
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

A system for signals manipulation on the automotive ethernet

Bc. Oleksandr Korotetskyi

Ing. Martin Štěpánek

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

To test automotive control units, it is mandatory to simulate all the necessary values/

states of the input signals that are sent in Ethernet packets (frames). In some cases, it is 

easier to manipulate with data and simulate all the states directly in the packet than to 

use the simulation of other control units.

1) Perform research on signals and SAE levels in automotive ethernet

2) Perform research on possibilities of manipulation with data in ethernet packet and 

data security 

3) Collect RQ for the test system

4) Design SW architecture

5) Design and implement SW for signal manipulation

6) Design a test strategy for the developed SW

7) Perform the test of implemented SW

8) Implementation should be done on Linux OS

Electronically approved by Ing. Michal Valenta, Ph.D. on 17 January 2023 in Prague.





Master’s thesis

A SYSTEM FOR SIGNAL
MANIPULATION ON
AUTOMOTIVE
ETHERNET

Bc. Oleksandr Korotetskyi

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Martin Štěpánek
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Abstract

As the automotive industry undergoes a rapid transformation towards connected electric vehi-
cles and autonomous driving technologies, the need for advanced and promising communication
solutions like Automotive Ethernet becomes paramount. This study delves into the relation-
ship between driving automation, vehicle electronic architecture, and automotive networking,
emphasizing the significance of Automotive Ethernet. Significantly, it explores the feasibility of
signal manipulation within the Automotive Ethernet network for potential facilitation of vehicle
testing, addressing the challenges involved. Eventually, the research leads to the development
and testing of a software system designed for subtle signal manipulation, equipped to bypass
security mechanisms mandated by functional safety standards.

Keywords Automotive Ethernet, AUTOSAR, functional safety, E/E architecture, driving au-
tomation, electronic control unit, vehicle testing, software

Abstrakt

Vzhledem k tomu, že automobilový pr̊umysl procháźı rychlou transformaćı směrem k propo-
jeným elektrickým vozidl̊um a technologíım autonomńıho ř́ızeńı, stává se nezbytnou potřebou
pokročilá a slibná komunikačńı řešeńı jako je Automotive Ethernet. Tato studie se zabývá vz-
tahem mezi automatizaćı ř́ızeńı, elektronickou architekturou vozidel a automobilovým śıtěńım,
s d̊urazem na význam Automotive Ethernetu. Podstatně zkoumá proveditelnost manipulace se
signály v śıti Automotive Ethernet pro potenciálńı usnadněńı testováńı vozidel, přičemž řeš́ı
zahrnuté výzvy. Nakonec výzkum vede k vývoji a testováńı softwarového systému navrženého
pro sofistikovanou manipulaci se signály, vybaveného schopnost́ı obej́ıt bezpečnostńı mechanismy,
které jsou vyžadovány standardy funkčńı bezpečnosti.

Kĺıčová slova Automotive Ethernet, AUTOSAR, funkčńı bezpečnost, E/E architektura, au-
tomatizace ř́ızeńı, elektronická ř́ıd́ıćı jednotka, testováńı vozidel, software
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Chapter 1

Introduction

The automotive sector, recognized as one of the world’s largest industrial sectors globally [1], is
currently experiencing a profound transformation. This change is primarily driven by the rapid
shift towards connected, battery-powered electric vehicles and the advancement of autonomous
driving technologies.

This swift transition has resulted in a heightened complexity within in-vehicle networking
systems, necessitating the adoption of robust, high-speed communication frameworks capable of
managing the burgeoning data traffic efficiently. Moreover, as vehicles become more autonomous,
the reliance on electronic and software systems increases, demanding the employment of com-
prehensive testing. Contextually and given the safety-critical nature of automotive systems, the
importance of compliance with existing safety standards becomes a paramount concern.

Hence, Automotive Ethernet emerges as a pivotal and reliable technology in this landscape,
offering high bandwidth, scalability and security essential for modern vehicular systems. Accord-
ing to [2], this technology is currently among the most promising, as evidenced by the increasing
demand for its application in modern vehicles. However, the integration of Automotive Ether-
net into vehicular networking brings forth intricate challenges and opportunities in testing of
individual software components & electronic control units, which this work aims to address.

In particular, this research explores the potential for signal manipulation within the Automo-
tive Ethernet network to aid in vehicle testing processes. It also aims to clarify the relationship
between driving automation, vehicle electronic and electrical architecture, automotive networking
and functional safety.

1.1 Motivation

The motivation for this research stems from its relevance in context of current trends in the auto-
motive industry, which imply an adoption of Automotive Ethernet in connected and autonomous
vehicles. Furthermore, this research is driven by the author’s personal interest in the field in
which he is professionally engaged.

At the inception of this thesis and after the profound research in the field, the author was
not aware of any scientific or quasi-scientific publications detailing the potential for signals ma-
nipulation within the Automotive Ethernet network, emphasizing the circumvention of inherent
security mechanisms. Additionally, at the beginning of this research, no devices were available
in mass production that could undertake analogous functions.

Therefore, the successful development of such a system within this thesis is likely to become
one of the first documented instances of its kind in this field. This thesis is thus positioned at
the forefront of automotive innovation, tackling the vital task of developing a system that could
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2 Introduction

facilitate the testing process of in-vehicle Automotive Ethernet networks, thereby potentially
contributing to reliability and safety of modern vehicles.

1.2 Problem Statement, Objectives & Methodology
This work addresses a broad spectrum of topics within the domain of in-vehicle networking and
driving automation.

The overarching problem statement involves understanding and analysis of the relation be-
tween advanced automotive networking technologies (Automotive Ethernet), vehicular electonic
& electrical achitectures and the driving automation. Additionally, to assess the feasibility of
executing accurate and real-time signal manipulation on an Automotive Ethernet network, this
study incorporates the development of software designed for this specific capability.

The very objectives of this research are:

1. To provide a comprehensive overview of the classification of driving automation levels and
their relation to vehicular functional safety.

2. To evaluate the role of vehicular electronic and electrical architectures in driving automation,
dissecting the internal organization of electonic control units.

3. To generally examine the in-vechicle networking, with a focus on Automotive Ethernet, its
role in driving automation, its operational principles and security aspects.

4. To explore the potential of signal manipulation within Automotive Ethernet in enhancing
the vehicle testing process, including a review of existing tools for traffic manipulation in
automotive networks.

5. To investigate AUTOSAR’s contribution to in-vehicle communication and its integration with
Automotive Ethernet.

6. To design the software capable of modifying signals within the Automotive Ethernet network
while maintaining transparency to connected parties, ensuring the circumvention of security
mechanisms primarily required by functional safety.

7. To establish a set of functional and non-functional requirements for the software, followed by
its implementation and testing in a real laboratory environment to evaluate its effectiveness
& applicability in various use cases, generally assesing the feasibility of munipulating signals
on Automotive Ethernet.

Upon accomplishing the outlined objectives, the theoretical component of this work is in-
tended to serve, to some extent, as an introduction to the world of automotive technologies,
while the practical one could be considered as a technical monograph detailing the development
of software and its subsequent testing.

The methodology for this thesis includes a combination of theoretical research, practical
experimentation. This involves a detailed review of current standards and technologies, de-
velopment of a software system for signal manipulation, empirical simulation-based testing in
controlled environments and, to a certain degree, a statistical interpretation of achieved results.

1.3 Thesis Outline
This thesis is organized into six chapters, each showing the progression of the research and
building upon the knowledge and findings of the previous ones:
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Chapter 1: Introduction — This opening chapter sets the context for the research. It dis-
cusses the motivation behind the study, outlines the primary challenges and goals, and ex-
plains the methodology used. The chapter concludes by providing an overview of the thesis
structure.

Chapter 2: Preliminaries — Here, foundational concepts related to driving automation are
discussed, namely the taxonomy of driving automation. Next, the thesis introduces selected
aspects of functional safety, outlining the potential utilization of the developed software within
the vehicle testing process. Additionally, various aspects of vehicular electronic and electrical
architecture are analyzed with focus on the inner organization of electronic control units.
Later, the chapter explores different automotive networking technologies, concentrating on
Automotive Ethernet, and proceeds with revealing the role of AUTOSAR in the in-vehicle
communication process. Lastly, the security mechanisms adopted in automotive networking
are reviewed and the conclusions are made.

Chapter 3: Requirements Synthesis — In this chapter, the focus shifts to identifying and
compiling the requirements for the resulting software. It covers the functional limitations
of the system to develop, shaping the achievable functionality according to the theoretical
provisions acquired in Chapter 2. Consequently, user expectations are described and both
hardware and software requirements needed for the proposed system are defined in collabora-
tion with one of the leading automotive companies. The chapter concludes by summarizing
the work done.

Chapter 4: Software Design & Implementation — This technical chapter delves into the
design and development of the proposed system according to the requirements defined in
Chapter 3. It describes the suggested architectural design, justifies the utilized technologies
& libraries, and provides detailed insights into the system’s implementation. The chapter
concludes with an evaluation of how the design and implementation meet the set requirements,
addionally summarizing the benefits and drawbacks of the resulting implementation.

Chapter 5: Testing — The testing phase of the previously developed system is covered in this
chapter. It begins with a discussion on the theoretical aspects of software testing, followed
by the formulation of a testing strategy. The chapter generally descibes the testing setup and
presents the verification & validation of the featured system functionality through various
tests. It concludes with a summary of the testing outcomes.

Chapter 6: Conclusion — The final chapter concludes the thesis. It summarizes the per-
formed activities and key findings, discusses the implications of the work done, and suggests
potential areas for future research.
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Chapter 2

Preliminaries

This chapter progressively unravels the multifaceted aspects of driving automation, laying a
comprehensive foundation for understanding the role of Automotive Ethernet and inner principles
of its organization, with focus on possibilities of data manipulation and circumvention of existing
security mechanisms.

First, a detailed classification of driving automation is presented (see section 2.1.1, differ-
entiating levels based on the interaction between humans and machines. Then, the concept of
functional safety is introduced in section 2.1.2, focusing on automotive security integrity levels
and the inherent fault tolerance time interval, crucial for safety standards in automotive software
development & testing. Moreover, the general applicability of real-time interference in traffic is
outlined in this context (refer to paragraph 2.1.2.1.2).

Next, the nuances of electrical/electronic architecture of vehicles are examined in section 2.2,
highlighting the organization of electronic control units into domain-specific functionalities and
analyzing architectural models essential for higher automation levels.

Consequently, section 2.3 generally covers a topic of automotive networking, comprising a
review of networking technologies and their qualitative characteristics; the role of Automotive
Ethernet in highly automated vehicles is emphasized. The focus then narrows to its structure
and the role of the ISO/OSI model in communication, providing insights into the each OSI model
layer and featured protocols (refer to section 2.3.5.1).

AUTOSAR framework analysis follows in section 2.4, exploring the organization of software
units within a car, principles of their connectivity and possibilities of real-time data manipulation
in Automotive Ethernet. It includes a detailed look at the communication of software components
and abstract data units such as signals and protocol data units, emphasizing their properties,
structure and selected individual stages of their trasmission.

Later, the security aspects of in-vehicle networking are examined in section 2.5 from the
perspectives of the ISO/OSI model, AUTOSAR, and functional safety. Various security measures
are analyzed, outlining the theoretical foundation for their circumvention.

Additionally, a brief review of existing solutions for real-time data manipulation in in-vehicle
networking is provided in section 2.6, summarizing current advancements and implementations
in the field.

The chapter concludes by reaffirming the feasibility of manipulation with signals in the Au-
tomotive Ethernet network, underscoring the critical requirements for successful execution and
highlighting potential bottlenecks.
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6 Preliminaries

2.1 Highlights of Driving Automation
Driving automation is a cutting-edge area of development for the world’s leading car manufactur-
ers. To understand the role of the Automotive Ethernet in the development of partially and/or
fully autonomous cars, it is necessary to consider the very concept of car autonomy and the
resulting functional safety issues.

2.1.1 Taxonomy of Driving Automation
The topic of driving automation is closely related to the process of driving itsef. Driving entails
a variety of decisions and actions, which may or may not involve a vehicle being in motion. The
overall act of driving task is schematically depicted in Figure 2.1 and can be divided into three
types of driver effort:

Strategic effort involves trip planning, such as deciding whether, when and where to go, how
to travel, best routes to take, etc.

Tactical effort involves maneuvering the vehicle in traffic during a trip, including deciding
whether and when to overtake another vehicle or change lanes, selecting an appropriate speed,
checking mirrors, etc.

Operational effort involves split-second reactions that can be considered pre-cognitive or in-
nate, such as making-micro-corrections to steering, braking and accelerating to maintain lane
position in traffic or to avoid a sudden obstacle or hazardous event in the vehicle’s pathway.

Figure 2.1 Schematic view of the driving task [3].

A self-driving car, also known as an autonomous car, is a car that is capable of traveling
without human input [4]. Self-driving cars use sensors to perceive their surroundings, such as
optical and thermographic cameras, radar, lidar, ultrasound/sonar, GPS, odometry and inertial
measurement units [5]. Also, further technologies used to achieve autonomous driving might
include several forms of artificial intelligence [6].

SAE J3016 [3] defines 6 levels of automation, sketching an incremental evolution from no
automation to fully autonomous vehicles [7]. Central to this taxonomy are the respective roles
of the (human) user and the driving automation system (DAS) in relation to each other. Since
changes in the functionality of a driving automation system change the role of the (human) user,
they provide a basis for categorizing such system features:



Highlights of Driving Automation 7

If the driving automation system performs the sustained longitudinal and/or lateral vehicle
motion control subtasks of the DDT 1, the driver does not do so, although s/he is expected
to complete the DDT. This division of roles corresponds to Levels 1 and 2.

If the driving automation system performs the entire DDT, the user does not do so. However,
if a DDT fallback-ready user is expected to take over the DDT when a DDT performance-
relevant system failure occurs or when the driving automation system is about to leave its
operational design domain (ODD), which is specified by manufacturer. Then the user is
expected to be receptive and able to resume DDT performance when alerted to the need to
do so. This division of roles corresponds to Level 3.

Lastly, if a driving automation system can perform the entire DDT and DDT fallback either
within a prescribed ODD (Level 4) or in all driver-manageable on-road operating situations
(Level 5) then any users present in the vehicle while the ADS is engaged are passengers.

Additionally, although the vehicle fulfills a role in this driving automation taxonomy, it does
not change the role of the user in performing the DDT. By contrast the role played by the driving
automation system complements the role of the user in performing the DDT, and in that sense
changes it. In this way, according to [3], driving automation systems are categorized into levels
based on:

1. Whether the driving automation system performs either the longitudinal or the lateral vehicle
motion control subtask of the DDT.

2. Whether the driving automation system performs both the longitudinal and the lateral vehicle
motion control subtasks of the DDT simultaneously.

3. Whether the driving automation system also performs the OEDR subtask of the DDT.

4. Whether the driving automation system also performs DDT fallback.

5. Whether the driving automation system is limited by an ODD.

Table 2.1 summarizes the six levels of driving automation in terms of these five elements. It
is worth mentioning, that SAE’s levels of driving automation are descriptive and informative,
rather than normative, and technical rather than legal. Elements indicate minimum rather than
maximum capabilities for each level [3].

In this table, ’system’ refers to the driving automation system or ADS, as appropriate; defi-
nitions of some terms that seem to be obvious are omitted for the sake of brevity. In addition,
as it was implicitly mentioned earlier, the DDT does not include strategic aspects of the driving
task, such as determining destination(s) and deciding when to travel.

Apart from driving automation systems, driver assistance systems (DAS) exist and they
support the driver in their primary driving task [8]. They inform and warn the driver, provide
feedback on driver actions, increase comfort and reduce the workload by actively stabilising

1All of the real-time operational and tactical functions required to operate a vehicle in on-road traffic, excluding
the strategic functions such as trip scheduling and selection of destinations and waypoints, and including, without
limitation, the following subtasks:
1. Lateral vehicle motion control via steering (operational).
2. Longitudinal vehicle motion control via acceleration and deceleration (operational).
3. Monitoring the driving environment via object and event detection, recognition, classification, and response

preparation (operational and tactical).
4. Object and event response execution (operational and tactical).
5. Maneuver planning (tactical).
6. Enhancing conspicuity via lighting, sounding the horn, signaling, gesturing, etc. (tactical)
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or manoeuvring the car. Therefore, their responsibilities mostly overlap with typical driving
automation systems (in some sense, these are synonyms); they assist the driver and do not take
over the driving task completely, thus the responsibility always remains with the driver.

L
ev

el Name Narrative Definition DDT DDT
Fallback ODDSustained

Lateral and
Longitudinal
Vechicle
Motion
Control

OEDR

Driver Performs Part or All of the DDT

0 No Driving
Automation

The performance by the driver
of the entire DDT, even when
enchaned by ASSs.

Driver Driver Driver n/a

D
ri

ve
r

Su
pp

or
t 1 Driver

Assistance

The sustained and ODD-specific
execution by a DAS of either the
lateral or longitudinal vehicle
motion control subtask of the DDT
(but not both simultaneously) with
the expectation that the driver
performs the remainder of the DDT.

Driver
and

System
Driver Driver Limited

2
Partial
Driving
Automation

The sustained and ODD-specific
execution by a DAS of both the
lateral and longitudinal vehicle
motion control subtasks of the DDT
with the expectation that the driver
completes the OEDR subtask and
supervises the DAS.

System Driver Driver Limited

ADS Performs the Entire DDT (While Enabled)

A
ut

om
at

ed
D

ri
vi

ng 3
Conditional
Driving
Automation

The sustained and ODD-specific
performance by an ADS of the
entire DDT with the expectation
that the DDT fallback-ready user
is receptive to ADS-issued requests
to intervene, as well as to DDT
performance-relevant system
failures in other vehicle systems,
and will respond appropriately.

System System

Fallback-
Ready
User

(becomes
the driver
during the
fallback)

Limited

4
High
Driving
Automation

The sustained and ODD-specific
performance by an ADS of the
entire DDT and DDT fallback
without any expectation that a user
will need to intervene.

System System System Limited

5
Full
Driving
Automation

The sustained and unconditional
(i.e., not ODD-specific)
performance by an ADS of the
entire DDT and DDT fallback
wothout any expectation that a user
will need to intervene.

System System System Unlimited

Table 2.1 Summary of levels of driving automation according to SAE J3016.

Advanced driving assistance systems (ADAS) are a subset of the driver assistance systems.
ADAS are characterized by all of the following properties [9]:

detect and evaluate the vehicle environment

direct interaction between the driver and the system

support the driver in the primary driving task
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provide active support for lateral and/or longitudinal control with or without warnings

use complex signal processing

With respect to the aforementioned categories of driving tasks, nowadays ADAS are mainly
focussing on the manoeuvring level. While ADAS are not autonomous driving systems, they
play an important role in preparing cars for full autonomy [8]. Many of the features that make
up a SAE Level I or Level II systems are made possible by ADAS.

For example, adaptive cruise control (ACC) and lane keeping assist (LKA) would not be
possible without sensors to detect objects around the car. Similarly, the ADAS feature lane
departure warning (LDW) system would not be effective without cameras or other sensors that
can track the car’s position on the road.

Consequently, the flawless operation of ADAS/DAS components inside a car becomes an
unconditional requirement for ensuring the safety of a driver.

2.1.2 Functional Safety
In context of driving automation, ensuring the safety and reliability of software-driven systems
within vehicles stands as a paramount concern. While, for instance, a system reliability can be
evaluated using the mean time to failure (MTTF), mean time between failures (MTBF), and
mean time to repair (MTTR) as failure metrics [10], the system safety is a more complex concept
that encompasses a variety of factors.

The pursuit of automotive safety has led to the development and adoption of rigorous stan-
dards and methodologies, one of which is the ISO/PAS 21448:2019 standard. It addresses the
safety of the intended functionality (SOTIF) of a system, by dealing with safety issues that arise
because of functional insufficiencies, performance limitations and foreseeable misuses. Another
important international standard in this context is ISO 26262, which addresses functional safety
in road vehicles.

The objective of functional safety is ’freedom from unacceptable risk of physical injury or of
damage to the health of people either directly or indirectly (through damage to property or to
the environment) by the proper implementation of one or more automatic protection functions
(often called safety functions)’ [11]. The goal of the respective ISO 26262 specifications is to
reduce safety risks in cars to a minimum. ISO 26262 specifically deals with the functional
safety of electrical and electronic systems within a vehicle. In terms of software development &
testing of the software-driven automotive systems, ISO 26262 compliance reduces the likelihood
of accidents caused by software-related faults.

2.1.2.1 ASIL
Automotive Safety Integrity Level (ASIL) integral to the ISO 26262, plays a pivotal role in eval-
uating and mitigating risks associated with software components in vehicles It is an adaptation
of the Safety Integrity Level (SIL) used in IEC 61508 [12] for the automotive industry.

The primary purpose of ASIL is to categorize and assess safety requirements for software and
electronic systems utilized in automobiles [11]. It offers a systematic framework for evaluating
potential risks associated with these systems, ensuring that appropriate safety measures are
meticulously integrated.

The standard delineates four ASILs: ASIL A, ASIL B, ASIL C, and ASIL D. Of these,
ASIL D imposes the most stringent integrity & safety requirements on the product, while ASIL
A represents the lowest threshold of safety criticality. Additionally, hazards categorized under
Quality Management (QM) are exempt from the imposition of safety requirements [13].

The very classification is determined based on an extensive risk analysis that generally con-
siders factors such as the system’s function, potential impact on safety, probability of failure, and
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the ability to detect and mitigate failures. To be precise, Table 2.2 summarizes the automotive
safety integrity levels based on:

Severity - potential severity of injuries caused by a hazardous event.

Exposure - frequency of conditions that would potentially cause injury.

Controllability - likelihood that the driver could act to prevent injury.

Severity Exposure Controllability

C1
(Simple)

C2
(Normal)

C3
(Difficult /

Uncontrollable)

S1
Light and
moderate
injuries

E1 (Very low) QM QM QM
E2 (Low) QM QM QM
E3 (Medium) QM QM A
E4 (HIgh) QM A B

S2
Severe and
life threatening
injuries

E1 (Very low) QM QM QM
E2 (Low) QM QM A
E3 (Medium) QM A B
E4 (HIgh) A B C

S3
Life threatening
injuries, fatal
injuries

E1 (Very low) QM QM A
E2 (Low) QM A B
E3 (Medium) A B C
E4 (HIgh) B C D

Table 2.2 ASIL classification [11].

Despite the assignment of QM and other ASILs is not directly related to SAE levels of driving
automation, it is coherent with the very DAS/ADAS functionality indirectly: the higher respon-
sibility is undertaken by a DAS/ADAS system at the time of driving, the higher potential risks
shall be considered in case of its failure, implying the assignment of higher ASILs to electronic
control units comprising it.

2.1.2.1.1 ASIL FTTI. Each ASIL carries specific safety requirements and measures (e.g. re-
dundancy), impacting the development, testing and utilization processes. Higher ASILs mandate
more stringent safety measures on fault tolerance, decreasing the overall acceptable diagnostic
test interval (DTI) and fault reaction time to a few milliseconds (5-100 ms for higher ASILs)
depending on the component requirements [14].

Figure 2.2 Fault reaction after fault detection [15].



Highlights of Driving Automation 11

In the context of this thesis, it practically implies that any intervention in in-vehicle com-
munication must occur more swiftly than the specified DTI (FTTI respectively2) to maintain
transparency, by prevention of significant communication delays and the consequent misidentifi-
cation of transmitted messages as erroneous or obsolete.

2.1.2.1.2 ASIL & Software Verification. As the complexity of software increases, so does
the difficulty in testing it, especially when approaching real operating conditions. Table 2.3
specifies ASIL recommendations on usage of methods utilized for software unit verification.

Methods ASIL
A B C D

1 Walk-through ++ + o o
2 Pair-programming + + + +
3 Inspection + ++ ++ ++
4 Semi-formal verification + + ++ ++
5 Formal verification o o + +
6 Control flow analysis + + ++ ++
7 Data flow analysis + + ++ ++
8 Static code analysis ++ ++ ++ ++
9 Static analyses based on abstract interpretation + + + +
10 Requirements-based test ++ ++ ++ ++
11 Interface test ++ ++ ++ ++
12 Fault injection test + + + ++
13 Resource usage evaluation + + + ++
14 Back-to-back comparison test between model and code, if applicable + + ++ ++

Table 2.3 Methods for software unit verification [11].

▶ Note 2.1. In Table 2.3, methods marked with ’++’ are highly recommended, marked with ’+’
are recommended and with ’o’ have no recommendation for or against its usage for the identified
ASIL.

In practice, the conduction of testing for in-vehicle modules, particularly for those responsible
for DAS/ADAS functionalities, is a costly and complicated endeavor. This is especially evident
when it comes to verifying the anticipated behavior of specific components in the course of system-
level testing3. Therefore, sometimes it is cheaper and faster to reproduce inter-communication
of inner software components, than to completely simulate all aspects of their behaviour in the
real-time XIL4 testing process. It becomes extremely relevant when applying ASIL recommended
testing methods, during the system testing, listed below:

Interface test: Interface testing, in the context of ISO 26262, focuses on verifying that
the interfaces between various hardware and software components, such as ECUs, sensors,
actuators, and communication networks, operate as expected to ensure functional safety.
ISO 26262 emphasizes the importance of creating clear and detailed interface specifications
[11]. This documentation should define the expected behavior of each interface, including the
data format, data rates, timing constraints, error handling mechanisms, and fault tolerance
requirements. This is because, every software unit may have been tested individually but
their communication with other units is also very critical.
Interface testing ensures that all connected components are compatible with each other. This
involves verifying that the signals transmitted and received by different ECUs match the
2Henceforth, for the sake of brivity, the use of these terms will be regarded as equivalent and interchangeable.
3Refer to section 5.1 for definition.
4XIL refers to a set of automotive testing methodologies including SIL (software-in-the-loop), HIL (hardware-

in-the-loop) and MIL (model-in-the-loop), used for integrated testing of vehicle components.
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defined interface specifications. Interface testing is performed to detect early failures that
could go unnoticed till the integration testing process because at that stage, it would be even
difficult to localize the issue.
Interface testing goes beyond functional correctness; it also assesses the system’s behavior
under various safety-critical conditions, such as fault scenarios. This includes testing the
system’s response to faults, such as signal corruption, ECU failures, or network interruptions.

Requirements based test: Generally, this method is used to verify if the developed software
matches the initial requirements [11]. In this method, the input values are derived from the
behavioral requirements which are usually developed previously. If there are no documented
requirements, they need to be deduced from the functional model as it has the executable
specifications.
This method helps in systematic identification of implementation failures [11]. The failures
occurring due to incomplete and inconsistent requirement are also identified.

Fault injection test: According to ISO 26262 [11], a fault injection test uses special means
to introduce faults into the test object during runtime. Despite the general applicability of
this method in different contexts, usually it can be done within the software via a special test
interface or specially prepared hardware.
In the contexts of software testing, software unit verification and software integration testing
fault injection test means to modify the tested software unit (e.g. introduce faults into
the software). Such modifications include injection of arbitrary faults (e.g. by corrupting
values of variables, by introducing code mutations, by corrupting software interfaces and by
corrupting values of CPU registers or calibration parameters). The method is often used to
improve the test coverage of the safety requirements (because during normal operation safety
mechanisms are not invoked) and, in particular, to test the correctness of hardware-software
interface related to safety mechanisms. Fault injection can also be used to verify freedom
from interference [16].
Moreover, similar approach is described in ISO/PAS 21448:2019 [17], being mentioned as
’Injection of system inputs that trigger the potentially hazardous behaviour’. According to
the standard, in some cases, it is possible to emulate a potentially hazardous behaviour of
the sensor by means of error (noise) injection at the simulation level.

Summarizing, the application of aforementioned tests commonly implies the assertion of
behavior of particular in-vehicle module depending on the received input values. In context
of this thesis, the input value itself is identified as an incoming signal transmitted over the
Automotive Ethernet5. Proper ’on-the-way’ manipulation with incoming signals represents a
uniform solution for simulation of different kinds of input values.

2.2 E/E Architecture
Almost all aspects of electrical & electronic (E/E) system development of a vehicle, including
technical approaches, specified requirements, decision making about design structure, develop-
ments methods and potentially supported levels of driving automation, are affected by its E/E
architecture. Vehicle architecture can be seen from various perspectives.

The physical vision illustrates the positioning and the connection of the used elements in
the car such as ECUs, sensors, actuators, gateways, power supply, and switches. Moreover, it
includes communication networks, wiring harness placement, and power distribution setup.

Another perspective of E/E architecture is logical vision; it focuses on the interconnection an
interaction among various components and elements integrated into a car. Based on this point of

5Refer to sections 2.4.1.1 and 2.3.5 for further information about signals or Automotive Ethernet respectively.
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view, the E/E architecture is responsible for proper data exchange, signal flows, communication
and interface protocols.

Achievement of higher levels of driving automation necessitates the establishment of advanced
and effective vehicle E/E architecture. This implies supplementing of E/E architectures with
means to provide a driver not only with non-critical functionalities and features, but also with
ADAS functionalities to have safe and more comfortable driving experiences. Accordingly, the
automotive E/E architecture has advanced significantly, from various sensors and actuators to
more powerful computing units to process a huge amount of data coming from the sensors for
critical and non-critical functionalities [18].

2.2.1 E/E Domains
Carmakers distinguish several domains for embedded electronics in a car, even though sometimes
the membership of only one domain for a given compartment is not easily justifiable. A domain
is defined as ’a sphere of knowledge, influence, and activity in which one or more systems are to
be dealt with (e.g., are to be built)’ [19].

Historically, five domains were identified: Powertrain, Chassis, Body & Comfort, HMI (In-
fotainment), and Telematics. However, currently ADAS and/or ADAS sensors domain(s) is
being addionally distiguished [20] due to its general impact on the automotive industry & driver
experience.

The Powertrain Domain encompasses systems integral to the vehicle’s longitudinal movement,
such as the engine, transmission, and their associated components. In the Chassis Domain, the
focus is on the vehicle’s wheel system, primarily addressing steering and braking mechanisms.
The Body Domain covers components external to vehicle dynamics, which facilitate user sup-
port features, including but not limited to airbags, windshield wipers, internal lighting, window
mechanisms, air conditioning, and seating arrangements. The Infotainment entails devices facil-
itating communication between the vehicle’s electronic systems and the driver, including display
panels and control switches. The Telematics Domain is concerned with systems enabling the
vehicle’s communication with external networks, covering functionalities like radio connectivity,
navigation, internet access, and electronic payments. Lastly, the ADAS Domain aims to augment
vehicular safety by assisting the driver and potentially automating certain driving operations.
This is achieved through continuous monitoring of the vehicle’s external environment and the
driver’s behavior.

