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Instructions

A palindrome is a word which reads the same from the left and from the right, in other 
words, it is fixed by the reversal mapping, which is an antimorphism fixing each word of 
length 1. Considering also other antimorphisms and their fixed points, we obtain the so-
called generalized palindromes (see [1]). The open-source computer algebra system 
SageMath [2] contains a developed library supporting various algorithms on words and 
some of those relate to classical palindromes. The goal of the thesis is to extend some of 
these algorithms to generalized palindromes and, if appropriate, add other related 
methods.

1) Perform a survey on the computer algebra system and its development process, focus 
on the state of the word combinatorics library.
2) Perform a survey on generalized palindromes with a focus on G-palindromic defect [1].
3) Design and implement selected suitable improvements of the words combinatorics 
library, the least required improvement is a method for calculation of G-palindromic 
defect; implementation in Cython is preferred if it would result in a performance increase.
4) Evaluate the complexity of the designed algorithms.
5) Start the process of integration of these improvements into SageMath.

[1] E. Pelantová and Š. Starosta, Languages invariant under more symmetries: 
overlapping factors versus palindromic richness, Discrete Math. 313 (2013), 2432-2445, 
DOI: 10.1016/j.disc.2013.07.002
[2] https://www.sagemath.org/
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Abstract

A palindrome is a word which reads the same from the left and from the right. Palindromic
defect of word w is the difference between |w|+1 and the amount of pairwise distinct palindromic
substrings of w. Concepts of palindrome and palindromic defect can be generalized to generalized
palindrome, Θ-defect and G-defect, where Θ is an antimorphism, G is a finite group consisting
of morphisms and antimorphisms (see [1]). The free open-source mathematics software system
SageMath [2] contains a developed library containing numerous algorithms dealing with words.
The first goal of the thesis is to present and prove several newly discovered algorithms for
computing palindromic defect and its generalizations. As a special case of one of these algorithms,
linear time algorithm for computing classical palindromic defect will be shown. The second goal
of the thesis is to start adding some of these algorithms into SageMath.

Keywords SageMath, Words, Word algorithms, Palindromic defect, Generalized palindrome,
Generalized palindromic defect

Abstrakt

Palindrom je slovo, které se čte stejně zleva doprava i zprava doleva. Palindromický defekt slova
w je rozdíl mezi |w|+1 a počtem dvojic odlišných palindromických podřetězců slova w. Koncepty
palindromu a palindromického defektu lze zobecnit na generalizovaný palindrom, Θ-defekt a G-
defekt, kde Θ je antimorfismus, G je konečná grupa skládající se z morfismů a antimorfismů (viz
[1]). Open-source matematický softwarový systém SageMath [2] obsahuje vyvinutou knihovnu
podporující různé algoritmy na slova. Prvním cílem této práce je prezentovat a dokázat několik
nově objevených algoritmů pro výpočet palindromického defektu a jeho zobecnění. Jako speciální
případ jednoho z těchto algoritmů bude ukázán lineární časový algoritmus pro výpočet klasického
palindromického defektu. Druhým cílem této práce je začít přidávat některé z těchto algoritmů
do SageMath.

Klíčová slova SageMath, Řetězce, Algoritmy nad řetězci, Palindromický defekt, Generalizo-
vané palindromy, Generalizovaný palindromický defekt
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Summary

This thesis aims to enhance the SageMath
word library by introducing new functionalities
and significantly improving the performance of
existing methods.

Additionally, this thesis includes the design
of several new algorithms to compute generalized
palindromic defects.

Among these algorithms, one computes the
Θ-defect in O (|w|) time. Another algorithm cal-
culates the G-defect in O (|G| · |w|) time, which
currently stands as the fastest known algorithm
as of writing this thesis. Besides these, the thesis
presents designs for several other algorithms, al-
though they are not included in the subsequent
implementation in SageMath.

In this context, w represents a word: w ∈ A∗,
Θ signifies an antimorphism, which is a letter

permutation, and G denotes a finite group of
morphisms and antimorphisms.

The method for computing Θ-defect already
exists in the SageMath word library. Therefore,
the algorithm computing Θ-defect in O (|w|)
time is implemented with same signature within
SageMath but with rewritten contents. On the
other hand, the method for computing G-defect
did not exist in SageMath previously. The in-
troduction of this new time-efficient method sig-
nificantly enhances the SageMath word library,
offering researchers new tools to explore palin-
dromic defects behavior.

The SageMath issue on GitHub [2], to which
the mentioned changes will be deployed, is num-
bered 35495. The SageMath fork with these
changes is accessible at [3].
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Notations

The following notations are assumed, if not stated otherwise:
A Alphabet
A∗ Set of all finite words over A

AM(A∗) Set of all morphisms and antimorphisms on A∗

M(A∗) Set of all morphisms on A∗

w Word, w ∈ A∗

f Morphism and a letter permutation, f ∈M(A∗), ∀a ∈ A : f(a) ∈ A
Θ Antimorphism and a letter permutation, Θ ∈ AM(A∗), ∀a ∈ A : Θ(a) ∈ A
G Finite group of morphisms and antimorphisms
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Introduction

SageMath ([4], [5], [6], [7]) is an open-source mathematical software system.
The motivation behind this thesis is based on found inefficient implementations within the

existing SageMath codebase related to palindromes and palindromic defects. Additionally, an
important palindromic defect computation method was absent, despite its theoretical founda-
tion being already developed. Addressing these issues became the primary objective, aiming to
significantly benefit SageMath researchers in the related fields.

This thesis revolves around analyzing and enhancing the SageMath codebase associated with
palindromes and palindromic defects. It also introduces novel algorithm designs to compute dif-
ferent palindromic defects. Background information to achieve these objectives includes a concise
description of SageMath in chapter 1, followed by algorithms and mathematical background in
chapter 2, which were used for design of the new algorithms.

The practical part II adopts a common software development life cycle process. It starts with
a summary of performed requirement analysis in chapter 3, followed by algorithm design demon-
strations in chapter 4. Subsequently, chapter 5 clarifies details of implementation phase, which
included algorithms implementation and additional code refactoring. The thesis culminates with
decisive results of functional and non-functional testing in chapter 6, which also includes the
current deployment status.

This thesis is strongly related to palindromic defects, so it is only logical to add a small
introduction of associated terms here.

It was shown in [8] by Droubay that amount of pairwise distinct palindrome substrings of
word w does not exceed |w|+1. This limit is reached, for example, for words formed by pairwise
distinct letters (empty word ε is included). Palindromic defect of word w is then defined as
difference between the maximal possible amount of pairwise distinct palindrome substrings for
words of length |w| (which is equal to |w| + 1 for the classical palindromes) and actual amount
of pairwise distinct palindrome substrings of w.

After some time, generalization of palindrome to Θ-palindrome was introduced in [9]. Θ-
defect is then a generalization of classical palindromic defect, defined the same way as classical
palindromic defect, but the |w|+ 1 term is slightly modified.

Then in [10], definition of G-defect was given in similar manner to Θ-defect.
In this work several algorithms to compute Θ-defect will be presented in section 4.1, which

are theoretically backed by chapter 2. Recapitulation of some definitions, lemmas and theorems
from [1] is done in section 2.1. Main purpose of section 2.2 is to generalize Manacher’s algorithm
([11]) to work with Θ-palindromes instead of classical palindromes. Several already existing
solutions of dynamic level ancestor problem when leafs can be added to tree dynamically ([12],
[13]) will be mentioned in section 2.3.

Three algorithms for computing Θ-defect will be presented: with O (|w| log |w|), O (|w|) and
O (|w|) time complexities. First two of these algorithms use generalized Manacher’s algorithm

1



2 Introduction

from section 2.2 and data structures from section 2.3, while the last algorithm uses only general-
ized Manacher’s algorithm. Readers interested only in this algorithm can safely skip section 2.3.

As for algorithms to compute G-defect, single-threaded algorithm with O (|G| · |w|) time
complexity will be shown. Also multi-threaded algorithm to compute G-defect in O (|w|) time
using O (|G|) threads will be presented. It is conceptually same as the previous algorithm. It
simply integrates classical multi-thread techniques and uses concurrent hash map data structure
with minor implementation details. Concurrent hash map can be implemented in different ways
and our algorithm has some extra requirements on concurrent hash map implementation to
achieve promised time complexity.



Aims

This thesis focuses on two primary objectives:

Enhancing the performance of the existing method for computing Θ-defect in SageMath.

Implementing a new, efficient method for computing G-defect in SageMath.

To accomplish these objectives, a significant part of the work involves designing efficient
algorithms for computing various palindromic defects.

The theoretical segment (Part I) of this thesis aims to familiarize readers with both SageMath
and the existing theory behind palindromic defects.

The steps undertaken to achieve the main goals of this thesis in the practical part (Part II)
are as follows:

1. Understanding requirements through discussions with the supervisor and researching the
current SageMath codebase.

2. Designing efficient algorithms for computing different palindromic defects.

3. Implementing these algorithms in SageMath while following common development guidelines
in SageMath.

4. Conducting comprehensive tests on both functionality and performance of the implemented
changes.

5. Proceeding with the deployment process of these changes.

The main outcome of this thesis will be a significant contribution to the development of the
SageMath word library. This expansion will be based on recent advancements in palindromic
defects theory and will also significantly boost the performance of the existing codebase. These
improvements collectively aim to provide researchers in palindromic-related fields with essential
tools to conduct studies on a broader range of data and expedite their research processes.
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Part I

Theoretical Background
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Chapter 1

SageMath

1.1 Brief introduction to SageMath
SageMath ([4], [5], [6], [7]) is an open-source mathematical software system designed to support
research and education in mathematics. It provides a unified interface for various mathematical
tasks, including algebra, calculus, number theory, discrete mathematics, and more. SageMath
combines various open-source mathematical software packages into a single cohesive environ-
ment, enabling users to perform computations, visualize data, create interactive notebooks, and
collaborate on mathematical projects.

From an end-user perspective, SageMath also offers a user-friendly interface through a web-
based notebook system called SageMathCell, where users can write and execute code, visualize
results, and document their work using text, images, and mathematical expressions. It allows
for integration of different programming languages like Python, R, Cython, and others.

SageMath is commonly used by mathematicians, researchers, educators, and students for:
Mathematical Computation: Performing complex calculations, symbolic manipulation,
solving equations, and conducting numerical experiments.

Data Visualization: Creating plots, graphs, and visual representations of mathematical
concepts and data.

Teaching and Learning: Supporting educational activities by providing an interactive
platform for teaching and learning mathematics.

Research Collaboration: Facilitating collaboration among mathematicians and researchers
by sharing notebooks and code.
SageMath can be installed locally for non-development purposes or for development purposes.

There are many different ways of how SageMath can be installed. One of easiest and most
practical approaches to installing SageMath locally on Linux is by using conda together with
conda-forge. First, both conda and conda-forge need to be installed.

1.2 Conda
Conda [14] is an open-source package management system and environment management system
primarily used for Python. It allows users to easily install, manage, and update various software
packages and their dependencies within isolated environments. Conda is known for its simplicity
in creating and managing environments across different platforms (Windows, macOS, Linux) and
for supporting multiple programming languages beyond just Python.
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8 SageMath

1.3 Conda-forge
Conda-forge [15] is a community-driven collection of conda packages. It is a repository that
provides a vast collection of pre-built conda packages contributed and maintained by the com-
munity. Conda-forge aims to offer high-quality packages that can be easily installed using the
conda package manager.

1.4 Installing SageMath on Linux using conda
After installing conda and conda-forge on our Linux machine, we can now install the non-
development version of SageMath by following the steps outlined in the official installation guide
in [16] and [17].

To install the development version of SageMath, we should follow the steps provided in
sections [16] and [18] of the same guide.

