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Abstract

This diploma thesis presents the development and implementation of a real-time audio
effects web application. The application leverages the capabilities of the Media Capture
and Streams API in JavaScript to obtain audio input from users and utilizes the Web
Audio API in JavaScript for precise control over the audio input signal and the real-
time application of a variety of audio effects such as Distortion, Reverb, Delay, Overdrive
and Phaser. These effects are explored through in-depth research to understand their
underlying principles and algorithms.

The primary objectives of this diploma thesis includes enabling users to manipulate
audio effects and its parameters for customized audio processing in real time, and offering
control over the routing of effects to create unique audio output configurations.

Keywords:
Audio effect, real-time, Media Capture and Streams API, Web Audio API, Distortion,

Reverb, Delay, Overdrive, Phaser, Audio output.

Abstrakt

Tato práce představuje vývoj a implementaci webové aplikace pro zvukové efekty v reálném
čase. Aplikace využ́ıvá možnosti rozhrańı API Media Capture and Streams v jazyce JavaS-
cript k źıskáńı zvukového vstupu od uživatel̊u a využ́ıvá rozhrańı API Web Audio v jazyce
JavaScript k přesnému ovládáńı vstupńıho zvukového signálu a aplikaci r̊uzných zvukových
efekt̊u v reálném čase, jako jsou Distortion, Reverb, Delay, Overdrive a Phaser. Tyto efekty
jsou zkoumány prostřednictv́ım hloubkového zkoumáńı s ćılem pochopit jejich základńı
principy a algoritmy.

Mezi hlavńı ćıle této diplomové práce patř́ı umožnit uživatel̊um manipulovat se zvukovými
efekty a jejich parametry pro vlastńı zpracováńı zvuku v reálném čase a nab́ıdnout kontrolu
nad směrováńım efekt̊u pro vytvořeńı jedinečných konfiguraćı zvukových výstup̊u.

Keywords:
Zvukový efekt, reálný čas, Media Capture and Streams API, Web Audio API, Distor-

tion, Reverb, Delay, Overdrive, Phaser, Zvukový výstup.
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Chapter 1

Introduction

In recent years, web technologies have evolved significantly, branching out from mere static
content delivery to offering dynamic, interactive applications. One intriguing subject to ap-
pear from this evolution has been that of audio processing. Traditionally, audio processing
and manipulation were tasks left to specialized software, often necessitating extensive ex-
pertise, dedicated hardware, and standalone applications. However, the shift towards a
more connected, digital age brought with it the need for more accessible, real-time audio
processing solutions.

Throughout this transformation, JavaScript and its expanding list of associated APIs
have particularly stood out, enabling interactive and dynamic user experiences, unlocking
an unprecedented potential that stretches beyond dedicated software within the browser
environment. The omnipresence of browsers across devices signifies that these applications
can be universally accessible, unhindered by platform constraints.

Nowadays, audio plays an indispensable role. While offline tools, encompassing both
hardware and software, provide a number of sound manipulation options, the online realm
remains relatively uncharted for audio processing.

This thesis dives into this juncture of real-time audio processing and web technologies.
By crafting a web application that harnesses the capabilities of JavaScript’s Media Capture
and Streams API alongside the Web Audio API, we explore the feasibility, confront the
challenges, and unlock the vast potential of applying intricate audio effects in real-time
within a browser environment. Simultaneously, we endeavor to provide a user-centric plat-
form that showcases audio processing, delivering dynamic and tailored audio experiences
to a diverse spectrum of users.

1.1 Problem Statement

In the landscape of modern web technologies, JavaScript and its associated APIs have
created avenues for dynamic user experiences that challenge the traditional confines of
dedicated software. While audio processing remains a cornerstone in various industries and
creative fields, its integration into the ubiquitous browser environment has been relatively
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tepid. The challenge arises in making intricate audio processing universally accessible
online while maintaining the robustness and versatility of offline tools.

1.2 Hypothesis and Research Questions

1.2.1 Hypothesis

Through the leverage of contemporary web technologies, specifically JavaScript’s Media
Capture and Streams API and the Web Audio API, it’s feasible to create a platform that
facilitates intricate, real-time audio processing in a browser environment, matching, if not
exceeding, the capabilities of dedicated offline tools.

1.2.2 Research Questions

1. How can the Media Capture and Streams API be effectively integrated to capture
user audio in real time?

2. What are the technical challenges and considerations in applying real-time audio
effects using the Web Audio API?

3. How can a user-friendly interface be designed to allow users, regardless of their tech-
nical knowledge, to apply and manipulate audio effects dynamically?

1.3 Objectives

The primary objectives of this research are:

1. To harness the capabilities of the Media Capture and Streams API for real-time,
high-quality audio capture within a browser setting.

2. To apply and manipulate real-time audio effects effectively, utilizing the comprehens-
ive functionalities of the Web Audio API.

3. To design an intuitive web interface that enables users to modify effect parameters
and routing, offering a customized audio processing experience.

4. To explore the underlying principles and algorithms of each audio effect, ensuring
accurate and high-quality audio output.

1.4 Contributions

Rooted in the exploration of audio processing within the modern web sphere, this thesis
offers the following significant contributions:
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1. The conceptualization, design, and realization of a comprehensive web based tool
that enables users to apply and manipulate real-time audio effects.

2. Comprehensive research that clarifies the principles of various audio effects, bridging
the gap between traditional understanding and their application in a browser envir-
onment.

3. Addressing challenges and devising innovative solutions in integrating web-based
technologies for real-time audio processing.

4. A showcase of the vast potential and versatility of web technologies in audio manip-
ulation, paving the way for future research and developments in this domain.

1.5 Thesis Structure

This thesis has the following overall structure:

1. Introduction: This opening chapter introduces the topic, provides an overview of
web-based technologies and audio processing, outlines the challenges, and presents
the hypotheses and objectives of our research.

2. Background and State-of-the-Art : In this chapter, we delve deeper into the theoretical
framework, offering an in-depth exploration of the Media Capture and Streams API
and the Web Audio API. This chapter serves as the foundation for the development
discussed in later chapters.

3. Overview of Our Approach: Here, we present our proposed approach, providing in-
sights into how we tackle the challenges outlined in the introduction. This chapter
sets the stage for the practical implementation of our research

4. Main Results : We unveil the results of our research, showcasing the capabilities and
potential of our web-based audio processing platform.

5. Testing : In this chapter, we describe the testing procedures and validation for the
application. Rigorous tests assess each audio effect’s impact on the sound signal
to ensure the application’s performance aligns with the theoretical design and user
experience expectations.

6. Conclusions : This concluding chapter summarizes our research findings, suggests
areas for further exploration, and reflects on the broader implications of our work.
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Chapter 2

Background and State-of-the-Art

The exploration of any domain necessitates a thorough understanding of its historical and
contemporary facets. This is particularly true when dealing with the intricate intersection
of web technologies and audio processing, two fields that have seen exponential growth
over the years. As we embark on this exploration, it is essential to establish a foundational
knowledge of the tools, methodologies, and advancements that have paved the way for the
current state of web-based audio processing.

This chapter endeavors to provide a comprehensive backdrop against which our re-
search is framed. Initially, we will traverse the history of audio processing, exploring how
traditional standalone tools gradually made space for the emerging web-based platforms.
This historical context serves to highlight the rapid technological advancements that have
ushered in new possibilities for real-time audio manipulation on the web.

Subsequent sections will delve into the core web technologies and APIs that are re-
shaping the realm of online audio processing. An emphasis will be placed on the Media
Capture and Streams API and the Web Audio API, dissecting their functionalities and
understanding their implications in the broader context of web applications.

Finally, by examining the current landscape of web-based audio processing tools and
platforms, we hope to establish a robust groundwork. This foundation will not only support
our research but also highlight the nuances and intricacies of working with audio in the
digital age.

2.1 Audio Processing through History

The domain of audio processing has always been a playground for technological innov-
ation and creativity. Historically, the ability to manipulate and refine sound has opened
doors to artistic expression, communication enhancements, and entertainment experiences.
However, the means by which these manipulations were achieved have undergone radical
changes over time. From analog methods to modern-day digital solutions, the journey of
audio processing mirrors the broader evolution of technology itself.
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2.1.1 Traditional Audio Processing Tools

2.1.1.1 Analog Beginnings: The Precursors to Digital Audio

The rich history of audio processing can be traced back to the intricate realm of ana-
log systems. Long before the advent of digital tools, the world of sound was dominated
by mechanical and electronic devices that manipulated audio signals in their continuous
waveform form.

The earliest phase of audio recording and manipulation was purely mechanical. In-
vented in the late 19th century, phonographs captured sound by etching wave forms onto
rotating cylinders, which could then be played back using a stylus [1]. However, this tech-
nique offered little in the way of manipulation; audio was recorded in a single take, and
edits required physical modifications to the medium itself.

With the rise of electronic circuitry in the early 20th century, a new array of tools
emerged. Mixers or mixing consoles became central to audio processing. These large desks
allowed sound engineers to adjust the volume, panning, and tonal balance of multiple audio
sources, combining them into a cohesive mix [2].

Analog effects processors further expanded the possibilities of sound manipulation.
Devices like the Echoplex provided tape-based delay effects, while the spring and plate
reverbs simulated the acoustics of different environments. Equalizers, such as the Pultec
EQP-1A, allowed for precise tonal shaping, enabling engineers to craft the sonic character of
recordings with precision. Additionally, compressors like the Fairchild 670 became staples
for controlling dynamics, ensuring that recordings maintained a consistent volume while
enhancing certain musical nuances [3].

Despite its many advantages, analog processing was not without challenges. Tape-
based systems introduced noise, and hardware components could introduce unpredict-
ability. Moreover, editing required physical splicing of tapes, a meticulous process that
demanded immense skill.

Nevertheless, the analog era laid a robust foundation for audio processing. The prin-
ciples established by these early tools continue to influence and inspire the digital systems
of today.

2.1.1.2 Transition to Digital: Early Computer-Aided Audio Processing

The shift from analog to digital audio processing brought increased precision, versatil-
ity, and flexibility. Initiated by the advent of microprocessors and advances in computer
memory and storage in the late 20th century, digital audio processing offered an enticing
glimpse into the future of sound manipulation.

The earliest attempts at digital audio can be traced back to early computer systems,
which, while not initially designed for audio, showcased the potential of digital sound syn-
thesis and manipulation [4]. These rudimentary attempts set the stage for more specialized
audio systems.

One of the first and most significant milestones in digital audio was the development
of the Digital-to-Analog Converter (DAC) and its counterpart, the Analog-to-Digital Con-
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verter (ADC). A DAC is a device that converts digital audio data into analog signals, allow-
ing us to hear the audio. Conversely, an ADC performs the opposite function, converting
analog sound into digital data for processing. These devices facilitated the translation
of analog wave forms into digital data and vice-versa, serving as the bridge between the
physical and digital sound domain [5]. The success of these converters enabled the creation
of the first digital audio recorders, which utilized standard videotape to store digital audio
data.

As computer processing power grew, so did the potential for more sophisticated au-
dio manipulation tools. Early software like Sound Designer, which later evolved into the
industry-standard Pro Tools, allowed sound engineers to edit, mix, and master entirely
within the digital domain [6]. These software not only offered more precise editing capab-
ilities but also emulated beloved analog tools, giving engineers the warmth of analog with
the flexibility of digital.

The transition was not without its challenges. Early digital systems, while promising in
precision, often lacked the warmth and character of their analog counterparts. Sample rates
and bit depths, crucial determinants of digital audio quality, were limited by the available
technology of the time, leading some people to criticize the ”coldness” or ”simplicity” of
early digital recordings. Moreover, transitioning required engineers to relearn and adapt to
a new set of tools, a discouraging proposition for those established in the analog domain.

However, the advantages of digital, its repeatability, the ease of editing, and the po-
tential for endless duplication without quality loss—made it the inevitable path forward.
As technology advanced, digital audio processing became more refined, blurring the line
between analog warmth and digital clarity, ultimately leading to more sophisticated audio
environments.

2.1.1.3 Modern Digital Audio Workstations

Digital Audio Workstations (DAWs) today are vastly different from their early prede-
cessors. These platforms have evolved into sophisticated ecosystems, integrating multiple
aspects of audio production, from recording and editing to mixing, mastering, and even
music composition.

The expansion in the capabilities of computer hardware has played a significant role
in this transformation. Faster processors, larger storage solutions, and increased memory
have enabled DAWs to handle complex multi-track projects with hundreds of plugins and
virtual instruments operating simultaneously [7]. Such advancements have been crucial in
enabling complex sound design and elaborate music production processes.

One of the groundbreaking features in modern DAWs is the implementation of non-
destructive editing. This allows engineers and producers to make changes to audio files
without permanently altering the original recording. Instead, edits, effects, and processes
are applied in real-time during playback, preserving the integrity of the source material [8].
This flexibility revolutionized audio production workflows, enabling greater experimenta-
tion without the fear of making irreversible mistakes.
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Modern DAWs have also embraced the world of MIDI (Musical Instrument Digital In-
terface), facilitating electronic music production and virtual instrument sequencing. MIDI
integration has transformed how music is composed, allowing for precise control over every
aspect of a performance, from timing and pitch to expression and dynamics [9].

However, with the vast array of capabilities comes a steeper learning curve. Modern
DAWs, while immensely powerful, require dedicated time for full comprehension.

2.1.1.4 Plugins and VSTs

Furthermore, the introduction of plugins and Virtual Studio Technology (VST) instruments
represented a turning point in the domain of digital audio processing. These digital tools
not only added flexibility to Digital Audio Workstations (DAWs) but also exponentially
expanded their sonic capabilities.

Originally introduced by Steinberg in 1996, VST plugins were designed to emulate the
sound and functionality of classic studio hardware in a digital environment [10]. This
concept allowed producers and sound engineers to integrate vintage compressors, reverbs,
and other renowned audio effects into their digital workstations without needing the phys-
ical hardware.

However, the potential of VSTs extended beyond mere emulation. Innovators in the
field quickly recognized the possibilities that software-based audio tools offered. New,
effects and instruments were developed, pushing the boundaries of music production and
sound design. For instance, granular synthesis plugins, which manipulate tiny grains of
sound to create vast audio landscapes, epitomized the innovative spirit of the digital audio
age [11].

The economic implications of plugins and VSTs were profound. Professional-grade
audio processing, exclusive due to the high cost of hardware, became accessible to anyone.

2.1.2 Web-based Audio Processing Tools

2.1.2.1 Early Web Audio: Embedding and Streaming

In the earliest days of the World Wide Web, the primary focus was on textual and visual
content. Nevertheless, audio soon became one of the first media types to venture into the
digital landscape. As noted by Jenkins et al., the digital landscape saw the introduction
of audio early on, albeit in very primitive forms [12].

One of the earliest methods of incorporating audio into web pages was through simple
embedding. The <embed> tag was commonly used to integrate audio clips into pages.
This was revolutionary at the time, allowing website creators to add a sonic dimension
to their content. However, there were limitations. Users had little control over the play-
back, looping, or volume. Additionally, there was no real capacity for on-the-fly audio
manipulation or interactivity. The embedded audio clips often added to the page’s loading
time and sometimes resulted in a jarring user experience, especially when the audio played
automatically upon page loading.
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As technology evolved, so did the demands of the users. The limitations of basic
embedding led to the rise of streaming. Instead of hosting audio files directly on the website,
they were streamed from a server, which allowed for longer audio pieces, such as songs or
radio broadcasts, to be played without the need for lengthy downloads. This change led
to online radio stations and early music streaming platforms. Streaming represented a
paradigm shift from static, embedded audio content to a more dynamic, continuously
delivered audio experience. It also began to highlight the need for more sophisticated tools
and platforms to handle audio on the web.

Despite the advancements, early web audio faced several challenges. Compatibility
was a major issue, with different browsers supporting different audio formats. This forced
developers to offer multiple formats of the same audio file to ensure all users could play it,
which was neither efficient nor user-friendly. There was also a lack of standardization in
how audio was handled, resulting in varied playback experiences across different websites
and platforms

2.1.2.2 Flash Era: Dynamic Audio and Multimedia

Adobe Flash, initially developed by Macromedia, was introduced in the late 1990s and
rapidly became the preferred solution for web developers seeking to embed multimedia
content on their websites. Flash offered an integrated environment that was particularly
adept at handling both animations and sound, bridging the gap between static content
and dynamic multimedia [13].

Flash revolutionized static audio and limitations in terms of user interaction by allowing
developers to create audio-driven animations, interactive music players, and synchronized
visual-audio presentations. This led to an explosion in web-based games with rich sound
effects, interactive music videos, and even early versions of audio editing tools. The cap-
ability to manipulate audio playback in real-time, sync it with animations, and provide
user-driven controls set the stage for a more immersive web experience.

Flash also had a significant influence on artists and musicians. Emerging bands and
artists began leveraging Flash-based websites as platforms for innovative music releases,
creating interactive album experiences and pioneering the idea of web-based music visu-
alizers. Furthermore, artists could craft unique soundscapes that reacted to user input,
allowing for a personalized experience for each visitor.

However, Flash wasn’t without its criticisms. Being a proprietary software, it often
posed compatibility issues across different devices and operating systems. As highlighted
by multiple tech critics, the over-reliance on Flash sometimes led to bloated web pages,
sluggish performance, and, on occasions, security vulnerabilities. Moreover, the closed
nature of Flash stood in contrast to the growing movement towards open web standards.

Despite its challenges, the importance of Flash in the evolution of web audio and mul-
timedia cannot be understated. By the late 2010s, as open standards gained traction, the
usage of Flash began to decline. Although its prevalence waned, the interactive multimedia
experiences it fostered served as a precursor for the sophisticated web applications seen
today.
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2.1.2.3 HTML5: Standardizing Web Audio

HTML5, ratified in 2014, was not merely an incremental update but represented a pro-
found paradigm shift in how multimedia could be handled on the web. Aiming to be a
comprehensive, open standard, HTML5 was designed to reduce the need for proprietary
plugins like Flash, thereby ensuring a more consistent user experience across devices and
platforms [14].

A significant inclusion in the HTML5 specification was the <audio> element. This
seemingly simple addition allowed for the embedding of audio directly into web pages
without requiring third-party plugins. With attributes enabling autoplay, looping, and
volume control, it provided developers more freedom to integrate audio seamlessly into
web applications. The ability to natively handle audio streams opened the door to various
applications, from simple background music on websites to intricate web-based audio tools.

The transition to HTML5 was met with positivism, especially given its promise for
a more unified, plugin-free web. This shift led to improved load times, enhanced secur-
ity (owing to fewer vulnerabilities from plugins), and a more consistent user experience.
However, as with all technologies, there were challenges. Implementing advanced audio
features required a learning curve, and cross-browser inconsistencies still persisted, albeit
to a lesser extent than in the past.

The integration of HTML5 and its associated technologies marked a turning point in
web audio history. While Flash set the stage for interactive audio experiences, HTML5 and
the Web Audio API standardized and expanded these capabilities, ensuring that dynamic
audio applications could be accessible to a broader audience without proprietary barriers.

2.1.2.4 The Web Audio API: Beyond Simple Playback

With the establishment of HTML5 as a robust foundation for web multimedia, a gap still
existed for intricate audio manipulation and application development. Filling this void was
the Web Audio API, which emerged not merely as a successor to preceding methods, but
as a make over force in the realm of web-based audio processing [15].

Introduced as an interface distinct from the <audio> element, the Web Audio API fo-
cused on the granular, offering a modular, node-based architecture for audio manipulation.
This architecture facilitated the crafting of complex audio processing chains, providing
tools for generating, processing, and analyzing sound in a manner not seen before on the
web [16]. Beyond simple playback, developers could construct sophisticated audio graphs,
harnessing capabilities like 3D spatial audio, real-time filtering, complex audio node routing
and intricate sound synthesis.

However, as with all revolutionary tools, the Web Audio API presented its set of chal-
lenges. Mastery of its extensive capabilities necessitated a deep dive into its documenta-
tion, with the API’s detailed architecture often demanding a profound understanding of
both audio principles and coding expertise. Additionally, occasional browser discrepancies
brought forth challenges, invoking different audio behaviors across platforms.
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In encapsulation, the Web Audio API marked a significant departure from traditional
web audio methods, ushering in an era where the browser transformed into an intricate
audio playground. This paradigm shift not only elevated the standards for web-based audio
processing but also redefined the boundaries of interactive, audio-centric web applications.

2.2 Web Technologies and APIs in Audio Processing

2.2.1 Introduction to Web APIs for Audio

The term ”API”, an acronym for Application Programming Interface, has become an
indispensable part of the technology lexicon. At its core, an API acts as a bridge, enabling
diverse software systems to interact and share functionalities. In the context of the web,
APIs play a pivotal role in enhancing the capabilities of web browsers, allowing them to
execute tasks that go beyond merely rendering text and images.

As we saw in the previous subsection, over the years, Web APIs tailored for audio
processing have emerged, granting browsers the capability to manipulate, analyze, and
synthesize audio data. This shift enabled developers to harness the power of digital audio
processing within a browser environment, eliminating the need for external software or
plugins. The motivation behind such advancement was two-fold: the increasing demand
for rich multimedia web experiences and the inherent limitations of earlier audio embedding
techniques.

Earlier web-based audio implementations were fairly rudimentary, restricted to playing
back audio files with minimal user interaction. In contrast, the introduction of web audio
APIs presented the ability to create complex audio operations, such as mixing, equalization,
and spatialization, became achievable directly within the browser. With web audio APIs,
developers could create and distribute audio applications more widely, ensuring accessib-
ility across platforms without the constraints of specific operating systems or proprietary
software.

However, as with any technological evolution, the advent of web audio APIs brought its
set of challenges. From understanding the intricate architecture of these APIs to addressing
latency and compatibility issues, yet, the promise and potential they hold for shaping the
soundscape of the web remains profound.

The subsequent subsections delve deeper into the functionalities, and potential of these
APIs, offering an understanding of how modern web technologies have revolutionized audio
processing.

2.2.2 Media Capture and Streams API

The Media Capture and Streams API, colloquially known as the getUserMedia API, rep-
resents an important advancement in web technologies. Developed by the World Wide Web
Consortium (W3C), it facilitates the acquisition of audio and video streams directly from
a user’s camera, microphone, or other media devices. This capability has set the stage for
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multiple interactive and real-time web applications, ranging from video conferencing tools
to sophisticated media recording and manipulation platforms[17].

2.2.2.1 Core Features and Capabilities

◦ Accessing Media Devices: At the heart of the Media Capture and Streams API
is the navigator.mediaDevices.getUserMedia() method. Through this method,
web applications can request access to a user’s audio and video devices, with the user
granting permission via the browser’s user interface.

◦ Device Enumeration: The API provides functionalities to list available media
devices. Using the navigator.mediaDevices.enumerateDevices() method, de-
velopers can identify all available input and output devices, facilitating scenarios
where users might want to switch between multiple cameras or microphones.

◦ Constraints and Configurations: Developers can specify constraints when re-
questing media streams, allowing for the configuration of properties such as resolu-
tion, frame rate for video, or echo cancellation for audio.

◦ Stream Manipulation: Acquired media streams can be manipulated and processed
in various ways. For instance, they can be rendered directly using a video element,
processed using the Web Audio API, or transmitted to other peers via WebRTC.

◦ Screen Capture: Beyond conventional media devices, the API also supports cap-
turing a user’s screen or specific application windows, enabling functionalities like
screen sharing in web-based conferencing tools.

2.2.2.2 Applications and Integration

With the Media Capture and Streams API, there has been a surge of interactive applica-
tions:

◦ Web Conferencing: Platforms like Zoom or Google Meet leverage the API to facil-
itate video and audio communications directly within the browser, without requiring
additional plugins or software.

◦ Media Recording and Editing: Web applications can now capture, store, and
process media, allowing for online video recording platforms, audio editors, or even
augmented reality apps that superimpose effects on live video feeds.

◦ Interactive Web Games: Games on the web can use live video or audio as input,
paving the way for innovative gaming experiences that respond to real-world actions
or environments.
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◦ Integration with Other Web APIs: The API is designed to work seamlessly
with other web standards. A notable synergy is with WebRTC, enabling peer-to-peer
media streaming. Another is the Web Audio API, allowing developers to process and
analyze live audio streams.

2.2.2.3 Security and Privacy Considerations

As the API grants access to sensitive devices, it’s imbued with robust security and privacy
mechanisms:

◦ User Consent: A core tenet of the API is that it can’t silently access a user’s
devices. Users must explicitly grant permission, ensuring transparency and control.

◦ Secure Contexts: To further bolster security, the API is only available in secure
contexts. This means that developers must serve their applications over HTTPS or
localhost to utilize the API.

◦ Clear Indicators: Browsers provide clear visual indicators when media devices are
being accessed, alerting users and ensuring no inadvertent or malicious recording
occurs.

In conclusion, the Media Capture and Streams API has greatly enhanced the potential
of web applications. It has paved the way for dynamic, instantaneous, and media-intensive
interactions online, always keeping user safety and confidentiality at its core [17].

2.2.3 Web Audio API

The Web Audio API, also developed by the World Wide Web Consortium (W3C), offers a
powerful and versatile platform for working with audio on the web. It has been designed
with a range of features that allow developers to produce high-quality audio applications,
ranging from simple audio playback to complex audio processing and visualizations[18].

2.2.3.1 Core Concepts

Audio Node: In the context of the Web Audio API, an audio node represents a fun-
damental building block for processing audio. Each audio node serves a unique function,
whether generating sound, transforming it, or determining how it’s output. Nodes are the
primary elements with which developers interact, constructing audio workflows from the
ground up. In essence, the API presents audio processing as a network of interconnected
nodes, each responsible for a specific type of task. These nodes can generate sound, process
or manipulate it, analyze it, or even direct it to the system’s audio output. By connecting
these nodes in various configurations, developers can craft both simple and complex audio
processes, with each node’s function delineated:

◦ Source Nodes: These nodes are responsible for generating or providing audio data.
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◦ Processing Nodes: These nodes take incoming audio data, process it, and pass it
along. They include nodes for effects like gain control, panning, and filtering.

◦ Analysis Nodes: Used primarily for visualizing audio or extracting audio data for
further manipulation.

◦ Destination Node: Every audio node chain usually ends with this node, which
represents the final output and directs the processed audio to the system’s speakers
or another output device.

Flexible Routing System: The real power of the Web Audio API shines through its
flexible routing system. Nodes can be interconnected in a multitude of ways, creating cus-
tom audio processing chains known as audio graphs. This routing system is the foundation
upon which all Web Audio applications are built.

In practical terms, the audio travels through the interconnected nodes, getting pro-
cessed at each step until reaching its final destination, usually the speakers or headphones.
For example, a simple audio graph might start with an OscillatorNode generating a
tone, which is then passed to a GainNode to adjust its volume and finally routed to an
AudioDestinationNode to play the sound.

Furthermore, nodes can have multiple inputs and outputs, allowing for complex routing
scenarios. This capability means developers can create intricate parallel or sequential
processing chains, merge audio sources, or even split them for different effects.

