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Abstrakt

Tato práce se zabývá integraćı technik strojového učeńı do mikrorobotiky
se zaměřeńım na biologické mikroroboty využ́ıvaj́ıćı jako platformu spermie.
Šetřeńı zahrnuje podrobnou analýzu relevantńıch praćı v oblasti mikrorobo-
tiky a strojového učeńı v biomedićınském kontextu, č́ımž jsou položeny základy
pro mnohostranné zkoumáńı. Mezi kĺıčové př́ıspěvky patř́ı kurátorstv́ı a ano-
tace datových soubor̊u přizp̊usobených pro trénováńı a vyhodnocováńı mo-
del̊u. Byly vyvinuty a zváženy modely detekce objekt̊u pro přesnou identifikaci
spermíı a jejich hlavic, zat́ımco model odhadu kĺıčových bod̊u byl použit pro
detekci kĺıčových bod̊u bič́ık̊u. Kromě toho byl implementován a vyhodnocen
systém sledováńı objekt̊u pro sledováńı dynamických pohyb̊u hlaviček sperma-
tických buněk, což zlepšuje pochopeńı jejich interakćı v dynamickém prostřed́ı.
Dále byl vycvičen a vyhodnocen model pro předpov́ıdáńı trajektorie. Tato stu-
die představuje významný pokrok v integraci strojového učeńı a mikrorobotiky
a nab́ıźı inovativńı perspektivy a př́ıstupy, které lze využ́ıt v r̊uzných biome-
dićınských a technologických oblastech. Práce přisṕıvá k současnému chápáńı
biologických mikrorobot̊u a pokládá základy pro budoućı pokrok, odkrývá po-
tenciál pro přesné ř́ıdićı mechanismy a rozšǐruje aplikace v r̊uzných oblastech.

Kĺıčová slova mikroroboti, strojové učeńı, detekce objekt̊u, sledováńı ob-
jekt̊u, predikce trajektorie
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Abstract

This thesis explores the integration of machine learning techniques in micro-
robotics, focusing on biological microrobots utilizing sperm cells as a plat-
form. The investigation includes a detailed analysis of relevant works in mi-
crorobotics and machine learning in the biomedical context, laying the ground-
work for a multifaceted exploration. Key contributions include curating and
annotating datasets tailored for training and evaluating models. Object detec-
tion models were developed and considered for precisely identifying sperm cells
and their heads, while a keypoint estimation model was employed to detect
flagellum keypoints. Additionally, an object-tracking system was implemented
and evaluated to track the dynamic movements of sperm cell heads, enhancing
the understanding of their interactions in dynamic environments. Further, a
trajectory prediction model was trained and evaluated. This study marks a
notable advancement in the integration of machine learning and microrobotics,
offering innovative perspectives and approaches that can be utilized in vari-
ous biomedical and technological fields. The work contributes to the current
understanding of biological microrobots and lays the foundation for future
advancements, unlocking the potential for precise control mechanisms and
expanding applications in various fields.

Keywords microrobots, machine learning, object detection, object tracking,
trajectory prediction
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Chapter 1
Introduction

1.1 Motivation

The field of microrobotics has the potential to revolutionize medical treat-
ments by enabling precise and targeted drug delivery. The microrobots offer
unique advantages due to their natural motility and ability to navigate com-
plex environments. However, controlling and directing these microrobots in a
controlled manner remains a challenge.

Machine learning (ML) has emerged as a powerful tool for addressing this
challenge. ML algorithms can be used to extract patterns from complex data,
enabling the development of intelligent control strategies for biological mi-
crorobots. In [1], the authors provide a comprehensive overview of the most
relevant works in microrobotics and machine learning in biomedical robotics.
Different energy sources, such as magnetic fields, acoustic waves, light, and
chemical reactions, can control microrobots. In this thesis, we experiment with
self-propulsive and magnetically controlled microrobots, specifically IRON-
Sperm [2], which are based on sperm cells. The sperm cells are propelled
by their flagellum, a long, whip-like structure attached to the sperm cell’s
head. Given the data’s complexity and the microrobots’ nature, ML tech-
niques can significantly contribute to understanding and controlling biological
microrobots.

1.2 Problem Statement

Flagella represent whip-like appendages that are widespread across a diverse
spectrum of organisms, ranging from single-celled bacteria like Escherichia
coli and Salmonella to archaea and extending to eukaryotic species, including
certain algae and protozoans such as Giardia lamblia. Notably, flagella serve
as distinctive features on male gametes in multicellular organisms, playing a
crucial role as facilitators of motility. Often compared to an outboard motor,
the flagellum is the primary driving force for an organism’s propulsion, con-

1



1. Introduction

tributing significantly to essential activities like nutrient acquisition, predator
evasion, and maintaining optimal environmental conditions for survival.

Flagella may function as biological templates in micro-robotics, offering
inspiration for creating micro-robots proficient in precise navigation within
fluidic environments. This holds significant importance for precision medicine,
especially in drug delivery, as it opens avenues for developing targeted treat-
ment approaches that minimize side effects and enhance therapeutic effective-
ness. The study of flagellar dynamics can contribute to biophysical models of
cellular motility and advance nanotechnologies for applications in both envi-
ronmental and industrial settings.

Consequently, an in-depth exploration of the dynamics of these systems is
crucial not only for enhancing our comprehension of biological systems but also
for catalyzing progress across diverse domains, including medicine, technology,
and environmental science.

This thesis addresses the challenge of developing a scalable approach for
detecting the flagellar dynamics of sperm cells in real time. Our approach
involves utilizing a Deep Learning (DL) model to detect cells and flagellum
landmarks and dynamically approximate the parameters required to compute
wave propagation along flagella.

To enhance the efficiency of our proposed solution, we have implemented an
object-tracking system that ensures the continuous monitoring of microrobots
and their flagella in a dynamic environment. Object tracking enables the
accurate tracking of individual cells over time, providing a comprehensive
understanding of their movements and interactions.

Furthermore, we have integrated a trajectory prediction model into our
framework to forecast the future positions of microorganisms based on their
historical movement patterns. This predictive capability is instrumental in
anticipating the trajectory of flagella, allowing for proactive adjustments in
imaging and analysis strategies. The trajectory prediction model enhances the
real-time nature of our approach, contributing to a more robust and adaptive
system for studying flagellar dynamics.

