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Instructions
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across tumors, but it is unknown whether these associations persist at the microscopic 

level. The MD/FA can be predicted from histology patches using convolutional neural 

networks [1]. However, neural networks are often used as black-boxes. The aim of this 

thesis is to apply methods of explainable artificial intelligence in deep learning-based 

medical image analysis focused on application in magnetic resonance imaging (MRI) 

and histology. 
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network to predict MD/FA from histology patches. 

3. Implement or use existing at least three surveyed algorithms from Step 1 and perform 

them using network from Step 2.

4. Present (i.e. visualize) and discuss results from each algorithm. Choose and discuss 

the best method in sense of interpretability, suitable for used dataset. 

References 

[1] https://www.biorxiv.org/content/10.1101/2022.12.20.521068v1

[2] https://www.sciencedirect.com/science/article/pii/S1361841522001177

Electronically approved by Ing. Karel Klouda, Ph.D. on 6 February 2023 in Prague.





Czech Technical UniveRsity in PRague

Faculty of InfoRmation Technology

DepaRtment of Applied Mathematics

Master’s thesis

Explainability in Deep Learning-based
Medical Image Analysis

Bc. Martin Lank

Supervisor: Ing. Magda Friedjungová, Ph.D.

January 9, 2024





Acknowledgements

I would like to express deep gratitude to my thesis supervisor, Ing. Magda
Friedjungová, Ph.D., for her guidance, fast reactions to my thoughts, and
sometimes even for her motivation. It couldn’t be better. Many thanks also go
to MUDr. Jan Brabec, MSc., Ph.D., for the discussions about the results.

Just as important was the support of my close family. I am so grateful for my
parents, who never questioned my skills, gave me opportunities and supported
me all the way through my life up to this last stage of my study era. Thank
you!





Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license
agreement on the utilization of this thesis as a school work under the provisions
of Article 60(1) of the Act.

In Prague on January 9, 2024 …………………



Czech Technical University in Prague

Faculty of Information Technology

© 2024 Martin Lank. All rights reserved.

This thesis is a school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
LANK, Martin. Explainability in Deep Learning-based Medical Image Analysis.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2024.



Abstract

In this work, we apply Grad-CAM++, LayerCAM and SmoothGrad explainabil-
ity methods to the proposed EfficientNetV2-based convolutional neural net-
work fine-tuned onmicroscopic histology imaging. The network predicts mean
diffusivity (MD) and fractional anisotropy (FA) obtained from diffusion tensor
imaging. The aim of the work was to reveal which histology features tend to
increase MD and FA.The proposed network achieved more than 98.5%R2 on all
train, validation and test sets, surpassing the network proposed in the preceding
work by tens of percentage points inR2. Nevertheless, the explainability meth-
ods applied to microscopy imaging were less valuable than anticipated. They
indicate certain nuclei influence; however, the details about the relationship
remain undiscovered.

Keywords explainability, convolutional neural networks, medical imaging,
histology imaging, microscopic imaging, mean diffusivity, fractional anisotropy





Abstrakt

V této práci aplikujeme metody vysvětlitelnosti Grad-CAM++, LayerCAM
a SmoothGrad na konvoluční neuronovou síť založenou na EfficicientNetV2
a doučenou na mikroskopických histologických snímcích. Tato neuronová
síť predikuje průměrnou difuzivitu (MD) a frakční anizotropii (FA), původně
získanou technikou difuzního tenzorového zobrazování (DTI). Cílem této práce
je odhalit, které histologické vlastnosti mají vliv na zvýšení MD a FA. Naše
síť dosahuje více než 98.5 % R2 na trénovací, validační i testovací množině,
čímž o desítky procentních bodů překonává síť navrženou v předešlé práci.
Aplikované metody vysvětlitelnosti na mikroskopické snímky se ukázaly být
méně užitečné, než jsme předpokládali. Sice naznačují určitý vliv buněčných
jader, nicméně detaily tohoto vztahu zůstávají i nadále nejasné.

Klíčová slova vysvětlitelnost, konvoluční neuronové sítě, medicínské snímky,
histologické snímky, mikroskopické snímky, průměrná difuzivita, frakční ani-
zotropie
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Introduction

Explainability in machine learning (ML) has been an active area of research
and continues to gain popularity due to its necessity and importance. The
field, referred to as explainable artificial intelligence (XAI), focuses on increas-
ing ML models’ trustworthiness by understanding the behaviour, gaining more
confidence in their predictions, comprehending decisions and detecting biases
that may have been unnoticed in the training data. The level of this knowl-
edge of a model can play a crucial role in the selection of a suitable ML ap-
proach for a given application. There are ML methods that are well inter-
pretable by design and thus explainable, such as linear regression or decision
tree-based algorithms. However, nowadays, the state-of-the-art (SOTA) ap-
proaches across fields are typically based on an artificial neural network (ANN),
which are poorly interpretable compared to the traditional ML methods [1].
Consequently, the lack of transparency makes it difficult to explain specific de-
cisions. Still, these so-called “black box” models are heavily used in production
and businesses, and people rely more on them daily than ever. Sadly, numerous
examples can be found when such models failed horribly, as they were unsafe
and biased towards sex and race [2, 3, 4]. The risk could have been reduced
if not avoided, provided the creators could comprehend the models’ behaviour
and detect issues at first glance.

Nevertheless, there are still areas where the explainability of ML models
outputs are critical. Thus, interpretable models are preferred over black box
models even when they achieve worse results. One example for all is the

1



IntRoduction

medical field, where doctors cannot prescribe a treatment based on a model
result without justification for ethical and legal reasons. One of them is the
“right to explanation”, as stated in the EU regulation known as the General Data
Protection Regulation (GDPR) [5]. It enables clients to require an explanation
of how a given conclusion was approached. That could involve questions about
the choice of certain medications over another or why a mortgage application
was denied. It makes complete sense, yet regrettably, we do not utilize the full
potential of SOTA approaches.

This thesis builds on the research conducted by Brabec et al. [6], which used
magnetic resonance imaging (MRI), one of the most heavily used medical
technologies. MRI non-invasively probes tissue, offering doctors insights
into tissue structure and organisation at various scales [7]. This is possible
thanks to the presence of water in our bodies. When exposed to short
electromagnetic pulses, the protons in water molecules are magnetised in the
direction of the magnetic field. As they gradually return to their equilibrium
state, electromagnetic signals are emitted. This signal is detected and used
to create the MRI image. By analysing the signal attenuation caused by the
Brownian motion of water molecules, we can infer the diffusion of water
molecules in our system. This is particularly useful for gaining information
about areas with restricted diffusion, such as within the brain’s white matter
or tumours. A specific technique in diffusion MRI, known as diffusion tensor
imaging (DTI), provides a 3D tensor that describes the full diffusion process.
From this tensor, we can derive two key measurements: mean diffusivity
(MD), which describes the average diffusion in all directions, and fractional
anisotropy (FA), which represents the degree of anisotropy of the diffusion
process [8].

Brabec et al. [6] studied the relationship between histological features and intra-
tumour MD and FA in meningioma tumours. The study was conducted on 16
excessively collected tumour samples. Each sample was scanned on the DTI
to get the ground truth MD and in-plane FA, which were later predicted using
two methods. The features used for prediction were based on histology images
taken with a light microscope. In the first approach, they calculated cell density
(CD) and image anisotropy (IA) features from histology patches and performed
polynomial regression. In the second approach, they trained a convolutional
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Structure of the Thesis

neural network (CNN) directly on the histology patches. The CNN used pre-
trained EfficientNetV2 [9] as a backbone and was fine-tuned individually for
each sample with the mean square error (MSE) loss function. In both cases,
the coefficient of determination (R2) metric was used to analyze the results.
Also, residual maps were generated between ground truth and the predicted
MD.

