
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Authentication Effectiveness in Vehicle Unified Diagnostic

Services

Bc. Jakub Weisl

Ing. Jiří Dostál, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2023/2024

Instructions

Modern car design typically includes various Electronic Computing Units (ECUs)

connected through communication buses and computer networks. ECUs also oversee

and report the technical status of different car units, ensuring proper communication

between them. They process the incoming signals and deploy actions based on gathered

information, e.g., powertrain control or brake assist.

There is also a diagnostic unit present. It is responsible for reporting the health status of

the car and communicating with service devices. It employs a server-client

communication model using the CAN bus. As an overlay layer over the CAN bus, there is a

Unified Diagnostic System (UDS) protocol, defined by ISO 14229-2020. All the functions

of the UDS protocol are grouped into services. The main focus of this thesis is the

authentication service defined in chapter 10.6 of the previously motioned ISO standard.

The authentication service offers two authentication schemes. The first is authentication

using PKI and the second is challenge-response authentication using symmetric

cryptography. The goals of this diploma thesis are:

1. Design a system for measuring the effectiveness of different authentication schemes.

2. Create a testing environment emulating communication between the diagnostic unit

and client station based on ISO 14229-2020 standard.

3. Implement different authentication mechanisms. Implementations must cover both

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 4 January 2023 in Prague.

symmetric and asymmetric cryptography.

4. Assess the effectiveness of the implemented authentication mechanisms using the

designed system and consider further strengths and weaknesses of implemented

options.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 4 January 2023 in Prague.

Master’s thesis

AUTHENTICATION
EFFECTIVENESS IN
VEHICLE UNIFIED
DIAGNOSTIC SERVICES

Bc. Jakub Weisl

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Jǐŕı Dostál, Ph.D.
January 11, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Jakub Weisl. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Weisl Jakub. Authentication Effectiveness in Vehicle Unified Diagnostic Services.
Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments v

Declaration vi

Abstract vii

Introduction 1

1 Analysis 3
1.1 CAN bus . 3

1.1.1 History . 3
1.1.2 CAN 2.0 . 4
1.1.3 CAN-FD . 5

1.2 ISO-TP protocol . 6
1.3 UDS . 6
1.4 Cryptography . 6

1.4.1 RSA . 6
1.4.2 ECC . 7
1.4.3 HMAC . 7

2 Implementation 9
2.1 Infrastructure . 9
2.2 Source code description . 10

2.2.1 Class structure . 10
2.2.2 Implemented features . 11

2.3 Methodology of Experiment . 12

3 Evaluation 15
3.1 measurement interpretation . 15
3.2 unmeasurble variables . 15

4 Conclusion 17

A Attachments 19

Content of attached memory storage 23

iii

List of Figures

1.1 CAN bus protocol on ISO-OSI model and its ties to ISO 11989 series 4
1.2 Structure of CAN2.0 A frame . 4
1.3 Start of a CAN-FD frame . 6
1.4 End of a CAN-FD frame . 6

List of Tables

List of code listings

2.1 Interface for calculating proof of ownership . 11
2.2 Interface for checking proof of ownership . 11
2.3 Declaration of setsocketopt function . 11

iv

Chtěl bych poděkovat předevš́ım sit amet, consectetuer adipiscing
elit. Curabitur sagittis hendrerit ante. Class aptent taciti sociosqu
ad litora torquent per conubia nostra, per inceptos hymenaeos. Cras
pede libero, dapibus nec, pretium sit amet, tempor quis. Sed vel
lectus. Donec odio tempus molestie, porttitor ut, iaculis quis, sem.
Suspendisse sagittis ultrices augue.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Czech Technical University in Prague has the right to conclude a licence agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act.

In Prague on January 11, 2024 .

vi

Abstract

Fill in abstract of this thesis in English language. Class aptent taciti sociosqu ad litora torquent
per conubia nostra, per inceptos hymenaeos. Cras pede libero, dapibus nec, pretium sit amet,
tempor quis. Sed vel lectus. Donec odio tempus molestie, porttitor ut, iaculis quis, sem. Sus-
pendisse sagittis ultrices augue.

