
Název:

Student:

Vedoucí:

Studijní program:

Obor / specializace:

Katedra:

Platnost zadání:

Zadání bakalářské práce

Schelling games: na neústupných agentech záleží

Ondřej Nohava

Ing. Šimon Schierreich

Informatika

Znalostní inženýrství

Katedra aplikované matematiky

do konce letního semestru 2022/2023

Pokyny pro vypracování

Pro studium rezidenční segregace vytvořil Schelling [1,2] následující model. Mějme

agentů dvou různých typů umístěných na mřížku. O agentu i řekneme, že je spokojený se

svým bydlištěm, pokud je alespoň t ∊ (0,1] agentů v jeho okolí daném poloměrem r

stejného typu, jako agent i. Pokud je tento jeho požadavek splněný, nemá agent i důvod

se stěhovat, v případě nespokojenosti bude mít ovšem tendenci své bydliště měnit. V

této práci se budeme věnovat variantě, kterou představili Elkind et al. [3]. Zde

neumisťujeme agenty na mřížku, ale jako topologie, do které jsou agenti umisťováni,

slouží jednoduchý neorientovaný graf. V tomto modelu autoři navíc uvažují dva druhy

agentů – strategické a neústupné agenty. Zatímco strategičtí agenti jsou ochotni v

případě nespokojenosti se svou lokací své bydliště měnit, u neústupných agentů toto

neplatí. Tito nikdy svou lokaci nemění. Výstupem problému je (většinou) takové umístění

agentů na graf, při kterém žádný z agentů nemá tendenci své bydliště měnit a při kterém

je maximalizován sociální blahobyt. Prozkoumejte variantu problému, kdy je

standardním způsobem měřena spokojenost i neústupných agentů. Změní se nějak

známé algoritmické a těžkostní výsledky?

[1] Thomas C. Schelling. Models of segregation. Am. Econ. Rev. 59 (2) (1969) 488-493.

[2] Thomas C Schelling. Dynamic models of segregation. J. Math. Sociol. 1 (2) (1971) 143 -

186.

[3] Aishwarya Agarwal, Edith Elkind, Jiarui Gan, Ayumi Igarashi, Warut Suksompong,

Alexandros A Voudouris. Schelling games on graphs. Art. Intell. 301 (2021) 103576. DOI:

10.1016/j.artint.2021.103576

Elektronicky schválil/a Ing. Magda Friedjungová, Ph.D. dne 13. května 2022 v Praze.

Bachelor’s thesis

SCHELLING GAMES:
WHEN STUBBORN
AGENTS MATTERS

Ondřej Nohava

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Šimon Schierreich
June 29, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Ondřej Nohava. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Nohava Ondřej. Schelling games: when stubborn agents matters. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments v

Declaration vi

Abstract vii

Acronyms viii

Introduction 1

1 Schelling games 5
1.1 Graph theory . 5
1.2 Computational complexity . 6
1.3 Schelling game . 7

2 Maximizing social welfare 11
2.1 Considering stubborn agents . 11
2.2 NP-completeness . 13

3 Maximizing social welfare at equilibrium 15
3.1 Motivation . 15
3.2 Creating algorithm . 16

3.2.1 Equilibrium algorithm . 16
3.2.2 Modification for swap games . 19
3.2.3 Social welfare at equilibrium algorithm . 20

3.3 Analyzing results . 21
3.3.1 Comparing social welfare . 21
3.3.2 Comparing number of equilibriums . 22
3.3.3 Comparing topologies . 23

4 Graph neural networks 25
4.1 Graph classification with GNNs . 25

4.1.1 Mini-batching of graphs . 25
4.1.2 Training GNN for graph classification . 26

4.2 Algorithm for general graphs . 27
4.3 Experiment . 28
4.4 Comparing predicted accuracies . 29
4.5 Implementation details . 30

4.5.1 Algorithms . 30
4.5.2 Jupyter notebooks . 31

5 Conclusion and open problems 33

Contents of enclosed zip-file 39

iii

List of Figures

1 Race and ethnicity in the US . 1

1.1 An example of a path, a cycle, and a star . 5
1.2 Example of computing social welfare . 8

2.1 Social welfare in jump game with stubborn agents’ utilities 12
2.2 Social welfare in swap game with stubborn agents’ utilities 13
2.3 Maximizing social welfare is NP-complete . 14

3.1 Comparing maximal social welfare . 22
3.2 Comparing number of equilibriums . 23
3.3 Unwanted coalition problem . 24
3.4 Cutting off problem . 24

4.1 Linear separation of different graph classes . 25
4.2 Mini-batching in Graph neural networks . 26
4.3 Comparing accuracies of GNN on tree and general graphs 29

List of Tables

4.1 Datasets information . 28
4.2 Features description . 28
4.3 Results of our GNN . 30

iv

I would like to express my deepest gratitude to my supervisor
Ing. Šimon Schierreich for his guidance, patience and helpful com-
ments. I would also like to thank VýLet, the summer internship
program that supports student research. At last I would like to thank
my family and all of my friends for their support.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. I further declare that I have concluded a
license agreement with the Czech Technical University in Prague on the utilization of this thesis
as a school work under the provisions of Article 60 (1) of the Act. This fact shall not affect the
provisions of Article 47b of the Act No. 111/1998 Coll., the Higher Education Act, as amended.

In Prague on June 29, 2023 .

vi

Abstract

We study strategic games inspired by Schelling’s segregation model. In these games, we study
how agents of multiple types are moving on undirected graphs. We consider two types of agents:
strategic agents aim to maximize the fraction of their neighbors who have the same type, while
stubborn agents do not move at all. We explore two common variants of the model: jump
games, where agents can jump to empty nodes, and swap games, where agents move by swapping
positions with other agents. We investigate the computational complexity of these games and
the increase in social welfare when considering neighbors of stubborn agents. We propose a
novel approach to classify games with maximal social welfare in equilibrium using a graph neural
network.

Keywords Schelling games, social welfare analysis, stubborn agents, computational complex-
ity, graph neural networks, graph classification

Abstrakt

Zabýváme se studiem strategických her, které jsou inspirovány Schellingovým segregačńım mod-
elem. V těchto hrách zkoumáme, jak se agenti, rozděleńı do několika typ̊u, pohybuj́ı na ne-
orientovaných grafech. Bereme v potaz dva typy agent̊u: strategické agenty, kteř́ı se snaž́ı o
maximálńı počet soused̊u stejného typu a neústupné agenty, kteř́ı se v̊ubec nepohybuj́ı. V naš́ı
práci zkoumáme dvě nejčastěǰśı varianty tohoto modelu, které se rozlǐsuj́ı pohybem strategických
agent̊u. Strategičt́ı agenti maj́ı k dispozici dva druhy pohyb̊u: skok a výměnu. Na těchto hrách
zkoumáme výpočetńı složitost a zvýšeńı sociálńıho blahobytu při zvážeńı soused̊u i neústupných
agent̊u. Dále představujeme nový zp̊usob detekce maximálńıho sociálńıho blahobytu v ekvilibriu
za pomoci grafových neuronových śıt́ı.

Kĺıčová slova Schelling hry, analýza sociálńıho blahobytu, neústupńı agenti, výpočetńı složitost,
grafové neuronové śıtě, klasifikace graf̊u

vii

Acronyms

MSW Maximal Social Welfare
MSWE Maximal Social Welfare at Equilibrium

R Set of Stubborn Agents
S Set of Strategic Agents

SW Social Welfare
GNN Graph neural network
PDF Portable document format

viii

Introduction

Segregation has been monitored by economists and sociologists for a long time, and their research
has shown that a community of people tends to create homogeneous groups over time based on
religion, politics, race, etc. This phenomenon’s most famous example is racial segregation in the
US.1 For better understanding, we can even show an example of two neighboring cities where
one race clearly dominates the others. These are the City of Detroit, which in 2019 was occupied
by 78% African Americans and his neighbor, Oakland Country, which had, on the other hand,
75% white residents.

Figure 1 Race and ethnicity in the US by Dot Density (Census 2020) [1].

1See the racial dot map [1] for visualization.

1

https://www.arcgis.com/home/item.html?id=30d2e10d4d694b3eb4dc4d2e58dbb5a5

2 Introduction

One of the first attempts to explain residential segregation was a model presented by Thomas
Schelling more than 50 years ago [2, 3]. In this model, there are agents of two different types
placed on a line or a grid with each agent having a tolerance threshold parameter τ ∈ (0, 1]. The
agent’s happiness is defined by her neighborhood, that is, if at least τ fraction of agents in the
agent’s radius, meaning agents connected by the edges to the agent’s node, are of the same type,
then the agent remains at her location. Contrarily, the agent can either swap locations with
another unhappy agent or jump to an empty spot to increase her threshold. Schelling showed in
relatively simple experiments that even if τ ≤ 1

2 agents eventually form segregated clusters.
Schelling’s work has deepened interest in segregation and inspired many economists, computer

scientists and physicists to study related models. Most subsequent works analyzed the problem
via agent-based simulations2 with only two types of agents, where agents move randomly. How-
ever, they proved that even when agents behave randomly, they, with high probability, form
monochromatic regions, showing that strong segregation is likely to occur; see, for example,
works [5, 6, 3].

More recent studies [7, 8] took a different approach and considered agents to be fully de-
terministic, thus agents now move only when they improve their happiness, which differs from
earlier works that moved agents randomly. Most interest in Schelling games followed up after
publication of an article from Agarwal et al. [9], which is the first to consider more than just
two agent types.

Our contribution

The work presented in this thesis is based on a very recent article by Agarwal et al. [9] that we
will follow up on. Their article is based on the model presented by Chauhan et al. [7]. They made
some adjustments to make the problem less complex. In their basic model, they also integrate
location preferences, but in just two basic agent types – stubborn and strategic. Location prefer-
ences try to present the behavior and preferences of agents, but considering them in expanded
form makes resolving the problem much harder3. For simplification, Agarwal et al. [9] only
considered, as mentioned above, strategic agents that move to get to the best possible location,
and stubborn agents that stay at the same location without ever changing. Stubborn agents are
meant to depict people unwilling to change in any situation (such as indebted people or pension-
ers). In these games, they also do not consider any kind of threshold, that is, the agent moves
as long as she can change to a location with a better happiness ratio (that is, τ < 1) available.
Lastly, Agarwal et al. [9] are the first to consider k types of agents.