They discovered an across-tumours relationship between CD and MD (R2 =

0.58) and between IA and FA (R2 = 0.82). Also, CNN performed systematically
better than the regression method. The comparison of residual maps suggests
that CNN learned new features that account for MD and FA changes.

Thiswork uses the same data as Brabec et al. [10] in the studymentioned abovea.
The work aims to uncover the additional learned features by CNN. Considering
the size of the trained model with over 117M trainable parameters, we utilise
several SOTA methods from the XAI field. We start with training a suitable
CNN model, and then we utilise three XAI post-hoc methods.

Structure of the Thesis
The thesis is organised as follows. In Chapter 1, we introduce the XAI concepts,
terminology, and XAI methods used in this work. Chapter 2 defines the task
and describes the methodology, including the dataset origin and preprocessing.
Chapter 3 covers the design of experiments and implemented approaches.
Chapter 4 presents and discusses the results. Finally, in the Conclusion Chapter,
we review our contributions and propose directions for future work.

Further reading of this work assumes substantial knowledge of the machine
learning concepts, which are not described here. We refer to other literature
to get more familiar with the problematics, such as the book by Murphy [11].

ahttps://github.com/jan-brabec/microimaging_vs_histology_in_meningeomas
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ChapteR 1
Explainable AI

Traditionally, there has always been a trade-off between models with high
interpretability but low accuracy and models with low interpretability but
high accuracy. The goal of XAI is to make the models more understandable
and, ideally, without decreasing the models’ accuracy. As we can tell, it is
a very broad field, which is partly the reason that there is no universally
accepted definition [12]. However, one of the widely adopted, receiver-focused
definitions of XAI was proposed by Arrieta et al. [13]. According to it, XAI
is “one that for a given audience produces details or reasons to make its
functioning clear or easy to understand”. The part regarding the target audience
is important. What is understandable for developers will undoubtedly be
different to end-users or lawmakers.

1.1 Explainability vs Interpretability
In this Section, we would like to clarify the terms explainability and inter-
pretability in the context of artificial intelligence (AI), as they are often misused
and interchanged. We adopt the definition from the recent (8/2023) outstand-
ing work conducted by S. Ali et al. [12], in which they surveyed and reviewed
410 articles to accurately reflect the current methodologies, directions and ap-
proaches.

Explainability refers to “the process of elucidating or revealing the decision-
making mechanisms of models”. It is connected with the ability to comprehend
and explain to users why given AI model made certain decisions. It gives
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1. Explainable AI

humans the ability to “interpret and describe the inner workings of an AI
system”.

On the other hand, interpretability “enables developers to delve into themodel’s
decision-making process, boosting their confidence in understandingwhere the
model gets its results”. Opposed to explainability, this is related to the ability
to comprehend how given AI model makes decisions. It is a characteristic of
a model. The term is more common among the ML community.

Generally, models with high interpretability (white box) are also well explain-
able. Those include, e.g. linear/logistic regression, decision trees and k-means.
Conversely, ensemble methods, ANNs, and transformers lack interpretability
due to their complexity and require additional explainability. That is called post-
hoc explainability, as further explained in the next Section. However, as the au-
thors claim, the explainability can be used anytime during development.

1.2 XAI Taxonomy
Various taxonomies have been proposed to date. The most recent XAI
taxonomy was also proposed by Ali et al. [12], where they formed four
categories.

(i) Scoop-based, analysing the feature importance to determine how model
inputs affect the outputs. It is further categorised into local and global, focusing
either on a specific instance or the full dataset. Methods from this group are
used for data explainability.

(ii) Complexity-based, where the degree of interpretability is proportional to the
number of trainable parameters. Simple models form the intrinsic group, where
the interpretability is achieved intrinsically by design. Complex models form
a post-hoc explainability group, which requires additional methods to provide
explanations.a

(iii) Model-based, where we group methods based on the targeted models.
Model-specific methods are tailored to a given model or a type of model such
as CNN. Model-agnostic strategies do not make any assumptions about the
internal structure and can be used on any model in a post-hoc fashion.

aPost-hoc interpretability also exists and involves building a newmodel next to the original
one with better interpretability, such as a decision tree based on a ANN model.
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1.3. Related Work

(iv)Methodology-based approaches can be either gradient-based or perturbation-
based. Perturbation-based methods involve modifying the inputs to alter the
feature set of a given data point and then observing the corresponding changes
in the network’s output. This process is akin to data augmentation, with tech-
niques including feature masking (for instance, obscuring certain parts of im-
ages) or employing generative algorithms to produce new samples. On the
other hand, gradient-based methods are more sophisticated. They typically em-
phasise influential data segments by computing the gradient of the loss function
with respect to the input data and propagating it from the output back to the in-
put. This gradient provides information about the sensitivity of output changes
to the input, allowing us to understand which parts of the input are most influ-
ential in the model’s predictions. Some variations of gradient-based methods
aim to identify the most influential layer by analysing the propagated gradients
across different layers of the network.

In the survey of related works presented in Section 1.3, we focus exclusively
on post-hoc model-specific approaches, which generally perform better than
model-agnostic methods. We further drive our attention to CNN explainability
methods, which are the most relevant to our study.

1.3 Related Work
In this section, we survey related works that propose CNN-model-specific
XAI methods and also methods that were previously applied to medical
imaging.

In a medical XAI survey conducted by van der Velden et al. [14] in 2021, the
authors reviewed 178 papers published between the years 2017–2020. They
focused on the used XAI method, anatomical location and the data modality
(such as histology, MRI or X-ray). Table 1.1 shows usages for each method,
regardless of the modality and anatomical location.

We can see that one of the most used methods is CAM [15]. It was used in 67
papers. It is also one of the oldest methods for post-hoc CNN explainability. The
second most used method is its successor, the improved Grad-CAM [16], which
was used in 54 papers. If we only consider histology modality (22 papers), then
the CAM and Grad-CAM were used in 7 and 10 papers, respectively. Trainable
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1. Explainable AI

Table 1.1: Summarized results from the medical XAI survey conducted by van der
Velden et al. [14].

method usage count usage [%]
CAM 67 37.6
Grad-CAM 54 30.3
Trainable Attention 13 7.3
Backpropagation 7 3.9
Multiple instance learning 7 3.9
LRP 6 3.4
Guided Backpropagation 5 2.8
Other 9 methods in total 19 10.7

Attention [17] was used in two works. Guided Grad-CAM [18], LRP [19], and
Occlusion sensitivity [20] were only used in one work each.

In 2022, Zeineldin et al. [21] proposed a so-called NeuroXAI framework with
seven implemented SOTA XAI methods that they considered most relevant and
useful for making deep-learning models more transparent, especially in brain
imaging analysis from MRI. Those methods involved the Vanilla Gradient [22],
Guided Backpropagation [23], Integrated Gradients [24], Guided Integrated
Gradients [24], SmoothGrad [25], Grad-CAM [16] and Guided Grad-CAM
[18]. Their showcase for the methods was brain classification and glioma
sub-region segmentation. As stated by the authors, Grad-CAM, Guided Grad-
CAM, and SmoothGrad generated visualization maps with the least noise. In
addition, SmoothGrad showed overall the best feature maps, highlighting the
key discriminative parts of the input images.

SmoothGrad andGuided IntegratedGradientwere also used by Rguibi et al. [26].
The authors applied these methods on CNNs trained on two datasets regarding
brain tumour and pneumonia classifications, concluding the SmoothGrad pro-
vided satisfying results.

Grad-CAM++ [27], an enhanced version of Grad-CAM, was successfully used
in a lung cancer detection task with the primary goal of increasing radiologist
trust for better model adoption [28].

