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Abstract

This thesis proposes a versatile multichannel DMA controller with flexible channel and block con-
figuration. It describes the basic and modern functionality of these controllers. It also compares
several DMA engines to pick the optimal combination of frequently used features to make sure
the design stays simple yet offers a wide enough range of configurations. The DMA controller
was written in SystemVerilog targeting ASIC technology and supporting FPGA application as
well. The module was tested in RTL simulations using mostly UVM test benches. It is capable of
handling up to 32 concurrent data transfers and each transfer size can be configured for up to 232

words at once. The proposed design finds an application in an IP core by Tropic Square s. r. o.,
and thanks to generic variables and its flexibility the controller is not limited to one application.
Due to complete hardware implementation, it offers data transferring at high speed without the
use of additional cycles for any instructions to be processed.

Keywords multichannel DMA, scatter-gather, generic design, digital design, AHB-Lite, chan-
nel arbitration

Abstrakt

Tato práce navrhuje univerzální vícekanálový řadič DMA s flexibilní konfigurací kanálů a modulu.
Popisuje základní a moderní funkce těchto řadičů. Porovnává také několik DMA enginů s cílem
vybrat optimální kombinaci s často používanými funkcemi, aby návrh zůstal jednoduchý a přitom
nabízel dostatečně širokou škálu konfigurací. Řadič DMA byl napsán v jazyce SystemVerilog se
zaměřením na technologii ASIC a podporuje i použití v FPGA. Modul byl testován v simulacích
RTL převážně pomocí testů UVM. Je schopen zpracovat až 32 souběžných přenosů dat a každou
velikost přenosu lze nakonfigurovat až pro 232 slov najednou. Navržený design našel uplatnění
v IP jádře od Tropic Square s. r. o. a díky generickým proměnným a své flexibilitě není řadič
omezen na jedno konkrétní použití. Díky své kompletně hardwarové implementaci nabízí přenos
dat vysokou rychlostí bez použití dalších cyklů pro zpracování případných instrukcí.

Klíčová slova vícekanálové DMA, scatter-gather, obecný návrh, digitální návrh, AHB-Lite,
arbitráž kanálů
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Introduction

The modern world heavily relies on computers, yet most users are unaware of the sophisticated
data exchanges that occur within these systems. When we think of computers, the Personal
Computer (PC) typically comes to mind, so the next example is using it. Even before users
begin actively using the PC, it is already engaged in various data transfers, such as tracking
mouse movements, registering keyboard inputs, and displaying static images. These transfers
are continuously taking place in the computer’s memory, often without the user’s knowledge.
In systems other than PCs, the process is similar – various components within the system con-
stantly communicate with each other, exchanging vital data. What many fail to recognize is the
significant demand on the Central Processing Unit (CPU) to handle these transfers while simul-
taneously juggling other tasks. Moreover, crucial data transfers can interrupt ongoing activities,
potentially hindering task completion or rendering the computer unresponsive, despite the user’s
attempts to interact through clicks and commands.

Data transfer is a process of relocating data from one place in memory to another. There are
various modes for it and they can be categorized into two groups: those controlled by the CPU
and those that operate independently. A brief overview of their main difference is the following.

The first group – managed by the CPU – already gives a hint that the main processor’s
active participation in data transfer is required. Two similar modes only differ in the way of
triggering a transfer. Either the processor keeps checking on the Input/Output (I/O) device for
availability and then proceeds to complete the transfer or I/O device sends a request to CPU
when it is ready. In the latter case, the peripheral has to wait until the CPU saves the context
of its current task and switches to data transfer. In both modes processing unit postpones any
activity and fully commits itself to transferring the data.

The second group consists of Direct Memory Access (DMA) mode that does not need the
CPU to intervene in data transfers at all. A separate controller – DMA controller (DMAC) – is
connected directly to memories through the system interface. All data necessary for a transfer
is stored in DMAC’s configuration registers. Since the CPU neither initiates nor performs the
transfer – it can complete more important and complicated tasks.

When it comes to chip design – choosing a better option between these modes should not
seem complicated. DMA undoubtedly overcomes modes where transfers are controlled and run
by the CPU. To sum up, DMAC is a control unit that speeds up data transfers in computer
systems and enhances the performance of the entire system by enabling DMA mode. Nowadays
they play an inevitable role in microchips by handling most of the data transfers without loading
the CPU.

The particular DMA controller, that is being created according to the assignment and from
now on referred to as TSDMA (Tropic Square DMA), is intended to be placed in a microcon-
troller. The chip will be designed by Tropic Square s. r. o. – company developing in the niche
of chip design. Their goal is to produce products that are open-source and can be utilized in

1



Introduction 2

crypto wallets, with a focus on security and resilience against vulnerabilities such as Meltdown
and Spectre, as well as other micro-architectural attacks. The decision to create a new DMAC
specifically for the company, rather than purchasing from a third party, was made after careful
consideration of various factors. The most significant factor is the avoidance of signing a non-
disclosure agreement with the IP core provider, which would prohibit the ability to expose the
code to the public.

By designing the DMAC in-house, the company will have greater control over its verification
process, allowing any potential issues to be identified and addressed before they become major
problems. Other reasons are additional expenses and lack or excess of functions and flexibility
of controller, which most likely could be integrated into chips with equivalent configuration only.

Over the years numerous examples of DMA controllers were introduced and there is a differ-
ence in the purpose they serve and, hence, the set of features and configurability. Despite many
of them being quite general-purpose and suitable for use by different systems, having your own
DMAC designed specifically for the case yet with a flexible interface is a good solution when it
comes to open-sourceness and narrow use. Currently, TSDMA is meant to fulfill the require-
ments of one exact product only, however, in the future, it has the potential to be adapted and
utilized by others according to their specific needs.

In this thesis, we will commit to the analysis and review of a DMAC architecture, a brief
overview of existing DMACs, and the design of such a controller. Following synthesis, tests, and
verification of the circuit will not be fully covered in the text since it reaches out of the main
goals of the thesis, test-benches will be provided by the company’s verification engineers.

Goals of the thesis
The main goal of the thesis is to design and implement a generic, configurable DMAC for a new
product by Tropic Square s.r.o. company. Next, to investigate the topic and select the most
useful aspects among open-source implementations of DMA controllers to resolve in the circuit.
As the given microchip aims to be as open-source, small, and efficient as possible, one of the
solutions is to devise TSDMA with the most appropriate set of features and configurations to
fulfill the goals of the chip.

TSDMA shall support all kinds of data transactions, e.g. Memory-to-Memory (M2M),
Peripheral-to-Memory (P2M), Memory-to-Peripheral (M2P), and Peripheral-to-Peripheral (P2P)
through a particular type of system interface. It also should be configurable in terms of a num-
ber of channels and hardware interrupts by having generic variables. The implementation shall
contain all key features of DMA controllers and at the same time not be congested by excessive
traits. Lastly, design should respect future implementation not only in Field Programmable
Gate Array (FPGA) but also in Application Specific Integrated Circuit (ASIC), hence, it should
minimize the use of area on the chip.

This thesis will be organized in the following chapters:

Chapter State of the art covers the fundamental definition and theoretical background of
computer structure and architecture related to the topic. Within this chapter, DMA con-
trollers are introduced, and both their basic and advanced features are thoroughly described.

Chapter Analysis This section of the thesis is devoted to evaluating and analyzing publicly
available open-source DMACs for microcontrollers with configurations similar to the aimed
chip for DMAC integration.