Keywords enter, commma, separated, list, of, keywords, in, ENGLISH

Abstrakt

Fill in abstract of this thesis in Czech language. Class aptent taciti sociosqu ad litora torquent per
conubia nostra, per inceptos hymenaeos. Cras pede libero, dapibus nec, pretium sit amet, tempor
quis. Sed vel lectus. Donec odio tempus molestie, porttitor ut, iaculis quis, sem. Suspendisse
sagittis ultrices augue.

Kĺıčová slova enter, commma, separated, list, of, keywords, in, CZECH

vii

List of abbreviations

BRS Bit Rate Switch. 6

CAN Control Area Network. 3–6, 9

CRC Cyclic Redundancy Check. 5

DLC Data length code. 5, 6

ECU Electronic computing unit. 3, 9

EOF End of Frame. 5

ESI Error Status Indicator. 6

HMAC Hash-based message authentication code. 11

LAN Local area network. 9

NAT Network address translation. 9

OBD On Board diagnostic. 3

PKI Public key infrastructure. 11

POW Proof of ownership. 11

RRS Remote Request Substitution. 5

RTR Remote Transmission Request. 5

SBC Stuff Bit Count. 6

SOF Start of Frame. 5

UDS Unified diagnostic service. 3, 11, 12

viii

Introduction

test test teset test

1

2 Introduction

Chapter 1

Analysis

Focuses of this chapter is mainly on defining key topics of this thesis and bringing up the necessary
context to them. Namely this chapter will briefly shows, how the CAN protocol and its overlay
ISO-TP protocol work and how these two are connected. How they are used in modern cars and
what UDS is. Regarding UDS the main focus is to explain details of service 29 which is the core
topic of this thesis. At last the choice of particular cryptographic algorithms is reasoned.

Every modern car or other vehicle is equipped with many digital systems which have various
purposes from timing fuel injection into the engine across breaking assistants to keeping the the
temperature inside a cockpit. These various systems are run by various ECUs in the vehicle.
Modern car can have more than 150 of ECUs[1]. In order to work properly the ECUs must gather
lot of information from various sensors and from each other. For that purpose the CAN protocol
is used. The information exchange is done through various proprietary protocols, however in
case of communication with the outside word (e.g. diagnostic station, emission control) there
are standardized protocols (e.g. OBD 2, UDS). For all of the protocols CAN protocol is used as
physical and data link layer as defined on ISO-OSI model.

1.1 CAN bus

CAN protocol is a real time communication protocol, communicating over central bus. Every
node in a network is broadcasting frames to all the other nodes. CAN protocol is prioritising
messages based on CAN ID 1.1.2.

All the messages are separated by 3 zero bits.[2]

1.1.1 History
CAN bus is a link layer protocol first developed by Bosch company in 1986. Its later version was
introduced in 1993 under name CAN2.0. Since then CAN bus became standard communication
protocol in automotive industry. In 1993 CAN was adopted as international standard in ISO
11898. Later the standard was broaden into series where standard ISO 11898-1 defines the data
link layer and ISO 11898-2 defines the parameters for the physical layer.

In 2012 Bosch released CAN-FD, where FD stands for flexible data rate. This upgrade of
CAN protocol was standardised in 2015 into previously mentioned ISO norm.[3]

3

4 Analysis

Figure 1.1 CAN bus protocol on ISO-OSI model and its ties to ISO 11989 series

1.1.2 CAN 2.0
CAN2.0 is currently most used version of CAN bus. It is used in various types of vehicles for
internal communication. There are 2 types of CAN protocols CAN2.0 A and CAN2.0 B, which
differ in length of CAN ID (CAN2.0 A 11 bits, CAN2.0 B accepts both 11 bit and 29 bits IDs).[2]
The CAN2.0 B is usually used in heavy-duty vehicles, which use J1939 protocol in higher levels
of communication.[3]

Standard CAN communication has 4 types of frames:

Data Frame - Standard CAN frame carrying data.

Remote Frame - CAN frame requesting data from another node.

Error Frame - Error frame is transmitted by any node which encounters an error on a common
bus.

Overload Frame - This frame indicates additional delays in communication due to node
overload.

CAN frames can carry up to 8 B of payload and can achieve speed up to 1 Mb/s. Maximal
speed can be achieved only with cables length less then 40 meters than the speed decreases. Can
frames have defined structure that can bee seen on Figure 1.2.