Figure 2.3 Examples of typical ECU processing types per functional domains [20].
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Electronic systems across different vehicle domains exhibit distinct characteristics. The pow-
ertrain and chassis domains require significant computational power and adhere to strict real-time
constraints, with the chassis domain featuring a more distributed hardware architecture. The
telematics domain demands high data throughput. Increasing automation levels, particularly in
the ADAS domain, escalate the computational needs of vehicle ECUs.

2.2.2 Types of E/E Architecture
In consequence to the domain diversity, the orgranization, connectivity and primary functions of
car ECUs differ. This diversity extends to varied technological solutions, encompassing commu-
nication networks, embedded software design techniques, and verification approaches [20].

It is common in today’s vehicles that the electronic architecture includes different types of
networks interconnected by gateways and signals are exchanged by 70 to 150 ECUs in order
to manage the car, including its software system. Depending on the architecture, the number
of ECUs could be reduced considerably by merging various mixed-critical applications into one
multi-core ECU [21].

The organization of ECUs in vehicles typically begins with function-specific ECUs, where
each ECU is dedicated to a distinct function [20]. The next level is domain-specific ECUs, which
manage a group of functions within a particular domain, often involving high computation and
numerous input/output (I/O) devices. These ECUs interconnect with multiple function-specific
units. In contrast, zonal ECUs distribute data and power throughout the vehicle, supporting
features in their specific zones [22]. They act as gateways, switches, and smart junction boxes,
interfacing with various sensors, actuators, and displays.

The overall design of E/E architectures can be split in several several approaches denoted at
Figure 2.4, differing in cost, complexity and effectiveness:

Distributed E/E Architecture, or Multi-Bus Gateway Architecture, integrates the
function-specific ECUs with a central gateway connected via a CAN bus6 [23]. Utilization
of the central gateway provides stronger collaboration among ECUs, the ability to handle
more complex functions (e.g. adaptive cruise control) and the potential of cross-functional
connection.

Domain Centralized Architecture combines domain controllers with a central gateway,
enhancing the vehicle’s wiring harness complexity. Each domain controller, functioning as a
high performance computing unit (HPCU), manages domain-specific car components.
▶ Note 2.2. HPCU is a multi-core ECU which, in particular, comprises a graphics processing
unit (GPU), random access memory (RAM), and deep learning accelerators to process high
computational power-demand tasks [24]. This scalable unit may integrate with Edge and
Cloud computing and serves as the zonal gateway, centralizing vehicle functionality. Design
and runtime configurations of HPCU are complex, addressing mixed-critical software aspects
and diverse system requirements. The configuration process, often NP-hard, involves man-
aging extensive safety and performance parameters, with updates posing potential risks and
costs [25, 26].

This architecture varies in the number of interconnected ECUs and their respective ASILs.
It faces increased complexity, especially in driving automation, due to a rise in sensor and
actuator numbers, enhanced data processing needs, and greater demand for intelligent power
distribution [27]. Domain-specific ECUs, linked to function-specific units, optimize architec-
tural costs and function handling, such as in parking assistance systems [28, 23].

Zonal Architecture comprises solely a central HPCU to manage complexity issues; it facil-
itates integration of future vehicle functions while achieving weight and cost savings [29, 22].
6Refer to section 2.3.1 for further details regarding CAN.
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This architecture also includes a zonal ECUs, and function-specific ECUs. The HPCU, acting
as a master and central gateway, processes data from various vehicle zones, interconnected
via Automotive Ethernet (refer to section 2.3.5) for high-speed data transmission [30, 28].
Additionally, it supports virtual domains, enabling cloud-based function transfer and over
the air (OTA) updates for the HPCU [31].

Figure 2.4 An illustration of the main types of E/E architectural philosophies and technologies used
for interconnection of ECUs [20].

Summarizing, E/E architecture of a car is primarily outlined by its supported features, since
they could demand increased sensor integration, data processing & fusion, safety and especially a
robust and high-speed communication network within the vehicle, among the other requirements.
These requirements make car manufacturers opt for establishment of domain centralized or zonal
architectures, which facilitate the integration of advanced features, like driving automation.
Depending on the E/E architecture used in a particular car, the SWCs are implemented on
different types of ECUs which are, in turn, interconnected using different communication buses.

2.3 Automotive Networking
SAE has classified the automotive networks into Classes A, B, and C with increasing order of
criticality on real-time and dependability constraints [32, 33].

Class A, as per SAE’s first classification, supports a data rate up to 10 kbps, suited for
low-end, nonemission diagnostic, general-purpose communication, particularly in the body &
comfort domain. These networks typically facilitate convenience features like actuators and smart
sensors, controlling components such as lights, windshield wipers, doors, and seat adjustments,
etc. Latency in Class A networks ranges from 50 to 150 ms [33].

Class B networks, supporting data rates between 10 kbps and 125 kbps [34], are primarily
used for non-diagnostic, non-critical communications for general information transfer, such as
instrumentation and emission data. These networks facilitate data transfer (e.g., parametric data
values) between nodes and can reduce redundant sensors by supporting event-driven and periodic
transmissions, including sleep/wakeup functions. Information shared over Class B networks is
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not critical for system operation, allowing for a wider response window with variable response
times based on the application. Interconnection of dissimilar systems is also allowed within these
networks.

Class C networks support data rates from 125 kbps to 1 Mbps, catering to critical and real-
time control systems such as engine, suspension, traction, brake, and transmission control. The
response window in these networks is much narrower compared to Class B networks.

Networks with data rates over 1 Mbps, often referred to as Class D, though not formally
categorized by SAE, are typically used in multimedia applications and crucial for hard real-time
critical operations [35], due to their superior qualitative characteristics. Additionally, Classes B,
C and D are not specificly linked to any domain since the actual fields of application of these
networks may vary.

Table 2.4 presents a comparison of the main characteristics of various automotive protocols,
further discussed in subsequent sections. It can be inferred that the attainment of higher levels of
driving automation is infeasible without the deployment of Class D networks or equivalent tech-
nologies. In this context, Figure 2.5 schematically depicts an example of a distributed automotive
network architecture showcasing the plausible common utilization of Class A-D communication
protocols.

Automotive Networking Protocols
LIN CAN FlexRay MOST Ethernet

Classification Class A Class B, C Class D Class D Class D

Application Body &
comfort

Powertrain, driver
assistance control
(high speed);
body and comfort
low speed)

Chassis, driver
assistance,
safety control

Infotainment:
stream data
and control

Infotainment
telematics,
camera-based
drivers
assistance

Topology Hierarchical
bus Hierarchical bus Bus, star,

multistar Point-to-point Star, point-to-point

Media Single wire Twisted-pair Twisted pair
or fiber Optical Twisted-pair

Bit encoding NRZ NRZ-5, MSb first NRZ BiPhase Manchester Phase
Encoding (MPE)

Schedule
approach Time Event triggered Time and event

triggered Event triggered Event triggered

Media access Master/slave Contention TDMA
with priority Master/slave Contention

Error detection 8-bit CS CRC 24-bit CRC CRC CRC
Header length 2 Bits/Byte 11 or 29 Bits 40 Bits Not specified 14-22 Bytes
Data length 8 Bytes 0-8 Bytes 0-246 Bytes Not specified 0-1500 Bytes
In-message
response No No No No Not specified

Bit rate 20 kbps 10 kbps-1Mbps 10 Mbps 25 Mbps 10 Mbps-100 Mbps
Maximum bus
length 40 m Not specified,

typical 40m Not specified Not specified 100 m

Maximum node 16 Not specified,
typical 32 Not specified 24 Theoretically 1024

Cost Low Medium Medium High Not specified

Table 2.4 Comparison of Automotive Protocols according to [34].

2.3.1 CAN
In 1991 the CAN bus (Controller Area Network) was the first bus system to be introduced to
a motor vehicle in mass production [36]. It has since established itself as the standard system
in the automotive sector, being also commonly used as a field bus in automation engineering in
general.
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Figure 2.5 Example of distributed automotive network architecture.

The CAN bus is utilized in vehicle diagnostics and various domains within the motor vehicle.
As a result of their different requirements, buses with different data rates are used that offer an
optimum cost-benefit ratio for the field of application concerned. A distinction is made between
CAN-FD, high-speed and low-speed CAN buses.

2.3.1.1 High-speed CAN (CAN-C)
CAN-C is defined in ISO 11898-2 standard and operates at bit rates of 125 kBit/s to 1 MBit/s.
The data transfer is therefore able to meet the real-time requirements of the drivetrain. CAN-
C buses are used for networking the following systems: engine-management system, electronic
transmission control, vehicle stabilization systems.

2.3.1.2 Low-speed CAN (CAN-B)
CAN-B is defined in ISO 11898-3 standard and operates at a bit rate of 5 to 125 kBit/s. For
many applications in the comfort/convenience and body area, this speed is sufficient to meet
the real-time requirements demanded in this area. Examples of such applications are: control of
the air-conditioning system , seat adjustment, power-window unit, sliding-sunroof control, mirror
adjuster, lighting system, control of the navigation system.

2.3.1.3 CAN-FD
The primary difference between the classical CAN and CAN-FD is the Flexible Data (FD)
supported by it. Using CAN-FD, electronic control units are enabled to dynamically switch
between different data rates and longer or shorter messages [37]. Faster data speed and more
data capacity enhancements results in several system operational advantages compared to classic
CAN (accroding to ISO 11898-5, CAN-FD is specified for 2 and 5 MBit/s).

CAN-FD is typically used in high performance ECUs of modern vehicles.
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2.3.2 LIN
The LIN bus was founded in 1998 and is suitable for low data rates of up to 20 kBit/s and is
typically limited to a maximum of 16 bus subscribers [36].

▶ Note 2.3. The name, LIN (Local Interconnect Network), is derived from the fact that all
electronic control units are located within a demarcated installation space (e.g. in the door). The
LIN, therefore, is a local subsystem for supporting the vehicle network by means of superordinate
CAN networks.

As far as the network nodes are concerned (being connceted via LIN’s electrical interface), a
distinction is made between the master, which is generally an electronic control unit connected
to a superordinate bus system, and the slaves. These are intelligent actuators, and switches with
additional hardware for the LIN-bus interface. The bus subscribers are usually arranged in a
linear bus topology and connected to each other by a single-wire line.

Communication on the LIN bus takes place in a time-synchronous manner, whereby the
master defines the time grid. Consequently, there arises a strictly deterministic LIN bus response.

The LIN bus as a means of networking mechatronic systems can be used for many applications
in the motor vehicle for which the bit rates and variability of the CAN bus are not essential.
Featured examples of LIN applications include control of the power-sunroof drive unit, of motors
for seat adjustment, wiper motor for the windshield wiper, etc.

2.3.3 FlexRay
FlexRay is a protocol that supports both time-triggered (primary) and event-triggered messaging
(speed over 1 Mbps) in x-by-wire applications that need predictability and fault tolerance, as
well as deterministic real-time and reliability communication. It is capable of a net data rate
of 5 Mbps (2 channels, 10 Mbps gross) [34]. This protocol serves for safety-critical embedded
systems and advanced control functions.

In FlexRay at the MAC level, a communication cycle merges a time-triggered (static) window
and an event-triggered (dynamic) window. The time-triggered window employs a Time Division
Multiple Access (TDMA) protocol for efficiency and determinism, while the event-triggered part
uses flexible TDMA (FTDMA), dividing time into mini-slots for station transmissions. Com-
munication cycles, executed periodically, prioritize higher-priority sources in the static part and
lower priorities in the dynamic part. Nodes adapt to system configuration through messaging
traffic. FlexRay’s network topology is versatile, supporting bus, star, or multistars configura-
tions, with optional channel redundancy.

2.3.4 MOST
MOST [38] is a multimedia fiber optic Class D network developed in 1998 by MOST Coopera-
tion (a consortium composed of carmakers, set makers, system architects, and key component
suppliers). The basic application blocks supported by MOST are audio and video transfer, based
on which end-user applications like radios, GPS navigation, video displays and amplifiers, and
entertainment systems can be built.

The MOST protocol defines data channels and control channels. The control channels are used
to set up what data channels the senders and receivers use. Once the connection is established,
data can flow continuously, delivering streaming data (Audio/Video). MOST provides point-to-
point audio and video data transfer with a data rate of 24.8 Mbps [34].
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2.3.5 Automotive Ethernet
The Ethernet, developed in the 1970s by Xerox Corporation, is a communication network tech-
nology used mainly in local area networks (LANs); compared to the other protocols, the use of
the Ethernet in cars is a relatively new development [2]. Ethernet is based on the Open Sys-
tems Interconnection (OSI) model (refer to section 2.3.5.1) which groups similar communication
functions together and provides defined interfaces between these groups. Its specifications are
detailed in the IEEE 802.3 standard.

In comparison to the aforementioned networks, Automotive Ethernet provides higher band-
width, higher security, and better fulfillment of the safety requirements based on ISO 26262 (refer
to section 2.5.3). In addition, providing low latency in the communication network by using new
message routing mechanisms plays a significant role in accelerating the progress of the in-car
network for autonomous vehicles. Automotive Ethernet enables deterministic communication,
ensuring that critical data is transmitted in a timely manner, making it suitable for safety-critical
applications in autonomous vehicles such as powertrain, chassis, ADAS, infotainment systems,
and body and comfort etc.

Several versions of the Ethernet exist beginning with the basic 10 Mbps version that uses a
twisted-pair cable as a medium for a full-duplex and point-to-point communication (10BASE-
T). Other versions are the 100BASE-T Ethernet, which is capable of a transmission rate of
100 Mbps, and the 1000BASE-T Ethernet, also called the Gigabit Ethernet. For vehicular
network purposes, the 10BASE-T and 100BASE-T are the most popular as Broadcom’s BroadR-
Reach 10/100 PHY Ethernet module (which is currently the de facto standard for Ethernet in
automotive application) supports these Ethernet versions.

Ethernet utilizes the CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
scheme to manage access to the transmission medium [39]. In essence, nodes within an Ethernet
network contend with each other for the utilization of the transmission medium. When an
Ethernet node intends to transmit a message, it first checks for any ongoing traffic on the shared
transmission medium [2]. This process, known as carrier sensing, involves the node suspending
transmission attempts if traffic is detected and waiting for the medium to become idle before
making another attempt [39]. Conversely, if the medium is found to be free, the node proceeds
to transmit its message.

2.3.5.1 ISO/OSI Model
The ISO/OSI model of Automotive Ethernet, illustrated in Figure 2.6, delineates distinct layers
and protocols participating in the communication process.

Figure 2.6 ISO/OSI reference model and protocols used in context of Automotive Ethernet [2].
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Application and Presentation layers are managed by an application responsible for dispatching
data to the Automotive Ethernet. Within the Session layer, the structural arrangement of data
within a packet is expounded. Subsequently, at the Transport layer, the data packet undergoes
transformation into a TCP packet for reliable communication and a UDP packet if reliability is
not paramount. Within the Network layer, the packet undergoes augmentation with pertinent
information concerning the destination and source IP addresses, along with other network layer
attributes. Below this stratum lies the Data Link layer, which appends the packet with Medium
Access Control (MAC) addresses and other data inherent to the link layer. Ultimately, at the
Physical layer, the packet is transmitted over 100/1000BASE-T1 Ethernet. An inverse sequence
is employed during the reception of packets.

1. Physical Layer: Key differences between Automotive Ethernet and usual one lie in the tech-
nologies used for data processing on the physical layer [2]. The physical layer delineates both
physical and electrical attributes, encompassing key components such as Physical Medium
Attachment (PMA) sublayer, the Physical Coding Sublayer (PCS), as well as elements like
cables and connectors (refer to Figure 2.7).

Figure 2.7 100BASE-T1 physical layers and its sublayers.

The PCS, situated within the physical layer (PHY), plays a pivotal role in data preparation
between the Medium Access Control (MAC) sublayer of the Microcontroller Unit (MCU)
and the PMA sublayer. Facilitating communication between these sublayers is the Media-
Independent Interface (MII). Data from the MII undergoes several transformations, after
which it is then serialized and introduced into the PMA sublayer. The PMA sublayer as-
sumes responsibility for the control of data to/from the Medium-Dependent Interface (MDI).
Management of the PHY is executed through the Media Data Input/Output (MDIO) from
the MAC, which involves reading and writing to management registers via MDIO [2].

2. Data Link Layer: The data link layer is responsible for forwarding data between adjacent
nodes in the network, whether it be a Wide Area Network (WAN) or a Local Area Network
(LAN). This layer incorporates the crucial element known as Media Access Control (MAC)
[40].

The MAC, implemented in the network adapter of the Microcontroller Unit (MCU), is
uniquely identified by the MAC address stored in the Electrically Erasable Programmable
Read-Only Memory (EEPROM). Core functions of the MAC sublayer include regulating data
flow, handling the transmission and reception of Ethernet frames, computing Cyclic Redun-
dancy Check (CRC), and verifying the integrity of received frames. The structure of an
Ethernet frame is depicted in Figure 2.8.
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Figure 2.8 Ethernet frame structure at data link layer.

Within the structure of the data link layer packet presented, the initial segment comprises a
Preamble 8B data field. The first 56 bits consist of alternating ”1” and ”0” bits, facilitating
clock synchronization at the bit level among devices (7 bytes filled with 0xAA). The final
byte of Preamble, known as the Start Frame Delimiter (SFD), serves the purpose of byte
synchronization and signifies the commencement of a packet with a ”1” bit (0xAB).
Following the preamble, the destination and source MAC addresses are outlined in MAC
address fields. Subsequently, the 802.1Q tag (VLAN-tag) field follows, adhering to the IEEE
802.1Q networking standard that supports Virtual LANs (VLANs) on the Ethernet network.
This field includes subfields such as VLAN Identifier (VID), Drop Eligible Indicator (DEI),
Priority Code Point (PCP) and Tag Protocol Identifier (TPID) [41]. The TPID, positioned
similarly to the EtherType field in untagged frames, is set to the value 0x8100 to identify the
802.1Q-tagged frame. The PCP field designates the frame’s priority level, while DEI indicates
frames that may be dropped during congestion. VID specifies the VLAN of the frame, with
reserved values of 0x000 for frames lacking a VLAN ID and 0xFFF for implementation use.
Following the VLAN-tag field is the EtherType field, used to specify the size of bytes if the
value is ≤ 1500. If the value is ≥ 1536, this field indicates the encapsulated protocol in
the payload [42]. The length of the frame, in this case, is determined by the Interpacket
Gap (IPG). Subsequent to the EtherType field is the Payload field, housing upper ISO/OSI
headers and Protocol Data Units (PDUs), described in section 2.4.1.3. Ultimately, the Cyclic
Redundancy Check (CRC) field is appended to detect corrupted data.

3. Network Layer: The Network layer holds the responsibility of directing packets to the tar-
get network (LAN), thus determining both the destination and source networks. As per the
ISO/OSI model mentioned earlier, the IPv6 protocol is employed.
In the initial phase, the IPv6 packet undergoes encapsulation into an Ethernet frame packet
(refer to Figure 2.9). The packet is signified to be IPv6, by the Version with a value of
0x6. Following this is the Traffic Class field, segmented into subfields Differentiated Services
(DS) and Explicit Congestion Notification (ECN) [42]. The ECN denotes whether the source
implements congestion control or not, while the DS is utilized for packet classification.

Figure 2.9 IPv6 packet structure at the network layer.

The Flow Label field serves as an identifier for a packet flow, representing a group of packets
such as a media stream, between the source and destination. The subsequent field is Payload
Length, defining the size of the Payload field in bytes. Next is the Next Header field, specifying
the type of transport header. Following this is the Hop Limit field, which replaces the Time
To Live field in IPv4 and is decremented with each forwarding. When the Hop Limit reaches
a value of 0, the packet is discarded.
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The subsequent Source Address and Destination Address fields describe the IPv6 addresses of
the sending and receiving nodes. Eventually, the payload field is composed of the transport
layer header, and the structure of Protocol Data Units (PDUs) (refer to section 2.4.1.3 for
some details).

4. Transport Layer: The Transport layer assumes the responsibility of facilitating host-to-
host communication and provides essential services such as flow control and multiplexing.
Within the ISO/OSI model mentioned earlier, both the User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP) are anticipated.
UDP, being a straightforward and unreliable communication protocol suitable for non-critical
data transfer, structures its packet header with four fields (refer to Figure 2.10). The initial
two fields define the Source and Destination ports, followed by the Length field, indicating
the total size of the UDP packet. The fourth Checksum field is IPv6 specific and serves to
detect errors in the header and data.

Figure 2.10 UDP packet structure as defined in [43].

In contrast, TCP is a reliable and connection-oriented protocol, necessitating the establish-
ment of communication. Consequently, the structure of a TCP packet is more intricate, as
depicted in Figure 2.11.
Similar to UDP, the first two fields denote ports, followed by the Sequence number field
providing details about the first data byte number. The Acknowledge number field follows,
indicating the number of received data bytes. Subsequently, the Reserved field is designated
for future purposes, while the Data offset field specifies the header’s size in 32-bit words,
ranging from a minimum of 5 to a maximum of 15 words [42].

Figure 2.11 TCP packet structure.

The Flags field plays a crucial role in communication, with notable flags including the Ac-
knowledgement (ACK) flag signifying a valid Acknowledge number, the Push (PSH) flag
set during data transmission, the Reset (RST) flag for connection reset, the Synchronize
(SYN) flag for connection establishment, and the Finish (FIN) flag indicating the sender’s
last packet. Flags such as Urgent (URG), CWR, ECE, and NS are employed for Explicit
Congestion Notification (ECN) and concealment protection [42].
The subsequent Window size field specifies the quantity of data bytes the sender can receive
without sending an acknowledgment. The Checksum field serves for error-checking of the
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header or payload. The Urgent pointer field, valid when the URG flag is set, denotes an
offset from the start of the data field. The final field, Padding, ensures the header size is a
multiple of 32, exceeding 20 bytes but remaining below 60 bytes.
In context of Automotive Ethernet, the payload of both TCP and UDP packets comprises
PDUs and other protocol headers passed from the upper layers.

Figure 2.12 Example of TCP communication.

An illustrative example of TCP communication is presented in Figure 2.12, demonstrating
a scenario where a server and client establish a connection, exchange data packets, and
subsequently close the connection.
The establishment of a connection involves the transmission of a packet with a set SYN flag,
initiating an internal sequence counter increment by the client. The server responds with an
acknowledgment, featuring both ACK and SYN flags. Upon the client’s acknowledgment, the
connection is established. During the established connection, both sides can send packets,
with acknowledgments ensuring successful data transmission. To conclude the connection,
one side sends a packet with a set FIN flag, prompting the other node to respond with a
packet featuring a set FIN flag and awaiting acknowledgment.

5. Session Layer: Within the session layer of the ISO/OSI model, data is potentially structured
as PDUs (see section 2.4.1.3), which may adhere to various protocols such as SOME/IP, ViWi,
DoIP, or others used over the Automotive Ethernet and managed by AUTOSAR (refer to
section 2.4.1.6).

6. Presentation Layer: The presentation layer is fully managed by AUTOSAR, refer to sec-
tion 2.4.1.6.

7. Application Layer: The application layer is fully managed by AUTOSAR, refer to section
2.4.1.6.

▶ Note 2.4. Several exceptions apply to the Ethernet packet format when IEEE 1722 protocol
is used in terms of Audio Video Bridging (AVB) or Time Sensitive Networking (TSN), refer
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to Figure 2.13. Although it may be related to the ADAS/DAS sensors (transferring data from
cameras, etc.) is is not reviewed in details to reduce the scope of the thesis.

Figure 2.13 The IEEE 1722 packet format with example 1722 payloads [2].

2.4 AUTOSAR

The architecture of automotive software systems, as software-intensive systems, can be seen from
different views, such as functional view, physical system view and logical view [44]. The logical
and the physical views deserve special attention in context of this thesis.

The logical architecture in automotive software is tasked with the design and organization of
essential vehicle functions, such as implementing automatic braking upon detecting pedestrians
in the vehicle’s path. These high-level functions are typically executed by several logical software
components that interact through data exchange. Logical components are often organized into
subsystems that align with the vehicle’s logical (E/E architectural) domains, based on the specific
functions they perform.

On the other hand, the physical architecture in automotive software systems is characteris-
tically spread across multiple Electronic Control Units (ECUs). These ECUs are charged with
executing various high-level functions outlined in the logical architecture. This execution in-
volves assigning logical software components, which are in charge of these functions, to specific
ECUs. Consequently, these logical components are transformed into executable ECU application
software components. Importantly, each logical software component is allocated to at least one
ECU.
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Apart from the physical system architecture that consists of a number of ECUs, each indi-
vidual ECU possesses its distinct physical architecture. This architecture is primarily composed
of the following key components [44]:

Application software consists of a number of allocated software components and is respon-
sible for executing vehicle functionalities realized by this ECU.

Middleware software is responsible for providing services to the application software (e.g.
transmission/reception of data on the electronic buses, and tracking diagnostic errors).

Hardware includes a number of drivers responsible for controlling different hardware units
(e.g. electronic buses and the CPU of the ECU).

The development of the logical and physical architectural views of automotive software sys-
tems and their ECUs is mostly done following the MDA (Model-Driven Architecture) approach
[44].

To streamline the distributed creation and design of automotive software systems and their
architectural elements, the AUTOSAR (AUTomotive Open Systems ARchitecture) initiative
was launched in 2003. This initiative emerged from a collaborative effort among automobile
manufacturers and their respective software and hardware suppliers. Presently, AUTOSAR has
grown to encompass over 150 partners worldwide [45], thereby establishing itself as an industry
standard within the automotive sector.

The design of ECU software following the AUTOSAR framework7 adheres to a tri-layered
architectural model. This model is established on top of the ECU’s hardware layer, as depicted
in Figure 2.14.

Figure 2.14 AUTOSAR layered software architecture [45].

The first layer, Application software, consists of a number of software components that realize
a set of vehicle functionalities by exchanging data using interfaces defined on these components.
This layer is based on the logical architectural design of the system.

The second layer, Run-time environment (RTE), controls the communication between soft-
ware components, based on Virtual Functional Bus (VFB), abstracting the fact that they may be

7It should be noted that AUTOSAR encompasses both Classic and Adaptive platforms, differentiating in
supported features.
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allocated onto the same or different ECUs. If the software components are allocated to different
ECUs, transmission of the respective signals on the electronic buses is needed, which is done by
the Basic software (BSW) layer.

The Basic Software (BSW) encompasses various services, such as diagnostic protocols and
memory management, within the automotive software framework. Additionally, it includes func-
tionalities related to communication, I/O management, and network management, along with
serving as an operating system. The BSW can be modularly divided into three distinct key
layers: the Services Layer, Hardware Abstraction Layer, and Microcontroller Abstraction Layer
(MCAL) [45].

The ECU abstraction, a part of the BSW, effectively decouples higher-level software com-
ponents from the specific hardware dependencies of the underlying electronic control units, by
providing a software interface that abstracts the electrical values and characteristics of each ECU.
The MCAL plays a vital role in ensuring a standardized interface to the BSW modules, by man-
aging microcontroller peripherals and providing microcontroller-independent values. As shown
in Figure 2.15, these layers themselves can be further divided based on their specific purposes.

Figure 2.15 Overview of AUTOSAR software layers & appropriate modules in detail [45].

2.4.1 Details on AUTOSAR Communication
To evaluate the potential for signal manipulation in alignment with predefined objectives (refer
to section 1.2), it is essential to examine both the characteristics of the signals and the various
phases involved in their transmission from the sender to the receiver. This analysis is crucial for
understanding the processes of signal storage and transmission across the network.

2.4.1.1 Signal

In the context of AUTOSAR, a signal is equivalent to a message in the communication module
according to OSEK COM standard [45]. In compliance with OSEK COM [46], a message defines
a mechanism for data exchange between different entities and with other CPUs. An AUTOSAR
signal represents a sequence of bits, which could be assigned to one of three types of possible
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values (initial, error and normal) on the application level. These messages could be either of a
simple data type or of a complex one.

Inside a complex data type, there are one or more data elements (primitive data types). RTE
decomposes the complex data type in single signals and sends them (and/or signals that are
of simple data type) to the AUTOSAR COM (Communication) module8. In this context, it’s
important to note that an AUTOSAR signal can be conveyed by one or more signals within the
AUTOSAR COM.

2.4.1.2 Signal Group
A set of signals that must always be transmitted together in a common I-PDU9 is defined as a
signal group.
▶ Note 2.5. Determining which signals are grouped together into a specific signal group is
considered an input for the COM generation process.
Signal groups ensure that AUTOSAR composite data types are transferred atomically, guaran-
teeing data consistency. A signal group has the following properties [47]:

1. A signal can belong to at most one signal group.

2. A signal group can not belong to more than exactly one I-PDU.

3. Signal groups do not overlap each other within an I-PDU

4. Signal groups are a contiguous set of signals which belong to this group, however it is possible
to have unused bits (’holes’) within a group.

5. Signal groups may contain no signals (’may be empty’).

6. The signals that belong to a particular signal group are contiguous in the data stream.

Furthermore, a signal group (or an individual signal, respectively) can have several transmis-
sion modes assigned, describing the signal transmission within the network:

None: This mode indicates that there is no transmission, meaning data is not actively sent.

Periodic: transmissions occur indefinitely with a fixed period between them. This means
that data is sent at regular intervals without any specific external trigger.

Direct/n-times: event-driven transmission with n − 1 repetitions. In this mode, data is
transmitted in response to a specific event, and the transmission is repeated n− 1 times.

Mixed: this mode combines periodic transmission with direct/n-times transmissions in be-
tween. Data is sent periodically, and additional transmissions are triggered by events as
needed.

Additionally, AUTOSAR COM supports Update-bits, which are mechanisms used to inform
the receiver whether the sender has updated the data in a particular signal or signal group before
sending it. However, these Update-bits are not allowed when using direct/n-times transmission
mode with n > 1 [47].

8Refer to Figure 2.19.
9Refer to 2.4.1.3 for details on naming conventions.
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2.4.1.3 Protocol Data Units

Communication from AUTOSAR COM to lower modules and vice versa is done through PDUs
(Protocol Data Units). Generally, a PDU is the basic generic data transfer unit for different
vehicle network communication protocols (Ethernet, CAN, FlexRay, LIN, etc). Each PDU in-
corporates PCI (Protocol Control Information) and SDU (Service Data Unit), as shown at Figure
2.16.

