
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

ERP System Integration Tool

Bc. Ondřej Štauda

Ing. Lukáš Charvát, Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The aim of the thesis is to design and implement a modular tool for data integration

between ERP systems. Based on a mapping, the tool should primarily be able to transfer

data exported from a source ERP system to a target system. The tool should be designed

in a modular way so that the source data can be, for instance, a local file, a file stored on

an FTP server, or even an online document (e.g., Google Sheets). The integration with the

target system will be based on the representation of a data model captured using a

description language for HTTP-based APIs (such as OpenAPI, RAML, or Apiary Blueprint).

Goals of the thesis:

* Learn about HTTP-based web services and languages used to describe their APIs.

* Familiarize with existing ERP systems and web services they provide.

* Propose a method/format for ERP data mapping.

* Design a modular core of the tool that will allow easy addition of data sources and

connectors to target ERP systems.

* Implement at least one data source and one target data connector for a selected ERP

system.

* Test the tool with real data.

Electronically approved by Ing. Michal Valenta, Ph.D. on 22 December 2022 in Prague.

Master’s thesis

ERP System Integration Tool

Bc. Ondřej Štauda

Department of Software Engineering
Supervisor: Ing. Lukáš Charvát, Ph.D.

June 29, 2023

Acknowledgements

I would like to thank my supervisor, Ing. Lukáš Charvát, Ph.D., for his
patience with me and the huge help I received when writing this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on June 29, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Ondřej Štauda. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Štauda, Ondřej. ERP System Integration Tool. Master’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2023.

Abstrakt

Roustoucí společnosti mají vždy zájem o robustnější systémy oproti jejich
stávajícím. Takový přechod mezi systémy je málokdy bezbolestný, obvzlášť
pokud stávající systém používá rozdílný formát dat od toho nového, nebo nový
systém neumožňuje importování dat z toho stávajícího. V takovém případě
potřebují tyto společnosti nástroj, který jim umožní importovat jejich data do
nového systému a ulehčit tak přechod k novému systému.

Cílem této práce je tvorba modulární aplikace, která umožňuje načíst data
exportovaná z ERP systému, transformuje je za pomoci uživatelem vytvoře-
ného mapperu a následně je exportuje do cílového ERP systému. Tato práce
pokrývá celý proces od návrhu formátu vstupních dat, formátu mapování dat
mezi systémy přes modularizaci nástroje až po následnou implementaci těchto
návrhů se zaměřením na načítání dat z CSV formátu a exportování dat do
cílového systému. Fungování aplikace je nakonec ověřeno jejím otestováním
nad daty exportovanými z reálného ERP systému.

Klíčová slova ERP, integrace, REST

vii

Abstract

Growing businesses are always in need of a more robust software than what
they currently have. But such a transition to better systems can be painful,
especially if the current system uses different data formats than the new one or
the new system does not have the ability to import the data from the current
one. In such cases, the companies need some sort of tool that can import their
data to the new system to ease the transition to the new systems.

The aim of this work is to create a modular application that can load the
data exported from an ERP system, transform it with the help of a user-
created mapper, and export it to a target ERP system. It covers the whole
process, from designing the input format specification, the data mapping for-
mat, the modularization, and the subsequent implementation of these designs,
with primary focus on loading data from CSV format and exporting to a tar-
get system. Finally, we tested the capabilities of the application with data
exported from an actual ERP system.

Keywords ERP, Integration, REST

viii

Contents

Introduction 1

1 Interface Definition Languages for HTTP-based APIs 3
1.1 API Blueprint . 3
1.2 Swagger/OpenAPI . 4
1.3 RAML . 4
1.4 WSDL . 4
1.5 WADL . 5

2 Overview of Selected ERP Systems 7
2.1 NetSuite . 7
2.2 Oracle Fusion Cloud ERP . 9
2.3 QuickBooks . 10
2.4 Xero . 11

3 Contemporary ERP Integration Tools 13
3.1 AtomSphere . 13

3.1.1 Integration . 14
3.1.2 Process . 14
3.1.3 Data Mapping . 15
3.1.4 API Management . 16

3.2 Anypoint . 17
3.3 Integrator.io . 18

4 Goals of Thesis 19

5 Analysis and Design 21
5.1 API Specification . 21

5.1.1 OpenAPI Specification Format and Structure 22
5.1.2 OpenAPI Schema Objects 22

ix

5.2 Generated Code . 24
5.3 Data Model . 24

5.3.1 Request Body Format 25
5.3.2 RecordField . 26
5.3.3 Internal Data Format 27
5.3.4 Mapping component . 28

5.4 Application Flow . 28
5.5 Modularization . 29

5.5.1 Adding New Data Source 29
5.5.2 Adding New Target Application 30

6 Implementation 33
6.1 Data Sources . 33

6.1.1 Local CSV File . 34
6.2 Target Applications . 35

6.2.1 Default Transformation 35
6.2.2 NetSuite . 36

6.2.2.1 Standard Flow 37
6.2.2.2 Working with Sublists 38
6.2.2.3 Sending the Data 38

7 User Guide 41
7.1 Running the Application . 42

8 Tests 43

Conclusion 45
Future Improvements . 45

Bibliography 47

A Acronyms 51

B OpenAPI Specification 53

C Contents of enclosed media 57

x

List of Figures

2.1 Example of SuiteTalk SOAP request. 8
2.2 Example of SuiteTalk REST request. 9

3.1 Example of mapping in AtomSphere. Source: Boomi forums [27]. . 16

5.1 Sequence diagram of application flow. 29
5.2 Application flow diagram. 31

xi

List of Tables

5.1 The list of generated java files and if they were used. 25
5.2 The list of parameters in a request to the local endpoint. 26

xiii

Introduction

For small businesses with just a few employees, the list of utilized software
is often limited to essential bookkeeping and basic customer relationship man-
agement (CRM) systems. However, as companies start to grow, they require
more robust software solutions that can integrate their existing software and
data into a single, efficient system. In such scenarios, an enterprise resource
planning (ERP) system is often the most suitable solution. To effectively
utilize all data in an ERP system, companies require a tool to export their
existing data to the new system. Although manual data transfer is an option,
it is time-consuming and prone to errors, which can cause additional delays
in the process.

Moreover, we can also consider the perspective of a more stable and larger
company instead of a small-scale business. The majority of such companies
already utilize an ERP system to manage their customers, accounting, and
invoices. However, there comes a point where the current ERP software may
not suffice for the company’s requirements. In such cases, companies are
obliged to transfer all their data to a new system.

Most current ERP systems have some sort of function to export customers’
data to CSV or XML files. But most of them do not even have an import func-
tion. If they have an import function, the imported file needs to be in a certain
format to work. In such scenarios, a tool, that is the goal of this thesis to
design and develop, comes in. The tool should take the data from a CSV file,
provide options to map the source system properties to properties in the tar-
get system, and then import them to that system, for example, by using their
REST API. The tool should be modular in order to allow future extensions,
such as adding more data sources and/or target systems.

But what exactly is an ERP system? As mentioned above, the acronym
ERP stands for Enterprise Resource Planning. It refers to a system that an
organization uses to manage its day-to-day business activities, tying together
multitude of business processes and integrating the data between them. Doing

1

Introduction

so eliminates duplicate data and serves as a central hub for all organization
information, providing data integrity with a single source of truth.

The ERP system usually consists of multiple modules, where each one
is specialized in one aspect of business processes. Some of the most com-
mon modules focus on accounting, customers, inventory management, order
processing, procurement, or human resources. With these modules, the ERP
system can be customized to suit the business processes of many organizations.

Many ERP systems offer a wide degree of customization, allowing them
to meet almost any organization’s needs. Typical characteristics of ERP sys-
tem include being an integrated system operating in (or near) real time with
consistent look and feel across its modules.

ERP systems can be local-based or cloud-based. Cloud-based solutions
has significantly rose in popularity, with information being readily available
at any location thanks to internet access, which became more of a necessity
than a privilege. Traditional on-premises ERP systems are now considered
legacy technology.

Thesis Organization. This thesis is organized into chapters as follows.
In the chapter 1, the so-called Interface Definition Languages (IDLs) are
briefly introduced. The chapter 2 then discusses selected ERP systems. Next,
the chapter 3 provides an overview of the contemporary tools that aim at
integration between various ERP systems. Based on the initial analysis,
the chapter 4 sets up major goals of this thesis. Furthermore, the chapter 5
focuses on designing the REST API using the OpenAPI specification, internal
data/mapping formats, and the modularization of the tool. The chapter 6
describes its implementation in detail, with a focus on the implementation of
a local CSV file as data source and NetSuite as a target application. The chap-
ter 7 provide a basic user guide and chapter 8 shows how the tool can be used
with real data. Finally, in the last chapter, we summarize the content of this
thesis and discuss possible future improvements.

2

Chapter 1
Interface Definition Languages

for HTTP-based APIs

Interface Definition Language (IDL) is a term for a language that enables
a program written in one language to communicate with another program
regardless of the language in which it was written. It describes the interface
in a language-independent way, enabling communication between software or
its components that do not share one language. The description of the in-
terface written in IDL can also be used as documentation itself for the said
interface, or it can be generated from the description. In this chapter, we
take a short look at some of the most used and important IDLs that are used
for HTTP-based APIs, specifically the ones that can be used for describing
REST APIs. Some degree of understanding of these languages is important,
because most ERP systems use them to specify the format of transferred data.
Furthermore, one of the languages (described in the section 1.2) is also used
for an input API description of the developed tool.

1.1 API Blueprint

API blueprint enables you to quickly design and prototype APIs that have
yet to be created or document and test already deployed APIs [1]. It is based
on Markdown syntax with a set of semantic assumptions laid on top. API
Blueprint is built to encourage collaboration at all points in the API lifecycle
between project stakeholders, developers, and customers. API Blueprint is all
about design-first philosophy. Comparable to tests in test-driven development,
the API Blueprint represents a contract for an API. Analyzing your API and
settling on the contract before its development tends to produce better API
designs. There is a plethora of tools built for API Blueprint, thanks to its
broad adoption.

3

1. Interface Definition Languages for HTTP-based APIs

1.2 Swagger/OpenAPI
The OpenAPI specification, formerly known as the Swagger specification,
is a specification for a machine-readable interface definition language used
for the description of REST APIs [2]. It can be written in both JSON or
YAML. It has an extensive suite of open source tools built around it, called
Swagger. These tools can help design, build, document, and consume REST
APIs. Swagger is a set of open source tools built around the OpenAPI Speci-
fication that can help you design, build, document, and consume REST APIs.
The most notable are the Swagger editor and Swagger Codegen. Swagger
editor is a browser-based editor that can be used to write the OpenAPI Spec-
ification. The OpenAPI Specification can be converted to both YAML or
JSON and downloaded right from the editor. Swagger Codegen tool can gen-
erate server stubs or API clients from given OpenAPI Specification in various
languages, such as Java, C#, Python or many others.

