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2. Implement or use an existing library of current analysis techniques of such 
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3. Choose an appropriate publicly available dataset and train a neural network able to 

process the created images and classify them as malicious or benign.

4. Discuss the results and compare them with other malware detection techniques.
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Abstract

Recently machine learning (ML) techniques become very popular in many areas, including natu-
ral language processing, voice/image recognition, etc. The goal of this master thesis is to create a
technique of malware detection by using image visualization. As a method of gaining information
from converted malware samples classification using Convolutional Neural Network (CNN) de-
tection was chosen. The malware sample represented as byte array is first converted to gray-scale
or RGB image and then fed as input to CNN.

Keywords Malware detection, Malware visualisation, Convolutional Neural Network

Abstrakt

Techniky strojového učeńı (ML) jsou v posledńı době velmi populárńı v mnoha oblastech, včetně
zpracováńı přirozeného jazyka, rozpoznáváńı hlasu/obrazu atd. Ćılem této diplomové práce je
vytvořit techniku detekce malwaru pomoćı vizualizace obrazu. Jako zp̊usob źıskáváńı informaćı
z převedených vzork̊u malwaru byla zvolena klasifikace pomoćı detekce konvolučńı neuronové
śıtě (CNN). Vzorek malwaru reprezentovaný jako bajtové pole je nejprve převeden na obrázek
ve stupńıch šedi nebo RGB a poté přiveden jako vstup do CNN.

Kĺıčová slova Detekce malwaru, Vizualizace malwaru, Konvolučńı neuronová śıt’
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Introduction

Virus detection has been a big problem for decades. Humanity has come up with many different
ways to detect malware, including signature detection and behavioral analysis. However, virus
developers and hackers are coming up with increasingly sophisticated techniques to bypass exist-
ing detection methods. But progress does not stand still. Since the invention of neural networks,
they have increasingly entered our lives and appear in various areas of our lives. Convolutional
neural networks have performed well in image recognition and object detection. This is how
the idea arose to combine the problem of malware detection and convolutional neural networks.
Convolutional neural networks work well for grid-like structures. For example, an image can be
represented as a tensor made up of pixels, where two dimensions are width and height, and the
third is color depth. So, if we can turn a malicious file into an image, we can use it as an input
to a convolutional neural network. By training it on a sufficient number of samples, it is possible
to achieve high accuracy. This is what this thesis will be about.

I apologize, this work was not completed due to personal circumstances. I’ll continue to work
on it.
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Chapter 1

Malware detection

1.1 Signature-based detection

1.2 Heuristics-based detection

1.3 ML-based detection
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Chapter 2

Malware visualization

This chapter covers the theory about transformation of the PE executable file format into an
image, which can be later used for model training and malware detection.

2.1 Image formats

Before conversion itself we need to find out, how image data are stored inside of the images. The
image height and width are measured in pixels. Each pixel has it’s own color. But as we know,
all our data are stored in binary representation, so there is no definition of color we used to. In
computer each pixel can be represented by single (e.g gray-scale image) or multiple channels (e.g.
RGB, RGBA, CMYK). Each channel has it’s own value (from 0 to 255 or from 0x00 to 0xFF
hex) and by combining them we can get the resulting value. Below I give examples of several
formats.

Gray-scale - image format with only one channel, which is presented by one byte. It has color
range from 0 (black) to 255 (white).

RGB - image format with three channels: red, green and blue. Each channel has range from
0 to 255, which in total gives us 255 * 255 * 255 = 16581375 values that we can get for each
pixel.

RGBA - similar to RGB, but adds one more channel, which is responsible for transparency.
Value 0 corresponds to fully transparent pixel and 255 corresponds to fully opaque pixel.

2.2 Malware-image representation

In this thesis I will work with malware samples in the Portable Executable (PE) format. This
is a file format for executables, object code, DLLs and others used in 32-bit and 64-bit versions
of Windows operating systems. In general PE file structure is rather complicated, but for our
purposes it will be enough to treat it as normal binary file - array of bytes.

