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Abstract

This thesis is about FPT algorithms that solve the Truncated Metric Dimension problem. First,
two already known algorithms solving the metric dimension problem are described.
Then we present two counterexamples to the algorithm bounded by modular width, showing the
algorithm does not work correctly. Following that, we propose a possible solution, that might
fix the described issues. The algorithm is then implemented and tested.
It is also argued as to why the algorithm bounded by tree-length and max-degree is not suitable
to solve the truncated metric dimension problem.

Keywords Metric Dimension, Truncated Metric Dimension, Resolving set, Parameterized al-
gorithms, Complexity

Abstrakt

Tato práce se zabývá FPT algoritmy řeš́ıćı problém zkrácené metrické dimenze. Nejdř́ıve
představ́ıme dva již známé algoritmy řeš́ıćı problém metrické dimenze.
Poté představ́ıme dva jednoduché protipř́ıklady algoritmu, jehož časová složitost je vázaná š́ı̌rkou
modulu, č́ımž ukážeme že nepracuje korektně. Dále navrhneme možnou úpravu, jež by mohla
řešit popsané problémy s výpočtem. Algoritmus je dále implementován a testován.
Ukážeme také proč algoritmus, jehož časová složitost je vázaná délkou stromu a největš́ım
stupněm vrcholu, neńı vhodný pro úpravu aby řešil problém zkrácené metrické dimenze.

Kĺıčová slova Metrická dimenze, zkrácená metrická dimenze, rozlǐsuj́ıćı množina, parametri-
zované algoritmy, složitost
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Introduction

The metric dimension (MD) problem, is an old problem, that asks, given a graph and a number
k, if there is a (resolving) set of k vertices, such that every vertex can be uniquely identified by
its distance from the vertices in the set. The truncated metric dimension (k-MD) problem
poses the same question with the simple modification that we only consider vertices from the
set, whose distance is at maximum k from the vertex we want to identify.

Identifying such vertices in a graph may be useful when we can consider robots which are
moving from a node to a node in a network. We assume that the robots can communicate with
a set of landmarks (subset of nodes) which provide them the distance to the landmarks in order
to facilitate the navigation. In this sense, the position of each robot is uniquely determined by
the distance to the landmarks. [1] We may want to only consider vertices that are no further
apart than some distance, because the communication between a robot and some landmark can
get more costly, or even impossible as the distance increases.

Our contributions The goal of this thesis is to make use of the existing parameterized algo-
rithms for the metric dimension problem with respect to various structural parameters and, if
possible alter them in such a way that they then compute the solution of the truncated metric
dimension problem. In this thesis we will focus on the two algorithms proposed in an article
by Belmonte et al.[2]. For the algorithm for graphs bounded by tree-length and max-degree we
show that it is unfit for such alteration and for the algorithm bounded by modular-width we
show a counterexample to its correctness.

Outline In the Sections 1, 2 and 3, we provide necessary definitions and introduce the notation
that will be used throughout this thesis. In Sections 4 and 5 we discuss already known results
about both the metric dimension and truncated metric dimension. In Chapter 6 and 7,
we introduce the two known algorithms, one parameterized by tree-length and max-degree and
the other parameterized by modular-width, both invented by Belmonte et al.[2] and at the end
of the Chapter 7 we show tow counterexamples to the algorithm. In Chapter 8 and 9 we discuss
the viability of altering both of the algorithms. Finally in Chapters 10 and 11 we describe our
implementation and testing of the algorithm bounded by modular-width.
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2 Introduction



Preliminaries

1 Graph Theory
First, we shall start with a definition of a graph.

▶ Definition 1.1 (Graph, Inspired by [3]). All graphs considered for the purposes of this thesis
are undirected, unweighted and simple, i.e. without loops or multiple edges. A graph G = (V, E)
consists of set V and E.

V is a set of vertices, sometimes referred to as V (G), when it is not obvious to which graph
we refer.

E is a set of edges, sometimes also denoted E (G).

Edge is a set that consists of exactly two vertices, which are called endpoints. An edge joins
its endpoints.

A vertex v is adjacent to a vertex u if {u, v} ∈ E.

Adjacent vertices may be called neighbours, the set of all neighbours of vertex v is the (open)
neighbourhood and denoted N (v).

The closed neighbourhood of vertex v is N [v] = N (v) ∪ {v}.

For a positive integer r let Nr
G[v] = {u ∈ V | distG (u, v) ≤ r} be the set of vertices at distance

at most r from v.

An edge is incident to vertex v, if v is one of its endpoints.

The degree of a vertex is number of its neighbours.

The maximum degree of a graph is the maximum over the degrees of all the vertices.

By G − U we denote the graph obtained by removal of all the vertices of U . G[U ] denotes graph
induced by the set U ⊆ V , meaning G [U ] = G − (G \ U).

We will also use n and m to denote the number of verticies and edges respectively.

Following the definition of a graph, we define path.

▶ Definition 1.2 (Path, Inspired by [3]). A path in a graph G is an alternating sequence of
vertices and edges P = v0, e1, v1, e2, ..., en, vn, where for each j ∈ 1, 2, ..., n, and vj−1 and vj are
endpoints of ej , and no vertex is repeated in the sequence.

The vertex v0 is the initial vertex.

3



4 Preliminaries

The vertex vn is the terminal vertex.

A u-v-path is a path with initial vertex u and terminal vertex v.

Since we reference trees in this thesis, we will define a tree structure. For that we will also
need a definition of a cycle and a definiton of a connected graph.

▶ Definition 1.3 (Cycle [4]). A graph G = (V, E) is a cycle, if
G = ({1, ..., n} , {{i, i + 1} | i ∈ {1, ..., n − 1}} ∪ {{1, n}}), for n > 3.

▶ Definition 1.4 (Connected graph [5]). A graph G = (V, E) is connected if for each two
distinct vertices u, v ∈ V (G) there is a u-v-path in G.

▶ Definition 1.5 (Tree [5]). A graph G = (V, E) is a tree if the graph is connected and does
not have a cycle as a sub-graph. We call a vertex v ∈ V (G) a leaf if degG (v) = 1.

The problems we deal with are closely tied to distance in a graph, we shall define a distance
in a graph too.

▶ Definition 1.6 (Distance, l-truncated distance, Inspired by [6]). Distance denoted distG (u, v)
between two vertices u and v in the graph G is the number of edges in a shortest u-v-path in the
graph G.

Let distG,l (u, v) = min (distG (u, v) , l + 1) denote l-truncated distance.

For a vertex v ∈ V and a set U ⊆ V , let distG(v, U) = min {distG (v, u) | u ∈ U} be a
minimal distance from a vertex v to any of the vertices from U .

▶ Definition 1.7 (Diameter, Inspired by [2]). For a set U ⊆ V of a graph G = (V, E), we
define its diameter as diamG (U) = max {distG (u, v) | u, v ∈ U}. Then specifically we denote
the diameter of a graph as diam(G) = diamG (V ).

For the proof of correctness of an algorithm bounded by modular-width we will need to define
a universal vertex.

▶ Definition 1.8 (Universal vertex [2]). A vertex v ∈ V is universal if NG (v) = V \ {v}.

▶ Definition 1.9 (Disjoint union and join of graphs [2]). For two graphs G1, G2, the disjoint
union of G1 and G2 is the graph G that has V (G1) ∪ V (G2) as its vertices and E (G1) ∪ E (G2)
as its edges.

A join of graphs G1 and G2 is the graph G that has V (G1) ∪ V (G2) as its vertices and
E (G1) ∪ E (G2) ∪ {uv | u ∈ V1, v ∈ V2} as its edges.

In the following we specify the structural parameters modular-width and tree-length, which
we will use as the parameters for the algorithms.

▶ Definition 1.10 (Modular-width [2]). A set X ⊆ V (G) is a module of a graph G if for any
v ∈ V (G) \ X, either X ⊆ NG (v) or X ∩ NG (v) = ∅. We shall define modular-width using a
recursive definition as it is more suitable for our purpose. The modular-width of a graph G is at
most t if one of the following holds:

1. G has one vertex;

2. G is disjoint union of two graphs of modular-width at most t;

3. G is a join of two graphs of modular-width at most t;

4. V (G) can be partitioned into s ≤ t modules X1, ..., Xs such that modular-width mw(G [Xi]) ≤
t for i ∈ {1, ..., s}.
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▶ Definition 1.11 (Tree decomposition [2]). A tree decomposition of a graph G is a pair (X, T )
where T is a tree and X = {Xi | i ∈ V (T )} is a collection of bags (subsets of a V (G)) such that:

1. ∪i∈V (T )Xi = V (G) has one vertex;

2. for each edge uv ∈ E (G) , x, y ∈ Xi for some i ∈ V (T );

3. for each vertex x ∈ V (G) the set {i | x ∈ Xi} induces a connected sub-tree of T.

The width of a tree decomposition ({Xi | i ∈ V (T )} , T ) is maxi∈V (T )|Xi| − 1. The length of a
tree decomposition ({Xi | i ∈ V (T )} , T ) is maxi∈V (T )diam (Xi). The tree-length of a graph G
denoted as tl (G) is a minimum length over all tree decompositions of G.

▶ Definition 1.12 (Nice tree decomposition [2]). We call tree decomposition (X, T ) of a graph
G with X = {Xi | i ∈ V (T )} nice if T is a rooted binary tree such that nodes of T are of four
types

1. a leaf node is a leaf of T and |Xi| = 1;

2. an introduce node i has one child i′ with Xi = Xi′ ∪ {v} for some vertex v ∈ V (G)Xi′ ;

3. a forget node i has one child i′ with Xi = Xi′ \ {v} for some vertex v ∈ Xi′ ;

4. a join node i has two children i′ and i′′ with Xi = Xi′ = Xi′′ such that the subrees of T
rooted in i′ and i′′ have at least one forget node each.