1.3 RAML
The RESTful API Modeling Language (RAML) is an YAML-based language
for describing static APIs [3]. Although it was designed with RESTful APIs in
mind, it is not capable of describing APIs that obey all constraints of REST,
specifically APIs that obey the HATEOAS (Hypermedia as the Engine of
Application State). The HATEOAS enables the server to send not only the
data to the client but also the actions or operations that can be performed
on those data. This way, the client can navigate the application state by
following links provided in the response, without requiring prior knowledge of
the application’s behavior. It encourages reuse, enables discovery and pattern
sharing, and aims at the merit-based emergence of best practices.

1.4 WSDL
Web Services Description Language (WSDL) is a standard specification used
to describe networked, XML-based services, usually SOAP web services. WSDL
defines an XML format to describe network services as a set of endpoints that
operate on messages that contain document-oriented or procedure-oriented
information. WSDL is extensible to allow endpoints and their messages to
be described, regardless of the message format or the network protocol used
for communication. This means that interfaces are abstractly defined using
the XML schema and then tied to specific representations appropriate to the
protocol. WSDL allows the service provider to specify the operations, param-
eters, and data types comprising the interface of the web service, as well as the
protocol and encoding to be used when accessing public operations of the web
service [4].

4

1.5. WADL

WSDL documents allow developers to expose their applications as network ac-
cessible on the Internet. Client programs connected to web services can read
the WSDL file to determine the available operation on the server. The client
can then use SOAP to call one of the operations listed in the file, for example,
using XML over HTTP. Since WSDL 2.0 it offers better support for RESTful
web services and is much simpler to implement.

1.5 WADL
Web Application Description Language (WADL) is a machine-readable XML
description of HTTP-based web services [5]. It models the resources of the
service and the relationship between them. It is platform and language inde-
pendent, and it aims to promote reuse of applications beyond the basic use in
the web browser. WADL was supposed to be the REST equivalent of SOAP’s
WSDL. It was submitted to the World Wide Web Consortium (W3C), but
the consortium currently does not have any plans to standardize it. Each
resource has param elements and method elements. Param elements describe
that describes inputs and method elements describe the request and response
of a resource.

5

Chapter 2
Overview of Selected ERP

Systems

This chapter focuses on the analysis of four ERP systems: NetSuite, Oracle
Fusion ERP, QuickBooks, and Xero. Each of these systems has a significant
traction in the global market and offers comprehensive functionalities and
unique features tailored to different organizational needs. Along with the basic
description of these systems, special attention is given to their integration
options.

2.1 NetSuite
The NetSuite ERP system, developed by Oracle Corporation, is a cloud-based
solution that integrates various business processes within an organization.
It offers a comprehensive suite of applications designed to manage key func-
tions such as financial management, inventory management, order manage-
ment, procurement, human capital management, and customer relationship
management [6].

One of the key features of the NetSuite ERP system is its modular ap-
proach. Organizations can choose the specific modules they need based on
their requirements, allowing for a customized implementation that aligns with
their unique business processes. These modules integrate with each other, en-
abling smooth data flow and real-time visibility throughout the organization.

From the point of view of this thesis, the most interesting modules are
CRM, inventory, and order management, which form the basis for order-
to-cash process. The CRM module enables businesses to effectively manage
customer interactions, track sales opportunities, and improve customer satis-
faction. The inventory management module offers comprehensive inventory
tracking capabilities, enabling organizations to effectively manage stock levels,
monitor supply chain activities, and optimize inventory.

7

2. Overview of Selected ERP Systems

POST https://webservices.netsuite.com/services/
NetSuitePort_2023_1

Header: SOAPAction: add

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header>

<tokenPassport>
<- ... Code omitted ... -->

</tokenPassport>
</soap-env:Header>
<soap-env:Body>

<add xmlns="urn:messages_2023_1.platform.webservices.
netsuite.com">
<record xmlns:q1="urn:relationships_2023_1.lists.

webservices.netsuite.com" xsi:type="q1:Customer">
<q1:companyName>

Glenrock General Hospital
</q1:companyName>
<q1:email>

alan.smith@example.com
</q1:email>

</record>
</add>

</soap-env:Body>
</soap-env:Envelope>

Figure 2.1: Example of SuiteTalk SOAP request.

Finally, the order management module facilitates the entire transaction pro-
cessing, from order capture to fulfillment and invoicing. It automates or-
der processing, improves order accuracy, and enhances customer satisfaction
through efficient order tracking and delivery management.

Because the thesis aims at integration options between various ERP tools,
let’s also discuss NetSuite’s APIs that can fulfill this task. There are three ma-
jor HTTP-based options available: (1) SuiteTalk SOAP, (2) SuiteTalk REST,
and (3) RESTlets.

The SOAP web services option is based on the so-called Web Services De-
scription Language (WSDL), which provides schema for various ERP objects
and allows developers to use SOAP to exchange data (discussed in section 1.4).
The SOAP-based integration option is ideal for customers who require real-
time data exchange and transaction processing with robust error handling

8

2.2. Oracle Fusion Cloud ERP

POST https://webservices.netsuite.com/services/rest/record/v1/
customer

Authorization: ... Code omitted ...
Header: Content-Type: application/json

{
"companyName": "Glenrock General Hospital",
"email": "alan.smith@example.com"

}

Figure 2.2: Example of SuiteTalk REST request.

and logging functionality [7]. Compared to the REST web services, this so-
lution might require extensive development work to implement — specialized
frameworks like Apache Axis [8] or CXF [9] are typically needed. The SOAP
solution can be slow and difficult to debug due to its XML-based data format
and complexity. An example of a SuiteTalk SOAP request that creates a new
customer is given in Figure 2.1.

On the other hand, integrations based on the SuiteTalk REST tend to be
more lightweight, flexible, and easy to implement [10]. In the simplest cases
a plain JavaScript available in the modern browsers can suffice. In NetSuite,
a JSON format following Oracle custom media type [11] specification is uti-
lized for data exchange with the schema being provided in Swagger/OpenAPI
(discussed in section 1.2). Due to its simplicity and support by modern frame-
works, this option is also used in the tool implemented in chapter 6. An exam-
ple of a SuiteTalk REST request (equivalent to the SOAP one from Figure 2.1)
is given in Figure 2.2.

Finally, RESTlets allow developers to build custom REST APIs. There-
fore, they are ideal for customers who require custom data exchange and
transaction processing. However, they require extensive development work to
implement and can be difficult to maintain over time due to custom code.

2.2 Oracle Fusion Cloud ERP
Oracle Fusion Cloud ERP is a comprehensive cloud-based system offered by
Oracle Corporation. It is designed to automate core business processes, en-
hance productivity, and provide real-time visibility into the financial, opera-
tional, and human resources data of an organization [12]. Similarly to other
ERP systems, it consists of various modules such as financial management,
procurement, project management, supply chain management, and others into
a unified data model.

9

2. Overview of Selected ERP Systems

This integration enables fluent flow of information and eliminates data silos,
allowing for better decision-making throughout the organization.

Oracle Fusion Cloud ERP offers multiple integration options to enable
connectivity with external systems, allowing businesses to exchange data and
automate processes across different applications. The major integration op-
tions include: (1) RESTful APIs, (2) SOAP Web Services, and (3) pre-built
adapters.

Oracle Fusion Cloud ERP exposes a comprehensive set of RESTful APIs
that allow developers to integrate and interact with various functionalities
of the system programmatically [13]. These APIs enable actions such as re-
trieving data, creating transactions, updating records, and executing business
processes. Similarly as in the case of NetSuite, the RESTful APIs provided
by the Oracle Fusion Cloud ERP follow standard protocols and data formats
(namely, Oracle Mime Type documented in [11] and OpenAPI described in
the section 1.2), making them easily consumable by external systems.

In addition to RESTful APIs, Oracle Fusion Cloud ERP also provides
SOAP-based web services that offer programmatic access to system function-
alities [14]. These services provide a robust integration option for systems that
rely on SOAP-based communication protocols (see the section 1.4 for details).

Finally, Oracle Fusion Cloud ERP offers a range of pre-built integration
adapters, also known as the so-called Application Adapters, which enable
connectivity with third-party systems [15]. These adapters provide standard-
ized methods for integrating with popular applications and technologies, such
as Salesforce, SAP, Microsoft Dynamics, etc.

2.3 QuickBooks

QuickBooks developed by Intuit company is an accounting software package
designed for small and medium-sized businesses. It provides a comprehen-
sive suite of tools for managing financial tasks, including invoicing, expense
tracking, payroll management, inventory management, and financial report-
ing. QuickBooks offers both cloud-based and desktop versions, providing flex-
ibility and accessibility for businesses operating in various environments [16].

QuickBooks recognizes the importance of seamless integration with other
business systems and offers a robust set of APIs to facilitate data exchange
and integration with external applications. Notable QuickBooks APIs include:
(1) Online API and (2) Payments API.

The online API enables developers to programmatically interact with Quick-
Books Online data. It provides methods for accessing and modifying a wide
range of QuickBooks entities, such as customers, invoices, and expenses. This
API supports RESTful principles and OAuth 2.0 authentication for secure
integration [17].

10

2.4. Xero

The Payments API enables integration with QuickBooks Payments, In-
tuit’s payment processing service. It allows developers to securely process
credit card and other forms of payments within their applications [18].

2.4 Xero
Xero is a cloud-based accounting software platform designed for small and
medium-sized businesses. With its user-friendly interface and comprehensive
set of features, Xero has gained popularity as a reliable solution for managing
financial tasks efficiently. Xero offers a wide range of features to streamline
various financial processes, including invoicing, bank reconciliation, expense
tracking, payroll management, and reporting. These features provide busi-
nesses with the tools they need to maintain accurate financial records, make
informed decisions, and improve overall operational efficiency [19].

The Xero exposes the following notable APIs that can be utilized for in-
tegration: (1) Xero API, (2) Xero Webhooks.

The Xero API allows developers to build custom integrations and applica-
tions that interact with data. It provides access to a wide range of resources,
including contacts, invoices, payments, and bank transactions. Similarly to
the other competitors, the API uses a RESTful architecture, making it easy
to integrate with a variety of programming languages and platforms [20].

The Xero’s Webhooks allow developers to receive real-time notifications
about specific events and changes that occur within a Xero organization. By
setting up webhooks, businesses can build applications that respond to specific
triggers, such as invoice creation, payment updates, or contact modifications.
This enables timely and automated responses to critical financial events, facili-
tating proactive decision-making and reducing manual monitoring efforts [21].

11

Chapter 3
Contemporary ERP Integration

Tools

With the rise of cloud computing and the adoption of Software-as-a-Service
(SaaS) applications, there has been a growing need for businesses to integrate
their disparate systems and applications to streamline workflows and improve
productivity.

The Integration Platform as a Service (IPaaS) is a cloud-based solution
that enables organizations to connect and integrate their disparate systems,
applications, services, or databases into one centralized platform. This makes
it possible to streamline their workflows and business processes and reduce the
possibility of manual or human error, which improves productivity and effi-
ciency and subsequently makes it easier to manage their digital ecosystems. It
is of no significance whether these various systems are cloud-based or running
on-premises.

