
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Multichannel USB time-to-digital interface

Bc. Vojtěch Nevřela

Ing. Jaroslav Borecký, Ph.D.

Informatics

Design and Programming of Embedded Systems

Department of Digital Design

until the end of summer semester 2024/2025

Instructions

Design and implement a multichannel time-to-digital converter connected to a PC via

USB3 interface based on the TDC-GPX2 chip. The chip samples the inputs and generates a

timestamp for each pulse detected. The timestamps are aggregated in a FPGA and sent

to PC, where an application saves them to disk. The FPGA is also responsible for sending

configuration from PC to all the other chips (TDC, reference DAC). The device should

provide at least 4 channels and the interface between the TDC and FPGA should run at

least at 100 MHz SDR. Time synchronization should be based on an externally provided

clock signal.

Electronically approved by prof. Ing. Hana Kubátová, CSc. on 21 September 2023 in Prague.

Master’s thesis

PROGRAMMABLE
GENERATOR OF
SYNCHRONOUS PULSE
SEQUENCES

Bc. Vojtěch Nevřela

Faculty of Information Technology
Department of Digital Design
Supervisor: Ing. Jaroslav Borecký, Ph.D.
January 10, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Vojtěch Nevřela. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Nevřela Vojtěch. Programmable generator of synchronous pulse sequences. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Abbreviations ix

Introduction 1

1 Theory of time-to-digital converter operation 2
1.1 Coarse measurement . 2
1.2 Fine measurement approaches . 3

1.2.1 Analogue method . 3
1.2.2 Digital delay line method . 4
1.2.3 Vernier method . 4

1.3 Hybrid approaches . 5

2 Existing solutions 6

3 Analysis and approach selection 10
3.1 TDC-GPX2 - mode of operation . 10
3.2 Hardware selection . 11

3.2.1 FPGA selection . 12
3.2.2 Interface library . 12

4 Hardware 14
4.1 TDC - FPGA data format . 17
4.2 Price breakdown . 18

5 Communication 19
5.1 Configuration . 19

5.1.1 General module . 19
5.1.2 SPI module . 22

5.2 Process of retrieving sample data . 24
5.2.1 Sample format . 25

6 FPGA design 26
6.1 Code . 27

6.1.1 Configuration facilities . 27
6.1.2 Channel logic . 28
6.1.3 Main buffer and arbiter . 29
6.1.4 Clock boundary handling . 30
6.1.5 Reference and TDC interface clock . 30
6.1.6 Expandability . 31

ii

Contents iii

6.1.7 Constraints . 31
6.2 Testing and debugging . 32
6.3 Development environment, build configuration and tools 33

6.3.1 Language and tools . 33
6.3.2 Build . 33
6.3.3 Project structure . 34

7 Software 36
7.1 Library versions . 36

7.1.1 Python . 36
7.1.2 Java . 36
7.1.3 C++ . 37

7.2 Implementation . 37

8 Results and performance 40
8.1 Main buffer and USB interface testing . 40
8.2 Channel throughput testing . 41

9 Future work 42
9.1 Clock generation and division . 42
9.2 Channel arbiter . 42
9.3 Generation of overflow tags . 43
9.4 GUI software . 44
9.5 Higher throughput . 44

Conclusion 45

A Appendix 46

Concents of the attachment 50

List of Figures

1.1 Coarse measurement example schematic . 3
1.2 Analog TDC illustration schematic . 3
1.3 Digital delay line TDC schematic . 4
1.4 Vernier TDC schematic . 5
1.5 Hybrid TDC illustration schematic . 5

2.1 qutools quTAU [4] . 6
2.2 PicoQuant PicoHarp330 [5] . 7
2.3 Swabian Instruments Time Tagger Ultra [6] . 8
2.4 ID Quantique ID1000 [7] . 9

3.1 TDC-GPX2 block schematic [8] . 11

4.1 Entire TDC device including the breakout board 15
4.2 Custom PCB with the TDC chip . 15
4.3 Board schematic . 16
4.4 TDC-GPX2 communication example waveforms[8] 17

5.1 SPI write example . 23
5.2 SPI read example . 23
5.3 Pipe read waveform . 24
5.4 Sample download approach flowchart . 24

6.1 System high level schematic . 26
6.2 Configuration module example with 3 registers 28
6.3 Simplified TDC channel schematic . 28
6.4 System clocking schematic . 30
6.5 Testing setup with signal generator . 33

7.1 User software flowchart . 39

8.1 Stripped down debug schematic . 41

9.1 Overflow delay adjustment explanation . 43

List of Tables

2.1 PicoQuant TDC portfolio [5] . 7

iv

4.1 Hardware price breakdown . 18

5.1 General registers . 20
5.2 SPI registers . 23
5.3 Sample format . 25
5.4 Special messages . 25

6.1 okRegisterBridge interface . 27

8.1 TDC sample formats . 40

List of code listings

7.1 User software help message . 38
A.1 Internal configuration interface . 47

v

I would like to express my thanks for great cooperation and help
to Petr Obšil, who the device is designed for and who will use it
in his research. Next, I wish to express my thanks to my friend
Michal Dudka, who has provided me with the necessary facilities
and knowledge to complete the electronics part of the work. I would
also like to thank my supervisor for sharing his expertise in digital
design and much appreciated guidance. Last but not least, I would
like to express my thanks to my partner for her unending patience.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act

In Prague on January 10, 2024

vii

Abstract

The objective of this thesis is the development of a four channel time to digital converter device
connected to a PC via USB 3.0 interface. The implementation was done in SystemVerilog HDL,
tested using Xilinx Vivado ILA, and deployed on an FPGA SoM connected to custom hardware.
The resulting device is capable of ingesting samples at 2.5 MS/s per channel and storing them
in a file on a PC.

Keywords FPGA, time-to-digital, USB

Abstrakt

Předmětem práce je vývoj 4 kanálového time to digital konvertoru připojeného k PC skrze
USB 3.0 rozhrańı. Implementace je vyhotovena v SystemVerilogu, otestována za pomoci Xilinx
Vivado ILA a nasazena na FPGA SoM který je připojen k vlastńımu hardwaru. Výsledné zař́ızeńı
je schopno přij́ımat vzorky s kadenćı 2.5 MS/s na kanál a ukládat je do souboru na PC.

Kĺıčová slova FPGA, time-to-digital, USB

viii

Abbreviations

ADC analogue to digital converter
BRAM block RAM (memory type in FPGA)

DDR double data rate
FIFO first in first out (buffer)

GIL global interpreter lock
GUI graphical user interface
I/O input/output

JTAG Joint Test Action Group (interface standard)
LRU least recently used

MRCC multi region clock capable (pin)
PLL phase-locked loop (clock signal generation)

RAII resource acquisition is initialization (C++ technique)
S sample (unit)

SDR single data rate
SoM system on module

SRCC single region clock capable (pin)
TDC time to digital converter
TVC time to voltage converter

ix

Introduction

Many fields need precise time measurement facilities to perform research. Fields ranging from op-
tics, optoelectronics, quantum physics, telecommunication, and other high-tech areas of research
and engineering benefit from such implements. The experiments and measurements performed
often generate electric pulses from various sources, which have to be sampled precisely such
that an analysis can be performed on the arrival times and valuable statistical data can be ex-
tracted. This is performed using time-to-digital converter (TDC) instruments. The issue with
commercially available TDCs is that they are either not readily available in a user-friendly pack-
age with all the supporting software (usually embeddable chips) or that they are too expensive
(ready-made instruments).

There exists a plethora of readily available chips capable of time-tagging incoming events.
With sufficient supporting hardware and software, a user-friendly TDC can be created, which is
also the primary goal of this thesis.

A TDC device will be successfully developed and tested alongside accompanying software.

1

Chapter 1

Theory of time-to-digital
converter operation

In computer engineering, time to digital converters (TDC) represent a critical component in
measuring and analysing time intervals. TDCs play a pivotal role in diverse applications, ranging
from high-precision time-of-flight measurements in radar and lidar systems to time-based signal
processing in communication networks. The fundamental objective of a TDC is to transform
analogue time intervals into digital representations, facilitating precise temporal measurements
in electronic systems.

The idea of a time to digital converter is to capture occurrences of events in time and to
generate corresponding timestamps. This behaviour enables the processing of said pulses to be
moved into the digital domain as well as allowing the events to be processed after collection
instead of processing them on-the-fly.

The history of TDCs can be traced back to the mid-20th century when researchers began
exploring methods to digitize time for scientific and industrial applications. Early implementa-
tions involved analogue techniques, but the advent of digital technology in the latter half of the
century spurred the development of more accurate and reliable digital TDCs. As semiconductor
technologies advanced, TDCs evolved to meet the increasing demand for higher precision and
resolution in various time-sensitive applications.

In contemporary computer engineering, TDCs have become integral to numerous cutting-edge
technologies, particularly in medical imaging, telecommunications, and autonomous systems.
The demand for enhanced temporal resolution and accuracy has led to ongoing research and
development in the TDC domain.

There exist many approaches for generating time stamps from events, some of which will be
discussed further. They can be divided into 2 main groups/types of measurement which we will
call coarse and fine.

For the purpose of this chapter, we assume that an event occurrence is denoted by a 0 to 1
transition.

1.1 Coarse measurement
In our context, by saying coarse, we mean that the time resolution of the TDC is no better than
the period of the clock signal used for sampling the input signal. A simple method comes to
mind. A monotonic counter incrementing each clock cycle is used. Upon the detection of an
event, the value currently stored in the register is latched, and its output is the next timestamp,

2

Fine measurement approaches 3

as shown in Figure 1.1. Should the difference between two events be detected, the counter can
be cleared upon the detection of the START event.

Figure 1.1 Coarse measurement example schematic

Counter Timestamp

STOP

START clr

+1

The biggest disadvantage is the limitation by the clock speed which is in turn limited by the
capability of the technology used to implement the logic. While it is possible to use more modern
technology and processes to attain higher resolution, there exist methods to reach resolutions
higher than the period of the utilized clock.

1.2 Fine measurement approaches

1.2.1 Analogue method
One of the earlier methods of creating a high precision is through a time-to-voltage (TVC)
converter. The idea of this approach is similar to the simple sampling counter discussed in the
previous section, albeit with voltage instead of a numeric representation. A rising sawtooth-
shaped signal is generated through the means of a capacitor, a constant current source, and a
means to discharge the capacitor periodically. When the time between events should be measured,
the START event opens the normally closed transistor/switch, and the capacitor begins to
charge. When the STOP event occurs, the current voltage is sampled and converted to a numeric
value using an ADC as shown in Figure 1.2, after which the transistor/switch closes again,
discharging the capacitor, which prepares the circuit for the subsequent measurement.