Lastly, feedback loops, where nodes connect back to earlier nodes in the chain, introduce
possibilities for more experimental sound designs. However, they should be used with
caution as they can quickly lead to audio distortion or instability if not handled properly
[18].

2.2.3.2 Real-time Audio Processing

The Web Audio API is designed not only to play back pre-recorded audio but also to gen-
erate and process audio in real-time. This capability is crucial for a myriad of applications,
from music synthesizers, audio effects processors, to real-time sound visualization tools.
Several features and aspects underline this capability:

◦ Low Latency: The API is optimized to reduce audio processing latency, ensuring
that audio generation, manipulation, and output occur in near real-time. This low
latency ensures smooth audio experiences in interactive applications.

◦ ScriptProcessorNode and AudioWorklet: While the former, ScriptProcessorNode,
was the initial approach for processing audio samples directly using JavaScript, it has
been deprecated due to various limitations, including being executed on the main
thread. Its successor, the AudioWorklet, allows for custom JavaScript processing of
audio on a separate thread, ensuring more reliable real-time audio processing without
causing potential disruptions in the main UI thread.
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◦ Dynamic Audio Generation: Using nodes like the OscillatorNode, developers
can create sounds dynamically, in real-time. This ability is foundational for apps like
synthesizers or tone generators.

◦ Live Audio Input: As detailed in the previous subsection on the Media Capture
and Streams API, the Web Audio API can access and process live audio sources like
microphones, reinforcing its versatility.

◦ Interactive Audio Manipulation: By allowing real-time changes to audio node
parameters, developers can create interactive audio experiences. For instance, ad-
justing the frequency value of a BiquadFilterNode on-the-fly based on user input or
other dynamic data sources.

The Web Audio API’s emphasis on real-time audio processing broaden versatility and
application potential, making it a cornerstone technology for web developers looking to
integrate rich audio experiences into their applications.[18]

2.2.3.3 3D Spatial Audio

3D spatial audio, often termed as binaural audio or positional audio, is the simulation
of sound in a three-dimensional space. The Web Audio API provides tools that allow
developers to position audio sources in 3D space relative to a listener, creating a more
immersive and lifelike audio experience. Key features and capabilities include:

◦ PannerNode: This is the primary node in the Web Audio API responsible for 3D
spatialization. The PannerNode allows developers to position an audio source in a 3D
coordinate system and define how the sound propagates based on distance, direction,
and other factors.

◦ Listener Position and Orientation: The API allows developers to define a listener’s
position and orientation within the 3D space. By adjusting these parameters in real-
time, one can simulate the listener moving through a 3D environment, with the audio
sources adjusting accordingly.

◦ Distance Models: The Web Audio API supports various distance models, such
as linear, inverse, and exponential, to simulate how sound fades with distance. De-
velopers can select a model that best fits the desired audio experience.

◦ Directional Sound: Using cone-based properties, developers can make sound sources
emit audio more loudly in specific directions, simulating, for instance, a speaking
character facing a certain way or a localized sound source.

◦ Integration with WebVR and WebXR: The rise of virtual and augmented reality
on the web has increased the demand for 3D spatial audio. The Web Audio API
integrates seamlessly with WebVR and WebXR, technologies that bring VR and AR
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experiences to the web. By combining spatial audio with 3D visuals, developers can
create truly immersive experiences.

◦ HRTF (Head-Related Transfer Function): This advanced feature is crucial for
realistic 3D audio simulations. HRTF refers to the way an individual’s ear shape and
head dimensions affect how they perceive sounds from different directions. The Web
Audio API can use HRTF data to produce binaural audio that simulates real-world
sound spatialization.

3D spatial audio’s capacity to provide immersive soundscapes has revolutionized audio
experiences in gaming, entertainment, and virtual environments. As web-based AR and
VR applications continue to grow in popularity, the importance of spatial audio as a tool
for creating engaging user experiences cannot be overstated.[18]

2.2.3.4 Advanced Audio Processing Capabilities

The Web Audio API boasts a plethora of advanced features that enable developers to take
their audio applications to the next level. These features cover a wide spectrum of audio
processing tasks, from creating dynamic sound effects to in-depth audio analyses:

◦ WaveShaperNode: This node is designed for creating non-linear distortion effects.
By adjusting the curve property of the WaveShaperNode, developers can craft custom
distortion curves and impart unique tonal characteristics to the audio signal.

◦ DynamicsCompressorNode: As the name suggests, this node provides dynamic
range compression, which is vital in music production and broadcasting. It helps
balance the loudness of audio by attenuating peaks and amplifying quiet parts.

◦ BiquadFilterNode: A versatile node that can create a variety of standard audio
filter effects, such as low-pass, high-pass, band-pass, and more. This allows developers
to manipulate the frequency content of audio signals with precision.

◦ ConvolverNode: This node facilitates the creation of complex reverb effects by
using impulse response samples. The ConvolverNode is integral for simulating the
acoustics of different environments, from small rooms to vast cathedrals.

◦ OscillatorNode and PeriodicWave: While the OscillatorNode generates simple
waveforms like sine, square, and triangle, the PeriodicWave interface allows for cus-
tom waveform generation, enabling the synthesis of more complex sounds.

◦ AnalyserNode: An essential tool for visualizing audio data. The AnalyserNode

provides real-time frequency and time-domain analysis, which can be used to create
visual representations of audio, such as waveform visualizers or frequency spectrum
displays.
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◦ OfflineAudioContext: While most audio processing in the Web Audio API is real-
time, the OfflineAudioContext allows for faster-than-real-time audio processing.
This is particularly useful for tasks like rendering an audio effect on a buffer without
playing it in real-time.

The rich array of advanced processing nodes and interfaces within the Web Audio API
underscores its potential as a comprehensive tool for web-based audio applications. From
nuanced sound design to meticulous audio analysis, the API’s capabilities cater to both
casual developers and professional audio engineers.[18]

2.2.3.5 Integrated Timing and Synchronization

The Web Audio API is not just about processing audio; it’s also about ensuring that audio
events occur precisely when intended. One of the most commendable facets of this API
is its built-in capability for timing and synchronization, vital for applications like music
sequencers, drum machines, and any other project that demands precise timing.

◦ Scheduling: At the core of the API’s timing prowess is its scheduling feature. De-
velopers can schedule when audio nodes start, stop, or undergo parameter changes.
This foresight ensures seamless audio playback without glitches, even under heavy
load or when multitasking.

◦ Context’s Current Time: Each ‘AudioContext‘ has an ever-increasing ‘current-
Time‘ attribute. This clock, which starts at zero when the context is created and
counts up in seconds, provides a reliable reference for scheduling audio events. By
leveraging this, developers can synchronize multiple sounds with incredible precision.

◦ Parameter Automation: The Web Audio API allows for automated parameter
changes over specified durations. For instance, you can smoothly transition a node’s
gain or frequency over time without having to manually adjust values at regular
intervals.

◦ Sequencing and Looping: With the API, developers can create complex sequences
of sound, schedule loops, and even design intricate rhythm patterns. The built-in
timing functionality ensures that these sequences play back without missing a beat,
crucial for musical applications.

In essence, the integrated timing and synchronization tools embedded within the Web
Audio API render it an indispensable resource for developers aiming to produce synchron-
ized, rhythmic, and well-timed audio on the web [18].

2.2.3.6 Modular Design and Extensibility

The modular design of the Web Audio API is one of its standout features. Instead of being
a monolithic block of functionality, the API consists of distinct and independent modules,
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or audio nodes, each responsible for a specific audio processing task. This modularity
allows developers to piece together only the nodes they need, fostering an environment of
creativity, efficiency, and optimization.

◦ Reusability: Given its modular nature, developers can reuse specific audio nodes
across different parts of an application without needing to redefine or recreate them.
This reusability ensures a more efficient codebase and streamlined audio processes.

◦ Dynamic Node Creation: Nodes within the Web Audio API aren’t static. De-
velopers can dynamically create, connect, and destroy them in real-time, affording
incredible flexibility in shaping the audio experience based on user interactions or
application states.

◦ Custom Nodes: Beyond the standard nodes provided by the API, there exists
the capability to design custom audio nodes using different audio nodes interfaces.
This extensibility empowers developers to implement unique audio processing tasks
or effects not covered by the built-in nodes.

◦ Integration with Other Web Technologies: The modular design ensures that
the Web Audio API integrates smoothly with other web technologies and APIs. For
instance, developers can combine it with the Canvas API for visual representations
of audio, or with the WebRTC for real-time communication applications.

The modular and extensible design of the Web Audio API guarantees not only a cus-
tomizable and efficient environment but also a forward-compatible platform [18].

2.3 Analog Effects and Digital Sound

2.3.1 Introduction to Analog Effects

Prior to the advent of electronic circuits, people utilized acoustic techniques to modify
sound. They employed resonant chambers, tubes, and mechanical amplifiers, which set the
stage for future electronic sound modifications. By the early 20th century, the electronic
amplifier was invented. Its primary aim was clarity, not distortion. However, musicians
soon discovered that when these amplifiers were pushed beyond their capabilities, they
produced a crunchy, saturated tone. This serendipitous finding laid the foundation for the
now-iconic distortion and overdrive effects.

The decades of the 1960s and 70s ushered in the stompbox era. Stompboxes, also com-
monly referred to as effects pedals, are small electronic devices that can be activated or
”stomped” on with the foot to produce or modify sound effects for musical instruments, par-
ticularly electric guitars. These compact, user-friendly pedal units could generate various
effects, including fuzz, phaser, and flanger. Iconic early models encompassed the Maes-
tro FuzzTone, the Electro-Harmonix Electric Mistress, and the Uni-Vibe. These effects
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became indispensable for guitarists, revolutionizing the sonic landscape of popular music
during that period.

While the 1940s and 50s saw recording studios employing large and cumbersome echo
chambers, it wasn’t until the 1950s that more portable tape-based delay units, like the
Echoplex and the Roland Space Echo, were introduced. These devices used magnetic tape
loops to create echo effects. Each successive echo would degrade slightly, offering a warm
and organic sound.

The late 70s and 80s witnessed technological advancements leading to the develop-
ment of sophisticated analog processing units, predominantly found in studio racks. These
units comprised multi-effect processors, state-of-the-art reverbs, and intricate modulation
devices. They delivered unparalleled control and precision, meeting the demands of top-tier
recording studios and touring musicians.

As the 20th century progressed, digital technology came to the fore. Starting in the
1980s, digital effects began offering fresh potentials and conveniences, emulating traditional
analog effects but without their physical constraints or associated noise. Yet, the distinct
warmth and nuance of analog effects ensured they remained evergreen in the annals of
sound engineering.

2.3.2 Characteristics of Analog Sound

Analog sound is distinct in its characteristics. Unlike digital sound, which represents audio
waves as discrete values, analog audio captures these waves in their continuous form. This
continuous representation often results in a perceived warmth and richness in sound, a
quality that many attribute to the natural presence of harmonics and overtones that might
be attenuated or altered in digital formats. Furthermore, analog formats like vinyl records
or tape might introduce unique imperfections such as hiss, crackle, and saturation. For
many listeners and enthusiasts, these add to the aesthetic appeal. These imperfections,
often viewed as noise in digital contexts, can impart a specific texture or ”color” to the
sound in analog formats [19].

◦ Warmth and Naturalness: The hallmark warmth of analog sound is often at-
tributed to harmonic distortion, particularly the even-order harmonics produced by
analog equipment. These harmonics enhance the sound’s richness and resonance.
Unlike the discrete nature of digital recordings, analog sound has a continuous tone,
rendering a naturally smooth auditory experience.

◦ Saturation and Overtones: Analog equipment, notably those utilizing tubes or
tape, processes audio peaks distinctively. Instead of the abrupt clipping observed in
digital systems, analog gear imparts a gentle saturation. This results in the addition
of multifaceted overtones and harmonics, a non-linear behavior treasured in music
production for its harmonically pleasing distortion.

◦ Dynamic Range Limitations: Analog systems’ dynamic range is defined by their
noise floor and the point where distortion starts. This contrasts with digital systems,
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the dynamic range is distinctly demarcated by the bit-depth. The inherent noise or
”hiss” of analog devices is both a limitation and a cherished sonic quality for many
creatives.

◦ Imperfections and Fluctuations: Inherent inconsistencies in analog equipment,
like tape machine’s wow and flutter or minor component value discrepancies, give
analog recordings their unique, organic essence. Such nuances provide added depth
and motion, making the sound feel more alive.

◦ Frequency Response Anomalies: Analog gear often exhibits a non-linear fre-
quency response. As a result, specific frequencies might be emphasized or dimin-
ished. For instance, tape machines might attenuate ultrahigh frequencies, while tube
amplifiers can amplify particular mid frequencies. These quirks lend a unique tonal
character, defining the analog sound signature.

◦ Degradation and Generation Loss: Analog recordings undergo quality loss,
termed ”generation loss,” with every copy or processing iteration. While this might
compromise fidelity, artists often exploit these subtle alterations to infuse character
and atmosphere into their recordings.

◦ Harmonic Content and Texture: When pushed, analog devices introduce sup-
plementary harmonic content. This enriches the original signal, offering a denser,
more textured sound. For instance, when a tube amplifier approaches its threshold,
it yields a captivating break-up, layering the guitar tone with intricate harmonics.

2.3.3 Analog Effects and Their Characteristics

Analog effects process audio signals without converting them to digital form. These ef-
fects are crafted using components like capacitors, resistors, transistors, tubes, and tape.
Their characteristic sound is attributed to the inherent non-linearity and coloration they
introduce.

2.3.3.1 Distortion

Distortion is one of the most iconic effects in the realm of electric guitars and music
production. This effect intentionally alters the audio signal to produce a richer, grittier,
and more aggressive tone [20].

Working Principles:

◦ Clipping and Saturation: At its essence, distortion is about amplifying the audio
signal to a point where it begins to clip, meaning it exceeds the maximum limit
that a circuit can handle. This clipping results in the alteration of the waveform,
producing harmonics that weren’t present in the original sound. The more the signal
is amplified, the more extreme this clipping becomes, leading to a harder, more
aggressive distortion.
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◦ Soft Clipping vs. Hard Clipping: The character of the distortion can vary based
on how the signal is clipped. Soft clipping results in a milder, more rounded form of
distortion, often associated with overdrive effects. On the other hand, hard clipping
produces a sharper, more intense distortion. The transition between the clipped and
unclipped portions of the waveform determines this distinction.

◦ Circuit Components: The specific components used in a distortion pedal’s cir-
cuitry, such as diodes and transistors, play a pivotal role in shaping the character of
the distortion. For instance, silicon diodes tend to produce a crisper clipping, while
germanium diodes result in a warmer, fuzzier tone.

◦ Tone Shaping: Many distortion pedals incorporate EQ or tone-shaping controls,
allowing users to sculpt the resultant sound further. These controls enable adjust-
ments to the bass, mid, or treble frequencies of the distorted signal, offering flexibility
in tailoring the distortion to different musical contexts.

2.3.3.2 Overdrive

Overdrive, often considered a milder sibling to distortion, is designed to emulate the natural
breakup of a tube amplifier pushed to its limits. This effect produces a warm, dynamic,
and subtle form of saturation that responds closely to a player’s dynamics [20].

Working Principles:

◦ Amplification and Mild Clipping: Overdrive effects work by amplifying the input
signal, but not to the extent that leads to hard clipping, as in the case of distortion.
The objective is to achieve soft clipping, which provides a smoother, more nuanced
saturation. This results in a transparent tone where the original characteristics of
the instrument are preserved, but with added warmth and grit.

◦ Dynamic Response: One of the defining attributes of overdrive is its dynamic
response. The intensity of the effect often correlates with the strength of the input
signal. For instance, playing softly might produce just a touch of warmth, while play-
ing harder could lead to a more pronounced saturation. This interactivity between
the player’s dynamics and the effect’s response is integral to the appeal of overdrive.

◦ Circuit Components: As with distortion, the specific components utilized in an
overdrive pedal’s circuitry influence its tonal characteristics. Overdrive pedals of-
ten incorporate operational amplifiers (op-amps) followed by clipping diodes. The
choice of diodes (silicon, germanium, LEDs, or even none) and their arrangement
in the circuit can vary the clipping characteristics and thus the overall sound of the
overdrive.

◦ Tone Controls and EQ: Overdrive pedals usually feature tone controls to shape
the resultant sound. These allow for the tweaking of certain frequency ranges, either
boosting or cutting them, ensuring the overdriven tone fits perfectly within a mix or
complements other instruments.
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2.3.3.3 Fuzz

Fuzz is an effect that produces a thick, heavy, and sustained form of distortion. It takes
saturation to an extreme, delivering a tone that’s both aggressive and textural. It has a
very distinctive and buzzy tone, often likened to the sound of a swarm of bees or a torn
speaker [20].

Working Principles:

◦ Hard Clipping: Fuzz pedals achieve their characteristic saturated tone by inducing
hard clipping to the audio signal. This is a more extreme form of signal alteration
than the soft clipping found in overdrive pedals, and it’s responsible for the sustained,
buzzy quality of fuzz tones.

◦ Transistor Choices: The transistors used in fuzz circuits play a crucial role in the
character of the fuzz effect. Early fuzz pedals often employed germanium transist-
ors, which provide a warmer and smoother fuzz tone, but are temperature-sensitive
and can be inconsistent. Silicon transistors, introduced in later designs, produce
a sharper, brighter fuzz and are more stable and consistent than their germanium
counterparts. The choice of transistor has a profound impact on the pedal’s overall
tone, response, and behavior.

◦ Sustain and Compression: Fuzz effects offer a significant amount of sustain,
allowing notes to be held for longer durations. This is due to the heavy compression
that happens as a result of the extreme clipping. This compression can also change
the attack and decay properties of a note, making it bloom in a characteristic manner.

◦ Simplicity of Circuit: Many classic fuzz circuits are relatively simple, often con-
sisting of just a few components. This simplicity results in a raw and direct tone,
with minimal alteration beyond the clipping itself. However, despite this simplicity,
the arrangement and type of components can drastically affect the character and
response of the pedal.

◦ Interactive with Guitar Controls: Fuzz pedals often interact uniquely with the
volume and tone controls on a guitar. Rolling back the volume knob on a guitar
can clean up the fuzz tone, providing a spectrum of tones and allowing for on-the-fly
adjustments.

2.3.3.4 Tremolo

Tremolo is an effect that modulates the volume or amplitude of an audio signal at a
consistent rate. This creates a rhythmic pulsing or shimmering effect, where the sound
appears to ”waver” in volume. It’s worth noting that tremolo should not be confused with
vibrato, which modulates pitch rather than volume [20].

Working Principles:
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◦ Amplitude Modulation: At its core, tremolo is an amplitude modulation effect. It
cyclically varies the volume of the signal between a set minimum and maximum. The
depth of the modulation determines the difference between the loudest and quietest
points, while the rate controls how quickly this variation occurs.

◦ LFO (Low Frequency Oscillator): The tremolo effect is typically driven by an
LFO. The LFO produces a waveform (often a sine, triangle, square, or even sawtooth)
that dictates how the amplitude of the audio signal should be modulated. The
shape of the LFO waveform can influence the character of the tremolo, with different
waveforms providing varied rhythmic feels. For instance, a sine wave might offer a
gentle, undulating effect, while a square wave would give a more choppy, on-off style
modulation.

◦ Depth and Rate Controls: Almost all tremolo pedals or effects units come with
at least two primary controls: depth and rate. Depth controls how pronounced the
volume variation is, from a subtle shimmer to a deep pulsing. Rate, on the other
hand, determines how fast the volume fluctuates. Combining these controls allows
users to tailor the tremolo to fit the mood and tempo of their music.

◦ Optical and Bias Tremolos: Optical and Bias Tremolos: There are various meth-
ods to achieve tremolo. Optical tremolos use a light-dependent resistor (LDR) and a
light source to modulate the volume. The brightness of the light source is modulated
by the LFO, which in turn affects the resistance of the LDR, modulating the signal
volume. Bias tremolos, on the other hand, modulate the bias voltage of the tubes in
an amplifier, causing fluctuations in volume.

2.3.3.5 Delay

Delay, often referred to as echo, is an effect that captures an audio signal and then plays
it back after a set duration, creating an ”echo” or repeated version of the original sound.
Depending on the settings, this can be a singular repeat or multiple decaying repetitions.
Delay is a foundational effect in music production and performance, adding depth, space,
and rhythmic texture to audio [20].

Working Principles:

◦ Echo Reproduction: The essence of a delay is to reproduce the incoming sig-
nal after a specified amount of time. The time between the original sound and its
delayed repetition is termed the ”delay time.” Short delay times can produce effects
like ”slapback” echo, while longer delays can generate vast ambient landscapes or
rhythmic patterns.

◦ Feedback Control: Most delay units or pedals have a feedback or ”regeneration”
control. This parameter determines how many repetitions or ”echoes” are produced.
A low feedback setting will yield one or a few repeats, whereas higher feedback values
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can produce numerous repeats, leading up to self-oscillation where the delay generates
a continuous, growing sound.

◦ BBD (Bucket Brigade Devices): Analog delays use Bucket Brigade Devices
(BBD) to pass the signal through a series of capacitors, achieving the delay effect.
Each capacitor holds a small portion of the audio signal for a brief moment before
passing it to the next. This process imparts a warm, slightly degraded quality to the
repeated sound.

◦ Modulation: Some delay units feature modulation controls, which introduce slight
pitch or time variations to the delayed signal. This can result in a richer, chorus-like
or shimmering effect on the repeats, adding more depth and dimension to the sound.

◦ Mix or Blend Control: This parameter allows users to balance the dry (uneffected)
and wet (delayed) signals. At minimum, only the original sound is heard, while at
maximum, only the delayed sound is prominent. In-between settings let the original
sound and its echo coexist, creating layered sonic textures.

2.3.3.6 Chorus

Chorus is an effect that enriches the sound by making a single instrument or voice seem
as though it’s being played by multiple sources simultaneously. This modulation effect
thickens the audio signal, producing a shimmering, ethereal quality that can add depth
and lushness to recordings and performances [20].

Working Principles:

◦ Signal Duplication: The foundation of the chorus effect is signal duplication. The
incoming audio signal is copied, resulting in two concurrent audio paths.

◦ Pitch and Time Modulation: The duplicated signal undergoes subtle changes in
pitch and time, typically via a low-frequency oscillator (LFO). As the pitch of the
duplicated signal is modulated up and down at a slow rate, it creates slight variations
from the original, leading to the perception of multiple instruments or voices.

◦ Bucket Brigade Devices (BBD): Analog chorus effects make use of Bucket Bri-
gade Devices to produce the necessary time-based modulations. BBDs relay the sig-
nal through a sequence of capacitors, introducing the slight time shifts that manifest
as modulation. The use of BBDs in chorus effects imparts a characteristic warmth
and organic texture.

◦ Depth and Rate Control: Chorus units typically come equipped with ”Depth”
and ”Rate” controls. The ”Rate” knob modulates the speed of the LFO, influencing
the swiftness of pitch modulation. The ”Depth” control dictates the range or severity
of this modulation. These controls permit a broad spectrum of sonic outcomes, from
a gentle widening effect to a pronounced, oscillating modulation.
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◦ Stereo Expansion: Several chorus devices feature stereo outputs. This bifurcation
of the modulated sound across two channels can craft a vast stereo image, further
intensifying the effect’s spaciousness.

◦ Mix or Blend Control: This adjustable parameter lets users balance the original,
unaltered signal (dry) with the modulated signal (wet). Depending on the musical
context, users might lean towards a barely-there chorus or a fully immersive, deep
chorus sound.

2.3.3.7 Phaser

The phaser, or phase shifter, is an effect that produces sweeping peaks and troughs in
an audio signal’s frequency spectrum. The movement of these peaks and troughs, often
described as a “whooshing” or “swirling” sound, creates a sense of motion and space,
adding dimension to the sound [20].

Working Principles:

◦ Signal Splitting: At the core of the phaser effect is the process of signal splitting.
The input signal is divided into two identical paths: one remains unaltered, while
the other is phase-shifted.

◦ Phase Shifting with All-Pass Filters: The altered path is passed through a series
of all-pass filters, which modify the phase of the signal at varying frequencies. An
all-pass filter allows all frequencies to pass through it equally, but it alters the phase
relationships among those frequencies.

◦ Combining the Signals: The unaltered and phase-shifted signals are then recom-
bined. This results in the creation of the effect’s distinctive peaks and troughs in the
frequency spectrum due to phase cancellation and reinforcement.

◦ Modulation with a Low-Frequency Oscillator (LFO): The phase-shifting is
modulated by an LFO, which cyclically varies the frequency response of the all-pass
filters. This results in the moving, sweeping nature of the phaser effect.

◦ Stages of Phasing: Analog phasers are often described by the number of phase-
shifting stages they incorporate. For instance, a ”4-stage” phaser uses four all-pass
filters. The number of stages affects the number of notches (or dips) in the frequency
spectrum and the overall character of the effect. More stages typically yield a more
pronounced and complex phase-shifting sound.

◦ Depth and Rate Control: Like many modulation effects, phasers come equipped
with ”Depth” and ”Rate” controls. The ”Rate” determines the speed of the LFO, in-
fluencing how quickly the peaks and troughs move. The ”Depth” controls the intens-
ity of the phase-shifting. Tweaking these parameters lets musicians craft everything
from subtle, undulating shifts to dramatic, rapid oscillations.
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◦ Feedback or Resonance Control: Some phasers feature a feedback or resonance
control that recirculates a portion of the output signal back into the effect. This
intensifies the phase-shifting, creating a more pronounced and resonant effect.

2.3.3.8 Flanger

A flanger creates a swirling, jet-like sound by introducing a modulated, short delay to the
original audio signal. This sound modulation produces an interference pattern in the audio
signal’s frequency spectrum, resulting in a series of peaks and troughs that move over time
[20].

Working Principles:

◦ Signal Duplication: Similar to other modulation effects, the input audio signal is
duplicated into two identical paths. One path remains unaffected, while the other is
subjected to a slight delay.

◦ Variable Delay Line: The core of the flanger effect is the variable delay line, which
momentarily delays one of the signal paths by just a few milliseconds. This short
delay is continuously varied, usually in a periodic manner.

◦ Combining the Signals: The delayed and undelayed signals are mixed together.
Due to the phase differences between them, they interfere constructively (reinforce-
ment) at some frequencies and destructively (cancellation) at others, creating the
characteristic comb filtering effect of the flanger.

◦ Modulation with a Low-Frequency Oscillator (LFO): An LFO modulates the
delay time, causing the peaks and troughs in the frequency spectrum to sweep up
and down. This creates the flanger’s distinctively dynamic and animated sound.

◦ Depth and Rate Control: The ”Depth” control adjusts the range of the delay
time, determining the extent of the flanging effect, while the ”Rate” control sets
the speed of the LFO, deciding how quickly the comb filter effect sweeps across the
frequency spectrum.