Chapter Design guides the reader through every step of the design of TSDMA block.

Chapter Testing explains the main points of TSDMA testing using basic and UVM tests.

Chapter Conclusion contains results of the work done in this thesis and a description of
possible future improvements.



Chapter 1

State of the art

This chapter provides theoretical background for DMA controllers, their basic features and op-
eration principles are described in Section 1.2. Advanced functionality and configurations are
described in following sections. Related definitions and terms that are used in context of DMAC
will also be introduced below. Following text should help with better understanding of context
of the thesis and briefly explain all necessary terms used for following analysis and design of
DMAC.

1.1 System Bus
For better understanding of integrating inside the system and communication between the com-
ponents we need to introduce system bus shown at Figure 1.1.

▶ Definition 1.1 (System bus). A bus is a set of wires that acts as a shared but common datapath
to connect multiple subsystems within the system. A system bus provides a communication path
for the data and control signals moving between the major components of the computer system.

Memory

I/O Device

CPUSYSTEM  BUS

DMA

I/O Device

Figure 1.1 System bus connecting elements of computer.
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Basics of DMAC 4

The system bus works by combining the functions of the three main buses: namely, the
data, address and control buses. Each of the three buses has its separate characteristics and
responsibilities. The system bus combines the functions of the three main buses, which are as
follows:

◦ The control bus carries the control, timing and coordination signals to manage the various
functions across the system.

◦ The address bus is used to specify memory locations for the data being transferred.

◦ The data bus, which is a bidirectional path, carries the actual data between the processor,
the memory, the DMA controller and the peripherals.

A bus can be point-to-point or a common pathway, however only one device at a time may use
the bus. Often devices are categorized as masters, the ones who initiate transfers, and slaves
– responding to these transfers. Operation of multiple devices on a bus is solved with bus
protocols [1, p. 179-182].

1.2 Basics of DMAC

Data count 
register

Data buffer

Control
logic

register

Source

Destination

Address
registers

Control bus

Address bus

Data bus

Figure 1.2 Block diagram of simple DMAC

To understand structure of DMA controller and how this memory access mode operates
we will look at the most simple controller demonstrated at Figure 1.2. Data count register is
responsible for amount of transferred data. It is initially loaded with total amount of data to
transfer and serve as watchdog. With each transfer it decreases number of them left to the end
of transaction. When the value reaches zero, control logic generates interrupt to notify other
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components in system about finished transaction. Address registers store source and destination
addresses of data to be transferred. When no configuration is available, their value is being
increased inversely to data count. Last register is control logic. It plays the role of a DMAC’s
brain, coordinating internal events and operations. Besides controlling inner state of DMAC this
register generates output signals for communication on system bus and processes input signals.
DMA data transfer is executed in following way:

◦ Software(SW) configures necessary registers as source and destination addresses, number of
data blocks to transfer.

◦ DMAC gets triggered, reads data from source address into local buffer, then writes buffered
data to destination address.

◦ DMAC repeats previous step until size of transferred data equals number of data blocks set
by SW.

◦ DMAC sends interrupt after transfer was completed.

Entire transfer then happens without CPU intervention and significantly increases perfor-
mance of entire system by doing so.

Such module needs to be configured before every separate data transfer and it sends DMA
request as far as it’s data count register does not equal zero. That can work with minor systems
and not so loaded transfer traffic where both source and destination are memory locations.

From these simple controllers to modern DMACs there is a huge step up in their configura-
bility and capability. Multiple channels and transfer trigger sources, different kinds of memory
to transfer from and to, bigger choice of address modification and much more.

1.3 Address modification
Addresses in memory point to separate blocks of data which could be of different size. For
convenience, we will consider 32-bit memory organization. Each data block contains one word –
32 bits – of information stored. To avoid various problems including creating disorder in mem-
ory – addresses should be word-aligned as shown at Figure 1.3. One address holds 1 byte (or 8
bits) and to be 32 bits aligned it should be divisible by 4.

Additional detailed information and clarification regarding memory organization and ad-
dressing can be found in [1, p. 186-189]. Some of the possible configurations regarding address
modification within data transfer can be seen at the end of this section on Figure 1.5.

1.3.1 Increasing and Decreasing mode
At minimalistic DMA controllers source and destination addresses are being changed inversely
to data count. At the time it was the only possible mode and is called increasing mode. When a
chunk of data is stored in the main memory, it is saved sequentially, block by block from lower
to higher address. Thus to read or write such data in memory the knowledge of the starting
address, width of block, and number of blocks is sufficient. The source or destination address
shall be increased after each read or written block by its size divided by 8 – in this case, it is
32 : 8 = 4. In other words, we add the number of bytes in the data block after each operation
on a given address.

In various systems, data is stored starting from the end address. Provided that information
increasing mode should be reversed. Operation of address increment turns into decrement and,
hence, increasing mode becomes decreasing. In decreasing mode size of one block in bytes is
subtracted from the address.
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Figure 1.3 Memory organization

0x0010
0x0014
0x0018
0x001c
0x0020
0x0024
0x0028

i 0 1 2 3 4 5

address 0x18 0x1c 0x10 0x14 0x18 0x1c

Figure 1.4 Address values for
wrap16 addressing mode example.

1.3.2 Wrap mode
In a world full of PCs and other computers using I/O devices – it became unavoidable to perform
data transfers with peripherals on either side. The main difference between data in main memory
and data in peripherals is the speed of data changing and limited space in the latter. Usually,
storage space in peripherals is restricted to one block size or buffer with a small amount of data
blocks that could be stored there.

From a peripheral point of view, it is possible to implement buffers in different ways. The
main distinction is whether it is a circular buffer or a (multi-byte) shift register. In a circular
buffer, it iterates through addresses and wraps back to the starting address after reaching the
end of the buffer. Shift register shifts its content and writes to and reads from one point at
memory – one address.

Using the wrap mode for a circular buffer is a practical choice. It functions similarly to the
increasing mode, with one variation. Instead of simply increasing the address, the last address
will have the same value as the starting address, effectively wrapping back to the beginning when
it reaches the end of the memory block (Figure 1.4). This mode is usually used with a number
of bytes in its name, according to the size of a memory block.

For example, wrap32 wraps on addresses divisible by 32. A buffer with such size contains
8 words – 8 data blocks. Iterating through memory addresses for a 16-bit sector of data would
look like shown in Figure 1.4.

You can observe the way addresses in the DMAC’s configuration registers will circulate in
closed memory space and not overflow out of buffer bounds. In a scenario where the size of the
buffer is one data block, there is a more elegant solution in the following part.

1.3.3 Fixed mode
Specific case of peripheral buffers can lead to another addressing mode in data transfers. When
buffer size is one data block there is no need to change the address since every time read or write
will be executed at the same place in peripheral memory. Thus address in fixed mode remains
unchanged during the entire data transaction. This mode can be used for different cases such as
copying data from one data block to multiple locations in memory or expanding the value.
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Figure 1.5 Addressing modes examples [2].

1.4 Scatter-Gather
Scatter-Gather represents an advanced method of data handling within computer systems. Rather
than using a linear data transfer approach from a single source to a single destination, scatter-
gather operates by efficiently gathering data from multiple distributed locations in memory or
scattering it across various destinations.

