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Abstract

The success of pancreatic islet transplantation relies on the accurate estimation of beta cells
amount within individual islets, primarily determined by the estimation of islet volumes from
microscopic images of isolated islets samples. Previous research has applied digital image anal-
ysis to generate segmentation masks of islets, subsequently used for volume calculation. This
thesis aims to analyse and address the limitations of an existing approach using the semantic
segmentation model UNet to obtain islets masks from microscopic images. The analysis showed
that most significant limitation is the inability of the model to distinguish individual instances
of adjacent islets, leading to an overestimation of islet volumes and thus the amount of beta cells
within the sample. In response to this problem, this thesis investigates instance segmentation
models as an alternative to address the drawbacks of the UNet model. The model proposed in
this thesis demonstrates the potential of this approach in pancreatic islets segmentation. It out-
performs the state-of-the-art model in accurately separating individual islets while maintaining
a comparable overall IoU score of the segmentations.

Keywords neural networks, instance segmentation, convolutional neural networks, deep learn-
ing, pancreatic islets, pancreas, microscopic images

Abstrakt

Úspěch transplantace pankreatických ostr̊uvk̊u záviśı na přesném odhadu množstv́ı beta buněk
v jednotlivých ostr̊uvćıch, které je primárně odhadováno na základě objemů ostr̊uvk̊u źıskaných
analýzou mikroskopických sńımk̊u vzork̊u izolovaných ostr̊uvk̊u. Předchoźı výzkum zkoumal ap-
likaci digitálńı obrazové analýzy pro źıskáńı binárńıch segmentačńıch masek ostr̊uvk̊u následně
použitých pro výpočet objemu. Ćılem této práce je analýza a řešeńı nedostatk̊u současného
př́ıstupu využ́ıvaj́ıćıho sémantický segmentačńı model UNet k źıskáńı segmentačńıch masek
ostr̊uvk̊u z mikroskopických sńımk̊u. Analýza ukázala, že hlavńım nedostatkem modelu je
neschopnost rozlǐsit jednotlivé instance k sobě přiléhaj́ıćıch ostr̊uvk̊u. To vede k nadhodnoceńı
objemů ostr̊uvk̊u a t́ım i množstv́ı beta buněk ve vzorku. Tato práce zkoumá modely segmentace
instanćı jako alternativu, která by mohla vyřešit nedostatky modelu UNet. Model navržený v
této práci prokazuje potenciál tohoto př́ıstupu pro použit́ı v segmentaci pankreatických ostr̊uvk̊u.
Navržený model překonal UNet v přesnosti vymezeńı jednotlivých instanćı ostr̊uvk̊u a zároveň
si zachoval porovnatelné celkové IoU skóre segmentaćı.

Kĺıčová slova neuronové śıtě, segmentace instanćı, konvolučńı neuronové śıtě, hluboké učeńı,
Langerhansovy ostr̊uvky, slinivka, mikroskopické sńımky
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Introduction

The introductory section briefly describes the issue addressed in this thesis, explains why it is
important to solve, and outlines the aim of this thesis.

Type 1 diabetes mellitus (T1DM) is a chronic illness that is estimated to affect 9 million peo-
ple.[1] It arises from the inability of the pancreas to produce insulin due to autoimmune attack
on insulin-producing beta cells within the pancreatic islets.[2] In most cases, managing T1DM
involves continuous glucose monitoring and insulin therapy. Nevertheless, in severe cases, where
insulin treatment might not be sufficient, a transplantation of pancreatic islets cells can be a
more effective solution.[3]

Before transplantation, it is necessary to assess the quality and quantity of donor’s pancreatic
islets. This is done by evaluating multiple samples of an islet preparation obtained through
procedure known as islet isolation.[4] Samples are observed under a microscope, where a trained
operator manually counts the number of islets and measures the sizes of the individual islets
to estimate the total islet mass of the samples.[5] Islet mass highly correlates with the clinical
outcomes of the transplantation and thus is an important factor in determining whether the
islets are suitable for transplantation.[6] However, manual measurement and estimation is time-
consuming and prone to imprecision or high interoperator variability.[7, 8]

Consequently, various approaches based on digital image analysis or machine learning aim to
speed up, automate, or improve accuracy of the measurement process.[8] Despite these efforts,
none of the approaches have become widespread or been standardized across laboratories.[9] One
of the most advanced approaches is based on the UNet semantic segmentation model, a convolu-
tional neural network called IsletNet[10] designed to produce binary islet masks from microscopic
images of isolated islets. These masks are subsequently used to determine individual islet sizes
and to calculate their volumes. While this solution significantly accelerates and simplifies the
workload for the operators, it still exhibits weaknesses that needs resolution before its clinical
deployment across laboratories becomes viable.

Research in the field of convolutional neural networks is moving forward rapidly, and since
UNet was implemented, many new architectures, approaches, and improvements to segmentation
models have emerged that could address the shortcomings of the current model. Therefore, the
aim of this thesis is to identify the weaknesses of the UNet model, and propose and implement
an approach that will address its limitations. This new approach will be developed based on an
exploration of state-of-the-art techniques in image segmentation, which will be described in this
thesis.

This thesis will investigate the methods employed for the pancreatic islets segmentation, in-
cluding the IsletNet model, and the medical aspects of this problem. It will summarize the
limitations of the existing approaches and subsequently propose a novel solution based on the
research of the state-of-the-art techniques in semantic and instance segmentation. The proposed

1



Introduction 2

solution will be implemented, followed by suggestions for evaluating model outputs and the intro-
duction of suitable data augmentation strategies, based on research and dataset analysis. A series
of experiments will then be conducted to refine the proposed approach. Finally, this thesis will
compare the best-performing model with the original UNet model to assess whether the identified
weaknesses have been effectively resolved, and discuss the possible future improvements.

Chapter 1 introduces the theory related to pancreatic islets and islet cells transplantation,
emphasizing the connection to islets segmentation from microscopic images. In Chapter 2, the
research involving the utilization of digital image analysis and machine learning for islet seg-
mentation is described. The rest of the theoretical part (Chapters 3-6) describes the important
concepts and architectures of convolutional neural networks, transformers, semantic segmenta-
tion, and instance segmentation respectively. Chapter 7 presents the description of the dataset
and data preparation process, while Chapter 8 provides a comprehensive description of conducted
experiments and their comparison. Finally, in Chapter 9, the best model is evaluated against
the IsletNet model on the test set.



Chapter 1

Background

This chapter will describe the fundamentals and function of pancreatic islets and their con-
nection to type 1 diabetes mellitus (T1DM), and the methodology of treating T1DM through
islet cell transplantation. It will also explore the quantity and quality assessment of islet cul-
tures used in transplantation, highlighting existing limitations, and discussing the potential of
neural networks in this assessment.

1.1 Type 1 diabetes mellitus
The pancreas consists of two distinct types of tissue: endocrine and exocrine. Endocrine tissue,
which constitutes only around 1% of the pancreas, represents the pancreatic islets that con-
sist of various cell types responsible for secreting essential hormones like insulin, glucagon, and
somatostatin.[11] Specifically, insulin-producing beta cells are pivotal; their destruction, often
by autoimmune or unknown causes, results in reduced insulin production, leading to insulin
deficiency and hyperglycemia, characteristic of type 1 diabetes mellitus (T1DM).[12]

A study on the prevalence of T1DM estimates, that about 9 million people worldwide suffer
from this disease and the number is increasing.[1] While most cases can be handled by insulin
therapy and continuous glucose monitoring, some patients experience complications like hypo-
glycaemia unawareness (when patient is unable to recognize hypoglycemia due to the absence
of typical warning symptoms[13]), severe hypoglycaemic episodes (state of hypoglycaemia when
external assistance is required for the patient’s recovery as they may be incapable of helping
themselves[14]) or glycaemic lability (instability or frequent fluctuations in blood glucose levels
over a certain period of time[15]).[16]

In severe cases where complications arise during insulin therapy, islet cell transplantation
might be considered. However, this option requires careful evaluation of potential risks, includ-
ing lifelong immunosuppressant use post-transplantation, which increases the risk of infections,
cancer, and organ-system toxicity. As a result, islet cell transplantation is typically recommended
only for the most severe cases due to the associated risks when compared to the risks of untreated
complications of T1DM.[16]

1.2 Pancreatic islet cells transplantation
As mentioned above, islet cells transplantation is used only in severe forms of T1DM due to
the considerable risks linked with the continual use of immunosuppressants. On the other hand,
research from five leading islet transplantation centers has indicated a notable 50-70% insulin
independence rate five years post-transplantation, a rate comparable to whole pancreas trans-
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plantation, despite islet cell transplantation being a considerably less invasive procedure. More-
over, advancements in immunosuppression therapies are enhancing safety measures, potentially
increasing the demand for islet cell transplantation in the future.[16]

Before the transplantation procedure, an islet culture needs to be prepared through a 5–7h
process called islet isolation. At first, a pancreas is procured from a suitable deceased donor,
followed by the digestion of the pancreas, mechanical separation, and purification through cen-
trifugation.[17] As a result, a purified islet culture is obtained as shown in Figure 1.1. Prior to
transplantation, the viability culture needs to be assessed and the culture is used only when it
satisfies specific criteria.[18] Eventually, the prepared islet product is suspended in transplant
media and is infused into the recipient’s portal vein through catheterization.[16]

Figure 1.1 An image of isolated islet samples under a microscope, showing red-stained islets and
yellow/white exocrine tissue. The left displays lower purity with more mixed exocrine tissue, while the
right exhibits higher purity with predominantly red-stained islets. Images are from the Laboratory for
the Islets of Langerhans, Experimental Medicine Centre (EMC), Institute for Clinical and Experimental
Medicine (IKEM), Prague, CZ

1.3 Islet quality and quantity assessment
After islet isolation, it is essential to assess the quality and quantity of islets in the isolated
islet culture. This evaluation is conducted either before transplantation or for research purposes.
Multiple samples are extracted from the culture for evaluation and stained with dithizone to
differentiate the islets from surrounding tissue by giving the islets a distinct red coloration.
Subsequently, a manual evaluation is performed.[5]

1.3.1 Islet number and volume
The conventional method to determine islet number and volume from the sample is usually
referred as the manual method.[8] The manual method involves an experienced operator observing
islets through a microscope, manually counting the number of islets in the sample. During the
counting, the diameter of each islet is measured using a calibrated grid within the microscope.
These islets are then categorized into size groups of 50 µm diameter ranges. Subsequently, each
islet is converted into the number of islet equivalents (IE), representing an equivalent number of
islets with a diameter of 150 µm, referencing Table 1.1.[5]

A study examining the relationship between islet product characteristics and transplantation
outcomes revealed that the only characteristic significantly correlated with transplantation suc-
cess was the total number of IEs. Consequently, achieving precise estimations of IE within the
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Table 1.1 Conversion of each islet diameter group to IE[5]

Islet diameter range (µm) Mean volume (µm3) Conversion into IE
50-100 294 525 n/6.0
100-150 1 145 373 n/1.5
150-200 2 977 968 n × 1.7
200-250 6 185 010 n × 3.5
250-300 11 159 198 n × 6.3
300-350 18 293 231 n × 10.4
350-400 27 979 808 n × 15.8
400-450 40 611 628 n × 23.0
450-500 56 581 390 n × 32.0

islet sample is crucial.[6] However, the manual estimation method is prone to imprecision and
significant variability among operators.[7, 8] To reduce counting errors, it is advisable to procure
multiple samples of the preparation.[5] Nevertheless, the manual estimation process is notably
time-consuming, often limiting the evaluation to only a few samples from the islet preparation.[4]

The method of estimating IE number using Table 1.1 introduces unnecessary rounding into
the volume calculation and assumes the islet to have a spherical shape, which is not typically
accurate.[19] Nevertheless, despite these limitations, it remains the most suitable approach for
manual evaluation.