◦ Feedback or Resonance Control: Many flangers come equipped with a feedback
or resonance control, which feeds a portion of the processed signal back into the effect.
This amplifies certain frequencies and accentuates the peaks and troughs, producing
a more pronounced and resonant flanging effect.

2.3.3.9 Wah-Wah

The wah-wah effect is a dynamic tone-filtering effect that produces vowel-like sounds by
sweeping the peak response of a frequency filter up and down in the frequency spectrum.
The term ”wah-wah” is onomatopoeic, reflecting the sound of the effect [20].

Working Principles:
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◦ Band-pass Filtering: At the core of the wah-wah effect is a band-pass filter, which
allows frequencies within a certain range to pass through while attenuating frequen-
cies outside of this range. The center frequency of this band-pass filter is dynamically
modulated, creating the effect’s characteristic sweeping sound.

◦ Peak Response and Q Factor: The ”sharpness” or ”width” of the filter sweep is
determined by the Q factor of the band-pass filter. A higher Q results in a narrower
and more resonant peak, making the wah effect more pronounced. Some advanced
wah pedals offer control over the Q factor, allowing players to customize the effect’s
intensity.

◦ Optical or Mechanical Control: The mechanism to control the filter sweep can
vary. Traditional wah pedals use a potentiometer mechanically linked to the foot
pedal to adjust the filter’s center frequency. Some modern analog wah designs use
optical components to achieve the same result, providing a smoother response and
avoiding the wear and tear associated with mechanical components.

◦ Harmonic Enrichment: As the wah effect emphasizes different frequency bands
during its sweep, it can highlight and accentuate the harmonics of the input signal,
especially when used with distorted tones. This harmonic interplay can produce a
more complex and evolving sound, particularly during solos or melodic passages.

2.3.4 Characteristics of Digital Audio

With the progression from analog to digital in the domain of audio processing, the char-
acteristics and nuances of digital audio have become important in understanding its ap-
plication and advantages, especially in the emulation of analog effects. Digital audio has
revolutionized the way we capture, process, and reproduce sound. Unlike its analog coun-
terpart, which is continuous, digital audio represents sound using discrete values, offering
precise control, repeatability, and an expansive platform for manipulation. This subsection
delves into the inherent properties of digital audio, exploring its foundational principles,
its benefits in sound reproduction and processing, and the challenges faced in perfectly
replicating the warmth and character of analog sound in a digital domain.

2.3.4.1 Nature of Digital Audio

The divide between analog and digital audio is both significant and subtle. Analog audio,
as we have seen, is the realm of continuous signals, characterized by waves that flow
seamlessly, mirroring the inherent nature of sound as perceived by the human ear. These
waves can be thought of as infinitely detailed, offering a rich, although sometimes imperfect,
representation of sound.

Withing the domain of digital audio, instead of relying on continuous signals, it breaks
sound down into a multitude of individual pieces, each represented by a string of binary
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data. This paradigm shift from the continuous to the discrete introduced both revolution-
ary capabilities and unique challenges in audio representation and processing.

At the heart of digital audio lies a profound transformation: the act of turning a
continuous sound wave into a series of discrete data points. This discretization isn’t just a
simple act of documentation; it’s a complex process that captures the essence of a sound
wave at specific moments in time. The granularity of this capture and the precision of the
representation depend on various factors, each of which plays a pivotal role in determining
the fidelity of the digital audio.

However, like all technologies, digital audio is not without its limitations. The very
nature of discretization introduces certain constraints and challenges, which, while mitig-
ated by advancements in technology, still play a role in shaping digital sound.

As we progress through this section, we will dive deep into the intricate mechanics
of digital audio, unveiling the layers that constitute its very fabric. We will explore the
processes, parameters, and phenomena that define it, setting the groundwork for under-
standing how these digital representations can be masterfully manipulated to emulate the
rich characteristics of analog sound [21].

2.3.4.2 Sampling

Sampling is the foundational pillar upon which digital audio rests. In the broadest sense,
sampling refers to the process of capturing the instantaneous amplitude (or value) of an
analog sound wave, which is continuous, at regular intervals [22]. To visualize this process,
imagine a sound wave flowing seamlessly, and then imagine taking a series of snapshots
of this wave at equidistant points in time. Each of these snapshots captures a particular
value or amplitude of the wave. Collectively, they form the discrete representation of the
sound wave in the digital domain.

Sampling Rate: Central to the concept of sampling is the ’sampling rate’. This is a
measure of how frequently these snapshots or samples are taken over a given period. Typ-
ically expressed in Hertz (Hz), a sampling rate of, say, 44.1 kHz means that the audio
signal is sampled 44,100 times every second. This number isn’t arbitrary. The choice of
a sampling rate often depends on the desired fidelity of the audio, as well as the range
of frequencies it is meant to represent. The Nyquist-Shannon sampling theorem, a found-
ational principle in digital audio, asserts that for accurate digital representation of any
audio signal, the sampling rate must be at least double the signal’s highest frequency [23].
This is why 44.1 kHz, slightly more than double the upper limit of human hearing, became
a standard in many applications.

Aliasing: While sampling is an ingenious method to digitize sound, it’s not without
challenges. One major issue that arises due to inappropriate sampling is ’aliasing’. If a
continuous audio signal contains frequencies higher than half the sampling rate (referred
to as the Nyquist frequency), these frequencies can reflect or ”alias” back into the lower
frequencies when digitized, leading to distortions [24]. To prevent this, most digital audio
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systems employ anti-aliasing filters before the sampling process to ensure that only the
appropriate range of frequencies is allowed through.

Sampling’s Impact on Audio Fidelity: The choice of sampling rate plays a crucial
role in determining the overall quality of digital audio. A higher sampling rate can capture
more details and better represent the nuances of the original sound, but it also demands
more data storage and processing power. Conversely, a lower rate is more efficient but
might miss out on the finer details or introduce artifacts. Thus, striking the right balance
based on the application is pivotal.

In the end, sampling is a powerful tool, a bridge between the continuous world of analog
sound and the discrete realm of digital representation. While it introduces its own set of
challenges, understanding and navigating these intricacies is key to achieving high-quality
digital audio.

2.3.4.3 Quantization

Quantization, refers to the process of mapping the continuous amplitude values obtained
during sampling to a set of discrete amplitude levels. If you picture sampling as taking
periodic snapshots of an audio waveform’s amplitude, quantization would be the act of
assigning each snapshot a specific, finite value from a predefined set of possibilities. Es-
sentially, while sampling determines ”when” we capture a value, quantization determines
”what” value we capture by approximating the continuous audio signal to the nearest
representation available in the digital format.

Bit Depth: Central to quantization is the concept of ’bit depth’. Bit depth determines
the number of possible discrete amplitude levels that can be used to represent each sample.
For example, with a bit depth of 1 bit, there are only two possible quantization levels,
usually represented as 0 and 1. While a bit depth of 16 bits allows for 216 or 65, 536
possible amplitude levels. This means that when the sampled audio signal is quantized,
its amplitude is approximated to the nearest of these 65,536 levels.

The choice of bit depth has a profound impact on the accuracy with which the original
analog signal is represented. A higher bit depth provides a finer granularity of amplitude
representation, capturing the nuances of the audio with higher precision. In contrast, a
lower bit depth provides fewer levels for representation, which might lead to a rougher
approximation of the sound [22].

Quantization Error and Noise: No quantization process is perfect; there will always
be some difference between the original sampled value and its quantized counterpart. This
difference is referred to as ’quantization error’. The resultant effect of this error, when
audible, is often perceived as noise—specifically, ’quantization noise’. The magnitude of
this noise is inversely proportional to the bit depth; higher bit depths tend to produce
lower quantization noise and vice-versa [24].
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Dithering: To combat the effects of quantization noise, a technique called ’dithering’
is sometimes employed. Dithering introduces a small amount of noise to the audio signal
before quantization. While adding noise might seem counter intuitive, the purpose of
dithering is to randomize the quantization error, turning it into a form of noise that is more
uniform, or ”white”, and less correlated with the audio signal. This randomized noise is
generally less objectionable to the human ear compared to the structured, harmonically-
unpleasant quantization noise. Consequently, dithering can make the digitized audio sound
more natural, despite the presence of added noise. [22].

Quantization’s Impact on Audio Fidelity: The bit depth, and thus the granularity
of quantization, is crucial to the perceived quality of digital audio. A higher bit depth
offers more accurate representation of the analog signal, resulting in better dynamic range
and finer detail capture. However, it also requires more data per sample, leading to larger
file sizes. Conversely, a lower bit depth might be more efficient in terms of storage, but
can introduce audible artifacts and a reduced dynamic range.

In essence, quantization is a critical step in digital audio representation, defining the
granularity and accuracy of the sound’s amplitude. While it introduces challenges such as
quantization noise, understanding its intricacies and employing techniques like dithering
can aid in producing high-quality digital audio.

2.3.4.4 Resolution

Resolution in digital audio refers to the clarity and detail with which a sound is captured
and represented in the digital domain. While related to both sampling and quantization,
resolution more specifically encapsulates the overall accuracy and precision of the digital
representation of an audio signal. It encompasses aspects like bit depth, which we have
already discussed, but also extends to other parameters that collectively influence the sonic
clarity of digital audio.

The dynamic range of a digital audio system is essentially the difference between the
quietest and loudest sounds it can accurately capture. Bit depth plays a pivotal role
in determining this. As we’ve touched upon earlier, higher bit depths allow for a finer
gradation of amplitude levels, leading to a wider dynamic range [22].

Nonetheless, resolution is not just about loud and soft; it’s about the nuances in
between. A higher resolution means that the intricate details of a sound, such as the
subtle tone qualities, reverb tails, and transient spikes, are captured with greater fidelity.
This contributes to a listening experience where the audio feels more ”alive” and closer to
its original analog source.

While higher resolution audio can provide an enriched listening experience, it comes
with demands. Higher bit depths and sampling rates lead to larger file sizes, requiring
more storage space. Furthermore, the benefits of super-high-resolution audio (like 32-
bit/384 kHz) can be debated, as they might surpass the perceptual capabilities of the
human ear [24].

30



2.4. Digital Signal Processing (DSP) and Effects

2.4 Digital Signal Processing (DSP) and Effects

Digital Signal Processing, often abbreviated as DSP, is a field of study dedicated to the
manipulation and analysis of signals in a digital format. In the context of audio, DSP
techniques provide the tools necessary to modify, enhance, analyze, and produce sound
waves. As technology has advanced, DSP has allowed for complex manipulations regarding
audio effects, that were once challenging or even impossible in the analog domain.

As previously discussed, manipulation of sound in audio engineering was executed using
analog circuits. These circuits were limited in terms of repeatability, precision, and some-
times introduced undesirable tones to the audio. However with the advent of DSP, these
limitations were overcame. By representing sound as a series of numerical values, intricate
manipulations became possible, laying the foundation for more sophisticated audio effects,
sound reproduction techniques, and even sound synthesis. This section delves deep into
the world of DSP, from its foundational principles to the vast array of effects it powers.

2.4.1 Foundations of Digital Signal Processing

DSP relies heavily on the principles laid out in the digital audio characteristics, employing
mathematical and algorithmic processes to transform and analyze signals. Within this
domain, DSP techniques are applied to the data that has been sampled and quantized, as
discussed earlier, to achieve various effects and manipulations [24].

Referencing the Nature of Digital Audio subsection, we understand that DSP oper-
ates on the digital representations of sound waves—sequences of numbers that have been
sampled and quantized. The DSP algorithms take these digital sequences and perform
operations such as filtering, modulation, and Fourier transforms to achieve the desired
effects.

Similarly, as explored in the Sampling subsection, the sampling rate directly influences
the resolution and quality of the digital audio signal. In DSP, the choice of sampling
rate can affect the design and performance of digital filters and the accuracy of frequency
domain representations.

The Quantization subsection highlighted the importance of bit depth in capturing the
nuances of sound. In DSP, quantization not only affects the noise floor but also impacts the
dynamic range and precision of digital audio effects. Advanced DSP techniques, like dither-
ing and noise shaping, are employed to minimize the artifacts resulting from quantization
errors [21].

In the context of real-time audio processing, DSP systems must minimize latency the
delay between the input and output of the processed signal. This aspect is particularly cru-
cial in live sound reinforcement and when musicians are monitoring audio during recording
sessions.

The applications of DSP in audio extend from simple tasks, such as volume control
and balance, to complex operations, such as echo cancellation, audio compression, and 3D
sound simulation.
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In essence, the foundations of DSP are intrinsically linked to the principles of digital
audio. The efficient transformation and manipulation of digital audio signals—within the
constraints set by sampling and quantization—are central to achieving the desired results
in digital sound processing.

2.4.1.1 Time and Frequency Domain Processing

The analysis and manipulation of digital audio often involve working within two primary
domains: the time domain and the frequency domain. Each domain provides a unique
perspective on the audio signal, offering insights that are critical for various DSP applica-
tions.

◦ Time Domain Analysis: In the time domain, signals are understood as they vary
over time. Most natural audio signals, including musical performances and speech,
are typically analyzed in the time domain. Time domain processing involves oper-
ations like amplitude modification which can directly affect the waveform’s shape,
affecting the loudness and dynamic characteristics of the audio signal. Time-based
effects, such as delay and reverb, manipulate the audio signal in the time domain by
simulating the behavior of sound over time in different spaces or mediums [21].

◦ Frequency Domain Analysis: Alternatively, frequency domain analysis examines
how the signal’s energy is distributed across various frequencies. The Fourier Trans-
form, a mathematical tool, is utilized to convert time domain signals into their fre-
quency domain representations. This conversion is crucial for many audio processing
applications, as it allows for the isolation and manipulation of specific frequency
components. Equalization, filtering, and spectral analysis are all effects that are in-
herently frequency domain processes. They are used to shape the tonal balance of
the sound, remove unwanted noise, or enhance particular aspects of the frequency
spectrum [21].

Time and frequency domain processing are not mutually exclusive and are often used
together to create sophisticated audio effects. For instance, a reverb effect might combine
time domain operations to simulate early reflections with frequency domain processing to
apply damping at different frequencies. Understanding how to manipulate the audio signal
in both domains allows for a more versatile and controlled approach to effect design, en-
abling the creation of complex and realistic audio environments within a digital framework.

By understanding time and frequency domain processing, it is possible to effectively
simulate the acoustic phenomena associated with traditional analog audio effects or even
create entirely new sounds that are unique to digital sound.

2.4.1.2 Dynamic Range and Signal Fidelity

Dynamic range and signal fidelity are crucial concepts in digital audio that dictate the
quality and clarity of the sound reproduction and processing.
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◦ Dynamic Range: It refers to the ratio between the largest and smallest possible
values of a changeable quantity, such as sound signals. In audio, it is the difference
between the quietest and the loudest sound that a system can process without dis-
tortion or noise. In digital audio systems, the dynamic range is inherently tied to
the bit depth of the system. A higher bit depth allows for a greater dynamic range
because it can represent signal amplitudes more accurately, capturing the nuances of
both soft and loud sounds without noise or distortion [21].

◦ Signal Fidelity: It refers to the accuracy with which a sound is electronically rep-
licated. High-fidelity signals are nearly indistinguishable from the original, while
low-fidelity signals may contain artifacts such as noise, distortion, or frequency re-
sponse alterations. The fidelity of a digital audio signal is impacted by several factors,
including the sampling rate, quantization process, and the algorithms used in digital
signal processing. Preserving the fidelity of the signal through the signal chain, from
input to output, is essential for professional audio quality and listener experience
[21].

When designing digital audio effects, understanding and preserving the dynamic range
and signal fidelity is paramount. Effects such as compression and limiting directly manipu-
late the dynamic range of the audio signal, while others, such as equalization and filtering,
need to be carefully implemented to avoid unintended alterations to the signal fidelity. The
ultimate goal is to achieve the desired effect while maintaining the integrity of the original
sound, ensuring that the listener’s experience is as rich and immersive as possible.

2.4.1.3 Digital Filters and Equalization

Within digital signal processing, digital filters and equalization are crucial for manipulating
and enhancing audio signals.

At its core, a digital filter is an algorithmic construct that modifies the frequency
content of a signal. The essence of digital filtering lies in its ability to differentiate between
desired and undesired frequency components, attenuating or amplifying them based on
the filter’s design. Digital filters are essential in shaping the tonal characteristics of audio
signals, whether for corrective purposes or creative effect.

Types of Digital Filters Digital filters are generally categorized into several types
based on their intended effect on the signal:

◦ Low-pass filters allow frequencies below a certain cutoff point to pass through while
attenuating higher frequencies, useful for removing high-frequency noise or shaping
bass-heavy sounds.

◦ High-pass filters do the opposite, cutting off frequencies below a certain threshold
and are often employed to reduce low-frequency rumble or focus on high-end detail.
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◦ Band-pass filters allow a specific range of frequencies to pass, which is particu-
larly handy for isolating elements within a mix or for frequency-specific effects like a
telephone voice effect.

◦ Band-stop filters, or notch filters, are used to reject a band of frequencies, which
can help remove unwanted resonances or hums from a recording.

In designing a digital filter, understanding its frequency and phase response is imperat-
ive. The frequency response dictates how the filter affects different frequencies, while the
phase response describes how the filter alters the phase of various frequency components.
These responses are critical when filters are applied to complex audio signals, as they can
significantly impact the tone and spatial characteristics of the sound.

Filter design involves the mathematical construction of a filter to meet specific criteria.
This often includes defining the passband, stopband, and any transition regions between
them. The design process must also consider the trade-offs between the steepness of the
filter’s slope and the resulting phase distortion. Filters with very steep slopes, while more
precise in frequency selection, can introduce unwanted artifacts into the audio signal [21].

Finite Impulse Response (FIR) vs. Infinite Impulse Response (IIR) The two
primary types of digital filter designs are FIR and IIR:

◦ FIR filters have a finite response to an impulse input, which inherently makes
them stable and guarantees a linear phase response. However, they can require more
computational resources due to their typically higher order [24].

◦ IIR filters have a response that theoretically lasts indefinitely. They are more
computationally efficient due to their recursive nature but can suffer from stability
issues and non-linear phase responses [24].

Equalization as a Form of Filtering Equalization (EQ) is a specific application of
filtering used to adjust the balance between frequency components. It is achieved through
a series of filters, each targeting a specific frequency band. Graphic equalizers divide the
spectrum into fixed frequency bands, and each band can be increased or decreased in
amplitude. Parametric equalizers provide more control, allowing users to adjust the center
frequency, bandwidth (Q factor), and gain of each band.

2.4.2 Implementation of Time-Based Effects

Time-based audio effects serve as the backbone for creating depth and space in sound pro-
duction. These effects, which primarily include delay and reverb, manipulate the temporal
aspects of sound to emulate spatial characteristics and create a sense of environment [8].

Digital delay lines are the most important component of time-based effects. They
function by temporarily storing audio samples in a buffer—a section of memory allocated
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for audio data—before feeding them back into the audio stream at a specified time interval
[21]. The length of this buffer and how the audio data is manipulated within it determines
the nature of the effect: a shorter buffer creates a slapback delay, while a longer buffer can
create echoes that decay over time.

Several variations exist within delay algorithms. A ’tap’ in a multi-tap delay line refers
to a point where the delayed signal can be extracted or fed back. By combining multiple
taps with different delay times and levels of feedback, complex rhythmic patterns and rich
textured reverbs can be produced. Feedback delay networks (FDNs), a more advanced
form of multi-tap delays, consist of interconnected delay lines whose outputs are fed back
into each other to generate a reverb effect that mimics the natural reverberation of large
spaces.

The implementation of these effects in a digital domain is not without challenges.
Latency, the delay between an input signal’s initiation and its perception, is a significant
consideration, particularly in real-time processing environments like live audio effects. Al-
gorithms must be optimized for low-latency operation without sacrificing audio quality.
Additionally, the discretization of audio due to digital sampling can introduce artifacts
such as aliasing, which must be mitigated through careful filter design and oversampling
techniques [24].

One key aspect of digital effect implementation is the emulation of analog ’warmth.’
Digital precision offers clear and repeatable effects, but it can lack the subtle nonlinearities
and saturation that give analog gear its characteristic sound. To address this, digital
algorithms may incorporate models of analog circuitry behavior, such as tube saturation
or tape compression, to warm up the sound or reproduce vintage effects.

On the other hand, to simulate more complex acoustic spaces, convolution reverb is
employed. This technique uses impulse responses—recordings of real spaces or hardware
reverbs—to convolve with the input signal, thus imprinting the acoustic characteristics of
the recorded space onto the audio signal. This results in a highly realistic reverb effect
that can transport the listener to virtually any space.

2.4.3 Implementation of Modulation Effects

Modulation effects are a staple in audio production, enriching sounds with movement,
depth, and character. These effects modulate a property of the sound signal, such as pitch,
phase, or amplitude, over time to create various sonic landscapes. Chorus, flanger, phaser,
and tremolo each use modulation to produce distinct outcomes [8].

The fundamental principle behind modulation effects is the periodic alteration of spe-
cific signal parameters, such as time delay (chorus and flanger), phase (phaser), or amp-
litude (tremolo). In a digital setting, this modulation more than often achieved through
low-frequency oscillators (LFOs) that cyclically vary the amount of effect applied to the
signal. The shape of the LFO waveform—sine, square, triangle or sawtooth influences the
character of the modulation [8].
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Chorus: A chorus effect thickens the incoming sound by duplicating the signal, slightly
delaying one or more copies, and modulating the delay time with a LFO. This creates the
illusion of multiple instruments playing in unison with slight variations in timing and pitch.
In a digital context, the chorus effect is realized by dynamically changing the delay time
in a feedback loop, with care taken to avoid abrupt changes that can result in unwanted
artifacts.

Flanger: Flanging emerges from two identical signals mixed together, with one signal’s
delay time varied by an LFO. This results in a series of peaks and notches in the frequency
spectrum, known as comb filtering, producing the characteristic ’swooshing’ sound. Digital
flangers precisely control this process, allowing for a more extensive range of modulation
depths and feedback levels than their analog counterparts.

Phaser: Phasing creates a swirling effect by splitting the audio signal into two paths,
leaving one unaltered while the phase of the other is continuously changed. These signals
are then combined, causing constructive and destructive interference that varies over time,
shaped by an LFO. The complexity of a phaser effect in the digital realm often involves
all-pass filters, which shift phase without altering amplitude, to create the desired spectral
motion.

Tremolo: Digital tremolo effects modulate the amplitude of the incoming signal with
an LFO, causing periodic fluctuations in volume that can range from subtle pulsing to
dramatic rhythmic modulations. This modulation is typically achieved by multiplying the
signal’s amplitude with a waveform generated by the LFO, offering a variety of wave shapes
that define the character of the modulation.

Creating these effects in software requires a robust understanding of digital signal pro-
cessing techniques. Precision in the control of LFO rates, depths, and the application
of feedback are crucial for an authentic sound. One must also consider the introduction
of digital artifacts—such as aliasing or quantization noise—which can be addressed by
oversampling or implementing high-quality digital-to-analog conversion processes.

Analog modulation effects are often sought after for their warmth and organic feel, a
characteristic partly due to the inherent imperfections and nonlinear responses of the analog
components. To capture this essence digitally, developers can introduce slight random
variations to the modulation parameters or model the saturation and noise characteristics
of analog circuits.

2.4.4 Implementation of Dynamic Effects

Dynamic effects, encompassing processors like compressors, limiters, expanders, and gates,
are crucial in audio engineering for controlling the amplitude of an audio signal. They
manipulate the dynamic range, the difference between the quietest and loudest parts of a
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signal, to achieve a balanced sound, enhance sustain, or ensure the audio signal remains
within a certain loudness threshold [24].

In the dynamic effects lies the transfer function, a mathematical relationship that de-
termines how the input amplitude is transformed into output amplitude. Digital imple-
mentations allow for complex transfer functions that can be adjusted in real-time, offering
nuanced control over the dynamic response of the audio signal [8].

Compressors reduce the dynamic range by attenuating the signal level that exceeds a
set threshold, with the degree of attenuation governed by the ratio parameter. Attack
and release times dictate how quickly the compressor responds to changes in signal level.
Limiters are a type of compressor with a very high ratio, used to prevent the signal from
surpassing a certain level, thereby avoiding clipping and potential distortion.

Expanders increase the dynamic range by reducing the level of signals below a set
threshold, which can help in reducing background noise or increasing the perceived dynamic
contrast of an audio track. Noise gates are a form of expander that completely mutes the
signal when it falls below the threshold, often used to silence the gaps between notes or
phrases.

Digital dynamic effects require meticulous attention to the implementation of the en-
velope follower, a system that tracks the changing amplitude of the signal and applies the
effect based on the detected envelope. The envelope follower’s accuracy and response have
a significant impact on the performance of dynamic effects.

2.4.5 Implementation of Distortion Effects

The essence of distortion lies in altering the harmonic content of a signal. They add
harmonics to the signal, creating a rich, saturated sound that can range from a warm, subtle
overdrive to a harsh, aggressive fuzz. In the digital domain, these effects are implemented
using algorithms that emulate the non-linear behavior of analog circuitry.

Distortion can be broadly classified into several types, each with unique attributes:

◦ Overdrive simulates the soft clipping of an amplifier pushed slightly beyond its
limit, often resulting in a warm and subtle distortion.

◦ Fuzz creates a more extreme form of distortion by drastically altering the waveform,
often leading to a thick and sustained tone.

◦ Distortion typically refers to a harder clipping than overdrive, producing a more
aggressive and pronounced effect.

The core and the simplest form of digital distortion is clipping, which can be achieved
by pushing the signal beyond the maximum headroom available in the digital system,
thus ”clipping” the peaks of the waveform. This hard clipping generates a square wave-
like effect, which is often too harsh for musical purposes but serves as the fundamental
principle behind more sophisticated algorithms.
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To mimic the smoother characteristics of analog equipment, digital distortion can em-
ploy soft clipping, where the waveform is rounded off gradually as it approaches the
threshold, rather than being abruptly clipped. This creates a warmer, more tube-like
distortion, known as saturation. Advanced algorithms can model the response of specific
analog devices, taking into account factors such as asymmetrical clipping, even and odd
harmonic generation, and dynamic response to the incoming signal [8].

Wave shaping is a technique where an input signal is processed through a function that
defines the output amplitude for a given input amplitude. This function can be designed
to replicate the behavior of analog devices or to create new types of distortion effects.
Non-linear processing might also involve dynamic equalization and filtering to simulate
the frequency-dependent behavior of analog distortion circuits.

Part of the character of distortion comes from the interaction with speaker cabinets.
Convolution with impulse responses of actual cabinets can be used to simulate this effect,
adding to the authenticity of the distortion sound.

To ensure that the distortion effect enhances the musicality rather than detracts from it,
digital implementations often include features like pre-gain filtering, post-distortion equal-
ization, and dynamic response adjustments. These elements help maintain the integrity of
the input signal’s dynamics and tonal balance.