Figure 1.2 Structure of CAN2.0 A frame
[3]

The frame carries another 44 bits of information. Their meaning is following:

CAN bus 5

SOF: The Start of Frame is set to 0, to indicate start of a message

ID: Frame identifier, as mentioned earlier CAN2.0 B has option of both 11 bits or 29 bits ID.
Lower IDs have higher priority.

RTR: The Remote Transmission Request this flag indicates if a frame requests data (remote
frame set to 1) or carries data (data frame set to 0).

Control: Control has length of 6 bits where first 2 bits are reserved and must be set to 0 and
next 4 bits contains DLC indicating the legth of a payload.

Data: Payload.

CRC: The Cyclic Redundancy Check ensures the payload integrity.

ACK: The ACK slot indicates if the node has acknowledged and received the data correctly.
If everything is correct receiving node sends back same message, but with ACK bit set to 0.

EOF: The End of Frame.

As mentioned before communication on common bus is broadcasted from transmitter to all
other nodes this means that only one node can transmit at the time. In the case that bus is
idle any can transmit its data as long as node with message with higher priority needs to start
transmitting. In case more nodes needs to broadcast some information in same the priority of
the message is considered. The arbitration process between the nodes is called carrier sense
multiple access with collision detection. The arbitration field is put together from the SOF bit
and ID bits. Since the SOF of the same for all the messages the ID field is what decides. The
arbitration scheme is following:

1. All nodes start broadcasting at once.

2. The bus acts as bitwise AND, so if any node is transmitting 0 bit and some other nodes are
trying to transmit 1 at the same position. The bit is zeroed.

3. Node reads back written bit from a bus if it is the same as last transmitted bit it keeps
transmitting if not the node stops transmitting a waits for the bus to be idle, or for the the
start of new message.

[2]

1.1.3 CAN-FD
CAN-FD is a upgrade of classical CAN2.0 in several ways. It allows variable payload size between
8 and 64 bytes, although the header is bigger than classic CAN, so the in case of 8 byte payload
the overhead is bigger than with standard CAN. Another improvement is that CAN-FD is capable
of higher speed, theoretically up to 12 Mb/s when sending data. However technical specification
in 11898-2:2016 sets standards for 5 Mb/s. CAN-FD frame has the following structure:

As can be seen at 1.3 the start of the frame is the same as classical CAN so the arbitration
process does not change for the CAN-FD. However after CAN ID field there are some major
changes. The frame after ID is composed of following parts:

RRS replaces 1.1.2 in classical CAN. CAN-FD si not supporting remote requests and Remote
Request Substitution (RRS) is always set to 0.

IDE: IDE is reserved bit as in CAN frames and is set 0.

FDF: FDF is also reserved bit but compare to classical CAN is set to 1.

6 Analysis

Figure 1.3 Start of a CAN-FD frame

Figure 1.4 End of a CAN-FD frame

3 bits newly introduced in CAN-FD:

res: Res reserved bit in CAN-FD protocol and it is set to 0.
BRS: The Bit Rate Switch (BRS) indicates mode in witch payload will be send. If set to
0 data section of frame are sent in same rate as header of frame. I case BRS is set to 1
than payload is sent at heigher bitrate.
ESI: The Error Status Indicator (ESI) is set to 0 and indicates that transmitter is in error
active mode, otherwise it is in error passive mode.

DLC: 4 bits of DLC has the same meaning as in classical CAN (1.1.2)

Data: Payload carried by a CAN frame. Payload can be 1-8 and then 12, 16, 20, 24, 32, 48
or 64 bytes long.

SBC: The Stuff Bit Count (SBC)

CRC

ACK

EOF

IFS

[3]

1.2 ISO-TP protocol

1.3 UDS

1.4 Cryptography

1.4.1 RSA

Cryptography 7

1.4.2 ECC

1.4.3 HMAC

8 Analysis

Chapter 2

Implementation

This chapter has goal to show and explain the structure of the program which was used to carry
out the experiment and simulate the authentication process between client endpoint and ECU.
It also names other software tools which were used on the experiment and reasons theirs choice.

The whole emulation of authentication process to ECU is implemented in one piece of software
which can simulate either a client side or a server side of the authentication process, based on
initial configuration. The server must be run with configuration for all supported authentication
mechanisms and cryptography protocols to be able to answer all the supported requests.

When the software is run in client mode it is necessary to supply only encryption keys required
for the chosen authentication mechanism and cryptography protocol.