1.3.2 Purity
The purity of a sample is the percentage of endocrine tissue (islets) compared to all tissue in
the sample.[20] An example comparison of a sample with low and high purity is depicted in
Figure 1.1. This parameter is only roughly estimated by the operator and not calculated or
measured as its exact determination is not considered essential. While purity alone may not
predict transplantation outcomes, the presence of non-islet tissue can serve as an indicator of
transplant suitability when considered alongside factors like islet count and volume. Given that
the maximum graft volume allowed is usually based on the required islet volume, aiming for high
purity is favorable, though precise estimation is not mandatory.[21]

1.3.3 Digitization of the islet sample assessment
The manual method for islet graft assessment presents several drawbacks, including high in-
teroperator variability, the absence of image archiving for sample verification, and being time-
consuming. Therefore, substantial efforts, that will be described in the next chapter, have been
directed towards digitizing and automating the islet graft assessment process. The novel ap-
proaches employ digital image analysis, generating binary masks of islets and exocrine tissue
with the assistance of experienced operators or through automated processes. These masks are
subsequently used for the automated quantification of islets, volume computation, and purity
estimation. This approach improves accuracy and reduces interoperator variability compared to
the manual method.[8, 9]

Additionally, it enables the adoption of more sophisticated methods for islet volume calcu-
lation. For example, one such method considers the islet to have an elliptical shape, which,
according to a few studies, outperforms the assumption of a spherical shape.[4, 19] In the ellipse
method, an ellipse is fitted to the binary segmented mask of an islet, and the volume is estimated
as that of an ellipsoid, calculated using the formula V = (3/4) · πa2b, where a and b represent
the lengths of the larger and smaller semiaxes, respectively.[19]
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In this context, achieving high accuracy in segmenting masks of islets and exocrine tissue is
crucial for precise calculations of islet count, volume, and purity. Convolutional neural networks
(CNNs) emerge as a suitable solution for this task. Their ability to understand spatial hierar-
chies, extract features, and integrate both local and global context makes them well-suited for
discerning the intricate structures present in pancreatic islet images. CNNs adapt to varied image
characteristics, ensuring robust performance across different sizes, shapes, and intensities. This
adaptability enhances robustness and performance across different datasets, ultimately reducing
counting and estimation errors.[22]



Chapter 2

Pancreatic islet segmentation
methods

In this chapter, an overview of existing methodologies for pancreatic islet segmentation through
digital image analysis and machine learning will be presented.

The use of digital image analysis for pancreatic islet segmentation already has been investigated
in previous studies.[8, 21, 23] This was primarily driven by the drawback of manual measure-
ment including its time-extensive nature[4] and inaccuracy of manual measurement as well as
substantial interoperator variance[9]. Research has shown that digital image analysis offers many
advantages over the classical procedure, namely speed, reduced subjectivity, grater reproducibil-
ity and the ability to archive segmentation for further evaluation[9, 8]. However, the proposed
methods are typically only semi-automatic, require specific software and hardware, or their ap-
plicability was tested on a restricted dataset. For instance, they were exclusively evaluated on
high-purity samples, making them unsuitable for samples with lower purity levels.[8]

2.1 Thresholding
The most commonly cited approach for pancreatic islet segmentation is thresholding. This
method is usually done using specialized software for image analysis including ImageJ, Meta-
Morph and others[24, 7, 4]. Various approaches were described for implementing thresholding.

Stegemann et. al. [25] in 1998 proposed an automatic method for grayscale images pre-
processed by a contrast-enhancing filter. They developed a macro for DIA software, enabling
the segmentation of images into islets, unstained impurities and background using gray-level
thresholding. Their study involved a comparison of islet and IE counts obtained through DIA
versus manual methods. They evaluated their approach on 140 porcine isolations and reported
relatively strong correlation in counts (p < 0.001, r = 0.78) and IE number on average of 46%
lower when using the manual method than when determined using DIA. They noted challenges
in distinguishing dark impurities from stained islets and noted that the majority of the images
they worked with had purity > 90%.

Subsequent research mostly focused on color images. Niclauss et. al. (2008) [24] employed a
thresholding on red color for islet segmentation and white color for exocrinne tissue segmentation.
Although there were small differencies between the islet count and IE obtained by this algorithm
compared to manual estimating on the digital images by experts (islet counts were 100, 578±8, 44
and 96, 555 ± 8, 581 respectively and IEs 93, 280 ± 8, 110 and 94, 426 ± 7, 863), this analysis was
conducted on a limited sample size of only 12 samples.
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Other studies have employed color-based thresholding methods, wherein the operator selects
specific colors for segmentation within the DIA software[7, 26, 27]. Nevertheless, it is important
to note that these techniques are only semi-automated.

Some algorithms have been integrated into microscope software as well[28, 9]. One publicly
described approach presented by Gmyr at. al. (2015)[28], relies on substracting color channels
of the input RGB images to generate segmentation mask. Specifically, islets were segmented
by substracting the green channel from the red channel (green-red) to obtain the segmentation
mask by subsequent thresholding. Similarly, for exocrinne tissue segmentation, red-green-blue
channel subtraction is performed, following by thresholding to generate the mask.

This approach was compared with the manual method on 42 islet preparations. The result
showed a strong correlation (r2 = 0.88) for islet count and (r2 = 0.91) for IE number. However,
it is worth noting that this method is dependent on precise adherence to the isolation process and
dithizone staining of the islets, consistent light conditions and requires to buy specific hardware.

Additionally, it is important to highlight that no study employing thresholding techniques has
compared the obtained segmentation masks with GT segmentation masks. Instead comparisons
have been done on counts, sizes, volumes, and purity with the manual method, which may not
yield highly accurate results.

2.2 Linear classifier and SVM

Švihĺık et. al. (2014)[4] introduced a new automated technique. This method involved training a
pixelwise linear classifier and linear SVM using 11 x 11 pixel rectangular regions chosen by user.
These rectangular selections were subsequently flattened into a vector of 121 training samples,
which were used for the classifier training. Classifiers were trained only on one image using 20
rectangular frames for both the islet and background classes. The quality of segmentation was
tested on the remaining images.

The segmentation masks obtained from linear classifier were compared with ground truth
segmentation masks, which were derived from the consensus of labeling by three experts. The
study demonstrates that the proposed algorithm is comparable to the experts’ performance (see
Figure 2.1).

Figure 2.1 ROC calculated for linear classifier using all testing images and different color spaces. It
compares the performance of the model with the performance of experts.[4]

Furthermore, to compare both algorithms, IE were computed based on their respective seg-
mentation as well as from the GT segmentation. The relative error δ and absolute error ϵ were
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calculated for both algorithms (see 2.1). The difference between the two methods were not
statistically significant (by t-test at α = 0.05).

Table 2.1 Comparison of SVM and linear classifier after calculation of IE numbers using ellipse
algorithm (δ - mean relative error, ϵ - mean absolute error)[4]

Classifier δ [%] ϵ [−] SD [−] ϵ/SD

SVM 8.2 25.0 40.2 0.9
Lin. classifier 11.4 36.7 40.2 1.2

However, this approach requires a similarity in colors between the islets and the background
in unseen images compared to the training set. Consequently, its ability to generalize over images
with different color characteristics is limited. To overcome this problem, they introduced a color
normalization algorithm for the input images[29]. Nonetheless, this particular approach has
not been evaluated on images with significantly divergent colors or on images with low purity.
Additionally, it operates under the assumption that the background class is the most prevalent
in the images.

2.3 Random forest classifier
Another fully automated method for segmentation pancreatic islets was introduced by Habart
et. al (2016)[21]. At first, the input images were preprocessed using color normalization, as
previously mentioned[29]. Subsequently, a random forest classifier generated a probability map
of islets based on individual pixels. This probability map was then transformed into a binary
mask through the application of spatial regularization.

The classifier was trained using 46 images from 4 donors and then evaluated on 36 images from
nine independent donors against GT segmentation masks obtained from trained experts. The
assessment revealed a negligible pixel-wise relative error (RE = 0.04). However, it is important to
note, that islet and background classes are typically highly imbalanced. Nonetheless, the method
demonstrated a very strong correlation in islet counts (r2 = 0.92) and volume (r2 = 1.0).

Similar to the linear classifier, this method exhibits comparable limitations. Specifically, the
preprocessing algorithm assumes that the most prevalent class is the background and has not
been tested on images with varying color profiles. Furthermore, there are instances where two
adjacent islets are occasionally identified as a single islet, and occasional misclassification of
exocrine tissue as islets occurs.

2.4 Neural networks
In 2017, a novel approach was introduced using a neural network structured on an 18-layered
UNet architecture[30] named IsletNet. The network was trained on data obtained by a manual
segmentation conducted by an expert using a validated methodology. Evaluation on 128 test im-
ages revealed an average relative error of 10% for the islet count and 18% for volume estimation.
The model successfully paired 87% of predicted individual islets with their ground truth counter-
parts, yet struggled with adjacent islets, leading to overestimated sample volumes. Despite this
limitation, the approach demonstrated strong generalization capabilities and provided precise
segmentation masks, displaying an F1 score of 0.895 ± 0.080 (mean ± std). Any discrepancies
primarily arose near the islet boundaries. In summary, while this approach exhibits promising re-
sults, ongoing enhancements and training on larger datasets are underway.[10] One enhancement
explored involves implementing the watershed transform, as discussed in the following section,
which is applied on the segmentation mask to separate the islets. Nonetheless, this method tends
to generate an excessive number of segments for the islets, presenting a suboptimal outcome.[31]
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2.5 Watershed
Segmentation algorithms have problems to correctly separate individual islets. The separation is
usually done after the segmentation as a post-processing in two steps.[31] First is called distance
transform; a binary segmentation mask where ”1” denotes a pixel that corresponds to an islet
and ”0” a pixel that corresponds to everything else. Then for each islet pixel a distance (typically
Euclidean) to the closest non-islet pixel is calculated.[32]

Second step, watershed transform, is performed on the output of the previous step. It is
based on the analogy of a topographic landscape, where pixel intensities in an image correspond
to elevations on the landscape. The algorithm operates as if the pixel intensities represent a
relief map. It simulates a flooding scenario starting from ”markers” or ”seeds” placed at specific
points in the image. The flooding propagates throughout the image, filling basins (or regions)
with water. When these ”flooded” basins meet, they form boundaries that delineate separate
regions.[33] The output of this algorithm are separated islets.

An issue commonly associated with the watershed transform is its tendency to create ex-
cessive segmentation within images. Švihĺık et. al.[31] introduced a potential solution to this
challenge in the context of pancreatic islet segmentation. Their approach involved an evaluation
of each potential division generated by the watershed transform based on various shape descrip-
tors, such as circularity. Subsequently, the most plausible division was selected as the most
accurate representation. This modified watershed technique outperformed the standard single
watershed method and demonstrated comparable results to those achieved by medical experts
when evaluated on a test set comprising 12 images. However, this algorithm is computationally
demanding, requiring approximately 7 minutes to process a single image.

2.6 Summary
Multiple methods have been attempted to address pancreatic islet segmentation, ranging from
basic thresholding to employing convolutional neural networks (CNNs). However, none of these
approaches have gained widespread adoption due to inherent limitations. Most of the methods
lack full automation, resulting in time-consuming processes. Additionally, they exhibit sensitiv-
ity to specific image subsets, variations in microscope settings, and alterations in lighting and
colorspace. Among described methods, IsletNet, a CNN-based solution, stands out as one of the
most robust; however, like other approaches, it fails to accurately delineate individual islet in-
stances. The watershed transform, while offering some promise, tends to over-segment instances,
presenting an undesirable outcome. This thesis endeavors to investigate the potential resolution
of this challenge through the application of instance segmentation. Unlike traditional segmen-
tation methods, instance segmentation not only generates segmentation masks for objects but
also distinguishes individual object instances. By exploring CNNs and instance segmentation
models in subsequent chapters, this thesis aims to address the limitations observed in previous
approaches and potentially offer a solution to accurately delineate separate islet instances in
pancreatic image analysis.



Chapter 3

Convolutional Neural Networks

This chapter briefly describes the functionality of Convolutional neural networks (CNNs) and
their applications. Additionally, it focuses on detailing two CNN architectures, namely ResNet
and ResNeXt, used in the practical part of this thesis.

Convolutional neural networks (CNNs) represent powerful frameworks for artificial intelligence
and computer vision. Neural networks (NNs), inspired by the functioning of the human brain,
comprise interconnected nodes that process information through layers, enabling pattern recogni-
tion, decision-making, and complex data analysis. CNNs, a type of NN, excel in visual perception
tasks due to their unique architecture designed to analyze and interpret structured grid-like data,
such as images and videos.

CNNs demonstrate remarkable adaptability across various fields, serving as a robust tools
designed for a range of computer vision tasks visualized in Figure 3.1:

Image classification Involves categorizing images into predefined classes or categories. CNNs
excel in recognizing patterns within images to assign them to distinct labels, facilitating tasks
like identifying whether an image contains a cat or a dog, recognizing handwritten digits, or
classifying different types of vehicles.

Semantic segmentation Focuses on pixel-level understanding by assigning class labels to each
pixel in an image, thereby segmenting the image into meaningful parts or regions. CNNs in
semantic segmentation contribute to tasks like delineating object boundaries or segment-
ing areas of interest, used for example in medical image analysis or scene understanding in
autonomous driving.

Object detection Involves the recognition and precise localization of multiple objects within
an image by outlining their specific positions using bounding boxes. CNNs applied in object
detection not only identify various objects within an image but also determine their exact
spatial positions, enabling their use in security surveillance, autonomous vehicles, and content-
based image retrieval.