Distortion algorithms can be computationally intensive. Therefore, optimizing per-
formance for web applications is essential. This includes minimizing the computational
load by simplifying algorithms without compromising sound quality and ensuring efficient
memory management.

2.4.6 Implementation of Frequency Effects

Frequency effects, often termed as ”filters” in the realm of audio processing, are pivotal
for sculpting the tonal characteristics of a sound signal. They can accentuate or attenuate
certain frequency ranges, thereby altering the tone and perceived texture of the audio.
In a digital setting, these effects are realized by algorithms that simulate traditional ana-
log filters like low-pass, high-pass, band-pass, and notch filters, as well as more complex
equalization (EQ) and Wah-Wah effects.

The design of digital filters for frequency effects typically involves determining the
filter’s frequency response, which can be achieved through various methods like Finite
Impulse Response (FIR) or Infinite Impulse Response (IIR) filter design. These filters are
characterized by their cutoff frequency, resonance or Q factor, and slope or attenuation
rate, each of which plays a crucial role in the filter’s effect on the audio signal [8].

Equalization (EQ): Equalizers are sophisticated frequency effects that provide control
over multiple specific frequency bands. Parametric EQs allow for precise adjustments,
with controls for gain, center frequency, and bandwidth of each band. Graphic EQs offer
a set number of frequency bands with fixed center frequencies and bandwidths, adjusted
by sliders. Shelving and peaking filters are commonly used within these EQs to tailor the
frequency response.
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Wah-Wah Effects: Wah-Wah effects dynamically shift the peak of a frequency band
back and forth, traditionally controlled by a pedal. In the digital domain, this can be
emulated using an automated or user-controlled filter that sweeps a resonant peak across
a frequency range. Envelope filters, or ”auto-wah” effects, respond to the input signal’s
amplitude, triggering the filter sweep without manual intervention.

2.5 Conclusion

This chapter has navigated through the dynamic and evolving landscape of audio pro-
cessing, focusing through the era of traditional analog methods to the sophisticated digital
and web-based technologies that define contemporary sound engineering. By examining
the historical progression and the technological advancements in audio processing tools,
including the groundbreaking Web Audio API and Media Capture and Streams API, we
have laid a comprehensive foundation for understanding the current state-of-the-art in this
field.

The exploration of analog effects and their digital counterparts has not only provided
insights into the nuances of sound manipulation but also underscored the complexity in-
volved in faithfully replicating these effects in the digital domain. This deep dive into the
nature of digital audio, emphasizing aspects like sampling, quantization, and resolution,
has set a crucial backdrop for appreciating the intricacies of digital signal processing (DSP)
and its application in audio effects.

As we move forward, the insights gleaned from this chapter will be instrumental in con-
textualizing the development of our web application. The subsequent chapter, ”Overview
of Our Approach”, transitions from theoretical exploration to practical application. It will
detail the methodologies and technical strategies employed in leveraging these advanced
digital technologies to create an innovative, web-based audio processing tool, reflecting a
harmonious blend of historical techniques and modern digital innovation.

Thus, while this chapter has been an exploration of the past and present of audio
processing, the next chapter is set to unveil the practical realization of these concepts in a
cutting-edge project that encapsulates the future of web-based audio interaction.
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Chapter 3

Overview of Our Approach

3.1 Introduction

In the preceding chapter, we delved into the rich history of audio processing and examined
the evolution from traditional analog methods to modern digital techniques, with a par-
ticular emphasis on the transformative role of web technologies. Chapter 2 provided a
comprehensive exploration of various audio processing tools, both in the analog and digital
realms, and discussed in depth the principles and applications of key web technologies like
the Media Capture and Streams API and theWeb Audio API. Building on this foundational
knowledge, Chapter 3 aims to present a detailed overview of our approach in developing a
web-based audio processing tool.

This chapter is dedicated to illustrating the practical application of theoretical concepts
and technologies explored earlier. It outlines the methodology adopted for the project,
describes the system architecture, and delves into the intricacies of implementing various
digital audio processing techniques within a web environment. The primary objective
of this chapter is to provide a clear and comprehensive understanding of the technical
processes involved in bringing our web-based audio processing tool to fruition.

We begin with a high-level overview of the project, elucidating its goals, features, and
functionalities. This is followed by an in-depth look at the system architecture and design,
highlighting the key design decisions and the rationale behind them. Special attention
is given to the integration of complex audio processing techniques in a web application,
supported by detailed discussions and code examples.

Furthermore, the chapter addresses the user interface and interaction design aspects
of the tool, offering insights into how users can intuitively interact with the application
to achieve their audio processing objectives. This includes an examination of the user
experience (UX) design considerations and how they contribute to making the tool both
effective and accessible.

Integration with web technologies forms a crucial part of our discussion, as it reveals
how the tool harnesses the power of advanced web APIs to deliver real-time audio pro-
cessing capabilities. Challenges encountered during the development process, along with
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the solutions and workarounds implemented, are also candidly shared, offering a realistic
perspective on the complexities of developing web-based audio applications.

Finally, the chapter concludes with a summary of the project’s achievements and its
contributions to the field of web-based audio processing. Reflections on the project’s impact
and suggestions for future enhancements and research areas will be presented, setting the
stage for ongoing innovation in this exciting domain.

In essence, Chapter 3 is where theory meets practice, and ideas are transformed into
tangible technological solutions. It serves as a bridge between the conceptual explorations
of earlier chapters and the real-world application of these concepts in a cutting-edge web-
based audio processing tool.

3.2 Project Goals and Overview

This section delves into the specific objectives and offers an in-depth overview of the project,
elucidating the intricacies of developing a web-based application tailored for guitar effects
emulation. Utilizing React, the Web Audio API and the Media Capture and Streams API,
the project aims to create a dynamic and interactive digital environment that not only
replicates the rich tonal qualities of analog guitar effects but also introduces a new realm
of sound exploration and manipulation.

3.2.1 Objectives

The project is anchored by several objectives:

◦ High-Fidelity Emulation of Analog Effects: The primary goal is to digitally
recreate the sound and feel of classic guitar effects such as distortion, fuzz, over-
drive, compressor, delay, reverb, chorus, flanger, phaser, and tremolo. This involves
employing advanced digital signal processing techniques to meticulously model the
nuances, dynamic responses, and tonal characteristics that define these classic analog
effects, ensuring an authentic and immersive user experience.

◦ Real-time Audio Processing and Low Latency: To achieve minimal latency,
crucial for live playing scenarios, the project employs optimized audio processing
algorithms and leverages the capabilities of modern web browsers, ensuring real-
time responsiveness and seamless auditory feedback. This involves optimizing audio
processing algorithms and ensuring seamless integration with the Web Audio API to
provide instant auditory feedback as users adjust settings.

◦ Simplified User Interface (UI) Design: Developing a user interface that is both
aesthetically pleasing and functionally robust is crucial. The UI is designed with
intuitive navigation and clear visual cues, allowing users to effortlessly add, remove,
and adjust effects, thereby enhancing the creative process for both novices and ex-
perienced users alike. The design needs to cater to various user proficiency levels,
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ensuring that beginners can navigate the basic functions while advanced users can
access more in-depth control options.

◦ Cross-Platform and Browser Compatibility: To guarantee functionality across
a range of platforms and browsers, the application is built with responsive design
principles and rigorously tested across different device environments, ensuring a con-
sistent and accessible user experience. This entails responsive design strategies and
thorough testing to address different device capabilities and screen sizes.

3.2.2 Project Overview

The application’s architecture and user experience are designed with a focus on function-
ality, flexibility, and educational value:

3.2.2.1 Responsive and Adaptive Design

Responsive and Adaptive Design: Recognizing the diverse range of devices used to access
web applications, the design is responsive, ensuring usability and consistency across various
screen sizes and orientations.

3.2.2.2 UI Interface

The application adopts an object-oriented approach for its UI, mirroring real-world guitar
pedalboards and effects, thereby providing users with a familiar and intuitive interface that
bridges the gap between digital and physical realms.

This means that the components the user will get to see are modeled after real com-
ponents of pedals and pedal boards. These is an overview of the most important interfaces
used throughout the life cycle of our application.

Stage and Board Interface: This central interfaces mimic a physical pedalboard
environment. Users can virtually ’plug in’ different and multiple effects pedals, adjust
their settings, and rearrange their order to shape their sound. These interfaces is where
the main life cycle of the application occurs, as well as to set up the necessary input and
output the user will need, to make use of the application. This interface is designed to be
intuitive, allowing for easy manipulation and experimentation.

BoxPedal Interface: This interface serves as to mimic the actual guitar effects that
we’re trying to emulate in the first place. It’s a way for the user to manipulate and
experiment with the audio effects parameters, to produce different sounds.

Pot Interface: Short for and analogous to a potentiometer, this interface conveys
where the user will update the settings for each individual parameter that the effect
provides.

BypassSwitch and BypassLed Interface: These interfaces convey a way for the
user to toggle on and off the BoxPedal and by extension the individual audio effect, while
also having visual feedback of the state of it.
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3.2.2.3 Integration with API’s

Along the development of this application we made use of two major API’s:
Media Capture and Streams API: This integration allows the application to access

and process live audio input from the user’s device. This feature is crucial for real-time
sound manipulation and enables users to interact with the application using their instru-
ments or other audio sources.

Web Audio API: Leveraging the Web Audio API, the project involves creating cus-
tom audio nodes for each effect type. These nodes are designed to encapsulate the unique
processing logic of different effects, providing a modular and scalable approach to audio
processing.

3.2.2.4 Comprehensive Settings and Presets

The application offers a wide range of effects, and by extension settings for each effect, al-
lowing users to deeply customize their sound. In order to make use of reusable components
we made use of model-driven approach to identify effects and preset their functionalities
enabling users to have a starting point for all the different effects facilitating ease of use
and experimentation.

3.3 System Architecture and Design

3.3.1 Component Architecture

The web-based guitar effects emulator is designed with a modular and coherent component
architecture using React. This architecture not only facilitates a seamless user experience
but also ensures maintainability and scalability. The two primary components, Stage and
Board, along with their sub components, form the backbone of the application.

3.3.1.1 Stage Component

The Stage component serves as the primary container and initiator of the application’s
state and rendering logic. Utilizing React’s functional component paradigm, Stage sets the
foundational environment for the application, orchestrating the overall user interface and
audio processing workflow. In the code shown below in Listing 3.1 is a detailed examination
of the Stage component’s structure and functionality:

1 const Stage = (stageProps: StageProps) => {

2 const dispatch = useAppDispatch ();

3 const board = useAppSelector ((state) => state.boardReducer);

4
5 useEffect (() => {

6 const data = defaultBoard;

7 dispatch(setBoard(data));

8 }, [dispatch ]);
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9
10 return (

11 <>

12 {board?. pedals && (

13 <div className=’flex w-full flex -row flex -wrap items -stretch

justify -start gap -6’>

14 <Board pedals ={ board.pedals} />

15 </div >

16 )}

17 </>

18 );

19 };

20
21 export default Stage;

Listing 3.1: Stage Component

The Stage component begins by initializing the global state using React Redux’s
useAppDispatch and useAppSelector. This design choice underlines the application’s re-
liance on Redux for state management, ensuring a consistent and predictable state through-
out the app. The useEffect hook is effectively utilized to dispatch an action (setBoard)
to initialize the board’s state. This approach demonstrates the integration of side effects
in React’s functional components, crucial for initializing the application with a predefined
or saved configuration.

The component’s return statement includes a conditional rendering pattern. This
pattern ensures that the Board component and its children (BoxPedal components) are
rendered only when the pedals data is available, showcasing React’s capability to handle
dynamic content based on the application state. The use of Board as a child component
illustrates the compositional nature of React. The Stage component acts as a container
that delegates specific responsibilities (like audio node management and pedal rendering)
to the Board, following the single responsibility principle and enhancing modularity.

The className attribute within the div element demonstrates the use of Tailwind CSS
for styling. The classes applied (flex, w-full, etc.) indicate a responsive and flexible box
layout, essential for a fluid user interface that adapts to different screen sizes and devices.
This approach underscores the application’s focus on a responsive design, ensuring that
the user interface remains consistent and accessible across various platforms and browsers.

The separation of concerns is evident here; Stage handles the application’s initial setup
and layout, while the complex logic of audio processing and user interactions is encapsulated
in the Board and other child components.

In summary, the Stage component is a shows React’s functional components in action,
demonstrating state management, conditional rendering, component composition, and re-
sponsive design. Its role as the initializer and container of the application’s core elements
sets the stage for a sophisticated and user-friendly audio effects emulator.
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3.3.1.2 Board Component

The Board component acts as a bridge between the user interface and the underlying audio
processing functionality. It shows the application’s well-structured design, emphasizing the
integration of custom hooks, state management, and component rendering. In the code
shown below in Listing 3.2 is an in-depth analysis of the Board component:

1 const Board = ({ pedals }: BoardProps) => {

2 // Custom hooks for managing user media and audio context

3 useUserMedia(CAPTURE_AUDIO_OPTIONS);

4 useAudioContext ();

5 useInputNode ();

6
7 // Contexts to manage state and audio processing

8 const {

9 state: { stream },

10 } = useUserMediaContext ();

11 const {

12 state: { audioContext , input , audioNodes },

13 setAudioNodes ,

14 } = useAudioProcessGraphContext ();

15
16 useEffect (() => {

17 // Logic for instantiating and connecting AudioNode(s)

18 if (audioContext.value && input.node) {

19 // Create and manage audio nodes chain based on pedal data

20 const newAudioNodesChain = pedals.reduce ((prevNodes , pedal) => {

21 if (pedal.pots && audioContext.value && input.node) {

22 const node = AudioNodeUtils.getAudioNodeFromPedal(

23 pedal ,

24 audioContext.value

25 );

26 return [... prevNodes , node];

27 }

28 return [... prevNodes ];

29 }, new Array <AudioNode >());

30
31 // Connect and manage audio nodes within the AudioContext

32 AudioNodeUtils.connectAudioNodesChain(

33 newAudioNodesChain ,

34 audioContext.value ,

35 input.node

36 );

37
38 // Update global state with the new audio nodes chain

39 setAudioNodes(newAudioNodesChain);

40 }

41
42 // Cleanup function to manage component unmounting

43 return () => {

44 if (audioContext.value && input.node) {
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45 AudioNodeUtils.disconnectAudioNodesChain(

46 audioNodes.chain ,

47 audioContext.value ,

48 input.node

49 );

50 }

51 setAudioNodes ([]);

52 };

53 }, [input.node , pedals , audioContext.value , audioNodes.chain ]);

54
55 return (

56 <>

57 {stream &&

58 audioContext.value &&

59 input.node &&

60 pedals &&

61 pedals.map((pedal , pedalIndex) => (

62 <BoxPedal

63 key={‘${pedal.id}-${pedalIndex }‘}
64 position ={ pedalIndex}

65 name={ pedal.name}

66 isActive ={pedal.isActive}

67 pots={ pedal.pots || []}

68 pedalNode ={ audioNodes.chain.at(pedalIndex)}

69 />

70 ))}

71 <AddPedalBox />

72 </>

73 );

74 };

75
76 export default Board;

Listing 3.2: Board Component

The Board component begins by invoking three custom hooks (useUserMedia,
useAudioContext, and useInputNode). This integration highlights the component’s role
in setting up the audio environment, including user media access and audio context initial-
ization. The usage of useUserMediaContext and useAudioProcessGraphContext demon-
strates a sophisticated approach to state management. It leverages React’s Context API to
maintain a global state that is accessible across different components, ensuring synchron-
ized state changes and data flow.

Within the useEffect hook, the component dynamically creates a chain of audio
nodes based on the pedals prop. This dynamic generation and management of au-
dio nodes illustrate the application’s ability to modify the audio processing pipeline in
real-time, responding to user interactions. The use of AudioNodeUtils functions (like
getAudioNodeFromPedal and connectAudioNodesChain) encapsulates the complex logic
of audio node manipulation, ensuring clean and readable code within the Board component.

The Board component renders BoxPedal components for each pedal in the pedals array.
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This pattern demonstrates React’s capability in handling lists and rendering multiple com-
ponents dynamically. Each BoxPedal component is passed props that include the pedal’s
settings and the corresponding audio node. This design enables each pedal component to
interact with the audio processing graph directly, reflecting any changes made by the user
in real-time.

The Board component’s primary responsibility is to manage the rendering of pedals
and handle the core audio processing logic. This clear separation of concerns enhances the
scalability of the application, allowing for the easy addition of new pedal types or audio
effects. The cleanup function within the useEffect hook underscores the component’s
attention to resource management, ensuring that audio nodes are disconnected and state
is reset when the component unmounts.

The conditional rendering based on the stream, audioContext, and input.node states
ensures that the pedals are only rendered when the audio setup is correctly initialized,
enhancing the user experience by preventing errors or unexpected behavior. The addition
of the AddPedalBox component at the end of the render method provides an interactive
element for users to add new pedals, illustrating the application’s focus on user engagement
and interactivity.

In summary, the Board component is a central piece in the effects emulator’s architec-
ture, showcasing advanced React techniques, effective state and context management, and
a deep integration with the Web Audio API. It is a key component that directly influences
the user experience and the application’s audio processing capabilities.

3.3.2 Custom Hooks and Context Management

In the development of the application, efficient state management plays a pivotal role
in handling the complexities of real-time audio processing. Leveraging React’s powerful
features, the application employs custom hooks and context for managing the state. This
approach not only facilitates a seamless user experience but also ensures efficient handling
of audio data and user interactions.

The React Context API is utilized as a core strategy for state management within
the application. This methodology allows for the propagation of state and functionality
through the component tree without the need to pass props manually at every level. In par-
ticular, contexts such as UserMediaContext and AudioProcessGraphContext are crucial
for managing states related to user media devices and audio processing.

Custom hooks, including useUserMedia, useAudioContext, and useInputNode, are
central to the application’s functional architecture. These hooks abstract complex func-
tionalities and stateful logic, promoting reusable and cleaner code structures.

◦ useUserMedia: manages the interaction with the user’s media devices, particularly
handling audio input. It is responsible for requesting user permissions, accessing the
audio stream, and providing this data to other components within the application.’

48



3.3. System Architecture and Design

◦ useAudioContext: deals with the initialization and control of the Web Audio API’s
AudioContext. This hook is essential for creating an audio processing graph where
various nodes define the audio routing and effects chain.

◦ useInputNode: is responsible for managing the audio input node. It connects the
user’s audio input to the AudioContext, thereby feeding the raw audio data into the
processing graph.

3.3.2.1 Context for User Media Management

UserMediaContext is central to the application’s functionality, managing the state re-
lated to user media devices, such as microphones or line-in inputs. It provides a streamlined
and centralized approach to handle user media streams.

1 import React , { createContext , useReducer , useContext } from ’react’;

2
3 const UserMediaContext = createContext ();

4
5 type UserMediaState = {

6 stream: MediaStream | null;

7 streamError: unknown | null;

8 };

9
10 const initialState = {

11 stream: null ,

12 streamError: null ,

13 } as UserMediaState;

14
15 const userMediaReducer = (state , action) => {

16 // Reducer logic ...

17 };

18
19 export const UserMediaProvider = ({ children }) => {

20 const [state , dispatch] = useReducer(userMediaReducer , initialState);

21
22 // Provider logic ...

23
24 return (

25 <UserMediaContext.Provider value ={{ state , dispatch }}>

26 {children}

27 </UserMediaContext.Provider >

28 );

29 };

30
31 export const useUserMediaContext = () => useContext(UserMediaContext);

Listing 3.3: UserMediaProvider

As shown above in Listing 3.3, the UserMediaContext encapsulates the logic for man-
aging the audio input from the user’s device, including the acquisition of the media stream
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and handling any errors that might occur during this process. The context provides a
global state that is accessible to any component within the application.

useUserMedia custom hook abstracts the process of requesting access to the user’s
audio input device and handles the media stream acquisition.

1 import { useContext , useEffect } from ’react’;

2 import { UserMediaContext } from ’./ UserMediaProvider ’;

3
4 export const useUserMedia = (constraints) => {

5 const { setStream , setStreamError } = useContext(UserMediaContext);

6
7 useEffect (() => {

8 const getUserMedia = async () => {

9 try {

10 const stream = await navigator.mediaDevices.getUserMedia(

constraints);

11 setStream(stream);

12 } catch (error) {

13 setStreamError(error);

14 }

15 };

16
17 getUserMedia ();

18 }, [constraints ]);

19 };

Listing 3.4: useUserMedia custom hook

This hook as seen in Listing 3.4 is responsible for interfacing with the browser’s
navigator.mediaDevices.getUserMedia API to obtain audio data from the user’s input
devices, handling permissions and streamlining the process of capturing audio. It handles
the initialization of the media stream and updates the UserMediaContext with the stream
or any errors encountered. The hook’s implementation ensures that the application re-
sponds dynamically to changes in media permissions or device availability, maintaining
robustness and user-friendly interaction.

3.3.2.2 Context for Audio Process Graph Management

AudioProcessGraphProvider manages the state related to AudioContext and
AudioNodes, such as the ones we will create and link together during the application’s
lifecycle.

1 import React , { createContext , useReducer , useContext } from ’react’;

2
3 const AudioProcessGraphContext = createContext ();

4
5 type AudioProcessGraphState = {

6 audioContext: {

7 value: AudioContext | null;
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8 error: unknown | null;

9 };

10 input: {

11 node: AudioNode | null;

12 error: unknown | null;

13 };

14 audioNodes: {

15 chain: Array <AudioNode >;

16 };

17 };

18
19 const initialState = {

20 audioContext: {

21 value: null ,

22 error: null ,

23 },

24 input: {

25 node: null ,

26 error: null ,

27 },

28 audioNodes: {

29 chain: [],

30 },

31 } as AudioProcessGraphState;

32
33 const audioProcessGraphReducer = (state , action) => {

34 // Reducer logic ...

35 };

36
37 export const AudioProcessGraphProvider = ({ children }) => {

38 const [state , dispatch] = useReducer(audioProcessGraphReducer ,

initialState);

39
40 // Provider logic ...

41
42 return (

43 <AudioProcessGraphContext.Provider value ={{ state , dispatch }}>

44 {children}

45 </AudioProcessGraphContext.Provider >

46 );

47 };

48
49 export const useAudioProcessGraphContext = () => useContext(

AudioProcessGraphContext);

Listing 3.5: UserMediaProvider

As shown above in Listing 3.5, the AudioProcessGraphContext encapsulates the logic
for managing the audio-processing graph and it’s audio modules linked together, as well as
handling any errors that might occur during this process. The context provides a global
state that is accessible to any component within the application.
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useAudioContext custom hook ensures the initialization and active management of the
AudioContext, which is essential for audio processing.

1 import { useContext , useEffect } from ’react’;

2 import { AudioProcessGraphContext } from ’./ AudioProcessGraphProvider ’;

3
4 export const useAudioContext = () => {

5 const { audioContext , setAudioContext } = useContext(

AudioProcessGraphContext);

6
7 useEffect (() => {

8 if (! audioContext) {

9 const newAudioContext = new AudioContext ();

10 setAudioContext(newAudioContext);

11 }

12 }, [audioContext ]);

13 };

Listing 3.6: useAudioContext custom hook

The useAudioContext hook, shown above in Listing 3.6, is tasked with initializing the
AudioContext if it’s not already present. It provides the foundational environment for
processing and manipulating audio data within the application.

useInputNode custom hook is designed for creating and managing the connection of
the audio input node to the AudioContext, integrating the user’s audio input with the
application’s audio processing capabilities.

1 import { useContext , useEffect } from ’react’;

2 import { AudioProcessGraphContext } from ’./ AudioProcessGraphProvider ’;

3
4 export const useInputNode = () => {

5 const { audioContext , inputNode , setInputNode } = useContext(

AudioProcessGraphContext);

6
7 useEffect (() => {

8 if (audioContext && !inputNode) {

9 const sourceNode = audioContext.createMediaStreamSource(/* stream

*/);

10 setInputNode(sourceNode);

11 }

12 }, [audioContext , inputNode ]);

13 };

Listing 3.7: useInputNode custom hook

The useInputNode manages the creation and connection of an input node to the Audi-
oContext. It plays a pivotal role in ensuring that audio signals from the user’s device are
correctly routed into the web application’s audio processing pipeline.
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3.3.2.3 Challenges and Solutions

The custom hooks and context management significantly contribute to the application’s
performance optimization and code reusability. These patterns provide a streamlined way
to manage state and side effects, minimizing unnecessary re-renders and keeping the ap-
plication’s performance optimized even during complex audio processing tasks.

Implementing custom hooks and context for state management was not without chal-
lenges. One significant hurdle was ensuring that the state updates were efficient and did
not cause lag in audio processing. Overcoming this involved careful design of state struc-
tures through careful design, ensuring hooks were reusable and contexts provided a clear
and accessible global state.

3.3.3 Audio Processing Workflow

The audio processing workflow is a vital component that defines the core functionality of
the application. This subsection aims to unravel the intricate process of how audio sig-
nals are captured, processed, and outputted, elucidating the interaction between different
components and the application’s custom audio processing logic.

The audio processing workflow within the application encompasses several key stages:
acquiring audio input, signal routing through a custom processing graph, dynamic effects
chain manipulation, and the final output of processed audio. This workflow is facilitated by
a combination of functional components and hooks, Web Audio API, and custom-designed
audio nodes.

3.3.3.1 Acquiring Audio Input

Audio input acquisition is the first step in the processing workflow. Using the custom
useUserMedia hook that we analyzed in the last subsection, the application requests access
to the user’s audio input device, typically a microphone or a line-in connection from a
guitar. This process involves handling permissions and capturing the audio stream, which
is then routed to the Web Audio API’s AudioContext for further processing.

As we saw previously in Listing 3.4, the code snippet represents a simplified version of
the useUserMedia hook, demonstrating how the media stream is acquired from the user’s
device.

3.3.3.2 Audio Signal Routing

Upon successful acquisition of the audio stream, the application initializes the
AudioContext, creating a virtual environment where audio signal processing occurs. The
useAudioContext hook facilitates this initialization, we can see a simplified version of the
implementation of the hook in the last subsection and more specifically in Listing 3.6.

Subsequently, the input node, created and managed by the useInputNode hook which
we can also take a look in the last subsection’s Listing 3.7, connects the raw audio data
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to the AudioContext, effectively integrating the user’s audio input into the application’s
processing pipeline.

3.3.3.3 Processing with Custom Audio Nodes

At the heart of the application’s audio processing capabilities are the custom audio nodes.
These nodes, each corresponding to a specific audio effect (e.g. distortion, reverb, delay,
etc), are dynamically created and configured based on user interactions with the UI.

Each custom audio node is an instance of a class extending from an AudioNode inter-
face provided by the Web Audio API. These nodes encapsulate specific audio processing
algorithms, defining how the incoming audio signal is manipulated. The process involves
modifying various audio properties like amplitude, frequency, and phase, to achieve the de-
sired effect. We’ll discuss specific strategies for successful implementation of these classes
later in the text.