Figure 2.16 Encapsulation of data (an SDU) by adding a header (the PCI) to form a Ptotocol Data
Unit processed by a lower layer.

The PCI is added by a protocol layer on the transmission side and is removed on the receiving
side; it contains RTE-related source and target information. This information needed to pass
SDU from one instance of a specific protocol layer to another instance. In context of AUTOSAR,
PCI is identified as AUTOSAR PDU header, while SDU stands for payload of attached signals.

The AUTOSAR PDU header could be of different length [48], depending on the environment
set: 32 bits (short headers), 64 bits (long headers). Importantly, as depicted on Figure 2.17,
AUTOSAR PDU header includes the following fields:

ID is assigned statically and is used to identify PDUs throughout communication. When
short headers applied, it takes 24 bits and 32 bits othervise.

DLC determines the overall length of a PDU. When short headers applied, it takes 8 bits
and 32 bits othervise.

Figure 2.17 Internal structure of Protocol Data Unit within the packet payload.

The signals coming from the different applications from the RTE layer are coupled together
to the data segment of a PDU (SDU), which can be interpreted as low levels PDU which does
not contain any header information. SDU is the abstraction for modules beneath PDUR (PDU
Router, refer to Figure 2.19) whereas, for upper levels of PDUR, the PCI is excluded to process
only the data structure (see Figure 2.18).
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Figure 2.18 Protocol Header Processing for Transmission (direction – down) & Reception (direction
– up) by layer N.

Within the context of AUTOSAR communication, PDUs can contain layer-specific prefixes
to distinguish them from each other. These PDUs are categorized into I-PDUs (Interaction
Protocol Data Unit), L-PDUs (Data Link Layer Protocol Data Unit), and N-PDUs (Network
Layer Protocol Data Unit).

I-PDU (Interaction Protocol Data Unit): Utilized in data communication between mod-
ules over the PDURouter, predominantly involving AUTOSAR COM and AUTOSAR DCM.
I-PDUs, integral to AUTOSAR COM, are composed of multiple signals and are grouped
singularly within I-PDU groups. Their length is contingent on the L-PDU’s maximal length
from the underlying communication interface.

L-PDU (Data Link Layer Protocol Data Unit): Functioning within the AUTOSAR
Hardware Abstraction Layer, L-PDUs encompass the Identifier, Data Length Code (DLC),
and data (L-SDU). Their length is subject to the specific communication type, such as LIN
or Automotive Ethernet, aligning with the Communication Hardware and Microcontroller
Abstraction Layers.

N-PDU (Network Layer Protocol Data Unit): A network layer PDU, N-PDU is a key
component in the AUTOSAR TP Layer.

2.4.1.4 I-PDU Group
In AUTOSAR COM, an I-PDU group is an arbitrary collection of I-PDUs and can contain zero
or more I-PDUs or other I-PDU groups of the same direction (send or receive). An I-PDU that
is part of another I-PDU group cannot contain another I-PDU group, which limits the I-PDU
group hierarchy to two levels. Furthermore, no I-PDU group can be included in more than one
other I-PDU group, and an I-PDU group must not contain itself.

It’s important to note that a combination of received I-PDUs and sent I-PDUs within a single
I-PDU group is not allowed [48]. By default, I-PDU groups in AUTOSAR COM are stopped,
and routines are provided to start and stop them as needed, and total number of I-PDU groups
is limited to a predefined value (usually 32).

2.4.1.5 I-PDU Multiplexing
In order to optimize data transimission over the network via different protocols (e.g. Ethernet,
CAN) several I-PDUs (also those, within a group) can be multiplexed into one resulting PDU
that is transferred on the bus. Two approaches exist to accomplish it:
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I-PDU Multiplexing: this approach involves using the same I-PDU ID transferred from
the PDU Router to the Communication Hardware Abstraction Layer with more than one
unique layout of its SDU. It is implemented via intoducing a selector field as a piece of the
SDU of the multiplexed PDU. It is used to distinguish the contents of the multiplexed PDUs
from each other.

Multiple PDU to Container Mapping: this method entails collecting several I-PDUs
into one Container PDU. This Container PDU is then transferred via PduR as one large
I-PDU. This approach leverages the advantage of larger frame sizes in newer bus systems
(Ethernet), allowing for efficient use of bandwidth in combination with smaller I-PDU sizes,
typically 8 bytes.

The resulted PDUs could have either static or dynamic layout, meaning that the their size
can be either fixed or determined in the run-time depending on the general configuration of a
system. For transmission of container PDUs with a static layout, minimum delay time cannot
be ensured if two or more contained PDUs have the same MDT configuration [48].

On sender-side, the I-PDU Multiplexer module is responsible to combine appropriate I-PDUs
from COM to new, multiplexed I-PDUs and send them back to the PDU Router. On receiver-
side, it is responsible to interpret the content of multiplexed I-PDUs and provide COM with its
appropriate separated I-PDUs, taking into account the value of the selector field.

2.4.1.6 I-PDU Transmission
AUTOSAR manages the upper layers of the ISO/OSI model described at section 2.3.5.1, by using
SOME/IP protocol [49]. It passes all the signals in form of PDUs to lower layers of ISO/OSI
model via AUTOSAR PDU Router (see Figure 2.19).

Figure 2.19 Modules of possible AUTOSAR Ethernet stack [50].
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PDU Router manages the data received from AUTOSAR COM, AUTOSAR I-PDU Multi-
plexer etc. or other lower modules via Routing Table, trasmitting the obtained I-PDUs and/or
I-PDU groups in necessary direction. If the target SWC that is to receive the data is imple-
mented in separate ECU, the received I-PDUs are passed to corresponding interfaces responsible
for sending & receiving the data via physical medium (e.g. Automotive Ethernet, CAN, etc.),
becoming N-PDUs and L-PDUs, consequently.

In context of Automotive Ethernet, L-PDUs transmitted over the physical medium directly
represent the TCP/UDP packet payload.

2.4.2 AUTOSAR XML
ARXML (AUTOSAR XML) emerges as a pivotal component derived from the extensive AU-
TOSAR UML2.0 meta-model [51], as visually represented in Figure 2.20.

Figure 2.20 The procedure of ARXML creation according to the AUTOSAR meta-model.

This meta-model provides a detailed specification for AUTOSAR systems. Within this frame-
work, the .ARXML10 file plays a crucial role, storing essential data related to application interfaces.

The AUTOSAR systems specification encompasses an extensive volume of data, with each
subsystem receiving a detailed description. For instance, in the context of Automotive Ethernet,
the specification for Ethernet frame encapsulation includes crucial details such as frame type,
frame length, Ethernet addresses (MAC addresses), payload content, signals definitions (mean-
ing, start bit, start byte, transmission mode, value, etc. ) & PDU and multiplexing specifications,
signal-to-PDU mappings, and other essential parameters at each level of internal processing. To
maintain a manageable data structure, AUTOSAR employs a thematic organization, categoriz-
ing information into logical groups and subgroups, which are interlinked through relative path
references [52]. Different .arxml files exit in the scope of AUTOSAR, each aiming at specific
goals.

An example, outlining the selected fragment of plausible ARXML inner structure is provided
at Listing 2.1.

Code listing 2.1 Fragment of plausible ARXML inner structure.
<AR -PACKAGE >

<SHORT -NAME >PDU </ SHORT -NAME >

10Hereinafter, the .extension construct shall be used for denoting the file(s) of specified extension.
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<ELEMENTS >
<I-SIGNAL -I-PDU >

<I-SIGNAL -TO -PDU -MAPPINGS >
<I-SIGNAL -TO -I-PDU -MAPPING >

<SHORT -NAME >Signal1 </ SHORT -NAME >
<I-SIGNAL -REF DEST ="I- SIGNAL ">/ ISignal /S1 </I-SIGNAL -REF >
<PACKING -BYTE -ORDER >MSB -LAST </ PACKING -BYTE -ORDER >
<START -POSITION >0</ START -POSITION >
<TRANSFER -PROPERTY >PENDING </ TRANSFER -PROPERTY >

</I-SIGNAL -TO -I-PDU -MAPPING >
</I-SIGNAL -TO -PDU -MAPPINGS >
<UNUSED -BIT -PATTERN >0</ UNUSED -BIT -PATTERN >

</I-SIGNAL -I-PDU >
</ELEMENTS >

</AR -PACKAGE >
<AR -PACKAGE >

<SHORT -NAME >ISignal </ SHORT -NAME >
<ELEMENTS >

<I-SIGNAL >
<SHORT -NAME >S1 </ SHORT -NAME >
<INIT -VALUE >

<NUMERICAL -VALUE ><VALUE >128 </ VALUE ></ NUMERICAL -VALUE >
</INIT -VALUE >
<LENGTH >5</ LENGTH >

</I-SIGNAL >
</ELEMENTS >

</AR -PACKAGE >

ARXML proves to be a valuable tool for efficiently interpreting data packets, thanks to its
comprehensive descriptions. Generally, XML format makes data accessible without the need
for specialized software and ensures human readability. However, it’s worth noting that this
approach may introduce computational complexity due to the relatively low ratio of useful data
and values in comparison to less useful elements like node names, tags and special characters.

2.5 Security of in-vehicle communication
The protection of in-vehicle communication is complicated and adapted to the circumstances
found in a car (e.g. long product lifecycle, limited resources). It is generally achievable by ensur-
ing Physical security, Network security, ECU hardening and Application security of all communi-
cation parties [2]. Among all these measures, aimed at safeguarding of in-vehicle communication,
solely the Network security is to be analyzed to align with the scope of the thesis.

The primary objectives of Network security encompass ensuring Confidentiality, Integrity,
and Availability, collectively referred to as CIA11. Network security’s objective is to prevent
unauthorized access to confidential data, guarantee data remains unaltered and originates from a
verified source (upholding integrity), and ensure the consistent availability of services as intended.

Within a vehicle, potential attack targets include any ECU or communication line. Conse-
quently, each requires individual protection against diverse generic attack categories [2]:

1. Reading communication (confidentiality).

2. Replaying, changing, or injecting communication (integrity).

11The exact origins of the ’CIA Triad’ expression appear to be unknown, but the underlying concepts were
already operative in military contexts millennia ago, as can be seen in the works of the consulus, pontifex maximus
Gaius Julius Caesar[53].
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3. Selectively removing communication (integrity, availability).

4. Denial of Service (availability).

5. Attacking vulnerabilities of ECUs (confidentiality, integrity, availability).

It is clear that the successful execution of attacks within categories 1-3 intersects with the
thesis’ problematics and depend on the access the attacker has. In other words, the goals set
in section 1.2 could mean to successfully perform emphasized attacks on in-vehicle Automotive
Ethernet communication (with full access presumed). Consequently, an in-depth evaluation of
security solutions aimed at thwarting such attacks becomes essential.

Given the multitude of potential attacks, a single security mechanism is insufficient for com-
prehensive communication protection. Consequently, automotive security systems typically em-
ploy a layered approach, integrating a combination of various mechanisms.

At the time of writing, the automotive industry has not reached a consensus on specific
algorithms and protocols for Automotive Ethernet security, nor has there been an industry-wide
standardization effort. Several distinct initiatives have surfaced, each targeting different aspects
of this issue [2]: AUTOSAR SecOC, SAE J3061, ISO 21434, JASPAR, etc.

Broadly, the security of automotive networking can be considered from three perspectives.
Since the Automotive Ethernet relies on the ISO/OSI model, the first perspective is the security
mechanisms usually used in it, while the second is automotive-specific security additions inte-
grated into the inter-ECU networking. The third perspective addresses the security concerns in
the context of functional safety.

2.5.1 Security in context of ISO-OSI Model
Since the automotive Ehernet communication protocols are mainly structured in the ISO-OSI
layer model (Figure 2.21), the same can be done for the network security solutions.

Figure 2.21 Protocol overview for Automotive Ethernet [2].

Each security solution is specific to a layer, protecting it and the higher layers. Figure 2.22
illustrates this concept, showing security solutions across different layers of the Ethernet-based
communication stack. The following list provides brief descriptions of these solutions as applied
in the ISO/OSI model, typically used in Ethernet communication:

MACsec, standardized as IEEE 802.1AE, secures layer two of the Ethernet stack, providing
point-to-point (P2P) encryption and authentication for each connection [54]. This process,



34 Preliminaries

encompassing VLAN tag protection, requires Ethernet switches to update authentication and
encryption at each switch transition. MACsec’s authentication algorithm is notably relevant
to the automotive industry for ensuring integrity across mixed security domains. However,
its implementation in vehicles necessitates hardware support in controllers and switches,
increasing semiconductor costs [2]. Its principal benefit is the comprehensive protection
of all communication types—unicast, multicast, and broadcast—across protocols, thereby
significantly reducing the attack surface against external threats.

IPsec, or Internet Protocol Security, was developed to supplement IP at layer three, address-
ing two main use cases. Firstly, it ensures end-to-end privacy, authenticity, and integrity,
commonly applied within enterprise networks for server communication. Secondly, it facili-
tates both site-to-site and end-to-site Virtual Private Networks (VPNs). Using mechanisms
such as encryption and an added header for message authentication, IPsec integrates directly
at layer three of the ISO/OSI model, making it transparent to higher-layer applications [55].
Originally developed alongside IPv6, it is also compatible with IPv4.
IPsec’s Authentication Header (AH) variant offers authentication without encryption, allow-
ing non-IPsec systems to process packets by skipping the AH header. While mainly for
IP-based communication, IPsec’s layer three implementation enables protection of numerous
protocols, excluding VLAN-Tags, (g)PTP, Ethernet, ARP, and NDP. Although multicast
protection was not initially part of IPsec, experimental extensions now exist for this purpose
[2].

TLS or Transport Layer Security, formerly SSL, ensures privacy and data integrity for appli-
cations like HTTP, IMAP, SMTP over TCP by offering encryption and authentication [56]. It
supports various symmetric/asymmetric encryption, key exchange, and authentication meth-
ods. TLS 1.2, introduced in 2008, was succeeded by the more secure and simplified TLS 1.3
in RFC 8446 (2018) [56], which resembles IPsec in its authentication-encryption approach.
For UDP, the DTLS (Datagram TLS) variant exists [57]. TLS and DTLS safeguard TCP- or
UDP-based protocols (e.g., SOME/IP, HTTP) but do not extend protection to TCP, UDP,
IP, VLAN-Tags, (g)PTP, Ethernet, or helper protocols such as ARP and NDP. They also
exclusively protect unicast communications.

gPTP or Generic Precision Time Protocol, is a time synchronization standard within time-
sensitive networking (TSN), derived from the IEEE 1588 Precision Time Protocol (PTP). The
protocol enables sub-microsecond levels of synchronization [2], crucial for networked ECUs in
high ASIL ADAS functionalities. It functions through the exchange of timestamped messages
between nodes, establishing a precise time reference. This protocol is adaptable for hardware
or software implementation and is not restricted to any specific vendor.

Figure 2.22 Layered automotive security approach and related mechanisms [2].
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The exact usage of denoted mechanisms depends on the ECU resources and it’s intended
functionality, leaving some of these solutions simply not applicable for the general in-vechicle
communication. Summarizing, these secutity mechanisms or their subvariants (possibly devel-
oped by the car manufacturer) have to be individually chosen, set and configured, with the
further factors considered, making their usage non-uniform and situation-dependent.

Another security solution which is closely related to the topic is CRC protection of an Ethernet
frame (see Figure 2.8) itself, described in section 2.3.5.1. The frame check sequence (FCS) is
a four-octet cyclic redundancy check (CRC) that allows detection of corrupted data within the
entire frame as received on the receiver side. According to the standard [42], the FCS value
is computed as a function of the protected MAC frame fields: source and destination address,
length/type field, MAC client data and padding (that is, all fields except the FCS).

Per the standard, this computation is done using the left shifting IEEE 802.3 CRC-32 (poly-
nomial = 0x4C11DB7, initial CRC = 0xFFFFFFFF, CRC is post complemented, verify value =
0x38FB2284) algorithm. The standard states that data is transmitted least significant bit (bit
0) first, while the FCS is transmitted most significant bit (bit 31) first [42]. In compliance with
it, receiver should calculate a new FCS as data is received and then compare the received FCS
with the FCS the receiver has calculated in order verify the authenticity and itegrity of the data
received.

2.5.2 Security in context of AUTOSAR
AUTOSAR Secure Onboard Communication (AUTOSAR SecOC) has been developed in order to
provide a resource-efficient and practical security mechanism that seamlessly integrates into the
AUTOSAR communication (Figure 2.23) and that, being at AUTOSAR level, can be used with
all networking technologies supported by AUTOSAR (CAN (FD), FlexRay, Ethernet, LIN). It
provides end-to-end authentication and integrity based on message authentication codes (MAC)
and freshness values (counters or timestamps).

Figure 2.23 Integration of the SecOC BSW with CAN.12

12Source: https://www.linkedin.com/pulse/secoc-shalini-krishnakumar-sjujc/?trk=public post
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For efficiency in computation and bandwidth consumption it assumes symmetric keys, though
neither asymmetric keys nor encryption are precluded [58]. SecOC has the unique capability to
protect messages being passed, e.g., from CAN to Ethernet. AUTOSAR currently defines a
mere core feature framework, leaving, for example, the key exchange, session establishment, and
a concrete mechanism for freshness up to the manufacturer.

The nuances of AUTOSAR framework arise here that must be taken into account; AUTOSAR
SecOC is not a mandatory component of a software architecture. The overall establishment of
AUTOSAR SecOC requires both the sending ECU and the receiving ECU to implement a SecOC
module.

On the sender side, the SecOC module creates a Secured I-PDU by adding authentication
information to the outgoing Authentic I-PDU (whether multiplexed or not), as seen on the Figure
2.26. In practice this may be achieved by appending the authentication information to I-PDU
in form of a signal(s) or by other means determined by a manufacturer.

On the receiver side, the SecOC module checks the freshness and authenticity of the Authentic
I-PDU (regardless if the Freshness Value is or is not included in the Secure I-PDU payload) by
verifying the authentication information that has been appended by the sending side SecOC
module.

Figure 2.24 represents the principle of AUTOSAR SecOC functionality.

Figure 2.24 AUTOSAR SecOC message authentication and freshness value verification [58].

Both MAC and freshness value counters can be additionally truncated, benefiting the size
of transmitted data but decreasing the protection level. According to the AUTOSAR SecOC
specification, the exact sizes of those vary depending on the AUTOSAR SecOC profile used:

SecOC Profile 1 (or 24Bit-CMAC-8Bit-FV): using the CMAC algorithm based on
AES-128 according to NIST SP 800-38B to calculate the MAC, use the eight least significant
bit of the freshness value (refer to Figure 2.25) as truncated freshness value and use the 24
most significant bits of the MAC as truncated MAC.

SecOC Profile 2 (or 24Bit-CMAC-No-FV): using the CMAC algorithm based on AES-
128 according to NIST SP 800-38B to calculate the MAC, don’t use any freshness value at
all and use the 24 most significant bits of the MAC as truncated MAC. The profile shall only
be used if no synchronized freshness value is established. There is no restriction to a special
bus.

SecOC Profile 3 (or JASPAR): this profile shall be used for CAN and it depicts one
configuration and usage of the JasPar counter base FV with Master-Slave Synchronization



Security of in-vehicle communication 37

method. It uses the CMAC algorithm based on AES-128 according to NIST SP 800-38B. Use
the 4 least significant bits of the freshness value as truncated freshness value, and use the 28
most significant bits of the MAC as truncated MAC.

Figure 2.25 Freshness Value structure.

Moreover, the precise configuration of AUTOSAR SecOC Profile applied to a particular
in-vehicle communication environment in practice could different from those, described in AU-
TOSAR SecOC specification. Manufacturer determines the algorithms used with selected I-PDUs
(therefore, different algorithms could apply for neighbouring PDUs in the same packet), as well
as sizes of both MAC and FV.

Figure 2.26 Secured I-PDU structure.

2.5.3 Security in context of Functional Safety
Adhering to ISO 26262 necessitates additional measures for functional safety, focusing on ’end-to-
end safety’. This principle requires that applications (SWC on an ECU) achieve specified safety
targets. Consequently, applications must incorporate functions that can handle potential errors
in the communication link or protocol stack, such as middleware. Two prevalent mechanisms for
this are application-based CRC (Cyclic Redundancy Check) protection and the Alive Mechanism
[14]:

1. In application-based CRC protection, a CRC is generated within the application context
for specified data and sent alongside it. The receiver then verifies this CRC at the application
level. Any communication errors from other layers will be reflected in the application-based
CRC, obviating the need for additional reliability measures in those layers.

2. The Alive Mechanism aims to ensure data recipients can detect anomalies in the timing
of the data transmission. Issues like delays or cessation in the transmitting application are
critical. It’s vital for the recipient to identify if outdated data is being cyclically transmitted
instead of new information, especially as this poses a safety risk in various driving scenarios.
To mitigate this, an alive counter or timestamp, originating from the application context, is
transmitted, enabling the recipient to ascertain the operational status of the transmitter.
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Figure 2.27 Security mechanisms apllied during the signal transmission from receiver’s (to the left)
and sender’s (to the right) perspective [59].

Figure 2.27 represents the usage of both application-based CRC and AUTOSAR SecOC in
context of AUTOSAR layered architecture.

The application of these mechanisms depends on the corresponding ASIL assignment, mak-
ing those mechanisms typically being used in ECUs of ASIL B and higher, and therefore non-
mandatory for ECUs with QM or ASIL A assigned [2]. In context of AUTOSAR, the exact values
of both application-based CRC and alive counter (timestamp) are treated as signals in the PDU
payload. Theese measures are not mandatory independent from each other, making possible a
case when computation of application-based CRC depends on the alive counter or timestamp.

2.6 Existing Solutions
One of the prominent tools in domain of signals manipulation on Automotive Ethernet is the
the FlexDevice family [60], being a suite of multifunctional bus control units that provide com-
prehensive solutions for automotive networking.

These devices support a variety of bus systems and have several variable interfaces to cater
to a wide range of applications. Importantly, the FL3X Switch 1000BASE-T1 is a notable
product in this category, recognized as one of the first Automotive Ethernet Switches capable of
operating at 1000BASE-T1 [61]. The primary features of the FlexDevice family (refer to Figure
2.28) relevant to signal manipulation in Automotive Ethernet are:

Gateway Functions: The ability to act as gateways between different automotive bus
systems.

Bus Interfaces: Offering multiple bus interfaces for seamless integration and communication
across various network types.

Remaining Bus Simulation (RBS): Essential for testing environments where simulating
bus traffic is required.

Signals & PDU Manipulation: Direct control over signal and PDU parameters for devel-
opment and testing.
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Data Logging: Capturing and analyzing data traffic within the network.

Rapid Prototyping: Facilitating quick development and testing of new automotive network
configurations.

Visualization: Presents a graphical interface for monitoring and analyzing signal behavior
within the network.

Gateway: Provides the necessary tools for creating gateways between various bus systems.

Figure 2.28 The multifunctional bus control unit FlexDevice-L.

In particular, the tools belonging to FlexDevice family support direct interaction with gPTP
and AUTOSAR SecOC. Additionally, they support a broad spectrum of interfaces and bus
systems, including [62, 63]:

FlexRay controllers and channels.

CAN-FD / LIN.

Standard Ethernet (100BASE-TX) and Automotive Ethernet (1000BASE-T1, 100BASE-T1).

It is crucial to acknowledge that a device belonging to FlexDevice family and compatible
with Automotive Ethernet, was introduced and became commercially available in the midst of the
composition of this thesis, a development not anticipated at the onset of this work. Unfortunately,
the principles of its inner functionality are concealed by the manufacturer.

2.7 Conclusion
In conclusion, the foundational aspects of driving automation have been thoroughly examined.
Initially, the driving process itself was scrutinized, presenting a classification of automation levels
based on the roles of human and machine. Furthermore, critical facets of functional safety, includ-
ing automotive security integrity levels (ASILs) and fault tolerance time interval (FTTI), were
analyzed, facilitating the application of the developed software in testing automotive component
software.

Subsequently, the role of the general E/E architecture of a vehicle in the context of driving
automation was investigated. This involved examining the segregation of the vehicle’s internal
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electonic control units (ECUs) into domain-specific functionalities, concluding that achieving
higher levels of automation is contingent on establishing either a domain-centralized or a zonal
architecture.

A comprehensive analysis of automotive networking, which facilitates communication between
separate modules (domains), was then conducted. During this analysis, various technologies used
in modern vehicles were examined and classified based on their characteristics. A key finding is
that achieving advanced levels of driving automation today is feasible primarily through the use
of Automotive Ethernet as the communication technology, owing to its bandwidth, particularly
beneficial under the substantial network loads characteristic of highly automated vehicles.

The next logical phase entailed an in-depth examination of the structure and types of Auto-
motive Ethernet, as well as the role of the ISO/OSI model in organizing communication through
this technology. Each layer of the model was explored, along with the primary protocols utilized
at each level.

In the context of exploring real-time data manipulation methods in Automotive Ethernet, the
organization of communication of individual software components via the AUTOSAR framework
was analyzed. This analysis included examining key abstract data units involved in data trans-
mission (signals, signal groups, PDUs, PDU groups), their internal structure, properties, flow
and some significant actions performed with them during data transmission (e.g., multiplexing).
The primary conclusion of this analysis is that manipulating signals in the Automotive Ether-
net network is achievable through direct modification of the necessary bits transmitted in the
payload of internet packets. AUTOSAR XML files, describing communication between different
software component interfaces and some details pertaining to communication security, can be
used to identify these bits.

One of the final stages of analysis addressed potential attacks and existing protection mech-
anisms in in-vehicle networking from three perspectives: the ISO/OSI model, AUTOSAR, and
most importantly, functional safety. The analysis led to the identification of mechanisms to cir-
cumvent featured protections, specifically: the necessity of real-time recalculations of FCS, CRC,
MAC, and possibly BZ (to prevent PDU obsolescence), and their subsequent embedding in the
packet payload at the appropriate location.

The final stage briefly reviewed existing solutions in the domain under consideration.
In conclusion, manipulating signals in the Automotive Ethernet network in a manner that

remains undetected by the communicating parties (refer to section 1.2) is theoretically feasible
under the specific conditions. The primary requirements for its successful execution include
having the adjusted environment, accurately determining the location data of the manipulated
signals (their transmission mode is not important), replacing the values of selected bits, detecting
protection mechanisms based on ARXML files, and circumventing them in real-time within
the minimal possible timeframe to comply with ASIL’s FTTI. Therefore, the main potential
bottlenecks (most important issues) to consider are the analysis of ARXML files and the direct
interaction with Ethernet traffic.



Chapter 3

Requirements Synthesis

In this chapter, the crucial needs and specifications are systematically dissected in order to outline
the scope for the further development of a software capable of signals manipulation within the
Automotive Ethernet network. It is divided in four sections, each addresses a specific aspect.

First, section 3.1 (Functional Limitations) specifies inherent constraints and boundaries on
the system’s capabilities. It identifies potential limitations in manipulating signals within the
Automotive Ethernet framework derived from the Chapter 2.

Section 3.2 (User Requirements) details the expectations and preferences of end-users inter-
acting with the system, taking the mentioned limitations into account. It includes considering
of user experience, interface preferences, and any specific user-driven functionalities. Generally
it stablish a user-centric approach to inform design and development, by providing the essential
set of the use cases.

Section 3.3 (Hardware Requirements) specifies the necessary hardware components and con-
figurations for the system, considering speed, processing power, and compatibility with existing
Automotive Ethernet infrastructure. It ensures a comprehensive understanding of the hardware
prerequisites for optimal system performance.

Finally, section 3.4 (Software Requirements) defines the functional and non-functional re-
quirements derived from user requirements & use cases. It defines the essential software attributes
and functionalities needed for seamless operation.

To conclude, this chapter serves as a pivotal guide for shaping the system’s design and func-
tionalities, aligning them with the practical and operational necessities inherent to the Automo-
tive Ethernet landscape.

3.1 Functionality Limitations
To begin with, as it turns out, the creation of the software capable of a comprehensive sig-
nals manupulation goes far beyond the scope of this master’s thesis due to the large amount of
circumstances that would demand a consideration. Moreover, since the establishment of Auto-
motive Ethernet network within a car, and of AUTOSAR in particular, encompasses a variety
of manufacturer specific nuances, the developed system cannot be universally applicable.

Therefore, the overall system developed shall be treated as a functional prototype able to
perform the featured functionality. Hereinafter, the developement of a system for signals manip-
ulation on Automotive Ethernet shall be based on the following provisions:

L1: The system is strictly confined to be software-based only. No integration with
specialized hardware or equipment facilitating signal manipulation is taken into consideration
and initial compatibility is limited to an usual PC.
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L2: The system shall not be fully autonomous. It order to operate, it shall partially rely
on the information provided by the user.

L3: The system’s applicability is limited to inter-ECU communication exclusively.
Manipulation of signals between different SWCs located in one ECU requires additional
integration into AUTOSAR RTE, which is deemed to be unnecessary in terms of this work.

L4: The Automotive Ethernet network employed shall not incorporate any special-
ized traffic protection protocols, such as IPsec, MACsec, TLS, gPTP or any
alternative solutions, including those developed by the manufacturer. Bypassing
the protection provided by one or more of these mechanisms could be challenging and is a
separate issue that goes beyond the scope of this thesis.

L5: The system shall be compatible merely with IEEE 802.3 Ethernet standard.
Compliance with other standards (namely IEEE 1722 in context of AVB/TSN) is not a
common case and requires additional efforts, theoretical background, etc.

L6: The system shall support only partial AUTOSAR SecOC profile 2 circumven-
tion. Since the Secret Key is being managed independently by a compund of AUTOSAR
framework with different scenarios possible (timing for the secret key renovation), the system
shall assume renovation timing dependent on the power cycle of a car (no possible Secret
Key update on the sender/receiver side at the time of a system operation). Bypassing of
AUTOSAR SecOC profile 1 shall not be supported because at the time of a system operation
it is impossible to obtain the actual last received FV on the receiver side if earier commnica-
tion between sender and receiver had been already held before the system started running.
Additionally, the simplified mapping of secured I-PDU to L-PDU presumed for the sake of
simplicity, assuming that the actual MAC is stored inside the L-PDU payload as signal.