This approach will allow us to represent malware in different image formats described in 2.1:
if we consider, that each malware byte is one pixel we will get it’s gray-scale representation.
Similarly if we threat each three bytes as one pixel - we will get RGB representation. This
approach was used in [1] and [2]

The following script is used to create such a conversion. It accepts 2 parameters: name of
the file to convert and image format/mode. Currently only gray-scale (L) and RGB modes are
supported. As an output script produces image representation of the input file of size 512x512
pixels. Then these images will be used to train our neural network model.

5



6 Malware visualization

Figure 2.1 Malware byte representation

(a) Gray-scale representation of the malware.exe (b) RGB representation of the malware.exe

Figure 2.2 Malware image representation



Malware-image representation 7

Code listing 2.1 bin2img.py source code

import numpy as np
import sys
import math
from PIL import Image

def calculate_width(file_size ):
return int(math.sqrt(file_size ))

def calculate_channels(mode):
if (mode == "L"):

return 1
elif (mode == "RGB"):

return 3
else:

raise Exception("Unsupported␣mode")

def convert(data , mode):
file_size = data.shape [0]
channels = calculate_channels(mode)
data = np.pad(data , (channels - file_size % channels , 0))
img_width = calculate_width(file_size // channels)

result = []
for i in range(0, channels ):

ch = data[i:: channels]
ch = np.pad(ch , (img_width - ch.shape [0] % img_width , 0))
ch = np.reshape(ch , (-1, img_width ))
result.append(ch)

result = np.stack(result , axis =2)

if (channels == 1):
result = result[:, :, 0]

return Image.fromarray(result , mode)

if len(sys.argv) != 3:
print(f"Usage:␣python3␣{sys.argv [0]}␣file_name␣RGB/L")
exit()

filename = sys.argv [1]
mode = sys.argv [2]
with open(filename , "rb") as f:

data = f.read()

data = np.frombuffer(data , dtype=np.uint8)
image = convert(data , mode)
image = image.resize ((512 ,512))
image.save(f"{mode}_{filename }.png")
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Chapter 3

Convolutional Neural Networks

With the development of deep leaning technologies Convolutional Neural Networks (also known
as CNN) have become very popular. They have proved their efficiency in processing of grid-like
data. That could be anything from time-series 1-D array representing samples taken at regular
time intervals to applications where CNN is used for Natural Language Processing. But the
most widespread use of this type of neural network is image processing. As any image can be
represented as grid of pixels of some dimension, then CNN can be used to perform such operations
as: image classification, object detection, image segmentation etc.

In this chapter I will describe what convolution is as well as other building blocks of CNN
and mathematics behind of it.

3.1 Convolution

In convolutional neural network the state of each layer is represented by a spatial grid structure.
For the first layer its values and shape are determined by the nature of input data. It is called
the input layer. Parameters, that we want to obtain during training in CNN are organized
into 3-dimensional structures also known as kernels or filters. The filter usually has the same
width and height (is square) and its depth is always same as the depth of the layer, to which
it is applied. By sequential applying filter to the input layer, we will get more and more layers.
These later, newly obtained layers are referred to as hidden layers, and their grids are referred
to as feature maps or activation maps. Here ”applying filter” means placing the filter at
each possible position in the input (or hidden) layer, so that it stays fully within its borders and
then performing a dot product between filter and the matching grid in the input (3.3). This
operation is called convolution. More formally we can define convolution as follows:

9
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Figure 3.1 An example of a convolution between a 3 × 4 × 1 input and a 2 × 2 × 1 filter

▶ Definition 3.1 (Convolution). Let W (p,q) = [w(p,q)
i,j,k ] be the 3-dimensional tensor Fq × Fq ×

dq, which defines parameters of pth filter of qth layer. Here indices i, j, k denote the positions
along the height, width and depth of the filter. Also 3-dimensional tensor H(q) = [h(q)

i,j,k] of size
Lq × Bq × dq represents the feature maps in the qth layer. If the q = 1, H1 simply represents the
input layer. Then, convolutional operations from the qth layer to the (q + 1)th layer are defined
as follows:

h
(q+1)
i,j,p =

Fq∑
r=1

Fq∑
s=1

dq∑
k=1

wp,q
rskh

(q)
i+r−1,j+s−1,l ∀i ∈ {1, . . . , Lq − Fq + 1}

∀j ∈ {1, . . . , Bq − Fq + 1}
∀p ∈ {1, . . . , dq + 1}

The result will be the size of Lq+1 × Bq+1, where Lq+1 = (Lq − Fq + 1) and Bq+1 = (Bq − Fq + 1).
[3]