1.5 SageMath development workflow
SageMath development workflow was significantly improved at the start of 2023 by complete
transfer from its own ticket tracking system to GitHub [19]. Presently, SageMath maintains its
public repository on GitHub, aligning its development workflow closely with the standard process
for public repositories on the platform. Here are steps of SageMath development workflow:

1. Create or choose open issue(s) on SageMath repository, which will be fixed by your changes

2. Fork SageMath repository

3. Make changes on your fork: clone, make changes locally, commit and push. This step includes
testing your changes

4. Open pull request

5. Go through code review process and finish it successfully

6. Merge your changes into SageMath repository

1.6 Creating an issue in SageMath
SageMath issue system currently uses GitHub Issues for repository [2]. New issues can be created
using one of three available templates:

Bug report

Template for reporting a build failure

Feature request

1.7 Testing in SageMath
SageMath uses Python’s Doctest [20] approach as base for testing.

Python’s Doctest [20] is a testing module included in the Python Standard Library. It allows
developers to write tests in the form of examples within docstrings or docfiles (text files containing
documentation). These examples resemble interactive Python sessions, including code snippets
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and expected outputs. When the tests are run, doctest automatically executes the examples
and compares the actual output to the expected output specified in the documentation. If there
are discrepancies, it raises an error, indicating a test failure. Doctest helps ensure that code
examples within documentation remain accurate and functional while serving as executable tests
for Python code.

SageMath allows users to configure the specifics of test execution, including the ability to
determine which tests are run and how they are executed. Users can specify the number of
threads for test execution. Additionally, tests can be marked as ’long,’ ensuring they are executed
only when a specific parameter for test running is provided. Full documentation for testing in
SageMath is located at [21].
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Chapter 2

Mathematical & Algorithmic
Background

2.1 Palindromic defect
An alphabet A is a finite set. Elements of A are usually called letters. A finite word w over A
is a finite string w = w1w2 · · ·wn of letters wi ∈ A. Its length, denoted by |w|, is n. The set of
all finite words over A equipped with the operation of concatenation is the free monoid A∗. Its
neutral element is the empty word ε. A word v ∈ A∗ is a factor of a word w ∈ A∗ if there exist
words s, t ∈ A∗ such that w = svt. If s = ε, then v is a prefix of w, if t = ε, then v is a suffix of
w. Alternatively, a factor of w is called a substring of w.

A mapping φ on A∗ is called

a morphism if φ(vw) = φ(v)φ(w) for any v, w ∈ A∗

an antimorphism if φ(vw) = φ(w)φ(v) for any v, w ∈ A∗.

We denote the set of all morphisms and antimorphisms on A∗ by AM (A∗). Together with
composition, it forms a monoid with the identity mapping Id as the unit element. The set of all
morphisms, denoted by M (A∗), is a submonoid of AM (A∗). The reversal mapping R is defined
by

R (w1w2 · · ·wn) = wnwn−1 · · ·w2w1 for all w = w1 · · ·wn ∈ A∗

It is obvious that any antimorphism is a composition of R and a morphism. Thus

AM (A∗) =M (A∗) ∪R (M (A∗))

A fixed point of a given antimorphism Θ is called Θ-palindrome, i.e., a word w is a Θ-
palindrome if w = Θ(w). If Θ is the reversal mapping R, we say palindrome or classical palin-
drome instead of R-palindrome.

In the rest of the thesis, it will be assumed for all antimorphisms that they are letter permu-
tations as well, because this limitation simplifies all results of this thesis and similar results for
antimorphisms which are not letter permutations were not researched in this thesis.

11



12 Mathematical & Algorithmic Background

▶ Definition 2.1 (Θ-defect). Let Θ be an antimorphism and letter permutation, w ∈ A∗. Then
Θ-defect of w written as DΘ(w) is defined as:

DΘ(w) = |w|+ 1−#PalΘ(w)− γΘ(w)

where PalΘ(w) is the set of Θ-palindromic factors occurring in w, and

γΘ(w) := #{{a,Θ(a)} | a ∈ A, a occurs in w and a ̸= Θ(a)}

▶ Theorem 2.2.
DΘ(w) ≥ 0

Proof. See [1]. ◀

In the rest of the thesis, the symbol G stands exclusively for a subset of AM (A∗) satisfying
the two following requirements:

1. G is a finite group

2. G contains at least one antimorphism

The first requirement on G implies the following for an element ν of G. The element ν is
non-erasing, i.e., ν(a) ̸= ε for all a ∈ A (otherwise ν has no inverse in G). Moreover, ν(a) is a
letter for all a ∈ A (otherwise νn ̸= Id for all n ≥ 1). We can conclude that ν restricted to A is
a permutation of letters.

The second requirement on G comes from the fact that results of this thesis are based on gen-
eralized palindromes and one gets only trivial or no results when dealing with groups consisting
of morphisms only.

▶ Lemma 2.3. The following set of properties apply to G:

1. every element of G is either a morphism or an antimorphism determined by a permutation
of letters of A

2. G may contain elements of order greater than 2

3. G need not be abelian;

4. the set of antimorphisms of G generates the group G

5. the number of morphism in G equals the number of antimorphisms in G

Proof. See [1]. ◀

We say that finite words w, v ∈ A∗ are G-equivalent if there exists µ ∈ G such that w = µ(v).
The class of equivalence containing a word w is denoted

[w] := {µ(w) | µ ∈ G}

As already mentioned, since the group G is finite, any µ ∈ G preserves length of words and
thus equivalent words have the same length.

A word w ∈ A∗ is said to be G-palindrome if there exists an antimorphism Θ ∈ G such that
w = Θ(w).
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▶ Definition 2.4 (G-defect). Let w ∈ A∗. Then G-defect of w written as DG(w) is defined as:

DG(w) = |w|+ 1−#PalG(w)− γG(w)

where

PalG(w) := {[v] | v is a factor of w and a G-palindrome}

and

γG(w) := #{[a] | a ∈ A, a occurs in w, and a ̸= Θ(a) for every antimorphism Θ ∈ G}

▶ Theorem 2.5.
DG(w) ≥ 0

Proof. See [1]. ◀

On top of above theory we will need two additional lemmas in this thesis.

▶ Lemma 2.6. Let u, v ∈ [w] and u is a G-palindrome. Then v is a G-palindrome as well.

Proof. By definition of [w], ∃φ ∈ G : φ(u) = v. By definition of G-palindrome, ∃ψ ∈ G : ψ(u) =
u and ψ - antimorphism. Let’s notice that in both cases when φ is morphism and antimorphism,
φ-1 ◦ ψ ◦ φ is an antimorphism and φ-1 ◦ ψ ◦ φ(v) = v. This means that v is G-palindrome.

◀

It follows from above lemma that either all elements of [w] are G-palindromes or none of [w]
elements are G-palindromes.

▶ Lemma 2.7. Let u, v ∈ [w] and w is a G-palindrome. Then ∃f ∈ G : f(u) = v, f - morphism.

Proof. By definition of [w], ∃φ ∈ G : φ(u) = v. If φ is morphism, then this lemma is proven.
Otherwise, φ is an antimorphism. In such case, let’s notice that from the previous lemma follows
u is G-palindrome so ∃ψ ∈ G : ψ(u) = u and ψ is an antimorphism. Then ψ ◦ φ is a morphism
and ψ ◦ φ(u) = v. This is exactly what we wanted.

◀

2.2 Manacher’s algorithm and its generalization
Manacher’s algorithm was first described by Manacher in [11]. This algorithm finds longest
palindromic substring of given word in linear time. In reality it does even more. For word w
of length n, this is a O (n) time algorithm which finds maximum radiuses for all positions of w
such that for position p and its radius rp, substring of w starting at p− rp and ending at p+ rp
is a palindrome. Position p can either be position of one of w letters of it could be position
in-between two consecutive letters of w (in such case we say that empty string has radius 0, two
letter palindrome has radius 1 and so on).

For purposes of this thesis it is not enough to just mention this algorithm. As we are going to
build different data structures during run of Manacher’s algorithm, it is important to understand
how Manacher’s algorithm actually functions internally.

Let’s start with more simple algorithms. All algorithms will be presented in Python. Naive
O
(
n3

)
time algorithm to find longest palindromic substring works by iterating over all O

(
n2

)
substrings and checking for each substring if it is palindrome in O (n) time. Here is an example
of algorithm:
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Code listing 2.1 Slow algorithm for finding the longest palindromic substring
1 def longest_palindromic_substring(s):
2 n = len(s)
3 max_len = 0
4 start = 0
5 for i in range(n):
6 for j in range(i+1, n+1):
7 sub = s[i:j]
8 if sub == sub[::-1] and len(sub) > max_len:
9 max_len = len(sub)

10 start = i
11 return s[start:start+max_len]

It is easy to see that we could actually find all maximum radiuses instead using same idea.
One can notice that we can reuse knowledge about substring starting on a position and ending

on b position being a palindrome to find out if substring starting at a− 1 and ending at b+ 1 is
a palindrome. With this observation we get O

(
n2

)
time algorithm to find longest palindromic

substring. Here is an example algorithm:

Code listing 2.2 O
(
n2

)
algorithm for finding the longest palindromic substring

1 def longest_palindromic_substring(s):
2 n = len(s)
3 max_len = 1
4 start = 0
5 for i in range(n):
6 # odd-length substrings
7 l, r = i, i
8 while l >= 0 and r < n and s[l] == s[r]:
9 if r - l + 1 > max_len:

10 max_len = r - l + 1
11 start = l
12 l -= 1
13 r += 1
14 # even-length substrings
15 l, r = i, i+1
16 while l >= 0 and r < n and s[l] == s[r]:
17 if r - l + 1 > max_len:
18 max_len = r - l + 1
19 start = l
20 l -= 1
21 r += 1
22 return s[start:start+max_len]

For sake of simplification, let’s notice that we can add a special character s into our alphabet
A and insert it between each pair of consecutive letters of w. Word w did not contain s character
before we added it into alphabet, which means that all palindromic substrings are now of odd
length (except empty string ε). This idea is important and by default we assume that it is used
in all further algorithms.

Here is updated version of above algorithm computing radiuses instead:
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Code listing 2.3 Modified O
(
n2

)
algorithm for finding maximal palindromic substring radiuses

1 def maximal_palindromic_substring_radiuses(s):
2 s = '#'.join(s) # insert special character '#'
3 p = [0] * len(s) # stores radiuses of palindromic substrings
4 for i in range(len(s)):
5 l, r = i, i
6 while l >= 0 and r < len(s) and s[l] == s[r]:
7 p[i] += 1
8 l -= 1
9 r += 1

10 odd_pos_results = [(x + 1) // 2 for x in p[::2]]
11 even_pos_results = [x // 2 for x in p[1::2]]
12 p[::2] = odd_pos_results
13 p[1::2] = even_pos_results
14 return p

Manacher’s algorithm goes even further to achieve O (n) time complexity. It is based on fact
that we can reuse knowledge about found palindromes centered on different positions. More
precisely, let’s say we have two maximal palindromic substrings w and v. w has center position
center, start position left and end position right. v has center position oldCenter such that
left ≤ oldCenter < center, start position oldLeft and radius oldRadius. Then for maximal
radius newRadius in center position newCenter = center + (center − oldCenter) the following
applies:

if oldLeft > left, then newRadius = oldRadius. (otherwise, v is not maximal)

if oldLeft < left, then newRadius = right − newCenter + 1, newRadius < oldRadius.
(otherwise, w is not maximal)

if oldLeft = left, then newRadius ≥ oldRadius.