Modular width can be computed in linear time by the algorithm of Tedder et al. [7] This is
not the case for tree-length as it has been proved that to decide whether tl (G) < l for a graph
G and l ≥ 2 is a NP-complete problem [8]. However we can approximate l within a factor of
3, by utilizing the techniques developed by Dourisbourne and Gavoille [8]. It is also possible
to show that nice tree decomposition of a graph can be computed from any tree decomposition
in polynomial time [9]. In the original article, Belmonte et al. [2] reference the claim posed
by Kloks [9], that a nice tree decomposition can be computed in a linear time from a tree
decomposition. This however is not correct. Counterexample can be found in the book by
Cygan et al.[10]. We can however find a nice tree decomposition in a polynomial time, which
suffices for our use. Moreover the length l and width w of the nice tree decomposition shall be
equal to the length and width of the original tree decomposition. Size of such tree is O(wn) [2].
It is also possible to obtain such nice tree decomposition with some v ∈ V (G) as a unique vertex
in the root bag.

2 Parameterized Problems
This thesis examines problems with regard to some structural properties. We call such problems
parameterized.

▶ Definition 2.1 (Parameterized problem, Cygan et al. [10]). Parameterized problem is a
language L ⊆ Σ × N , where Σ is a fixed finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is
called parameter.

▶ Definition 2.2 (FPT, Cygan et al. [10]). A parameterized problem L ⊆ Σ∗ × N is called
fixed-parameter tracable (FPT ) if there exists an algorithm A, called fixed-parameter tracable
algorithm, a computable functions f : N → N , and a constant c such that, given (x, k) ∈ Σ∗ ×N ,
the algorithm A correctly decides whether (x, k) ∈ L in time bounded by f (k) · | (x, k) |c. The
complexity class containing all fixed-parameter tractable problems is called FPT.

It would also be appropriate to introduce the 3-SAT problem, however this would require
many definitions that are not fit for this thesis. The definition can be found in the book by
Cygan et al.[10] along with the proof that 3-SAT is NP-complete.



6 Preliminaries

3 Definitions of the Problems
Now we shall define the metric dimension and the Truncated metric dimension problems.
For simplicity we only define the decision version of the problems, however all the algorithms
described in this thesis can be converted to find the resolving sets at no further cost of running
time.

▶ Definition 3.1 (metric dimension [2]). Let G = (V, E) be a graph. For two distinct vertices
u, v ∈ V , let R (x, y) = {z ∈ V | dist (x, z) ̸= dist (y, z)}. A subset S ⊆ V (G) is a resolving set
of G if S ∩ R (x, y) ≥ 1 for any pair of distinct vertices x and y in G. The metric dimension of G
denoted by md (G) is the minimum cardinality over all resolving sets of G. Metric dimension
asks if md(G) ≤ d, for a given positive integer d.

▶ Definition 3.2 (Truncated metric dimension [6]). Let G = (V, E) be a graph and k a posi-
tive integer. For two distinct vertices u, v ∈ V , let Rk (x, y) = {z ∈ V | distk (x, z) ̸= distk (y, z)}.
A subset S ⊆ V (G) is a k-truncated resolving set of G if S ∩ Rk (x, y) ≥ 1 for any pair of distinct
vertices x and y in G. The truncated metric dimension of G denoted by mdk (G) is the minimum
cardinality over all resolving sets of G. Truncated metric dimension asks if mdk (G) ≤ d,
for given positive integers d and k.



Known Results

4 Metric Dimension
The notion of resolving sets was first independently introduced by Slater [11] and Harary with
Melter [12] as a way of uniquely identifying all the vertices in a graph. Khuller et al. [13] have
in their paper on the topic shown that it is NP-hard to find or decide if there is such a set on
general graphs and that it can be solved in linear time on trees.

As a result of this finding many algorithms that approximate the metric dimension have been
developed. Most notably algorithms that make use of the generic algorithm [14] and a variable
neighborhood search [15]. Even though these algorithms usually find small resolving sets, there
are no approximation guarantees that would bound the distance between the approximation and
some optimal resolving set.

In 2012 such algorithm was developed by Hauptmann et al. [16]. For a graph G = (V, E) it
guarantees the approximation ratio of 1+(1 + o (1) · ln (|V (G) |)). The running time complexity
of this algorithm is O

(
|V (G) |3

)
.

It is also important to mention that efficient exact algorithms, bounds and formulae have
been discovered for variety of graphs.

5 Truncated Metric Dimension
In 2021 the notion of truncated metric dimension has been established by Frongillo et al.[6].
The motivation for the restriction on the distance was one, due to the cost of long distance
communication in a network and two, reducing dependency on random variables in identifying
the source of an infection in an epidemic [6, 17, 18].

Just like for metric dimension, it has been shown that this problem is NP-hard by reduction
from 3-SAT. This should be obvious since we can set the parameter k to be strictly higher then
the diameter of a given graph, for example as the number of vertices of the graph, and we get
the exact definition of the non-truncated metric dimension. This means that this can be seen as
somewhat of a generalization of the problem.

Bounds and formulae have also been discovered by Frongillo et al.[6] for specific types of
graphs. For, trees Frongillo et al.[6] have developed an exact algorithm that runs in liner time.
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Algorithms For Metric Dimension

6 Max-degree and Tree-length
In this section, we present an FPT algorithm for the metric dimension parameterized by
the max-degree and the tree-length, that was developed by Belmonte et al. [2]

By the following lemma we bound the tree-width by the tree-length and the max-degree.

▶ Lemma 6.1 ([2]). Let G be a connected graph with ∆ (G) = ∆ and let (X, T ) be a tree
decomposition of G with the length at most l. Then the width of (X, T ) is at most w (∆, l) =
∆ (∆ − 1)(l−1).

By the following lemma we bound the number of bags of (X, T ) a particular vertex can appear
in. Belmonte et al. [2] then use this to prove Lemma 6.3.

▶ Lemma 6.2 ([2]). Let G be a connected graph with ∆ (G) = ∆, and let (X, T ), where
X = {Xi | i ∈ V (T )}, be a nice tree decomposition of G of length at most l. Furthermore,
let P be a path in T such that for some vertex z ∈ V (G) , z ∈ Xi for every i ∈ V (P ). Then
|V (P ) | ≤ α (∆, l) = 2

(
∆l (∆ + 2) + 4

)
.

▶ Lemma 6.3 ([2]). Let G be a connected graph with max-degree ∆ (G) = ∆ and let (X, T ),
where X = {Xi | i ∈ V (T )}, be a nice tree decomposition of G of length at most l. Then for
every i, j ∈ V (T ) and any x ∈ Xi, y ∈ Xj the following holds:

distT (i, j) ≤ α (∆, l) (distG (x, y) + 1) − 1.

The next lemma essentially approximates distance between pairs of vertices in the graph by
factor only depending on ∆ and l. This lemma will be further explored in the next chapter and
so we provide a proof.

▶ Lemma 6.4 (Locality Lemma [2]). Let (X, T ), where X = {Xi | i ∈ V (T )}, be a nice tree
decomposition of G of length at most l such that T is rooted in r, Xr = {u}. Let ∆ = ∆ (G) be
the max-degree of G and let s = α (∆, l) (2l + 1). Then the following holds:

1. If i ∈ V (G) is an introduce node with the child i′ and v is the unique vertex of Xi \ Xi′ then
for any x ∈ V (Gj) for a node j ∈ V (Ti) such that distT (i, j) ≥ s, u resolves v and x.

2. If i ∈ V (G) is a join node with the children i′, i′′ and x ∈ V (Gj) \ Xj for j ∈ Ti′ such that
distT (i′, j) ≥ s − 1 and y ∈ V (Gi′′) \ Xi′′ then u or an arbitrary vertex v ∈ (V (Gj) \ Xj)
resolves x and y.

9



10 Algorithms For Metric Dimension

Proof.

1. Consider x ∈ V (Gj) for some j ∈ V (Ti′) such that distT (i′, j′) ≥ s. As either u ∈ Xi or u
is separated from x by Xi,

distG (u, x) = min {distG (u, y) + distG (y, z) + distG (z, x) | y ∈ Xi, z ∈ Xj} .

Let y ∈ Xi and z ∈ Xj be vertices such that distG (u, x) = distG (u, y) + distG (y, z) +
distG (z, x). Then by Lemma 6.3,

distG (u, x) ≥ distG (u, y) + distG (y, z) ≥ distG (u, y) + s + 1
α (∆, l) − 1.

Because v ∈ Xi and diamG (Xi) ≤ l,

distG (u, v) ≤ distG (u, y) + distG (y, v) ≤ distG (u, y) + l.

Because s = α (∆, l) (2l + 1), we obtain that distG (u, v) < distG (u, x), completing the proof
of the first statement.

2. Let x ∈ V (Gj) for j ∈ Ti′ such that distT (i′, j) = s − 1, and let y ∈ V (Gi′′) \ Xi′′ .
Assume also that v ∈ V (Gj) \ Xj . Suppose that u does not resolve x and y. It means
that distG (u, x) = distG (u, y). Because either u ∈ Xi or u and {x, y} are separated by Xi,
there are x′, y′ ∈ Xi such that distG (u, x) = distG (u, x′) + distG (x′, x) and distG (u, y) =
distG (u, y′) + distG (y′, y). As distG (u, x) = distG (u, y) and diamG (Xi) ≤ l,

distG (x′, x) − distG (y′, y) = distG (u, y′) − distG (u, x′) ≤ l.

Notice that distG (x, Xi) ≤ distG (x, x′) and distG (y, Xi) ≥ distG (y, y′) − l, because
diamG (Xi) ≤ l. Hence, distG (x, Xi) − distG (y, Xi) ≤ 2l. There are z, z′ ∈ Xj such
that distG (x, Xi) = distG (x, z) + distG (z, Xi) and distG (v, Xi) = distG (z′, Xi). Because
diamG (Xj) ≤ l, distG (v, z′) + l and distG (z, Xi) ≤ distG (z′, Xi) + l. Hence

distG (v, z) + distG (z, Xi) ≤ distG (v, z′) + distG (z′, Xi) + 2l ≤ distG (v, Xi) + 2l.

Since Xi separates v and y,

distG (v, y) ≥ dist (v, Xi) + dist (y, Xi)
≥ dist (v, z) + dist (z, Xi) − 2l + dist (y, Xi)
≥ dist (v, z) + dist (z, Xi) − 2l + dist (x, Xi) − 2l

≥ dist (v, z) + 2 · dist (z, Xi) + dist (y, z) − 4l

Clearly, dist (v, x) ≤ dist (x, z) + dist (v, z). Hence,

dist (v, y) − dist (v, x) ≥ (dist (v, z) + 2dist (z, Xi) + dist (x, z) − 4l)
− (dist (x, z) + dist (v, z))
≥ 2 · dist (z, Xi) − 4l.