Figure 1.2 Analog TDC illustration schematic

Vss

Vdd

ADC

stop

trigger

V

t

timestamp

start

Fine measurement approaches 4

Because, instead of a discrete counter, a continuous voltage is used, it may seem intuitive that
the device has an infinite theoretical precision limited only by the resolution of the used ADC.
This is not entirely true. In electronic design, it is always a balancing act between precision
and resource utilization both in terms of power and silicon size [1]. Soon, we start running into
issues with high power consumption, which creates another problem as the circuit heats up and,
therefore, as the electrical parameters change. Another caveat comes from the analogue nature
of the circuit. External noise reaching the device through the power supply, connected signals,
or the surroundings may have a non-negligible effect on the precision. This means extra care
must be given to filtering the connected signals and power lines and shielding the entire device.

The analogue method is limited by the time it takes to fully charge the capacitor. This time
is the maximal time difference between the start and stop events.

1.2.2 Digital delay line method
The simplest asynchronous method to capture time is based on a chain of precise delay elements
accompanied by the same number of registers. This arrangement is constructed such that the
time between two events can be measured. For our purposes, we call these two start and stop
events.

Figure 1.3 Digital delay line TDC schematic

STOP

D Q

Q

D Q

Q

D Q

Q

D Q

Q

START

timestamp

t t t t

When the start event occurs, the rising edge propagates through the delay elements, gradually
filling the entire chain as depicted in Figure 1.3. During the propagation of the said rising edge,
the stop event occurs, triggering a read operation on all of the registers, effectively capturing the
current state of the propagation. The index of the furthest register containing a 1 multiplied by
the time delay of the used elements produces the delay between the two events.

This method is limited in maximal time between the start and stop events. This time equals
the sum of delays introduced by the buffer chain.

1.2.3 Vernier method
Further improvement of the delay line method is the Vernier method, which borrows the method
to gain precision from the Vernier scale used in metrology. The method may be implemented
either in the time domain [2] with two detuned oscillators and a coincidence detector or, more
practically, by augmenting the delay line method as described above with another sequence of
delay elements having different time delay values [3].

When a start event occurs, it begins, like in the digital delay line method, to propagate
through a chain of delay elements connected to the data inputs of a chain of registers. The
difference between the former method and this method is that as the stop event propagates, the
registers sequentially instead of simultaneously, and at some point in the chain, a change from 1
to 0 can be observed. This is not unlike matching markings on a Vernier caliper, and the value is
extracted similarly. However, this method requires the delay of the elements in the STOP chain
to be smaller than the ones in the START chain to ensure the stop pulse is able to catch up
with the start pulse. This is illustrated in Figure 1.4 where t2 < t1.

Hybrid approaches 5

Figure 1.4 Vernier TDC schematic

STOP

D Q

Q

D Q

Q

D Q

Q

D Q

Q

START

timestamp

t1
t1 t1

t2 t2 t2 t2

t1

Like the delay line TDC, this method is also limited regarding the maximal time difference
between start and stop events.

1.3 Hybrid approaches
To remedy the maximal time interval limitations found in the fine measurement approaches, a
combination of the two can be used as shown in Figure 1.5. First, a free-running counter TDC
is set up. This section generates the coarse timestamp as the number of elapsed reference clock
cycles. Additionally, a TDC capable of sub-period accuracy is used. The maximal measurement
length of this TDC is set such that it matches the period of the reference clock. This secondary
TDC is then re-triggered (start signal is asserted) each clock cycle of the reference clock. When
an event occurs, both the coarse and the fine TDCs are sampled, and the resulting timestamp is
formed by the concatenation of the coarse timestamp and the time timestamp (after converting
the fine TDC timestamp to match the encoding).

Figure 1.5 Hybrid TDC illustration schematic

Counter

STOP

START clr

+1

Fine
precision
TDC

START

STOP

Timestamp

Change
detect.

Chapter 2

Existing solutions

There are currently many commercial solutions on the market today that can fulfill the require-
ments outlined in the assignment. The issue is with the price, which becomes too high should
the TDC devices possibly be needed in more significant numbers, as in our case.

qutools - quTAU
Qutools GmbH is a company specializing in quantum optics and quantum technologies. They are
recognized for providing advanced solutions for time-correlated single-photon counting (TCSPC)
and time-tagging applications, which are essential in scientific research, particularly in the field
of quantum optics. Qutools’ devices often incorporate Time-to-Digital Converters (TDC).

The quTAU series is one of Qutools’ product lines specifically designed for time-correlated
single-photon counting (TCSPC) applications. quTAU is an 8-channel TDC device connected to
a PC via a USB 2.0 interface. This interface limits its bandwidth compared to its competitors.
It can be controlled via C/C++ or through the Labview software. [4]

Figure 2.1 qutools quTAU [4]

6

7

The listed key features on qutool website are:

8 input channels (LV)TTL (with hardware extension: user-defined threshold from -2 . . .
+3V)

typ. 81 ps resolution (bin size)

USB 2.0 interface

Compact and easy-to-use

Graphical user interface and device drivers for Windows and Linux

Example software for C/C++ and Labview

PicoQuant
PicoQuant is a company that specializes in providing solutions for time-resolved fluorescence
spectroscopy and single-molecule detection. They are known for their advanced time-correlated
single-photon counting (TCSPC) devices, which often incorporate Time-to-Digital Converters
(TDC) for high-precision time measurements.

Their portfolio offers a wide range of devices with the number of channels ranging from 1 to
64 and resolutions up to 1 ps with sub-ns time between incoming samples. This is summed up
in the Table 2.1.

Figure 2.2 PicoQuant PicoHarp330 [5]

Table 2.1 PicoQuant TDC portfolio [5]

HydraHarp 400 MultiHarp 160 MultiHarp 150 PicoHarp 330 TimeHarp 260
Number of detection channels
besides common synch channel

2, 4, 6, or 8 16, 32, 48, or 64 4, 8, or 16 1 or 2 1 or 2

Minimum bin width 1 ps 5 ps 5 ps (P)
80 ps (N)

1 ps 25 ps (PICO)
250 ps (NANO)

Dead time <80 ns <0.65 ns <0.65 ns <0.68 ns <25 ns (PICO)
2 ns (NANO)

Interface USB 3.0
USB 3.0,

FPGA Data
Interface

USB 3.0 USB 3.0 PCIe 2.0 x1

8

Upon request, PicoQuant stated that “Time tagger prices start in higher 4-digits € region
but can go to very high 5-digits depending on timing resolution and channel number.”

Swabian Instruments
Swabian Instruments is a company known for its expertise in high-performance instrumentation
for quantum optics, time-correlated single-photon counting (TCSPC), and related applications.
Swabian Instruments provides a range of products, including Time-to-Digital Converters (TDC),
that are designed for precise time measurements in scientific and research settings.

Figure 2.3 Swabian Instruments Time Tagger Ultra [6]

Regarding the price, Swabian Instruments states that it mostly depends on the timing jitter
of the instrument and that the prices range from a few thousand € for devices with jitter of
100 ps or more and up to a few tens of thousands € for devices with RMS jitter below 5 ps. This
was stated for devices with 4 channels.

9

ID Quantique
ID Quantique is a French company specializing in quantum-safe security solutions, quantum
key distribution (QKD), and quantum random number generation. The company is a pioneer
in quantum key distribution, a technology that uses the principles of quantum mechanics to
enable secure communication by distributing cryptographic keys between parties. Also, their
portfolio contains high-performance photon detectors for use in quantum information processing
and other applications alongside supporting devices. This includes the ID1000. The ID1000 is
an integrated time tagging, coincidence correlation, and delay/pulse generation solution [7]. The
declared parameters are 100 MHz sample rate per channel with 1 ps resolution and less than
4 ps jitter.

Figure 2.4 ID Quantique ID1000 [7]

In response to the pricing inquiry, ID Quantique stated, ”The price of our ID1000 is from
10k to 18k CHF depending on the options”. This amounts to roughly 11000 € to 20000 €.

Chapter 3

Analysis and approach selection

To start off the analysis, some requirements for the design have to be set. The device must be
capable of sufficient bandwidth, which we defined as continuous 1 MS/s on 4 channels. We have
to ensure that the interface from the TDC chip to the supporting logic, the supporting logic
itself, and the interface to the PC are capable of sufficient throughput.

3.1 TDC-GPX2 - mode of operation
To avoid confusion, it is a good idea to mention that the abbreviation TDC and device are
used for both the TDC-GPX2 chip and the entire object of the thesis. In this section, only the
chip is being discussed.

The entire device is based around the TDC-GPX2 chip from ScioSense. This device was selected
as it is the flagship device from ScioSense despite being affordably priced. There was no reason
not to pick the most feature-packed device. The chip has 4 channels capable of ingesting up to
32 MS/s with minimal 20 ns pulse spacing when used independently and up to 70 MS/s with
minimal 5 ns pulse spacing when two channels are paired [8].

The time measurement capabilities of the chip are based on a reference clock provided through
a crystal oscillator or on an external clock source. The frequency of this clock must be between
2 MHz and 12.5 MHz. The chip separated the measured time into two halves. The first half,
called reference clock index by ScioSense, describes the number of reference clock cycles since
reset/overflow. To gain higher precision, the clock is internally subdivided into a configurable
number of time slots. This way, precision in the order of picoseconds can be achieved. This
second half of the measured time is called stop result.

Upon the arrival of the pulse, these two values are sampled and stored in an internal FIFO,
ready to be read out by the supporting logic. Each channel is equipped with a serializer, which
turns the time data from the FIFO into a stream of bits sent to the external device alongside a
frame signal, which indicates the start of a transaction.

The chip is configured via an SPI interface, allowing for, albeit rather slow, readout of the
sample data. The number of bits used for the reference clock index, stop result, and communi-
cation interface parameters must be configured through this interface.

The communication interface is also rather capable. It can be run in SDR and DDR modes
and with up to 200 MHz clock frequency. To receive the data, the supporting logic must provide
a clock signal, which the TDC uses to run the output serializer and buffers. This signal is looped
through the device and output back. This delayed clock is then used to sample the outbound
bit streams.

10

Hardware selection 11

Figure 3.1 TDC-GPX2 block schematic [8]

SDO4P
SDO4N
FRAME4P
FRAME4N

SDO3P
SDO3N
FRAME3P
FRAME3N

IN
TE
R
R
UP

T
SS

N
SC

K
M
OS

I
M
IS
O

PA
RI
TY

TV
DD

18

CV
DD

18

D
VD

D1
8

SDO1P
SDO1N

D
VD

D3
3

FRAME1P
FRAME1N

R
EF
O
SC

I

RE
FO

SC
O

STOP1P
STOP1N

Encoder
Serializer

44:1 ... 14:1

Encoder
Serializer

44:1 ... 14:1

Encoder
Serializer

44:1 ... 14:1

Encoder
Serializer

44:1 ... 14:1

LCLKINP
LCLKINN

Serial Interface

Configuration

Reference
Clock
Index

Counter

FIFO

FIFO

FIFO

FIFO

SDO2P
SDO2N
FRAME2P
FRAME2N

STOP3P
STOP3N

STOP2P
STOP2N

STOP4P
STOP4N

DISABLEP
DISABLEN

RSTIDXP
RSTIDXN

REFCLKP
REFCLKN

TDC

TDC

TDC

TDC

TDC

DV
DD

18

RV
DD

33

DV
DD

33

Encoder

LCLKOUTP
LCLKOUTN

TV
DD

33

LVR

CVDD18O
TVDD18O
DVDD18O

3.2 Hardware selection
A suitably powerful interface and a compatible device must be selected to transfer the data from
the TDC to a PC. Regarding the interface, either USB 3.0 or PCIe comes to mind. Lower USB
standards may be sufficient for the base case outlined at the start of the chapter. On the other
hand, the TDC chip is way more capable than that, and it would be a shame to limit ourselves
too much. PCIe interface could be suitable as the speeds greatly exceed those of USB, but the
intention is to create a standalone device that could be plugged into any PC. Using PCIe would
either bind us to a fixed computer or necessitate the utilization of Thunderbolt. In the end,
USB 3.0 was selected.