Instance segmentation Extends object detection by not only identifying objects using bound-
ing boxes but also by providing detailed segmentation masks for each instance, crucial in tasks
where precise delineation of multiple objects is necessary, such as robotic manipulation, in-
teractive image editing, or medical imaging for organ segmentation.
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Figure 3.1 Computer vision tasks: a) image classification, b) semantic segmentation, c) object de-
tection, d) instance segmentation. Image is from the COCO 2017 dataset[34], modified.

3.1 CNN architectures
Neural network architectures defines the structured organization of interconnected layers and
nodes and influences the capacity of the network to process complex data, notably in tasks like
semantic and instance segmentation in computer vision. ResNet[35] and ResNeXt[36] represent
important architectural advancements that have revolutionized the domain of deep learning.
ResNet addresses the challenges of training deep neural networks and enabled their training,
while ResNeXt emphasizes the width of the network for more efficient feature extraction. These
architectures, ResNet and ResNeXt, continue to be widely utilized in semantic and instance
segmentation tasks due to their enduring significance and efficacy.

3.1.1 ResNet
ResNet, short for Residual Network, is a deep convolutional neural network architecture intro-
duced by He et. al. in 2015 [35]. For earlier architectures it was impossible to train a deep
network as they suffered from the vanishing gradient problem. ResNet addresses this problem
by introducing shortcut connections, which allow information to flow directly from one layer to
another, bypassing some layers in between. This made possible to train a very deep networks
which are crucial for tasks like object detection or instance segmentation.

The ResNet architecture’s, as shown in Figure 3.2, fundamental building blocks are residual
blocks. Each block consists of two or more convolutional layers, typically followed by batch
normalization and ReLU activation functions. The important feature of the architecture is the
shortcut connection which directly passes the input to the output of the block. This allows the
network to learn a residual function that represents the difference between the input and output
of the block. By focusing on learning these residuals, the network can effectively learn the finer
details and nuances in the data.
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Figure 3.2 Bottom: a plain network with 34 layers, Top: ResNet with 34 layers.[35]

ResNet architectures come in various depths, for instance ResNet-50, ResNet-101, or ResNet-
150, where the number in the name indicates the total number of layers in the network. Deeper
versions have demonstrated high performance on challenging tasks like object detection, semantic
segmentation, and instance segmentation.

3.1.2 ResNeXt
In 2016, Xie et. al. [36] proposed new deep learning CNN architecture ResNeXt that builds
upon the concepts introduced by ResNet. The aim was to further enhance the performance of
deep neureal networks. They introduced new building block called cardinality bottleneck that
allows more efficient feature learning.

Traditional ResNet architectures focus on increasing the depth of the network to improve
performance. Instead, ResNeXt emphasizes the importance of width in the network. The cardi-
nality bottleneck introduces a new dimension, called ”cardinality”, which refers to the number
of multiple smaller pathways within each building block, as shown in Figure 3.3. Furthermore,
instead of processing all the channels together, they are divided into groups, and each group is
processed separately within the cardinality bottleneck block.

ResNeXt has demonstrated state-of-the-art performance on a wide range of computer vision
tasks, including image classification, object detection, and segmentation.

Figure 3.3 Left: a ResNet block, Right: a ResNeXt block with cardinality = 32.[36]



Chapter 4

Transformers

This chapter introduces transformers as an alternative method for instance segmentation,
alongside CNNs. It describes the fundamental components within transformers, namely the
attention mechanism and the feed-forward network (FFN). Furthermore, it details a specific
transformer architecture known as the Swin Transformer, specifically designed for computer
vision tasks.

In addition to CNNs, transformers are another viable option for performing instance segmen-
tation tasks. Transformers represent an advancement in deep learning architectures initially
developed for sequence-to-sequence tasks, predominantly in natural language processing (NLP).
Originally, transformers revolutionized language modeling and translation tasks by introducing
the self-attention mechanism, enabling efficient capturing of long-range dependencies in sequences
without recurrent connections.[37]

Currently, transformers have surpassed their initial focus on NLP and have been employed in
various domains beyond sequential data processing. Their adaptability, scalability, and ability to
capture global dependencies and contextual relationships has led to their integration into visual
tasks, such as image segmentation, object detection, and other computer vision tasks. [38, 39]

4.1 Transformer architecture
The transformer, introduced by Vaswani et al.[37] in 2017 is and encoder-decoder architecture.
The encoder processes input sequences, while the decoder generates output sequences. Both the
encoder and decoder consist of N identical layers stacked on top of each other, each layer involving
two sub-modules: self-attention and position-wise feed-forward networks (FFNs). Additionally,
the block contains a residual connection that surrounds each sub-module followed by a layer
normalization.

4.1.1 Attention mechanism
The attention mechanisms in transformers are important for the ability of the model to to focus
on different parts of input data when processing sequences. Attention mechanisms allow the
model to assign varying degrees of importance or relevance to different elements within the input
sequence. It is a function of three vectors: query, key, and value. These vectors are derived from
the input sequence and used to calculate attention scores that represent the importance of each
word in relation to all other words within the sequence.
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Figure 4.1 A diagram of one layer within the encoder of a transformer - MA: multi-head attention,
LN: layer normalization, FFN: feed-forward network.[37]

For self-attention mechanism, all of the queries, keys, and values come from the same source.
For instance, all of them come from the output of the previous layer. Multi-head attention
extends the self-attention mechanism, enhancing the capability of the model to focus on different
parts of the input sequence simultaneously. It accomplishes this by performing multiple parallel
self-attention computations, each with its own set of query, key, and value transformations. The
outputs from these multiple attention heads are then concatenated and linearly transformed to
generate the final attention output. By employing multiple attention heads, the model can focus
on different parts of the sequence concurrently, enabling more sophisticated and diverse patterns
to be captured and utilized in subsequent tasks.[37, 40]

4.1.2 Position-wise feed-forward network
The positional-wise FFN is a fully connected FFN, typically consisting of two fully connected
layers, that follows the self-attention mechanism. This network operates independently on each
position within the sequence. It processes the outputs of the self-attention mechanism by applying
linear transformations, followed by non-linear activation functions, such as the rectified linear
unit (ReLU).[37]

4.2 Swin Transformer
Swin transformer is an innovative deep learning architecture proposed by Liu et. al. in 2021[41].
They address the challenge of adapting transformers to computer vision tasks by implementing
an operation called Shifted windows, which leads to much greater efficiency of transformers on
image data.

Figure 4.2 Swin Transformer architecture[41]

The overall architecture is outlined in Figure 4.2. The input image is, at first, split in the
Patch Partition layer into non-overlapping patches, usually of size 4 x 4. The pixel values of the
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patch are then concatenated into a vector over all image channels. That produces a vector of
length 4 x 4 x 3 = 48. Then in stage 1, the vector is processed by a Linear Embedding layer,
that produces a vector of length C. Then a Swin Transformer Block is applied on the vector,
which is then passed to the next stages consisting of Patch Merging layers and Swin Transformer
Blocks, as shown in Figure 4.2.

Figure 4.3 Two consecutive Swin Transformer blocks - W-MSA and SW-MSA are regular and shifted
window multi-head self attention modules, MLP is multi-layer perceptron also called feed-forward net-
work.[41]

Swin Transformer block (see Figure 4.3) replaces the traditional multi-head self attention
block in transformer architecture by a block that uses shifted windows. Standard self-attention
mechanisms operate on a fixed grid, which may not effectively capture spatial relationships in
the image. In contrast, the shifted windows approach incorporates positional shifts with every
additional self attention layer as shown in Figure 4.4. At first, a regular window partition-
ing is employed in the first Swin Transformer block, as showed on the left side of Figure 4.4.
Subsequently, the next block uses a windowing configuration that is spatially shifted from the
arrangement of the preceding layer, as illustrated on the right side of Figure 4.4.

Figure 4.4 Shifted windows algorithm. Layer l uses regular window partitioning, layer l + 1 uses
shifted windows partitioning that provides connections between the boundaries of previous windows.[41]

The proposed architecture surpassed the previous state-of-the-art in many computer vision
tasks like object detection, instance segmentation, and semantic segmentation.



Chapter 5

Semantic segmentation

This chapter provides an overview of semantic segmentation, its practical applications, and
delves into the widely adopted semantic segmentation architecture, the UNet, frequently used in
medical image segmentation. Furthermore, it outlines commonly employed evaluation metrics
while discussing the challenges and limitations in semantic segmentation.

Semantic segmentation is an important task in the domain of computer vision aiming to partition
an image into coherent regions or segments, where each pixel is labeled with a specific class or
category, thereby enabling a comprehensive understanding of its contents. For instance, in
medical imaging, it aids in precise organ segmentation and disease diagnosis[42]. In autonomous
driving, it enables vehicles to perceive and interpret the surrounding environment accurately[43].
Moreover, in satellite imagery analysis or robotics, semantic segmentation plays a crucial role in
scene understanding and decision-making[44].

Typically, semantic segmentation tasks employs deep learning architectures, especially convo-
lutional neural networks (CNNs) or more advanced models that capture complex spatial details,
contextual relationships, and class-specific features within the image data. Especially promi-
nent within medical imaging, the UNet architecture serves as a foundational model for semantic
segmentation tasks, often inspiring subsequent models that adopt the architecture of the UNet
while implementing variations or adaptations to enhance performance.[42]

5.1 UNet
Developed by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in 2015, UNet[30] represents
an effective architecture for semantic segmentation, particularly on smaller datasets, enabling its
usage in medical imaging tasks.

UNet architecture, illustrated in Figure 5.1, is comprised of two paths: the contracting path,
situated on the left side, and the expansive path, positioned on the right side. The contracting
path initiates the network with convolutional layers, typically utilizing 3x3 convolutions, com-
bined with rectified linear unit (ReLU) activation functions. Following each convolution block,
the spatial dimensions are reduced through max-pooling operations employing a 2x2 window
and a stride of 2. This process sequentially doubles the number of feature channels, enabling the
capture of hierarchical features while progressively reducing spatial dimensions.

In contrast, the expansive path involves the upsampling of feature maps to amplify spatial
dimensions. At each stage, the upsampled feature maps are concatenated with the corresponding
cropped feature maps derived from the contracting path. The concatenated feature maps then
undergo two 3x3 convolutions with ReLU activation functions. Final layer, a 1x1 convolutional
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layer maps the final 64-component feature vector to the number of output classes.

Figure 5.1 UNet architecture.[30]

5.2 Evaluation metrics
Semantic segmentation involves specific evaluation metrics that measure the overlap between the
predicted and ground truth segmentation masks. That at first involves classifying each pixel as
true positive (TP), true negative (TN), false positive (FP), or false negative (FN). The most
widespread metrics are intersection over union (IoU) or Dice Similarity Coefficient (DSC), also
known as F1 score. These metrics are very similar and calculated as follows[45]:

IoU = TP

TP + FP + FN
(5.1)

DSC = 2TP

2TP + FP + FN
(5.2)

5.3 Challenges and limitations
The primary limitation in the context of this thesis involves the inability to distinguish indi-
vidual objects within the segmentation mask. This becomes particularly significant in certain
applications like medical image segmentation, where precise identification of individual cells or
structures is crucial, or in scene segmentation for autonomous driving that demands the track-
ing of separate objects. A plausible solution to this issue involves implementing an instance
segmentation model instead of semantic segmentation.

Moreover, the annotation process required for semantic segmentation is exceedingly time-
consuming, leading to limited training data, especially prevalent in the domain of medical imag-
ing. To mitigate this challenge, two strategies are commonly employed:



Challenges and limitations 19

Data augmentation With limited data availability, data augmentation is a helpful technique
to enhance network robustness and minimize the likelihood of overfitting.[30] Augmentation
methods commonly applied to image data include transformations like mirroring, rotation,
resizing, as well as adjustments in colorspace such as modifying contrast, brightness, or
shifting the color spectrum. These techniques effectively expand the dataset and adds more
variability into the training set.

Transfer learning Transfer learning refers to a strategy where knowledge gained from solving
one problem is applied to a different but related problem. In this approach, a pre-trained
model, trained on a large dataset for a specific task, serves as a starting point for training a
model on a different task or dataset. By leveraging the learned features or parameters of the
pre-trained model, typically through fine-tuning or feature extraction, the model can adapt
and perform effectively on the new task with a smaller dataset.[46]



Chapter 6

Instance segmentation

This chapter covers key elements in instance segmentation models, including essential build-
ing blocks, prevalent loss functions, and evaluation metrics. It also explores three major
frameworks: Mask R-CNN, Cascade Mask R-CNN, and HTC.