1.3 Contribution

The main contribution of this thesis is as follows:
- Overviewed most relevant works in the field of microrobotics and ma-

chine learning in biomedical robotics;
- Prepared and annotated dataset for training and evaluating object detec-

tion, keypoint estimation, and trajectory prediction models. The dataset
will also be used for further research by the biologists and engineers;

- Trained and evaluated object detection models for detecting sperm cells
and sperm cell heads;

2



1.3. Contribution

- Trained and evaluated keypoint estimation model for detecting flagellum
keypoints;

- Trained and evaluated trajectory prediction model for better navigation
in the bloodstream;
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Chapter 2
Literature Review

This chapter will review the most relevant works in microrobotics and machine
learning in biomedical robotics.

2.1 Microrobotics in Biomedical Applications

Microrobots are a promising tool for biomedical applications, such as targeted
drug delivery [3, 4], minimally invasive surgery [5], and cell manipulation [6].

Robots can be classified into two main categories: soft [7] and rigid [8].
Soft robots are made of flexible or extendible materials, such as polymers,
gels, and elastomers [9, 3, 10]. Rigid robots, on the other hand, are made of
rigid materials, such as metals and ceramics [11].

Both soft and rigid robots have advantages and disadvantages for biomed-
ical applications. Soft robots are more flexible and can be used for tasks that
require high dexterity, such as cell manipulation or drug delivery. However,
they are also more challenging to control, as they are subject to various phys-
ical phenomena. Rigid robots, on the other hand, are easier to control, but
they are also more challenging to manufacture, and they are less flexible.

Biologically inspired microrobots encompass microrobots with joints, soft
segments, and continuous bodies inspired by natural organisms, while bio-
hybrid microrobots include sperm-based microrobots, bacteria-driven micro-
robots, and algal microrobots.

The potential of microrobots for biomedical applications has been demon-
strated in several works.

In [2], the authors have demonstrated the potential of soft bio-microrobots
for targeted drug delivery and minimally invasive surgery. They have de-
veloped IRONspems, bio-hybrid microrobots made of sperm cells and iron
nanoparticles. The sperm cells are used for propulsion, while the iron nanopar-
ticles are used for steering the microrobots using magnetic fields. This allows
us to control and guide the microrobots to the target location remotely.
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2. Literature Review

In [1], the authors have comprehensively overviewed the most relevant
works in microrobotics and machine learning in biomedical robotics. They
explore various types of microrobots, their applications, and the associated
challenges. As highlighted in the study above, soft bio-microrobots exhibit
remarkable capabilities in targeted drug delivery. These microrobots can nav-
igate with precision, leveraging tactics inspired by microorganisms or cells, and
interact with their surroundings, allowing them to deliver therapeutic drugs
to specific locations within the body. The versatility of soft bio-microrobots
extends to performing biopsies by mimicking the motion and function of natu-
ral creatures. This emulation allows them to sample tissues, showcasing their
potential in medical diagnostics effectively. Furthermore, soft bio-microrobots
contribute to biofilm eradication, addressing a significant concern in various
biomedical and industrial settings. Their ability to remove biofilms highlights
their potential to maintain hygiene and prevent complications in diverse ap-
plications.

Another study describes the potential of microrobots’ use in vitro fertiliza-
tion (IVF) [12]. In a conventional IVF procedure, an ovum undergoes fertiliza-
tion extracorporeally, and the resultant embryo is subsequently implanted into
the uterus. This procedure frequently encounters challenges leading to failure.
However, envisioning a scenario where microbots transport the embryo back
to the fallopian tube or endometrium could offer a more conducive environ-
ment for embryonic development, thereby enhancing implantation rates. The
authors believe that using microrobots guided by magnetic fields, proficient in
gripping or carrying the embryo, can be a promising solution to the problem
of implantation failure.

2.2 Machine Learning in Biomedicine

This section will review the most relevant literature on machine learning in
medicine and biomedical engineering.

Machine learning methods are usually divided into three main categories:
supervised learning, unsupervised learning, and reinforcement learning. Su-
pervised learning methods are used for tasks where the data is labeled, e.g.,
in classification and regression. Such models as linear regression [13], logis-
tic regression [14], support vector machines [15], and random forests [16] are
commonly used for supervised learning tasks. The applications of supervised
learning in medicine include disease diagnosis [17], drug discovery [18], and
medical image analysis [19].

While supervised methods are used for tasks where the data is labeled,
unsupervised ones are used for tasks where the data is unlabeled. Popu-
lar unsupervised learning methods include k-means clustering [20], principal
component analysis (PCA) [21], and autoencoders [22]. In biomedicine, unsu-
pervised learning methods are used for tasks such as synthetic data generation
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2.3. Machine Learning Concepts Overview

[23] and dimensionality reduction of the RNA sequences [24].
Reinforcement learning (RL) is a machine learning type involving an agent

interacting with an environment and learning to perform a task by maximizing
a reward signal.

RL has been successfully applied to various tasks, such as game playing
[25], robotics [26], and biomedical research [27]. Recently, RL has been actively
used in the field of microrobotics.

The authors of [28] have employed a deep RL-based approach to enable
microswimmers to navigate towards specific targets. The AI-powered mi-
croswimmer is trained to achieve targeted navigation and to switch between
distinct locomotory gaits (steering, transition, and translation). They demon-
strate that the AI-recommended strategy remains resilient in the face of flow
perturbations and possesses versatility, allowing the swimmer to execute in-
tricate tasks like path tracing without explicit programming. Their findings
underscore the extensive potential of AI-powered swimmers for use in unpre-
dictable and complex fluid environments.

In [29], the authors also employ a deep RL approach to control microrobots’
locomotion. They have built a physical, biomimetic, and fluidic arena with
multidimensional magnetic actuation and deployed a helical agar magnetic
robot. The robot was tasked with swimming in a clockwise direction through
a fluid-filled lumen in an arena under the control of a nonuniform rotating
magnetic field generated by a three-axis array of electromagnetic coils. The
goal of the RL algorithm was to learn a policy that would manipulate the
shape and magnitude of the magnetic field to guide the robot to the target
location. Soft Actor-Critic (SAC) algorithm was used for training the robot
with a reward function that penalized the robot for deviating from the desired
trajectory (i.e., the angle between the robot’s orientation and the desired
orientation) and for moving too slowly. After training for 100,000 steps, the
resulting model successfully navigated the robot to the target location.