This technique is highly beneficial in cases where data exists non-contiguously across separate
memory segments or when the processing of multiple data streams is required without disrupting
CPU operations. By allowing the DMA controller to access and combine scattered data blocks
into a single, uninterrupted stream, this approach reduces overhead and greatly improves data
transfer efficiency. This functionality is especially valuable in systems with disparate memory
layouts or fragmented data, as it allows for one channel to gather data in a continuous block and
other channels to utilize it for various operations at a later time.

The utilization of Scatter-Gather is crucial in storage systems, particularly in the management
of file systems or databases. This technique handles the distribution of data among different
segments in memory. In multimedia processing, Scatter-Gather plays a key role in the efficient
handling and transmission of multimedia data streams, such as audio, video, or graphics, which
may be located in various memory locations. Ultimately, its implementation leads to improved
data transfer operations and provides an essential approach for managing complex computing
environments with non-linear data.

1.5 Transfer modes
DMA does not require CPU intervention in data transfer, but this does not necessarily mean
that the CPU can operate completely independently. Whenever data needs to be transferred,
the system bus (see Definition 1.1) is actively used, which restricts the main processor’s ability
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Figure 1.6 Scatter-Gather principle [3].

to execute tasks that rely on bus communication. This means that the CPU may be blocked by
DMA if it needs to use the bus. Additionally, DMA offers different transfer modes with varying
transfer and bus loading rates. Essentially, these modes determine how long the CPU will be
blocked and when it will regain control of the bus. It is difficult to determine which mode is
better or worse, as they each have distinct characteristics and are suited for different purposes.

1.5.1 Cycle stealing mode
Peripheral devices take some time to prepare or process data in a buffer, hence, it would not be
nice for DMAC to block the bus while waiting for data to be ready. DMAC gets control of the
bus for one transfer cycle each time data are ready to be transferred. After that CPU takes back
ownership of the system and uses it for other tasks until the next chunk of data is prepared.
Then this loop continues as far as DMAC’s data counter is positive [4].

This method is not the most optimal from DMA’s nor CPU’s point of view yet it combines
reasonable data transfer rate, while still allowing the bus not to be clogged with DMA and let
CPU use the bus consistently. Most suitable use for P2M or M2P type of transfers.

1.5.2 Burst mode
In burst mode entire block, whose size is defined by a number of bytes in the data count register,
is being transferred continuously. CPU is being blocked by DMA from having access to the bus
during the entire burst of data. Burst mode is advantageous for transferring significant amounts
of data as it minimizes the overhead associated with frequent resource acquisition and release. It
gives DMA a very high transfer rate since it transfers multiple data at once maximizing utilization
of sources without overhead caused by the constant obtaining and releasing of bus and sources.
Hence, there is no need to wait for CPU to assign the ownership of the bus for every single data
block.

Data transfer’s throughput is at its highest in burst mode, however, CPU remains blocked
from bus operation for longer periods of time.
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1.5.3 Interleaving/Transparent mode
Interleaving, in some sources Transparent, the mode of data transfer is based on using a data
bus for transfers only when the CPU completes tasks without the need to access the bus. In
other words, DMAC will wait for as long as it can take for the CPU to finish a current task and
free the bus. Once the bus is requested by CPU - DMAC stops the transfer and relieves bus
ownership until it is free again.

This mode has slowest transfer rate, but is arguably the most efficient from system’s point of
view, since CPU is not getting blocked by DMA yet transfers are still being completed. It can
be used for M2M transfers as they usually do not require high speed or immediate completion.

1.6 Data Transfer
Nowadays, as the range of options for transfers and their purposes increase – it is natural that
it can be useful to control how much of the total data is needed to be transferred at one trigger
impulse. A trigger is a specific signal or event that initiates or activates the start of a data
transfer process. It is used as a directive prompting a device or system to start either sending or
receiving data. This signal’s generation can occur through different methods, including manual
input, a preset timing system, or triggered by specific conditions, tailored to the unique demands
of the data transfer operation.

1.6.1 Beat transfer
Computers can vary in the size of the data block they have, the size of data transfer at once
can be as big as the width of the data bus. Beat in this text represents the smallest unit of
data transferred between components within a system and varies based on the system’s data bus
width. For instance, in an 8-bit microcontroller, a beat typically corresponds to a byte transfer,
while in a 32-bit system, a beat refers to a transfer of 4 bytes due to the wider data bus, reflecting
the amount of data moved in a single transfer.

Thus, not to confuse things talking about the smallest unit of transfer regardless of it’s size,
it is called beat. It takes one transfer cycle and cannot be divided into smaller items.

1.6.2 Burst transfer
Burst transfer refers to a method of consecutive transferring blocks of data between components
in a system without interruption. It provides moving a sequence of beats in rapid series within a
single operation. Burst transfer is often supported directly by bus interfaces. This type of transfer
is introduced in multiple bus architectures, e. g. IBM CoreConnect, ARM AHB/APB/AXI
architectures, and others, which enable uninterrupted continuous sequence of data transfer cycles.

1.6.3 Block transfer and Repeat mode
Block transfer specifies the entire data transfer of a certain amount of data defined by the data
count register. Can be divided into burst or beat transfers and be completed in several data
transfers triggered by multiple interrupts. It is also possible to configure DMAC to perform an
entire block transfer at once.

Size of the block here is restricted by the configuration register, in order to perform bigger
transactions a Repeat mode was introduced. It allows to perform the same block transaction
continuously without reconfiguring DMAC to the same setting several times. A number of
repetitions is either given by a number in the corresponding register or is infinite which allows
for a continuous and constant stream of data. It is good for constantly renewing data as in video
or sound stream.
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1.6.4 Transaction transfer
Repetition of the block transfer can come in handy in cases of renewable data in the same
memory area. To ease the process of such transfer and its configuration next register that
appears in controllers is the repeat counter. It is used to perform the same block transfer several
times.

Transaction transfer stands for all operations with data, i. e. performing block transfer num-
ber of times defined by repeat counter.

Figure 1.7 Beat, block and transaction DMA transfers [2].

1.7 Channels
Data channels are essential components within a DMA controller, functioning as specialized lanes
that streamline data movement without requiring constant intervention from the main processor.
These channels operate as dedicated pathways, each assigned with specific tasks for independent
data transfer. By utilizing these pathways, the DMA controller can efficiently handle multiple
data transfers concurrently. This means it can simultaneously oversee data being transferred
from various devices and peripherals, resulting in a faster and more effective process overall.

The number of channels available varies depending on the design of the DMA controller.
Some systems may have a small number of channels, while others may offer more, allowing for a
higher capacity of simultaneous data transfer tasks. These channels are crucial in enhancing the
efficiency of data movement. By enabling multiple data transfers to take place concurrently with-
out taxing the main processor, they significantly contribute to the overall system performance,
particularly in tasks involving large amounts of data.

1.8 Interrupts and triggers
An interrupt is a crucial signal that is sent from one component of a system or program to
the CPU to signify an occurrence of an event. It serves as a way to notify the main processor
about a particular event that has taken place and requires immediate attention. One common
way interrupts are implemented in HW is by setting the interrupt signal active when both the
interrupt flag and interrupt enable are active.