Although they introduced stubborn agents, they did not consider their utilities, which could
highly impact the social welfare of the Schelling game and might not always pay off. We will
investigate this possibility on the same model as them and show how the results differ.

In Chapter 2, we prove that maximizing social welfare with consideration of stubborn agents’
utilities is NP-complete. We then present an algorithm to compute the maximal social welfare at
equilibrium in Chapter 3. Provided algorithm runs in polynomial time for two types of agents,
but only works on tree graphs. Based on algorithm outputs, we compare both models, and
present two problems that can affect the topology when we do not consider stubborn agents’
utilities.

Finally, in Chapter 4, we discuss an alternative approach to evaluating Schelling games, that
is, using the new concept of graph neural networks. We implement a graph neural network for
classifying maximal social welfare at equilibrium for a given Schelling game and compare our
model performance on tree and general graphs.

Overall, this thesis aims to invoke further interest in the role of stubborn agents in Schelling
games.

2See an agent-based simulation’s [4] online implementation.
3We can consider, for example, distance, position near institution (school, police), physical disability, etc.

http://ncase.me/polygons

Introduction 3

We also try to make use of rapid development in machine learning to combine the usage of
machine learning models for easier and faster analysis of computer science problems.

Related work
For an introduction to the Schelling model, we advise interested readers to go to Chapter 4 of the
book by Easley and Kleinberg [10], as well as the papers by Brandt et al. [11] and Immorlica et
al. [12]. Aside from the work of Agarwal et al. [9] and Chauchen et al. [7], which we previously
discussed in detail, several other authors studied similar models. In particular, Chauchen et al.
model’s results were strengthened by Echzell et al. [13] who confirmed the existence of Nash
equilibrium and convergence in their model. Bilò et al. [14] investigated the use of non-monotone
utility functions on swap games and showed that moving to non-monotone utilities can bring
new structural properties and different equilibrium possibilities. Very recently Friedrich et al.
[15] considered non-monotone jump Schelling games and showed that even for simple topologies
equilibrium may cease to exist. Another approach to achieve a more general model was recently
presented Bilò et al. [16]. In their model, they introduced a new decisive feature that considers
non-categorical types to be possible.

Our model is relatively similar to Hedonic games [17, 18, 19]. In Hedonic games, agents form
coalitions in order to satisfy their individual preferences. Both Hedonic and Schelling games can
be used to model the formation of social networks.

In Chapter 4, we dive into graph neural networks [20], which were also introduced quite
recently. We refer interested readers to the article by Zhou et al. [21] and an older article by
Scarselli et al. [22].

4 Introduction

Chapter 1

Schelling games

In this chapter, we aim to create a solid foundation for understanding Schelling games and related
concepts. We start by introducing the notation for graph theory and computational complexity.
After that, we define Schelling games. This chapter should create a general understanding of the
issue to follow our analysis.

1.1 Graph theory
We begin by defining concepts from graph theory. In our definitions, we follow the basic notation
by Diestel [23].

▶ Definition 1.1 (Graph [23]). A graph is a pair G = (V, E) where V is a non-empty set of
vertices and E ⊆ [V]2 is a set of edges.

Since our definition explicitly prohibits self-loops and multiple edges between the same ver-
tices, it is clear that we only work with simple undirected graphs. Apart from general graphs for
our topologies, we will also be using some well-known graph structures, such as stars, paths or
cycles in our proofs (see Figure 1.1 for visualization).

A star, denoted by Sk consists of a central vertex connected to other vertices, where k
represents the number of vertices connected to the central vertex. A path (P k) is a set of linearly
arranged vertices where each neighbor vertices is an edge; hence it does not have cycles. Lastly,
a cycle (Ck) is a path in which the first and last vertex of the path is connected by an edge. In
both paths and cycles, k refers to the total number of vertices. In addition to these graphs, we
also consider a graph called a tree, which is similar to a star except that any two vertices are
connected by exactly one unique path; in other words, a tree is a connected acyclic graph.

Figure 1.1 An example of a path, a cycle, and a star in this order.

5

6 Schelling games

▶ Definition 1.2 (Complement [23]). A graph GC is a complement of G = (V, E) if its edges
are [V]2\E.

▶ Definition 1.3 (Clique [23]). A clique, C, in an undirected graph G = (V, E) is a subset
of vertices, C ⊆ V , such that for every pair of distinct vertices {u, v} ∈ C, there is an edge
{u, v} ∈ E.

▶ Definition 1.4 (Partition [23]). A set A = {A1, . . . , Ak} of disjoint subsets of a set A is a
partition of A if A =

⋃k
i=1 Ai and Ai ̸= ∅ for every i.

We use partition to define last type of graph we use called a bipartite graph.

▶ Definition 1.5 (Bipartite graph [23]). Let r = 2 be an integer. A graph G = (V, E) is called
bipartite if V admits a partition into r classes such that every edge has its ends in different
classes.

Our definition of a bipartite graph can be extended for r − partite graphs by setting r ≥ 2.

1.2 Computational complexity
Computational complexity investigates problems using various computational models. We base
our complexity theory on Turing machines [24].

▶ Definition 1.6 (Turing machine [25]). Turing machine M is a tuple (Γ, Q, δ) that contains:

A set Γ of symbols thatM can work with. We assume that Γ contains two designated symbols,
”blank” symbol □ and ”start” symbol ▷ and binary numbers. We call Γ the alphabet of M.

A set Q of finite states of the machine M. We assume that Q contains a start state, denoted
qstart and a halting state, denoted qhalt.

A transition function δ : Q × Γk → Q × Γk−1 × {L, S, R}k describing the rule M uses in
performing each step.

The Turing machine can be viewed as a simplified version of a modern computer, with the
set Q corresponding to the computer’s memory, and the transition function and symbols from Γ
as the computer’s central processing unit. However, it is better to think of Turing machines
as a formal way of describing algorithms. Although algorithms are often best understood with
natural languages, using a formalism can be beneficial when discussing them mathematically.
The Turing machine we have defined is known as a deterministic Turing machine. It’s worth
noting that there also exists a non-deterministic Turing machine, which was originally used to
define complexity class NP [25].

Finally, we can proceed to describe our first complexity class, called P. This is a very important
class, as it contains decision problems that can be solved efficiently.

▶ Definition 1.7 (Complexity class P [25]). Let T : N → N be some function. We let
DTIME(T (n)) be the set of all Boolean functions that are computable in c · T (n)-time for some
constant c > 0, then P =

⋃
c≥1 DTIME(nc).

We can now move on to describing a much more comprehensive class called NP. We find the
most well-known computational problems in this class.

▶ Definition 1.8 (Complexity class NP [25]). A language L ⊆ {0, 1}∗ is NP if there exists a
polynomial p : N→ N and a polynomial-time Turing machine M such that for every x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1
If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1 then we call u a certificate for x.

Schelling game 7

To put it more simply, all the solutions of NP problems can be easily verified. Furthermore,
based on these definitions, we can easily see that P ⊂ NP , but it remains one of the most
important problems in computer science to prove that P = NP (P ̸= NP). We capture the
difference between P and NP using a characteristic called NP-hardness.

▶ Definition 1.9 (Reductions, NP-hardness and NP-completeness [25]). We say that a language
A ⊆ {0, 1}∗ is polynomial-time Karp reducible to a language B ⊆ {0, 1}∗ denoted by A ≤p B
if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every
x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∈ B.

We say that B is NP-hard if A ≤p B for every A ∈ NP .

We say that B is NP-complete if B is NP-hard and B ∈ NP .

Several NP-complete problems have been extensively studied in the literature, for example,
the Traveling Salesman Problem [26], the Knapsack Problem [27], and the Maximum Cut Prob-
lem [28]. These and other problems are not known to be solvable in polynomial time, which led
most scientists to believe that P ̸= NP .

1.3 Schelling game
Schelling games on graphs are a class of games that explore the behavior of agents in unique
networks. In these games, the agents are placed on a graph and each agent is assigned utility
function that calculates their happiness. The most obvious goal of the game is for each agent to
have utility that they can no longer increase. We call this pure Nash equilibrium (or, simply, an
equilibrium).

We have already stated that our model is based on the model by Agarwal et al. [9]; hence
our definitions are similar.

▶ Definition 1.10 (Schelling game). A Schelling game is given by a set N = {1, ..., n} of n ≥ 2
agents partitioned into k ≥ 2 pairwise disjoint types T1, ..., Tk, and a graph G = (V, E), called
the topology.

Agent types Ti are often identified with colors; for example, in Schelling games with two types
T1 and T2, agents are referred to as red (T1) and blue (T2). In addition to these types, we also
divide our agents into two subsets S and R, where agents in the set S are strategic and agents in
the set R are stubborn. Strategic agents move in order to maximize their utility1 and stubborn
agents do not deviate and stay at node they were associated with.

▶ Definition 1.11 (Assignment). An assignment is a vector v = (v1, ..., vn), where

∀i ∈ N : vi ∈ V ∧ ∀i, j ∈ N, i ̸= j : vi ̸= vj

Intuitively, the location of agent i is vi and a single node cannot be occupied by two or more
agents. We need to mention that we need to pay attention to the difference between topology
and assignment. The topology, as we know, is a simple undirected graph, and the assignment v
defines the position of agents on this graph.

▶ Definition 1.12 (Utility function). Utility function (utility), for agent ui in assignment v
with Ni(v) being a set of all neighbors of agent i and Fi set of agents of the same type as i, is

ui(v) = |Ni(v) ∩ Fi|
|Ni(v)| , ui(v) ≥ 0

1In some articles they are referred to as fully strategic agents as they do not consider any kind of threshold.