3.2 Padding
The operation described in previous section is usually referred as “valid convolution”, because
filter is moving within the borders of the layer, without “sticking out”. Experiments show, that
it generally does not work well. The number of positions in which filter captures outer pixels
is less than such number for pixels that are closer to the center. This way contribution of the
pixels around the border will be under-represented in the final result. To avoid this the original
size of the layer can be extended by zeros on each side. This operation is called padding. The
most used types of padding are: valid-padding, half-padding, and full-padding. [3]
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Valid-padding - no zeros are added to the input (no padding).

Half-padding - type of padding, where (Fq −1)/2 zeros are padded on all sides of the image.
The main property of half-padding is that it preserves the size after convolution.

Full-padding - type of padding, where (Fq − 1) zeros are padded on all sides of the image.

Figure 3.2 Padding example

3.3 Strides

In the previous definition of convolution the filter was always shifted by 1. Nevertheless, it can
be taken as another input parameter to convolution. Such parameter is usually referred to as a
stride. When a stride of Sq is used, the kernel is shifted by Sq locations during convolution. In
such case the size of output layer has height (Lq − Fq)/Sq + 1 and a width of (Bq − Fq)/Sq + 1.
High stride value can help to reduce memory usage and over-fitting, however in most cases stride
of 1 or 2 is used. Increasing the strides can quickly expand the receptive field of individual
features, while reducing the spatial footprint of the entire layer. [3]

3.4 Pooling

Pooling is another important operation in CNN. Let’s have a region of size Pq × Pq. Pooling is
taking all the values inside of this region and converts it to the single value. There are two types
of conversion: max-pooling and average pooling. [3]

Average pooling - replaces all the values with the average value.

Max pooling - replaces all the values with the max value.

After this operation the region is shifted by some stride. Usually stride 1 or 2 is used. Unlike
convolution, pooling is applied separately on each feature map. [3]
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Figure 3.3 Pooling example

3.5 Activation function

3.5.1 Rectified Linear Unit
The most used activation function in CNN is called Rectified Linear Unit function (ReLU). It
has the following formula:

f(x) =
{

0, x < 0
x, x ≥ 0

(3.1)

Earlier such activation functions as tanh or sigmoid was used, but it appeared that ReLU
surpasses them both in speed and accuracy. [4]



Chapter 4

Datasets

This chapter describes existing image malware datasets and one binary dataset, which can be
converted to the image representation and used for CNN model training as well.

4.1 MalImg

This dataset arose as a result of research carried out by Nataraj at al. [1]. It has 9,458 malware
samples splitted into 25 malware families. To convert binary executable into image the binary
file is read as vector of 8 bit unsigned integers and then organized into a 2D array. Each integer
has value in range [0; 255] and represents a single pixel of gray-scale image, where 0 corresponds
to black color, 255 corresponds to white and and other values are intermediate shades of gray.
[1]

In their paper authors suggest to determine image width depending on the malware size 4.1
and let the height vary.

File size range Image width
< 10 kB 32

10 kB - 30 kB 64
30 kB - 60 kB 128
60 kB - 100 kB 256
100 kB - 200 kB 384
200 kB - 500 kB 512
500 kB - 1000 kB 768

> 1000 kB 1024
Table 4.1 Image width for various file sizes

13
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(a) Win32/AutoRun.K (b) Win32/Dontovo.A

Figure 4.1 MalImg samples representation

4.2 Malevis

The Malevis dataset is RGB based ground truth dataset collected by Multimedia Information
Lab of Hacettepe University Computer Engineering cooperated with COMODO Inc. In total,
the dataset consists of 9100 training and 5126 validation RGB images, divided into 26 classes
(25 malware types + 1 that represents ”legitimate” samples). [2]

To convert malware samples into images, authors of the dataset have used bin2png script,
which is publicly available on GitHub, then fixed the width to 224 and 300 pixels correspondingly
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and resized the image by using Lanczos interpolation to obtain square shape. [2]

(a) Win32/AutoRun-PU (b) Win32/Adposhel

Figure 4.2 Malevis samples representation

4.3 SOREL-20M

SOREL-20M (Sophos-ReversingLabs 20 Million) - is a malware dataset for ML purposes created
by anti-virus company Sophos in 2020. The dataset contains 20 million Windows PE executables,
including 10 million disarmed malware samples.