Now, the task was to pick a suitable interface device. At first, the idea was to use a processor-
based device. Microcontrollers with USB 3.0 support or with sufficiently fast I/O to enable
an FTDI or similar device to proxy the communication are readily available. The outlined
speeds can also be passed through a moderately modern MCU. The issue lies with the speed
of the interface to the MCU. The TDC chip suggests using a rather fast SDR/DDR interface
(up to 200 MHz range), which could prove problematic for the I/O of microcontrollers. If a
slower interface was used, a problem with lost samples during denser pulse bursts could arise as
the FIFO found inside the TDC is only up to 16 samples deep.

Hardware selection 12

Another option was an FPGA, which would have no issue ingesting data at these rates as it
is common to run their interfaces at these speeds using provided logic primitives.

In order to have better performance margins and more parallel processing power in the event
that some internal processing becomes necessary in the future, it was decided that an FPGA
would be more suitable.

3.2.1 FPGA selection
To avoid the necessity to design an entire complex PCB that would support the powering,
provisioning, and interfacing of an FPGA, it was deemed better to use a premade module which
would facilitate all the necessary circuitry, and the focus could be put on the development of
more relevant parts of the device.

There are multiple FPGA module vendors on the market today such as Digilent, Trenz
Electronic, Terasic or Opal Kelly. It is also necessary to keep in mind that the module must
either have sufficient I/O to connect to a USB 3.0 interface or to include the interface itself on
board.

Regarding the vendors, only Trenz Electronic and Opal Kelly have suitable modules for our
design. In the end, Opal Kelly was selected as Trenz Electronic products were not possible to
buy during the time of development. This has proven to be a good choice because of the maturity
and quality of Opal Kelly’s libraries and supporting software.

Opal Kelly sells a plethora of devices from which the XEM7310-MT-A75 module was selected
as it strikes a good balance between price, I/O count, and FPGA size. This module includes a
Cypress FX3 USB 3.0 interface, and the communication is abstracted by an Opal Kelly-developed
library, which streamlines the communication. Another benefit of this device is the possibility
to upgrade to XEM7310-MT-A200 if the built-in memory is not sufficiently large.

3.2.2 Interface library
Opal Kelly provides a software platform for FPGA integration to a PC called Front Panel.
Front Panel also provides functionality for the configuration of the FPGA, including bitstream
upload, external reset, and clocking in some FPGA modules. The platform is responsible for
abstracting away the complexities of USB communication and communication with the Cypress
USB interface chip and the user design.

After the FPGA has been initialised, the communication may commence. The bitstream must
be Front Panel enabled. This means that an instance of an okHost module must be present in
the FPGA and connected to the correct pins of the FPGA. This module is part of the Front
Panel HDL library, which also contains other modules for communication that are connected
via the okHost interface. On the PC side, the user can either use the Front Panel application
or the API. The former can be used to specify a user-friendly GUI interface utilizing buttons,
hex-digit displays, sliders, and others. The latter is used in conjunction with user code, allowing
for the development of a custom application that can, for example, perform further processing
of received data. This is how the communication is done in this case, and the details are further
discussed in the Software chapter.

The library provides the following communication primitives. Except for the Register Bridge,
all of them are available both in In and Out variants. The direction is respective to the FPGA.

Wire
A 32-bit asynchronous wide signal is used for transferring values that are not used for triggering
or which change infrequently. In the In direction, when the PC updates the value, all the signals
are updated at once. In the Out direction, the FPGA is free to update the signals at any time.
When a change is detected, the interface updates the new value in the PC, where it can be

Hardware selection 13

asynchronously read. It is not possible to assign a callback, which would be called after a state
change.

Trigger
The trigger is similar to the Wire with a few key differences, such as a clock input used for
synchronization of the trigger output to a desired clock domain. In the In direction, when the
PC asserts a trigger, a single clock period-wide pulse is generated in the Trigger module. This
pulse is synchronous with the provided clock. In the Out direction, the trigger is sampled on
the rising edge of the provided clock. This new value can be read in the PC. Sadly, assigning a
callback to this event is also impossible. The author considers this the biggest flaw of the library,
as this should be possible to implement through USB interrupt transfers.

Pipe
A pipe is a communication means used for transferring more significant volumes of data. The
entire communication is PC-driven, and there are no provisions for some form of handshake or
throttling. The data has to be readily available for the pipe to read, most probably in some form
of FIFO. The Pipe interface is made so that it can be connected directly to the FIFO provided
by Xilinx as part of Vivado.

Block-Throttled Pipe
This is an augmented version of the pipe, which includes a ready signal provided by the FPGA
logic. Also, the concept of a block, a user-specified number of words transferred at once, is
introduced. The FPGA logic should assert the ready signal only when ready to transmit an
entire data block. Opal Kelly recommends using this method only for transferring constant data
streams as prolonger de-assertion of the ready signal could cause a USB stall condition.

Register Bridge
As the name implies, the register bridge bridges a register file interface from the PC to the
FPGA. A 32 bit address space is provided with 32 bit data word size for a total of 16 GiB of
addressable space. In this way, single registers can be made available, or entire address spaces
used in the FPGA can be mapped.

Chapter 4

Hardware

It must be stated that the actual design of the electronics and the PCB is the work of
Mgr. Michal Dudka, who has developed the hardware (including Figure 4.3 based on the au-
thor’s requirements and specifications. The author is responsible for the interface specification,
the choice of the main connector, and the correct selection of the pins to match the FPGA
clocking pins.
Despite that, the author chose to include this chapter as the thesis would only be complete
with it included.

To speed up the development, the current hardware version is based on the BRK7310MT break-
out board, allowing for easier connecting of the FPGA module to the custom hardware. Each of
the TDC channels provides a differential serial interface to transmit data, and to configure the
supporting circuitry, an SPI interface is necessary.

The input pulses can have varying voltage levels and have to be passed through a compara-
tor circuit with a suitable, field-configurable reference. For our application, MAX5715 [9] was
selected as it provides 4 channels and, like the TDC-GPX2, uses an SPI interface running in the
same mode (mode 2) for configuration. A shared SPI bus was used with separate chip select
signals. After the input pulses pass through the comparators, they are fed directly into the TDC
chip.

To perform any time measurement, a reference clock must be provided to the TDC. This
clock will be externally sourced or generated by the FPGA (discussed later). The external clock
is not passed to the TDC directly. It is first buffered with some hysteresis to clean possible slow
or jittery transitions and then passed to the FPGA, where it can be further divided. Then, either
this divided clock or a generated clock is passed back to the TDC for timekeeping.

The TDC, reference DAC, clock buffer, channel, reference clock connectors, and the rest of
the custom circuitry are located on a custom PCB attached to one of the four ports on the
BRK7310MT board. The choice of the port was based on the length and length difference of
the traces (minimizing both), sufficient amount of I/O, better aggregation of I/O into fewer
banks, and availability of power. Out of the four possible choices, a port named MC1-A was
selected. Despite not containing any power pins and being the least balanced regarding lengths
of traces, it was the only connector that had sufficient I/O available in such a manner that
specification-compliant clocking of the inputs could be achieved. This was considered the most
important.

To allow for the correct sampling of the inputs, the FPGA provides special clock input pins
labeled MRCC and SRCC, which are connected in such a way that they allow for proper clocking
of their respective I/O banks (in the case of SRCC) or all of the banks (in the case of MRCC).
Should the clock input for data sampling be provided through a standard input pin, the clock

14

15

would have to be passed indirectly through the FPGA fabric. While possible, this would impede
the reliability at higher speeds, resulting in a lower maximal clock speed.

The TDC chip and all other custom circuitry are hosted on a PCB pictured in Figure 4.2. The
initial version of the board had an issue, which was resolved by a bodge wire. One of the inputs
that was thought to be possible to have connected via a single wire had to be made differential.

The entire device is pictured in Figure 4.1. The blue board connecting everything together is
the BRK7310 breakout board. On it, the green board is the XEM7310-MT SoM. The connector
used to interface did not contain any power pins, and therefore, a separate wire had to be added
(red and blue wire connected between the breakout board and the custom PCB).

Figure 4.1 Entire TDC device including the breakout board

Figure 4.2 Custom PCB with the TDC chip

16

Figure 4.3 Board schematic

TDC - FPGA data format 17

4.1 TDC - FPGA data format
Regarding sending data to the FPGA, each of the channels from the TDC uses an independent
communication interface consisting of 2 differential pairs called FRAME and SDO. The SDO pair is
responsible for transferring the actual data, while the FRAME signal denotes the start of the trans-
action through assertion to 1 for the first 8 bits of the transaction. The samples are transferred
serially, MSB first, and the interfaces are clocked by a common clock provided to the TDC by
the FPGA. This clock passes through the device, is output back to the FPGA (albeit somewhat
delayed), and is used to sample the incoming data.

Each of the samples is a concatenation of 2 values corresponding to 2 internal TDCs, as
described in the theoretical chapter. The bits from the coarse timer called reference index in the
TDC-GPX2 datasheet, are concatenated to the fine TDC, called stop bits and transmitted. The
lengths of both of the parts are configurable, and the sum of their lengths directly affects the
maximal sample rate, which can be transmitted over the interface. With shorter samples, more
samples can be sent in a given amount of time.

Figure 4.4 TDC-GPX2 communication example waveforms[8]

Single Data Read (SDR)

SDO#N

SDO#P

LCLK#N

LCLK#P

FRAME#N

FRAME#P

i23 i22 i21 i20 i19 i18 i17 i16 i0

MSB

s19 s18 s1 s0 i23

LSB

Stop (14 – 20 Bits)Index (0 – 24 Bits)

MSB LSB

i22

8 LCLK periods

1st frame 2nd frame

Double Data Read (DDR)

SDO#N

SDO#P

LCLK#N

LCLK#P

FRAME#N

FRAME#P

MSB LSB

Stop (14 – 20 Bits)Index (0 – 24 Bits)

MSB LSB

4 LCLK periods

i23 i22 i21 i20 i19 i18 i17 i16 i15 i1 i0
s1
9

s1
8

s1
7 s3 s2 s1 s0

1st frame 2nd frame

i23 i22 i21 i20 i19 i18 i17 i16 i15 i14 i13 i12 i11 i10

Price breakdown 18

4.2 Price breakdown
Compared to existing solutions, the price is much lower. However, this does not take into account
the labour put into development, the unfinished nature of the product, the tools for development
others. Only the price of the electronic components and PCB are factored in. The price for the
miscellaneous components is a rough estimate only.