All that remains is to observe that dist (z, Xi) ≥ x+1
α(∆,l) − 1 > 2l. With that we obtain that

dist (v, y) − dist (v, x) > 0, this means that v resolves x and y.

◀

With the conclusion of this proof, we have presented the necessary structural properties of
graphs bounded by tree-length and max-degree. In the next part we introduce projection and
resolving sets.
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▶ Definition 6.5 (Projection and resolving set [2]). Let X ⊆ V (G), and let d be a positive
integer such that diamG (X) ≤ d. For a vertex v ∈ V (G), we say that Prv,d (X) = (X0, ..., Xd),
where Xi = {x ∈ X | distG (v, x) = distG (v, X) + i} is the projection of v on X. Notice that
(X0, ..., Xd) form an ordered partition of X, because diamG (X) ≤ d. Some sets could be empty.
For a set U ⊆ V (G), the set PrU,d (X) = {Prv,d | v ∈ U}. It can happen that Prv,d (X) =
Pru,d (X) for u, v ∈ U , but as PrU,d (X) is a set, it contains only one copy of Prv,d (X).

The algorithm uses the following properties of separators of bounded diameter. For the next
lemma and two definitions, let X be the separator of connected graph G such that diamG (X) ≤ d,
and let V1, V2 be partition of the vertex set of G − X such that no edge of G joins a vertex of V1
with the vertex of V2.

▶ Lemma 6.6 ([2]). If for u, v ∈ V1, Pru,d (X) = Prv,d (X), then u resolves verticex x, y ∈ V2
if and only if v resolves x, y. Moreover, for a given ordered partition (X0, ..., Xd) of X, it can
be decided in polynomial time whether a vertex v ∈ V1 with Prv,d (X) = (X0, ..., Xd) resolves x
and y.

▶ Definition 6.7 (Ordered partition [2]). Let X ′ ⊆ X ∪ V2 with diamG (X) ≤ d. We define the
ordered partition (X ′

0, ..., X ′
d) of X ′ as:

X ′
i =

{
x ∈ X ′ | min

i∈0,...,d
(i + distG (Xi, x)) = s + i

}
, where

s = min
x∈X′

min
i∈{0,...,d}

(i + distG (Xi, x)) .

This implies that if for u, v ∈ V1, P ru,d (X), then u resolves x and y. And since for any
x ∈ V2 we can compute mini∈{0,...d} (i + distG (Xi, x)) by making use of the Dijkstra’s algorithm
if (X0, ..., Xd) is given, we obtain the second pair of the statement.

▶ Definition 6.8 (d-cover [2]). We say that (X0, ..., Xd) is a d−cover of (X ′
0, ..., X ′

d) with
respect to V1, and we say that (X ′

0, ..., X ′
d) is d−covered by (X0, ..., Xd) with respect to V1. We

also say that a set P of ordered partitions (X0, ..., Xd) of X is a d−cover of a set P ′ of ordered
partition (X ′

0, ..., X ′
d) of X ′ with respect to V1, if P ′ is the set of all ordered partitions of X ′ that

are d−covered by the partitions of P.

▶ Lemma 6.9 ([2]). Let X ′ ⊆ X∪V2 with diamG (X) ≤ d. Let also (X0, ..., Xd) and (X ′
0, ..., X ′

d)
be ordered partitions of X and X ′ respectively such that (X0, ..., Xd) is a d−cover of (X ′

0, ..., X ′
d)

with respect to V1. If Prv,d (X) = (X0, ..., Xd) for some v ∈ V1, then Prv,d = (X ′) = (X ′
0, ..., X ′

d).

▶ Theorem 6.10 ([2]). METRIC DIMENSION is FPT when parameterized by ∆+ tl, where
∆ is max-degree and tl is tree-length of the input graph.

The algorithm. [2] From now on, we assume that u ∈ V (G) is given. Using the techniques of
Kloks [9] we construct a nice tree decomposition from (X, T ) of the same width and the length
at most l such that the root bag only contains the vertex u. For simplification, we assume that
(X, T ) is such a decomposition and T is rooted in r. By Lemma 6.2, for any path P in T , any
z ∈ V (G) occurs in at most α (∆, l) bags of Xi for i ∈ V (P ).

Now we introduce the dynamic programming algorithm that checks the existence of a resolving
set of size at most k that includes u.

Let s = α (∆, l) (2l + 1). For i ∈ V (T ), we define Yi = ∪j∈Ns
Ti

[i]Xj and

Ii = {j ∈ V (Ti) | distG (i, j) = s} .

Let also I ′
i = Ii ∪ {0}. For each i ∈ V (T ), the algorithm constructs the table of values of the

function wi

(
Z,

{
Pj | j ∈ I ′

i

})
, where
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1. Z ⊆ Yi and |Z| ≤ k,

2. P0 is a set of ordered partitions (Y0, ..., Yl) of Xi such that Pru,l (Xi) ∈ P0 if u /∈ Xi,

3. For j ∈ Ii, Pj is a set of ordered partitions (Y0, ..., Yl) of Xj , and wi

(
Z,

{
Pj | j ∈ I ′

i

})
is the

minimum cardinality of a set W ⊆ V (Gi) such that

a. For any two distinct x, y ∈ V (Gi), there is a vertex v ∈ W that resolves x and y or there
is an ordered partition (Y0, ..., Yl) ∈ P0 of Xi such that a vertex v ∈ V (G) \ V (Gi) with
Prv,l (Xi) = (Y0, ..., Yl) resolves x and y.

b. W ∩ Yi = Z,
c. For j ∈ Ii, Pj = PrW ∩(V (Gj)\Xj),l (Xj).

If no such set W exists, then wi

(
Z,

{
Pj | j ∈ I ′

i

})
= +∞.

It can be observed that the table with an entry wr

(
Z,

{
Pj | j ∈ I ′

r

})
≤ k for the root node

r is a necessary and sufficient condition for the existence of resolving set W of size at most k.
Now we shall explain how we construct table for each node i ∈ V (T ).

Let i ∈ V (T ). We define Ji = {j ∈ V (T ) | distTi (i, j) = s − 1}. For Z and
{

Pj | j ∈ Ii

}
satisfying 1 and 3,

R
(
Z,

{
Pj | j ∈ Ii

})
=

{
Rj | j ∈ Ji

}
,

where Rj is a set of ordered partitions (Y0, ..., Yl) of Xj , constructed as follows. Let j ∈ Ji.

If j is a leaf node of T , then Rj = ∅,

If j is an introduce node of T with the unique child j′, then Rj is the set of ordered partitions
(Y ′

0 , ..., Y ′
l ) of Xj such that Pj′ is an l-cover of Rj with respect to V (Gj′) \ Xj′ ,

If j is a forget node of T with the unique child j′ and {v} = Xj′ \Xj , then we first reconstruct
Rj as the set of ordered partitions (Y ′

0 , ..., Y ′
l ) of Xj such that P j′ is an l-cover of Rj with

respect to V (Gj′) \ Xj′ , and then we set Rj = Rj ∪ Prv,l (Xi) if x ∈ Z,

If j is a join node of T with the two children j′ and j′′, set Rj = Pj′ ∪ Pj′′ .

Construction of a leaf node. Let Xi = {x}. It is easy to verify if for any
{

Pj | j ∈ Ii

}
satisfying 2, wi

(
∅,

{
Pj | j ∈ I ′

i

})
= 0 and wi

(
{x} ,

{
Pj |j ∈ I ′

i

})
= 1.

For the description of the rest of the types of nodes, we assume that the table values have
already been calculated for all the descendants of i in T . Before performing the computation we
also set wi

(
{x} ,

{
Pj | j ∈ I ′

i

})
= +∞ for all Z and

{
Pj | j ∈ I ′

i

}
that satisfy 1−3.

Construction of an introduce node. Let i′ be the child of i and {v} = Xi\Xi′ . Let us consider
every Z and

{
Pj | j ∈ I ′

i

}
that satisfy 1−3 for the node i′ such that wi′

(
Z,

{
Pj | j ∈ Ii′

})
≤ +∞.

We construct R
(
Z,

{
Pj | j ∈ Ii′

})
=

{
Rj | j ∈ Ji′

}
and for j ∈ Ii, set P̂j = Rj . Notice

Ji′ = Ii. There are two cases we consider:

1. If u ̸= v, Ẑ = Z ∩ Yi. Consider every set P̂0 of ordered partitions
(

Ŷ0, ..., Ŷl

)
of Xi satisfying

2 for node i such that P̂0 is an l-cover of P0 with respect to V (G) \ V (Gi).
We verify that one of the following conditions holds:

There is z ∈ Ẑ that resolves x, v,
There is an ordered partition (Y0, ..., Yl) ∈ P0 of Xi such that a vertex z ∈ V (G) (Gi) with
Prz,l(Xi) = (Y0, .., Yl) resolves x, v,
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There is an ordered partition (Y0, ..., Yl) ∈ Ph of Xh for h ∈ I ′
i such that a vertex z ∈

V (Gh) \ Xh with Prz,l (Xh) = (Y0, ..., Yl) resolves x, v.

Using Lemma 6.6 we can verify the conditions in polynomial time and set wi

(
Ẑ,

{
P̂j | j ∈ I ′

i

})
=

wi′

(
Ẑ,

{
P̂j | j ∈ I ′

i′

})
and if the condition holds we set

wi

(
Ẑ,

{
P̂j | j ∈ I ′

i

})
= min

(
wi

(
Ẑ,

{
P̂j | j ∈ I ′

i

})
, wi′

(
Ẑ,

{
P̂j | j ∈ I ′

i′

}))
.

2. A set Ẑ = (Z ∩ Yi) ∪ {v} if |Z ∩ YI | ≤ k − 1. Consider every set P̂0 of ordered partitions(
Ŷ0, ..., Ŷl

)
of Xi that satisfies 2 for the node i such that P̂0 is an l-cover if P0 or P0 \

{Prv,l (Xi′)} with respect to V (G) \ V (Gi). We set

wi

(
Ẑ,

{
P̂j | j ∈ I ′

i

})
= min

(
wi

(
Ẑ,

{
P̂j | j ∈ I ′

i

})
, wi′

(
Ẑ,

{
P̂j | j ∈ I ′

i′

})
+ 1

)
.