IPaaS typically offer a wide range of features, such as prebuilt connectors
for popular applications, data mapping and transformation, workflow automa-
tion, API management, real-time monitoring, reporting, and other security or
compliance features. Many of these features eliminate the need for custom
development and manual processes and make it easier for organizations to
automate their workflows and data-sharing processes, both inside the organi-
zation and outside, between different organizations.

In this section, we will look at some of iPaaS providers, to see how they do
integrations on a larger scale. We will take a look at AtomSphere, Anypoint,
and Integrator.io.

3.1 AtomSphere
Boomi AtomSphere, formerly known as Dell Boomi, provides an iPaaS plat-
form, which enables integration for over 300k applications and data sources.

13

3. Contemporary ERP Integration Tools

Boomi provides a cloud-based integration platform that supports both the
in-the-cloud deployment model, when all the integration endpoints are cloud-
based, and the on-premise deployment model, when any of the integration
endpoints are within the corporate network. It is a low-code development
platform. This means that it provides a development environment to create
software through a graphical user interface (GUI) by connecting application
components together and requires little to no coding. The low-code develop-
ment platform generally features drag-and-drop interfaces to help users visu-
alize the application they are building. It features a large library of pre-built
application connectors or provides guides to make integrations easier. We will
focus on the most important, relevant, or interesting features of the Boomi
platform, since it has countless features and some of these are not relevant to
this work.

3.1.1 Integration
The integration feature is the central part of the Boomi platform. It in-
cludes tools and connections to connect apps, data, or devices and automate
workflows across distributed environments. The Boomi platform supports two
types of integrations. First is B2B Integration, which as its name indicates,
integrates data or systems between two or more organizations. The second
is Application Integration, which integrates data or systems within a single
organization. In integration, the profile represents the structure and format
of the source or destination data. There are many different types of pro-
files. The available types of profiles are Database, EDI, Flat File, XML, or
JSON [22]. As mentioned above, Boomi supports both cloud-based and on-
premise deployment models. The cloud-based model is called Atom Cloud
and the on-premise model is called either Atom or Molecule, where Molecule
is a clustered Atom capable of concurrently running multiple Atom processes.
The Molecule is the enterprise-grade version of Atom that can be deployed
on multiple servers to ensure load balancing and high availability for mission
critical integration processes [23]. If the integration includes connecting to
applications or resources behind a firewall, such as databases or other on-
premises applications, it is necessary to use an on-premises model and deploy
the Atom locally. As long as the integration includes only connecting to ap-
plications or resources available through the internet, it is possible to deploy
the Atom to the cloud, i.e. to use Atom cloud. In this case is the integra-
tion ”zero-footprint” solution that does not include any software or hardware
installation, because all computing is done on Boomi’s side in a data center.

3.1.2 Process
The central component within the integration is Process. It is a graphical rep-
resentation of the path the document must take from the time it is received

14

3.1. AtomSphere

to the point it is sent to a destination. The process component includes an in-
bound connector that retrieves data from the source. The source can be a web
or on-premise application or a data source such as a disk, FTP, or database.
It also includes an outbound connector to send data to one or more destina-
tions. Destinations can be applications or data sources, the same as sources.
The process also contains a series of various steps that will be performed on
the data. These actions are represented as shapes. These shapes can be con-
nected in endless combinations to build simple or complex integration work-
flows. There are four types of shapes: Special, Execute, Logic, and Connector
shapes. There is only one Special shape, which is the so-called Start shape,
which indicates the starting point of the process. Connector shapes load the
data into the process or send them out of the process. Execute shapes, manip-
ulate, or transform the data. They can transform documents, convert them to
different formats, send messages or notifications, execute database commands
or command-line scripts, or execute another process within the current pro-
cess. Logic shapes direct the flow of documents through the process. They can
divide the flow into multiple separate branches or they can send the document
through different paths based on defined conditions. The condition value can
be static or pulled from the document properties or data [24]. Integrations
can run when they are scheduled or in response to the occurrence of specific
events. One such event-driven integration is when we turn the integration
process into a web service that can be deployed on-premise or in the cloud.
It can accept both HTTP and SOAP requests. These requests are the events
upon which the integration is based [25].

3.1.3 Data Mapping
One of the features of Boomi is data mapping, which uses maps to convert data
from one format to another. Each mapping consists of a source profile, a des-
tination profile, and the map itself. The Source profile describes the layout of
the input and the Destination profile describes the layout of the output. The
Map is a graphical representation of how the fields in the source profile need to
be mapped to the destination profile. The user can drag and drop fields from
the source profile into the destination profile to define how to move the data. It
can also contain functions to allow for more complex transformation of data
when moving from source to destination. These functions can use multiple
fields as input and connect the output to multiple fields. There are two main
types of functions. The first is Standard, which performs a single step, such
as converting the value to uppercase or performing a mathematical operation.
The second is User defined, which can perform complex transformations by
linking together multiple standard function steps in a defined sequence. The
user can determine the order in which the functions will be executed. Each
field in the source profile can be connected to multiple functions, to be used
as input, or to multiple destination fields.

15

3. Contemporary ERP Integration Tools

Each destination field can be connected to only one source field or to one func-
tion output. We can even assign default values to destination fields. These
default values are only used if the destination field is not connected to any
source field or the value of the connected field is null or blank. The mapping
is fundamentally a 1:m mapping we know from databases [26].

Figure 3.1: Example of mapping in AtomSphere. Source: Boomi forums [27].

3.1.4 API Management
Another feature of Boomi is API management. To use this feature, the user
needs to create API components in Integration. It consists of two main com-
ponents: API Service components and API Proxy components.

API service components are used to expose sets of REST, SOAP, or OData
endpoints. We can use them to expose a different set of endpoints that will be
used by different customers or partners. Each defined endpoint has a listener
process configured to listen for requests for a specified operation on a partic-
ular object. The default settings for an operation on an endpoint are derived
from the linked process. These default settings can be overridden. For OData
endpoints, you can set an entity name and you can override the number of
documents returned. For SOAP endpoints, you can override the operation
name. For REST endpoints, you can override the object name and the HTTP
method. For both REST and SOAP endpoints, you can override the opera-
tion’s input type and output type, and for structured input and output, we
can override the request and response profiles. Integration automatically gen-
erates WSDL for each SOAP API deployed and OpenAPI specification for
each deployed REST API [28].

API Proxy components allow for proxying requests through an API gate-
way to a service that is not served through an Atom, Molecule, or Atom
cloud. This means that these services are outside the Boomi platform envi-
ronment [29].

16

3.2. Anypoint

3.2 Anypoint
Anypoint is an iPaaS developed by Mulesoft. The main methodology of
Mulesoft is API-connectivity, which they use to connect data to applications
through reusable APIs. The main parts of the Anypoint platform are API
Management and Integration.

Mulesoft has its own programming language designed for transforming
data, called DataWeave. It is also an expression language used to configure
components and connectors. It allows users to easily perform common use
cases used in application integrations like read and parse data from one format,
transform it, and write it out as a different format. It allows developers to
focus on transformation logic, instead of worrying about the specifics of each
data format they use. The typical flow is that data go through the reader, who
parses the data into a canonical model. It is then passed to the DataWeave
script, where it is used to generate output, which is also a canonical model.
This model is then passed to the writer, who parses the data into the desired
output data format [30].

Mulesoft also has its own IDE that enables users to start building APIs
and integrations quickly with pre-built connectors, templates, and examples.
It is named Anypoint Studio. Users can use it to design and edit Mule config-
uration files. API specifications or properties files.

Anypoint API Manager is a component of the Anypoint platform that en-
ables users to manage, govern, and secure their APIs. API Manager is used
to enforce policies, collect and track analytical data, manage proxies and ap-
plications, and provide encryption and authentication.

There are two types of gateways in Anypoint. Flex Gateway is an ultrafast
and lightweight gateway. It is designed to manage and secure APIs running
anywhere. It is built to integrate with DevOps and CI/CD workflows. Mule
Gateway can apply a basic authentication policy on top of a Mule application
or add a complex capability to an API without having to write any code. The
difference between Flex Gateway and Mule Gateway is that the flex gateway
can manage and secure any API, both Mule and non-Mule. Mule Gateway
protects a single Mule API.

The AnyPoint DataGraph is a tool that allows users to unify all the data
within their application into a unified schema. You can also dynamically query
data from a unified schema or explore the application network from a single UI.
It can also reuse and serve information from an application without writing
new code. The Anypoint platform stores all APIs as graphs of metadata.
Anypoint DataGraph can connect those graph into one unified schema that
runs as a single GraphQl endpoint, that contains and links all of the fields
from all the APIs. The result is that the user can query across the underlying
APIs without having to understand all the relations or capabilities that exist
within them [31].

The design center is a development environment that includes API De-

17

3. Contemporary ERP Integration Tools

signer and Flow Designer. API Designer is a web UI tool to design API
specifications in either RAML, OAS, or AsyncAPI. The Flow Designer is used
to create Mule applications to integrate systems into workflows. A flow con-
sists of cards, each representing a core component, connertor, module, or API.
Each card receives input data, performs a specific task using the input data,
and then sends the output data to the next car in the flow. The last card
usually sends a notification or sends the data to the target [32].

3.3 Integrator.io
Celigo company focuses mostly on the automation of workflows, with pre-built
connectors for multiple applications, with easy configuration.

Users can create such flows in their iPaaS Integrator.io. One of the main
parts of Integrator.io is Flow Builder [33]. It allows users to create custom
flows in the Celigo platform using a drag-and-drop interface. The platform
has a variety of connectors that can be used as a source or as a destination.
If the user wants to use an application that does not have a connector, he
needs to use a universal connector. Universal connectors can also be used for
a customized connection. You can add mappings to the flow. Mappings can
be added at several points in the flow. You can add mapping when importing
data, after a look-up, or between multiple imports. The mapping allows users
to customize how the data are transformed and allows them to customize
which source field is mapped to which destination field [34]. The flow builder
allows users to set up conditional logic inside the flows, so the system can
make decisions based on certain criteria or conditions.

18

Chapter 4
Goals of Thesis

The main goal of this thesis is the creation of a modular tool that enables
exportation of data that was exported from a source ERP system to a target
ERP system. But we should divide this goal into smaller separate goals.
The first goal is to thoroughly design the tool. This means designing its
REST API, various internal data formats. One thing that particularly needs
attention during the design phase is the modularity. Without proper design,
the modularity could be only partial or non-existent at all. The next goal
would be the implementation of the tool, according to the design. This means
implementing at least one data source and at least one target application.
The last goal would be to ensure that all the capabilities and features of the
application are working correctly. To do that, a proper testing is needed. We
chose to test it with data exported from Xero, because this way we can mimic
a real-life scenario of a company using our tool to export their data to a new
system.

The main target group of this tool is small or starting businesses. One of
the main reasons this target group was selected is on account of the tool not
being robust enough to handle large batches of data. It would need to handle
such batches of data to be of any use to medium or large businesses, due to
the sheer amount of data they have and can generate every day, mostly in
terms of invoices or inventory tracking. With the target group in mind, the
best data source was deemed a CSV file that is stored locally. Regarding the
target system, the NetSuite ERP system was chosen, mainly because of prior
experience with this system.