Instance segmentation is a computer vision task that combines two other computer vision tasks,
which are semantic segmentation and object detection. Semantic segmentation classifies each
pixel of an image into fixed number of classes without identifying different object instances and
thus creates a segmentation mask. On the other hand, object detection aims to localize each
individual object using bounding boxes and classifying the object into fixed number of classes.
Instance segmentation localizes individual objects within image, classifies the object in a one of
given classes, and produces a segmentation mask for each object.

6.1 Instance segmentation model architecture
This thesis focuses on two-stage instance segmentation model architectures illustrated in Figure
6.1. In the initial stage, the model identifies objects’ bounding boxes through a region proposal
mechanism. This involves leveraging a convolutional neural network (CNN) backbone, such as
ResNet or ResNeXt, to extract high-level features from the input image. These features are
then passed through a region proposal network (RPN) or a similar mechanism, which generates
potential regions of interest (RoIs) where objects might be present.

The second stage of the architecture involves detailed instance segmentation within these pro-
posed regions. This is achieved by simultaneously predicting class labels, bounding box refine-
ments, and pixel-wise masks for each object instance within the proposed regions. This process
often utilizes a pixel-level segmentation network applied to each RoI, enabling precise delineation
of object boundaries and the creation of masks indicating the pixel-level object segments.[47]

6.1.1 Region Proposal Network
Region Proposal Network (RPN) is an integral component in instance segmentation frameworks,
particularly in models like Mask R-CNN[47], and related architectures. The primary function
of the RPN is to generate a set of candidate bounding boxes or regions of interest (RoIs) where
objects might be located. It achieves this by efficiently scanning the entire image using sliding
windows of varying sizes and aspect ratios. Additionally, RPN employs a CNN that learns to
predict objectness scores and refine them based on learned features.

20
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Figure 6.1 Instance segmentation architecture overview (Mask R-CNN[47]).

RPN operates by analyzing features extracted from a shared CNN backbone network, often
pre-trained on large-scale datasets for feature learning. These features serve as a basis for gen-
erating region proposals. RPN consists of convolutional layers followed by a set of anchor boxes,
which are pre-defined bounding boxes of different scales and aspect ratios.

By convolving feature maps from the shared CNN backbone with anchor boxes, RPN predicts
two key elements for each anchor box: objectness scores (probability of containing an object) and
bounding box regression offsets (adjustments to refine the anchor boxes to better fit objects).
Subsequently, based on these predictions, RPN filters out anchor boxes that are less likely to
contain objects and generates a set of high-confidence proposals that are further refined for
subsequent segmentation.

Following proposal generation, Non-Maximum Suppression (NMS) refines predicted bound-
ing boxes by prioritizing high-confidence detections and removing redundant ones. It sorts
boxes based on their objectness scores, selects the highest-scoring box while suppressing over-
lapping ones based on a defined threshold (such as IoU), and retains only the best-scoring,
non-overlapping boxes.[48]

6.1.2 Bounding box regression and classification
Post RPN, the proposals pass through a refinement phase where a secondary network refines the
candidate bounding boxes to precisely fit the objects. This refinement step typically involves
Region of Interest (RoI) pooling or RoI-align layers. These layers extract fixed-size feature maps
for each proposed region from the backbone network’s feature maps, aligning them to a standard
size. This process ensures consistent inputs for subsequent stages regardless of the varying sizes
and aspect ratios of the proposals.[47]

These RoI-aligned feature maps then feed into fully connected layers to perform two funda-
mental tasks: classification and bounding box regression. The classification task involves pre-
dicting the probability of an object class being present within each refined region, while bounding
box regression aims to further adjust the proposed coordinates of the bounding boxes for better
alignment with the true boundaries of the object.[47, 49]

The classification head of the network employs softmax or sigmoid activation functions to
predict the likelihood scores for each object class. Simultaneously, the regression head estimates
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adjustments (shifts in width, height, x, and y coordinates) to refine the initial bounding box
proposals, aligning them more accurately with the actual object boundaries.[49]

6.1.3 Mask prediction
The mask prediction stage operates on refined bounding box proposals and employs a dedi-
cated branch in the neural network architecture. This branch aims to generate pixel-wise masks
corresponding to the identified objects. Initially, RoI (Region of Interest)-aligned features are
extracted from the refined bounding boxes. These features encapsulate the object-specific infor-
mation necessary for accurate mask generation.

Subsequently, these features pass through a series of convolutional layers, often coupled with
upsampling or deconvolutional layers. These layers serve to increase the spatial resolution of
the features, enabling the model to capture intricate details essential for accurately delineating
object boundaries.

The final layer of the mask prediction branch typically involves activation functions, such as
sigmoid or softmax, producing pixel-wise probabilities representing the likelihood of each pixel
belonging to the foreground (object) or background. Thresholding is then applied to convert
these probabilities into binary masks, segmenting the object from the background based on a
predefined threshold.[47, 50]

6.2 Loss functions and metrics
Instance segmentation involves a triad of core tasks—classification, bounding box regression,
and segmentation mask prediction—each demanding specific loss functions to measure errors
during model training. The classification task focuses on assigning object categories to proposed
regions, demanding the application of loss functions like Cross-Entropy to assess class probabil-
ities against ground truth labels. Simultaneously, bounding box regression aims at refining and
adjusting proposed bounding box coordinates, often utilizing Smooth L1 Loss to minimize devi-
ations between predicted and actual bounding box positions. Finally, the mask prediction task
concentrates on generating pixel-wise masks for precise object delineation, commonly optimized
using Binary Cross-Entropy Loss for accurate mask prediction against the annotated ground
truth masks.[47, 50, 51]

6.2.1 Cross-entropy loss
The cross-entropy loss function has two common variants: the binary cross-entropy and the
categorical cross-entropy. he binary cross-entropy loss is typically used for binary classification
tasks, wherein only two classes are present. Its formulation is defined as:

L(y, ŷ) = −(y log(ŷ) + (1 − y) log(1 − ŷ)), (6.1)

where y signifies the ground truth label (either 0 or 1), and ŷ denotes the predicted probability
of the sample belonging to class 1. In the context of instance segmentation, the binary cross-
entropy loss is utilized for the objectness score within the RPN, which estimates whether there
is an object in the proposed RoI or not[48]. Moreover, the binary cross-entropy loss is applied
to the predicted masks. It computes the binary cross-entropy individually for each pixel in the
mask, and the final loss is determined as the average of losses across all mask pixels.[47]

On the other hand, the categorical cross-entropy loss is defined as:

L(y, ŷ) = −
C∑

i=1
yi log(ŷi), (6.2)
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where yi represents the ground truth label for sample and the ith class (1 if the sample belongs
to the class, 0 otherwise) and ŷi is the predicted probability of the sample belonging to the ith
class. The categorical cross-entropy loss is employed in the classification head, determining the
class to which the object in the RoI belongs.[50]

6.2.2 Smooth L1 loss
The Smooth L1 loss function[49], also known as the Huber loss, is often used in tasks involving
regression, such as bounding box prediction. It is a variation of the Mean Absolute Error (MAE)
and Mean Squared Error (MSE) loss functions, addressing their limitations.

The formula for the Smooth L1 loss between a predicted value ŷ and a ground truth value y
is expressed as:

L(y, ŷ) =
{

0.5 × (y − ŷ)2 if |y − ŷ| < threshold
|y − ŷ| − 0.5 × threshold otherwise

(6.3)

This loss function has a quadratic behavior when the absolute error is small (i.e., less than
a certain threshold), similar to the MSE loss. However, when the absolute error is larger than
the threshold, it linearly grows with the error, akin to the MAE loss. The ”smoothness” of the
transition between these two regimes is controlled by the threshold parameter.

In the context of instance segmentation, the Smooth L1 loss is used for both bounding box
proposals generated by the RPN and bounding box predictions from the box regression branch.
When comparing a ground truth bounding box v = (vx, vy, vw, vh) and predicted bounding box
t = (tx, ty, tw, th), where the vectors represent the top-left corner coordinates, width, and height
of the bounding boxes respectively, the loss is defined as:

L(t, v) =
∑

i∈{x,y,w,h}

smoothL1(ti − vi), (6.4)

and the threshold of the smooth L1 loss is set to 1.

6.2.3 Mean average precision (mAP)
Mean Average Precision (mAP) is a widely used evaluation metric in object detection and instance
segmentation tasks. It combines precision and recall to assess the accuracy of model predictions
across multiple object categories or instances.

To calculate mAP, the precision-recall curve is employed for each class or object category.
Precision signifies the ratio of correctly predicted positive instances to the total predicted positive
instances, while recall measures the ratio of correctly predicted positive instances to the total
ground truth positive instances. The precision-recall curve is plotted by varying the confidence
threshold for prediction scores, resulting in different precision and recall values.

The interpolated precision-recall curve is derived by calculating the maximum precision for
each level of recall. This technique involves interpolating the precision at each recall level by
considering the maximum precision found for recalls greater than or equal to that level. The
interpolated precision-recall curve allows for a smoother representation of model performance,
aiding in better comparison between different models or thresholds.

The Average Precision (AP) for a specific class is computed by calculating the area under
the interpolated precision-recall curve for that class. This area represents the average precision
across all recall levels for that specific class. Finally, the mean of the AP scores for all classes in
the dataset gives the mAP, reflecting the overall performance of the model across different object
categories.

mAP provides a comprehensive evaluation of the accuracy of the model across multiple classes,
balancing both precision and recall. Higher mAP values indicate better model performance in
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Figure 6.2 Precision-Recall curve (black), interpolated PR curve (pink), PR curve for a perfect model
(blue).

accurately detecting and segmenting objects across different categories, making it a crucial metric
in evaluating these models.[52]

6.3 Frameworks
Instance segmentation frameworks are filling the gap between object detection and precise pixel-
level segmentation. These frameworks integrate object localization, classification, and pixel-level
segmentation into a unified architecture, enhancing visual data analysis across diverse domains
like medical imaging, autonomous driving, and robotics. Some of the commonly used frameworks
are Mask R-CNN, Cascade Mask R-CNN, and Hybrid Task Cascade (HTC).

6.3.1 Mask R-CNN
Mask R-CNN, introduced in 2017 by He et al. [47], extends the Faster R-CNN object detection
architecture [48]. Faster R-CNN has two stages: the Region Proposal Network (RPN) initially
suggests candidate bounding boxes known as regions of interest (RoIs). Subsequently, the frame-
work performs feature extraction, object classification, and bounding box regression for each RoI,
producing outputs for object classes and bounding boxes.

In comparison to Faster R-CNN, Mask R-CNN introduces two architectural enhancements
(refer to Figure 6.3). First, it incorporates an additional branch dedicated to semantic segmen-
tation. This branch utilizes a small fully convolutional network (FCN) to perform semantic
segmentation in parallel with the branch responsible for bounding box detection and classifica-
tion. The semantic segmentation is performed across all classes for each RoI, and only the mask
of the predicted class is obtained.

The original Fast R-CNN lacked pixel-to-pixel alignment between the network input and
output, resulting in inaccurate masks for Mask R-CNN due to misalignments introduced by
operations like RoIPool that extracts a small feature map from each RoI in the second stage. To
address this issue, He et al. proposed RoIAlign, an operation that avoids spatial quantization,
preserving the spatial locations of RoIs and correcting the misalignment problem in output masks
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of Mask R-CNN.

Figure 6.3 Mask R-CNN framework - Faster R-CNN with addition of the RoIAlign operation
and a branch for semantic segmentation on RoIs.[47]

6.3.2 Cascade Mask R-CNN
Candidate bounding boxes in instance segmentation undergo classification as positives or nega-
tives based on an intersection over union (IoU) threshold. Typically, a threshold of 0.5 is used
during training, resulting in suboptimal detections. However, simply increasing the threshold
does not enhance detections and often leads to poorer performance, known as the paradox of
high-quality detection (refer to Figure 6.4). This issue arises due to the generation of numerous
false positives by architectures, which are close to true positives but not entirely accurate [50].

Figure 6.4 Decreasing AP for detectors trained with different IoU threshold u. [50]

The problem is caused by generating low-quality candidate boxes by the proposal algorithm.
Increasing the IoU threshold reduces the number of positive training samples significantly, causing
potential overfitting due to a smaller dataset. Moreover, detectors trained with high thresholds
are effective only for high-quality proposals, while the actual proposals by RPN tend to be of
lower quality, resulting in a degradation in detection performance [50].

To tackle this issue, Cai et al. introduced Cascade Mask R-CNN in 2019 [50], an extension
of Mask R-CNN that utilizes multiple IoU thresholds. This framework employs a cascade of
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detection heads, each with an increasing IoU threshold. For instance, a sequence of detectors
could feature thresholds like [0.5, 0.6, 0.7]. Subsequent detectors refine the bounding boxes
generated by earlier ones, while the semantic segmentation branch used for generating masks of
instances is appended only to the last stage, illustrated in the framework diagram in Figure 6.5.