In a paper proposed by Rahman et al. [29], the authors trained a COVID-19
disease classifier from X-ray chest imaging. Score-CAM [30] was then used to
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1.4. Selected XAI Methods

reveal that the classifier uses non-lung areas to make decisions. Similarly, [31]
trained a CNN to classify lung diseases from X-ray imaging into three classes
(COVID-19, pneumonia and normal). They utilised LayerCAM [32] to validate
and explain the model behaviour.

Although we did not limit our survey to XAI usage in the medical field, we
are not surprised that the majority of the works fall into this category. The
medical field is indeed one of the fields which can benefit fromXAI applications
most. We further looked into the methods we examined to see how the
performance of the methods is compared. Also, we wanted to understand the
potential downsides and benefits of the methods before we select three to be
later utilised.

While pixel-attribution methods such as Vanilla Gradient and SmoothGrad
are mostly compared via qualitative analysis, the CAM-based methods are
typically compared via the ILSVRC [33] object localisation benchmark. The
authors of LayerCAM (Jiang et al. [32]) used the ImageNet [33] validation
set counting 50k images to compare LayerCAM, ScoreCam, Grad-CAM++ and
Grad-CAM. In essence, they binarise the activationmapswith a given threshold
and calculate the smallest rectangle bounding box, including all activated pixels.
Then, the intersection over the union is calculated and compared. Based
on that benchmark, LayerCAM outperforms all other mentioned CAM-based
methods.

1.4 Selected XAI Methods
After a closer look into the methods we examined, we decided to pick the
follofing three XAI methods which we believe would have the most potential
in addressing our problem.

We chose Grad-CAM++ [27] because it is a direct enhancement of the heavily
used Grad-CAM. Secondly, we picked LayerCAM [32]. Although it was used
way less frequently than Grad-CAM++, perhaps for its novelty, we think it
has the potential to provide better results than Grad-CAM++. Lastly, we
picked SmoothGrad, a pixel attribution method commonly used even in recent
works that seem to achieve satisfying results. In the next sections, we provide
a detailed description of each method.
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1. Explainable AI

1.4.1 Grad-CAM++
This method was proposed by Chattopadhyay et al. [27] as an enhanced,
generalized version of Grad-CAM [16]. The authors claim that their enhanced
version provides more accurate visualisations of the predictions in terms of
improved object localisation. Also, they stated the proposed approach can
better handle multiple occurrences of the objects. That is very important for
our case, as the potential features, such as the cell nuclei, are overly repetitive
in the data.

To better understand Grad-CAM++, we start with the concepts of class
activation maps (CAM) and Grad-CAM. Consider a CNN model that classifies
objects into several classes. The CNN has a typical structure of several
convolutional layers, followed by several fully connected layers, where the last
one is the classification layer. The basic CAM method takes the convolutional
layers and adds the global average pooling (GAP) layer and the classification
layer. The classification layer is then retrained.

Finally, the CAM for a given image of class c is produced by weighting feature
maps from the last convolutional layer with the weights w between the GAP
layer and the neuron corresponding to the class c. The intuition behind this is
that these weights represent the contribution of each feature map to the final
output for a specific class. Figure 1.1 depicts an overview of the process with
three feature maps.

Figure 1.1: CAM using GAP. Source: [15]
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1.4. Selected XAI Methods

Mathematically, we can write it as:

Y c =
∑
k

wc
k

1

Z

∑
i

∑
j

Ak
ij (1.1)

where Y c is a class score,wc
k are channel-wiseweights for class c and kth feature

map, 1
Z

∑
i

∑
j is GAP (Z is the total number of pixels of the feature maps), and

Ak
i,j is the pixel at (i, j) of the kth feature map.

The Grad-CAM stands for gradient-weighted CAM. It replaces the GAP-
weighting with gradient-weighting with respect to the output class score Y c.
The weights are then calculated as follows:

wc
k =

1

Z

∑
i

∑
j

δY c

δAk
ij

, (1.2)

where δY c

δAk
ij

is the gradient. If we plug it into 1.1, we get:

Lc =
∑
k

wc
kA

k =
∑ 1

Z

∑
i

∑
j

δY c

δAk
ij

Ak, (1.3)

where Lc is the saliency map. However, the authors also proposed wrapping
it into the rectified linear unit (ReLU) function to keep only the features that
positively contribute to the output. The final saliency map would then be:

Lc = ReLU(
∑
k

wc
kA

k) = ReLU(
∑ 1

Z

∑
i

∑
j

δY c

δAk
ij

Ak). (1.4)

Finally, the Grad-CAM++ introduces pixel-wise gradient weighting to compen-
sate for the area-dependent feature map contributions that were previously uni-
formly scaled (averaged). The authors propose weighting more significant pix-
els with higher weights. That significantly improves the detection of multiple
object instances. The idea is visually presented in Figure 1.2.
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1. Explainable AI

Figure 1.2: Grad-CAM++ pixel-wise weighting intuition in a binary classification
case. In Grad-CAM, smaller instances of the same class get lower scores in the
saliency map. Grad-CAM++ improves this by pixel-wise weighting. Source: [27]

Mathematically, the authors reformulated Eq. 1.2 by adding weighting coeffi-
cient α to the formula:

wc
k =

∑
i

∑
j

αkc
ij ReLU( δy

c

δAk
ij

). (1.5)

The αkc
ij is the weighting coefficient for pixel (i, j) in the kth layer for

class c.

Consider a binary object classifier with Ak as the kth feature map visualisation
of the last convolutional layer. Each Ak is expected to be triggered by a visual
pattern, for which Ak

ij = 1 if the pattern is detected and Ak
ij = 0 otherwise.

Consequently, derivatives are expected δyc

δAk
ij
= 1 if Ak

ij = 1 and vice versa. To
achieve equal importance of the objects in feature maps in this example, the
pixel-wise weights αkc

ij for δyc

δAk
ij
= 1 would be calculated as:

αkc
ij =

1∑
l,m

δyc

δAk
lm

. (1.6)

For δyc

δAk
ij
= 0, the αkc

ij would be 0.
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The authors of this method proposed a closed form for a general neural network,
which we do not present here. We refer to the original paper [27] to learn more
about its derivation.

1.4.2 LayerCAM
As stated by the authors Jiang et al. [32], LayerCAM is a simple yet effective
method that outperforms Grad-CAM++. The main difference to the Grad-
CAMs is that LayerCAM combines (often complementary) semantic knowledge
from multiple layers, while Grad-CAMs only use the last convolutional layer.
They argue that the shallower layers provide more fine-grained object details
and coarse spatial position. Importantly, the method is also directly applicable
to any CNN. There is no need to change its architecture as in the case of
CAM.

In LayerCAM, the class activation maps are first generated for each or a subset
of layers. That is done by pixel-wise class-specific gradient weighting of feature
maps. As opposed to Grad-CAM++ where the authors add pixel-wise term αkc

ij

to the weight calculations, the LayerCAM authors define pixel-wise weightwkc
ij .

The weight is defined simply as a positive gradient or zero otherwise.

Using the same notation as above, it would formally be:

wkc
ij = ReLU( δy

c

δAk
ij

). (1.7)

The map M c
l of the given layer l for class c is then calculated by linearly

combining the weighted maps and filtering the negative values using the ReLU
function.

M c
l = ReLU(

∑
k

wkc
ij δA

k
ij) (1.8)

Finally, all the layer maps are fused into one by taking an element-wise
maximum. Thus, the pixel at location (i, j) in the final map Lc

i,j is calculated
as:

Lc
i,j = max

all layers l
(M c

l,i,j), (1.9)

where M c
l,i,j is a pixel located at (i, j) in the map of the given layer l for

class c.
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1.4.3 SmoothGrad
The previous methods generated class activation maps by weighting feature
maps. The SmoothGrad method, proposed by Smilkov et al. [25], utilises
a slightly different approach. However, it is still a gradient-based method.