8 Schelling games

▶ Note 1.13. You can see that the utility function can contain a division by zero. Therefore, we
consider 0

0 = 0. We explicitly state when this convention is necessary.
Strategic agent i in an assignment v can maximize her utility either by jumping to an

empty node or swapping with another agent. Based on agent movement, we call these games
k-jump games and k-swap games. We introduce additional constraints to these movements, that
is, in jump games, the agent can only jump if she increases her utility, and in swap games, the
agent can only swap if both agents increase utility by swapping. In a given assignment, agents
can only move by jumping or swapping. We do not consider games with both types of moves,
although it could be an interesting topic to consider in the future work.

▶ Definition 1.14 (Social welfare). Social welfare (SW) on an assignment v is

SW (v) =
∑
i∈N

ui(v)

▶ Note 1.15. Notice that we take the sum over the set of all agents, not just strategic agents.

▶ Example. For illustration of the computation of the utility function and social welfare, we
consider an assignment v in Figure 1.2.

Figure 1.2 Figure depicts a simple swap game with two blue agents α and β and one red agent γ.

First, we calculate utilities based on our definition of utility function and get the following:

uα = 1
2

uβ = 1
1 = 1

uα = 0
1 = 0

Now we can immediately see value of social welfare, which is sum of all utilities – SW (v) = 3
2 .

We can also see that no agent can achieve larger utility by swapping; therefore, we are in
pure Nash swap equilibrium. If we achieve a similar result in a jump game, we call it
pure Nash jump equilibrium.

▶ Definition 1.16 (Pure Nash jump equilibrium). Let (z, v−i) be the assignment obtained by
changing the location of a strategic agent i from vi to empty node z. An assignment v is a pure
Nash jump equilibrium (or, simply, a jump equilibrium) if and only if for all i ∈ R and for all
z ∈ V such that z ̸= vj for all j ∈ R ∩ S, we have ui(v) ≥ ui(z, v−i).

▶ Definition 1.17 (Pure Nash swap equilibrium). Let vi↔j be the assignment obtained from v by
swapping position between agents i and j. An assignment v is a pure Nash swap equilibrium (or,
a swap equilibrium) if and only if for all i, j ∈ R we have ui(v) ≥ ui(vi↔j) or uj(v) ≥ uj(vi↔j).

Significance of pure Nash equilibrium in real-life scenarios cannot be overstated, as its dis-
covery has the potential to impact various aspects, for example, reduction of dissatisfied neigh-
borhoods. Recently, Agarwal et al. [9] proved that deciding wether a game admits a pure Nash
jump/swap equilibrium is NP-complete for both types of games with k ≥ 2, where k specifies
number of agent types.

Schelling game 9

▶ Theorem 1.18 (Agarwal et al., 2021 [9]). For every k ≥ 2, it is NP-complete to decide whether
a given k-jump game admits an equilibrium assignment, even if all strategic agents belong to the
same type.

▶ Theorem 1.19 (Agarwal et al., 2021 [9]). For every k ≥ 2, it is NP-complete to decide
whether a given k-swap game admits an equilibrium assignment.

Generally speaking, we can say that finding the equilibrium for a given assignment v in any
type of game is a NP-complete problem2. Further in this thesis, we do not explicitly write
’jump’/’swap’ and only use equilibrium when context is clear.

2Later we show that maximizing social welfare with stubborn agents is also NP-complete.

10 Schelling games

Chapter 2

Maximizing social welfare

In this chapter, we focus on computing maximal social welfare of assignments which consider
stubborn agents’ utilities. Furthermore, we investigate the complexity of finding such maximal
social welfare (MSW). Observe that set of strategic actions available to the agents does not
interfere with the complexity of these problems, that is, considering jump games or swap games
does not make a difference.

2.1 Considering stubborn agents
Before we show that calculating MSW is NP-complete, we would like to show why it can be
beneficial to include stubborn agents in social welfare.

▶ Lemma 2.1. Maximal social welfare for every k ≥ 2, given a Schelling game with k types
and |R| = L, could be, without considering stubborn agents’ utilities, lowered at least by L, even
if we consider a game with an equilibrium assignment on a tree topology.

We will prove this Lemma 2.1 for jump games and swap games separately as proofs require
different topologies.
▶ Note 2.2. Our proofs are not necessarily upper bounds of a possible increase in MSW, for
example, in our swap game topology for k = 2, we can remove one blue strategic agent and
increase MSW by L + 0.5.

Jump games
Proof. Given k ≥ 2, we construct an instance with k − 1 strategic blue agents, k − 1 strategic
agents, each of different type (not blue) and partitions A1, ..., Ak−1 with stubborn blue agents,
where

∑k
i=1 |Ai| = L; thus n = 2(k− 1) + L. We denote root as α; α has k children, where k− 1

children are parent nodes of partitions Ai. Last child of a root node α recursively contains one
neighbor for k − 2, that is, there is path of length k − 1 connected to α. We show that there
exists an assignment where MSW without stubborn agents’ utilities is at least smaller than L.
Figure 2.1 depicts topologies for k = 3.

Let us have an assignment v, such that α is empty and parents of partitions are all of different
types than blue, which means that all k− 1 strategic blue agents are placed on a path connected
to the root node α. All strategic blue agents have utility 1 (for k > 3) and as other agents are
stubborn or a single agent of its own type, no agent wants to deviate; hence we are in equilibrium
and SW (v) = k − 1 for k > 2 or SW (v) = 0 for k = 2.

11

12 Maximizing social welfare

On the contrary, we can create an assignment v in such a way that parents of partitions are
blue strategic agents and the rest of the strategic agents are placed on a path. We can now add
utility for all stubborn agents, which is L ·1 and since the root node is empty, we also have utility
1 for each of our strategic blue agent; thus SW (v) = L + k − 1 for k > 3 or SW (v) = L for
k = 2.

◀

Figure 2.1 Example of the topology used in the proof of Lemma 2.1 for jump games where k = 3.
The assignment on the left is maximal social welfare without considering stubborn agents’ utilities, while
the assignment on the right does consider their utilities.

Swap games
Proof. We give a proof for k = 2 and we will provide an extension for k > 2 at the end. To
show that MSW can be lowered at least by L for k = 2, we can construct our tree topologies as
follows:

There are two agent types: red and blue.

There are exactly 3 strategic agents, two blue and one red, rest are stubborn.

Figure 2.2 depicts both defined topologies.
The tree topology I1 with G1 = (V, E) consists of a root node α, two partitions A and B a
path Γ connected to α such that:

Partitions are occupied by stubborn blue agents and |A|+ |B| = L.
Γ has length 2 and is occupied by strategic blue agents.
Strategic red agent is placed at α.

We can see that MSW of I1 is 1.5 and no agent wants to deviate as strategic red agent will not
swap as she cannot increase her utility. Let us now move on to the second topology I2 with
G2 = (V, E) which is similar to I1 except now are agents placed with considering stubborn
agents utilities as follows:

Partitions are occupied by stubborn blue agents and |A|+ |B| = L.
Γ has length 2 and is occupied by strategic red agent at leaf node.
Strategic blue agents are placed at the last two available nodes.

We can see that MSW = L + 1.5 and still no agent wants to deviate and we can extend our
proof by simply adding additional strategic agents of different types to our path Γ; hence we
are able to achieve social welfare larger by L for every k which concludes our proof.

◀

NP-completeness 13

Figure 2.2 The topology used in the proof of Lemma 2.1 for swap games. The assignment on the
left is maximal social welfare without considering stubborn agents’ utilities, while the assignment on the
right does consider their utilities.

We learned that it could be important to consider stubborn agents as it can drastically affect
the outcome of social welfare. Now we can move on to showing that maximizing social welfare
with considering stubborn agents is NP-complete.

2.2 NP-completeness
▶ Theorem 2.3. For every k ≥ 2, given a Schelling game with k types and a rational value ξ, it
is NP-complete to decide whether the game admits an assignment with social welfare at least ξ.

Proof. We already mentioned that this problem is in NP: given an assignment, we check whether
the SW is at least ξ by summing up the utilities of all agents. We prove NP-hardness using the
NP-hard variant of the BICLIQUE problem for bipartite graphs, that is, given a bipartite graph
H = (A ∪ B, Y) and an integer s, does H contain a complete bipartite subgraph Ks,s between
A and B? This problem was proven to be NP-hard by David S. Johnson [29]. We assume that
k = 2 (our proof can be extended for k > 2 by adding isolated nodes with agents of different
types). Given an instance ⟨H, s⟩ of BICLIQUE problem where H = (A∪B, Y) we construct our
social welfare maximization problem like this:

There are two agent types: red and blue.

There are |A| strategic red and |B| strategic blue agents. For simplification, we denote
na = |A| and nb = |B|. All remaining agents are stubborn. We will describe the locations of
stubborn agents further while defining the topology.

The topology G = (V, E) is a complement of H expanded with these vertices and edges:

Let α be a stubborn red agent and β be stubborn blue agent. We create edges for α and
β such that for v ∈ A : {α, v} ∈ E and for all u ∈ B : {β, u} ∈ E.
Furthermore, let agent α be connected to na − s empty nodes and similarly agent β to
different nb − s empty nodes.

Finally, let ξ = na + nb + 2.

We will argue that our assignment v can only have SW (v) = ξ if and only if graph H contains
a biclique of size s.

Let us have agents a1, . . . , as from partition A and agents b1, . . . , bs from partition B and
consider that H contains a biclique between these nodes, thus for all bi ∈ B : ∃{bi, aj} ∈ E, for
all i = {1, . . . , s} and j = {1, . . . , s}. This means that in our complement there are no edges
between these nodes. Observe that the rest of the strategic agents can obtain a maximal utility

14 Maximizing social welfare

Figure 2.3 The topology G used to prove Theorem 2.3. Solid edge between two components means
that all nodes from one component are connected to all nodes in the other component. Dashed edge
between two components indicates that there are some edges between nodes in two components such
that components form a bipartite graph.

just by moving to empty nodes connected only to stubborn agents of their type. To conclude,
there are s agents in each partition, and each of these agents has utility 1. Moreover, the rest of
the strategic agents are only connected to a stubborn agent of their own type, hence achieving
maximal utility. When summing up the utilities of strategic agents, we get nr − s + nb − s + 2s.
Finally, we add stubborn agents’ utilities and achieve SW (v) = na + nb + 2.