3.3.3.4 Dynamic Effects Chain Management

A key feature of the application is the ability to dynamically manage the effects chain. Users
can add, remove, or reorder effects in real-time, which is reflected immediately in the audio
output. This dynamic manipulation is achieved through an efficient state management
strategy, where the state of the audio processing graph is centrally managed and updated
based on user interactions.

The state of the effects chain is maintained globally, ensuring that any changes made by
the user through the UI are immediately reflected in the audio processing workflow. The
application uses React’s state management capabilities to keep track of the current set of
audio effects and their configurations. Whenever a user interacts with the UI to modify an
effect—such as adjusting a parameter, adding a new effect, or rearranging the order—the
state is updated to reflect these changes.

1 // Simplified state management for the effects chain

2 const audioProcessGraphReducer: Reducer <

3 AudioProcessGraphState ,

4 AudioProcessGraphAction

5 > = (

6 state: AudioProcessGraphState ,

7 action: AudioProcessGraphAction

8 ): AudioProcessGraphState => {

9 switch (action.type) {

10 // ...

11 case AudioProcessGraphActionType.ADD_AUDIO_NODE:

12 const audioChainWithNodeConcat = state.audioNodes.chain.concat(

13 action.payload

14 );

15 return {

16 ...state ,

17 audioNodes: { ... state.audioNodes , chain:

audioChainWithNodeConcat },
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18 };

19 break;

20 case AudioProcessGraphActionType.REMOVE_AUDIO_NODE:

21 const audioChainWithFilteredNode = state.audioNodes.chain.filter(

22 (_audioNode , i) => i !== action.payload

23 );

24 return {

25 ...state ,

26 audioNodes: { ... state.audioNodes , chain:

audioChainWithFilteredNode },

27 };

28 break;

29 // ...

30 }

31 }

Listing 3.8: State management for effects chain in AudioProcessGraphReducer

The code snippet above in Listing 3.8 provides a simplified view of how the effects chain’s
state might be managed within the application. It illustrates functions to add and remove
effects, showcasing the reactive nature of the application.

Every change in the effects chain state triggers an update in the audio processing
graph. This graph, managed through the Web Audio API, connects various audio nodes
(representing the effects) in the order specified by the user. The application ensures that
the audio signal flows through these nodes sequentially, applying each effect before passing
the audio to the next node in the chain.

When an effect is added or removed, the application reconstructs the audio node chain
to match the new state. This dynamic reconstruction is a critical operation, as it needs to
be performed efficiently to avoid any audible glitches or latency in audio processing.

1 // Function to update the audio processing graph

2 const updateAudioProcessingGraph = () => {

3 // Create a "new" chain by removing or adding a node

4 const newAudioNodesChain =

5 buildNewChain(

6 position ,

7 audioNodes.chain

8 );

9 // Disconnect current audio chain

10 disconnectAudioNodesChain(

11 audioNodes.chain ,

12 audioContext.value ,

13 input.node

14 );

15 // Connect "new" audio chain

16 connectAudioNodesChain(

17 newAudioNodesChain ,

18 audioContext.value ,

19 input.node

20 );

21 // Update store
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22 setAudioNodes(newAudioNodesChain);

23 };

Listing 3.9: Dynamic reconstruction of the audio processing graph

The example function updateAudioProcessingGraph shown in Listing 3.9 demonstrates
the conceptual approach to updating the audio processing graph. It involves disconnecting
the existing chain, constructing a new chain by adding or removing a node into the existing
chain, and finally connecting the entire chain to the output destination.

3.3.3.5 Output and Final Audio Rendering

The final stage in the audio processing workflow is the rendering of the processed audio
signal. After traversing through the custom audio nodes, the manipulated audio signal
is routed to the AudioContext’s destination, which typically corresponds to the user’s
speakers or headphones. This step marks the completion of the audio processing cycle,
delivering the processed audio to the user.

3.3.4 Data Models for Pedal Effects

The data models are crucial for representing pedal effects within the application. These
models are important for the dynamic and interactive nature of the application, providing
a structured and scalable way to manage the wide variety of pedal effects available to the
user.

The UML diagram in Fig. 3.1 visually represents the organization of the two primary
data models, PedalType and PotType, which are instrumental in representing a pedal effect
in the application:
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Models

PedalType

id: string
name: string
isActive: boolean

pots
1...*

PotType

id: string
name: string
min: number
max: number
value: number
defaultValue: number

Figure 3.1: Data Model Diagram

3.3.4.1 PedalType Model

At the core of the pedal effect management system are the data models that define the
characteristics and attributes of each pedal effect type. The primary interface, referred to
as PedalType, encapsulates essential attributes that describe a pedal effect:

◦ name: A string identifying the pedal effect, such as ’Fuzz’, ’Delay’, or ’Reverb’.

◦ isActive: A boolean indicating whether the pedal is currently active (engaged) or
bypassed.

◦ pots: An array of PotType objects, each representing a controllable parameter of
the pedal, such as volume, gain, or rate.

◦ id: A string identifier, to help manage the pedal’s state and interaction within the
application.

This structured approach to defining pedal effects enables a uniform and consistent
treatment of various types of effects within the application, simplifying both the processing
logic and the user interface interaction.

3.3.4.2 PotType Model

The PotType interface defines the adjustable parameters of each pedal. This model in-
cludes:

◦ value: The current value of the parameter, which the user can adjust.
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◦ name: A descriptive name for the parameter, such as ’Tone’ or ’Depth’.

◦ min and max: The minimum and maximum values that the parameter can take,
defining its range.

◦ defaultValue: A predefined value that is set when the pedal is initialized or reset.

◦ id: A string identifier, to help manage the pot’s state and interaction within the
application.

3.3.4.3 Design Rationale

The decision to adopt this particular data model structure was driven by several factors:

◦ Flexibility: The model needed to accommodate a wide range of pedal types with
varying functionalities. By abstracting common attributes into the PedalType and
PotType models, the system can easily be extended to include new pedal types.

◦ Simplicity: Keeping the model simple and intuitive facilitates easier integration
with the UI components and the audio processing logic.

◦ Performance: Efficient data structures are crucial for real-time audio processing,
ensuring that changes in the UI are promptly reflected in the audio output.

3.3.4.4 Integration with UI and Audio Processing

These data models are tightly integrated into the UI components and audio processing
logic, as illustrated in the following examples:

58



3.4. User Interface and Interaction Design

1 const fuzzPedal = {

2 name: ’Fuzz’,

3 isActive: true ,

4 pots: [

5 {

6 name: ’Fuzz’,

7 min: 0,

8 max: 10,

9 value: 5,

10 defaultValue: 5

11 },

12 {

13 name: ’Volume ’,

14 min: 0,

15 max: 10,

16 value: 7,

17 defaultValue: 7

18 }

19 ],

20 };

Listing 3.10: Data Model Example 1

1 const pingPongPedal = {

2 name: ’Ping Pong Delay’,

3 isActive: true ,

4 pots: [

5 {

6 name: ’Delay Time’,

7 min: 0,

8 max: 1,

9 value: null ,

10 defaultValue: 0.5,

11 },

12 {

13 name: ’Feedback ’,

14 min: 0,

15 max: 1,

16 value: null ,

17 defaultValue: 0.5,

18 },

19 {

20 name: ’Mix’,

21 min: 0,

22 max: 1,

23 value: null ,

24 defaultValue: 0.5,

25 },

26 ],

27 };

Listing 3.11: Data Model Example 2

Listings 3.10 and 3.11 showcase models for different audio effects, adhering to the same
basic schema. This consistency is key to a reusable and versatile interface for representing
various audio effects.

In addition, these data models are seamlessly integrated into the application’s UI com-
ponents and audio processing logic. For instance, each BoxPedal component in the UI is
dynamically generated based on a PedalType model, and user interactions with the Pot

components directly influence the corresponding parameters in the audio processing chain.

3.4 User Interface and Interaction Design

The user interface (UI) of our application acts as a bridge between the audio processing and
the user’s interaction with these processes. This subsection explores the key UI components
and their interactions, emphasizing how they collectively enhance the user experience.

Previously we covered the Stage and Board components in detail in the subsection
3.3.1 ”Component Architecture”. A quick overview of what we learned is that both of
these components form the foundational layout and audio processing management of the
application. The Stage component initiates the application’s state and rendering logic,
while the Board component bridges the user interface with the underlying audio processing
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functionalities. Accordingly, the remainder of the subsection will focus focus on additional
components that play a crucial role in the application.

The sample Fig. 3.2 shows a simplified view of how the UI components are organized
and structured during the main life cycle of our application:

UI Components

<<Component>>

Board

<<Component>>

Stage

<<Component>>

BoxPedal

<<Component>>

AddPedalBox

<<Component>>

RemovePedalButton

<<Component>>

Pot

<<Component>>

BypassSwitch

<<Component>>

BypassLed

displays

displays

displays
0...*

displays

displays
0...*

Figure 3.2: UI Components Hierarchy

3.4.1 BoxPedal Component

The BoxPedal component is a critical element in the application, simulating a physical
guitar pedal’s interactive interface. Each BoxPedal represents a single effect in the user’s
effects chain, offering controls for modifying effect parameters and a bypass switch for
toggling the effect on or off.

Modeled to reflect the intuitive interface of a guitar pedal, each BoxPedal component
contains various controls that the user can interact with, such as virtual knobs (implemen-
ted as Pot components) and a toggle switch (BypassSwitch) for engaging or bypassing
the effect. These controls are designed to mimic the physical act of adjusting a pedal,
enhancing the user’s experience and connection with the application.

1 import { useEffect , useRef } from ’react’;

2 import Pot from ’./ Controls/Pot’;

3 import BypassSwitch from ’./ Bypass/BypassSwitch ’;
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4 import BypassLed from ’./ Bypass/BypassLed ’;

5
6 const BoxPedal = ({ position , name , isActive , pots , pedalNode }) => {

7 const activePedalNodeRef = useRef(pedalNode);

8
9 useEffect (() => {

10 // Effect logic for pedal node initialization and management ...

11 }, [pedalNode ]);

12
13 const handlePotChange = (e, potIndex) => {

14 // Handle potentiometer changes ...

15 };

16
17 const handleBypassToggle = (e, isActive) => {

18 // Toggle bypass state ...

19 };

20
21 const handleRemovePedal = (e, position) => {

22 // Handle pedal removal from audio process graph

23 }

24
25 return (

26 <div className=’card -compact card -bordered card glass w-60 shadow -xl’

>

27 <div className=’card -body’>

28 <div className=’card -actions justify -start’>

29 <RemovePedalButton handleRemovePedalFromChain ={

handleRemovePedal} position ={ position} />

30 </div >

31
32 <Paragraph className=’flex -grow -0 text -end’>

33 {upperCase(name)}

34 </Paragraph >

35
36 <div className=’flex flex -grow flex -col items -start justify -

center ’>

37 {pots.map((pot , potIndex) => (

38 <Pot key={‘${pot.id}-${potIndex}‘} position ={ potIndex} id={

pot.name} name={pot.name} max={pot.max} min={pot.min}

value ={pot.value ?? pot.defaultValue} handlePotChange ={

handlePotValueChange} />

39 ))}

40 </div >

41
42 <div className=’card -actions items -center justify -between ’>

43 <BypassLed enabled ={ isActive} />

44 <BypassSwitch isActive ={ isActive} handleToggle ={

handleIsActiveToggle} />

45 </div >

46 </div >

47 </div >
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48 );

49 };

50
51 export default BoxPedal;

Listing 3.12: BoxPedal Component

In Listing 3.12, the BoxPedal component demonstrates a mix of functional and re-
sponsive design. It utilizes React hooks for managing the state and lifecycle of the pedal,
ensuring that any changes in effect parameters are accurately processed and rendered.

The BoxPedal component is a complex assembly of various interactive elements and
hooks that manage its state:

◦ Pots: Each potentiometer (Pot component) in the pedal offers a user interface for
adjusting specific parameters of the effect.

◦ Bypass Switch: The BypassSwitch allows the user to enable or disable the effect,
critical for A/B testing and sound sculpting.

◦ LED Indicator: The BypassLed gives visual feedback on whether the effect is
active, enhancing user experience.

◦ Remove Button: The RemovePedalButton provides an interface for removing the
pedal from the chain.

In addition, the state of each BoxPedal, including the status of the bypass switch
and the values of its parameters—is managed using React’s stateful logic and references
(useRef). This ensures that any changes made by the user are accurately captured and
reflected in both the UI and the audio processing.

The BoxPedal components are dynamically rendered based on the user’s effects chain
configuration. Users can add new pedals to their chain or remove existing ones, and the
UI updates accordingly to reflect these changes. This dynamic rendering is central to
providing a flexible and user-centric experience.

Special attention is given to making the BoxPedal components accessible and respons-
ive. They are designed to be intuitive for both beginners and experienced users, with clear
labels and a layout that adjusts seamlessly across different devices and screen sizes.

Each BoxPedal is tightly integrated with the application’s audio processing logic.
Changes made via the UI controls directly impact the audio signal processing, ensuring a
cohesive and interactive experience. The BoxPedal acts as the interface between the user’s
input and the complex audio processing running in the background.

3.4.2 Pot Component

The Pot component, short for ”potentiometer”, allows users to interactively adjust various
parameters of the effects, such as volume, tone, and gain. This component embodies
the tactile control that musicians expect from physical pedals, providing an intuitive and
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responsive interface for customizing the sound. Each Pot represents a control knob on a
physical effect pedal. It is designed to modify a specific attribute of an audio effect, like the
delay time on a delay pedal or the depth of modulation on a chorus effect. The component
is designed to be reusable and adaptable to various types of effects and parameters.

Below in Listing 3.13 is a representation of the Pot component, demonstrating its
structure and functionality within the application:

1 import { useMemo } from ’react’;

2 import { getStepInRange } from ’@/lib/utils/stepUtils ’;

3
4 const Pot = ({ id , position , name , min , max , value , handlePotChange }:

PotProps) => {

5 const step = useMemo (() => getStepInRange(min , max), [min , max]);

6 return (

7 <>

8 <input id={id} name={‘${camelCase(name)}‘} type=’range ’ min={min}

max={max} value={ value} step={step} onChange ={(e) =>

handlePotChange(e, position)} />

9 <Paragraph className=’flex -grow -0’ size=’xs’>{name}</Paragraph >

10 </>

11 );

12 };

13
14 export default React.memo(Pot);

Listing 3.13: Pot Component

As we can see, the Pot component incorporates an HTML range input element, which
users can interact with to adjust settings. This interaction is handled by the
handlePotChange function passed as a prop from the BoxPedal component, which updates
the corresponding audio effect parameter in real-time.

The use of React.memo for performance optimization ensures that the component only
re-renders when its props change, maintaining smooth interaction even when handling
multiple real-time adjustments.

3.4.3 BypassSwitch and BypassLed Components

The BypassSwitch and BypassLed components offer intuitive control and visual feedback
for the activation state of individual pedals.

The BypassSwitch component provides a user-friendly mechanism for toggling the act-
ive state of a pedal. By interacting with this switch, users can enable or disable the effect of
a particular pedal without removing it from the chain. Complementing the BypassSwitch,
the BypassLed component serves as a visual indicator of a pedal’s active state. When a
pedal is engaged, the LED lights up, offering immediate feedback to the user. This visual
cue is particularly useful in complex setups where multiple pedals are used, helping users
keep track of their current configuration.

The implementation of these components demonstrates their integration into the applic-
ation’s overall design. Below are the code snippets for both BypassSwitch and BypassLed:
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1 const BypassSwitch = ({ isActive , handleToggle }: BypassSwitchProps) => {

2 return (

3 <label className=’swap’>

4 <input type=’checkbox ’ checked ={ isActive} onChange ={(e) =>

handleToggle(e, !isActive)} />

5 <Paragraph className=’swap -off’>OFF </Paragraph >

6 <Paragraph className=’swap -on’>ON </Paragraph >

7 </label >

8 );

9 };

10
11 export default BypassSwitch;

Listing 3.14: BypassSwitch Component

1 const BypassLed = ({ enabled }: BypassLedProps) => {

2 return <RecordingIcon enabled ={ enabled} />;

3 };

4
5 export default BypassLed;

Listing 3.15: BypassLed Component

As we can see, in Listing 3.14 the BypassSwitch component uses a checkbox input
to capture the user’s interaction. The handleToggle function is invoked when the state
of the checkbox changes, updating the active state of the corresponding pedal. This im-
plementation provides a straightforward way for users to control their effects in real-time.
Meanwhile in Listing 3.15 we can see the BypassLed component uses the state enabled

that’s being passed down through the parent component BoxPedal (being the same vari-
able that’s also passed down in BypassSwitch component with the name isActive) to
give the user visual feedback and keep track of the current activity or inactivity of the
specific audio effect.

Both components are designed with consideration for aesthetics and practicality. The
BypassSwitch features a simple yet effective user interface, while the BypassLed utilizes
an iconographic approach for its visual indicator. These design choices contribute to a
clean and user-friendly interface.

3.4.4 AddPedalBox Component

The AddPedalBox component is an interactive element within the application that allows
users to add new effects pedals to their virtual pedalboard. This component plays a
significant role in enhancing the application’s interactivity and user engagement, allowing
for real-time customization and exploration of different chaining of audio effects.

Below in Listing 3.16 is an implementation snapshot of the AddPedalBox component,
illustrating its role in the application:

1 import { useCallback } from ’react’;

2 import { useAppDispatch } from ’@/hooks/useAppDispatch ’;
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3 import { useAudioProcessGraphContext } from ’@/store/providers/

AudioProcessGraphProvider ’;

4
5 const AddPedalBox = () => {

6 const { audioContext , input , audioNodes , setAudioNodes } =

useAudioProcessGraphContext ();

7 const dispatch = useAppDispatch ();

8
9 const handleAddPedal = useCallback (( newPedal: PedalType) => {

10 if (audioContext.value && input.node) {

11 const node = getAudioNodeFromPedal(newPedal , audioContext.value);

12 const newAudioNodesChain = buildNewChainAddingNodeAtLast(node ,

audioNodes.chain);

13
14 disconnectAudioNodesChain(audioNodes.chain , audioContext.value ,

input.node);

15 connectAudioNodesChain(newAudioNodesChain , audioContext.value ,

input.node);

16
17 setAudioNodes(newAudioNodesChain);

18 }

19 }, [audioContext , input , audioNodes , dispatch , setAudioNodes ]);

20
21 return (

22 <Button onClick ={() => handleAddPedal(somePedalType)}>Add Pedal </

Button >

23 );

24 };

25
26 export default AddPedalBox;

Listing 3.16: AddPedalBox Component

The AddPedalBox component utilizes the handleAddPedal function to manage the
addition of new pedals. It is important to note that this function is an implementation of
the updateAudioProcessingGraph algorithm in Listing 3.9 that we demonstrated in the
subsection Audio Processing Workflow. Upon user interaction, this function dynamically
creates a new audio node corresponding to the selected pedal type, updates the audio
processing graph, and alters the global state to include the new pedal.

The straightforward interface, typically represented by a button, invites users to expand
their pedalboard with ease. This approach not only makes the application accessible to
users of varying expertise levels but also keeps the focus clear.

3.4.5 RemovePedalButton Component

The primary role of the RemovePedalButton is to offer users an intuitive way to manage
their pedalboard. By allowing the removal of individual pedals, users can easily modify
their effects chain, tailoring the sound to their specific needs or preferences. This func-
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tionality is essential for a user-friendly experience, giving users full control over their audio
setup.

Below in Listing 3.17 is the implementation of the RemovePedalButton component,
demonstrating its integration into the application’s UI:

1 import { useCallback } from ’react’;

2 import { useAppDispatch } from ’@/hooks/useAppDispatch ’;

3 import { AudioNodeUtils } from ’@/lib/utils’;

4 import { useAudioProcessGraphContext } from ’@/store/providers/

AudioProcessGraphProvider ’;

5
6 const RemovePedalButton = ({ position }: RemovePedalProps) => {

7 const { audioContext , input , audioNodes , setAudioNodes } =

useAudioProcessGraphContext ();

8 const dispatch = useAppDispatch ();

9
10 const handleRemovePedal = useCallback (() => {

11 if (audioContext.value && input.node) {

12 const newAudioNodesChain = AudioNodeUtils.

buildNewChainRemovingNodeAtIndex(position , audioNodes.chain);

13
14 disconnectAudioNodesChain(audioNodes.chain , audioContext.value ,

input.node);

15 connectAudioNodesChain(newAudioNodesChain , audioContext.value ,

input.node);

16
17 setAudioNodes(newAudioNodesChain);

18 }

19 }, [audioContext , input , audioNodes , position , dispatch , setAudioNodes

]);

20
21 return (

22 <Button variant=’ghost’ size=’sm’ onClick ={ handleRemovePedal}><

CloseIcon /></Button >

23 );

24 };

25
26 export default RemovePedalButton;

Listing 3.17: RemovePedalButton Component

The component employs the handleRemovePedal function, which is triggered upon user
interaction. Similarly to handleAddPedal function explored in AddPedalBox component,
this function also is an implementation of the updateAudioProcessingGraph algorithm in
Listing 3.9 that we demonstrated in the subsection Audio Processing Workflow. This func-
tion efficiently manages the removal of the selected pedal’s audio node from the processing
chain. It updates the audio processing graph and the global state of the application to
reflect this change.

Designed for ease of use, the RemovePedalButton provides a clear visual cue (repres-
ented by a close or delete icon) for users to remove pedals. This design choice emphasizes
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the application’s commitment to a straightforward and hassle-free user interface, allowing
users to focus on the creative aspects of sound manipulation.

3.5 Audio Node Creation and Management

The custom audio nodes play an important role in defining the unique sound characteristics
and capabilities of the application. In our audio effects emulator, these nodes are the basis
of replicating and manipulating a wide range of audio effects, from subtle reverb to intense
distortion.

3.5.1 Custom Audio Node Design Principles

The design of custom audio nodes in the application is guided by several key principles,
ensuring that these nodes are not only functional and efficient but also maintainable and
extensible. This subsection outlines these guiding principles and their implementation in
the context of audio node development.

3.5.1.1 Class Structure and Common Features

At the heart of each custom audio node is a class structure that extends the native
AudioNode class provided by the Web Audio API. This approach offers several advant-
ages:

◦ Consistency: By extending the base AudioNode class, custom nodes inherit a con-
sistent interface, ensuring compatibility with the Web Audio API’s ecosystem.

◦ Encapsulation: Each node encapsulates its functionality, maintaining a clear separ-
ation of concerns. This encapsulation means that the nodes can function independ-
ently while also being capable of seamless integration within the audio processing
chain.

◦ Reusability: Common methods and properties are abstracted into base classes,
promoting reusability and reducing code redundancy.

◦ Efficiency: Ensuring minimal processing latency and resource usage, crucial for
real-time audio applications.

3.5.1.2 Parameter Management

Effective management of audio parameters is crucial for real-time audio processing. In
custom nodes, parameters such as gain, frequency, and modulation depth are typically
exposed as AudioParams, enabling dynamic control. Key aspects include:

◦ Real-Time Adjustments: Users can adjust parameters in real-time, allowing for
live manipulation of audio effects.
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◦ Default and Ranged Values: Each parameter is initialized with sensible default
values and constrained within logical ranges.

3.5.1.3 Connect and Disconnect Method Overrides

To facilitate flexible signal routing within the audio processing graph, custom nodes often
override the default connect and disconnect methods. This customization allows for:

◦ Simplified Routing: Streamlining the process of connecting nodes in series, tailored
to the requirements of the application.

◦ Custom Connection Logic: Implementing specific behaviors when nodes are con-
nected or disconnected, such as managing internal node connections.

3.5.1.4 Basic Implementation of a Custom Audio Node

To exemplify the principles outlined above, let’s consider a basic custom audio node. This
node represents a simplified framework that echoes the structure and design of more com-
plex nodes used in the application.

The following Listing 3.18 provides the code for a basic custom audio node:

1 export class BasicCustomNode extends AudioNode {

2 // Parameters

3 exampleParam: AudioParam;

4
5 // AudioNode(s) used by effect

6 private internalNode;

7
8 // Extra params

9 private _inputConnect;

10
11 // Overriding connect method

12 private _outputConnect(

13 destination: AudioNode | AudioParam ,

14 output ?: number ,

15 input ?: number

16 ): AudioNode | void {

17 if (destination instanceof AudioNode) {

18 return this.internalNode.connect(destination , output , input);

19 } else {

20 return this.internalNode.connect(destination , output);

21 }

22 }

23
24 // Overriding disconnect method

25 private _outputDisconnect(

26 destination ?: AudioNode | AudioParam ,

27 output ?: number

28 ): void {

29 if (destination instanceof AudioNode) {
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30 if (output) {

31 return this.internalNode.disconnect(destination , output);

32 } else {

33 return this.internalNode.disconnect(destination);

34 }

35 } else if (destination instanceof AudioParam) {

36 if (output) {

37 return this.internalNode.disconnect(destination , output);

38 } else {

39 return this.internalNode.disconnect(destination);

40 }

41 } else {

42 return this.internalNode.disconnect ();

43 }

44 }

45
46 constructor(audioContext , options = {}) {

47 super(audioContext);

48
49 // Internal AudioNode(s) setup

50 this.internalNode = new GainNode(audioContext);

51
52 // Example parameter

53 this.exampleParam = new AudioParam(this , ’exampleParam ’, {

54 defaultValue: 1.0,

55 minValue: 0.0,

56 maxValue: 1.0

57 });

58
59 this._inputConnect = this.connect; // input side , connect of

super class

60 this.connect = this._outputConnect; // connect () method of output

61 this.disconnect = this._outputDisconnect; // disconnect () method

of output

62
63 // Connect internal nodes (DSP)

64 this._inputConnect(this._internalNode);

65 }

66
67 // Custom method to control the example parameter

68 setExampleParam(value) {

69 this.exampleParam.value = value;

70 }

71 }

Listing 3.18: Basic Implementation of a Basic Custom Node

This previous code snippet demonstrates a basic structure of a custom audio node:

◦ Extension of AudioNode: The class extends the native AudioNode to inherit its
properties and methods.
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◦ Internal AudioNode(s): It includes internal AudioNode’(s) for processing, like a
GainNode in this case.

◦ Custom Parameters: It introduces an AudioParam (exampleParam) to illustrate
parameter management.

◦ Overridden Connect/Disconnect: The connect and disconnect methods are
overridden to route the signal through the internal node.

◦ Parameter Control Method: A custom method (setExampleParam) allows real-
time control of the parameter.

Another representation we can make for easier understanding of the custom audio node
and it’s internal connection can be done with Fig. 3.3.

BasicCustomNode

input outputinternalNode

Figure 3.3: Basic Custom Node Implementation

This basic node serves as a foundational blueprint that can be expanded and customized
to create more complex audio processing nodes with specific functionalities.