2.1 Infrastructure
Whole experiment was done in virtual environment using Virtual box hypervisor and Cenneloni
tool 1, which provides connection using the canbus protocol between virtual client and virtual
server. Although CAN bus is a layer 2 protocol on ISO/OSI model Canneloni channels CAN
bus protocol over TCP/IP.The original plan was to use virtual serial line between the client and
the server. However slcand 2 tool which is used to handle CAN bus protocol over serial line does
not support CAN FD version of the protocol. This raised a problem, when variable size of CAN
FD packets must be used to simulate different throughput of the channel, because linux kernel
module which handles CAN bus communication is not able send CAN frames in shorter intervals
than 100 µs which is not enough for needs of this experiment. This restriction has its reason
because maximal speed which CAN2.0 bus protocol can achieve in reality is 1 Mb/s.

Interconnection of the client and the server over the TCP/IP had and other unexpected
advantage in more stable connection than was the connection over the virtual serial line which
led to significantly fewer erroneous runs during the measurement. With use of serial line there
were tens or even lower hundreds of erroneous runs per measurements which contained 2000 runs
of the program. Connection over TCP/IP resulted with up to 10 erroneous runs which were
caused by interface buffer to be filled and was easily solved by extending buffer size on a network
interface and so it was possible to achieve 100% of successful runs.

Both virtual machines were equipped with two virtual network cards, one connected to the
private LAN to establish connection between client and server and to ensure minimal interference
in the communication. Second virtual card was connected to the internet through NAT to be
able to communicate with git repository which held the latest version of the code. In order

1https://github.com/mguentner/cannelloni
2https://github.com/linux-can/can-utils/tree/master

9

https://github.com/mguentner/cannelloni
https://github.com/linux-can/can-utils/tree/master

10 Implementation

to avoid any unforeseen problems with portability between development environment a testing
virtual machines the code was always compiled on target machines.

Virtual machines used as client as server both run publicly available Linux distribution
Ubuntu server version 22.04.02 LTS with can-utils 3 package installed. For the compilation
of source code it is also necessary to download Linux headr files and compiler for C++ source
code with C++ standard library and OpenSSL library.

2.2 Source code description
The goal of this part is to introduce to the reader the most important parts and some of the
interesting features of the implementation of ECU authentication mechanism according to ISO

The source code of the software is completely written in C++ and divided into several class.

2.2.1 Class structure
Whole software is build from set of classes which most of them is common for both modes the
server and the client. Development of the software went through several stages, and during them
was almost completely redesigned. First designs worked implemented the client and the server as
two independent pieces software. This design proved inefficient since it duplicated approximately
60% of classes. Later stages worked with one piece of software which incorporated both the client
class and the server class which each provides role specific methods, and both inherit grate part
of theri functionalities from common parent.

The fundamental class is class named connection. Its main purpose is to setup CAN socket
and provide methods for sending and receiving messages through a socket. The connection class
mainly uses uses ISO-TP kernel module 4 and SocketCAN kernel module, which both are now
included in standard kernel since version 5.10. Work with SocketCAN kernel module was same as
with standard C++ network sockets this module is also well documented in kernel documentation
[4]. The work with sockets is not very comfortable in C++, but this kernel module can work
only with individual CAN packets.

In order to simplify work with incoming and outgoing traffic ISO-TP kernel module was
used. This module implements ISO-TP protocol, which manages CAN packets into complete
massages and creates some sort of sessions. Work with this module is bit more trickier than with
the SocketCAN kernel module, because of missing documentation. Only clues how to use the
module lies in the source code comments and slide presentation from author of the module 5.

The class which holds most of the functions a makes base for both the client and the server is
class called service 29. This class holds message structures as defined in ISO 14229-1:2020. This
class holds also methods for cryptography operations done during the communication and some
other support functions like loading encryption keys, creating random challenges etc.

Classes representing the client and the server both inherit structures and methods from pre-
viously mentioned service 29 class. The client class overloads auth, which starts the whole au-
thentication process, and based passed parameters, it is determined which kind of authentication
is used.

The server class represents the server and its main purpose is to listen for incoming authen-
tication communication. All the necessary data are passed to server class constructor method,
and the auth method only starts listening for incoming connection. The class is constructed in
a way, that it can handle all kinds of authentication mechanism as defined in ISO 14229-1:2020
and all currently implemented encryption algorithms based on information in incoming packets.