L7: The system shall not support the usage of Update-bits by AUTOSAR COM.
Update-bits make the recipient to be notified of changes in signal values in advance, which
would cease the ability to interfere into the communication. This is because even after
bypassing all the security mechanisms, the tagret SWC would treat the received data as
corrupt at the application level due to the absence of prior notification on pending signal
changes. The circumvention of this optional mechanics would demand additional measures
that are out of scope of the thesis’ problematics.

3.2 User Requirements
From the user’s perspective, the developed system shall be applicable in system testing (refer
to section 5.1) of the entire vehicle with domain centralized or zonal E/E architecture. The
developed system is needed to assist in application of test methods (required by ISO 26262, see
section 2.1.2) to individual SWCs (ECUs) interacting with others, for the purpose of evaluation
of their performance according to the specified use cases.

Despite the assessment of the performance of individual SWCs/ECUs is not covered by the
scope of the very thesis, the system shall rather provide the means for the very assessment. Since
the assessment can be automated or performed manually, system shall support both command
line and GUI interaction with the user. The system should be capable of manipulation with
data sent by a sender ECU before the reception by a receiver ECU, without any impact on the
communication of other parties if necessary. When no manipulation with data is performed, the
system shall act as a transparent gateway. Both functionalities should be carried out with a
minimal possible delay.

In order to achieve it, the system shall be capable of modification of individual signals
(whether they are the part of a signal group or not) within a PDU transmitted over the network
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in such a way, that on arrival to the receiver it is not treated as a corrupted one on application
level or by AUTOSAR SecOC module (if implemented). This, in turn, namely includes setting a
signal value to the provided one (test use case specific), modification of CRC and FV of PDU (op-
tionally), circumvention of the supported AUTOSAR SecOC profile (optionally), recalculation
of Ethernet FCS & other associated checksums and resending the Ethernet packets in real-time,
satisfying the signal delivery delay tolerance requirements (ASIL related FTTI).

Since the communication in such case is being performed via physical media, the .arxml
file providing the essential information on the layout of featured signals withtin PDUs (whether
mulriplexed or not) in the Ethernet packet is to be used; there is no need in information about
the signals & PDUs layout at upper abstaction layers of AUTOSAR environment. If modification
of application level CRC and FV or AUTOSAR SecOC bypassing is necessary, then the details
lacking in proper .arxml file shall be provided by the user manually, particularly polynomial
used for in-PDU CRC calculation and Secret Key for AUTOSAR SecOC bypassing. Moreover,
user is responsible for defining the exact actions the system has to perform (to filter packets or
to modify signals) depending on the external context of system testing mentioned earlier.

In addition, the system shall be capable of memorizing used configurations in order to ease
the overall testing process it is to be used in.

3.2.1 Use Cases
Overall, the behavior of the developed software shall match the following use cases:

UC1: Changing the values of individual signals. System acts as a transparent gateway
upon start-up, performing no traffic filtering or modification. User specifies the signal name,
.arxml file containing it’s specifications, the new value to be set and the duration of action-
ing (whether in cycles or time units). If user is aware of security mechanisms applied to
the specified signal, the additional data is provided (Polynomial for CRC calculation and/or
Secret Key for AUTOSAR SecOC 2 circumvention). The proper configuration is created1.
User activates the desired configuration, which is then stored. The program starts its execu-
tion according to the user command, begins manipulation with signals and bypasses all the
security mechanisms based on the user input. If the duration of the configuration has expired
(in cycles or milliseconds), it is no longer applied. The program stops its operation according
to the user command, becoming a transparent gateway again.

UC2: Filtering the inter-ECU communication by omitting the specified elements.
System acts as a transparent gateway upon start-up, performing no traffic filtering or modi-
fication. User has the capability to define filtering criteria for communication, thereby trans-
forming the program into an opaque gateway (proxy). Source & destinantion IP addresses
as well as ports, and PDU id can be defined to outline the filtering criteria. The proper
configuration is created; user activates the desired configuration, which is then stored. Pro-
gram starts its execution according to the user command and filters the traffic excluding the
specified packets from the communication bus2. If the duration of the rule has expired (in
cycles or milliseconds), it is no longer applied. The program stops its operation according to
the user command, becoming the transparent gateway again.

UC3: Activating, deactivating, importing, deleting and exporting of utilized config-
urations. Program stores all the created configurations (both at a run-time and between
usage sessions). User has an opportunity to upload several configurations to switch between

1Configuration or rule represent a collection of information required to modify the signal according to the
request of a user.

2This feature ensures that only traffic meeting the specified criteria is permitted to traverse through the
network. It is especially expedientary when testing the ECU in is olation during the operation of a vehicle (e.g.
physical cable damage), as well as when testing ASIL related FTTI.
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them later (not to enter new signal value and not to process .arxml file, if some configu-
rations have to be repeated). User has an opportunity to delete a specific configuration, get
all previously created configurations, update, activate or deactivate the selected ones.

While the program has limited applications due to its specificity, the described scenarios of
its usage and behavior fully correspond to situations in which it would be applied during the
real testing sessions3. They serve as the basis for specification of the desired functionality of the
system in details.

3.3 Hardware Requirements
In accordance with functionality limitation L1, the developed system shall not require any spe-
cific HW supplements. Therefore, HW requirements for the system are merely bounded by the
presence of a PC with Linux operational system installed and two Ethernet Network Interface
Cards (NICs) available.

The exact impact of quality characteristic of its components (processor clock speed, number
of physical and logical cores, RAM, etc.) shall be evaluated in section 5.1.

3.4 Software Requirements
The software requirements for the system for manipulation with signals on Automotive Ethernet
(later – ’system’) are derived from user (or customer) requirements, use cases and theoretical
background presented in the previous chapter. They represent the desired functionality of the
software to develop and can be divided into functional and non-functional.

The very requirements are specified in the following subsections and must be interpreted
in the context of the previously established functionality limitations and not in isolation from
them. It must also be noted, that the exact implementation of some requirements depends on
the environment the system is intended to operate in due to manufacturer-specific nuances.

3.4.1 Functional Requirements
FR1: System has to be capable of changing the value of specified signal(s).

FR2: System has to be capable of automatic detection and circumvention of in-PDU
Alive Mechanism.

FR3: System has to be capable of automatic detection and computation of in-PDU
CRC based on provided polynomial.

FR4: System has to be capable of automatic recomputation of in-packet checksums.

FR5: System has to be capable of automatic detection and circumvention of AU-
TOSAR SecOC (profile 2) based on provided Secret Key.

FR6: System has to be capable of automatic exclusion of specifed packets (depending
on source & destination IPv6 address, port and PDU id) from the communication
bus.

FR7: System has to be capable of obtaining all necessary signal, PDU and Ethernet
frame specifications from the .arxml file provided.
3The provided user requirements and use cases were compiled with the support of the Vehicle Testing Depart-

ment of Porsche Engineering (Porsche Engineering Services s.r.o.), located at Radlická 714/113a, 158 00 Prague
5, Czech Republic.
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FR8: System has to be capable of run-time activation, deactivation, deletion, im-
porting, exporting, updating and long-term maintainance of used configurations.

FR9: System has to provide a user with both GUI and command line operation
possibilities.

▶ Note 3.1. The inclusion of the functionality limitation L6 and the functional requirement FR5
is predicated on the examination of the potential to circumvent certain protection mechanisms
associated with AUTOSAR. Should this be successfully executed under the simplified conditions
established in L6, it would also indicate the possibility of bypassing this protection mechanism
in its full-scale model.

3.4.2 Non-functional Requirements
NFR1: The overall system performance has to comply with specifed fault tolerant

time interval, depending on the use case.

3.5 Conclusion
This chapter establishes a foundational framework for developing a software system for signal
manipulation within Automotive Ethernet networks, focusing on practicality and operability in
line with Automotive Ethernet and AUTOSAR standards. The system, conceptualized as a
functional prototype, adheres to clearly defined and logically derived functionality limitations,
ensuring realistic expectations within the constraints of these frameworks and thesis in general.

User requirements were compiled with the support of Porsche Engineering and are tailored
to facilitate system testing, emphasizing features like signal manipulation and traffic filtering,
crucial for evaluating SWC/ECU performance and ISO 26262 compliance.

Minimal hardware requirements ensure broad accessibility and ease of deployment, while the
software requirements are comprehensively outlined, encompassing both functional capabilities
and important non-functional aspects like system performance in context of fault tolerance.
The requirements for the final software are intentionally left somewhat vague, providing the
author with the freedom to implement while focusing solely on the key functionalities. The
system’s adaptability and user-centric design are key to its usability in diverse automotive testing
scenarios.

Overall, this thesis outlines a software system that is both specialized and adaptable, poised
to be a significant tool in Automotive Ethernet testing and analysis. The system’s relevance and
potential impact in the automotive industry are underscored by its alignment with current and
evolving industry standards.
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Chapter 4

Software Design &
Implementation

This chapter delves into the critical phases of software design and implementation, encapsulat-
ing the intricacies of realization of stated functional requirements. First, the general high-level
architecture of a system is being designed according to previously derived & analyzed software
requirements (refer to section 4.1), all the design & technology solutions are justified and ex-
plained (see section 4.2). Second, the detailed design of selected individual components is being
presented and discussed in section 4.3. Consequently, several important insights into the actual
implementation phase are provided, unveiling the real-world challenges faced.

4.1 Architectural Design
Upon examining the functional requirements compiled for the software in section 3.4.1, it be-
comes evident that the desired end functionality, particularly in the context of internet packet
processing, can be categorized into three fundamental groups: ’Preparation’, ’Action’, and ’Mis-
cellaneous’. The ’Preparation’ category encompasses a set of measures vital for the successful
execution of tasks within the ’Action’ category, which represents the software’s ultimate objec-
tive. ’Miscellaneous’, on the other hand, comprises functional capabilities essential for facilitating
user convenience and controllability of a system.

This is particularly apparent when examining requirements FR2, FR3, and FR5, where ’au-
tomatic detection’ falls under ’Preparation’, while ’calculation’, ’circumvention’ etc. belong to
’Action’. The very signal specification can be considered as ’Preparation’ as well. Furthermore,
requirement FR7 is exclusively related to ’Preparation’ as it does not reflect the software’s end
goal, but rather the prerequisite fot achievement of it. Requirements FR1 (partially), FR4, and
FR6 directly correspond to the ’Action’ category. The remaining functional requirements of the
software align with the ’Miscellaneous’ category.

This logical division of software requirements implicitly suggests a modular approach to its
design and implementation. In turn, this approach enables the application of many principles
characteristic of successful software design, such as ’separation of state’, ’separation of concerns’,
’data version transparency’ and ’action version transparency’ [64] among others. Concurrently,
the further proposed design strives to achieve high cohesion within modules and low coupling
between them in order to further enhance the possible software’s maintainability and, perhaps,
scalability, aiming to optimize these aspects, however, without making them the paramount
concern. The emplyoment of denoted principles to a software system will benefit it by reducing
the combinatorial effects, therefore steering it closer to a normalized one.
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The overall design choice favors a global client-server architecture; the developed software is
suggested to be named ’Automotive Ethernet Protocol Injection Logger’, or AEPRIL. Although
the selected architecture is less optimal in terms of achieving low coupling and high cohesion com-
pared to a microservices architecture, nevertheless it offers greater flexibility than a monolithic
approach.

Furthermore, such a design facilitates the independent development, maintenance, enhance-
ment, and testing of client and server components, provided that a predefined client-server inter-
face is established. This allows the final system to be divided into two parts: one responsible for
direct interaction with the user, receiving information, and processing data prior to the execution
of requested actions (Preparation – client), while the other carries out these actions (Action –
server). At the same time, the implementation of Miscellaneous requirements is shared among
them.

Such a division naturally delineates the system’s inherent bottlenecks: the processing of
.arxml files and the direct intervention in Automotive Ethernet traffic (refer to section 2.7).
In this way, the real-time Automotive Ethernet packet processing (which must be as swift as
possible) is undertaken by the server-side of a system and is decoupled from the parsing of
ARXML file, which could take relatively significant amount of time.

Figure 4.1 Architecture of a system for signals manipulation on Automotive Ethernet.
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After AUTOSAR XML file is processed by client, all the information required for the proper
handling of traffic is suggested to be sent to client via JSON RPC v2.0 protocol. Moreover, it in
turn implies the possibility of independent installation and usage of each component on discrete
interconnected devices, enabling the remote control of system operation.

The general architecture of a system is represented at Figure 4.1. The client and server ar-
chitecture comprises several intuitively understandable abstract components, each with specific
responsibilities, reflecting the ’separation of concerns and state’ principles for independent man-
agement of software aspects. The data flow and internal action sequence are explicitly outlined in
the system’s schematic, illustrating data movement and conforming to ’data and action version
transparency’ principles, thereby clarifying the process’s evolution over time.

The structure of both client and server, as well as the very client-server interface and external
dependencies are desribed in details in sections 4.3.2, 4.3.3 and 4.3.1 respectively.

4.2 Technologies & Libraries

Implementation of any software necessitates a predefined development means & methodology
and a clear understanding of the environment where the software will be deployed. This includes
identifying key programming languages, external libraries used, the operating environment (plat-
form), and the overall paradigm for project implementation.

In this case, the server is developed exclusively for the Linux platform, aligning with the
objectives set for this work. This choice facilitates the use of the Linux Kernel for near-direct
interaction with network card drivers. Given the requirement for rapid processing of large vol-
umes of raw data (streams of internet packet bytes) and the limited range of functionalities to
be implemented, C 17 (ISO/IEC 9899:2018) and C++ 20 (ISO/IEC 14882) are identified as the
most suitable programming languages.

Conversely, the client, responsible for direct interaction with user, requires an appropriate
graphical interface and the capability for an alternative command-line control. Additionally,
the management of large data sets with inherent abstraction (such as AUTOSAR XML files)
demands a higher-level approach. Python 3.11 is chosen for the client to ensure cross-platform
installation and usage, along with access to a wide range of libraries that facilitate development.

In addition, the development process employs both object-oriented and, to some extent,
functional programming paradigms. The client development was undertaken using JetBrains
PyCharm Integrated Development Environment (IDE) 2021.1, while Microsoft Visual Studio
Code 1.55 and CMake build system framework 3.20 were employed for server development. The
main libraries used, the reasons for their selection (apart from personal experience), and the
ways of their application are detailed in the following subsections.

4.2.1 ObjectBox
ObjectBox is a high-performance NoSQL database, which excels in rapid data processing and
operational efficiency (refer to Figure 4.2), extremely crucial for high-performance computing,
embedded systems, etc. It supports a range of programming languages (C/C++, Java, Python,
Swift, etc.) making it versatile across various software applications. Binding code for ObjectBox
APIs is generated by ObjectBox Generator according to predefined .fbs schema, describing the
objects that are to be ”stored”. Distinguished by its low latency, high throughput, and compact
size, ObjectBox is particularly well-suited for resource-limited devices.

The operational framework of ObjectBox uses an object-oriented data storage model, align-
ing with object-oriented programming to improve data access and manipulation. Moreover,
ObjectBox maintains ACID-compliant transactions, ensuring data reliability, particularly in un-
predictable system scenarios. In addition, it allows to build custom queries for tailored data



50 Software Design & Implementation

Figure 4.2 ObjectBox CRUD Operations per second in comparison with SQLite; adapted from
https://objectbox.io/.

retrieval needs, as advanced indexing significantly cuts down search and retrieval times, enhanc-
ing query performance.

The ObjectBox is notably open-sourced under the Apache 2.0 license, which makes it freely
available for both commercial and personal use.

These capabilities render ObjectBox particularly suitable as a database solution for the server
side of the end system.

4.2.2 PF RING
PF RING is an advanced high-performance packet processing framework, designed to provide
means for network monitoring, packet capture, filtering and analysis. Despite several usage-
specific PF RING versions exist (the Vanilla PF RING is to be used), the framework core com-
prises an accelerated kernel module and a user-space SDK supplied with the proper API. The
general architecture of the framework is illustrated on Figure 4.3.

Figure 4.3 PF RING’s architecture.

The framework itself supports a wide range of functionality, including the ability to bind
applications to various network interfaces, such as physical and RX queues. Additionally, an
efficient packet processing mechanism, where packets are transferred to a pre-allocated memory
ring (circular buffer), minimizes overhead, which makes it crucial for high-speed networks. The
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framework’s support for an array of packet filtering options, as well as packet parsing function-
ality, capable of extracting metadata from network layers (ISO/OSI layers 2-4), enables precise
traffic analysis. Notably, PF RING’s packet reflection feature and hardware-based filter com-
patibility are essential for real-time packet processing, while its clustering mechanism allows
for distributed packet processing, ensuring efficient traffic management in high-volume network
scenarios.

PF RING distributes its kernel module and drivers under the GNU GPLv2 license, while its
user-space PF RING library is under LGPLv2.1, all available in source code format, making it
available for both personal and commercial use.

In summary, PF RING’s comprehensive capabilities make it a potent tool for Automotive
Ethernet packet capturing and their processing using CPU, addressing the needs for speed and
efficiency, which make PF RING a versatile deployment for the system’s server side.

4.2.3 PcapPlusPlus
PcapPlusPlus library is a comprehensive tool designed for network packet capturing, parsing,
crafting, and analysis. It provides a unified C++ API to interact with various packet capture
engines, simplifying their complexity and offering a common platform for a wide range of network-
related operations. Among all others, it supports several key features especially relevant in terms
of this work.

First, the library supports packet parsing and crafting, by providing advanced capabilities
in packet fultering, as well as in both analyzing the details of network packets and creating or
modifying them. PcapPlusPlus supports reassembling fragmented network packets at both the
IPv4/IPv6 (Network layer) and TCP (Transport layer) levels, facilitating the handling of large
data chunks across network protocols.

Second, PcapPlusPlus excels in packet capture and sniffing (intercepting and logging network
traffic) by supporting multiple packet capture/processing engines such as libpcap, WinPcap/N-
pcap, Intel DPDK, and notably PF RING (refer to section 4.2.2). The library supplies a user
with an ability to utitilze previously mentioned Vanilla PF RING engine via provided wrapper,
and therefore elliminates the necessity to use it directly. In justification of it, for instance, an
Ethernet packet captured by PF RING can then be uniformly handled by the PcapPlusPlus API,
making it possible to process it via functionality offered by another packet processing engine.

PcapPlusPlus is released under the Unlicense license, making it freely available for both
personal and commercial use.

In summary, PcapPlusPlus stands out as a versatile and efficient solution for processing the
ethernet traffic at the server component of the system.

4.2.4 Libjson-rpc-cpp
Libjson-rpc-cpp framework offers essential support for implementing JSON-RPC (Remote Pro-
cedure Call) in C++ applications, aligning with the standards of JSON-RPC 2.0 and partially
with JSON-RPC 1.0. Libjson-rpc-cpp automates the generation of stub classes for both client
and server sides of RPC applications (refer to Figure 4.4) according to the provided JSON spec-
ification.

The framework includes pre-built HTTP and TCP servers and clients. This feature provides
straightforward and efficient interfaces for JSON-RPC applications, significantly reducing de-
velopment time. It extends its utility by offering build support for Linux, which is especially
relevant in context of the server compound.

The adoption of the MIT License promotes extensive use (both personal and commercial)
and modification of the framework.

Summarizing, libjson-rpc-cpp is a lightweight and universal solution for JSON-RPC based
communication that will be utilized solely on the server side of the resulting system.



52 Software Design & Implementation

Figure 4.4 Generation of libjson-rpc-cpp stub classes and their usage.

4.2.5 PyQt6
To begin with, Qt is set of cross-platform C++ libraries that implement high-level APIs for
accessing many aspects of modern desktop and mobile systems. These include location and posi-
tioning services, multimedia, NFC and Bluetooth connectivity, a Chromium based web browser,
as well as traditional UI development, etc.

PyQt6 is a comprehensive set of Python bindings for Qt v6. It is implemented as more than
35 extension modules and enables Python to be used as an alternative application development
language to C++ on all supported platforms. PyQt6 may also be embedded in C++ based
applications to allow users of those applications to configure or enhance the functionality of
those applications.

PyQt6 is released under the GPL v3 license and under a commercial license that allows for
the development of proprietary applications.

In context of this thesis, PyQt6 is to be used in GUI developement and multithreading support
for client side system compound.

4.2.6 Lxml
The lxml XML toolkit integrates Pythonic bindings for the libxml2 and libxslt C libraries, enhanc-
ing the ElementTree API with a focus on Python’s simplicity and C’s performance. It constructs
on the libxml2 tree, offering improved functionality but at the cost of higher maintenance due
to the dynamic generation of Python node representations.

Moreover, the primary limitation of lxml is exactly its reliance on the complex tree model of
libxml2; this model complicates tree construction and restructuring processes. However, it also
provides advanced features like parent pointers and, especially, XPath support, which enables
quering of XML documents.

In addition, serialization is a key strength of lxml, operating at the C level, which results in
significantly faster performance compared to other ElementTree versions in Python. The toolkit
is particularly efficient with UTF-8 encoding. Exact benchmarks are available on the official
webpage of lxml.

The lxml library is shipped under a BSD license, while libxml2 and libxslt2 itself are shipped
under the MIT license, which allows both commercial and personal use.

Overall, lxml is an acceptable solution for XML quering & parsing on the client side of the
end system.
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4.3 Detailed Design & Implementation

This section focuses on the detailed design and implementation of a system for signals manip-
ulation on Automotive Ethernet. First, the client-server interface is established and described.
Later, the architecture of the system’s major compounds (client & server) is described sepa-
rately, highlighting their key inner components and principles of their interaction. The design
choices made during the development process are mainly explained, emphasizing their alignment
with established best practices; information on challenges faced and how they were overcome is
presented as well. Additionally, this section outlines the practical steps taken during the imple-
mentation phase, providing the featured insights into the source code of the developed software
and the methodologies adopted.

This part of the thesis aims to provide a clear link between theoretical concepts and their
application in a real-world scenario. Particularly, this section may be considered as a technical
guide to the system developed.

4.3.1 Client-Server Interface
To establish client-server communication following the JSON RPC v2.0 standard, the methods
(procedures) for remote invocation must first be defined. Since their definition is not dictated
by any specific requirements, their precise delineation was conducted based solely on personal
discretion and the envisioned functionality of the end system. The resulting interface is intended
to provide means for basic control over the server-side of a system. It supports the remote
procedure call of the following methods:

1. TEST — the method is employed to verify the connection between the client and the server;
it performs no functionality. Essentially, its successful execution signals to the client the
server’s availability and current operational mode (refer to Table 4.1 for more details).

2. START — the method is used to activate the program’s operational mechanism in accor-
dance with the curently active rules. Table 4.2 provides the specification of this method.

3. STOP — the method is utilized for deactivating the operational mechanism of the program,
consequently reverting it to a state of transparent gateway functionality. Detailed specifica-
tion of this method is available in Table 4.3.

4. UPSERT — the method is used to either update existing data or insert new data if it does
not already exist. The exact operation to be performed is determined by a server depending
the data received from client. The parameters of the method, along with their descriptions,
as well as the results returned upon method invocation, are detailed in Table 4.4.
▶ Note 4.1. The input parameters defined for the UPSERT method are deemed to be sufficient
and, importantly, shall be construed as the precise specification of a rule itself.

5. SET — the method is designed to alter the status of a chosen rule, setting it to either ”active”
or ”inactive”. Detailed information about this method can be found in Table 4.6.

6. GET — the method is utilized for transmitting rules stored on the server to the client. It
facilitates the transfer of either a single selected rule or all existing rules on the server in form
of an array (depending on the parameters provided). A detailed specification of the method
is presented in Table 4.5.

7. DELETE — the method is employed for the permanent removal of a selected rule (or all
rules) from the server. Detailed specifications of this method are available in Table 4.7.
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Result Params

Name Type Description
T

ES
T

{
res (bool),
message (string)
}

— — This method has no input parameters.

Table 4.1 JSON RPC TEST method specification.

It is important to mention that the specifications of the methods’ results, as detailed in the
referenced tables, are relevant only in scenarios where the procedure is invoked successfully. In
the event of a failure, the standard JSON RPC v2.0 error object1 is employed in the response of
a method. A failure in this context may arise from a logical error, such as the impossibility of
deleting a non-existent rule, or from a usage error, like passing an incorrect number of parameters.
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Result Params

Name Type Description

ST
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RT

{
res (bool),
message (string)
}

— — This method has no input parameters.

Table 4.2 JSON RPC START method specification.
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Result Params

Name Type Description

ST
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{
res (bool),
message (string)
}

— — This method has no input parameters.

Table 4.3 JSON RPC STOP method specification.

To illustrate the practical application of JSON RPC, the following example demonstrates the
invocation of the DELETE method using a curl command:

$ curl -X POST http://192.168.1.12:8080 -H "Content-Type: application/json" -d \
’{

"jsonrpc": "2.0",
"method": "DELETE",
"params": {

"id": 1
},
"id": 3

}’

1As defined in the protocol, the error object comprises the fields code (of type int32 ) and message (of type
string), representing the error code and its corresponding explanation, respectively.
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This curl command sends a POST request to the JSON RPC server, here hypothetically
located at ‘192.168.1.100‘ on port ‘8080‘. The request specifies the DELETE method, with
parameters set to delete the rule with ID 1 from server. The ’id’ field in the JSON body
represents a client-defined identifier for this request, arbitrarily assigned the value 3.

N
am

e

Result Params

Name Type Description

U
PS

ER
T {

id (int64 ),
message (string)
}

mode bool Operational mode: false for packet filtering,
true for signal modification.

id int64 Rule ID assigned by a server, or 0 by default.

status bool Rule activity status: true if rule is currently
active, false otherwise.

duration int32 Numerical expression of the duration of rule
usage.

duration type string
Type of the duration: milliseconds (”ms”),
seconds(”s”), minutes (”m”), cycles (”cyc”)
or infinite (”inf”).

src ip string Source address of an IPv6 packet. If mode is
false, empty string stands for any.

src port int16 Source port of an IPv6 packet. If mode is
false, -1 stands for any.

dest ip string Destination address of an IPv6 packet. If
mode is false, empty string stands for any.

dest port int16 Destination port of an IPv6 packet.

pdu id int16
PDU ID: either ID of a PDU containing the
desired signal, or a ID of a PDU within IPv6
packet that is to be excluded from traffic.

signal name string Name of a signal.

signal start bit int16 Absolute offset in bits from the beginning of
the SDU (PDU) to the beginning of a signal.

signal length int16 Length of the signal in bits.
new value uint64 New value to of a signal to be set.

polynomial uint8[] Polynomial required for in-PDU CRC
calculation provided by a user.

secret key uint8[] Secret key required for AUTOSAR SecOC 2
circumvention provided by a user.

bz start bit int16
Absolute offset in bits from the beginning of
the SDU (PDU) to the beginning of the in-
PDU Alive counter.

bz length int8 Length of the in-PDU Alive counter in bits.

crc start bit int16
Absolute offset in bits from the beginning of
the SDU (PDU) to the beginning of the in-
PDU CRC.

crc length int8 Length of the in-PDU CRC in bits.

mac start bit int16
Absolute offset in bits from the beginning of
the SDU (PDU) to the beginning of the in-
PDU MAC field.

mac length int8 Length of the in-PDU MAC field.

protocol bool Protocol if the IPv6 packet: true for UDP,
false for TCP.

Table 4.4 JSON RPC UPSERT method specification.
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▶ Note 4.2. Throughout this thesis, the BZ abbreviation (or BZ counter respectively), derived
from the German term ’Botschaftszähler’, will be used to denote the in-PDU alive counter. This
terminology is adopted to maintain consistency with industry standards and ease of reference.

N
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Result Params

Name Type Description

G
ET

[
{

mode (bool),
id (int64 ),
status (bool),
duration (int32 ),
duration type (string),
src ip (string),
src port (int16 ),
dest ip (string),
dest port (int16 ),
pdu id (int16 ),
signal name (string),
signal start bit (int16 ),
signal length (int16 ),
new value (uint64 ),
polynomial (uint8[]),
secret key (uint8[]),
bz start bit (int16),
bz length (int8 ),
crc start bit (int16 ),
crc length (int8 ),
mac start bit (int16 ),
mac length (int8 ),
protocol (bool)
}

]

id int64
ID of a rule to obtain from server.
If ID is set to -1, all the rules stored
are passed to client.

Table 4.5 JSON RPC GET method specification.
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Result Params

Name Type Description

SE
T

{
res (bool),
message (string)
}

id int64 The ID of the selected rule, the status of which
needs to be changed.

status bool
The desired status to which the current status of
the rule should be changed. If set to true, the
rule becomes active; if false, it becomes inactive.

Table 4.6 JSON RPC SET method specification.
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Result Params

Name Type Description

D
EL

ET
E {

res (bool),
message (string)
}

id int64
The ID of the rule that is to be deleted. If
ID is set to -1, all the rules stored on the
server are to be deleted.

Table 4.7 JSON RPC DELETE method specification.

The client-server interface showcased here serves as an initial prototype meeting the intended
functional requirements of the developed system (FR8 in particular) and having a potential
for future enhancements. It is designed without session establishment capabilities, allowing
simultaneous access to server by multiple clients. While this design enables widespread use,
it inherently makes the system more susceptible to DoS/DDoS attacks. However, addressing
these security concerns, along with the implementation of explicit communication protection,
falls beyond the scope of this thesis.

4.3.2 Client
In the initial stages, the development of the client-side of the system entails the implementation of
requirements falling under the ”Preparation” category as previously acquired. This encompasses
the collection of information from the user, its appropriate processing, and augmentation to
ensure compliance with the pre-defined client-server interface and its subsequent utilization.
Each of these responsibilities is allocated to one of the client’s abstract components, signifying
that each component may consist of zero or multiple Python modules.

The client-side system architecture is distinctly structured, integrating a viable implemen-
tation of the Model-View-Controller (MVC) pattern with its abstract constituents – Model,
View(s), and Controller. The adoption of the MVC pattern is strategically advantageous; it
abstracts the program logic from the user interface, a design choice aligned with and justified by
the functional requirement FR 9. In addition to the MVC framework, the architecture includes
abstractions for an ARXML Parser, Rule Creator, and a JSON-RPC Client.

The design of the client-side part of the system is seamlessly connected to multithreaded
programming. It involves s dynamic assignation of threads based on the type of selected View.
The View’s nature, whether it is a console interface or a graphical one, directly affects how many
threads the system is to utilize. The program determines which View to use and how many
threads to allocate depending on the command-line arguments given at startup.
▶ Note 4.3. The detailed information about the command-line arguments is available with using
the --help argument at the time of program startup. Importantly, the supported command-
line arguments mainly comply with rule attributes, outlined in section 4.3.1, and serve for their
setting.