19

Chapter 5
Analysis and Design

The application was designed as a REST web service that is in principle
similar to the concept of Enterprise Service Bus (ESB) [35]. The difference
in our applications is that the one that initializes the connection is always
our application, not one of the connected applications. In fact, the connected
applications are not really connected because they have no way to initialize
the connection and they do not even know about our application before we
send them some requests.

Another difference is that the connections can only be a data source or
only a target application, they do not have to be able to do both, send data,
and receive them. That does not mean that you cannot have a connection that
can handle both and have it as a data source as well as a target application.

Most of the terminology, especially with regard to data, is adopted from
NetSuite (described in section 2.1) and can be different in other applications.
For example, individual items saved within the application are called records,
and the properties of the records are called fields. The so-called sublist
is then a list of records inside a record, for example, a list of items on a par-
ticular invoice.

5.1 API Specification
For the development of this application, we decided to use a design-first ap-
proach when creating the API. This means that we created detailed API
definitions before writing any code. Such definitions contain the structure of
the API, such as endpoints and methods available on these endpoints. It can
also contain the data structures that are sent in request and response bodies.
This definition can be utilized as documentation for the API and can as well
be used to generate server or client code. We used the OpenAPI specification
while designing the API, because it is easy to use and because of previous
experience with it. We also used this definition to generate the server code

21

5. Analysis and Design

that was used as a starting point for the implementation of the application.

5.1.1 OpenAPI Specification Format and Structure
The Open API document that follows the OAS [2] is itself a JSON object,
which may be written in JSON or YAML format. All field names in the
specification are case-sensitive. This includes all fields used as keys in a map.

There are two types of fields: Fixed fields, which have a specified name, and
Patterned fields, which have a regex, which specifies the field name. All pat-
terned fields must have a unique name inside the containing object. The data
types in OAS are based on those supported by the JSON schema specification.
These types are: null, boolean, object, array, number, and string [36].

The integer as a type is also supported and is defined as a JSON number
without an exponent or fraction part. JSON data types can have an optional
modifier property format. OAS defined additional formats to further expand
the primitive types. The defined formats are int32 and int64 for integers,
which are signed 32-bit and 64-bit integers. The defined formats for number
are float and double, and for string is a password, which serves as a hint to
UI to hide the input.

The whole document is divided into several JSON objects. Each object has
several fields, where most of them are optional, but some have a few required
fields.

5.1.2 OpenAPI Schema Objects
In this subsection, we will describe some of the important types of objects.

OpenAPI Object This is the root document object of the OpenAPI doc-
ument. All other objects are part of this one. The required fields are Info
Object, Paths Object, and the OpenAPI field, which contains the semantic
version number of the OpenAPI specification.

Info Object This object provides metadata about the API. The only re-
quired fields are the title of the API and the version of the API document.
It can also contain the contact object or license object. The example below
demonstrates a possible structure of the Info Object.

info:
title: ERP Tool
description: This tool is used to export data

from one ERP system to another.
contact:

email: staudond@fit.cvut.cz
version: 1.0.1

22

5.1. API Specification

Contact Object This object should contain the contact information for the
person responsible for the API.

Server Object This object represents a server, its required field is a server
URL.

Components Object This objects holds the re-usable objects for differ-
ent aspects of the OAS. These objects have no effect on the API, unless
they are referenced outside of the components object. It can hold schemas,
requestsBodies or responses or any other type of reusable objects. In our
OAS document, it holds schema of the objects that represents the body of
a REST request.

Paths Object This object holds the relative paths to the individual end-
points and their operations. To construct the full URL of the endpoint, the
path is appended to the URL from the server object. Each element of this
object represents a different REST endpoint.

Path Item Object This object describes the operations available on a single
path. It usually only contains multiple Operation Objects.

Operation Object This object describes a single HTTP operation on a path.
It contains all the information needed about that operation, like the schema
of the request body or how the responses look.

paths:
/v1/local:

post:
tags:

- local
summary: Export data from local CSV file
description: Export data from local
CSV file as a data source
requestBody:

content:
application/json:

schema:
$ref: '#/components/schemas/Local'

required: true
responses:

'204':
description: Successful operation

'400':

23

5. Analysis and Design

description: Bad request
'500':

description: Internal server error

In this code example, we can see the Paths object. The /v1/local in-
dicates the beginning of the Path Item Object and the post indicates the
beginning of the operation object.

5.2 Generated Code
As a starting point for the implementation, the code, generated by Swagger
Codegen from OpenAPI specification, was used. The generated code can be
separated into three main sections. These are the API Section, Models of
Entities, and Configuration Files.

API Section: This section includes the interface that defines the REST
endpoints with all available HTTP operations on them. It also includes the
REST controller that implements this interface, thereby implementing the
HTTP operations available on the endpoints. This means handling the in-
coming requests and returning the appropriate response. In addition, the
generated code contains two bare bones exceptions and a filter. Moreover, it
included a basic API response message.

Models of Entities: This section contains Plain Old Java Objects (POJO)
classes, where each class represents the entities used by the application. Each
model corresponds to a schema defined in the OpenAPI specification.

Configuration Files: This part contains configuration classes for the Swag-
ger UI and the Swagger documentation. It also includes a converter for local
date and local date time, which can convert string to corresponding time for-
mat. The last thing in this section is a controller for the root endpoint.

From these generated files, we used all the models and configuration classes.
From the API part, we took the API controller and divided it into separate
controllers for each endpoint.

5.3 Data Model
When we work with data, we want to organize the data into some predefined
structures. Working with such structures is easier, because we know how
the data is structured inside. Such structures can be called data models. In
this section, we will discuss the design of data models used throughout the

24

5.3. Data Model

ApiException Not Used
ApiOriginFilter Not Used
ApiResponseMessage Not Used
NotFoundException Not Used
V1Api Modified
V1ApiController Modified
CustomInstantDeserializer Used
HomeController Used
JacksonConfiguration Used
LocalDateConventer Used
LocalDateTimeConventer Used
SwaggerDocumentationConfig Used
SwaggerUiConfiguration Used
Local Used
Mappings Used
TargetApplication Used
RFC3339DateFormat Used
Swagger2SpringBoot Renamed

Table 5.1: The list of generated java files and if they were used.

application, from models of request bodies, the internal format of data to
structure of mapper.

5.3.1 Request Body Format

Since the application is designed to be a REST web service, we need to define
the format of the body of incoming requests to our application. Every endpoint
should correspond to a data source, and the format of request body for each
endpoint could be different, while still containing few of the same parameters
that are required in all types of request bodies.

In Table 5.2, we can see a list of all the parameters in a request to the
local endpoint, which is used when the data source is a local file, and whether
they are required in the request or are optional. Furthermore, you can see if
these parameters should be present in requests to other endpoints or if they
are endpoint-specific.

The only parameter specific to the request body to the local endpoint
is path, which is the path to the local CSV file. The path can be relative to
the folder where the application is located or absolute. The target parameter
determines to which target application the data should be sent. Its value
is a string of the name of the application, all in lowercase. The type determines
what type of record is the data we are sending transformed into and specifies
the endpoint where the data will be sent. The mapper is used to transform the

25

5. Analysis and Design

Name Is Required Endpoints
path Required Local Only
target Required All Endpoints
mapper Required All Endpoints
type Required All Endpoints
groupId Optional All Endpoints
sublistName Optional All Endpoints
sublistMapper Optional All Endpoints

Table 5.2: The list of parameters in a request to the local endpoint.

data before sending them to the target application. The sublistMapper is also
used to transform the data before sending them to the target application, but
is only used when we are utilizing the sublist feature. It also determines which
fields are placed in the sublist. More about the mapper and the sublist mapper,
and their internal format can be found in a subsection 5.3.4. The groupId
is used to group data that will be used to create sublists. The sublistName
specifies the name of the field where the sublist is placed. The groupId,
sublistMapper and sublistName are only used when we are utilizing the
sublist feature.

5.3.2 RecordField

During the development of the application, we became aware of the fact that
for some ERP applications, having the value of a field be only string is not
enough. Many of these applications have complex records, which can have
complex and intricate structures that involve nested objects or nested arrays
of objects. A simple string is not enough to capture these structures, which
is especially true for the nested objects.

For that reason, we created a new entity named RecordField, which,
as the name suggests, is used to represent each field in the record. It can act
as either a simple string value or as an object. It is designed to have two
separate states where the state corresponds with what it contains inside. It
can act as either a value or an object at a time, and once created, it cannot
be transformed from its value state to its object state and vice versa. The
original idea was that the entity would always start in its value state and if
necessary would be transformed into its object state. However, that idea had
a few certain issues that we needed to solve before it could work. The first
issue is that when an entity contains a value of a field, it does not know the
name of that field. Considering this issue, if we wanted to transform this
entity from its value state to the object state, we would need to either store
its name inside the entity or pass it its name upon its transformation into
object. But both of these approaches have the same problem, the object has

26

5.3. Data Model

in general a different name than the fields inside of it. We could have it saved
under the name of the object and store the name of the field it contains inside
of it. That would create a variable in it that would be used only in this one
use case, and it would only cause problems down the line when handling this
entity. It is far less complicated to decide that its going to be in object state
upon its creation and put the field inside the object with its name and value.

The entity contains two variables, a field, and an object. The field is a string,
and the object is a map, where both the key and the value are strings. To
ensure that the entity is always in either of these two states and only in one
of them, we made the field variable read only. The only way to add fields
inside the object is by using method addValueToObject. Furthermore, we
made two separate constructors, each for the construction of the entity in one
state. One constructor accepts a string as a parameter, creating the entity
in value state with the string value inside the field variable. The second
accepts two strings as a parameter, creating the entity in the object state,
with one field inside the object.

5.3.3 Internal Data Format

When communicating with multiple applications, it can often be the case that
each application represents its data in a slightly different format. In that case,
it can be pretty bothersome to have converters for converting the data between
each of these formats. The usual strategy to prevent this is to always convert
the data into a certain internal format and then have converters between the
formats of each application and this format, which can significantly reduce
the number of individual data converters.

As an internal data format, we chose to store each record as a map, where
the key is the name of a field, and the value is the value of the said field. This
value can be a string, in case of a simple field, or a map, where key and
value are both strings, if the field is an object. This is possible due to using
a custom class as a value that can act as either a simple string or a map. All
of these records are then stored in a list.

In case we want to utilize the feature of sublists, we can group the records
by a groupId, which results in a map, where the key is the aforementioned
groupId, which is used to group the records together, and the value is the list
of maps, where the maps have the same format as if we do not use sublists,
which was mentioned earlier.

We could use the same format and group the records by groupId for both
scenarios, but it would just make it unnecessarily complex, make parsing the
data into a JSON body more difficult, and use more memory, in the case where
we do not use the sublists feature.