3https://packages.ubuntu.com/jammy/net/can-utils
4https://github.com/hartkopp/can-isotp
5https://s3.eu-central-1.amazonaws.com/cancia-de/documents/proceedings/slides/hartkopp_slides_

15icc.pdf

https://packages.ubuntu.com/jammy/net/can-utils
https://github.com/hartkopp/can-isotp
https://s3.eu-central-1.amazonaws.com/cancia-de/documents/proceedings/slides/hartkopp_slides_15icc.pdf
https://s3.eu-central-1.amazonaws.com/cancia-de/documents/proceedings/slides/hartkopp_slides_15icc.pdf

Source code description 11

Both classes the client and server both hold implementation of methods implementing com-
munication scheme as defined in earlier mentioned ISO norm and shown in 1.3.

2.2.2 Implemented features
This implementation of UDS service 29 communication holds few options and set ups which are
worth mentioning.

Implementation of cryptographic function uses openSSL crypto library. There are two types of
cryptographic operations implemented first one calculating POW and second checking incoming
POW. Method calculating POW must have interface in following:

1 static const std :: vector <uint8_t > calculate_POW (const std :: vector <uint8_t >
& key ,

2 const std :: vector <uint8_t >
& pow_base);

3

Code listing 2.1 Interface for calculating proof of ownership

Method for checking received POW must have interface in this form:
1 static const std :: vector <uint8_t > check_POW (const std :: vector <uint8_t > &

key ,
2 const std :: vector <uint8_t > &

rcv_pow ,
3 const std :: vector <uint8_t > &

pow_base);
4

Code listing 2.2 Interface for checking proof of ownership

The static keyword is only necessary if implemented functions are also methods of service 29
class. They can be also implemented as stand alone functions outside of the class.

Use of these interfaces provides possibility adding various encryption algorithms and their
easy incorporation into this project. When adding new crypthographic algorithm into project, it
must be add into switch statement, which is located in the method service 29:: match alg, where
addresses of new methods are assigned to the class variables. New methods must be also added
into main function which handles input and parameters from command line.

The current implementation allows the use of HMAC cryptographic protocol and all asym-
metric ciphers supported by OpenSSL library in both scenarios challenge response or with use of
PKI. The broad spectrum of asymmetric ciphers available for use is achieved by using OpenSSL
d2i functions which can determine correct cipher based on provided DER encoded public key or
from certificate which directly holds desired information.

Another note worthy thing is set up of CAN socket when using ISO-TP kernel module. The
only available documentation is in the source code of the module. In this project the set up is
done in the constructor of connection class. The set up is done through function setsocketopt
and structures defined in the kernel module. The function has the following declaration:

1 int setsockopt (int socket ,
2 int level ,
3 int option_name ,
4 const void * option_value ,
5 socklen_t option_len);
6

Code listing 2.3 Declaration of setsocketopt function

Except the socket parameter, all the other parameters are defined in the kernel module.
Parameters level and option name are defined as macros at the start of header of file of the

12 Implementation

module. According to option name proper structure must be passed as the option value and also
its length as option len parameter, which are defined in the same file. There are three struc-
tures defined which each is responsible for setting up different part of ISOTP protocol. There is
can isotp opotions structer, which handles all local setting of ISO-TP communication. There are
2 parts of this structer wort mentioning the first one is can isotp options.flags. This is unsigned 32
bits data type which holds values of all setup flags defined in the header file. These flags are key to
set up correct behavior of the communication. The second one is can isotp options.frame txtime,
which holds time interval between individual frames. However this time interval is used only when
CAN ISOTP FORCE TXSTMIN flag is set up, or there is no Flow Control Frame received. In
other cases the value in can isotp options.frame txtime is overwritten by value received in Flow
Control Frame. The structure can isotp fc options sets up the values received in already men-
tioned Flow Control Frame specially the time interval between frames, block size and maximum
number of wait frames. The last structure named can isotp ll options enables use of CAN-FD
packets and also sets up a size of a payload.

The last thing to point out from the implementation of the UDS service 29 is the way
encryption keys and certificates are handled in the client and the server. Both instances must
handle those differently because server must be able to handle any incoming implemented cipher
suit and so needs list of all crpytographic keys available. But the client only needs a chosen
encryption and correct decryption key. This need resulted in different requirements for passed
arguments to some parameters.