Table 4.1 Hardware price breakdown

XEM7310MT-A75 1 618.75 €
BRK7310MT 1 136.45 €
PCB 1 4.55 €
TDC-GPX2 1 48.20 €
MAX5715 1 10.00 €
TLV3604 4 21.68 €
LTC6752 1 5.00 €
Miscellaneous components 1 10.00 €

Total: 854.63 €

Chapter 5

Communication

Since the provided library by Opal Kelly encompasses all the necessary facilities for both config-
uration and rapid transfer of data, it is used as the only means of communication. The following
sections will describe how the device is configured and how the data is extracted from the device.

5.1 Configuration
The entire configuration of the device is done through a register bridge which mediates com-
munication between high-level API available in the software and a simple address-data-strobe
interface in the FPGA. The interface provides a 32 bit address space (which is excessively large
for our application), 32 bit data and read/write strobe signals. In the spirit of keeping the de-
sign expandable, the address space is partitioned and inside the FPGA, a separate module is
responsible for each of the partitions. To select the internal module, the top byte of the address
is used.

The idea is to move the majority of configuration logic out of the logic of the FPGA into the
software. It was decided to omit some abstraction in order to simplify the FPGA side of things
as it is much simpler to implement control logic in software.

Any numeric literals mentioned in the text follow the C programming language convention.
12 is decimal 0x12 is hexadecimal and 0b101 is binary.

5.1.1 General module
This is a module responsible for receiving and storing configuration for the vast majority of the
FPGA design. It provides information on the state of the internal buffer, TDC data receiver
configuration, and the rest of the configuration with the exception of the external chips.

19

Configuration 20

Table 5.1 General registers

Address Name Comment
0x00000000 - 0x00000004 VERSION SHA Git commit hash of the source version
0x00000010 SYSTEM RESET Reset signals
0x00000020 REFCLK SOURCE Reference clock source
0x00000021 REFCLK DIVISOR Reference clock divisor
0x00000030 TDCCLK DIVISOR TDC LCLK divisor
0x00000040 CHANNEL RUN Channel enable/run signals
0x00000041 TDC TIMESTAMP SHIFT Number of dropped bits from TDC data
0x00000042 TDC STOP DATA BITS Number of stop bits in TDC data
0x00000043 TDC REF INDEX BITS Number of ref index bits in TDC data
0x00000044 BUFFER SAMPLES Number of samples in buffer
0x00000050 - 0x00000053 DROPPED SAMPLES Number of dropped samples per channel
0x00000060 STATUS BITS Status bits - LEDs

VERSION SHA

Data type Access Range
uint32[5] R 0x0 - 0xFF

When the FPGA bitstream is compiled, the build environment automatically stores the entire git
version hash into this read-only register. This register exists for the sole purpose of simplifying
the answer to the question “Which version are you using?” once the device is deployed and some
issues have to be inevitably fixed.

SYSTEM RESET

Data type Access Range
bit[32] W 1

Resets the entire FPGA logic when 1 is written. The TDC chip and reference DAC are not
affected and must be reset separately via SPI if needed.

REFCLK SOURCE

Data type Access Range Reset
uint32 R/W 0, 1 0

It is required to provide the TDC chip with a reference clock with a frequency in the range of 2
to 12.5 MHz [8]. This register allows the user to select between an externally supplied reference
clock and an internally generated 10 MHz clock. Value 0 means the internal source is used, and
1 means the external clock is used.

REFCLK DIVISOR

Data type Access Range Reset
uint32 R/W 0-63 1

Configuration 21

Either the external reference clock or the internally generated can be further divided. This
register specifies the used integer divisor. Value 0 disables the clock.

TDCCLK DIVISOR

Data type Access Range Reset
uint32 R/W 0-63 2

This register is used to set the speed at which the communication interface between the TDC
chip and the FPGA runs. It specifies the integer divisor used for dividing an initial 200 MHz
clock. Value 0 disables the clock.

CHANNEL RUN

Data type Access Range Reset
bit[32] R/W 0x0-0xF 0xF

This register allows the user to enable/disable a channel on the FPGA side. This can also be
done on the TDC chip side.

TDC TIMESTAMP SHIFT

Data type Access Range Reset
uint32 R/W 0-38 0

It may be necessary to drop MSB from the data received from the TDC chip due to the nature of
the measurement performed and the reference clock that is currently set. This register specifies
exactly how many bits should be dropped. The TDC configuration via SPI must match.

TDC STOP DATA BITS

Data type Access Range Reset
uint32 R/W 14-20 14

A register with a value that has to match a similarly named register in the TDC chip configuration
referring to the number of bits used for fine measurement as described in the theoretical chapter.
The TDC configuration via SPI must match.

TDC REF INDEX BITS

Data type Access Range Reset
uint32 R/W 0-24 0

A register with a value that has to match a similarly named register in the TDC chip configuration
referring to the number of bits used for coarse measurement as described in the theoretical
chapter. The TDC configuration via SPI must match.

BUFFER SAMPLES

Data type Access Range Reset
uint32 R/W 0x0-0xFFFFFFFF 0x0

Configuration 22

A critical register used in the extraction of the data from the register. It contains the number
of samples stored in the main buffer, which are guaranteed to be immediately available via the
USB interface.

DROPPED SAMPLES

Data type Access Range Reset
uint32[4] R/W 0x0-0xFFFFFFFF each 0x0 each

When a channel receives a sample, and the corresponding internal buffer is full, the sample is
dropped, and the corresponding DROPPED SAMPLES[i] is incremented. This can be used to detect
lost samples due to insufficient bandwidth. The register is cleared by writing 0 to it. Other values
are ignored.

STATUS BITS

Data type Access Range Reset
bit[32] R 0x00-0x01 0x00

A debugging register mirroring the state of 8 LEDs located on the FPGA module. Currently,
only one bit is used, denoting the busy state of the SPI interface.

5.1.2 SPI module
The SPI module is a bridge between the register interface and the other SPI-configured hardware
on the board. The logic supports all the multi-byte transactions required by the TDC and the
voltage reference DAC. Writing the data is trivial. A write to the register initiates the SPI
transaction and captures no data. A read is more complex as the register interface has a design
flaw/oversight/simplification. The bridge has no form of a handshake and expects to see data
one clock cycle after transmitting the read strobe [10]. This is achievable only when the data is
stored inside the FPGA but impossible when it must first be retrieved from an external device.
This issue was handled through the addition of an auxiliary register with a flag. To read data
from SPI, the master device must provide a clock in sync with which the slave provides data. A
write transaction with byte 0x00 can be initiated from the interface to achieve this behaviour.
To transfer data from SPI to the PC, a SPI RETURN and SPI RETURN VALID registers are
provided. Upon the reception of a byte, it is shifted in the SPI RETURN VALID register, which
behaves like a FIFO. Also, the register SPI RETURN is incremented by 1. Both registers are
cleared when SPI RETURN is read. As SPI RETURN is 4 bytes wide (FIFO is 4 transactions
deep), should the SPI RETURN VALID register reach values higher than 4, an overflow is
detected. Should we, for example, issue a read command consisting of one byte written and one
byte read, we issue a write command in the form 0xXX00 where XX is the command byte. The
result will be found in the second byte of SPI RETURN with SPI RETURN VALID being set
to 2.

The examples shown in Figures 5.1 and 5.2 only illustrate how SPI is used to communicate
in this design and not the general usage of the SPI interface. Additionally, the transfers with
the TDC chip are up to 3 bytes long, which is not reflected in the waveforms.

Configuration 23

Table 5.2 SPI registers

Address Name Type Comment R/W
0x01000000 SPI RETURN byte[4] SPI Read data R
0x01000001 SPI RETURN VALID uint8 SPI RETURN number of bytes R
0x01010000 REFDAC RAWCMD byte[3] Raw command to DAC as per datasheet W
0x01020000 TDC RAWCMD byte[2] Raw command to TDC as per datasheet W

Figure 5.1 SPI write example

SCLK
MOSI 0 1 2 3 4 5 6 7
MISO

CS

Figure 5.2 SPI read example

SCLK
MOSI 0 1 2 3 4 5 6 7
MISO 0 1 2 3 4 5 6 7

CS

Process of retrieving sample data 24

5.2 Process of retrieving sample data
The communication library provides a pipe interface, which allows a stream of data to be trans-
ferred to or from the FPGA on demand from the PC. The pipe does not include any flow control
mechanisms (Figure 5.3), and therefore, it must be manually determined how much data can be
transferred at each moment. Bear in mind that the PC initiates all of the transfers, and there
are no facilities for sending unrequested data from the FPGA.

Figure 5.3 Pipe read waveform

clk
read
data D1 D2 D3 D4

The algorithm used is relatively simple but effective. The register interface provides a register
containing the number of samples stored in the buffer. A read transaction is always initiated
with a size equal to the said number. This ensures that no buffer underflows (reads on empty
buffer) occur and that the reading is performed at a maximal safe rate. The data is then further
processed and stored on the PC side. The retrieval algorithm is illustrated in flowchart portrayed
in Figure 5.4.

This can be further augmented by the inclusion of a delay as a form of rate-limiting in the
case that the amount of samples in the buffer is low. The resulting improvement lies in properly
blocking the thread at idle times instead of busy waiting.

Figure 5.4 Sample download approach flowchart

Start

No

End?End
Yes

Read sample #

No

Yes

Sample # > 0

Download sample #
samples

Process of retrieving sample data 25

5.2.1 Sample format
The pipe interface is 32 bits wide, which is in line with the intended sample size. The sample
has to contain the actual sample and the channel number. To capture the channel, 2 bits are
necessary, which leaves us with 30 bits for the actual sample. The format is shown in Table 5.3.

Additionally, since the timestamp value is always incrementing, overflows occur and have to
be captured somehow. This is reflected in Table 5.4. A special message is therefore sent anytime
an overflow occurs.

Table 5.3 Sample format

Bits Description
0-29 Data
30-31 Channel ID

Table 5.4 Special messages

Value Significance
0x3FFFFFFF
0x7FFFFFFF
0xBFFFFFFF
0xFFFFFFFF Time overflow

Chapter 6

FPGA design

As mentioned, the device is based on an Xilinx FPGA. The FPGA vendor provides facilities for
developing the code, testing it, building it into a suitable bitstream, uploading it, and testing it
in the actual hardware. The last feature has proven to be essential in developing the device and
allowed us to omit rigorous, time-consuming testing due to time constraints imposed upon the
project.