3.5.2 Implementation of Audio Nodes

Each custom audio node, as we saw in the example in the previous subsubsection 3.5.1.4,
is implemented as a class extending the Web Audio API’s base AudioNode class. Each
node represents a unique audio effect or processing functionality, demonstrating the ver-
satility and robustness of the application’s audio processing capabilities. Fortunately, the
implementation is done in a similar manner across all the various custom audio nodes used
in the application, nonetheless the major difference comes from the internal nodes used in
each of them as well as their internal routing.
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3.5.2.1 Boost Node

The BoostNode in the application is designed to amplify the audio signal. It’s particu-
larly useful for increasing the overall signal level or driving other effects in the chain with
a stronger input. The BoostNode extends from GainNode, a standard Web Audio API
node, and it introduces additional functionalities for parameter control and audio routing.
The primary function of this custom node is to control the amplification level of the in-
coming audio signal. This is achieved through an AudioParam object, allowing real-time
manipulation of the gain value.

The following Listing 3.19 provides an overview of the BoostNode implementation,
showcasing its structure and key methods.

1 export class BoostNode extends GainNode {

2 // Parameters

3 amplify: AudioParam;

4
5 constructor(audioContext , options) {

6 super(audioContext);

7
8 // Initialize the amplify parameter

9 this.amplify = new GainNode(audioContext , {...});

10
11 // Routing

12 this._inputConnect(this._volumeAmplifyNode);

13 }

14
15 // Custom method to set param values

16 setAmplify(value) {/** */}

17 }

Listing 3.19: BoostNode Implementation

As we can see the internal configuration makes use of only one GainNode, this means
that if we want to understand the connection of the internal nodes of this audio effect
visually we can reference Fig. 3.3.

3.5.2.2 Distortion Node

The DistortionNode is designed to introduce and control harmonic distortion in the audio
signal. This node imparts a unique character to the sound, often associated with electric
guitars. The key controls we can find in this effect are:

◦ Intensity Control: This parameter adjusts the level of distortion applied to the signal.
A higher intensity results in more pronounced harmonic content and a more aggressive
distortion effect.

◦ Gain Management: Distortion typically increases the signal’s amplitude, so gain
control is essential for managing the output level and preventing clipping.
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◦ Lowpass Filter:To tame the high-frequency content often introduced by distortion,
a lowpass filter is employed. This filter allows for shaping the tonal balance of the
distorted signal.

The DistortionNode extends from WaveShaperNode, a native Web Audio API node
that distorts the incoming audio signal based on a shaping curve. The following code
snippet in Listing 3.20 and Fig. 3.4 provide an insight into its configuration and signal
flow.

1 export class DistortionNode extends WaveShaperNode {

2 // Parameters

3 intensity: AudioParam;

4 gain: AudioParam;

5 lowpassFilter: AudioParam;

6
7 constructor(audioContext , options) {

8 super(audioContext);

9
10 // Internal Nodes

11 this._gainNode = new GainNode(audioContext , { gain: options.gain

});

12 this._gainNode2 = new GainNode(audioContext , {

13 gain: isFinite (1 / options.gain) ? 1 / options.gain : 50,

14 });

15 this._outputBiquadFilterNode = new BiquadFilterNode(audioContext ,

{

16 frequency: options.lowpassFilter ,

17 type: ’lowpass ’,

18 });

19
20 // Parameter initialization

21 this.intensity = new AudioParam(this , ’intensity ’, { ... });

22 this.gain = new AudioParam(this , ’gain’, { ... });

23 this.lowpassFilter = this._outputBiquadFilterNode.frequency;

24
25 // Signal routing

26 this._inputConnect(this._gainNode);

27 this._gainNode.connect(this._gainNode2);

28 this._gainNode2.connect(this._outputBiquadFilterNode);

29 }

30
31 // Custom methods for parameter control

32 setIntensity(value) { /* ... */ }

33 setGain(value) { /* ... */ }

34 setLowpassFilter(value) { /* ... */ }

35 }

Listing 3.20: DistortionNode Implementation

In this case the internal configuration of the nodes makes use of three nodes. For-
tunately, the routing between them continues to be pretty simple as they are chained in
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series, this makes it easy to followup and to understand the connection of the internal
nodes of this audio effect, as shown in Fig. 3.4 below.

DistortionNode

input outputgainNode

gainNode2

biquadFilter
Node

Figure 3.4: Distortion Node Implementation

3.5.2.3 Fuzz Node

The FuzzNode is aimed at recreating the classic fuzz effect, a form of extreme distortion.
This effect is characterized by its ability to produce a warm, fuzzy distortion, which has
been a staple in electric guitar tones. The FuzzNode features controls for fuzz, which dic-
tates the intensity of the distortion, and level, which adjusts the output volume, offering
users a range of sonic textures from subtle warmth to aggressive, gritty distortion.

The FuzzNode extends from GainNode, using wave shaper nodes to impart a distinctive
clipping effect that defines its ’fuzzy’ sound quality. The following code snippet in Listing
3.21 provides an insight into its configuration and signal flow.

1 export class FuzzNode extends GainNode {

2 // Parameters

3 fuzz: AudioParam;

4 level: AudioParam;

5
6 constructor(audioContext , options) {

7 super(audioContext);

8 const curve = calculateFuzzCurve ();

9
10 // Internal Nodes

11 this._inGain1Node = new GainNode(audioContext , { gain: 1 });

12 this._inGain2Node = new GainNode(audioContext , { gain: -1 });

13 this._shaper1Node = new WaveShaperNode(audioContext , { curve:

curve });

14 this._shaper2Node = new WaveShaperNode(audioContext , { curve:

curve });

15 this._outGain1Node = new GainNode(audioContext , { gain: 1 });

16 this._outGain2Node = new GainNode(audioContext , { gain: -1 });
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17 this._levelNode = new GainNode(audioContext , { gain: options.

level || 1 });

18 this._outputNode = new GainNode(audioContext);

19 this._outFilterNode = new BiquadFilterNode(audioContext , {

20 type: ’highpass ’,

21 frequency: 80,

22 });

23 this._driveInputNode = new ConstantSourceNode(audioContext , {

24 offset: options.fuzz || 0,

25 });

26
27 // Parameter initialization

28 this.fuzz = this._driveInputNode.offset;

29 this.level = this._levelNode.gain;

30
31 // Signal routing

32 this._inputConnect(this._inGain1Node)

33 .connect(this._shaper1Node)

34 .connect(this._outGain1Node)

35 .connect(this._outFilterNode)

36 .connect(this._levelNode)

37 .connect(this._outputNode);

38 this._inputConnect(this._inGain2Node)

39 .connect(this._shaper2Node)

40 .connect(this._outGain2Node)

41 .connect(this._outFilterNode);

42 this._driveInputNode.connect(this._outGain2Node.gain);

43 this._driveInputNode.start (0);

44 }

45
46 // Custom methods for parameter control

47 setFuzz(value) { /* ... */ }

48 setLevel(value) { /* ... */ }

49 }

Listing 3.21: FuzzNode Implementation

The internal architecture of the FuzzNode involves a series of interconnected nodes,
each contributing to the characteristic sound of fuzz. These include gain nodes for level
adjustments and wave shaper nodes for imparting the distinctive clipping effect. Fig. 3.5
below illustrates the flow and interaction of these components within the node.
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Figure 3.5: Fuzz Node Implementation

3.5.2.4 Overdrive Node

The OverdriveNode is another variant of distortion, widely used to add warmth and char-
acter to musical instruments. Unlike the harsher distortion of a fuzz effect or the aggressive
clipping of high-gain distortion, overdrive gently boosts the signal, producing a soft clipping
that enriches the sound with subtle harmonic content

In the architecture of the application, the OverdriveNode extends from the GainNode,
and it incorporates a unique blend of audio processing nodes to achieve its characteristic
sound. The following key functionalities are encapsulated within this node:

◦ Drive Control: Manages the intensity of the overdrive effect. Increasing the drive
results in a more pronounced clipping and a richer, more saturated sound.

◦ Level Management: Balances the output level to ensure that the overdrive effect
enhances the audio without overwhelming it or causing unwanted clipping.

◦ Tonal Shaping: Through a combination of filters and wave shaping techniques, the
OverdriveNode shapes the tonal characteristics of the audio, tailoring the overdrive
effect to the user’s preference.

Listing 3.22 demonstrates the OverdriveNode’s implementation, highlighting its in-
ternal node configuration and parameter management:

1 export class OverdriveNode extends GainNode {

2 // Parameters

3 drive: AudioParam;

4 level: AudioParam;

5
6 constructor(audioContext , options) {

7 super(audioContext);

8 // Internal Nodes setup

9 const { curve , inGainCurve , outGainCurve } =

calculateOverdriveWaveShaperCurves ();

10 // Internal Nodes
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11 this._inGainNode = new GainNode(audioContext , { gain: 0 });

12 this._outGainNode = new GainNode(audioContext , { gain: 0 });

13 this._shaperNode = new WaveShaperNode(audioContext , { curve:

curve });

14 this._inGainShaperNode = new WaveShaperNode(audioContext , {

15 curve: inGainCurve ,

16 });

17 this._outGainShaperNode = new WaveShaperNode(audioContext , {

18 curve: outGainCurve ,

19 });

20 this._levelNode = new GainNode(audioContext , { gain: options.

level || 1 });

21 this._outputNode = new GainNode(audioContext);

22 this._driveInputNode = new ConstantSourceNode(audioContext , {

23 offset: options.drive || 0,

24 });

25
26 // Parameter initialization

27 this.drive = this._driveInputNode.offset;

28 this.level = this._levelNode.gain;

29
30 // Signal routing

31 this._inputConnect(this._inGainNode)

32 .connect(this._shaperNode)

33 .connect(this._outGainNode)

34 .connect(this._levelNode)

35 .connect(this._outputNode);

36 this._driveInputNode

37 .connect(this._inGainShaperNode)

38 .connect(this._inGainNode.gain);

39 this._driveInputNode

40 .connect(this._outGainShaperNode)

41 .connect(this._outGainNode.gain);

42 this._driveInputNode.start (0);

43 }

44
45 // Custom methods for parameter control

46 setDrive(value) { /* ... */ }

47 setLevel(value) { /* ... */ }

48 }

Listing 3.22: OverdriveNode Implementation

The OverdriveNode’s signal flow is key to its function. Gain nodes manage the input
and output levels, while wave shaper nodes create the soft clipping characteristic of over-
drive. This setup allows for nuanced control over the effect, resulting in a natural-sounding
overdrive. Fig. 3.6 below illustrates the flow and interaction of these components within
the node.
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Figure 3.6: Overdrive Node Implementation

3.5.2.5 Compressor Node

The CompressorNode is made to compress the dynamic range of the audio signal, meaning
it reduces the volume of loud sounds or amplifies quiet sounds, thus balancing the overall
audio levels ensuring a more consistent sound level.

The CompressorNode in the application is built upon the foundational GainNode and
extends its capabilities with advanced dynamic range compression features. Key function-
alities and controls of this node include:

◦ Mix Control: Balances the compressed signal with the original, allowing for a blend
of processed and unprocessed audio.

◦ Threshold Setting: Determines the level at which compression starts to take effect.
Lowering the threshold means more of the signal will be compressed.

◦ Attack and Release: Manages how quickly the compression effect begins after the
threshold is exceeded (attack) and how quickly it ceases once the level drops below
the threshold (release).

The implementation of the CompressorNode, as detailed in Listing 3.23, showcases the
construction of internal nodes and the management of key audio parameters:

1 export class CompressorNode extends GainNode {

2 // Parameters

3 mix: AudioParam;

4 threshold: AudioParam;

5 attack: AudioParam;

6 release: AudioParam;

7
8 constructor(audioContext , options) {

9 super(audioContext);

10 // Internal Nodes setup

11 this._inGainNode = new GainNode(audioContext , { gain: 1 - (

options.mix || 0.85) });

77



3. Overview of Our Approach

12 this._compressorNode = new DynamicsCompressorNode(audioContext , {

13 threshold: options.threshold || -30,

14 attack: options.attack || 0.1,

15 release: options.release || 0.5,

16 });

17 this._outGainNode = new GainNode(audioContext , { gain: options.

mix || 0.85 });

18 this._sumGainNode = new GainNode(audioContext);

19
20 // Parameter initialization

21 this.mix = this._outGainNode.gain;

22 this.threshold = this._compressorNode.threshold;

23 this.attack = this._compressorNode.attack;

24 this.release = this._compressorNode.release;

25
26 // Signal routing

27 this._inputConnect(this._compressorNode)

28 .connect(this._outGainNode)

29 .connect(this._sumGainNode);

30 this._inputConnect(this._inGainNode).connect(this._sumGainNode);

31 }

32
33 // Custom methods for parameter control

34 setMix(value) { /* ... */ }

35 setThreshold(value) { /* ... */ }

36 setAttack(value) { /* ... */ }

37 setRelease(value) { /* ... */ }

38 }

Listing 3.23: CompressorNode Implementation

The CompressorNode utilizes multiple internal nodes to achieve its compression effect.
The signal first passes through a DynamicsCompressorNode, where it undergoes compres-
sion based on the configured threshold, attack, and release parameters. The node’s mix
control then allows for blending the compressed signal with the original signal, providing
versatility in its application.

Fig. 3.7 illustrates the internal configuration and signal routing within the CompressorNode.
This diagram helps in understanding how the signal is processed and controlled through
the node.
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Figure 3.7: Compressor Node Implementation

3.5.2.6 Volume Node

The VolumeNode is primarily responsible for controlling the overall loudness of the audio
signal. It’s a versatile tool used for basic level adjustments, making it a critical element
for both subtle volume balancing and significant amplification or attenuation.

In the application, the VolumeNode is an extension of the GainNode. It leverages the
gain control capabilities of the GainNode and introduces a user-friendly interface for real-
time volume adjustments. The key functionality of the VolumeNode allows the users to
increase or decrease the signal’s amplitude, effectively controlling the volume of the output.

The implementation of the VolumeNode, as shown in Listing 3.24, outlines its structure
and key methods, focusing on the simplicity and efficiency of volume control:

1 export class VolumeNode extends GainNode {

2 // Parameter

3 level: AudioParam;

4
5 constructor(audioContext , options) {

6 super(audioContext);

7
8 // Internal Node setup

9 this._volumeLevelNode = new GainNode(audioContext , { gain:

options.level || 1 });

10
11 // Parameter initialization

12 this.level = this._volumeLevelNode.gain;

13
14 // Signal routing

15 this._inputConnect(this._volumeLevelNode);

16 }

17
18 // Custom method for volume control

19 setLevel(value) { /* ... */ }

20 }

Listing 3.24: VolumeNode Implementation
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In the VolumeNode, the internal structure is straightforward, with a single GainNode

used to adjust the level of the audio signal. This simplification makes it an efficient tool
for volume control without adding unnecessary complexity to the signal chain.

We can reference Fig. 3.3 again to illustrate the signal flow within the VolumeNode,
providing a clear view of its internal mechanism and how it interacts with the audio signal.

3.5.2.7 AutoWah Node

The AutoWahNode creates dynamic filter effects, often used to simulate the wah-wah effect
automatically. This effect is characterized by its sweeping filter that changes its frequency
response based on the input signal, creating a distinctive expressive sound. In essence, the
AutoWahNode combines aspects of an envelope follower and a band-pass filter to modulate
the filter’s frequency automatically.

This node extends from the GainNode, utilizing a combination of BiquadFilterNode
and OscillatorNode to achieve the characteristic wah-wah effect. The key functionalities
included within the AutoWahNode are:

◦ Frequency Control: Adjusts the central frequency of the band-pass filter, defining
the starting point of the wah effect.

◦ Q Factor: Determines the sharpness of the filter, affecting the intensity of the wah
effect.

◦ Sensitivity: Controls how much the filter frequency responds to the input signal’s
amplitude, allowing dynamic expression based on playing intensity.

The following code in Listing 3.25 provides an overview of the AutoWahNode’s imple-
mentation, showcasing its setup and signal processing:

1 export class AutoWahNode extends GainNode {

2 // Parameters

3 frequency: AudioParam;

4 q: AudioParam;

5 sense: AudioParam;

6
7 constructor(audioContext , options) {

8 super(audioContext);

9
10 // Internal Nodes

11 this._waveShaperNode = new WaveShaperNode(audioContext , { ... });

12 this._envFilterNode = new BiquadFilterNode(audioContext , { type:

’lowpass ’, ... });

13 this._envGainNode = new GainNode(audioContext , { gain: options.

sense || 2 });

14 this._envRangeNode = new GainNode(audioContext , { gain: 1200 });

15 this._filterNode = new BiquadFilterNode(audioContext , { type: ’

bandpass ’, ... });

16 this._outputNode = new GainNode(audioContext);
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17
18 // Parameter initialization

19 this.frequency = this._filterNode.frequency;

20 this.q = this._filterNode.Q;

21 this.sense = this._envGainNode.gain;

22
23 // Signal routing

24 this._inputConnect(this._filterNode).connect(this._outputNode);

25 this._inputConnect(this._waveShaperNode)

26 .connect(this._envFilterNode)

27 .connect(this._envGainNode)

28 .connect(this._envRangeNode)

29 .connect(this._filterNode.detune);

30 }

31
32 // Custom methods for parameter control

33 setFrequency(value) { /* ... */ }

34 setQ(value) { /* ... */ }

35 setSense(value) { /* ... */ }

36 }

Listing 3.25: AutoWahNode Implementation

The AutoWahNode employs an intricate setup of filter and envelope nodes to automat-
ically modulate the frequency response based on the input signal. It demonstrates the
integration of various Web Audio API components to achieve a complex audio effect.

Fig. 3.8 below illustrates the flow and interaction of these components within the node:
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Figure 3.8: AutoWah Node Implementation

3.5.2.8 Chorus Node

The ChorusNode is designed to create the chorus effect, a modulation that produces rich,
shimmering tones by duplicating the audio signal and altering its timing and pitch slightly.
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This effect simulates the experience of multiple instruments or voices playing in unison
with slight variations in pitch and time, adding depth and spatial character to the sound.

Built upon the GainNode structure, the ChorusNode integrates a set of internal AudioNodes
to achieve the modulation effect. Key functionalities include:

◦ Depth Control: Manages the intensity of the modulation, determining how pro-
nounced the chorus effect is.

◦ Rate Control: Adjusts the speed of the modulation, influencing the movement and
fluidity of the chorus effect.

The implementation of the ChorusNode is depicted in Listing 3.26, outlining its struc-
ture and key functions:

1 export class ChorusNode extends GainNode {

2 // Parameters

3 depth: AudioParam;

4 rate: AudioParam;

5
6 constructor(audioContext , options) {

7 super(audioContext);

8
9 // Internal Nodes setup

10 this._delayNode = new DelayNode(audioContext , { delayTime: 0.03

});

11 this._depthRangeNode = new GainNode(audioContext , { gain: 0.003

});

12 this._depthNode = new GainNode(audioContext , { gain: options.

depth || 0.5 });

13 this._outputNode = new GainNode(audioContext);

14 this._lfoNode = new OscillatorNode(audioContext , { type: ’sine’,

frequency: options.rate || 4 });

15
16 // Parameter initialization

17 this.depth = this._depthNode.gain;

18 this.rate = this._lfoNode.frequency;

19
20 // Signal routing

21 this._inputConnect(this._delayNode).connect(this._outputNode);

22 this._inputConnect(this._outputNode);

23 this._lfoNode

24 .connect(this._depthNode)

25 .connect(this._depthRangeNode)

26 .connect(this._delayNode.delayTime);

27 this._lfoNode.start (0);

28 }

29
30 // Custom methods for parameter control

31 setDepth(value) { /* ... */ }

32 setRate(value) { /* ... */ }
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33 }

Listing 3.26: ChorusNode Implementation

In the ChorusNode, the modulation effect is achieved by varying the delay time of the
audio signal using an OscillatorNode and GainNode combination. The depth of the chorus
effect is controlled by the amplitude of the modulation signal, while the rate determines
its frequency.

Fig. 3.9 below visualizes the internal structure and signal routing within the ChorusNode:
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Figure 3.9: Chorus Node Implementation

3.5.2.9 Flanger Node

The FlangerNode creates a distinct type of phasing which results from mixing two identical
signals together, with one signal delayed by a small, gradually changing period. This effect
is renowned for its swirling, spacey sound.

The FlangerNode, based on the GainNode, employs a combination of internal AudioNodes
to produce its characteristic sound. The primary elements of this node include:

◦ Delay Control: Modifies the time delay of the signal, which is central to creating
the flanging effect.

◦ Depth Control: Determines the intensity of the modulation applied to the delay
time.

◦ Feedback Control: Adjusts the amount of the processed signal fed back into the
node, enhancing the intensity and resonance of the effect.

◦ Speed Control: Regulates the rate at which the delay time fluctuates, affecting the
speed of the sweeping effect.

The implementation of the FlangerNode, as demonstrated in Listing 3.27, reveals its
internal configuration and parameter management:
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1 export class FlangerNode extends GainNode {

2 // Parameters

3 delay: AudioParam;

4 depth: AudioParam;

5 feedback: AudioParam;

6 speed: AudioParam;

7
8 constructor(audioContext , options) {

9 super(audioContext);

10
11 // Internal Nodes setup

12 this._wetGainNode = new GainNode(audioContext);

13 this._delayNode = new DelayNode(audioContext , { delayTime:

options.delay || 0.005 });

14 this._depthNode = new GainNode(audioContext , { gain: options.

depth || 0.002 });

15 this._feedbackGainNode = new GainNode(audioContext , { gain:

options.feedback || 0.5 });

16 this._oscillatorNode = new OscillatorNode(audioContext , { type: ’

sine’, frequency: options.speed || 0.25 });

17
18 // Parameter initialization

19 this.delay = this._delayNode.delayTime;

20 this.depth = this._depthNode.gain;

21 this.feedback = this._feedbackGainNode.gain;

22 this.speed = this._oscillatorNode.frequency;

23
24 // Signal routing

25 this._oscillatorNode

26 .connect(this._depthNode)

27 .connect(this._delayNode.delayTime);

28 this._inputConnect(this._wetGainNode);

29 this._inputConnect(this._delayNode);

30 this._delayNode.connect(this._wetGainNode);

31 this._delayNode.connect(this._feedbackGainNode);

32 this._feedbackGainNode.connect(this);

33 this._oscillatorNode.start (0);

34 }

35
36 // Custom methods for parameter control

37 setDelay(value) { /* ... */ }

38 setDepth(value) { /* ... */ }

39 setFeedback(value) { /* ... */ }

40 setSpeed(value) { /* ... */ }

41 }

Listing 3.27: FlangerNode Implementation

The FlangerNode intricately manipulates the delay time of the audio signal, where an
OscillatorNode modulates the delay time, creating the flanging effect. The feedback loop
reinforces the characteristic ’swooshing’ sound.

Fig. 3.10 visualizes the internal structure and signal routing within the FlangerNode:

84



3.5. Audio Node Creation and Management

FlangerNode

input outputdelayNode

oscillator
Node

depthNode

wetGain
Node

feedbackGain
Node

Figure 3.10: Flanger Node Implementation

3.5.2.10 Phaser Node

The PhaserNode is designed to create a phasing effect, a popular audio process that filters a
signal by creating a series of peaks and troughs in the frequency spectrum. The movement
of these peaks and troughs, typically modulated by an oscillator, gives the phasing effect
its characteristic sweeping, whooshing sound.

Derived from the GainNode, the PhaserNode in our application employs a combination
of internal audio nodes to produce the desired phasing effect. The main components and
functionalities of this node include:

◦ Depth Control: Adjusts the magnitude of the modulation applied to the filter
frequencies, influencing the intensity of the phasing effect.

◦ Rate Control: Controls the speed at which the peaks and troughs in the frequency
spectrum move, affecting the speed of the sweeping effect.

The implementation of the PhaserNode, as outlined in Listing 3.28, showcases its in-
ternal setup and the management of its parameters:

1 export class PhaserNode extends GainNode {

2 // Parameters

3 depth: AudioParam;

4 rate: AudioParam;

5
6 constructor(audioContext , options) {
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7 super(audioContext);

8
9 // Internal Nodes setup

10 this._filter1Node = new BiquadFilterNode(audioContext , { type: ’

allpass ’, frequency: 1100 });

11 this._filter2Node = new BiquadFilterNode(audioContext , { type: ’

allpass ’, frequency: 1100 });

12 this._depthRangeNode = new GainNode(audioContext , { gain: 1000 })

;

13 this._depthNode = new GainNode(audioContext , { gain: options.

depth || 0.5 });

14 this._outputNode = new GainNode(audioContext);

15 this._lfoNode = new OscillatorNode(audioContext , { frequency:

options.rate || 4 });

16
17 // Parameter initialization

18 this.depth = this._depthNode.gain;

19 this.rate = this._lfoNode.frequency;

20
21 // Signal routing

22 this._inputConnect(this._filter1Node)

23 .connect(this._filter2Node)

24 .connect(this._outputNode);

25 this._lfoNode

26 .connect(this._depthNode)

27 .connect(this._depthRangeNode)

28 .connect(this._filter1Node.frequency);

29 this._depthRangeNode.connect(this._filter2Node.frequency);

30 this._lfoNode.start (0);

31 }

32
33 // Custom methods for parameter control

34 setDepth(value) { /* ... */ }

35 setRate(value) { /* ... */ }

36 }

Listing 3.28: PhaserNode Implementation

The PhaserNode intricately modulates the phase of the audio signal by using a pair of
all-pass filters whose frequencies are modulated by an oscillator. This setup results in the
characteristic undulating effect of a phaser.

Fig. 3.11 illustrates the internal structure and signal flow within the PhaserNode:
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Figure 3.11: Phaser Node Implementation

3.5.2.11 DeepPhaser Node

The DeepPhaserNode is an advanced variant of the standard phaser effect, designed to offer
a more profound and intense modulation. This node is particularly effective in creating
a deep, swirling phaser effect, which adds a rich, textured layer to the audio. It extends
the principles of a standard phaser by introducing additional filters and modulation depth.
The key components of the DeepPhaserNode include:

◦ Multiple All-Pass Filters: By employing a series of all-pass filters, the node intens-
ifies the phasing effect, creating more complex patterns in the frequency spectrum.

◦ Enhanced Depth Control: Allows for greater modulation of the filter frequencies,
delivering a deeper phasing effect.

◦ Rate and Resonance Controls: These parameters offer fine-tuning of the speed of
the modulation and the intensity of the peaks in the frequency response, respectively.