Figure 6.5 Architecture of Cascade R-CNN framework “I” is input image, “conv” backbone convo-
lutions, pool” region-wise feature extraction, “H” network head, “B” bounding box, “S” segmentation
branch and “C” classification. “B0” is proposals. [50]

This approach comes from two observations. detectors can produce high-quality detections
when their quality matches the candidate bounding box inputs closely, and the output IoU of
the bounding box regressor is typically superior to the input IoU, as demonstrated in Figure 6.6.
Thus, improving bounding box quality allows higher threshold detectors without compromising
predictions. Additionally, there is not a substantial reduction in the positive sample distribution
size, and the higher-quality detectors demonstrate less susceptibility to overfitting.

Figure 6.6 Output IoU of a regressor is almost always higher that the input IoU. [50]

It was shown by Cai et. al. that this framework outperforms Mask R-CNN across various
tasks, including bounding box regression, classification, and segmentation mask quality, across
multiple challenging datasets.

6.3.3 Hybrid Task Cascade (HTC)
Later in 2019, Chen et al. introduced a framework called Hybrid Task Cascade (HTC) as
a response to Cascade Mask R-CNN. While Cascade Mask R-CNN displayed substantial im-
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provement in bounding box regression (by 3.5% for bbox AP), the enhancement for instance
segmentation was relatively modest (only 1.2% for AP). The identified issue was the limited flow
of information between the mask branches across different stages. In Cascade Mask R-CNN, the
mask branches solely benefit from improved bounding boxes without receiving any input from
enhanced segmentation masks.

To address this limitation, they introduced the HTC framework, which integrates direct
connections between mask branches. Additionally, they introduced a fully convolutional branch
responsible for semantic segmentation of the input image. This branch extracts crucial features
and information from the input image, and its output is integrated and shared with the mask
branches, as depicted in Figure [51].

Figure 6.7 Hybrid Task Cascade (HTC) framework: “F” stands for input, “RPN” for region
proposal network network, “pool” region-wise feature extraction, “B” bounding box regressor, “M” mask
branch, and “S” semantic segmentation branch.[51]



Chapter 7

Dataset

The following chapter will provide a description and examples of the image data used in this
thesis and their features, along with corresponding segmentation masks, and will discuss the
annotation process. Additionally, it will cover the data pre-processing steps undertaken and
describe the augmentations applied to the dataset.

7.1 Data description
For this thesis, a dataset comprising 419 microscopic images of pancreatic islets, along with
corresponding ground truth annotations was graciously provided by the Laboratory for the Islets
of Langerhans, Experimental Medicine Centre (EMC), Institute for Clinical and Experimental
Medicine (IKEM) in Prague, CZ.

These images were acquired between 2019 and 2022. The islets within the images are stained
red, while the appearance of the exocrine tissue varies across images due to distinct microscope
settings and lighting conditions, presenting in shades ranging from blue, green, white, to orange,
and red. Additionally, each image is accompanied by metadata providing microscope magnifica-
tion details, crucial for accurate islet size and volume calculations.

This dataset exhibits a high level of diversity, encompassing variations in lighting conditions,
microscope settings, magnification levels, and the islet cultures themselves, which differ in islet
count, sizes, and purity. This diversity is visually depicted in Figure 7.1. Notably, the images
occasionally feature non-islet or non-exocrine tissue, and sometimes exhibit defects like bubbles,
hair, or reflections.

Furthermore, each image in the dataset is associated with corresponding ground truth anno-
tations, illustrated in Figure 7.2. These annotations consist of pixel-level segmentation masks,
where pixel intensity values are utilized: ”255” signifies an islet pixel, ”128” denotes exocrine
tissue, and ”0” represents the background.

Over a period of three years, several experts meticulously annotated these images. The an-
notation process involved manual segmentation using image processing software such as Gimp or
ImageJ. In some cases, initial segmentation was performed in ImageJ using thresholding methods,
and subsequent refinement was accomplished manually in Gimp to ensure precise delineation of
islets and exocrine tissue. This hybrid annotation strategy was adopted to streamline the process
while maintaining annotation accuracy.

28
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Figure 7.1 Diversity of microscopic images of pancreatic islets. Images are from the Laboratory for
the Islets of Langerhans, Experimental Medicine Centre (EMC), Institute for Clinical and Experimental
Medicine (IKEM), Prague, CZ
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Figure 7.2 Right: microscopic image of pancreatic islets, left: ground truth annotation made by
an expert. Images are from the Laboratory for the Islets of Langerhans, Experimental Medicine Centre
(EMC), Institute for Clinical and Experimental Medicine (IKEM), Prague, CZ

7.2 Data preprocessing
Initially, the dataset was separated into three subsets: training, validation, and test data, with
a distribution ratio of 330:44:45, respectively. The selection process for the validation and test
sets was performed in a way that preserves the variability of the dataset. Images were divided
in different groups according to the following attributes:

Occurrence of adjacent islets in the image: images with and without adjacent islets

Purity: low purity (< 40%), middle purity (40 − 69%), and high purity (≥ 70%)

Image scale: 0.47, 1.22, 2.36, and 3.76 µm/px

The distribution of these groups, as depicted in 7.3 , highlights a notable imbalance among
them. It is important to include all groups within the validation and test sets to ensure the
network performs effectively across different attributes. Given the challenge of distinguishing
islets encountered in previous and current approaches, it becomes crucial to have an adequate
representation of images containing adjacent islets within the validation and test sets (at least
≥ 40% of the images). Therefore, for the test and validation sets a unique subset of images from
each group were chosen to include all of the groups in both sets.

Figure 7.3 The representation of values for individual attributes in the dataset. Left: number of
images without and with adjacent islets, middle: number of images with low, middle, and high purity,
right: number of images with scale 3.76, 2.36, 1.22, and 0.47 µm/px.

After separating the dataset into training, validation, and test set, the dataset needed to be
preprocessed for the training. The dataset was initially annotated for semantic segmentation,
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which required specific modifications before its use in instance segmentation. First of all, data
includes islets that are adjacent and there is no gap between them. Consequently, the segmenta-
tion masks for these adjacent islets are connected, causing two distinct islets to appear as a single
instance in the segmentation mask. To ensure precise delineation of individual islet instances,
an expert manually separated these instances.

The masks required conversion into the COCO annotation format[53], specifically designed
for instance segmentation annotations. The COCO annotation format is a JSON file that en-
compasses annotations for the complete dataset, organized in a structure demonstrated in Code
listing 7.1.

{
’info ’: {

’description ’: ’pancreatic - islets ’
}
’images ’: [

{
’file_name ’: ’islet_sample_001 .jpg ’,
’height ’: 1536 ,
’width ’: 2048 ,
’id’: 123

},
...

],
’annotations ’: [

{
’segmentation ’: [[735 ,

1201 ,
...
736,
1201]] ,

’area ’: 6599 ,
’iscrowd ’: 0,
’image_id ’: 123,
’bbox ’: [675 , 1201 , 114, 96],
’category_id ’: 0,
’id’: 24

},
...

],

’categories ’: [
{’id’: 0, ’name ’: ’islet ’},

]
}

Code listing 7.1 COCO annotation format for instance segmentation. The ”info” section
provides an overview of the complete dataset, while ”images” contains a list of all images. ”Annotations”
is a list of all annotations across the images, with ”segmentation” referring to the XY coordinates of the
annotation contour. Lastly, ”categories” encompasses a list of all the distinct categories in the dataset.

For each image and individual islet, the contours and bounding boxes were determined using
Python’s OpenCV library[54]. The pixel area of each islet was computed, and subsequently,
the annotations were transformed into the COCO format. However, an issue arose with the
cv2.findContours() function, which utilized 8-way connectivity, leading to most adjacent islets
being connected. To resolve this, the islets were initially separated into individual instances by
using cv2.connectedComponents() with 4-way connectivity. Subsequently, contours were identified
for each connected component, defining individual islets.
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Despite this approach, a manual inspection revealed that the expert’s initial separations
did not accurately isolate all islets. Consequently, manual corrections were made to refine the
separations and the COCO annotations were re-generated based on the corrected masks. After
these adjustments, the data was prepared for the instance segmentation task.

7.3 Data augmentation
Due to the limited size of the dataset (containing only 419 images), additional augmentations were
essential to reduce the risk of overfitting, as typically in instance segmentation tasks, thousands
of images are used for training. Several standard augmentations were implemented, including
various image transformations like rotation, stretching, flipping, and perspective transformations.
These alterations modified the scale of the image, as well as the shape, size, or rotation of the
islets. Moreover, color space transformations such as changes in saturation, brightness, and
contrast were applied to simulate different lighting conditions and microscope settings.

During the model training, it was noted that certain defects were occasionally misclassified as
islets by the neural network. These defects encompassed non-islet or non-exocrine tissue, bubbles,
hair, streaks on glass, and reflections. To minimize misclassification, an augmentation technique
was used to integrate defects into the images. Images containing these defects were obtained for
this thesis together with the microscopic images and their annotations. These defect-containing
images served as background images, onto which islets were added, as depicted in Figure 7.4.

Figure 7.4 Defects addition augmentation - islets are segmented from the original image and place
onto an image with a defect. Left: addition of bubbles, right: addition of reflections. Images are from
the Laboratory for the Islets of Langerhans, Experimental Medicine Centre (EMC), Institute for Clinical
and Experimental Medicine (IKEM), Prague, CZ

Additionally, a specific augmentation was implemented to handle cases where models strug-
gled to recognize small islets, leading to numerous false negative ground truth islets. This
augmentation approach involved selecting a random subset of small islets, augmenting them
through rotation, stretching, and perspective transformation, and then randomly placing these
transformed islets onto background or exocrine tissue pixels in the image, as shown in Figure
7.5.
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Figure 7.5 Small islets addition augmentation. Left: original image, right: image with small islets
added. Images are from the Laboratory for the Islets of Langerhans, Experimental Medicine Centre
(EMC), Institute for Clinical and Experimental Medicine (IKEM), Prague, CZ

The effects of implementing the mentioned augmentations will be discussed in the subsequent
chapter, alongside the outcomes of the conducted experiments.
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Experiments and results

In this chapter, a detailed description of the performed experiments will be provided. This
will encompass a description of the training setup and evaluation metrics. Additionally, this
chapter will explain the chosen algorithms and models for addressing the issue described in
this thesis, along with the reasons behind their selection, as well as the process of training
and parameter configuration. Furthermore, an evaluation of the quality and comparison of
the trained models will be included. Finally, the best model will be chosen and used for the
comparison with the state-of-the-art model in the next chapter.

The primary objective of these experiments is to develop a model capable of accurately identi-
fying individual pancreatic islets within microscopic images-an aspect where previous methods
have faced challenges. The central focus is on refining the Mask R-CNN framework with a
ResNet50 backbone. These experiments involve fine-tuning the hyperparameters of the network
and employing image augmentation techniques. Additionally, alternative backbones within the
Mask R-CNN framework are assessed, alongside the evaluation of other instance segmentation
frameworks.

8.1 Setup
The experiments and training pipeline were implemented through MMDetection v3.2.0[55], a
PyTorch[56]-based framework that contains various modules for instance segmentation models
including frameworks, backbones, as well as schedulers and optimizers tailored for training. The
training was performed on a GPU cluster named ”galdor” within MetaCentrum (MetaVO)[57],
utilizing 4x nVidia A40 GPUs.

MMDetection contains configurations covering multiple frameworks and backbones that were
discussed in the preceding sections. These configurations serve as a basis for experimentation
where certain parameters are fine-tuned for each specific trial outlined in the experimental sec-
tion. The augmentations employed have been detailed in the previous chapter and have been
implemented as modular components that can be readily imported into MMDetection for training
purposes.

Throughout this chapter, all models are evaluated based on their predictions on the validation
dataset comprising 44 images. The subsequent chapter will present a comparative analysis with
the IsletNet model, leveraging the test dataset.

34
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8.1.1 Evaluation metrics
The aim is to find a model that performs well on identifying individual islets, for that a special
metric will be necessary. At first, GT and predicted islets are categorized into four distinct
groups:

Matched islets: GT and predicted islets overlap each other without any other islet inter-
ference.

Incorrectly separated islets: GT (resp. predicted) islets overlap with multiple predicted
(resp. GT) islets or intersect with only one islet, yet the intersected islet overlaps with
multiple GT (resp. predicted) islets.

False positive islets: Predicted islets without any intersection with GT islets.

False negative islets: GT islets without any intersection with predicted islets.