2.3 Machine Learning Concepts Overview

This section will introduce the most relevant concepts in machine learning
and discuss the most common approaches used for different tasks. In the next
chapter, we provide more details about the methods used in our work.

2.3.1 Object Detection

Object detection is a computer vision task that involves detecting objects in
an image or video and determining their location. In biomedical engineering,
there are plenty of applications for object detection, such as cell detection [30]
and detection of anatomical structures in medical images [31].

There are different approaches that can be divided into two main cate-
gories: traditional computer vision methods and deep learning methods.
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2. Literature Review

Traditional methods leverage hand-crafted features and machine learning
algorithms, such as support vector machines (SVM) and random forests (RF),
to detect objects in images. Often, these methods utilize a sliding window
approach, where a fixed-size window is moved across the image, and a classifier
is used to determine whether the window contains an object. This approach
is computationally expensive, requiring the classifier to be evaluated for every
window in the image. Moreover, it could be more accurate and robust to
changes in scale and orientation.

Deep learning methods are based on deep neural networks (DNNs) and
are much more accurate and robust. In computer vision, convolutional neural
networks (CNNs) [32] are the most commonly used types of DNNs. CNNs are
based on the concept of convolution. Convolution is a mathematical operation
that takes two functions, f and g, and produces a third function, h, that
represents how the shape of f is modified by g. In computer vision, the input
image is convolved with a set of filters, also known as kernels, to produce
a feature map. The filters are learned during the training process, allowing
the model to learn the most relevant features for the task. The convolution
operation is usually followed by a non-linear activation function, e.g., ReLU,
and a pooling operation, which reduces the dimensionality of the feature map.
The resulting feature map is fed into a fully connected layer, producing the
final output. For object detection, the output is a set of bounding boxes and
class probabilities for each object in the image. At the time of writing this
thesis, state-of-the-art object detection models include the following:

- You Only Look Once (YOLO) [33]: YOLO is a family of object
detection models based on DarkNet architecture. The main concept
behind YOLO is that it divides the input image into a grid of cells
and predicts bounding boxes and class probabilities for each cell. This
approach is much faster than the sliding window approach, which was
used previously, as it only needs to evaluate the classifier for each cell
instead of each window. Moreover, YOLO is more accurate and robust
to changes in scale and orientation.

- Visual Transformer (ViT) [34]: ViT is a transformer-based model
that processes images as a sequence of patches, then serialized into vec-
tors and fed into a transformer encoder, similar to how transformers
process tokens in natural language processing. It allows the model to
capture local and global features of the image, enabling it to achieve
great performance on different tasks.

- Swin Transformer [35]: Swin Transformer has been proposed to im-
prove ViT. It introduces two key concepts to address the issues faced by
ViT: shifted window attention and patch merging. The attention mecha-
nisms operate over a series of shifted windows of different sizes, allowing
the model to attend to different parts of the image at different scales and

8



2.3. Machine Learning Concepts Overview

better capture spatial information. The hierarchical structure allows the
output of the shifted window attention mechanisms at each scale to be
passed through a patch merging layer, which builds hierarchical feature
maps by merging image patches in deeper layers.

2.3.2 Landmark Detection

Landmark detection, also known as pose estimation, is a crucial task in the
realm of computer vision, aiming to identify and precisely locate significant
points of interest within an image. As technology continues to advance, appli-
cations of landmark detection have become increasingly diverse, ranging from
human pose estimation in video analytics to facial landmark localization in
facial recognition systems [36, 37].

It is expected to distinguish between two primary approaches: bottom-up
and top-down.

Bottom-up Approach involves the initial detection of all keypoints in an
image, followed by grouping these points into coherent objects. This method
is particularly advantageous in scenarios with varying occlusions and scale
changes, as it prioritizes identifying individual keypoints independently of the
overall object context. Despite its robustness, the bottom-up approach tends
to be computationally expensive, requiring substantial processing power and
time.

Top-down Approach follows a different strategy. It begins by detecting
objects in an image and identifying ke points associated with each recognized
object. This method often proves to be faster than its bottom-up counter-
part, as it leverages the knowledge of object presence to guide the subsequent
landmark detection. Moreover, the top-down approach can exhibit increased
resilience to occlusions and scale changes.

For our task, we have chosen a top-down approach over bottom-up due to
its better suitability for handling overlapping keypoints in sperm cell analysis.
The top-down method, focusing on object detection before keypoint identifi-
cation, proves more adept at navigating the challenges posed by overlapping
structures. In contrast, the bottom-up approach may struggle with accurately
selecting individual keypoints in such scenarios, potentially leading to reduced
performance.

2.3.3 Object tracking

Object tracking is a computer vision task that involves identifying and locating
an object in a sequence of video frames. Different approaches can be employed
for object tracking, which can be broadly categorized into traditional computer
vision methods and deep learning-based methods.
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2. Literature Review

Several challenges must be addressed when tracking an object in a video
sequence. Firstly, the appearance of an object may change over time due to
factors such as lighting variations, occlusions, and deformations. Secondly, the
object may enter or exit the frame or be partially or fully occluded by other
objects, necessitating the tracker’s ability to re-identify the object. Thirdly,
the shape of an object may change due to pose variations or deformations.
Finally, the object’s motion may be non-linear, requiring the tracker to employ
non-linear motion estimation techniques.

Motion-based methods utilize the object’s movement pattern to predict
its location in subsequent frames. These methods typically employ statistical
models to capture the object’s motion characteristics, such as velocity and ac-
celeration. One prominent example is the Kalman filter, a recursive Bayesian
filter that estimates the object’s state, including its position, velocity, and
acceleration. By incorporating motion constraints and measurements from
successive frames, the Kalman filter effectively tracks the object’s trajectory,
even in the presence of noise and occasional occlusions.