The FPGA design is split into several sections, mainly the communication/configuration
section and the sample retrieval and processing part. It is also split up further into two clock
domains. One of the domains is synchronous with a clock provided by the USB communication
interface, and the other is synchronous with the sample retrieval clock provided by the TDC chip.
The sectioning of the design has been done to accommodate further expansion of the feature set
of the device. This will become obvious in the further sections.

Figure 6.1 System high level schematic

Arbiter

FIFO

CH 4

FIFO

CH 3

FIFO

CH 2

FIFO

CH 1
General
config

module

SPI
config

module

SC
K

M
O

SI
M

ISO
C

S TD
C

C
S R

EF

TDC clock
source

TDC CLK
OUT

Reference
clock

source

EXT REF
CLK

REF CLK
OUT

Opal Kelly IP

data pipe

Main FIFO

PC

registers

26

Code 27

6.1 Code
The design can be logically split between logic handling the transfer of the samples from the
TDC chip to the USB interface and configuration logic dealing with the SPI interface for chip
configuration as well as the internal configuration.

6.1.1 Configuration facilities
As said before, the entire configuration is performed via the okRegisterBridge register bridge
with a simple interface as specified in Table 6.1.

The configuration interface first reaches a switch module, which, based on the most significant
byte, generates an enable signal for the respective interface and selects the correct read bus,
passing it back to the Opal Kelly interface. The interfaces then branch further into multiple
communication modules in an easily extensible manner. For that, an internal interface format is
used, utilizing SystemVerilog interfaces as specified in Code listing A.

Unlike the register interface, the internal interface has only 24 bit address as the topmost
byte is used to generate the module-specific enable signal. The modules consist of a simple set of
2 case statements running the writing and reading logic, and all the required registers are stored
inside the module. This unification and templated design enabled the simple expansion of this
system should the logic require an extension in the future. An example module diagram can be
seen in Figure 6.2 with the corresponding code in the appendix.

Table 6.1 okRegisterBridge interface

Name Width Direction Description
okHE 113 N/A OK external interface
okEH 1 N/A OK external interface
ep write 1 out Write strobe
ep read 1 out Read strobe
ep address 32 out Address
ep dataout 32 out Data output
ep datain 32 in Data input

Code 28

Figure 6.2 Configuration module example with 3 registers

wr

wr

wr

address

write

enable

read

data in data out

R1 R2 R3

6.1.2 Channel logic
The purpose of the channel module is the sampling, deserialization, and buffering of the data the
channel receives. When an event occurs, and the TDC chip captures a timestamp, communication
is initiated on the corresponding SDO and FRAME differential pairs. After first passing the pairs
through an IBUFDS instance (differential input buffer), the signals are sampled using the clock
provided by the TDC chip. While this sampling can be done in the FPGA fabric, it is much
preferred to utilize hardwired logic found in the I/O section of the FPGA. The IDDR primitive
can be used. It is a simple DDR buffer found in the I/O section of the FPGA (not in user logic)
capable of sampling an input signal on both the rising and falling clock edge. Besides the signal
integrity advantage, utilizing this primitive also enables one to choose which clock edge is used
for sampling in SDR mode, should the signal be excessively delayed, or to run the TDC-FPGA
interface in DDR mode.

Figure 6.3 Simplified TDC channel schematic

IBUFDS

IBUFDS

shift register

counteredge detect

IBUFGDS

SDO

FRAME

CLK_TDC_IN

IDDR

IDDR

cnt

rst

comparator

message bits6
6

64par. out
ser. in

msg. formatter

dropped bits
6

out

rd
32

a

b

==

sample out

tdc clock in

Code 29

The timestamps must be deserialized once the input signals have been correctly sampled.
This is done using a shift register and parameters (timestamp width and number of dropped
LSB) available from the configuration part of the logic. The logic is controlled with an FSM so
that the transactions can be received back-to-back with zero time in between. To prevent data
loss in the case of higher load scenarios, a buffer is used inside each of the channels. For this,
the Xilinx provided xdc fifo sync is used with a 256 sample depth (1 KiB).

The read interface of said buffer is then made available to an arbiter circuit, which moves the
samples into the main buffer from which the USB interface reads.

The channel also contains provisions for detecting dropped samples due to insufficient sample
extraction from the device. The overflow output of the FIFO is used, and it is routed to the
general module. The FIFO asserts this signal whenever a sample is inserted and cannot be
accepted (mainly because the FIFO is full). The general module has 4 pulse counter blocks, one
for each channel. Their output is then made available to the application through a register.

6.1.3 Main buffer and arbiter
The logic contains a FIFO buffer to allow for smoother data extraction and prevent sample loss
due to insufficient data download from the PC (As all data transfer operations are initiated from
the PC). Unlike the in-channel buffers, the xdc fifo async variant of the Xilinx xdc FIFO is
used. This is necessary as this buffer is also used to transfer data between the channel clock
domain and the OpalKelly interface clock domain. The size of the buffer is maximal in terms of
the available BRAM. For our case, this was 65535 samples (256 KiB).

To fill the buffer, the data from the pipes must be aggregated from 4 independent sources.
A dedicated arbiter is constructed for this purpose. The arbiter is responsible for ensuring that
no data is lost from the input channels and that the main buffer is filled only when it can ingest
data. Solving the second issue is trivial as the buffer provides a full signal. The first issue is
not so simple as it highly depends on the sampled event occurrence rate. Multiple algorithms
can be used to choose which channel should have a sample moved into the main buffer.

The most straightforward approach would be a round-robin approach, where the channels are
read sequentially without paying attention to the state of the channel buffers. While this may
be sufficient in cases where the channels are receiving a similar amount of data, the moment we
want to utilize one channel at a higher speed while keeping the rest unused, the approach is no
longer effective. In extreme cases, this could even lead to data loss as the effective bandwidth of
the channels is divided by the number of channels.

A better way to select channels to be read could be via a LRU algorithm. It can be expected
that the channel left alone for the longest will have the most samples buffered. While this may
help somewhat, it will have no impact as the number of channels is very low.

A better-yet approach considers the amount of data in each of the buffers. When a constant
stream of data is being transferred from the channels, the number of samples is proportional
to the rate at which the channels receive samples. This leads to an approach that balances the
fullness of the channels and prefers to extract samples from the fullest. This method has one
caveat. The read data found on the FIFO, which denotes the number of samples that can be
extracted, is usually delayed by a few clock cycles after a write to the FIFO. This could lead to
highly loaded channels having a lower priority assigned than necessary. This will most probably
have a negligible effect as the imposed delay is in the range of 1 to 4 clock cycles depending on
the configuration [11].

In the end, the simple round-robin approach was selected for its simplicity, and it will be
later demonstrated what issues arose from this decision, leading to diminished usability of the
device.

Code 30

6.1.4 Clock boundary handling
Because the design works with 2 clock domains, data and control signals must be transferred
using suitable synchronization logic. As mentioned before, the samples are synchronized between
the 2 clock domains using an Xilinx asynchronous FIFO, xdc fifo async. The reset signal is
transferred using the xpm cdc pulse macro. Other signals, such as configuration signals, are not
synchronized at all. The signals are not intended to change when the sampling is active and must
be set in advance and not changed later. The read data count signal denoting the number of
samples in the FIFO is generated in the clock domain synchronous with the register bridge and
does not need synchronization.

6.1.5 Reference and TDC interface clock
The FPGA code provides facilities for generating and preprocessing the external reference clock
and the clock used for running the TDC-FPGA interface.

The interface clock is derived from the 200 MHz clock provided to the FPGA from the module.
This clock is then divided, in logic, by a simple counter and passed to the TDC chip.

The reference clock generation is similar. The clock is based either on the same 200 MHz
clock, which is divided by a factor of 20 to generate a 10 MHz clock on an externally provided,
usually 10 MHz clock. The two clocks pass through a multiplexer controlled by a configuration
register, and the resulting clock is then passed to a configurable divider identical to the one used
for the interface clock.

The clocking scheme is described in Figure 6.4. The two domains are shown in red and green.
The red domain is driven by the clock returned by the TDC chip, and the green domain is driven
by a clock received from the Front Panel interface.

Figure 6.4 System clocking schematic

Arbiter

FIFO

CH 4

FIFO

CH 3

FIFO

CH 2

FIFO

CH 1
General
config

module

SPI
config

module

SC
K

M
O

SI
M

ISO
C

S TD
C

C
S R

EF

TDC clock
source

TDC CLK
IN

Reference
clock

source

EXT REF
CLK

REF CLK
OUT

Text

TDC CLK IN
DOMAIN

OK CLK
DOMAIN

OK CLK

TDC CLK OUT

SYSTEM CLK
(200 MHz)

Opal Kelly IP

data pipe

Main FIFO

PC

registers

Code 31

6.1.6 Expandability
While the current design fulfills the goals set in the assignment by providing a sufficient number of
channels (4) and bandwidth for the designated application, there is room for improvement. The
intention is to develop the design so that further development and improvement is as straight-
forward as possible. This is taken into account in multiple places.

The first provision for further expandability is within the communication and configuration
subsystem, where multiple places for further development are implemented. The architecture
was made multi-level to facilitate the addition of whole new configuration modules for additional
independent logic. Also, inside of each of the modules, the architecture is trivial to understand
and unified among the modules. New instructions are added by appending the new address
to a shared package and expanding one case statement. Entire modules are added by, again,
appending addresses to the shared package, instantiating the new module and connecting it to
a parametrized switch module which switches between the configuration modules themselves.

The theme of parametrization brings us to another area of the logic: the channels themselves.
While only 4 channels are currently present, the entire module is fully parametrized. All it takes
to add more channels to the logic is to change one parameter and connect the newly expanded
interface.

Initially, it was intended to include some form of preprocessing in the FPGA, but it was later
not necessary. Nevertheless, should this need arise in the future, all the preprocessing can be
included between the arbiter and the main buffer. This module (or multiple chained modules)
should use the same interface as the buffer (Xilinx library FIFO).

Not only is the FPGA logic expandable but also the FPGA itself. The current version uses
the XC7A75T FPGA, which contains 3780 memory cells [12]. There also exists a pin-compatible
board version with the XC7A200T FPGA [13], which has 13140 memory cells [12]. This would
enable the use of a larger internal buffer, which would be necessary in higher throughput scenarios.
Also, both of the FPGA board versions contain a 1 GiB DDR3 SDRAM chip, which could be
used as a buffer at the expense of higher logic use and development complexity.

The main buffer is internally built using the 36Kb BRAM blocks, as our word size is 32 bits.
The XC7A75T has 105 of these BRAM blocks. The BRAM uses 38-bit words (32 + ECC),
meaning we can fit 1024 words into each of the BRAM blocks. The maximal buffer depth is
calculated as follows.

max buf depth = 2⌊log2(1024∗BRAM blocks)⌋

The depth of the buffer has to be rounded down to a power of 2 due to a limitation of the used
FIFO. For XC7A75T with 105 36Kb BRAM blocks, the maximal size is 64 KiS. For XC7A200T,
it is 256 KiS as it has 365 of the required blocks[14].