The code snippet in Listing 3.29 below demonstrates the structure and key functional-
ities of the DeepPhaserNode:

1 export class DeepPhaserNode extends GainNode {

2 // Parameters

3 depth: AudioParam;

4 rate: AudioParam;

5 resonance: AudioParam;

6
7 constructor(audioContext , options) {

8 super(audioContext);

9
10 // Internal Nodes setup

11 this._filter1Node = new BiquadFilterNode(audioContext , { type: ’

allpass ’, frequency: 1100 });

12 this._filter2Node = new BiquadFilterNode(audioContext , { type: ’

allpass ’, frequency: 1100 });
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13 this._filter3Node = new BiquadFilterNode(audioContext , { type: ’

allpass ’, frequency: 1100 });

14 this._resonanceNode = new GainNode(audioContext , { gain: options.

resonance || 0.5 });

15 this._delayNode = new DelayNode(audioContext , { delayTime: 0.001

});

16 this._depthRangeNode = new GainNode(audioContext , { gain: 1000 })

;

17 this._depthNode = new GainNode(audioContext , { gain: options.

depth || 0.5 });

18 this._outputNode = new GainNode(audioContext);

19 this._lfoNode = new OscillatorNode(audioContext , { frequency:

options.rate || 4 });

20
21 // Parameter initialization

22 this.depth = this._depthNode.gain;

23 this.rate = this._lfoNode.frequency;

24 this.resonance = this._resonanceNode.gain;

25
26 // Signal routing

27 this._inputConnect(this._filter1Node)

28 .connect(this._filter2Node)

29 .connect(this._filter3Node)

30 .connect(this._outputNode);

31 this._lfoNode

32 .connect(this._depthNode)

33 .connect(this._depthRangeNode)

34 .connect(this._filter1Node.frequency);

35 this._depthRangeNode.connect(this._filter2Node.frequency);

36 this._depthRangeNode.connect(this._filter3Node.frequency);

37 this._filter3Node

38 .connect(this._resonanceNode)

39 .connect(this._filter1Node);

40 this._lfoNode.start (0);

41 }

42
43 // Custom methods for parameter control

44 setDepth(value) { /* ... */ }

45 setRate(value) { /* ... */ }

46 setResonance(value) { /* ... */ }

47 }

Listing 3.29: DeepPhaserNode Implementation

The DeepPhaserNode utilizes an intricate setup of interconnected all-pass filters and
a modulated LFO to produce its distinctive effect. The inclusion of a resonance control
further enhances the node’s ability to modify the audio signal, allowing for a wider range
of phasing effects.

Fig. 3.12 below provides a visual representation of the internal signal routing and com-
ponents within the DeepPhaserNode:
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Figure 3.12: Deep Phaser Node Implementation

3.5.2.12 Tremolo Node: Sine, Square, Triangle, and Sawtooth Variants

The Tremolo effect, characterized by a rhythmic modulation of the audio signal’s amp-
litude, is implemented in the application through various types of TremoloNodes. Each
variant, Sine, Square, Triangle, and Sawtooth, offers a distinct modulation pattern, provid-
ing users with a range of tremolo effects to choose from. Common features across the
Tremolo variants include:

◦ Speed Control: Adjusts the rate of modulation, dictating how quickly the volume
changes occur.

◦ Volume Control: Manages the depth or intensity of the modulation, affecting how
pronounced the tremolo effect is.

These nodes are all derived from the GainNode class, leveraging an OscillatorNode to
modulate the gain parameter and create the tremolo effect. The type of waveform used in
the oscillator defines the specific variant of the tremolo.

1 export class TremoloNode extends GainNode {

2 // Parameters

3 volume: AudioParam;

4 speed: AudioParam;

5
6 constructor(audioContext , options , oscillatorType) {

7 super(audioContext);

8
9 // Internal Nodes setup

10 this._oscillatorNode = new OscillatorNode(audioContext , {

11 type: oscillatorType ,

12 frequency: options.speed || 10

13 });

14
15 // Parameter initialization

16 this.volume = this.gain; // GainNode ’s gain parameter is used for

volume

17 this.speed = this._oscillatorNode.frequency;

18
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19 // Signal routing

20 this._oscillatorNode.connect(this.gain);

21 this._oscillatorNode.start (0);

22 }

23
24 // Custom methods for parameter control

25 setSpeed(value) { /* ... */ }

26 setVolume(value) { /* ... */ }

27 }

Listing 3.30: Generic Structure of TremoloNode Variants

Each variant implements the same structure with a key difference in the type of wave-
form used in the OscillatorNode. This waveform type (sine, square, triangle, or sawtooth)
imparts the specific characteristic to the modulation pattern.

Fig. 3.13 below visualizes the internal routing and components of a generic Tremo-
loNode, applicable to all variants. The specific nature of the tremolo effect is determined
by the waveform of the OscillatorNode.

TremoloNode
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Figure 3.13: Tremolo Node Variants Implementation

The flexibility in choosing the waveform type allows users to experiment with different
flavors of the tremolo effect, ranging from the smooth undulations of a sine wave to the
abrupt, rhythmic chops of a square wave.

3.5.2.13 SlapbackDelay Node

The SlapbackDelayNode replicates a single echo that quickly repeats.. This effect is char-
acterized by a short delay time and a single or few repeats, creating a distinct echoing
sound that can add depth and dimension to musical passages. The key characteristics of
the SlapbackDelayNode:

◦ Delay Time Control: Adjusts the duration between the original signal and its echo,
setting the tempo of the slapback effect.
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◦ Feedback Control: Determines the number of echoes. In slapback delay, this is
typically kept low to create a single or limited number of repeats.

◦ Mix Control: Balances the dry (original) and wet (echoed) signals, allowing control
over the prominence of the effect in the overall sound.

The SlapbackDelayNode is built on the DelayNode for managing the delay effect. The
implementation involves careful control of the delay time and feedback to achieve the
signature sound of slapback delay.

1 export class SlapbackDelayNode extends GainNode {

2 // Parameters

3 delayTime: AudioParam;

4 feedback: AudioParam;

5 mix: AudioParam;

6
7 constructor(audioContext , options) {

8 super(audioContext);

9
10 // Internal Nodes setup

11 this._delayNode = new DelayNode(audioContext , {

12 delayTime: options.delayTime || 0.5

13 });

14 this._mixNode = new GainNode(audioContext , { gain: options.mix ||

0.5 });

15 this._feedbackNode = new GainNode(audioContext , {

16 gain: options.feedback || 0.5

17 });

18 this._outputNode = new GainNode(audioContext);

19
20 // Parameter initialization

21 this.delayTime = this._delayNode.delayTime;

22 this.feedback = this._feedbackNode.gain;

23 this.mix = this._mixNode.gain;

24
25 // Signal routing

26 this._inputConnect(this._delayNode)

27 .connect(this._mixNode)

28 .connect(this._outputNode);

29 this._inputConnect(this._outputNode);

30 this._delayNode.connect(this._feedbackNode).connect(this.

_delayNode);

31 }

32
33 // Custom methods for parameter control

34 setDelayTime(value) { /* ... */ }

35 setFeedback(value) { /* ... */ }

36 setMix(value) { /* ... */ }

37 }

Listing 3.31: SlapbackDelayNode Implementation
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In the SlapbackDelayNode, the audio signal is routed through a delay node and then
blended with the original signal via a mix node. The feedback is typically low to prevent
multiple repeats common in longer delays. Fig. 3.14 below illustrates the internal signal
flow and components of the SlapbackDelayNode.

SlapbackDelayNode

input outputdelayNode

feedback
Node

mixNode outputNode

Figure 3.14: Slapback Delay Node Implementation

3.5.2.14 PingPongDelay Node

The PingPongDelayNode is a specialized audio node that creates a stereo echo effect
by alternately bouncing the delayed signal between the left and right channels, simu-
lating the effect of sound ping-ponging from one side to another. The key features of the
PingPongDelayNode:

◦ Delay Time Control: Sets the duration between the original sound and its echoes,
determining the rhythm of the ping-pong effect.

◦ Feedback Control: Adjusts the amount of signal fed back into the delay line, con-
trolling the number of repeats and the duration of the echo.

◦ Mix Control: Balances the dry and wet signals, allowing for the adjustment of the
effect’s prominence in the mix.

The implementation of the PingPongDelayNode is based on two delay lines for the left
and right channels, along with a feedback loop that recirculates the delayed signal to create
multiple echoes.

1 export class PingPongDelayNode extends GainNode {

2 // Parameters

3 delayTime: AudioParam;

4 feedback: AudioParam;

5 mix: AudioParam;

6
7 constructor(audioContext , options) {
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8 super(audioContext);

9
10 // Internal Nodes setup

11 this._delayNode1 = new DelayNode(audioContext , { delayTime: 0.5

});

12 this._delayNode2 = new DelayNode(audioContext , { delayTime: 0.5

});

13 this._mergerNode = new ChannelMergerNode(audioContext);

14 this._constantNode = new ConstantSourceNode(audioContext , {

offset: options.delayTime || 0.5 });

15 this._mixNode = new GainNode(audioContext , { gain: options.mix ||

0.5 });

16 this._feedbackNode = new GainNode(audioContext , { gain: options.

feedback || 0.5 });

17 this._outputNode = new GainNode(audioContext);

18
19 // Parameter initialization

20 this.delayTime = this._constantNode.offset;

21 this.feedback = this._feedbackNode.gain;

22 this.mix = this._mixNode.gain;

23
24 // Signal routing

25 this._inputConnect(this._delayNode1)

26 .connect(this._delayNode2)

27 .connect(this._mergerNode , 0, 0)

28 .connect(this._mixNode)

29 .connect(this._outputNode);

30 this._delayNode1.connect(this._mergerNode , 0, 1);

31 this._inputConnect(this._outputNode);

32 this._delayNode2.connect(this._feedbackNode).connect(this.

_delayNode1);

33 this._constantNode.connect(this._delayNode1.delayTime);

34 this._constantNode.connect(this._delayNode2.delayTime);

35 this._constantNode.start (0);

36 }

37
38 // Custom methods for parameter control

39 setDelayTime(value) { /* ... */ }

40 setFeedback(value) { /* ... */ }

41 setMix(value) { /* ... */ }

42 }

Listing 3.32: PingPongDelayNode Implementation

The PingPongDelayNode creates an engaging auditory experience by bouncing the
sound between the stereo channels. This node’s implementation effectively utilizes the
Web Audio API’s delay and channel merging capabilities to achieve the stereo ping-
pong effect. The Fig. 3.15 below shows the internal configuration and signal path of
the PingPongDelayNode.
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SlapbackDelayNode

input outputdelayNode1

feedback
Node

mixNode outputNodedelayNode2 mergerNode
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Figure 3.15: Ping Pong Delay Node Implementation

3.5.2.15 Reverb Node

The ReverbNode is designed to simulate the acoustics of different physical spaces, from
small rooms to large halls. Reverb is essential in music production and sound design, as
it adds depth and ambiance to the sound. The application provides various reverb types,
such as Church Hall, Factory Hall, and General Hall Reverb, each offering a unique acoustic
signature. The key features of the ReverbNodes are:

◦ Wet Control: Adjusts the level of the reverb effect mixed with the original signal,
allowing for fine-tuning of the effect’s intensity.

◦ Level Control: Manages the overall output level of the effect, ensuring the reverb sits
well in the mix without overpowering other elements.

The implementation of the ReverbNode typically involves a ConvolverNode, which uses
impulse responses to simulate different reverberation characteristics. The following code
snippet outlines a general structure for a reverb node, adaptable for various reverb types.

1 export class ReverbNode extends GainNode {

2 // Parameters

3 wet: AudioParam;

4 level: AudioParam;

5
6 constructor(audioContext , options , impulseResponse) {

7 super(audioContext);

8
9 // Internal Nodes

10 this._convolverNode = new ConvolverNode(audioContext);

11 this._wetGainNode = new GainNode(audioContext , {

12 gain: options.wet || 0.5

13 });

14 this._levelGainNode = new GainNode(audioContext , {

15 gain: options.level || 1

16 });
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17 this._outputGainNode = new GainNode(audioContext);

18
19 // Setting up the impulse response

20 getReverbBuffer(impulseResponse , audioContext)

21 .then(decodedData => this._convolverNode.buffer = decodedData

);

22
23 // Parameter initialization

24 this.wet = this._wetGainNode.gain;

25 this.level = this._levelGainNode.gain;

26
27 // Signal routing

28 this._inputConnect(this._convolverNode)

29 .connect(this._levelGainNode)

30 .connect(this._outputGainNode);

31 this._inputConnect(this._wetGainNode).connect(this.

_outputGainNode);

32 }

33
34 // Custom methods for parameter control

35 setWet(value) { /* ... */ }

36 setLevel(value) { /* ... */ }

37 }

Listing 3.33: ReverbNode Implementation

Each type of reverb node can be instantiated with different impulse responses to create
various acoustic environments. The use of ConvolverNode with carefully selected impulse
responses enables the simulation of realistic and diverse reverb effects. Fig. 3.16 below
illustrates the common internal configuration and signal path of the ReverbNode.

ReverbNode

input outputconvolver
Node

wetGain
Node

levelGain
Node

outputGain
Node

Figure 3.16: Reverb Node Implementation

In practice, these nodes can be tailored to fit various musical contexts, from adding
subtle ambiance to a vocal track to creating the vast soundscape of a cathedral choir. The
versatility of the ReverbNode allows for continuous exploration of space and depth in sound
design.
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3.5.3 Integration within the Audio Processing Graph

This subsection delves into the integration and interaction of custom audio nodes within
the application’s audio processing graph. This integration is crucial for the dynamic and
interactive nature of the application, as it allows users to craft and manipulate their audio
environment in real-time.

3.5.3.1 Node Integration in the Audio Processing Graph

Each custom audio node is designed to be a modular component of the larger audio pro-
cessing graph. This modular design enables dynamic addition, removal, and reconfigura-
tion of nodes based on user actions or application requirements. The integration process
involves:

◦ Dynamic Insertion: Nodes can be added to the processing graph in real-time,
allowing users to experiment with different effects and configurations on the fly.

◦ Flexible Connection: Nodes are interconnected in a flexible manner, supporting
various routing configurations and enabling complex audio processing chains.

◦ Interactive Removal: Users can remove nodes from the chain without disrupting
the audio processing flow, facilitating experimentation and customization.

3.5.3.2 Inter-Node Communication and Signal Flow

The interaction between nodes is a key aspect of the audio processing graph. The output
of one node often serves as the input to another, creating a chain of effects that collectively
shape the final sound. This inter-node communication is characterized by:

◦ Sequential Processing: Audio signals are processed sequentially through the chain,
with each node applying its effect before passing the signal to the next node.

◦ Feedback Loops: Some nodes, like delay or reverb, might incorporate feedback
loops, which are carefully managed to prevent runaway audio levels and ensure a
controlled audio effect.

3.6 Conclusion

This chapter has comprehensively outlined our approach to developing a sophisticated and
user-centric audio processing application. From the initial goals and objectives to the
intricate details of system architecture and design, each section has been crafted with a
focus on delivering a robust, intuitive, and versatile experience for the user.

We began by defining clear objectives, setting a foundation for a project that seamlessly
integrates responsive design, an intuitive UI, and advanced audio processing capabilities.
This was followed by a detailed examination of the system’s architecture, highlighting
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the innovative use of component architecture, custom hooks, and context management to
ensure a smooth and efficient user experience.

The audio processing workflow was dissected to illustrate the dynamic nature of audio
signal routing, processing with custom audio nodes, and the management of a flexible
effects chain. This was complemented by a detailed exploration of data models for pedal
effects, which play a pivotal role in the application’s functionality.

The user interface and interaction design showcased the meticulous attention to detail
in crafting each UI component, ensuring that they not only serve their functional purpose
but also enhance the overall user experience.

The latter part of the chapter delved into the realm of audio node creation and manage-
ment, showed the principles guiding the design of custom audio nodes and their practical
implementation. This section emphasized our commitment to creating a powerful yet
manageable platform for audio manipulation.

Finally, the integration of these nodes within the audio processing graph was discussed,
emphasizing the application’s flexibility and adaptability. The modular architecture and
contextual integration of nodes within the graph highlight the application’s ability to cater
to both the creative explorations and technical requirements of users.

In conclusion, this chapter presents a clear and comprehensive overview of our approach,
underscoring our commitment to creating an application that is not only technically sound
and feature-rich but also intuitive and user-friendly. It sets the stage for the subsequent
chapters, which will further delve into the application’s implementation, user testing, and
the final outcomes of this innovative project.
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Chapter 4

Main Results

4.1 Introduction

This chapter presents the culmination of the research and development efforts documented
in this thesis. It provides a comprehensive account of the practical results achieved through
the implementation of the audio effects pedalboard application. The primary focus is on
demonstrating how the theoretical concepts, system architecture, and design principles
previously discussed have been actualized into a working product.

Following a systematic approach, the chapter unfolds the application’s capabilities,
exploring the nuances of the user interface, the intricacies of audio processing, and the
overall user experience. The practical implications of design decisions made during the
development process are examined, providing an understanding of their impact on the
application’s functionality and user interaction.

Detailed discussions are included on the performance metrics of the system, highlighting
the responsiveness and efficiency of the audio processing engine. Additionally, limitations
and challenges encountered during development are transparently addressed, setting the
stage for future enhancements.

In essence, this chapter not only narrates the success of the project in achieving its
objectives but also reflects on the broader implications for the field of web-based audio
processing. The insights gained underscore the significance of this work in contributing to
the domain of digital audio effects, pushing the boundaries of what is achievable through
web technologies.

4.2 Functional Overview

This functional overview provides a detailed look at the capabilities of the audio effects
pedalboard application. It highlights the practical applications of the theories and method-
ologies discussed in previous chapters, demonstrating the user-centered design and robust
audio processing capabilities that form the core of the system.

99



4. Main Results

The application’s user interface is meticulously crafted to offer intuitive navigation and
control, enabling users to add, configure, and combine audio effects with ease. Starting with
a blank canvas, the user can populate their pedalboard by selecting from an assortment of
effects categorized under Distortion, Dynamics, Frequency, Modulation, and Time. Each
category unfolds into a selection of specific effects, such as Fuzz, Compressor, Auto Wah,
Chorus, Flanger, and various types of Reverbs and Delays.

Once an effect is added to the board, its parameters can be adjusted in real-time
through interactive controls that respond fluidly to user input, reflecting the application’s
emphasis on real-time audio manipulation. The parameters themselves are direct manifest-
ations of the audio node properties described earlier, with knobs such as ’Intensity’, ’Mix’,
’Feedback’, and ’Speed’ offering tactile and immediate control over the audio output.

The application is engineered for optimal performance, with a keen focus on minimizing
latency. This ensures that any adjustments made to the effects are immediately audible,
providing a gratifying and responsive experience for the user. Furthermore, the application
is designed to be cross-platform, functioning seamlessly on various devices and browsers,
emphasizing the adaptable nature of the system.

Throughout its use, the application maintains a high level of audio fidelity, even with
multiple effects applied. This demonstrates the practical application of the efficient audio
processing algorithms and the Web Audio API’s capabilities discussed in the section 3.3
”System Architecture and Design”. Users can chain together multiple effects, customize
their parameters, and even bypass them to compare the processed and unprocessed signals,
all without noticeable degradation in sound quality.

In conclusion, the application achieves a translation of theoretical audio processing
concepts into a practical, user-friendly software solution. Its design and functionality are
rooted in the principles of user experience and audio engineering, aiming to provide users
with a tool for exploring and creating a vast array of sounds.

4.3 Application Interface and User Interaction

This section provides a visual walk through of the most important features of our applic-
ation, illustrating the user interface and the interaction mechanisms that allow for the
manipulation of audio effects in real-time. Each figure is accompanied by a description
that explains the functionality presented and how the user interacts with the system.

4.3.1 Initial Interface and Adding Effects

Upon launching the audio effects pedalboard application, the user is greeted with a clean
and intuitive interface, as depicted in Fig. 4.1. The minimalist design emphasizes func-
tionality, with a prominent ”ADD PEDAL” button on the screen. This design choice
encourages user interaction and serves to initiate the process of sound effects exploration.
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Figure 4.1: Initial interface.

The simplicity of the initial interface is by design, to avoid overwhelming the user
with options. Instead, the application provides a streamlined entry point to the applic-
ation capabilities, allowing users to incrementally explore the depth of the application’s
functionality.

When the user decides to add an effect by clicking the ”ADD PEDAL” button, a drop
down menu appears, presenting the different categories of effects available, as shown in
Fig. 4.2. The categories are logically organized, guiding the user through the selection
process. Each category expands to reveal specific effects that the user can add to their
pedalboard, such as ”Distortion,” ”Dynamic,” ”Frequency,” ”Modulation,” and ”Time.”
This categorization facilitates easy navigation and selection, enabling users to experiment
with different effects and discover the possibilities within each category.

Figure 4.2: Effect categories.
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Once an effect is selected, it is added to the user’s pedalboard, as shown in Fig. 4.3,
ready for real-time interaction and customization. This streamlined process from initial
interface to effect addition underscores the application’s emphasis on ease of use and quick
access to core functionalities, catering to both novice users and experienced audio enthu-
siasts.

Figure 4.3: Adding an effect to the pedalboard.

4.3.2 Configuring Effect Parameters

The core of the audio effects lies in its ability to allow users to fine-tune the parameters
of each effect to achieve their desired sound. As illustrated in Fig. 4.4, once an effect is
added to the pedalboard, it is represented by an interactive module that visually mimics
a physical pedal.

Each effect module is equipped with a set of controls that users can manipulate, similar
to actual knobs and switches found on physical audio effect units. For example, a distortion
pedal module may include parameters for ”Intensity,” ”Gain,” and a ”Lowpass Filter” to
shape the character of the distortion effect. The user can adjust these parameters in real
time, providing immediate auditory feedback in the application’s audio stream.
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Figure 4.4: Configuring parameters on an effect.

The design’s responsiveness ensures that changes to parameters are reflected immedi-
ately, providing an essential feature for users who rely on low latency adjustments to their
sound.

4.3.3 Effect Chain and Signal Flow

An integral aspect of the audio effects pedalboard application is the ability for users to
construct and modify the effect chain, which is the sequence of audio effects that shape
the overall sound.

103



4. Main Results

Figure 4.5: Signal flow from one effect to the next.

Upon adding effects to the pedalboard, each one appears as an individual module within
a chain. The signal flow is visually represented in Fig. 4.5, moving from left to right and top
to bottom, emulating the traditional setup used by musicians. This visual representation
allows users to understand how the audio signal is processed step by step through each
effect.

Users can interact with the chain by adding and removing modules to rearrange the
order of effects. This is crucial as the order of effects can significantly impact the resultant
sound. For instance, placing a reverb effect before a distortion pedal will yield a markedly
different ambiance than positioning it after the distortion.

The signal flow functionality is not only about the order of effects but also includes
the ability to bypass or remove effects from the chain. This flexibility empowers users to
compare the processed and unprocessed sounds quickly, facilitating a better understanding
of each effect’s impact.

4.4 Conclusion

This chapter has offered a detailed exploration of the audio effects pedalboard applica-
tion, highlighting its user-friendly interface, flexible audio processing capabilities, and the
practical application of theoretical concepts discussed in previous chapters. Through a
series of illustrative figures and comprehensive descriptions, the chapter has successfully
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demonstrated the application’s ease of use, the intuitiveness of its design, and its capacity
to facilitate real-time audio manipulation and experimentation.

The evaluation of the application, from its initial interface to the construction of the
effect chain, emphasizes the application’s goal to provide an easy to use experience. The
ability to configure effect parameters in real-time, coupled with the visual representation
of the effect chain and signal flow, reflects the application’s strength in combining tech-
nical robustness with an accessible and engaging user interface. The interactive modules,
responsive adjustments, and visual clarity of the interface all contribute to a seamless and
gratifying user experience.
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Chapter 5

Testing

5.1 Introduction

The testing phase of this project is important for validating the technical robustness and
experience of the real-time audio effects web application. This chapter delineates the
comprehensive testing procedures employed to ensure the application complies to the the-
oretical design but also excels in practical performance. The essence of these tests lies in
their ability to methodically evaluate each audio effect’s impact on the sound signal.

This testing chapter validates and demonstrates not just the theoretical soundness of
the application but its practical efficacy and reliability. This phase shows how the ideas
and implementation translate into observable outcomes. It serves as a bridge between the
conceptual design and the operational product, ensuring that the application meets the
designed specifications. Especially while working with audio, where perceptual quality is
as important as technical accuracy, testing assumes an even greater significance.

Moreover, this chapter underscores the importance of validation in software develop-
ment, particularly in applications dealing with complex audio manipulations. It highlights
the meticulous process undertaken to ensure each audio effect aligns with its intended
acoustic principle while delivering a seamless and interactive user experience. Through a
series of methodical and comprehensive tests, the core functionality of audio effect pro-
cessing audio quality perception.

5.2 Methodology

The methodology section elucidates the systematic approach adopted for testing the web
application, highlighting the technical and analytical processes involved.
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5.2.1 Technical Framework

The technical framework was designed to ensure precision and consistency. Central to
this framework was the use of an oscillator-generated audio sweep. An audio sweep is
a waveform generator that changes with time. This sweep, configured to traverse from
440 Hz (A4) to 7040 Hz (A8) over a duration of 8 seconds, provided a standardized and
controlled audio source. Such a setup was crucial for two primary reasons: firstly, it
ensured that the input signal remained consistent across all tests, thereby eliminating
variability that could arise from different audio sources. Secondly, the sweep covered a
wide range of frequencies, enabling a comprehensive analysis of the audio effects across the
entire spectrum of human hearing. This methodical approach in setting up the technical
framework laid the foundation for accurate and reliable testing outcomes.

5.2.2 Testing Tools and Environment

For effective analysis, the testing environment incorporated three visualization tools (See
Appendix 1, section 7.1 for more information), each serving a specific purpose:

◦ Waveform Visualizer: This tool played a crucial role in displaying the time-domain
representation of the audio signal. By illustrating the amplitude variations over time,
it allowed for an immediate visual assessment of the waveform characteristics before
and after effect processing.

◦ Frequency Visualizer: Essential for frequency-domain analysis, this tool provided a
detailed view of the frequency distribution within the audio signal. It helped in
identifying how different audio effects altered the spectral composition of the sound.

◦ Spectrum Visualizer: Offering a dynamic and comprehensive view of the spectral
content over time, this visualizer was instrumental in examining the temporal changes
in the frequency spectrum, especially critical for understanding the behavior of time-
varying effects like reverb or echo.

The combination of these tools in the testing environment facilitated a multifaceted
analysis of the audio effects, ensuring a thorough evaluation of the application’s audio
processing capabilities.

5.2.3 Procedural Approach

The testing procedure was organized into distinct stages to ensure a comprehensive evalu-
ation:

1. Baseline Establishment: Initial analysis of the unprocessed audio signal using all
visualizers to set a baseline for comparison.
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2. Effect-by-Effect Analysis: Systematic application and analysis of each audio effect,
utilizing the visualizers to capture and document the resultant changes.

3. Comparative and Subjective Evaluation: Post-processing data were compared against
the baseline. Additionally, subjective listening tests complemented the visual ana-
lysis, providing a holistic assessment of audio quality and effect integrity.

This methodology ensured a comprehensive and detailed examination of the application’s
audio processing capabilities, underpinning the subsequent analysis and findings detailed
in this chapter.

5.3 Test Execution and Results

In this section, we document the results obtained from applying various audio effects
to a standardized audio sweep. The analysis is presented using visualizations from the
Waveform, Frequency, and Spectrum visualizers for each effect.