SmoothGrad extends the so-called Image-Specific Class Saliency [22] method,
known as Saliency Maps or Vanilla Gradient, which is one of the first-
pixel attribution methods. To avoid confusion, we refer to this method as
Vanilla Gradient, as saliency maps are generally outputs from all the described
methods.

To understand SmoothGrad, we first introduce the Vanilla Gradient and the
issues associated with it. Consider a CNN that classifies input image I into C
classes. Given input I, the network produces output score Sc for each class c.
Vanilla Gradient calculates the gradients of the Sc with respect to the pixels of
the image I. The gradients are then directly used to form the saliency map. The
intuition behind this is that the map represents how big a change in the final
score Sc would be if a given pixel changed. In other words, the saliency map
is a measurement of pixel influence. Formally speaking, the map is calculated
as:

Mc(I) =
δSc(I)

δI
. (1.10)

Vanilla Gradient has several disadvantages. One of the most significant is that
the produced maps are very noisy and hard to interpret for humans. The next
major issue is saturation, causing the gradients to become small or completely
vanish. If we follow the intuition stated above, we can imagine a cats and
dogs classifier. Cat’s whiskers can be a strong feature for the classifier. In
that case, a small change in the whiskers, such as shape or length, would not
have a significant impact on the output score (it is saturated). Consequently,
the gradient would be small, and the feature would not be highlighted in
the saliency map. That is a problem because the whiskers were a highly
relevant feature, which we would expect to see highlighted in the saliency
map. Mathematically, saturation occurs when the output of a given non-
linear activation function is in its “flat region” (near its minimum or maximum,
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1.4. Selected XAI Methods

e.g. near 0 or 1 for sigmoid), causing the gradients to become very small or
vanish.

The SmoothGrad authors address these issues by applying Gaussian noise
N (0, σ2) to the image. Afterwards, they utilize the Vanilla Gradient with the
new noisy sample. Generally, they do this n times and then average the results.
As we can see, the method comes with two hyperparameters: the number of
samples n and the standard deviation σ of the noise, the “noise level”.

Formally, the SmoothGrad saliency map can be written as follows:

ˆMc(I) =
1

n

n∑
1

Mc(I +N (0, σ2)), (1.11)

where Mc is the saliency map from Vanilla Gradient.

The authors observed best results with hyperparameters n <= 50 and
σ ∈ [0.1, 0.2], claiming that n > 50 caused diminishing returns. We take this
information into account when utilising this method in the next chapter.
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ChapteR 2
Methodology

In this chapter, we describe our methodology. First, we define the aims of this
work and provide the necessary definitions. Next, we describe how the dataset
was created and preprocessed. Finally, several examples from the dataset are
presented.

2.1 Task Definitions
The work is composed of two consecutive tasks. The first one is a regression
task. The goal is, given the dataset described in the next section, to train a
CNN that would predict MD and FA from the histology patches. After such a
model with reasonable performance is trained, we move to the second task –
explainability.

It is still unknown how and which histology features influence MD and FA
values. We aim to change this by applying explainability methods to the trained
model and performing qualitative analysis. We want to infer patterns that lead
to increased MD and FA. In Section 3.3, we describe how we used them and in
3.4 how we performed the qualitative analysis.

On a side note, we also train a separate network that predicts the cell nuclei
count (CC). The reason for this is to gain more trust in the XAI methods, as
it is the only target where we know what features the network should focus
on.

17



2. Methodology

2.2 Dataset
This Section describes the dataset that we use in the work. It also explains how
the data were collected and preprocessed prior to running experiments.

2.2.1 Data Origin
As the introduction mentions, this work is a direct follow-up to the research
done by Brabec et al. [6]. Inherently, we also use the same dataset that was
proposed there.

The collection of the dataset was not trivial. It required substantial knowledge
of MRI technology, experience in histology and access to numerous specialised
medical equipment, such as microtome, MRI scanner or light microscope. The
description here is given in a more high-level fashion to fit the scope of
this work. Therefore, we refer to the original work to get more in-depth
information.

The first step in the data collection was to obtain tissue samples with brain
tumours. That was done using neurosurgical excision from 16 patients. Each
tissue was then cut into smaller pieces with an approximate size of 35 × 20 ×
2mm3 and placed into a 3D-printed holder.

When all the samples were prepared in the holder, an MRI scanner was utilised
to scan each sample with a fine resolution of 0.2×0.2×0.2mm3, allowing the
capture of the microstructure. The scanning was done in six different directions
and three b-values (100, 1000, 3000s/mm2) in order to reliably calculate the
diffusion tensor for each voxel using the DTI technique. In this context, voxel
is a 3D representation of a segment of a given tissue in the scanner. After the
diffusion tensors were calculated, they could further derive MD and FA, which
are the ground truths of the target variables in the dataset.

Given the diffusion tensor D, MD and FA are defined as follows [6]:

MD =
Tr(D)

3
=

λ1 + λ2 + λ3

3
, (2.1)

FA =

√
3

2
·

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

, (2.2)
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where Tr(D) is the trace of the diffusion tensor.

After scanning, a 4 − 5 μm thick slice was cut from each sample. To highlight
the microscopic features that allow better tissue differentiation, each slice was
stained with Hematoxylin & Eosin (H&E). That is a commonly used stain in
histopathology, which increases the tissue contrast by mainly colouring cell
nuclei to purple and cytoplasm to shades of pink. Finally, the specimens were
scanned using a light microscope with 0.5× 0.5 μm resolution.

To match the histology images with the MD/FA maps, a technique called coreg-
istration was employed. Their approach was based on non-rigid landmarks,
which means the overlays can be stretched for better matches. This process is
generally very challenging and error-prone as it maps images from different
modalities and scales. To mitigate this, the authors smoothed the MRI maps
using Gaussian kernel.

Finally, the QuPatha software was utilised to calculate cell nuclei in each
histology sample. That is the last target variable CC in our dataset.

To sum up, this dataset has three target variables: MD, FA and CC. The ground
truth data was obtained via DTI from MRI scans and the QuPath program. The
training image data were obtained using a light microscope. Both are based on
the 16 initial tissue samples.

2.2.2 Data Preprocessing
At this point, we had the MRI maps and histology matched. However, the
data were still unsuitable for fitting a CNN. The histology images from the
light microscope had too high resolution and contained varying backgrounds.
A region of interest was introduced for each sample to remove the backgrounds
and edges, reducing the noise in the data. To address the high-resolution
problem, we cut the images into smaller patches and resized them to 360 ×
360 px.

This procedure was applied to all 16 samples, resulting in roughly 64k image
patches. After considering our computational resources, we trained only on
samples 3 and 4. However, the generalisation abilities were evaluated on all of
them. Samples 3 and 4 accounted for 4335 and 3908 images, respectively. In

ahttps://qupath.github.io/
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2. Methodology

total, our training dataset contains 8243 images. Several examples can be seen
in Figure 2.1.

Figure 2.1: This table shows several examples from the dataset. Individual images
are histology patches derived from the H&E-stained samples. The purple blobs are
cell nuclei, the pink areas are cytoplasm, and the white areas are air spaces.
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ChapteR 3
Implementation and Experiments

This chapter describes the key software, libraries, and approaches implemented
in our research. All computations were carried out within a Docker virtual
environment. The host machine, running on Windows 10 22H2, leveraged
the WSL2 (Windows Subsystem for Linux, version 2) technology to operate
the Docker environment on Ubuntu 22.04.3 LTS. The host machine’s hardware
consisted of a Core i7-9700k processor, an NVIDIA GeForce RTX 2080 Ti
graphics processing unit, and 32 GB of RAM.