Construction of a forget node. Let i′ be the child of i and {v} = X ′
i \ Xi. Consider every Z

and
{

Pj | j ∈ I ′
i′

}
satisfying 1−3 for the node i′ such that wi′

(
Z,

{
Pj | j ∈ I ′

i′

})
is finite. We

construct R
(
Z,

{
Pj | j ∈ Ii′

})
=

{
Rj | j ∈ Ji′

}
and for j ∈ Ii, set P̂j = Rj . Set Ẑ = Z ∩ Yi.

We consider every set P̂0 of ordered partitions
(

Ŷ0, ..., Ŷl

)
of Xi that satisfies 2 for the node i

such that P̂0 is an l-cover of P0 with respect to V (G) \ V (Gi). We set

wi

(
Ẑ,

{
P̂j | j ∈ I ′

i

})
= min

(
wi

(
Ẑ,

{
P̂j | j ∈ I ′

i

})
, wi′

(
Ẑ,

{
P̂j | j ∈ I ′

i′

}))
.

Construction of a join node. Let i′ and i′′ be the children of i. Recall that Xi =
Xi′ = Xi′′ . Consider every Z1 and

{
P̂j

1 | j ∈ I ′
i′

}
satisfying 1−3 for the node i′ such that

wi′

(
Ẑ,

{
P̂j

1 | j ∈ I ′
i′

})
is finite and every Z2 and

{
P̂j

2 | j ∈ I ′
i′′

}
) satisfying 1−3 for the node i′′

such that wi′′

(
Ẑ,

{
P̂j

1 | j ∈ I ′
i′′

})
and Z1 ∩ Xi = Z2 ∩ Xi.

We set Z = (Z1 ∪ Z2)∩Yi. For every j ∈ Ii′ , we can construct the set Sj
1 of ordered partitions

(Y0, ..., Yl) of Xi such that Pj
1 is an l-cover of Sj

1 , and set

S1 =
(

∪j∈Ii′ Sj
1

)
∪

(
∪v∈Z1\Xi

Prv,l (Xi)
)

.

In the same way for every j ∈ Ii′′ we construct the set Sj
1 of ordered partitions (Y0, ..., Yl) of

Xi such that Pj
2 is an l-cover of Sj

2 , and set

S2 =
(

∪j∈Ii′′ Sj
2

)
∪

(
∪v∈Z2\Xi

Prv,l (Xi)
)

.

Consider every set P0 of ordered partitions (Y0, ..., Yl) of Xi that satisfy 2 for the node i such
that P0

1 = P0 ∪ S2 and P0
2 = P0 ∪ S1.

Observe that Ii = Ji′ ∪ Ji′′ . We construct R
(

Z1,
{

Pj
1 | j ∈ Ii′

})
=

{
Rj | j ∈ Ji′

}
and

R
(

Z2,
{

Pj
2 | j ∈ Ii′′

})
=

{
Rj | j ∈ Ji′′

}
. By setting Pj = Rj for j ∈ Ii we define

{
Pj | j ∈ I ′

i

}
.

We verify that one of the following conditions hold:
For every x ∈ V (Gi′) \ Xi and y ∈ V (Gi′′) \ Xi

There is v ∈ Z that resolves x and y,

There is an ordered partition (Y0, ..., Yl) ∈ P0 of Xi such that a vertex v ∈ V (G) \ V (Gi)
with Prv,l (Xi) = (Y0, ..., Yl) resolves x and y,
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There is an ordered partition (Y0, ..., Yl) ∈ Pj of Xj for j ∈ Ii such that x, y /∈ V (Gj) \ Xj

and a vertex v ∈ V (Gj) \ Xj with Prv,l (Xj) = (Y0, ..., Yl) resolves x and y,

x ∈ V (Gj) \ Xj for j ∈ Ii and Pj ̸= ∅,

y ∈ V (Gj) \ Xj for j ∈ Ii and Pj ̸= ∅.

This can be verified in polynomial time using Lemma 6.6. If the conditions hold we set

wi

(
Z,

{
Pj | j ∈ I ′

i

})
= min(wi

(
Z,

{
Pj | j ∈ I ′

i

})
,

wi′
(
Z1,

{
Pj | j ∈ I ′

i′

})
+ wi′′

(
Z2,

{
Pj | j ∈ I ′

i′′

})
− |Z1 ∩ Xi|)

Now we perform the running time analysis of the algorithm. This is done by setting an upper
bound for each of the tables. Let i ∈ V (T ). The size of Xi is at most w (∆, l). The size of
Ns

Ti
≤ 2s+1 − 1. Hence, |Yi| ≤

(
2s+1 − 1

)
· w (∆, l), and there can be at most 2(2s+1−1)·w(∆,l)

possibilities to choose Z. We have that |I ′
i| ≤ 2s + 1. The number of all ordered partitions

(Y0, ..., Yl) of any Xj is at most (l + 1)|xj | ≤ (l + 1)w(∆,l). Hence, the table for the node i

contains at most 2(2s+1−1)·w(∆,l) · (l + 1)(2s+1)·w(∆,l) values of the function wi

(
Z,

{
P j |j ∈ I ′

i

})
.

Since the number of ordered partitions (Y0, ..., Yl) of Xi is at most (l + 1)w(∆,l), we obtain
that table can be constructed in

O∗
(

22·(2s+1−1)·w(∆,l) · (l + 1)(2s+1+3)·w(∆,l)
)

And since the preliminary steps of the algorithm can be done in polynomial time and the
algorithm is run for at most n choices of u, the time of the construction of the tables is also the
final running time of the algorithm.

7 Modular-width
In this section, we present an algorithm for the metric dimension problem that runs in
linear time with respect to the modular-width as the original authors do, and later we show a
counterexample to the algorithm.

Let X be a module of a graph G and v ∈ V (G) \ X. We can make the observation that the
distances in G between v and the vertices of X are the same. This is expressed by the next
lemma.

▶ Lemma 7.1 ([2]). Let X ⊆ V (G) be a module of a connected graph G and |X| ≥ 2. Let
also H be a graph obtained from G [X] by addition of a universal vertex. Then any v ∈ V (G)
resolving x, y ∈ X is a vertex of X, and if W ⊆ V (G) is a resolving set of G, then W ∩X resolves
X in H.

▶ Theorem 7.2 ([2]). The metric dimension of a connected graph G of modular-width at most
t can be computed in time O

(
t34tn + m

)
.

The authors [2] describe the intuition behind the function w(·) as follows.
To compute md(G), consider auxiliary values w (H, p, q) for a graph H of modular-width t

with at least two vertices and boolean variables p and q as follows. Let H ′ be a graph obtained
from H by the addition of a universal vertex u. Notice that diamH′ (V (H)) ≤ 2. Then the
minimum size of set W ⊆ V (H) such that

1. W resolves V (H) in H ′,

2. H has a vertex x such that distH′ (x, v) = 1 for every v ∈ W if and only if p = true,
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3. H has a vertex x such that distH′ (x, v) = 2 for every v ∈ W if and only if q = true.

The assumption is made that w (H, p, q) = +∞ if such set does not exist.
Let G be a graph, X its module, H = G [X] and let H1, ..., Hs be the partition of H into

modules, of which t, t ≤ s are trivial. Assume Z is a hypothetical optimal resolving set and
Z ′ = Z ∩ X. Every pair of vertices in H must be resolved by a vertex in Z ′, by Lemma 7.1.
This means that we need to compute a set that will, amongst others, satisfy the property that
the set will be a resolving set for the vertices in X. As we have stated above, those vertices are
either adjacent or at a distance 2 from each other in G. This is why it is required for W to be
resolving set of V (H) in H ′.

It could also happen that a vertex z ∈ Z ′ is required to resolve a pair of vertices x ∈ X and
y ∈ H \ X. If x is at distance 1 from every vertex of Z ′, z is also required to resolve x′ ∈ X and
y. The same argument can be made for vertices at distance 2 from every vertex of Z ′. That is
why it suffices to know whether there is a vertex in X which is at distance 1 from every vertex
of Z ′. This is the meaning of the booleans p and q.

Since H has modular-width at most t, it can be constructed from single vertex graphs by
the disjoint union and the join operations and decomposing H into at most t modules. In the
rest of the computation, w (H, p, q) is described given the modular decomposition of H and the
values computed for the child nodes. Since the base case corresponds to a graph of at most size
t we may compute the values for leaf nodes by brute force, followed by executing a bottom up
dynamic programming algorithm.

The algorithm [2] In the original article the algorithm is split into 3 cases.

Graph H is a disjoint union of pair of graphs,

Graph H is a join of a pair of graphs,

Graph H can be partitioned into at most t graphs, each of modular-width at most t.

The first two cases are subsumed by the third case, but just like the original authors, we shall
keep them for clarity of the algorithm. We shall also skip the proof of correctness of the first
part of the algorithm and only focus on explaining the proof of the last two theorems, since no
other parts of the proofs will need altering in the next chapter.

Disjoint union. Let H be a disjoint union of H1 and H2. Then we can assume that
|V (H1) | ≤ |V (H2) |. Then there are 3 cases that can occur.

First, if |V (H1) | = |V (H2) | = 1, then we can easily verify whether the conditions are met and
w (H, false, true) = 1, w (W, false, false) = 2, and w (H, true, true) = w (true, false) = +∞
or w (·) = +∞ if the conditions are not satisfied.

Second, if |V (H1) | = 1, |V (H2) | > 1 and the values of w (H2, p, q) are already computed for
p, q ∈ {true, false}, then the single vertex of H1 is at distance 2 from any vertex of H2 in H ′.
Notice that the vertex of H1 can, but does not have to, be in the resolving set. By Lemma 7.1

w (H, true, true) = w (H2, true, false),

w (H, false, true) = min{w (H2, false, false) , w (H2, true, true)+1, w (H2, false, true)+1},

w (H, true, false) = +∞,

w (H, false, false) = min{w (H2, true, false) + 1, w (H2, false, false) + 1}.