Conversely, assume that there exists an assignment v with SW (v) = ξ = na + nb + 2; hence,
for all agents v ∈ V : uv = 1.

▶ Lemma 2.4. Strategic agents can only be in the partition or additional empty nodes connected
to a stubborn agent of the same type to achieve maximal utility.

Proof. For the sake of contradiction, assume that there is a strategic red agent v that is not
in partition A nor in additional empty nodes connected to α and has maximal utility. Hence
v is either in partition B or in a empty node connected to β. By our choice of parameters, if
v is in partition B it has a neighbor β, which means that v does not have a maximal utility.
Additionally, if v is in any empty node η connected to β such that η /∈ B then her utility is 0.
Similarly, we can formulate the proof for strategic blue agents. ◀

Based on Lemma 2.4 we know that there will be at least s agents of the same type in each
partition. First, suppose that there are exactly s agents in each partition. All these agents must
have utility 1, therefore, for all strategic agents a ∈ A and b ∈ B : {a, b} /∈ E(HC), which means
that ⟨H, s⟩ has a biclique of size s. Furthermore, if each partition contains more than s agents
there must be a larger biclique to ensure all agents have maximal utility. Trivially, biclique of
size s is a subgraph of larger biclique. This completes our proof. ◀

Chapter 3

Maximizing social welfare at
equilibrium

In this chapter, we consider the efficiency of equilibrium assignments with and without stubborn
agents on k-jump games and provide a polynomial algorithm to calculate maximal social welfare
at equilibrium (MSWE) on trees. We analyze how the number of maximal social welfares at
equilibrium changes when taking into account stubborn agents’ utilities and when disregarding
them. Furthermore, we compare MSWE values with and without stubborn agents, and based on
our results, we build a graph neural network that can predict MSWE without requiring additional
computational costs.

3.1 Motivation
Let us assume that we are a professor at the university and are planning a trip to a nuclear
power plant. In our class, there are students from different student clubs, and we know that only
students from the same club consider themselves friends. We need to seat the students on a bus
in a way that no one wants to change, and the happiness of our group is maximal, as we want
to achieve the best possible mood for the excursion.

We know this about our trip:

The total number of students is less than the number of seats available on the bus.

The happiness of students depends on the number of their friends sitting around them.

We assume that there are at least two different student clubs in this class.

Every student has to be part of exactly one student club.

Pierre wants to sit in seat 2, because he likes to watch a driver.

Marie is in love with Pierre, but is afraid to sit next to him, so she will sit behind him
in seat 4.

etc.

For luck of our excursion we are an experienced theoretical computer scientist, and we see
the connection between our excursion and maximizing social welfare in a Schelling game (which
we had defined in Section 2.2) and we already know that finding such a seating plan is an
NP-complete problem.

15

16 Maximizing social welfare at equilibrium

There is also something else in our problem: stubborn students who will only sit in one seat
and will not change. We are a righteous teacher, so we will try to maximize social welfare while
taking into account our stubborn students. How does the consideration of stubborn students
change our final assignment? Is the MSWE going to be higher or lower? We will investigate
these questions and design a polynomial algorithm to calculate our desired assignment. Note
that our algorithm only works on tree topologies.

3.2 Creating algorithm
In this section, we present the modification of the equilibrium algorithm proposed by Agarwal
et al. [9] to return the SW of the assignment. The modified algorithm allows us to evaluate the
impact of stubborn agents on the SW and is an important step towards understanding the role
of stubborn agents in Schelling games. The following subsections describe their algorithm and
the details of our alternations.

3.2.1 Equilibrium algorithm
Here we will quickly go through their algorithm so that you can understand the changes we
made.

▶ Theorem 3.1 ([9]). Given a k-jump game with tree topology, we can decide whether there
exists an equilibrium (and compute one if it exists) in time poly(nk), that is, this problem lies in
the complexity class XP with respect to the number of types k.

Proof. We consider instance I with n agents and tree topology G = (V, E) and mark node r as
a root. Let us have two functions on node v – tree(v) and child(v). Function tree(v) denotes all
descendants of v, including v, and child(v) returns the set of all children of v. We can label the
set U = {i/j : i ∈ [n], j ∈ [n], i ≤ j} ∪ {∅} as the utility of a strategic agent.

The algorithm uses a dynamic programming approach, that is, for each node v ∈ V , the table
τv is filled. Table τv contains the entry τv(C, n, k, ǔ, û) for each tuple (C, n, k, ǔ, û) where:

C ∈ {blue, red, empty},

n = (nb, nr) ∈ [n]2,

k = (kb, kr) ∈ [n]2,

ǔ = (ǔb, ǔr, ǔb+ , ǔr+) ∈ U4, and

û = (ûb, ûr, ˆutop) ∈ U3.
We can see that the input size is polynomial, precisely 3 · n4 · |U |7.

Furthermore, we define the set of all blue agents as Tb and likewise Tr is the set for the red
agents. The entry in each table τv can be true or false, depending on whether these conditions
are met:

1. If C = empty, then node v is empty. Otherwise, the node is assigned to an agent of color C.

2. Exactly nB nodes of tree(v) are assigned to blue agents, and exactly nR nodes of tree(v) are
assigned to red agents.

3. Exactly kB nodes of child(v) are assigned to blue agents, and exactly kR nodes of child(v)
are assigned to red agents.

Creating algorithm 17

4. Every blue agent in a node of child(v) gets utility at least ˇuB† and every red agent in a node
of child(v) gets utility at least ˇuR† .

5. Every blue agent at a node of tree(v)\(child(v) ∪ {v}) gets utility at least ǔB and every red
agent at a node of tree(v)\(child(v) ∪ {v}) gets utility at least ǔR.

6. If a blue agent that is not already in tree(v) moves to an empty node of tree(v)\{v}, her
utility would be at most ûB , and if a red agent that is not already in tree(v) moves to an
empty node of tree(v)\{v}, her utility would be at most ûR.

7. If node v is not empty, then the agent occupying v can obtain utility at most ûtop by moving
to an empty node of tree(v)\{v}.

8. All agents in the nodes of tree(v)\{v} have no incentive to deviate to the empty nodes of
tree(v)\{v}.

The algorithm will end when we reach the root table τr, then our instance I of a Schelling game
admits equilibrium if and only if our τr has nB = |TB |, nR = |TR| and τr(C, n, k, ǔ, û) = true
and these additional conditions hold:

if C = blue, then

kB

kB + kR
≥ ûtop

If C = red, then

kR

kB + kR
≥ ûtop

Note that these two conditions ensure that if node r is occupied by agent v, the agent v does
not want to deviate to any other node. We know move on to the game where root node is
empty.

If C = empty, then for each X ∈ {R, B} with kx > 0 we have

kX

kB + kR
≥ ǔX ,

kX − 1
kB + kR − 1 ≤ ǔX†

The last condition ensures that if C of table τr is empty, no agent wants to deviate there. We
know that the validation of table τr is possible in polynomial time. It remains to prove that τr

can be filled in polynomial time.
In every table, we write 1B(C) = 1 if C = blue and 0 otherwise; similarly, 1R(C) = 1 if C =

red and 0 otherwise, and 1E(C) = 1 if C = empty and 0 otherwise. We start by filling in the
leaf nodes. For every leaf node v, we have

Tv(C, n, k, ǔ, û) =
{

true, if (1B(C), 1R(C)) and k = (0, 0)
false, otherwise.

(3.1)

Now we will look at constructing tables for a parent of L nodes. Suppose that we have the
parent node w and have constructed a table for each v ∈ child(w). Let |child(w)| = L. We
will construct τw by creating intermediate tables θl

w for each l ∈ {0, 1, . . . , L}. This table has an
entry θl

w(C, n, k, ǔ, û) for each tuple and its entry is set to true if and only if the subtree treel(w),

18 Maximizing social welfare at equilibrium

treel(w) = tree(w)\{vl+1, . . . , vL}, meets our mandatory conditions 1-8. It is important to note
that, by construction, τw(C, n, k, ǔ, û) = θl

w(C, n, k, ǔ, û).
We construct θl

w sequentially for l = 0, . . . , L. Filling in the first node is done using Equation
3.1. Now we will inspect how we can fill the rest of the tables. Assume that we have completed
the first tables l, that is, θ0

w, . . . , θl−1
w . We construct table θl

w by combining θl−1
w and τvl

in
this way: θl

w = true if and only if there exist (C ′, n′, k′, ǔ′, û′) and (C ′′, n′′, k′′, ǔ′′, û′′) such that
θl−1

w (C ′, n′, k′, ǔ′, û′) = τvl
(C ′′, n′′, k′′, ǔ′′, û′′) = true and these conditions hold:

In the article by Agarwal et al. [9] you can find precise explanations with the conditions
provided; therefore, we do not repeat their explanations.

1. C ′ = C

2. n′′ + n′ = n

3. 1B(C ′′) + k′
B = kB and 1R(C ′′) + k′

R = kR

4. For each X ∈ {B, R},

ǔ′
X† ≥ ǔX†

Additionally, if C ′′ = blue, then

k′′
B + 1B(C ′)

k′′
B + k′′

R + (1− 1E(C ′)) ≥ ǔB†

and if C ′′ = red, then

k′′
R + 1R(C ′)

k′′
B + k′′

R + (1− 1E(C ′)) ≥ ǔR†

5. For each X ∈ {B, R},

ǔ′
X , ǔ′′

X , ǔ′′
X† ≥ ǔX

6. For each X ∈ {B, R}

û′
X , û′′

X ≤ ûX

and, if C ′′ = empty, then

k′′
X + 1X(C ′)

k′′
B + k′′

R + (1− 1E(C ′)) ≤ ûX

7. If C ′ = blue, then

û′
top ≤ ûtop, û′′

B ≤ ûtop

and, if also C ′′ = empty, then

k′′
B

k′′
B + k′′

R

≤ ûtop

Similarly, if C ′ = red, then

Creating algorithm 19

û′
top ≤ ûtop, û′′

R ≤ ûtop

and, if also C ′′ = empty, then

k′′
B

k′′
B + k′′

R

≤ ûtop

8. if n′′
B > 0, then ǔ′′

B , ǔ′′
B† ≥ û′

B

If also C ′′ = empty and n′′
B > k′′

B then

ǔ′′
B ≥

k′′
B + 1B(C ′)

k′′
B + k′′

R + 1B(C ′)

If also C ′′ = empty and k′′
B > 0 then

ǔ′′
B† ≥

k′′
B + 1B(C ′)− 1

k′′
B + k′′

R + 1B(C ′)− 1

Further, if C ′′ = blue then

k′′
B + 1B(C ′)

k′′
B + k′′

R + 1B(C ′) ≥ û′
B , û′′

top

Similarly, the red agents must also satisfy these constraints.