Manacher’s algorithm iterates string from left to right and uses above observations. Here is
an example code:

Code listing 2.4 Manacher’s algorithm for finding maximal palindromic substring radiuses
1 def maximal_palindromic_substring_radiuses(s):
2 if len(s) == 0:
3 return []
4 s = '#'.join(s)
5 p = [0] * len(s)
6 center, right = 0, 0
7 for i in range(len(s)):
8 if i < right:
9 p[i] = min(right-i, p[2*center-i]) # use symmetry

10 l, r = i - p[i], i + p[i]
11 while l >= 0 and r < len(s) and s[l] == s[r]:
12 p[i] += 1
13 l -= 1
14 r += 1
15 if i + p[i] > right:
16 center = i
17 right = i + p[i]
18 odd_pos_results = [(x + 1) // 2 for x in p[::2]]
19 even_pos_results = [x // 2 for x in p[1::2]]
20 p[::2] = odd_pos_results
21 p[1::2] = even_pos_results
22 return p
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Let’s notice using ”two pointers technique” that this algorithm indeed has O (n) time com-
plexity. We can choose i and right as two pointers. They both start with 0 value. On each
iteration of outside loop i is increased by 1, while on each iteration of inside loop right is going
to be increased by 1 in the following if-statement. Both i and right can not exceed length of
modified string. This proves O (n) time complexity.

For purposes of this thesis we are going to need Manacher’s algorithm which works for Θ-
palindromes instead of standard palindromes. Actually, there is not much work to do for gener-
alizing Manacher’s algorithm on Θ-palindromes.

Firstly, let’s says that the special character s which we are adding in our alphabet in Man-
acher’s algorithm works with Θ as follows: Θ(s) = s.

Secondly, let’s notice that all observations of Manacher’s algorithm on standard palindromes
apply on Θ-palindromes as well. Namely, it is not hard to check that previously mentioned list
of statements:

if oldLeft > left, then newRadius = oldRadius. (otherwise, v is not maximal)

if oldLeft < left, then newRadius = right − newCenter + 1, newRadius < oldRadius.
(otherwise, w is not maximal)

if oldLeft = left, then newRadius ≥ oldRadius.

works for Θ-palindromes.
It is important to notice, though, a small technical change for Θ-palindromes compared to

standard ones - maximal radius values for modified string are not necessary odd values now, they
can be zeros as well.

Here is an example code of Manacher’s algorithm which works with Θ-palindromes:

Code listing 2.5 Manacher’s algorithm for finding maximal Θ-palindromic substring radiuses
1 def maximal_palindromic_substring_radiuses(s, f):
2 if len(s) == 0:
3 return []
4 s = '#'.join(s)
5 p = [0] * len(s)
6 center, right = 0, 0
7 for i in range(len(s)):
8 if i < right:
9 p[i] = min(right-i, p[2*center-i])

10 l, r = i - p[i], i + p[i]
11 while l >= 0 and r < len(s) and f(s[l]) == s[r] and s[l] == f(s[r]):
12 p[i] += 1
13 l -= 1
14 r += 1
15 if i + p[i] > right:
16 center = i
17 right = i + p[i]
18 odd_pos_results = [(x + 1) // 2 for x in p[::2]]
19 even_pos_results = [x // 2 for x in p[1::2]]
20 p[::2] = odd_pos_results
21 p[1::2] = even_pos_results
22 return p
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2.3 Dynamic level ancestor problem
There are multiple versions of dynamic level ancestor problem and known solutions for them.
Let’s start from recapitulation of standard level ancestor problem.

Standard level ancestor problem is a problem in which we are given a static tree graph T with
n nodes and chosen root node r. The goal is to spend some time preprocessing and then answer
queries of type ”for node u from T return node which is k nodes higher in T (higher means going
into direction of r)”.

You can find known solutions for standard level ancestor problem in [12], including the best
known O (n) preprocessing time solution which uses O (1) time answering queries. This solution
is not suitable for our purposes, though. Instead we will use solution (again from [12]) which
uses jump-pointers and achieve O (log n) query time by O (n log n) preprocessing time.

Dynamic version of level ancestor problem which has interest for purposes of this thesis is
modification of standard level ancestor problem for non-static trees. Given a tree graph T with
n initial nodes and chosen root node r, spend some time for preprocessing and then answer two
types of queries: ”for node u from T return node which is k nodes higher in T” and ”add new
leaf node into T”.

It is quite trivial that jump-pointer solution for standard level ancestor problem can be used
for the above dynamic version of level ancestor problem. This algorithm is using O (n log n)
preprocessing time and answers both types of queries in O (log n) time (n is node count of T
before query).

The best known solution for such dynamic level ancestor problem which we found is solution
by Alstrup; Holm described in [13]. They claim their algorithm uses O (n) preprocessing time
and answers both types of our queries in constant time.
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Chapter 3

Analysis of Requirements

Analysis of Requirements ([22], [23]) refers to the specific needs and constraints identified during
the analysis phase of a project or system development. They define the functionalities, behaviors,
and constraints necessary for the system to perform as intended.

These requirements are typically split by being:
Functional Requirements: Specifications detailing what the system should do. They

describe specific functionalities, features, and operations that the system must perform to meet
user needs.

Functional Requirements:

Specify system tasks.

Are specific and tangible.

Directly related to system functionalities.

Validated by testing individual features and operations.

Examples: user authentication, data validation, report generation, etc.

Non-functional Requirements: Define system attributes such as performance, security,
reliability, usability, scalability, and other quality attributes crucial for the system’s success but
not directly related to specific functionalities.

Non-functional Requirements:

Define system behavior or performance.

More abstract, concerning system qualities.

Not directly tied to specific functionalities.

Often measured through qualities like performance, security, usability, etc.

Examples: system response time, security protocols, user interface aesthetics, etc.

In case of this bachelor’s thesis, analysis of requirements was accomplished through my verbal
discussions with doc. Ing. Štěpán Starosta, Ph.D., who is supervising this thesis, and by conduct-
ing researches on the current SageMath codebase.
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3.1 Functional Requirements
Based on initial discussions with supervisor of this thesis, this thesis had only one functional
requirement:

SageMath should contain a method for computing G-defect.

This is due to the fact that SageMath already contained code for computing Θ-defect.

3.2 Non-Functional Requirements
As for non-functional requirements, this thesis had multiple of them:

Existing method for computing Θ-defect in SageMath should be enhanced by improving its
asymptotic time complexity.

New method for computing G-defect in SageMath should be added with good asymptotic
time complexity.

Adhere to the SageMath coding standards.

Base implementation of this thesis on existing codebase of word library inside combinatorics
library of SageMath.

The first requirement was established only after research of current SageMath code was
finished.

We can also see that the second requirement is dependent on the sole functional requirement
of this thesis.



Chapter 4

Design of Algorithms

Driven by the non-functional requirements, we needed to describe algorithms capable of comput-
ing different defects efficiently in terms of time, while maintaining a reasonable level of simplicity
for implementation. Moreover, acknowledging the scientific significance of this work, we will also
present certain algorithms that, although not utilized for subsequent implementation, still hold
considerable scientific value.

In this chapter the following algorithms will be presented in section 4.1:

1. Single-threaded algorithm computing Θ-defect in O (n log n) time by combining Manacher’s
algorithm and jump-pointers

2. Single-threaded algorithm computing Θ-defect in O (n) time by combining Manacher’s algo-
rithm with advanced solution of dynamic level ancestor problem

3. Single-threaded algorithm computing Θ-defect in O (n) time by using Manacher’s algorithm
and tree traversal

4. Single-threaded algorithm computing G-defect in O (n · |G|) time by using previous algorithm
and tree traversal

5. Multi-threaded algorithm computing G-defect in O (n) time using O (|G|) threads

After that in section 4.2, the following algorithms will be presented:

1. Single-threaded algorithm computing classical palindromic defect in O (n log n) time by com-
bining Manacher’s algorithm and jump-pointers

2. Single-threaded algorithm computing classical palindromic defect in O (n) time by combining
Manacher’s algorithm with advanced solution of dynamic level ancestor problem

3. Single-threaded algorithm computing classical palindromic defect in O (n) time by using
Manacher’s algorithm and tree traversal

These latest algorithms are special cases of algorithms computing Θ-defect from section 4.1
in case when Θ is the reversal mapping R. R is antimorphism and ∀a ∈ A : R(a) = a.

Important notice is that all mentioned algorithms have promised time complexity only in cases
when alphabet size is small compared to n or we are using hashing algorithm on the alphabet
which performs queries in O (1) time. Alternatively, these time complexities can be achieved in
case when all letters are enumerated by increasing space complexity of the algorithms.

In this chapter, we will use special notation w′ to refer to a word built from word w by adding
special character s between each pair of consecutive letters of w as it is done in Manacher’s
algorithm for Θ-palindromes.
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4.1 Computing generalized palindromic defects

4.1.1 Θ-defect
Θ-defect is defined in definition 2.1. Just from observing this definition, we can conclude the
following lemma.

▶ Lemma 4.1. Let S be a single-threaded algorithm which finds amount of pairwise distinct
Θ-palindromic substrings of a word in O (f(n)) time, then there exists a single-threaded algorithm
P which computes Θ-defect in O (f(n) + n) time.

Proof. Following definition,

DΘ(w) = |w|+ 1−#PalΘ(w)− γΘ(w),

the |w| and 1 terms are trivial. If we show that a single-thread algorithm K exists which
computes the γΘ(w) term in O (n) time, then this lemma will be proven, because we can just
take P as a consecutive run of S and K, followed by one addition and two subtractions.

By observing definition of the term,

γΘ(w) := #{{a,Θ(a)} | a ∈ A, a occurs in w and a ̸= Θ(a)},

it is not hard to see that we can simply iterate over all letters of w and for each a ∈ w check
if a ̸= Θ(a). Then we would need to deal with duplicate letters. This can practically be done in
several ways.

For example, hash table would give us O (1) time to add every of O (n) letters considering
alphabet size is small compared to n or chosen hashing algorithm behaves well for our letters.

Another alternative, which is possible if all letters are enumerated, is to just use static array
of counters of size |A|. Initially we fill the array with zeros. When iterating over letter a,
if Θ2(a) ̸= a, then we increase counter for a. Otherwise, we increase counter for letter with
minimal index: a or Θ(a). In the end, we count the amount of non-zero counters and get γΘ(w).

So we have built an algorithm K computing the γΘ(w) term in O (n) time, which ends proof
of this lemma.

◀

If we assume that word w is given to us as sequence of letters, then f(n) in above lemma is
asymptotically at least linear.

Also it follows from the above lemma, that we can forget about algorithms for computing
Θ-defect and talk about algorithms for counting amount of pairwise distinct Θ-palindromic
substrings of a word instead. This is exactly what we are going to do.

We will be presenting algorithms counting pairwise distinct Θ-palindromic substrings of word
w. All these algorithms will have following steps in common:

1. Insert a special character s between each pair of consecutive letters of w to get modified word
w′. Reasoning here is the same as in section 2.2 when special character is added before main
part of Manacher’s algorithm for Θ-palindromes. Θ(s) = s, w does not contain s.

2. While applying Manacher’s algorithm to w′, build some data structures.

3. By using data structures from previous step, build a tree graph Tw such that set of all nodes
of Tw is in bijection with set of all pairwise distinct Θ-palindromic substrings of w′. The
amount of nodes of Tw is same as the amount of pairwise distinct Θ-palindromic substrings
of w′.
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4. By making some simple observations on Tw structure, find amount of pairwise distinct Θ-
palindromic substrings of w from it in linear time. This can also be done dynamically while
building Tw.

Let’s describe structure of Tw. As already mentioned, each node of Tw will represent a
Θ-palindromic substring of w′ which is different from other such substrings. Here are rules
describing Tw structure:

Nodes of Tw do not contain any data inside them.

Edges of Tw contain one letter each.

If there is an edge e with letter a from non-root node h to node l and h is higher in the tree
than l and h represents word v, then node l represents word avΘ(a).

If there is an edge e with letter a from root node to node l, then l represents word a.

Root of Tw represents empty string ε.