3.1 Software
One of the fundamental technologies used in this research was Docker and
Docker Compose [34]. This open-source platform enables the encapsulation of
applications and their dependencies within self-contained containers. Docker
Compose further streamlines this process by allowing for the efficient manage-
ment of multi-container Docker applications. These tools collectively simplify
the setup process for scientific computing and ensure reproducibility on any
system supporting Docker.

We utilised Pythona, a widely recognised programming language, for its
extensive support of data science tools and libraries, making it a popular
choice in machine learning. Its clear syntax and readability contribute to
its widespread use. The specific version employed in our work was Python
3.11.

ahttps://www.python.org
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Our machine learning models were built using the latest TensorFlow 2.15
[35], a popular framework developed by Google that offers many tools and
algorithms for creating neural networks. However, as TensorFlow can be
somewhat low-level, we utilised the Keras library [36], allowing us to write
even more concise code and set up experiments faster.

In the early stages of our research, we used Jupyter notebooksa for prototyping.
This interactive web application allows for executing Python code in cells,
visualising graphs and images, and including textual notes for explanation and
clarification. After setting up working prototypes, we moved to standalone
parametrised Python scripts, which enabled us to experiment with different
hyperparameters more effectively.

Nevertheless, choosing the best hyperparameters based on numerous experi-
ments is challenging. Hence, we utilised TensorBoardb, a visualisation toolkit
that provides an interactive interface for real-time monitoring of metrics like
loss. That helps in identifying model convergence and potential training is-
sues such as overfitting. Furthermore, TensorBoard allows the comparison of
multiple training runs, which is particularly beneficial for hyperparameter tun-
ing.

Lastly, we used Streamlitc open-source framework to build an interactive web
app for quantitative analysis of the results.

To wrap up, we created a custom Docker container based on the official latest
Tensorflow image with GPU support and bundled Jupyter notebook d and then
further extended it with the mentioned dependencies.

3.2 Prediction Model Development
This Section provides an overview of the CNN training process regarding
selecting an architecture and hyperparameters. Our model implementation is
highly configurable, making the exploration of many architectures easier. It
allowed us to experiment with different augmentation techniques, the number
of neurons in hidden layers, the number of neurons in feature layers, dropout

ahttps://jupyter.org
bhttps://www.tensorflow.org/tensorboard
chttps://streamlit.io/
dhttps://hub.docker.com/r/tensorflow/tensorflow/
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Table 3.1: Abstract architecture of the implemented model. HP=hyperparameter,
N=number of neurons. The prefix “X-” means the layer is present for every target
in the case of a multi-task network.

# Layer
1 Augmentations (HP)
2 Pre-trained backbone (HP)
3 GlobalAveragePooling2D
4 Dropout (HP)
5 Dense (HP), Linear
6 X-features: Dense (HP), Linear
7 X-dropout: Dropout (HP)
8 X-output: Dense (N1), Linear

rates, or even multiple training outputs to employ multi-task learning. The
architecture overview can be seen in Table 3.1.

We used the standard MSE loss, which is widely used for regression tasks and
is defined as:

MSE =
D∑
i=1

(yi − ŷi)
2 (3.1)

where D is the dimension of training data, yi is the i-th element of the ground
truth vector Y and ŷi is the i-th item of the predicted vector Ŷ .

To compare the network performance, we used the R2, which tells us howmuch
variation in the training data is explained by the model.

R2 = 1− var(Y − Ŷ )

var(Y )
(3.2)

The R2 was also used as an additional training metric.

Each networkwas first trainedwith frozen backboneweights until an early stop
interrupted the training. Then, the whole network was fine-tuned for a given
amount of epochs with the early stop employed. To ensure the reproducibility
of the results, a random seed was set before every experiment and passed to all
relevant functions, such as data shuffling.
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3.2.1 Training Data
The training data consists of merged samples 3 and 4, as mentioned in Section
2.2.2. Before splitting the data into train, validation and test sets, the data were
fully shuffled to minimize the effect of distribution bias. We used 20% of the
data for the validation set and another 20% for the test set. The validation set
was used to tune the hyperparameters during training, and the test set was used
in the interpretation and analysis.

3.2.2 Augmentations
With the nature of the data and the goal of this work in mind, we implemented
augmentations that could positively impact the predictions and robustness of
the network.

Firstly, we implemented random flips, both vertical and horizontal. The good
thing about this augmentation is that we do not lose any details, as all pixels in
the image are preserved.

Similarly, the second implemented augmentation technique – random rotation
by k×90°. Thanks to the right anglemultiples, no corners are cut, and the details
are also preserved. That is not the case for the third augmentation technique,
which was random rotation by a given degree. However, we only explored
small degrees (up to 10°), as every extra degree dramatically reduces the details
of the picture due to interpolation.

3.2.3 Backbones
Considering our computational resources, we selected eight well-performant
backbones available in the Keras Applicationsa, including MobileNet{1, 2,
3-Small, 3-Large}, ConvNext-{Tiny, Small}, DenseNet-121 and EfficientNet2-
Small. All of these were used with weights trained on the ImageNetb

dataset. Additionally, we experimented with DenseNet-121 weights trained on
histopathology, known as Kimianet, proposed by Riasatian et al. [37].

3.2.4 Multi-task Learning
Since our task requires us to predict several target variables from the same
inputs, and two of them have a similar value range (MD, FA), it is rational to

ahttps://keras.io/api/applications/
bhttps://www.image-net.org/
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Table 3.2: Summary of hyperparameters to set in our network implementation.
HP=hyperparameter, LR=learning rate. Nested HP are hyperparameters of
hyperparameters, e.g. AdamW comes with Weight Decay HP. The values of these
HP are in the “nested values” column.

HP values / nested HP nested values
Batch Size 4, 8, 16, 24, 32
Epochs [50-100]
LR 1e-05, 3e-05, 5e-05, 1e-04
LR scheduler none/Cosine Decay

Warmup Epochs [5-20]
Decay Epochs [50-100]
Initial LR 1e-05, 3e-05, 5e-05, 1e-04
Warmup target LR 1e-03, 3e-03, 5e-04

Optimizer Adam/AdamW
Weight Decay [1e-3 - 1e-2]

think about multi-task learning. Instead of two models of the same size and
perhaps slightly different architectures, we would have one model predicting
both targets, with about the same size as a single output model. Moreover, we
would save twice as much time on hyperparameter tuning and training.

Even though multi-task learning sometimes fails and performs worse than
individual networks, we decided to experiment with it. To our advantage,
we empirically discovered that multi-task learning does not reduce prediction
performance compared to two single-output networks. Furthermore, it seemed
themulti-task approach positively influenced the performance. Therefore, most
experiments with these targets were done with the multi-task approach.

The third target CC was trained on a separate network due to large differences
in the training loss. The loss of CCwas much bigger than the MD/FA loss. Even
appropriate static loss-weighting did not improve the convergence of the multi-
task network with all three targets. Therefore, we trained a separate single-task
network to predict the CC. The rest of the network architecture remained the
same, including the hyperparameters.

Table 3.2 presents all the other hyperparameters we fine-tuned, including the
values we explored.
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3.2.5 Implementation Details
Weused several techniques tomake the trainingmore resource-efficient. Firstly,
we enabled the mixed-precisiona, which means that almost all the variables in
the network are 16-bit floating types. Only the last layer is kept with a 32-bit
floating type to avoid the prediction quality loss due to numerical instability.
This has led up to 3× faster training.

