,909	-0,943	-0,939	-0,942	-0,937	-0,974	-0,928
21.5.23 6:00	0,478	0,257	0,427	0,368	0,411	0,300	0,356	0,303	0,563	0,385
21.5.23 7:00	5,189	6,026	6,118	5,199	6,042	6,282	5,286	5,052	7,091	5,809
21.5.23 8:00	7,943	9,051	7,486	8,011	7,263	9,165	7,583	7,685	8,742	8,103
21.5.23 9:00	6,774	6,366	7,286	7,735	8,196	7,263	8,361	8,142	6,150	7,364
21.5.23 10:00	3,017	2,399	2,411	2,211	1,759	0,996	1,542	2,686	-0,430	1,843
21.5.23 11:00	1,761	0,999	0,720	0,981	1,026	0,987	1,130	1,617	-1,309	0,879
21.5.23 12:00	-0,356	0,129	0,082	0,185	0,152	-0,079	0,007	-0,018	1,022	0,125
21.5.23 13:00	-0,513	0,078	0,106	0,362	0,725	0,830	0,662	0,085	0,675	0,335
21.5.23 14:00	0,570	0,934	0,721	0,540	0,664	0,661	0,474	0,530	0,440	0,615
21.5.23 15:00	0,588	0,273	0,254	0,023	-0,392	-0,485	-0,501	0,032	-0,566	-0,086
21.5.23 16:00	0,422	0,505	0,206	0,569	0,587	0,986	0,796	0,680	0,502	0,584
21.5.23 17:00	-0,476	0,580	0,917	0,768	0,689	0,409	0,640	0,304	0,810	0,516
21.5.23 18:00	0,759	0,555	0,603	0,480	0,426	0,912	0,908	0,957	-0,434	0,574
21.5.23 19:00	-4,083	-2,315	-2,269	-2,407	-2,117	-2,810	-2,632	-2,393	-1,738	-2,529
21.5.23 20:00	-3,927	-6,530	-6,144	-5,982	-7,361	-6,367	-6,199	-5,799	-4,575	-5,876
21.5.23 21:00	-5,022	-5,771	-5,644	-5,761	-5,185	-5,828	-5 <i>,</i> 507	-6,139	-5,240	-5,566
21.5.23 22:00	-3,341	-3,577	-3,476	-3,399	-3,160	-3,363	-3,181	-3,619	-3,158	-3,364
21.5.23 23:00	-2,290	-2,471	-2,439	-2,373	-2,222	-2,314	-2,259	-2,434	-1,766	-2,285
22.5.23 0:00	-1.335	-1.498	-1.457	-1.561	-1.575	-1.723	-1.628	-1.732	-1.376	-1.543

Tab. 23 Průměrné změny teploty kolejnice – 21. 5. 2023

	18. 6.	2023			21. 5.	2023	
	průměr	průměr ∆t			průměr	průměr ∆t	
Datum a čas	∆t NK	kolejnice	ZS	Datum a čas	Δt NK	kolejnice	ZS
	[°C]	[°C]			[°C]	[°C]	
18.6.23 0:00	-0,594	-1,377	teplota1	21.5.23 0:00	-0,677	-1,034	teplota26
18.6.23 1:00	-0,591	-0,950	teplota2	21.5.23 1:00	-0,497	-0,625	teplota27
18.6.23 2:00	-0,516	-0,675	teplota3	21.5.23 2:00	-0,508	-0,752	teplota28
18.6.23 3:00	-0,458	-0,561	teplota4	21.5.23 3:00	-0,484	-1,122	teplota29
18.6.23 4:00	-0,422	-0,720	teplota5	21.5.23 4:00	-0,497	-1,035	teplota30
18.6.23 5:00	-0,469	-0,720	teplota6	21.5.23 5:00	-0,529	-0,928	teplota31
18.6.23 6:00	0,240	1,128	teplota7	21.5.23 6:00	-0,182	0,385	teplota32
18.6.23 7:00	1,594	6,383	teplota8	21.5.23 7:00	1,583	5,809	teplota33
18.6.23 8:00	1,919	7,904	teplota9	21.5.23 8:00	2,047	8,103	teplota34
18.6.23 9:00	0,826	8,416	teplota10	21.5.23 9:00	0,813	7,364	teplota35
18.6.23 10:00	0,948	5,594	teplota11	21.5.23 10:00	0,833	1,843	teplota36
18.6.23 11:00	0,469	2,825	teplota12	21.5.23 11:00	0,276	0,879	teplota37
18.6.23 12:00	0,372	0,911	teplota13	21.5.23 12:00	0,313	0,125	teplota38
18.6.23 13:00	0,622	1,315	teplota14	21.5.23 13:00	0,547	0,335	teplota39
18.6.23 14:00	0,495	-0,766	teplota15	21.5.23 14:00	0,526	0,615	teplota40
18.6.23 15:00	0,508	0,722	teplota16	21.5.23 15:00	0,427	-0,086	teplota41
18.6.23 16:00	0,711	2,427	teplota17	21.5.23 16:00	0,547	0,584	teplota42
18.6.23 17:00	0,589	-2,209	teplota18	21.5.23 17:00	0,547	0,516	teplota43
18.6.23 18:00	0,911	1,110	teplota19	21.5.23 18:00	1,302	0,574	teplota44
18.6.23 19:00	1,307	-3,439	teplota20	21.5.23 19:00	0,943	-2,529	teplota45
18.6.23 20:00	-0,177	-6,495	teplota21	21.5.23 20:00	-0,693	-5,876	teplota46
18.6.23 21:00	-1,380	-6,786	teplota22	21.5.23 21:00	-1,630	-5,566	teplota47
18.6.23 22:00	-1,495	-5,327	teplota23	21.5.23 22:00	-1,349	-3,364	teplota48
18.6.23 23:00	-1,091	-3,016	teplota24	21.5.23 23:00	-1,229	-2,285	teplota49
19.6.23 0:00	-1,096	-2,020	teplota25	22.5.23 0:00	-0,839	-1,543	teplota50

Tab. 24 Souhrn vstupních hodnot rozdílů teploty NK do modelu a rozdílů teploty kolejnice k

ručnímu výpočtu

Obr. 76 Srovnání průběhů teploty vzduchu a průměrů teplot NK a kolejnice – 18.6.2023 a 21.5.2023

8.2.2 Popis výpočtu

Pro zjištění účinků od změny teploty NK v průběhu vybraných dní bylo využito analýzy s využití fází výstavby, která bere v potaz historii zatěžování. Bylo uvažováno zatížení pouze od změny teploty NK v hodinovém intervalu jednoho dne. Jako základní podélné, příčné a svislé tuhosti koleje byly využity ty z nastavení nezatížené koleje, tedy podélná tuhost koleje o velikosti 20 kN/m s plastickou větví deformace začínající při 2 mm. Toto nastavení jako základní je rozumné z důvodu využití pro analýzu podélného odporu vlivem změny teploty. Byly vytvořeny 2 programy fází výstavby pro vybrané dva analyzované dny. Nelineární výpočet fází výstavby nebere v potaz časově závislé vlastnosti materiálů, v tomto případě to je např. dotvarování a smršťování betonu. Následující tabulky poskytují představu o nastavení výchozích parametrů programů fází výstavby vybraných dnů.