6.1.7 Constraints
The constraints defined in the .xdc file are an extension of a constraints file provided by Opal
Kelly for the XEM7310-MT module. This template contains all the pin assignments and IO
standards for the onboard connections, such as the Front Panel interface, LEDs, the supplied
200 MHz clock, and a reset signal. In addition, the specified pin slew rates are specified as
the Front Panel interface is run at 100.8 MHz clock. Lastly, all the clock parameters are speci-
fied, including the Front Panel clock and 200 MHz system clock. This includes the differential
termination of the 200 MHz clock.

Then, the custom signals were added. This includes the wires for SPI, the reference clock with
all the required timing constraints, the clock output and input for transferring data samples from
the TDC chip, and the SDO and FRAME differential pairs with all the required configuration.

An issue arose from the fact that the 7-series FPGAs from Xilinx (such as the XC7A75T) do
not permit any 3.3 volt standards besides the basic LVCMOS33 or other, use case specific standards

Testing and debugging 32

such as PCI33 3 or TMDS 33. To complicate matters further, there is no 3.3 V differential standard
available.

This would not be a problem if the signals which need to be run at 3.3 V did not share an
IO bank with others. As this is the case, a workaround had to be developed.

It is possible to run the interfaces out of spec by denoting a lower voltage standard in the
.xdc file and supplying higher voltage to the I/O bank. The circuitry found there is capable of
running on this higher voltage, and since there are no regulators or any other circuits that would
lower the voltage, the output then runs on this higher voltage.

The only caveat lies within the timing analysis. The timing analysis, which is responsible for
calculating whether the imposed timing constraints are feasible and whether the design will work,
assumes the lower voltage. This means the timing analysis wrongly assumes higher performance
margins (as running an interface at lower voltage usually leads to higher maximal frequency)
and, in edge cases, could result in falsely better timing results than possible.

6.2 Testing and debugging
Initially, for every SystemVerilog module, there was a unit test procedure developed. These tests
were then run using the xsim simulator built in the Vivado suite and validated using assertions
and manual waveform examination.

This form of testing was later abandoned in favour of hardware testing using the Integrated
Logic Analyzer due to the growing necessity to test outside-facing logic. ILA is a piece of
technology allowing the instantiation of a logic analyser inside the FPGA fabric. This analyser
can be connected directly to the signals that should be examined instead of passing them through
the I/O. The analyser connects to the FPGA via JTAG and can be controlled through the Vivado
GUI. The results are displayed in a manner similar to the waveforms shown during the simulation.

The most significant advantage is the possibility to test the design in actual hardware. This
allows the testing to capture problems caused by the connected logic, which would have to be
simulated in the case of the pure simulation approach. Development of such models would also
require much time, which can be saved in this manner.

However, the advantage of this approach is also a major disadvantage. To verify the func-
tionality of the design, the presence of the hardware is necessary. Another disadvantage is the
necessity to rebuild the bitstream anytime a change is introduced to the code, including the
reconnection of the ILA to different signals. As the design grows, this can and will impose a
growing time penalty on the development process. Additionally, the ILA instance uses a signif-
icant amount of BRAM to store the collected data, which is already taken by the main buffer
and the per-channel buffers. To combat this, the main buffer size was limited to 2048 samples
(8 KiB).

The first issue of hardware necessity for testing can be somewhat mitigated by setting up a
network connected debugged through the use of a Xilinx hardware server. This piece of software
then allows a Vivado instance to connect to it as if it was a locally connected JTAG interface.

Despite these problems, this approach was the most suitable in this case due to the size of
the project.

In Figure 6.5, the complete device can be seen connected to the Sigilent signal generator and
to a PC via JTAG and the Front Panel interface (USB-C connection on the FPGA SoM).

Development environment, build configuration and tools 33

Figure 6.5 Testing setup with signal generator

6.3 Development environment, build configuration and
tools

6.3.1 Language and tools
The most important thing related to the actual development is the HDL used. A few options
exist, such as VHDL, Verilog, and SystemVerilog. Due to the author’s personal preference, only
the two Verilog-based languages were considered. While it is feasible and sensible to develop
the entire thing using pure Verilog, SystemVerilog became the language of choice for design and
eventual testing. The reasoning behind this choice was that utilizing a more modern version
would enable the use of numerous quality-of-life improvements introduced (such as interfaces),
which would lead to more concise and legible code besides being a good learning and practice
opportunity. For testing, the Python-based cocotb framework was considered. Is was abandoned
in the end as the volume of tests done needed to be larger to justify the use of additional tools.

6.3.2 Build
The choice of build tools was straightforward as no practical, usable tools exist for creating the
actual FPGA bitstream from user code besides the vendor-provided. While there are alternatives
for certain parts of the build process (mainly synthesis), the tooling is not harmonized and
compatible. This leaves us with Xilinx Vivado, the tool of choice for Xilinx FPGA development.

Vivado offers 2 ways to build a bitstream from SystemVerilog source code, called the Project
Mode and Non-Project Mode[15] and both of them were initially considered.

Development environment, build configuration and tools 34

Project Mode
In project mode, Vivado manages and organizes the source code and all other related configu-
ration. A directory which contains all the aforementioned is created for this purpose. Vivado
is also responsible for building the source code into the final bitstream. The user uses the sup-
plied GUI interface to develop the project. This includes writing source code (this can also be
done using external tools), testing, specifying design constraints, debugging, and building the
bitstream. This mode relies on a .xpr file to contain all the project configuration. In is located
in the root directory of the project.

The main advantage is user-friendliness, as all the internal details of the source management,
build versioning, IP core management, and others are done automatically. On the other hand,
this sometimes results in unexpected and hard-to-explain behavior, which is difficult to debug
due to the abstract nature of the mode.

Non-Project Mode
It is not straightforward (or even possible) to create a simple Makefile to build the bitstream
directly. The Vivado command line interface is not created in such a way. Luckily, for power
users and anyone who prefers to avoid GUI tools in favor of a simple scripted approach (such as
the author), Vivado offers a simpler alternative. The Non-Project Mode lets the user specify a
.tcl script which contains all the commands used to load the sources and build the bitstream.
This can then, if desired, be included in aforementioned Makefile to create an illusion of devel-
opment experience devoid of bloated vendor-specific software (Vivado actually creates a project
in memory, but the user is not exposed to it [15]).

The main advantage of this mode is complete control of the build process. The user can
specify which build artifacts will be generated and their destination. It is also possible to specify
the order in which the sources will be compiled. This is often necessary when using some
SystemVerilog features (such as interfaces). While this is also possible in the GUI, finding and
adjusting said order is incomparably more difficult.

There are also some disadvantages. The user cannot only configure everything but is required
to. There is a plethora of settings and tweaks that have to be set in order to achieve a reliable
compilation. This can be a daunting task for a novice.

For our purposes, the Non-Project Mode was selected.

6.3.3 Project structure
The FPGA project structure is as follows. The compilation generates many artifacts and reports
along the way. This is useful for debugging and general assessment of timing and utilization.
Compilation checkpoints are also generated, which, in theory, could be used to resume a failed
compilation while reusing all the successful steps from before. This feature is not used.

The build script is also responsible for updating constants in the source code, which are
dependent on variables known only at the compile time (git SHA).

Development environment, build configuration and tools 35

The project structure is as follows:

opalkelly hdl..Opal Kelly HDL library
rtl...design source code directory

.v/.sv util.rpt...source files
sim...simulation source code directory

tp *.sv util.rpt...test procedure files
build..build directory (generated)

clock util.rpt...................................clock utilization report (generated)
post imp drc.rpt post implementation DRC report (generated)
post place.dcp post place checkpoint (generated)
post place timing summary.rpt post place timing report (generated)
post route.dcp post route checkpoint (generated)
post route power.rpt......................post route power usage report (generated)
post route timing.rpt..........................post route timing report (generated)
post route timing summary.rpt post route timing summary (generated)
post route util.rpt.........................post route utilization report (generated)
post synth.dcp.................................post synthesis checkpoint (generated)
post synth power.rpt.........................post synthesis power report(generated)
post synth timing summary.rpt...........post synthesis timing summary (generated)
temporal ingestor impl netlist.v..........synthesized netlist in Verilog (generated)
temporal ingestor.bit..bitstream (generated)

build.sh build script including dynamic code generation
cleanup.sh .. cleanup script
setupenv.sh...................environment setup script adds vivado command to PATH
buildall.tcl...Non-Project Mode tcl build script
constraints.xdc .. project constraints

To run the FPGA build, the user shall first edit the setpenv.sh script to point towards a
valid Vivado installation. Then, to compile the the project, build.sh shall be run. The script
updates a file inside the source directory, which contains the git SHA of the current version,
and then commences the compilation. The build directory is created within which the resulting
bitstream is located.

Chapter 7

Software

The supporting software is an inseparable part of a user-friendly device that should be connected
to and controlled from a PC. This software should be responsible for the configuration of the
device, for the reception of the received samples, preprocessing, and storing them in a file.

Reading the data from the pipe and processing it should also be done in separate threads.
This is preferred due to the smaller size (64 KiS) of the buffer in the FPGA, which could cause
data when not read out sufficiently frequently, even at moderately low speeds.

7.1 Library versions
Opal Kelly provides a supporting library that provides an interface enabling the use of the
primitives, which can be used to connect the software part to the hardware. This library is
available in a multitude of programming languages such as C++, Python, and Java, among
others, some of which are more suitable for our case than others.

7.1.1 Python
The provided Python library uses the C++ library underneath. The C++ library interface is
made available using the SWIG interface compiler, and therefore, there are no concerns regarding
the transfer speeds using a scripting language such as Python.

The issue lies with the necessity to use two separate threads, one to handle the pipe transfers
and the other to process and save the data. The most common Python implementation, called
CPython, has limited multithreading capabilities due to the presence of the GIL [16], the global
interpreter lock, which “is a mutex that protects access to Python objects, preventing multiple
threads from executing Python bytecodes at once.”[16]

This means that the program can run only 1 thread at a time. While multiprocessing could
fix this, it will be much easier to use a different programming language altogether.

7.1.2 Java
The main issue with Java is that the language uses a garbage collector instead of manual memory
deallocation. While this provides increased comfort for the programmer, it can cause sporadic
delays in processing. This is especially true for programs that allocate and free large quantities
of memory, such as in our case.

36

Implementation 37

7.1.3 C++
Despite being the lowest-level programming language of the bunch, Opal Kelly provides the in-
terface library, so C++ does not suffer from the issues found in the other programming languages
mentioned above.

C++ natively supports multithreading and is well-equipped with facilities to manage threads
and safely move data between them. The garbage collector issue is, too, nonexistent. C++
requires the user to clean up memory manually, and when the RAII technique is used, all worries
of leaked memory are mitigated.

Another advantage of using C++ is that the Opal Kelly library is written in C++ and only
ported to other languages. While this does not incur any performance penalty or other problems,
using the intended interface directly is more comfortable.

Ultimately, these factors are why C++ became the language of choice for the software part
of the implementation.