Another employed technique was the accelerated linear algebra (XLA), which,
simply put, precompiles the model graph and optimizes it by reducing the
number of operations. That can be done, for example, by replacing compound
operations with single operations supported by hardware. This optimization
technique not only speeds up the training but also allows larger batch sizes
for training. Unfortunately, not all operations in the model graph are usually
supported. In our case, it was necessary to implement our own XLA-ready
random rotation layers and the R2 metric.

Undoubtedly, the total speedup of 3− 4× allowed us to explore hyperparame-
ters significantly faster, resulting in a broader explored space.

3.2.6 Final Models
To proceed to the XAI techniques, we needed to pick the best model based on
the R2 validation metric of the MD, FA and CC outputs. First, we describe the
final hyperparameters and then the performance.

The best-performing multi-task model uses EfficientNet2-Small as a backbone
and was trainedwithout any augmentation techniques. It turned out that even
the flips and rotations without detail loss negatively impacted the performance.
The AdamW [38] optimizer and the Cosine Decay Learning rate scheduler
were used in the training. The hyperparameters of the final model are shown
in the Table 3.3. Dropout rates were set to 0.3. The single-task model
predicting CC performed very well with the same hyperparameters as the best
multi-task. Therefore, we kept it simple and picked a model with the same
hyperparameters.

Regarding the evaluationmetric, themodels perform verywell. Table 3.4 shows
the R2 for all data splits. Aswe can see, the results do not suggest any overfitting

ahttps://www.tensorflow.org/guide/mixed_precision
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Table 3.3: Best hyperparameters of our implementation. HP=hyperparameter,
LR=learning rate. Nested HP are hyperparameters of hyperparameters, e.g. AdamW
comes with Weight Decay HP. The values of these HP are in the “nested values”
column.

HP values / nested HP nested values
Batch Size 16
Epochs 100
LR scheduler Cosine Decay

Warmup Epochs 17
Decay Epochs 60
Initial LR 1e-5
Warmup target LR 5e-5

Optimizer AdamW
Weight Decay 0.008

Table 3.4: R2 of the best models, trained on the train set derived from merged
samples 3 and 4. The table shows the results for all data splits. We can see that all
the data splits have nearly the same R2, supporting no overfitting issue. Note that
the MD and FA were trained together in a multi-task model. The CC was trained
separately.

R2 [%] MD FA CC
train set 98.60 99.19 99.54
validation set 98.50 99.12 99.51
test set 98.65 99.20 99.52

issues. All sets achieve almost identical, and yet very high, scores. We also
evaluated the models on all other patient samples. These results are described
in Chapter 4.

3.3 Applying XAI Techniques to the CNN
A brief research about the available implementations was done before consid-
ering our implementation. To our advantage, we found a suitable implementa-
tion of the chosen methods in the Keras-Vis framework [39], which works with
regression mixed-precision Keras models. Although we have encountered sev-
eral minor issues in the initial stage of making the framework work with our
models, we have managed to use the framework succesfully.
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One of the crucial things that was necessary to define for each visualisation
technique was a so-called score function. This function specifies how the model
output (respectively, the last convolutional layer) influences the visualisation.
In other words, it is what the visualisation should focus on. In the case of
a classification task, it may be which features contribute most to the given class,
such as dogs or cats. In our regression case, it can be the focus on higher values
– the higher the model output, the higher the contribution. Alternatively, we
could visualise what makes the predictions low. Finally, we could visualise
what contributes to one specific target – the closer the prediction to the target
value, the more pronounced the visualisation. We have concluded that in our
case, the most suitable score function is the first mentioned – the higher the
prediction, the higher the contribution to the visualisation.

After getting familiar with the library and being able to produce all desired
visualisations for single images, we wrote scripts to generate visualisations for
the whole test set, alongwithmetadata for each image i. Those included ground
truth, predicted value, their absolute difference ∆ and relative difference
r∆.

∆i = ŷi − yi (3.3)

r∆i = (
ŷi
yi

− 1) · 100 (3.4)

The r∆ would then be interpreted in percentages.

3.4 Application for Qualitative Analysis
One of the main goals of this work is to try to infer valuable insights from the
visualisations. That can be best done by qualitative analysis, where we compare
multiple images of the same kind. In this context, the same kind is a similar
target value, i.e. either MD or FA. This Section describes the web application
we built with the Streamlit framework to make the analysis possible.

We start with the list of functional requirements we declared before implemen-
tation. The app should enable us to:

28



3.4. Application for Qualitative Analysis

1. view histology patches with XAI visualisation overlay in a grid,

2. switch between visualisation techniques,

3. filter patches based on target type (MD/FA/CC),

4. filter patches based on ground truth, ∆ and r∆ value,

5. adjust alpha channel of the visualisation overlay.

In addition to the initial functional requirements, we implemented several other
features, which we found later to be useful. Those include changing overlay
colourmaps, histograms for all the metadata, pagination or selecting different
hyperparameters of the visualisation techniques.

In total, we created four pages. TheMain page provides basic information about
theweb app, themodels and the visualisation. The other three pages contain the
aforementioned settings in a collapsible sidebar and a grid with image patches
that meet the filter criteria. Each image has an overlay, also determined by the
configuration in the sidebar. The grid size is adjustable, too. Each image has
a title containing the following information (in order): image ID in the test set,
y, ŷ, ∆, r∆. Figure 3.1 shows a screenshot of the application.

The other three pages differ as follows. The Single Target page allows comparing
a lot of different image patches with a given visualisation type for a given target.
The Multiple Targets page allows comparing visualisations for different targets
of the same image patch. TheMultiple Methods page allows comparing different
visualisation methods of the same image patch for a given target.

Lastly, the applicationwas put behind a loginwall, wrapped into its ownDocker
container and deployed to the Google Cloud Run platforma. That allowed us to
discuss and consult the results with the authors of the initial study [6], which
this work directly extends. We do not disclose this website; it was built only
for internal purposes.

In the next chapter, we look at the results in detail and discuss the visualisations.

ahttps://cloud.google.com/run
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Figure 3.1: Webapp for qualitative analysis
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ChapteR 4
Results and Discussion

This chapter introduces the results of the best trained CNNs, then dives into the
visualisation methods regarding possible interpretations and discussion.

4.1 CNN models
In this Section, we present the full results of the best models on all 16 patient
samples in the dataset, including the train set, validation set and test set. We
put all the results in the Table 4.1.

The table shows the R2 score for all samples and targets. The MD and FA were
predicted by the multi-task model, and the CC by a separate network. Firstly,
we can see that the R2 scores of MD, FA, CC on the test set (98.65%, 99.2%,
99.52%), validation set (98.5%, 99.2%, 99.54%) and the train set (98.6%, 99.19%,
99.54%) are all very high and similar. That is a very important finding as it
suggests no overfitting issue in the networks.

The second key finding is that the model performs reasonably well on other
samples which were extrapolated. That suggests the network has learned
features that are general enough to extrapolate new unseen samples. Regarding
the MD, out of 14 extrapolated samples, 11 have a higher score than 70%,
and nearly eight samples have a higher score than 80%. FA performs slightly
worse, but the scores are still solid. Eight samples have scored above 70%.
It is an immensely good result compared to the scores achieved in the initial
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Table 4.1: The table shows model R2 [%] evaluations on all patient samples for
all targets. MD and FA are predicted by the multi-task model, CC is predicted by
the single-task model with the same hyperparameters and inputs. The highlighted
samples denote data that were part of the training process. The rows that are not
highlighted denote samples that were extrapolated.

multi-task single-task
data MD [%] FA [%] CC [%]
sample 1 79.89 75.11 87.03
sample 2 76.80 73.84 92.80
sample 3 99.59 98.29 99.46
sample 4 99.51 99.69 99.82
sample 5 83.75 72.06 82.46
sample 6 85.26 79.00 84.87
sample 7 80.92 62.43 97.07
sample 8 80.82 86.35 83.46
sample 9 82.81 78.49 87.20
sample 10 79.56 58.10 84.29
sample 11 70.69 52.21 95.00
sample 12 63.52 58.38 85.75
sample 13 39.13 55.83 94.28
sample 14 74.77 60.54 78.36
sample 15 68.76 86.36 86.23
sample 16 81.31 70.88 51.53
train set 98.60 99.19 99.54
validation set 98.50 99.12 99.54
test set 98.65 99.20 99.52

study [6]. Our multi-task model vastly outperforms their per-samplea models
even though our model is extrapolating. Regarding MD, their highest test set
score was 60% on sample 13. All the other samples had scores below 40%. As
for FA, all of their test-set scores were below 40%. To put it in perspective, our
test scores achieved 98.65%, respectively 99.2%. The results from the initial can
be seen in Figure 4.1.