Another popular motion-based method is the particle filter, representing
the object’s state as a set of weighted particles. Each particle represents a
possible state of the object, and the filter dynamically updates the particle
weights based on new observations and motion constraints. This probabilistic
approach allows the particle filter to handle uncertainty and effectively track
objects with non-linear motion patterns.

Feature-based methods rely on extracting distinct visual features from the
object’s appearance in the first frame and then matching these features to sub-
sequent frames to locate the object. These features can be based on various
image properties, such as edges, corners, texture patterns, or edges, corners,
texture patterns, or deep learning features extracted from the model’s inter-
mediate layers. Once the features are extracted, various techniques can be
employed to match these features in subsequent frames and track the object’s
movement:

- Correlation filters [38]: Correlation filters are a powerful and efficient
approach for feature-based tracking. They utilize a filter to match the
object’s appearance in the first frame. As the object moves, the filter is
updated to adapt to the changing appearance, enabling the tracker to
maintain its location even when partially or fully occluded.

- Mean-shift algorithms [39]: Mean-shift algorithms employ a density
estimation technique to find the region in the image that most closely
resembles the object’s appearance in the first frame. This technique
effectively tracks objects with significant appearance changes due to il-
lumination variations or object deformations.
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- Histogram of Oriented Gradients (HOG) [40]: HOG is a feature
descriptor that captures an image’s distribution of intensity gradients.
It is often used with other tracking methods, such as correlation filters
or mean-shift algorithms, to improve tracking performance.

- Deep learning features: Deep learning features extracted from a pre-
trained CNN can be used for tracking. These features are more robust to
appearance changes and occlusions than hand-crafted features, enabling
the tracker to maintain the object’s location even when partially or fully
occluded.

The tracker methods also differ by the number of objects they can track:
single-object trackers and multi-object trackers. Single-object trackers
are designed to track a single object in a video sequence, while multi-object
ones track multiple objects simultaneously.

2.3.4 Trajectory Prediction

Trajectory prediction is a problem that involves predicting the spatial trajec-
tory of an object for a given time interval.

Numerous approaches have been developed for trajectory prediction, each
with strengths and limitations. One common approach utilizes recurrent neu-
ral networks (RNNs) [41], precisely long short-term memory (LSTM) networks
[42], to capture the sequential nature of motion patterns. LSTMs excel at
learning long-range dependencies and handling temporal information. How-
ever, they suffer from difficulties in parallelizing calculations and may struggle
to represent complex interactions between objects.

To address these challenges, CNNs have emerged as a promising alterna-
tive for trajectory prediction. CNNs excel at extracting spatial features from
sequential data, enabling them to capture local patterns and relationships.
This spatial sensitivity proves beneficial for trajectory prediction as it allows
models to capture the spatial context of the moving object and its surround-
ings.

2.3.5 Image Pre-processing

Medical images are often noisy and contain artifacts, which makes it difficult
to analyze them. Model training and inference are usually affected by the
quality of the input data, so image pre-processing is an essential step in the
pipeline.

Pre-processing can be divided into two main categories: image denoising
and image enhancement.

Image Denoising usually relies on filtering the image with a low-pass filter,
such as a Gaussian filter, median filter, or bilateral filter [43]. These filters
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are simple and fast, but they can lead to information loss and blurring of the
image, which can affect small details in the data.

Image Enhancement aims to improve the quality of the image. Different
approaches can be used for image enhancement, including traditional and deep
learning methods. Traditional methods usually involve applying histogram
equalization [44], gamma correction, or other transformations to the image.
Such methods enhance the image in terms of visual quality, but they do not
upscale the image, so they do not improve the quality of the image in terms
of information content.

On the other hand, deep learning methods can enhance the image regard-
ing information content, as they can be used to upscale the image. Generative
adversarial networks (GANs) [45] are a type of neural network that can be
used for image enhancement. One of the most popular GANs for image en-
hancement is Real-ESRGAN [46], a state-of-the-art super-resolution model.

2.3.6 Data Augmentation

Data augmentation is critical in machine learning, especially in biomedical ap-
plications. This technique artificially expands the size of a dataset by applying
various transformations to the existing data samples [47]. Its primary goal is
to enhance the performance of machine learning models. Data augmentation
helps against overfitting, which usually leads to poor performance on unseen
data. By introducing variations in the training data, data augmentation forces
the model to learn more generalizable features.

Additionally, data augmentation exposes the model to a broader range
of data variations, making it more robust to noise, distortions, and anoma-
lies that may arise in real-world applications. This robustness is crucial for
biomedical data, where factors like imaging artifacts and variations in exper-
imental conditions can influence data.
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Chapter 3
Methodology

This chapter presents the methodology used to solve the problem described
in Chapter 1. First, we talk about the data we used to train our models.
Then, we describe the models we used to solve the problem. Finally, we
discuss how we trained our models and the measures we used to evaluate their
performance.

3.1 Dataset

Dataset Collection There are two datasets: one for training and validation
and one for testing. All data was collected by the University of Waterloo re-
searchers using a Mitutoyo MF-A4020D MF Series 176 Measuring Microscope
176–865–10. The microscope slides were positioned at a distance approxi-
mately equal to 12 times the length of a sperm cell, with water serving as the
medium.

Figure 3.1: On the left, we can see the annotation for the object detection
and keypoint estimation tasks. On the right, we can see the annotation for
the object tracking and trajectory prediction tasks.

Dataset Content The first dataset is approximately 330MB, comprising
8 video samples featuring sperm cells. Each video consists of an average of
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50 frames, with a single sperm cell captured in each frame. The recordings
showcase bovine sperm cells observed through a microscope at 40x magnifica-
tion. We have prepared two annotation types for this dataset: (1) bounding
boxes for sperm cells and 40 keypoints for flagellum, and (2) bounding boxes
for sperm cell heads. The annotation was done using CVAT1, an open-source
web-based application designed for annotating videos and images to support
computer vision algorithms. Before manual annotation, the sperm cells were
pre-annotated using Grounding-DINO [48] with Swin Transformer as the back-
bone, with sperm cell as a text prompt, 0.1 as the confidence threshold, and
0.5 as the IoU threshold. The first annotation type is used for training the
object detection and keypoint estimation models, while the second type is
used for object tracking and trajectory prediction model training. Figure 3.1
compares original and augmented data samples.

