
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Parallel factorization on GPU using CUDA and Metal APIs

Bc. Jan-Jakub Fleišer

doc. Ing. Ivan Šimeček, Ph.D.

Informatics

Computer Systems and Networks

Department of Computer Systems

until the end of summer semester 2023/2024

Instructions

1) Implement Pollard's rho and Lenstra elliptic-curve factorization algorithms[1-4] with

arbitrary integer precision in their sequential, parallel on CPU using OpenMP, and parallel

on GPU using Apple Metal and CUDA versions.

2) For sequential and CPU parallel versions, utilize the GMP library.

3) For the Metal GPU version, implement an arbitrary precision library with operations

required for the algorithms.

4) For the CUDA GPU version, explore existing solutions for arbitrary precision integer

arithmetic, and if required, implement a similar library as in the Metal version.

5) Compare the implementations created with widely used SageMath and SymPy

solutions in terms of scaling, resource usage, and time until a solution is found.

6) Compare the resource usage and runtime for the implemented algorithms, both with

each other and between their CPU and GPU versions.

[1] LENSTRA JR, Hendrik W. Factoring integers with elliptic curves. Annals of mathematics.

1987, pp. 649 673.

[2] PARKER, DANIEL. Elliptic curves and Lenstra's factorization algorithm. University of

Chicago: REU. 2014, vol. 2014.

[3] BRENT, Richard P. Some Parallel Algorithms for Integer Factorisation. In: AMESTOY,

Patrick; BERGER, Philippe; DAYDE, Michel; RUIZ, Daniel; DUFF, Iain; FRAYSSE, Valérie;GIRAUD,

Luc (eds.). Euro-Par'99 Parallel Processing. Berlin, Heidelberg: Springer Berlin Heidelberg,

1999, pp. 1-22. ISBN 978-3-540-48311-3.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 6 February 2023 in Prague.

Master’s thesis

PARALLEL
FACTORIZATION ON
GPU USING CUDA AND
METAL API

Bc. Jan-Jakub Fleǐser

Faculty of Information Technology
Department of Computer Systems
Supervisor: doc. Ing. Ivan Šimeček, Ph.D.
January 8, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Jan-Jakub Fleǐser. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Fleǐser Jan-Jakub. Parallel factorization on GPU using CUDA and Metal API .
Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments ix

Declaration x

Abstract xi

Acronyms xii

Introduction 1

1 Algorithms 3
1.1 Lenstra Elliptic curve factorization . 3

1.1.1 Elliptic curves . 3
1.1.2 Elliptic curve groups . 4
1.1.3 Scalar multiplication on Elliptic curves . 5
1.1.4 Lenstra’s elliptic curve algorithm . 6

1.2 Pollard’s Rho . 7
1.3 Arbitrary precision integers . 7
1.4 The GNU Multiple-Precision Arithmetic Library and LibTomMath 8
1.5 Existing implementations and approaches . 9

1.5.1 Revisiting ECM on GPUs . 9
1.5.2 PARI and GMP-ECM . 9
1.5.3 Symbolic computing in Python . 10

2 Parallelization 11
2.1 OpenMP Library . 11
2.2 General Purpose computing on the GPU . 12

2.2.1 Arbitrary precision arithmetic on GPU 12
2.2.2 GPU Flow-Control and divergence . 12

2.3 NVIDIA CUDA . 13
2.3.1 CUDA Kernels . 13
2.3.2 Threads, blocks, and grids . 13
2.3.3 Device and Host memory transfers . 15
2.3.4 CUDA Memory Hierarchy . 15
2.3.5 CUDA Streams . 15

2.4 Apple Metal . 16
2.4.1 Metal Shading Language . 16
2.4.2 Metal-cpp . 16
2.4.3 Metal Data Types . 17
2.4.4 Address spaces . 17
2.4.5 Thread grids and Thread groups . 17
2.4.6 Metal work submission . 18
2.4.7 Apple GPUs . 20

iii

iv Contents

3 Sequential and OpenMP implementations 21
3.1 Sequential implementations . 21

3.1.1 Pollard’s Rho . 21
3.1.2 Lenstra’s Factorization . 22

3.2 OpenMP based implementation . 22
3.2.1 Lenstra’s Factorization . 23
3.2.2 Pollard’s Rho . 24

3.3 CPU Versions comparison . 25
3.3.1 Comparison . 25

3.4 Measurement summary . 26
3.5 Profiling the CPU implementation . 26
3.6 Summary . 28

4 Multi-precision integer arithmetic on Apple Metal 31
4.1 Metal Arbitrary Precision library . 31
4.2 Storing arbitrary precision integers . 32
4.3 Memory allocation limitations in Apple Metal and impact on implementation . . 32
4.4 Fixed-size integer representation . 34
4.5 Metal Arbitrary Precision library function conventions 34
4.6 Metal Arbitrary Precision library structure . 35
4.7 Supported functions . 36
4.8 Implementation differences between CPU and GPU function versions 38
4.9 Working with a large number of arbitrary precision integers on the GPU 38
4.10 Encoding and using arbitrary precision integers in GPU shaders 39

4.10.1 Random number generation on Apple Metal 41
4.11 Summary . 41

5 Paralellization using Metal API 43
5.1 High-level principle of the Metal implementations 43
5.2 Achieving scalability for Apple Metal . 43
5.3 Code layout and usage of algorithms on Metal . 44
5.4 Lenstra implementation on Metal . 45
5.5 Pollard’s Rho implementation on Metal . 48
5.6 Performance optimizations . 49

5.6.1 Kernel modularity and interface . 50
5.6.2 Kernel complexity . 50
5.6.3 Memory layout . 51
5.6.4 Utilizing 16-bit GPU registers . 51
5.6.5 Utilizing fixed-size large integers . 52
5.6.6 Modular reductions to reduce memory bottlenecks 52
5.6.7 Version and parameter performance impact 54

5.7 Summary . 55

6 Paralellization using CUDA 57
6.1 Arbitrary integer precision arithmetic on CUDA 57
6.2 Storing arbitrary precision integers . 57
6.3 Extending the Metal Arbitrary Precision library 58
6.4 High-level principle of the CUDA implementations 58
6.5 Lenstra implementation on CUDA . 59
6.6 Pollard’s Rho implementation on CUDA . 60
6.7 Performance optimizations . 60

6.7.1 Modular reductions to reduce memory bottlenecks in ECM 60
6.7.2 Utilizing fixed-size large integers . 61

Contents v

6.7.3 Using shared memory for N . 61
6.7.4 Using 16-bit word size . 62
6.7.5 Version and parameter performance impact 62

6.8 Summary . 63

7 Results analysis 65
7.1 Considerations for measurements . 65
7.2 MAP Library and GMP comparison . 66
7.3 CUDA and Metal implementation comparison . 66
7.4 CPU and GPU implementation comparison . 69
7.5 SymPy, PARI and GMP-ECM implementation 71

8 Conclusion 77
8.1 Outcomes . 77
8.2 Shortcomings . 78

A Selected algorithms for multi-precision arithmetic 79
A.1 Considerations for the selected algorithms . 79
A.2 Addition and subtraction . 79
A.3 Greatest common divisor and extended greatest common divisor 82
A.4 Multiplication and division by two . 82

Contents of enclosed CD 89

List of Figures

1.1 Point addition and doubling on elliptic curves as presented in Guide to elliptic
curve cryptography [4] . 4

2.1 CUDA Memory Hierarchy [31] . 14
2.2 CUDA Grid execution [31] . 14
2.3 Apple Metal threadgroup split into two 16 thread SIMD-groups [34] 18
2.4 Apple Metal thread grid and threadgroups[34] . 18
2.5 Apple Metal Compute submission on M1. The diagram shows the workflow for

submitting work to the GPU by committing or enqueuing (to be committed later)
the commands. [42] . 19

2.6 Apple M1 GPU cache [42] . 20

3.1 Measured runtimes per algorithm and version with eight threads (ARM64). . . . 27
3.2 Time until solution for v7 version of Pollard’s Rho for different thread counts

(ARM64 M2). 28
3.3 Heaviest stack trace for sequential Pollard’s Rho implementation. 28
3.4 Heaviest stack trace for sequential Lenstra implementation. 29

5.1 The layout of a factorization class for Metal. The diagram shows the distribution
of individual instances across CPU threads and their submission to the GPU device
given N CPU threads, each executing eight parallel instances. 45

5.2 Profiling tool output for fixed size 16-bit ETE ECM variant. 50
5.3 Runtime shader costs for 16-bit fixed size point doubling in ETE ECM. 51
5.4 Aggregated meantime for individual Metal variants. Capped at upper time limit. 53
5.5 Percentage impact of additional modular reductions on the meantime. 54

6.1 Mean time percentage change when additional modular reduction was applied. . 61
6.2 Aggregated meantime for individual CUDA variants. Capped at upper time limit. 62
6.3 Mean time for various block thread sizes on 16-bit fixed ECM-ETE 63

7.1 Comparing time required for sequential GMP library operations vs CUDA MAP
library parallel operations. 67

7.2 Mean runtime and single instance time for ETE EC point doubling kernels over
specific grid sizes. Note that the Metal variant is limited to 4,096 due to texture
width limitations. 69

7.3 Mean execution time for CUDA and Metal compared to grid size (fixed-size vari-
ants). Shows particular configuration on 80-bit (ECM) numbers and 73-bit (Pol-
lard’s Rho) numbers. 70

7.4 Growing maximum RSS for Metal variants on 80-bit composite input. 70
7.5 Shows log-scaled runtime comparison across implemented variants. The first plot

shows CPU variants together with CUDA ECM. The second plot shows all GPU
variants together. 72

7.6 Runtime comparison of selected, better-performing implementations 74
7.7 Normalized mean runtime for growing composite size. 74

vi

7.8 Log scaled mean runtime for growing composite size 75

List of Tables

7.1 Measured mean maximum RSS for 80-bit composite input. 71
7.2 Mean runtime across all solutions. 73

List of code listings

1.1 Multi-Precision structure from Multi–Precision Math [11] 8
2.1 Simple vector element addition using CUDA. [31] 13
2.2 Addition computational kernel in Apple Metal. [39] 16
3.1 Pollards Rho factorization function. 21
3.2 ECM factorization function. 22
3.3 OpenMP based factorization function. 23
3.4 Optimization flags used for OpenMP variants. 25
4.1 MAP Library dynamic sized integer structure. 32
4.2 Prohibited casting in MSL. 33
4.3 Redefined MAP library structure for fixed-size integers. 34
4.4 MAP Library GPU multiplication signature. 35
4.5 MAP Library integer holder class interface. 39
4.6 Example Metal computational kernel MAP library argument passing. 40
4.7 Example CUDA kernel MAP library argument passing. 40
5.1 High-level Metal factorization class creation and usage. 45
5.2 Pseudo-code of the implemented ECM factorization logic. 47
5.3 Pseudo-code of the implemented Pollard’s Rho factorization logic. 48
6.1 Comparison of MAP library CUDA and Metal variant function declarations. . . 58
6.2 CUDA Factorization class creation and usage. 59
6.3 Compilation flags used for CUDA variants. 60

List of Algorithms

1 Right-to-left binary method for point multiplication 6
2 Pollard’s Rho . 7
3 Low-level addition . 80
4 Low-level subtraction . 81

vii

viii List of Algorithms

5 Binary GCD . 82
6 Binary Extended GCD Algorithm . 83
7 Multiplication by two . 84
8 Division by two . 84

I wish to express my thanks and gratitude to doc. Ing. Ivan Šimeček,
Ph.D., for the provided guidance and insight. In addition, I wish
to voice my gratefulness for the support I received from my family
during the time of writing of this thesis.

ix

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on January 8, 2024 .

x

Abstract

This thesis attempts to enable factorization using Pollard’s Rho and Lesntras Elliptic curve
factorization algorithms on the GPU. It goes through initial sequential CPU implementation, its
adoption to a multi-threaded solution using OpenMP, and GPU-based CUDA and Apple Metal
API implementations. A new multi-platform arbitrary-precision integer arithmetic library was
created for Metal and CUDA to support the end goal of arbitrary precision factorization on the
GPU. The thesis evaluates the performance differences across the implemented solutions and
the differences between CPU, CUDA, and Metal variants. It also provides a comparison with
existing noteworthy solutions.

Keywords Pollard’s Rho, ECM, Factorization, Parallel factorization, arbitrary-precision arith-
metic, multi-precision arithmetic, GPGPU, Apple Metal, CUDA, OpenMP, GMP

Abstrakt

Tato práce se snaž́ı umožnit faktorizaci pomoćı Pollardova Rho a Lesntrova algoritmu pro faktor-
izaci pomoćı eliptických křivek na grafických procesorech s libovolnou přesnost́ı. Práce popisuje
vytvořené implementace od počátečńı sekvenčńı verze, přes jej́ı adaptaci na v́ıcevláknové řešeńı
pomoćı OpenMP, a nakonec po implementace pro GPU s využit́ım CUDA a Apple Metal API.
Pro dosažeńı faktorizace s libovolnou přesnost́ı na GPU je vytvořena nová multiplatformńı
knihovna pro aritmetiku celých č́ısel pro Metal a CUDA API. Práce zhodnocuje a komentuje
naměřené výkonnostńı rozd́ıly mezi implementovanými řešeńımi a rozd́ıly mezi variantami pro
CPU, CUDA a Metal API. Práce poskytuje také srovnáńı s existuj́ıćımi významnými řešeńımi
ve světě celoč́ıselné faktorizace.

Kĺıčová slova Pollard’s Rho, ECM, Faktorizace, paralelńı factorization, výpočty s libovolnou
přesnost́ı, GPGPU, Apple Metal, CUDA, OpenMP, GMP

xi

Acronyms

API Application Programming Interface
CPU Central processing unit

CUDA Compute Unified Device Architecture
ECM Elliptic-curve factorization method
ETE Extended Twisted Edwards

GPGPU General-purpose computing on the GPU
GPU Graphics processing unit

xii

Introduction

This thesis explores the application of general-purpose computing on the GPU in Apple Metal
and NVIDIA CUDA technologies for arbitrary precision integer factorization. One possible
application of integer factorization is finding prime factors of large composite numbers, as
some cryptosystems, such as RSA, rely on the difficulty of the factorization problem to remain
secure. [1] This thesis focuses on two algorithms, Pollard’s Rho and Lenstras Elliptic curve
factorization also known as ECM, it walks through selected existing solutions and introduces
numerous implementations in various forms, starting with sequential implementations, those
are then extended to a parallelized multi-threaded solution, finally, the main focus of this
thesis, new implementations are considered for Apple Metal and CUDA APIs, which attempt
to leverage GPUs for majority of the required computations. To achieve this, a new arbitrary-
precision library is introduced, explicitly targeting Apple Metal and CUDA, enabling various
use cases. Finally, the new implementations are compared to several noteworthy existing
solutions in the factorization domain.

1

2 Introduction

Chapter 1

Algorithms

This thesis focuses on two algorithms for integer factorization. One is Pollard’s Rho algo-
rithm, and the second is Lenstra’s Elliptic Curve factorization. In this chapter, the algorithms
used are briefly introduced and described. The chapter also gives an introduction to existing
noteworthy implementations of these algorithms, as well as some more sophisticated factor-
ization solutions. Lastly, the chapter discusses the problematic of enabling arbitrary-precision
integer arithmetic.

1.1 Lenstra Elliptic curve factorization
This section describes H. W. Lenstra’s algorithm for factorization of positive numbers based on
Elliptic curves as described in Factoring integers with elliptic curves [2]. The algorithm is also
frequently referred to as the elliptic-curve factorization method or shortly ECM, and the names
will be used interchangeably throughout the text. Naturally, there is a multitude of algorithms for
factorization, and ECM appears widely in existing solutions or libraries, making it an interesting
choice. While ECM is relevant amongst factorization algorithms, different methods, such as the
numbers field sieve, can generally be considered more efficient. [3] Despite this, ECM is widely
used for factorization cases with composite integers for which no information about the prime
factors’ sizes is available. Additionally, ECM can be found within a cofactoring step of the
number field sieve. [3] First, some of the core concepts, such as the description of elliptic curves
and the elliptic curve groups, are discussed, followed by the description of the algorithm.

1.1.1 Elliptic curves
An elliptic curve E in the Weierstrass form over a field K is given as y2 = x3 + ax + b together
with a point at infinity O where 4a3 + 27b2 ̸= 0. [4] Or as a set:

{(x, y) ∈ R2 : y2 = x3 + ax + b} ∪ {O}

While various curve forms exist, such as Montgomery, Edwards, or twisted Edwards, the im-
plementations in this thesis are limited to the Weierstrass and twisted Edwards forms. The
usage of different forms of elliptic curves can be seen through various existing implementations
of the ECM algorithm. To provide some examples, the GMP-ECM implementation of ECM relies
on Montgomery curves, as does the SymPy library, which take the form of by2 = x3 + ax2 + x.
[3] Another prominent form is Edwards curves, which take the form of x2 + y2 = 1 + dx2y2

with d(d − 1) ̸= 0. [3] One notable implementation utilizing Edwards curves is EECM-MPFQ
appearing in [5]. Twisted Edwards curves as introduced in Twisted Edwards Curves [6] generalize

3

4 Algorithms

Edwards curves with the form of ax2 +y2 = 1+dx2y2 with ad(a−d) ̸= 0. This form gained some
prominence due to the favorable properties of the arithmetic in the elliptic curve group. [3] An
Edwards curve is a twisted Edwards curve with a = −1. [6] Specifically, the Twisted Edwards
form where a = −1 is particularly interesting as it offers fast scalar multiplication. [3] Twisted
Edwards curves with a = −1 form can be seen in the ecmongpu solution which will be discussed
in later sections.

1.1.2 Elliptic curve groups
An abelian group can be formed over the set of points E(K) with O as identity and an operation
of point addition where individual points P, Q ∈ E(K) on the elliptic curve are added R = P +Q.
[4] The geometric visualization of the addition and doubling of points on elliptic curves can be
observed in figure 1.1. This operation can be seen as addition when P and Q are distinct or
doubling when P = Q.

Figure 1.1 Point addition and doubling on elliptic curves as presented in Guide to elliptic curve
cryptography [4]

Considering elliptic curves of the Weierstrass form, an abelian group (G, +) with a set of
points G on an elliptic curve E over a field K in affine coordinates can be defined with +
operation. [4] The + binary operation over P = (x1, y1) and Q = (x2, y2) points on the curve
can be defined as R = (x3, y3) = P + Q with:

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1)

and λ being defined separately for P ̸= Q and P = Q. [7] For the first case, where P ̸= Q, λ is
defined as:

λ = (y2 − y1) ∗ (x2 − x1)−1

and for the case of P = Q, λ is:

λ = (3x2 + a) ∗ (2y1)−1

In order to compute the inverses shown in computations of λ, the extended Euclidean algorithm
can be used. The addition and doubling, as defined above, require computing inversions, which
is a computationally expansive operation. In such cases, it can be favorable for implementation
performance to change how the points are represented, such as by utilizing projective coordinates.
[4] In order to compute scalar multiplication kP faster, a different point representations as
described in Twisted Edwards curves revisited [8] can be used. First, an auxiliary coordinate

Lenstra Elliptic curve factorization 5

t = xy to point (x, y) on the ax2 + y2 = 1 + dx2y2 curve is introduced to represent the point in
extended affine coordinates. Then, to pass to a projective representation, the mapping (x, y, t) 7→
(x : y : t : 1) is used. This representation is referred to as extended twisted Edwards coordinates,
with (0 : 1 : 0 : 1) as the identity element. [8] Interestingly, this representation can be seen in
the ecmongpu GPU implementation for CUDA in Revisiting ECM on GPUs. [9]

Coming back to the elliptic curve forms, specifically the twisted Edwards curves, the affine
addition operation + on points P and Q on an elliptic curve E over a field K with odd charac-
teristics can be defined as:

R = (x3, y3) = P + Q =
(

x1y2 + y1x2

1 + dx1y1x2y2
,

y1y2 − ax1x2

1− dx1y1x2y2

)
with (0, 1) neutral element. [6] This formula is also applicable for point doubling when P = Q.
The formula is complete (has no exceptional cases) if d is not square in K and a is square in
K. [6] For twisted Edwards curves with a = −1 the addition operation P + Q = (X1 : Y1 : T1 :
Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3) = R using extended twisted Edwards coordinates
is defined by Twisted Edwards curves revisited [8] as:

A = (Y1 −X1) ∗ (Y2 + X2) B = (Y1 + X1) ∗ (Y2 −X2)
C = (2Z1 ∗ T2) D = 2T1 ∗ Z2

E = D + C F = B −A

G = B + A H = D − C

X3 = E ∗ F Y3 = G ∗H

T3 = E ∗H Z3 = F ∗G

While doubling for extended twisted Edwards coordinates is defined as:

A = X2
1 B = Y 2

1 C = 2Z2
1 D = aA

E = (X1 + Y1)2 −A−B G = D + B F = G− C H = D −B

X3 = E ∗ F Y3 = G ∗H T3 = E ∗H Z3 = F ∗G

Further, the mentioned article discusses further advanced techniques, such as mixing different
coordinate types during the computation and parallelization for computational speedup. These
approaches are, however, not utilized in this thesis.

1.1.3 Scalar multiplication on Elliptic curves
One of the critical operations for Lenstra’s ECM algorithm and elliptic-curve cryptography is
the scalar multiplication or point multiplication, kP with k integer and P a point on an elliptic
curve E over a field K. [4] One of the methods for computing point multiplication, and the one
used in this thesis is the right-to-left binary method as shown in algorithm 1. Given k in binary
representation, each bit is processed, and in each iteration, the point is added and doubled for
bits set to 1, or only doubled for 0 bits. This operation represents a basic form of repeated
square-and-multiply method for addition. [4] While additional methods exist, such as Window,
Montgomery, or Fixed point and can even provide better run time [4], those are not making an
appearance in this thesis.

6 Algorithms

Algorithm 1 Right-to-left binary method for point multiplication
Require: k = (kt, ..., k1, k0)2, P ∈ E(Kq).
Ensure: kP .

1: Q← O.
2: for i = 0 up to kt do
3: if ki = 1 then
4: Q← Q + P .
5: end if
6: P ← 2P .
7: end for
8: return Q.

1.1.4 Lenstra’s elliptic curve algorithm
Lenstra’s ECM is a general-purpose factoring algorithm on elliptic curves defined modulo factored
composite number. The algorithm operates over a group of points on the elliptic curve. [9] The
original formulation of the ECM algorithm as introduced by H. W. Lenstra Jr. in Factoring
integers with elliptic curves [2] used Weierstrass curves. Today, the usage is more varied, and
different curve forms are common, such as Montgomery, Edwards curves, or twisted Edwards
curves, as mentioned in previous sections. [3] The choice of elliptic curves plays a prominent role
in the algorithm and is a widely studied subject.

The ability of the ECM algorithm to find a factor depends on the smoothness of the elliptic
curve order, with different random elliptic curves likely resulting in different group orders. Thus,
running multiple ECM instances with random elliptic curves, with random orders, in parallel over
the same factored number increases the probability of finding a factor. [9] The ECM algorithm
is considered ”embarrassingly parallel” with no dependence between attempted trials. For a
number of trials much greater than the number of available processors P , linear speedup is
possible. However, achieving this in practice may be difficult due to memory constraints. [1]
The ECM algorithm consists of two stages, with the second one being optional. [9] Only the first
stage is considered in this thesis, and it goes as follows: a random elliptic curve E over a field
Zn is selected with n being the composite number with factor p, as well as a random point P on
the curve E. The value kP is computed, with k being a large scalar. The sought-after result of
the kP multiplication is the identity element O on the elliptic curve modulo p but not modulo
n, with p being unknown, all computation on the curve are being performed over Zn. With k
as a multiple of curve order kP is equal to O = (0 : 1 : 0) modulo p but not modulo n. In such
case, the x and z coordinated are multiples of p, and thus, computing gcd(z, n) should reveal the
sought-after factor of n. As for the value of the large scalar k, it is usually picked as a product of
small powers of primes ranging from 1 up to an upper boundary B, giving k = lcm(1, 2, 3, ...B).
[9]

A notable mention about the ECM algorithm is its similarity to Pollard’s p-1 algorithm,
which, in principle, can be regarded as an attempt to find identity in a group. [1] In Pollard’s
algorithm we can choose k as k = lcm(1, 2, 3, ..., K), K ≤

√
n and 1 < a < n. With this, the value

of gcd(ak − 1, n) can be computed. If p − 1|k, the value of p will be found. If the computation
fails, K can be increased. The problematic aspect of the algorithm is if n does not have a factor
p of where p− 1 would be a product of small primes to small powers. This will result in a need
to raise the value of K, considerably affecting the algorithm. [7] In ECM, instead of raising to
the power of k, we can compute kP of a point P ∈ E(Zp) and if the order of the curve divides
k, then kP = O and a factor will be found. As was mentioned, the order can vary depending on
the randomly selected curve. This means that if this fails, a new random curve can be picked,
likely resulting in a different order. [7]

Pollard’s Rho 7

1.2 Pollard’s Rho
Pollard’s Rho algorithm, as originally described by John. M. Pollard in A Monte Carlo Method
For Factorization [10] is a factorization method that relies on probabilistic ideas to find the factors
of an integer N . [10] The algorithm generates a sequence of values by applying a pseudo-random
function f(x) to the initial x0, that is:

xi+1 = f(xi) mod N

Where x0 is chosen randomly. The function f(x) is typically chosen to be a polynomial, such as

f(x) = x2 + a

. Where a ̸= 0 is a constant chosen randomly. From this sequence, the value of:

gcd(|x2i − xi|, N)

is computed for each i = 1, 2, ..., and if the result is nontrivial GCD, this result is the factor of
N, and the computation is stopped. [1] The above explanation is provided in the pseudo-code 2
for better understanding. One approach to the p of the algorithm is to try a number of different
pseudo-random sequences as generated by different polynomials f . [1] For P processors with P
different parallel sequences, the speedup is θ(P 1/2). [1]

Algorithm 2 Pollard’s Rho
Require: Composite integer n
Ensure: Factor of n or −1 for failure

1: xi ← 2, xj ← 2
2: while d = 1 do
3: xi ← f(xi) mod n
4: xj ← f(f(xj)) mod n
5: d← gcd(|xi − xj |, n)
6: end while
7: if d = n then
8: return -1 ▷ Failed to find a factor
9: else

10: return d
11: end if

1.3 Arbitrary precision integers
This section briefly discusses the problematic of working with arbitrary precision or multi-
precision integers as occasionally referred to, such as in Multi–Precision Math [11]. In most
cases, standard computations use fixed precision integers for calculations. These use a constant
amount of memory, frequently 16, 32, or 64 bits per number that needs to be stored. This,
naturally, limits the size of the number that can be stored. However, some computations require
working with larger numbers, which may not be possible to store within these fixed sizes. To cir-
cumvent those obstacles, it is possible to implement custom data formats with variable amounts of
memory for storage. Through this thesis, those will be referred to as multi-precision or arbitrary
precision integers. To enable factorization of multi-precision integers, a proper representation of
the numbers needs to be defined and the necessary arithmetic operations implemented. Common
representations usually store individual parts of the number, frequently referred to as limbs, as

8 Algorithms

a sequence of fixed-size integers, as does the representation chosen in this thesis, which will be
discussed in detail in later chapters.