Every pairwise distinct Θ-palindromic substring of w′ is represented in Tw by exactly one
node.

For every possible w there always exists exactly one tree graph to which all these rules apply.
This can be seen from the fact that w′ contains only odd-length Θ-palindromic substrings (except
empty string ε), and the fact that if w′ contains Θ-palindromic substring u = avb, where a, b ∈ A,
then v is a Θ-palindromic substring of w′ as well.

The next lemma helps with finding amount of pairwise distinct Θ-palindromic substrings of
w from Tw:

▶ Lemma 4.2. Amount of pairwise distinct Θ-palindromic substrings of w is equal to amount
of nodes of Tw which do not represent word starting with special character s. In other words, it
is equal to amount of edges of Tw which do not contain s character plus one.

Proof. Let’s show that there exists a bijection between all nodes of Tw which do not represent
word starting with special character s and all pairwise distinct Θ-palindromic substrings of w.

From the way we defined w′ by adding special character s between each pair of consecutive
letters of w, it follows that a word v is a Θ-palindromic substring of w iff word v′, which does not
start with s, is a Θ-palindromic substring of w′, where v′ is v with s character added between
each pair of consecutive letters. This gives us bijection between all Θ-palindromic substrings of
w′ not starting with s and all Θ-palindromic substrings of w.

There is an obvious bijection between all nodes of Tw which do not represent word starting
with special character s and all Θ-palindromic substrings of w′ not starting with s.

Combining these two bijections give us exactly what we wanted.
◀

Now considering above lemma, we can state another important lemma:

▶ Lemma 4.3. Let S be a single-threaded algorithm which builds Tw in O (f(n)) time, f(n)
is asymptotically at least linear. Then there exists a single-threaded algorithm P which finds
amount of pairwise distinct Θ-palindromic substrings of w in O (f(n)) time.

Proof. Let’s run S algorithm to build Tw. Then, using lemma 4.2, traverse Tw and find amount
of pairwise distinct Θ-palindromic substrings of w in O (n) time.

◀

So being able to compute Tw fast would provide us with a way to compute amount of pairwise
distinct Θ-palindromic substrings of a word fast. The following lemma will help us achieve it by
establishing a link between structure of Tw and Manacher’s algorithm for Θ-palindromes:
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▶ Lemma 4.4. Tw can be built in the following way. At the start Tw contains only root node,
which represents empty string. Then Manacher’s algorithm for Θ-palindromes is run on w′

(special character is not added, w′ already has it) and we try to add a new node to Tw each
time maximal radius of current position is increased in Manacher’s algorithm. The node we are
adding to Tw is the one, which represent Θ-palindromic substring in the current position with the
currently known maximal radius in this position of running Manacher’s algorithm. In case there
is already a node in Tw, which represents such Θ-palindrome, we do not add a new node.

Proof. To prove this lemma we need to prove two things.
Firstly, we need to prove that adding a node in the described way is always possible. This

means we need to prove that parent node already exists in Tw when we are adding a new node.
Secondly, we need to prove that in the end Tw will contain exactly one node for every pair-

wise distinct Θ-palindromic substring of w′. We can not have two nodes representing same
Θ-palindrome simply by the way we are adding nodes to Tw. So we only need to show that we
will try to add to Tw every pairwise distinct Θ-palindromic substring of w′ at least once.

The following observation will help us to prove these statements.
By behaviour of Manacher’s algorithm (see section 2.2), it can be seen that Manacher’s

algorithm iterates over w′ letter positions from left to right. For each position it first defines
initial radius as either zero or by coping it by symmetry from some previous position and possibly
reducing copied radius. Then it iterates from the initial radius to actual maximal radius in the
position (possibly this iteration has zero steps).

Now we can prove both statements by mathematical induction over the following statements:

A(k) is ”When current position of Manacher’s algorithm reaches k + 1, then Tw contains
nodes representing all Θ-palindromes centered at any of the first k letters of w′”

B(k) is ”When adding all nodes for position k + 1 into Tw, parent of each new node will
already exist in Tw”

We start numerating letter positions with 1.
To prove that B(k) is true, it is enough to show that parent node for the first node added

in position k + 1 exists in Tw before we try to add this node. For the rest of the added nodes,
parent node already exists because we added it on the previous step of Manacher’s algorithm.

Let’s prove the statements A(k) and B(k) together by mathematical induction for k from 0
to |w′|. B(|w′|) is considered to be true from the start. For k = 0, A(0) is trivial, B(0) is true,
because Tw contains empty string from the start and initial radius in position 1 is zero.

For step k → k + 1, let’s notice that A(k + 1) follows from A(k) and B(k). Indeed, based on
A(k), we only need to prove that all Θ-palindromes centered at k + 1 are contained in Tw after
Manacher’s algorithm finishes iterating from initial radius to actual maximal radius at k + 1.
From B(k) it follows that all Θ-palindromes centered at k+1 with radius less than initial radius
are already represented in Tw before the iteration starts. After iteration is done, the rest of
Θ-palindromes centered at k + 1 are added to Tw. This proves A(k + 1).

Now we will prove B(k + 1) when we already know all A(l), l ≤ k + 1. If k + 1 = |w′|, then
there is nothing to prove. Let’s see what happens when current position of Manacher’s algorithm
is k + 2 ≤ |w′|. If initial radius at k + 2 is zero, then B(k + 1) is proven, because Tw contains
node for empty string from the start. Otherwise, initial radius at k + 2 was copied from actual
maximal radius of some previous position m ≤ k + 1 and possibly reduced after copy. In both
cases, B(k + 1) follows from A(k + 1) and m ≤ k + 1. This ends induction.

It is not hard to see that statements which we initially needed to prove are followed from
statements we just proved by mathematical induction.

◀
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Now we will present an algorithm which finds amount of pairwise distinct Θ-palindromic
substrings of a word in O

(
n2

)
time.

▶ Lemma 4.5. There exists an algorithm finding amount of pairwise distinct Θ-palindromic
substrings of a word in O

(
n2

)
time using Manacher’s algorithm for Θ-palindromes.

Proof. It follows from lemma 4.3 that it is enough for us to present an algorithm which builds
Tw in O

(
n2

)
time. We can build Tw using lemma 4.4, but we still need to answer the question

of how we will find parent node in Tw of a node we are currently trying to add.
We can just take Θ-palindrome represented by the parent node and find this Θ-palindrome

in Tw in O (n) time by going down from the root of Tw. Doing it every time we try to add a
node in Tw would give us an algorithm to build Tw in O

(
n2

)
time.

◀

It is hard to improve time complexity of the above algorithm, so we need to introduce an
additional data structure, which we will be building while running Manacher’s algorithm for
Θ-palindromes.

For every letter position p in w′ we are going to remember two things:

1. Node vp in Tw

2. Non-negative integer tp

The limitations on choosing vp and tp pair are that vp currently exists in Tw, depth of vp in
Tw is at least tp and tpth ancestor of vp in Tw is a node representing Θ-palindrome centered at
p with maximal possible radius.

▶ Lemma 4.6. Pairs (vp, tp) for all positions p can be computed in O (n) time while running
Manacher’s algorithm for Θ-palindromes.

Proof. We will set (vp, tp) pair right after Manacher’s algorithm finishes iterating from initial
radius to maximal radius in position p.

If initial radius was less than maximal radius in p, then at the last step of iteration we added
node into Tw which represents Θ-palindrome centered at p with maximal possible radius, so we
can set tp as 0 and vp as this node right after we added it.

If initial radius was equal to maximal radius in p, then there are two possibilities. First
possibility is that both initial radius and maximal radiuses are 0. In this case we set vp as root
node of Tw and tp as 0. Second possibility is that initial radius in p was copied from maximal
radius in some previous position l and reduced by non-negative integer value d. In this case we
can set vp = vl and tp = tl + d. Limitations on pair (vp, tp) are not broken here. Limitations on
tp are not broken because maximal radius in position l was at least d simply by definition of d
and correctness of Manacher’s algorithm. Limitations on vp are not broken because of behaviour
of Manacher’s algorithm for Θ-palindromes.

We can notice that in all cases we spend constant time to compute every next pair (vp, tp).
And plain Manacher’s algorithm for Θ-palindromes runs in O (n) time. So we find pairs (vp, tp)
for all positions p in O (n) time.

◀

We are now ready to present three algorithms which find amount of pairwise distinct Θ-
palindromic substrings of a word and have time complexities O (n log n), O (n) and O (n) respec-
tively.
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▶ Theorem 4.7. There exists an algorithm finding amount of pairwise distinct Θ-palindromic
substrings of a word in O (n log n) time by combining Manacher’s algorithm for Θ-palindromes
and jump-pointers.

Proof. Our algorithm will follow the same basic structure as the algorithm from lemma 4.5. On
top of that we will be building Tw with jump-pointers (see section 2.3), so adding new nodes
into Tw will cost us O (log n) time now. And we will be additionally computing (vp, tp) pairs
while running Manacher’s algorithm for Θ-palindromes (see lemma 4.6). Another possibility is
to compute all (vp, tp) pairs beforehand in O (n) time.

Now let’s show that finding parent node in Tw of a node we are currently trying to add can
be done in O (log n) time. Then following same logic as in algorithm from lemma 4.5, we will
get the O (n log n) time algorithm we promised. As can be seen from lemma 4.4, we are trying
to add new nodes into Tw only when our Manacher’s algorithm is currently in position p, which
has initial radius less than maximal radius, and we increase current radius for position p.

Let’s show how we can find in O (log n) time node representing Θ-palindrome centered in p
with radius equal to initial radius in p. If initial radius in p is 0, then we take the root node of Tw
in constant time. If initial radius in p is greater than 0, then it was copied from some previous
position l and reduced by non-negative integer d. Pair (vl, tl) was already computed, so we can
take (tl + d)th ancestor of vl in O (log n) time using jump-pointers. This is exactly the node we
are looking for.

So we can find parent nodes for nodes, which are added when current radius in some position
p is increased from initial radius, in O (log n) time. For the nodes, which are added when current
radius in p is increased not from initial radius, their parent node was found or added on the
previous step of Manacher’s algorithm for Θ-palindromes. So finding the parent node can be
done in constant time in such case.

In worst case, we find parent node in Tw of a node we are currently trying to add in O (log n)
time. As already mentioned above, the promised algorithm with O (n log n) time complexity
follows from this.

◀

▶ Theorem 4.8. There exists an algorithm finding amount of pairwise distinct Θ-palindromic
substrings of a word in O (n) time by combining Manacher’s algorithm for Θ-palindromes and
advanced solution for dynamic level ancestor problem.

Proof. Let’s notice that algorithm described in theorem 4.7 does not use any properties of jump-
pointers expect that we use jump-pointers as a solution for dynamic level ancestor problem (see
section 2.3).

So if we had a solution for dynamic level ancestor problem, such that we can add new leaf
nodes in constant time and find ancestors in constant time, then we would build the promised
algorithm based on algorithm from theorem 4.7.

Such solution is mentioned in section 2.3.
◀

▶ Theorem 4.9. There exists an algorithm finding amount of pairwise distinct Θ-palindromic
substrings of a word in O (n) time by using Manacher’s algorithm for Θ-palindromes and tree
traversal.

Proof. From lemma 4.3 it follows that it is enough for us to present an algorithm which builds
Tw in O (n) time.

And from lemma 4.4 follows that Tw can be built in the following way. Initially Tw contains
only root node. Then we run Manacher’s algorithm for Θ-palindromes on w′, while collecting all
pairs (p, r) of positions with radiuses such that Manacher’s algorithm increased radius in position
p from r− 1 to r. And then iterate over all these pairs (p, r) in some order and for each pair add
node into Tw which represents palindrome centered in p with radius r. The only limitation on
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the order of (p, r) pairs is that when we are adding node into Tw, the parent node of this node
must already exist in Tw.