Název	programu fáze výstavby: CE	RVEN	18	_																
		doba			součinitel															
pořadí	popis fáze	trvání	předchůdce	hodina	zatížení SF				h	ar	m	۱C	n	0	gr	ra	m	I		
fáze		ci vain	(predecessor)	konce	(Scale					h	00	lit	ny	y î	1-	26	5			
		[h]			Factor)	_		_		_		-				-			TT	
1	přidání konstrukce modelu	1		1									Ц	Ц	Ц	Ц	Ц		Ц	
2	zatížení ZS teplota1 na NK	1	1	2	1								Ц		Ш	Ш				
3	zatížení ZS teplota2 na NK	1	2	3	1								Ш		Ш	Ц				
4	zatížení ZS teplota3 na NK	1	3	4	1										Ш	Ш				
5	zatížení ZS teplota4 na NK	1	4	5	1										Ш	Ш				
6	zatížení ZS teplota5 na NK	1	5	6	1										Ш					
7	zatížení ZS teplota6 na NK	1	6	7	1										Ш					
8	zatížení ZS teplota7 na NK	1	7	8	1															
9	zatížení ZS teplota8 na NK	1	8	9	1											\prod				
10	zatížení ZS teplota9 na NK	1	9	10	1											Π				
11	zatížení ZS teplota10 na NK	1	10	11	1										\square	Π	Π			
12	zatížení ZS teplota11 na NK	1	11	12	1											\prod				
13	zatížení ZS teplota12 na NK	1	12	13	1										\square	Π				
14	zatížení ZS teplota13 na NK	1	13	14	1							Π		Π	Π	Π	Π			Π
15	zatížení ZS teplota14 na NK	1	14	15	1							Π		Π		Π	Π			
16	zatížení ZS teplota15 na NK	1	15	16	1						Π		Π		Ι	Π	Π			
17	zatížení ZS teplota16 na NK	1	16	17	1							Π	Π	Π	Π	Π	Π	Π		Π
18	zatížení ZS teplota17 na NK	1	17	18	1		Τ	Τ		Ι	Π	Π	Π	П	Π	Π	Π			Π
19	zatížení ZS teplota18 na NK	1	18	19	1							Π	Π	Π	Π	Π	Π			Π
20	zatížení ZS teplota19 na NK	1	19	20	1							Π	Π	Π	Π	Π	Π			Π
21	zatížení ZS teplota20 na NK	1	20	21	1		Π	Τ		Ι	Π	Π	Π	Π	Π	Π	Π	Γ	Π	Π
22	zatížení ZS teplota21 na NK	1	21	22	1	Π		T		T	Π	Π	Π	Π	П	Π	Π	Π	Π	Π
23	zatížení ZS teplota22 na NK	1	22	23	1	Π	Π	T		T	Π	Π	Π	Π	Π	Π	Π			Π
24	zatížení ZS teplota23 na NK	1	23	24	1	Π	Π	T	Π	T	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π
25	zatížení ZS teplota24 na NK	1	24	25	1	Π	Π	T		T	Π	T	Π	Π	П	Π	Π	Π	Π	Π
26	zatížení ZS teplota25 na NK	1	25	26	1							Ι	Π	Π	\square	Π	T		Π	Π

Tab. 25 Souhrn fází výstavby pro model dne 18. 6. 2023

Název	programu fáze výstavby: K	VETEN	21														
pořadí fáze	popis fáze	doba trvání [h]	předchůdce (predecessor)	hodina konce	součinitel zatížení SF (Scale Factor)		h	ar ho	m oc	٥ı اit	ny	0į 1	gr 1-	ra 26	m 5		
1	přidání konstrukce modelu	1		1				⊥			Ļ	Ц			Ц	Ц	
2	zatížení ZS teplota26 na NK	1	1	2	1				Ц		Ļ	Ц			Ц	Ц	
3	zatížení ZS teplota27 na NK	1	2	3	1						Ļ	Ц				Ц	
4	zatížení ZS teplota28 na NK	1	3	4	1			┛			Ļ	Ц				Ш	
5	zatížení ZS teplota29 na NK	1	4	5	1							Ц				Ш	
6	zatížení ZS teplota30 na NK	1	5	6	1						Ļ	Ц				Ш	
7	zatížení ZS teplota31 na NK	1	6	7	1						Ļ	Ц			Ц	Ц	
8	zatížení ZS teplota32 na NK	1	7	8	1							Ц				Ш	
9	zatížení ZS teplota33 na NK	1	8	9	1						Ľ	Ц				Ш	
10	zatížení ZS teplota34 na NK	1	9	10	1						Ļ	Ш				Ш	
11	zatížení ZS teplota35 na NK	1	10	11	1						Ľ	Ц				Ц	
12	zatížení ZS teplota36 na NK	1	11	12	1							Ш					
13	zatížení ZS teplota37 na NK	1	12	13	1												
14	zatížení ZS teplota38 na NK	1	13	14	1							Ц					
15	zatížení ZS teplota39 na NK	1	14	15	1												
16	zatížení ZS teplota40 na NK	1	15	16	1												
17	zatížení ZS teplota41 na NK	1	16	17	1							Ш					
18	zatížení ZS teplota42 na NK	1	17	18	1							Ш					
19	zatížení ZS teplota43 na NK	1	18	19	1												
20	zatížení ZS teplota44 na NK	1	19	20	1							Ш					
21	zatížení ZS teplota45 na NK	1	20	21	1												
22	zatížení ZS teplota46 na NK	1	21	22	1												
23	zatížení ZS teplota47 na NK	1	22	23	1			ſ	\prod		ſ	Ц		\prod	\prod		$\ $
24	zatížení ZS teplota48 na NK	1	23	24	1			ſ			╻	Ц		\prod	\prod		Ľ
25	zatížení ZS teplota49 na NK	1	24	25	1										\prod		
26	zatížení ZS teplota50 na NK	1	25	26	1							\prod			\prod		

Tab. 26 Souhrn fází výstavby pro model dne 21. 5. 2023

8.2.2.1 Validace a verifikace modelu

Po výpočtu modelů s výchozími nastaveními byly upraveny součinitele zatížení SF, aby se shodoval posun v ložisku modelu a skutečně změřených posunů snímačem PSD4 na mostu v každé hodině zkoumaného dne. Nastavení součinitele bylo provedeno pro výchozí nastavení podélných odporů kolejového lože, tedy pro hodnotu 20 kN/m se začínající plastickou větví při 2 mm posunu. Další nastavení součinitele při změnách nastavení podélných odporů nejsou provedena z důvodu minimálních ovlivnění posunů v ložisku. Dále můžete vidět konečný souhrn úpravy součinitele zatížení pro příslušné zatěžovací stavy. Také je zobrazen průběh součinitele SF v průběhu skutečné průměrné změny teploty NK.