While different implementations vary in how the arbitrary-precision integers are represented,
the representations need to contain the same information. This is the sign of the integer, the
individual limbs from which the integer is composed, the number of such limbs, and, in the case
of a variable-sized integer, the number of available, allocated limbs. To provide an example, in
Multi–Precision Math [11] the following struct is used to represent the integers:

Code listing 1.1 Multi-Precision structure from Multi–Precision Math [11]
typedef struct {

int used, alloc, sign;
mp_digit *dp;

} mp_int;

For comparison, the widespread GMP library uses a slightly different representation. The
GMP representation is more compact, as it uses a signed size variable, which stores the number
of used limbs either as a positive or negative number, which also indicates the overall sign. This
removes the need for a separate variable, as shown in the example above. For GMP, as was
the case in the example, the limbs are accessed through a pointer to an array of limbs stored
in a “little-endian” fashion. [12] With the representation settled, the focus has to shift toward
algorithms that support multi-precision integer arithmetic. Since the number of algorithms to
cover even basic functionality is very large, only a very limited section is shown in the Appendix.
The mentioned algorithms are derived from the Multi–Precision Math [11] and Handbook of
Applied Cryptography [13] sources, which describe a wide set of algorithms for multi-precision
integer operations. These sources have been used to implement the MAP library mentioned in
later chapters.

1.4 The GNU Multiple-Precision Arithmetic Library and
LibTomMath

As briefly mentioned in the previous chapter, various formats and algorithms exist to enable
arbitrary precision computations. This section presents the GMP and LibTomMath libraries,
which provide this functionality. The libraries provide all the necessary functionality required
to implement the factorization algorithms in arbitrary precision, ranging from simple arithmetic
operations such as addition up to more complex algorithms such as computing modular inverse.
While only the GMP library was used in the CPU-based implementations, the LibTomMath
library served as an excellent resource for study and later implementation of a similar arbitrary-
precision Metal and CUDA library. LibTomMath saw its first version in 2002, and at the time
of writing of this thesis, it has 39 contributors on its GitHub page. [14] The library provides a
variety of operations, from basic operations like addition, subtraction, division, and multiplication
to more complex operations such as modular reductions or GCD. Some of the operations are
supported by a variety of implemented algorithms.

The GMP library was first released in 1991 and was continually developed with a significant
list of contributors, which are listed under release-version on the library’s home page [15]. GMP
and LibTomMath are well-established libraries with years of development by a larger group of
people, and it is improbable that any solution implemented in this thesis would outperform these
libraries, either in functionality or optimization with the implementation of a similar library with
specific requirements being only a portion of this thesis. This is why, whenever possible, the GMP
library is utilized to leverage all the benefits mentioned and the years of hard work behind the
library. The library has capabilities beyond multi-precision integer arithmetic (which is supported
by about 150 functions in this category), providing functionality for rational and floating-point
arithmetic. As was the case for LibTomMath, GMP provides a variety of algorithms to support

Existing implementations and approaches 9

specific operations. It should be noted that a variety of algorithms for specific operations exist. To
provide an example, the GMP library utilizes seven multiplication algorithms such as Karatsuba,
Basecase, Toom-3, Toom-4 and others to produce a result. The library decides which algorithm
to use for the computations based on defined thresholds, aiming to provide optimal performance
for the considered integer inputs. [16] This behavior is not limited to multiplication, and similar
behavior can be seen in additional crucial operations such as computation of division, GCD,
or extended GCD, which uses Binary GCD algorithm for small inputs, followed by Lehmer’s
algorithm up to a specific threshold and HGCD for inputs above. [16]

1.5 Existing implementations and approaches
This section discusses selected existing solutions, projects, and implementations of the integer
factorization problem and published papers discussing the topic. Four notable existing solutions
will be covered, and three of them will reappear in later chapters for comparison with the
implementation created in this thesis. The mentioned solutions cover a very small subset of
available implementations, adaptations, and publications. They have been chosen either because
of their prevalence or closeness to the approach chosen in this thesis.

1.5.1 Revisiting ECM on GPUs
The first discussed solution appears in the Revisiting ECM on GPUs paper [9]. This paper
uses and implements a two-stage Elliptic Curve method with a = −1 twisted Edwards curves
for CUDA-enabled GPUs to accelerate the computation. This implementation is close to the
considered approach selected for this thesis, making this implementation highly desirable for
comparison. The publication presents a highly optimized two-stage Lenstra’s ECM algorithm for
GPUs referred to as ecmongpu (although the second stage can be disabled). The implementation
relies on 32-bit unsigned limbs (Configuration also offers a 64-bit option during compile-time)
to represent the integers. The solution relies on fixed-size multi-precision integers, with the
length being defined at compile time. The benefit of this is that it allows loop-unrolling by the
compiler and additional possible optimizations. [9] Further, the implementation relies on PTX
code (Parallel Thread Execution - low-level parallel thread execution virtual machine and ISA)
to deliver highly optimized and performant multi-precision arithmetic. Another remark is that
the implementation relies on the GMP library for CPU-based computations.

1.5.2 PARI and GMP-ECM
The following discussed solutions can be accessed and interfaced through SageMath, which pro-
vides a convenient high-level interface. Sage provides functions for factorization, which utilize
PARI and GMP-ECM solutions. PARI is an open-source algebra system for fast number theory
computations, including factorization. PARI is available as a C library, through an interactive
shell or, as mentioned earlier, through an interface with SageMath. PARI contains a sophis-
ticated factoring engine, which includes Pollard’s Rho and ECM utilizing Montgomery curves.
Among those, additional methods are present, such as Square form factorization, multiple Poly-
nomial Quadratic Sieve, and a search for pure powers. The documentation does not clearly state
how, but a combination of those algorithms is utilized to acquire the factors, providing a fast,
highly performant solution for factorization. [17]

GMP-ECM is a highly optimized implementation of Lenstra’s Elliptic curves algorithm with
two stages. The solution utilizes curves in Montgomery form, and unsurprisingly, the arithmetic
in the library is supported by the GMP library. GMP-ECM also has the capability to run the first
stage of the algorithm on CUDA GPUs. The GPU implementation attempts to fit the maximum
possible number of curves to fully utilize the GPU. The GPU code relies on the CGBN: CUDA

10 Algorithms

Accelerated Multiple Precision Arithmetic library and is limited to compile-time defined fixed
size of the input ranging from 256 to 32,768 bits. [18] The mentioned CGBN library provides
the capability of highly-optimized multiple precision integer arithmetic in CUDA and utilizes
cooperative group of threads that work together to represent and process operations on each big
number. [19]

1.5.3 Symbolic computing in Python
Finally, an easily accessible solution is the Symbolic computing in Python library, or simply
SymPy. [20] As the name suggests, it is a Python library focusing on symbolic mathematics.
The library offers various functionality ranging from geometry, calculus, cryptography, and statis-
tics to factorization, for which it implements both Pollard’s Rho and Lenstra’s Elliptic curves
algorithms. The ECM in SymPy considers elliptic curves in Montgomery form, is implemented
in two stages, and utilizes trial division for smaller factors. [21] While the library is written in
Python and with different principles in mind over the implementation in this thesis, the fact
that SymPy is a well-known and widespread library with robust implementation indicates that
it could provide a good baseline. The library can be utilized sequentially, or a similar parallelism
over the library functions can be created for future comparison.

Chapter 2

Parallelization

This chapter focuses on the technologies, frameworks, and libraries allowing the parallelization
of the previously introduced algorithms within this thesis. The chapter starts with a brief
introduction to OpenMP for CPU parallelization. Later, heavier emphasis is put on describing
the principles and fundamentals of Metal and CUDA APIs for parallel GPU computations.

2.1 OpenMP Library

The OpenMP Library, managed by the OpenMP Architecture Review Board consortium, pro-
vides an API that enables shared-memory multiprocessing for a variety of languages, platforms,
and operating systems. [22] It utilizes a fork-join parallel execution model, with tasks being
executed implicitly or explicitly as given by specified OpenMP constructs and directives. [23]
The library provides various constructs for parallel computations. In this thesis, the key utilized
constructs and directives are parallel for, tasks, and parallel regions. For each of those, a brief
overview is given below:

parallel construct - when a parallel construct is encountered, it creates a number of threads
that execute the code defined within the region. [23]

parallel for work sharing-loop construct - specifies that an iteration of one or more loops
should be executed by threads in parallel. [23]

task construct - A task generating construct. When encountered, an explicit task is created
from the associated block of code, and any thread may be assigned the task to execute. [23]
A related construct is taskgroup, which specifies that completion of all child tasks and their
descendants should be awaited. [23]

In addition to these constructs, OpenMP offers easy-to-use critical sections and atomic op-
erations. This includes operations such as atomic read and atomic write, which state that
a specified storage location should be written to or read atomically. [23] While other atomic
constructs are available within the library, they are not utilized within this thesis. The last men-
tioned construct is critical, the usage of which restricts the execution within the associated
block of code to a single thread at a time. [23] The used constructs within this thesis keep to a
small subset of capabilities and functionality offered by the OpenMP library.

11

12 Parallelization

2.2 General Purpose computing on the GPU

General-purpose computing on the GPU (GPGPU) refers to the practice of utilizing the hard-
ware capabilities provided by GPUs for solving general computational problems. While using
GPU hardware specificity may result in performance benefits for certain applications, it requires
adjusting the code to fit the GPU computational environment better. It should also be noted
that not all problems necessarily benefit from this adaptation. They may encounter various
bottlenecks or do not have to be easily adjustable for GPUs. [24]

In order to adapt and write code for GPGPU, an API that will enable access to the GPU
is required. This thesis is limited to CUDA and Apple Metal, which, when considering newer
hardware, support disjunctive hardware. CUDA is a widespread and heavily utilized API for
GPGPU, appearing in various applications. One such example could be the TensorFlow library
[25], or, closer to the topic of this thesis, the GMP-ECM (optional stage 1) or ecmongpu ECM
implementations. In contrast, Apple Metal seems to be significantly less common, both generally
from a GPGPU perspective or from a factorization perspective, with no published ECM imple-
mentation on Metal. This may not be entirely surprising as Apple Metal specifically targets
GPUs available mainly in Apple devices such as Mac computers or mobile and tablet devices
[26], which will likely not provide the same scalability as CUDA-enabled datacenters with GPUs,
making it a less appealing technology to target. Even with that, the power efficiency and per-
formance of newer Apple M1 and M2 chips, alongside their unified memory, could make Metal
more viable as a GPGPU API in the future, at least for a specific portion of applications.

2.2.1 Arbitrary precision arithmetic on GPU
The GMP and LibTomMath implementations are intended to run on the CPU and cannot be
easily used for GPGPU computations. However, several other libraries exist for implementing ar-
bitrary precision arithmetic on GPUs using CUDA, such as the previously mentioned cooperative
CUDA Accelerated Multiple Precision Arithmetic library [19] supporting integer arithmetic and
promising significant speedup over GMP, or CAMPARY - Cuda Multiple Precision Arithmetic
Library [19] and gpuprec - Extended-Precision Libraries on GPUs library [27] which supports
mostly basic operations for real numbers. As well as implementations that were implemented
within theses focused on multiple-precision GPU computations, as is the case for Langer [28] and
Petrouš [29], which supports basic integer arithmetic but seem to lack support for more complex
operations such as GCD or modular reduction, those implementations seem to be intended to
parallelize the arithmetic operations. As a final comment, the ecmongpu library seems to rely
on its own implementation of multi-precision arithmetic. At the time of writing of this thesis,
no similar widespread implementation or library has been available for Apple Metal.

2.2.2 GPU Flow-Control and divergence
Given the highly parallel architecture of GPU hardware, writing code targeting GPUs requires
caution for flow-control of the code as diverging code execution paths, such as which occur during
branching of the code, result in divergence and may significantly hurt performance. [30] This
occurs when a SIMD (Single instruction, multiple data) group executes code where some threads
take one path while others take a different one, with both CUDA and Metal applications being
affected, with the impact being heavily dependent on the specific hardware. As a note, NVIDIA
uses the SIMT (Single instruction, multiple threads) terminology as a less restrictive definition,
with the distinction of SIMT instructions specifying the execution and branching behavior of a
single thread. [31] The way divergence is handled by the hardware and the performance problems
it may introduce is unsurprisingly architecture-dependent. One example of this is the NVIDIA
Volta architecture, which supports independent thread scheduling. [32] Volta independent thread

NVIDIA CUDA 13

scheduling enables interleaved execution of statements from divergent branches. [33]
The divergence phenomenon is also present in Apple Metal applications, where so-called

SIMD-groups execute the same code, where each branch needs to be executed by all threads,
resulting in execution time being a sum of both branches. [34] The inefficiency here is that each
core within the group executes all paths for each branch, resulting in reduced performance as
all branches need to be executed. [30] As was mentioned, one of the sources is branching in the
code. GPU code should minimize the amount of branching for better performance. [30]

2.3 NVIDIA CUDA
This section discusses the NVIDIA CUDA API’s specificity, features, and general principles. The
section starts with how computations are organized, scheduled, and later executed on the GPU
using CUDA.

2.3.1 CUDA Kernels
CUDA allows the defining of C++ functions called kernels. Kernels are defined using global
specifier and called with a specific execution configuration syntax that defines how and by how
many GPU threads the function should be executed. [31] A simple example of a kernel, as
provided by the CUDA programming guide by NVIDIA, is shown below. [31] In the example,
each thread adds elements from A and B and stores the results in C.

Code listing 2.1 Simple vector element addition using CUDA. [31]
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);
...

}

2.3.2 Threads, blocks, and grids
A notable difference between CPU and GPU threads is that GPU threads are meant to be
executed in hundreds or thousands in parallel, compensating for the slower single-thread per-
formance and allowing for greater throughput over CPU threads. [31] In CUDA, threads are
organized into one, two, or three-dimensional blocks. These blocks form either one, two, or
three-dimensional compositions referred to as a grid. The hierarchy of threads, blocks, and grids
can be seen in the 2.1 figure. Figure 2.2 provides a more visual illustration of both the structure
and execution of CUDA grids. Additionally, starting with Compute capability 9.0, CUDA allows
usage of Thread Block Clusters, which guarantees that blocks within the cluster are co-scheduled
on the GPU Processing Cluster. This concept is not leveraged in this thesis but is mentioned to
provide context for the figures used. [31]

NVIDIA GPUs have a collection of Streaming Multiprocessors. When a CUDA kernel is
invoked, individual blocks get distributed amongst the multiprocessors with free capacity, with

14 Parallelization

Figure 2.1 CUDA Memory Hierarchy [31]

Figure 2.2 CUDA Grid execution [31]

multiprocessors being built to execute large quantities of threads concurrently. [31] The threads
within a thread block are executed in parallel on one of the multiprocessors, with multiple threads
being able to execute in parallel on one multiprocessor. [31] Multiprocessors create, schedule,
manage, and execute threads in groups of 32, referred to as warps. Within a warp, threads start

NVIDIA CUDA 15

in the same position but maintain a separate set of registers and instruction counters, which
allows them to branch independently on each other. [31] Multiprocessors split thread blocks into
warps of consecutive thread IDs, which get scheduled and executed. The execution is performed
one instruction at a time. If threads diverge and require different instructions to be executed,
each branch is executed within a warp, with threads that are on a different path being disabled.
[31] Before NVIDIA Volta architecture, a single program counter was used across a warp, with
masks for active threads. This could cause issues with deadlocks as divergent regions could
not exchange signals or data. [31] With Volta, Independent Thread Scheduling is introduced,
allowing full concurrency between threads and enabling better use of execution resources.

2.3.3 Device and Host memory transfers
The CUDA programming model assumes that the CUDA computation happens on a device
that is physically separate from the host running the executing program. [31] An additional
assumption is that the host and the device have separate memory, and each is referred to as
host and device memory. [31] For the host and device to work on the same data, the data must
be copied from host to device or from device to host. This is a potentially costly operation
associated with a performance penalty. Therefore, minimizing data transfers is beneficial for
performance. [35]

The CUDA programming model has a concept of unified memory. It defines a managed mem-
ory space that appears coherent to all processors with a common address space. The utilization
of this mechanism allows for avoiding explicitly copying memory and greatly simplifies develop-
ment. [31] In the background, the data is still copied between the host and device memory, but
the code is simpler and more maintainable. [31]

2.3.4 CUDA Memory Hierarchy
A crucial concept for performance is the CUDA memory hierarchy. Data may be stored in various
distinct memory spaces with varying impact on performance. The first such space is the Global
memory, which is a globally accessible persistent memory located in device memory. It has high
latency, low bandwidth, and is cached. Local memory is only accessible to specific threads and
is automatically used in specific cases, such as arrays not accessed with constant quantities and
large structures or arrays taking up significant space, or any variable if the associated kernel
needs more registers than are available (register spilling into higher latency memory). Local
memory resides in device memory and suffers from the same latency and bandwidth issues as
global memory, and it is cached, too. Next is the shared memory, which offers a much higher
bandwidth and lower latency over local and global memory, can be accessed by multiple threads
within a thread block, and lacks cache. Constant memory resides in device memory and is
cached with a constant cache. Texture memory resides in device memory and is cached with
texture cache. Register are thread-specific, fast on-chip memory matching the lifespan of a warp.
Memory usage also has an impact on how many blocks and warps for a specific kernel can reside
on a single multiprocessor. This depends on the amount of register and shared memory the
kernel needs and the amount available on the multiprocessor. [31] The memory hierarchy is
further illustrated in figure 2.1.

2.3.5 CUDA Streams
The last CUDA concept that will be discussed is that of CUDA Streams. Streams allow concur-
rent execution of CUDA operations, which include kernel but also memory copies between device
and host. Stream is a sequence of in-order operations that execute on the GPU. The benefit of

16 Parallelization

streams is that they permit running various CUDA operations concurrently and in an interleaved
fashion. Without explicit specification, CUDA uses a Default stream for all operations [36]

2.4 Apple Metal
This section introduces the Apple Metal API and some of its features. The Metal API is a
framework that provides applications with direct access to the host’s graphics processing unit
device. Metal provides low-level hardware access, efficient memory management, and a flexible
compute language, which enables developers to create optimized applications that can run on a
wide range of devices. [37] Note that the hardware supported by Metal is quite varied, ranging
from mobile devices to older Mac devices with AMD or NVIDIA GPUs or newer devices with
Apple Silicon chips. This thesis targets a specific set of newer devices and Metal versions for the
computations. This will be specified in greater detail in the following sections.

2.4.1 Metal Shading Language
The Metal Shading Language is used to define work to be scheduled using Metal. The Metal
Shading Language, or simply MSL, is a C++14-based language with additional extensions and
restrictions, which allows writing graphic and data-parallel compute code. To give a simple ex-
ample, among the restrictions is a lack of goto statements and dynamic cast operator. The
Metal Shading language works with the Metal framework, which handles the execution and com-
pilation of Metal programs. Metal leverages Clang and LLVM, allowing it to deliver optimized
GPU code. Metal has its own standard library, which is used instead of the C++ standard
library. In Metal, for historical reasons, the code running on the GPU is referred to as a shader.
For the Metal API, those are specified in the Metal Shading Language. [38] The same example
of individual array element addition as was shown for CUDA is given below in MSL code as
provided by the official Metal documentation. [39]

Code listing 2.2 Addition computational kernel in Apple Metal. [39]
kernel void add_arrays(device const float* inA,

device const float* inB,
device float* result,
uint index [[thread_position_in_grid]])

{
// Instead of a for-loop, a collection of threads, each of which
// calls this function is used.
result[index] = inA[index] + inB[index];

}

In the example, a public GPU function is declared. The function has a void return type and
is of a kernel type, making it a computational function or, alternatively, a compute kernel. [39]
Compute functions are functions performing computations in parallel using a grid of threads.
[39] Note the similarity with the kernel example provided in the CUDA section. One noteworthy
difference is that in Metal, the thread index, or ID, is an explicit parameter, while in CUDA, it
is not.

2.4.2 Metal-cpp
Metal-cpp is an interface enabling development for Metal in C++. This is an interface with
direct mapping to Objective-C elements and provides no measurable overhead for the application
[40]. Metal-cpp was used for the development of the Metal implementation in this thesis.

Apple Metal 17

2.4.3 Metal Data Types
The Metal Shading Language supports a number of data types, with the most relevant for this
thesis being signed and unsigned integers. MSL supports 8-bit, 16-bit, 32-bit, and 64-bit signed
two’s complement and unsigned integers. [38] Larger types are not natively supported. The
chosen data type can significantly affect shader performance. Apple GPUs are optimized for
16-bit data types, with larger data types consuming more registers (potentially causing register
spillover). Using 16-bit data types can increase occupancy, allowing more GPU threads to run
at the same time. As an additional benefit, 16-bit data types, in most cases, utilize faster 16-bit
arithmetic instructions. [41] Registers are allocated to kernels in register blocks. This means that
when attempting to reduce the usage, the reduction needs to be block-sized to see improvements.
Large arrays or structures can consume a large number of registers. [42]

2.4.4 Address spaces
As could be seen in the function example in the previous section, the pointer parameters are
preceded by the device keyword. This keyword refers to the address space, which has to be
specified for all pointers and references in MSL. The Metal Shading language contains multiple
disjoint address spaces for memory. [39] The address space attribute declares in which region of
the memory the objects are allocated. [39] The following list shows a selection of address spaces
as defined in the MSL Specification [38]:

device - Read-write memory allocated from the device memory pool.

constant - Read-only device memory, as device memory is allocated from the device memory
pool.

thread - Per-thread memory, not visible to other threads. Variables declared in kernel func-
tions are allocated in this address space.

threadgroup - Shared memory between concurrently running threads in a thread group. On
most devices, threadgroup memory has performance benefits over device.

Additional address spaces are threadgroup imageblock, ray data, and object data, but
those are not discussed in this thesis. The MSL language specification makes no clear statements
about the exact location of the data or the presence of caches for specific address spaces. This
is likely because Metal supports a variety of devices and architectures for which the answer may
vary.

2.4.5 Thread grids and Thread groups
Submitted kernel functions execute over N-dimensional grids of threads. Metal Shading Language
supports grid dimensions of one up to three, where an instance of a kernel function is executed for
each point in the grid and referred to as a thread. [38] Threads are organized into threadgroups
and executed together, and each thread can be identified by its position in the grid. [34] Metal
dispatches threadgroups to different processing elements on the GPU and executes them in
parallel. [39] Threads within threadgroups are organized into one-dimensional single-instruction,
multiple-data groups (SIMD groups), sometimes referred to as warps. [34] The composition is
shown in the 2.3 figure. The number of threads within a SIMD group is hardware-dependent
and can be accessed by reading the threadExecutionWidth property. [34] On all Apple GPUs,
it is equal to 32. [43] Metal documentation illustrates a two-dimensional grid applied for image
processing and a threadgroup formed on the grid, as shown in the figure2.4.

18 Parallelization

Figure 2.3 Apple Metal threadgroup split into two 16 thread SIMD-groups [34]

Figure 2.4 Apple Metal thread grid and threadgroups[34]

2.4.6 Metal work submission
This section describes the needed components and the necessary steps to schedule and run Metal
compute kernels on the GPU. Metal also allows for render passes, but this section and thesis are
restricted to compute passes. Work submission using the Metal API relies on utilizing the API’s
constructs, which are briefly introduced in the list below [44], [39]:

Device - The GPU device is thinly abstracted by a MTLDevice object, which represents the
GPU and allows scheduling commands to this device.

Library - MTLLibrary represents a collection of Metal shader functions. Contains compiled
MSL source code.