The difference is with parameters -k and -p. With parameter -k the the client expects path
to client’s private key, similarly with parameter -p the client expects path to server’s public
key. However the server with these parameters expects list of all keys available. The server’s -p
parameter expects path to file which holds structured information about private keys available
to the server, this includes keys to symmetric ciphers. The file delimiter is : character and the
structure of the file is following:

server ID : cipher ID : path to private key

Server ID is defined with parameter -i and must match with at least one server ID in the configu-
ration file. Cipher ID is defined in program and shown in help of the program. The -k parameter
requires also path to the file but this file holds structured information about public keys of the
clients. This file is used only for authentication with asymmetric encryption but for simplification
and possible implementation of crypthographic algorithms not supported by OpenSSL library it
hods same structure as file for storing paths to private keys, expcet instead of holding server IDs
it holds client IDs. If in an incoming connection the asymmetric cryptography is identified a
path to particular public key is matched base on client ID in the incoming message.

2.3 Methodology of Experiment
The experiment was carried on the same virtual infrastructure, it was developed. It order to
minimize influence of guest operating system load and the load of host operating system as well
the client was newly started and waited to properly finished in each run. The server on other
virtual machine runs all the time and waits for all incoming connections.

The time was measured only on the client which initiated the communication and the stop
watch was started with the call to method to start the communication and stopped with the
return from this method. This way the results were not influenced by the parameters and
arguments ingestion and checks.

In the experiment the main focus was on time complexity of individual authentication mech-
anisms. The secondary focus is an amount of transferred data, but this dimension of experiments
in constant through all runs.

In order to get reliable data of the time complexity of the individual authentication mechanism
the client was run 2000 times for bidirectional and also unidirectional authentication. All the runs

Methodology of Experiment 13

were done with the same arguments. In order to get closer to real environment all the encryption
keys were generated using OpenSSL command line tool with the standard recommended length
of the keys. For the RSA the key length was chosen to 2048 bits, ECC used key of lenght 256
bits and for HMAC crypto algorithm was ued 256 bits of key. All the runs were made with the
same cryptographic keys.

14 Implementation

Chapter 3

Evaluation

3.1 measurement interpretation

3.2 unmeasurble variables

15

16 Evaluation

Chapter 4

Conclusion

17

18 Conclusion

Appendix A

Attachments

Sem přijde to, co nepatř́ı do hlavńı části.

19

20 Attachments

Bibliography

1. CHARETTE, Robert N. HOW SOFTWARE IS EATING THE CAR [online]. IEEE, [n.d.].
Available also from: https://spectrum.ieee.org/software-eating-car.

2. J. A. COOK, J. S. Freudenberg. Control Area Network (CAN) [online]. 2008. Tech. rep. Michi-
gan University. Available also from: https://www.eecs.umich.edu/courses/eecs461/
doc/CAN_notes.pdf.

3. CAN bus the ultimate guide [online]. CSS Electronics, 2023. Tech. rep.
4. The Linux Kernel [online]. Available also from: https://www.kernel.org/doc/html/

latest/networking/can.html.

21

https://spectrum.ieee.org/software-eating-car
https://www.eecs.umich.edu/courses/eecs461/doc/CAN_notes.pdf
https://www.eecs.umich.edu/courses/eecs461/doc/CAN_notes.pdf
https://www.kernel.org/doc/html/latest/networking/can.html
https://www.kernel.org/doc/html/latest/networking/can.html

22 Bibliography

Content of attached memory
storage

Makefile..Makefile for setup Cannelloni tool
exe...adresář se spustitelnou formou implementace
src

impl...zdrojové kódy implementace
thesis..zdrojová forma práce ve formátu LATEX

text...text práce
thesis.pdf...text práce ve formátu PDF

23

	Acknowledgments
	Declaration
	Abstract
	Introduction
	Analysis
	CAN bus
	History
	CAN 2.0
	CAN-FD

	ISO-TP protocol
	UDS
	Cryptography
	RSA
	ECC
	HMAC

	Implementation
	Infrastructure
	Source code description
	Class structure
	Implemented features

	Methodology of Experiment

	Evaluation
	measurement interpretation
	unmeasurble variables

	Conclusion
	Attachments
	Content of attached memory storage