In cases where the system operates utilizing a GUI View, it is imperative to allocate an
additional thread. This allocation is pivotal in maintaining the responsiveness of the interface.
Conversely, in the configuration where the Console View is employed, the system’s architecture
allows the use of a singular thread for the sequential execution of individual tasks.

The primary operational process of the system’s server component is depicted in Figure 4.5,
while the essential constituents of the system are illustrated in Figure 4.1. The operational
process of successful JSON-RPC request creation comprises several key stages, such as arxml
processing, input retrieval, rule creation and request submission which are handled in one-by-one
manner. A detailed exposition of the intended functionalities of each acting component, along
with their internal mechanisms, is provided in the respective subsections.
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Figure 4.5 Simplified UML sequence diagram, showcasing a successful internal process for ARXML
parsing, acquiring of user data, rule creation and sending of UPSERT request to JSON-RPC server (GUI
enabled).
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4.3.2.1 Views
Views are the interfaces of the systems’ client-side that are tasked with collecting information
from the user, providing user feedback, and facilitating fundamental control over the software’s
functionality. The latter entails mechanisms for managing the database on the server side of
the system, as well as the means to delineate the initiation and termination of the server-side
system’s active operation, including signal modification and traffic filtering.

Both (graphical user interface) (GUI) and console views are implemented, addressing the
functional requirement FR9. The exact view to be used is determined by the presence of --gui
argument at the application start-up.

4.3.2.1.1 GUI View. In order to ensure the user-oriented design, GUI was conceptualized
through a multi-stage design process, beginning with low-fidelity (Lo-Fi) wireframes sketches
that outlined the spatial arrangement of the interface elements, which provided a preliminary
visual and interaction model (refet to Figures 4.6 and 4.7). Advancing to high-fidelity (Hi-
Fi) wireframes, detailed mock-up of the GUI was created, incorporating aesthetic elements,
such as color scheme (standard system theme is used) and typography, to yield a realistic user
experience. These prototypes were then iteratively refined based on user feedback2, ensuring
that the interface was intuitive, responsive, and aligned with user expectations. Final GUI
representation corresponds to the latest Hi-Fi wireframe, and is denoted at Figures 4.8 and 4.9.

Figure 4.6 Low-fidelity wireframe with the Signal Modification tab active.

The GUI view is represented by a stateless single Python class, which managages various
widgets such as QComboBox, QLineEdit, and QPushButton (provided by PyQt6 library), which
are systematically arranged within layouts. The resulting view employs both vertical and hor-
izontal dividers to delineate distinct sections for ’server control’, ’ARXML processing’, ’traffic
interference’, ’common rule properties’, ’database management’, and ’feedback’, ensuring a clear
demarcation between input/output zones. A tab widget, which implements ’traffic interference’
area, differentiates between ’Traffic Filtering’ and ’Signal Modification’ functionalities, enabling
users to seamlessly toggle between these modes. Interactive elements like checkboxes, entry fields,
and buttons are designed to capture user inputs for signal attributes, traffic filters and command

2The feedback was provided by the employees of Vehicle Testing Department at Porsche Engineering Services
s.r.o. at the design stages.
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execution, thereby streamlining the process of managing server-side database operations and
controlling the overall functionality of a system.

Figure 4.7 Low-fidelity wireframe with the Traffic Filtering tab active.

Despite meanings of particular GUI elements are quite intuitive, they are explicitly grouped
depending on section and provided below:

Server Control:

Server IP: An input field designated for the user to specify the Internet Protocol (IP)
address of the target server; both IPv4 and IPv6 addresses are acceptable.
Server Port: An input field serves for specifying the network port number on the target
server for establishing a network connection.
Connect: A control element (button) that servers for probing the client-server connectivity,
referring to the TEST method defined in section 4.3.1.
START: A control element (button) that swithces the server operational mode, enabling
the traffic interference (refer to START method defined in section 4.3.1).
STOP: A control element (button) that swithces the server operational mode, enabling
the transparent gateway functionality (refer to STOP method defined in section 4.3.1).

ARXML Processing:

Choose file: A control element (button) that initiates an .arxml file selection interface,
enabling the user to select a configuration file required for the system’s operation. After
the file is chosen, it’s name is displayed next to the button.

Traffic Interference – Signal Modification:

Signal Name: The identifier of the signal intended for modification.
New Value: A new value the specified signal has to be set to.
Polynomial: 16 comma-separated hexadecimal polynomial coefficients used for in-PDU
CRC calculation.
Secret Key: 16 comma-separated hexadecimal cryptographic key partitions, used in the
recomputation of MAC field.
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Traffic Interference – Traffic Filtering:

Signal Name: A packet, containing this signal, shall be marked for an exclusion from traffic
(optional field).
Target IPv6: Target (destination) IPv6 address of a packet to be excluded from traffic.
Source IPv6: Source IPv6 address of a packet that has to be excluded from traffic.
Target Port: Target (destination) port of a packet that has to be excluded from traffic.
Source Port: Source port of a packet that has to be excluded from traffic.
PDU ID: A packet, containing the specified PDU, shall be marked for an exclusion from
traffic (optional field).

Common Rule Properties:

Duration: Numerical representation of rule duration.
Duration Type: Dropdown menu containg duration types: ”ms”, ”s”, ”m”, ”cyc” or ”inf”.
Active: Rule status upon insertion (’active’ if checked, ’inactive’ elsewise).

Database Management:

ID: Rule identifier the database operation has to be performed with.
UPSERT: Upsert a new rule into the database; (refer to UPSERT method in section 4.3.1).
SET: Set the status of a rule to the specified one in the ’Active’ input field; (refer to SET
method in section 4.3.1).
GET: Retrieve the specified rule from the database; (refer to GET method in section 4.3.1).
DELETE: Permanently delete the specifed rule from the database; (refer to DELETE method
in section 4.3.1).

Feedback:

System and user-targeted information, error logs, server responses are provided in the big
scrollable (width is also adjustable) field, located on the right side of the program window.

Figure 4.8 Client GUI at the time of operation with Signal Modification tab active.
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Figure 4.9 Client GUI at the time of operation with Traffic Filtering tab active.

4.3.2.1.2 Console View. In the Console View mode, the program is designed to execute a
single operation dictated by the command-line arguments, provide feedback upon completion,
and then terminate. Such a design facilitates the automation possibilities, making the program
usage suitable for managing by different scripts. Since the command-line arguments are pro-
cessed at the application start-up, the very Console View is responsible ony for textual feedback
outputting.

An example of program usage via Cosole View is provided below:

$ python3 app.py --server-ip 192.168.1.10 --server-port 8080 --method delete \
--rule-id 29
Server: No rule to DELETE with id 29 exists.

4.3.2.2 ARXML Parsing
ARXML files that describe inter-ECU communication may possibly differ slightly from one man-
ufacturer to another, or depending on the specific ECU, making the very extraction non-trivial.
The differences could include changes in organization of packages, naming conventions applied,
etc. This implicitly suggests the design & implementation of a flexible mechanism for selective
data extraction.

The final design decision is inspired with pre-existing proprietary developments in the field
and breaks the AUTOSAR XML processing into several discrete steps, outlining the key abstract
components participating in the parsing process as following:

Schema: describes the data to be extracted and their hierarchy within ARXML file.

Parser: analyzes user-defined schema and creates extraction queries; extracts the data spec-
ified by queries.

This approach is deemed to be flexible enough, as it allows for selective parsing of ARXML
files, although demanding the knowledge of their internal organization. Moreover, it allows the
future deployment of an ARXML parser as an independent software component, aligning with
modular design and software reusability principles [65].

Overall, the established ARXML parsing and processing procedure is intended to be per-
formed solely once per each ARXML file specified, saving all the extracted data into a separate
folder.
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4.3.2.2.1 Schema. The schema itself represents a collection of objects and their values with
respect to their hierarchy. An object is defined as an aggregation of values with a given name and
an anchor; an object can be either nested or not. A value represents the data to be extracted
from the ARXML file. Each value is identified by a unique freely chosen name and includes
parsing instructions, which referred later as queries.

The first object, identified by its anchor, marks the starting point for sequentially processing
the following values. During the parsing process, each query uses the anchor of its parent object
as a primary reference point. The parsing instructions are carried out later with respect to this
anchor. It’s important to note that an anchor can lead to either a single object, depending on the
element’s uniqueness in the ARXML file, or to an array of elements that meet certain criteria.

4.3.2.2.1.1 Object Anchor. The formulation of an anchor is critical as it delineates the
precise location (path) within the XML hierarchy where the relevant elements are to be found.
Additionally, object anchor itself supports several types, providing the higher flexibility in shema
construction:

xpath: This type of anchor allows the use of any XPath expression to define the object to
be parsed.

ref : This syntax is utilized for directly referencing a specific AUTOSAR object.

xref : A hybrid of ‘ xpath‘ and ‘ ref‘, this anchor involves an XPath expression leading to
an element containing an AUTOSAR Reference.

The ‘ xref‘ anchor is particularly noteworthy for its dual functionality. It is adept at facil-
itating the extraction of data from an element when only its AUTOSAR reference is accessible
within the current context. A practical application of this is in retrieving the data type of a signal
mapped to a PDU, where the PDU itself only contains a reference to the signal. The operational
mechanism of ‘ xref‘ involves initially locating the element with the AUTOSAR reference, as
specified by the XPath. Subsequently, it extracts the reference from the element’s text value and
proceeds to resolve this reference, thereby establishing a new base for child value queries.

4.3.2.2.1.2 Values. A value’s path consists of an XPath expression that leads to the
element where the data can be found. All types of XPath expressions can be used for path
specification. Optionally, the path can be converted into an inline reference (if the referenced
element is unique),by prepending &(<xpath-to-ref>) to the actual XPath expression:

value: [&(<xpath-to-ref>)]<xpath-to-element>

Value queries can be further refined by adding attributes, specifying the extract location and
format. This can be done by prepending additional parsing information (> and : symbols) to
the path, as following:

value: [location[>format]:]<xpath-to-element>

Tables 4.8 and 4.9 denote the supported possible values for both extract location and format.

Syntax Description Usage
tag Gets the tag of the element value: tag:<xpath>
text Gets the text of the element value: text:<xpath>
@<name> Gets the value of the specified attribute value: @UUID:<xpath>

Table 4.8 Value locations.
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Syntax Description Usage
string Takes the textual representation value: text>string:<xpath>
int Converts the value into an integer value: text>int:<xpath>
float Converts the value into float value: text>float:<xpath>

Table 4.9 Value formats.

4.3.2.2.1.3 Schema Template. Summarizing, the implemented schema markup pro-
vides means for flexible and selective specification of data to be extracted from ARXML file.
The primary reason for developing this schema notation is to align the intrinsic structure of
AUTOSAR XML files with the hierarchical organization of objects and values’ names defined in
the schema template3, as indicated in Listing 4.1.

Code listing 4.1 Schema in .yaml format used for ARXML parsing.
Frames :

_xpath : ".// SOCKET -CONNECTION - BUNDLE "
Source : "SHORT -NAME"
SocketConnection :

_xpath : ".// SOCKET - CONNECTION "
DestinationContainer :

_xref: "CLIENT -PORT -REF"
Destination : "SHORT -NAME"

Pdus:
_xpath : ".// PDUS/SOCKET -CONNECTION -IPDU - IDENTIFIER "
Id: "HEADER -ID"
PropertiesContainer :

_xref: "PDU -TRIGGERING -REF"
Properties :

_xref: "I-PDU -REF"
Signals :

_xpath : ".//I-SIGNAL -TO -I-PDU - MAPPING "
Name: "SHORT -NAME"
StartPosition : "text >int:START - POSITION "
Length : "text >int :\&(I-SIGNAL -REF) LENGTH "

In particular, this schema marks the following values for extraction, being later placed into
a nested ’Frame’ object:

1. Source: source port & IPv6 address of an Ethernet packet.

2. Destination: destination port & IPv6 address of an Ethernet packet.

3. Id: PDU ID.

4. Name: signal name.

5. StartPosition: absolute offset in bits from the beginning of the SDU within PDU, indicating
where the signal starts.

6. Length: absolute signal length in bits.

▶ Note 4.4. The selection of the YAML format for the configuration schema was a deliberate
choice, aimed at achieving a logical segregation of the various types of data associated with the
software system: YAML for configuration settings, ARXML for input, and JSON for output.

3This schema template is chosen, since it reflects the plausible structure of real ARXML files used by auto-
motive companies, the resulting software is intended to operate with.
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It is noteworthy to mention, that the selected schema-based approach for ARXML parsing
is beneficial, generally resulting in possiblities of exctraction of any data, according to schema
definition.

4.3.2.2.2 Parser. The ’Parser’ (or ’ARXML Parser’) abstract component of AEPRIL-client
represents a collection submodules targeted at schema analysis and the very ARXML processing.
The schema analysis, in turn, can be divided into building of queries and handling of queries,
where a query represents a set of instructions, describing the ARXML parsing process.

Building of queries implies a proper treatment of schema-defined structures, which is es-
tablished by utilization of adequate containers for internal data representation (see paragraph
4.3.2.2.2.1 for further details). On the other hand, handling of queries involves:

Path Handling: treatment of object’s anchor in order to identify it within an ARXML file
(refer to 4.3.2.2.2.3).

Value Handling: treatment of individual values marked for extraction (refer to 4.3.2.2.2.4).

Object Handling: treatment of data marked for an extraction from hierarchical point of
view (refer to 4.3.2.2.2.5).

All the query-related functionality (both building and handling) is detailed in paragraph
4.3.2.2.2.6. Additionally, the ARXML processing itself is generally done by construction and
execution of XPath expressions according to the queries built, at the time of their handling.
Detailed information on functionality related to ARXML processing is denoted in paragraph
4.3.2.2.2.2. Details about YAML schema uploading and saving of extracted data are described
in paragraphs 4.3.2.2.3 and 4.3.2.2.4 respectively.

4.3.2.2.2.1 Internal Data Representation. User-defined YAML schema, denoted in
paragraph 4.3.2.2.1, represents a collection of data that has to be stored in the proper format
for further processing. This is performed by storing the information provided in a schema into
instances of three data structures (classes):

DataValue represents a single data item, associated with a query that describes how to extract
or interpret the value.

DataQuery represents a container, encompassing the path of data extraction, the specific
value to be retrieved and coherent attributes.

DataObject represents a structured entity, encapsulating a named collection of data values
and/or nested data objects, linked with a specific path.

4.3.2.2.2.2 ARXML Processing. The Parser class encapsulates critical functionalities
for interfacing with AUTOSAR XML files directly. Upon initialization, the class employs the
lxml library’s XMLParser, which is configured to discard blank text, thus enhancing parsing
efficiency. The parsed XML tree and its root are stored as private attributes, ensuring encapsu-
lation.

Parser performs dynamic extraction and utilization of XML namespaces; this is achieved
through the nsmap property of the root element.

The class method find all elements(...)4 exemplifies the application of XPath expres-
sions, tailored for AUTOSAR’s XML schema. It leverages the class’s capability to dynamically
assemble XPath queries, thereby providing a versatile tool for element retrieval based on varied
path inputs.

4Hereinafter, the function(...) notation will be used to name specific methods; the ... symbols mean the
precense of function arguments.
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In the realm of reference resolution, the find reference(...) method showcases a traversal
logic, navigating through the nested structure of ARXML files & dissecting AUTOSAR reference
into its constituent parts and iteratively resolving it against the XML hierarchy.

Auxiliary methods such as find element by shortname(...) and get shortname(...) are
tailored for AUTOSAR’s peculiarities, like the pervasive use of ‘SHORT-NAME‘ tags, focusing
on common patterns and requirements in ARXML file handling.

4.3.2.2.2.3 Path Handling. The PathHandler class is specifically designed for retriev-
ing XML elements based on different types of paths defined in DataQuery. The constructor of
the class initializes it with an Parser instance, enabling the use of specialized parsing functions.

The key method, elements by path(...), handles two types of paths:

DataQuery.XPath: Specified elements are retrieved using elements by xpath(...) function.
If the path is an inline reference, the method ensures that exactly one reference (refer to
paragraph 4.3.2.2.1.2) is found, raising an exception otherwise.

DataQuery.Reference: Corresponding element is directly retrieved via execution of the
element by ref(...) method.

The elements by xpath(...) and element by xpath(...) methods facilitate the retrieval
of elements using XPath expressions. The former returns a list of elements, while the latter
retrieves a single element. These methods rely on the Parser’s capability to assemble and
execute XPath queries.

To be precise, the element by ref(...) method is designed to fetch elements based on their
reference ID, a common requirement in ARXML file parsing. The element by inline ref(...)
method introduces specialized handling for inline references, splitting the inline reference into
two parts: a reference path and a value path, using the split(...) method. Additionally, the
method includes a performance optimization for ’SHORT-NAME’ values, where it returns the
referencing element directly instead of the referenced one.

4.3.2.2.2.4 Value Handling. Value handling is being managed by classless submodule
value handler. The functions handle(...), get value(...), and convert value(...)
are integral to the ARXML parsing process, primarily focusing on extracting & transforming
values from XML nodes based on specified queries. The handle(...) function serves as the
entry point, determining the value extraction strategy based on the type and characteristics of
the provided DataQuery object. Notably, it includes a specialized treatment for inline references
in DataQuery.XPath objects, specifically targeting SHORT-NAME references5.

In the extraction phase, the get value(...) function is utilized to retrieve the value
from the XML node, being capable of handling different value types denoted in Table 4.8. The
attribute retrieval, denoted by a prefix ’@’, involves a check for the attribute’s existence, ensuring
robust error handling and logging of missing attributes, essential for debugging and data integrity.

The transformation phase is handled by convert value(...), where the extracted value
is converted according to the specified format in the DataQuery object, the function is operating
with. This function supports formats denoted in Table 4.9.

4.3.2.2.2.5 Object Handling. The ObjectHandler class is a key component in the AU-
TOSAR XML parsing framework, designed for processing DataObject and DataValue instances.
This class is essential for interpreting the hierarchical structure of ARXML files and extracting
relevant data based on specified queries. It initializes with a worker object (refer to 4.3.2.5.3)
for progress reporting and an instance of Parser, encapsulated within PathHandler, to handle
path-based queries.

5SHORT-NAME is a key attribute of ARXML notation which serves for identification of nodes by name.
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The primary method, handle(...), orchestrates the data extraction process. It begins by
identifying the root node of the XML structure if no specific node is provided, marking the
entry point for data processing. The very method then retrieves XML elements corresponding
to the path specified in the given DataObject using PathHandler. For each element found, it
iterates and processes nested DataValue and DataObject instances through the handle values
method.

The handle values(...) method is primarily responsible for recursive processing of nested
DataObject and DataValue instances:

For DataObject instances, it recursively calls the handle(...) method.

For DataValue instances, it utilizes handle value(...) to extract and convert data based
on the specified query and format.

This recursive approach enables the handling of complex, nested data structures (common char-
acteristic of ARXML), as denoted in user-defined YAML schema.

The handle value method focuses on processing individual DataValue instances. It dif-
ferentiates between XPath and reference-based queries, utilizing the PathHandler for retrieving
the corresponding XML element. Once the element is obtained, the method delegates the value
extraction and conversion to the value handler submodule, which handles the specifics of data
conversion based on the query format.

4.3.2.2.2.6 Query Handling. First, the QueryBuilder class is pivotal in constructing
queries from a schema-defined dictionary. Its primary function, build(...), iterates over the
schema entities, transforming each key-value pair into a DataObject instance. Further key
methods of this class are provided as pseudo code in Algorithms 1, 2 and include:

parse object(...): This private method is integral to the query-building process. For each
configuration item, it determines the type of path (XPath, xref, or ref) and constructs the
corresponding DataQuery object. It also recursively processes nested dictionaries, allowing
for hierarchical data structures.

parse value(...): This method handles individual data values by parsing the given value
string into a DataQuery, which defines how to retrieve the value from an ARXML file.

parse query(...): This method is tasked with parsing query strings into DataQuery ob-
jects, extracting and interpreting the path, value, and format components.

Auxiliary methods such as get path(...), get value(...), and get format(...) are
used to parse specific components of a query, ensuring correctness and consistency in the gener-
ated DataQuery objects.

Additionally, the QueryHandler class is responsible for executing the queries against an
ARXML file. Key functionalities encapsulated into handle queries(...) method include:

File Validation: The method ensures that the input is a valid ARXML file, checking for its
existence, file type, and appropriate extension.

Data Processing: Upon validation, the method processes each DataObject by interfacing
with an ObjectHandler. The ObjectHandler utilizes the Parser to navigate the ARXML
file structure and extract or compute the values as defined by the queries in DataObjects
(see paragraph 4.3.2.2.2.5).

Result Aggregation: The processed results are aggregated into a dictionary, linking each
DataObject’s name to its corresponding outcome.
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Algorithm 1 Parse Object
1: function ParseObject(name, values)
2: required← {’ xpath’, ’ xref’, ’ ref’}
3: pathV alue← required ∩Keys(values)
4: if Length(pathV alue) ̸= 1 then
5: RaiseError(”Missing anchor”)
6: end if
7: path← DeterminePath(pathV alue, values)
8: dataV alues← []
9: for (key, value) ∈ values do

10: if key ∈ required then
11: continue
12: end if
13: if IsDict(value) then
14: dataObject← ParseObject(key, value)
15: Append(dataV alues, dataObject)
16: else
17: dataV alue← ParseValue(key, value)
18: Append(dataV alues, dataV alue)
19: end if
20: end for
21: return CreateDataObject(name, path, dataV alues)
22: end function

Algorithm 2 Parse Value and Query
1: function ParseValue(name, value)
2: query ← ParseQuery(value)
3: return CreateDataValue(name, query)
4: end function
5: function ParseQuery(text)
6: if not Contains(text, pathSeparator) then
7: path← GetPath(text)
8: return CreateDataQuery(path)
9: end if

10: [rawV alueFormat, rawPath]← Split(text, pathSeparator)
11: path← GetPath(rawPath)
12: if Contains(rawV alueFormat, formatSeparator) then
13: [rawV alue, rawFormat]← Split(rawValueFormat, formatSeparator)
14: value← GetValue(rawV alue)
15: format← GetFormat(rawFormat)
16: else
17: value← GetValue(rawV alueFormat)
18: format← StringFormat
19: end if
20: return CreateDataQuery(path, value, format)
21: end function

4.3.2.2.3 Schema Uploading. The ConfigProvider class, is quite simple and stands as
a cornerstone for loading and parsing configuration data. This class is characterized by two
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principal methods: load(...) and parse(...).
The load(...) method is tailored for reading the user-deined YAML schema. Before loading

the file, the method employs a validation process to ensure the file extension is .yaml. Upon
successful validation, the method proceeds to read the YAML file using the safe load(...)
function from the yaml module.

The parse(...) method, on the other hand, extends the class’s functionality by allowing the
parsing of YAML content directly from a string, also employing the safe load(...) function.

4.3.2.2.4 Saving of Extracted Data. The DataWriter class, intricately designed within
the system, plays a pivotal role in writing and transforming data extracted from ARXML file.
It comprises two primary methods: transform data(...) and write json(...).

Particularly notable is the transform data(...) method’s handling of potential null values
and non-list structures, a common challenge in data transformation tasks[66]. It iteratively
processes each ’Frame’ within the input data, systematically ensuring that components such as
’SocketConnection’, ’Pdus’, and ’Signals’ (refer to 4.3.2.2.1.3) conform to list structures.
▶ Note 4.5. Common practices of ARXML structuring include one-to-many mapping of elements.
For instance, one ’Frame’ could potentially have one or many ’SocketConnection’ elements at-
tached to it, resulting into nested tree structure. This uncertainity is resolved by an explicit
conversion to list, ensuring that all elements are treated in the same way.

Since the thesis is focused on manipulation with signals, ’Pdus’ objects having no ’Signals’
objects attached (’SocketConnection’ objects having no ’Pdus’ attached, respectively) are ex-
cluded by the method from the extracted data. Moreover, in order to simplify the one-to-many
mapping of ’Frame’ and ’SocketConnection’ objects, the method performs explicit one-to-one
mapping by multiple construction of new ’Frame’ objects having only one ’SocketConnection’
attached, preserving essential data while restructuring it into a more accessible and consistent
format (refer to Figure 4.10).

Figure 4.10 Transformation of one old ’Frame’ object into two new ’Frame’ objects.

After the trasformation was perfromed, the resulted data are easily readable and could be used
far beyond the scope of this thesis (testing, calibration, etc.) The plausible layout of extracted
and transformed data is provided in Listing 4.2 below:

Code listing 4.2 Generated frame specification in JSON format.
{

" Source ": " SAB_SA_Tx_fd53_7ab8_0383_0005_0000_0000_0000_0010_42_UDP ",
" Destination ": " SH_Rx_fa31_6ac2_0000_0000_0000_0000_0000_0005_45_UDP ",
"Pdus ": [

{
"Id": "2101" ,
" Signals ": [

{" Name ": " Eth_Gateway_Config ", " StartPosition ": 0, " Length ": 2},
{" Name ": " Cmn_Transport_Mode ", " StartPosition ": 2, " Length ": 4}

]
}
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{
"Id": "290601" ,
" Signals ": [

{" Name ": " pTMM_MMTR ", " StartPosition ": 0, " Length ": 1},
{" Name ": " pTMM_MMCR ", " StartPosition ": 1, " Length ": 1}

]
}

]
}

The write json(...) method extends the class’s functionality by writing the transformed
data into .json files. This, in turn includes the creation of one formatted JSON file containing
all the frames, and multiple indexed files with one-line formatting for each frame separately (all
inside the same folder). The following example of dir command output in Windows command
line showcases the naming convention6 applied to generated files:

...
1/20/2023 04:47 139,365 E3_1_2_Premium_ADAS_DC.json
11/20/2023 04:47 3,096 E3_1_2_Premium_ADAS_DC_frame_1.json
11/20/2023 04:47 2,109 E3_1_2_Premium_ADAS_DC_frame_2.json
11/20/2023 04:47 2,092 E3_1_2_Premium_ADAS_DC_frame_3.json
...

4.3.2.3 Rule Creator
The RuleCreator class plays a pivotal role in creation of rules and extracting signal information
from prepared JSON frame specifications.

The creation of the very rules depends on the operational mode inherent to rule itself. If
the desired configuration implies filtering of packets, the Rule class instance is being created
according, to the user-provided data, and returned upon create rule(...) method invoca-
tion, setting up the network rule with various parameters such as source and destination IPs,
ports, and other relevant information. Otherwise, the rule is being completed with utilization of
generate specs(...) method.
▶ Note 4.6. Importantly, if the signal name is provided in the traffic filtering mode, the rule is
being created similarly to the signal modification rules.

This method iterates over JSON files containing frame data, systematically searching for the
required signal (DFS), updates the rule object with detailed signal information, and calculates
progress, enhancing the user experience with real-time feedback.

Furthermore, the find signal info(...) method, used in this process, serves for exact
parsing and extraction of signal-related data, such as start position, length, etc. After the signal
is found, the associated CRC, BZ, and MAC information is being searched within the same PDU
and added to rule if found, therefore identifying the security mechanisms applied to a particular
PDU.
▶ Note 4.7. The presence of security mechanisms for a specific PDU is determined by the presence
of signals, which names end with ’ BZ ’, ’ CRC ’ and ’ MAC ’ respectively.

Additionally, as it is denoted in listing 4.2, both ’source’ and ’destination’ fields in the frame
specification are complex and include IPv6 address, port, and protocol type. The auxiliary
function extract ipv6 port protocol(...) is designed to dissect these fields, separating those
data into distinct properties of a rule.

6E3 1 2 Premium ADAS DC is a name of processed ARXML file containg the frames specifications.



Detailed Design & Implementation 71

4.3.2.4 Controller
The Controller class is central to the system; it collaborates closely with the Model and view
classes (GuiView and ConsoleView), thereby segregating the system’s data handling, business
logic, and user interface, integrating into the MVC design pattern. The primarily concern of this
class is to perform data handling (validation, trasformation) from user to Model and vice versa.

The class initializes with parameters that determine the type of user interface (GUI or con-
sole) and the option to enable logging. The core of the class is the generate request(...)
method, which serves as the primary mechanism for processing JSON-RPC requests denoted
in section 4.3.1, each requiring specific parameters and validation checks. The method includes
sophisticated error handling and user feedback mechanisms, informing user of potential issues
coherent with request parameters.

Additionally, the class comprises methods for setting the server information and triggering
the processing of ARXML files.

4.3.2.5 Model
The Model class is an essential element of a client-side of a system; it represents the business
logic of an application and designed to manage network communications and file operations
in particular. This class interfaces with a controller and uses a worker-thread model (refer to
paragraph 4.3.2.5.3) for executing tasks in a non-blocking manner, particularly beneficial in
graphical user interface (GUI) settings.

Central to the class’s functionality is the process request(...) method, which triggers
the rule creation process and handles JSON-RPC requests specified in section 4.3.1. In GUI
contexts, it employs a QThread to delegate processing tasks to a Worker object, ensuring that
the GUI remains responsive during operations.

Another key feature is the process arxml(...) method, which processes AUTOSAR XML
files according to YAML schema using a similar worker-thread approach.

The check rule(...) method is crucial for ensuring the complience of user-provided data
with rules generated by the system. It checks for essential elements like ’Secret Key’ and ’Poly-
nomial’ in user provided data, which are necessarily have to be provided when PDU is protected
by CRC or AUTOSAR SecOC.

4.3.2.5.1 JSON-RPC Client. The send request to server(...) method inherent to the
class is responsible for facilitating server communication, and consequently, implementing the
JSON-RPC client abstract component denoted at Figure 4.1. It uses IP address validation (IPv4
and IPv6 addresses) and HTTP request handling to interact with the server, incorporating
comprehensive error management to address potential network issues. The method is executed
not asynchronously (on the same thread as a GUI, if enabled).

4.3.2.5.2 Rule Representation. Within the client-side of a system, the rule is being stored
into Rule class instance. This class represents a functionless container dedicated exclusively for
the storage of information. The member variables of a class directly reflect the rule specification
aforementioned at Note 4.1.

4.3.2.5.3 Worker Object. The Worker class, leveraging the PyQt6 framework, serves as a
crucial but auxiliary component within the system’s architecture. This class is instantiated with
a model object, which carries the necessary configurations and state for the workflow.