Function - MTLFunction represents a public shader function in a Metal library.

Pipeline objects - Encapsulates a Metal shading language function. MTLComputePipelineState
contains a compiled compute pipeline and is a reusable object used through the code.

Command Queue - To schedule work on the GPU device represented by MTLDevice, the
MTLCommandQueue object is created and utilized.

Command Buffer - To issue commands to the GPU device, a Command Buffer is used. The
buffer is filled with commands to be executed and later committed. In code, this refers to
the MTLCommandBuffer and can be created by a specific MTLCommandQueue command queue
object. The command buffer can then be committed to the GPU and awaited by the host
until its completion.

Apple Metal 19

Command Encoder - Each command to be executed is written to the MTLCommandBuffer
Command Buffer by a Command Encoder. The encoder encodes the commands and includes
all data necessary for the GPU to process the task. This is handled by the disposable
MTLCommandEncoder class. Depending on the type of work to be submitted, a subclass of
MTLCommandEncoder is responsible for encoding. Those split into:

MTLRenderCommandEncoder - Responsible for render commands.
MTLComputeCommandEncoder - Responsible for parallel computation commands.
MTLBlitCommandEncoder - Responsible for resource management commands.

Figure 2.5 Apple Metal Compute submission on M1. The diagram shows the workflow for submitting
work to the GPU by committing or enqueuing (to be committed later) the commands. [42]

The typical workflow for submitting compute work to the GPU using Metal is as follows.
First, a persistent MTLCommandQueue object is created by the MTLDevice representing the target
GPU device. For each batch of work to be submitted, the command queue creates a dispos-
able command buffer MLTCommandBuffer. For each command to be executed within this batch,
the command buffer creates a disposable command encoder MTLComputeCommandEncoder. This
object is responsible for encoding individual input parameters of the kernel and specifying the
grid and thread groups. The kernel to execute is determined by passing a persistent pipeline
object ComputePipelineState, which encapsulates the associated shader code to the encoder,
and the arguments are specified and set. To define how the kernel should be executed is specified
by the dispatchThreads method, which takes as arguments the grid size and thread block size
and automatically splits, schedules, and distributes the grid across compute units. This is the
case for hardware that supports non-uniform threadgroup sizes, and variable-sized thread groups
are automatically created to avoid execution outside of boundaries. Non-uniform threadgroup
sizes are supported in the Metal3 GPU family devices. [26] Different methods must be used for
hardware that does not support this functionality. When dispatching work using this method,
the shader code does not have to check for out-of-bounds access based on the thread position in
the grid. Once the arguments are specified, the encoding ends, and the process can be repeated
for additional kernels that should be executed within this command buffer. Once all the com-
mands are encoded, the command buffer can be committed by calling the commit method on the
command buffer. At this point, the GPU will start executing the commands. This process can
be repeated by creating an additional command buffer. The execution happens asynchronously
to the host code and can be explicitly awaited. [44] Metal promises that the perceived order in
which commands are executed matches that in which they were ordered, possibly reordering the

20 Parallelization

commands for performance benefit. [44] Parallel work submission in CUDA requires working
with CUDA Streams. In Metal, parallel submission of independent work can be achieved by uti-
lizing multiple command queues. This increases the change of the GPU receiving and processing
work as other host threads are not stalled. [43]

2.4.7 Apple GPUs
While Metal is a more generic framework that supports large quantities of hardware, from hard-
ware found in Apple mobile devices, tablets, and non-Apple GPUs found in older Macs [26], the
Metal implementation in this thesis focuses on current Macs with newer Apple GPUs, specifically
M1 and M2 chips. One of the advantages these chips offer is a unified memory between CPU and
GPU. Metal allows the CPU and GPU to read and write the same memory, which potentially
brings performance benefits as costly transfers of data between system RAM and video RAM
can be avoided. [42] Note that this is considered a costly operation on CUDA. Unfortunately,
not much information is publicly available about the architecture and hardware specifications of
Apple M1 or M2 GPUs. For a more precise definition, the GPUs targeted in this thesis belong
to the Apple8 and Apple7 families, which contain the M1 and M2 chips. In addition, a Metal
GPU family is defined, with the target being Metal3, which also includes the M1 and M2 chips
but also includes Intel Iris, AMD Vega, AMD 5000-series, and others, as well as other Apple
chips intended for mobile devices such as A14, A15. [26] Focusing on Apple7 and Apple8 allows
the implementation to rely on the broadest feature set available at the time of writing.

Apple Silicon GPUs contain separate caches for buffer and texture reads. The application
may see performance benefits by storing a portion of its resources in buffers and textures, as
data read from the cache can be accessed with lower latency than system RAM, reducing stalls
or delays. Kernels utilizing more considerable amounts of buffer data may suffer from reduced
performance due to the data not fitting into the cache, requiring waiting for system RAM. This
limits the reads to system memory bandwidth over on-chip cache bandwidth. Utilizing both
texture and buffer cache increases the amount of cache space. [42]

Figure 2.6 Apple M1 GPU cache [42]

Chapter 3

Sequential and OpenMP
implementations

This chapter describes the implementation details of the sequential and OpenMP-based im-
plementations. The chapter provides a high-level overview of the general code structure and
describes certain design decisions, the reasons leading to these decisions, and their conse-
quences. The usage of the created code is described alongside the discussion about structure.
The chapter is finished with performance measurements comparing created variants and col-
lected observations from profiling the code.

3.1 Sequential implementations
The sequential implementation provides Pollard’s Rho and ECM based on Weierstrass curves
as well as extended Twisted Edwards curves with a = −1. It utilizes the GMP library for
calculation and holding data. The GMP type utilized is the mpz t, which allows for storing
arbitrary precision integers. No other libraries are used in the sequential version.

3.1.1 Pollard’s Rho
The first algorithm implemented was Pollard’s Rho algorithm. The implementation does not
have a complicated structure. The entry point for the algorithm is a function prho factorize,
which takes the output argument to which the result is written, the number to factor, an inner
function g of the algorithm that defines how to exponentiate and add mod n to a passed number
x, and finally, the maximum number of attempts for the algorithm to try before giving up and
returning without finding a result.

Code listing 3.1 Pollards Rho factorization function.
void prho_factorize(mpz_t rop,

mpz_t n,
std::function<void(mpz_t, mpz_t, mpz_t, mpz_t)> g,
uint64_t max_attempts)

This function sets up the starting variables and handles the calling of a low-level factorization
function prho factorize direct, which performs the computation given the decided starting
variables. First, the function tries with a simple choice of x, y and random adder, which is
followed by randomly chosen values if the attempt does not succeed. This process of randomly
chosen arguments and attempts is repeated until the number of attempts reaches the specified

21

22 Sequential and OpenMP implementations

maximum. The low-level function performs a computationally intensive loop of Pollard’s Rho
algorithm and returns either -1 on an unsuccessful run or the factored number if found.

3.1.2 Lenstra’s Factorization
The ECM implementation follows a similar pattern to Pollard’s Rho. The entry point is once
again a function which is called lenstra factorize or lenstra factorize ete for extended
Twisted Edwards (ete being a reappearing suffix for this version of the algorithm. This version
will be referenced as ETE in the text), which takes the destination mpz t, another mpz t with
the number to factorize, the maximum number of attempts (which in this case is tied to the
number of different Elliptic curves) as well as an integer lower and upper boundary for point
multiplication loop. Both implemented versions of ECM share the same parameters for high-level
functions.

Code listing 3.2 ECM factorization function.
void lenstra_factorize(mpz_t rop,

const mpz_t n,
uint64_t max_attempts,
int32_t lower_boundary,
int32_t upper_boundary)

In the Weierstrass version, a new elliptic curve is randomly chosen in each attempt. The
process of generating such a curve is first by selecting the variable a in a loop starting from two
and incrementing for each attempt. This is followed by randomly choosing a point P . These two
variables are now fixed, and the second variable b of the curve is computed from them. If this is
successful and a valid elliptic curve can be formed, the computation enters the computationally
intensive loop with point kP multiplication. Otherwise, a is incremented, and the search for an
elliptic curve continues. For ETE version, the flow is more straightforward, as a random point
P is generated, and with determined a = −1, it is verified whenever a valid elliptic curve can be
formed over the point. The lower and upper boundaries determine the value of k, computed as
a product of primes smaller than B, which is taken from values between the specified boundary.
The purpose of these boundaries is for convenience as they allow the computation to continue
even if the initial choice of lower bound did not produce a factor, potentially reducing repeated
calls of the function. Initially, the value of B matches the lower boundary. The kP multiplication
is computed, and if no result is found, B is doubled until it reaches the upper boundary.

The Weierstrass computation loop iterates over elliptic curve point multiplication, handled
by a lenstra group point mul function. This function’s output Q = kP is then evaluated. If
the resulting Qz is greater than 1, its gcd with the factored number n is returned as the factor.
Otherwise, the computation continues with another iteration. The code is similar for ETE with
a different lenstra group point mul ete function being used to compute the desired results.
The gcd of n and both Qx and Qz coordinates of the computed point are calculated. If the result
is greater than one, a factor has been found.

3.2 OpenMP based implementation
As was the case for sequential implementation, the supported algorithms are Pollard’s Rho and
Weierstrass and ETE for Lenstra’s ECM factorization. The parallel solution on the CPU closely
follows the sequential. In addition to the GMP library utilized for the computation and storage
of integers, the OpenMP library is utilized to achieve parallel computation in arbitrary precision.
Serval variants of each algorithm have been implemented, differing in both the OpenMP mecha-
nisms used to achieve the parallelization and in the strategy chosen to pick starting parameters
for the algorithms.

OpenMP based implementation 23

The approaches toward parallelizing the algorithms can vary. For example, in Dvorak’s thesis
[45], which focuses on CPU parallelization with multiple processes, the inner computational loop
over k for Lenstra’s algorithm is parallelized and distributed between threads for local copies
of P . The approach towards parallelization in this implementation is more simplistic as it will
be compared to and serve as a foundation for the GPU implementation. The implementation
attempts to benefit from parallelization by running multiple instances of the algorithm with
different curves and starting points for ECM or different parameterizations for Pollard’s Rho,
which increases the probability of finding a solution. [9] This is reflected in both the CPU
parallelization and GPU parallelization, where in both cases, instead of parallelizing a portion of
the algorithm, many instances of the algorithm are running in parallel in distinct threads, with
one finding a fitting solution resulting in the termination of the others.

3.2.1 Lenstra’s Factorization
The Weierstrass OpenMP-based implementation has been implemented in five different versions
while ETE in two. It should be noted that the ETE version was introduced much later during
the development. In contrast, the initial Weierstrass version was already available for CPU,
CUDA, and Metal. Hence, the insight gained from the earlier development was used to limit
the number of unnecessary versioning, which would further slow down the implementation. The
individual versions combine OpenMP tasks and parallel regions with different starting point
selection strategies. Despite the number of versions, the structure of each version is similar to
the others and utilizes the same low-level functions for point multiplication and addition on
elliptic curves. Those are slightly modified from the sequential implementation, as additional
logic is present for verifying if any other thread found a solution to enable quick termination.
To produce a result with minimal latency, the competing threads need to terminate quickly
once any of them find a solution. This is achieved by reading a shared atomic boolean in the
computationally intensive loops. The primary concern with this approach is the balance between
the potential overhead by too frequent atomic reads and slower termination on success. This
logic is implemented in the two computationally intensive functions of the algorithm. One in
multiplication, where the read happens every few iterations, and in the calling loop, where this
is verified every iteration. The number of iterations between reads could be further optimized.

Each version is implemented in a distinct factorization function with the version indicated in
the name. These high-level functions are meant to abstract away the complexity of the underlying
setup required for lower-level functions. The example below shows the function for version two:

Code listing 3.3 OpenMP based factorization function.
void omp_lenstra_factorize_v2(mpz_t rop,

mpz_t n,
uint64_t max_attempts,
uint32_t num_threads,
int32_t lower_boundary,
int32_t upper_boundary)

Each version is briefly described in the following list. Note the missing V1 version. Pollard’s
Rho algorithm was implemented first, and an attempt was made to make the versions consistent
even between algorithms to make the implementation less confusing. In Pollard’s Rho, the
V1 version exists but has been observed as less reliable and was not considered for Lenstra.
Expecting similar results, this version has been skipped for the ECM implementation, and the
versioning started at V2.

omp lenstra factorize v2 - This version creates OpenMP tasks in batches. Those tasks are
distributed between threads until the batch is exhausted, after which a new batch is created,
repeating until a result is found. This version can potentially starve threads as they await

24 Sequential and OpenMP implementations

the completion of other running tasks until a new batch is created. The variable a is chosen
randomly in each task.

omp lenstra factorize v3 - The third version is also OpenMP task-based. In this version,
the tasks are not created in batches, and their creation is left to OpenMP without any interfer-
ence. This resolves the issues in the second version in which threads could be underutilized
but potentially come with an overhead with many unnecessarily created tasks. As in the
second version, the variable a is chosen randomly in each task.

omp lenstra factorize v4 - The fourth version simplifies the parallelization by dropping
tasks and relying simply on parallel regions. This approach resolves issues observed in previ-
ous versions, as in this version, each thread that fails to find a solution given a specific elliptic
curve restarts the process with a new curve. Threads then loop and create new curves until
a solution is found. The variable a is chosen randomly in each task.

omp lenstra factorize v5 - The fifth version is based on parallel regions and differs in the
selection of variable a, which is now sequentially incremented for each attempt in a thread.
The same applies to the Px coordinate, which is sequentially incremented but comes from
a distinct interval per thread. This seemingly arbitrary choice of parameters reduces the
likelihood of generating the same starting parameters, which, however unlikely, could be a
problem in the previous version.

omp lenstra factorize v6 - In the last version, again parallel regions are utilized. The value
a comes from a distinct interval per thread, with point P being generated randomly. Having
a distinct value of a per thread should not generate identical elliptic curves.

omp lenstra factorize v4 ete - The V 4 of the ETE version follows the structure of the
Weierstrass V 4 version, but relies on the ETE low-level functions. With P being generated
randomly.

omp lenstra factorize v5 ete - Same as with the previous version V 5 of the ETE version
follows the structure and strategy of the Weierstrass V 5 version. The x coordinate of p is
selected from an interval, and y is randomly generated.

In summary, the first versions focused on selecting the appropriate OpenMP parallelization
construct. In contrast, further versions focused on initial parameter selection and either reduc-
ing or eliminating potentially duplicate elliptic curves that would result in wasted computations.
Given the size of the numbers to factor and the small probability of generating the same pa-
rameters, it’s questionable whether adjusting the parameters to avoid duplicate elliptic curves is
beneficial. This should become apparent in the measurements later.

3.2.2 Pollard’s Rho
In total, seven implementations of Pollard’s Rho have been created. These, as was mentioned,
combine different strategies for selecting starting arguments as well as OpenMP constructs for
parallelization. Comparing the versions with the version in the Lenstra implementation, it can
be seen that the versions are consistent in terms of OpenMP constructs and, naturally, differ
in parameter selection. The versions are described in less detail, as the reasoning behind each
version was specified in the previous section. In summary, initial versions focused on finding a
good pattern for concurrency, while later versions experimented with parameter selection and
potentially reducing or eliminating redundant computations.

omp prho factorize v1 - Uses OpenMP parallel for construct with the variable a being
selected from a distinct interval and x being selected randomly.

CPU Versions comparison 25

omp prho factorize v2 - Utilizes OpenMP tasks created in batches. As in V2 of ECM, a
batch of tasks is created, and until all tasks are completed, no new batch is created. The
first fifty attempts per thread are made with small x = y = 2 and random a. After that, the
implementation switches to all variables being chosen randomly.

omp prho factorize v3 - Tasks are no longer restricted to batches in this version. The
variable selection strategy is the same as in the previous version.

omp prho factorize v4 - This version switches to parallel regions. The variables x and y
are set to two, and a is chosen randomly per each attempt in each thread.

omp prho factorize v5 - Based on parallel regions, with x and y set to two and a being
chosen from a distinct interval for each thread and incremented for every attempt.

omp prho factorize v6 - Utilizes parallel regions, a is set to one and x and y are incremented
per-attempt from distinct intervals per-thread.

omp prho factorize v7 - Utilizes parallel regions with all parameters a, x, y being chosen
incrementally from distinct regions per-thread.

3.3 CPU Versions comparison
In order to reduce the number of versions for further comparison with GPU-based implementa-
tions and decrease the complexity and time requirements for future measurements, an initial set
of measurements has been made on the implemented parallel CPU versions. The measurements
have been made on an ARM64 device. The ARM device has an 8-core Apple M2 chip. These
measurements are not as detailed as the final comparison and have been made on a smaller
subset of parameters and inputs. Still, given the apparent advantage of some of the implementa-
tions, this comparison allows for the discarding of the less efficient implementations from further
evaluation and allows for greater attention to the more promising variants as the comparison
extends to GPU implementations. This measurement, for example, does not observe how each
implementation scales with a different number of threads. Its purpose is to reject the sub-optimal
implementations. The comparison has been made on the numbers listed below.

410,008,714,444,926,584,643,751,636,103 - 99 bits

740,823,820,721,940,713,928,228,049,555,961 - 110 bits

107,086,883,892,938,461,277,930,808,325,667,887,273 - 127 bits

Those numbers provide sufficient difficulty for the algorithms, allowing for meaningful com-
parison while not taking an overwhelming amount of time to factor. They contain 30, 33, and
39 digits, respectively.

3.3.1 Comparison
The measurements were made with four and eight threads, and to reduce the effect of randomness
in the parameter selection, each version was rerun thirty times for the first two numbers. In
contrast, the measurements of the last number took significantly more time to complete and were
measured ten times. The compiled binary has been produced with the following optimization
flags using the GCC 12.2.0 compiler for ARM64:

Code listing 3.4 Optimization flags used for OpenMP variants.
-O3 --host=aarch64-apple-darwin

26 Sequential and OpenMP implementations

The results can be visually compared in the 3.1 figure. The versions V2 and V3 of Lenstra’s
algorithm provided very good results for the first and smallest integer but struggled to find
a factor for the second and third integers. Instead, they frequently exhausted the maximum
number of attempts and then terminated. The versions V4, V5, and V6 produced very similar
results across all three measured numbers.

The inconsistent behavior for the V2 and V3 versions of Lenstra discourages their further
usage. In contrast, V4, V5, and V6 consistently provided relatively good results across all
measurements, making them good candidates for further evaluation. Overall, the ETE versions
dominated over Weierstrass versions. In the case of Pollard’s Rho, the V5, V6, and V7 versions
provided consistently good results but were frequently beaten by some of the more random
counterparts. In Pollard’s Rho, The other versions produced relatively close results, making the
comparison more difficult. Overall, the V4 version seemed to perform quite well for the largest
number but was otherwise unremarkable. It must be stated that better performance for large
numbers is favored over smaller ones.

3.4 Measurement summary
The V4 provided good results across platforms and will be further utilized. As per versions V5
and V6, those produced very similar results. From the measured data, there is no clear winner
for Weierstrass versions. The V4 version will be favored as it is simpler. Versions attempting to
prevent potential conflict in chosen parameters did not show improvement over those that did
not. Since the ETE versions provided the best but similar results, only the V4 will be considered
further. For Pollard’s Rho, the V4 version representing random selection with parallel regions
will be picked. For a clear overview, the following versions will be evaluated further:

omp prho factorize v4

omp lenstra factorize v4 ete

It should be noted that some of the versions relying on distinct intervals do not necessarily
benefit from the increased thread counts, as the number of threads directly affects the parameter
choice, leading to potentially more favorable starting parameters. This behavior can be observed
in the 3.2 figure, which shows the time until a solution has been found by the V7 version
of Pollard’s Rho. Still, more threads generally improved the results rather than not. Similar
observations can be made for the purely random variants. As their nature is inherently random,
the results can significantly vary depending on how lucky the random choice of parameters is.
This section’s measurements have been restricted to keep measurement time sensible for the CPU
versions. Some of the unimpressive versions have been removed from further evaluation, which
should also have a larger selection of parameters.

3.5 Profiling the CPU implementation
This section will provide some insight into the performance bottlenecks of the CPU implemen-
tations. The profiling will be conducted on the ARM platform, focusing on the implementation
bottlenecks rather than algorithmic or parameter-specific performance impacts. The profiling
will be conducted using the Instruments application for MacOS.

When inspecting Pollard’s Rho algorithm in its sequential implementation, it can be observed
that the heaviest impact has the GMP modular reduction and GCD functions. This can be seen
in the 3.3 figure showing the output of the Instruments utility. This behavior is consistent
between runs and, given the relative simplicity of Pollard’s Rho implementation and complexity
of the mentioned operations, not greatly surprising. This repeats in the parallel implementations

Profiling the CPU implementation 27

OpenMP measurments (ARM64)
om

p_
le

ns
tra

 v
2

om
p_

le
ns

tra
 v

3

om
p_

le
ns

tra
 v

4

om
p_

le
ns

tra
 v

5

om
p_

le
ns

tra
 v

6

om
p_

le
ns

tra
_e

te
 v

4

om
p_

le
ns

tra
_e

te
 v

5

method-version

0

1

2

3

4

5

tim
e

Lenstra 4 threads

om
p_

le
ns

tra
 v

2

om
p_

le
ns

tra
 v

3

om
p_

le
ns

tra
 v

4

om
p_

le
ns

tra
 v

5

om
p_

le
ns

tra
 v

6

om
p_

le
ns

tra
_e

te
 v

4

om
p_

le
ns

tra
_e

te
 v

5

method-version

0

1

2

3

4

5

tim
e

Lenstra 8 threads

om
p_

po
lla

rd
s_

rh
o

v1

om
p_

po
lla

rd
s_

rh
o

v2

om
p_

po
lla

rd
s_

rh
o

v3

om
p_

po
lla

rd
s_

rh
o

v4

om
p_

po
lla

rd
s_

rh
o

v5

om
p_

po
lla

rd
s_

rh
o

v6

om
p_

po
lla

rd
s_

rh
o

v7

method-version

1

2

3

4

5

6

tim
e

Pollard's Rho 4 threads

om
p_

po
lla

rd
s_

rh
o

v1

om
p_

po
lla

rd
s_

rh
o

v2

om
p_

po
lla

rd
s_

rh
o

v3

om
p_

po
lla

rd
s_

rh
o

v4

om
p_

po
lla

rd
s_

rh
o

v5

om
p_

po
lla

rd
s_

rh
o

v6

om
p_

po
lla

rd
s_

rh
o

v7

method-version

0

1

2

3

4

5

6

tim
e

Pollard's Rho 8 threads

om
p_

le
ns

tra
 v

4

om
p_

le
ns

tra
 v

5

om
p_

le
ns

tra
 v

6

om
p_

le
ns

tra
_e

te
 v

4

om
p_

le
ns

tra
_e

te
 v

5

method-version

1

2

3

4

5

6

tim
e

Lenstra 4 threads

om
p_

le
ns

tra
 v

2

om
p_

le
ns

tra
 v

3

om
p_

le
ns

tra
 v

4

om
p_

le
ns

tra
 v

5

om
p_

le
ns

tra
 v

6

om
p_

le
ns

tra
_e

te
 v

4

om
p_

le
ns

tra
_e

te
 v

5

method-version

0

5

10

15

20

25

tim
e

Lenstra 8 threads

om
p_

po
lla

rd
s_

rh
o

v1

om
p_

po
lla

rd
s_

rh
o

v2

om
p_

po
lla

rd
s_

rh
o

v3

om
p_

po
lla

rd
s_

rh
o

v4

om
p_

po
lla

rd
s_

rh
o

v5

om
p_

po
lla

rd
s_

rh
o

v6

om
p_

po
lla

rd
s_

rh
o

v7

method-version

0

2

4

6

8

10

tim
e

Pollard's Rho 4 threads

om
p_

po
lla

rd
s_

rh
o

v1

om
p_

po
lla

rd
s_

rh
o

v2

om
p_

po
lla

rd
s_

rh
o

v3

om
p_

po
lla

rd
s_

rh
o

v4

om
p_

po
lla

rd
s_

rh
o

v5

om
p_

po
lla

rd
s_

rh
o

v7
method-version

0

2

4

6

8

10

12

tim
e

Pollard's Rho 8 threads

om
p_

le
ns

tra
 v

4

om
p_

le
ns

tra
 v

5

om
p_

le
ns

tra
 v

6

om
p_

le
ns

tra
_e

te
 v

4

om
p_

le
ns

tra
_e

te
 v

5

method-version

0

20

40

60

80

100

tim
e

Lenstra 4 threads

om
p_

le
ns

tra
 v

2
om

p_
le

ns
tra

 v
3

om
p_

le
ns

tra
 v

4
om

p_
le

ns
tra

 v
5

om
p_

le
ns

tra
 v

6
om

p_
le

ns
tra

_e
te

 v
4

om
p_

le
ns

tra
_e

te
 v

5

method-version

0

20

40

60

80

100

120

tim
e

Lenstra 8 threads

om
p_

po
lla

rd
s_

rh
o

v1
om

p_
po

lla
rd

s_
rh

o
v2

om
p_

po
lla

rd
s_

rh
o

v3
om

p_
po

lla
rd

s_
rh

o
v4

om
p_

po
lla

rd
s_

rh
o

v5

om
p_

po
lla

rd
s_

rh
o

v6
om

p_
po

lla
rd

s_
rh

o
v7

method-version

0

1000

2000

3000

4000

5000

tim

Pollard's Rho 4 threads

om
p_

po
lla

rd
s_

rh
o

v1
om

p_
po

lla
rd

s_
rh

o
v2

om
p_

po
lla

rd
s_

rh
o

v3
om

p_
po

lla
rd

s_
rh

o
v4

om
p_

po
lla

rd
s_

rh
o

v5

om
p_

po
lla

rd
s_

rh
o

v6
om

p_
po

lla
rd

s_
rh

o
v7

method-version

200

400

600

800

1000

tim
e

Pollard's Rho 8 threads

30 Decimal digit composite

34 Decimal digit composite

39 Decimal digit composite

Figure 3.1 Measured runtimes per algorithm and version with eight threads (ARM64).