To use the above observation we will first need to build an additional data structure.
While running Manacher’s algorithm for Θ-palindromes, we will build an oriented forest graph

H which will contain one node hp for each letter position p of w′.
Every node hp will contain two non-negative integers incrp and decrp. incrp is equal to

maximal radius in position p minus initial radius in p as in Manacher’s algorithm. If Manacher’s
algorithm copied initial radius in position p from some previous position and reduced it by non-
negative integer d, then decrp = d. Otherwise, initial radius in position p is 0 and we define
decrp = 0.

Additionally every node hp will contain index of position p in w′, so for every node hp we can
go to position p in w′ in constant time.

Edges of H will be added based on how Manacher’s algorithm copies radiuses of previous
positions. An edge e from node hl to node hp exists in H iff Manacher’s algorithm copied initial
radius in position p from maximal radius in previous position l.

It is not hard to see that H can be built in O (n) time by running Manacher’s algorithm for
Θ-palindromes, because every incrp and decrp can be computed in constant time in all cases and
every edge can be added in constant time. Details of implementation are left to readers as an
exercise.

The fact, that H is indeed an oriented forest, follows from how edges of H were defined.
Actually, we do not need all the data contained in H, so we will build another oriented forest

H ′ by removing some nodes from H.
H ′ starts off as a copy of H and then we consecutively remove all nodes hp from H ′ such

that incrp = 0, while adding decrp values lost from removal of the nodes to descendant nodes.
In other words, when node hp is removed, then for each direct descendant hl of hp we modify
decrl = decrl + decrp. If hp is a root node for some tree in H ′, then we simply remove node hp
and all of its edges, meaning amount of trees in H ′ might change after this operation. If hp is
not a root node and has a parent node ht, then for each direct descendant hl of hp we add an
edge from ht to hp, and finally, we remove node hp and all of its edges.

The order in which nodes are removed from H ′ is not arbitrary. At the start we choose
an arbitrary order in which trees of H ′ will be traversed. Then we traverse each tree from the
root node using depth-first traversal, while removing the nodes as mentioned above. Here it is
important that we traverse the trees in such way that after node hp was visited, all ascendants
of hp were already visited before and none of them will be removed later.

Let’s notice that in the described way of building H ′ we spend O (degin(hp) + degout(hp)) time
to remove node hp and the value degin(hl)+degout(hl) is not increased for any descendent nodes hl
of hp. From this observation follows, that the described way of building H ′ from H has time com-
plexity O

(
#nodes(H) + #edges(H) +

∑
hp∈nodes(H) deg(hp)

)
= O (n+ n+#edges(H)) which

in fact is O (n).
In reality we can build H ′ instead of H from the start during run of Manacher’s algorithm

for Θ-palindromes. Details of implementation and proof are left to readers as an exercise.
As can be seen from definition of H ′, H ′ contains one node h′p for each position p of w′ such

that maximal radius in p is bigger than initial radius in p in Manacher’s algorithm. All incrp
values in H ′ are positive.

H has one property which is important for us. For each node hp in H, initial radius in
position p is equal to sum of all incra − decra values for all ancestors ha of hp minus decrp. H
follows this property because of how it is defined based on Manacher’s algorithm. Moreover, H ′

also follows this property. It can be seen from the fact that when we are building H ′, it starts
off as H, which follows the property, and the property is not broken after each node removal in
H ′ (notice how we modify decrp values for this).

From now on we will not need H anymore, so any mentions of incrp and decrp values will be
referring to the values in nodes of H ′.
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Now let’s build Tw using H ′. Initially, Tw contains only root node, which represents an empty
string ε.

We will present an algorithm S for building part of Tw while traversing one tree F of H ′.
This algorithm is then applied to every tree of H ′ consecutively. The order, in which trees are
traversed, is arbitrary.

While traversing F , we will be remembering some path curPath of Tw, which start at the root
node of Tw. We will also have a dynamic array nodesLeft, which has the same size as amount of
nodes in curPath. nodesLeft will contain as its elements dynamic arrays of references to some
nodes of F .

Let’s describe how curPath and nodesLeft will be changing during traversal of F and how
they will affect traversal of F .

When algorithm S comes to a node h′p ∈ F during traversal and it wants to mark h′p as vis-
ited, then it follows the next procedure. By the way S will behave, at this moment curPath will
end with a node from Tw which represents Θ-palindrome centered in p with radius equal to initial
radius in p. Before marking h′p as visited, S iterates from initial radius in p plus one to maximal ra-
dius in p and tries to add new node into Tw representing Θ-palindrome centered in p with current
radius. S also pushes references to these new nodes or already existing nodes into curPath, and
it fills nodesLeft with empty dynamic arrays so it has the same size as node count in curPath.
After this part is done, S iterates over all direct descendants h′l of h′p in F and it adds a reference
to h′l in nodesLeft array into dynamic array on index (len(nodesLeft)− decrl). And finally, S
marks h′p as visited and continues. Time complexity of this operation is O

(
incrp + degout(h

′
p)
)
,

because we get p from F in constant time, we get initial radius from node count of curPath,
then we do incrp constant time operations of trying to add new node into Tw, and finally we add
reference into nodesLeft for each of degout(h′p) direct descendants of h′p, adding each reference
costs constant time.

When algorithm S needs to choose node h′p to apply the above procedure of marking h′p as
visited, it follows the next procedure. If the last dynamic array in nodesLeft is not empty, then
S pops the last node from it and takes this node as h′p. If the last dynamic array in nodesLeft
is empty, then S decreases size of nodesLeft by 1 and removes the last node from curPath, and
after that S repeats this procedure of choosing h′p. If nodesLeft has size 0, then S finishes.

Initially S starts with procedure of marking root node of F as visited.
As can be seen from definition of S, all nodes of F will indeed be marked as visited at the end

of S. It follows from the fact that after we mark some node h′p as visited, then we add references
to all direct descendants of h′p somewhere into nodesLeft and so we will mark all of them as
visited some time later.

From definition of S and properties of H ′ mentioned above, it follows that for node h′p from
F , before S marked h′p as visited, S tried to add into Tw nodes representing all Θ-palindromes
centered in p with radius bigger than initial radius in p and not bigger than maximal radius in
p.

So if we apply S for all trees of H ′ in some arbitrary order, then we will try to add to Tw
nodes representing all Θ-palindromes centered in position p with radius r, which is bigger than
initial radius in p and not bigger than maximal radius in p, for all pairs (p, r).

Then it follows from the observation on how Tw can be built, which was made at the start of
this proof, that the above algorithm actually builds whole Tw.

Now it is only left to show that the above algorithm of building Tw from H ′ has O (n) time
complexity. This will finish the proof, because we can build H in O (n) time, then build H ′ from
H in O (n) time, and finally build Tw from H ′ in O (n) time. Combining all three algorithms,
we get an algorithm building Tw in O (n) time, which is exactly what we wanted, as mentioned
at the very start of this proof.

Let’s notice that all calls of procedure of S to choose node h′p do the same amount of constant-
time steps as amount of times curPath is increased by 1 or a some reference is added into
nodesLeft somewhere during run of S. Indeed, at the start of S and at the end of S, both
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curPath and nodesLeft are empty. Nodes are removed from curPath and references are removed
from nodesLeft only during procedure of choosing node h′p.

It follows that time spent on choosing nodes during run of S is not asymptotically bigger
than time spent on marking nodes as visited. So time complexity of S applied to F is equal to
O
(∑

h′
p∈F incrp +

∑
h′
p∈F degout(h

′
p)
)

. Then time complexity of algorithm for building Tw from

H ′ by using algorithm S is O
(∑

h′
p∈H′ incrp +

∑
h′
p∈H′ degout(h

′
p)
)

= O
(
n+

∑
h′
p∈H′ incrp

)
.

Sum
∑

h′
p∈H′ incrp is equal to amount of time radius in current position is increased during Man-

acher’s algorithm, so O
(∑

h′
p∈H′ incrp

)
= O (n). Then it follows that O

(
n+

∑
h′
p∈H′ incrp

)
is

same as O (n). This proofs that our algorithm to build Tw from H ′ has O (n) time complexity,
which is exactly what we wanted.

◀

Going back to computing Θ-defect, let’s present the initially promised algorithms.

▶ Lemma 4.10. There exists an algorithm computing Θ-defect in O (n log n) time by combining
Manacher’s algorithm for Θ-palindromes and jump-pointers.

Proof. Combine theorem 4.7 and lemma 4.1.
◀

▶ Lemma 4.11. There exists an algorithm computing Θ-defect in O (n) time by combining
Manacher’s algorithm for Θ-palindromes and advance solution of dynamic level ancestor problem.

Proof. Combine theorem 4.8 and lemma 4.1.
◀

▶ Lemma 4.12. There exists an algorithm computing Θ-defect in O (n) time by using Man-
acher’s algorithm for Θ-palindromes and tree traversal.

Proof. Combine theorem 4.9 and lemma 4.1.
◀

4.1.2 G-defect
For purposes of multi-threaded algorithms presented in this subsection, we will require an im-
plementation of concurrent hash table/map which has additional properties that any amount
of parallel queries to remove the same element from it has constant time complexity and that
any amount of parallel queries to add the same element to it has constant time complexity.
Implementation details of such version of concurrent hash table/map are left to readers as an
exercise.

In this subsection, we will be using symbol r specifically to represent amount of antimorphisms
contained in G. It follows from lemma 2.3 that r = O (|G|).

Any mention of concurrent hash table/map data structure in this subsection will be referring
to implementation of concurrent hash table/map mentioned above.

We will also use Tw,Θ notation to refer to tree Tw defined in subsection 4.1.1 built for word
w and antimorphism Θ.

G-defect is defined in definition 2.4. Just from observing this definition, we can conclude the
following lemma.

▶ Lemma 4.13. Let S be a single-threaded algorithm which finds #PalG(w) in O (f(n, r)) time,
then there exists a single-threaded algorithm P which computes G-defect in O (f(n, r) + r · n)
time.
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Proof. Following definition,

DG(w) = |w|+ 1−#PalG(w)− γG(w)

the |w| and 1 terms are trivial. If we show that a single-thread algorithm K exists which
computes the γG(w) term in O (r · n) time, then this lemma will be proven, because we can just
take P as a consecutive run of S and K, followed by one addition and two subtractions.

By observing definition of the term,

γG(w) := #{[a] | a ∈ A, a occurs in w, and a ̸= Θ(a) for every antimorphism Θ ∈ G},

it is not hard to see that we can simply iterate over all letters of w and for each a ∈ w check
if a ̸= Θ(a) for every antimorphism Θ ∈ G and mark all such letters a. This requires O (r · n)
time. Then we would need to deal with duplicate letters. This can practically be done in several
ways.

We will show how to do it using hash table. Adding one letter to hash table would require
O (1) time considering alphabet size is small compared to n or chosen hashing algorithm behaves
well for our letters. So we try to add all letters, which we marked above, into hash table. It
takes O (n) and hash table does not contain duplicate letters in the end.

Now when we have the hash table, we need to find how many pairwise distinct classes of
equivalence [a] there are among letters a of our hash table. We can do it by taking an arbitrary
element a of our hash table and trying to remove elements φ(a) from hash table for all φ ∈ G.
Then repeat this for another arbitrary element of hash table until hash table is empty. Overall
time complexity of this is O (r · n). Amount of iterations of this algorithm is equal to amount
of pairwise distinct classes of equivalence [a] in our hash table. This is exactly what we want to
compute.

Summing up, we have built an algorithm K computing the γG(w) term in O (r · n) time,
which ends proof of this lemma.

◀

We can also prove similar lemma for multi-threaded algorithms.

▶ Lemma 4.14. Let S be a multi-threaded algorithm which uses k ≤ r threads and finds
#PalG(w) in O (f(n, r, k)) time, then there exists a multi-threaded algorithm P which computes
G-defect in O

(
f(n, r, k) + r·n

k

)
time.