In terms of CC, we cannot directly compare it with the previous study, as they
did not use the target. They used cell density, which is per-sample normalized

aPer-sample model means that the model was trained using only data of the given sample.
I.e. the train, validation and test sets were derived only from the one given sample.
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4.1. CNN models

Figure 4.1: This figure depicts the results from the initial study [6]. Only the orange
bars denoting ANN are relevant to us. Their ANNs are trained per-sample, i.e. a
model was trained for each sample separately. The results presented are evaluated
on test sets. Source: [6]

CC that we use. Therefore, using cell density as a target is only appropriate in
per-sample models.

Nevertheless, the CC scores are even better than with MD – 12 out of 14
extrapolated samples have scores above 82%, and eight extrapolated samples
have higher scores than 85%. Four extrapolated samples have scores even above
92%.

We attribute such improvement in the results to the following points. Primarily,
we combined samples 3 and 4 for training. More data means more potential for
generalization capabilities. Next, we utilised multi-task learning as opposed
to the initial study. Multi-task learning can further improve the model’s
generalisation as it works as a regularization technique. Lastly, thanks to our
focus on optimizations for resource-efficient training, we extensively explored
the hyperparameter space by running more than 250 experiments.

After analysing the results, we were fairly confident with our models’ capabili-
ties and motivated to proceed with XAI methods.
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4. Results and Discussion

4.2 XAI Methods Outcomes
This Section presents visualisations generated by the utilised methods, which
we described in depth in 1.4. We first start with the CC target that was
predicted solely for the purpose of validating and getting confident with the
visualisations, aswe knowwhat features the network should focus on. Then, we
proceed to the main targets MD and FA. For each target, we show and comment
on outcomes from all three XAI methods. We recommend zooming in on the
examples for maximum detail.

4.2.1 Target CC
Here, we describe the XAI outcomes for CC target. Several examples can be
seen in Figure 4.2. More examples can be seen in Appendices B.1, B.2, B.3 and
B.4.

The CAM-based methods did not produce satisfying results. Grad-CAM++
produced mostly blank visualisations. In cases where they were not blank, the
highlighted areas are around the image edges. Only few patches are highlighted
across the whole patch, as expected.

LayerCAM, on the other hand, did not produce any blank visualisations.
However, the vast majority of overlays look very similar – highlighted areas are
around the edges. We explain this by the effect of an overlay normalisation. If
the gradient is small but similar for all pixels, the feature should have the same
intensity. Provided that there is some noise or systematic bias in the image
patch that has a bigger gradient, it could easily dominate. The normalisation
would then effectively remove the real features from the highlighted areas. It
could also be that the CAM-basedmethods are designed formacroscopic objects
with one to lower units of occurrences, while in our case, we have higher tens
to several hundreds of occurrences of the given object.

The SmoothGrad method seems more convincing. We can see the nuclei are
fully highlighted in a lot of cases. In some cases, only a part of them is
highlighted. Sometimes, it is only visible after zooming. We think this is not an
issue, as the feature detector could learn the shape of the nuclei and only use
part of that information for detecting cell nuclei. We need to keep in mind that
the model has very high R2 on the test set; in other words, the model evidently
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4.2. XAI Methods Outcomes

learned to detect the nuclei accurately. This is also supported by the fact that it
is hard to find some incorrectly highlighted features.

We can also compare two different hyperparameters of SmoothGrad, which, in
this case, produce slightly different highlighted areas. Most of the areas seem
to be the same, but setting σ = 0.3, n = 30 seems to highlight a bit more.
Note that we only present results with the most relevant hyperparameters as
the other explored did not bring any novelty.
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4. Results and Discussion

Figure 4.2: This figure shows three randomly picked patches with a XAI visualisation
overlays (alpha=0.6, colour map=viridis) for CC target. Rows represent different
methods. From top: Grad-CAM++, LayerCAM, SmoothGrad (σ = 0.3, n = 30),
SmoothGrad (σ = 0.2, n = 30). The header of each image denotes the index in the
test set, ground truth value, and absolute and relative error of the predicted value.
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4.2. XAI Methods Outcomes

4.2.2 Target MD
Although the CAM-based visualisations for the CC target did not work well, it
seems more plausible with the MD target. The examples are visible in Figure
4.3. More examples can be seen in Appendices B.5, B.6, B.7 and B.8.

There are still sometimes repetitive patterns around the edges for small values
of MD (≤ 0.3). In those cases, the normalisation causes the highlighting of
unimportant features, as explained above. Besides, none of the visualisations is
blank. They all seem distinct for high-enough MD values, and they are usually
spread out across the whole patch.

Both Grad-CAM++ and LayerCAM produced similar visualisations, but we can
conclude that LayerCAM provided more detail and usually highlighted more
areas. Also, the methods rarely highlighted empty areas of the histology patch,
which increases our confidence in the methods (see patch 210 in Fig. 4.3).

SmoothGrad visualisations are again visible in with two sets of hyperparame-
ters. Here, the difference between them is more observable than with CC. Each
set of hyperparameters seems to be highlighting slightly different areas. Un-
fortunately, this decreases the trust in the method, as we do not know which
visualisation is more reliable and which should be taken into account. Perhaps
fusing the maps could be beneficial (or just interpreting them together).

Nevertheless, we can see the cell nuclei play a strong role in the prediction as
many of them are highlighted. At the same time, they are by far less important
than with the CC. In addition to nuclei, we can see highlighted areas of other
histology features, such as the border between white space and a histology
feature.

However, we were unable to find any exact general patterns that positively
correlate with increased MD. For example, we are still unsure whether the
position, shape or size of nuclei matters or whether the local density of the
cells plays a role. We were able to find representatives for all the mentioned,
making it very difficult to interpret and make conclusions.
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4. Results and Discussion

Figure 4.3: This figure shows three randomly picked patches with a XAI visualisation
overlays (alpha=0.6, colour map=viridis) for MD target. Rows represent different
methods. From top: Grad-CAM++, LayerCAM, SmoothGrad (σ = 0.3, n = 30),
SmoothGrad (σ = 0.2, n = 30). The header of each image denotes the index in the
test set, ground truth value, and absolute and relative error of the predicted value.
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4.2. XAI Methods Outcomes

4.2.3 Target FA
The examples of the visualisation for target FA can be seen in Figure 4.4 and
more in Appendices B.9, B.10, B.11 and B.12.

We can see the CAM-based methods, again, produce similar visualisations. We
observe that unlike with MD, the visualisations tend to have repetitive patterns
near the edges, primarily for higher values of FA (≥ 0.4). That is visible
on patches 101 and 124. In contrast, this does not occur on lower values
of FA on patch 47. That is surprising, and we came up with the following
justification.