This categorization is crucial for assessing the capability of the model to correctly separate
islets. However, when two islets are erroneously separated, it does not provide information about
the quality of the separation. Due to the absence of a suitable metric capable of evaluating the
accuracy of such separations, a novel approach has been developed for this thesis. Given the
inability of IsletNet model to separate adjacent islets, this approach focuses solely on them. Thus,
a mask containing only adjacent islets is derived from each ground truth mask. The complete
mask undergoes dilation using a 5 x 5 kernel, and any islets connected to others after dilation
are recognized as adjacent and added into the mask of adjacent islets.

Subsequently, a custom metric is calculated within this mask. It identifies all predicted
islets intersecting with each GT islet, calculates IoU for each GT-predicted pair, and selects
the maximum IoU as the primary IoU for the respective GT islet. Then it constructs a curve
(depicted in Figure 8.2), plotting IoU thresholds (ranging from 0 to 1) on the x-axis against the
ratio of GT islets having a maximal IoU surpassing the IoU threshold on the y-axis. Adjacent
islets that are matched or incorrectly separated by the model but exhibit closeness to the correct
separation will display a higher IoU (and AUC) compared to those that are significantly misplaced
or not separated at all, illustrating the concept in Figure 8.1. The area under the curve (AUC)
of this curve will be referred as ”adjGT-maxIoU AUC” and is calculated only for the adjacent
islets obtained by the algorithm described above. The primary aim of this metric is to evaluate
the models on the adjacent islets, which are problematic for the state-of-the-art approach in
pancreatic islet segmentation, and to measure the quality of separating adjacent islets.

Figure 8.1 The maximum IoU is computed for both sets of islets. On the left, the GT islets reveal
a perfect IoU of 1.0, indicating precise overlap. In the middle, although the GT islets are incorrectly
separated, the prediction is close to the GT, resulting in a lower IoU, albeit not drastically low. On the
right, the islets are completely unseparated, resulting in a considerably lower IoU.

Additionally, in comparison of the instance segmentation models, metrics as bounding box
mAP and segmentation mAP are used. As the semantic model cannot be assessed using mAP, an
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Figure 8.2 The GT ratio over IoU metric for the IsletNet model demonstrates a significantly higher
area under the curve (AUC) for islets classified as matched, contrasting with incorrectly separated islets
that exhibit notably lower IoU values.

alternative approach will monitor two additional metrics to characterize the segmentation quality
of the semantic model. This ensures that instance segmentation models do not significantly lag
in segmentation quality. This tracking involves two metrics: ”IoU all,” which computes the IoU
metric on the entire semantic mask, and ”IoU adj,” which calculates the IoU metric solely on
the semantic mask of adjacent islets.

To evaluate the instance segmentation models, the masks of all predicted islets are combined
into a single semantic mask. This allows for the calculation of these metrics for the instance
segmentation model. The IoU metrics will be represented as ”mean ± standard deviation.”

In summary, the key metrics for evaluation include the count of matched islets and the
adjGT-maxIoU AUC, offering crucial insights into the ability of the model in correctly matching
and accurately separating islets. Additionally, the count of false negative islets emerged as
an important metric during the experiments. It was noted that instance segmentation models
struggle with a significant number of false negatives, prompting efforts to mitigate this issue. The
other metrics contribute to a deeper understanding of the behavior and segmentation quality of
the model.

8.2 Perfomance of the IsletNet model
The IsletNet model, trained on the 330 training images, was evaluated on the validation set to
provide a benchmark for the experiments with instance segmentation models. It achieved an
IoU of 0.836 ± 0.071 on the entire mask and 0.834 ± 0.210 on the adjacent islets, indicative of
commendable performance.

Following the application of the watershed transform on the masks of the IsletNet model,
notable changes occurred. There was an apparent enhancement in the quality of islet separation,
as evidenced by the improvement in the GT-maxIoU AUC, along with a slight reduction in the
number of incorrectly separated islets, as showed in Table 8.1.
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Table 8.1 Comparison of the performance of IsletNet model with and without Watershed transform

Watershed
transform

Matched islets Incorrectly sepa-
rated islets

FP islets FN islets adjGT-maxIoU
AUC

False 1256 195 169 128 0.513
True 1261 189 169 129 0.6462

8.3 Initial model
The initial model, serving as the foundation for further experiments, is a Mask R-CNN with a
ResNet50 backbone trained on a COCO-based dataset using schedule 1x. The settings for the
default Mask R-CNN are as follows:

Backbone: ResNet50 with 4 stages pretrained on the ImageNet dataset[58]

Anchor Generator in RPN: Scales=[8], Ratios=[0.5, 1.0, 2.0]

Proposals: RPN with NMS settings of 1000 proposals and IoU threshold of 0.7

ROI Head: SingleRoIExtractor with RoIAlign of output size 7 for bounding box feature
extraction

Mask Head: FCN with 4 convolutional layers, and output of mask prediction for pancreatic
islets

Bbox head: 2 FC layers that are shared across all RoIs, and output of bounding box
regression for pancreatic islets

The training process is epoch-based, set to run for a maximum of 12 epochs. Two learning rate
scheduling methods are employed. First, a LinearLR schedule is used with a starting learning rate
of 0.001, maintained for 500 iterations (not epochs). Second, a MultiStepLR schedule reduces
the learning rate at specified milestones during the training. The milestones are set at epochs 8
and 11, where the learning rate decreases by a factor of 0.1. Stochastic Gradient Descent (SGD)
is chosen as the optimizer with a learning rate of 0.02, momentum of 0.9, and weight decay of
0.0001.

The training set comprises 330 images sized 2048 x 1536. To prepare the data for training,
the default dataloader applies random flip augmentation with a probability of 0.5 and utilizes a
batch size of 2 during the training process.

8.4 Experiments

8.4.1 Initial model optimization
The initial model detailed above, having bbox mAP 0.479 and segmentation mAP 0.442, ex-
hibited suboptimal performance, primarily due to a notable presence of false negative islets.
About 415 (26.3%) GT islets were classified as false negatives (compared to 129 (8.1%) of FN of
the IsletNet model). This problem was observed especially in smaller islets, where 78% of islets
smaller than 50µm and 10% of islets between 50−100µm were false negative. On the other hand,
only 29 (2.5%) islets were classified as false positive in comparison with the IsletNet model with
169 (10.5%) false positive islets. Furthermore, the model demonstrated the potential of instance
segmentation in accurately delineating individual instances, as evidenced by the adjGT-maxIoU
AUC (0.5869).
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8.4.1.1 Hyper-parameter tuning
The presence of numerous false negative islets might be attributed to the limitation posed by
having only one anchor scale. Having only one anchor scale can cause false negatives as it limits
the ability of the model to detect objects of different sizes effectively. With a single scale, some
objects might not fit well within the generated bounding boxes, leading to missed detections
or incorrect identification. Using multiple anchor scales may help to improve the ability of the
model to detect objects of various sizes, reducing false negatives, in this case for smaller objects.
Subsequently, three models were trained: one with scales = [4, 8], a second with scales = [2, 4, 8],
and a third with scales = [1, 2, 4, 8].

All these new scale settings led to reductions in false negatives. Model with scales = [4, 8]
has 345 (21.8%) false negative GT islets, model with scales = [2, 4, 8] 324 (20.5%), and model
with scales = [1, 2, 4, 8] 313 (19.8%) demonstrating the most promising performance. This con-
figuration demonstrated superior performance across all metrics, with the exception of the false
positive islets count, as outlined in Tables 8.2 and 8.3. Due to its overall better performance, it
was selected as the base model for subsequent experiments.

Table 8.2 Comparison of initial Mask R-CNN model across various anchor scale settings.

Model Matched
islets

Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

Initial 1068 96 29 415 0.5869
scales = [4, 8] 1141 93 36 345 0.5791
scales = [2, 4, 8] 1159 96 42 324 0.5953
scales = [1, 2, 4, 8] 1176 90 31 313 0.5985

Table 8.3 Assessment of the mAP and IoU metrics across the initial Mask R-CNN model, evaluating
the impact of different anchor scale settings.

Model bbox mAP segm mAP IoU all IoU adj
Initial 0.479 0.442 0.814 ± 0.060 0.784 ± 0.213
scales = [4, 8] 0.507 0.458 0.807 ± 0.067 0.780 ± 0.196
scales = [2, 4, 8] 0.509 0.458 0.811 ± 0.068 0.788 ± 0.199
scales = [1, 2, 4, 8] 0.516 0.463 0.822 ± 0.051 0.766 ± 0.463

While modifying anchor scales provided some improvements, the issue of false negative islets
persisted significantly. Another strategy employed to alleviate this problem involved increasing
the number of proposals generated by the Region Proposal Network (RPN). By expanding the
proposal count, the model could gain better coverage across potential object regions in images,
which can enhances recall by capturing more potential instances, particularly smaller or less
distinct objects that might otherwise be overlooked. By increasing the number of proposals
by the RPN from 1000 to 1500, the amount of false negative islets decreased to 287 (18.2%).
However, this adjustment also resulted in a slight rise in false positive islets, from 31 (2.4%) to
46 (3.5%), and decrease of the adjGT-maxIoU AUC from 0.5985 to 0.5881.

An alternative method to enhance the performance of the model involves conducting exper-
iments with different training schedules and adjusting the learning rate. Due to the limited
number of training images (330 images), training for only 12 epochs might not suffice for the
network to comprehensively learn the features relevant to islet segmentation. Hence, an extended
training schedule 2x (24 epochs) was employed. While most settings remained unchanged, dis-
tinct milestones (16 and 22) were incorporated to adjust the learning rate by a factor of 0.1.
Furthermore, varying learning rate values (0.02, 0.01, 0.005, and 0.025) were utilized under
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this setting. This extended schedule aimed to allow the network more time for learning islet
segmentation features, potentially improving performance.

The comparison between the base model employing anchor scales of [1, 2, 4, 8] and the various
learning rates using the 2x training schedule, is showed in Tables 8.4 and 8.5. The outcomes
indicate that the model with a learning rate of 0.0025 was insufficient demonstrating lower values
of almost all metrics. Models trained with other learning rates demonstrated improved capabili-
ties in minimizing false negative islets, enhancing the count of matched islets and improving the
segmentation of adjacent islets as evident from higher adjGT-maxIoU AUC. Specifically, models
trained with learning rates of 0.01 and 0.005 displayed the most promising results, yielding 288
and 291 false negative islets alongside 1200 and 1189 matched islets, respectively. Consequently,
despite more false negatives, these models closely approached 1261 matched islets by IsletNet,
indicating an improved ratio of correctly identified to incorrectly separated islets for instance
segmentation models.

Table 8.4 Comparison of base model with anchor scales = 1, 2, 4, 8 alongside various learning rates
with the 2x training schedule.

Model Matched
islets

Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

Base model 1176 90 31 313 0.5985
lr = [0.02] 1189 89 46 301 0.6260
lr = [0.01] 1200 91 42 288 0.6251
lr = [0.005] 1189 99 38 291 0.6088
lr = [0.0025] 1156 101 27 322 0.5709

Table 8.5 Evaluation of the mAP and IoU metrics on the base model with anchor scales = 1, 2, 4,
8 using different learning rates using schedule 2x.

Model bbox mAP segm mAP IoU all IoU adj
Base model 0.516 0.463 0.822 ± 0.051 0.766 ± 0.244
lr = [0.02] 0.506 0.458 0.817 ± 0.060 0.779 ± 0.242
lr = [0.01] 0.520 0.470 0.824 ± 0.053 0.798 ± 0.188
lr = [0.005] 0.524 0.474 0.820 ± 0.055 0.782 ± 0.198
lr = [0.0025] 0.514 0.466 0.812 ± 0.053 0.746 ± 0.233

8.4.1.2 Data augmentations
An alternative strategy to enhance the predictions of a model trained on a limited dataset involves
integrating image augmentations during the training phase. Several experiments employing
augmentations outlined in the preceding chapter were conducted to enhance the performance of
the model.

Initially, one experiment (model A1) aimed at addressing the high incidence of false nega-
tive predictions by introducing random small islets into images with a probability of 0.5. Sub-
sequently, another experiment (model A2) integrated rotations (probability 0.2), perspective
transforms (probability 0.2), image stretching (probability 0.1), and flips (probability 0.2) as aug-
mentations. A subsequent experiment (model A3) incorporated background replacement with
defects (probability 0.05), flips (probability 0.2), saturation changes (probability 0.1), bright-
ness changes (probability 1), and contrast variations (probability 1). Lastly, a final experiment
(model A4) merged the two previously mentioned experiments into a unified augmentation strat-
egy comprising of mentioned augmentations except adding small islets to the image.
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The augmentation that introduced extra islets into an image did not enhance the islet seg-
mentation performance. Instead, there was a small increase of in the number of false negative
islets from 313 (19.8%) to 320 (20.2%), accompanied by a reduction in the adjGT-maxIoU AUC
as well as most of the other metrics. Furthermore, it caused a significant increase in the data
preprocessing time from 2 minutes per epoch to 21 minutes. As a result, this augmentation
method seems to offer no discernible advantages for enhancing the performance of the model in
islet segmentation.