Third, if |V (H1) | > 1, |V (H2) | > 1 and the values of w (Hi, p, q) are already computed
for i ∈ {1, 2} and p, q ∈ {true, false}, then observe that for x ∈ V (H1) and y ∈ V (H2),
distH′ (x, y) = 2 and that any resolving set has at least one vertex in both H1 and H2. By
Lemma 7.1
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w (H, true, true) = +∞,

w (H, true, false) = +∞,

w (H, false, true) = min{w (H1, p1, q1) + w (H2, p2, q2) + 1 | pi, qi ∈ {true, false},
i ∈ {1, 2} and q1 ̸= q2},

w (H, false, false) = min{w (H1, p1, false) + w (H1, p2, false) | p1, p2 ∈ {true, false}}.

Join. H is a join of H1 and H2. We can assume that |V (H1) | ≤ |V (H2) |. Again, there are 3
cases that can occur.

First, if |V (H1) | = |V (H2) | = 1, then we can easily verify whether w (H, true, false) = 1,
w (H, false, false) = 2, and w (H, true, true) = w (H, false, true) = +∞.

Second, if |V (H1) | = 1, |V (H2) | > 1 and the values of w (H2, p, q) are already computed for
p, q ∈ {true, false}, then the single vertex of H1 is at distance 1 from any vertex of H2 in H ′.
Notice that the vertex of H1 can, but does not have to, be in the resolving set. By Lemma 7.1

w (H, true, true) = w (H2, false, true),

w (H, false, true) = +∞,

w (H, true, false) = min{w (H2, false, false) , w (H2, true, true)+1, w (H2, true, false)+1 },

w (H, false, false) = min{w (H2, false, true) + 1, w (H2, false, false) + 1}.

Third, if |V (H1) | > 1, |V (H2) | > 1 and the values of w (Hi, p, q) are already computed
for i ∈ {1, 2} and p, q ∈ {true, false}, then observe that for x ∈ V (H1) and y ∈ V (H2),
distH′ (x, y) = 1 and that any resolving set has at least one vertex in both H1 and H2. By
Lemma 7.1

w (H, true, true) = +∞,

w (H, false, true) = +∞,

w (H, true, false) = min{w (H1, p1, q1) + w (H2, p2, q2) | pi, qi ∈ {true, false},
i ∈ {1, 2} and p1 ̸= p2},

w (H, false, false) = min{w (H1, false, q1) + w (H1, false, q2) | q1, q2 ∈ {true, false}}.

Partitioning into modules. Let V (H) be partitioned into s ≤ t non-empty modules
X1, ..., Xs, s ≥ 2. We assume that X1, ..., Xh are trivial, this means that |Xi| = 1 for i ∈ {1, ..., h}
where 0 ≤ h ≤ s. For distinct i, j ∈ {1, ..., s}, either vertex of Xi is adjacent to every vertex
of Xj or the vertices of Xi and Xj are not adjacent. Let F be the prime graph with a vertex
set {v1, ..., vs} such that vi is adjacent to vj if and only if the vertices of Xi are adjacent to the
vertices of Xj . Let F ′ be obtained by addition of a universal vertex to the graph F . Observe
that if x ∈ Xi and y ∈ Xj for distinct i, j ∈ {1, ..., s}, then distH′ (x, y) = distF ′ (vi, vj).

For boolean variables p, q, a set of indices I ⊆ {1, ..., h}, and boolean variables pi, qi where
i ∈ {h + 1, ..., s} we define

ω (p, q, I, ph+1, qh+1, ..., ps, qs) = |I| +
s∑

i=h+1
w (H [Xi] , pi, qi)

if the following holds:

1. the set Z = {vi | i ∈ I ∪ {h + 1, ..., s}} resolves V (F ) in F ′,
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2. if pi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF ′ (vi, vj) = 2 or
there is vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) ̸= distF ′ (vr, vj),

3. if qi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF ′ (vi, vj) = 1 or
there is vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) ̸= distF ′ (vr, vj),

4. if pi = pj = true for some distinct i, j ∈ {h + 1, ..., s}, then distF ′ (vi, vj) = 2 or there is
vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) ̸= distF ′ (vr, vj),

5. if qi = qj = true for some distinct i, j ∈ {h + 1, ..., s}, then distF ′ (vi, vj) = 1 or there is
vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) ̸= distF ′ (vr, vj),

6. p = true if and only if there is i ∈ {1, ..., h} \ I such that distF ′ (vi, vj) = 1 for vj ∈ Z or
there is i ∈ {h + 1, ..., s} such that pi = true and distF ′ (vi, vj) = 1 for vj ∈ Z \ {vi},

7. q = true if and only if there is i ∈ {1, ..., h} \ I such that distF ′ (vi, vj) = 2 for vj ∈ Z or
there is i ∈ {h + 1, ..., s} such that qi = true and distF ′ (vi, vj) = 2 for vj ∈ Z \ {vi},

and ω (p, q, I, ph+1, qh+1, ..., ps, qs) = +∞ in other cases.

▶ Lemma 7.3 ([2]). The function w is defined as w (H, p, q) = min ω (p, q, I, ph+1, qh+1, ..., ps, qs),
where the minimum is taken over all possible sets I ⊆ {1, ..., h} and booleans pi, qi ∈ {true, false}
for i ∈ {h + 1, ..., s}.

Now we explain how Belmonte et al.[2] compute the metric dimension using the established
function. Since G is a connected graph of modular-width at most t, it is either a single vertex
graph, or it is a join of two graph or it can be partitioned into s ≤ t modules X1, ..., Xs such
that mw (G [Xi]) ≤ t for i ∈ {1, ..., s}.

Single vertex. If |V (G) | = 1 it should be obvious, that md (G) = 1.

Join. If G is a join of H1 and H2, we can assume that |V (H1) | ≤ |V (H2) |. Three cases can
occur.

First, if |V (H1) | = |V (H2) | = 1, then md (G) = 1.
Second, if |V (H1) | = 1 and |V (H2) | > 1 and the values of w (Hi, p, q) have already been

computed for p, q ∈ {true, false}, then by the definition of join of a graph, the vertex from H1
is at distance 1 from all of the vertices of H2 in G. This vertex can, but does not have to be in
the resolving set. By Lemma 7.1

md (G) = min{w (H2, false, true) , w (H2, false, false) , w (H2, true, true) + 1}.

Third, |V (H1) |, |V (H2) | > 1 and the values of w (Hi, p, q) have already been computed for
p, q ∈ {true, false}. By the definition of the join of graph, avertex from H1 is at distance 1 from
all of the vertices of H2 in G, and every resolving set has at least one vertex in H1 and one vertex
in H2. By Lemma 7.1

md (G) = min{w (H1, p1, q1) + w (H2, p2, q2) | pi, qi ∈ {true, false}, i ∈ {1, 2} and p1 ̸= p2}.

Partitioning into modules. Let V (H) be partitioned into s ≤ t non-empty modules
X1, ..., Xs, s ≥ 2. We assume that X1, ..., Xh are trivial, this means that |Xi| = 1 for i ∈ {1, ..., h}
where 0 ≤ h ≤ s. Let F be the prime graph with a vertex set {v1, ..., vs} such that vi is adjacent
to vj if and only if the vertices of Xi are adjacent to the vertices of Xj . Let F ′ be obtained by
addition of a universal vertex to the graph F . Observe that if x ∈ Xi and y ∈ Xj for distinct
i, j ∈ {1, ..., s}, then distG (x, y) = distF (vi, vj).
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For a set of indices I ⊆ {1, ..., h} and boolean variables pi, qi where i ∈ {h + 1, ..., s}, we
define

ω (I, ph+1, qh+1, ..., ps, qs) = |I| +
s∑

i=h+1
w (G [Xi] , pi, qi)

if the following holds:

1. the set Z = {vi | i ∈ I ∪ {h + 1, ..., s}} is a resolving set for F ,

2. if pi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF (vi, vj) ≥ 2 or
there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF ′ (vr, vj),

3. if qi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF (vi, vj) ̸= 2 or
there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF ′ (vr, vj),

4. pi = pj = true for some distinct i, j ∈ {h + 1, ..., s} , then distF (vi, vj) ≥ 2 or there is some
vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) = distF (vr, vj),

5. qi = qj = true for some distinct i, j ∈ {h + 1, ..., s} , then distF (vi, vj) ̸= 2 or there is some
vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) = distF (vr, vj).,

and ω (I, ph+1, qh+1, ..., ps, qs) = +∞ in all other cases.
The claim about the metric dimension is expressed by the following theorem.

▶ Theorem 7.4 ([2]). The function md, that expresses the metric dimension of a graph can
be expressed as md(G) = min ω (I, ph+1, qh+1, ..., ps, qs), where the minimum is taken over all
possible values of I ⊆ {1, ..., h} and pi, qi ∈ {true, false} for i ∈ {h + 1, ..., s}.

Proof. We first prove that md(G) ≥ min ω (I, ph+1, qh+1, ..., ps, qs):
Let W ⊆ V (G) be a resolving set of minimum size. By definition, md (G) = |W |. Let

Wi = W ∩ Xi. Let I = {i | i ∈ {1, ..., h}, Wi ̸= ∅}. By Lemma 7.1, Wi ̸= ∅ for i ∈ {h + 1, ..., s}.
For i ∈ {h + 1, ..., s}, let pi = true if there is a vertex x ∈ Xi such that distG (x, u) = 1 for some
u ∈ Wi, and let qi = true if there is a vertex y ∈ Xi such that distG (y, u) = 2 for some u ∈ Wi.

By Lemma 7.1, Wi resolves Xi in G′ [Xi] for i ∈ {h + 1, ..., s}. This implies that |Wi| ≥
w (G [Xi] , pi, qi) for i ∈ {h + 1, ..., s} and therefore |W | ≥ |i| +

∑s
i=h+1 w (G [Xi] , pi, qi).

Now we prove that each of the conditions 1-5 is met for the chosen values of I, pi and qi.