When we compared multiple image patches with high FA in the qualitative
analysis (consider example patches 101 and 124), we noticed higher density of
the nuclei in most images, as well as the prolonged shape of the nuclei. Since
this is mostly consistent across the whole image patch, it would make sense if
the model subsampled the features. That would explain the highlighted areas
along the image border. It could also be a similar normalisation consequence
as mentioned above.

For higher FA, the SmoothGrad seems to focus not only on the nuclei but also
on the space between the nuclei. We can notice the highlighted lines in the
narrow space among nuclei. That is more emphasised with the σ = 0.2, n = 30

setting.

Low values of FA tend to visualise similarly as MD – focusing on nuclei and the
close area around. Furthermore, as with MD, there is still a lot of uncertainty
in the interpretation. It seems the shape, size, and position of the nuclei could
play a role as they could form some higher-level histology features. If we recall
the test set R2 score of the model, both MD and FA were very high, meaning
the model has learned some general patterns. However, the utilised methods
did not fully reveal them.
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4. Results and Discussion

Figure 4.4: This figure shows three randomly picked patches with a XAI visualisation
overlays (alpha=0.6, colour map=viridis) for FA target. Rows represent different
methods. From top: Grad-CAM++, LayerCAM, SmoothGrad (σ = 0.3, n = 30),
SmoothGrad (σ = 0.2, n = 30). The header of each image denotes the index in the
test set, ground truth value, and absolute and relative error of the predicted value.
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Conclusion

This thesis followed up on research conducted by Brabec et al. [6] where they
noticed the CNNs could better predict MD and FA from histology patches than
from CD and IA. There were two objectives of this work. First, to use the same
data as in the initial study and train a CNN that predicts MD and FA reasonably
well. Second, to utilise three SOTA methods from the XAI field and try to
reveal what histology features are most influential in increasing MD and FA.
That is still unknown among medical scientists, and any new hints would be
valuable.

Our approach was to combine two histology samples and utilise multi-task
learning. A single network with outputs MD and FA turned out to be beneficial
for two reasons. It worked as a regularisation and contributed to achieving
outstanding results. Secondly, it sped up the training process as we only fine-
tuned one network instead of two.

For the XAI part, based on a conducted survey, we picked three heavily used and
well-performant methods for the CNN explanation: Grad-CAM++, LayerCAM
and SmoothGrad. We built a web application for qualitative analysis to compare
visualisations from different methods and for different targets. To gain more
confidence in the visualisations before interpretation, we also trained a network
to predict CC, wherewe know exactlywhat histology features themodel should
take into account.
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Conclusion

Contributions
We managed to train a network without overfitting or underfitting issues
and still with excellent performance in terms of the R2 evaluation metric.
Achieving more than 98% on both MD and FA targets on all training data
splits (train, validation, test) is a considerable success. Moreover, our proposed
CNN significantly outperforms all the models presented in the initial study
conducted by Brabec et al. [6] despite our model extrapolates. Their approach
was to train a network for each histology sample separately. In contrast, we
combined two of them and the rest was predicted in an out-of-sample fashion.
The observable improvement of the R2 was generally by tens of percentage
points, suggesting decent generalisation capabilities of our network.

The second contribution is the explored XAI visualisations applied to micro-
scopic histology imaging. Even though the utilised methods turned out to work
less on microscopic objects rather than macroscopic ones, we are confident to
conclude that the core nuclei play a role in increased MD and the cell density
in FA. Nonetheless, the details of the role, such as the shape, size, and position
of the nuclei, remain uncovered.

Future Work
As mentioned above, the utilised XAI methods (especially CAM-based) seem
to work very well on macroscopic objects with fewer instances but rather fail
on microscopic with hundreds of object instances. Future works could explore
additional methods that would not suffer from this issue, which could unveil
additional details of the cell-MD/FA relationship.
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Appendix A
List of Acronyms

AI artificial intelligence
ANN artificial neural network
CAM class activation maps
CC cell nuclei count
CD cell density
CNN convolutional neural network
DTI diffusion tensor imaging
FA fractional anisotropy
GAP global average pooling
IA image anisotropy
MD mean diffusivity
ML machine learning
MRI magnetic resonance imaging
MSE mean square error
R2 coefficient of determination
SOTA state-of-the-art
XAI explainable artificial intelligence
XLA accelerated linear algebra
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Appendix B
XAI visualisations

In the following pages, we present 12 randomly picked image patches for
each target in four figures. Each figure has an overlay with a different XAI
method.
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B. XAI visualisations

Figure B.1: This figure shows 12 randomly picked patches with a Grad-CAM++
visualisation overlay (alpha=0.6, colour map=viridis) for CC target. The header of
each image denotes the index in the test set, ground truth value, and absolute and
relative error of the predicted value.
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Figure B.2: This figure shows 12 randomly picked patches with a LayerCAM
visualisation overlay (alpha=0.6, colour map=viridis) for CC target. The header
of each image denotes the index in the test set, ground truth value, and absolute
and relative error of the predicted value.
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B. XAI visualisations

Figure B.3: This figure shows 12 randomly picked patches with a SmoothGrad
(σ = 0.2, n = 30) visualisation overlay (alpha=0.6, colour map=viridis) for CC
target. The header of each image denotes the index in the test set, ground truth
value, and absolute and relative error of the predicted value.

54



Figure B.4: This figure shows 12 randomly picked patches with a SmoothGrad
(σ = 0.3, n = 30) visualisation overlay (alpha=0.6, colour map=viridis) for CC
target. The header of each image denotes the index in the test set, ground truth
value, and absolute and relative error of the predicted value.
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B. XAI visualisations

Figure B.5: This figure shows 12 randomly picked patches with a Grad-CAM++
visualisation overlay (alpha=0.6, colour map=viridis) for MD target. The header of
each image denotes the index in the test set, ground truth value, and absolute and
relative error of the predicted value.
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Figure B.6: This figure shows 12 randomly picked patches with a LayerCAM
visualisation overlay (alpha=0.6, colour map=viridis) for MD target. The header
of each image denotes the index in the test set, ground truth value, and absolute
and relative error of the predicted value.
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B. XAI visualisations

Figure B.7: This figure shows 12 randomly picked patches with a SmoothGrad
(σ = 0.2, n = 30) visualisation overlay (alpha=0.6, colour map=viridis) for MD
target. The header of each image denotes the index in the test set, ground truth
value, and absolute and relative error of the predicted value.
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Figure B.8: This figure shows 12 randomly picked patches with a SmoothGrad
(σ = 0.3, n = 30) visualisation overlay (alpha=0.6, colour map=viridis) for MD
target. The header of each image denotes the index in the test set, ground truth
value, and absolute and relative error of the predicted value.
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B. XAI visualisations

Figure B.9: This figure shows 12 randomly picked patches with a Grad-CAM++
visualisation overlay (alpha=0.6, colour map=viridis) for FA target. The header of
each image denotes the index in the test set, ground truth value, and absolute and
relative error of the predicted value.
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Figure B.10: This figure shows 12 randomly picked patches with a LayerCAM
visualisation overlay (alpha=0.6, colour map=viridis) for FA target. The header of
each image denotes the index in the test set, ground truth value, and absolute and
relative error of the predicted value.
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B. XAI visualisations

Figure B.11: This figure shows 12 randomly picked patches with a SmoothGrad
(σ = 0.2, n = 30) visualisation overlay (alpha=0.6, colour map=viridis) for FA
target. The header of each image denotes the index in the test set, ground truth
value, and absolute and relative error of the predicted value.
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Figure B.12: This figure shows 12 randomly picked patches with a SmoothGrad
(σ = 0.3, n = 30) visualisation overlay (alpha=0.6, colour map=viridis) for FA
target. The header of each image denotes the index in the test set, ground truth
value, and absolute and relative error of the predicted value.
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