Likewise, as showed in Tables 8.6 and 8.7, the remaining augmentation experiments resulted
in an increase in the count of false negative islets and a deterioration in the adjGT-maxIoU AUC
and other evaluation metrics. However, it is important to note that only a limited number of
experiments were conducted focusing various data augmentations and the experiments combined
multiple augmentations at once. Therefore, future experiments should focus on individually
evaluating the benefits of each augmentation separately to better understand their impact on
the performance of the model.

Table 8.6 Comparison of base model with anchor scales = 1, 2, 4, 8 and different augmentation
strategies.

Model Matched
islets

Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

Base model 1176 90 31 313 0.5985
Model A1 1173 86 37 320 0.5965
Model A2 1154 95 37 330 0.5835
Model A3 1165 87 43 327 0.5883
Model A4 1134 91 44 354 0.5735

Table 8.7 Comparison of the mAP and IoU metrics on the base model with anchor scales = 1, 2, 4,
8 using various data augmentation strategies.

Model bbox mAP segm mAP IoU all IoU adj
Base model 0.516 0.463 0.822 ± 0.051 0.766 ± 0.244
Model A1 0.507 0.461 0.813 ± 0.057 0.788 ± 0.190
Model A2 0.507 0.460 0.812 ± 0.068 0.788 ± 0.190
Model A3 0.504 0.463 0.810 ± 0.069 0.767 ± 0.546
Model A4 0.507 0.461 0.806 ± 0.084 0.782 ± 0.200

8.4.2 Other backbones and frameworks
8.4.2.1 Mask R-CNN backbones
The subsequent experiments were performed using the base model configuration with scales =
[1, 2, 4, 8], incorporating different backbone architectures. Specifically, three distinct backbones
were tested: ResNet101, ResNeXt101 featuring a cardinality of 32, both comprising 4 stages
and pretrained on the ImageNet dataset. Additionally, the experimentation included the Swin-
T transformer, characterized by an embedding dimension of 96 and a hierarchical structure
consisting of four stages. Each stage was equipped with varying numbers of transformer layers
(2, 2, 6, 2) and employed different counts of attention heads (3, 6, 12, 24). Similar to the previous
backbones, the Swin-T was also pretrained on the ImageNet dataset.

Neither ResNet101 nor Swin-T showed performance improvements as evident from Tables
8.8 and 8.9. In fact, both models exhibited deteriorated results in islet segmentation. With
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ResNet101, the count of false negative islets surged to 331, while the adjGT-maxIoU AUC slightly
decreased, as well as the count of matched islets and other associated metrics worsened. Similarly,
employing the Swin-T model led to an increase in false negative islets to 363, a significant decline
in the adjGT-maxIoU AUC, a reduction in matched islets count, and overall deterioration in
segmentation quality.

On the other hand, the ResNeXt101 backbone exhibited notable improvements in the perfor-
mance of the model. It notably decreased the count of false negative islets to 283 (17.9%) while
simultaneously increasing the number of matched islets and adjGT-maxIoU AUC. Additionally,
it demonstrated enhanced results in both bbox and segmentation mAP.

Table 8.8 Comparison of various backbones employed in the Mask R-CNN framework.

Backbone Matched
islets

Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

ResNet50 1176 90 31 313 0.5985
ResNet101 1158 90 39 331 0.5951
ResNeXt101 1192 104 54 283 0.6069
Swin-T 1094 122 24 363 0.5551

Table 8.9 Assessment of the mAP and IoU metrics across the initial Mask R-CNN framework,
evaluating the impact of using different backbones.

Backbone bbox mAP segm mAP IoU all IoU adj
ResNet50 0.516 0.463 0.822 ± 0.051 0.766 ± 0.244
ResNet101 0.506 0.458 0.812 ± 0.068 0.786 ± 0.190
ResNeXt101 0.521 0.470 0.818 ± 0.075 0.773 ± 0.250
Swin-T 0.515 0.470 0.806 ± 0.065 0.777 ± 0.182

8.4.2.2 Cascade Mask R-CNN and HTC
Apart from more complex backbones, the results of the model can be improved by using more
complex frameworks such as Cascade Mask R-CNN or HTC. Initially, Cascade Mask R-CNN was
trained with the same ResNet50 backbone utilized in the initial model. This model architecture
contains an RPN utilizing anchor generators with scales set to [1, 2, 4, 8], ratios as [0.5, 1.0, 2.0],
and employing NMS settings of 1000 proposals and an IoU threshold of 0.7 for region proposal.
It incorporates a Cascade RoI Head with three stages, each equipped with a shared 2-layer fully
connected (FC) bounding box head. Noteworthy is the use of different loss weights [1, 0.5, 0.25]
across cascade stages, aiding in the refinement of bounding box predictions at each stage of the
cascade process.

The HTC framework employs the same ResNet50 backbone alongside the RPN and bbox head
configurations. Additionally, the model is equipped with an HTCMaskHead for mask prediction,
structured across three stages, each consisting of four convolutional layers, with mask sizes set
to 28. Furthermore, the architecture integrates a semantic head composed of four convolutional
layers to extract semantic segmentation mask from the input images that is subsequently passed
to the all the stages of the HTCMaskHead.

The HTC framework managed to achieve the highest bbox mAP (0.537) and mask mAP
(0.48). However, while these metrics exhibited considerable improvement, other crucial aspects
like the number of false negatives and matched islets presented noticeably worse results compared
to the Mask R-CNN model. Similarly, employing Cascade Mask R-CNN did not yield significant
performance enhancements. Additionally, training these more complex frameworks—Cascade
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Mask R-CNN and HTC—required more time compared to the Mask R-CNN framework, with
Cascade Mask R-CNN taking 1.2 times longer and HTC requiring 1.3 times more time for
training.

It is important to note that the less favorable results obtained from these different frameworks
do not necessarily imply their unsuitability for addressing the pancreatic islet separation problem.
Conducting numerous experiments aimed at fine-tuning various hyperparameters within these
frameworks is essential to decisively evaluate their effectiveness in pancreatic islet separation.
However, due to scope limitations in this thesis, this optimization was not pursued, leaving an
opportunity for further research in the future.

Table 8.10 Comparison of various instance segmentation frameworks.

Framework Matched
islets

Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

Mask R-CNN 1176 90 31 313 0.5985
Cascade Mask
R-CNN

1098 90 21 391 0.5876

HTC 1107 97 24 375 0.5830

Table 8.11 Assessment of the mAP and IoU metrics across various instance segmentation frameworks.

Framework bbox mAP segm mAP IoU all IoU adj
Mask R-CNN 0.516 0.463 0.822 ± 0.051 0.766 ± 0.244
Cascade Mask R-CNN 0.517 0.461 0.813 ± 0.070 0.770 ± 0.240
HTC 0.537 0.480 0.811 ± 0.070 0.761 ± 0.258

8.4.3 Selection of the best model
The model chosen as the basis for experimentation was the Mask R-CNN framework, integrating
the ResNet50 backbone with the initial configurations outlined in preceding sections, albeit with a
specific modification - adjusting anchor scales to a value of scales = [1, 2, 4, 8]. Although no other
model emerged as superior across all metrics, several showcased commendable performance in
pivotal metrics vital for this task, such as the count of correctly matched islets and adjGT-maxIoU
AUC. Considering the challenge posed by a high count of false negative islets, the reduction of
these inaccuracies holds significant importance. The comparison of the top-performing four
models is delineated in Table 8.12.

Table 8.12 Comparison of the four top-performing models.

Model Matched
islets

Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

Base model 1176 90 31 313 0.5985
RPN proposals
= 1500

1194 98 46 287 0.5881

LR = [0.01] 1200 91 42 288 0.6251
ResNeXt101 1192 104 54 283 0.6069

An additional experiment was conducted by combining the features of the best-performing
models aimed to leverage their effective traits. Three additional networks were trained, all
using the Mask R-CNN framework with the ResNeXt101 backbone and the anchor scales setting
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scales = [1, 2, 4, 8]. The initial model (referenced as model RNX 1) employed the schedule 2x
with a learning rate of 0.01 and had 1500 RPN proposals. The second model (model RNX 2)
employed only the schedule 2x with a learning rate of 0.01. Lastly, the third model (RNX 3)
solely adjusted the number of RPN proposals to 1500.

Table 8.13 Comparison of the models combining features of the four top-performing models.

Model Matched
islets

Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

RNX 1 1221 107 67 251 0.6397
RNX 2 1236 92 61 251 0.6283
RNX 3 1212 101 46 266 0.6059

Upon comparison of the outcomes presented in both Tables 8.12 and 8.13, the RNX 2 model
emerges as the most promising. It excels particularly in the count of matched islets and false
negative islets, demonstrating remarkable performance. While it slightly increases the count
of incorrectly separated islets to 92, this figure remains close to the best result achieved in
this metric (90 islets). Although it ranks as the second highest in the count of false positive
islets (61 islets), this increase is relatively less impactful considering the substantial reduction in
false negative islets compared to the IsletNet model, which recorded 169 FP islets. Moreover,
while there is a slight decline in adjGT-maxIoU AUC, the better ratio of matched, incorrectly
separated, false positive, and false negative holds greater significance.

Before directly comparing this model to the IsletNet model, a final assessment was conducted.
The bbox head generates a score with each bounding box, typically set to a default threshold of
0.5, filtering out instances with scores below this threshold. Lowering this score threshold accepts
more instances, leading to a decrease in false negative islets and an increase in false positive islets
count. The IsletNet model recorded significantly higher false positive islets (169 islets) compared
to RNX 2 (61 islets), while the false negative islets of the IsletNet model were notably lower (129
islets) compared to RNX 2 (251 islets). This knowledge suggests the possibility of reducing the
threshold to minimize the count of FN islets while increasing FP, yet ensuring that the count
of FP islets remains lower than that of the IsletNet model. Therefore, an analysis of different
thresholds was conducted and is presented in Table 8.14.

Table 8.14 Comparison of various bbox score thresholds and their influence on islets segmentation
results.

Threshold Matched
islets

Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

T 0.5 1236 92 61 251 0.6283
T 0.4 1261 96 80 222 0.6374
T 0.3 1284 96 102 199 0.6453
T 0.2 1307 98 139 174 0.6477
T 0.15 1322 101 160 156 0.6494
T 0.1 1343 103 184 133 0.6567

For the final evaluation, the model with bbox score threshold of 0.15 was selected. This choice
ensured that the count of false positive islets remained lower compared to the IsletNet model,
while significantly reducing the number of false negative islets.



Chapter 9

Comparison with the
state-of-the-art model

This chapter will show a comparative analysis of the finest model proposed in this thesis and
the current state-of-the-art approach, the IsletNet model.

In the final comparison, both the state-of-the-art model IsletNet and the model with the best
performance in the experimental section were evaluated using the test set comprising 45 images.
The evaluation metrics employed for these models remain consistent with those utilized in the
experimental section, incorporating an additional IoU metric to compare the semantic masks
produced by the two models.

The findings presented in Tables 9.1 and 9.2 highlight the promising outcomes achieved by
the proposed instance segmentation model in discerning individual instances of pancreatic islets.
Although the proposed model detected slightly fewer GT islets (1865 of 2036 GT islets) compared
to the IsletNet model (1894 of 2036 GT islets), it successfully matched 91.2% of the identified
islets, in contrast to the IsletNet model with Watershed transform that matched 86.3% of the
GT islets. Therefore, despite encountering difficulty in identifying all GT islets, resulting in a
higher count of false negative islets (181 compared to 142 from IsletNet), the proposed network
identified the islet instances more precisely than applying Watershed transform on segmentation
masks from the IsletNet model. Additionally, the proposed model demonstrates a substantially
higher adjGT-maxIoU AUC compared to the IsletNet model with Watershed. This evidence
reinforces the assertion that the proposed model excels in accurately segregating adjacent islets
while maintaining comparable semantic segmentation quality, as reflected by the IoU metrics.
Examples of the difference in the ability to distinguish individual islets by both networks are
visually compared in Figures 9.1 and 9.2.

Table 9.1 Comparison of IsletNet model with Watershed transform and the proposed instance
segmentation model.

Model Matched islets Incorrectly sep-
arated islets

FP islets FN islets adjGT-maxIoU
AUC

IsletNet 1649 245 242 142 0.4830
IsletNet +
Watershed

1635 259 248 142 0.6166

Proposed
model

1702 153 177 181 0.6549
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Table 9.2 Comparison of IsletNet model with Watershed transform and the proposed instance
segmentation model using IoU metrics.