The second dataset is a collection of video samples featuring sperm cells
and microrobots. There are 371 video samples featuring sperm cells and 5
video samples featuring microrobots. This dataset has no annotation, as its
primary purpose is to assess the model’s performance on unseen data and
validate its strong generalization capabilities. We only use a small subset of
this dataset for testing purposes.

We want to note that two phenomena can be observed in the data: (1)
sperm cells sometimes form a bundle, and (2) sperm cell heads often appear
overexposed. Sperm bundling arises due to a combination of hydrodynamic
and adhesive interactions among the cells, often occurring with extended in-
cubation periods [49]. The ”glowing” effect of the spermatozoa head is caused
by the change in the rotation of the spermatozoa head, resulting from the
spermatozoa’s flagellum movement. When the spermatozoa head rotates, the
light reflected from the head changes, resulting in a ”glowing” effect. Both
phenomena are challenging to deal with, as they can lead to inaccurate results.
Figure 3.2 and Figure 3.3 illustrate bundle formation and the ”glowing” effect,
respectively.

1https://cvat.ai

Figure 3.2: Chronological frames from a video sample featuring bundle for-
mation.
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Figure 3.3: ”Glowing” effect of the spermatozoa head.

Dataset Pre-processing Our dataset preparation and annotation processes
follow a systematic workflow:

1. Each video sample undergoes upscaling and denoising through Real-
ESRGAN [46].

2. Sperm cells are automatically annotated using Grounding-DINO [48].
3. Subsequently, bounding boxes are manually refined using the CVAT tool.
4. The finalized dataset is exported in the CVAT for images 1.1 format

and converted to YOLO format using Datumaro 2.

Data Splitting The training dataset was partitioned into training (80%)
and validation (20%) sets, consisting of 6 and 2 video samples, respectively.
The groups of subjects were split into different sets to ensure that the model
would be trained on other subjects than it would be tested on. This was done
to avoid data leakage and overfitting and ensure the model would generalize
well to new data.

Data Augmentation We applied the following augmentations during YOLO
model training:

- Apply mosaic augmentation with a probability of 0.85.
- Apply random rotation from -30 to 30 degrees with a probability of 0.5.
- Apply blur with a probability of 0.01.
- Apply median blur with a probability of 0.01.
- Apply CLAHE with a probability of 0.01.
- Apply random HSV shift (H: ±1.5%, S: ±70%, V: ±40%).
- Apply random horizontal and vertical flips with a probability of 0.5.
Furthermore, for trajectory prediction model training, we have used the

following augmentations:
- Apply random 90-degree rotation with a probability of 0.5.

2https://github.com/openvinotoolkit/datumaro
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(a) Ground truth data samples.
(b) Data samples with applied augmen-
tations.

Figure 3.4: Ground truth vs augmented data samples. Bounding boxes and
keypoints are visualized. Note: four stitched images in (b) are produced by
Mosaic augmentation.

- Apply random horizontal and vertical flips with a probability of 0.5.
- Apply affine transformation (scale 0.5–0.5 and rotation -60–60 degrees)

with a probability of 0.5.
No augmentations were applied during the testing processes.
Figure 3.4 shows an example of the applied augmentations.

3.2 Model Training

We have decided to leverage the YOLO model, specifically the YOLOv8
model, for our task detection and keypoint estimation tasks. The model can
be trained in a multi-task fashion, which allows training both tasks simulta-
neously. This is beneficial, as it allows the features to be shared between the
tasks and improves the model’s performance.

3.2.1 YOLO architecture

YOLOv8 is a state-of-the-art object detection model based on DarkNet [50],
Spatial Pyramid Pooling (SPP) [51], and Path Aggregation Network (PAN)
[52], focusing on speed and accuracy. It is a single-stage model capable of per-
forming several tasks simultaneously, including object detection, classification,
pose estimation, and segmentation. Like other YOLO models, YOLOv8 is a
CNN that uses a single neural network to make predictions from full images
in one evaluation.
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YOLOv8 consists of three main parts: backbone, neck, and head:
1. Backbone is a CSPDarknet network that extracts features from the input

image.
2. Neck is an SPP and PAN that combines features from different layers.
3. Head is a CNN used to make predictions.
YOLOv8 works by dividing the input image into a grid of cells. For each

cell, the model predicts a set of bounding boxes and the class probabilities
for each bounding box. The bounding boxes are represented by coordinates
that indicate the object’s center and width/height, and the class probabilities
indicate the likelihood that the object belongs to each of the predefined classes.
Figure 3.5 illustrates the entire architecture of YOLOv8.

We have leveraged the pre-trained YOLOv8-nano model on the COCO

Figure 3.5: YOLOv8 architecture [53].
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dataset [54] for our experiments. Transfer learning is highly beneficial in our
case. The model has already learned low-level features, such as edges and
corners. Therefore, fine-tuning the pre-trained model on our dataset is faster
and more efficient than training from scratch.

3.3 Trajectory Prediction Model

We have decided to use a three-layer model for trajectory prediction. The
model consists of the 1D convolutional layer with 16 filters, a linear layer with
32 neurons, and a linear layer with 2 ∗ output size neurons. The activation
function for the first two layers is ReLU, and the activation function for the
last layer is HardSigmoid [55] (to ensure that the output is in the range of
[0, 1]). The model accepts a flattened sequence of normalized coordinates as
input. The output is a sequence of normalized coordinates.

3.4 Loss Functions

ML is an optimization problem where we find the parameters of the model that
minimize the loss function. Therefore, choosing the loss function is important
since it affects the model’s performance and convergence speed. This section
will describe the loss functions used to train our models for different tasks.

3.4.1 Object detection

Object detection boils down to two main tasks: classification and localization.
The total loss combines the classification loss and the localization loss. We
can write the total loss as follows:

Losstotal = 1
N

N∑
i=1

(Losscls(pi, yi) + λobjLossobj(bi, b̂i)), (3.1)

where N is the number of objects, pi is the predicted probability of the correct
class, yi is the ground truth probability of the correct class, bi is the predicted
bounding box, b̂i is the ground truth bounding box, Losscls is the classification
loss, Lossobj is the localization loss, and λobj is a hyperparameter that controls
the importance of the localization loss.