	Průměrná	skutečné	model	model			
	zmena	posuny	upravené	skutečné			
	teploty	(PSD4)	teploty	teploty		příslušné	
	NK	, ,	. ,	. ,	konečný	pořadí	příslušný
Datum a čas	∆t [°C]	∆u [mm]	∆u [mm]	∆u [mm]	SF	fáze	ZS
18.06.2023 0:00	-0,594	-0,301	-0,301	-0,420	0,716	2	teplota1
18.06.2023 1:00	-1,185	-0,631	-0,631	-0,838	0,790	3	teplota2
18.06.2023 2:00	-1,701	-0,902	-0,900	-1,203	0,738	4	teplota3
18.06.2023 3:00	-2,159	-1,172	-1,172	-1,527	0,840	5	teplota4
18.06.2023 4:00	-2,581	-1,443	-1,443	-1,826	0,905	6	teplota5
18.06.2023 5:00	-3,049	-1,683	-1,683	-2,157	0,725	7	teplota6
18.06.2023 6:00	-2,810	-1,683	-1,683	-1,988	0,000	8	teplota7
18.06.2023 7:00	-1,216	-0,120	-0,120	-0,860	1,386	9	teplota8
18.06.2023 8:00	0,703	1,864	1,862	0,497	1,460	10	teplota9
18.06.2023 9:00	1,529	3,427	3,432	1,081	2,689	11	teplota10
18.06.2023 10:00	2,477	4,328	4,328	1,752	1,315	12	teplota11
18.06.2023 11:00	2,945	4,208	4,208	2,083	-0,358	13	teplota12
18.06.2023 12:00	3,318	3,968	3,967	2,347	-0,900	14	teplota13
18.06.2023 13:00	3,940	3,968	3,967	2,787	0,000	15	teplota14
18.06.2023 14:00	4,435	3,937	3,937	3,137	-0,085	16	teplota15
18.06.2023 15:00	4,943	3,998	3,997	3,498	0,166	17	teplota16
18.06.2023 16:00	5,654	4,298	4,298	4,009	0,590	18	teplota17
18.06.2023 17:00	6,242	4,509	4,509	4,431	0,500	19	teplota18
18.06.2023 18:00	7,154	4,899	4,900	5,082	0,600	20	teplota19
18.06.2023 19:00	8,461	4,959	4,959	6,015	0,064	21	teplota20
18.06.2023 20:00	8,284	4,479	4,477	5,889	3,808	22	teplota21
18.06.2023 21:00	6,904	3,727	3,728	4,904	0,757	23	teplota22
18.06.2023 22:00	5,409	2,916	2,915	3,833	0,764	24	teplota23
18.06.2023 23:00	4,318	2,254	2,254	3,054	0,856	25	teplota24
19.06.2023 0:00	3,221	1,743	1,743	2,279	0,659	26	teplota25

Tab. 27 Souhrn konečné úpravy součinitele zatížení SF pro model dne 18. 6. 2023

Obr. 77 Srovnání průběhu skutečných posunů ložiska s posuny z výchozího nastavení modelu a po úpravě zatížení (teplot) součinitelem SF - model 18.6.2023

Obr. 78 Průběh součinitele zatížení SF – model 18.6.2023

	Průměrná	skutečné	model	model			
	změna	posuny	upravené	skutečné		příslušné	
	teploty	(PSD4)	teploty	teploty	konečný	pořadí	příslušný
Datum a čas	∆t [°C]	∆u [mm]	∆u [mm]	∆u [mm]	SF	fáze	ZS
21.05.2023 0:00	-0,677	-0,391	-0,391	-0,479	0,816	2	teplota26
21.05.2023 1:00	-1,174	-0,691	-0,691	-0,831	0,854	3	teplota27
21.05.2023 2:00	-1,682	-0,932	-0,932	-1,190	0,670	4	teplota28
21.05.2023 3:00	-2,167	-1,202	-1,202	-1,533	0,789	5	teplota29
21.05.2023 4:00	-2,664	-1,443	-1,443	-1,885	0,684	6	teplota30
21.05.2023 5:00	-3,193	-1,743	-1,743	-2,258	0,804	7	teplota31
21.05.2023 6:00	-3,375	-1,833	-1,833	-2,387	0,699	8	teplota32
21.05.2023 7:00	-1,792	-0,421	-0,421	-1,267	1,261	9	teplota33
21.05.2023 8:00	0,255	1,653	1,653	0,181	1,432	10	teplota34
21.05.2023 9:00	1,068	3,246	3,246	0,755	2,772	11	teplota35
21.05.2023 10:00	1,901	3,697	3,696	1,345	0,756	12	teplota36
21.05.2023 11:00	2,177	3,306	3,309	1,540	-1,959	13	teplota37
21.05.2023 12:00	2,490	3,006	3,008	1,761	-1,362	14	teplota38
21.05.2023 13:00	3,036	2,855	2,856	2,148	-0,394	15	teplota39
21.05.2023 14:00	3,563	2,885	2,885	2,520	0,081	16	teplota40
21.05.2023 15:00	3,990	3,036	3,036	2,822	0,497	17	teplota41
21.05.2023 16:00	4,536	3,396	3,396	3,209	0,931	18	teplota42
21.05.2023 17:00	5,083	3,727	3,727	3,598	0,842	19	teplota43
21.05.2023 18:00	6,385	4,268	4,269	4,533	0,580	20	teplota44
21.05.2023 19:00	7,328	4,418	4,419	5,207	0,222	21	teplota45
21.05.2023 20:00	6,635	3,847	3,847	4,712	1,151	22	teplota46
21.05.2023 21:00	5,005	3,156	3,153	3,542	0,595	23	teplota47
21.05.2023 22:00	3,656	2,525	2,525	2,586	0,658	24	teplota48
21.05.2023 23:00	2,427	1,924	1,924	1,717	0,691	25	teplota49
22.05.2023 0:00	1,589	1,383	1,383	1,124	0,912	26	teplota50

Tab. 28 Souhrn konečné úpravy součinitele zatížení SF pro model dne 21. 5. 2023

Obr. 79 Srovnání průběhu skutečných posunů ložiska s posuny z výchozího nastavení modelu a po úpravě zatížení (teplot) součinitelem SF - model 21. 5. 2023

Obr. 80 Průběh součinitele zatížení SF – model 21. 5. 2023

Po zjištění těchto konečných součinitelů zatížení s použitím výchozího nastavení (podélný odpor 20 kN/m s počátkem plastické větve při 2 mm posunu) je dále proveden ruční výpočet normálové síly kolejnice od vlivu změny teploty kolejnice dle následujícího vzorce.

 $\mathsf{N} = \sigma_{\mathsf{T}} \cdot \mathsf{A} = -\alpha_{\mathsf{T}} \cdot \mathsf{E} \cdot \Delta \mathsf{T} \cdot \mathsf{A}$

Kde

Součinitel teplotní roztažnosti oceli $\alpha_T = 1 \cdot 10^{-5} \circ C^{-1}$ Modul pružnosti oceli E = 2,1 · 10⁵ N/mm² Plocha kolejnice A = 7650 mm²

V následující tabulce je souhrn vypočtených hodnot normálového napětí v kolejnici od vlivu změny teploty během vybraných dní.