27

5. Analysis and Design

5.3.4 Mapping component

Because we want our application to have the ability to transform the data
before it is sent to the target application, we need some sort of mapper. The
transformation is handled by the target class and can greatly differ between
each target application. Furthermore, because we do not want to limit the
complexity of the transformation, we decided to make the format a simple
map, where both the key and the value are a string. With this format, the
transformation can be just a simple renaming of fields, where the key is the
name of the field in the loaded data and the value is the name of the field
in the transformed data. We can also use the string to describe structures
of various complexity. We can for example use symbol to signify that this
field will be inside an object whose name is the string before the symbol. For
example item>price, means that the field will be named price and it will be
inside the object named item With this rule in place we could make multiple
levels of nested objects, we would just have to add the same symbol for each
level of nested objects we want. As of now, we did not find a use case for more
than one level of nested objects. Consequently, this rule will be applied only
once for each field, therefore only one level of nested objects is available.

If we want to have arrays in our records, we can use a feature called
sublists. We decided to call this feature sublists because that is what it
is called inside NetSuite. It works by grouping multiple records together by
a groupId, which can be any field in the record currently used. Then, we
group records with the same groupId and use sublistMapper to transform
the data. The sublistMapper is the same as the ordinary mapper, its only
used to determine which fields are to be placed inside the sublist. The number
of items in the list is equal to the number of records with the same groupId.

5.4 Application Flow

The data flow of the application is very simple. The flow is started by sending
a POST request to one of the endpoints of our application. The endpoint to
which we decide to send a request determines what data source will be used
because each endpoint represents one data source that can be utilized. The
application then loads the data from the said source and transforms them
into the appropriate format used by our application. The program determines
which application is the target by a parameter named target in the request it
received. The tool then uses the target class for this application to transform
the loaded data. The transformation can be as simple as renaming fields or
it can be a complex transformation of data. Finally, it sends the transformed
data to the target application.

28

5.5. Modularization

Figure 5.1: Sequence diagram of application flow.

5.5 Modularization
This application was designed with modularization in mind, so when a need
arises for a new source of data or a new target application to which we can
export the data, it would be fairly easy to add this functionality. We will
describe how to add a new source of data and how to add a new target appli-
cation.

5.5.1 Adding New Data Source
As was mentioned earlier, the application was designed with modularization
in mind, so adding new sources for data or new target applications is fairly
easy, apart from the actual implementation of their functionality, and can be
done in a few steps.

The first step is to add a new POJO class that will represent the body of
incoming REST requests to the endpoint that is to be created in the following
steps. This POJO class should contain everything the application needs to
load the data from the said source. It should also contain a mapper that
maps data from the source to how they should be represented when they are
sent to the target. For example, the field that is named ContactName in the
source data should be named companyName in the data sent to the target.
The mapper is a map (dictionary in JSON) where the key is the name of the
field in the source data, and the value is the name of the field in the data
sent to the target. It should also contain to which source should the data be

29

5. Analysis and Design

sent and what kind of data are we loading, which determines exactly where to
send them. The target application usually has different endpoints to receive,
for example, customer data and data about their orders. It can contain other
things, but the ones mentioned above are the most important.

The second step is to add a new Source class. This class should load
the data from the said source and return it as a list of maps, where the key
is a string, and the value is either a string or map, where the key and value
are both strings. Each map should represent one record that was loaded. For
example, in the case of a CSV file, each map represents one line that was
loaded, where the key is the header and the value is the value of said header
on that line.

The third step is to add a new REST endpoint that the new source will
use and create an appropriate controller for this endpoint with the method for
HTTP POST operation that accepts the aforementioned POJO class as the
request body. This controller should also contain bean TargetBeans that can
return the appropriate service of the desired target. The method for HTTP
POST operation should use the source class to load the data, get the Service
of the target from TargetBeans and transform it by using the mapProperties
method of the target service. Finally, it should use the target service
to send the mapped data. We use the POST method because this operation
is not idempotent and we also need to receive data in the body of the request.

5.5.2 Adding New Target Application
Adding a new target application is also fairly easy and can be done in a few
steps, the same as was the case with adding a new data source. The first
step is to add a new target class that should extend abstractTarget or any
of its subclasses. This class should handle everything that is needed to send
the loaded data to the target application. If the application needs some sort
of authentication to access its API, this class should take care of that au-
thentication. If we need to transform the data in a way different from the
standard method, which is implemented in abstractTarget, this class can
override the mapProperties method and implement its own way to transform
the data. This class should be annotated with spring annotation @Service,
so it is a spring bean, which enables dependency injection with this class, which
will be needed shortly. It could be annotated with annotation @Component,
but @Service better describes the intended behavior of this class.

The next step is to add a new entry in the TargetApplications enum for
this new target application. The entry should be a string containing the name
of the target application in lowercase with underscores as word separators. An
example of how it should look is new_target_application.

The last step is to add the aforementioned target class to TargetBeans
class via @Autowired annotation and edit the getTarget method by adding
a case where the added target class can be returned.

30

5.5. Modularization

Figure 5.2: Application flow diagram.

31

Chapter 6
Implementation

After we have carefully and thoroughly designed all aspects of the application,
we need to implement it. To implement the application, we chose to use Spring
Boot as the main technology. We chose Spring Boot, because we wanted to
implement the application in Java and Spring Boot is the most popular Java
framework with Spring MVC being the second [37].

We used Spring Boot instead of standard Spring, because it is easier to
deploy a Spring Boot application, because it comes with an embedded and
pre-configured web server so we can deploy it as-is and do not need to have
a separate webserver server, where we will deploy it as war. The other reason
we chose Spring Boot was because the Swagger Codegen can generate the
server stub in Spring Boot. To load the data from CSV files, we used the
OpenCSV library. [38] To send REST requests, we used the Spring Web client.

Next, to construct the request JSON body, we used Jackson tree model.
It allows one to easily add fields, objects, or arrays to one node, and convert
it easily to JSON string.

The main focus of implementation can be separated into two main com-
ponents, the data sources, from which the application can load data, and the
target applications, where the data can be sent. Both of these components
were designed to be modular, so new ones can be easily added, as is described
in section 5.5. First, we will focus on the general part of implementation,
and then we will take a closer look at specific implementations of both com-
ponents, which will be local CSV file as data source and NetSuite as target
application.

6.1 Data Sources
The first component are the data sources that we can load the data from. We
will first focus on the general part of the implementation and then look at the
specific implementation, which is a local CSV file as a data source. The data

33

6. Implementation

sources component can be divided into a few sections. The first section would
be the POJO classes that represent the incoming REST requests or some of
their parts. The second would be the controllers for the REST endpoints,
where one controller should control all the endpoints that belong to one data
source. The last part is the Source class, which is responsible for loading the
data from the data source and returning it as a list of maps, where the key
is a string and the value can be either string or a map of strings. Each map
should represent one record that was loaded, where the key represents the
name of the parameter and the value is its value.

6.1.1 Local CSV File

This data source is fairly simple because it is not difficult to load data from
a CSV file, especially with an abundance of libraries that can do most of the
tedious work, especially parsing the data from various formats. Nevertheless,
the first implementation of this data source was done without using any library.
We simply loaded the data line by line and separated each line into individual
fields by splitting the line with a comma as a separator. If the loaded field
is empty, it is omitted and not saved, to make the data smaller in size, and
because the empty fields have no use. We then put these fields into a map
with their appropriate header. This method has a few problems. According to
RFC 4180, which is a specification that includes the definition of CSV format,
if the field is enclosed in double quotation marks, it can contain commas,
line breaks, or double quotation marks [39]. We even encountered data where
there was a comma inside a field, which made a mess of the loaded data.
Because of this, we decided to use a library that will handle this and other
future problems that could arise from the previous naive implementation. The
library we decided to use is OpenCSV because it is easy to setup and use. At
first, we wanted to use CSVReaderHeaderAware, because it directly converts
the line in CSV into a map, where the keys are the CSV headers. That
is exactly the same format to which we converted the CSV lines, so it would
save us some work. Unfortunately, the CSV file, which is directly exported
from Xero, does not work with this reader because it has more headers than
fields, which causes an error. Moreover, since we want to use the exported CSV
files without changing them, if we can help it, we decided to use a different
method. We load the CSV line as if from a normal file and then parse it with
a parser that adheres to all of the CSV specifications, which is appropriately
named RFC4180Parser. Fundamentally, the only difference between our first
implementation and this one is the parsing of the line into individual fields.
The rest of the implementation remained the same.

34

6.2. Target Applications

6.2 Target Applications
The second component is the target applications. We will first briefly focus on
the general implementation of the target, and after that we will take a closer
look at a specific implementation for a target application, which in this case
will be NetSuite, which is for now the only target application.

The target application component is for the most part comprised of Target
classes, where each target class is basically a service that processes the loaded
data and sends them to the target application that this class represents. All
target classes must extend the AbstractTarget class or any of its subclasses.
The other parts are some other classes needed to send the data, like entity
classes representing objects to send as REST body or receive from calls to
other APIs. There is also TargetBeans class, which is a simple class that
returns a bean of an appropriate service based on the passed parameter, which
is an entry from an enum of available target applications. This enum entry
is received as a target parameter in the REST request body. Target classes
are also responsible for the transformation of the loaded data to data that will
be sent to the target application. The AbstractTarget class includes basic
transformation, which basically means renaming the properties. If the target
application requires some form of more complex transformation, the Target
class for that target application should implement it.

6.2.1 Default Transformation
As we said before, the transformation is the responsibility of the target class.
We also said that there is a default transformation that the Target classes
can use, since they should be a subclass of the AbstractTarget class, which
implements this default transformation. This transformation does two things.

The first is simple renaming of fields, where the key in the mapping is the
name of the field in loaded data, and the value is the name it will be renamed
to.

The second is placing fields into nested objects. If we want to send a JSON
object as a parameter, we can use this to choose which fields will be inside the
object. When we are placing fields into an object, they are at the same time
also renamed. To determine whether we want to only rename the object or
also place it in an object, we use the character >. So, if the value inside the
mapper is Item>price, the field would be renamed to price and placed inside
a JSON object with the name item. The default transformation takes each
loaded record and then iterates through the mapping, checking if any of the
fields we want to rename are present in the loaded data. If the field is present,
we rename it, and eventually we can place it into an object, and place it into
a new map that will then be returned as transformed data. This means that
only fields that are in the loaded data and that are transformed are present in
the data that will be sent to the target application. We chose this behavior for

35

6. Implementation

multiple reasons. The first is for the user to have complete control over what
fields are sent to the target application. The second is that we can have data
where only some of the records have some fields that we want to transform
and then use, and we do not want to send empty values for the records that
do not have these fields, they are omitted from the data.

6.2.2 NetSuite
Now we will look more closely at the actual implementation of the target
class. We chose NetSuite as the main target application due to our previous
experience with this system and its API.

Before we can send the data to the NetSuite SuiteTalk REST API, we need
some sort of authentication so that we can access the resources through the
API. NetSuite offers two types of authentication for web services: Token-Based
Authentication (TBA) and OAuth 2.0. We decided to use OAuth 2.0 because
it is more straightforward and easier than TBA. There are two flows available
for OAuth 2.0, the Authorization Code Grant Flow and the Client Credentials
Flow. We use the Client Credentials Flow because it is machine-to-machine
and does not require any user interaction.