Proof. Following definition,

DG(w) = |w|+ 1−#PalG(w)− γG(w)

the |w| and 1 terms are trivial. If we show that a multi-thread algorithm K using k threads
exists which computes the γG(w) term in O

(
r·n
k

)
time, then this lemma will be proven, because

we can just take P as a consecutive run of S andK, followed by one addition and two subtractions.
By observing definition of the term,

γG(w) := #{[a] | a ∈ A, a occurs in w, and a ̸= Θ(a) for every antimorphism Θ ∈ G},

it is not hard to see that we can iterate over all letters of w and for each a ∈ w check if
a ̸= Θ(a) for every antimorphism Θ ∈ G and mark all such letters a. This can be done in
O
(
r·n
k

)
time using k threads. Indeed, let’s first setup an atomic boolean for each letter of w as

true. This setup can be done in O (n) time using one thread. Then we numerate all pairs (a,Θ)
and make thread with index i iterate all pairs with indices j such that j ≡ i (mod k). If some
thread finds that a = Θ(a) for some Θ, then it sets the atomic boolean of letter a as false. In
the end, we are interested only in letters with atomic boolean with true value.
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Now we need to deal with duplicate letters. This can practically be done in several ways.
We will show how to do it using concurrent hash table. Adding one letter to concurrent hash

table would require O (1) time considering alphabet size is small compared to n or chosen hashing
algorithm behaves well for our letters. So we try to add all letters, which have atomic boolean
with true value, into concurrent hash table. It takes O (n) using one thread and concurrent hash
table does not contain duplicate letters in the end.

Now when we have the concurrent hash table, we need to find how many pairwise distinct
classes of equivalence [a] there are among letters a of our concurrent hash table. We can do it by
taking an arbitrary element a of our concurrent hash table and trying to remove elements φ(a)
from concurrent hash table for all φ ∈ G. We do it using k threads by numerating all φj ∈ G
and making thread with index i iterate all φj with indices j such that j ≡ i (mod k). Then we
repeat this for another arbitrary element of concurrent hash table until concurrent hash table
is empty. Overall time complexity of this is O

(
r·n
k

)
. Amount of iterations of this algorithm is

equal to amount of pairwise distinct classes of equivalence [a] in our concurrent hash table. This
is exactly what we want to compute.

Summing up, we have built an algorithm K computing the γG(w) term in O
(
r·n
k

)
time,

which ends proof of this lemma.
◀

It follows from the above lemmas, that we can forget about algorithms for computing G-defect
and talk about algorithms for computing #PalG(w) instead. This is exactly what we are going
to do.

To compute #PalG(w), our algorithms will be building a special tree graph to which we will
refer as Tw,G. It will be built using trees Tw,Θ built for all antimorphisms Θ ∈ G.

Before describing structure of Tw,G, we need to pick an arbitrary order of all morphisms
f ∈ G. We will refer to morphism with index i as fi.

It is also important to say that special character s, which is used to build w′ from w, is chosen
the same for all antimorphisms Θ ∈ G, and ∀Θ ∈ G : Θ(s) = s. It follows from definition that
all G-palindromic substrings of w′ have odd length (except empty string ε).

Now let’s describe structure of Tw,G. Every node h of Tw,G will represent a G-palindromic
class of equivalency [v′], v′ is a substring of w′, which is different from G-palindromic classes of
equivalency represented by other nodes of Tw,G. We will refer to node representing a class of
equivalency [v′] as hv′ . Here are rules describing Tw,G structure:

Edges of Tw,G contain two letters each. For edge e, we will refer to the first letter as el and
to the second letter as er. el = er for all edges from root node of Tw,G.

If there is an edge e with el = a and er = b from non-root node h to node l and h is higher
in the tree than l and h represents [v], then node l represents [avb].

If there is an edge e with el = er = a from root node to node l, then l represents [a].

Root of Tw,G represents [ε].

Every pairwise distinct G-palindromic class of equivalency [v′], such that v′ is substring of
w′, is represented in Tw,G by exactly one node.

Node hv′ of Tw,G will contain a dynamic array of size r of references to hash maps mapRefi,v′ .
Two references mapRefi,v′ and mapRefj,v′ might reference the same hash map. We will refer
to hash maps by mapi,v′ . Keys of the hash maps are pairs of letters, and values are references
to other such hash maps. All these hash maps are maintained in one dynamic array outside of
Tw,G. We will be saying that hash map mapi,v′ represents string fi(v′) and mapi,ε represents
ε.
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For node hv′ with parent edge e with el = a and er = b, mapRefi,v′ = mapRefj,v′ ⇐⇒
(fi(a), fi(b)) = (fj(a), fj(b)). For root node hε of Tw,G, ∀i, j : mapRefi,ε = mapRefj,ε.

There is an edge e with el = a and er = b from node hv′ to node hav′b iff hash map mapi,v′

in node hv′ contains an element with the key (fi(a), fi(b)) and the value mapRefi,av′b.

For every possible w there always exists exactly one tree graph to which all these rules apply.
Uniqueness of data inside nodes follows from how data inside nodes is defined. The rest can
be seen from the fact that w′ contains only odd-length G-palindromic substrings (except empty
string ε), and the fact that if w′ contains G-palindromic substring u = avb, where a, b ∈ A, then
v is a G-palindromic substring of w′ as well.

Every hash map map of Tw,G is always referenced only in one node h of Tw,G. We will refer to
h as node containing map and put a reference to h alongside map so we can access it in constant
time.

The next lemma helps with finding #PalG(w) from Tw,G:

▶ Lemma 4.15. #PalG(w) is equal to amount of nodes of Tw,G which do not represent [v′]
such that v′ starts with special character s. In other words, it is equal to amount of edges e of
Tw,G such that el ̸= s plus one.

Proof. Let’s show that there exists a bijection between all nodes hv′ of Tw,G such that v′ does
not start with s and all pairwise distinct G-palindromic classes of equivalency [v], v is a substring
of w.

From the way we defined w′ by adding special character s between each pair of consecutive
letters of w, it follows that a word v is a G-palindromic substring of w iff word v′, which does not
start with s, is a G-palindromic substring of w′, where v′ is v with s character added between
each pair of consecutive letters. This gives us bijection between all G-palindromic substrings of
w′ not starting with s and all G-palindromic substrings of w.

Also from definition of s it follows that for any v, u two G-palindromic substrings of w : v ∈
[u] ⇐⇒ v′ ∈ [u′]. This gives us bijection between all pairwise distinct G-palindromic classes
of equivalency [v′], where v′ is a substring of w′ and v′ does not start with s, and all pairwise
distinct G-palindromic classes of equivalency [v], v is a substring of w.

By definition of Tw,G, there is an obvious bijection between all nodes hv′ of Tw,G such that
v′ does not start with s and all pairwise distinct G-palindromic classes of equivalency [v′], where
v′ is a substring of w′ and v′ does not start with s.

Combining the last two bijections give us exactly what we wanted.
◀

Now considering above lemma, we can state several other important lemmas.

▶ Lemma 4.16. Let S be a single-threaded algorithm which builds Tw,G in O (f(n, r)) time.
Then there exists a single-threaded algorithm P which computes #PalG(w) in O (f(n, r) + n)
time.

Proof. Let’s run S algorithm to build Tw,G. Then, using lemma 4.15, traverse Tw,G and compute
#PalG(w) in O (n) time.

◀

▶ Lemma 4.17. Let S be a multi-threaded algorithm which uses k threads and builds Tw,G in
O (f(n, r, k)) time. Then there exists a multi-threaded algorithm P which uses k threads and
computes #PalG(w) in O (f(n, r, k) + n) time.

Proof. Let’s run S algorithm to build Tw,G. Then, using lemma 4.15, traverse Tw,G with one
thread and compute #PalG(w) in O (n) time.

◀
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Now we are ready to present single-threaded algorithms for computing #PalG(w) and G-
defect.

▶ Theorem 4.18. Let S be a single-threaded algorithm which builds Tw,Θ for arbitrary antimor-
phism Θ ∈ G in O (f(n)) time, then there exists a single-threaded algorithm P which computes
#PalG(w) in O (r · f(n) + r · n) time.

Proof. We start by running S for all antimorphisms Θ ∈ G and by doing so we build Tw,Θ for
all antimorphisms Θ ∈ G in O (r · f(n)) time.

We also compute all f−1
i in O(r · n) time.

If we now present a single-threaded algorithm which builds Tw,G in O (r · n) time using
Tw,Θ trees, then by summing up we get a single-threaded algorithm which builds Tw,G in
O (r · f(n) + r · n) time. By combining this algorithm with lemma 4.16, we get a single-threaded
algorithm which computes #PalG(w) in O (r · f(n) + r · n) time, which is exactly what we want.

Now we will present a single-threaded algorithm K which builds Tw,G in O (r · n) time using
Tw,Θ trees, which will finish this theorem.

K will consecutively traverse all trees Tw,Θ in arbitrary order by depth-first traversal while
trying to add new nodes into Tw,G.

When K is visiting node in Tw,Θ which represents Θ-palindrome u′ = u1u2 . . . u2n−1, then it
will remember hash maps in Tw,G which represents ε, un, · · · , u2u3 . . . u2n−2 and u′.

If K goes up one node in Tw,Θ, then it forgets the last of hash maps. This operation is done
in constant time.

If K goes down one node in Tw,Θ from node h to node l using edge e with letter a, then there
are two cases.

If the last of hash maps contains key (a,Θ(a)) with value being a reference to map, then K
adds map as the last hash map it currently remembers. This is done in constant time.

If the last of hash maps does not contain key (a,Θ(a)), then K adds a new node into Tw,G.
b = Θ(a). This new node ha′v′b′ is a direct descendant of node hv′ of the last hash map. Edge
e from hv′ to ha′v′b′ has a′ = el = f−1

i (a) and b′ = er = f−1
i (b). To choose i in constant time,

K needs to additionally remember for every hash map mapi,v′ one of indices i. After ha′v′b′

is added, K needs to fill data for it and create new hash maps. To do this, K builds a hash
map with keys being tuples (mapRefi,v′ , fi(a

′), fi(b
′)) for all i and values being a new hash map

newMapi. Then, for all i, K sets mapRefi,a′v′b′ = ref(newMapi) and adds to mapi,v′ element
with key (fi(a

′), fi(b
′)) and value mapRefi,a′v′b′ . Overall time complexity of this operation of

K is O(r).
Let’s notice that in total K adds O (n) nodes into Tw,G and operation of K which adds a

node into Tw,G costs O (r) time, so total time spent on such operations is O (r · n). At the same
time, all other operations of K have constant time complexity and their amount is O (r · n). It
follows that time complexity of K is O (r · n).

As can be seen from definition of K,Tw,Θ and Tw,G, after K finishes traversal of Tw,Θ for
some antimorphism Θ, all Θ-palindromic substrings of w′ are represented by some hash map in
Tw,G and so all G-palindromic classes of equivalency [v′], where v′ is a substring of w′ and v′ is
a Θ-palindrome, are represented by some node in Tw,G.

Summing up, after K finishes traversal of all Tw,Θ, Tw,G contains nodes representing all
G-palindromic classes of equivalency [v′], where v′ is a substring of w′.

◀

▶ Lemma 4.19. There exists an algorithm computing G-defect in O (r · n) time.

Proof. By combining algorithm described inside proof of theorem 4.9 and theorem 4.18, we get
an algorithm which computes #PalG(w) in O (r · n) time. By combining this algorithm with
lemma 4.13, we get an algorithm which we want.

◀
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Now we will present multi-threaded algorithms for computing #PalG(w) and G-defect.
▶ Theorem 4.20. Let S be a single-threaded algorithm which builds Tw,Θ for arbitrary anti-
morphism Θ ∈ G in O (f(n)) time, then there exists a multi-threaded algorithm P using k ≤ r

threads which computes #PalG(w) in O
(

r·f(n)+r·n
k

)
time.