	18. 6. 2	2023				21. 5. 2	023	
	průměr ∆t	průběh	průběh N			průměr ∆t	průběh	průběh N
Datum a čas	kolejnice	přírůstku N	kolejnice	Datu	m a čas	kolejnice	přírůstku N	kolejnice
	[°C]	[kN]	[kN]			[°C]	[kN]	[kN]
18.6.23 0:00	-1,377	22,128	22,128	21.5.	23 0:00	-1,034	16,604	16,604
18.6.23 1:00	-0,950	15,265	37,393	21.5.	23 1:00	-0,625	10,047	26,651
18.6.23 2:00	-0,675	10,840	48,234	21.5.	23 2:00	-0,752	12,085	38,737
18.6.23 3:00	-0,561	9,010	57,243	21.5.	23 3:00	-1,122	18,030	56,767
18.6.23 4:00	-0,720	11,559	68,803	21.5.	23 4:00	-1,035	16,621	73,387
18.6.23 5:00	-0,720	11,560	80,363	21.5.	23 5:00	-0,928	14,903	88,291
18.6.23 6:00	1,128	-18,114	62,249	21.5.	23 6:00	0,385	-6,181	82,110
18.6.23 7:00	6,383	-102,546	-40,297	21.5.	23 7:00	5 <i>,</i> 809	-93,328	-11,219
18.6.23 8:00	7,904	-126,979	-167,276	21.5.	23 8:00	8,103	-130,179	-141,398
18.6.23 9:00	8,416	-135,208	-302,484	21.5.	23 9:00	7,364	-118,298	-259,695
18.6.23 10:00	5,594	-89,871	-392,355	21.5.2	23 10:00	1,843	-29,615	-289,310
18.6.23 11:00	2,825	-45,379	-437,733	21.5.2	23 11:00	0,879	-14,124	-303,434
18.6.23 12:00	0,911	-14,637	-452,371	21.5.2	23 12:00	0,125	-2,007	-305,441
18.6.23 13:00	1,315	-21,123	-473,494	21.5.2	23 13:00	0,335	-5,374	-310,815
18.6.23 14:00	-0,766	12,313	-461,181	21.5.2	23 14:00	0,615	-9,875	-320,690
18.6.23 15:00	0,722	-11,597	-472,779	21.5.2	23 15:00	-0,086	1,381	-319,309
18.6.23 16:00	2,427	-38,994	-511,773	21.5.2	23 16:00	0,584	-9,375	-328,684
18.6.23 17:00	-2,209	35,480	-476,292	21.5.2	23 17:00	0,516	-8,286	-336,970
18.6.23 18:00	1,110	-17,826	-494,118	21.5.2	23 18:00	0,574	-9,222	-346,191
18.6.23 19:00	-3,439	55,242	-438,877	21.5.2	23 19:00	-2,529	40,632	-305,559
18.6.23 20:00	-6,495	104,339	-334,537	21.5.2	23 20:00	-5,876	94,397	-211,163
18.6.23 21:00	-6,786	109,022	-225,515	21.5.2	23 21:00	-5,566	89,426	-121,737
18.6.23 22:00	-5,327	85,573	-139,942	21.5.2	23 22:00	-3,364	54,038	-67,700
18.6.23 23:00	-3,016	48,456	-91,486	21.5.2	23 23:00	-2,285	36,713	-30,987
19.6.23 0:00	-2,020	32,454	-59,032	22.5.	23 0:00	-1,543	24,785	-6,202

Tab. 29 Souhrn hodnot normálového napětí v kolejnici od vlivu změny teploty kolejnice

Po výpočtu normálové síly kolejnice od vlivu změny teploty kolejnice byl dále proveden součet s normálovou sílou od vlivu změny teploty NK, která byla převzata z výpočetního modelu. Následně je provedeno srovnání průběhů normálové síly v kolejnici v místech měřených snímači TK22 a TK23. Je porovnáván skutečný průběh normálové síly v kolejnici s dalšími nastaveními podélných odporů (viz tabulka níže) a výchozím nastavením modelu se skutečnými teplotami (tedy SF=1 po celý program fází výstavby).

Nas	tavení pod	élných odpo	orů
k [kN/m]	u₁ [mm]	u ₂ [mm]	u₃ [mm]
10	1	2	3
20	1	2	3
30	1	2	3
40	-	2	-

Označení nastavení podélných odporů ve formátu k_u [kN/m_mm]		
10_1	10_2	10_3
20_1	20_2	20_3
30_1	30_2	30_3
-	40 2	-

Tab. 30 Souhrn použitých nastavení podélných odporů v modelech pro oba vybrané dny

Obr. 81 Nastavení výchozího podélného odporu 20_2

Dále můžete vidět srovnání průběhů normálové síly v kolejnici v závislosti na skutečném průměrném oteplení NK v polohách snímačů TK22 a TK23 pro různá nastavení podélných odporů. Je provedena také obálka průběhů normálové síly od těchto nastavení. Toto srovnání a obálka je také provedena pro relativní posun koleje a NK v závislosti na skutečném průměrném oteplení NK v poloze snímače PSDK2. Následně je proveden průběh nejbližších hodnot z modelů ke skutečnému monitoringem změřenému

stavu. Z těchto nejbližších hodnot je vytvořeno tabulkové srovnání nastaveních podelného odporu koleje na mostu. Následně je provedeno přibližné určení nastavení podelného odporu koleje na mostu dle Pearsonova korelačního koeficientu.

Poznámka:

- Monitoring -> skutečně zjištěné hodnoty N [kN] resp. u [mm]
- model skutečné teploty

-> znamená model se součiniteli zatížení SF=1,0

model - upravené teploty -> znamená model se součiniteli zatížení SF≠1,0;

které byly nastaveny ke skutečnému posunu ložiska

Model 18. 6. 2023

Obr. 82 Průběh normálové síly v kolejnici od výběru zkoušených nastavení podélného odporu koleje v místě TK22 – model 18.6.2023

Obr. 83 Obálka normálové síly v kolejnici od všech zkoušených nastavení podélného odporu koleje v místě TK22 – model 18.6.2023

Obr. 84 Nejbližší hodnoty normálové síly od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě TK22 – model 18.6.2023

Obr. 85 Průběh normálové síly v kolejnici od výběru zkoušených nastavení podélného odporu koleje v místě TK23 – model 18.6.2023

Obr. 86 Obálka normálové síly v kolejnici od všech zkoušených nastavení podélného odporu koleje v místě TK23 – model 18.6.2023

Obr. 87 Nejbližší hodnoty normálové síly od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě TK23 – model 18.6.2023

Obr. 88 Průběh relativního posunu koleje a NK mostu od výběru zkoušených nastavení podélného odporu koleje v místě PSDK2 – model 18.6.2023

Obr. 89 Obálka relativního posunu koleje a NK mostu od všech zkoušených nastavení podélného odporu koleje v místě PSDK2 – model 18.6.2023