4.3.1 GitHub repository
The GitHub repository of the project is located at https://github.com/sophos/SOREL-20M and
is licensed under Apache 2.0 license. It contains supportive scripts and instructions about how
to use them, environment requirements, licence information, terms of conditions and answers to
the frequently asked questions. Among the presented scripts there are those for training and
evaluating ML model (’train.py’ and ’evaluate.py’). Also authors provide two baseline models: a
Pytorch feed-forward neural network (FFNN) model, and a LightGBM gradient-boosted decision
tree model. Their structure can be found in ’nets.py’ and ’lightgbm config.json’ respectively [5].

For the purposes of this thesis we are be interested in two scripts that work with SQLite3
”meta.db” database of malware metadata and load the dataset - ’dataset.py’ and ’generators.py’.
Parts of their code will later be used during the implementation phase. Database structure is
described later in the 4.3.3.

4.3.2 AWS S3 bucket
The core files of the dataset are available via AWS S3 bucket: s3://sorel-20m/09-DEC-2020/. It
contains such things as: trained FFNN and LightGBM model (checkpoints/), performance results
for each model (results/), extracted LightGBM features (ligthGBM-features/), zlib compressed
malware binaries (binaries/) and dataset metadata: SQLite db, Ember 2.0 and pefile features
(processed-data/). Full bucket structure is shown on the figure below: 4.3.



16 Datasets

s3://sorel-20m/09-DEC-2020/
Terms and Conditions of Use.pdf
baselines/

checkpoints/
FFNN/
lightGBM/

results/
ffnn results.json
lgbm results.json
FFNN/

seed0-seed4
lightGBM/

seed0-seed4
binaries/
lightGBM-features/

test-features.npz
traing-features.npz
validation-features.npz

processed-data/
meta.db
ember features/
pe metadata/

Figure 4.3 Sorel-20M S3 structure

The most important for this work is binaries/ folder, which contains around 9,919,251 dis-
armed malware samples ∼ 8TB of data. These samples were collected by Sophos-ReversingLabs
from January 1, 2017 to April 10, 2019.

4.3.3 Metadata structure
The SQLite database schema for the meta.db file within the ‘processed-data’ sub-directory is as
follows:

CREATE TABLE meta (sha256 text primary key ,
is_malware SMALLINT ,
rl_fs_t DOUBLE ,
rl_ls_const_positives INTEGER ,
adware INTEGER ,
flooder INTEGER ,
ransomware INTEGER ,
dropper INTEGER ,
spyware INTEGER ,
packed INTEGER ,
crypto_miner INTEGER ,
file_infector INTEGER ,
installer INTEGER ,
worm INTEGER ,
downloader INTEGER );

sha256 – the sha256 of the unmodified file (note that all provided files are “disarmed”)

is malware – a value of 0 indicates benign-ware, 1 indicates malware
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rl fs t – the first time (in Unix epoch time) a given sample (unique per sha256) was seen in
the ReversingLabs feed

rl ls const positives – the total number of ‘positive’ (i.e. malware) results from all detectors
at the most recent time that the samples was seen (assuming that more recent scans will be
higher quality due to signature updated etc

adware, flooder, ransomware, dropper, spyware, packed, crypto miner, file infector, installer,
worm, downloader – the number of tokens appearing in detection names that related to the
specified tag; a value >0 indicates a positive result, larger values may indicate higher certainty
in the tag

4.4 Benign samples
To train a neural network to distinguish between malware and non-malware samples, the benign
dataset is needed. As a source of benign files we will Windows 10 binaries.
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Chapter 5

Implementation

5.1 Architecture

5.2 Implementation

5.3 Training and testing

5.4 Results evaluation
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