To use this authentication, we need to set up the Integration and the
OAuth 2.0 Client Credentials in NetSuite UI. The description of the setup of
the so-called Integration Application and the related OAuth 2.0 flow is not
captured here, because it is not essential to the thesis and it is already well-
described in NetSuite documentation. Integration Set Up and OAuth 2.0
Flow for. If we set up this integration, we will get clientId when setting up
the integration and keyId when setting up the OAuth 2.0 flow. These values
among others are sent to NetSuite inside a request to get an authentication
token that can then be used to access the resources through the API.

To get the token, we first load the private key for the certificate we assigned
to the integration we are using and decode it from base64 format. After this,
we construct a JSON Web Token (JWT). This token has a predefined structure
that it must adhere to, to successfully get back the authentication token.

The token header includes three parameters: typ, alg, and kid, where the
value of typ is always JWT, the value of alg is the algorithm used for signing
of the token and the value of kid parameter is the keyId we got when setting
up the OAuth 2.0 flow.

The token payload includes five parameters: iss, scope, aud, exp, and
iat. The value of the iss parameter is the clientId we obtained when
setting up the integration. The value of the scope parameter should in
this case be rest_webservices. The value of the aud parameter is the
NetSuite token endpoint, where we will send the request. The exp param-
eter is the number of seconds from January 1, 1970, until the token ex-
piration, and iat is the time when the token was issued in seconds from
January 1, 1970. When we construct the JWT, we can send an HTTP

36

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157771733782.html#Create-Integration-Records-for-Applications-to-Use-OAuth-2.0
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_162686838198.html#OAuth-2.0-Client-Credentials-Setup
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_162686838198.html#OAuth-2.0-Client-Credentials-Setup

6.2. Target Applications

POST request to the same URL as the aud parameter. The POST re-
quest includes three paramaters: grant_type, client_assertion_type and
client_assertion. The values of grant_type and client_assertion_type
are always the same and are client_credentials for the grant_type param-
eter and urn:ietf:params:oauth:client-assertion-type:jwt-bearer for
the client_assertion_type parameter. The value of the client_assertion
parameter is the value of the JWT signed by the private part of the certificate
assigned to the integration. The response we receive for sending this request
contains the type of token, the time in seconds it takes for the token to expire,
and the value of the access token itself in JWT format. The expiration is al-
ways the same value, that is, one hour in seconds, which is 3600. Because we
always get the time it takes for the token to expire, even though it is always the
same, we can request a new access token only after the old one expires, instead
of requesting a new access token for each request the application receives.

As was mentioned earlier, NetSuite has a feature in which we can put a list
of records inside a record. This feature is called a sublist. This feature is used
if the request body contains the parameters groupId. It should also contain
parameters sublistName and sublistMapper to function properly. When we
utilize this feature, the handling of the data is a little different, so we divide
the application flow between when we are not using sublists and when we are.
The part that is different is the processing of the data and the construction
of the request body. The sending of the requests is the same in both cases.

6.2.2.1 Standard Flow

The first thing we need to do is to transform the loaded data. We can trans-
form the data before sending them to the target class, or send them along
with the mapper to the target class and transform them there. But because
we do not have a need for the untransformed data in the target class, we could
transform them in the target class to separate the transformation from the
controller. Another option is to do it before we send it to the target class
because transformed data are generally smaller than the untransformed data
and we do not have to send the mapper as well. We decided to transform it
before, to send fewer data to the target class.

To create the JSON body, we use Jackson and its tree model. We create
an object node, which represents the JSON object, and that will be the main
object node, that will be transformed into the request body. We add all
data fields by field to the main object node. If the field is a value, we first
determine whether the type of value is integer, double, or something else. We
do this because NetSuite requires fields, containing rates, amounts, or internal
identifiers, to be sent as numbers, not as strings. If we determine that the
value is integer or double, we add it as such to the object node. If not, we
simply add the field with its header to the object node. If it is an object, we
create an object node, adding all the fields to it, one by one, with the same

37

6. Implementation

principle as we added fields that were a value to the main node. We add this
object node to the main object node.

6.2.2.2 Working with Sublists

When we want to utilize the sublists, we need to group the records by the
groupId. After grouping the records by groupId, we create the sublist. The
sublist is a list of records forming a one-to-many relationship. Therefore, each
element in the sublist is created by transforming data from one record. After
creating the sublist, we transform the data that all grouped records had in
common. These common data make up the body of the request we send to
NetSuite, except for the sublist, which we need to insert into the body later.
We create the JSON body almost identically to the standard flow. First, we
add all the shared transformed data, field by field, to the main object node
with the same principle as before. After we have added all the shared data,
we need to add the sublist. We create an array node that represents a JSON
array. We create an object node from all items in the sublist by the same
principle we used to create the main object node. We then add all these
object nodes to the array node, and finally add the array node to the main
object node.

6.2.2.3 Sending the Data

After constructing the node, we can send it as a request body to the tar-
get application by using Spring WebClient. In older versions of Spring,
restTemplate was used to send rest requests, but since Spring 5.0 it is rec-
ommended to use Spring WebClient [40]. In the following code, we see an
example of how to construct a REST request using Spring WebClient. First,
we create the instance of WebClient with the URL of the endpoint where we
want to send the request, as a parameter. We also specify that it is a POST
request. Then, we set the headers. The first header specifies that the content
of the body is in JSON format and the second one contains the access token.
Right after that, we set the accept header with the accept() method, so the
response we get is in JSON. We did not set this header in the headers block
because inside this block it only accepted a list of media types, so it was easier
to do it like this. Finally, we set the request body, which is the object node
constructed earlier.

38

6.2. Target Applications

WebClient
.create(authProperties.getBaseUrl() + restUri + type)
.post()
.headers(httpHeaders -> {

httpHeaders.setContentType(MediaType.APPLICATION_JSON);
httpHeaders.setBearerAuth(token);

})
.accept(MediaType.APPLICATION_JSON)
.body(BodyInserters.fromValue(body));

After preparing the request, we can send it by calling either the retrieve()
method or the exchange methods. We use the exchangeToMono() method if
the request returns a single object and we use the exchangeToFlux() method
if it returns collection of objects. The difference between exchange and retrieve
is that retrieve only returns body information, whereas exchange methods of-
fer more control over the response by giving access to the ClientResponse
object [41].

39

Chapter 7
User Guide

This application was designed as a REST Web service. The user tells the
application what to do through a REST request, and it is the only way for
the user to interact with the application, apart from the data the application
loads from a data source.

The examples in this chapter will focus on local CSV files as the data
source and NetSuite as the target application, since these are the only data
source and target applications available right now.

First, the user needs to choose which data source he wants to use. Each
data source has its own endpoint, and the request body, although similar in
many parameters, has differences between each endpoint. After the user has
chosen the data source, he needs to construct the appropriate request body.
Each request has some parameters that are mandatory and can have some
parameters that are optional. In the case of a local CSV file as a data source,
the mandatory parameters are path, target, type, and mapper. The path
is the path to the file and the type is the type of data we are sending. The
target is the target application to which we send the data. Its value is a low-
ercase string. In the case of NetSuite, its value is netsuite. One of the
most important parameters is the mapper, which tells us how to transform
the data before sending them to the target application. It is a map (dictio-
nary in JSON), where the key is the name of the field in loaded data, and
the value is what it is transformed into. The transformation is the respon-
sibility of the target class and can be different for each target application.
In the case of NetSuite, the transformation is mostly renaming the fields or
placing them inside nested objects. The parameters groupId, sublistName,
and sublistMapper are used in case we want to utilize the feature of sub-
lists. This feature is used if the groupId parameter is present in the request.
It specifies the field that is used to group the records. More information on
the parameters can be found in subsection 5.3.1 and information about the
structure and functionality of mapper in subsection 5.3.4.

Here is the whole process summarized in few steps:

41

7. User Guide

1. Choose the data source you want to use and its appropriate endpoint.

2. Construct the request body.

a) Choose which target you want to use by setting the target param-
eter.

b) Specify the type of data that is used by setting the type parameter.
c) Construct the mapper parameter.
d) If you want to use the feature of sublists (if it is available for the

chosen target), set groupId, sublistName, and sublistMapper pa-
rameters.

e) Set all remaining endpoint-specific parameters.

3. Send the request to the endpoint selected in step 1.

4. Wait until the data are processed and you receive the REST response
from the application.

7.1 Running the Application
As we mentioned earlier, the application is using Spring Boot, which has
an embedded web server, so it can be run as-is without any difficult de-
ployment. The jar file of the application can be run simply with a com-
mand java -jar Thesis-1.0.jar. Inside the application files, there is an
application.properties file with the configuration needed to connect to
a NetSuite account. If we want to run the application with different config-
uration, for example, to connect to a different NetSuite account, we can run
the application with an external configuration file. Spring has multiple ways
to use the external configuration with a priority order to allow reasonable
overriding of the configuration. If we place an application.properties file in
the same directory as the jar file, this configuration has higher priority than
the application file inside the jar.

We can also use a command line argument --spring.config.location
with the value of file:<path/to/application/properties/file> when run-
ning the application to specify the location of the properties file.

42

Chapter 8
Tests

We tested our application with data exported from Xero. We tried to use
the data as is, without changing anything in it. The records we wanted to
test were customer, item, and sales order. These records are essential for
each ERP system, so it was important that we could successfully import them
into NetSuite. The application should be able to export any type of record
to NetSuite, given the right mapping. We did not test all records, because
NetSuite has a huge variety of records, and you can even create new custom
records. Furthermore, a lot of records do not have counterpart directly in
Xero, so we do not have data to import into NetSuite. Thus, we focused on
the essential ones, namely customer, item, and sales order. At first, we tried
to import them with the bare minimum of data possible to create each record.

After we were successful in importing them with the bare minimum of
data, we wanted to import them with all the data we had. We first needed to
construct the mapping, to correctly map the fields, because they are named
differently in Xero and NetSuite. After constructing the mapping, we tested
to import them with all the data that has equivalent fields in NetSuite and
can be set through REST API.

The importing of customers went smoothly without any problems, we im-
ported all fields that had their equivalent in NetSuite. We managed to import
the address, with the use of sublists.

The exported data of item records had an issue that one record did not
export correctly, because it was exported into 3 lines instead of one, and the
headers did not correspond with the data. It turned out that the only problem
was that the data was on multiple lines. If we made one line out of these 3, the
record was without issues and the headers had the correct values. When we
examined the data, we found that the items could be divided into two separate
categories of items, items for sale, and items for resale. The difference is that
items for sale have no purchase price, but items for resale do. NetSuite has
different endpoints for each of these types of items, so we divided them into
two separate files and exported them separately.

43

8. Tests

When we wanted to export the items with their price, which is important
for items we encountered a problem. Because when setting price for an item,
NetSuite need two separate parameters, quantity and price level.These values
are not present in the files of items,so we needed to add two columns to them.
The value of price level for setting base price is 1 and the items did not specify
different price based on quantity. That means that the value of both columns
was set to one.