28 Sequential and OpenMP implementations

1 2 3 4 5 6 7 8
threads

2

4

6

8

10

tim
e

Pollard's Rho v7 thread comparison

number
410008714444926584643751636103
740823820721940713928228049555961

Figure 3.2 Time until solution for v7 version of Pollard’s Rho for different thread counts (ARM64
M2).

as well. The majority of the time is spent computing modular reduction and GCD consistently
on all threads.

For Lenstra’s implementation, which can be seen in figure 3.4, most of the weight is spent on
the GMP extended gcd function. However, with the computation being more complex, the rest of
the time is more evenly distributed across the remaining operations. The second most dominant is
modular reduction, which is closely followed by subtraction. This is not surprising, as touched on
in the Algorithms chapter. Computing the modular inversion is a computationally very expansive
operation, and using alternative approaches, such as projective coordinate representation, that do
not require finding inversion is generally favored. Suppose similar attention is given to the ETE
version. In that case, it is clear that the time is now more distributed across different operations,
with the modular reduction being the most costly. Overall, most time of the computation is spent
in the GMP functions, which are already highly optimized and over which the implementation
has little control.

Figure 3.3 Heaviest stack trace for sequential Pollard’s Rho implementation.

3.6 Summary

This chapter, being the first to discuss the actual implementation created within this thesis,
focused on the CPU-based implementations in their sequential and OpenMP variants, showcasing
and evaluating various implemented versions. Observations were made into the performance
characteristics of the implementations, which seemed to align with the theoretical understanding.
The most favored variants, V 4 version for both Pollard’s Rho and ECM, were selected and will

Summary 29

Figure 3.4 Heaviest stack trace for sequential Lenstra implementation.

provide a decent reference for further work on the CUDA and Apple Metal implementations and
a more detailed comparison in the future.

30 Sequential and OpenMP implementations

Chapter 4

Multi-precision integer arithmetic
on Apple Metal

As discussed in the previous chapters, various libraries allow arbitrary precision arithmetic
on the GPU. Those, however, only target CUDA and seem to mostly attempt to parallelize
the arithmetic operations. While the factorization algorithms could benefit from potentially
faster arithmetic, this thesis explores a different approach, where many competing instances
of the algorithm seek solutions from different starting points independently. That is, there is
no thread cooperation to compute the results. No widely available library existed that would
enable this form of computation in Metal at the time of writing this thesis. Hence, a new
library allowing for multi-precision integer arithmetic was implemented for usage with Metal
and CUDA. The name for this library is Metal Arbitrary Precision Library, or, shortly, MAP
Library. Initially, it was intended only for Metal but was later ported to CUDA as well.
This implemented library covers a subset of functions and types compared to the GMP library
and can’t compete with the functionality and optimizations offered by GMP but allows the
parallelization of the selected algorithms. This chapter is dedicated to describing the library
in detail.

4.1 Metal Arbitrary Precision library

The library’s implementation scope in this thesis was narrowed to enable the required function-
ality for parallelizing the algorithms on the GPU. It was created specifically to work with the
restrictions of this environment. The creation of such a library requires substantial effort, but
its usefulness ranges beyond the narrow topic of integer factorization discussed in this thesis and
can be utilized for any multi-precision integer arithmetic usage that may arise. The supported
integer arithmetic in this library is single-threaded, where each GPU thread is intended to run
its own computations, which means that the individual arithmetic operations are sequential and
intended to be run independently in parallel. Shortly, the threads do not cooperate to produce
results, giving some contrast to the previously mentioned CGBN library. In the context of fac-
torization algorithms, this means that multiple parallel instances of the algorithm are running,
each requiring its own arithmetic operations. This is done as an alternative over a single or
reduced set of instances with parallelized operations.

31

32 Multi-precision integer arithmetic on Apple Metal

4.2 Storing arbitrary precision integers
The representation of numbers closely reassembles the GMP and LibTomMath implementations,
with integers being represented as a struct of three elements (in the case of LibTomMath, the
sign is stored separately as an additional element). The first two signed integers indicate the
total length and number of used limbs. The third is a pointer to an array of unsigned integers,
where each element stores a portion of the number in absolute value, with the least significant
portions of the numbers being stored first at lesser indexes. The integer storing the number of
used limbs is signed, with the sign determining the overall sign of the value stored in this struct.
The definition of this structure in the Metal Shading Language can be seen below.

Code listing 4.1 MAP Library dynamic sized integer structure.
typedef struct map_int{

map_digit len = 0;
map_digit used = 0;
device map_word * numbers = nullptr;

} map_int;

The name map int has been chosen for the structure; it stands for Metal Arbitrary Precision
Integer. The size of unsigned integers can be selected during compilation by varying definitions
of map word with the verified options being 32-bit and 16-bit unsigned integers. The same
compile-time choice is present for the sign integers represented by map digit offering 32 and 16-
bit choices. In general, the choice of limb size is significant, as performance can be improved by
selecting sizes favored by the hardware. Choosing a smaller size might be beneficial on particular
hardware.

A number of the implemented arithmetic operations require more precision during a portion
of the computation. For example, during the multiplication of two 32-bit limbs, a carry might
be produced and needs to be passed further in the algorithm. Using a 64-bit destination for this
computation makes this straightforward. Hence, additional data types need to be specified to
satisfy this requirement. For 32-bit limbs, an additional type map word larger is defined as a
64-bit unsigned integer. Meanwhile, for 16-bit limbs, a 32-bit unsigned integer is used. On a
related note, the LibTomMath library prefers to use 64-bit limbs, or digits mp digit as referred
to in the library. Digits of this size are potentially impractical on Metal, as for some operations,
larger-than-used digit variables are needed, while the Metal Shading Language 3.0 language
reference shows only scalar data types of size up to 64 bits. Choosing 64-bit limbs would make
the implementation of certain sections of the library much more complicated. Hence, there is a
choice of 32-bit and 16-bit options.

The integer value stored this way can grow by using additional allocated limbs. This is
reflected by the used integer incrementing until it matches the len, indicating no more allocated
space to store the value. This requires copying the value to another instance with sufficient space,
which has to be done on the CPU. The struct is declared separately for the CPU and GPU, as
the Metal code requires address space specification for pointers and references. [38] While the
map int instances live in thread address space, the memory where the digits are stored is in the
device address space and is allocated and passed to the shader from the CPU. The address space
for the defined struct cannot change in Metal.

4.3 Memory allocation limitations in Apple Metal and im-
pact on implementation

The Metal Shading language does not support memory allocations in GPU code. [38] Metal
shading language also does not allow for variable length arrays. [38] With the arithmetic being
intended to be performed by the GPU, this would mean that if insufficient space has been

Memory allocation limitations in Apple Metal and impact on implementation 33

allocated beforehand, the operation may lack space to store the valid result. One limitation
brought by the lack of dynamic allocation can especially be felt in more complex functions of
the library, which require additional temporary map int variables to produce a result beyond
the usual in-out variables. This forces either a requirement that all variables appearing in the
function be dynamically allocated beforehand and passed to each function and overall to the
shader, or an alternative approach would be to have compile-time size-defined helper variables
within each function requiring temporary variables. As was previously mentioned, a similar
approach could be seen in [9], where the size was determined at compile time for all numbers.
This is a somewhat rigid approach, but it has its benefits, as it allows for additional optimizations
such as loop unrolling.

Unfortunately, this is further complicated by strict rules for address spaces in Metal. In MSL,
each pointer requires address space specification, which can not be changed, with local variables
being by default in the thread address space. [38] If thread address space statically-sized arrays
were considered for limbs in shaders, it would cause conflict with the device address space as
declared in the map int struct, which, during instantiation, has its data as passed to the shader.
Metal shading language explicitly prohibits dynamic or static casting to different types, such as
shown in the example below.

Code listing 4.2 Prohibited casting in MSL.
uint32_t tmp_helper[FIXED_HELPER_LEN_GPU] = { 0 };
static_cast<device int32_t *>(tmp_helper);

This forces the use of dynamically allocated and passed helper variables, as introducing
compile-time size helpers in combination with dynamically sized inputs, although possible, is
impractical and complicates the code. An alternative would be to use a constant size for all
multi-precision integers. This approach was not initially chosen as it was deemed too restrictive
for more generic library use but was later revisited for performance reasons. Unfortunately, helper
variables being passed to the functions that need them complicates code, increases the number
of parameters in functions, and makes it more challenging to use. However, it is necessary to
address the limitations of the Metal Shading Language while allowing varying input sizes. These
limitations result in design choices that differentiate the implemented arbitrary precision library
from its existing CPU-based counterparts, such as GMP or LibTomMath.

The library allows working with dynamically sized multi-precision integers, but this size can
not be changed within a GPU shader. In practice, this results in a reduced number of options
for GPU code and computations. One option is that sufficient memory is allocated before
the GPU shader runs, which may result in significant memory overhead and may be hard to
estimate depending on the use case. The second option is that for multiple concurrently running
computations, it is accepted that some may reach incorrect results or that their computations
are corrupted due to insufficient memory, and this state is accepted. Another possibility is
the combination of these approaches, where failure is permitted but should be recovered from.
Corrupted results are detected after each GPU phase of the computation, more memory is
allocated, and the original values are restored to the newly allocated memory. This then allows
the code to repeat the last phase of computation, ensuring the correctness of the results. This
approach will result in all parallel computations being correct. The memory footprint (the size
of buffers being directly passed to the shaders) may be less for a portion of the runtime than if
the memory was allocated beforehand, but this is likely negligible compared to the performance
cost of copying and the memory footprint of keeping a separate backup of the computational
data. However, this approach allows arbitrary-precision computation to provide expected and
valid results if required. This costly approach may be the only option in computations where
the expected result size is unknown, but corrupted results are not tolerated.

The implemented algorithms in this thesis utilize the second approach, where some failure is
tolerated but should be minimized by allocating sufficient resources. The nature of the problem
allows it so that the largest possible number size can be estimated from the factored number.

34 Multi-precision integer arithmetic on Apple Metal

The factorization implementations allow allocating varying amounts of memory to avoid failure
due to insufficient memory. The implemented algorithms reset the validity of the computation
between attempts.

4.4 Fixed-size integer representation
As mentioned in the previous section, the initial approach was to implement the library to be fully
dynamic-sized despite the limitations of the MSL language. This approach has some negatives,
which will be discussed in greater detail in later chapters. Mainly, it prevents some useful
optimizations in the library functions and has a high memory bottleneck. In hopes of providing
a better, more optimized library, an additional fixed-size representation was introduced alongside
the dynamically sized section. The representation is referred to as map int f, suffixed with f for
fixed. The maximum size is defined during compilation and cannot be changed later or combined
with the dynamically sized implementation. The library matches the functionality offered for
this representation in the GPU section of the library but has no support for the CPU functions,
where there was little need for it (conversion between fixed and dynamically sized map ints is a
straightforward operation on the host).

The map int f definition can be seen below. One of the benefits is that some memory is
saved as the library no longer needs to store the information about the allocated size. This is a
greatly appreciated benefit of this representation in the highly memory-constrained environment
each GPU thread has, potentially reducing register pressure. An additional difference that can
be observed is the fixed size permits changing address space from device to thread, which requires
fixed-size arrays.

Code listing 4.3 Redefined MAP library structure for fixed-size integers.
typedef struct map_int_f{

map_digit used = 0;
thread map_word numbers [MAP_FIXED_SIZE];

} map_int_f;

4.5 Metal Arbitrary Precision library function conven-
tions

The library attempts to provide a clear and consistent interface across the functions it provides.
For this reason, a set of conventions is defined to ease the usage of the library and allow predictable
behavior. All functions implemented for the arbitrary precision function directly manipulating
map ints need to be compliant with the following design conventions:

All map int and map int f parameters to functions are passed by references.

The functions, unless specific only to the CPU (such as host functions used to initialize
map int variables to a specific value), will not do any dynamic memory allocations or deal-
locations.

Each helper variable passed to a function must be unique and different from other arguments.
Otherwise, the result is undefined. Helper variables are passed from external storage for
temporary computations in complex operations (such as division, gcd).

If the library function can fail, such as due to insufficient allocated memory in the parameters,
the function must communicate any failure with a return boolean value set to false. In such
cases, the results are undefined. Function, where failure is not expected to be possible, can
have a void return type.

Metal Arbitrary Precision library structure 35

The order of library function parameters is as follows:

The First parameters of the functions are the in-out parameters to which results will be
written. These parameters may be used as helper variables during the computation for
optimization, and they need sufficient space allocated beforehand for the computation to
succeed.
The Second group of parameters are purely constant inputs. These form the basis for the
operation. For example, those would be the two variables to add in the addition operation.
The last group of parameters are helper variables. Those are temporary computational
variables with no meaningful input or output value but need to be passed to the function
due to memory allocation limitations. Helpers will be written to and need sufficient space
allocated for the computation to succeed. The content of these helper variables is not
important on the call of the function and is undefined after return.

By default, the functions should allow specifying calls where the return parameter is also one
or more of the input parameters.

func(a, a, b)

This pattern translates to a = func(a, b). If this pattern is not supported, it is clearly
communicated in the function name with a unsafe suffix. A safe version of the function
frequently exists in such cases and is marked with a safe suffix. The safe versions require
additional helper variables to be passed in order to produce a result and have a larger memory
footprint. The unsafe versions of the function have a smaller memory footprint but are less
generic.

All input parameters that are not output parameters or helper variables are constant, and
the functions will not modify them. That is, unless the reference matches any of the output
parameters.

An example of a typical function following the conventions above can be seen below.

func(return value, const input1, const input2, ..., helper1, ...)

The metal version of the functions needs to specify the address space in the function parame-
ters. This is defined as thread. That means the library functions are not meant to be the entry
point for the GPU code but rather be called by a computational kernel with map int variables
stored in the thread address space decoded from its inputs. An example of an MSL GPU function
can be seen below.

Code listing 4.4 MAP Library GPU multiplication signature.
bool map_mul(thread map_int & rop,

thread const map_int & a,
thread const map_int & b,
thread map_int & helper_a);

4.6 Metal Arbitrary Precision library structure
The library contains the definition of the map int and map int f structures, a holder class
described in the following sections, and a set of CPU and GPU functions. The GPU and CPU
functions overlap but are not the same. The CPU section has functions related to loading,
transforming, and printing the data in map int format, as well as a large section of supported

36 Multi-precision integer arithmetic on Apple Metal

arithmetic and algorithmic operations. The GPU section also contains a set of functions helpful
in initializing and copying a more significant number of map int variables in parallel. This
includes random number generation and copying between a more significant number of variables.
The library layout is as follows (ignoring specific headers, C++, and metal files). Items related
to the CUDA implementation are listed but will be discussed in a later section:

map lib
map int
map holder
cap holder
CPU

CPU functions
Metal GPU

Metal GPU functions
CUDA GPU

CUDA GPU functions

4.7 Supported functions
As mentioned above, the library splits the implementation of CPU and GPU functions, which
overlap, but the sets of each are not identical. The following list mentions each function with a
brief description. To avoid duplicate descriptions, each item indicates whenever the implemen-
tation is available for both GPU and CPU or only one of them. As for support for fixed-size
integers, all functions available for the GPU are available in variants for both fixed and dynamic
sizes, distinguished by f suffix in the function name. It should be noted that the Metal GPU
functions defined for fixed-size integers can have different parameters as they do not require
dynamically sized helper variables to be passed from the outside (although this was preserved
for fixed-size on CUDA). The CPU offers no support for fixed-size integers.

map abs - Absolute value for map int. (CPU, GPU)

map add positive - Low-level addition. Adds two map ints as positive numbers. When
supplied with a negative, it ignores the negative sign. (CPU, GPU)

map add - High-level addition of two map ints. It supports signed inputs built on top of
positive addition and subtraction. (CPU, GPU)

map clear Clears the map int and deallocates memory. (CPU)

map clip leading zeros - Sets the value of used limbs based on the first non-zero limb.
(CPU, GPU)

map copy 3d - Copies 3 dimensional X, Y, Z map int values in parallel to another set of X,
Y, Z values. (GPU)

map copy - Copies one map int to another provided the destination has sufficient space allo-
cated. (CPU, GPU)

map div 2 - Faster division of map int by two. Implemented as shift right by n digits. (CPU,
GPU)

map div unsafe - Divides one map int by another, produces quotient and remainder. Input
and output parameters cannot be mixed. Uses multi-precision division algorithm as defined
in [13].(CPU, GPU)

map div safe - Safe division that supports combining input and output. Uses multi-precision
division algorithm as defined in [13]. (CPU, GPU)

Supported functions 37

map eq abs - Verifies if two map ints match ignoring the sign. (CPU, GPU)

map eq zero - Verifies if the specified map int equals zero. (CPU, GPU)

map eq - Verifies if two map ints, or map int and map word match. (CPU, GPU)

map flip sign - Flips the sign of the map int. (CPU, GPU)

map gcd - Produces the gcd of two map ints. Uses the Binary gcd algorithm as defined in
[13]. (CPU, GPU)

map gcd ext - Produces the gcd of two map ints as well as coefficients of Bézout’s identity.
Uses the Binary extended gcd algorithm as defined in [13]. (CPU, GPU)

map ge - Verifies if map int a is greater or equal to map int b. (CPU, GPU)

map get string Given a map int returns a string with the binary representation of the passed
number. (CPU)

map gt abs - Verifies if map int a is greater than map int b ignoring sign. (CPU, GPU)

map gt - Verifies if map int a is greater than map int b, an additional version exists for
comparison with a map word larger signed. (CPU, GPU)

map init from map - Initializes a map int by allocating sufficient memory and copying the
content of the passed map int. (CPU)

map init from string binary - Initializes a map int by parsing the passed string with the
binary representation of the desired number. (CPU)

map init from value - Initializes a map int by setting it to the passed integer value. (CPU)

map lt - Determines if the map int a is lesser than map int b. (CPU)

map mod unsafe - Produces the modulo residue of two map ints. Input and output parameters
cannot be mixed. Slow implementation that relies on division to produce results. (CPU,
GPU)

map mod safe - Produces the modulo residue of two map ints. Allows for mixed input and
output parameters. Slow implementation that relies on division to produce results. (CPU,
GPU)

map mul 2 - Fast map int multiplication by two, achieved by shift left by n digits. (CPU,
GPU)

map mul - Multiplies two map ints together. Uses the ”schoolbook” multiplication algorithm.
(CPU, GPU)

map reset to zero - Sets a map int value to zero. (CPU, GPU)

map set from index md - Multidimensional copy. Assumes the passed buffer stores multiple
map ints with a specified length in between. Each thread copies and sets to its index value
from the first map ints in each dimension. (GPU)

map set random md - Sets a portion of map ints to random values with variable length.
(GPU)

map set random - Sets a range of map ints to random values. (GPU)

map set thread - Sets a range of map ints to value of thread indexes. (GPU)

38 Multi-precision integer arithmetic on Apple Metal

map sub positive - Low-level subtraction. Subtracts two positive map ints. When supplied
with a negative map int, ignores the negative sign. (CPU, GPU)

map sub - High-level subtraction of two map ints. Supports signed inputs. (CPU, GPU)

map swap - Swaps the values of two map int. (CPU, GPU)

One of the major disadvantages of the library is that it relies on simpler algorithms for
complex, computationally intensive operations, such as multiplication or modular reduction.
GMP utilizes up to 7 algorithms to provide optimal performance during multiplication, but the
MAP library is limited to a single algorithm. While GMP may elect to utilize various algorithms
for different input sizes, the MAP library is limited to one. This is a common pattern across the
supported functions and one direction in which the library could be improved.

4.8 Implementation differences between CPU and GPU
function versions

During development, the intention was to keep the CPU and GPU functions as similar as possible,
mainly to simplify maintenance and development. The library is primarily focused on running
on Apple GPUs, and the function design reflects that and is observed in the CPU versions. For
example, the CPU version could allocate all needed non-input variables, but to diverge less from
the GPU version, it requires these helper variables to be passed from the outside. Developing
tests and debugging for the CPU versions is significantly more straightforward and less time-
consuming than doing the same for the GPU functions. Developing the CPU versions first made
catching bugs early during development significantly easier, after which the functions could be
ported to the GPU with less issues. Most of the differences between CPU and GPU versions are
in address space specifications on the GPU and relying on the metal standard library over the
C++ standard library, such as for computing absolute values of integers.

4.9 Working with a large number of arbitrary precision
integers on the GPU

The implementations in this thesis focus on running many parallel instances of the algorithms
with different starting points, each instance performing its independent computations. In the
OpenMP implementations, the parallel regions trivially manage and allocate their variables with
complete independence on other running instances. The overall code structure for Metal imple-
mentation is significantly different. Each running instance is in sync with others, and the used
variables must be modified synchronously in bulk. Dealing with allocations per variable used
across each algorithm and keeping track of the validity of results per instance would result in
code that is both difficult to read and maintain. In addition, the Metal API requires that data
passed to the GPU is stored in a particular format, the options being textures, MTL buffers,
or more sophisticated structures for which Metal handles the passing automatically but enforces
passing parameters as a constant. This demands code that allows for easy access and manage-
ment of variables in bulk for each concurrent instance. A specific class for storing and owning
these variables has been created to fulfill this need. The outline of this class can be seen below.

Encoding and using arbitrary precision integers in GPU shaders 39

Code listing 4.5 MAP Library integer holder class interface.
class MetalArbitraryPrecisionIntegerHolder
{

MetalArbitraryPrecisionHolder(MTL::Device * device,
int32_t n,
map_digit len,
bool helper = false);

˜MetalArbitraryPrecisionHolder();

int32_t members; // the number of member variables stored
MTL::Texture * properties;
MTL::Buffer * numbers;
MTL::Buffer * current_length_buffer;

map_int Get(int32_t index);
bool Valid(int32_t index);
void SetSigned(int32_t index, map_word_signed value);
void Set(int32_t index, map_word value);
bool Set(int32_t index, const map_int & value);

}

The specified class is referred to as a ‘holder‘, which should allow working with arbitrary
precision integers in bulk efficiently. This class is intended to store variables of the same use,
such as multiple instances of a specific computational variable kept for each instance of the
algorithm, but storing strided variables is also possible. For example, in ECM implementation,
one handler class stores multiple coordinates of points on the EC.

The handler class does not store individual map int instances. Instead, it stores the metadata
such as validity and used limbs in 1D 32-bit or 16-bit textures and enforces the same allocated
length per each stored variable. Since Apple M1 and M2 GPUs have a separate cache for textures
and buffers. Storing the data partially in textures and buffers potentially allows for improved
performance by better utilizing available cache memory. In addition, storing a set of values as
arrays of map int structures may not be the most efficient. The data, or limbs of the variables,
are kept in a one-dimensional Metal buffer and accessed individually by index multiplied by the
uniform allocated length. Working directly with metal buffers and textures is cumbersome and
difficult. The class supports setting individual values by passing integer or map int arguments. It
can export individual map int variables by constructing them from the modified storage format,
as well as report on the validity of a particular member. The class publicly exposes the stored
textures and metal buffer to allow easy encoding for submission to the GPU. Additionally, the
class can also be utilized to store fixed-size integers.

4.10 Encoding and using arbitrary precision integers in
GPU shaders

A specific process must be followed to get a map int from a handler class into a shader. The
shaders utilizing the library have a common pattern for passing the necessary data inside. For
Metal, first, a buffer with the limb data is passed, followed by a single buffer with a single value
indicating the number of allocated limbs per member and a texture containing properties such
as the used number of limbs and validity. The texture is indicated as read-only if the members
are not modified.

40 Multi-precision integer arithmetic on Apple Metal

Code listing 4.6 Example Metal computational kernel MAP library argument passing.
kernel void example_function(
device map_word * a_numbers [[buffer(0)]],
device const map_digit & a_current_length [[buffer(1)]],
texture1d<map_digit, access::read_write> a_properties [[texture(1)]],
uint16_t index [[thread_position_in_grid]])

{
auto a_meta = a_properties.read(index);
map_int a {a_current_length, a_meta[0], &a_numbers[index * a_current_length]};

bool valid = func(a, ...);

a_meta[0] = a.used;
a_meta[1] = valid;
a_properties.write(a_meta, index);

}

For helper variables, parameter passing is simple as no validity tag or persistence of values
is needed, and as a consequence, the metadata-containing texture is not passed. This greatly
reduces the memory footprint of shaders and provides performance benefits. The individual
variables must be created with all the necessary parameters gathered. This is achieved by
reading the texture value for the specific thread index and creating a thread map int instance,
using the fixed member length, specific property as read from the texture, and address to the
buffer section containing the associated member limbs. This is achieved by jumping in the buffer
to the desired index (frequently matching the thread index in the implementation) multiplied
by the fixed member size. After this, the variable is ready to be used in the shader. These
computations can now independently happen on a larger scale on each GPU thread. Finally, if
the variable was written to, the texture is updated with information about the validity and used
limbs and written to at the same index. For fixed-size integers, the process is similar. As was
the case for the dynamically sized helpers, there is no need to pass information about allocated
size, as it is known. The only difference is that the passed device memory needs to be copied into
local thread memory. The MAP library offers simple and convenient functions to copy integer
data between thread and device memory. As for CUDA, the process is nearly identical. The
main difference is that CUDA does not need specific buffers and does not utilize textures to pass
meta-information about the values. This makes for a much less convoluted kernel. A simple
example is given below.