For classification, we can use a classic cross-entropy loss function:

CrossEntropy(p, y) = −
C∑

i=1
yi log(pi), (3.2)

where p is the predicted probability of the correct class, y is the ground truth
probability of the correct class, and C is the number of classes.
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For localization, we can use a combination of Complete Intersection over
Union (CIoU) [56] and distribution focal loss (DFL) [57] for bounding box
regression. Experimentally, CIoU and DFL achieve better results than other
loss functions, such as IoU and L2/L1 losses.

The formula for the total loss is as follows:

Lossobj = (CIoU(b, b̂) + DFL(p, y)), (3.3)

where b is the predicted bounding box, b̂ is the ground truth bounding box, p is
the predicted probability of the correct class, y is the ground truth probability
of the correct class and CIoU and DFL are defined below.

CIoU is defined as follows:

CIoU(b, b̂) = 1 − IoU(b, b̂) + ρ2(b, b̂)
c2 + αv, (3.4)

where b is the predicted bounding box, b̂ is the ground truth bounding box,
IoU is the intersection over union, ρ2 is the Euclidean distance between the
center points of the bounding boxes, c is the diagonal of the smallest enclosing
box covering both bounding boxes, α is a hyperparameter that controls the
importance of the aspect ratio, and v is a hyperparameter that controls the
importance of the area ratio.

DFL is used in bounding box regression. The main idea is to predict the
distribution of the box offsets instead of directly predicting the coordinates.
It is defined as follows:

DFL(p, y) = −αt(1 − pt)γ log(pt), (3.5)

where p is the predicted probability of the correct class, y is the ground truth
probability of the correct class, αt is the focal weight, and γ is the focal power.

3.4.2 Keypoint Estimation

Keypoint estimation can be viewed as a regression problem, where we try to
predict the coordinates of the keypoints. Therefore, we can use a regression
loss function, such as L2 or L1 loss. L2 loss is defined as follows:

L2Loss(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2, (3.6)

where y is the ground truth keypoint, ŷ is the predicted keypoint, and n is
the number of keypoints.

L1 loss is defined as follows:

L1Loss(y, ŷ) = 1
n

n∑
i=1

|yi − ŷi|, (3.7)
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where y is the ground truth keypoint, ŷ is the predicted keypoint, and n is
the number of keypoints.

We have tested both L2 loss and L1 loss, and L1 loss achieved better
results. Therefore, we have decided to use L1 loss for our experiments. For
trajectory prediction, we have also utilized L1 loss since the nature of the task
is similar to keypoint estimation.

3.5 Metrics

In our experiments, we must evaluate the performance of object detection,
keypoint estimation, and trajectory prediction models.

3.5.1 Object Detection and Tracking

Intersection over Union (IoU) is a standard metric for evaluating object de-
tection models. It is defined as follows:

IoU = Area(Intersection)
Area(Union) , (3.8)

where Area(Intersection) is the area of the intersection between the predicted
bounding box and the ground truth bounding box, and Area(Union) is the
area of the union between the predicted bounding box and the ground truth
bounding box.

3.5.2 Keypoint Estimation and Trajectory Prediction

We have decided to use Mean Absolute Percentage Error (MAPE) as a met-
ric for evaluating the keypoint estimation and trajectory prediction models.
MAPE is defined as follows:

MAPE = 1
n

n∑
i=1

|yi − ŷi|
yi

, (3.9)

where y is the ground truth keypoint, ŷ is the predicted keypoint, and n is
the number of keypoints.

3.6 Inference improvements

Small objects are challenging to detect due to the limited receptive field of
the network. Due to several max-pooling layers, YOLO models struggle with
detecting small objects [58]. To address this issue, we have used the slic-
ing aided hyper inference (SAHI) [59] approach when dealing with small
objects.
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SAHI is a simple yet effective method for improving the detection of small
objects. It works by slicing the input image into multiple overlapping patches
and performing inference on each patch separately. The final prediction is
obtained by combining the predictions from all patches. This approach allows
us to increase the receptive field of the network and improve the detection of
small objects at the cost of increased inference time.

3.7 ByteTrack

ByteTrack is a robust and efficient motion-based multi-object tracking (MOT)
algorithm that utilizes a Kalman filter for tracking individual objects and a
Hungarian algorithm for associating detections across frames [60]. Its key
strength lies in its ability to track objects with low confidence scores, often
discarded by other tracking algorithms. This feature makes ByteTrack well-
suited for challenging scenarios involving occlusion, illumination changes, and
background clutter. It achieves state-of-the-art performance on benchmark
MOT datasets while maintaining real-time tracking speed.

ByteTrack works on top of the object detection model, which provides the
bounding boxes for each frame. This method expects framet and tracklets
from the previous frame Tt−1 as the input and outputs a list of tracklets for
the current frame Tt. The detailed algorithm is as follows:

1. Detect Objects: Analyze the current frame to identify objects. Save the
results as Dt.

2. Separate Detections: Split the detected objects into two groups based on
their confidence scores. High-score objects: Dh

t (scores above a certain
threshold). Low-score objects: Dl

t (scores at or below the threshold).
3. Associate High-Score Objects: Match high-score objects with existing

tracklets from the previous frame using motion similarity. Results in
pairs of matched objects and tracklets: (Mh

t , T h
t ).

4. Associate Low-Score Objects: Associate low-score objects based on their
appearance features with high-score tracklets. Results in matched low-
score objects, high-score tracklets, and unmatched low-score objects:
(Ml

t, T l
t , N ).

5. Update Tracklets: Update the existing tracklets with information from
both high-score and low-score associations. Create new tracklets for any
low-score objects that were not associated. The updated tracklets are
stored as Tt.

6. Return: Provide the updated tracklets Tt as the output of the algorithm.

3.8 Propulsion Estimation

Propulsion estimation is a crucial task for controlling microrobots. Combined
with trajectory prediction, a propulsion estimator can be used to predict the
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future positions of microrobots.
The naive approach calculates the propulsion based on the distance be-

tween the positions in two consecutive frames. However, this approach is not
robust to noise and can produce inaccurate results since it heavily depends on
the quality of the tracker.