When an interrupt is received, the current program in operation temporarily pauses to allow
for the execution of an interrupt procedure. This procedure, usually a smaller subprogram,
is responsible for executing the necessary steps to handle the data or event that triggered the
interrupt. Additionally, it is common for the interrupt flag to be cleared during this procedure
to let the other side acknowledge that the interrupt has been successfully processed. A single
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system component may generate multiple interrupt events, each with its own signal specifically
assigned to one event. Alternatively, there may be just one signal with multiple flags indicating
different events. In either case, the CPU’s interrupt procedure must retrieve the source of the
interrupts and determine which event has occurred.

Similarly, not only the CPU but other components within computer systems as well can
respond to incoming signals, similar to interrupts, and perform specific tasks. These signals
are called triggers. In terms of DMAC, they are often responsible for initiating data transfer.
Triggers and interrupts may arise from both software and hardware sources. In other words, they
can be activated through manual signal inputs or be automatically triggered by events occurring
in various hardware components.

In addition to the CPU, other components within a computer system can respond to incoming
signals, similar to interrupts, and perform specific tasks. These signals, known as triggers,
are often responsible for initiating data transfer within the Direct Memory Access Controller
(DMAC). Whether generated by manual signals or events within various hardware components,
triggers, and interrupts can be triggered by both software and hardware sources.

1.9 Arbitration
Arbitration is a process of choosing one of the sources requesting for grant to have access to
shared resources, rejecting all other sources at the moment. When faced with multiple data
channels, the dilemma arises of how to choose and prioritize among them, especially when more
than one transfer is ready to be completed simultaneously. This is similar to bus arbitration,
where multiple bus masters request for bus access, but within a single component: which channel
will be given priority at the current moment.

Many solutions and variations exist for bus arbitration algorithms, but they can generally be
classified into four types [1, p. 385]:

◦ Round robin: the first type is round-robin, where all sources are granted access in a circular
rotation and are given a limited time balanced with respect to other requesting devices.

◦ Daisy chain: Another solution is fixed priority, or daisy chaining, which grants access to the
first encountered requesting device, usually starting with the lowest index. See example in
Figure 1.8.

◦ Centralized parallel arbitration: The third type involves using a custom priority system in
which the algorithm for determining the first master to be granted access is determined by
the settings of the specific system. Each device is equipped with a request control line and a
centralized arbiter responsible for determining which one gains access to the bus. However,
this arbitration process usually involves more complicated logic in the arbiter compared to
the first two mentioned methods and may lead to bottlenecks.

◦ Distributed arbitration : This scheme is similar to centralized arbitration, but instead of a
central authority selecting who gets the bus, the devices either determine who has the highest
priority and who should get the bus or request the bus only when it is not busy. See example
in Figure 1.9.

1.10 Control logic
The control logic unit is a vital component responsible for directing and coordinating the flow of
data in a system. It is responsible for interpreting input signals and executing operations based
on specific conditions or instructions. This unit coordinates the timing and functioning of other
key components, including arithmetic units, memory, and input/output devices, to ensure that
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Figure 1.8 (a) A centralized one-level bus arbiter using daisy chaining. (b) The same arbiter, but
with two levels [5, p. 197].

Figure 1.9 Distributed bus arbitration [5, p. 198].
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data processing occurs accurately and efficiently. In short, the control logic unit is responsible
for directing and controlling the overall behavior of a circuit, making sure that all operations
occur in line with the defined instructions or program.

There are two ways we can guarantee the correct setup of control lines. The first is hardwired
control, which physically links the control lines to the specific machine instructions. These
instructions are then divided into fields, with individual bits being connected to input lines that
control different digital logic components.Alternatively, we can use microprogrammed control,
which utilizes software made up of microinstructions that execute the microoperations of each
instruction [1].

1.10.1 FSM
A Finite-State Machine is a mathematical representation of computation. Essentially an abstract
machine, that represents sequential circuit. It consists out of states and transitional function
from pair of state and input to next state. The FSM is able to transit from one state to another
in reaction to outside influences or when certain criteria are met. To define an FSM, one must
specify its states, initial state, and the requirements for each transition [6].

The FSM provides output and their timing is based on the type of the machine – Mealy or
Moore. Mealy FSM forms its output based on the current state and input, meanwhile, the second
option, Moore FSM, generates output depending solely on the current state. For capturing all the
information about FSM it is often being represented as a state transition diagram in Figure 1.10.
In design then it is represented with one register for the current state and combinational logic
taking the current state and input to FSM as an input and providing the next state as an output,
see Figure 1.11.

Figure 1.10 FSM with two states,
where valid input are binary strings
with even number of zeros

Figure 1.11 Block design of Mealy FSM

1.10.2 Microprogrammed controller
A microprogrammed controller is a control unit that stores binary control values in memory as
words. It arranges a series of signals with each clock cycle, which gives the ability to generate
the necessary instructions for execution. These output signals trigger a specific micro-operation,
such as a register transfer. Ultimately, this process creates distinct micro-operations that can be
saved in memory through a set of control signals.

An advantage of this technique lies in its flexibility, as it allows for a customizable defini-
tion of the system’s operations. Furthermore, it streamlines the execution of complex tasks by
breaking them down into smaller, more manageable instructions stored as microcode. These mi-
croinstructions are conveniently accessed from a control memory, functioning as the conductor
of operations and ensuring the smooth and efficient functioning of the system.



Control logic 14

Figure 1.12 Microprogrammed Control Unit Organization [7].



Chapter 2

Analysis

In Chapter 1, we have provided a theoretical overview of DMA controllers and data transfers. We
explored the widely utilized functionality of DMACs and gained an understanding of where these
separate features are most useful and applicable. In this chapter, we will delve into potential
approaches for designing and reasoning behind the inclusion or exclusion of functions in the
chosen set of features for TSDMA.

To complete a given task we need to decide a strategy that will be used for design. To refresh
our memory: we need to make a design suitable for FPGA and ASIC applications, fast and
versatile, generic and with flexible descriptor configuration.

2.1 FPGA vs ASIC
When it was mentioned that the design shall target both technologies it is good to understand
what are the differences and how to change design depending on technology and whether it is
needed at all. Both ASIC and FPGA are microchips that are used for electronics design.

The main difference is that FPGA is an already manufactured chip with programmable logic
that can be reprogrammed and is dedicated for general purpose utilization. Such board is usually
equipped with a large amount of flip-flops – registers for keeping the data – so they can be easily
overused. This allows us to make design easier by not implementing hard combinational logic
into it and just keeping things easy and mostly sequential.

Meanwhile, ASIC is a microchip designed for one specific application and cannot be repro-
grammed or somehow modified once it is manufactured. The cost of flip-flops on ASIC is bigger
than other logic gates, so it is more common to focus more on combinational logic instead of
sequential and using registers to save values.

The choice of design style is heavily influenced by the intended technology, and their respective
approaches can vary significantly. In the case of TSDMA design, the use of FPGA is not a primary
objective and is solely utilized for the final verification of the overall IC. Because of the smaller
size of TSDMA, there is no need for a separate FPGA-specific version, as the design created for
ASIC will not exceed the limitations of the FPGA board.

The decision not to adjust the design for FPGA was made during one of the consultations
with the team. For verification and validation purposes of TSDMA itself, RTL simulations based
on UVM testbenches are sufficient.

15
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2.2 Set of features
There is no exact microcontroller yet for TSDMA to be placed in, but there are certain require-
ments for a system that we will follow and consult with the team of designers to get to better
decisions when there are several equally functional options according to given requirements.