Code listing 4.7 Example CUDA kernel MAP library argument passing.
__global__ void example_function(uint32_t parallel_runs,

map_digit * a_used,
map_word * a_numbers,
map_digit * a_used)

{
map_int a{a_current_length, a_used[index], &a_numbers[index * (a_current_length)]};

func(a, ...);

a_used[index] = a.used;
}

It should be noted that the library does not enforce this approach or usage of holder classes
or textures. This pattern commonly appears in the code accompanying this thesis, but there is
no restriction to use an alternative method of creating and using map ints.

Summary 41

4.10.1 Random number generation on Apple Metal
The Metal shading language does not have built-in random number generation support. Since
a large portion of input parameters is chosen randomly, finding a source for these numbers was
essential. The selected approach was to utilize Loki Random Number Generator [46] repository,
which contains an existing MSL library that provides an implementation based on the Efficient
pseudo-random number generation for monte-carlo simulations using graphic processors paper
[47]. This library was used through the MSL code to provide a source for generating random
numbers.

4.11 Summary
This chapter describes the MAP library’s scope, structure, and implementation concepts. It
went over the created arbitrary-precision integer library and covered the interface, how to use
the library and the contract it provides to the user. While the library is intended as a GPU
library primarily aimed at Metal, additional CUDA and CPU functionality has been provided.
The library is not contained to arithmetic operations but also provides a means to store and
manipulate larger groups of integers easily.

42 Multi-precision integer arithmetic on Apple Metal

Chapter 5

Paralellization using Metal API

It should come as no surprise that the metal implementation requires a significantly different
approach when compared to the CPU versions. As previously mentioned, the GMP or LibTom-
Math libraries are unavailable for Metal API, which requires finding or creating an alternative
library. This led to the creation of the MAP Library, which was introduced in the previous
chapter. While this library can not compare to GMP, it allows the functional implementations
of Pollard’s Rho and Lenstra’s elliptic curves algorithm on Apple Metal, which are discussed
in this chapter. This chapter outlines the implementation of the algorithms for Apple Metal.
It starts with a high-level design and structure of the code, followed by descriptions of the
individual implementations, and finishes notes on the performance and optimizations of the
solution.

5.1 High-level principle of the Metal implementations

In the OpenMP version, each running instance is entirely independent of the other instances.
This is trivially specified in OpenMP constructs in the code. Beyond a shared flag signaling
that a solution was found by one of the threads, there is no coordination or synchronization. In
the case of Metal, the computation happens for a number of parallel instances organized in a
one-dimensional Metal grid, where each index represents one independent running instance of
the algorithm. In the Metal implementation, the computation is synchronized in stages of the
algorithm (at least from the perspective of a single CPU thread). The GPU kernels, handling
many parallel instances across various stages of the algorithm, are scheduled and executed se-
quentially. This is explained in greater detail in sections describing the implementation of the
specific algorithms, but the general stage split is in initialization, main loop iterations, and loop
finalization. Each stage is submitted to the GPU, and it is the responsibility of the API to sched-
ule the work in the correct order. The host only awaits the completion of the submitted work
after it schedules the final stage of the algorithm. After completion of all of the scheduled work
by the GPU, it evaluates whenever a result has been found. This is repeated until a solution has
been found by one of the running instances or the maximum number of attempts is exhausted.

5.2 Achieving scalability for Apple Metal

Initially, the implementation utilized a single CPU thread to schedule work on the GPU. This,
however, limited the implementation in a number of ways. It limited the maximum number of
parallel instances due to maximal texture sizes used in holder classes, lacked scalability, and
under-utilized hardware. Splitting the work across multiple independent CPU threads allowed

43

44 Paralellization using Metal API

for increasing the number of parallel instances but required a significant refactoring of the ex-
isting code and additional synchronization. This refactor should also allow the application to
scale across different hardware and allow utilization of higher-end GPUs capable of concurrently
running a larger number of computations.

The reworked implementation considers multiple independent CPU threads, each working
with a separate batch (grid) of instances. The individual threads terminate as soon as they
discover other threads have found a solution. This required extensive refactoring of the factor-
ization classes to support thread-safe, multi-threaded usage. One implementation note is that
this mechanism does not rely on the otherwise used OpenMP due to compatibility issues with
the Clang compiler provided by Apple, which was used to compile the Metal application.

5.3 Code layout and usage of algorithms on Metal
While no class would aggregate individual implemented versions in the CPU version, as inde-
pendent functions were sufficient, the larger number of shared Metal objects made introducing
one very practical. The two implemented factorization algorithms, Pollard’s Rho and Lenstra’s
Elliptic Curves, are represented by two similar classes. Those are the MetalLenstraMT and
MetalPRhoMT classes. They both require a Metal Device class as their only constructor parame-
ter and are bound to this device upon creation. This is the device on which all GPU computations
for the class will be scheduled.

Once instantiated, the class has a straightforward public interface, in which a simple method
called Factorize is available (FactorizeETE for ETE ECM). These methods require a simple
set of inputs. The most important is an map int parameter containing the composite number
for factorization, followed by an in-out map int parameter to which the resulting factor will be
written. An additional group of parameters defines how the computation should be scheduled
and submitted. Among those are parameters specifying the number of parallel instances, GPU
threads that should be run, and the number of CPU threads that should submit the workloads.
The instances are evenly split across the number of CPU threads specified. The number of
parallel instances, in combination with the number of CPU threads, will significantly impact
the performance of the implementation. Choosing a value too small will cause the GPU to
be underused, as most of the hardware will sit idle. A value too large (such as a value above
the maximum number of possible concurrently running threads) will result in the inner loop
iterations taking longer, potentially losing the benefits of the parallelization.

An additional parameter allows selecting the strategy for initialization before the computation
starts, such as the elliptic curve generation method or choice of a in Pollard’s Rho. This resembles
the strategies observed in various CPU-based versions, only now the design is more modular.

This interface specifies a parameter for selecting the desired version of the algorithm imple-
mentation, which defines how the computation should be scheduled and executed on the GPU.
As the instance initialization is separate from the versioned algorithm implementation, the Metal
implementation allows for combining different parameter initialization strategies with different
approaches toward parallelization. This approach is more flexible than the OpenMP imple-
mentation, allowing for greater modularity if needed. However, this design approach was not
overly utilized as the Metal implementations keep to simpler initialization (such as naive elliptic
curve generation) and scheduling strategies, and fewer versions have been created compared to
OpenMP implementation. If a need arises, this allows for the easy extension of the classes with
new, more sophisticated initialization strategies.

Lenstra implementation on Metal 45

Factorization Class

CPU Thread 0

M/N instances

CPU Thread 1

M/N instances

CPU Thread N

M/N instances

...

GPU Device

Variable MAP Holders Variable MAP Holders Variable MAP Holders

Command queue

Metal library

Command queue Command queue

Pipeline objects

Figure 5.1 The layout of a factorization class for Metal. The diagram shows the distribution of
individual instances across CPU threads and their submission to the GPU device given N CPU threads,
each executing eight parallel instances.

While the algorithm classes have much in common, this similarity is not enforced by any
abstraction in the code. The classes store all Metal objects required to run the algorithm; this
includes MTL Functions, Errors, Argument Encoders, and Pipeline states. The example below
shows how to instantiate and call Pollard’s Rho factorization.

Code listing 5.1 High-level Metal factorization class creation and usage.
MetalPRhoMT metal_prho{device};
metal_prho.Factorize(res,

n_fac,
parallel_runs,
gpu_threads,
max_attempts,
strategy,
version,
cpu_threads);

During factorization, each class sets up MetalArbitraryPrecisionHolder holder per each
computational or helper variable needed during the computation. As was mentioned earlier, this
class holds a bulk of map ints in Metal buffers, one for each instance. It then initializes the
variables in parallel on the GPU according to the passed argument selection strategy. To better
understand the layout of the factorization classes, look at the 5.1 figure. Both algorithms then
execute their inner loops, where the computation is done in parallel on the GPU within each
iteration. After an iteration is finished, it’s evaluated whenever any of the CPU threads report
a solution. If so, the algorithm terminates and propagates the result. If not, it continues until
the maximum number of iterations specified is reached.

5.4 Lenstra implementation on Metal
This section describes the implementation of the Lenstra factorization algorithm for Metal API in
greater detail. First, the CPU portion of the code is covered, and the associated Metal shaders are
discussed later. The Lenstra implementation for Metal is contained within the MetalLenstraMT
factorization class. This class has a straightforward public interface but is more complicated

46 Paralellization using Metal API

in its private section. The entry point for factorization is the Factorize or FactorizeETE
method, which, given the parameters, calls a low-level private versioned factorization method.
For Lenstra, four distinct versions are implemented.

V1 - Uses EC in Weierstrass form. This version encodes EC point additions and doubling
within each loop iteration of the kP multiplication into a single Command buffer. Once the
inner loop is finished, an additional command buffer is committed for copying and evaluating
the results.

V2 - Uses EC in Weierstrass form. This version attempts to reduce the overhead of using
multiple Command buffers for the kP multiplications. The computation initialization and all
operations within the inner kP loop, copies of results, and evaluation are encoded within a
single command buffer. This may reduce overhead but may behave unexpectedly if k is too
large, as no work is executed until the buffer is committed and the number of commands to
encode grows with k.

ete v1 - Same layout as Weierstrass V1 adapted for ETE.

ete v2 - Same layout as Weierstrass V2 adapted for ETE.

ete v3 - This variant has the same layout as ete v1, but utilizes fixed size map int f integers
in GPU shaders.

The low-level factorization methods hold the necessary computational variables in holder
classes. The methods also handle additional Metal buffers for additional parameters required by
used kernel functions. The methods first enter a loop that starts new rounds of ECM compu-
tations. This loop continues until it reaches maximum attempts (one attempt corresponds to
one generated batch of EC curves) or until a solution is found. Each attempt first initializes
the elliptic curves and points P and Q. Each instance has its elliptic curve and points. This is
done as specified by the initialization strategy passed to the method. Currently, only one naive
parameter initialization strategy is available, which picks a (for Weierstrass) and p randomly
and verifies if an elliptic curve can be formed given the parameters and regenerates the values if
needed. The inner loop performs point multiplication kP , with K determining the effort. This is
implemented by computing repeated squaring. The value of K is doubled after kP is computed.
This multiplication applies EC point additions and doubling based on the value of k in each
iteration. These operations are passed to the GPU and executed in parallel. Once k is zero, the
loop finishes, the result is copied to persistent memory for further possible computations, and
each instance evaluates whenever a result is found. The implementation allows the computation
to continue by specifying the upper K boundary. Once the boundary is reached, another attempt
with new instances is made. This is the same concept as in the CPU versions. The pseudo-code
in 5.2 illustrates the computation described above.

It should be noted that there may be no need to use the complicated parametrization needed
to run multiple attempts with increasing size of k. The user can specify only one attempt with
matching starting K and upper boundary for K. This simple parametrization would generate a
single set of EC curves, compute kP and terminate.

Lenstra implementation on Metal 47

Code listing 5.2 Pseudo-code of the implemented ECM factorization logic.
while (current_attempts < max_attempts && !solution)
{

// In parallel, initialize all EC variables
InitializeInstances(P); // Randomly chosen P for every instance
K = starting_effort;
while(!solution && K < effort_boundary)
{

// Set up kP computation in parallel
Q = (0, 1, 0, 1) // Identity (ETE)

k = primes_product(K);
while (k != 0)
{

if (k % 2 == 1)
{

// Add points in parallel
Q = AddPoints(P, Q);

}
// Double points in parallel
P = DoublePoints(P, P);
k = k >> 1;

}
// Computes GCD in parallel to determine if a factor was found

FinalizeLoop(Q)
P = Q;
K *= 2;

}
current_attempts++;

}

The GPU portion of the code defines the following public functions that are directly called
from the CPU section of the implementation. They are usually implemented in two versions, one
for Weierstrass and one for ETE. Each function described in this section runs for each index in
a one-dimensional grid in parallel.

initialize curves - Loops over calls to the calculate elliptic curve function until
a valid elliptic curve is created or the upper limit is reached. If the return value of
calculate elliptic curve is false, passed a and p is regenerated before the next iteration.
This results in all instances having their own elliptic curves or being marked invalid.

initialize curves ete - Is the equivalent for ETE version, it keeps a static but modifies
point p to generate curves and relies on calculate elliptic curve ete.

lenstra add points and lenstra add points ete - Handle point addition on EC for their
respective algorithm version. It is also implemented for fixed-size integers in the ETE variant.

lenstra double points and lenstra double points ete - Handle point doubling on EC
for their respective algorithm version. It is also implemented for fixed-size integers in the
ETE variant.

finalize loop and finalize loop ete - These are responsible for determining if any of the
instances found a result. It is also implemented for fixed-size integers in the ETE variant.

The class initializes the Metal functions and Pipeline States in its constructor. This action
can potentially produce a non-trivial overhead. Hence, the time between initialization and the
first result being returned may be slightly inflated with the time for setup that will not be present
on repeated factorization calls.

48 Paralellization using Metal API

5.5 Pollard’s Rho implementation on Metal
This section describes the implementation of Pollard’s Rho factorization algorithm for Metal API
in greater detail. The Pollard’s Rho implementation is contained within the MetalPRhoMT class
bound to a specific GPU device. As with MetalLenstraMT, the class has a public Factorize
method with the same parameters allowing to specify the number of instances, GPU, and CPU
threads and control the maximum number of attempts. The versions are:

V1 - The first version schedules a single kernel using a single Command buffer in a loop.
The MSL kernel differs from the V2. The kernel is monolithic. It performs all necessary
computations for one step of Pollard’s Rho and verifies if the conditions for finding a result
have been met. If so, it atomically writes the index of a thread within the grid that found
the result to a buffer.

V2 - The second version splits the monolithic kernel into smaller distinct calls for the com-
putation of g() with different parameters. There is also a loop finalizer kernel that verifies if
any of the threads found a result. If so, it performs the same atomic writes with thread grid
index as to where the result can be found.

V3 - Finally, the last version turns towards even more granular kernels, where each arithmetic
operation is performed in one kernel call. This was done in hopes of eliminating register
spillover that comes with more complex shaders and significantly impacts performance.

V4 - The fourth version adapts the V2 approach to utilize fixed size integers.

Compared to MetalLenstraMT, the versions do not differ in how Command buffers are treated
and committed in the code but rather in which MSL kernels are called. Either one monolithic
function or a chained series of simpler functions is used for more granular parts of the com-
putation. This variation has been considered to try to find a balance between any overheads
associated with launching a new kernel and kernel complexity, which can increase the register
pressure. Pollard’s Rho implementation is much simpler than the ECM implementation. The
following pseudo-code gives an illustration of the factorization.

Code listing 5.3 Pseudo-code of the implemented Pollard’s Rho factorization logic.
while (current_attempts < boundary && !solution)
{

// Each call to g() represents computation in parallel
X = g(X, a, n);
H = g(Y, a, n);
Y = g(H, a, n);
// gcd() is computed in parallel for each instance
d = gcd(|X - Y|, N);
if (d != 1)
{

solution = d
}
current_attempts++;

}

As a reminder, the function g(x, a, n) is computed as x2 + a mod n. As with the Lesntra
implementation, on instantiation, the class initializes all Metal functions and pipelines necessary
for the computation. Pollard’s Rho implementation is significantly shorter and simpler when
compared to the ECM implementation. The code contains significantly fewer operations, fewer
divergent branches, and a significantly smaller memory footprint. The implemented MSL kernels
are listed below:

Performance optimizations 49

pollards g - This function is responsible for calculating g(x, a) = x2 +a mod N and writing
the results. Also implemented for fixed-size integers.

pollards loop finalize - This function is called after every iteration of the algorithm; it
computes the gcd of the difference between x and y in absolute value. It then verifies if any
of the threads found a viable solution and atomically writes the threads index into the shared
variable. Also implemented for fixed-size integers.

prho inner loop - This function is utilized in the V1 version of the implementation. It
performs all necessary computations, such as multiple computations of g and loop finalization,
to complete one iteration in the algorithm within one kernel call.

Additional kernels are a group of wrapper functions around operations of the MAP library
necessary for the V3. They are not covered individually and are only responsible for gathering
the required parameters, instantiating local map int variables, calling the specific operation
(addition, multiplication, or modular reduction), and writing the results.

5.6 Performance optimizations
Due to the nature of the code and some of the optimizations being inter-weaved during devel-
opment, the exact measured impact, such as by how much speedup was achieved by individual
optimizations for various inputs, is limited and not provided for all mentioned modifications.
This is due to the inflexibility (and as a consequence of the considerable complexity this would
introduce) of the code to measure the effect of each optimization independently across multiple
algorithms and parameters. The impact may vary, either positively or negatively, for various
inputs. Different composite numbers, amount of parallel runs, and CPU threads may show
larger or smaller differences or indicate a negative direction. Consequently, the impact of some
modifications on the implementation cannot be fully estimated without considering many input
combinations. For simplicity, the observations and measurements presented in this section are
focused on 5,052,163,649,973,526,983,733 composite, a 73-bit number which poses a sufficient
challenge to evaluate performance impact while also being reasonably difficult to factor as to
shorten the needed data collections across various input and variants.

Additionally, this is being considered in an unstable code-base that was significantly refac-
tored multiple times. For more significant changes, separate, versioned implementations have
been introduced. In general, the observed implementations are heavily memory-dependent. An
example can be seen in figure 5.3 showing instruction costs for EC point doubling for fixed-size
integers. In dynamic-sized variants, the memory wait time can even reach a staggering 60%.
The biggest bottleneck is reading and writing from device memory and register spillover in the
Metal kernels. It appears consistently across both algorithms in all its versions. For example, the
point doubling in ETE ECM requires, in total, eleven different map ints for each thread. That
is, despite the variables being heavily reused in various stages of the computation. Assuming
a 32-bit MAP library, each number will require at least 12 bytes of local thread memory and
additional device memory, depending on the integer size. Considering 192-bit integers, this is an
extra 24 bytes per variable in device memory, which needs to be read and written to frequently
multiple times. This can quickly add up with hundreds or thousands of considered threads and
is heavily visible when profiling the applications.

One possible optimization, which was considered but eventually not implemented, was shader
pre-compilation. Pre-compiling the Metal shaders could save additional time, but this would
likely not yield considerable benefits. Profiling showed that the time is insignificant compared to
the overall run time and would likely not yield much noticeable benefit, especially when larger
factored numbers are considered. Finally, for compiler optimization, the implementation utilized
-Ofast for CPU code and -O2 for MSL (the highest possible setting for Metal).

50 Paralellization using Metal API

Figure 5.2 Profiling tool output for fixed size 16-bit ETE ECM variant.

5.6.1 Kernel modularity and interface
The MSL kernels mostly hit two bottlenecks. One is the very slow computation of modular
reduction, which takes up a significant portion of the total computation time and is generally
a costly operation. The second major bottleneck is the amount of memory and register usage
dedicated to the computational variables. The second is especially apparent in ECM, which
requires a larger amount of input over Pollard’s Rho. One of the most crucial performance-
impacting factors is the register spillover of shaders. This directly relates to the number of
registers needed to successfully run and complete a shader. During spillover, the registers required
by the shaders are greater than the number available.

In consequence, the insufficient number of available registers has to be compensated for by
utilizing the much higher-latency memory, introducing a significant performance decrease. One
of the optimizations was to make the kernel code less flexible and modular from a software
engineering perspective. This was done by reducing the number of input parameters. Initially,
the shaders followed a convention of the MAP library, which defined an output parameter rop and
function signature of f(rop, a, b), which effectively meant rop = f(a, b). In the algorithms, the
usage was such that the return parameter matched one of the inputs as a = f(a, b). Simplifying
the kernels and removing the rop value resulted in directly writing to a and fewer required
registers and a noticeable performance improvement. This, however, made the kernel less reusable
and generic.

5.6.2 Kernel complexity
The initial approach was to run a larger portion of the algorithm’s code within one kernel to
minimize the overheads of launching many kernels. However, for both algorithms, this increased
complexity significantly contributed to spillover from GPU registers to main memory. For this
reason, additional approaches with more granular kernels were considered. This granularity
can be easily seen in the different versions of Pollard’s Rho, which attempted to go from one
monolithic kernel to the granularity of a single arithmetic operation. Initially, ECM utilized a
single complex kernel to handle both EC point addition and doubling. Splitting this kernel from
one to two distinct kernels greatly improved performance. Reducing kernel complexity reduced
the pressure on registers, and an additional observed benefit was reduced L1 cache miss rate,
which on some occasions dropped to one-third, a very desirable outcome. For ECM, the benefits
were so clear that the original monolithic kernel approach was fully removed in all versions.
Unfortunately, spillover was not entirely eliminated.

It should be noted that further granularity, with further reduction in spillover, does not nec-
essarily yield benefits as there is additional overhead from scheduling more kernels or, depending
on the implementation, additional copies from and to global memory. One interesting observa-
tion is that the EC point addition is much more costly than doubling (which uses just one EC
point and, therefore, has a much smaller memory footprint). During profiling, point addition was
consistently limited by buffer reads during startup, much more significantly than the doubling
operation.

Performance optimizations 51

Figure 5.3 Runtime shader costs for 16-bit fixed size point doubling in ETE ECM.

5.6.3 Memory layout
Focusing on memory layout and caches, the way variables are stored in the map holders unsurpris-
ingly played a significant role in the performance of the code. The initial ECM implementation
naively relied on a layout in which the same variables (mainly EC point coordinates) were stored
close together, such as AAABBB for three parallel instances where each needs A and B. This
pattern was slightly easier to develop and use but had a significant performance cost, significantly
hurting data locality. Changing this pattern to ABABAB unsurprisingly improves the perfor-
mance as variables accessed by a thread executing a kernel are closer together. In some instances,
the measured kernel runtime is more than halved. This is a very significant but almost embar-
rassing optimization. An attempt could be made to provide full-stride storage of all considered
variables needed for one thread. Such as by holding all needed variables in a single holder class
in order as they are needed by the kernels, for example: Px0 , Py0 , Pz0 , Qx0 , Qy0 , Qz0 , a0, Px1 ,
In ECM, this was not explored and was limited to individual EC points.

5.6.4 Utilizing 16-bit GPU registers
Further, in hopes of reducing the register pressure, the implementation of the underlying MAP
library, as well as the algorithms, were changed to be more generic and allow for the use of
flexible limb size. In practice, this is limited to 32-bit and 16-bit limbs and can be specified
during compilation. This allows adjusting the size for the specific targeted platform and hopefully
improves performance. Since Apple GPUs utilize 16-bit registers, and using smaller data types
is encouraged [48], this was the size chosen for Metal implementation. The flexibility of the
compile-time switch allowed straightforward measurements to evaluate the usefulness of this
optimization. While spillover was reduced across kernels, this did not yield the desired benefits,
and the amount of time the shaders were waiting for memory has surprisingly increased.

It should be noted that using 16-bit limbs may reduce overall data usage, but this will also
nearly double the iterations needed for certain operations, which could outweigh the reduced
spillover. Unfortunately, while the 16-bit variants fared decently well, no significant positive
impact was observed on Metal. An interesting note is that while this outcome was disappointing
and unexpected for Metal, especially given the effort needed to refactor the MAP library and the
majority of the algorithm code, the effect of this was different on CUDA, which will be discussed
in later sections.

52 Paralellization using Metal API

5.6.5 Utilizing fixed-size large integers
As discussed earlier, there are technical difficulties in using dynamically sized arrays in thread
memory that disappear when fixed compile-time sized map int f is used. This move can poten-
tially help the compiler optimize the code, such as with loop unrolling. An additional impact of
using fixed-size map int f may be with the switch from device to thread address space. Ideally,
the kernel would load the data from slower device memory to faster, closer memory, perform a
set of operations, and, upon completion, write the results back. When observing this implemen-
tation, this change heavily increases memory spillover over dynamic versions. This suggests that
the used arrays spill out and that this scenario, unfortunately, did not occur.

Similarly to CUDA, certain conditions, such as dynamic indices, prevent arrays from being
stored in registers. [42] This likely means that the data remains in higher-latency memory, and
any performance benefits are due to other compiler optimizations. Previously, a single integer
variable required 12 bytes of thread memory and additional data in device address space. Now,
for a 192-bit integer, it is 8+24, slightly reducing the number of registers needed to store the
structs. All available MAP library functions for the GPU had to be adopted to use map int f
to implement this change. While this didn’t need any algorithmic changes to the code, it nearly
doubled the size of the library. Unfortunately, as with the 16/32-bit split, this optimization did
not deliver any significant improvement for the Metal implementation, but as was the case for
limb size, it was much more noticeable on CUDA. Given that this was not a successful endeavor,
one additional option could be considered. Keep the integer data in the device address space
and reduce the size of the structure by one-third by removing the length.