It encapsulates a series of operations associated primarily with the data processing, and is
dedicated to perform these operations on a separate thread asynchronously (if GUI enabled). The
sequence of these operations – loading configuration, building queries, extracting data, writing
data, and creating rules – is being orchestrated by the class itself. The class employs a series of
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collaborator objects, namely ConfigProvider, QueryBuilder, QueryHandler, DataWriter, and
RuleCreator, to execute aforementioned tasks.

The class also utilizes PyQt6’s signal-slot mechanism [67], exemplified by signals such as
progress, message, error, exception, and rule, to communicate the status and results of its
operations, thus enabling real-time feedback.

Exception handling is a notable aspect of this class, with a dedicated emitException(...)
method designed to emit detailed exception messages. This method enhances the robustness of
the system by providing comprehensive diagnostic information to user in case of failures.

4.3.3 Server
Initially, the development of the server-side of the system is primarily aimed at the implemen-
tation of requirements falling under the ’Action’ category as previously acquired. This, in turn,
encompasses the appropriate processing of data received from the client, ensuring their accurate
storage and interpretation. Furthermore, the server component of the system must, when nec-
essary, execute direct intervention in network traffic in accordance with the established rules.
Ensurance of minimal overhead at the time of intervention is identified as a paramount concern,
addressing the demands on compliance with ASIL FTTI (see section 2.1.2).

Each of the aforementioned responsibilities is assigned to a specific component within the
server’s architecture, as delineated in Figure 4.1. This allocation implies that each component
may be composed of either none or several C++ classes. The internal mechanics of the software
operation are schematically depicted in Figure 4.11. Additionally, this figure illustrates that the
server-side of the system operates across multiple distinct threads:

Main application thread is utilized for performing all the activities needed at the start-up
of the application as well as for ’keeping the application alive’ at the time of system execution.
This thread is mainly used by SystemLogic abstract component (refer to section 4.3.3.3).

JSON-RPC server thread is utilized for real-time listening of the server on specified
port and is dedicated to JSON-RPC Server component (refer to section 4.3.3.7). Moreover,
database operations (refer to section 4.3.3.5) are executed at this thread in synchronous
manner as well.

Packet capture threads are utilized for real-time capture of packets and their processing;
number of those threads is bounded to P − 2 at most, where P represents the number of
physical cores of the processor. Those threads are being used independently from each other
by PacketParser abstract component, denoted in section 4.3.3.6.

Rule deactivation threads are optional and sleeping threads, belonging to no discrete
component; they are used to control the deactivation of a rule according to the specified
duration of its application (refer to paragraph 4.3.3.8.1). Number of those threads corresponds
to the number of currently active rules marked for delayed deactivation, where the precise
delay is provided in time units.

The software utilizes conditional compilation to determine the availability of particular fea-
tures during the program lifecycle. Conditional compilation, as well as the adjustment of partic-
ular hard-coded constraints, is managed by marcos defined in customizable conf.h header file.
In addition, server-side of a system does not support any GUI; the initial settings for the software
are passed via command line arguments and cannot be changed at the runtime.
▶ Note 4.8. The detailed information on command line arguments is provided to user when
--help argument is specified.
Moreover, since the client-server interface established in section 4.3.1 does not support methods
intended to completely shut down the server side of a system, it only can be perfromed manually
(Ctrl+C).
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Figure 4.11 Internal principle of the system’s server-side.

▶ Note 4.9. The interference job depicted at Figure 4.11 is iteratively applied to each of packet
in a bunch of incoming packets, if the server side of a system is not in the transparent gateway
mode (elsewise this job is simply skipped). In context of signal modification, it implies searching
for a specific PDU within a packet payload and substituting signal bits with required value,
also performing analogous substitution for bits associated with present security mechanisms.
Conversely, in terms of traffic filtering, it merely implies the exclusion of specified packet from
traffic.

4.3.3.1 Common

Apart from implementation components, responsible for direct addressing of functional software
requirements, further functionalities that are shared among all system modules, such as robust
error handling, comprehensive logging, and synchronized resource management have to be im-
plemented as well. The precise specifications of classes and enumerations coherent with resolving
of those issues are provided at Figure 4.12.
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Figure 4.12 Specifications of ’common’ classes and enumerations.7

4.3.3.1.1 Logging. The EventLogger class encapsulates a thread-safe logging mechanism
and is implemented as a Singleton to ensure that a single, global logging instance is utilized
throughout the system. The class constructor is private, and both the copy constructor and
assignment operator are deleted, reinforcing the Singleton pattern and preventing multiple in-
stantiations. The static method Instance() guarantees access to the singular Logger instance.

The log function template is a critical member of this class, accepting a log level, a mes-
sage, and the originating file and line number, facilitating contextual output. It leverages the
std::chrono library to timestamp log entries with high precision and employs std::strftime to
format these timestamps into a human-readable string. The LogLevel enumeration dictates the
granularity of the logs, with Debug, Info, Warning, and Error levels corresponding to increasing
levels of severity.

Depending on the compilation flags CONSOLE LOGGING and FILE LOGGING, the log messages
are conditionally directed to the console with appropriate color coding, and/or appended to a log
file, respectively. This is achieved within a scope guarded by a std::scoped lock on logMutex,
ensuring mutual exclusion in multithreaded scenarios.

Additionally, macros such as LOG DEBUG, LOG INFO, LOG WARNING, and LOG ERROR are defined
to simplify the invocation of the log function and can be enabled or disabled via preprocessor di-
rectives, allowing for flexible control over logging verbosity during different stages of development
or during the intended usage.

4.3.3.1.2 Error handling. Within the err namespace, the error handling infrastructure is
meticulously designed to categorize and manage potential errors within the system. First, the
macro OK set to 0, serves as the indicator of successful operations; it is used as anticipated return
value for some functions of a program. Three distinct enumerations, RpcError, DbError, and
LogicError, are declared to represent and intuitively separate various error states specific to

7This figure, as well further similar presented later, was automatically generated with Sparx Systems Enter-
prise Architect based on the available source code.
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remote procedure calls, database operations, and logical processing, respectively. These enumer-
ations encapsulate error codes, uniquely identifying each cause of a plausible error.

The Error class template, parametrized by an enumeration type T, ensures that only enu-
meration types are permissible as template arguments, enforced by a static assert. The class
follows the Singleton design pattern, providing a thread-safe, globally accessible instance via the
Instance() method. This design choice guarantees a single, coherent point of error reporting
throughout the application’s lifecycle. The method ToString(T code) converts enumeration
values to human-readable messages, secured by mutex locks to prevent race conditions in multi-
threaded contexts.

Initialization of the error messages is conditionally compiled using the if constexpr con-
struct, allowing the class to be tailored for specific error categories during the compilation. Error
messages are stored in std::unordered map container, associating integer error codes with cor-
responding descriptive strings. The class’s constructor remains private, reinforcing the Singleton
pattern and invoking InitializeErrorMessages() to populate the error messages relevant to
the instantiated type. Notably, the class prohibits copy construction and assignment to maintain
the integrity of the Singleton instance.

4.3.3.1.3 Shared Resource. The SharedResource class template lies within utils names-
pace and encapsulates thread-safe operations for managing shared data. Conceived to operate
in a concurrent environment, it employs std::shared mutex to coordinate access to a shared
resource of the generic type T. The constructor SharedResource(T initialValue = T()) ini-
tializes the resource with a default or specified value. The member function void Write(const
T &newValue) employs std::unique lock to ensure exclusive access for writing operations,
thus updating the resource without interference. Conversely, the T Read() const function uses
std::shared lock, allowing multiple concurrent read accesses while maintaining data integrity.

This template is explicitly instantiated for types used, such as bool, uint8 t, and int32 t.

4.3.3.1.4 Utility Functions. The utility functions are identified as functions, that are not
logically connected with a specific existing class. Those include functions within utils names-
pace, intended for data transformation and time conversion.

The serializeVector(...) function abstracts a byte array into a comma-delimited string,
while its reciprocal, deserializeVector(...), parses a string back into a byte array, facilitating
data reconstruction. These two functions are primarily intended to handle ’Polynomial’ and
’Secret Key’ fields of a rule before importing it to or after exporting it from the database.
The ConvertToDuration(...) function, interprets numerical values paired with temporal units
(’ms’, ’s’, ’m’), translating them into a std::chrono::milliseconds object, while incorporating
a predefined offset to addresses possible processing delay (equal to 1 millisecond by default).

4.3.3.2 I/O Interfaces
In context of traffic processing, both input (master) and output (slave) interfaces are being
represented by the pcpp::PfRingDevice class, which stands as an advanced abstraction of the
PF RING library. It supports concurrent operations across multiple network interfaces, enabling
the simultaneous usage of various network channels.

Despite Automotive Ethernet is a full-duplex communication bus, the program design assumes
the usage of separate interfaces for both packet capturing and resending respectively. This
implies the necessity to have two intstances of the very class initialized as member variables of
SystemLogic class (see section 4.3.3.3).

In more detail, the initialization process is perfromed for each interface via execution of
pcpp::PfRingDeviceList::getInstance().getPfRingDeviceByName(ifaceName), where the
function parameter represents the identifier of the desired network interface available within the
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system. The role of master interface within the entire program is bounded solely to concur-
rent capturing of packets via startCaptureMultiThread(...) function, while slave interface is
limited onty to sending the processed packets via sendPackets(...) function call.

4.3.3.3 System Logic
The SystemLogic class is a critical component of the system, orchestrating the parsing command-
line arguments, initialization & management of network packet capturing and JSON-RPC server.
It’s specification is available at Figure 4.13.

Figure 4.13 Specification of SystemLogic class.

4.3.3.3.1 Command-Line Arguments. ParseOptions(...) method is executed in the
class’ contstructor. It interprets command-line inputs to dynamically configure network inter-
faces and number capture threads. Utilizing getopt long(...) of <getopt.h> header file, the
function parses options such as interface names and thread counts, ensuring the robust setup of
network parameters. Upon completion of the argument parsing process, the parsed arguments
undergo a verification procedure for logical consistency using the CheckOptions() method; this
validation step is also embedded within the constructor of the class.

The error handling within named methods ensures that any misconfiguration, missing argu-
ments or their incorrect usage result in appropriate logging and system exit.

4.3.3.3.2 Initialization. In the Initialize(...) method, the class initializes the Pcap-
PlusPlus library with pcpp::AppName::init(...) and sets up a JSON-RPC server on a sep-
arate thread using InitServer(...). The server setup involves instantiating BaseServer and
jsonrpc::HttpServer, followed by an attempt to start the server with error handling for poten-
tial startup failures. The server is configured to listen on a designated port, denoted in conf.h,
with JSON-RPC 2.0 specifications.

Additionally, this method prepares the PF RING devices for packet capturing in multi-thread
mode. It configures the master interface for receiving data, ensuring per-flow packet distribution
among threads, while the slave interface is set up for transmission using the open() method.
Extensive error logging is employed using the LOG ERROR macro, referencing specific LogicError
codes.
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4.3.3.3.3 Execution. The DoWork() method is pivotal for the system’s runtime operation.
It initializes a boolean flag shouldStop to control the execution loop and registers a callback
onApplicationInterrupted to handle application termination. This method configures packet
capture settings, calculating the core mask and starting multi-threaded capturing on the mas-
ter interface. It then enters an infinite loop, periodically checking the shouldStop flag, thus
maintaining the system operational until an interrupt signal is received.

4.3.3.3.4 Clean-up. The class’ destructor emphasizes resource management, where network
interfaces are stopped for packet capturing and closed, and server resources are deallocated to
ensure no memory leaks upon system exit.

4.3.3.3.5 Auxiliary Functions. PrintUsage() and ListDevices() functions serve as util-
ity tools for users, and are executed in accordance with provided command-line arguments.

PrintUsage() displays supported command-line options and helpful information, thereby
enhancing overall system usability. On the other hand, ListDevices() method 8 employs
pcpp::PfRingDeviceList::getInstance().getPfRingDevicesList() in order to list all the
currently available PF RING devices, aiding in system configuration.

If the usage of auxiliary functions is explicitly specified, program terminates upon their exe-
cution.

4.3.3.4 Rule Representations
In the server component of the system, rules are represented in a dual manner. This bifurcation
entails a separation between the database representation of rules and their representation across
various other software modules.

The database’s rule representation hinges on the utilization of a .fbs schema, which delineates
the principal attributes of the object. This schema, provided in listing 4.3, is employed by
the database framework to engender requisite binding code and Rule class, thereby facilitating
interaction with user-defined objects.

Code listing 4.3 Schema in .fbs format used in the database representation of rules.
table Rule {

id: long;
bz_length : byte;
bz_start_bit : short;
crc_length : byte;
crc_start_bit : short;
dest_ip : string ;
dest_port : short;
duration : int;
duration_type : string ;
mac_length : byte;
mac_start_bit : short;
mode: bool;
new_value : ulong;
pdu_id : short;
serialized_polynomial : string ;
protocol : bool;
serialized_secret_key : string ;
signal_length : short;
signal_name : string ;
signal_start_bit : short;

8An acceptable alternative to the ListDevices() function call is the usage of ifconfig command in terminal.
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src_ip : string ;
src_port : short;
status : bool;

}

In this architectural layout, fields such as the polynomial and secret key are denoted as
serialized entities, with their data type designated as string. This decision stems primarily from
the constraints of the used database framework, which does not natively support direct storage
of numerical arrays or vectors.

Conversely, within the scope of other modules, rule representation is manifested through the
distinct FrameRule class. This class, whose public member variables closely mirror those depicted
in the aforementioned schema, deviates in its handling of the polynomial and secret key fields.
In FrameRule, these fields are represented as a std::vector<uint8 t>, enhancing usability.

Additionally, the FrameRule class incorporates auxiliary template functions for the serializa-
tion and deserialization of these fields, as well as for conversion to and from an instance of Rule
class.

4.3.3.5 Database
The DataBase class, an integral component of the server side of a system, is a sophisticated
abstraction layer over the ObjectBox database framework. This class is designed to encapsulate
the fundamental database operations, emphasizing ease of use and efficiency. It is critical to note
that this class does not handle logical checks which are the responsibility of the user through the
provided API (refer to image 4.14).

Figure 4.14 Specification of Database class.
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4.3.3.5.1 Overview. The DataBase class is implemented as a singleton, ensuring that only
a single instance of the database exists throughout the application. This pattern is achieved
through the use of a static method, Instance(), which returns a reference to the static instance
of DataBase. The copy constructor and assignment operator are explicitly deleted to prevent
copying of the instance.

4.3.3.5.2 Concurrency Control. Concurrency control in the DataBase class acts as a
proactive strategy to ensure smooth data handling. It utilizes a mutable std::shared mutex,
allowing multiple threads to read simultaneously, while write operations are exclusively locked.
This design enhances performance in read-heavy scenarios while maintaining data integrity dur-
ing writes.

4.3.3.5.3 Database Operations. The class provides a range of database operations, each
encapsulated in a method. These operations include checking database emptiness (Empty), ver-
ifying the presence of a specific rule (Contains), adding (Add)9, updating (Update), retrieving
(Get), and deleting (Delete) rules. Additionally, it supports clearing all rules (Clear) and set-
ting the state of a specific rule (Set). These operations are safeguarded with std::scoped lock,
ensuring thread safety.

4.3.3.5.4 Exception Handling. Exception handling is a critical aspect of the DataBase
class. Each database operation is enclosed within a try-catch block. In the event of an exception,
the error is logged using LOG ERROR, and the exception is rethrown. This approach ensures that
all exceptions are properly logged and managed, maintaining robustness.

4.3.3.5.5 Initialization and Destruction. The constructor of DataBase is private, signi-
fying its singleton nature. It initializes the database connection and prepares the queries. During
destruction, it closes the database connection and, if defined, removes the database files. This
lifecycle management is crucial for resource management and data integrity.

4.3.3.5.6 Active Rule Management. The class provides specialized methods for managing
’active’ rules. These include counting active rules (GetActiveRulesCount), retrieving the first
active rule (GetFirstActiveRule), and fetching all active rules (GetAllActiveRules). These
methods utilize activeRuleQuery, a unique pointer to an ObjectBox query, tailored to filter
active rules currently stored.

4.3.3.6 Packet Parser
The Capture class implements a functionality of a Packet parser abstract component; it is vital
for real-time packet processing in the system, is designed for high performance and scalability.
This class encapsulates the functionality to analyze and to start the manipulation of network
packets as they are received.

4.3.3.6.1 Overview. Capture class contains only one static method; it is described in details
in paragraph 4.3.3.6.2. Within the very class, the nested CptrThrdArgs structure is pivotal for
packet processing, encapsulating all essential data required for this task. It comprises several
key components, each serving a specific function:

strategies (std::vector<std::unique ptr<stgy::IStrategy>>): A vector containing
unique pointers, each pointing to a strategy object that adheres to the IStrategy interface
(refer to section 4.3.3.8). These strategies are applied to packets during processing. The use of
unique pointers ensures sole ownership and proper resource management of these strategies.
9IDs assigned to rules are unique and managed by the ObjectBox itself.
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dstIface (pcpp::PfRingDevice*): A pointer to a PfRingDevice, used to send out pro-
cessed packets. It represents the destination network interface for these packets, which may
be identical to or different from the source interface.

operCmd (utils::SharedResource<bool>): A thread-safe utility for sharing a boolean
value among multiple threads. It signifies an operational command (START or STOP) and is
crucial for controlling the packet processing flow in a multi-threaded environment. When it
is set to false, the program behaves as a transparent gateway (STOP). In contrast, having
the operCmd set to true, enables the direct traffic interference with forcing the program to
act according to the active rules (START).

The very structure is shared among all the threads participating in the packet capturing
& parsing, being created and initialized as a member variable of SystemLogic class (refer to
section 4.3.3.3) and populated with strategies by BaseServer class, denoted in section 4.3.3.3.
This design facilitates effective management of packet processing parameters.

4.3.3.6.2 PacketArrived Method. The PacketArrived(...) static method is central to
the class’s functionality, addressing the high-level packet processing problematics. It is invoked
on multiple threads depending on their availability10 for each batch of incoming packets (depends
on the network utilization) and employs protocol-based filtering, layered parsing, and selective
strategy application, having the packet(s) represented as pointers to a stream of ’raw’ uint8 t
data. This approach is deemed to be the most effective, since it avoids any copying of data,
reducing the overhead.

Precisely, the overall process of packet parsing is provided in pseudo code in Algorithm 3.

Algorithm 3 Packet Processing.
1: procedure PacketArrived(packets, numOfPackets, args)
2: if not args.operCmd.Read() then
3: args.dstIface.sendPackets(packets, numOfPackets)
4: return
5: end if
6: for i = 0 to numOfPackets− 1 do
7: packet← parse(packets[i])
8: if not validProtocol(packet) then
9: continue

10: end if
11: actStgyPresent← false
12: for each strategy in args.strategies do
13: if strategy.IsActive() then
14: strategy.Execute(packet)
15: actStgyPresent← true
16: end if
17: end for
18: if not actStgyPresent then
19: args.operCmd.Write(false)
20: break
21: end if
22: end for
23: args.dstIface.sendPackets(packets, numOfPackets)
24: end procedure

10The exact management of ’capture’ threads is implicitly performed by PcapPlusPlus library.
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The algorithm is quite intuitive and, summarizing, can be logically divided into the following
phases:

1. Operational Command Check: Determines if processing should proceed based on the
operCmd flag, allowing for immediate resending of packets in a STOP scenario (transparent
gateway) or acting in compliancw with the START (packet filtering / modofocation).

2. Packet Processing: Employs protocol checks (Ethernet, VLAN, IPv6) to filter packets,
skipping non-conforming ones.

3. Strategy Application: Iterates over active strategies in CptrThrdArgs for applicable packet
manipulation (refer to image 4.15).

Figure 4.15 Application of strategies in multithread environment.

▶ Note 4.10. It is important to mention, that since PacketArrived method is being invoked
on multiple threads, the actual strategy applications are being held concurrently as well.
This implies that each strategy inside the CptrThrdArgs structure is being shared among all
packet-processing threads.

4. Active Strategy Presence Check: Monitors active strategies; absence triggers a switch
to STOP scenario by altering the operational command.

The PacketArrived method has a time complexity of O(NS), where N is the number of pack-
ets and S is the average number of strategies. This complexity arises from the method’s iteration
over each packet and subsequent application of each active strategy. The space complexity is
O(S), dependent on the number of strategies.

This complexity profile ensures minimal processing overhead while having one strategy ap-
plied, making the system suitable for high-throughput networking environments. However, the
application of several strategies simultaneously could, to some extent, raise an obstacle in terms
of ASIL FTTI due to packet(s) processing overhead.

4.3.3.7 JSON RPC Server
The BaseServer class, inheriting from RpcServer11, serves as the cornerstone of the system, initi-
ating database operations with regard to their sanity and triggering the switch of AEPRIL-server
operational mode. Key methods comply with an established client-server interface and include
UPSERT(...), SET(...), GET(...), DELETE(...), START(...), STOP(...), and TEST(...).

11RpcServer class is generated automatically by Libjson-rpc-cpp library according to the client-server interface
denoted in rpc-spec.json.
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First four methods execute database operations with prepared data, while the rest are ded-
icated to provide the means of system control. Exception handling is meticulously integrated
into each method, ensuring robustness and stability: if an error or exception occurs, the proper
message is sent to client. Additionally, the ConstructFrameRuleObj(...) method, a private
utility function, servers for systematic construction of a Json::Value object (used for server
replies) from a FrameRule instance.

Furthermore, BaseServer class stores a pointer to CptrThrdArgs structure (refer to para-
graph 4.3.3.6.1) as a sole member variable, which is initialized at the constructor. This ponter
is used at both of START(...) and STOP(...) methods to switch the operational mode and to
either empty or populate the vector of active strategies.

4.3.3.8 Strategy Namespace
The namespace stgy is, without hyperbole, the most critical component of the server side of the
system, tasked with the direct intervention in traffic through the execution of low-level operations
on raw data. The fulfillment of functional requirements FR1-FR6 is intrinsically linked to the
functionalities encapsulated within this namespace. Figure 4.16 exhibits the pivotal enumerations
and data structures represented therein.

4.3.3.8.1 Strategy. In the design of the packet processing framework within the stgy names-
pace, the Strategy design pattern is deftly implemented to facilitate dynamic behavior based on
predefined rules. Also, this design ensures the separation of created rules, easing the traceability
of their application.

The abstract base class IStrategy serves as the cornerstone of this design, encapsulating com-
mon functionalities and providing an interface for concrete strategy classes, such as ModifyStgy
and FilterStgy. The constructor of IStrategy initializes the strategy with a given FrameRule,
setting up the foundational parameters and conditionally launching a detached thread for au-
tomatic deactivation based on time, depending on the rule properties. The rule itself is being
stored to a member variable mRule at the time of strategy creation.

In this way, IStrategy can be described as a wrapper which manages the duration of the
rule application, as well as its application nuances, without changing the rule itself.

The Execute(pcpp::Packet &packet) method, declared as a pure virtual function, is over-
ridden in the derived classes to implement specific packet processing behaviors. ModifyStgy
incorporates signal modification logic, while, in contrast, FilterStgy is dedicated to packet
filtering tasks. This polymorphic design illustrates the application of the ’Open/Closed Princi-
ple’[68], enabling the extension of system capabilities without modifying the existing code base.

Significantly, the IStrategy class employs utils::SharedResource for managing shared
data such as usage counter (mUsgCntr) and active status (mStatus), ensuring thread-safe opera-
tions essential in a concurrent environment. Member variable mStatus is equal to the rule status
by default and can is changed during the program lifecycle if the ’duration type’ of an active
rule is not ’inf’. The method UpdateRuleUsage in IStrategy is pivotal for tracking the usage
of strategies via mUsgCntr, particularly in cases, when the cyclical rule application is explicitly
selected (’duration type’ set to ’cyc’), highlighting the system’s capability to handle real-time
data processing requirements efficiently.

The architecture thus demonstrates a blend of modern C++ practices, including smart point-
ers, multithreading, and polymorphism, aligned with the demands of high-performance network
applications. The adopted design pattern allows for systematic expansion and flexible adaptation
of packet processing features.

4.3.3.8.2 Strategy Manager. The Strategy Manager (stgy::StgyMngr) class, is defined
within the stgy namespace, and serves as a factory for creating strategy objects, adhering to the
principles of object-oriented design. The factory method, CreateStrategy(const FrameRule
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&rule), takes a constant reference to FrameRule as an input parameter, determining the strategy
type required for execution.

The StgyType enumeration within StgyMngr delineates the available strategies: Modify and
Filter. The decision logic, encapsulated in the private static method SelectStrategy, uti-
lizes the state of the FrameRule object to ascertain the appropriate strategy type. Specifically,
this method evaluates the mode attribute of FrameRule to decide between signal modification
(StgyType::Modify) and traffic filtering (StgyType::Filter). This bifurcation of functionality
ensures possible extensibility and maintainability of the system.

Figure 4.16 Featured compounds of stgy namespace.

Subsequently, CreateStrategy(...) instantiates the strategy object with employment of
std::make unique(...) method, which returns a std::unique ptr<IStrategy>. This use of
smart pointers underscores modern C++ memory management practices, safeguarding against
memory leaks and dangling pointers, thereby enhancing the robustness of the implementation.
The return of a unique pointer to an IStrategy interface ensures that the client code remains
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decoupled from concrete strategy implementations, aligning with the ’Dependency Inversion
Principle’[69] and promoting a high level of modularity within the system architecture.

4.3.3.8.3 Modification Strategy. The ModifyStgy class implements the IStrategy in-
terface within the stgy namespace; it is specifically designed for signal modification in packet
processing. The constructor initializes the strategy by invoking the Init(...) method with
a FrameRule object, making (SharedResource<uint8 t> mBz) member variable equal to 0 and
setting up the AES128 cryptographic context (refer to paragraph 4.3.3.8.5) if a ’Secret Key’ is
provided.

The core functionality is encapsulated in the Execute(...) method, which serves for pro-
cessing of pcpp::Packet object; the pseudo-code of this method is provided in Algorithm 4.

Algorithm 4 Packet Modification.
1: procedure ModifyPacket
2: payloadLayer ← PreModificationChecks(packet, rule) ▷ Is packet supported?
3: if payloadLayer is valid then
4: payload← payloadLayer.getData
5: payloadLength← payloadLayer.getDataLen
6: pduFound, pduPosition, pduLength← GetPduInfo(payload, payloadLength, rule)
7: if pduFound then
8: WriteData(signal modification parameters)
9: if BZ is used then

10: bz ← HandleBzValue(bz parameters)
11: #ifdef BZ AUTO INCREMENTATION
12: AutoIncrementBz(bz, rule, payload, pduPosition)
13: #endif
14: end if
15: if CRC is used then
16: crc← CalculateCrc(crc parameters)
17: WriteData(crc, crc parameters)
18: end if
19: if MAC is used then
20: mac← CalculateMac(mac parameters)
21: WriteData(mac, mac parameters)
22: end if
23: UpdateRuleUsage
24: packet.computeCalculateFields ▷ Recalculate packet checksums
25: end if
26: end if
27: end procedure

▶ Note 4.11. The circumvention of the in-PDU Alive Counter, as pertains to the functional re-
quirement FR2, implies that any PDU falling under a specific rule should not be deemed outdated
due to its BZ being less than that of a previous similar PDU. Under normal conditions (where
packets are transmitted from sender to receiver without delay), such a scenario is unlikely. How-
ever, this can occur during packet processing under conditions of high network load. Specifically,
if a capture thread processing multiple packets received simultaneously at time point T takes
longer than another capture thread processing a single packet received at T + 1 (in the current
implementation all the packets received by a capture thread are being resent simultaneously).

The Execute(...) method conducts a series of operations on the packet data. Initially,
it performs pre-modification checks to ascertain the applicability of the rule to packet which is
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currently processed. If the packet’s properties (protocol, source IP address, source port, etc.) do
not match the rule, the packet is left as it is.

Figure 4.17 Assumed L-PDU structure, the program is intended to work with, where each of blue-
marked security mechanisms is optional.

Subsequently, the method searches for the desired PDU (refer to Figure 4.17) within the
packet. In case of failure, packet is not modified. On the other hand, in case of success, signal
modification is then executed by updating the selected signal with a new value.

Later, the presence of in-PDU security mechanisms is presumed according to the rule and
their circumvention is performed depending on it:

BZ: BZ auto-incrementation is intended to mitigate scenario described in Note 4.11. Initially,
a local variable bz is set to 0. If the currently active rule dictates the precense of a BZ counter
inside the PDU, its value is read into bz variable. From now on, two options are possible:
either to perform an automatic incrementation of mBz variable for this strategy within the
system, or not.
▶ Note 4.12. The exact choice is being made at the time of program compilation, depending
on macros defined in conf.h file, therefore making it impossible to change the behavior during
run-time.

As was stated in Note 4.10, a comprehensive auto incrementation of mBz (lastly used in-PDU
alive counter) must be held in concurrent environment, and that is the reason why the very
variable is declared as SharedResource. In practice, plausible maximal values of in-PDU
alive counter do not exceed 255 (or even 16 for some PDUs), making it possible to fit the
entire value into one byte12 (a variable of uint8 t type). This, in turn, means that auto
inrementation of BZ counter requires the implementation of circular rotation of values within
a fixed numerical range, and consequently, arises the necessity of usage of modular arithmetic
as following:

1. The current value of bz is obtained by mBz.Read(), denoted as bcurrent.
2. This value is incremented by one, moving to the next sequential state: bnext = bcurrent + 1.
3. The modulus base is computed as 2n, where n is the bit length of bz, obtained from

mRule.bz length.
4. The final value of bz is then determined by applying the modulo operation:

bz = bnext mod 2n

This ensures that bz cyclically wraps within the range [0, 2n − 1].

12In the current implementation, scenarios in which the in-PDU alive-counter values may exceed the value of
255, thereby surpassing the one-byte limit, are not encompassed. This limitation signifies that the system does
not support the processing of alive-counter values that would require a representation beyond the capacity of an
8-bit data structure.
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After the new value for the BZ counter was computed, it is stored back to mBz variable
and written into the packet payload instead of the previous value. The denoted approach
ensures, that each packet-processing thread always possesses the most recent used value
of BZ counter within the same PDUs, transmitted over network. Additionally, the BZ auto
incrementation is identified as the only feature bringing a relatively small processing overhead
into the simultaneous applications of strategies in concurrent environment.