1. Let vi, vj be distinct vertices in F . If vi ∈ Z or vj ∈ Z, Z obviously resolves vi and vj . Let
i, j ∈ {1, ..., h}\I. Then Xi, Xj are trivial modules with vertices x, y respectively. Since W is
a resolving set of G, there has to be u ∈ W such that distG (u, x) ̸= distG (u, y). Consider the
set Wr containing u. Vertices vi, vj are resolved by vr, because distF (vr, vi) = distG (u, x) ̸=
distG (u, y) = distG (vr, vj).

2. Assume that pi = true for some i ∈ {h + 1, ..., s} and consider some j ∈ {1, ..., h} \ I.
Let us also assume that distF (vi, vj) = 1. Then Xi has to have a vertex x adjacent to
all the vertices of Wi. Let y be the unique vertex of Xj . The set W resolves x, y, which
means there is u ∈ W such that distG (u, x) ̸= distG (u, y). If u ∈ Xi then we have that
distG (u, x) = 1 = distF (vi, vj) = distG (u, y). That is a contradiction. Thus u cannot
belong to Xi. Let then Xr be the module containing u. Then we have that distF (vr, vi) =
distG (u, x) ̸= distG (u, y) = distF (vr, vj).

3. Assume that qi = true for some i ∈ {h + 1, ..., s} and consider some j ∈ {1, ..., h} \ I.
Let us also assume that distF (vi, vj) = 2. Then Xi has to have a vertex x at distance 2
from all the vertices of Wi. Let y be the unique vertex of Xj . The set W resolves x, y,
which means there is u ∈ W such that distG (u, x) ̸= distG (u, y). If u ∈ Xi then we have
that distG (u, x) = 2 = distF (vi, vj) = distG (u, y). That is a contradiction. This means
that u cannot belong to Xi. Let then Xr be the module containing u. Then we have that
distF (vr, vi) = distG (u, x) ̸= distG (u, y) = distF (vr, vj).
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4. Suppose that pi = pj = true for some i ∈ {h + 1, ..., s} and assume that distF (vi, vj) = 1.
Then Xi has a vertex x adjacent to all the vertices of Wi and Xj has a vertex y that is adjacent
to all the vertices of Wj . The set W resolves x, y and therefore there has to be u ∈ W such
that distG (u, x) ̸= distG (u, y). If u ∈ Xi then we get that distG (u, x) = distF (vi, vj) =
distG (u, y). That is a contradiction. This means that u cannot belong to Xi. We get that
u /∈ Xj by the same argument. Let then Xr be the module containing u. Then we have that
distF (vr, vi) = distG (u, x) ̸= distG (u, y) = distF (vr, vj).

5. Suppose that qi = qj = true for some i ∈ {h + 1, ..., s} and assume that distF (vi, vj) = 2.
Then Xi has a vertex x at distance 2 to all the vertices of Wi and Xj has a vertex y that
is at distance 2 to all the vertices of Wj . The set W resolves x, y and therefore there has
to be u ∈ W such that distG (u, x) ̸= distG (u, y). If u ∈ Xi then we get that distG (u, x) =
distF (vi, vj) = distG (u, y). That is a contradiction. This means that u cannot belong to Xi.
We get that u /∈ Xj by the same argument. Let then Xr be the module containing u. Then
we have that distF (vr, vi) = distG (u, x) ̸= distG (u, y) = distF (vr, vj).

All five of the conditions are fulfilled. By that the inequality
md(G) ≥ min ω (I, ph+1, qh+1, ..., ps, qs) has been proven.

Now we prove that md(G) ≤ min ω (I, ph+1, qh+1, ..., ps, qs):
Assume that the values of pi, qi for i ∈ {h + 1, ..., s} are chosen in such a way, that

ω (I, ph+1, qh+1, ..., ps, qs) has the minimum possible value. If ω (I, ph+1, qh+1, ..., ps, qs) =
+∞, the inequality holds trivially. Suppose that ω (I, ph+1, qh+1, ..., ps, qs) is finite. Then
ω (I, ph+1, qh+1, ..., ps, qs) = |I| +

∑s
i=h+1 w (H [Xi] , pi, qi) and 1-5 hold.

For i ∈ {h + 1, .., s}, let Wi ⊆ Xi be a set of minimum size such that:

1. Wi resolves Xi in the graph H ′
i,

2. Xi has a vertex x such that distH′
i
(x, v) = 1 for every v ∈ Wi if and only if pi = true,

3. Xi has a vertex x such that distH′
i
(x, v) = 2 for every v ∈ Wi if and only if qi = true.

By the definition, w (G [Xi] , pi, qi) = |Wi| for i ∈ {h + 1, ..., s}. Let

W = (∪i∈IXi) ∪
(
∪s

i=h+1Wi

)
.

◀

We have that |W | = ω (p, q, I, ph+1, qh+1, ..., ps, qs).

▶ Theorem 7.5 ([2]). W is a resolving set for G.

Proof. Let x, y be distinct vertices of G. Let us show that a vertex u ∈ W , that resolves x and
y in G, exists. It is obvious, that is suffices to prove this for x, y ∈ G \ W . Let Xi, Xj be the
modules that contain x, y, respectively. If i = j, then a vertex u ∈ Wi resolves x and y in H ′

i

and, therefore, u resolves x and y in G. Assume that i ̸= j.
First, assume i, j ∈ {1, ..., h}. Then i, j ̸= I, because X1, ..., Xh are trivial. By 1, since Z is a

resolving set for F , there is vr ∈ Z such that distF (vr, vi) ̸= distF (vr, vj). Set Wr is not empty,
by the definition of Wr and Z. Let u ∈ Wr. Then distG (u, x) = distF (vr, vi) ̸= distF (vr, vi) =
distG (u, y).

Now assume that i ∈ {h + 1, ..., s} and j ∈ {1, ..., h}. If there are u1, u2 ∈ Xi such
that distH′

i
(u1, x) ̸= distH′

i
(u2, x), then either u1 or u2 resolves x, y, because distG (u1, y) =

distG (u2, y). Assume that all the vertices of Wi are at the same distance from x in H ′
i.

Let u ∈ Wi. If distH′
i
(u1, x) ̸= distH′

i
(u2, x), then u1 or u2 must resolve x and y, because

distG (u1, x) ̸= distG (u2, x). Suppose that all the vertices of Wi are at the same distance from
x in H ′

i. Let u ∈ Wi. If distH′
i
(u, x) = 1, then pi = true and by the second condition,

distF ′ (vi, vj) ≥ 2 or there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF ′ (vr, vj). If



20 Algorithms For Metric Dimension

distF ′ (vi, vj) ≥ 2, x and y must be resolved by u, because distG (u, y) = 2. Otherwise x and y
are resolved by any vertex u′ ∈ Wr.

In the same way if distG (u, x) = 2, then qi = true and by the third condition distF (vr, vj) ̸=
distF (vr, vj). If distG (u, x) ̸= 2 then u resolves x and y. Now let i, j ∈ {h + 1, ...s}. If u1, u2 ∈ Xi

such that distH′
i
(u1, x) ̸= distH′

i
(u2, x) exist, then x and y are resolved by either u1 or u2, since

distG (u1, x) = distF ′ (u2, x). The same argument can be used if there are u1, u2 ∈ Xj such that
distH′

i
(u1, y) ̸= distH′

i
(u2, y), then u1 or u2 resolves x, y. Assume all the vertices of Wi are at

the same distance from y in H ′
j . Let u1 ∈ Wi and u2 ∈ Wj . If distH′

i
(u1, x) ̸= distH′

i
(u2, x),

then u1 or u2 resolves x and y, since distG (u1, y) = distG (u2, x). Suppose that distH′
i
(u1, x) =

distH′
j

(u2, y) = 1. Then pi = pj = true and by the fourth condition, distF ′ (vi, vj) ≥ 2, or there is
vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj). If distF (vi, vj) ̸= 2, then u1 resolves
x and y. Otherwise any vertex u′ ∈ Wr resolves x and y. If distH′

i
(u1, x) = distH′

j
(u2, y) = 2,

then qi = qj = true and by the fourth condition distF (vi, vj) ̸= 2 or there is vr ∈ Z such
that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj). If distF (vi, vj) ̸= 2, then u1 resolves x and y.
Otherwise any vertex of Wr resolves x and y. ◀

We have shown that W is a resolving set for G and, therefore, md(G) = |W | and
|W | = ω (I, ph+1, qh+1, ..., ps, qs).

For evaluation of the running time of the function w (H, p, q) we only need to consider the
case when V (H) can be partitioned into s ≤ t modules. We consider at most 4t posibilities
to choose I and pi, qi for i ∈ {h + 1, ...s}. Then all the conditions can be verified in O

(
t3)

time. Hence, the total time complexity is O
(
4t · t3)

. In the same way the computation of the
function of md(G) can be performed in O

(
4t · t3)

. The conclusion is that since the algorithm by
Tedder et al. [7] is linear, we can solve the metric dimension problem in O

(
4t · t3 · n + m

)
time.

7.1 Counterexample

Now we will present a counterexample to the algorithm bounded by metric-dimension.
Let us have the graph G as shown in Figure 1.

Figure 1 Counterexample graph G.
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This graph has the modular decomposition of Figure 2, where a PRIME module means the
fourth operation of a modular decomposition as described in preliminaries.
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Figure 2 Modular decomposition of the graph seen in Figure 1.
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We can easily verify that the smallest resolving sets of G are the sets {4, 7} and {5, 6}. These
two are the only two resolving sets of size 2. Since both of the sets have only vertices from one
module, we can do the calculation with either of them. Knowing that, we can compute what
the boolean values p and q of the function w (G [{4, 5, 6, 7}] , p, q). The function w is defined as
min ω (p, q, I, ph+1, qh+1, ..., ps, qs). Let us then set I = {4, 7} and since we have no non-trivial
sub-modules in this step of the computation, we do not have any pi and qi booleans to set. We
compute the values like this (in reverse) since we already know the final resolving sets. One
by one we check the conditions 1-7. The graph F ′ is constructed as in the description of the
algorithm.

The graphs F and F ′ are below for clarity.

Figure 3 The prime graph F constructed from the subgraph of the graph seen in Figure 1, that is
induced by the set of vertices {4, 5, 6, 7}.

4 5 6 7

Figure 4 The graph F ′ with the universal vertex -1, constructed from the graph seen in Figure 3.