Information given about the chip is its 32-bit memory organization and system bus width,
AHB-Lite protocol used for communication within the microcontroller, and targeting ASIC tech-
nology. Even though the number and names of components of the systems are not known yet,
it is expected that the IP core has a similar range of components and basic functions as STM32
ICs, a list of them can be found in [8].

To know which features to choose it is necessary to understand where the versatility starts and
ends and which aspects can be solved as generic variables. The TSDMA operates solely through
hardware, without the involvement of firmware, which limits its inherent versatility. Nevertheless,
the TSDMA can still offer a considerable degree of adaptability through its extensive range of
configurable features in both channel descriptors and DMA configuration.

We will compare the features of DMAC in several microcontrollers and determine if they
would be a valuable addition to our design. After consideration and studying several open-
source DMA controllers it has been determined that the functionality of the following ICs is
closest to the expected functionality of TSDMAC:

1. STM32Fxx

2. Atmel AVR 8-bit (XMEGA DMA Controller)

3. PIC33/PIC24

Their features are compared side by side in Table 2.1. revealing subtle distinctions between
them. However, overall, all three groups of microcontrollers offer similar DMAC functionality
that we will take into consideration for our controller.

In determining which features should be included in the final implementation, we must prior-
itize maintaining an uncomplicated design. This means considering if certain functionalities can
be achieved through alternative configurations. We should prioritize implementing the simplest
and most commonly used features, while more complex ones that encompass multiple functions
may not need to be directly incorporated, as they can be accessed through the basic ones.

◦ Address modification
Fixed and incrementing address modes play a crucial role in data transfers, hence, we con-
fidently select them as our primary options. Decrementation of addresses is determined not
to be necessary for TSDMAC due to their low usability in a system. However, by utilizing
Scatter-Gather mode and having each address in the descriptor be one block lower than the
previous one, we can achieve the same effect with certain limitations. If a decrementing
mode becomes necessary in the future, we are fully prepared to expand our addressing modes
without any difficulties.
The inclusion of address reload after block transfers seems implicit, making it a non-configurable
value for now. Conversely, enforcing address reload at any point other than the end of a block
may only serve to complicate matters unnecessarily. Thus, another solution would be to im-
plement a wrap mode of fixed size that enables the system to remain within a fixed memory
section, regardless of the amount of transferred data.

◦ Transfer modes
While it’s true that two out of three controllers offer single and burst transfers, these are
not necessarily essential features. Initially, the mentioned transfer modes were considered
to be a part of the configuration, but after numerous discussions and reviews, we ended up
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STM32F Atmel AVR PIC33/PIC24

Address modes

Fixed address yes yes yes

Address incrementation yes yes yes

Address decrementa-
tion

– yes yes

Address reload yes yes yes

Peripheral indirect
addressing

– – yes

Transfer modes

Single transfer – yes yes

Burst transfer – 2/4/8 byte yes

Block transfer yes yes yes

Repeated transfer – yes yes

Stream transfer yes yes yes

Channel arbitration modes

Round Robin – yes yes

Fixed priority lowest index first yes lowest index first

Custom priority up to 4 levels of pri-
ority

channel 0 or both 0
and 1 – highest pri-
ority, round robin
for the rest

–

Triggers and interrupts

Disable/Enable
interrupt

yes yes yes

Completion
interrupt

yes yes yes

Half-done interrupt yes – yes

Error interrupt yes yes yes

Additional
interrupts

– – yes

HW triggers fixed set per
channel

configurable per
channel

configurable per
channel, up to 128
sources

SW trigger yes yes yes

Other

Channels 12 4 n

Size of transfer 8/16/32-bit,
source/destination
independently

8-bit 8/16-bit

Scatter-Gather – – –

Size of data up to 65536 up to 65536 up to 65536

Table 2.1 Features of DMAC in STM32Fxx, Atmel AVR 8-bit and PIC24/PIC33 IC’s
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eliminating these modes from the feature set of TSDMA. This is because the same result can
be achieved by using block transfers of corresponding sizes. It is not worth it for us to include
these as separate features yet. However, it is more important for our design to have repeated
and stream transfers as they have a high potential for practical use in peripherals.

◦ Channel arbitration
Fixed priority is a fundamental basic feature that may be a reliable method for resolving
conflicts, yet it alone cannot fully meet the objectives of the TSDMA strategy. After assessing
the strengths and characteristics of different arbitration modes, we have concluded that a
mix of Round Robin and Fixed priority, along with a Custom priority mode, is the relevant
approach. Offered by us Custom mode guarantees that each channel is assigned a unique
priority value, allowing users to have complete control over channel priorities. Furthermore,
in situations where multiple channels hold the same priority value, the channel with the lowest
index is given precedence and will be served first.

◦ Interrupts
Undoubtedly beneficial interrupts are completion and error interrupts. These two signals
provide essential information about a transfer, indicating whether it was successful or not, or
if it even finished at all. On the other hand, the Half-done interrupt only informs the system
that the transfer has reached the halfway point, which may be useful in advanced systems,
but for our specific scenario, it appears unnecessary and will not be incorporated. However,
despite the profit of Error interrupt it will not be included in TSDMA for now.
As an additional interrupt in the PIC family, there is an interrupt signal that indicates when
data written to the internal buffer has not yet been successfully transferred to the destination
memory. This feature is particularly beneficial for systems with larger buffers and the ability
to put the DMAC in sleep mode. This allows for uninterrupted re-enabling and resuming of
the same transfer process.

◦ Triggers
Reviewing triggers, based on several other subsystems in a mentioned early Tropic’s IP core
shown in Figure ??, we decided to include up to 31 distinct hardware sources for event triggers
in TSDMA. Since the exact number of external trigger sources will be known at the time of
integration of DMAC in the system, this will be one of the generic variables. Hence, it can
be altered accordingly to accommodate the appropriate number of hardware trigger sources
lately. The significance of software triggers in M2M data transfers has been taken into account
and was included in our design without bigger consideration. TSDMA will have a maximum
of 32 diverse trigger sources, with each channel having the capability to independently assign
any of them, thus giving users complete control over their priorities.

◦ Other features.
As required by the assignment, to ensure versatility the number of channels can be a generic
variable. Taking into account the size of the microcontroller, it has been determined that the
maximum value will be set at 32.
The size of the transfer will be fixed, 32 bits, with very simple reasoning – targeted micro-
controller has a 32-bit architecture, and all transfers within the system are planned to be of
the same size.
The block size will range from 1 to 65535 as in reviewed ICs, and when combined with repeat
mode, it will enable the transfer of up to 232 words, providing ample flexibility for data
management.
One feature that is not included in any of the compared controllers but can be seen in Table 2.1
is Scatter-Gather. It was mentioned during one of the consultations and after a discussion
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with Ondrej Ille, we decided to include this feature in TSDMA controller. Scatter-Gather is
beneficial for DMA in numerous ways, which are described in Section 1.4.

2.3 Controller
There are various approaches to implementing control logic, with two key contenders being the
Micro-programmed controller and Finite State Machine (FSM). These two solutions each have
their unique strengths and weaknesses. We’ll analyze these traits to understand where they excel
and where they might have limitations.