5.3.1 Baseline Signal Analysis

The foundation of our audio effect analysis is the baseline signal, represented by a clean
oscillator-generated sweep.

Figure 5.1: Baseline Waveform Figure 5.2: Baseline Frequency

Figure 5.3: Baseline Spectrum

The waveform in Fig. 5.1 depicts a pristine sine wave, characteristic of a clean audio
signal, with uniform oscillations representing the signal’s purity and lack of any effects.
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In the frequency domain shown in Fig. 5.2, the signal starts at the fundamental fre-
quency of 440 Hz and smoothly transitions to 7040 Hz. The visualizer captures this as a
single, moving peak, confirming the oscillator’s linear frequency modulation.

The spectrum visualizer in Fig. 5.3 provides a temporal view, illustrating the energy
distribution of the sweep across the frequency range. The absence of additional harmonics
or artifacts verifies the signal’s clarity.

These baseline visualizations serve as a reference point, against which the impact of
each audio effect will be measured, providing a clear contrast to the processed signals.

5.3.2 Boost Effect Analysis

The Boost effect is designed to amplify the audio signal, increasing its overall volume
without significantly altering the signal’s characteristics.

Figure 5.4: Boost Waveform Figure 5.5: Boost Frequency

Figure 5.6: Boost Spectrum

With the Boost effect applied, the waveform, shown in Fig. 5.4, exhibited an increase
in amplitude, indicative of the signal’s volume being raised. The shape of the waveform
maintained its integrity, affirming the Boost effect’s transparent amplification.

The frequency visualizer in Fig. 5.5, demonstrated a uniform elevation across the fre-
quency spectrum, without introducing new peaks or troughs, suggesting a clean gain in-
crease across all frequencies.

And the spectrum visualizer in Fig. 5.6 showed an increased brightness across the entire
sweep, reflecting the Boost effect’s consistent amplification over time.
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5.3.3 Distortion Effect Analysis

The Distortion effect modifies the audio signal, adding harmonics and altering the waveform
to create a characteristically ’distorted’ sound.

Figure 5.7: Distort Waveform Figure 5.8: Distort Frequency

Figure 5.9: Distort Spectrum

The waveform in Fig. 5.7 of the distorted signal shows a significant alteration from the
baseline. The once smooth sine wave is now transformed, exhibiting a squared shape due
to clipping, which is a hallmark of distortion.

On the other hand, the frequency domain shown in Fig. 5.8, now illustrates a rich har-
monic structure. Instead of a single peak, we observe multiple peaks across the spectrum,
reflecting the additional harmonics generated by the distortion effect.

The spectrum visualization that we can see in Fig. 5.9, shows these harmonics extended
over the duration of the sweep, indicating the sustained and complex nature of the distorted
sound.

These changes from the baseline are indicative of the distortion effect’s impact, confirm-
ing its functionality and the application’s capability to process audio signals as intended.

5.3.4 Fuzz Effect Analysis

The Fuzz effect is characterized by its ability to create a warm, gritty, and heavily distorted
sound by clipping the audio signal’s waveforms.
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Figure 5.10: Fuzz Waveform Figure 5.11: Fuzz Frequency

Figure 5.12: Fuzz Spectrum

The fuzz effect in Fig. 5.10, significantly alters the waveform, as shown in the waveform
visualizer. The smooth curves of the original sine wave are replaced by a flattened, almost
rectangular shape, indicative of extreme clipping.

The frequency visualizer in Fig. 5.11, captures a dramatic change in the signal’s har-
monic content. Where there was once a single peak, we now see a dense spread of frequen-
cies, demonstrating the harmonic complexity that fuzz introduces.

The spectrum visualizer in Fig. 5.12, shows an intense saturation of frequencies across
the spectrum, with the effect’s signature sustain and fuzziness that extends over the dur-
ation of the sound.

These visualizations highlights the distinct audio signature that the Fuzz effect imparts
on the input signal, transforming the clarity of the original tone into a thick, richly distorted
soundscape.

5.3.5 Overdrive Effect Analysis

The Overdrive effect is akin to a softer distortion, known for its warm and natural-sounding
drive that preserves the dynamics of the input signal.
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Figure 5.13: Overdrive Waveform Figure 5.14: Overdrive Frequency

Figure 5.15: Overdrive Spectrum

The waveform visualizer in Fig. 5.13 for the Overdrive effect shows a smooth, roun-
ded clipping at the peaks of the waveform, which creates a warm and subtle distortion
characteristic of overdrive.

The frequency analysis in Fig. 5.14, reveals a gentle rise in harmonic content, especially
evident in the mid-range frequencies, giving the signal a fuller sound without overpowering
the original character.

In the spectrum visualizer in Fig. 5.15, we observe a moderate increase in the density of
the frequency components, reflecting the overdrive’s sustain and its effect on the harmonic
richness over time.

This analysis highlights the Overdrive effect’s ability to add warmth and depth to the
signal, enhancing the audio without significant alteration to the fundamental tone.

5.3.6 Compressor Effect Analysis

The Compressor effect is utilized to even out the dynamic range of an audio signal, making
the loud parts quieter and the quiet parts louder, which results in a more consistent overall
level.
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Figure 5.16: Compressor Waveform Figure 5.17: Compressor Frequency

Figure 5.18: Compressor Spectrum

The waveform shown in Fig. 5.16, displays reduced dynamic range, with the peaks and
troughs appearing less pronounced, indicating compression.

The frequency visualizer in Fig. 5.17, should show a more uniform distribution of fre-
quencies, as compression tends to even out the energy across the spectrum.

In the spectrum shown in Fig. 5.18, one would observe a leveling effect where the differ-
ences between the highest and lowest intensity across frequencies are minimized, reflecting
the compressor’s time-based dynamics control.

This analysis confirms the Compressor effect’s role in smoothing out an audio signal’s
dynamic variations, enhancing the overall mix’s balance and cohesion.

5.3.7 Volume Effect Analysis

The Volume effect in audio processing is intended to uniformly increase or decrease the
level of the audio signal without altering its tonal characteristics.
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Figure 5.19: Volume Waveform Figure 5.20: Volume Frequency

Figure 5.21: Volume Spectrum

The waveform visualizer in Fig. 5.19, shows a proportional increase in amplitude across
the entire signal, corresponding to an increase in volume. The uniformity of the waveform
indicates a consistent volume change.

In the frequency domain shown in Fig. 5.20, the visualizer should exhibit no additional
peaks or harmonic content, suggesting that the volume effect solely adjusts amplitude
without adding distortion or coloration.

The spectrum visualizer in Fig. 5.21, would similarly reflect an even amplification across
all frequencies, mirroring the waveform analysis and further confirming the volume effect’s
neutrality.

This analysis confirms that the Volume effect is functioning properly, uniformly ad-
justing the signal’s amplitude without affecting its frequency content or introducing any
dynamic changes.

5.3.8 AutoWah Effect Analysis

The AutoWah effect dynamically filters the frequency spectrum of the audio signal, creating
a vowel-like sound that changes with the input level.
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Figure 5.22: AutoWah Waveform Figure 5.23: AutoWah Frequency

Figure 5.24: AutoWah Spectrum

The waveform may in Fig. 5.22, shows slight fluctuations corresponding to the filter’s
modulation, depicting the dynamic nature of the AutoWah effect.

The frequency visualizer in Fig. 5.23, should illustrate the shifting peaks and troughs
that correspond to the effect’s modulation, reflecting the characteristic wah sound.

The spectrum visualizer in Fig. 5.24, captures the movement of the filter across the
frequency range over time, which is the essence of the AutoWah effect.

These visualizations reveal the unique behavior of the AutoWah effect, characterized
by its frequency modulation, which imparts a pronounced expressive quality to the audio
signal.

5.3.9 Chorus Effect Analysis

The Chorus effect creates a shimmering texture by duplicating the audio signal, altering
the duplicate’s timing and pitch slightly, and mixing it back with the original.
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Figure 5.25: Chorus Waveform Figure 5.26: Chorus Frequency

Figure 5.27: Chorus Spectrum

The waveform in Fig. 5.25, displays subtle variations in amplitude and phase, suggesting
a thickening of the sound as multiple slightly-detuned signals combine.

The frequency domain that we can see in Fig. 5.26, shows a richer texture, with the
presence of additional peaks and valleys, which are characteristic of the chorus effect’s
modulation.

The spectral view shown in Fig. 5.27, reveals a fuller, more complex spread across
frequencies, indicating the layering effect as the chorus modulates the signal over time.

These visualizations show the capabilities Chorus effect, enriching the signal and cre-
ating a sense of depth and movement.

5.3.10 Flanger Effect Analysis

The Flanger effect combines a delayed signal with the original, creating a series of phase-
shifted notches in the frequency response.
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Figure 5.28: Flanger Waveform Figure 5.29: Flanger Frequency

Figure 5.30: Flanger Spectrum

The waveform in Fig. 5.28, now presents a characteristic ’comb’ pattern, displaying the
periodic addition and subtraction of the signal due to phase cancellation.

The frequency domain shown in Fig. 5.29, should show a series of peaks and dips, akin
to a comb filter, which move over time, creating the flanging effect.

The spectral display in Fig. 5.30, will exhibit a dynamic, swirling pattern, indicating
the movement of the notches across the frequency spectrum as the flanger modulates.

These visualizations capture the essence of the Flanger effect, showing the distinct
modulation that it imparts on the audio signal.

5.3.11 Phaser Effect Analysis

The Phaser effect creates a series of peaks and troughs in the frequency spectrum, which
are modulated to vary over time, producing a sweeping effect.
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Figure 5.31: Phaser Waveform Figure 5.32: Phaser Frequency

Figure 5.33: Phaser Spectrum

The waveform that we can observe in Fig. 5.31, shows subtle changes, with characteristic
notches or dips, indicating phase cancellation at specific frequency intervals.

The frequency visualization in Fig. 5.32, reveals the phaser’s unique pattern of notches,
evidenced by dips in the frequency response that move over time.

The spectrum visualizer shown in Fig. 5.33, captures the phaser effect’s dynamic nature,
with its moving notches creating a swirling, fluid sound.

These visualizations are characteristic of the Phaser effect, displaying the modulation
and movement that define it.

5.3.12 Deep Phaser Effect Analysis

The Deep Phaser effect is an intensified version of the standard phaser, producing more
pronounced modulations in the phase of the audio signal.
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Figure 5.34: Deep Phaser Waveform Figure 5.35: Deep Phaser Frequency

Figure 5.36: Deep Phaser Spectrum

The waveform in Fig. 5.34, shows exaggerated peaks and valleys, characteristic of the
deeper phase shifts.

The frequency visualizer in Fig. 5.35, displays more extreme notches and enhancements,
indicating a stronger phasing effect.

The spectrum shown in Fig. 5.36, depicts a more dynamic and pronounced movement,
with the notches and peaks sweeping across the frequency spectrum, creating a more intense
swirling effect.

This analysis highlights the more dramatic impact of the Deep Phaser effect on the
audio signal, enhancing the sense of movement and depth.

5.3.13 Slapback Delay Effect Analysis

The Slapback Delay effect is characterized by a single echo that quickly follows the original
signal, akin to the sound bouncing off a nearby wall.
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Figure 5.37: Slapback Delay Waveform Figure 5.38: Slapback Delay Frequency

Figure 5.39: Slapback Delay Spectrum

The waveform in Fig. 5.37, showcases distinct repetitions of the original wave, indicating
the presence of a single, short-delayed echo.

The frequency visualizer in Fig. 5.38, exhibits a pattern similar to the original signal
with additional peaks corresponding to the delayed echo.

The spectrum visualizer in Fig. 5.39, displays a repetition of the frequency content at
the delay intervals, visually representing the echo effect.

These visualizations are expected to show the distinct, immediate echo of the Slapback
Delay, which can create a sense of space and depth without the complexity of longer,
multiple delays.

5.3.14 Ping Pong Delay Effect Analysis

The Ping Pong Delay effect produces echoes that bounce between the left and right chan-
nels, creating a stereophonic repeating pattern.
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Figure 5.40: Ping Pong Delay Waveform Figure 5.41: Ping Pong Delay Frequency

Figure 5.42: Ping Pong Delay Spectrum

The waveform visualization in Fig. 5.40, shows alternating echoes, reflecting the stereo
bounce effect.

The frequency analysis shown in Fig. 5.41, depicts a pattern of echoes with varying
frequency content due to the stereo separation.

The spectrum visualizer in Fig. 5.42, illustrate the characteristic back-and-forth move-
ment of the echoes across the stereo field, with the intensity of frequencies varying as they
bounce from side to side.

This analysis highlights the spatial dynamics introduced by the Ping Pong Delay, en-
hancing the stereo effect and depth of the audio signal.

5.3.15 Reverb Effect Analysis

Reverb is used to simulate the acoustic characteristics of different spaces. It adds reflections
and decay to the audio signal, giving a sense of environment.
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Figure 5.43: Hall Reverb Waveform Figure 5.44: Hall Reverb Frequency

Figure 5.45: Hall Reverb Spectrum

The waveform in Fig. 5.43, shows the original signal followed by a series of diminishing
echoes, illustrating the reverb tail.

The frequency visualizer in Fig. 5.44, depicts a denser distribution of frequencies due
to the overlay of multiple reflections.

The spectrum shown in Fig. 5.45, captures the decay of sound over time, displaying the
persistence and gradual fading of frequencies, characteristic of reverb.

This analysis shows how reverb envelops the original signal, creating the impression of
space and depth in the audio.

5.4 Conclusion

This chapter has presented a comprehensive testing framework and detailed analysis for
each audio effect within the developed real-time audio effects web application. The tests
conducted have successfully demonstrated the application’s technicality and the practical
efficacy of its audio processing capabilities. Each effect was examined using a technical
framework, and their impact on the audio signal was documented using waveform, fre-
quency, and spectrum visualizations. The results affirm the application’s consistency with
theoretical designs and its ability to deliver a high-quality user experience.This testing
phase is crucial in bridging the gap between theoretical constructs and practical utility,
ensuring that the application not only meets design specifications but also resonates well
with end-user expectations.
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Chapter 6

Conclusions

6.1 Summary

This thesis began a comprehensive exploration and development focused on a web-based
audio effects pedalboard application, this exploration combined the knowledge of audio
processing theory, software engineering, and user interface design. Throughout the vari-
ous chapters, we’ve delved deep into each aspect, creating a narrative that demonstrates
technical proficiency and a keen understanding of the user’s needs and experiences. The
opening chapter set the stage, introducing the motivation and the objectives that guided
this project. It positioned the work within the broader context of digital audio processing,
establishing a clear purpose and direction.

The subsequent literature review in chapter 2 delved into the historical and techno-
logical aspects of web-based audio processing. This exploration covered a wide range of
audio effect technologies, tracing their evolution and identifying how advancements in web
audio API’s have progressed. This chapter was important in grounding the project within
the existing body of knowledge, providing a solid theoretical foundation and identifying
areas ripe for innovation.

Furthermore, chapter 3, ”Overview of Our Approach”, transitioned from theory to prac-
tice, unveiling the methodologies and architectural designs that underpin the application.
It highlighted the system’s modular design, focusing on scalability and maintainability.
The discussion around custom hooks and context management revealed the intricacies of
state management and audio processing within the app. The chapter also illuminated
the audio processing workflow, from signal acquisition to rendering, and detailed the data
models supporting the pedal effects, underscoring their seamless integration with the user
interface.

Culminating in chapter 4 with ”Main Results”, where the application’s capabilities
were shown through detailed descriptions and visual illustrations. This chapter bridged
the gap between the theoretical and technical aspects discussed earlier and their practical
application. It showcased the user-friendly nature of the application, emphasizing the
ease with which users can add, configure, and manipulate audio effects. The interactive
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modules for real-time parameter control and the visualization of the effect chain and signal
flow underlined the application’s emphasis on user experience and technical robustness.

The inclusion of a comprehensive ”Testing” chapter has reinforced the validity and
reliability of the web-based audio effects pedalboard application. Chapter 5 presented
a methodical and detailed examination of the application’s audio processing capabilities,
employing a range of visualizers and a procedural approach that ensured a rigorous assess-
ment. Through systematic testing, the application’s adherence to theoretical principles
and its practical performance were affirmed, further solidifying the narrative of a project
that is both technically sound and user-centric. The testing phase, thus, served as a critical
juncture, ensuring that the final product not only aligns with the conceptual framework
but also meets the high standards of end-user interaction and audio quality.

Across these chapters, the thesis build a comprehensive narrative, from conceptualiza-
tion to the realization of a web-based audio effects pedalboard application. The progression
from theoretical to practical application not only highlighted the academic value of the pro-
ject, but also its relevance and potential impact in the rapidly evolving field of digital audio
processing.

6.2 Future Work

Future work can focus on several key areas to enhance the application’s capabilities, user
experience, and functionality.

One of the primary areas for future development is the enhancement of custom effects.
The current range of audio effects could be expanded to include a wider variety of sound
manipulation tools, catering to a broader spectrum of musical styles and user preferences.
This expansion could involve the introduction of new types of effects, such as advanced
modulation effects (e.g., ring modulators, pitch shifters) or ambient effects (e.g., complex
reverbs, spatial audio effects).

Additionally, improving the user interface with a drag-and-drop feature for organizing
pedal effects would significantly enhance the user experience. This feature would allow
users to intuitively rearrange their pedalboard by clicking and dragging effects to different
positions in the signal chain. Such an interface would more closely mimic the physical
experience of arranging a traditional pedalboard.

On top of that, implementing a feature for users to save and load their configurations
would add considerable value to the application. Users could save their setups, including
the specific settings of each effect, and recall them for future sessions.

While the current version of the application stands as a fully functional tool for audio
processing, these suggested areas of future work hold the potential to improve. By expand-
ing the range of effects, enhancing the user interface, and adding configuration management
capabilities, the application could offer an even more powerful and versatile platform.
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Chapter 7

Appendix 1

7.1 Used Visualization Tools

Throughout the testing chapter we developed a series of audio visualization tools to help
us comprehend in a simple and straightforward manner. This were developed by heavily
relying in Mozilla’s [25] documentation and adapting it to suit our application, this is the
source code:

7.1.1 Waveform Visualizer

1 const WaveformVisualizer = (props: WaveformVisualizerProps) => {

2 const canvasRef = useRef <ElementRef <’canvas ’>>(null);

3 const {

4 state: { audioContext , input , audioNodes },

5 } = useAudioProcessGraphContext ();

6 const pedals = useAppSelector (( state) => state.board.pedals);

7
8 useEffect (() => {

9 let screenshotTimeout: NodeJS.Timeout;

10
11 screenshotTimeout = setTimeout(

12 () => CanvasUtils.takeScreenshot(canvasRef.current , pedals ?.at(0)?.

name),

13 7000

14 );

15
16 return () => {

17 clearInterval(screenshotTimeout);

18 };

19 }, []);

20
21 useEffect (() => {

22 const canvas = canvasRef.current;

23 if (canvas && audioContext.value && input.node) {
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24 const canvasContext = canvas.getContext(’2d’);

25 const analyser = audioContext.value.createAnalyser ();

26
27 if (props.type === ’AnalyseInput ’) {

28 input.node.connect(analyser);

29 } else if (props.type === ’AnalyseOutput ’) {

30 audioNodes.chain.at(-1)?. connect(analyser);

31 }

32
33 const draw = () => {

34 if (canvasContext) {

35 analyser.fftSize = 256;

36 const bufferLength: number = analyser.frequencyBinCount;

37 const dataArray: Uint8Array = new Uint8Array(bufferLength);

38 analyser.getByteTimeDomainData(dataArray);

39
40 canvasContext.fillStyle = ’#515151 ’;

41 canvasContext.fillRect(0, 0, canvas.width , canvas.height);

42
43 canvasContext.lineWidth = 2;

44 canvasContext.strokeStyle = ’#FFF’;

45 canvasContext.beginPath ();

46
47 const sliceWidth: number = canvas.width / bufferLength;

48 let x: number = 0;

49
50 for (let i = 0; i < bufferLength; i++) {

51 // byte / 2 || 128 is middle of the 256 range of the byte

52 const v = dataArray[i] / 128.0;

53 const y = (v * canvas.height) / 2;

54
55 if (i === 0) {

56 canvasContext.moveTo(x, y);

57 } else {

58 canvasContext.lineTo(x, y);

59 }

60
61 x += sliceWidth;

62 }

63
64 canvasContext.lineTo(canvas.width , canvas.height / 2);

65 canvasContext.stroke ();

66 }

67 requestAnimationFrame(draw);

68 };

69
70 draw();

71 }

72
73 return () => {

74 if (audioContext.value && input.node) {
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75 }

76 };

77 }, [input.node , audioNodes.chain.length ]);

78
79 return (

80 <canvas

81 ref={ canvasRef}

82 width ={ window.innerWidth / 2}

83 height ={ window.innerHeight / 2}

84 />

85 );

86 };

87
88 export default WaveformVisualizer;

Listing 7.1: WaveformVisualizer Component

7.1.2 Frequency Visualizer

1 const FrequencyVisualizer = (props: FrequencyVisualizerProps) => {

2 const canvasRef = useRef <ElementRef <’canvas ’>>(null);

3 const {

4 state: { audioContext , input , audioNodes },

5 } = useAudioProcessGraphContext ();

6 const pedals = useAppSelector (( state) => state.board.pedals);

7
8 useEffect (() => {

9 let screenshotTimeout: NodeJS.Timeout;

10 screenshotTimeout = setTimeout(

11 () => CanvasUtils.takeScreenshot(canvasRef.current , pedals ?.at(0)?.

name),

12 7000

13 );

14
15 return () => {

16 clearInterval(screenshotTimeout);

17 };

18 }, []);

19
20 useEffect (() => {

21 const canvas = canvasRef.current;

22 let screenshotTimeout: NodeJS.Timeout;

23 if (canvas && audioContext.value && input.node) {

24 const canvasContext = canvas.getContext(’2d’);

25 const analyser = audioContext.value.createAnalyser ();

26
27 if (props.type === ’AnalyseInput ’) {

28 input.node.connect(analyser);

29 } else if (props.type === ’AnalyseOutput ’) {

30 audioNodes.chain.at(-1)?. connect(analyser);
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31 }

32
33 const draw = () => {

34 if (canvasContext) {

35 analyser.fftSize = 256;

36 const bufferLength: number = analyser.frequencyBinCount;

37 const dataArray: Uint8Array = new Uint8Array(bufferLength);

38 analyser.getByteFrequencyData(dataArray);

39
40 canvasContext.clearRect (0, 0, canvas.width , canvas.height);

41 canvasContext.fillStyle = ’#515151 ’;

42 canvasContext.fillRect(0, 0, canvas.width , canvas.height);

43
44 const barWidth = (canvas.width / bufferLength) * 2.5;

45 let barHeight: number;

46 let x: number = 0;

47
48 for (let i = 0; i < bufferLength; i++) {

49 barHeight = dataArray[i];

50
51 canvasContext.fillStyle = ’#FFF’;

52 canvasContext.fillRect(

53 x,

54 canvas.height - barHeight / 2,

55 barWidth ,

56 barHeight

57 );

58
59 x += barWidth + 1;

60 }

61 }

62 requestAnimationFrame(draw);

63 };

64
65 draw();

66
67 return () => {

68 if (audioContext.value && input.node) {

69 }

70 };

71 }

72 }, [input.node , audioNodes.chain.length ]);

73
74 return (

75 <canvas

76 ref={ canvasRef}

77 width ={ window.innerWidth / 2}

78 height ={ window.innerHeight / 2}

79 />

80 );

81 };
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82
83 export default FrequencyVisualizer;

Listing 7.2: FrequencyVisualizer Component

7.1.3 Spectrum Visualizer

1 const SpectrumVisualizer = (props: SpectrumVisualizerProps) => {

2 const canvasRef = useRef <ElementRef <’canvas ’>>(null);

3 const {

4 state: { audioContext , input , audioNodes },

5 } = useAudioProcessGraphContext ();

6 const pedals = useAppSelector (( state) => state.board.pedals);

7
8 useEffect (() => {

9 let screenshotTimeout: NodeJS.Timeout;

10 screenshotTimeout = setTimeout(

11 () => CanvasUtils.takeScreenshot(canvasRef.current , pedals ?.at(0)?.

name),

12 30000

13 );

14
15 return () => {

16 clearInterval(screenshotTimeout);

17 };

18 }, []);

19
20 useEffect (() => {

21 const canvas = canvasRef.current;

22
23 if (canvas && audioContext.value && input.node) {

24 const canvasContext = canvas.getContext(’2d’);

25 const analyser = audioContext.value.createAnalyser ();

26 if (! canvasContext) {

27 return;

28 }

29
30 if (props.type === ’AnalyseInput ’) {

31 input.node.connect(analyser);

32 } else if (props.type === ’AnalyseOutput ’) {

33 audioNodes.chain.at(-1)?. connect(analyser);

34 }

35
36 analyser.fftSize = 256;

37 const bufferLength: number = analyser.frequencyBinCount;

38 const dataArray: Uint8Array = new Uint8Array(bufferLength);

39
40 const imageData = canvasContext.createImageData(

41 canvas.width ,

42 canvas.height
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43 );

44
45 canvasContext.clearRect (0, 0, canvas.width , canvas.height);

46 canvasContext.fillStyle = ’#000’;

47 canvasContext.fillRect(0, 0, canvas.width , canvas.height);

48
49 const draw = () => {

50 analyser.getByteFrequencyData(dataArray);

51
52 // Shift the image data by one row down

53 for (let y = canvas.height - 1; y > 0; y--) {

54 for (let x = 0; x < canvas.width; x++) {

55 for (let c = 0; c < 4; c++) {

56 imageData.data[(y * canvas.width + x) * 4 + c] =

57 imageData.data [((y - 1) * canvas.width + x) * 4 + c];

58 }

59 }

60 }

61
62 // Draw new data row at the top

63 for (let x = 0; x < canvas.width; x++) {

64 // Map the buffer index to the canvas width

65 const bufferIndex = Math.floor ((x / canvas.width) *

bufferLength);

66 const value = dataArray[bufferIndex ];

67 const [red , green , blue] = getColorForValue(value);

68 imageData.data[x * 4 + 0] = red;

69 imageData.data[x * 4 + 1] = green;

70 imageData.data[x * 4 + 2] = blue;

71 imageData.data[x * 4 + 3] = 255; // alpha channel

72 }

73
74 canvasContext.putImageData(imageData , 0, 0);

75 requestAnimationFrame(draw);

76 };

77
78 draw();

79
80 return () => {

81 if (audioContext.value && input.node) {

82 }

83 };

84 }

85 }, [input.node , audioNodes.chain.length ]);

86
87 return (

88 <canvas

89 id={‘spectrum -${props.type}‘}
90 ref={ canvasRef}

91 width ={ window.innerWidth / 2}

92 height ={ window.innerHeight / 2}
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93 />

94 );

95 };

96
97 export default SpectrumVisualizer;

Listing 7.3: SpectrumVisualizer Component
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