The import of sales order also had a problem. Because sales orders in
NetSuite need the internal identifiers of customer and item, when creating
the sales order. Because these values are not present in the CSV file of sales
orders, we need to edit it and add two columns, one with the internal id of
customer and one with the internal id of the item. We can get the values of
these identifiers in the NetSuite web GUI. There was also problem, that some
items in orders did not specify which item it is.Because of this, we created item
with the name of Unspecified item, and assigned it to the ones that did not
specify the item. After adding the appropriate identifiers of the imported
customers and items to the sales orders CSV, we could finally import them.
We also needed to delete three orders, because the were meant as refunds, and
NetSuite does not support sales orders with negative total.

With this we successfully imported the three most important types of
records into NetSuite.

44

Conclusion

The goal of this work was to create a modular tool that allows the export of
data that was exported from a source ERP system to a target ERP system. We
divided this goal into three smaller ones: Design of the tool, its implementa-
tion, and subsequent testing of the tool. The design part in chapter 5 is where
we designed various aspects of the application, from the REST API, multiple
internal data formats, and the mapping functionality to modularization. The
implementation part in chapter 6 first discussed some general aspects of the
implementation and then focused on the CSV file as a data source and Net-
Suite as the target application. Testing was carried out with data exported
from Xero to a CSV file. We tested importing these data into NetSuite. We
only tested importing three different records, but the application is capable of
importing any type of record, when given the right mapping. In our analysis,
we first compared a few of the most notable Interface Definition Languages
in chapter 1. Subsequently, we discussed selected ERP systems in chapter 2.
At last, we discussed few of the iPaaS providers, and what functionality their
platforms offer in chapter 3.

Future Improvements
We tested the application and imported the real data that were exported from
the Xero accounting system into the CSV format. We only tested importing
three types of records, however it should be possible to import any type of
record when given the data and the correctly configured mapper. This is be-
cause of the general design of the application. This means that the process
of loading and importing data is independent of the type of records the data
represent. It depends only on the input data format, the data format in which
the target application accepts the data, and whether the mapping is correct
or not. The dependence on data format at both input and output is resolved
by the modularity of the application and the possibility of having multiple

45

Conclusion

data sources and target applications. This means that one of the obvious im-
provements of this application is the addition of more data sources and target
applications. An interesting data source would be to take the data from an
ERP system by means of REST requests or load the data from a Google Sheets
document. The target applications could also be other types of application,
not exclusively ERP systems.

The application is now targeted at businesses that do not have large
amounts of data to import. This is due to the application not using multi-
threading and the requests to the application being synchronous. This means
that only one request is being processed at a time. Therefore, a useful im-
provement would be to make the application asynchronous and to use multiple
threads to process requests faster and to be able to import larger amounts of
data. Right now, the mapper implementation allows us to map the field in
the loaded data to only one field in the target data, a 1:1 mapping. The lim-
itation is due to mapper being a map, where the name of the field in loaded
data is used as a key. Since keys are unique in a map, it is impossible to have
more than one entry for each field in the loaded data. A possible improvement
would be to improve the mapper implementation to allow for a 1:m mapping,
same as it is in Boomi iPaaS. If we look at the implementation of NetSuite
as the target application, there are some aspects that could be improved.
Right now, we only support one sublist in a record. We could improve it to
support multiple sublists. Another improvement is in the case of nested ob-
jects. Currently, we support one level of nested objects, so we could improve
it to support more levels of nesting.

46

Bibliography

1. APIARY. API Blueprint Specification [online]. [visited on 2023-06-27].
Available from: https://apiblueprint.org/documentation/specification.
html.

2. SMARTBEAR SOFTWARE. OpenAPI Specification [online]. [visited on
2023-06-25]. Available from: https://swagger.io/specification/.

3. STOIKOVITCH, Jonathan. RAML Version 1.0: RESTful API Model-
ing Language [online]. [visited on 2023-06-27]. Available from: https:
//github.com/raml-org/raml-spec/blob/master/versions/raml-
10/raml-10.md/.

4. CHRISTENSEN, Erik; CURBERA, Francisco; MEREDITH, Greg; WEER-
AWARANA, Sanjiva. Web Services Description Language (WSDL) 1.1
[online]. [visited on 2023-06-27]. Available from: https://www.w3.org/
TR/wsdl.html.

5. HADLEY, Marc. Web Application Description Language [online]. [visited
on 2023-06-27]. Available from: https://www.w3.org/Submission/
wadl/.

6. ORACLE CORPORATION. NetSuite Enterprise Resource Planning (ERP)
System [online]. [visited on 2023-04-06]. Available from: https://www.
netsuite.com/portal/products/erp.shtml.

7. ORACLE CORPORATION. SuiteTalk SOAP Web Services Platform
Overview [online]. [visited on 2023-05-12]. Available from: https : / /
docs . oracle . com / en / cloud / saas / netsuite / ns - online - help /
chapter_N3412777.html#SuiteTalk-SOAP-Web-Services-Platform-
Overview.

8. APACHE SOFTWARE FOUNDATION. Apache Axis [online]. [visited
on 2022-07-22]. Available from: https://axis.apache.org.

47

https://apiblueprint.org/documentation/specification.html
https://apiblueprint.org/documentation/specification.html
https://swagger.io/specification/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://www.w3.org/TR/wsdl.html
https://www.w3.org/TR/wsdl.html
https://www.w3.org/Submission/wadl/
https://www.w3.org/Submission/wadl/
https://www.netsuite.com/portal/products/erp.shtml
https://www.netsuite.com/portal/products/erp.shtml
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_N3412777.html#SuiteTalk-SOAP-Web-Services-Platform-Overview
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_N3412777.html#SuiteTalk-SOAP-Web-Services-Platform-Overview
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_N3412777.html#SuiteTalk-SOAP-Web-Services-Platform-Overview
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_N3412777.html#SuiteTalk-SOAP-Web-Services-Platform-Overview
https://axis.apache.org

Bibliography

9. APACHE SOFTWARE FOUNDATION. Apache CXF [online]. [visited
on 2023-06-12]. Available from: https://cxf.apache.org.

10. ORACLE CORPORATION. SuiteTalk REST Web Services Overview
and Setup [online]. [visited on 2023-05-12]. Available from: https://
docs . oracle . com / en / cloud / saas / netsuite / ns - online - help /
chapter_1540391670.html#SuiteTalk-REST-Web-Services-Overview-
and-Setup.

11. New Media Type for Oracle REST Services to Support Specialized Re-
source Types. 2015-03. Tech. rep. Oracle Corporation. Available also from:
https : / / www . oracle . com / webfolder / technetwork / tutorials /
appdevinfo/New%5C%20REST%5C%20Media%5C%20Type.pdf.

12. ORACLE CORPORATION. Oracle Fusion Cloud ERP [online]. [visited
on 2023-01-22]. Available from: https://www.oracle.com/erp/.

13. ORACLE CORPORATION. REST API for Oracle Fusion Cloud Fi-
nancials [online]. [visited on 2023-03-16]. Available from: https://docs.
oracle.com/en/cloud/saas/financials/23b/farfa/rest-endpoints.
html.

14. ORACLE CORPORATION. SOAP Web Services for Financials [online].
[visited on 2023-03-18]. Available from: https://docs.oracle.com/en/
cloud/saas/financials/23b/oeswf/index.html.

15. ORACLE CORPORATION. Prebuilt Application Adapters [online]. [vis-
ited on 2023-03-18]. Available from: https://www.oracle.com/integration/
application-adapters/.

16. INTUIT. QuickBooks Online [online]. [visited on 2023-04-09]. Available
from: https://quickbooks.intuit.com.

17. INTUIT. QuickBooks Online API Reference [online]. [visited on 2023-04-
09]. Available from: https://developer.intuit.com/app/developer/
qbo/docs/api/accounting/all-entities/account.

18. INTUIT. QuickBooks Payments API Reference [online]. [visited on 2023-
04-09]. Available from: https://developer.intuit.com/app/developer/
qbpayments/docs/api/resources/all-entities/bankaccounts.

19. XERO LIMITED. Xero Accounting Software [online]. [visited on 2023-
05-26]. Available from: https://www.xero.com.

20. XERO LIMITED. Xero API Overview [online]. [visited on 2023-05-26].
Available from: https://developer.xero.com/documentation/api/
accounting/overview.

21. XERO LIMITED. Xero Webhooks Overview [online]. [visited on 2023-05-
26]. Available from: https://developer.xero.com/documentation/
guides/webhooks/overview.

48

https://cxf.apache.org
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_1540391670.html#SuiteTalk-REST-Web-Services-Overview-and-Setup
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_1540391670.html#SuiteTalk-REST-Web-Services-Overview-and-Setup
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_1540391670.html#SuiteTalk-REST-Web-Services-Overview-and-Setup
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_1540391670.html#SuiteTalk-REST-Web-Services-Overview-and-Setup
https://www.oracle.com/webfolder/technetwork/tutorials/appdevinfo/New%5C%20REST%5C%20Media%5C%20Type.pdf
https://www.oracle.com/webfolder/technetwork/tutorials/appdevinfo/New%5C%20REST%5C%20Media%5C%20Type.pdf
https://www.oracle.com/erp/
https://docs.oracle.com/en/cloud/saas/financials/23b/farfa/rest-endpoints.html
https://docs.oracle.com/en/cloud/saas/financials/23b/farfa/rest-endpoints.html
https://docs.oracle.com/en/cloud/saas/financials/23b/farfa/rest-endpoints.html
https://docs.oracle.com/en/cloud/saas/financials/23b/oeswf/index.html
https://docs.oracle.com/en/cloud/saas/financials/23b/oeswf/index.html
https://www.oracle.com/integration/application-adapters/
https://www.oracle.com/integration/application-adapters/
https://quickbooks.intuit.com
https://developer.intuit.com/app/developer/qbo/docs/api/accounting/all-entities/account
https://developer.intuit.com/app/developer/qbo/docs/api/accounting/all-entities/account
https://developer.intuit.com/app/developer/qbpayments/docs/api/resources/all-entities/bankaccounts
https://developer.intuit.com/app/developer/qbpayments/docs/api/resources/all-entities/bankaccounts
https://www.xero.com
https://developer.xero.com/documentation/api/accounting/overview
https://developer.xero.com/documentation/api/accounting/overview
https://developer.xero.com/documentation/guides/webhooks/overview
https://developer.xero.com/documentation/guides/webhooks/overview

Bibliography

22. BOOMI. Boomi Documentation - Integration [online]. [visited on 2023-
06-27]. Available from: https://help.boomi.com/bundle/integration/
page/c-atm-Integration_and_iPaaS.html.

23. BOOMI. Boomi Documentation - Molecule [online]. [visited on 2023-06-
27]. Available from: https://help.boomi.com/bundle/integration/
page/c-atm-Molecules.html.

24. BOOMI. Boomi Documentation - Process Building [online]. [visited on
2023-06-27]. Available from: https://help.boomi.com/bundle/integration/
page/c-atm-Process_building.html.

25. BOOMI. Boomi Documentation - Event-based integration [online]. [vis-
ited on 2023-06-27]. Available from: https://help.boomi.com/bundle/
integration/page/c-atm-Event-Based_Integration.html.