5.6.6 Modular reductions to reduce memory bottlenecks
One observation was the introduction of additional modular reductions to EC point addition
and doubling noticeably improved performance for observed numbers. This effect manifests in
between two bottlenecks. One is the memory usage, while the other is the number of computa-
tional operations. Larger number arithmetic takes longer, uses more memory, is less efficient with
cache, and is more likely to lead to register spillover. The other point is that modular reduction is
an incredibly costly operation, but with the result being a possibly much smaller number, using
it can bring benefits, such as if the result will be used in additional arithmetic operations. Those
arithmetic operations will need to perform fewer steps and require reading and writing less data.
To provide a simple example, assuming 16-bit limbs, when squared, the previously mentioned
73-bit number results in a 145-bit integer. This can increase the amount of accessed limbs from
5 to 9. In some observed cases, additional modular reductions could double the performance of
the implementation. The observed differences in the mean runtime can be seen in the 5.5 fig-
ure. This only emphasizes the significance of the observed memory bottleneck. Even increasing
computational complexity in hopes of reducing memory footprint was worthwhile. Introducing
additional modular reductions to the code reduces the memory footprint during the computation
and permits allocating less memory beforehand as the numbers appearing during stages of the
computation will be smaller. This, however, should not be considered a universal case appli-
cable to the factorization problem. Instead, it should be regarded as a step to address one of
the dominating bottlenecks in this implemented solution and its constraints. This effect likely
manifests itself because of inefficiencies in the solution. The MAP library modular reduction
is implemented inefficiently, and further effort into optimizing it would likely yield considerable
benefits. In addition, the MAP library could be extended to include optimized operations such
as modular exponentiation.

Performance optimizations 53

po
llar

ds_
rho

-1-
16

po
llar

ds_
rho

-1-
32

po
llar

ds_
rho

-2-
16

po
llar

ds_
rho

-2-
32

po
llar

ds_
rho

-3-
16

po
llar

ds_
rho

-3-
32

Method Version Bits

0

50

100

150

200

250

300

Ti
m

e

Pollard's Rho
Grid size

1024
2048
4096
8192
16384
32768
65536
131072
262144

len
str

a-1
-16

len
str

a-1
-32

len
str

a-2
-32

len
str

a_e
te-

1-1
6

len
str

a_e
te-

1-3
2

len
str

a_e
te-

2-1
6

len
str

a_e
te-

2-3
2

len
str

a_e
te-

3-1
6

len
str

a_e
te-

3-3
2

Method Version Bits

0

100

200

300

400

500

Ti
m

e

Lenstra and Lenstra ETE
Grid size

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144

Figure 5.4 Aggregated meantime for individual Metal variants. Capped at upper time limit.

54 Paralellization using Metal API

lenstra_ete-1-32 lenstra_ete-2-32 lenstra_ete-3-32
Method Version Bits

60

40

20

0

20

40

Ti
m

e

Mean time percentage impact for ECM
using additional modular reductions.

number
3460290975330649
5052163649973526983733

Figure 5.5 Percentage impact of additional modular reductions on the meantime.

5.6.7 Version and parameter performance impact
Given the extensive combination of possible parameters affecting performance and randomness
in the algorithms, determining which combinations are well-performing and which give unsat-
isfactory performance was challenging. The results are hardware-specific, but observing and
summarizing those will enable a more fair comparison of individual implementations described
in earlier sections. A sufficiently large data sample is needed to evaluate the impact of differ-
ent parameter combinations. For each number to be factored, each algorithm and each version,
various combinations of algorithm inputs, memory reserve for computational variables, number
of CPU threads, and number of instances per thread must be repeatedly measured to address
randomness. Discarding intermediate measurements during development, the full comparable
dataset contains ten thousand measurements. To properly evaluate the results, it was necessary
to reduce the impact of ”one-time” lucky results. This is necessary so that non-optimal parameter
choices are not considered among the best. This was achieved by considering only combinations
that successfully factored the composite number in most measurements and had to be measured
multiple times. The mean and median factoring time was taken across these measurements to
evaluate the best consistently performing parameter combinations. The conclusions were then
drawn from an upper sample of these candidate measurements.

Starting with CPU threads, the most successful choice has been 1 and 2 threads for both
algorithms. In the Metal implementation, there is a direct relationship between CPU threads
and grid size, as the texture widths limit the grid size associated with a single thread. In practice,
this sets a maximum of 4,096 curves per thread for ECM or 16,384 instances in Pollard’s Rho.
Looking at the impact of various grid sizes based on measurements and profiling, it seems that for
the considered hardware, there is an upper limit somewhere between 8,192 and 16,384 instances,
after which the performance starts to degrade sharply. Figure 5.2 shows occupancy and selected
limiters with 12,288 curves, showing high saturation. The fixed-size variants seemed to fare
better over dynamic-sized. Overall, the best results were offered by V3 ETE version. For both
algorithms, the best results could be seen with 2,048-4,096 grid sizes, 1 or 2 CPU threads,
and 32-bit limb size. With block threads, the observed differences were slight, with 32 and
64 showing the best results. Sizes smaller than 32 likely have no effect, and the API sets the
size to 32. In contrast, for larger sizes, there is an upper limit for individual shaders, and the

Summary 55

dimensions are automatically capped at the limit. Figure 5.4 shows a comparison of aggregated
results. Observing the different versions, it seems that the various methods of command buffer
submission did not have any significant impact on performance.

5.7 Summary
In this chapter, the structure and design of the algorithms for Apple Metal was described. The
differences and evolution of the implementation through various versions were outlined. This
was eventually finalized with notable attempted optimizations and their impact (or the lack of)
on the solution’s performance. Both algorithms have been successfully implemented for Apple
Metal utilizing the created MAP library. The implementations heavily suffered from memory
bottlenecks, which were, unfortunately, not overcome. While differences in configurations have
a significant impact on performance, the same cannot be said about individual versions of the
algorithms. This can largely be attributed to the same observed bottleneck, which overshadowed
other differences. By a narrow margin, the fixed-size variants were established as better than
the dynamic-sized ones.

56 Paralellization using Metal API

Chapter 6

Paralellization using CUDA

This chapter describes the implemented CUDA version and its differences and similarities with
the Metal implementation. Given that the implementation is similar and shares many of the
core concepts, the description in this chapter is less detailed and focuses more on differences.
As in the Metal section, the necessary functionality, such as storing arbitrary precision num-
bers and the underlying support for arithmetic and algorithmic operations, is discussed. This
is followed by a description of the implementation of the individual algorithms built on top of
the supporting code. Finally, the implementations are observed from a performance-oriented
perspective.

6.1 Arbitrary integer precision arithmetic on CUDA
As was discussed in previous chapters, there are several libraries for arbitrary precision arithmetic
on CUDA API, such as CGBN, CAMPARY, or those created within various theses. These
frequently seem to focus on paralleling the arithmetic operations themselves, and some, primarily
the latter, seem to lack support for more complex operations such as finding GCD, modular
reduction, or even division. While speeding up the individual computations of a single instance
of a factorization algorithm would undoubtedly be beneficial, this thesis attempts to run many
concurrent instances of the algorithm in parallel without thread cooperation, hoping to achieve
speedup with a greater number of instances and random starting points.

6.2 Storing arbitrary precision integers
The arbitrary precision integer representation and storage relies on the map int CPU-based
definition. The CPU definition differs from the Metal GPU definition, as can be seen in the Metal
API implementation section, by lacking a pointer address space specification. The CUDA API is
more flexible than the Metal API, allowing the CPU and GPU code to share the struct definitions.
Reusing the map int structure enables the implementations to share CPU functionality without
modification. What is more significant is that CUDA does not require distinct address spaces
to be defined. This theoretically allows an implementation in which various instances can utilize
different memory without the need to adjust the implementation of the library or dynamic
allocation. This offers an additional path for potential optimization, where heavily used variables
can be preferentially placed in faster memory (such as in on-chip shared). In contrast, lesser
utilized variables can remain slower in memory (global, local), essentially giving more influence
over potential spillover.

57

58 Paralellization using CUDA

6.3 Extending the Metal Arbitrary Precision library
The CUDA implementation relies on the underlying map int structure, so CPU-based functions
of the library can be shared without modification. However, the MetalArbitraryPrecisionHolder
class relies on Metal API-specific buffers and textures, which cannot be reused for CUDA.
This required a separate implementation adapted for CUDA. This led to a newly created
CUDAArbitraryPrecisionHolder class sharing a majority of its public interface with the Metal
version. However, instead of the underlying and publicly exposed storage being formed by Metal
Buffers, pointers of the specific type are exposed and can be directly passed to CUDA functions.
The allocated memory is allocated through cudaMallocManaged and allows access to the memory
for both the host and device code. Otherwise, the class offers the same functionality and serves
a similar role of owning a large number of related map int variables stored in a suitable format.
This concludes the modifications required for utilizing the library in the host section of the code.

For the library GPU functions, the differences are numerous but straightforward. An addi-
tional, separate definition and declaration of GPU functions is necessary and requires porting
from Metal Shading Language. This required creating a matching set of device functions and
removing address space specifications. To avoid conflict and easily distinguish between individual
function versions, the CUDA implementations have a prefix of cap for CUDA Arbitrary precision
instead of map for Metal. The potential conflict could be problematic, as the functions could
clash with the implemented CPU version.

Code listing 6.1 Comparison of MAP library CUDA and Metal variant function declarations.
// Metal:
bool map_copy(thread map_int & rop, thread const map_int & src);
// CUDA:
__device__ bool cap_copy(map_int & rop, const map_int & src);

The example above shows a simple function re-declaration from the Metal version to the
CUDA version. The process of porting the library was mostly simple but tedious, requiring
many but simple changes. One notable difference is in fixed functions (with f suffix). Metal
did not allow varying address spaces in one definition. Hence, all memory was declared in the
thread address space, and there was no need to pass helper variables in fixed-size function calls,
as they could be created locally, providing the same characteristics. For CUDA, this restriction
is not present, and this property of the dynamically sized functions was preserved. This gives
the kernel utilizing the library control over where each used variable is stored.

6.4 High-level principle of the CUDA implementations
The CUDA implementation is similar to Metal in many ways. The principles and patterns are
reused and modified to apply to CUDA. The implementation is processing a large number of
instances synchronously in parallel. This work can be split amongst multiple CPU threads,
each handling a set of synchronous instances in a one-dimensional grid, for which work is being
scheduled to the GPU. Each algorithm stage is handed off to a CUDA kernel and executed. Each
CPU thread continues to submit work, possibly in different stages, as each thread works with its
own CUDA stream until it reaches an upper boundary or a result is found in one of the threads.
The CUDA implementation does not have the same number of instances limitation as the Metal
implementation.

The code layout and structure of CUDA implementation match that of the Metal implemen-
tation, with minor adjustments. The created classes, naturally, have different internals matching
the used framework, but public-facing methods are equivalent in structure and usage. As CUDA
is a higher-level API over Metal, it does not require explicit encoding of parameters passed to
the GPU kernel, resulting in simpler code and faster development.

Lenstra implementation on CUDA 59

Code listing 6.2 CUDA Factorization class creation and usage.
CUDALenstra cuda_lenstra{};
cuda_lenstra.Factorize(...);

6.5 Lenstra implementation on CUDA
As mentioned before, the implementation is contained within a single class, in this
case, CUDALenstra, with an identical public interface as that of the Metal implementation (mainly
the Factorize and FactorizeETE methods). With CUDA, there is no need to work with Com-
mand buffers and their submission, and as a consequence, only one version of how the work is
scheduled to the GPU was implemented for both Weierstrass and ETE. The CUDA implemen-
tation offers only a single version for Weierstrass and two for ETE, for which both fixed and
dynamically sized options are available. The implementation relies on lower-level factorization
methods, which set up the needed resources such as CUDAArbitraryPrecisionHolders, which
depend on CUDA API to allocate managed memory. During the main computational phase,
only the GPU uses the memory, and potential results are only accessed by the CPU at the end
of the computation. This means memory transfers should not have a significant impact. Once
again, the flow of the algorithm is the same as on Metal. The algorithm starts by generating
all elliptic curves in a one-dimensional grid. The generation happens in parallel on the GPU us-
ing the parameter-specified method. The algorithm then enters the main computational phase,
where the points P and Q are added together and doubled, again done in parallel. Once the
loop is finished, the results are evaluated. If any instance finds a result, it is returned, and the
computation ends. With the Weierstrass version, there is a single CPU-based GCD computation
of the instance result and N, which is then returned. For ETE, there is no additional CPU
computation. The GPU portion of the code is defined within a list of kernels needed for each
stage of the algorithm.

initialize curves 3d - This kernel is responsible for initializing each instance for the Weier-
strass implementation. Before it is called a, px and py are set to a random number. Within
the kernel, it is verified if a valid elliptic curve can be formed. If not, it makes small adjust-
ments to the previously randomly generated inputs until it succeeds (or runs out of attempts
to do so). Once the kernel finishes, all instances will have elliptic curves to continue the
computation.

initialize curves 4d - Symmetrically to Weierstrass, the ETE version first sets Px and Py

randomly. These parameters are then used to verify a valid curve can be formed, making
adjustments if not. Finally, the last step in the kernel is to compute Pt given Px and Py and
set Pz to 1.

lenstra add points and lenstra add points ete - Handles point addition on EC for their
respective algorithm version.

lenstra double points and lenstra double points ete - Handles point doubling on EC
for their respective algorithm version.

The CUDA implementation does not need to initialize GPU kernels, pipelines, functions,
encoders, or command buffer objects, as was the case for Metal.

60 Paralellization using CUDA

6.6 Pollard’s Rho implementation on CUDA
Pollard’s Rho on CUDA has been implemented in three versions: the V1 and V2 match those
seen in the Metal chapter, approaching the problem with varying kernel complexity, the third V3
version structurally matches V2, utilizing smaller kernels adapted for fixed-size map int f. The
implementation is contained within a factorization class, offering the previously discussed public
interface and the ability to split the factorization across multiple CPU threads, each submitting
work to an independent CUDA stream. All versions share the parameterized initialization pro-
cess, which is modular but is implemented in a single variant. First, each CPU thread allocates
sufficient CUDA-managed memory. Parameters x and y of each instance are set to two, and a
is selected randomly. The differences in versions appear in the main computational loop and
whenever it is split into multiple, simpler kernels in consecutive calls or a single larger kernel. A
brief description of the individual kernels is given below:

pollards rho - Is a single cohesive kernel, offering one full algorithm iteration. It performs
three calls of g() and then computes the GCD to finalize the loop. If any of the GPU threads
finds a result, the threads index in the grid is written to a shared variable. This kernel is
associated with the V1 implementation.

pollards g - Is a simple kernel performing one calculation of g(). It consists of three MAP
library operations: multiplication, addition, and modular reduction. The kernel is available
in two forms for dynamic and fixed-size integers and is utilized by V2 and V3.

finalize loop - The loop finalization computes the difference of x and y, the GCD with n,
and writes the thread index if a result was found to a shared variable. The kernel is available
in two forms for dynamic and fixed-size integers and is utilized by V2 and V3.

6.7 Performance optimizations
It is clear that the Metal and CUDA implementations, beyond API differences, are very similar.
As such, many of the optimizations applied in Metal were carried over to the CUDA imple-
mentation. With the CUDA implementation being created after Metal, some of the mentioned
optimizations were already considered from the beginning. Hence, no estimate of their impact is
given. Briefly, the reduced number of input and output parameters for kernels (reduced modu-
larity) has been applied in CUDA. The same applies to the smaller kernels in Pollard’s Rho and
ECM. The same variable layout relying on memory locality has been used. The most notable
optimizations are the additional modular reductions and, more significantly, the utilization of
fixed-size integers. The details of which are discussed in the following sections. The compilation
flags used for the implementation can be seen in the listing below.

Code listing 6.3 Compilation flags used for CUDA variants.
-Xptxas -O3,-v --default-stream per-thread -gencode=arch=compute_89,code=sm_89

Note the default stream flag is set to per-thread, which is crucial for the implementation to
utilize CUDA streams correctly.

6.7.1 Modular reductions to reduce memory bottlenecks
in ECM

As for ETE ECM in Metal, additional modular reduction has been added to the EC point
addition and doubling operations. This has reduced the stress on memory and has brought
noticeable performance improvements. This has been consistently observed across measurements.

Performance optimizations 61

A figure 6.1 is given to visualize the performance improvements. The figure shows the relative
change in mean runtime across various parameter combinations (totaling around three thousand
total measurements). As was mentioned for this optimization in Metal implementation, this is
far from ideal, as additional expensive operations are performed and are likely only beneficial
because of the existing bottlenecks in the solution. Well-optimized operations, such as modular
exponentiation, would likely yield better results.

lenstra_ete-1-32 lenstra_ete-2-32
Method Version Bits

30

20

10

0

10

Ti
m

e

Mean time percentage impact for ECM
using additional modular reductions.

number
3460290975330649
5052163649973526983733

Figure 6.1 Mean time percentage change when additional modular reduction was applied.

6.7.2 Utilizing fixed-size large integers
The switch to a fixed size map int f integers has been much more successful on CUDA when
compared to Metal. The effect of this change can be observed in figure 6.2, which shows aggre-
gated results across versions. The implementation versions utilizing fixed-size integers dominate
over previous versions for both Pollard’s Rho and ECM. As in Metal, fixed-size arrays allow
the compiler to optimize better. While a very beneficial optimization, this likely did not signifi-
cantly impact memory utilization. The amount of spillover memory did not change compared to
non-fixed-size functions. This is not unexpected as CUDA utilizes registers for local arrays only
under particular conditions, such as when constant indices are used. [49]

6.7.3 Using shared memory for N
One attempted optimization on CUDA was to utilize shared memory in CUDA to reduce spills.
This optimization has been hinted at in preceding sections, which outlined the possibility of varied
address spaces. The factored number, or N as appearing in the code, is never written to and is
the same across all running instances. It is accessed multiple times in the kernels and frequently
appears in costly modular reductions. Moving this variable into shared memory could potentially
bring benefits. Not only is the stress on local memory reduced, but it allows utilizing the much
faster on-chip shared memory in critical regions of the code. The mechanism was implemented for
each thread block, where the first thread copies the passed value into a shared array. All threads
move on with the initialization of additional variables, after which they are all synchronized and
continue with the computation utilizing shared N. Unfortunately, this attempted optimization did

62 Paralellization using CUDA

po
llar

ds_
rho

-1-
32

po
llar

ds_
rho

-2-
32

po
llar

ds_
rho

-3-
16

po
llar

ds_
rho

-3-
32

Method Version Bits

0

20

40

60

80

100

Ti
m

e
Pollard's Rho

Grid Size
1024
4096
8192
16384
32768
65536
131072
262144

len
str

a-1
-16

len
str

a-1
-32

len
str

a_e
te-

1-1
6

len
str

a_e
te-

1-3
2

len
str

a_e
te-

2-1
6

len
str

a_e
te-

2-3
2

Method Version Bits

0

20

40

60

80

100

120

140

Ti
m

e

Lenstra and Lenstra ETE
Grid Size

1024
2048
4096
8192
16384
32768
65536
131072
262144
524288

Figure 6.2 Aggregated meantime for individual CUDA variants. Capped at upper time limit.

not deliver on the expectations and significantly decreased performance. Hence, it was removed.
This result did not improve even for larger thread counts sharing and reading N.

6.7.4 Using 16-bit word size
For Metal, there was a clear motivation to attempt to use 16-bit integers. It allowed more
granular storage needs and was directly supported by the hardware, and it is recommended as
a possible optimization path at a WWDC talk about Metal optimizations. [48] In CUDA, there
was no similar preconceived motivation. Still, with the implementation being built on the same
library, the property of choosing between 16 and 32-bit was also available essentially for free.
The interesting aspect is that the measured difference between the 16-bit and 32-bit seemed to
favor the 16-bit option. This varied across versions and was the least significant in the latest
fixed-size versions of both algorithms. During closer inspection, it was revealed that the 16-bit
variant used fewer registers, slightly reducing spillover and improving performance. It is worth
mentioning that the choice of 16 bits does not only impact the limb size but also a large number
of other variables appearing in the library operations.

6.7.5 Version and parameter performance impact
The CUDA implementation has the same number of input parameters, allowing tweaking the
number of curves, the number of trials, how they are distributed across CPU threads, what
effort should go into one curve trial, or how many threads should run in a block. Together with
multiple versions of the implementation, this brings in many combinations to measure. Overall,
it seems that the CPU thread count did not matter much. Instead, the size of the grid, which
indicates the total number of parallel instances, did. The best performing sizes seemed to be
16,384 and 32,768. While the observed differences were minor, 32-thread blocks seemed optimal.
There was a visible improvement when moving from smaller sizes up, but this improvement
stopped at 32, from 32 onwards there is a very slight degradation. With 1,024 thread blocks,
the implementation failed to produce results due to exhausting resources. This behavior can be
observed for 16-bit fixed-size ECM in the 6.3 figure. For ECM, the ETE variant outperformed
Weierstrass. The 16-bit variant seemed to dominate the 32-bit variant consistently across versions

Summary 63

for both algorithms. The fixed-size variants have consistently outperformed dynamic sizes. This
was the case even when carefully grouping the comparisons to match specified parameters. This
avoids wrongful conclusions when less favorable parameters would be measured more frequently
for specific variants influencing the aggregated mean. The observations were the same even when
comparing runtime in non-aggregated form over specific parameter combinations. However, this
is a much more convoluted and difficult-to-read format; hence, most of the visualizations present
show results in a more straightforward aggregated form.

1 8 16 32 64 128 256 512
Block threads

101

Ti
m

e

16-bit Lenstra ETE fixed-size
Grid size

1024
2048
4096
8192
16384
32768
65536

Figure 6.3 Mean time for various block thread sizes on 16-bit fixed ECM-ETE

6.8 Summary
This section described the structure of the CUDA implementation, and it emphasized the dif-
ferences and similarities with Metal and how different attempts to improve performance affected
the implementations. Both selected algorithms were implemented in multiple versions utilizing
the ported MAP library. As in Metal, the implementation greatly suffered from spillover and
memory bottlenecks. The fixed-size 16-bit variants seemed the best for both Pollard’s Rho and
Lenstra.

64 Paralellization using CUDA

Chapter 7

Results analysis

This chapter attempts to provide a comparison across various discussed and implemented
solutions. It strives to give more insight into the performance of the implementations and
differences observed across different platforms and approaches. It does so using several selected
composite numbers with two distinct prime factors.

7.1 Considerations for measurements
Comparing varying implementations across different platforms is challenging. As observed in
earlier chapters, the inherent randomness of the results complicates the evaluation. It is difficult
to separate lucky starting points from consistent performance, and the difficulty only increases
when, due to the nature of the implementations, different hardware needs to be considered. Due
to this nature, no striking conclusions can be made with good consciousness without careful
consideration. The first step is to select reasonable metrics for comparison. One useful metric is
the throughput of the implementation. This can be defined in various forms and is tied to the
algorithm. It can be the amount of distinct inner loops computed for Pollard’s Rho or the number
of finalized trials in the case of ECM. The problem is that the implementation needs to support
acquiring any throughput metrics. This is the case for most solutions and versions created in this
thesis. Unfortunately, such metrics are not always easily available for other solutions. For this
reason, comparison across solutions will still be dominated by runtime as a simple, consistently
available, and measurable metric. Additional comparisons will be made regarding scaling and
resource usage of individual solutions.

In this thesis, the implemented variants were the CPU-based sequential and OpenMP versions,
followed by CUDA and Apple Metal implementations. Additionally, notable widely available im-
plementations are considered for comparison, which will be briefly discussed in the following sec-
tions. The implementations will be compared across a variety of inputs and composite numbers,
but not all implementations are considered for all input numbers. This is due to the difficulty and
time requirements to gather a sufficiently large sample for evaluation. The considered composite
numbers all have two distinct prime factors and are listed below:

3,460,290,975,330,649 - 52 bits with 20 and 32-bit factors

5,052,163,649,973,526,983,733 - 73 bits with 37-bit factors

870,729,462,492,667,946,890,471 - 80 bits with 40-bit factors

410,008,714,444,926,584,643,751,636,103 - 99 bits with 49 and 50-bit factors

740,823,820,721,940,713,928,228,049,555,961 - 110 bits with 50 and 60-bit factors

65

66 Results analysis

1,070,868,838,929,384,612,779,308,083,256,678,872,73 - 127 bits with 64-bit factors

Since CUDA and Metal can not run on the same hardware, at least two different systems need
to be used for CUDA and Metal implementations. Two devices were used to measure the runtime
results. The first device was utilized for Metal and CPU-based computations and came with an
Apple M2 chip with 8 CPU (ARM) and GPU cores and 16 Gigabytes of unified memory. This
is, unfortunately, on the lower end of available Metal-capable hardware, possibly contributing
to some of the limitations encountered. The CUDA implementation has been measured on a
system with an Intel Xeon E5-2620 (x86-64) CPU, 32 GB operational memory, and NVIDIA
GeForce RTX 4070 Ti. When discussing specific GPU metrics, an additional NVIDIA GeForce
GTX 1650 GPU will be considered; this GPU provides similar performance to the M2 and allows
the collection of additional metrics that require elevated privileges on the host system.