Another approach is to use wave propagation. The flagellum movements
form a wave-like pattern, which can be modeled as a harmonic wave. The
equation for the harmonic wave is as follows:

y(x, t) = A sin(kx − ωt + ϕ), (3.10)

where A is the amplitude, k is the wave number, ω is the angular frequency,
and ϕ is the phase constant. The displacement at any given position under-
goes harmonic motion. The wave’s period corresponds to the period of this
harmonic motion. With each period, the wave advances by one wavelength.
Consequently, the wave velocity can be expressed as such:

v = λ

T
= ω

k
, (3.11)

where v is the wave velocity, λ is the wavelength, T is the period, ω is the
angular frequency, and k is the wave number.

The ultimate goal is to estimate the parameters A, k, ω, and ϕ from the
given data.

3.9 Keypoints Refinement

The predicted keypoints are not always accurate, especially with curved flagel-
lum. We can employ a refinement model that adjusts the predicted keypoints
to address this issue. The refinement model is a simple two-layer autoencoder
with an additional layer for each parameter from Equation 3.10. The refiner
is trained using a custom physics-informed loss:

Loss = α1L2Loss(y, ŷ) + α2FlagellumLoss(ŷ, Â, t̂, k̂, ω̂, ϕ̂), (3.12)

where y is the ground truth keypoint, ŷ is the predicted keypoint, α1 is the
weight for the L2 loss, α2 is the weight for the Flagellum loss, Â is the pre-
dicted amplitude, t̂ is the predicted time, k̂ is the predicted wave number,
ω̂ is the predicted angular frequency, ϕ̂ is the predicted phase constant, and
FlagellumLoss is defined as a L2 loss between the predicted keypoints and
the keypoints generated using the parameters from Equation 3.10. Flagellum
loss enforces the predicted keypoints to form a harmonic wave. We can tweak
the weights to control the importance of each loss.
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Chapter 4
Experiments and Results

In this chapter, we will present our experiments to understand the dynamics of
microrobots better. We have conducted three experiments: flagellum keypoint
estimation, sperm cell tracking, and trajectory prediction.

4.1 Flagellum Keypoints Estimation

Flagellum is the primary source of propulsion for sperm cells. It is a long,
whip-like structure attached to the sperm cell’s head. This experiment aimed
to develop an accurate and efficient algorithm for detecting flagellar keypoints
in sperm cells, which are crucial for understanding their dynamics and control-
ling their behavior. Accurate detection of these flagellar keypoints is pivotal
in extracting biomechanical parameters, including wave frequency and ampli-
tude. These parameters, in turn, offer valuable insights into the fundamental
mechanisms governing the locomotion of sperm cells.

Dataset

For this experiment, we have used a dataset with annotated flagellum key-
points described in Section 3.1. In total, there were 304 images for training
and 90 images for testing.

Training and Evaluation

We have used the YOLOv8-nano model trained in a multi-task fashion to
detect bounding boxes and flagellum keypoints simultaneously. The model
was trained for 1500 epochs with the early stopping criterion of 300 epochs.
The optimizer was Adam, with a learning rate 0.001 and weight decay of
0.0005. The batch size was set to 8, and the input images were resized to
512 pixels on the shorter side. The training took approximately 2 hours on a
single NVIDIA GeForce RTX 3060Ti GPU.

23



4. Experiments and Results

Figure 4.1: Predictions made by the YOLOv8 model on the testing set. The
ground truth is shown in green, and the predicted keypoints are shown in red.

Figure 4.2: Predictions made by the YOLOv8 model on the microrobots
dataset.

We conducted a thorough evaluation of the model using both the testing set
and the microrobots dataset. In Figure 4.1, we visually compare ground truth
and predicted keypoints extracted from the testing set. Additionally, Figure
4.2 showcases the prediction results derived from the microrobots dataset.

Furthermore, we assessed the model’s performance using the MAPE metric
on a validation set. Figure 4.3 illustrates the MAPE for each specific keypoint
index. The average MAPE score across all keypoints was 0.04.

We have also experimented with a refinement model described in Section
3.9, but we did not achieve the desired results. Thus, we omit the results from
this thesis.

4.2 Sperm Cell Tracking

Sperm cells exhibit continuous movement as their flagellum moves in a wave-
like pattern. The inherent complexity of the data makes it challenging to
precisely predict bounding boxes that encompass both the sperm cell head
and flagellum. In response, we employed an object detection model specifically
designed to detect sperm cell heads. Subsequently, we employ the ByteTrack
algorithm to facilitate tracking these detected sperm cell heads over time.
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Figure 4.3: MAPE for each keypoint index. Lower is better.

Dataset

This experiment used a dataset with annotated sperm cell heads described in
Section 3.1. The content was the same as for the flagellum keypoints estima-
tion experiment, but the annotations differed. The dataset consisted of 304
images for training and 90 images for testing.

Training and Tracker Configuration

The training was performed in the same fashion as for the flagellum keypoints
estimation experiment. The following configuration for ByteTrack was used:

- Detection model: YOLOv8-nano;
- High score detections threshold: 0.7;
- Low score detections threshold: 0.5;
- New detections threshold: 0.3;
- IoU matching threshold: 0.9;
- Track buffer: 30 frames;
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t1 t2 t3

Figure 4.4: Tracking results on the testing dataset.

Evaluation

We thoroughly evaluated the detection model using the validation set, reveal-
ing an average IoU score of 0.68 (higher is better). This result is considered
satisfactory, considering the dataset’s complexities. Notably, we chose not to
assess tracking performance, as each frame contains only a single cell, making
tracker evaluation irrelevant in this scenario.

Furthermore, the model underwent a visual evaluation on the testing set,
without annotations. The results are presented in Figure 4.4, showcasing
results across three chronological frames from the testing set.

4.3 Trajectory Prediction

Trajectory prediction is a crucial task for controlling microrobots. In this
experiment, we have leveraged the object detection model to track the sperm
cell heads, which are used as input for the trajectory prediction model.

The model takes as input the last n positions of the sperm cell and predicts
the next m positions. A centroid of the bounding box of the sperm head
represents each position. The model architecture consists of one convolutional
layer and two fully connected layers. We have experimented with different
layers, such as LSTM, RNN, and GRU, but the results were unsatisfactory.
The convolutional model achieved the best results, so we have used it for our
experiments.