26. BOOMI. Boomi Documentation - Map component [online]. [visited on
2023-06-27]. Available from: https://help.boomi.com/bundle/integration/
page/c-atm-Map_components.html.

27. YADAV, Bhagyashree. Boomi map shape [online]. [N.d.]. [visited on 2023-
06-28]. Available from: https://community.boomi.com/s/question/
0D51W00007yl47uSAA/how-to-do-a-many-to-one-mapping-from-
custom-scripting-functions-to-destination-profile.

28. BOOMI. Boomi Documentation - API Service components [online]. [vis-
ited on 2023-06-27]. Available from: https://help.boomi.com/bundle/
api_management/page/int-API_Service_components.html.

29. BOOMI. Boomi Documentation - APIProxy components [online]. [visited
on 2023-06-27]. Available from: https://help.boomi.com/bundle/api_
management/page/int-API_Proxy_components.html.

30. ERNEY, Joshua. What is DataWeave? [online]. [visited on 2023-06-27].
Available from: https://developer.mulesoft.com/tutorials-and-
howtos/dataweave/what-is-dataweave-getting-started-tutorial/.

31. MULESOFT, LLC. Anypoint DataGraph Overview [online]. [visited on
2023-06-27]. Available from: https://docs.mulesoft.com/datagraph/.

32. MULESOFT, LLC. About Design Center [online]. [visited on 2023-06-27].
Available from: https://docs.mulesoft.com/design-center/.

33. SANTIAGO, Tom. Create custom flows [online]. [visited on 2023-06-27].
Available from: https://docs.celigo.com/hc/en- us/articles/
360025919171-Create-custom-flows.

34. SANTIAGO, Tom. Response mapping, results mapping, and failed record
flow behavior [online]. [visited on 2023-06-27]. Available from: https:
//docs.celigo.com/hc/en-us/articles/4414777521307-Response-
mapping-results-mapping-and-failed-record-flow-behavior.

49

https://help.boomi.com/bundle/integration/page/c-atm-Integration_and_iPaaS.html
https://help.boomi.com/bundle/integration/page/c-atm-Integration_and_iPaaS.html
https://help.boomi.com/bundle/integration/page/c-atm-Molecules.html
https://help.boomi.com/bundle/integration/page/c-atm-Molecules.html
https://help.boomi.com/bundle/integration/page/c-atm-Process_building.html
https://help.boomi.com/bundle/integration/page/c-atm-Process_building.html
https://help.boomi.com/bundle/integration/page/c-atm-Event-Based_Integration.html
https://help.boomi.com/bundle/integration/page/c-atm-Event-Based_Integration.html
https://help.boomi.com/bundle/integration/page/c-atm-Map_components.html
https://help.boomi.com/bundle/integration/page/c-atm-Map_components.html
https://community.boomi.com/s/question/0D51W00007yl47uSAA/how-to-do-a-many-to-one-mapping-from-custom-scripting-functions-to-destination-profile
https://community.boomi.com/s/question/0D51W00007yl47uSAA/how-to-do-a-many-to-one-mapping-from-custom-scripting-functions-to-destination-profile
https://community.boomi.com/s/question/0D51W00007yl47uSAA/how-to-do-a-many-to-one-mapping-from-custom-scripting-functions-to-destination-profile
https://help.boomi.com/bundle/api_management/page/int-API_Service_components.html
https://help.boomi.com/bundle/api_management/page/int-API_Service_components.html
https://help.boomi.com/bundle/api_management/page/int-API_Proxy_components.html
https://help.boomi.com/bundle/api_management/page/int-API_Proxy_components.html
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/what-is-dataweave-getting-started-tutorial/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/what-is-dataweave-getting-started-tutorial/
https://docs.mulesoft.com/datagraph/
https://docs.mulesoft.com/design-center/
https://docs.celigo.com/hc/en-us/articles/360025919171-Create-custom-flows
https://docs.celigo.com/hc/en-us/articles/360025919171-Create-custom-flows
https://docs.celigo.com/hc/en-us/articles/4414777521307-Response-mapping-results-mapping-and-failed-record-flow-behavior
https://docs.celigo.com/hc/en-us/articles/4414777521307-Response-mapping-results-mapping-and-failed-record-flow-behavior
https://docs.celigo.com/hc/en-us/articles/4414777521307-Response-mapping-results-mapping-and-failed-record-flow-behavior

Bibliography

35. GARTNER, INC. Enterprise Service Bus: A Definition [online]. [vis-
ited on 2023-06-27]. Available from: https://www.gartner.com/en/
documents/1405237.

36. WRIGHT, Austin; ANDREWS, Henry; HUTTON, Ben; DENNIS, Greg.
JSON Specification [online]. [visited on 2023-06-25]. Available from: https:
//datatracker.ietf.org/doc/html/draft-bhutton-json-schema-
00#section-4.2.1.

37. JETBRAINS S.R.O. The State of Java Developer Ecosystem 2022 [on-
line]. [visited on 2023-06-24]. Available from: https://www.jetbrains.
com/lp/devecosystem-2022/java/.

38. Opencsv [online]. [N.d.]. [visited on 2023-06-28]. Available from: https:
//sourceforge.net/projects/opencsv/.

39. SHAFRANOVICH, Yakov. Common Format and MIME Type for Comma-
Separated Values (CSV) Files [online]. [visited on 2023-06-17]. Available
from: https://www.ietf.org/rfc/rfc4180.txt.

40. NICOLL, Stéphane; HOELLER, Juergen. Spring Framework 5 FAQ [on-
line]. [visited on 2023-06-24]. Available from: https://github.com/
spring-projects/spring-framework/wiki/Spring-Framework-5-
FAQ.

41. VMWARE, INC. Spring Framework 5.3.13 API Documentation [online].
[visited on 2023-06-24]. Available from: https : / / docs . spring . io /
spring-framework/docs/5.3.13/javadoc-api/org/springframework/
web/reactive/function/client/WebClient.RequestHeadersSpec.
html#exchangeToMono-java.util.function.Function-.

50

https://www.gartner.com/en/documents/1405237
https://www.gartner.com/en/documents/1405237
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00#section-4.2.1
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00#section-4.2.1
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00#section-4.2.1
https://www.jetbrains.com/lp/devecosystem-2022/java/
https://www.jetbrains.com/lp/devecosystem-2022/java/
https://sourceforge.net/projects/opencsv/
https://sourceforge.net/projects/opencsv/
https://www.ietf.org/rfc/rfc4180.txt
https://github.com/spring-projects/spring-framework/wiki/Spring-Framework-5-FAQ
https://github.com/spring-projects/spring-framework/wiki/Spring-Framework-5-FAQ
https://github.com/spring-projects/spring-framework/wiki/Spring-Framework-5-FAQ
https://docs.spring.io/spring-framework/docs/5.3.13/javadoc-api/org/springframework/web/reactive/function/client/WebClient.RequestHeadersSpec.html#exchangeToMono-java.util.function.Function-
https://docs.spring.io/spring-framework/docs/5.3.13/javadoc-api/org/springframework/web/reactive/function/client/WebClient.RequestHeadersSpec.html#exchangeToMono-java.util.function.Function-
https://docs.spring.io/spring-framework/docs/5.3.13/javadoc-api/org/springframework/web/reactive/function/client/WebClient.RequestHeadersSpec.html#exchangeToMono-java.util.function.Function-
https://docs.spring.io/spring-framework/docs/5.3.13/javadoc-api/org/springframework/web/reactive/function/client/WebClient.RequestHeadersSpec.html#exchangeToMono-java.util.function.Function-

Appendix A
Acronyms

API Application Programming Interface

CRM Customer Relationship Management

CSV Comma-Separated Values

ESB Enterprise Service Bus

ERP Enterprise Resource Planning

GUI Graphical user interface

HTTP Hypertext Transfer Protocol

IPaaS Integration Platform as a Service

JSON JavaScript Object Notation

POJO Plain Old Java Object

RAML RESTful API Modeling Language

REST Representational state transfer

SaaS Software as a service

SOAP Simple Object Access Protocol

UI User Interface

URL Uniform Resource Locator

W3C World Wide Web Consortium

WADL Web Application Description Language

51

A. Acronyms

WSDL Web Services Description Language

XML Extensible markup language

YAML YAML Ain’t Markup Language

52

Appendix B
OpenAPI Specification

openapi: 3.0.3
info:

title: ERP Tool
description: This tool is used for exporting
data from one ERP system to another.
contact:

email: staudond@fit.cvut.cz
version: 1.0.1

servers:
- url: http://localhost:8080/

tags:
- name: local

description: Local CSV file as data source

paths:
/v1/local:

post:
tags:

- local
summary: Export data from local CSV file
description: Export data from local
CSV file as a data source
requestBody:

content:
application/json:

schema:

53

B. OpenAPI Specification

$ref: '#/components/schemas/Local'
required: true

responses:
'204':

description: Successful operation
'400':

description: Bad request
'500':

description: Internal server error

components:
schemas:

Local:
type: object
properties:

path:
type: string
description: Absolute path to the local file

type:
type: string
description: Type of record we are exporting
e.g. Customer, SalesOrder etc.

groupId:
type: string
description: Name of property that is used to group
records together. Used for sublists.
If this property is set, it signalizes
that we want to use sublist functionality.

sublistName:
type: string
description: Name of the sublist needs to be specified,
because in different types of records,
they can be named differently.

target:
$ref: '#/components/schemas/TargetApplications'

mapper:
$ref: '#/components/schemas/Mappings'

sublistMapper:
$ref: '#/components/schemas/Mappings'

required:
- path
- type
- target
- mapper

54

Mappings:
type: object
additionalProperties:

type: string

TargetApplications:
type: string
enum:

- netsuite

55

Appendix C
Contents of enclosed media

readme.txt.........................the file with CD contents description
exe....................................... the directory with executables
src...the directory of source codes

app...implementation sources
thesis...............the directory of LATEX source codes of the thesis

resources...................the directory with csv files used for import
Thesis.postman.json.......Postman collection with sample requests

thesis.pdf...............................the thesis text in PDF format

57

	Introduction
	Interface Definition Languages for HTTP-based APIs
	API Blueprint
	Swagger/OpenAPI
	RAML
	WSDL
	WADL

	Overview of Selected ERP Systems
	NetSuite
	Oracle Fusion Cloud ERP
	QuickBooks
	Xero

	Contemporary ERP Integration Tools
	AtomSphere
	Integration
	Process
	Data Mapping
	API Management

	Anypoint
	Integrator.io

	Goals of Thesis
	Analysis and Design
	API Specification
	OpenAPI Specification Format and Structure
	OpenAPI Schema Objects

	Generated Code
	Data Model
	Request Body Format
	RecordField
	Internal Data Format
	Mapping component

	Application Flow
	Modularization
	Adding New Data Source
	Adding New Target Application

	Implementation
	Data Sources
	Local CSV File

	Target Applications
	Default Transformation
	NetSuite
	Standard Flow
	Working with Sublists
	Sending the Data

	User Guide
	Running the Application

	Tests
	Conclusion
	Future Improvements

	Bibliography
	Acronyms
	OpenAPI Specification
	Contents of enclosed media