7.2 MAP Library and GMP comparison
One of the key aspects of the performance of the individual GPU solutions is determined by
the performance of the MAP library. This section shows a simple exercise in which the GMP
library is compared against the MAP library for CUDA. It seeks to, at least partially, answer
the question of how many integer operations one needs to perform for the CUDA parallelism
and its overheads to be beneficial. This aspect could be studied in greater detail and will vary
across different operations and hardware or sizes of considered numbers. This section is mainly
for illustrative purposes and will be constrained to a few selected operations, one system, and
number sizes up to 20 32-bit limbs. The considered operations will be a single addition, three
chained additions, and a binary shift to the left. The considered operations are performance-wise
on the less costly side. Those will be observed for CUDA with fixed and dynamic-sized numbers
and compared to a sequentially running GMP. Each operation will be performed on distinct
numbers. It is likely a safe assumption that more complex operations, such as multiplication,
would show much less favorable results for the MAP library, as various GMP optimizations, such
as mixed usage of multiplication algorithm, would play a bigger role.

Figure 7.1 shows a growing number of operations performed compared to execution time for
CUDA and GMP to finish the total number of operations. It can be seen that launching a CUDA
kernel with MAP library started to yield benefits roughly between 4,096 and 8182 operations.
Interestingly, this dropped to around 1,024-2,048 operations for three chained additions. For
binary shift, which is a relatively simple operation, the boundary was again around 4,096. These
results show that a speedup over GMP is possible, although it requires a rather large number of
operations that can be parallelized to materialize.

7.3 CUDA and Metal implementation comparison
The GPU implementations have been restrained up to the 99-bit composite, which provided a
sufficient challenge for the implementations. From run time considerations, the CUDA imple-
mentation outperformed the Metal implementation. This is, however, as was mentioned observed
on different hardware due to API support. The overall measurements can be seen in 7.6 figure.
It can be seen that for the 52-bit input, CUDA had a somewhat higher latency. For Metal,
Pollard’s Rho implementation can be seen lagging behind other variants, while CUDA is keeping
pace much better but is outperformed in 73 and 80-bit inputs by ECM. Considering all GPU
variants, the best results were observed for ECM implementation on CUDA.

CUDA and Metal implementation comparison 67

1 8 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
92

70
4

count

10
5

10
4

10
3

10
2

10
1

10
0

E
xe

cu
tio

n
Ti

m
e

Execution Time vs. Number of additions (Log Scaled)

Method
cuda_dynamic
cuda_fixed
gmp

1 8 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
92

70
4

count

10
5

10
4

10
3

10
2

10
1

10
0

E
xe

cu
tio

n
Ti

m
e

Execution Time vs. Number of 3 chained additions (Log Scaled)

Method
cuda_dynamic
cuda_fixed
gmp

1 8 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
92

70
4

count

10
5

10
4

10
3

10
2

10
1

10
0

E
xe

cu
tio

n
Ti

m
e

Execution Time vs. Number of binary shifts left (Log Scaled)

Method
cuda_dynamic
cuda_fixed
gmp

Figure 7.1 Comparing time required for sequential GMP library operations vs CUDA MAP library
parallel operations.

68 Results analysis

For some measurements, the CUDA variant was run on two distinct GPUs. One was a less
performant NVIDIA GeForce GTX 1650, which delivered results similar to the M2 GPU. The
other was the previously mentioned higher-tier 4070 Ti, capable of handling more parallel in-
stances, delivering the best results around 16,384 and 32,768 grid sizes. At the same time, the
peak performance was substantially lower for Metal in 2,048 instances. If we recall the optimiza-
tion discussion from the CUDA chapter, it can also be noted that some noteworthy optimizations
have been more successful on CUDA. The CUDA implementation has been easier and faster to
implement and optimize, given it is a higher-level API with less convoluted mechanisms. An
additional benefit of CUDA is the widely available hardware that allows scaling far beyond what
was considered in this thesis. Rather than focusing on a raw runtime comparison, the focus
will be on what is perhaps a fairer comparison between the GPU implementations, which is the
utilization of resources they use to produce a result. Instead of comparing the results of the
CUDA and Metal implementation on matching parametrization, which considers different hard-
ware likely to have limited informational value, the implementations were compared at various
points where they displayed good performance. Figure 7.3 shows the mean execution time for
various grid sizes. It can seen that the minimum meantime is further for CUDA over Metal.

First, let’s observe Metal ECM V3 on the 80-bit composite number. On the 2,048 grid size,
the total occupancy is very low, around 10%. When moving toward 4,096, it nearly doubles, but
it becomes apparent that the solution is starting to see issues with cache utilization. For 8192,
the occupancy remains similar to 4,096 values, and again, the performance is limited by cache
utilization. For a change, if we observe V1 in 2,048, the prominent performance limiter is the
buffer read and write limiter. While cache plays a significant role, it seems to be less of a concern
compared to V3. The occupancy remained similar for both V1 and V3. The most interesting
observation is how cache seemed to play a more significant role for the fixed-size V3 variant.

For V1 Pollard’s Rho on Metal, the 2,048 grid size sees similar occupancy as in ECM, with
buffer reads and writes being the most significant limiter. However, for Pollard’s Rho, the oc-
cupancy grows up to 8,192 instances, reaching 26%, after which it stagnates. On composite
numbers of similar size, Pollard’s Rho implementation can achieve higher occupancy. Interest-
ingly, for V3, the occupancy at 8,192 is higher than on V1, reaching around 33%, but does not
grow further. The fixed-sized V4 struggled to grow beyond 20% occupancy for the 73-bit number
assuming six 32-bit limbs but did reach 30% when the fixed size was reduced to 3 limbs. For the
V1 and V3 versions, it seems that cache utilization was less of a bottleneck, with buffer read
and write bottlenecks being dominant. This was not the case for V4, as in fixed-size ECM.

Occupancy for CUDA will be observed on the NVIDIA GTX 1650 GPU. For V2 ECM on
CUDA, considering the 80-bit composite, the occupancy at 1,024 is around 5-7%, 2,048 is similar
as on Metal, around 10-13%, 4,096 sees around 30-40% and growth at 8,196 is limited with 40-
45% occupancy. For grid size above 8,196, the occupancy is between 40-50% and does not grow
beyond 50%. When considering V1 occupancy grows as 5-7%, 9-13%, 25-30%, 40-50% at 1,024,
2,048, 4,096 and 8,196 respectively, after which it stagnates at 40-50%. Finally, for Pollard’s
Rho, the V1 variant sees 5-7%, 10-13%, 17-23%, 25-35%, 35-45%, 45-50% for 1,024, 2,048, 4,096,
8,196 and 12,228. While for V2 it is 5-7%, 10-13%, 20-25%, 30-40%, 38-45%, after which it
struggles to grow further. For the CUDA variants, the limiter once again seems to be the cache
and memory reads and writes.

Interestingly, occupancy did not seem to vary with smaller or larger composite numbers in
most cases, with the exception of fixed-size ECM variants for Metal. For those, occupancy was
positively or negatively impacted by a smaller or larger size of the fixed map integers. This
effect was not observed for CUDA and dynamically sized variants. In the figure 7.2, it can be
observed that with a growing grid size, the runtime of a kernel is growing. For example, in V1,
the EC point doubling kernel at 1,024 instances could take around 16 ms and 60 ms for 4,096,
while for 32,768, it could be around 260 ms. On Metal, the point doubling for 1,024 instances
took around 11 ms but grew to 15 ms at 4,096. When observing the specific kernel (EC Point
doubling is the longest running kernel for ETE ECM), it is clear that the fixed-size variants

CPU and GPU implementation comparison 69

1024 2048 4096 8192 12288 16384 24576 32768
Grid Size

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Ti
m

e
di

vi
de

d
by

 g
rid

 si
ze

 (M
illi

se
co

nd
s)

Kernel Doubling time per instance
Variant

cuda-v2
cuda-v1
metal-v3
metal-v1

1024 2048 4096 8192 12288 16384 24576 32768
Grid Size

0

50

100

150

200

250

300

350

400

Ti
m

e
(M

illi
se

co
nd

s)

Kernel Performance Over Grid Size
Variant

cuda-v2
cuda-v1
metal-v3
metal-v1

Figure 7.2 Mean runtime and single instance time for ETE EC point doubling kernels over specific
grid sizes. Note that the Metal variant is limited to 4,096 due to texture width limitations.

outperformed dynamic sized on both Metal and CUDA and that overall fixed-size CUDA offered
the best performance.

To summarize, the CUDA variants were able to achieve higher occupancy compared to Metal,
and the growth continued further with a larger number of instances. This is aligned with the
observations in the 7.3 figure, where the minimum runtime for Metal was usually observed for
smaller grid sizes with Metal over both CUDA-capable GPUs. On Metal, Pollard’s Rho reached
higher occupancy than ECM, while on CUDA, both algorithms were able to approach 50%,
which was the theoretical limit. The mean runtime of computational kernels increased for both
variants as the number of instances grew, and CUDA seemed to offer better performance when
adjusting for grid size.

7.4 CPU and GPU implementation comparison
When observing the results for implemented variants as shown in figure 7.5, it is clear that the
GPU versions did not fare well against the CPU-based implementations, with only the CUDA
ECM variant being comparable but still coming off as slower. It is clear that the OpenMP-based
implementations performed the best and observed a speedup when compared with sequential
implementations. The GPU variants were held back by the sub-optimal arithmetic of the MAP
library, together with the observed memory-related bottlenecks. When comparing GMP and
MAP libraries, it was observed that for certain use cases, the MAP library could provide speedup.
This, however, did not materialize for the factorization algorithms. The factorization kernels
on the GPU were likely too complex, utilizing too many multi-precision variables, requiring
significant resources, and causing costly spillovers and inefficient memory access patterns, which
overshadowed any benefits gained from parallelization. It was observed that chained simpler
operations in kernels not suffering from the mentioned bottlenecks could improve performance.
Despite this, some parallelization speedup with greater grid sizes could be observed even on the
GPU.

It could be observed that the ECM on GPU could provide results faster for certain input
parameter choices when compared to CPU variants. This has been observed usually with low K
boundaries and a larger number of attempts. With this parametrization, the solutions generated
a large number of curves, tried minimal effort point multiplication with relatively small k, and
moved on to generate new curves and repeat the computation. However, this parametrization
was sub-optimal and did not result in the shortest observed run times. So, while the implemented
ECM on GPU could, in some cases, provide better results, choosing a better parametrization
was significantly preferred.

70 Results analysis

0

10

20

30

40

50

60

70

80
method

cuda_1650_lenstra_ete
metal_lenstra_ete
cuda_4070_ti_lenstra_ete

25
6

51
2

10
24

20

48

40
96

81

92

12
28

8

16
38

4

24
57

6

32
76

8

65
53

6

98
30

4

13
10

72

16
38

40

19
66

08

26
21

44

Grid size

0

25

50

75

100

125

150

175
method

cuda_4070_ti_pollards_rho
metal_pollards_rho
cuda_1650_pollards_rho

Execution Time vs. Grid Size

M
ea

n
ex

ec
ut

io
n

tim
e

Figure 7.3 Mean execution time for CUDA and Metal compared to grid size (fixed-size variants).
Shows particular configuration on 80-bit (ECM) numbers and 73-bit (Pollard’s Rho) numbers.

2048 4096 8192 12288 16384 24576 32768
grid_size

14000

16000

18000

20000

22000

M
ax

im
um

 R
SS

 K
B

Metal Maximum Resident Size in KB
method

metal_lenstra_ete_1
metal_lenstra_ete_3

1024 2048 4096 8192 12288 16384 24576 32768
grid_size

50000

100000

150000

200000

M
ax

im
um

 R
SS

 K
B

method
metal_pollards_rho_2
metal_pollards_rho_4

Figure 7.4 Growing maximum RSS for Metal variants on 80-bit composite input.

SymPy, PARI and GMP-ECM implementation 71

Method Mean Maximum Resident Set size in KB
CUDA Lenstra ETE 2 223301.02
CUDA Pollards Rho 3 222560.25
Sage PARI 191599.95
Sage GMP-ECM 191396.52
SymPy ECM 50712.57
SymPy Pollards Rho 50069.50
Metal Pollards Rho 4 49691.79
Metal Pollards Rho 2 49327.99
Metal Lenstra ETE 1 17409.77
Metal Lenstra ETE 3 17211.88
OpenMP Lenstra ETE 851.96
OpenMP Pollards Rho 851.96
Seq ECM-ETE 851.96
Seq Pollards Rho 851.96

Table 7.1 Measured mean maximum RSS for 80-bit composite input.

An additional metric that can be observed for the implemented solutions is the memory
utilization of each solution. Table 7.1 shows the mean observed maximum resident set size for
80-bit composite input across a variety of solutions. Given the scale of computation happening in
the GPU variants, it is unsurprising that the GPU variants consumed much more memory. For
Metal variants, growth in memory usage could be observed with increased grid sizes. This effect
can be observed in 7.4 figure. For CUDA and the considered grid sizes, this was not observed,
and even larger grid sizes did not result in larger maximum resident set sizes. By observing the
table, it can be seen that the CUDA variant required the most memory, followed by Sage and
SymPy, with Metal using, on average, less memory but being highly dependent on grid size. The
implemented CPU variants required the least amount of memory. For the GPU variants, there
was no large difference in memory usage for fixed and dynamic-sized variants. It should be noted
that using Sage likely introduced overheads into this consideration.

7.5 SymPy, PARI and GMP-ECM implementation
The accessible SymPy library was utilized to provide a very simple baseline for the problem.
Pollard’s Rho and Lenstra’s factorization algorithms implemented in SymPy have been wrapped
in code, allowing multiple concurrent processes. The implementation is simple, given that the
library abstracts away the main complexity. The code launches a desired number of processes
where each has a random starting point similar to the CPU implementation. The parent process
monitors whenever any factorization process has found a solution. If a result is found, the
processes are terminated, and the value is returned.

Additional existing implementations to consider are accessible through Sage. The motivation
to utilize Sage for additional comparison may not be immediately apparent, but doing so en-
ables comparison with complex and advanced implementations of PARI and GMP-ECM. That
is because Sage wraps around the PARI and GMP-ECM implementations mentioned in the the-
oretical section. Utilizing Sage provides some overhead over using the solutions directly but
significantly simplifies the process. Sage essentially functions as a high-level wrapper for both of
these solutions. While PARI contains Pollard’s Rho and ECM implementations, it doesn’t easily
allow the specification and limit the factorization to one such algorithm instead of using more
complex machinery to provide a solution. As the documentation claims, such a sophisticated
factoring mechanism is much faster than a plain ECM implementation. Regrettably, this leads to

72 Results analysis

10 3

10 2

10 1

100

101

102

tim
e platform-method

cuda-lenstra_ete
cpu-seq_pollards_rho
cpu-seq_lenstra_ete
cpu-omp_lenstra_ete
cpu-omp_pollards_rho

3460290975330649

5052163649973526983733

870729462492667946890471

410008714444926584643751636103

740823820721940713928228049555961

107086883892938461277930808325667887273
number

10 3

10 2

10 1

100

101

102

tim
e

platform-method
cuda-pollards_rho
cuda-lenstra_ete
metal-pollards_rho
metal-lenstra_ete

Execution Time vs. factored number for implemented variants

Figure 7.5 Shows log-scaled runtime comparison across implemented variants. The first plot shows
CPU variants together with CUDA ECM. The second plot shows all GPU variants together.

a relative comparison of overall solutions rather than implementations of the specific algorithms.
First, if we focus on runtime as observed in figures 7.6 and 7.8, it can be seen that the PARI

implementation delivers the most favorable results. This is followed by the OpenMP ECM and
GMP-ECM implementations. Overall, the GMP-ECM provides better results, but for example,
the 110-bit number of OpenMP V4 provided slightly better results. The OpenMP Pollard’s Rho
implementation was competitive for small composites but grew quickly with increasing composite
number bit-size. This is followed by CUDA ECM (which provided the best performance from
the implemented GPU solutions) and SymPy ECM variants, which produced similar results. In
summary, the only competitive solution for the composite numbers created in this thesis is the
GMP and OpenMP-based ECM. The GPU variants failed to provide satisfactory results.

In the next figure 7.7, the methods can be observed with normalized time and growing
composite size. A number of the previously observed plots made it difficult to estimate how the
methods scale with growing composite size. It can be observed that the fastest-growing method
is Pollard’s Rho on Metal, followed by its CUDA variant. The next steepest growth is observed
by the SymPy version of Pollard’s Rho, which is followed by the ECM Metal variant. As for the
sequential variants, Pollard’s Rho provides reasonable results up to the 30-digit input. As for
ECM, it has been measured up to the 40-digit input, where it significantly lagged behind the
parallel variants except for OpenMP Pollard’s Rho. The 33-digit composite, which corresponds
to the 110-bit number, contains the last measured value for the ECM variant on CUDA, after
which it grows significantly. The figure shows a rapid growth after the 33-digit composite for
OpenMP Pollard’s Rho, which performed the best out of the considered Pollard’s Rho variants
but takes significant time for larger inputs. Moving to the largest observed number, it can be
seen that SymPy ECM grows significantly. For this input size, the best results are from PARI,
followed by GMP-ECM, and finally, the OpenMP ECM variant. Since the figures and given
commentary might be difficult to follow, the mean runtime for the discussed variants can be

SymPy, PARI and GMP-ECM implementation 73

Composite decimal digits 16 22 24 30 33 39
Variant
Metal Pollard’s Rho 0.1904 25.9796 94.8169 NaN NaN NaN
CUDA Pollard’s Rho 1.0949 4.3833 23.2930 NaN NaN NaN
Metal ECM 0.2479 2.5923 5.9095 34.2284 NaN NaN
SymPy Pollard’s Rho 2.6743 1.2112 2.8055 52.5608 109.1900 NaN
CUDA ECM 1.1487 1.8910 2.4753 7.3132 12.4916 NaN
seq. Pollard’s Rho 0.0004 0.0509 0.1755 1.6418 15.1476 490.1100
SymPy ECM 0.6336 0.7694 0.8961 18.9876 8.9609 66.4750
OpenMP Pollard’s Rho 0.0004 0.0193 0.1149 3.8291 4.3721 391.9305
seq. ECM 0.0225 0.0576 0.0136 0.1291 2.8655 10.6502
OpenMP ECM 0.0009 0.0162 0.0543 0.0501 0.0167 1.5646
GMP-ECM 0.0081 0.0115 0.0106 0.0518 0.0409 0.2098
PARI 0.0025 0.0073 0.0055 0.0067 0.0089 0.0138
Table 7.2 Mean runtime across all solutions.

observed in 7.2.
Initially, there was an intention to compare the implementations to ecmongpu from [9], which

would provide compassion with existing CUDA implementation. Unfortunately, when compiling
the project for the system used in this thesis, the result was not fully functional, and a large
portion of the included tests were failing. Multi-precision arithmetic did not work properly. The
efforts to build the project correctly were unsuccessful. Since the project lacks documentation
about required library versions, CUDA computing, or any other requirements and limitations,
this effort was abandoned. In addition, the GMP-ECM solution offers the possibility of running
the first stage on the GPU; this required building from source, which eventually resulted in
compatibility issues with newer CUDA versions and the required CGBN library, which does not
have explicit support for the GPU architecture of the considered system. Shortly, the attempts
to enable GPU computations in GMP-ECM have been futile.

74 Results analysis

3460290975330649

5052163649973526983733

870729462492667946890471

410008714444926584643751636103

740823820721940713928228049555961

107086883892938461277930808325667887273
Numbers

10 3

10 2

10 1

100

101

102

Ex
ec

ut
io

n
Ti

m
e

Execution Time vs. factored number
sym-pollards_rho
cuda-lenstra_ete
sage-pari
sym-lenstra
cpu-omp_lenstra_ete
cpu-omp_pollards_rho
sage-ecm

Figure 7.6 Runtime comparison of selected, better-performing implementations

15 20 25 30 35 40
Composite number digits

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
- n

or
m

al
ize

d

Method scaling with growing composite size (Normalized)
platform-method
cuda-pollards_rho
sym-pollards_rho
cpu-omp_lenstra_ete
cuda-lenstra_ete
metal-lenstra_ete
sym-lenstra
metal-pollards_rho
cpu-seq_pollards_rho
cpu-seq_lenstra_ete
cpu-omp_pollards_rho
sage-pari
sage-ecm

Figure 7.7 Normalized mean runtime for growing composite size.

SymPy, PARI and GMP-ECM implementation 75

16 22 24 30 33 39
Composite number digits

10 3

10 2

10 1

100

101

102

103

Ti
m

e

Execution Time vs. factored number
platform-method
sym-pollards_rho
cpu-omp_lenstra_ete
cuda-lenstra_ete
sym-lenstra
cpu-omp_pollards_rho
sage-pari
sage-ecm

Figure 7.8 Log scaled mean runtime for growing composite size

76 Results analysis

Chapter 8

Conclusion

In this final short chapter, the overall results and measurements, as seen in this thesis, are
summarized. This chapter provides a reflection on the effort in this thesis and a brief dis-
cussion of the numerous shortcomings, potential improvements, and considerations for the
observed outcomes.

8.1 Outcomes

While the factorization algorithm implementations created in this thesis lag behind state-of-the-
art implementations, the feasibility of implementation on the Metal API, according to the best
knowledge at the time of writing of this thesis, has not been previously explored. Consequently, in
order to support the Metal implementation, a new arbitrary precision library has been created
for Metal, enabling various possibilities on Metal as no publicly available library would offer
such functionality. This library provides a comprehensive set of arithmetic operations and can
be utilized for purposes far beyond integer factorization, for which it is perhaps better suited.
It has been adapted to CUDA and offers a very similar interface for both APIs, potentially
simplifying cross-platform development requiring multi-precision arithmetic. The MAP library
is likely the most valuable product of this thesis.

While the OpenMP-based ECM implementation seemed competitive, it offers nothing special
over the more mature existing implementations. The GPU-based implementations were too
constrained with memory-related bottlenecks, which stemmed from conceptually flawed design.
While the previous chapter notes that the MAP library could provide speedup for use cases with
a smaller set of distinct variables, the considered factorization algorithms were not successfully
adapted to benefit from this.

In hindsight, the broad scope of this thesis was not beneficial. Realizing multiple implemen-
tations of two algorithms over multiple APIs requires significant time. The time consumption
is also relevant in prolonging measurements, maintaining the codebase, implementing optimiza-
tions, and keeping the algorithms consistent. Introducing an algorithmic change to improve
performance leads to either changing all existing CPU, Metal, and CUDA adaptations or leaving
the different versions inconsistent, neither of which is ideal. Overall, too much time was invested
into managing the complexity and variety of various solutions that could be used to further
optimize or redesign considered approaches.

In the previous chapter, the difference in implementation and their performance has been
observed, as for algorithmic comparison, it can be noted that Pollard’s Rho algorithm, which
has less overhead, performed well for small numbers, but with the size increasing, ECM quickly
overtook and provided better results. The runtime for Pollard’s Rho started to rapidly grow
around 73-80 bit for GPU variants, and 99-110 bit for CPU variants. For both GPU versions,

77

78 Conclusion

it could be observed that Pollard’s Rho could be run in greater number of concurrent instances.
This is not a surprising result, given the associated overheads.

8.2 Shortcomings
In general, the approach chosen for the GPUs has been largely disappointing. While feasible
and with potential speedup for specific parameter inputs, the observed issues did not make it
worthwhile over simpler CPU-based solutions that utilize the existing GMP library. The most
apparent shortcomings of the GPU versions are the memory-related bottlenecks. The solutions
were constrained by reading and writing to slow memory as the implementation struggled to
fit into and utilize faster on-chip memory. This was very taxing, given the very intensive reads
and writes performed by the MAP library during arithmetic operations. This issue is magnified
by the complexity of the GPU kernels, which is especially seen in the ECM implementations.
For less-complex kernels, this would be a significantly smaller issue, and as was observed during
various optimizations, even a small reduction in kernel complexity leads to large benefits in
performance.

Beyond this bottleneck, there remains a large amount of work in optimizing the MAP li-
brary. The library can not match existing libraries, such as GMP, for a majority of use cases
in complexity or speed. It lacks support for more complicated or performant algorithms for
arithmetic operations and is confined to simpler algorithms. The library could be largely im-
proved not just by introducing additional, potentially faster algorithms for operations such as
multiplication, modular reductions, GCD, or faster division but also by focusing on the code
aspect of the library. The later introduced fixed-size integers seemed to be a promising path
for further development. The library was extended to support fixed-size integers. Still, those
additions did not differ much from dynamic-sized code, definitely not using the full potential as
the code could be further transformed and optimized. One such direction could be to provide
operations for specific, fixed-sized inputs, such as the addition of 256, 512 or 1,024-bit integers.
This could potentially allow for greater optimization, such as explicit loop unrolling or moving
limb data to GPU registers, redefining the utilized structures and static indexing. All this is
extremely time-consuming but would likely yield benefits. As was consistently observed across
implementations (even those utilizing GMP), the arithmetic operations such as GCD or mod-
ular reduction were highly present in total computational time, making them good candidates
for further improvements. The MAP library currently fills a very specific niche. Extending it
to include parallelized cooperative multi-precision arithmetic (bringing it closer to the existing
CGBN library) could be a different path for the library and would allow for greater usability.

One additional optimization could be made by further changing the memory pattern of the
variables in GPU implementations. For ECM, the pattern for storing EC points was changed
so that the coordinates of the points were stored closer together. This was not the case for
other variables. For example, the variables X, Y, and A are accessed in Pollard’s Rho in close
proximity but are being stored in different Holder classes and, hence, in different sections of
allocated memory, which may be stored far apart. There could be a benefit in a more strided
storage approach, as could be seen in [9].