9. If n′
B > k′

B + 1B(C ′), then ǔ′
B ≥ û′′

B

If also C ′′ = empty, then

ǔ′
B ≥

k′′
B + 1B(C ′)
k′′

B + k′′
R

Similarly, if k′
B > 0, then analogous constraints must hold with ǔ′

B† which replaces ǔ′
B . Note

that these constraints must also hold for red agents.

All of these constraints can be verified in polynomial time, so this completes their proof for
instances with no stubborn agents and k = 2. They extended their algorithm for stubborn agents
by not considering different types of C and evaluating their tables as false. ◀

3.2.2 Modification for swap games
We can also find equilibrium assignment for swap games. We use the same algorithm as above,
but we do not enumerate empty nodes, thus we can simply remove all conditions that consider
them. We also add condition to check if all nodes are covered by agents, otherwise we would not
have valid swap game. Notice, that in swap games we consider utilities of both agents during the
swap. For example, if we have agents x and y and x does not suffice the conditions, then we can
take into account agent y. If all of the conditions are true for agent y then we can still consider
equation to be correct as agents in swap games only move if they both increase their utility. We
can see that in the worst case we will at most check both agents in every iteration which is still
running in polynomial time.

20 Maximizing social welfare at equilibrium

3.2.3 Social welfare at equilibrium algorithm
We already mentioned that our algorithm is a modification of the algorithm above. The main
difference is how we manage τ tables and, of course, the return value; our algorithm returns
social welfare at equilibrium, which can be modified to return the MSWE achievable based on
Equation 3.2.

MSW is a maximal SW of an assignment Ieq ⇔ (∀(SW) ∈ Ieq) : MSW ≥ SW (3.2)

▶ Theorem 3.2. Given a k-jump game with tree topology, we can decide whether there exists
an equilibrium and, if it does, calculate the maximal social welfare at equilibrium achievable in
n0(k).

Proof. Let us start with τ tables in which they use a boolean value to determine whether
the table satisfies their given conditions, which simply means that the agent does not want to
deviate, therefore satisfying the essence of equilibrium. We, on the other hand, use integer values
for each table which we derive by combining their utility function and values from tables of their
descendants. Similarly to their algorithm, we also have only two possibilities in which tables can
be evaluated, i.e., given agent v, then her τv value is

τv(C, n, k, ǔ, û) =
{

positive integer or 0
−∞

Also important to say that they do not consider stubborn agents’ utilities and deviations,
meaning that any table with color that differs from the chosen root’s color is defined as false. We
also do not consider their deviations, but we keep their value to non -∞ if possible to maintain
a clearer view at complete SW of the topology, and since it really does not matter to consider
them in equilibrium, we also do not examine their deviations, but considering their utility in
SW is crucial for more detailed inspection of real-world segregation. Furthermore, our root r
will instead of true/false return the final value of τr which is combined from his descendants,
hence being the total value of SW in chosen topology. Last but not least, it is important to
mention how they combine tables. In their algorithm, they look for two tables that achieve true
value and then proceed to the next table based on these values. We will use convention -∞ plus
integer equals −∞ as substitution for their true table combined with false table being false. In
our algorithm, we use the convention 0

0 = 0.
Furthermore, we now take a more detailed look at our algorithm. Consider the table τr being

at the root node r. The game admits SW in equilibrium if and only if our τr has nB = |TB |,
nR = |TR| and τr(C, n, k, ǔ, û) ̸= −∞. We get MSW by going through all the SW values and
taking their maximum (as stated in Equation 3.2), so our algorithm returns MSWE.

Moreover, we take a closer look at filling and combining leaves, as it is a crucial part of an
algorithm. We start by filling leaf nodes; similarly to their Equation 3.1:

Tv(C, n, k, ǔ, û) =
{

0, if (1B(C), 1R(C)) and k = (0, 0)
−∞, otherwise.

Now allow us to move on to the combining of leaves. This would not differ much from their
algorithm, but it is crucial to mention that after combining leaf nodes to achieve the SW value
for their parent, we also need to account for their utilities, as we cannot evaluate them until we
know the color of their parent, i.e.,

τw(C, n, k, ǔ, û) = combined values + u(child(w))

Combined values is sum of all the values from his children’s tables. We calculate the utility
of each child’s node v as:

Analyzing results 21

If τv(C) = τw(C), this applies,

u(v) = kC + 1
kB + kR + 1

If τv(C) ̸= τw(C) and τw(C) ̸= empty, then

u(v) = kC

kB + kR + 1

If τw(C) = empty, we have

u(v) = kC

kB + kR

Importantly, when we end up in the root, we repeat calculating his children’s utilities, and
to them we need to add our root’s utility as well.

To sum it up, our algorithm runs in polynomial time, as all our added conditions can be
verified in polynomial time, and the polynomial-time complexity of the core algorithm has also
been proven. Extending the algorithm for k types is also trivial, and the time complexity would
increase exponentially with respect to k. ◀

3.3 Analyzing results
In the previous section, we defined an algorithm for determining MSWE on tree topology. In this
section, we use our algorithm to compare the results of Schelling games that consider the utilities
of stubborn agents and those that do not. Furthermore, we examine the number of equilibriums
obtained and investigate how the topologies with and without stubborn agents vary from one
another.
▶ Note 3.3. To ensure the validity of our results, we focus our analysis on jump games with only
one empty spot, because adding additional empty spots would not only increase the complexity
of finding an equilibrium, but could also lead to the formation of fully separated groups. This
would very seriously affect our results. On the other hand, if we only consider one empty spot,
the agents are forced to form a topology in the most undesirable environment, providing us with
a clearer understanding of the MSWE.
▶ Note 3.4. It is important to note that we use a fixed number of stubborn agents in our graphs.
This is because a random number of agents would bring non-linearity to our data, making them
relatively random and hard to spot differences between games with and without stubborn agents’
utilities.

3.3.1 Comparing social welfare
First, we examine the impact of considering the utility of stubborn agents on the MSWE value.
It is clear that the MSWE with stubborn agents’ utilities can only be equal to or higher than
the MSWE without considering these utilities, and on games with only two types of agents we
expect them to be almost always higher. You can see that our results, as shown in Figure 3.1,
indeed confirm that the MSWE is higher when stubborn agents’ utilities are taken into account.

Before diving deeper into the results, it is crucial to understand why the minimal value of
MSWE with stubborn agents’ utilities is the same as the MSWE of topology without stubborn
agents’ utilities.

22 Maximizing social welfare at equilibrium

Figure 3.1 Graph showing the number of nodes in random topologies with one empty spot and four
stubborn agents against the maximal size of social welfare for games that consider stubborn agents and
games that do not consider them.

▶ Lemma 3.5. Maximal social welfare at equilibrium with stubborn agents’ utilities can not be
less than maximal social welfare at equilibrium without considering stubborn agents’ utilities.

Proof. Suppose, for the sake of contradiction, that there exists a Schelling game I1 on an
assignment v that considers the utilities of stubborn agents and has a lower MSWE than the
Schelling game I2, also on assignment v, that does not consider them. However, we know that
the agents’ utility is minimally zero, which implies that in our game I1 stubborn agents have
negative utility. This contradicts our definition of utility function, which states that utility is
greater than or equal to zero. ◀

Furthermore, we observe a pattern in Figure 3.1. Based on our observations of the data, we
can make the following assumption:

▶ Assumption 3.6. We are able to estimate the maximal social welfare at equilibrium with
a simple linear regression model. This assumption was made after analyzing numerous models
that showed a similar pattern. Our confidence in this assumption is backed up by the Strong Law
of Large Numbers [30], since every measurement was taken from a sample of thousand different
examples.

▶ Note 3.7. Note that our assumption only applies to games with fixed stubborn agents across all
topologies. This constraint should be kept in mind when interpreting the results of our analysis
and considering the broader implications of our findings.

3.3.2 Comparing number of equilibriums
The number of stubborn agents can significantly affect the equilibrium. This is evident
in Figure 3.2, which shows that the topology with two stubborn agents has, on average, more
equilibriums compared to the topology with five stubborn agents, and this trend is continuous

Analyzing results 23

as we increase the number of stubborn agents. It is also noteworthy that the number of equi-
libriums that maximize SW is quite limited, and this number is even smaller when the utility
of stubborn agents is considered. Interestingly, the number of equilibriums that maximize SW
remains relatively constant, regardless of the size of our topology.

Figure 3.2 Graphs showing the number of equilibriums in topologies with one empty spot. The graph
on the left shows random topologies with two stubborn agents and the graph on the right shows random
topologies with five stubborn agents.

3.3.3 Comparing topologies
So far we can conclude that Schelling games that consider stubborn agents’ utilities profit from
higher MSW and due to that have lower total number of assignments in MSWE. To understand
the reasons behind this observation, we analyze both assignments (with and without stubborn
agents’ utilities) and compare their agent layouts.

Our analysis revealed two major problems that stubborn agents encounter in topologies that
do not take them into account:

Unwanted coalition problem

Cutting off problem

We define these problems as follows:

▶ Definition 3.8 (Unwanted coalition). An assignment v with stubborn agent β contains Un-
wanted coalition, if and only if, there is a strategic agent α with different type than β in Nβ(v),
such that there exist an assignment v′, where α /∈ Nβ(v′) and uα(v′) = uα(v).