Obr. 90 Nejbližší hodnoty relativního posunu koleje a NK mostu od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě PSDK2 – model 18.6.2023

Model 21. 5. 2023

Obr. 91 Průběh normálové síly v kolejnici od výběru zkoušených nastavení podélného odporu koleje v místě TK22 – model 21.5.2023

Obr. 92 Obálka normálové síly v kolejnici od všech zkoušených nastavení podélného odporu koleje v místě TK22 – model 21.5.2023

Obr. 93 Nejbližší hodnoty normálové síly od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě TK22 – model 21.5.2023

Obr. 94 Průběh normálové síly v kolejnici od výběru zkoušených nastavení podélného odporu koleje v místě TK23 – model 21.5.2023

Obr. 95 Obálka normálové síly v kolejnici od všech zkoušených nastavení podélného odporu koleje v místě TK23 – model 21.5.2023

Obr. 96 Nejbližší hodnoty normálové síly od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě TK23 – model 21.5.2023

Obr. 97 Průběh relativního posunu koleje a NK mostu od výběru zkoušených nastavení podélného odporu koleje v místě PSDK2 – model 21.5.2023

Obr. 98 Obálka relativního posunu koleje a NK mostu od všech zkoušených nastavení podélného odporu koleje v místě PSDK2 – model 21.5.2023

Obr. 99 Nejbližší hodnoty relativního posunu koleje a NK mostu od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě PSDK2 – model 21.5.2023

	TK22	TK23	PSDK2			TK22	ТК23	PSDK2
	odpovídající	odpovídající	odpovídající			odpovídající	odpovídající	odpovídající
Datum a čas	podélný odpor	podélný odpor	podélný odpor		Datum a čas	podélný odpor	podélný odpor	podélný odpor
18.06.2023 0:00	20_3	20_3	30_1		21.05.2023 0:00	10_2	20_3	30_1
18.06.2023 1:00	10_2	10_2	20_1		21.05.2023 1:00	10_2	10_2	30_1
18.06.2023 2:00	10_2	10_2	20_1		21.05.2023 2:00	20_3	10_2	30_1
18.06.2023 3:00	10_2	10_2	30_2		21.05.2023 3:00	20_3	10_2	30_1
18.06.2023 4:00	10_2	10_2	30_2		21.05.2023 4:00	10_3	10_2	30_1
18.06.2023 5:00	10_2	10_2	30_2		21.05.2023 5:00	10_3	10_2	30_1
18.06.2023 6:00	10_3	10_3	30_2		21.05.2023 6:00	10_3	10_3	20_1
18.06.2023 7:00	10_3	10_3	10_3		21.05.2023 7:00	10_3	10_3	10_3
18.06.2023 8:00	10_2	10_2	30_1		21.05.2023 8:00	20_3	10_3	30_1
18.06.2023 9:00	10_2	10_2	40_2		21.05.2023 9:00	10_2	10_2	40_2
18.06.2023 10:00	10_2	10_2	40_2		21.05.2023 10:00	10_2	10_2	40_2
18.06.2023 11:00	10_2	10_2	40_2		21.05.2023 11:00	20_3	20_3	40_2
18.06.2023 12:00	10_2	10_2	40_2		21.05.2023 12:00	10_2	10_2	30_1
18.06.2023 13:00	10_2	10_2	40_2		21.05.2023 13:00	20_3	20_3	30_1
18.06.2023 14:00	10_2	10_2	40_2		21.05.2023 14:00	20_2	20_3	30_1
18.06.2023 15:00	20_3	10_2	40_2		21.05.2023 15:00	20_2	10_2	30_2
18.06.2023 16:00	20_3	10_2	40_2		21.05.2023 16:00	10_1	20_3	30_2
18.06.2023 17:00	20_3	10_2	40_2		21.05.2023 17:00	10_1	20_3	20_1
18.06.2023 18:00	20_3	10_2	40_2		21.05.2023 18:00	10_1	20_3	30_3
18.06.2023 19:00	20_3	10_2	40_2		21.05.2023 19:00	20_3	10_2	30_3
18.06.2023 20:00	20_3	10_2	30_3		21.05.2023 20:00	10_2	10_2	10_2
18.06.2023 21:00	10_2	10_3	10_1		21.05.2023 21:00	10_3	10_3	10_3
18.06.2023 22:00	10_3	10_3	10_3		21.05.2023 22:00	10_3	10_3	10_3
18.06.2023 23:00	10_3	10_3	10_3		21.05.2023 23:00	10_3	10_3	10_3
19.06.2023 0:00	10_3	10_3	10_3		22.05.2023 0:00	10_3	10_3	10_3
legenda: XX_Y								
XX = podélný odpor [kN/m]								
Y = posun při kterém vzniká plastická deformace [mm]								

Tab. 31 Srovnání souhrnů nastavení podélného odporu koleje na mostu jejichž hodnoty byly

nejblíže měřené skutečnosti v daný časový okamžik – modely 21. 5. 2023 a 18. 6. 2023

8.2.2.2 Stanovení podélného odporu dopravou nezatížené koleje

Určení přibližného podélného odporu dopravou nezatížené koleje je provedeno pomocí srovnání Pearsonových korelačních koeficientů vyhodnocujících blízkost skutečných hodnot zjištěných z monitoringu a hodnot od každého použitého nastavení podélného odporu koleje na mostu vypočítaných numerickým modelem.

Pearsonův korelační koeficient "r"

Dle [16] určuje sílu lineární závislosti mezi dvěma hodnotami. Umožnuje například vyčíslit, jak silná je vazba mezi výsledky ve dvou různých experimentech, nebo v tomto případě mezi výsledky monitoringu a výsledky z různých nastavení modelu. Rozlišují se 3 druhy korelace podle toho, co se stane s první proměnou, když druhá poroste.

- Kladná korelace současný růst první a druhé proměnné
- Záporná korelace první proměnná klesá, když druhá roste
- Nulová korelace první proměnná neklesá ani neroste, když druhá roste

Pro hodnoty Pearsonova korelačního koeficientu platí

-1 ≤ r ≤1

Obr. 100 Příklady Pearsonova korelačního koeficientu pro ukázkové vzorky dat [17]

Korelační koeficient je velmi ovlivněn odlehlými hodnotami. Pearsonův korelační koeficient je vypočten pomocí směrodatných odchylek obou proměnných a jejich kovariance (= míra vzájemné vazby mezi veličinami).

Pro případ stanovení podélného odporu koleje nezatížené koleje byla vybírána hodnota korelačního koeficientu nejvíce se blížící dokonale záporné korelaci (viz následující tabulka).