Proof. We start by running S for all antimorphisms Θ ∈ G using k threads, up to k instances of
S are running at the same. By doing so we build Tw,Θ for all antimorphisms Θ ∈ G in O

(
r·f(n)

k

)
time.

We also compute all f−1
i in O

(
r·n
k

)
time.

If we now present a multi-threaded algorithm which uses k ≤ r threads and builds Tw,G in
O
(
r·n
k

)
time using Tw,Θ trees, then by summing up we get a multi-threaded algorithm which

uses k ≤ r threads and builds Tw,G in O
(

r·f(n)+r·n
k

)
time. By combining this algorithm with

lemma 4.17, we get a multi-threaded algorithm which uses k ≤ r threads and computes #PalG(w)

in O
(

r·f(n)+r·n
k + n

)
= O

(
r·f(n)+r·n

k

)
time, which is exactly what we want.

Now we will present a multi-threaded algorithm M which uses k ≤ r threads and builds Tw,G

in O
(
r·n
k

)
time using Tw,Θ trees, which will finish this theorem.

We will be using an algorithm K which builds Tw,G in O (r · n) time described in theorem 4.18.
K consecutively traverses all trees Tw,Θ by algorithm L.

M also traverses all trees Tw,Θ by algorithm L, but it runs up to k instances of L.
M uses concurrent hash maps in Tw,G and for the additional hash map created when a new

node is being added to Tw,G.
It is important to understand how M synchronizes between threads to achieve O

(
r·n
k

)
time

complexity.
When a thread detects that it needs to add a new node, then it does not do it by itself, but

synchronizes with other threads and reports that a new node needs to be added. This operation
of reporting is done in constant time.

After each instance of L in M makes one step of traversal of its Tw,Θ, all threads synchronize
and check if there is at least one new node to add, reported by one of the threads. If there is
a new node to add, then all threads participate in adding this new node, and then all threads
rollback their state to state before the last step of traversal. Steps of traversal of Tw,Θ include
ascending by one node, descending by one node without new node in Tw,G, descending by one
node with new node in Tw,G.

Algorithm for adding a new node into Tw,G is slightly modified in M compared to how to
works in K. Instead of initializing as many as needed new hash maps, M initialized exactly r
new concurrent hash maps. Some of these new concurrent hash maps will not be used at all after
operation of adding new node to Tw,G is finished, it is decided by which thread is faster to add
a key into the concurrent hash map with keys (mapRefi,v′ , fi(a

′), fi(b
′)).

Synchronized operations in M all have constant time complexity. Initially, amount of syn-
chronized operations is O (r · n). Considering O (n) rollbacks of k operations, time spent on
synchronized operations using k threads is O

(
r·n
k

)
.

Operation in M to add new node into Tw,G has O
(
r
k

)
time complexity.

It follows that time complexity of M is O
(
r·n
k

)
, which is exactly what we wanted.

◀

▶ Lemma 4.21. There exists a multi-threaded algorithm which uses k ≤ r threads and computes
G-defect in O

(
r·n
k

)
time.

Proof. By combining algorithm described inside proof of theorem 4.9 and theorem 4.20, we get
a multi-threaded algorithm which uses k threads and computes #PalG(w) in O

(
r·n
k

)
time. By

combining this algorithm with lemma 4.14, we get an algorithm which we want.
◀
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4.2 Computing classical palindromic defect
Let’s notice that the whole subsection 4.1.1 does not make any actual use from working with Θ-
palindromes, except at the very start in lemma 4.1 and at the very end in lemma 4.10, lemma 4.11
and lemma 4.12. So if we skip these parts and read the rest while changing all mentions of Θ-
palindromes into classical palindromes, then all statements will work for classical palindromes as
well.

We are not going to rewrite whole subsection 4.1.1 here. Instead we will simply present
results for classical palindromes as special cases of results, which were already achieved in sub-
section 4.1.1.
▶ Note 4.22. Classical palindromic defect of word w is defined as |w|+1 minus amount of pairwise
distinct palindromic substrings of w. So to compute classical palindromic defect in O (f(n))
time, where f(n) is at least linear, it is enough to find amount of pairwise distinct palindromic
substrings of w in O (f(n)) time and then perform one addition and one subtraction.

▶ Lemma 4.23. There exists an algorithm finding amount of pairwise distinct palindromic
substrings of a word in O (n log n) time by combining Manacher’s algorithm and jump-pointers.

Proof. Proof follows as special case of theorem 4.7 when Θ is chosen as the reversal mapping
R. R is an antimorphism and ∀a ∈ A : R(a) = a.

◀

▶ Lemma 4.24. There exists an algorithm finding amount of pairwise distinct palindromic
substrings of a word in O (n) time by combining Manacher’s algorithm and advanced solution
for dynamic level ancestor problem.

Proof. Proof follows as special case of theorem 4.8 when Θ is chosen as the reversal mapping
R. R is an antimorphism and ∀a ∈ A : R(a) = a.

◀

▶ Lemma 4.25. There exists an algorithm finding amount of pairwise distinct palindromic
substrings of a word in O (n) time by using Manacher’s algorithm and tree traversal.

Proof. Proof follows as special case of theorem 4.9 when Θ is chosen as the reversal mapping
R. R is an antimorphism and ∀a ∈ A : R(a) = a.

◀

▶ Lemma 4.26. There exists an algorithm computing classical palindromic defect in O (n log n)
time by combining Manacher’s algorithm and jump-pointers.

Proof. Combine lemma 4.23 and note 4.22.
◀

▶ Lemma 4.27. There exists an algorithm computing classical palindromic defect in O (n) time
by combining Manacher’s algorithm and advance solution of dynamic level ancestor problem.

Proof. Combine lemma 4.24 and note 4.22.
◀

▶ Lemma 4.28. There exists an algorithm computing classical palindromic defect in O (n) time
by using Manacher’s algorithm and tree traversal.

Proof. Combine lemma 4.25 and note 4.22.
◀
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Chapter 5

Implementation in SageMath

5.1 SageMath development
First of all, I started the development with steps described in chapter 1:

Installed non-development version of SageMath for future testing purposes, and installed
development version of SageMath.

Created an issue #35495 on SageMath, which I intended to fix. During this step, I discovered
the existence of another separate issue, #16366, which was also going to be fixed as part of
my issue.

Forked SageMath repository [3] and configured the local environment for development.

To implement a change in SageMath, it is important to first understand SageMath develop-
ment methodologies and practices.

The software development approach commonly seen in large open-source projects like Sage-
Math doesn’t neatly fit into a single category like Agile [24] or Waterfall [25]. Instead, it typically
combines elements from both methodologies and often creates a customized approach that suits
the specific needs of open-source collaboration.

Rather than strictly following the sequential phases of Waterfall or the specific practices of
Agile methodologies like Scrum or Kanban, such projects tend to embrace iterative development,
collaboration, and responsiveness to change similar to Agile. Simultaneously, they might include
aspects of long-term planning and structured organization similar to Waterfall methodologies,
although in a more flexible and adaptable manner.

In essence, big open-source projects usually employ a hybrid approach, drawing from var-
ious methodologies while emphasizing adaptability, continuous improvement, and community
collaboration as core principles in their software development process.

5.2 My contribution
As a one-time contributor to SageMath, there was no need for me to get much into Waterfall
practices used in SageMath development, because the usage of these practices is mostly related
to core developers and frequent contributors of SageMath. This left me only with responsibility
to apply common Agile coding practices when developing my changes for SageMath.

One of such practices is known as Collective Code Ownership (see [26]). It is an important
practice for the development of big open-source projects, which involve the work of a significant
number of developers. Here is a brief description of this practice taken from [26]:
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We are all responsible for all our code.
Collective code ownership means the team shares responsibility for its code. Rather than
assigning modules, classes, or stories to specific individuals, the team owns it all. It’s the
right and responsibility to make improvements to any aspect of your team’s code at any
time.
In fact, improved code quality is one of the hidden benefits of collective code ownership.
Collective ownership allows—no, expects—everyone to fix the problems they find. If you
encounter duplication, unclear names, poor automation, or even poorly designed code, it
doesn’t matter who wrote it. It’s your code. Fix it!

Keeping that in mind, my initial steps in implementation involved conducting research to
locate the SageMath code which is related to the modifications I intended to make. It turned
out that this code was mainly located inside FiniteWord class in word library, which is a part
combinatorics library in SageMath. Once this part was completed, I proceeded not only with
the implementation of my additional code but also with improvements of many lines within the
existing codebase in the same scope as my changes. These changes simplified existing code,
improved its readability, and enhanced the performance of several already existing methods,
which will be mentioned in section 6.3.

5.3 Overview of changed and new methods
There are two key algorithms which were implemented in the following methods of FiniteWord
class:

_get_palindromic_factors_data(self, f=None)
Description: Private method which returns data about palindromic factors or f-palindromic
factors of self.
Input: f - letter permutation on the alphabet of self.
Notes: Implements algorithm described in lemma 4.9 to build Tw tree graph, which is de-
scribed in subsection 4.1.1. This method is used in many public methods.

g_defect(self, morphisms=[], antimorphisms=[])
Description: Return the G-defect of self.
Input: morphisms - an iterable of letter permutations (default: []) on the alphabet of self.
Letter permutations must be callable on letters as well as words (e.g. WordMorphism). If
the identity morphism is not in morphisms, then it is added automatically.
Input: antimorphisms - an iterable of letter permutations (default: []) on the alphabet of self.
If antimorphisms is empty, then antimorphism which acts as identity on letters is added to
it. Letter permutations must be callable on letters as well as words (e.g. WordMorphism).
Notes: Implements algorithm described in lemma 4.19.

And here is a summary of existing public methods, which were changed during implementa-
tion:

lps(self, f=None)
Description: Return the longest palindromic (or f-palindromic) suffix of self.
Input: f - letter permutation on the alphabet of self.
Notes: Refactored implementation to use lps_lengths method. Improved readability, de-
creased code complexity.
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palindromic_lacunas_study(self, f=None)
Description: Return interesting statistics about longest (f-)palindromic suffixes and lacunas
of self.
Input: f - letter permutation on the alphabet of self.
Notes: Refactored to extract all necessary data from return value of _get_palindromic_factors_data
method. Improved readability, decreased code complexity.

lacunas(self, f=None)
Description: Return the list of all the lacunas of self.
Input: f - letter permutation on the alphabet of self.
Notes: Previously, it used palindromic_lacunas_study method, which was time inefficient.
Refactored to use _get_palindromic_factors_data method instead. Improved time effi-
ciency

length_maximal_palindrome(self, pos, f=None)
Description: Return the length of the longest palindrome centered at position pos.
Input: f - letter permutation on the alphabet of self.
Input: pos - integer, position of the symmetry axis of the palindrome.
Notes: Refactored this method to PEP 8 and renamed inner variables, which were hard to
read, because a lot of common variable names were used. For example, i, j, jj, m. Improved
code readability.

lengths_maximal_palindromes(self, f=None)
Description: Return the length of maximal palindromes centered at each position.
Input: f - letter permutation on the alphabet of self.
Notes: Refactored to use Manacher’s algorithm instead of a trivial one.

lps_lengths(self, f=None)
Description: Return the length of the longest palindromic suffix of each prefix.
Input: f - letter permutation on the alphabet of self.
Notes: Refactored to extract needed data from results of lengths_maximal_palindromes
method. Improved code readability.

palindromic_complexity(self, n, f=None)
Description: Return the number of distinct palindromic factors of length n of self.
Input: f - letter permutation on the alphabet of self.
Notes: Previously, it used palindromes method, which was time inefficient. Refactored to
extract result data from output of _get_palindromic_factors_data method.

defect(self, f=None)
Description: Return the defect of self.
Input: f - letter permutation on the alphabet of self.
Notes: Refactored to use algorithm described in lemma 4.12.
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5.4 Results of implementation phase
In the end of implementation phase, all functional and non-functional requirements from chap-
ter 3 were completed and ready for testing during the testing phase. At this point of time,
expected asymptotic time complexity for method computing Θ-defect was O (n), because the al-
gorithm was implemented as it is described in chapter 4, lemma 4.12. And expected asymptotic
time complexity for method computing G-defect was O (n · |G|), the implemented algorithm was
as it is described in chapter 4, lemma 4.19.