Unwanted coalition problem is shown in Figure 3.3. We can see that the strategic agent may
be positioned next to a stubborn agent of a different color, even though she could be placed at
different location without disrupting its stubborn agents’ neighborhood. This can lead, in larger
topologies, to heterogeneous segregation, which swerves from the typical structure observed in
real-world scenarios.

▶ Definition 3.9 (Cutting off problem). An assignment v with stubborn agent β contains
Cutting off problem, if and only if, there are strategic agents α and γ with same type as β
and there exist empty node between α and β such that there exist an assignment v′, where
γ ∈ Nα(v′) ∧ γ ∈ Nβ(v′) and uα(v′) = uα(v).

24 Maximizing social welfare at equilibrium

Figure 3.3 The topology of the 2-jump game created as an example of the Unwanted coalition problem
from Definition 3.8 with stubborn agent α. The assignment on the left does not consider α’s utility, and
the assignment on the right does.

The Cutting off problem is shown in Figure 3.4, you can see that stubborn agent α would
rather be connected to root node via strategic agent, but as her utility is not consider he could
be ”left out” from homogeneous group. On larger topologies with more stubborn agents this
could result as highly non-profitable, as because of this we may be seeing segregation between
same types.

Figure 3.4 The topology of the 2-jump game created as an example for the Cutting off problem from
Definition 3.9 with stubborn agent α. The assignment on the left does not consider α’s utility, and the
assignment on the right does.

To conclude our analysis, we investigated assignments in MSWE. We saw that assignments
that consider stubborn agents’ utilities not only profit from higher SW, but they can also have a
better structure properties. Moreover, it is evident that we can implement a polynomial algorithm
to solve both the Unwanted Coalition and Cutting Off problem. However, we have found that
applying trivial algorithms to change agents positions may result in isomorphic assignments. One
can also see that we may drastically lower SW if we do not consider it with agents’ deviations.

Chapter 4

Graph neural networks

In this chapter, we explore the efficiency of graph neural networks (GNNs) in classifying if
equilibrium assignments are MSWE. We build GNN and test its accuracy for tree and general
graphs. We aim to investigate the differences in accuracies achieved by GNN and to see how these
accuracies are impacted by the used topology. For gentle introduction to GNNs, we recommend
a monograph of Wu et al. [20].

4.1 Graph classification with GNNs

Graph classification is the task of classifying whole graphs using structural graph properties from
a graph dataset. The goal is to embed entire graphs in such a way that they are linearly separable,
see Figure 4.1. Graph classification is mostly used for molecular property prediction, but can
also be used in settings quite similar to ours, for example, classification of social networks [21].

Figure 4.1 Example of embedding two types of graphs such that they are linearly separable.

4.1.1 Mini-batching of graphs
Graph classification datasets typically consist of small graphs, and our datasets are no exception.
To improve performance, we use batching, which guarantees full GPU utilization [31]. Unlike
traditional batching of images or text data, which typically involves rescaling or padding the
examples to achieve equal-sized shapes [32]. These examples are then grouped into an additional
dimension. We typically refer to the length of this dimension as a batch-size.

25

26 Graph neural networks

Figure 4.2 Mini-batching in graph neural networks.

However, these approaches are not feasible, or, in case of padding, may result in significantly
more memory consumption. Therefore, most of the libraries use different approaches to accom-
plish parallelization across multiple examples. Common trick is to diagonally put adjacency
matrices into one giant sparse matrix, that is, we create a giant graph with multiple compo-
nents, see Figure 4.21. Notice that adjacency matrices are stored sparsely, thus there is no
computational or memory overhead.

4.1.2 Training GNN for graph classification
We will not go into detail of training GNN, but graph classification is mostly done as follows:

Use message passing to embed each node.

Aggregate embedded nodes into our graph embedding (readout layer).

Train a final model on the graph embedding.

There exist multiple different types of readout layers in the literature. One of the most
common readout layer takes the average of node embeddings:

xG = 1
|V |

∑
v∈V

x(l)
v

We will be using a more complex readout layer that adds a skip connection to the GNN layer
to preserve the central node information [33]:

x(l+1)
v = W(l+1)

1 x(l)
v + W(l+1)

2

∑
w∈N(v)

x(l)
w

where:

x(l)
v = feature vector of node v at the l-th layer of GNN

W(l+1)
1 = weight matrix for feature vector at the l-th layer

W(l+1)
2 = weight matrix for feature vector’s neighbors at the l-th layer

N(v) = set of neighbors of v

We used this readout layer rather than using simple readout layer that only takes averages
of node embeddings, as we found that this approach leads to faster convergence and higher
accuracies.
▶ Note 4.1. We only studied these two readout layers as they are both directly implemented in
Pytorch Geometrics library [34].

1GOOGLE. Google colaboratory [online]. 2021 [cit. 2022-11-29]. Available from: Google colaboratory.

https://colab.research.google.com/drive/1I8a0DfQ3fI7Njc62__mVXUlcAleUclnb%3Fusp%3Dsharing%23scrollTo%3D1tBMhOrq4JKw

Algorithm for general graphs 27

In summary, we introduced the fundamentals of GNNs and showed how we can use them for
graph classification. Furthermore, we have discussed graph batching, which is used to improve
GPU utilization and can be beneficial for the further usage of our model on much larger graphs.
Lastly, we presented the usual steps in training GNN, demonstrated the application of the readout
layer, and described the readout layer used in our model.

4.2 Algorithm for general graphs
Before implementing our GNN, we need to create an algorithm that finds MSW for general
graphs, so we can generate datasets to train on. As there is no efficient algorithm to decide
MSW we will use the brute-force method on small topologies.

Algorithm 1 Compute Equilibrium Assignments
Input: Graph G, Assignment v
Output: result – list of equilibrium assignments for G

assignments← permutate(v) ▷ Calculate distinct permutations of v
for a in assignments do ▷ Iterate through all possible assignments

G← a
isEquilibrium← True
for agent in G[strategic agents] do

for empty in G[empty] do
u1← agent.utility
swap(agent, empty, G) ▷ Swaps nodes in G
u2← empty.utility
swap(agent, empty, G)
if u1 < u2 then ▷ Check if agent does not want to deviate

isEquilibrium← False
break

end if
end for
if isEquilibrium == False then

break
end if

end for
if isEquilibrium == True then

result← a ▷ Save equilibrium assignment
end if

end for
return result

We will now prove that our algorithm runs in O(n2 ·n!) and will always return correct result.

▶ Lemma 4.2. Algorithm 1 runs in O(n2 · n!) with space complexity O(n!) and will always
return correct result.

Proof. The proposed algorithm for finding the equilibrium assignments in a general graph ex-
haustively goes through all possible deviations for each agent and checks whether no agent wants
to deviate. By definition, an equilibrium is reached when no agent can improve her utility.
Therefore, the algorithm guarantees to find equilibrium assignments for given G. The worst-case
time complexity of the algorithm is O(n2 ·n!) as it generates all possible assignments and checks
in each of them whether or not every agent wants to deviate. We need to store all possible
assignments which gives us space complexity O(n!). ◀

28 Graph neural networks

To extend our algorithm to find MSWE assignments, we can go through the results of our
algorithm and select assignments with highest SW2. Let us now move to our main experiment.

4.3 Experiment

This section outlines the experimental setup for evaluating the accuracy of GNN on classifying
tree and general graphs, that is, we describe used datasets, features and our choice of hyper-
parameters. We implement our GNN model using the Pytorch Geometrics library by Fey and
Lenssen [34]. In addition to this model, we implement a validator that decides whether our
prediction was correct for a given assignment.

Model outputs =
{

1, MSWE assignment
0, otherwise.

Datasets
All graph datasets are in enclosed zip-file and are divided, based on their structure, into two
folders. Each of these datasets consists of MSWE assignments and equilibrium assignments that
do not have MSW. Each dataset contains the same number of both assignments. We report
dataset statistics in Table 4.1. Both datasets have the same amount of graphs to train on and
were generated from the same distribution to achieve similar datasets for our model.

Dataset type # Graphs # Classes # Nodes # Edges # Node labels
Tree graphs 1150 2 12.16 11.16 6

General graphs 1150 2 12.49 39.33 6

Table 4.1 Information about used datasets.

Notice that our graphs are quite small. This is because to generate a dataset of general
graphs, we use a very inefficient brute-force algorithm and as we want to compare accuracies, we
limit our tree topologies to similar sizes.

Features
In GNN literature, we can often see an augmentation of node description with additional struc-
tural features to improve performance. We also add additional features to our nodes in addition
to the agent’s color. We provide a list of our features and their values in Table 4.2.

Importantly, as we want to compare our topologies consistently, we use the same features in
both of our datasets.

Color Utility # Red neighbors # Blue neighbors Degree Stubborn
Value String Float Integer Integer Integer Boolean

Table 4.2 Description of features and their types for each node.

2The Algorithm 1 is presented for jump-games, but can be also modified for swap games by going through all
agents and calculating their swap values; we omit the details of this implementation.

Comparing predicted accuracies 29

Hyper-parameters
We perform hyper-parameter tuning via grid search. Furthermore, we select the number of
convolutional layers, the number of linear layers, and the learning rate for the optimizer based
on either the test accuracy or test loss.

Computational consideration
Our experiment is most complex in generating datasets of general graphs, because we use our
brute-force algorithm with O(n2 ·n!) time complexity. Because both of our datasets consist only
of 1150 small graphs and we use grid search on basic hyper-parameters, our model is trained
within minutes only using CPU. We empathize that for more complex training, there could be
need to use parallelism on both CPU and GPU, to conduct the experiment in acceptable amount
of time.

Validator
In addition to the implementation of a GNN, we have also implemented a simple validator that
verifies the output of our model. Validator either outputs True, if our prediction was correct, or
returns False. In case of an incorrect classification, we provide a potential correct topology as
part of the output.