18.06.2023			21.05.2023			-	
Nastavení	N (TK22)	N (TK23)	u (PSDK2)	Nastavení	N (TK22)	N (TK23)	u (PSD
p.o.	r	r	r	p.o.	r	r	r
10_3	0,99898	0,99899	0,87602	10_3	0,99660	0,99814	0,8628
10_2	0,99849	0,99812	0,87632	10_2	0,99546	0,99657	0,8648
20_3	0,99805	0,99753	0,87558	20_3	0,99418	0,99507	0,8628
20_2	0,99740	0,99619	0,87679	20_2	0,99224	0,99243	0,8644
30_3	0,99715	0,99618	0,87551	30_3	0,99214	0,99246	0,8628
30_2	0,99637	0,99464	0,87684	10_1	0,99135	0,99191	0,8622
10_1	0,99592	0,99471	0,87165	30_2	0,98989	0,98940	0,8640
40_2	0,99551	0,99336	0,87684	40_2	0,98818	0,98714	0,8636
20_1	0,99435	0,99161	0,87242	20_1	0,98792	0,98695	0,8626
30_1	0,99365	0,98985	0,87281	30_1	0,98600	0,98396	0,8629
nejbližší p.o.	10_3	10_3	40_2	nejbližší p.o.	10_3	10_3	10_2

Tab. 32 Srovnání korelačních koeficientů od všech vypočtených nastavení podélného odporu koleje na mostu jejichž hodnoty byly nejblíže měřené skutečnosti v průběhu vybraných dní – modely 21. 5. 2023 a 18. 6. 2023

Přibližný podélný odpor dopravou nezatížené koleje je stanoven na hodnotě **10 kN/m s plastickou větví začínající při deformaci 3 mm**, toto nastavení bylo vybráno z důvodu největší četnosti ve vyhodnocení dle korelačního koeficientu. Nicméně je vidět určitý nesoulad modelu relativního posunu se změřenou skutečností, z toho důvodu nemůžeme určit přesné nastavení podélného odporu dopravou nezatížené koleje.

Obr. 101 Nastavení podélného odporu 10_3

9 Závěr

Byl zjištěn přibližný podélný odpor koleje v dopravou nezatíženém stavu na vybraném mostu pomocí měřených dat z kontinuálního monitoringu a numerického modelování. Hodnota podélného odpor v dopravou nezatížené koleji na mostu byla přibližně stanovena na **10 kN/m s plastickou větví začínající při deformaci 3 mm**. Bližší výsledek nebyl možný určit z důvodu častého provozu na mostu, jedná se o část tranzitního IV. železničního koridoru České republiky. Vliv dopravy byl částečně odfiltrován, nicméně při každém přejetí drážního vozidla po mostu dochází k vibracím a tím k drobnému přeskládání kolejového lože, jehož vlastnosti tvoří podstatnou část podélného odporu koleje.

Byl stanoven přírůstek **10 kN/m** v pružné části podélného odporu koleje od svislého zatížení při SZZ. Dle velikosti a průběhu relativních posunů koleje a mostu nedošlo k plastickému přetváření kolejového lože vlivem svislého přitížení v průběhu podélného odporu při SZZ. Pro zjištění celého rozsahu přírůstku s plastickou větví podélného odporu od zatížené koleje by bylo třeba mít svislé zatížení v poloze po delší časový interval a také zejména větší teplotní rozdíl než byl dosažen při SZZ.

Bylo provedeno srovnání průběhu napětí v kolejnici po mostě při SZZ s výsledky modelu.

10 Seznam použité literatury a zdrojů

- [1] PLÁŠEK, Otto; ZVĚŘINA, Pavel; SVOBODA, Richard; LANGER, Vojtěch. Železniční stavby, Modul 6, Bezstyková kolej. Brno: VUT Brno, 2006
- [2] SUDOP PRAHA. Modernizace trati Veselí nad Lužnicí-Tábor-II. část, úsek Veselí nad Lužnicí-Doubí u Tábora, 2. etapa Soběslav – Doubí.
 SO 52-20-03 Most v km 67,130. TECHNICKÁ ZPRÁVA. 2018
- [3] AUTOR NEUVEDEN. koridory.cz [online]. 27.12.2021 [cit. 10.5.2022]. Dostupný na WWW: https://www.koridory.cz/plan-postupu-praci-sobeslav-doubi-na-rok-2022/
- [4] SUDOP PRAHA. Modernizace trati Veselí nad Lužnicí-Tábor-II. část, úsek Veselí nad Lužnicí-Doubí u Tábora, 2. etapa Soběslav – Doubí. SO 52-20-03 Most v km 67,130. Výkresová dokumentace. 2018
- [5] ZASLAVSKIJ, Lukáš. Bakalářská práce ČVUT. Tenzometrické měření za vyšších teplot. 2019
- [6] SUDOP PRAHA. Modernizace trati Veselí nad Lužnicí-Tábor-II. část,
 úsek Veselí nad Lužnicí-Doubí u Tábora, 2. etapa Soběslav Doubí.
 SO 52-20-03 Most v km 67,130. STATICKÝ VÝPOČET POSOUZENÍ BK NA MOSTĚ. 2018
- [7] ČSN EN 1991-2 ed. 2. Eurokód 1: Zatížení konstrukcí: Část 2 Zatížení mostů dopravou.
 ČNI, 2005
- [8] SŽDC. Mostní vzorový list MVL 150 Kombinovaná odezva mostu a koleje. 2016
- [9] Fakulta stavební ČVUT, katedra ocelových a dřevěných konstrukcí. Dlouhodobý monitoring mostu na TÚ 1701 České Velenice (mimo) – Benešov u Prahy (mimo), ev. km 67,130. Technologický postup a dokumentace monitoringu. 2022
- [10] ČSN EN 1993-2: Eurokód 3: Navrhování ocelových konstrukcí: Část 2 Ocelové mosty. ČNI, 2008
- [11] SUDOP PRAHA. Modernizace trati Veselí nad Lužnicí-Tábor-II. část, úsek Veselí nad Lužnicí-Doubí u Tábora, 2. etapa Soběslav – Doubí.
 SO 52-20-03 Most v km 67,130. Podklady pro zatěžovací zkoušku. 2022
- [12] ČSN EN 1991-1-5: Eurokód 1: Zatížení konstrukcí: Část 1-5 Obecná zatížení Zatížení teplotou. ČNI, 2005
- [13] SŽDC. Předpis SŽDC S3/2 Bezstyková kolej. 2013
- [14] UIC. UIC 774-3 Code for Track Rail Interaction. 2001
- [15] POUR, Pour. Bakalářská práce ČVUT. Posouzení interakce most kolej železničního mostu. 2022
- [16] ZVÁRA, Karel. Základy statistiky v prostředí R. 1. vydání. Praha : Karolinum. 2013.
- [17] Pearsonův korelační koeficient. MUNI ECON, Katedra aplikované matematiky,
 Math and Stats Support Centre. [cit. 6.1.2023]. Dostupný na WWW: https://mathstat.econ.muni.cz/media/12657/pear_cor.pdf.
- [18] SŽDC. Předpis SŽDC S3 Železniční svršek ve znění změny č. 4. 2021