Chapter 6

Testing & Deployment

6.1 Hardware and Operating System Specification
Part of testing phase for this thesis included performance testing. Therefore, it is essential to
provide a description of the hardware and operating system setup on which the testing was
conducted.

6.1.1 Hardware info
CPU: 6-core AMD Ryzen 5 5625U with Radeon Graphics

RAM: 15.0 GiB

GPU: AMD Barcelo

Storage: 512 GB SSD x1

6.1.2 Operating system info
Operating system: Linux Mint 21.2 Cinnamon

Cinnamon Version: 5.8.4

Linux Kernel: 5.15.0-88-generic

6.2 Functional Testing
Functional testing is a type of software testing that focuses on verifying that each function of
the software application operates in accordance with the functional specifications. It validates
whether the software performs the specific tasks and functionalities as intended, ensuring that
the system meets the functional requirements outlined in the project or system documentation,
which are also mentioned in section 3.1 in case of this thesis. Functional testing involves testing
individual features by providing input and verifying the output against expected results. This
type of testing aims to ensure that the software works as expected and delivers the intended
functionalities.

More information about different types of tests and testing techniques can be found in book
[27].
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Functional testing for this thesis was done by adding automated tests using SageMath ap-
proach for implementing tests, which was described in section 1.7. Since existing methods were
already covered by functional tests, the primary focus was on integrating new testing for com-
puting the G-defect method. To achieve this, I adapted tests from already existing method for
computing Θ-defect as tests for method computing G-defect, when G consists of identity mor-
phism and a single antimorphic involution. On top of that, I added several non-trivial tests when
G consists of several morphisms and antimorphisms.

After all that, I run all the affected existing and new tests. All tests passed, which concluded
functional testing of this thesis.

6.3 Non-Functional Testing
Non-functional testing evaluates aspects of a software system that are not related to specific
functionalities but are essential for the overall quality of the system. It focuses on attributes
such as performance, reliability, usability, security, scalability, and other quality factors. Non-
functional testing aims to assess how well the system behaves under various conditions, measures
its response times, evaluates its security protocols, and checks its usability, among other aspects.
Unlike functional testing, which verifies what the system does, non-functional testing evaluates
how well the system performs.

In case of this thesis, crucial part of non-functional testing can be completed by verifying that
the actual execution time of algorithms mentioned in non-functional requirements section 3.2
aligns with the final expected time complexities of these algorithms, as described in section 5.4.

For collecting execution times both on non-development version of SageMath and development
version of SageMath I used Python timeit library inside interactive session of SageMath. More
info about this library can be found, for example, in book [28].

6.3.1 Performance testing for existing methods
For existing methods with affected performance I chose to gather not only the actual execution
times of the methods on my development branch but also to collect the same execution times
on the current master branch of SageMath. In this approach, these times can be compared with
each other to see achieved performance improvements. These methods include not only method
for computing Θ-defect but also several others, as highlighted in chapter 5. The list of these
affected methods includes:

lengths_unioccurent_lps

defect

palindromic_complexity

lacunas

For further insight into the functionalities of these methods, readers can refer to the SageMath
documentation or examine these methods within the existing SageMath codebase.

I set required parameter n in method palindromic_complexity as 15 for all performance test
runs.

The next problem was to select test data for taking performance measurement. Given that
all affected methods are in some way related to the value of defect, I decided to use the following
datasets:
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The first n characters of Thue-Morse word, where n equals 104, 105, 106 and 107. For Thue-
Morse word prefixes, defect equals approximately 1

5 of the length of the prefix.

The first n characters of Fibonacci word, where n equals 104, 105, 106 and 107. Defect equals
0 for Fibonacci word prefixes.

Random word from 3 different characters with lengths n, where n equals 104, 105, 106 and
107. For such random words, the defect almost matches the length of the word, exceeding 19

20
of the word’s length across all test data.

Here are tables of execution times, collected as described above:

lengths_unioccurrent_lps SageMath master My branch
Thue-Morse 104 0.12 s 0.08 s
Thue-Morse 105 2.94 s 0.75 s
Thue-Morse 106 528 s 7.72 s
Thue-Morse 107 >15 minutes 77.4 s
Fibonacci 104 0.14 s 0.13 s
Fibonacci 105 1.26 s 0.91 s
Fibonacci 106 57 s 7.81 s
Fibonacci 107 >15 minutes 80.4 s
Random 104 0.33 s 0.16 s
Random 105 2.96 s 1.56 s
Random 106 41.2 s 15.7 s
Random 107 >15 minutes 151 s

Table 6.1 Performance of lengths_unioccurrent_lps method

defect SageMath master My branch
Thue-Morse 104 0.05 s 0.11 s
Thue-Morse 105 1.11 s 0.71 s
Thue-Morse 106 308 s 6.8 s
Thue-Morse 107 >15 minutes 67.4 s
Fibonacci 104 0.08 s 0.11 s
Fibonacci 105 0.49 s 0.79 s
Fibonacci 106 34.6 s 6.83 s
Fibonacci 107 >15 minutes 68.4 s
Random 104 0.11 s 0.15 s
Random 105 0.71 s 1.48 s
Random 106 6.9 s 14.6 s
Random 107 70.3 s 146 s

Table 6.2 Performance of defect method
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palindromic_complexity SageMath master My branch
Thue-Morse 104 0.08 s 0.11 s
Thue-Morse 105 1.19 s 0.69 s
Thue-Morse 106 313 s 6.97 s
Thue-Morse 107 >15 minutes 68.2 s
Fibonacci 104 0.04 s 0.11 s
Fibonacci 105 0.65 s 0.75 s
Fibonacci 106 36 s 7.39 s
Fibonacci 107 >15 minutes 75.1 s
Random 104 0.12 s 0.15 s
Random 105 0.72 s 1.52 s
Random 106 6.8 s 15 s
Random 107 68.4 s 150 s

Table 6.3 Performance of palindromic_complexity method

lacunas SageMath master My branch
Thue-Morse 104 0.12 s 0.08 s
Thue-Morse 105 2.49 s 0.69 s
Thue-Morse 106 522 s 6.69 s
Thue-Morse 107 >15 minutes 67.2 s
Fibonacci 104 0.11 s 0.08 s
Fibonacci 105 0.95 s 0.74 s
Fibonacci 106 53.9 s 7.46 s
Fibonacci 107 >15 minutes 71.8 s
Random 104 0.27 s 0.19 s
Random 105 2.4 s 1.52 s
Random 106 35.6 s 14.9 s
Random 107 >15 minutes 151 s

Table 6.4 Performance of lacunas method

From above tables we can make three following observations.
Firstly, the methods defect and palindromic_complexity showed slightly better performance

than the new algorithms on certain test data, although this advantage was not consistent across
all possible inputs. On some test data, old algorithms declined in speed much more rapidly
compared to the new algorithms. By analyzing the old algorithms codebase and observing the
performance data, we can state that the old algorithms performed well on words with defect
value near the length of the word.

Secondly, the results of performance testing confirm that expected asymptotic time com-
plexity for method defect is O (n), as it was assumed in the end of implementation phase in
section 5.4.

Lastly, performance measurements make it clear that the asymptotic time complexities for
all four methods were improved. Now these asymptotic time complexities are either linear or
close to being linear.
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6.3.2 Performance testing for G-defect computing method
Another part of performance testing was to clarify that the actual time execution for G-defect
computing method aligns with the expected asymptotic time complexity of this method, as
outlined in the conclusion of the implementation phase in section 5.4. This expected asymptotic
time complexity equals O (n · |G|), where n is length of the word.

To validate that the actual asymptotic time complexity corresponds to a formula involving two
parameters, we need to select two different datasets. One dataset maintains the first parameter
fixed while varying the second parameter, and vice versa. For all datasets, I decided to generate
random words using 4 different letters. The first dataset has n = 106 and |G| = 2, 4, 8, 48. The
second dataset has |G| = 48 and n = 103, 104, 105, 106.

Here are tables of execution times, collected as described above:

G-defect n = 106

|G| = 2 12.9 s
|G| = 4 27.6 s
|G| = 8 52.3 s
|G| = 48 274 s

Table 6.5 Performance of G-defect method based on G

G-defect |G| = 48
n = 103 0.37 s
n = 104 2.84 s
n = 105 28.5 s
n = 106 274 s

Table 6.6 Performance of G-defect method based on the word length

These performance testing results align with the expected time complexity of G-defect com-
puting method, as they show a linear growth pattern based on either n or |G| when the other
parameter is constant.

6.4 Deployment
Upon the successful completion of all testing phase steps with all tests passing, I initiated the
deployment process for my SageMath fork. The following steps outline the procedure I followed:

Merged all updates from the SageMath master into my branch. I encountered and resolved
some issues during this step due to additional syntax checks introduced by SageMath while
I have been working on other phases of this thesis.

Run all automated functional tests and checked that they all passed.

Pushed my local branch into my fork on GitHub.

Created a pull request for my fork into SageMath.

Currently, I am awaiting the review of my pull request, anticipating the final deployment of
my changes into the SageMath repository.
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Conclusion

This thesis significantly boosted palindrome library inside SageMath by speeding up existing
methods and adding a highly efficient new algorithm.

Through Agile methods, robust testing, and optimization, part of SageMath related to palin-
dromes underwent significant improvements. These advances mean faster execution times and
expanded functionalities for researchers.

All functional and non-functional requirements of this thesis from chapter 3 were fulfilled.
Other than that, this thesis has contributed to the growing body of knowledge on the topic

of algorithms dealing with generalized palindromes and generalized palindromic defects, and
SageMath implementation of these time efficient algorithms offers valuable insights for future
researchers in this field.

Although, there are still some open theoretical questions worth mentioning left at the time
of writing this thesis. Here is a list of some of these questions:

1. Let’s take the algorithm described in theorem 4.7, but instead of using jump-pointers just
go m nodes up the Tw in O (m) time when getting mth ancestor of a node in Tw. This
algorithm finds amount of pairwise distinct Θ-palindromic substrings of w. For sure it has
time complexity O

(
n2

)
. Does this algorithm actually have Θ

(
n2

)
time complexity or is its

actual time complexity asymptotically faster than Θ
(
n2

)
? If it turned out that actual time

complexity of this algorithm is O (n), then there would be a much more simple version of
O (n) time algorithm computing Θ-defect compared to algorithms presented in this thesis.

2. What is the best achievable time complexity of a single-threaded algorithm computing G-
defect? The fastest algorithm presented in this thesis has O (|w| · |G|) time complexity.

3. What time complexities can be achieved for multi-threaded algorithms computing Θ-defect?
Based on these algorithms, what promising multi-threaded algorithms computing G-defect
can be presented and what time complexities will they have?

4. Can algorithms for computing Θ-defect be generalized for antimorphisms which are not letter
permutations? Should definition of Θ-defect be modified for such antimorphisms compared
to definition 2.1?

5. During the writing of the thesis we discovered an article by Rubinchik and Shur [29] which
describes a rather sophisticated algorithm counting palindromes in a word in O(n log n) time.
As this article is very technical, we have not included any details from it. It is a natural
question whether this approach can be generalized to count G-palindromes, or if it can be
used to improve our approach.
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