The wide scope of the thesis made it difficult to focus on different algorithmic aspects, which
should, without a doubt, improve performance. Instead, the thesis focused on the computational
aspect of things. One such example is relying on the simple right-to-left point multiplication
method, while other, potentially faster methods were not explored. An additional focus could
be on the algorithms themselves. In ECM, this only materialized by introducing the ETE
variant. One such case could be a less naive generation of elliptic curves, which remained very
unsophisticated in the implementations.

Appendix A

Selected algorithms for
multi-precision arithmetic

This chapter showcases selected algorithms as utilized and implemented in the MAP library.
The purpose of the chapter is to provide some insight into the algorithms used for multi-
precision or arbitrary precision integer arithmetic.

A.1 Considerations for the selected algorithms

The shown algorithms are simplified and lack steps such as input validation or memory alloca-
tions, or other, implementation-dependant specificities or syntax. This has been done to provide
a more straightforward presentation of the core aspects of the algorithms. In previous chapters
the map int structure was frequently mentioned. For the descriptive purposes of this chapter, an
additional, simpler mp int struct will be defined as shown below and referred to as an ap int:

typedef struct {
int used;
int alloc;
int sign;
uint * dp;

} ap_int;

This struct will be used in the pseudo-code describing the core algorithms for multi-precision
computations. Note that this chapter contains a small selection of algorithms, to get a more com-
plete and detailed overview, please refer to the Multi-Precision Math [11], Handbook of Applied
Cryptography [13] or LibTomMath [14] documentation which served as sources for the imple-
mented and discussed algorithms.

A.2 Addition and subtraction

First algorithms to be discussed are the addition and subtraction, which are conceptually similar.
The computational burden is on low-level addition and subtraction functions that require positive
integer inputs. These functions are where the actual computation occurs, and it is up to the high-
level addition and subtraction functions to correctly utilize and decide which low-level function
to use, depending on the size and signs of the inputs. The pseudo-code of the low-level addition
is as described in Multi-Precision Math [11] and can be seen in the 3, 4 algorithms, respectively.

79

80 Selected algorithms for multi-precision arithmetic

Algorithm 3 Low-level addition
Require: Two ap ints a and b
Ensure: The unsigned addition c = |a|+ |b|

1: old.used← c.used
2: c.used← max(a.used, b.used) + 1
3: u← 0
4: if a.used > b.used then
5: min← b.used
6: max← a.used
7: x← a
8: else
9: min← a.used

10: max← b.used
11: x← b
12: end if
13: for n = 0 to min− 1 do
14: cn ← an + bn + u
15: u← ⌊cn/β⌋
16: cn ← cn mod β
17: end for
18: if min ̸= max then
19: for n = min to max− 1 do
20: cn ← xn + u
21: u← ⌊cn/β⌋
22: cn ← cn mod β
23: end for
24: end if
25: cmax ← u
26: if old.used > max then
27: for n = max + 1 to old.used− 1 do
28: cn ← 0
29: end for
30: end if
31: Clamp excess digits in c

Addition and subtraction 81

Algorithm 4 Low-level subtraction
Require: Two ap ints a and b
Ensure: The unsigned subtraction c = |a|+ |b|

1: min← b.used
2: max← a.used
3: old.used← c.used
4: c.used← max
5: u← 0
6: for n from 0 to min− 1 do
7: cn ← an − bn − u
8: u← cn ≫ (γ − 1)
9: cn ← cn mod β

10: end for
11: if min < max then
12: for n from min to max− 1 do
13: cn ← an − u
14: u← cn ≫ (γ − 1)
15: cn ← cn mod β
16: end for
17: end if
18: if old.used > max then
19: for n from max to old.used− 1 do
20: cn ← 0
21: end for
22: end if
23: Clamp excess digits of c.

82 Selected algorithms for multi-precision arithmetic

A.3 Greatest common divisor and extended greatest com-
mon divisor

The algorithms utilized for GCD and extended GCD computation in this thesis were the Binary
GCD and Binary Extended GCD algorithms as shown in Handbook of Applied Cryptography [13].
They require positive arbitrary-sized integer inputs and returns their greatest common divisor.
The outline of Binary GCD is shown in 5, while Binary Extended GCD can be seen in 6.

A.4 Multiplication and division by two

The last shown algorithms are the division and multiplication by two, those can be seen in the
7 and 8 algorithms. Those are less complicated than multiplication between two multi-precision
integers, or a multiplication of an multi-precision and standard integer.

Algorithm 5 Binary GCD
Require: Positive ap integers x and y with x ≥ y.
Ensure: gcd(x, y).

1: g ← 1
2: while x and y are even do
3: x← x/2
4: y ← y/2
5: g ← 2g
6: end while
7: while x ̸= 0 do
8: while x is even do
9: x← x/2

10: end while
11: while y is even do
12: y ← y/2
13: end while
14: t← |x− y|/2
15: if x ≥ y then
16: x← t
17: else
18: y ← t
19: end if
20: end while
21: return (g · y)

Multiplication and division by two 83

Algorithm 6 Binary Extended GCD Algorithm
Require: Positive ap integers x and y with x ≥ y.
Ensure: a, b, gcd(x, y).

1: g ← 1
2: while x and y are even do
3: x← x/2
4: y ← y/2
5: g ← 2g
6: end while
7: u← x, v ← y, A← 1, B ← 0, C ← 0, D ← 1
8: while u is even do
9: u← u/2

10: if A ≡ B ≡ 0 (mod 2) then
11: A← A/2
12: B ← B/2
13: else
14: A← (A + y)/2
15: B ← (B − x)/2
16: end if
17: end while
18: while v is even do
19: v ← v/2
20: if C ≡ D ≡ 0 (mod 2) then
21: C ← C/2
22: D ← D/2
23: else
24: C ← (C + y)/2
25: D ← (D − x)/2
26: end if
27: end while
28: while u ̸= 0 do
29: if u ≥ v then
30: u← u− v
31: A← A− C
32: B ← B −D
33: else
34: v ← v − u
35: C ← C −A
36: D ← D −B
37: end if
38: end while
39: a← C, b← D
40: return (a, b, g · v)
41:

84 Selected algorithms for multi-precision arithmetic

Algorithm 7 Multiplication by two
Require: ap int a
Ensure: b = 2a

1: old.used← b.used
2: b.used← a.used
3: r ← 0
4: for n from 0 to a.used− 1 do
5: rr ← an >> (lg(β)− 1)
6: bn ← (an << 1) + r mod β
7: r ← rr

8: end for
9: if r ̸= 0 then

10: b.used + 1← r
11: b.used← b.used + 1
12: end if
13: if b.used < old.used− 1 then
14: for n from b.used to old.used− 1 do
15: bn ← 0
16: end for
17: end if
18: b.sign← a.sign

Algorithm 8 Division by two
Require: ap int a
Ensure: b = a/2

1: old.used← b.used
2: b.used← a.used
3: r ← 0
4: for n from b.used− 1 to 0 do
5: rr ← an mod 2
6: bn ← (an ≫ 1) + (r ≪ (lg(β)− 1)) mod β
7: r ← rr

8: end for
9: if b.used < old.used− 1 then

10: for n from b.used to old.used− 1 do
11: bn ← 0
12: end for
13: end if
14: b.sign← a.sign
15: Clamp excess digits of b.

Bibliography

1. BRENT, Richard P. Some Parallel Algorithms for Integer Factorisation. In: AMESTOY,
Patrick; BERGER, Philippe; DAYDÉ, Michel; RUIZ, Daniel; DUFF, Iain; FRAYSSÉ,
Valérie; GIRAUD, Luc (eds.). Euro-Par’99 Parallel Processing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 1–22. isbn 978-3-540-48311-3.

2. LENSTRA JR, Hendrik W. Factoring integers with elliptic curves. Annals of mathematics.
1987, pp. 649–673.

3. GÉLIN, Alexandre; KLEINJUNG, Thorsten; LENSTRA, Arjen. Parametrizations for Fam-
ilies of ECM-Friendly Curves. In: 2017, pp. 165–171. isbn 978-1-4503-5064-8. Available from
doi: 10.1145/3087604.3087606.

4. HANKERSON, Darrel; MENEZES, Alfred J; VANSTONE, Scott. Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

5. BERNSTEIN, Daniel J.; BIRKNER, Peter; LANGE, Tanja; PETERS, Christiane. ECM
using Edwards curves [Cryptology ePrint Archive, Paper 2008/016]. 2008. Available also
from: https://eprint.iacr.org/2008/016. https://eprint.iacr.org/2008/016.

6. BERNSTEIN, Daniel J.; BIRKNER, Peter; JOYE, Marc; LANGE, Tanja; PETERS, Chris-
tiane. Twisted Edwards Curves. In: VAUDENAY, Serge (ed.). Progress in Cryptology –
AFRICACRYPT 2008. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 389–405.
isbn 978-3-540-68164-9.

7. PARKER, DANIEL. Elliptic curves and Lenstra’s factorization algorithm. University of
Chicago: REU. 2014, vol. 2014.

8. HISIL, Huseyin; WONG, Kenneth Koon-Ho; CARTER, Gary; DAWSON, Ed. Twisted Ed-
wards curves revisited. In: Advances in Cryptology-ASIACRYPT 2008: 14th International
Conference on the Theory and Application of Cryptology and Information Security, Mel-
bourne, Australia, December 7-11, 2008. Proceedings 14. Springer, 2008, pp. 326–343.

9. WLOKA, Jonas; RICHTER-BROCKMANN, Jan; STAHLKE, Colin; KLEINJUNG, Thorsten;
PRIPLATA, Christine; GÜNEYSU, Tim. Revisiting ECM on GPUs. In: Cryptology and
Network Security: 19th International Conference, CANS 2020, Vienna, Austria, December
14–16, 2020, Proceedings 19. Springer, 2020, pp. 299–319.

10. POLLARD, John M. A Monte Carlo method for factorization, BIT 15 (1975), 331–334.
MR. [N.d.], vol. 52, p. 13611.

11. ST DENIS, Tom; RASMUSSEN, Mads; ROSE, Greg. Multi-Precision Math. Open Com-
munications Security, QUALCOMM Australia, 2006.

12. TEAM, The GMP Development. Integer Internals [https://gmplib.org/manual/Integer-
Internals.html]. 2021. Accessed: March 25, 2023.

85

https://doi.org/10.1145/3087604.3087606
https://eprint.iacr.org/2008/016
https://eprint.iacr.org/2008/016
https://gmplib.org/manual/Integer-Internals.html
https://gmplib.org/manual/Integer-Internals.html

86 Bibliography

13. MENEZES, A.; OORSCHOT, P. van; VANSTONE, S. Handbook of Applied Cryptography.
CRC Press, 1996.

14. PROJECTS, LibTom. LibTomMath: a free open source portable number theoretic multiple-
precision integer (MPI) library [https://github.com/libtom/libtommath]. 2021. Ac-
cessed: March 25, 2023.

15. TEAM, The GMP Development. GMP Contributors [https : / / gmplib . org / manual /
Contributors.html]. 2021. Accessed: March 25, 2023.

16. TEAM, The GMP Development. GMP MP Manual [https://gmplib.org/gmp- man-
6.1.0.pdf]. 2015. Accessed: Nov 20, 2023.

17. PARI/GP version 2.13.4. Univ. Bordeaux: The PARI Group, 2022. available from http:
//pari.math.u-bordeaux.fr/.

18. ZIMMERMANN Paul / ecm · GitLab — gitlab.inria.fr [https://gitlab.inria.fr/
zimmerma/ecm]. [N.d.]. [Accessed 21-11-2023].

19. NVLABS. CGBN: CUDA Multi-Precision Integer Arithmetic [https : / / github . com /
NVlabs/CGBN]. accessed March 14, 2023.

20. MEURER, Aaron; SMITH, Christopher P.; PAPROCKI, Mateusz; ČERTÍK, Ondřej; KIR-
PICHEV, Sergey B.; ROCKLIN, Matthew; KUMAR, AMiT; IVANOV, Sergiu; MOORE,
Jason K.; SINGH, Sartaj; RATHNAYAKE, Thilina; VIG, Sean; GRANGER, Brian E.;
MULLER, Richard P.; BONAZZI, Francesco; GUPTA, Harsh; VATS, Shivam; JOHANS-
SON, Fredrik; PEDREGOSA, Fabian; CURRY, Matthew J.; TERREL, Andy R.; ROUČKA,
Štěpán; SABOO, Ashutosh; FERNANDO, Isuru; KULAL, Sumith; CIMRMAN, Robert;
SCOPATZ, Anthony. SymPy: symbolic computing in Python. PeerJ Computer Science.
2017, vol. 3, e103. issn 2376-5992. Available from doi: 10.7717/peerj-cs.103.

21. Number Theory - SymPy 1.12 documentation — docs.sympy.org [https://docs.sympy.
org/latest/modules/ntheory.html]. [N.d.]. [Accessed 21-11-2023].

22. OPENMP ARCHITECTURE REVIEW BOARD. OpenMP [https://www.openmp.org].
Accessed on March 24, 2023.

23. OPENMP ARCHITECTURE REVIEW BOARD. OpenMP API Specification and Refer-
ence Guide [https://www.openmp.org/wp- content/uploads/OpenMPRefCard- 5- 2-
web.pdf]. 2021.

24. PHARR, Matt; FERNANDO, Randima. General-Purpose Computation on GPUs: A Primer
[https://developer.nvidia.com/gpugems/gpugems2/part- iv- general- purpose-
computation-gpus-primer]. 2005. [Online; accessed 25-Mar-2023].

25. NVIDIA CORPORATION. NVIDIA TensorFlow [https://www.nvidia.com/en- sg/
data-center/gpu-accelerated-applications/tensorflow/]. 2021. Accessed on March
26, 2023.

26. APPLE INC. Metal Feature Set Tables [https://developer.apple.com/metal/Metal-
Feature-Set-Tables.pdf]. 2021. Accessed on March 26, 2023.

27. LU, Mian; HE, Bingsheng; LUO, Qiong. Supporting Extended Precision on Graphics Pro-
cessors. In: Proceedings of the Sixth International Workshop on Data Management on New
Hardware. Indianapolis, Indiana: ACM, 2010, pp. 19–26. DaMoN ’10. isbn 978-1-4503-0189-
3. Available from doi: 10.1145/1869389.1869392.

28. LANGER, Bernhard. Arbitrary-Precision Arithmetics on the GPU. 2017. Bachelor’s Thesis.
Vienna University of Technology. Supervised by Thomas AUZINGER.

29. PETROUS, Petr. Accelerating Modular Arithmetic on the GPU [https://dspace.cvut.
cz / bitstream / handle / 10467 / 65185 / F8 - DP - 2016 - Petrous - Petr - thesis . pdf ?
sequence=1&isAllowed=y]. Prague, Czech Republic, 2016.

https://github.com/libtom/libtommath
https://gmplib.org/manual/Contributors.html
https://gmplib.org/manual/Contributors.html
https://gmplib.org/gmp-man-6.1.0.pdf
https://gmplib.org/gmp-man-6.1.0.pdf
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://gitlab.inria.fr/zimmerma/ecm
https://gitlab.inria.fr/zimmerma/ecm
https://github.com/NVlabs/CGBN
https://github.com/NVlabs/CGBN
https://doi.org/10.7717/peerj-cs.103
https://docs.sympy.org/latest/modules/ntheory.html
https://docs.sympy.org/latest/modules/ntheory.html
https://www.openmp.org
https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5-2-web.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5-2-web.pdf
https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer
https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/tensorflow/
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/tensorflow/
https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
https://doi.org/10.1145/1869389.1869392
https://dspace.cvut.cz/bitstream/handle/10467/65185/F8-DP-2016-Petrous-Petr-thesis.pdf?sequence=1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/65185/F8-DP-2016-Petrous-Petr-thesis.pdf?sequence=1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/65185/F8-DP-2016-Petrous-Petr-thesis.pdf?sequence=1&isAllowed=y

Bibliography 87

30. HARRIS, Mark. GPU Flow Control Idioms. In: PHARR, Matt (ed.). GPU Gems 2 [https:
//developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-
gpus-primer/chapter-34-gpu-flow-control-idioms]. Addison-Wesley, 2005, chap. 34,
pp. 609–622. isbn 0-321-33559-7. Accessed on March 26, 2023.

31. NVIDIA CORPORATION. CUDA C Programming Guide. NVIDIA Corporation, 2022.
Available also from: https://docs.nvidia.com/cuda/cuda- c- programming- guide/
index.html.

32. NVIDIA CORPORATION. Volta Architecture Whitepaper [https : / / images . nvidia .
com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf]. 2017.
Accessed on March 26, 2023.

33. Inside Volta: The World’s Most Advanced Data Center GPU — NVIDIA Technical Blog
— developer.nvidia.com [https://developer.nvidia.com/blog/inside-volta/]. [N.d.].
[Accessed 23-11-2023].

34. INC., Apple. Creating Threads and Threadgroups [https : / / developer . apple . com /
documentation/metal/compute_passes/creating_threads_and_threadgroups?language=
objc]. 2021. [Online; accessed 14 March 2023].

35. CORPORATION, NVIDIA. CUDA C Best Practices Guide [https://docs.nvidia.com/cuda/cuda-
c-best-practices-guide/index.html]. 2021. Accessed on March 29, 2023.

36. STEVE RENNICH, NVIDIA. CUDA C/C++ Streams and Concurrency [https://developer.
download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf]. [N.d.].
[Accessed 23-11-2023].

37. INC., Apple. Metal [https://developer.apple.com/documentation/metal?language=
objc]. 2021. [Online; accessed 14 March 2023].

38. INC., Apple. Metal Shading Language Specification [https://developer.apple.com/
metal/Metal-Shading-Language-Specification.pdf]. 2021. [Online; accessed 14 March
2023].

39. INC., Apple. Performing Calculations on a GPU [https : / / developer . apple . com /
documentation/metal/performing_calculations_on_a_gpu?language=objc]. 2021.
[Online; accessed 14 March 2023].

40. APPLE INC. Metal for C++ [https : / / developer . apple . com / metal / cpp/]. [N.d.].
[Accessed: March 14, 2023].

41. Optimize Metal Performance for Apple silicon Macs - WWDC20 - Videos - Apple Developer
— developer.apple.com [https://developer.apple.com/videos/play/wwdc2020/10632/
?time=2420]. [N.d.]. [Accessed 23-11-2023].

42. INC., Apple. Metal Compute on MacBook Pro [Online video]. Apple Inc., 2019. Available
also from: https://developer.apple.com/videos/play/tech-talks/10580.

43. Scale compute workloads across Apple GPUs. Apple Inc., 2022. Available also from: https:
//developer.apple.com/videos/play/wwdc2022/10159/. Accessed on March 28, 2023.

44. INC., Apple. Setting Up a Command Structure [https://developer.apple.com/documentation/
metal / gpu _ devices _ and _ work _ submission / setting _ up _ a _ command _ structure ?
language=objc]. Apple Inc., accessed March 14, 2023.

45. DVORAK, Jakub. Faktorizace pomoćı eliptických křivek [https : / / dspace . cvut . cz /
bitstream/handle/10467/92951/F8-DP-2021-Dvorak-Jakub-thesis.pdf?sequence=-
1&isAllowed=y]. 2021. Master’s thesis, Czech Technical University in Prague.

46. VICTOR, Youssef. Loki Random Number Generator. 2017. Available also from: https:
//github.com/YoussefV/Loki.

https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer/chapter-34-gpu-flow-control-idioms
https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer/chapter-34-gpu-flow-control-idioms
https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer/chapter-34-gpu-flow-control-idioms
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://developer.nvidia.com/blog/inside-volta/
https://developer.apple.com/documentation/metal/compute_passes/creating_threads_and_threadgroups?language=objc
https://developer.apple.com/documentation/metal/compute_passes/creating_threads_and_threadgroups?language=objc
https://developer.apple.com/documentation/metal/compute_passes/creating_threads_and_threadgroups?language=objc
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.apple.com/documentation/metal?language=objc
https://developer.apple.com/documentation/metal?language=objc
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
https://developer.apple.com/metal/cpp/
https://developer.apple.com/videos/play/wwdc2020/10632/?time=2420
https://developer.apple.com/videos/play/wwdc2020/10632/?time=2420
https://developer.apple.com/videos/play/tech-talks/10580
https://developer.apple.com/videos/play/wwdc2022/10159/
https://developer.apple.com/videos/play/wwdc2022/10159/
https://developer.apple.com/documentation/metal/gpu_devices_and_work_submission/setting_up_a_command_structure?language=objc
https://developer.apple.com/documentation/metal/gpu_devices_and_work_submission/setting_up_a_command_structure?language=objc
https://developer.apple.com/documentation/metal/gpu_devices_and_work_submission/setting_up_a_command_structure?language=objc
https://dspace.cvut.cz/bitstream/handle/10467/92951/F8-DP-2021-Dvorak-Jakub-thesis.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/92951/F8-DP-2021-Dvorak-Jakub-thesis.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/92951/F8-DP-2021-Dvorak-Jakub-thesis.pdf?sequence=-1&isAllowed=y
https://github.com/YoussefV/Loki
https://github.com/YoussefV/Loki

88 Bibliography

47. MOHANTY, Siddhant; MOHANTY, A K; CARMINATI, F. Efficient pseudo-random num-
ber generation for monte-carlo simulations using graphic processors. Journal of Physics:
Conference Series. 2012, vol. 368, no. 1, p. 012024. Available from doi: 10.1088/1742-
6596/368/1/012024.

48. APPLE INC. Advanced Metal Shader Optimization. 2016. Available also from: https://
developer.apple.com/videos/play/wwdc2016/606/. Accessed on November 3, 2023.

49. MICIKEVICIUS, Paulius. Local Memory and Register Spilling. 2011. Tech. rep. NVIDIA.
Available also from: https : / / developer . download . nvidia . com / CUDA / training /
register_spilling.pdf.

https://doi.org/10.1088/1742-6596/368/1/012024
https://doi.org/10.1088/1742-6596/368/1/012024
https://developer.apple.com/videos/play/wwdc2016/606/
https://developer.apple.com/videos/play/wwdc2016/606/
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

Contents of enclosed CD

thesis.pdf .. Thesis text PDF
source...Source code and measured data

89

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Algorithms
	Lenstra Elliptic curve factorization
	Elliptic curves
	Elliptic curve groups
	Scalar multiplication on Elliptic curves
	Lenstra’s elliptic curve algorithm

	Pollard's Rho
	Arbitrary precision integers
	The GNU Multiple-Precision Arithmetic Library and LibTomMath
	Existing implementations and approaches
	Revisiting ECM on GPUs
	PARI and GMP-ECM
	Symbolic computing in Python

	Parallelization
	OpenMP Library
	General Purpose computing on the GPU
	Arbitrary precision arithmetic on GPU
	GPU Flow-Control and divergence

	NVIDIA CUDA
	CUDA Kernels
	Threads, blocks, and grids
	Device and Host memory transfers
	CUDA Memory Hierarchy
	CUDA Streams

	Apple Metal
	Metal Shading Language
	Metal-cpp
	Metal Data Types
	Address spaces
	Thread grids and Thread groups
	Metal work submission
	Apple GPUs

	Sequential and OpenMP implementations
	Sequential implementations
	Pollard's Rho
	Lenstra's Factorization

	OpenMP based implementation
	Lenstra’s Factorization
	Pollard's Rho

	CPU Versions comparison
	Comparison

	Measurement summary
	Profiling the CPU implementation
	Summary

	Multi-precision integer arithmetic on Apple Metal
	Metal Arbitrary Precision library
	Storing arbitrary precision integers
	Memory allocation limitations in Apple Metal and impact on implementation
	Fixed-size integer representation
	Metal Arbitrary Precision library function conventions
	Metal Arbitrary Precision library structure
	Supported functions
	Implementation differences between CPU and GPU function versions
	Working with a large number of arbitrary precision integers on the GPU
	Encoding and using arbitrary precision integers in GPU shaders
	Random number generation on Apple Metal

	Summary

	Paralellization using Metal API
	High-level principle of the Metal implementations
	Achieving scalability for Apple Metal
	Code layout and usage of algorithms on Metal
	Lenstra implementation on Metal
	Pollard's Rho implementation on Metal
	Performance optimizations
	Kernel modularity and interface
	Kernel complexity
	Memory layout
	Utilizing 16-bit GPU registers
	Utilizing fixed-size large integers
	Modular reductions to reduce memory bottlenecks
	Version and parameter performance impact

	Summary

	Paralellization using CUDA
	Arbitrary integer precision arithmetic on CUDA
	Storing arbitrary precision integers
	Extending the Metal Arbitrary Precision library
	High-level principle of the CUDA implementations
	Lenstra implementation on CUDA
	Pollard’s Rho implementation on CUDA
	Performance optimizations
	Modular reductions to reduce memory bottlenecks in ECM
	Utilizing fixed-size large integers
	Using shared memory for N
	Using 16-bit word size
	Version and parameter performance impact

	Summary

	Results analysis
	Considerations for measurements
	MAP Library and GMP comparison
	CUDA and Metal implementation comparison
	CPU and GPU implementation comparison
	SymPy, PARI and GMP-ECM implementation

	Conclusion
	Outcomes
	Shortcomings

	Selected algorithms for multi-precision arithmetic
	Considerations for the selected algorithms
	Addition and subtraction
	Greatest common divisor and extended greatest common divisor
	Multiplication and division by two

	Contents of enclosed CD