Using FSMs allows for a simpler and faster design and implementation process compared
to micro-programmed controllers. This is due to their direct hardware-based approach, making
them well-suited for smaller ICs. Micro-programmed controllers, on the other hand, tend to
be more complex and demand additional hardware resources due to the need for microcode
storage and control logic. As a result, their execution may be slower because of cycles for
micro-instruction sequencing and interpretation. Additionally, the larger chip area and resource
utilization required for microcode storage can limit their feasibility for smaller ICs with limited
resources. FSMs have minimal hardware overhead, making them a viable option for applications
where chip area and resource utilization are critical. They also exhibit predictable behavior,
making them suitable for applications requiring straightforward sequential logic control.

Through the use of microcode sequences, micro-programmed controllers offer great flexibility,
allowing for easy adaptation to changes. Their ability to handle complex logic makes them
suitable for different applications, without the need for hardware modifications. With the simple
modification of the microcode, adjustments can be made to the logic and instructions without
direct hardware changes. In contrast, FSMs rely on hardwired sequential circuits, which can
make it challenging to adjust control logic and implement modifications. As the control logic
increases in complexity, FSMs may prove difficult to design and may encounter limitations. To
alter their behavior or functionality, a significant redesign is often required.

2.4 Datapath
In order to effectively manage data movement and processing, it is necessary to include supple-
mentary modules that are controlled by the central processor. Despite the fact that standard
DMACs feature four additional registers in addition to the control logic, this may not be suf-
ficient given the potential for multiple channels of varying numbers. Consequently, it is not
feasible to allocate address, buffer, and counter registers for each channel within a single block.
As the development of TSDMA continues, it becomes clear that the datapath will require more
than just these four registers to successfully accomplish its objectives.

2.4.1 Channel Descriptor
Each channel will be assigned a descriptor that contains all or most of the features relevant
to that specific channel and its transfer. This includes the source and destination addresses,
as well as a data counter register. Additional features pertaining to these registers or specific
modes of the channel/transfer may also be present in this descriptor. These descriptors will be
saved in memory and their starting address will be included in the DMA configuration. Since all
descriptors are equal in size, we can effortlessly retrieve any channel descriptor by knowing the
starting point.

When a channel is operating in normal mode with sequential memory addresses it is enough
to store all related information in one descriptor. However, it is not sufficient for Scatter-Gather
mode where different locations in memory are involved in one transfer. One of the possible
solutions is to describe a list of descriptors in memory through the channel’s descriptor.
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2.4.2 Buffer
From the very start, the use of a buffer has been essential in storing data when transferring
from the source address to the destination address. Naturally, TSDMA will require one as well.
However, since there is more to be temporarily stored in our block, we will introduce a descriptor
buffer. This will allow us to effectively work with the data transfer within the TSDMA module.
As each descriptor is loaded from memory, it will be updated locally throughout the transfer
process. Finally, at the end of the triggered activity, the updated descriptor will be written back
to memory.

2.4.3 Trigger Register

Figure 2.1 Four-phase handshake.

The next thing to consider is how the transfers will be set off. The external triggers repre-
sented as interrupts from other components of a computer system may arise at any moment and
it is not guaranteed that the DMA controller can process them right away. Hence, it is necessary
to capture them in a register. The first idea was to acknowledge a signal with a four-phase
handshake (Figure 2.1), but it could be too complicated taking into account that it should be
implemented on both sides and involve modifying existing interfaces. The second and for now
last idea was to capture the rising edges of incoming interrupts into an inner buffer for triggers.

2.4.4 Arbiter
Once triggers are captured channel is ready for data transfer, with a greater number of channels
available at the same time comes the need to choose which channel to serve first. Arbiter will be
the module responsible for this. As discussed in Section 2.2 it will support three different algo-
rithms to choose a highest priority channel. Meanwhile, it seems easy to understand the design
of Round Robin and Fixed priority algorithms, Custom priority mode has a few uncertainties in
it. It has to pick the highest priority channel amongst all active and triggered ones. It is a linear
problem if sequential logic is involved, but it could then take up to 32 clock cycles, so we will
try to design a combinational solution in the following chapters.

2.4.5 Register Map
In order to communicate with DMA and effectively configure the block’s inner registers, it is
crucial to arrange them in a clear and logical manner and map them to the system memory. The
register map must then be assigned an address in memory space before the controller is integrated
into the chip. Additionally, the register map will feature a slave bus interface, allowing it to be
accessed by other components. This interface will enable all necessary read and write operations
for configuration registers not included in channel descriptors. It could manage such registers
as flag or DMA status registers, customizable priority values, or the external trigger source for
the channels. A major part of the register map including signals for bus communication will be
generated by the DMAC’s description using scripts.



Chapter 3

Design

The previous chapter provided the necessary information on which features should the TSDMA
consist of and how these components function. After analyzing the system, it is necessary to
design how to implement it in practice. First, the technologies to be used for the implementation
shall be chosen. Then we will go through all the components and how they will be designed.
The chapter serves as an overview of the design decisions that arose during the process.

3.1 HDL
When it comes to choosing a language for the design itself, there are two front-runners in the world
of Hardware Description Languages (HDL) for Register Transfer Level (RTL) design: VHDL and
SystemVerilog (SV). While the usage of SV for this design was dictated by the company, it’s still
worth considering and comparing these two options in order to gain a deeper understanding of
why VHDL may not have been the preferred choice.

VHDL is a language that is characterized by its strong type system and verbose nature. While
writing code in VHDL may result in longer lines of code, it also makes it easier to identify and
rectify errors. On the other hand, SystemVerilog, which is reminiscent of C language in terms
of syntax, is more concise and condensed. This allows for the compilation of ”illegal” scenarios,
such as comparing vectors of different lengths, and offers packed types that are advantageous
for managing multidimensional buses. In the world of ASIC, SV is often preferred over VHDL,
which has a more intuitive and straightforward structure. However, SystemVerilog boasts of a
synthesizable subset that strikes a balance between brevity and expressiveness, surpassing what
VHDL has to offer.

For instance, SV offers a range of blocks - such as always_ff, always_latch, and always_comb
- that enable designers to easily distinguish between blocks implementing various types of logic.
Furthermore, for always_comb and always_latch blocks, the signals to be included in the sensi-
tivity list are automatically inferred, avoiding the potential for extensive bugs often encountered
in both VHDL and SV always blocks. That being said, VHDL remains a viable option in this
realm. Many software tools geared towards ASIC development have shifted towards support-
ing SV over VHDL, making it the preferred choice for companies and their design workflows,
meanwhile, FPGA-targeted tools have a preference for VHDL. Given that the ultimate objec-
tive of this design undertaking is an ASIC microcontroller, it makes sense for the company’s
development approach and tool selection to lean towards SV, without completely disregarding
VHDL [9].

Last but not least, a significant advantage of SystemVerilog in the context of verification
and simulations of bigger designs is a lower chance for many unwanted and hard-to-find bugs
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to arise, than in VHDL. This can be attributed to the nondeterministic scheduling of blocking
and non-blocking assignments in VHDL, as well as the utilization of delta cycles in simulations,
which may result in unexpected behavior on actual hardware. More information regarding delta
cycles and scheduling in VHDL can be found at [10]. In terms of different types of assignments
and events, SV has deterministic scheduling of processes of different natures to provide proper
interaction between them within the RTL, Test Benches(TB), and assertions [11].

3.2 Design tools
Design flow tools are primarily defined by Tropic Square. The IDE selected for managing and
editing source files is Visual Studio Code, a versatile cross-platform open-source editor that
offers a broad amount of features and supports a lot of programming languages. It can be
customized and expanded in numerous ways to suit individual preferences. For the purposes of
TSDMA design, it was used for writing RTL source codes and test benches as well as different
configuration files necessary for both simulation and synthesis processes.