CRC: Recalculation of in-PDU CRC partially depends on the read or computed (if auto-
incrementation of mBz is enabled) BZ counter value and does not depend on the previous CRC
(for details refer to paragraph 4.3.3.8.5). Therefore, the memorizing of actual (obsolete, after
signal modification) in-PDU CRC value is not required. Additionally, this implies that the
very CRC calculation differs from PDU to PDU (different BZ counters), providing additional
means for security of in-vehicle communication. If the usage of in-PDU alive mechanism is
not applied to a currently processed PDU, then initial value of bz variable (0) is used for
CRC calculation, resulting into the shared approach for CRC calculation among all identical
PDUs.
▶ Note 4.13. In such a way, it is noteworthy to mention, that the potential user of the
developed software is supposed to be aware of placing the desired coefficient used for CRC
calculation at the foremost place in the polynomial array, however, ensuring it maintains the
predefined size of sixteen elements.

After the computation, the newly calculated CRC value is overwritten in the same location
within the packet’s payload, replacing the old CRC value.

MAC: Recalculation of MAC does not depend on any side values apart from provided ’Secret
Key’; this marks the extraction of previous MAC value from PDU payload as useless. The
very MAC recomputation is performed by AES128 class, also belonging to stgy namespace
(refer to paragraph 4.3.3.8.5). After the new MAC was calculated, it is written to the position
of the obsolete one.

The strategy concludes by invoking UpdateRuleUsage() to update usage metrics and exe-
cuting packet.computeCalculateFields(), provided by PcapPlusPlus, for recalculating frame
check sequences and other checksums.

4.3.3.8.4 Filtering Strategy. The FilterStgy class, inheriting from the IStrategy in-
terface, is pivotal in the packet filtering mechanism. The realization of this class is directly
connected to fulfilling functional requirement FR6. This is due to the fact that the filtering
mechanisms available in the PcapPlusPlus library do not encompass the capability to check for
the existence of a specific PDU within a packet.

The primary responsibility of the very class is to execute the filtering strategy based on
predefined rules encapsulated within the FrameRule object. The constructor of FilterStgy
takes a FrameRule object and initializes its base class, IStrategy, with this rule.

The core functionality of this class is encapsulated in the Execute(...) method. This
method takes a reference to a pcpp::Packet object and performs conditional checks and oper-
ations on it. Initially, a PreModificationChecks(...) function is called, determining whether
the packet meets criteria defined in mRule (refer to paragraph 4.3.3.8.5). If the packet satisfies
these conditions, the method proceeds to check if a specific PDU ID is present (mRule.pdu id).

When the PDU ID is set within the mRule, the method retrieves the payload and its length
from the packet’s payload layer. It then invokes GetPduInfo(...), which attempts to locate the
specified PDU within the payload, checking if the rule is matched.

Independently of the exact rule specification, if packet is matched, the method clears the raw
packet data and updates the rule usage statistics through UpdateRuleUsage().
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▶ Note 4.14. The raw packet data are cleared using .getRawPacket()->clear() construct,
essential to objects of pcpp::Packet type. It is worth mentioning, that formally packet is
not being excluded from traffic at this stage; instead, the packet payload is being ’freed’ and
nullified causing the packet to be empty. Later, the driver of a network interface simply omits
the sending of an empty packet, implicitly excluding it from traffic. The selected approach seems
to be the easiest among the possible ones; additionally, it was practically validated during the
very developement of AEPRIL.

This design allows for a flexible and efficient packet filtering strategy, adaptable to various and
conditions. FilterStgy encapsulates its logic cleanly, adhering to the principles of modularity
and single responsibility.

4.3.3.8.5 Strategy Elements. Within the namespace stgy, a series of functions are in-
tricately designed to address specific low-level challenges in processing of Automotive Ethernet
packet. They serve as foundational elements that collectively formulate particular strategies,
therefore being independent of any strategy instantiations. Those functions do not belong to a
specific class, however, being a part of the stgy namespace, and therefore they are not denoted
at Figure 4.16.

4.3.3.8.5.1 Auxiliary Functions. To begin with, the PreModificationChecks(...)
function serves for packet verification, employing conditional checks on protocols, IPv6 addresses
and UDP/TCP port numbers. Packet-level information is compared with the properties of a rule
(if they are set), the strategy is operating with. The function returns a boolean value: true if
the processed packet partially13 mathces the rule, false elsewise.

Additionally, functions ReadData(...) and WriteData(...), are particularly notable in the
code’s bit-level manipulation capabilities. To be precise, ReadData(...) efficiently extracts
specified bits from specified bitstream, while WriteData(...) accurately substitutes selected
bits with provided value within it.

Furthermore, in contrast to ReadData(...) function, GetBits(...) serves as efficient tool
for extracting selected bits from variables, rather then from bit streams; it is used to truncate
MAC after it’s computation in particular. Function’s dual functionality in extracting either the
most significant or least significant bits adds versatility to the data parsing process.

4.3.3.8.5.2 PDU Examination. The GetPduInfo(...) function is a high level abstac-
tion, performing the nuanced handling of PDUs in respect to their header size. The handling of
PDUs is adeptly managed with two distinct approaches conditioned by the PDU LONG HEADERS
and PDU SHORT HEADERS directives defined in conf.h header file. The very function invokes either
ProcessLongHeaderPdus(...) or ProcessShortHeaderPdus(...) upon return, depending on
the definition of mentioned macros (conditional program compilation).

The ProcessLongHeaderPdus(...) function processes PDUs with extended header formats.
It accepts parameters including a pointer to the packet payload, payload size, a FrameRule
object (rule), and pointers to store the position and length of the matched PDU. The operation
involves iterating over the packet payload, extracting a 32-bit PDU identifier and Data Length
Code. Upon finding a match with the rule’s PDU identifier, the function updates position
and length to reflect the PDU’s location and size, then returns true. The iteration terminates
upon a successful match or reaching the end of the payload. If the required PDU identifier was
not found, the function returns false.

Contrastingly, ProcessShortHeaderPdus(...) addresses PDUs with shorter header formats,
while the parameter structure and performed actions mirror ProcessLongHeaderPdus(...). In
this function, the PDU identifier is 24 bits and the Data Length Code is 8 bits, aligning with
the shorter header specification.

13A function performs no checks for a precense of specific PDU inside the packet payload.
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4.3.3.8.5.3 CRC Calculation. The CalculateCrc(...) function is designed to com-
pute the Cyclic Redundancy Check (CRC) for a given Protocol Data Unit (PDU) in packet
payloads. The algorithm14, reflecting the computation process, is provided as pseudo-code in
Algorithm 5.

Algorithm 5 In-PDU Cyclic Redundancy Check (CRC) Calculation.
1: procedure CalculateCrc(input bytes, input length, scode, bz)
2: crc← 0xFF
3: cb crc poly ← 0x2F
4: for byte index← 1 to input length− 1 do
5: crc← crc⊕ input bytes[byte index]
6: for bit index← 0 to 7 do
7: if crc & 0x80 then
8: crc← (0xFF & ¬(crc << 1))⊕ cb crc poly
9: else

10: crc← 0xFF & ¬(crc << 1)
11: end if
12: end for
13: end for
14: crc← crc⊕ scode[bz]
15: for bit index← 0 to 7 do
16: if crc & 0x80 then
17: crc← (0xFF & (crc << 1))⊕ cb crc poly
18: else
19: crc← 0xFF & (crc << 1)
20: end if
21: end for
22: crc← crc⊕ 0xFF
23: return crc
24: end procedure

The function operates on an array of bytes, representing the PDU, and applies a specific
polynomial, defined as cb crc poly, to each byte. The CRC calculation begins by initializing
the crc variable to 0xFF . It then iterates over each byte of the input, excluding the first byte, and
performs a bitwise exclusive OR (XOR) operation with the current CRC value. Following this,
the function executes a nested loop for bit-level manipulation. If the most significant bit (MSB) of
the current CRC is set, the function applies a left shift operation followed by an XOR operation
with the polynomial. Otherwise, it simply performs the left shift. After processing all input
bytes, the function incorporates a supplementary code from a given vector scode (’polynomial’
denoted by rule) at the specified index bz. This additional step adds robustness to the CRC
calculation. Finally, it performs another bitwise XOR operation with 0xFF to complete the
CRC computation, returning an 8-bit unsigned integer representing the CRC value.

The time complexity of the CalculateCrc(...) function is primarily determined by its
nested loops. The outer loop iterates over each byte of the input array, excluding the first byte,
which results in O(n− 1) iterations, where n is the length of the input array. Within this loop,
there is a nested loop that iterates exactly 8 times for each byte, corresponding to the 8 bits
in a byte, leading to a constant time operation of O(8) or simply O(1). Thus, the total time
complexity of the outer loop and its nested loop is O(n)×O(1), which simplifies to O(n).

14The provided algorithm is representative, being provided for illustrating purposes only, and differes from
those, employed by Porsche Engineering Services s.r.o. The exact algorithm used in commercial cars developed by
VolksWagen (VW) Group companies resembles the provided one (in terms of performed actions and complexity),
being concealed due to security & data protection considerations.
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Additionally, there are constant time operations outside the loops, such as initialization and
bitwise operations, which do not significantly affect the overall complexity. Therefore, the overall
time complexity of the CalculateCrc(...) function is linear, denoted as O(n), making it
efficient for processing large PDUs.

4.3.3.8.5.4 AES128-CMAC Computation. The Aes128 class, internal to stgy names-
pace (refer to Figure 4.16), represents a confined implementation of the AES-128 encryption &
AES-based CMAC generation algorithms, in accordance with the specifications in FIPS PUB
197 [70]. The algorithms in question, given their status as an established and widely accessible
entity with detailed specifications in the public domain, do not represent an innovation con-
ceived within the scope of this work. Consequently, an in-depth focus on the principles of their
operation is not deemed necessary; the featured aspects of implementation are detailed instead.

The class has no member variables and includes only static functions to ensure the possibility
of their usage without having a class instantiated. Aes128 is structured with various constants
defined under an enumeration, including AES WORD COUNT, AES ROUNDS, AES BLOCK SIZE, and
AES KEY LEN, which align with the standard AES parameters. The state t union, representing
the AES state, is a 4x4 array, integral to the AES processing steps.

Key expansion, critical to AES, is implemented in the aes key expansion(...) function,
following the algorithmic steps detailed in [71]. This method populates the round key array,
essential for each encryption round, using the original cipher key (’Secret Key’) and the AES
S-Box for byte substitution, accessed via the sbox lookup(...) function. This function show-
cases a pre-calculated static constexpr S-Box (RS-Box) approach, facilitating efficient byte
substitution, a vital non-linear transformation in AES [72].

Byte substitution using S-Box (inverse S-Box) is handled by aes substitute bytes(...)
function, introducing non-linearity into the system [73]. The methods aes shift rows(...) and
aes mix columns(...), responsible for permuting rows and mixing column data respectively, are
pivotal for ensuring the diffusion property of AES [74]. In particular, the aes mix columns(...)
function employs the gfmul(...) method for Galois Field (GF) multiplication, crucial for mixing
data within columns as per AES specifications [75]. The XOR operation, a fundamental part
of the AES round process, is implemented in aes add round key(...), effectively combining
the state with round-specific keys. The comprehensive encryption process is encapsulated in
aes xcrypt(...) function, sequentially applying these transformations and complying with the
AES encryption paradigm [70].

▶ Note 4.15. In accordance with the criteria delineated in the specifications [76], the exclusion
of AES-128 based decryption from the implementation is a deliberate choice. This approach is
justified by the fact that the primary objective of the developed class, namely the generation of
MAC, does not necessitate the incorporation of AES-128 decryption processes.

In summation, as previously articulated, the Aes128 class has been augmented to encompass
the generation of AES-based CMAC, adhering to the RFC 4493 standards [76]. The initial
phase in this process is ’context initialization’, which is accomplished through the invocation of
the aes init cmac(...) function. This function requires a ’Secret Key’ (provided by the rule
a strategy is operating with) and is executed concomitantly with the instantiation of a specific
ModifyStgy instance and, thefore, prior to application of a strategy itself.

▶ Note 4.16. The AES context is strategically encapsulated as a member variable within a
ModifyStgy class, rather than being a constituent of the Aes128 class itself. This architectural
decision ensures that each thread executing the respective strategy can concurrently and securely
generate a MAC, utilizing the capabilities of the class, without necessitating any modifications
to member or local variables after the context has been set up.

Finally, the generation of the message authentication code is accomplished through the ex-
ecution of the aes128 cmac(...) function, initiated by an instance of ModifyStgy. This
method involves generating subkeys using aes generate subkey(...), aligning with the CMAC
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specification for key derivation. The subsequent XOR operations and AES encryptions in
aes128 cmac(...) culminate in the generation of a message authentication code.

4.4 Conclusion
In summary, this section of the thesis presents a comprehensive description of the developed soft-
ware, serving as a technical guide that bridges the theoretical aspects and the internal workings
of the system.

Throughout the software development process, a deliberate and well-reasoned choice was
made to adopt a client-server architecture. Subsequently, the technologies employed in its cre-
ation were thoroughly examined and elucidated.

The initial step in the development of the final system involved defining the client-server
interface, which elucidated the interaction between the discrete components of the system and
enabled their independent development. Following this, the internal architecture of both the
client and the server were individually delineated, explicated, and implemented.

Each noteworthy aspect of the implementation was thoroughly explained, and the some inher-
ent disadvantages identified. All the details and challenges encountered during the development
process were meticulously documented, and the solutions employed were logically justified. Ad-
ditionally, a complexity analysis of some of the algorithms devised was conducted. It has shown,
that the complexity inherent to server-side packet parsing process (refer to paragraph 4.3.3.6.2)
could possibly represent the main drawback of the implementation, known at this stage of re-
search.

Furthermore, the proposed implementation of the server-side component exhibits additional
limitations in its scope. Specifically, in scenarios where multiple signals within a single PDU,
safeguarded by security measures such as CRC, MAC, or BZ, require modification, the security
algorithms would necessitate multiple recalculations. Ideally, a single recalculation post all signal
modifications would suffice, being coherent with signal groups rather than individual signals,
demanding the implementation of more sophisticated rule application mechanism. While the
implemented approach may not be deemed efficient, it is considered adequate for assessing the
feasibility of successful signal manipulations.

Notably, the final implementation of the ARXML Parser abstract component (inherent to
client-side of the system), somewhat exceeds the scope initially set by the thesis’s requirements.
This is due to a deliberate adoption of a more generalized approach to the problem of data
extraction from ARXML files, suggesting the potential reusability of this component in further
scenarios. This aspect can be seen as a positive feature of the proposed solution, additionally
aligning with modular design principles.

In conclusion, it can be asserted that the developed software is supposed to fully meet the
stated functional requirements, by having all the required features implemented. The fulfillment
of non-functional requirements cannot be determined at this phase, necessitating the evalutaion
of performace of the software at the time of its operation.



Chapter 5

Testing

This chapter aims at verifying if the developed software meets the initial requirements, and
validating its functionality. To achieve the intended objective, a theoretical background for
testing is reviewed and a corresponding testing strategy is being designed accordingly. Later, the
software is being tested in compliance with it and the results are being presented and analyzed.

5.1 Theory of Testing
In a general sense, the testing of the software aims at both verifying the absence of software
defects by validating its functionality in context of the requirements set. Commonly, three
possible causes of software defects are differenciated [77]:

Error or mistake: a human action that produces an incorrect result.

Defect, fault or bug: a flaw in code, software, system or document that can cause it to
fail to perform its required function (.g. incorrect statement or data definition).

Failure: actual deviation of the component or system from its expected delivery, service or
result.

Several testing standards & software development models exist to guide the testing process in
order to minimize the probability of software defects. For instance, standard ISO 9126 (’Software
Engineering - Software Product Quality’) containts the guidance on specifying, measuring and
testing quality characteristics.

In addition, in contrast to traditional and well-known Waterfall Model of software lifecycle,
the V-Model (widely used in automotive industry) addresses a significantly detailed testing ap-
proach (see Figure 5.1). Although variants of the V-Model exist, a common types of V-model
uses four test levels, each with their own objectives [78]:

Component testing searches for defects in, and verifies the functioning of, software units
(objects, classes, etc.) that are separately testable. Component tests are typically based
on the requirements and detailed design specifications applicable to the component under
test, as well as the code itself. Usually they uncover defects such as incorrect code, logic &
functionality and data flow problems.

Integration Testing tests interfaces between individual components and interactions of dif-
ferent parts of the system(s). Integration tests are typically based on the software and system
design (both high-level and low-level), the system architecture (especially the reletionships
between components or objects) and the workflows or the use cases. Consequently, such
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tests reveal software defects coherent with failures in communication between components:
incorrect or missing data, interface mismatch etc.

System Testing is concerned with the behaviour of the whole system as defined by the
scope of the development project. Testing of integrated system aims at verifying that it
meets the specified requirements. At the scope of the the thesis, it may include tests based
on functional or software requirements specifications, use cases or high-level descriptions of
system behaviour, interactions with the operating system and system resources. The focus
is on end-to-end tasks that the system should perform, including non-functional aspects,
such as performance. The quality of the data may be of critical importance as well as the
test environment since it should correspond to the final production environment as much
as possible. Hence, the typical software defects revealed during performing system testing
are: incorrect calculations, data and/or control flows, unexpected system functional or non-
functional behaviour, different failures of system work in production environment and inability
to carry out end-to-end functional tasks.

Acceptance Testing typically produce information to assess the system’s readiness for
release or deployment to end-users. It covers a number of activities such as validating of
installation, maintenance, disaster recovery, checking for security vulnerabilities, performance
and load testing, etc.

Figure 5.1 Comparison of Waterfall (a) and V-Model (b) representations of a system’s development
lifecycle.

Broadly, softwate testing comprises both static and dynamic testing techniques. During the
static testing, software is not being executed; rather the specifications, documentation and source
code that comprise the software are examined in varying degrees of detail.

Static analysis, being descended from compiler technology, is a form of automated static
testing that can check for violations of certain standards (predefined rules) and can find things
that may or may not be defects A good static analysis includes data flow & control flow analysis,
statement and branch testing & coverage. It excels at identifying defects (variable reference with
undefined value, unused variables, unreachable code, syntactic violations of code, etc.) that are
difficult to notice using dynamic methods before they can affect the testing process.

Conversely, dynamic testing techniques usually include use case testing, state transition test-
ing, decision table testing, boundary value analysis and equivalence partitioning [77].
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Notably, the test strategy itself is defined as a high-level description of the test levels to be
performed and the testing within those levels for an organization or programme [77].

A good testing strategy implies that each level is comprehensively tested using different
approaches (test types) that, combined together, minimize the defect probability. A test type is
a group of test activities based on specific objectives aimed at testing specific characteristics of
a component of a system [77]. Depending on its objectives, testing is organized differently:

Functional testing is the process of ensuring that a system or its components perform their
intended functions correctly. This involves assessing the system’s behavior to verify that it
aligns with the expected outcomes.

Non-functional testing goes beyond the core functionality of a system to evaluate various
qualities. It encompasses different aspects such as performance testing to measure system
speed and resource utilization, usability testing to guarantee an intuitive user interface, load
testing to assess system behavior under varying workloads, security testing to identify vul-
nerabilities, and scalability testing to determine how well the system copes with increased
loads and scaling challenges.

Structural testing delves into the internal structure of the software. This involves methods
like code coverage analysis to assess the extent to which the code is exercised by testing.

Regression testing is a quality assurance process that focuses on ensuring that new updates
or changes to the system do not adversely affect existing functionality. It involves retesting
previously validated parts of the system to identify any unintended side effects or defects
introduced by recent modifications.

In addition, user interface testing incorporates both qualitative and quantitative method-
ologies [79]. The quantitative approach is anchored in analyzing user interactions with the
application and employs statistical methods.

In turn, qualitative testing bifurcates into two distinct methodologies: user-involved and
user-independent testing. In scenarios where user-independent testing is preferred, an expert in
the field typically conducts the assessment, employing a heuristic analysis method, predicated
on compliance with established heuristic principles. Conversely, the user-involved qualitative
testing is usually executed in a controlled laboratory environment [79].

In conclusion, all the aforementioned test types & levels, as well as depicted testing techniques
and methodologies, are deemed to be necessarily applied in testing of the software designed for
mass-market deployment and extensive user interaction. Conversely, considering the status of the
developed software as a functional prototype, a testing strategy for it may not be comprehensive,
focusing solely on specific aspects.

5.2 Formulation of Testing Strategy
Generally, the test strategy shall include an elaborated conjunction of selected test types per-
formed at featured test levels. Since the developed system for signals manipulation on Automotive
Ethernet is deployed utilizing a client-server architecture, the testing strategy implies the possi-
bility of separated approaches for the functionality validation of both client and server, focusing
on the most critical facets.

5.2.1 Client
To sufficiently test the server-side component of the system, it is considered essential to conduct
direct assessments of the created graphical user interface, as well as the functionality verification
of the ARXML Parser, as these specific parts of the resulting software have been identified as
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warranting attention. In contrast, the development and implementation of component & integra-
tion tests for remaining components were deliberately excluded, predicated on the presumption
that there are no software defects. Testing on the system level is suggested to be performed
manually and simultaneously with the testing of the GUI.

Notably, the overall process of applying unit testing to ARXML Parser abstract component,
involves the separate testing of several software units comprising it: Query Handler, Query
Builder, ARXML Data Extractor, Config Provider, Data Writer, Data Object, Data Value, Data
Query, Parser and Tabularize function.

Sometimes, the testing shall be done with non-empty test.arxml file, specially designed
to verify the functionality of a component. Moreover, since the component was created while
considering the possiblities of further deployment as a stand-alone tool, the testing shall include
the verification of all delcared functionalities. Additionally, branch & line coverage shall be
analyzed, adhering to the structural testing principles

The non-functional testing is also an important aspect of evaluating the performace of
ARXML Parser in real-world conditions. It shall be performed with focus on the speed of process-
ing of real ARXML files (according to the schema template presented in paragraph 4.3.2.2.1.3)
and shall mandatory evaluate the impact of .arxml size on its proccessing speed (since at the
beggining it is the only known attribute of a file). The impact of number of signals & frames on
the overall processing speed shall be evaluated as well, to analyze the resulting file proccessing
time from perspective of its inner structure.
▶ Note 5.1. The speed of ARXML processing contextually include the data transformation issues
and exporting of retrieved data into the targeted .json files, therefore covering the entrire process
of retrieval of signals specifications. The processing time is not anticipated to be small, and
therefore the ultimate accuracy in measurements is not deemed necesssary; it shall be measured
with time.time() construct, inherent to time Python module.

In realm of user-independent GUI testing, the heuristic analysis shall be employed to analyze
the qualitative characteristic of it. However, considering the absence of an expert in field, the
analysis shall be conducted by the author of the thesis according to the the principles defined by
Jacob Nielsen [79].

Furthermore, the user-involved testing in laboratory conditions shall be performed, adhering
to the following test scenario:

1. Selecting ARXML for processing

2. Checking the server connection

3. Inserting two new rules (both signal modification and traffic filtering)

4. Updating the duration of existing rule (any)

5. Changing the status of an updated rule

6. Obtaining the specification(s) of a selected rule and all uploaded

7. Starting the traffic interference

8. Stopping the traffic interference

9. Deleting all the uploaded rules

The test shall be performed on two computers within a local network established, with client
& server applications installed on them separately. The successful sending of the JSON-RPC
request shall be verified manually with reviewing of the resulted log file of the server-side. Impor-
tantly, all the comments on the GUI & its utilization process are to be collected and analyzed.
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5.2.2 Server
For the testing of the server-side component of the system, it is deemed necessary to conduct
direct assessments of functional capabilities and non-functional qualities in real-world conditions,
adhering to the system testing principles. Conversely, the creation & execution of component
tests and integration tests has been intentionally omitted, based on the assumption of the absence
of software defects (e.g. correct interface usage, dataflow).

Importantly, the primary objective of the testing is to evaluate the feasibility of successfully
manipulating signals on Automotive Ethernet. For the execution of system testing, conducting
the following test cases (in accordance with the program use-case scenarios outlined in section
3.2.1) is considered sufficient:

1. Transparent Gateway

2. Signal modification

3. Signal modification + BZ auto incrementation

4. Signal modification + in-PDU CRC calculation

5. Signal modification + MAC calculation

6. Exclusion of specified packet from traffic

The result of traffic interference (either it was successful or not), shall be verified using
CANoe1 of version 7.4.

During the testing process, emphasis is to be placed on assessing program performance under
varying loads (both overall network utilization & number of active rules applied) and with differ-
ent initial settings. This includes evaluating the performace depending on the number of threads
used for parsing and forwarding internet packets, as well as the processing speed of the packets
themselves. Furthermore, it’s essential to appraise packet transmission speed contingent upon
the number of active rules, to determine the scope of system usability in context of plausible
supported ASIL FTTIs (refer to paragraph 2.1.2.1.1). In this context, the 20ms boundary is to
be treated as provided ASIL FTTI.

It is proposed to utilize various metrics for assessing the program’s performance: packet
processing time as well as network interface load (packets/s, kB/s). This approach will enable
tracking not only the processing speed of a single packet, but also the impact of capture threads
on their throughput, possibly revealing further observations. To mitigate measurement error, it
is suggested to conduct measurements over a duration of 30 seconds, extracting the arithmetic
mean to determine key values.
▶ Note 5.2. To simplify the task at hand, it is proposed to disregard the overhead (associated
with hardware, drivers, operating system, the library in use, etc.) related to the reception and
direct transmission of a packet. Instead, the focus is to be made on the execution time of the
PacketArrived(...) method, which is to be measured as the defference between std::chrono
timestamps.
▶ Note 5.3. The sysstat utility is to be utilized for the measurement of network interfaces
average throughput, using the sar -n DEV 1 command.

To facilitate this, the automation of the testing process is suggested, using a bash script.
This script utilizes pre-prepared rules generated by the client-side of the system and engages in
direct interaction with the server. In this context, direct server communication is proposed to
be carried out using the curl utility.

1It is a development and testing software tool from Vector Informatik GmbH.
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▶ Note 5.4. The interaction with the server is to be performed iteratively by sending of JSON-
RPC requests in the following sequence: DELETE (all), UPSERT (variable number of times), START
and STOP. This sequence implies that database of rules is being always erased before the actual
run, the new rules are being uploaded and the traffic interference is being triggered. The number
of rules to be utilized is proposed to increase arithmetically (starting from 1) until the certain
bound, which is to be determined manually, depending on the program performance and the test
case.

Finally, to ascertain the impact of the processor’s qualitative characteristics on program
performance, it is suggested to conduct tests on two different computers.

5.3 Functionality Verification & Validation
The testing activities performed, along with the results obtained, are detailed in the respective
subsections according to the testing strategy outlined in the previous section. It is noteworthy to
mention, that the defects (or problems) identified in the developed software were broadly classified
depending on their severity into the following categories: informational, low (software remains
usable), moderate (certain difficulties in using the software), and high (software is unusable or
its use is limited).

Importantly, in order to perform testing of both the client and server server-side of the
developed system, the following available laptop configurations (hereinafter, Computers) were
employed, depending on the test type & level:

HP ProBook 450 G8 (referred to as ’Computer A’)

Processor : 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz x8
RAM capacity: 16 GB
Operating System: Microsoft Windows 10 Pro x64 + Linux Mint 20 x64

Lenovo IdeaPad Gaming 3 15IHU (referred to as ’Computer B’)

Processor : 11th Gen Intel(R) Core(TM) i5-11320H @ 3.20GHz x8
RAM capacity: 16 GB
Operating System: Ubuntu 22.04.3 LTS x64 (Kernel version: 6.2.0-39-generic)

Both units have the same number of physical processor cores (four), with differences in
operational frequencies. The laptops’ graphics cards were not a factor in the experiments, as
the processing of ARXML files and Ethernet packets, in context of the developed system, is
conducted solely through the CPU, without any GPU involvement.

To ensure the ease of installation and consistent system setup (server-side in particular) across
different machines, specific bash scripts were devised, also available in the thesis’ attachments.

5.3.1 Client
5.3.1.1 Component & Structural Testing: ARXML Parser
All tests for the software units identified in the testing strategy were developed using the Pytest
framework, version 7.4.4.

For each module under test, a suite of unit tests was composed, concentrating on the verifi-
cation of various aspects of its functionality. This included assessing the module’s behavior with
both correct and incorrect input data, as well as testing identified boundary values for inputs
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where applicable. The design of the tests emphasized modularity, targeting specific functional-
ities within the component under test. This modular approach facilitates the identification of
potential issues and streamlines the maintenance and scalability of the test suite.

Additionally, several tests employed Pytest fixtures, which furnished a reusable set of data or
states, enhancing the efficiency of the testing process. Execution of the compiled tests indicated
that the developed program adeptly meets the established objectives, being prone to no known
defects.

Furthermore, Coverage.py, version 7.4.0, was utilized for structural testing of selected mod-
ules, specifically to assess the extent of code coverage achieved by the unit tests. The outcomes
of the testing process, along with the number of tests written for each module, are presented in
Table 5.1.

Module
(.py)

Number
of

Test Cases
Statements Missing Branches Partial Coverage

parser 9 77 10 20 4 84%
config provider 4 13 0 4 0 100%
data writer 1 42 2 20 2 94%
tabularize 6 25 0 0 0 100%
data object 5 31 3 11 1 86%
data value 2 11 3 2 1 69%
data query 9 43 14 14 3 63%
query builder 11 99 3 39 2 96%
query hander 18 34 6 10 2 82%

Table 5.1 Summary on component and structural testing of ARXML Parser abstract component.

The tabulated results illustrate a significant disparity in software testing outcomes. While a
considerable volume of tests, amounting to 55, has been written for certain modules, the overall
code coverage achieved by these tests remains suboptimal. Nonetheless, given that the software is
in a prototypical phase, the primary function of the tests can be interpreted as being illustrative
rather than definitive. In this light, the tests serve as preliminary indicators of functionality and
stability, with the results being deemed satisfactory for this stage of development.

5.3.1.2 Non-Functional Testing: ARXML Parser
In order to conduct non-functional testing of the ARXML parser, a collection of 120 authentic
ARXML files, previously employed by automotive companies for delineating ECU communica-
tions within vehicular networks, was procured. It is important to note that prior to initiating
the testing process, the author of this study possessed no knowledge regarding the purpose or
contents of these files.

The testing itself was carried out on Computer A, equipped with a Windows operating system.
The schema template, denoted in paragraph 4.3.2.2.1.3, was utilized during the automated testing
process. The very results of it are presented in Table 5.2, as well as at Figures 5.4, 5.2 and 5.3.