7.2 Implementation
The initial idea was to create a full-fledged GUI application to control the device. With worries
that this would be way too large of an undertaking due to a lack of expertise in GUI design, the
idea was split into two.

Library
First, a C++ library for controlling the device was created. This library is responsible for
configuring the device and extracting the data, serving as a wrapper around the Opal Kelly
library with device-specific features added, such as the configuration for the TDC chip and
the reference DAC. The library handles the data transfer from the device with all the required
multithreaded code. This means that the library would buffer samples internally and provide
them upon request via an interface not unlike the interfaces provided by the containers in the
standard C++ library.

The current implementation uses a

std::deque<t sampleblock ptr>

where

t sampleblock ptr

is an

std::unique ptr<std::vector<unsigned char>>

for transferring the data between the threads. The logic behind choosing the unique ptr for
transferring data was the implication of ownership semantics and reduction of data races when
accessing a shared byte buffer to a minimum. An additional benefit is the possibility of avoiding
copying the freshly downloaded data due to the use of C++ move semantics. The time spent
accessing shared resources is, therefore, limited to pushing and popping a single smart pointer
for each of the blocks, which are frequently tens of kilobytes large.

Also, waiting for the shared queue to be filled is implemented through the means of a condition
variable and a mutex.

A minor improvement could be the replacement of always newly allocated blocks with pre-
allocated reusable buffers, which would be alternated between used and empty states and passed
between the two threads.

Implementation 38

As mentioned before, the majority of the configuration logic is handled by the software, and
the FPGA logic only exposes specific registers. A few examples can illustrate this. For example,
instead of mapping the configuration address space of the TDC chip and the reference DAC
into the register address space or even abstracting the configuration on a higher level, the device
forwards the control of the SPI interface and leaves full control to the software. Another example
could be the syncing of the sample format sent over the data lines from the TDC chip to the
FPGA, the stop bit count and reference index bit count. These values must match between the
TDC chip and the FPGA, and the software is responsible for configuring both. These abstractions
are done by the library, and the user/user software developer does not handle this manually.

User software
The current version of the user software supports all the basic functionality to support the upload
of a bitstream, configuration of the TDC chip and the reference, downloading the samples, and
storing them in a file for a specified time duration. A rudimentary yet user-friendly interface
is available per the help message in Code listing 7.1. The user can specify which connected
device will be used with a unique Opal Kelly assigned serial number, the bitstream that will be
uploaded to the FPGA (or disable programming at all), the destination file where the collected
timestamps will be written to, and time for which the collection should happen.

The code also contains provisions for measuring the throughput. When a special bitstream
is uploaded, which generates ascending sequences of timestamps, verifying that no samples are
lost is also possible. This is not readily available to the user and has to be enabled in the source
code and recompiled.

After verifying the inputs and environment, as shown in Figure 7.1, the main thread starts
a worker thread responsible for initiating transfers from the FPGA. It applies the algorithm
described in the communication chapter and retrieves blocks of samples in a loop. Whether the
thread continues execution is controlled by a flag controlled externally from the main thread.
When the flag is deasserted, the thread finishes the current transfer and exits. Similar behaviour
occurs in the main thread where the block queue is first emptied, and only then does the program
exit.

Code listing 7.1 User software help message

OPTIONS :

-o[dest_file],
--output =[dest_file] Destination file
-d, --debug Enable debug print
Bitstream

--noprog Do not upload new bitstream
-b[bitstream],
--bitstream =[bitstream] Bitstream file

--noreconf Do not reconfig TDC and REF
-s[serial], --serial =[serial] OK device serial
-t[time], --time =[time] Download time in seconds
-f, --force Force file overwriting

Implementation 39

Figure 7.1 User software flowchart

Parse arguments

NoArguments
OK?

No

Yes

Serial number
specified?

Yes

Display error and help
message

Try opening OK
device with said SN

1

Not 1Number of OK
devices?

No

Yes

Device opened
successfully?

Try opening available
OK device

No

Yes

noprog flag
specified?

Program FPGA

Yes Programming
success?

No

No

Yes

noreconf flag
specified

Configure TDC +
Reference

Display error and help
message

No

YesFile exists and
 force flag

not specified?

Open destination file

No

Yes
File opening fail?

Start data download
(starts worker thread)

Get sample block
(blocking call)

Process samples and
save to file

No

Yes

Desired time
for downloading

elapsed?

Yes

No
Samples available in

queue?

Get sample block
(blocking call)

Process samples and
save to file

Close file

Stop data download
(stops worker thread)

Chapter 8

Results and performance

Testing was performed in terms of data correctness, lost sample detection, and bandwidth ca-
pability. It had to be settled on a data format and hardware configuration that would be used.
This configuration is summed up in Table 8.1, which also portrays all the possible configurations
for the two sections of the output data. The configuration with 24 reference index bits and 14
stop bits was used. The testing was done in two parts in order to simplify debugging should
any problems arise. First, the main buffer and the USB interface were tested. Then, the whole
system, including the TDC chip, was tested. Also, a frequency for running the TDC-to-FPGA
interface had to be set. The interface is run at 100 MHz at SDR.

Table 8.1 TDC sample formats

REF INDEX WIDTH STOP DATA BITWIDTH
0 bits 14 bits
2 bits 16 bits
4 bits 18 bits
6 bits 20 bits
8 bits
12 bits
16 bits
24 bits

8.1 Main buffer and USB interface testing
A special version of a channel was created to test that no samples are lost between the input to
the main buffer and the PC. This version, as portrayed in Figure 8.1, is a stripped version of
the variant portrayed in chapter FPGA design Figure 6.1. This debug channel does not generate
samples compliant with the format outlined in the communication chapter. Instead, it is a mere
integer incremented by 1 between the samples. This sequence can then be checked in the PC
and verified that no samples are lost. Through this method, it was possible to achieve sample
rates of up to 10 MS/s with no loss. When this throughput was exceeded, sample loss started to
be detected. It was impossible to achieve this speed using a single-threaded application on the
PC, as saving the data stream to even a sufficiently fast NVMe SSD was causing too large of a
delay.

40

Channel throughput testing 41

Figure 8.1 Stripped down debug schematic

Debug
sample

generator

General
config

module

TDC clock
source

TDC CLK
OUT

Opal Kelly IP

data pipe

Main FIFO

PC

registers

8.2 Channel throughput testing
To test the whole data path from the channel input to the PC application, it was necessary to
come up with a solution capable of driving the inputs. It must be possible to set the output
parameters such that pulses of acceptable duty cycle and voltage are output. It must also be
possible to control the frequency on the go to test various throughput scenarios. A two-channel
Sigilent SDG series function / arbitrary waveform generator was used for this.

The DROPPED SAMPLES register was monitored to test that no samples are dropped.
The results are rather underwhelming and point to a critical flaw in the design of the arbiter.

The maximal achieved sample rate was 2.5 MS/s per channel. Moreover, this value was also
independent of the amount of samples passing through the other channels. This means that
either the arbitration circuitry is not effectively using the dead time from less loaded channels
or there is some other problem. The implemented round-robin is unsuitable for such a case with
unbalanced input throughput and inherently leads to decreased performance.

The reader could be led to think that the speed is limited by the 100 MHz SDR interface, which,
at 38 bits per sample, limits the speed to a suspiciously close value of 2.63 MS/s. This is not the
case, though as the circuitry responsible for detecting dropped samples (samples that could not be
inserted into the per-channel FIFO) started triggering rapidly at about 2.5 MS/s

The described behaviour was also confirmed with a custom microcontroller-based pulse genera-
tion solution, which was able to load all 4 channels. In this manner, the throughput described
in the previous section was achieved.

Chapter 9

Future work

Despite multiple flaws found in the design, many lessons were learned, and improvements can be
suggested and included in further developments.

9.1 Clock generation and division
Despite being functional, the current method of clock usage needs to be corrected from the point
of good engineering practices. In the design, the clock needs to be divided and multiplexed,
and this is done in the user logic instead of dedicated resources connected to the provided
clock interconnects. While this is feasible for slower clocks (while remaining a poor engineering
practice), the generated clock may have worse characteristics, such as higher jitter and less
predictable latency. It also places higher demands on the place and route algorithm and pushes
the timing constraints further to their limits.

A preferred way to achieve clock division is using a MMCME2 or PLLE2 primitives found in the
FPGA. If used with the interface clock, it would yield finer control over the resulting clock and
higher reliability. Both of the clock synthesis primitives contain facilities for fractional division of
the clock. If desired, dynamic reconfiguration can also be done, albeit at the price of additional
logic for providing the configuration and dynamic reset for when the clock value is supposed to
change as the PLL loses a lock on the generated clock. Additionally, if the PLL is fed using an
external clock, the input frequency would have to be fixed, and the phase dependency on the
clock would have to be measured if necessary.

For multiplexing, the clocking resources include the BUFGMUX primitive, which is a double
input clock buffer with a select line capable of switching between the clocks.

9.2 Channel arbiter
A significant oversight was the utilization of the round-robin approach for choosing from which
channel a sample will be moved to the main buffer. In this way, the arbiter loops over the
channels, attempting to move a sample into the main buffer. In the worst case, 3/4 of the
runtime is wasted when only one channel is receiving samples. An improvement could be to skip
the empty channels, resulting in no time wasted but still not accounting for different rates at
which the channels could receive data.

A way to mitigate that could be prioritization of channels with fuller buffers. This can not
be done directly, though, due to the latency of the rd data count, a signal present on the FIFO
denoting the number of words that can be read. Usually, the signal is updated a few (usually
1 or 2) clock cycles after the data has been written to the FIFO. The utilization of the empty

42

Generation of overflow tags 43

signal would be necessary to prevent FIFO underruns.

9.3 Generation of overflow tags
To enable theoretically infinite runtimes, the device must be capable of signaling to the applica-
tion that the counter has overflowed. Ideally, the TDC chip would be responsible for this feature,
but that is not true with TDC-GPX2. This means that it will have to be handled in the FPGA
through an auxiliary counter, which would be kept in sync, albeit slightly advanced, due to the
delay of the reference clock between the FPGA and the TDC chip.

When this counter overflows, the special message described in the sample format section is
inserted into the sample stream to be detected by the application.

In this case, the devil lies in the details (or delays). There are 2 sources of additional delay.
First, the reference clock is delayed slightly from the FPGA to the TDC chip. Second, when the
overflow occurs, the data is still inside the TDC chip and will arrive after another delay. This
means the overflow mark would be inserted into the data stream too early, corrupting timestamps
that arrive between the mark and the actual overflow (1 reference clock period is added to them)

It should be noted that it is not necessary to insert the overflow in the stream at a precise
time but only at a precise location, and therefore, it can be suitably delayed. First, we must
detect from the data that the data after the overflow. We will take advantage of the strictly
rising values of the timestamps. We know the overflow must be inserted as soon as a change
from a high to a low timestamp value is detected. This shift in the insertion time is portrayed in
Figure 9.1 by the dotted arrows above the top graph. However, what about situations when there
are no arriving timestamps and, therefore, no high-to-low timestamp value transfers? When a
second overflow is detected, the previous delayed overflow is inserted while an overflow mark is
still stored. Any subsequent marks can then be inserted as soon as an overflow is detected. The
previous algorithm resumes as soon as data is detected.