For version control and tracking the progress of project Gitlab – web-based Git repository.
Within this software, it is easy to handle every aspect of a project, from initial planning and
source code management to ongoing monitoring and security measures. Designed to foster strong
collaboration and drive superior software development with streamlined processes and increased
efficiency, GitLab empowers teams to speed up production timelines and provide exceptional
value to clients.

Synopsys VCS and DVE serve as simulation and verification tools. Synopsys VCS, also known
as the Verilog Compiler Simulator, is a top-performing tool used for functional verification and
debugging of digital designs. Its speed and precision make it a favorite among engineers for effec-
tively simulating sophisticated designs. The Synopsys DVE – Discovery Visual Environment –
is integrated with VCS and offers advanced visualization and debugging features. With DVE,
engineers can analyze simulation results visually, trace signals, and efficiently debug designs,
making it an invaluable aid in the verification of complex digital systems.

Finally, for synthesis, once more solution by Synopsys was used. Design Compiler RTL
was specifically designed to simplify the optimization of timing, area, power, and test processes
all at once. Equipped with topographical technology, it ensures a smooth and efficient design
flow, providing faster results. This technology boasts an impressive accuracy rate of predicting
timing and area within a 10% margin of post-layout outcomes, significantly reducing the need
for repetitive adjustments between the synthesis and physical implementation stages.

While all of the above tools are undoubtedly powerful, it’s important to note that in our
TSDMA design, we will not be utilizing the full extent of their capabilities. However, if we were
not planning on integrating this particular design into a larger environment later on, we could
have taken advantage of more straightforward and cost-effective tools instead.

3.3 Datapath

3.3.1 Register map
All configurations not related to a data transfer should be stored in the register map. These
configurations are being accessed during different states of DMA and it would not be rational to
put them outside of the module. The following registers are going to be included in the register
map:

◦ BLOCK ID – contains identification and revision codes

◦ DMA CONFIG – contains DMA enable bit, priority modes configuration, and software reset
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◦ DESCRIPTOR ADDRESS – has a starting address of channel descriptors in memory

◦ CHANNEL ENABLE – contains channel enable bits

◦ SW TRIGGER – similarly to CHANNEL ENABLE register contains bits for indicating the
presence of software trigger

◦ HW TRIGGER A-F – 6 registers used for configuring the hardware interrupt source separately
for each channel

◦ CPU PRIORITY A-F – 6 registers for custom CPU set priorities

◦ TRANSFER COMPLETION – flags for every channel, indicating the completion of the entire
transfer (data counter in the descriptor is zero)

◦ INTERRUPT ENABLE – allows interrupt generated by channel.

◦ SCATTER GATHER – defines whether the transfer on a channel is Scatter-Gather or not.

More detailed information about the register map can be found in Appendix A.

3.3.2 Channels descriptor
Descriptors are stored sequentially in memory starting from the address contained in the register
map. Number of descriptors in memory corresponds with the number of channels. A descriptor
is loaded to the inner buffer before each transfer to get the information about the transfer’s
configuration. Hence, it has to contain all transfer-related instructions. It was already mentioned
that it obtains source and destination addresses as well as counter register. The data counter
contains two separate values being size of the block and the repeat counter. These are already
three registers in a descriptor. Certainly, there will be one more for configurations itself. As
mentioned a descriptor should be adjustable to either a channel’s main descriptor when the
transfer is happening within one sequential memory block on each side, or a Scatter-Gather
descriptor pointing to a list of ordinary descriptors for non-contiguous data locations.

After consultations, it was decided that the following settings are going to be included in a
configuration register of channel descriptor:

◦ Source and destination address modes – controls modification of the addresses during the
transfer initiated by a trigger.

◦ Trigger action – determines which transfer should take place on a single trigger impulse.

◦ Scatter-Gather trigger action – regulate whether the entire list of descriptors or only the first
one is being processed on a trigger impulse.

When the Scatter-Gather bit is set for a channel in a corresponding configuration register,
then the descriptor is treated as a pointer to the list of descriptors, which are being executed
sequentially from the top based on the Scatter-Gather trigger action bit in the descriptor. The
source address register is considered as a starting address of the descriptors list and the data
counter register contains the number of descriptors in the list. The destination address register is
not being used in this case. The appearance of a descriptor in the list is the same as in ordinary
sequential transfer.

All registers are used as described before with one exception – trigger action considered
to have transaction transfer value, hence, it is impossible to configure a block transfer in this
case. The entire transfer defined by this descriptor is executed at once. More details about the
descriptor map can be found in Appendix B.
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Figure 3.1 Block scheme of priority comparators for 8 channels.

3.3.3 Arbiter
The arbiter has to choose the next channel to be processed, so it needs to have information from
the register map and trigger status about channel status and priority. It also should maintain
the value of the chosen channel till the next arbitration cycle. The number of the channel is
required by other components throughout the transfer, to calculate the address of the descriptor,
for example, or to know which trigger buffer has to change its value because the trigger is being
processed.

In understanding Fixed and Round Robin modes, the algorithms seem straightforward. How-
ever, looking into CPU custom priorities requires a discussion of options. As mentioned earlier,
one approach involves sequential processing, where we save the channel number with the cur-
rently highest priority and compare each subsequent channel with this value. If the new channel
has a higher priority, we replace the previously saved channel with the current one and continue
the comparison. While this method is clear, it could consume a considerable number of clock
cycles.

Alternatively, a hybrid solution combines sequential and combinational approaches. For in-
stance, we could reduce the total number of channels for comparison by choosing the highest
priority between each pair of channels in a combinational manner. This approach aims to opti-
mize efficiency by decreasing the number of channels to compare, but it still maintains a linear
solution.

For completely combinational logic we can use binary tree form to compare each pair of
channels each time cutting in half, but the results of it are not being stored anywhere. For
example, in Figure 3.1 the hierarchy of comparators for 8 channels is shown. Each CMP has
data lines, taking on input priorities of two channels and propagating the highest of them – the
lowest value – to the next stage of comparator blocks. The result of the comparison is propagated
to hierarchies of multiplexors from which the index of the channel with the highest priority can
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be retrieved. Comparators of the first level – the left one – get input priorities from the register
map. Next states get output from the previous stage as an input.

3.3.4 Trigger register
The trigger register is designed to capture incoming interrupts from various hardware compo-
nents. Given the possibility of multiple channels triggering simultaneously, it’s important to
note that only one channel can be addressed at a time, posing a risk of losing trigger impulses.

To partially compensate for this we can store several triggers into a buffer. For the initial
version of TSDMA, the number of 4 stored triggers was chosen. This storage can be implemented
either as a counter or an actual buffer.

Considering details and errors that can appear when dealing with the matter, the preference
was given to a buffer option. Represented as a 4-bit shift register it can easily complete the given
task of storing impulses.

The software trigger on the other hand is captured in the register map and cannot have
multiple entries, thus, the trigger register will only take care of clearing the corresponding register
in DMA memory.

3.3.5 Descriptor buffer and address
The descriptor buffer serves as a temporary storage for the currently processed descriptor during
data transfers. It is loaded with descriptor after a process of arbitration is finished and the next
served channel is known. Configuration register of descriptor does not change the values since
they are only giving the information to the controller to determine the next behavior.