Dataset

We have used a dataset with annotated sperm cell heads with a few pre-
processing steps. First, we have calculated the centroids of the bounding
boxes of the sperm cell heads. Then, we applied a sliding window technique
to extract the input and output sequences. The sliding window size was set
to the input size, 10. The stride was set to 1, which means that the window
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Figure 4.5: Trajectory prediction results on the testing dataset. The red dot
represents the ground truth, and the blue dot represents the prediction. Green
dots represent the input sequence.

was shifted by one position. The training set yielded 238 samples, while the
testing set yielded 68.

Training and Evaluation

We have trained a CNN model for trajectory prediction described in Section
3.3. The model accepts the last ten positions of the spermatozoon head and
predicts the next position. We have experimented with RNN-based models,
such as LSTM, but the results were unsatisfactory. Therefore, we have chosen
a CNN model that achieves better results. The model was trained for 150
epochs with a batch size of 8, AdamW optimizer [61], with a learning rate
0.001 and no weight decay. The input length was set to 10, and the output
length was set to 1.

The evaluation was performed on the validation set, which resulted in
0.022 MAPE (lower is better). Figure 4.5 shows the results of the trajectory
prediction model on the testing set.
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Chapter 5
Discussion

In this chapter, we will discuss the results of the experiments described in the
previous chapter. We will also discuss the limitations of the current approach.

5.1 Flagellum Keypoints Estimation

The results of the flagellum keypoints estimation experiment look promising.
In Figure 4.1, we can see that the model can detect the flagellum keypoints
with high accuracy, following the pattern of the flagellum. The model performs
well with out-of-distribution data, such as microrobots. However, due to the
noisy data, the model struggles to estimate the keypoints at the end of the
flagellum. This task is challenging even for humans, as it is hard to distinguish
the end of the flagellum from the background in the presence of artifacts and
noise.

Figure 4.3 shows the average error for individual keypoints. The 0th key-
point is located at the sperm cell head, while the last keypoint is located at the
end of the flagellum. As we expected, the closer the keypoint is to the sperm
cell head, the more accurate the prediction is. The reason for that is that the
beginning of the flagellum is more distinguishable from the background than
the end of the flagellum.

Furthermore, our research partners from the University of Twente (Nether-
lands) have developed a method for estimating the propulsion of the sperm cell
based on the flagellum keypoints [62]. Therefore, our method can be combined
with their method to estimate the propulsion of the sperm cell.

5.2 Sperm Cell Tracking

Figure 4.4 shows the results of the tracking algorithm on the testing set.
In general, the tracking algorithm performs well. Sometimes, we can observe
that the detector fails to detect ”glowing” sperm cells and bundles during their
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formation. It is also worth noting that sometimes, the algorithm struggles to
track the sperm cells occluded by other sperm cells. Once the sperm cells are
separated, the algorithm can track them again.

5.3 Trajectory Prediction

The trajectory prediction model achieved 0.02 MAPE on the validation set.
The model was able to predict the trajectory of the spermatozoa with reason-
able accuracy, as we can see in Figure 4.5. The cell movement is stochastic,
so the model cannot predict the exact trajectory at each time step. However,
the model can predict the general direction of the spermatozoon movement.

5.4 Limitations

The main limitation of the current approach is the need for more data. Deep
learning highly benefits from the diverse data with many samples. Having
only 304 images for training and 90 images for testing puts constraints on
model performance. The results could be significantly improved by gathering
and annotating more diverse data.
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Chapter 6
Conclusion and Future Work

In this thesis, we have explored the potential of machine learning in advancing
microrobotics, specifically in the context of biological microrobots based on
sperm cells. We have presented a comprehensive overview of the most relevant
works in microrobotics and machine learning in biomedical robotics. We have
also prepared and annotated datasets for training and evaluating object detec-
tion, keypoint estimation, and trajectory prediction models. We have trained
and evaluated object detection models for detecting sperm cells and sperm
cell heads. We have trained and evaluated a keypoint estimation model for
detecting flagellum keypoints. We have evaluated the object-tracking model
for tracking sperm cell heads. We have also trained and evaluated a trajectory
prediction model for better navigation in the bloodstream.

6.1 Future Work

In the future, we plan to continue improving sperm cell tracking and trajectory
prediction. The current results can be improved by gathering more diverse
data. We also plan to improve the annotation process using more accurate
tracking algorithms. We will further experiment with a refinement network
that we have not managed to successfully train.

One future direction is to utilize the keypoint estimation model and tra-
jectory prediction model with reinforcement learning. Current studies do not
consider the dynamics of the microrobots, which can be crucial for precise
control. By extracting biomechanical parameters, such as wave frequency and
amplitude, we can provide insights into the underlying mechanisms governing
sperm cell locomotion and use them for reinforcement learning.

The existing work can further be extended by using a closed-loop control
system. Closed-loop control is a system that uses environmental feedback
to control the robot. In the context of microrobotics, it can control the mi-
crorobots’ behavior in real-time. For example, if the microrobot is drifting
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away from the target, the closed-loop controller can adjust the direction of
the microrobot to compensate for the drift.
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Appendix A
Acronyms

ML Machine Learning

DL Deep Learning

IVF In vitro fertilization

RL Reinforcement Learning

SAC Soft Actor-Critic

DNN Deep Neural Network

CNN Convolutional Neural Network

YOLO You Only Look Once

ViT Visual Transformer

HOG Histogram of Oriented Gradients

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GAN Generative Adversarial Network

SPP Spatial Pyramid Pooling

PAN Path Aggregation Network

CIoU Complete Intersection over Union

DFL Distribution Focal Loss

MAPE Mean Absolute Percentage Error

SAHI Slicing Aided Hyper Inference
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MOT Multi-Object Tracking
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Appendix B
Contents of enclosed CD

scripts....................................... folder containing scripts
microrobots .................................... main Python package
notebooks..........................................Jupyter notebooks
test videos.........................................videos for testing
data 40kp..............................dataset for keypoint estimation
data head only...............dataset with sperm cell heads annotation
requirements.txt...............................Python dependencies
latex...............................the LATEX source code of the thesis
thesis.pdf..............................the thesis text in PDF format
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