11 Seznam obrázků

Obr. 1 Vybočení koleiového roštu ve svislé rovině [1]
Obr. 2 Tvary vybočení bezstykové koleje ve vodorovné rovině [1]
Obr. 3 Závislost, podélného odporu na relativním posunu koleje [8]
Obr. 4 Typický průběh příčného odporu v závislosti na příčné výchylce koleje [1]
Obr. 5 Průběh normálové síly po délce bezstykové koleje
Obr. 6 Elementární díl prutu
Obr. 7 Průběh osových sil posunů na dýchajícím konci [1]
Obr. 8 Průběh svislého zatlačení koleje pod jedoucím vlakem [1]
Obr. 9 Model zatížení 71 [7]
Obr. 10 Příklad modelu systému most/kolej [7]
Obr. 11 Princip aplikace podélného odporu [8]
Obr. 12 Fotka mostu přes Kamenný rybník, červenec 2022
Obr. 13 Územní podmínky (situace přístupových tras) [2]
Obr. 14 Statické schéma mostní konstrukce [2]
Obr. 15 Půdorys mostu (vlevo) a půdorysné schéma rozmístění ložisek (vpravo) [4]
Obr. 16 Podélný řez (vlevo) a pohled zprava na most (vpravo) [4]
Obr. 17 Vzorový příčný řez v poli [4]
Obr. 18 Nově vybudovaná trasa [3]
Obr. 19 Připojení snímačů na kolejnici
Obr. 20 Zakrytí snímačů na kolejnici
Obr. 21 Připojení tenzometru kolej-polomost
Obr. 22 Systémy zapojení odporových tenzometrů
Obr. 23 Připojení potenciometrického snímače dráhy (SS:NK)(SS = spodní stavba)
Obr. 24 Připojení potenciometrického snímače dráhy (most:kolejnice) ke kolejnici
Obr. 25 Připojení potenciometrického snímače dráhy (most:kolejnice)
Obr. 26 Připojení snímače teploty na kolejnici
Obr. 27 Schéma umístění snímačů teploty NK (př. nad pilířem P1) [9]
Obr. 28 DataTaker DT80 Series 4 [9]
Obr. 29 Umístění potenciometrického snímače dráhy (SS:NK) a měřicích ústředen typu StatoTest
na pilíři P4 a NK2 a NK3.
Obr. 30 Legenda a výkaz měřicí techniky [9]
Obr. 31 Podélné rozmístění snímačů u NK1 (Pole 1) [9]
Obr. 32 Podélné rozmístění snímačů u NK2 (Pole 2 – 4) [9]
Obr. 33 Podélné rozmístění snímačů u NK3 (Pole 5 – 7) [9]
Obr. 34 Sestava zkušebních vozidel pro kolej č. 1 (dále Sestava 1) [11]
Obr. 35 Sestava zkušebních vozidel pro kolej č. 2 (dále Sestava 2) [11]
Obr. 36 Průběh napětí v kolejnici od snímačů v 1. poli při ZS1 – zobrazena ovlivněná část měření
snímače TKD4
Obr. 37 Průběh napětí v kolejnici od snímačů v 1. poli při ZS1 – ovlivněná data ze snímače TKD4
nezobrazena (viz kapitola 6.2.1)
Obr. 38 Průběh napětí po mostě při ZS1
Obr. 39 Průběh napětí po mostě při ZS2

Obr. 40 Průběh napětí po mostě při ZS3 Obr. 41 Průběh napětí po mostě při ZS4 Obr. 42 Průběh napětí po mostě při ZS5 Obr. 43 Průběh napětí po mostě při ZS6 Obr. 44 Průběh napětí po mostě při ZS7 Obr. 45 Průběh podélného posunu SS(P1):NK2 ze snímače PSD1 (levý konec NK2) při SZZ Obr. 46 Průběh podélného posunu SS(P4):NK2 ze snímače PSD2 (pravý konec NK2) při SZZ Obr. 47 Průběh podélného posunu SS(P4):NK3 ze snímače PSD3 (levý konec NK3) při SZZ Obr. 48 Průběh podélného posunu SS(OP2):NK3 ze snímače PSD4 (pravý konec NK3) při SZZ Obr. 49 Průběh podélného posunu kolej : most ze snímače PSDK2 při SZZ Obr. 50 Průběh teploty NK nad pilířem P1 při SZZ – snímače ST1-6 Obr. 52 Průběh průměrů teploty kolejnice při SZZ – snímače STK1-4 Obr. 53 Průběh průměrů teploty kolejnice při SZZ – snímače STK5-9 Obr. 54 Poloha zatěžovací sestavy 2 na mostu v koleji 2 při ZS 7.2 – nahoře popis polohy snímačů Obr. 55 Průběh změny podélného odporu v části průběhu SZZ (23:56-5:20) Obr. 56 Průběh změny podélného odporu při ZS7.2 a ZS7.3 Obr. 57 Výpočetní prutový model (462,8 m) Obr. 58 Výpočetní prutový model (most) Obr. 59 Výpočetní prutový model (oblast opěry OP1) Obr. 60 Rendrovaný pohled na NK1 v modelu Obr. 61 Rendrovaný pohled na most v modelu – jednotlivé barvy znázorňují změny průřezu Obr. 62 Průřez dvou kolejnic 60 E 2 na sraz k sobě pro modely SZZ a monitoringu, A1 = 7650 mm2 Obr. 63 Růžový průřez nosné konstrukce (příklad průřezu 1) Obr. 64 Šedivý průřez nosné konstrukce (příklad průřezu 2) Obr. 65 Svislá tuhost linku kolejového lože na mostě [m; kN/m] Obr. 66 Svislá tuhost linku kolejového lože v širé trati [m; kN/m] Obr. 67 Vodorovná tuhost linku kolejového lože v nezatížené části koleje [m; kN/m] Obr. 68 Vodorovná tuhost linku kolejového lože v zatížené části koleje [m; kN/m] Obr. 69 Srovnání průběhu napětí v kolejnici po mostě při ZS 1.2 s modelem Obr. 70 Srovnání průběhu napětí v kolejnici po mostě při ZS 2.2 s modelem Obr. 71 Srovnání průběhu napětí v kolejnici po mostě při ZS 3.2 s modelem Obr. 72 Srovnání průběhu napětí v kolejnici po mostě při ZS 4.2 s modelem Obr. 73 Srovnání průběhu napětí v kolejnici po mostě při ZS 5.2 s modelem Obr. 74 Srovnání průběhu napětí v kolejnici po mostě při ZS 6.2 s modelem Obr. 75 Srovnání průběhu napětí v kolejnici po mostě při ZS 7.2 s modelem Obr. 76 Srovnání průběhů teploty vzduchu a průměrů teplot NK a kolejnice – 18.6.2023 a 21.5.2023 Obr. 77 Srovnání průběhu skutečných posunů ložiska s posuny z výchozího nastavení modelu a po úpravě zatížení (teplot) součinitelem SF - model 18.6.2023 Obr. 78 Průběh součinitele zatížení SF – model 18.6.2023 Obr. 79 Srovnání průběhu skutečných posunů ložiska s posuny z výchozího nastavení modelu a po úpravě zatížení (teplot) součinitelem SF - model 21. 5. 2023 Obr. 80 Průběh součinitele zatížení SF – model 21. 5. 2023 Obr. 81 Nastavení výchozího podélného odporu 20 2

Obr. 82 Průběh normálové síly v kolejnici od výběru zkoušených nastavení podélného odporu koleje v místě TK22 – model 18.6.2023