4 5 6 7

-1

The conditions have following results:

1. The set Z = {4, 7} does resolve V (F ) in F ′ by Lemma 7.1, since it also resolves G.

2. There is no other non-trivial sub-module of the currently computed module, so the condition
is implicitly satisfied.

3. There is no other non-trivial sub-module of the currently computed module, so the condition
is implicitly satisfied.

4. There is no other non-trivial sub-module of the currently computed module, so the condition
is implicitly satisfied.

5. There is no other non-trivial sub-module of the currently computed module, so the condition
is implicitly satisfied.

6. For i ∈ {5, 6} there is a vertex vj ∈ Z for which distF ′ (vi, vj) = 1. The indices i = 5 and
j = 4 satisfy this condition.
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7. For i ∈ {5, 6} there is a vertex vj ∈ Z for which distF ′ (vi, vj) = 2. The indices i = 6 and
j = 4 satisfy this condition.

This means that it is required that p = true and q = true for the algorithm to evaluate
{4, 7} as the smallest resolving set. Note that we get exactly the same values for the resolving
set {5, 6}. Since both of the sets are the same size and the vertices in the sets are from the
same module, we can continue this computation with either of the resolving sets. We choose to
continue with the set {4, 7}. Until this point everything works as expected. This is about to
change in the next step of the computation.

Knowing the values of p and q for the resolving set {4, 7} and the fact that this set resolves
the whole graph G, we can check the conditions in the final step of computation of the function
md(G).

This means we are checking the function ω (∅, true, true). The set I is an empty set as we
do not need any more vertices to resolve any vertex.

The graph F can seen in Figure 5.

Figure 5 The prime graph F constructed from the graph seen in Figure 1. The vertex 4 represents
the set of vertices {4, 5, 6, 7} from G. Other modules are trivial.

1 2 3 4

We proceed with the verification of the conditions.

1. We have that Z = {5}, and, thus the condition is satisfied, as the vertex in F ′ representing
the sub-module is a vertex on the end of path. This means that all the distance vectors are
unique.

2. Now we know that p4 = true. This means that there has to be j ∈ {1, ..., h} \ I, such that
distF (vi, vj) ≥ 2, however, that is not true for j = 3. Additionally we cannot select vr ∈ Z
such that r ̸= i, j, because Z = {4}. This means that the condition is not satisfied.

3. Similar observation as in 2. can be made.

4. There is only one element to chose i, j from, so the condition is satisfied.

5. Same as above.

This means that ω (∅, true, true) = +∞, because some of the conditions are not satisfied.
This is a contradiction with the Theorem 7.4.

There is one other thing we considered. It comes down to inexactness in the conditions of
the algorithm. Until now we suspected that when the authors say for vr ∈ Z, the the condition
needs to be met for only one of the vertices of Z. It could also be interpreted as for all the
vertices in Z. However, even for this case we managed to find a counterexample which we shall
present. We do not write the computation of the function w for the sub-modules, since there are
many of them and are all done in the exact same way as in the previous case.

Consider a graph H as displayed in Figure 6 with the modular decomposition as shown in
Figure 7. It can be verified that the size of any resolving set of this graph has size at least size 3.
Such a set of the minimum size would have any 2 vertices from the set {1, 2, 3, 4} and any single
vertex from the set {5, 6}.
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Figure 6 Counterexample graph H
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Figure 7 Modular decomposition of the graph seen in Figure 6.
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Let us then do the computation of w (H[{1, 2, 3, 4}], p, q).Let us now assume that the values
of p and q are computed correctly for each of the pairs of vertices. For the computation of
w (H[{6, 7}], p, q) we can verify that for any set of indices of size one, the boolean values have
only one valid configuration that fulfills the conditions, that is p = true and q = false.

Now we construct the prime graphs F and F ′, the graph with the universal vertex -1, with
the vertex 1 representing the sub-module of size 4 and the vertex 6 representing the sub-module
of size 2. These graphs can be seen on Figure 8 and 9, respectively.

Figure 8 The prime graph F constructed from the graph seen in Figure 6.

1 5 6 8

Figure 9 The graph F ′ with the universal vertex -1 constructed from the graph seen in Figure 6.

1 5 6 8
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At this point we perform the final computation of the md(F ) function. We set the value of
I to the empty set as we do not need any other vertices to form a resolving set. Now we again
check the conditions one by one.

1. We have that Z = {1, 6}, and, thus Z does resolve the graph F .

2. We know that the pi = true for i = 6. This means that for each j ∈ {5, 8} we need the
vertices vi and vj to be at least at distance 2 from each other in the graph F (which is fulfilled
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for neither of the vertices vj) or for the following condition to be satisfied distF (vr, vi) ̸=
distF ′ (vr, vj). And we can see that this is only fulfilled for j = 5 and not for j = 8.

We do not need to check the rest of the conditions as the second condition is not met, which
gives us contradiction in the values of pi and therefore ω (∅, p1, q1, true, false) = +∞ for any
p1, q1 ∈ {true, false} and the algorithm again yields a wrong result.

We do have a proposition how to fix this issue, however we do not provide any proof, and
therefore any guarantee that the algorithms works, since proving this proposition would be far
outside the scope of this thesis.

The only statement we can confidently say is that the following propositions fix the described
issues for graphs with modular decomposition tree of maximum depth 2. However, we cannot
say so in general.

First we need to solve the issue of the ambiguity of computation of the function w. We do
that by specifying the correct quantifier in the following proposition.

▶ Proposition 7.6. Let V (H) be partitioned into s ≤ t non-empty modules X1, ..., Xs, s ≥ 2.
We assume that X1, ..., Xh are trivial, this means that |Xi| = 1 for i ∈ {1, ..., h} where 0 ≤ h ≤ s.
For distinct i, j ∈ {1, ..., s}, either vertex of Xi is adjacent to every vertex of Xj or the vertices
of Xi and Xj are not adjacent. Let F be the prime graph with a vertex set {v1, ..., vs} such that
vi is adjacent to vj if and only if the vertices of Xi are adjacent to the vertices of Xj . Let F ′ be
obtained by addition of a universal vertex to the graph F . Observe that if x ∈ Xi and y ∈ Xj

for distinct i, j ∈ {1, ..., s}, then distH′ (x, y) = distF ′ (vi, vj).
For boolean variables p, q, a set of indices I ⊆ {1, ..., h}, and boolean variables pi, qi where

i ∈ {h + 1, ..., s} we define

ω (p, q, I, ph+1, qh+1, ..., ps, qs) = |I| +
s∑

i=h+1
w (H [Xi] , pi, qi)

if the following holds:

1. the set Z = {vi | i ∈ I ∪ {h + 1, ..., s}} resolves V (F ) in F ′,

2. if pi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF ′ (vi, vj) = 2 or
there is vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) ̸= distF ′ (vr, vj),

3. if qi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF ′ (vi, vj) = 1 or
there is vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) ̸= distF ′ (vr, vj),

4. if pi = pj = true for some distinct i, j ∈ {h + 1, ..., s}, then distF ′ (vi, vj) = 2 or there is
vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) ̸= distF ′ (vr, vj),

5. if qi = qj = true for some distinct i, j ∈ {h + 1, ..., s}, then distF ′ (vi, vj) = 1 or there is
vr ∈ Z such that r ̸= i, j and distF ′ (vr, vi) ̸= distF ′ (vr, vj),

6. p = true if and only if there is i ∈ {1, ..., h} \ I such that distF ′ (vi, vj) = 1 for all vj ∈ Z
or there is i ∈ {h + 1, ..., s} such that pi = true and distF ′ (vi, vj) = 1 for all vj ∈ Z \ {vi},

7. q = true if and only if there is i ∈ {1, ..., h} \ I such that distF ′ (vi, vj) = 2 for all vj ∈ Z
or there is i ∈ {h + 1, ..., s} such that qi = true and distF ′ (vi, vj) = 2 for all vj ∈ Z \ {vi},

and ω (p, q, I, ph+1, qh+1, ..., ps, qs) = +∞ in other cases.

Now we propose a solution to the problem of contradicting values pi, qi in the final computa-
tion of md(G) for a graph G.
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▶ Proposition 7.7. Let V (H) be partitioned into s ≤ t non-empty modules X1, ..., Xs, s ≥ 2.
We assume that X1, ..., Xh are trivial, this means that |Xi| = 1 for i ∈ {1, ..., h} where 0 ≤ h ≤ s.
Let F be the prime graph with a vertex set {v1, ..., vs} such that vi is adjacent to vj if and only
if the vertices of Xi are adjacent to the vertices of Xj . Let F ′ be obtained by addition of a
universal vertex to the graph F . Observe that if x ∈ Xi and y ∈ Xj for distinct i, j ∈ {1, ..., s},
then distG (x, y) = distF (vi, vj).

For a set of indices I ⊆ {1, ..., h} and boolean variables pi, qi where i ∈ {h + 1, ..., s}, we
define

ω (I, ph+1, qh+1, ..., ps, qs) = |I| +
s∑

i=h+1
w (G [Xi] , pi, qi)

if the following holds:

1. The set Z = {vi | i ∈ I ∪ {h + 1, ..., s}} is a resolving set for F ,

2. If pi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF (vi, vj) ≥ 2 or
there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj),

3. If qi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF (vi, vj) ̸= 2 or
there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj),

4. pi = pj = true for some distinct i, j ∈ {h + 1, ..., s} , then distF (vi, vj) ≥ 2 or there is some
vr ∈ Z such that r ̸= i, j and distF (vr, vi) = distF (vr, vj),

5. qi = qj = true for some distinct i, j ∈ {h + 1, ..., s} , then distF (vi, vj) ̸= 2 or there is some
vr ∈ Z such that r ̸= i, j and distF (vr, vi) = distF (vr, vj).

and ω (I, ph+1, qh+1, ..., ps, qs) = +∞ in all other cases.
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Algorithms For Truncated Metric
Dimension

In this chapter, we elaborate as to why the algorithm bounded by max-degree and tree-length
is not suitable to be converted to solve Truncated Metric Dimension. Since we found
the algorithm bounded by modular-width not correct, it does not make sense to consider any
modifications to it.