4.4 Comparing predicted accuracies
We now move on to compare our model performance on both datasets, which were both trained
for 200 epochs. We provide results of our model in Table 4.3. We can see that our model performs
better on tree graphs. This is because tree graphs have specific characteristics that make them
not only more efficient for deterministic algorithms, but, as we can see, also more efficient for
probabilistic models such as GNNs.

Figure 4.3 Graphs of train and test accuracies achieved by GNN on a dataset of tree graphs and a
dataset of general graphs. Performance of GNN on tree graphs is shown in the graph on the left, and
performance on general graphs is depicted in the graph on the right.

Furthermore, we compare training accuracy and test accuracy in Figure 4.3. We can see that
our GNN not only achieves better accuracies, but also converges faster on tree topologies than on
general graphs. This behavior is also caused by the simplicity of tree graphs. Notice that as we
converge a lot slower on general graphs, we may be able to increase model accuracy by increasing
number of epochs. Unfortunately, even when we doubled the training epochs for general graphs,

30 Graph neural networks

Dataset Accuracy
Tree graphs 0.91± 2.6
General graphs 0.82± 3.0

Table 4.3 Results of our model on tree and general graphs with mean accuracy and standard deviation.

we were unable to achieve accuracy higher than 0.85± 2.4 before overfitting. We know move on
to the last section, where we in detail describe appended implementation.

4.5 Implementation details

We used Python to program all our codes and Jupyter notebooks to display our results3. We used
additional packages for graph representation, visualization and building GNN4. All of required
packages can be installed by running install.sh file5. Our implementation can be divided into
two main parts:

Graph neural network

Algorithms calculating MSWE

4.5.1 Algorithms
We have implemented algorithms to calculate MSWE for both tree topologies and general topolo-
gies. The basis of our implementation is the class Topology. Topology is used to store infor-
mation about assignment passed to algorithms for calculating MSWE. Users can either create
their own graph or they can use available methods in the Topology class to generate a random
topology. Users can create Topology class as follows:

topology = Topology(#empty nodes, #blue agents, #red agents, graph, #types)

We can then find MSWE for given topology by running either brute force(topology) or
tree algorithm(topology). Furthermore, we implemented additional features for the Topology
class, such as:

Topology.show() // shows graph with given assignment
Topology.create general graph() // creates random general graph
Topology.create tree graph() // creates random tree graph

It is worth noting that generator functions in our Topology class also create a random as-
signment for created graph. Having random assignment on a given topology does not affect our
MSWE algorithms, but we can use it to create datasets for our GNN or to test the accuracy of
our trained model. This makes our class more compact and easier to use not only for algorithms,
but also for GNNs.

3All our codes can be find on gitlab.fit.cvut.cz
4https://matplotlib.org/stable/index.html
https://more-itertools.readthedocs.io/en/stable/
https://networkx.org/documentation/stable/index.html
https://numpy.org/doc/stable/index.html
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch.org/docs/stable/index.html
https://treelib.readthedocs.io/en/latest/treelib.html

5We have also added uninstall.sh to remove all packages.

https://gitlab.fit.cvut.cz/nohavond/thesis-codes
https://matplotlib.org/stable/index.html
https://more-itertools.readthedocs.io/en/stable/
https://networkx.org/documentation/stable/index.html
https://numpy.org/doc/stable/index.html
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch.org/docs/stable/index.html
https://treelib.readthedocs.io/en/latest/treelib.html

Implementation details 31

4.5.2 Jupyter notebooks
Reviewing code can be a difficult process that can sometimes lead to not properly understanding
the implementation. To simplify this process, we have created three Jupyter notebooks that
summarize and test our algorithms. These notebooks provide an easy-to-follow interface for
exploring our code and understanding how it works.

algorithms.ipynb
In this notebook, we look at our polynomial time algorithm and provide small topology to analyze
it. Furthermore, we demonstrate achieved results in our thesis using polynomial algorithm on
trees. Finally, we show that general graphs behave similarly to tree graphs using brute-force
algorithm.

gnn training.ipynb
Notebook contains a simple dataloader and the GCN class that specifies our GNN. We describe
each step using a markdown cell for a detailed description of our training. Users can use this
notebook to create their own model, tune hyperparameters, etc.

gnn testing.ipynb
We have created this notebook to enable users to directly interact with our trained GNN. We
provide users with multiple simple topologies and analyze the correctness of our GNN’s pre-
dictions on them. Additionally, we provide a converter from the networkx library to the data
object that can be processed by our GNN6. This enables users to test our model on their own
assignments and examine its performance on various graphs. Lastly, we include the validator we
have previously mentioned to confirm whether the GNN’s predictions were correct.

6This converter can be modified for any GNN.

32 Graph neural networks

Chapter 5

Conclusion and open problems

In this thesis, we studied games on undirected graphs inspired by Schelling’s segregation model.
In these games, we partition agents into multiple types and place them on nodes of a graph
topology. Agents can improve their utility by jumping to empty nodes or swapping with other
agents. We focused on social welfare, maximizing social welfare, and questions related to maximal
social welfare at equilibrium. Additionally, we created an effective classification model that
determines whether an assignment is in maximal social welfare at equilibrium. We also propose
possible topics for further study.

Concerning social welfare, we proved in Theorem 2.3 that even when considering stubborn
agents it is NP-complete to maximize social welfare. We showed in Lemma 2.1 that we can
significantly impact social welfare by not considering stubborn agents’ utilities even in simple
topologies such as trees. Moreover, we analyzed potential problems in games that do not consider
stubborn agents’ utilities. An open question is to design efficient algorithms to detect these
problems. Alternatively, one could aim to further investigate the exact lower and upper bounds
of social welfare caused by ignoring stubborn agents’ utilities.

For efficiently classifying assignments with maximal social welfare at equilibrium, we trained
a graph neural network and reported the accuracies achieved in Table 4.3. For further work, it
remains to train a more efficient model; for example, a model that can construct assignment in
a way that allows for efficient computation of equilibrium or maximal social welfare as both of
these problems remain to be NP-complete. Additionally, one can also investigate our model’s
performance on other types of graphs.

33

34 Conclusion and open problems

Bibliography

1. ESRI DEMOGRAPHICS TEAM. Race and Ethnicity in the US by Dot Density (Census
2020) [online]. Esri Demographics Team: 2021 [cit. 2022-11-09]. Available also from: https:
//www.arcgis.com/home/item.html?id=30d2e10d4d694b3eb4dc4d2e58dbb5a5.

2. SCHELLING, Thomas C. Dynamic models of segregation. The Journal of Mathematical
Sociology [online]. 1971, vol. 1, no. 2, 143–186 [cit. 2022-06-19]. issn 0022-250X. Available
from doi: 10.1080/0022250X.1971.9989794.

3. SCHELLING, Thomas C. Models of segregation. The American Economic Review, [online].
1969, vol. 59, no. 2, 488–493 [cit. 2022-06-19]. Available also from: https://www.jstor.
org/stable/1823701.

4. HART, Vi; CASE, Nicky. Parable of the polygons [online]. 2016 [cit. 2022-07-07]. Available
also from: http://ncase.me/polygons.

5. BARMPALIAS, George; ELWES, Richard; LEWIS-PYE, Andrew. Digital morphogenesis
via Schelling segregation. Nonlinearity [online]. 2018, vol. 31, no. 4, 1593 [cit. 2022-06–28].
issn 0272-5428. Available from doi: 10.1088/1361-6544/aaa493.

6. PANCS, Romans; VRIEND, Nicolaas J. Schelling’s spatial proximity model of segregation
revisited. Journal of Public Economics [online]. 2007, vol. 91, no. 1-2, 1–24 [cit. 2022-07-19].
issn 0047-2727. Available from doi: 10.1016/j.jpubeco.2006.03.008.

7. CHAUHAN, Ankit; LENZNER, Pascal; MOLITOR, Louise. Schelling segregation with
strategic agents. In: Proceedings of the 11th International Symposium on Algorithmic Game
Theory, SAGT 2018 [online]. 2018, 137–149 [cit. 2022-10-27]. isbn 978-3-319-99659-2. Avail-
able from doi: 10.1007/978-3-319-99660-8_13.

8. KANELLOPOULOS, Panagiotis; KYROPOULOU, Maria; VOUDOURIS, Alexandros A.
Modified schelling games. Theoretical Computer Science [online]. 2021, vol. 880, 1–19 [cit.
2022-09-17]. issn 0304-3975. Available from doi: 10.1016/j.tcs.2021.05.032.

9. AGARWAL, Aishwarya; ELKIND, Edith; GAN, Jiarui; IGARASHI, Ayumi; SUKSOM-
PONG, Warut; VOUDOURIS, Alexandros A. Schelling games on graphs. Artificial In-
telligence [online]. 2021, vol. 301 [cit. 2022-09-17]. issn 0004-3702. Available from doi:
10.1016/j.artint.2021.103576.

10. EASLEY, David; KLEINBERG, Jon. Networks, crowds, and markets: Reasoning about a
highly connected world. New York: Cambridge University Press, 2010. isbn 0-5211-9533-0.

11. BRANDT, Christina; IMMORLICA, Nicole; KAMATH, Gautam; KLEINBERG, Robert.
An analysis of one-dimensional Schelling segregation. In: Proceedings of the 44th Annual
ACM Symposium on Theory of Computing, STOC 2012 [online]. 2012, 789–804 [cit. 2022-
08-15]. isbn 9781450312455. Available from doi: 10.1145/2213977.2214048.