The good thing is that this can be mitigated both at runtime and even during post-processing
in the application. During post-processing, the overflow marks are merely shifted forward to the
nearest high-to-low time value transition.

Figure 9.1 Overflow delay adjustment explanation

O
VF

O
VF

O
VF

time

Momentary
sample
value

O
VFS1 S2 S3 S4

S1 S2 O S3 O O S4
time

Real time
event

occurence

Main
buffer

insertions

GUI software 44

9.4 GUI software
Instead of providing only a command line interface, scientific instruments commonly use a GUI
application for control, monitoring, and data processing.

Many suitable libraries exist, and the fact that the underlying control library is written in
C++ allows the use of different programming languages (such as C++, Python and others)
thanks to compatibility libraries such as SWIG.

To maintain the ease of high-performance processing, it would probably be the easiest to
utilize a C++ native framework such as Qt, GTK, CEF, or wxWidgets.

9.5 Higher throughput
As of now, the FPGA is the throughput bottleneck. There are multiple issues:

Small buffer
Currently, the majority of the FPGA BRAM is allocated to the main buffer, with the size being
64 KiS. This means that the maximal block download size is 65535 words (256 KiB). Since
initiating the operation has a certain overhead, this limits the bandwidth to around 10 MS/s.
To increase the speed further, a larger memory block would have to be implemented, requiring
the larger FPGA variant, which could fit a buffer double the size.

Alternatively, the DDR3 memory chip could be utilized as an additional buffer. This would
require additional rather complex control logic to transfer the data to and from the memory chip.
There is a possibility of a higher sample availability latency, but this could be possibly solved
with a buffering scheme built inside the FPGA BRAM accompanying the DDR3 memory.

Low TDC interface clock
Hand in hand with the problematic clocking scheme is the TDC chip interface. This interface
can be theoretically run at 200 MHz DDR, resulting in a theoretical maximal bitrate equal to
1.6 Gb/s. This amounts to, assuming the sample size of 38 bits (14 reference index + 28 stop
bits) used for the testing to just above 42.1 MS/s. Even higher sample rates can be achieved
should the precision be dropped.

The clock speed is limited mostly by the fact that the same clock is used to run the entire
receiving logic.

Conclusion

Through the means of using a commercially available time tagging chip and FPGA-based sup-
porting and interfacing logic, a useable Time-to-Digital instrument was created. This instrument
is capable of sampling 4 channels at up to 2.5 MS/s. With improvements to the internal logic,
an FPGA with a higher amount of BRAM, and a faster TDC chip to the FPGA interface, higher
sample rates can be achieved as the USB interface is sufficiently fast. The interface between the
TDC chip and FPGA should be capable of just above 40 MS/s at the highest speed.

A controlling and sample download command line application was created to accompany
the hardware implementation. The application is written in C++ to accommodate latency
requirements easily and allow for a multithreaded approach. It takes advantage of an interface
library provided by Opal Kelly, the manufacturer of the FPGA module. The configuration was
done through the library using a register interface that provides an address space that can be
mapped internally in the FPGA to various functions and parameters.

The development was accelerated using Xilinx Integrated Logic Analyzer, through which it
was possible to test the proper operation of the device.

The device is unsurprisingly cheaper to produce than it is to purchase the commercial solu-
tions. This does not factor in the price of labour, which would make up a considerable part of
the price of the commercial devices.

45

Appendix A

Appendix

46

47

Code listing A.1 Internal configuration interface

interface regbus_if ;
logic [23:0] address ;
logic [31:0] data_in ;
logic [31:0] data_out ;
logic read;
logic write;
logic enable ;
logic busy;

modport master
(

output address ,
output data_in ,
input data_out ,
output read ,
output write ,
output enable ,
input busy

);

modport slave
(

input address ,
input data_in ,
output data_out ,
input read ,
input write ,
input enable ,
output busy

);
endinterface : regbus_if

Bibliography

1. RAZAVI, Behzad. Design of Analog CMOS Integrated Circuits. 2nd ed. New York, NY:
McGraw-Hill Professional, 2016.

2. BARON, Robert G. The Vernier Time-Measuring Technique. Proceedings of the IRE. 1957,
vol. 45, no. 1, pp. 21–30. Available from doi: 10.1109/JRPROC.1957.278252.

3. DUDEK, Piotr; SZCZEPAŃSKI, Stanislaw; HATFIELD, J.V. A high-resolution CMOS
time-to-digital converter utilizing a Vernier delay line. Solid-State Circuits, IEEE Journal
of. 2000, vol. 35, pp. 240–247. Available from doi: 10.1109/4.823449.

4. QUTOOLS GMBH. quTAU [online]. [visited on 2023-12-28]. Available from: https://
qutools.com/qutau.

5. PICOQUANT. TCSPC and Time Tagging Electronics [online]. [visited on 2023-12-28].
Available from: https://www.picoquant.com/products/category/tcspc-and-time-
tagging-modules.

6. SWABIAN INSTRUMENTS. Time Tagger Series [online]. [visited on 2023-12-29]. Available
from: https://www.swabianinstruments.com/time-tagger/.

7. ID QUANTIQUE. ID1000 Time Controller Series [online]. [visited on 2023-12-29]. Available
from: https://www.idquantique.com/quantum- sensing/products/id1000- time-
controller/.

8. SCIOSENSE B.V. TDC-GPX2 Time-to-Digital Converter [online]. [visited on 2023-09-02].
Available from: https://www.sciosense.com/wp-content/uploads/documents/TDC-
GPX2_DS000473_3-00.pdf.

9. ANALOG DEVICES, INC. MAX5713/MAX5714/MAX5715 Ultra-Small, Quad-Channel,
8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface [online].
[visited on 2023-09-02]. Available from: https://www.analog.com/media/en/technical-
documentation/data-sheets/max5713-max5715.pdf.

10. OPAL KELLY INCORPORATED. USB 3.0 HDL [online]. [visited on 2023-11-27]. Available
from: https://docs.opalkelly.com/fpsdk/frontpanel-hdl/frontpanel-hdl-usb-3-
0/.

11. XILINX. UG953 - Vivado Design Suite User Guide [online]. [visited on 2023-12-28]. Avail-
able from: https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries.

12. XILINX. Artix 7 FPGA Product Table [online]. [visited on 2023-12-28]. Available from:
https : / / www . xilinx . com / products / silicon - devices / fpga / artix - 7 . html #
productTable.

13. OPAL KELLY. XEM7310MT FPGA Development Board with AMD-Xilinx Artix-7 [online].
[visited on 2023-12-28]. Available from: https://opalkelly.com/products/xem7310mt/.

48

https://doi.org/10.1109/JRPROC.1957.278252
https://doi.org/10.1109/4.823449
https://qutools.com/qutau
https://qutools.com/qutau
https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules
https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules
https://www.swabianinstruments.com/time-tagger/
https://www.idquantique.com/quantum-sensing/products/id1000-time-controller/
https://www.idquantique.com/quantum-sensing/products/id1000-time-controller/
https://www.sciosense.com/wp-content/uploads/documents/TDC-GPX2_DS000473_3-00.pdf
https://www.sciosense.com/wp-content/uploads/documents/TDC-GPX2_DS000473_3-00.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/max5713-max5715.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/max5713-max5715.pdf
https://docs.opalkelly.com/fpsdk/frontpanel-hdl/frontpanel-hdl-usb-3-0/
https://docs.opalkelly.com/fpsdk/frontpanel-hdl/frontpanel-hdl-usb-3-0/
https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
https://opalkelly.com/products/xem7310mt/

Bibliography 49

14. XILINX. XMP100 - Cost-Optimized Portfolio Product Selection Guide [online]. [visited on
2024-01-04]. Available from: https://docs.xilinx.com/v/u/en-US/cost-optimized-
product-selection-guide.

15. XILINX. UG892 - Vivado Design Suite User Guide [online]. [visited on 2023-12-28]. Avail-
able from: https : / / docs . xilinx . com / r / en - US / ug892 - vivado - design - flows -
overview.

16. GlobalInterpreterLock [online]. [visited on 2023-12-08]. Available from: https : / / wiki .
python.org/moin/GlobalInterpreterLock.

https://docs.xilinx.com/v/u/en-US/cost-optimized-product-selection-guide
https://docs.xilinx.com/v/u/en-US/cost-optimized-product-selection-guide
https://docs.xilinx.com/r/en-US/ug892-vivado-design-flows-overview
https://docs.xilinx.com/r/en-US/ug892-vivado-design-flows-overview
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock

Concents of the attachment

hw...hardware source code directory
opalkelly hdl.....................................Front Panel HDL library directory
rtl...FPGA source code
sim...simulation source code
build.sh..build script
buildall.tcl.......................................Vivado tcl. script for compilation
cleanup.sh ... cleanup script
constraints.xdc ... project constraints
README.md brief description and guide on FPGA code
setupenv.sh..environment setup script

sw ... application source code directory
libs..Front Panel C++ library
*.h, *.hxx, *.cpp...application source code
CMakeLists.txt...............................CMakeLists file for building the project

thesis...thesis source directory
drawings...draw.io drawings
graphics..photos and figures used in thesis
text...source text of the thesis
assignment-include.pdf...thesis assignment
bib-database.bib..bibliography
ctufit-thesis.cls .. FIT CTU thesis template
ctufit-thesis.tex..main source tex file

out
temporal ingestor.bit .. compiled bitstream
tidown compiled application binary for x86 64 Linux
thesis.pdf ... thesis pdf

50

	Acknowledgments
	Declaration
	Abstract
	Abbreviations
	Introduction
	Theory of time-to-digital converter operation
	Coarse measurement
	Fine measurement approaches
	Analogue method
	Digital delay line method
	Vernier method

	Hybrid approaches

	Existing solutions
	Analysis and approach selection
	TDC-GPX2 - mode of operation
	Hardware selection
	FPGA selection
	Interface library

	Hardware
	TDC - FPGA data format
	Price breakdown

	Communication
	Configuration
	General module
	SPI module

	Process of retrieving sample data
	Sample format

	FPGA design
	Code
	Configuration facilities
	Channel logic
	Main buffer and arbiter
	Clock boundary handling
	Reference and TDC interface clock
	Expandability
	Constraints

	Testing and debugging
	Development environment, build configuration and tools
	Language and tools
	Build
	Project structure

	Software
	Library versions
	Python
	Java
	C++

	Implementation

	Results and performance
	Main buffer and USB interface testing
	Channel throughput testing

	Future work
	Clock generation and division
	Channel arbiter
	Generation of overflow tags
	GUI software
	Higher throughput

	Conclusion
	Appendix
	Concents of the attachment