8 Max-degree and Tree-length
In this section we provide an argument as to why the algorithm bounded by max-degree and
tree-length is not suitable for conversion to solve the truncated metric dimension problem. The
issue lies within the Lemma 6.4.

More specifically, if we restate the Lemma 6.3 using the k-truncated distance definition, we
get that:

▶ Proposition 8.1. Let G be a connected graph with max-degree ∆ (G) = ∆ and let (X, T ),
where X = {Xi | i ∈ V (T )}, be a nice tree decomposition of G of length at most l and k a
positive integer. Then for every i, j ∈ V (T ) and any x ∈ Xi, y ∈ Xj the following holds:

distT (i, j) ≤ α (∆, l) (distG,k (x, y) + 1) − 1.

Counterexample. Let x ∈ Xi and y ∈ Xj , for i, j ∈ V (T ). Let R be the shortest (x, y)-
path in G, and let P be the unique (i, j)-path in T. For any vertex h ∈ V (P ), Xh contains at
least one vertex of R. And since any vertex z from R is included in at most α (∆, l) bags Xh

for h ∈ V (P ), |V (P )| ≤ α(∆, l)|V (R)| (By Lemma 6.2) and by rearranging the equation, we
get |V (P )|

(∆,l) ≤ α|V (R)|. But since we are using the truncated distance function, it is not true,
that the distance of x and y is |V (R)| − 1. Therefore we cannot rely on the following inequality
distT (i,j)

α(∆,l) ≤ min (distG (x, y) , k + 1)+1, since if we choose k to be less than distT (i,j)
α(∆,l) −2, inequality

does not hold and therefore the lemma does not hold. ◀

And now after restating the Locality Lemma 6.4 and its proof, we can see multiple points of
failure.

▶ Proposition 8.2. Let (X, T ), where X = {Xi | i ∈ V (T )}, be a nice tree decomposition of
G of length at most l such that T is rooted in r, Xr = {u}. Let ∆ = ∆ (G) be the max-degree
of G and let s = α (∆, l) (2l + 1). Then the following holds:

1. If i ∈ V (G) is an introduce node with the child i′ and v is the unique vertex of Xi \ Xi′ then
for any x ∈ V (Gj) for a node j ∈ V (Ti) such that distT (i, j) ≥ s, u resolves v and x.
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2. If i ∈ V (G) is a join node with the children i′, i′′ and x ∈ V (Gj) \ Xj for j ∈ Ti′ such that
distT (i′, j) ≥ s − 1 and y ∈ V (Gi′′) \ Xi′′ then u or an arbitrary vertex v ∈ (V (Gj) \ Xj)
resolves x and y.

Disproof. As for the first claim, let us consider x ∈ V (Gj) for some j ∈ V (Ti′) such that
distT (i′, j′) ≥ s. Now it is stated that the either u ∈ Xi or u is separated from x by Xi,

distG,k (u, x) = min {distG,k (u, y) + distG,k (y, z) + distG,k (z, x) | y ∈ Xi, z ∈ Xj} .

This is obviously not a true statement, since the triangle inequality does not hold when using
the truncated distance function.

Next, there is an observation, that when the Lemma 6.3 is used, another inequality holds.
However since we disproved the Lemma 6.3 for usage with truncated distance function, the
inequality also does also not hold.

Similar observations can be made for the second statement of the lemma. ◀

As seen in the propositions above, the fact that the k-truncated version of the Lemma 6.3 is
not true means that the proof for the main structural lemma [2], as it is called by the authors,
Lemma 6.4 does not hold either. And as the correctness of the algorithm, for each type of
node, relies on the Lemma 6.4 we claim that this algorithm is unfit for modification to solve the
truncated version of the metric dimension problem.

9 Modular-width
Since we found that the algorithm bounded by modular-width is not working correctly and we did
not prove the proposed change to be correct, we have no algorithm bounded by modular-widtrh
to alter.
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10 Implementation
In this chapter we describe the implementation of the algorithms for the generation of the data
set and the metric dimension bounded by modular-width. We will also present the measured
results.

The language Python with the SageMath framework was chosen based on many factors. Primar-
ily it was the built-in algorithms for modular decomposition and other operations with graphs,
while being very easy to use. The fact that SageMath provides reasonable performance was also
a factor. Additionally Python and SageMath are popular tools among the scientific community,
which means the interpretation of our implementation should be less of a problem than with less
common languages.

10.1 Data Generator
The data generator is a simple random modular decomposition generator. The generating func-
tion accepts two parameters. The modular-width t and the maximal depth of the modular
decomposition tree d. Built-in SageMath function is then used to generate a graph from the
modular decomposition.

The reasoning behind generating a modular-width decomposition as opposed the generating a
graph and then calculating its modular decomposition is that the we can better test the running
time of the algorithm as the dominating determining factor of the running time is the maximal
and average width of a module. It is important to mention that we chose the root module so
it can always be partitioned into exactly t modules, where the modular-width of each of the
sub-modules is less or equal to t. This decision was made to ensure that the modular-width is t
and the the graph is connected. A leaf node always has to be Normal node. All the other nodes
are chosen randomly using uniform distribution of four choices

1. Normal node, meaning a single vertex,

2. Prime node, meaning a module that has at minimum four and at maximum t sub-modules,

3. Parallel node, meaning a disjoint union of modules,

4. Series node, meaning a complete join of modules.

One might argue that generating multiple date sets with slightly different probabilities of
each of the nodes might be useful. For example with the probability of Prime node set higher
and compensate for it with making the probability of the Normal node smaller, however because
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of the performance of the algorithm, we are generating graphs so small, that we don’t find that
this change would have any interesting results.

10.2 Metric Dimension Algorithm
The generated graph and its modular decomposition are passed to functions md_original,
md_modified, md_naive. The functions then compute the metric dimension according to

the algorithm by Belmonte et al.

the algorithm by Belmonte et al with our proposed changes,

an algorithm, that tests all the possible subsets of vertices of the graph,

respectively. Each of the results is then printed out.

11 Measured Results

Table 1 Performance of the algorithm

t # non-trivial modules z | V (G) | md(G) time [s]
4 2 4 7 2 0.0
4 4 3.7 11 7 0.1
4 4 3.7 11 5 0.2
4 4 4.2 13 8 0.3
4 5 4.0 16 10 0.8
4 8 1.3 17 7 8.9
4 11 3.6 29 16 66.6
4 13 3.0 27 15 111.8
4 13 3.3 30 19 167.1
4 14 3.7 39 21 200.3
6 5 5.4 22 13 14.3
6 6 3.7 21 11 12.2
6 6 4.1 20 10 20.5
6 7 5.0 31 20 55.2
6 7 5.1 30 15 77.0
6 10 4.3 32 21 2128.9
6 10 5.3 43 24 2427.1
6 15 4.5 53 35 18023.0
6 17 4.4 58 42 17069.7
6 24 4.7 89 68 13920.9
8 5 5.4 22 10 90.2
8 6 6.1 31 16 455.7
8 6 6.6 34 26 814.8
8 7 5.2 30 14 1273.0
8 7 5.8 34 26 1091.4
t modular-width
z average size of a non-trivial module
Note: Each graph was tested 5 times and the running times were averaged.
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11.1 Performance
First we shall focus on performance of the algorithm. Since our proposition does not change the
algorithm in any significant way, from the running time point of view, it does not matter that
we chose to measure the running time of the unmodified algorithm. We chose to measure the
performance of the md_original function.

The test was done on a computer with an Intel i7-8700 CPU, with 32 GB of RAM. All the
input data can be found in the data folder, where the the data are sorted into folders. Primarily
by the modular-width parameter and secondarily by the depth of the tree.

Since the complexity of the algorithm depends on the maximal size of any module in the
modular decomposition and number of vertices, we have generated data with relatively small
modular-width and maximal depth of modular decomposition tree, limiting the maximal number
of vertices, otherwise the computation would take unreasonable amount of time to finish. After
some experimentation we decided 4, 6 and 8 are reasonable values of the modular-width for
testing.

While the worst case complexity has the upper bound of O(4t · t3 · n + m), where t is the
module size, n the number of vertices, and m the number of edges, that does not tell much about
the average time complexity of the algorithm. While we will not prove such bound, we shall
present Table 1, where we have chosen three important metrics, from which we can approximate
the running time much better. Those are the modular-width, the number of non-trivial modules
and the average size of non-trivial module of the graph.

This is the case, because in the computation of each of the modules, there are three main
components that add to the running time:

1. 2k values are generated and tested (2 values for each of the non-trivial modules), where k is
the number of non-trivial modules,

2. all the subsets of the trivial modules are tested,

3. a table of distances in the sub-graph for the module is computed.

From this simple observation one should be able to see why we chose these metrics. We can
also see that the number of edges is not very important, so we chose to omit it.

We emphasize that these are just approximations, as it can happen that the final set is
found early in the computation leading to cutting some of the computation branches, or that
some of the graphs may favour a better computation branch cutting due to the conditions not
being satisfied. We can observe this for example for the very bottom of the computations of
modular-width 6 and 8.

We conclude that the algorithm performs within our expectations.
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Conclusion

The goals of this thesis were to research the metric dimension problem and already known FPT
algorithms, find out whether it is possible for some of these algorithms to also solve the truncated
version of the metric dimension problem with minimal modifications to the algorithm itself and
to implement such algorithm.

We got familiar with the concept of the metric dimension problem and its truncated variant.
We also got familiar with concepts of parameterized complexity and various structural param-
eters. We have shown that for one of the algorithms by Belmonte et al.[2] it is not possible to
convert it in a suitable way to solve the truncated metric dimension problem and for the other
one we presented counterexamples to its correctness.

Then the algorithm bounded by modular-width was implemented in Python with the support
of SageMath libraries and its performance was evaluated.

12 Possible Improvements
There are multiple possible ways to iterate on this thesis. Other already known algorithms
bounded by other structural parameters could be considered. For example, an algorithm solving
the metric dimension problem with linear running time with respect to tree-width is known.
Then, of course, the algorithm bounded by modular-width could be fixed, if possible. Both of
the algorithms could then be re-implemented in a more performant language and added into
SageMath or packaged separately.
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1. YERO, Ismael González; ESTRADA-MORENO, Alejandro; RODRÍGUEZ-VELÁZQUEZ,
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