Obr. 83 Obálka normálové síly v kolejnici od všech zkoušených nastavení podélného odporu koleje v místě TK22 – model 18.6.2023

Obr. 84 Nejbližší hodnoty normálové síly od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě TK22 – model 18.6.2023

Obr. 85 Průběh normálové síly v kolejnici od výběru zkoušených nastavení podélného odporu koleje v místě TK23 – model 18.6.2023

Obr. 86 Obálka normálové síly v kolejnici od všech zkoušených nastavení podélného odporu koleje v místě TK23 – model 18.6.2023

Obr. 87 Nejbližší hodnoty normálové síly od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě TK23 – model 18.6.2023

Obr. 88 Průběh relativního posunu koleje a NK mostu od výběru zkoušených nastavení podélného odporu koleje v místě PSDK2 – model 18.6.2023

Obr. 89 Obálka relativního posunu koleje a NK mostu od všech zkoušených nastavení podélného odporu koleje v místě PSDK2 – model 18.6.2023

Obr. 90 Nejbližší hodnoty relativního posunu koleje a NK mostu od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě PSDK2 – model 18.6.2023

Obr. 91 Průběh normálové síly v kolejnici od výběru zkoušených nastavení podélného odporu koleje v místě TK22 – model 21.5.2023

Obr. 92 Obálka normálové síly v kolejnici od všech zkoušených nastavení podélného odporu koleje v místě TK22 – model 21.5.2023

Obr. 93 Nejbližší hodnoty normálové síly od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě TK22 – model 21.5.2023

Obr. 94 Průběh normálové síly v kolejnici od výběru zkoušených nastavení podélného odporu koleje v místě TK23 – model 21.5.2023

Obr. 95 Obálka normálové síly v kolejnici od všech zkoušených nastavení podélného odporu koleje v místě TK23 – model 21.5.2023

Obr. 96 Nejbližší hodnoty normálové síly od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě TK23 – model 21.5.2023

Obr. 97 Průběh relativního posunu koleje a NK mostu od výběru zkoušených nastavení podélného odporu koleje v místě PSDK2 – model 21.5.2023

Obr. 98 Obálka relativního posunu koleje a NK mostu od všech zkoušených nastavení podélného odporu koleje v místě PSDK2 – model 21.5.2023

Obr. 99 Nejbližší hodnoty relativního posunu koleje a NK mostu od všech zkoušených nastavení podélného odporu koleje v kolejnici v místě PSDK2 – model 21.5.2023

Obr. 100 Příklady Pearsonova korelačního koeficientu pro ukázkové vzorky dat [17]

Obr. 101 Nastavení podélného odporu 10_3

12 Seznam tabulek

Tab. 1 Největší přípustné dilatující délky LT NK mostů pro zřízení BK [18] Tab. 2 Popis snímačů teploty NK Tab. 3 Program SZZ Tab. 4 Kalibrace snímačů na měřící ústředně EMS TKD (dočasné tenzometry při SZZ) Tab. 5 Kalibrace snímačů na měřících ústřednách EMS_S_DT1 a EMS_S_DT2 Tab. 6 Oprava měřených dat ze snímačů teplot kolejnice Tab. 7 Popis polohy potenciometrických snímačů dráhy Tab. 8 Popis polohy snímačů teploty NK Tab. 9 Tabulka postavení kol Šlechtičny vůči snímačům TK22 a TK23 Tab. 10 Nastínění postupu výpočtu pro vytvoření průběhu podélného odporu koleje Tab. 11 Vlastnosti nelineárních pružin v místech pevných ložisek Tab. 12 Srovnání maximálních rozdílů denních relativních posunů kolej : NK ze snímačů PSDK1-2 Tab. 13 Souhrn s hodnotami měřenými na snímačích v době denních maxim a minim relativních posunů nad opěrou OP2 – část 1 Tab. 14 Souhrn s hodnotami měřenými na snímačích v době denních maxim a minim relativních posunů nad opěrou OP2 – část 2 Tab. 15 Teploty NK2 nad pilířem P1 pro výpočet vstupních hodnot do modelu – 18. 6. 2023 Tab. 16 Teploty NK3 nad pilířem P4 pro výpočet vstupních hodnot do modelu – 18. 6. 2023 Tab. 17 Teploty NK2 nad pilířem P1 pro výpočet vstupních hodnot do modelu – 21. 5. 2023 Tab. 18 Teploty NK3 nad pilířem P4 pro výpočet vstupních hodnot do modelu – 21. 5. 2023 Tab.19 Výpočet vstupních hodnot rozdílů teploty NK do modelu Tab. 20 Průměry teploty kolejnice – 18. 6. 2023 Tab. 21 Průměrné změny teploty kolejnice – 18. 6. 2023 Tab. 22 Průměry teploty kolejnice – 21. 5. 2023 Tab. 23 Průměrné změny teploty kolejnice – 21. 5. 2023 Tab. 24 Souhrn vstupních hodnot rozdílů teploty NK do modelu a rozdílů teploty kolejnice k ručnímu výpočtu Tab. 25 Souhrn fází výstavby pro model dne 18. 6. 2023 Tab. 26 Souhrn fází výstavby pro model dne 21. 5. 2023 Tab. 27 Souhrn konečné úpravy součinitele zatížení SF pro model dne 18. 6. 2023 Tab. 28 Souhrn konečné úpravy součinitele zatížení SF pro model dne 21. 5. 2023 Tab. 29 Souhrn hodnot normálového napětí v kolejnici od vlivu změny teploty kolejnice Tab. 30 Souhrn použitých nastavení podélných odporů v modelech pro oba vybrané dny Tab. 31 Srovnání souhrnů nastavení podélného odporu koleje na mostu jejichž hodnoty byly nejblíže měřené skutečnosti v daný časový okamžik – modely 21. 5. 2023 a 18. 6. 2023 Tab. 32 Srovnání korelačních koeficientů od všech vypočtených nastavení podélného odporu koleje na mostu jejichž hodnoty byly nejblíže měřené skutečnosti v průběhu vybraných dní – modely 21. 5. 2023 a 18. 6. 2023

13 Seznam zkratek

BK	bezstyková kolej
NK	nosná konstrukce
SZZ	statická zatěžovací zkouška
ZS	zatěžovací stav
SS	spodní stavba
KL	kolejové lože
ТК	tenzometr kolejnice
PSD	potenciometrický snímač dráhy (SS:NK)
PSDK	potenciometrický snímač dráhy koleje (kolej:NK)
ST	snímač teploty (NK)
STK	snímač teploty kolejnice

Příloha 1 – SZZ - Průběhy napětí v kolejnici po polích

Pole 1 - ovlivněná data ze snímače TKD4 při ZS1 nezobrazena (viz kapitola 6.2.1)

Poznámka: v grafech následujících za sebou platí: ZS X.3 = ZS Y.1 (viz kapitola 5.1.1)

Pole 3 - ovlivněná data ze snímače TK7 při ZS3 nezobrazena (viz kapitola 6.2.1)

Pole 4

Pole 6