The test results revealed that only a third of available files contained a pattern designated by
the YAML schema, which described communication via Automotive Ethernet. Conversely, it was
later discovered that the majority of the remaining files predominantly detailed communication
aspects based on CAN and FlexRay technologies.

As illustrated in the provided table, it is apparent that files with larger sizes do not always
require longer processing times (see obtained data for files 36, 37). This observation unequivocally
suggests that factors other than file size, such as the number of signals and frames2, possibly

2Original frames, prior to data transformation handled in paragraph 4.3.2.2.4
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among others, may play a significant role. To comprehensively unravel the relationships between
file size, the number of frames, the number of signals within a file, and the time taken to process
these files, a more detailed analysis shall be carried out.

File Size
(kB)

Number
of

Frames

Number
of

Signals

Processing
time

1 2532 7 127 0 minutes 1 seconds
2 776 8 13 0 minutes 1 seconds
3 1270 2 83 0 minutes 1 seconds
4 1877 9 159 0 minutes 1 seconds
5 1880 9 159 0 minutes 1 seconds
6 13212 8 102 0 minutes 1 seconds
7 13214 8 102 0 minutes 1 seconds
8 10324 10 114 0 minutes 1 seconds
9 24003 10 114 0 minutes 1 seconds
10 8575 23 522 0 minutes 2 seconds
11 9968 18 1296 0 minutes 3 seconds
12 12740 28 848 0 minutes 4 seconds
13 9494 20 964 0 minutes 4 seconds
14 11013 19 1398 0 minutes 4 seconds
15 19933 12 319 0 minutes 4 seconds
16 11150 19 1317 0 minutes 4 seconds
17 14369 25 1088 0 minutes 6 seconds
18 18018 30 1259 0 minutes 8 seconds
19 24590 18 441 0 minutes 11 seconds
20 17216 18 2469 0 minutes 14 seconds
21 33335 25 1849 0 minutes 18 seconds
22 17726 24 1144 0 minutes 19 seconds
23 30642 15 3091 0 minutes 21 seconds
24 53424 32 2289 0 minutes 36 seconds
25 38314 25 2456 0 minutes 38 seconds
26 47744 28 2886 0 minutes 41 seconds
27 52048 67 1014 0 minutes 59 seconds
28 56289 52 2974 2 minutes 9 seconds
29 54820 43 4733 2 minutes 22 seconds
30 87059 40 5692 2 minutes 56 seconds
31 130324 50 6946 6 minutes 57 seconds
32 134528 50 7084 7 minutes 16 seconds
33 109126 134 4289 7 minutes 21 seconds
34 184279 56 5978 8 minutes 41 seconds
35 133848 120 5540 10 minutes 40 seconds
36 159155 151 8305 13 minutes 16 seconds
37 133402 202 10019 16 minutes 40 seconds
38 212416 194 7041 23 minutes 31 seconds
39 253635 179 11790 67 minutes 11 seconds
40 357007 517 41361 306 minutes 14 seconds

Table 5.2 Results of non-functional testing of ARXML Parser, sorted by processing time in ascending
order.
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The analysis is conducted using statistical methods, particularly Pearson correlation and
regression analysis, to ensure a rigorous and empirical evaluation of these relationships. Namely,
Pearson correlation measures linear correlation between two sets of data, while regression analysis
serves as a reliable method of identifying which variables have impact on a topic of interest.

Figure 5.2 Dependency of ARXML processing time on the number of frames

It is evident, that as the number of signals & frames increases, contributing to the total file
size, so does and the resulting processing time. However, the key point of interest is to determine
the factor among mentioned ones, having the biggest impact on the duration of ARXML file
processing.
▶ Note 5.5. Given the limited size of the available file sample, which is insufficient for compre-
hensive representativeness in a robust statistical analysis, the results obtained hereafter should
be regarded more as indicative rather than definitive.

The computed linear regression model, encompassing all three predictors, exhibits a notably
high R-squared value of 0.9401. This indicates that approximately 94% of the variability in the
processing time is accounted for by the linear combination of three key variables: file size (in
bytes), number of frames, and number of signals. This substantial proportion suggests a strong
linear dependence of processing time on these factors collectively.

Analyzing each predictor individually, the separate linear regression models reveal varying
degrees of explanatory power:

The model with file size as a sole predictor has an R-squared of 0.5325, indicating a
moderate explanatory capability, accounting for approximately 53% of the variability in pro-
cessing time.

The number of frames, as an independent predictor, results in an R-squared of 0.7948,
suggesting a stronger linear relationship with processing time.

The most pronounced individual predictor is the number of signals, with an R-squared
of 0.9041, indicating that it alone can explain around 90% of the variability in processing
time.
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Figure 5.3 Dependency of ARXML processing time on the file size.

Further, the Pearson correlation coefficients were calculated to measure the linear relationship
between processing time and file size, number of signals & number of frames.

The correlation coefficient between file size and processing time is 0.7298. This indicates
a strong positive linear correlation, suggesting that as the file size increases, there is a tendency
for the processing time to increase as well. However, it is noteworthy that this correlation,
while substantial, is not perfect, implying the influence of other factors on processing time.

The correlation coefficient for number of frames versus processing time is 0.8915, repre-
senting a very strong positive correlation. This implies a more pronounced linear relationship,
where an increase in the number of frames in a file significantly impacts the processing time,
more so than the file size alone.

Furthermore, the correlation coefficient for number of signals versus processing time is
0.9509, indicating an extremely strong positive correlation. This suggests that the number
of signals in a file is a highly influential factor in determining the processing time, potentially
more impactful than file size and number of frames.

Summarizing, it can be concluded, that the implemented ARXML Parser cannot be treated as
effective (in terms of speed) in scenarios, where there is a need for processing of large AUTOSAR
XML files. Among all the analyzed factors, the number of signals possesses the most significant
impact on the overall processing time of ARXML file. Additionally, the in-ARXML structural
elements not associated with the utilized schema template, also could bring further deceleration
into the ARXML parsing, requiring extra consideration.

Despite the results are quite intuitive (ARXML Parser was tested in context of signal ex-
traction capabilities), the obtained findings highlight that the potential and relatively accurate
prediction of file processing time cannot be done based only on the disposable file size, requiring
the knowledge of its inner organization.
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Figure 5.4 Dependency of ARXML processing time on the number of signals.

5.3.1.3 GUI Testing: Heuristic Analysis
Due to the absence of an expert in the field, the results of the conducted heuristic analysis
may not necessarily be accurate and comprehensive, stemming from the limited experience. The
findings are presented below:

1. Visibility of System Status: All actions that require a significant amount of time provide
feedback to the user in form of a textual message. Active input fields and tabs are distinguish-
able, buttons respond immediately. The statuses of ongoing processes are visually indicated
with a textual log, so that user is always aware of the current status. The resulting GUI is
one paged, negating the needs for any visual transitions.

2. Match Between the System and the Real World: The user interface is primarily
implemented in English language, with all labels accurately reflecting the meaning of the
particular elements. No translation errors are present. All the information is presented
in textual manner, designed to be intuitive and minimalist, corresponding the application’s
status of a technical utility. Only one icon is present at the window header.

3. User Control and Freedom: In context of user control, the detailed analysis of visual
elements is available at section 4.3.2.1.1. Among the main disadvantages, the GUI lacks the
possibilities of adjusting window size and manually erasing the output area. Graphical user
interface does not comprise any confirmation components, neither provides means for altering
the ongoing action (ARXML parsing, rule creation), therefore reducing the user freedom.

4. Consistency and Standards: Developed for desktop platforms (Windows, Linux, etc.),
the GUI partially complies with Win32 standard3. While primarily adhering to Windows
standard, some elements may not align with user interface standards on other platforms.
Moreover, the exact layout of the user interface directly depends on the screen dimensions

3Fully available at [80].
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due to implementation constraints. Some of the similar input fields are implemented us-
ing different approaches, causing inconsistencies in their on-sceen appearance with varying
screen resolutions. The GUI supports only a light theme, potentially leading to color discrep-
ancies if the default system theme is dark. Standard colors and fonts are used, being easily
distinguishable and readable.

5. Error Prevention: The user interface (as well as client-side in general) lacks actions that
alter the state, thereby negating the need for confirmation actions in this context. Any logical
errors and inconsistencies arised during the usage of a program are prompted to the output
area, explaining the user the actual cause and, sometimes, the possible solutions.

6. Recognition Rather Than Recall: Users need not remember information, as after any
performed action it is not automatically erased from the input fields niether from the output
area. Since the output area is never erased, it provides historical feedback easing the general
utilization of the software. None of the graphical elements can be hidden, possibly bringing
intrusiveness.

7. Flexibility and Efficiency of Use: The program does not include keyboard shortcuts or
macros, due to the lack of areas where they are applicable.

8. Aesthetic and Minimalist Design: The screen displays only relevant information. The
user interface is designed with the minimal necessary number of functions and elements.

9. Help Users Recognize, Diagnose, and Recover from Errors: The simplicity of the
graphical interface prevents unsafe actions, thereby obviating possible errors that require
complex resolutions. Also, as it was noted, almost each error arised is supplemented with
explanation message which is always visible at the output area.

10. Help and Documentation: No in-GUI assistance is available and some elements lack ex-
planations or are not intuitive enough (e.g., ID), demanding the user experience and previous
acquaintance with the software.

Additionally, the problems & defects identified during the heuristic analysis are summarized
in Table 5.3.

Severity Lever Defect
Moderate Window size depends on the screen resolution; inability to change it.

Low Consistency of UI for different platforms is not ensured.
Moderate Inconsistency of element appearance on screen.

Low Absence of help menu or documentation.
Moderate Inability to stop the ongoing action.

Low Inability to alter a color scheme.
Low Inability to erase the output area.

Table 5.3 User interface problems & defects identified by the heuristic analysis.

5.3.1.4 GUI Testing: User-Involved Tests
The testing was conducted with six employees from the Vehicle Testing department of Porsche
Engineering Services s.r.o. in a controlled laboratory setting. Participants were initially briefed
on the objectives of the experiment.

Furthermore, half of the participants received a comprehensive explanations about each el-
ement of the graphical user interface to assess the influence of familiarity with the program
documentation on their overall user experience. Such a decision is based on the previously
conducted heuristic analysis.
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Subsequently, each participant was individually tasked to execute a predetermined sequence
of operations using a specifically prepared laptop. The test scenario and necessary input data
were made available to participants via a text document pre-loaded onto the laptop (Computer
A).

Post-experimentation, individual interviews were conducted immediately following the test
sessions. These interviews aimed to gather participants’ subjective experiences, comments, iden-
tified issues, and their perceived severity regarding the usability of the system. The responses
obtained were methodically analyzed, and the identified issues were categorized according to
their severity levels (refer to Table 5.4 for detailed classification). Overall, the obtained results
partially comply with those, acquired with previously performed heuristic analysis.

Furthermore, the control group’s observations revealed significant, but anticipated findings.
Without prior explanation of the GUI elements, users encountered numerous difficulties, leading
to incorrect usage instances. Thus, the intuitiveness of the GUI is brought into question, as the
study indicates a need for integrated documentation to aid user interaction with the system,
suggesting that the current GUI design is not entirely self-explanatory.

Additionally, several semi-critical bugs4 were identified during the testing phase, primarily
stemming from implementation flaws. A notable issue was the random unresponsiveness of the
GUI during JSON-RPC request creation and dispatch. A proposed solution to this problem is
the implementation of multi-threading, similarly to the process of Worker class utilization in
ARXML parsing. This approach is proven to enhance responsiveness and efficiency in handling
asynchronous tasks.

While the GUI is fully functional, there is a clear necessity for further refinement.

Severity Lever Defect

Low Window size is not adjustable, it is impossible to switch to the full screen
mode that allows for better experience with reading of logs in output area.

Low Absence of help menu, FAQ or documentation.

Low STOP and DELETE buttons are confusing, some users tried to stop the
ARXML parsing with clicking on them.

Low ID input field is confusing, during the rule insertion several users were
stuck, attempting to enter id manually.

Moderate
Possiblity of simultaneous processing of different ARXML files. It was
identified, that user is allowed to select the second ARXML file while the
first is still being processed.

Low Some users were confused by the long processing of ARXML files, thinking
that the GUI is stuck or does not respond.

High While sending a JSON-RPC request, some users have faced the prolonged
unresponsiveness of a user interface until the server feedback was received.

High
Sometimes, the inactive tab (signal modification / traffic filtering) was
disappearing after maximizing of output area, requiring a repetitive resizing
of output area to make it appear again.

Table 5.4 User interface problems & defects identified by user-involved testing..

5.3.1.5 System Testing
As it was outlined in the test strategy (refer to section 5.2.1), the system testing was conducted
simultaneously with the user-involved GUI testing. Manual analysis of the server-side logs has
confirmed the successful reception of transmitted JSON-RPC requests, thereby categorizing the

4The term bug is controversive in this context, since the functionality was designed intentionally in the
existing way and the software is still capable of fulfilling its intended functionality; thus, the identified issues may
be considered as the design flaws.
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test as successful. Although the scope of the testing conducted does not encompass the entirety
of conceivable scenarios, it is deemed adequate to substantiate the functional capabilities of the
prototype software.

5.3.2 Server

5.3.2.1 System Testing: Setup of Environment

Testing was conducted in collaboration with Vehicle Testing department of Porsche Engineering
Services s.r.o. and involved the use of a simplified and specially created simulation of a vehicle
based on the VW E3 1.2 platform, utilizing dSPACE HIL (hardware-in-the-loop) technology.
Moreover, it is worth mentioning that the simulation in use was adjusted to meet the selected
functionality limitations of the developed system.

During the laboratory testing, the software-equipped laptops (Computers A & B) were al-
ternately integrated into the in-vehicle communication network, connecting the ECU (HPCU)
serving as a domain controller and the central gateway (refer to Figure 5.5 for details), connoting
the use of domain-centralized E/E architecture in the simulated vehicle.

▶ Note 5.6. Importantly, the utilization of authentic Porsche vehicle simulations in the testing
process, as well as the provision of further details regarding the used one, is restricted due to
company policies on privacy & data protection.

Figure 5.5 Testing setup.

Due to the infeasibility of directly interfacing the laptop with the typical Automotive Ethernet
1000BASE-T1 cable (refer to Figure 5.6), a NETLion 1000 Media Converter was employed, with
the supplied voltage of 12 V.

The NETLion 1000 Media Converter is a development tool for 100/1000BASE-T1 networks
aimed at logging and analysis of data traffic and/or conversion of 100/1000BASE-T1 Ether-
net physical layers to 100BASE-TX/1000BASE-T Ethernet [81]. The very media converter is
shown at Figure 5.7 and supports two operational modes. Namely, the Dual Media Converter
mode, converting up to two 100/1000BASE-T1 streams to 100BASE-TX/1000BASE-T on two
independent bi-directional converter channels, was utilized.
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Figure 5.6 Automotive Ethernet 1000BASE-T1 cable.

Figure 5.7 NETLion 1000 Media Converter.

Importantly, since each of available laptops possessed only one Ethernet connector, the i-tec
USB 3.0 Gigabit Ethernet Adapter was employed to establish an additional Ethernet connection
via USB interface.

5.3.2.2 System Testing: Results

Prior to commencing the experimental procedures, an analysis of the existing average network
load was conducted, corresponding to the data presented in Table 5.5.

Unfortunately, due to the lack of access to the configuration settings of the employed simula-
tion and the impracticality of its rapid modification, it was not feasible to assess the software’s
performance under varying network loads during the testing process. This limitation conse-
quently impacted the scope of the experiments conducted, disallowing the needed evaluation of
server-side performace under the Class D network loads.
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IFACE rxpck/s txpck/s rxkB/s txkB/s
Master 2112,50 0 353,15 0
Slave 844,13 2113,03 97,97 361,24

Table 5.5 Network interfaces throughput in the Transparent Gateway mode, one capture thread
utilized.

▶ Note 5.7. Importantly, the utilized fragment of network topology denoted at Figure 5.5 implies
the establishment of unidirectional connections from the Computer’s perspective. However,
from the perspective of communicated parties, the connection remained bidirectional, since the
authentic Automotive Ethernet network within the simulation experienced no prior adaptation
to usage of unidirectional communication channels. In practise, this resulted into the repetitive
attempts of central gateway to send the response data on the same channel backwards (domain
controller was trying to receive these data), maintaining the original communication scenario and
thus explaining the presence of incoming data on the slave interface. Despite this introduced some
bias into the measurement, it has not significantly affected the assessment of traffic interference
performed; the data incoming to the slave interface via communication bus were simply ignored.

Figure 5.8 Verification of successfully performed manipulation with three signals5 using CANoe.

During the testing on the system level, all software use-case scenarios were successfully tested
with both of available Computers in accordance with the derived testing strategy. The test
results, verified both manually and automatically using CANoe traces (refer to Figure 5.8),

5Names of signals and PDUs are blurred due to the Porsche Engineering policy on privacy & data protection.
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affirmed the developed software’s capability to interact with Automotive Ethernet traffic in the
desired way.

CPU Impact. The initial observation made was that the task execution speed is indeed influ-
enced by the qualitative characteristics of the processor. This was evidenced by the fact that the
results obtained from measuring the average processing speed of a single packet (independently
of the software use case) differed in a manner approximately equal to the ratio of the processors’
maximal performance (3.20/2.80 = 1.14, indicating up to 14% difference). To corroborate this,
all subsequent results presented will concurrently display data obtained from both of Computers.

Transparent Gateway. The average calculated packet processing times in Transparent Gate-
way mode were found to be 0.0598ms for Computer A and 0.0532ms for Computer B (12%
faster), as illustrated in Figure 5.9. This duration can be considered as the baseline processing
overhead for transmitting an Ethernet packet, irrespective of its characteristics. Information
regarding the average throughput of network interfaces is presented in Table 5.5.

Figure 5.9 Average Ethernet packet processing time on Computers A and B in Transparent Gateway
mode, one capture thread utilized.

During the analysis of the program’s performance in this usage scenario (as well as in all sub-
sequent ones), certain artifacts were identified, the nature of which remains unclear. When de-
termining the maximum packet processing time in this scenario, a solitary instance was recorded
where the time exceeded 11 (!) milliseconds. Additionally, there were instances (up to 20 occur-
rences out of more than 90,000 transmitted packets) where the packet processing time ranged
between 3 to 6 milliseconds.

Moreover, similar observations were acquired in during the testing of all of program use
cases. Consequently, due to the sporadic nature of these data points, they were deemed outliers
and excluded for simplicity of results interpretation, however, potentially deserving the further
investigation.
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Number
of

Threads
IFACE rxpck/s txpck/s rxkB/s txkB/s

1 Master 2177,09 0,00 357,01 0,00
Slave 842,59 1438,53 97,86 241,81

2 Master 2143,58 0 354,89 0
Slave 844,13 1309,74 97,92 217,12

3 Master 2082,17 0 351,24 0
Slave 833,28 1520,56 97,05 232,37

4 Master 2160,75 0 356,02 0
Slave 836,94 1183,25 97,37 196,85

Table 5.6 Registered throughout of network interfaces depending on the number of capture threads,
having 19 active rules for signal modification applied in the same packet.

Capture Threads. Measurements on the average processing time conducted with varying
numbers of threads (1, 2, 4) did not reveal significant differences in most of scenarios. It was
noticed, that each thread always had merely one packet arrived at a time, conforming the low
network utilization.

Only with the increased number of active rules (e.g., > 20), in some cases, the employment of
additional thread(s) slightly benefited the overall throughput of network interfaces, comparing
with the employment of a sole thread. In fact, ususally, the utilization of additional threads
(while having the same number of active rules) has led to the notable decline in the throughput
of network interfaces, as seen in Table 5.6.

It is explained by the fact, that utilization of additional capture threads is only advantageous,
having the high network load (packet processing time remains the same for each thread). In such
cases, while the first thread is being busy with processing of a bunch of incoming packets (or one
packet with multiple strategies respectively), the second thread would be able to capture newly
arrived.

Given the average incoming bitrate of 353kB/s, the utilization of additional threads with
the small number of active rules (approximately < 20) would deliver only the synchronization
overhead.

Additionally, the measurement with three capture threads led to discovery of strange per-
sisting behavior of a program, sometimes having the average processing time almost 90% higher
comparing to other number of threads (refer to Figures 5.14 and 5.15). The nature of this
phenomenon remains unknown.
▶ Note 5.8. Importantly, the observed decline in throughout of network interfaces might be
caused by further factors, not taken into account and requiring the further investigation.

Other Use Cases. Figure 5.10 denotes, that the time consumed for an exclusion of a single
packet from traffic (traffic filtering) can be approximately up to 0.18ms, with an average of
0.0808ms for Computer A and 0.0723ms for Computer B. Given the identified complexity of
the packet parsing algorithm equal to O(NS) (refer to paragraph 4.3.3.6.2) and considering the
deduced baseline processing overhead of 0.0598ms (for Computer A) , it can be claimed that,
theoretically the exclusion of approximately up to6 140 packets from traffic by Computer A (if
they arrive at once) will fit into ASIL FTTI set in the test strategy.

Although this scenario might seem to be practicality infeasible, similar calculations (it terms
of maximal plausible number of signal modifications, etc.) could be easily performed and for
further use cases if necessary, depending on the provided histograms (refer to Figures 5.11, 5.12
and 5.13).

6The maximal possible
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Figure 5.10 Average Ethernet packet processing time on Computers A and B in Traffic Filtering
mode, one capture thread utilized.

Importantly, at the time of testing, no impact of BZ auto-incrementation on the packet
processing time was registered at all. Moreover, despite the successful testing of the BZ auto-
incrementation functionality in line with the software’s use-case scenario, its practical application
was rendered senseless due to the low overall network load, which resulted in only one packet
being allocated to each capture thread.

Figure 5.11 Average Ethernet packet processing time on Computers A and B in Signal Modification
mode (one signal modified), one capture thread utilized.
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Figure 5.12 Average Ethernet packet processing time on Computers A and B in Signal Modification
mode (one signal modified) with in-PDU CRC recalculated, one capture thread utilized.

The subsequent Figures (namely 5.13, 5.14, 5.15 and 5.16) represent combined histograms
of the obtained packet processing times. This implies that the average time depicted in the
images is illustrative rather than definitive. It encompasses the parsing and modification (where
necessary) of packets that are non-compliant (left part of the histogram), partially compliant
(central part of the histogram), and fully compliant (rightmost part of the histogram) with the
loaded rules.

Figure 5.13 Average Ethernet packet processing time on Computers A and B in Signal Modification
mode with merely two in-PDU MACs recalculated, one capture thread utilized.



Functionality Verification & Validation 111

Such visualization was deemed appropriate as it allows for the approximate calculation of
not only the average packet processing time based on its compliance with the rules, but also
provides an intuitive understanding of the proportion of suitable packets among the total number
processed.

Additionally, the variability observed in all the results obtained can be attributed to factors
such as the position of the targeted PDU within a specific packet (in scenarios of traffic interfer-
ence use cases), as well as the potential variation in the processor’s operating frequency during
the testing process (which was not measured). Consequently, the test results presented in this
section should not be considered exhaustive or absolutely precise.

Figure 5.14 Average Ethernet packet processing time on Computers A and B in Signal Modification
mode (ten signals modified within the same PDU) with ten in-PDU CRC recalculated, one capture
thread utilized.

Figure 5.15 Average Ethernet packet processing time on Computers A and B in Signal Modification
mode (ten signals modified within the same PDU), three capture thread utilized.
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Figure 5.16 Average Ethernet packet processing time on Computers A and B in Signal Modification
mode (ten signals modified within the same PDU) with ten in-PDU CRC recalculated, one capture
thread utilized.

The primary objective of the conducted testing was to evaluate the feasibility of signal ma-
nipulation within a set interval. This objective was achieved, characterizing the task as feasible.
A more detailed analysis of this issue was deemed beyond the scope of this work due to its
extensive nature.

5.4 Conclusion

This chapter has comprehensively and systematically addressed the challenges encountered in
testing the multifaceted developed software, encompassing both theoretical foundations and prac-
tical applications for client and server system components.

Following a presentation of theoretical foundations of software testing and necessary defini-
tions, a testing strategy was formulated, delineating the methods for verifying the stated func-
tionality of the software. Given the status of the developed software as a functional prototype,
the devised testing strategy was not exhaustive but rather focused on the functions and features
deemed most critical. Specifically, emphasis was placed on the functionality and performance of
the ARXML Parser abstract component, the usability of the GUI, and the overall functionality
and performance of the server component.

The very testing was based predominantly on the assumption, largely correct, that other
untested parts of the program were defect-free.

All individual steps, nuances, and observations were meticulously documented and are pre-
sented in the respective sections. Furthermore, identified defects were classified based on their
severity. Among the most significant findings were:

1. The ARXML Parser demonstrated its ability to successfully extract necessary information
required for signal modification & inherent security circumvention from available ARXML
files. However, despite component tests confirming the capability to extract any ARXML
data (in accordance with the schema and supported features), the implementation is deemed
inefficient due to extremely excessive processing time for larger files or those containing more
signals. Moreover, as it was proven, that the currrent implementation preclude the effective
estimation of file processing time. Thus, in the context of the objectives set for this thesis,
a sensible optimization for future developments could involve placing greater emphasis on
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performance, by narrowing the scope of supported functions and changing the overall selected
design approach.

2. The developed GUI interface and the client component (in general) are functional but contain
some defects of varying severity related to design shortcomings, requiring further improve-
ment.

3. The server component was tested under conditions, that were most feasible to attain within
the constraints of this study, closely mirroring real-world scenarios for which it was designed.
It experimentally confirmed the ability to modify signals in run-time in Automotive Ethernet
networks. Additionally, implemented techniques for bypassing selected security mechanisms
proved accurate and reliable. The approximate speeds of various traffic intervention sce-
narios were measured, indicating the feasibility of modifying multiple signals (not just one)
considering different levels of protection within the timeframe established by ASIL FTTI.
It is important to note that due to limitations in the testing environment, the testing could not
be conducted in full accordance with the provisions outlined in the testing strategy. Therefore,
while the developed software potentially, based on some confirmed functionalities, can already
assist in testing individual ECUs, it was not possible to assess its performance under varying
network loads. Moreover, during the testing process, several unexpected artifacts of unknown
nature were identified. This indicates imperfections in the testing strategy and gaps in the
collected technical and theoretical knowledge, given the lack of adequate explanations. This
carries certain risks for its real-world application as-is and implies a need for further research
in this area.

In summarizing the results of the conducted testing, it can be confidently stated that the
developed software, despite some shortcomings, has demonstrated the feasibility of successful
and unobtrusive intervention in the traffic of the Automotive Ethernet. This effectively proves
its compliance with both the functional and non-functional requirements set forth.
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Chapter 6

Conclusion

This thesis was set to explore the intricate relationship between automotive networking technolo-
gies, vehicular electronic and electrical architectures, and the nuances of driving automation.
Furthermore, the main objective of this work was to develop an innovative prototype system
designed to facilitate the testing of individual electronic control units at the system level via
unobtrusive signal manipulation, bypassing security mechanisms set by functional safety stan-
dards. Unfortunately, during the course of this research, devices with similar functionalities
became available in the market, significantly diminishing the initially anticipated innovation of
the results.

This research evolved progressively, with each subsequent part of the work building on the
foundations laid by the previous chapters. The detailed results of each stage of this study were
documented in the closing sections of corresponding chapters.

The foundation of this work was laid in Chapter 1, outlining the primary objectives, method-
ology, and sequence of this research.

Chapter 2 delves deep into the realm of driving automation, dissecting the taxonomy of driv-
ing automation levels, the intricacies of functional safety, and the complex E/E architecture of
vehicles. The role of AUTOSAR in vehicle communication and the security aspects of automotive
networking were also examined, setting a solid theoretical foundation for the practical compo-
nents of this study. A crucial component of this section was the analysis of existing protection
mechanisms in Automotive Ethernet networks, which allowed for the synthesis of methods to
circumvent some of these mechanisms.

The focus of Chapter 3 was on synthesizing requirements for the proposed software system.
This involved a careful consideration of functionality limitations based on the conclusions drawn
from the theoretical part of the study, implicitly indicating the achievable functionality of the
final system within the scope of this work. User expectations, and both hardware and software
requirements were consulted and derived in collaboration with leading automotive industry ex-
perts from Porsche Engineering. This rigorous approach ensured that the developed system was
grounded in real-world applicability and industry relevance.

Chapter 4 presents a technical monograph that describes every step undertaken in the design
and implementation of the software system. The architectural design, choice of technologies and
libraries, and a detailed insight into the system’s implementation were discussed. A reasoned
decision was made in favor of a client-server architecture, which allowed for the partitioning of
the necessary functionality into smaller, more manageable tasks, as well as their independent
implementation & testing. The chapter concluded with an evaluation of how the design and
implementation met the set requirements, along with an analysis of the benefits and drawbacks
of the implementation.

Chapter 5 focuses on verifying the developed software’s compliance with the derived functional
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and non-functional requirements. The theoretical aspects of software testing were discussed, and
a testing strategy was formulated, centering the forthcoming tests on the most critical aspects
of the final system. The chapter described the testing setup and presented the verification and
validation of the system’s functionality through various tests. Importantly, the functionality
simulation-based testing was conducted with support of Porsche Engineering in controlled envi-
ronments, under conditions closely resembling real-world scenarios.

Some tests led to the identification of several software defects, while others proved the com-
pliance of the resulting system with the initial requirements. During the testing process, the
capability of the developed software to perform signal manipulation on the Automotive Ether-
net, invisible to the communicating parties, by circumventing selected security mechanisms was
documented.

In conclusion, it is possible to claim that the thesis has successfully achieved all the objectives
set. Moreover, this thesis opens several avenues for further research, dictated by the results
obtained. The exploration of additional possibilities of data manipulation within the Automotive
Ethernet network, the refinement of the software system to enhance its efficiency and scalability,
and the potential application of these technologies in vehicle testing present new opportunities
for continued innovation.

In conclusion, this master thesis could stand as a notable theoretical and practical contribution
to the field of automotive technologies, serving as a specimen for the development and testing of
similar systems.
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Attachments

aepril-client........................................client-side of the developed system
arxml
common
config
logic
views
app.py
requirements.txt

aepril-server ....................................... server-side of the developed system
conf
db
src
.gitmodules .2 build.sh
CMakeLists.txt
FindPCAP.CMake
README.md
setup.sh

thesis ........................................................................... thesis
text.......................................................text of the thesis in LATEX
thesis.pdf.................................................text of the thesis in PDF
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