Model IoU all IoU adj
IsletNet 0.833 ± 0.085 0.803 ± 0.206
IsletNet + Watershed 0.833 ± 0.085 0.803 ± 0.206
Proposed model 0.825 ± 0.065 0.779 ± 0.198

Nevertheless, although the proposed model exhibited improvements in distinguishing indi-
vidual islet instances, it is noteworthy that the count of false negative islets remains relatively
high. This is particularly noticeable in the case of smaller islets, where 27.4% of those under
50µm and 9% within the range of 50 − 100µm were classified as false negatives. To address
this issue, further experiments are necessary. One potential approach could involve modifying
the loss function to add more weight to the segmentation of smaller islets, potentially improving
their detection and reducing false negatives.

Figure 9.1 The comparison between the islet contours identified by the IsletNet model, processed
with the Watershed transform, and those delineated by the proposed model shows improved islet sepa-
ration with the proposed model. However, the proposed model presents a higher count of false negative
islets. Original image and GT mask are from the Laboratory for the Islets of Langerhans, Experimental
Medicine Centre (EMC), Institute for Clinical and Experimental Medicine (IKEM), Prague, CZ.

Additionally, it is important to highlight that while both networks exhibited comparable
IoU across the images, the proposed instance segmentation model encountered challenges in
accurately segmenting the islet boundaries. This discrepancy might not significantly lower the
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Figure 9.2 Comparison between the islet contours identified by the IsletNet model with Watershed
transform and those detected by the proposed model highlights a significant difference in identifying
adjacent islets. The IsletNet model, even after applying the Watershed transform, failed to separate
the three adjacent islets. In contrast, the proposed model effectively distinguished and clearly separated
these islet instances. Original image and GT mask are from the Laboratory for the Islets of Langer-
hans, Experimental Medicine Centre (EMC), Institute for Clinical and Experimental Medicine (IKEM),
Prague, CZ.

IoU but is noticeable upon visual examination of the segmentation, as illustrated in Figure
9.3. This limitation could be attributed to the relatively small mask segmentation head, which
comprises only 4 convolutional layers, in stark contrast to the 18-layered IsletNet. Enhancing
the accuracy in segmenting the islet boundaries could potentially be achieved by employing a
more complex convolutional network within the mask head.

Moreover, the experiments primarily addressed a prominent issue observed in current ap-
proaches, namely the challenge in accurately segmenting individual islets when they are adja-
cent. As a result, the focus did not extend to segmenting the exocrine tissue. Therefore, an
useful enhancement would involve training the network to discern exocrine tissue in addition to
pancreatic islets.

In conclusion, the objective set for the experiments, which aimed to develop a model capable
of more effectively segmenting adjacent islets, has been achieved. Nonetheless, the current state-
of-the-art IsletNet model, employing the watershed transform, remains irreplaceable with the new
approach due to three primary limitations observed in the proposed model. These limitations
encompass imprecise segmentation of islet boundaries, a higher count of false negative islets, and
the incapability to segment exocrine tissue. Addressing these limitations would require additional
research and further experimentation.
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Figure 9.3 Comparison of the delineation of the islet borders made by IsletNet and the proposed
model. Original image and GT mask are from the Laboratory for the Islets of Langerhans, Experimental
Medicine Centre (EMC), Institute for Clinical and Experimental Medicine (IKEM), Prague, CZ.



Discussion

The experiments based on the default configuration of the Mask R-CNN framework with a
ResNet50 backbone, albeit with adjustments in the number of object classes and input resolution.
However, this configuration is designed for instance segmentation tasks on the COCO dataset,
characterized by 80 object classes and an thousands of training images. In contrast, the dataset
employed in this thesis comprises only two classes (pancreatic islets and exocrine tissue) and a
significantly smaller set of 330 images. Consequently, the configuration of the network, including
the training schedule, might not be optimally suited for this dataset. Therefore, conducting
further experiments and fine-tuning different parameters is necessary to evaluate their impact
on the performance of the model.

Moreover, employing cross-validation could provide a more accurate estimation of the ef-
fects of various configurations. Nevertheless, this approach can be exceedingly time-consuming,
particularly when dealing with high-resolution image data. Due to this time constraint, cross-
validation was not utilized in this thesis. The primary objective was to explore whether instance
segmentation models have the potential to outperform the state-of-the-art semantic segmentation
model with watershed transform applied to its predicted masks. Hence, the approach focused
on swiftly exploring the influence and potential of diverse configurations, backbones, and frame-
works. The intent was to lay the groundwork for further research to conduct more sophisticated
and novel experiments building upon these initial explorations.

The initial experiments revealed that instance segmentation models encounter difficulties in
accurately identifying small objects, resulting in numerous false negative ground truth islets.
Consequently, subsequent experiments were primarily aimed at diminishing the count of false
negative islets while sustaining or enhancing the ability to correctly separate individual islet
instances. Certain experiments displayed advancements, notably by extending the range of
anchor generator scales in the Region Proposal Network (RPN), increasing the quantity of RPN
proposals, extending the number of training epochs alongside with a reduction in the learning
rate, and adopting a more complex backbone architecture - ResNeXt101.

Conversely, certain experiments did not yield improvements in the performance for the model.
Specifically, attempts involving image augmentations, a transformer backbone, and the utilization
of more complex frameworks like Cascade Mask R-CNN and HTC did not exhibit noticeable
enhancements. The probable cause may not lie in the unsuitability of these approaches for this
problem, but rather in the absence of comprehensive experiments examining the influence of each
augmentation or the lack of hyperparameter tuning for alternative backbones and frameworks.
Conducting such in-depth experiments would require a considerable amount of time, which falls
beyond the scope of this thesis. Subsequent studies could concentrate on evaluating the specific
influence of individual augmentations and refining the optimization of the more sophisticated
backbones and frameworks.

The final experiments combined the features that enhanced the performance of the model.

48
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The top-performing model was a Mask R-CNN framework incorporating ResNeXt101, anchor
scales of [1, 2, 4, 8], and schedule 2x with a learning rate set at 0.01. This model underwent
assessment by varying bbox score thresholds, and the most optimal threshold was selected based
on a criterion: it ensured a lower count of false positive islets compared to IsletNet and minimized
the count of false negative islets. Ultimately, the threshold of 0.015 was identified as the most
suitable configuration, and it was chosen for the final comparison with the state-of-the-art model.

In comparison to the IsletNet model utilizing the watershed transform, the proposed instance
segmentation model exhibited superior performance in correctly delineating individual islets.
Notably, the IsletNet model failed to accurately separate 12.7% of the ground truth islets, whereas
the proposed model reduced this error significantly to 7.5%. However, while showcasing promising
advancements, the proposed model cannot entirely replace the IsletNet model due to its existing
limitations. These limitations encompass a notable count of false negative islets (181 for the
proposed model compared to 142 for the IsletNet model), less precise segmentation masks along
the boundaries of the islets, and the absence of training for the segmentation of exocrine tissue
alongside pancreatic islets.

The limitations of the proposed model can be eliminated by further experiments. Issue with
high number of false negative islets could be improved by introducing new loss weighted function
that will add more weight to the small islets making them more important for the network
training. Additionally, further experiments with augmentation, more hyperparameter tuning of
Mask R-CNN framework utilizing other backbones or fine-tuning other instance segmentation
also can have impact on the number of false negative islets. The accuracy of the islet masks
could be improved by implementing deeper, more complex CNN in the mask segmentation head.

Training the network to delineate exocrine tissue presents challenges due to its lack of forma-
tion into individual instances. The COCO format for instance segmentation typically supports
masks accommodating multiple instances, which could be explored for representing exocrine tis-
sue. Alternatively, implementing and experimenting with panoptic segmentation models might
offer a solution. These models are specifically engineered to distinguish between objects that pos-
sess individual instances (such as pancreatic islets) and elements that do not exhibit individual
instance characteristics (like exocrine tissue).

Lastly, it is noteworthy that annotating images poses a significant challenge due to its time-
consuming nature, resulting in a limited number of available training images. Furthermore,
variations in annotations can arise not only between different experts but also within annotations
made by a single expert over time. This discrepancy is especially evident in the task of delineating
individual islets. While some separations are clear and straightforward to annotate, in many
instances, discerning whether the structures in the microscopic image represent one or two islets
is not always evident. This ambiguity complicates the task for annotators to achieve perfect and
consistent annotations. Consequently, this discrepancy can hinder the development of a network
trained to perform exceptionally well on the dataset. Inconsistencies in annotating whether
islets are separated in the same dataset can vary, impacting the ability of the network to identify
consistent patterns due to differing annotations.



Conclusion

The primary objective of this thesis is the segmentation of pancreatic islets from microscopic
images. The goal was to analyze the current solution, IsletNet, that uses the UNet semantic
segmentation model, identify its weaknesses, and propose and implement an improved model to
addresses these shortcomings.

In the theoretical part (Chapters 1-6), the thesis describes the theoretical aspects related to
pancreatic islet transplantation, emphasizing the significance of automating the segmentation
of islets from microscopic images and subsequently computing their parameters, particularly
volume estimation. Furthermore, it examines the current state of research in automating the
segmentation process and describes one of the most promising solution, IsletNet. The theoret-
ical part also delves into the principles and architectures of convolutional neural networks and
transformers employed for image processing tasks. Finally, the semantic architecture UNet and
the most commonly used frameworks and architectures of instance segmentation are described.

The practical part (Chapters 7-9) begins with the description, analysis and preprocessing of
microscopic images of pancreatic islets, provided by the Laboratory for the Islets of Langerhans,
Experimental Medicine Centre (EMC), Institute for Clinical and Experimental Medicine (IKEM),
Prague, CZ. It also provides details of the implementation of instance segmentation models
using the MMDetection framework, along with description of the conducted experiments and
their evaluation using the validation dataset. The concluding part involves comparing the best-
performing model and IsletNet including suggestions for a further improvement of the proposed
model.

After the IsletNet model analysis, it turned out that the most significant limitation was the
inability of the model to separate individual islet instances, resulting into connecting several
adjacent islets into a single islet. Consequently, this led to an overestimation of islet volumes, a
critical factor in evaluating the quality of islet samples. In response to this issue, the proposed
solution involves the implementation of an instance segmentation model. These models are
designed to differentiate between individual instances, generating separate segmentation masks
for each instance rather than creating one binary mask for the entire input image.

Through a series of experiments, the Mask R-CNN architecture with a ResNet50 backbone
was implemented, and various hyper-parameters were fine-tuned. The most notable enhancement
over the default settings of Mask R-CNN within the MMDetection framework was achieved by
expanding the range of anchor generator scales in the Region Proposal Network (RPN) head.
This adjustment notably improved the recall of the predictions of the model. Additionally,
experiments with different backbones of the Mask R-CNN framework were performed as well as
the application of other more complex frameworks such as Cascade mask R-CNN and HTC.

The comparison between the best-performing model and IsletNet revealed that Mask R-CNN
outperforms IsletNet with watershed transform in distinguishing individual islet instances. On
the test set of 45 images and 2036 pancreatic islets in total, IsletNet with the watershed transform,
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demonstrated a rate of incorrectly separated islets of 12.7% among the ground truth islets. In
contrast, Mask R-CNN exhibited a lower rate of incorrectly separated islets of 7.5% among the
ground truth islets, while maintaining a similar semantic segmentation quality, with an IoU score
of 0.825 ± 0.065, slightly below the IoU score of 0.833 ± 0.085 of the IsletNet.

Nevertheless, the proposed model is not yet capable of entirely replacing the IsletNet model
due to three limitations: a higher count of false negative islets (8.9% of the GT islets compared
to IsletNet’s 7%), less precise segmentation of islet boundaries, and the lack of training of the
model to recognize exocrine tissue.

However, unexplored strategies not incorporated in this thesis could enhance the instance
segmentation model. Improving mask precision might involve implementing a deeper and more
complex mask head. Addressing the false negative issue might require modifications in the
loss function, such as assigning more weight to smaller islets. Exploring more sophisticated
frameworks and backbones could also assist in mitigating this problem. Additionally, training
the model to segment exocrine tissue might involve experimenting with converting the mask
for an instance segmentation task or implementing a panoptic segmentation approach. These
approaches could potentially lead to a further advancements in refining the proposed model.
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Concents of the media attachment

README.md.txt........................description of the contents and how to run the code
data preparation..........................directory with scripts for image preprocessing
evaluation......................................Jupyter notebooks for model evaluation
model predictions ............................. directory with the predictions all models
thesis...............................................folder containing the written thesis
training

augmentations........................directory with implemented data augmentations
configs ................................. folder containing configurations of all models
local scripts................................. scripts for running the training locally
metacentrum scripts ................ scripts for running the training on MetaCentrum

utils......................................directory with helper functions and constants
visualization ............... scripts for visualization of the instance segmentation results
work dirs...........................................directory with saved trained models
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