35

https://www.arcgis.com/home/item.html?id=30d2e10d4d694b3eb4dc4d2e58dbb5a5
https://www.arcgis.com/home/item.html?id=30d2e10d4d694b3eb4dc4d2e58dbb5a5
https://doi.org/10.1080/0022250X.1971.9989794
https://www.jstor.org/stable/1823701
https://www.jstor.org/stable/1823701
http://ncase.me/polygons
https://doi.org/10.1088/1361-6544/aaa493
https://doi.org/10.1016/j.jpubeco.2006.03.008
https://doi.org/10.1007/978-3-319-99660-8_13
https://doi.org/10.1016/j.tcs.2021.05.032
https://doi.org/10.1016/j.artint.2021.103576
https://doi.org/10.1145/2213977.2214048

36 Bibliography

12. IMMORLICA, Nicole; KLEINBERGT, Robert; LUCIER, Brendan; ZADOMIGHADDAM,
Morteza. Exponential segregation in a two-dimensional schelling model with tolerant indi-
viduals. In: Proceedings of the 28th annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017 [online]. 2017, 984–993 [cit. 2022-08-15]. isbn 978-1-61197-478-2. Available from
doi: 10.1137/1.9781611974782.62.

13. ECHZELL, Hagen; FRIEDRICH, Tobias; LENZNER, Pascal; MOLITOR, Louise; PAPPIK,
Marcus; SCHÖNE, Friedrich; SOMMER, Fabian; STANGL, David. Proceedings of the 15th
International Conference on Web and Internet Economics, WINE 2019. Convergence and
hardness of strategic Schelling segregation. Cham: Springer International Publishing, 2019.
isbn 978-3-030-35388-9.

14. BILÒ, Davide; BILÒ, Vittorio; LENZNER, Pascal; MOLITOR, Louise. Tolerance is Nec-
essary for Stability: Single-Peaked Swap Schelling Games. Proceedings of the 31st Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2022 [online]. 2022, 81-87 [cit.
2023-01–17]. isbn 978-1-956792-00-3. Available from doi: 10.24963/ijcai.2022/12.

15. FRIEDRICH, Tobias; LENZNER, Pascal; MOLITOR, Louise; SEIFERT, Lars. Single-
Peaked Jump Schelling Games. In: Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2023 [online]. 2023, 2899–2901 [cit.
2023-05-15]. isbn 978-1-4503-9432-1. Available from doi: 10.48550/arXiv.2302.12107.

16. BILÒ, Davide; BILÒ, Vittorio; DÖRING, Michelle; LENZNER, Pascal; MOLITOR, Louise;
SCHMIDT, Jonas. Schelling Games with Continuous Types [article in press]. 2023. Available
from doi: 10.48550/arXiv.2305.06819.

17. AZIZ, Haris; BRANDL, Florian; BRANDT, Felix; HARRENSTEIN, Paul; OLSEN, Mar-
tin; PETERS, Dominik. Fractional Hedonic Games. ACM Transactions on Economics and
Computation (TEAC) [online]. 2019, vol. 7, no. 2, 1–29 [cit. 2023-02-11]. issn 2167-8375.
Available from doi: 10.1145/3327970.

18. BILÒ, Vittorio; MONACO, Gianpiero; MOSCARDELLI, Luca. Hedonic Games with Fixed-
Size Coalitions. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence,
AAAI 2022 [online]. 2022, vol. 36, 9287–9295 [cit. 2022-12-11]. No. 9. issn 2374-3468. Avail-
able from doi: 10.1609/aaai.v36i9.21156.

19. GANIAN, Robert; HAMM, Thekla; KNOP, Dušan; SCHIERREICH, Šimon; SUCHÝ, Ondřej.
Hedonic Diversity Games: A Complexity Picture with More than Two Colors. In: Proceed-
ings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022 [online]. 2022,
vol. 36, 5034–5042 [cit. 2023-06-03]. No. 5. issn 2374-3468. Available from doi: 10.1609/
aaai.v36i5.20435.

20. WU, Lingfei; CUI, Peng; PEI, Jian; ZHAO, Liang; GUO, Xiaojie. Graph Neural Networks:
Foundations, Frontiers, and Applications. Springer Singapore, 2022. isbn 978-981-16-6053-
5.

21. ZHOU, Jie; CUI, Ganqu; HU, Shengding; ZHANG, Zhengyan; YANG, Cheng; LIU, Zhiyuan;
WANG, Lifeng; LI, Changcheng; SUN, Maosong. Graph neural networks: A review of meth-
ods and applications. AI open [online]. 2020, vol. 1, 57–81 [cit. 2022-12-11]. issn 2666-6510.
Available from doi: 10.1016/j.aiopen.2021.01.001.

22. SCARSELLI, Franco; GORI, Marco; TSOI, Ah Chung; HAGENBUCHNER, Markus; MON-
FARDINI, Gabriele. The graph neural network model. IEEE Transactions on Neural Net-
works [online]. 2008, vol. 20, no. 1, 61–80 [cit. 2022-12-11]. issn 1045-9227. Available from
doi: 10.1109/TNN.2008.2005605.

23. DIESTEL, Reinhard. Graph theory, Graduate texts in mathematics. 5th ed. New York:
Springer International Publishing, 2017. isbn 978-3-662-53621-6.

https://doi.org/10.1137/1.9781611974782.62
https://doi.org/10.24963/ijcai.2022/12
https://doi.org/10.48550/arXiv.2302.12107
https://doi.org/10.48550/arXiv.2305.06819
https://doi.org/10.1145/3327970
https://doi.org/10.1609/aaai.v36i9.21156
https://doi.org/10.1609/aaai.v36i5.20435
https://doi.org/10.1609/aaai.v36i5.20435
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1109/TNN.2008.2005605

Bibliography 37

24. TURING, Alan Mathison et al. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society [online]. 1937, vol. s2-
42, no. 1, 230-265 [cit. 2023-02–26]. issn 0024-6115. Available from doi: 10.1112/plms/s2-
42.1.230.

25. ARORA, Sanjeev; BARAK, Boaz. Computational complexity: A Modern Approach. 1st ed.
USA: Cambridge University Press, 2009. isbn 978-0-521-42426-4.

26. DAVENDRA, Donald. Traveling salesman problem: Theory and applications. InTech, 2010
[cit. 23-01-03]. isbn 978-953-307-426-9. Available from doi: 10.5772/547.

27. KELLERER, Hans; PFERSCHY, Ulrich; PISINGER, David; KELLERER, Hans; PFER-
SCHY, Ulrich; PISINGER, David. Knapsack Problems. 1st ed. Berlin: Springer International
Publishing, 2004. isbn 978-3-540-40286-2.

28. PARDALOS, Panos M.; JUE, Xue. The maximum clique problem. Journal of Global Op-
timization [online]. 1994, vol. 4, no. 3, 301-328 [cit. 2023-03–20]. issn 0925-5001. Available
from doi: 10.1007/BF01098364.

29. JOHNSON, David S. The NP-completeness column: an ongoing guide. Journal of Algo-
rithms [online]. 1984, vol. 5, no. 2, 284–299 [cit. 2023-01-13]. issn 0196-6774. Available from
doi: 10.1016/0196-6774(84)90032-4.

30. ETEMADI, Nasrollah. An elementary proof of the strong law of large numbers. Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete [online]. 1981, vol. 55, no. 1, 119–122
[cit. 2022-08-07]. issn 0044-3719. Available from doi: 10.1007/BF01013465.

31. ZENG, Hanqing; ZHOU, Hongkuan; SRIVASTAVA, Ajitesh; KANNAN, Rajgopal; PRASANNA,
Viktor. Accurate, efficient and scalable training of Graph Neural Networks. Journal of Par-
allel and Distributed Computing [online]. 2021, vol. 147, 166–183 [cit. 2022-12-20]. issn
0743-7315. Available from doi: 10.1016/j.jpdc.2020.08.011.

32. RAWAT, Waseem; WANG, Zenghui. Deep convolutional neural networks for image classi-
fication: A comprehensive review. Neural computation [online]. 2017, vol. 29, no. 9, 2352–
2449 [cit. 2023-02-14]. issn 0899-7667. Available from doi: 10.1162/neco_a_00990.

33. MORRIS, Christopher; RITZERT, Martin; FEY, Matthias; HAMILTON, William L; LENSSEN,
Jan Eric; RATTAN, Gaurav; GROHE, Martin. Weisfeiler and Leman Go Neural: Higher-
order graph neural networks. In: Proceedings of the 33rd AAAI conference on artificial
intelligence, AAAI 2019 [online]. 2019, vol. 33, 4602–4609 [cit. 2022-12-11]. No. 01. issn
2374-3468. Available from doi: 10.1609/aaai.v33i01.33014602.

34. FEY, Matthias; LENSSEN, Jan E. Fast Graph Representation Learning with PyTorch Ge-
ometric. In: Proceedings of the 7th ICLR Workshop on Representation Learning on Graphs
and Manifolds. 2019 [cit. 2023-02-16]. Available from doi: 10.48550/arXiv.1903.02428.

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.5772/547
https://doi.org/10.1007/BF01098364
https://doi.org/10.1016/0196-6774(84)90032-4
https://doi.org/10.1007/BF01013465
https://doi.org/10.1016/j.jpdc.2020.08.011
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.48550/arXiv.1903.02428

38 Bibliography

Contents of enclosed zip-file

readme.txt brief description of the media content and its usage
src

gnn training.ipynb jupyter notebook for training GNN
gnn testing.ipynb.................................jupyter notebook for testing GNN
algorithms.ipynb jupyter notebook comparing and testing MSWE algorithms
models .. trained machine learning models
datasets...datasets for graph neural network

trees...tree graphs
general ... general graphs

functions..source codes of additional functions
requirements..........................bash files to install/uninstall required packages

thesis.pdf...thesis text in PDF format

39

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Schelling games
	Graph theory
	Computational complexity
	Schelling game

	Maximizing social welfare
	Considering stubborn agents
	NP-completeness

	Maximizing social welfare at equilibrium
	Motivation
	Creating algorithm
	Equilibrium algorithm
	Modification for swap games
	Social welfare at equilibrium algorithm

	Analyzing results
	Comparing social welfare
	Comparing number of equilibriums
	Comparing topologies

	Graph neural networks
	Graph classification with GNNs
	Mini-batching of graphs
	Training GNN for graph classification

	Algorithm for general graphs
	Experiment
	Comparing predicted accuracies
	Implementation details
	Algorithms
	Jupyter notebooks

	Conclusion and open problems
	Contents of enclosed zip-file