Address and data counter registers are changed after each cycle. After the read cycle, the
source address is either incremented, wrapped to the starting address of the block, or remains
unchanged based on the value in the configuration register. Similarly, after the write cycle desti-
nation address is modified. Both values in the data counter register are modified separately. The
size of the block is decreased after each read-write cycle, meanwhile repeat counter is decreased
each time the block counter reaches a zero until the repeat counter equals zero as well.

The descriptor address is a separate register that is used for loading the descriptor from and
to memory. In the case of Scatter-Gather mode first loaded descriptor is a pointer to descriptors,
so the descriptor address register is loaded with the source address from the buffered descriptor
followed by reading the actual transfer descriptor from the obtained address. After the transfer,
both descriptors are modified in memory.

3.4 Controller
Based on previous analysis better option for the controller representation for our design is FSM
– as it is more suitable for small designs, takes less area on a chip, and is faster, despite the
limitation in modifications. States of FSM are representing two modes of TSDMA operation:

◦ IDLE – mode when the TSDMA is disabled and performs no external activity.

◦ RUNNING – operational mode for data transfer and active state.

The controller is responsible for coordinating all datapath modules by using control signals.
Furthermore, the controller is designed to be an AHB Master on the bus, handling all commu-
nication processes for data transfers and descriptor operations(Figure 3.2). It also watches the
number of enabled channels and puts DMAC in IDLE mode where it performs no activity if
there is no presence of an active channel.



TSDMA 26

Figure 3.2 Control logic block diagram.

3.5 TSDMA
After all modules of the design were proposed it is suitable to look at the top module combining
it all. The generic variables will be defined at the top level as well and all components are
instantiated and connected accordingly to signals they require for communication inside the
block. It receives input values for both AHB Slave and Master interfaces redirecting them to
register map and controller correspondingly. Other input signals are clock, synchronous reset,
and hardware interrupts – hw_int. Outputs are composed of transfer completion interrupts –
tc_int and output signals for both bus interfaces.

Figure 3.3 TSDMA block diagram



Chapter 4

Implementation

In Chapter 2 we described the design chosen for TSDMA. In this chapter, we discuss the imple-
mentation of its submodules and their details.

4.1 Register map
Contains 20 32-bit registers. The three first registers contain information for TSDMA as a
block. First register – BLOCK ID contains the 16-bit ID and 4-bit revision code of TSDMA,
DMA CONFIG has DMA enable bit for block activation, software reset, and 2-bit mode of
arbitration. Next register DESCRIPTOR ADDRESS contains the starting address of channel
descriptors stored sequentially from this address. CHANNEL ENABLE has a bit per channel
for its activation, where every x-th bit of register corresponds to x-th channel. Similarly to this
register SW TRIGGER, TRANSFER COMPLETION, INTERRUPT ENABLE, and SCATTER
GATHER registers are organized. Following registers are made of 6 32-bit registers – CPU
PRIORITY A-F and HW TRIGGER A-F. Each of these contain 5-bit vectors for value per
channel, according to Appendix A. RTL files are generated from rdl source contain all logic
covering AHB Slave activity and mentioned registers. Top file tsdma_reg_map is manually
written module covering all wires of dma_pio into more organized way for following utilization
in the top module.

Controller The controller is implemented as a 13-state FSM. The FSM states used for the
TSDMA are represented in Figure 4.1. After reset TSDMA is inactive and remains in IDLE state,
performing no activity, until it gets activated. After it is enabled it goes to PREPARE state
controlling the presence of the active channels. If there is at least one active channel the controller
proceeds to ARBITRATION state, otherwise it returns to IDLE mode. In ARBITRATION state
it activates the arbiter module and waits for a response signaling the arbitration was done.

It continues with a more or less linear sequence of states performing a transfer. States READ
DATA and WRITE DATA loop until the trigger transaction is finished. Then it updates the
descriptor in memory and proceeds to FINISH state, where the channel is disabled if all transfers
for the configuration are completed. Depending on whether it is Scatter-Gather transaction or
not it can switch back to the next transfer – when the trigger initiates the transfer of the entire
list of descriptors at once – or goes back to PREPARE state, checking the presence of other
active channels.

27



Register map 28

Figure 4.1 TSDMA controller’s states

4.1.1 Arbiter
Controls the arbitration of channels depending on priority mode and is enabled by input control
signal arbiter_enablefrom the controller. It contains a register for the last chosen channel, which
is being held for the entire transfer triggered for this channel until the controller sets of new
arbitration cycle. Arbitration is a combination of both sequential and combinational logic.

generate
for(i = 0; i < P_NUM_STAGE; i++) begin: block_stage

for(j = 0; j < P_IN_STAGE_1/(2**(i+1)); j++) begin: comparator_num
tsdma_pr_cmp i_cmp_(

.ch_a_en (enables [i][2*j]),

.ch_a_pr (priorities [i][2*j]),

.ch_b_en (enables [i][2*j+1]),

.ch_b_pr (priorities [i][2*j+1]),

.hi_en (enables [i+1][j]),

.hi_pr (priorities [i+1][j]),

.sel (sel [i][0][j])
);

end
for(k = 0; k < P_NUM_STAGE-i; k++) begin: mux_stage

for(l = 0; l < (P_IN_STAGE_1/(2**(i+k+2))); l++) begin:block_num
tsdma_mux sel_muxed(

.in1 (sel[i][k][l*2]),

.in2 (sel[i][k][l*2+1]),

.sel (sel[k+i+1][P_NUM_STAGE-2-i-k][0]),

.out (sel[i][k+1][l])
);

end
end

end
endgenerate
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It contains a sub-module tsdma_cpu_hi_pr for the CPU custom priority mode, which gen-
erates submodules according to the number of channels as shown in the example above. The
comparator block tsdma_pr_cmptakes two channels’ priorities and outputs the higher priority
alongside with sel signal which serves later for getting the index of the channel with the highest
priority. The value is then propagated back to the arbiter module and is used for the result of
arbitration.

4.2 Trigger register
Is implemented as a packed 2D array of 4-bit vectors serving as a buffer for triggers where
valid values are 0b0001, 0b0011, 0b0111, 0b1111. Each 1 represents a trigger impulse. The
implementation respects the possibility of catching invalid values and they will lead back to valid
ones. If the channel is disabled both hardware and software triggers are cleared. Below is an
example of incoming interrupt impulses. Decreasing value in buffer due to processed trigger is
implemented similarly.

case(hw_trg[i])
0: hw_trg[i] <= 1;
1: hw_trg[i] <= 3;
2: hw_trg[i] <= 3;
3: hw_trg[i] <= 7;
4: hw_trg[i] <= 3;
5: hw_trg[i] <= 7;
6: hw_trg[i] <= 7;
7: hw_trg[i] <= 15;

8: hw_trg[i] <= 3;
9: hw_trg[i] <= 7;
10: hw_trg[i] <= 7;
11: hw_trg[i] <= 15;
12: hw_trg[i] <= 7;
13: hw_trg[i] <= 15;
14: hw_trg[i] <= 15;
15: hw_trg[i] <= 15;

endcase
end

4.3 Descriptor
Descriptors are implemented as 4 32-bit registers. The source and destination addresses take
up the entire registers, data counter is split in half for repeat counter and block size. The
configuration register uses only 6 lower bits, the rest of the register is remaining reserved. During
TSDMA operation upper 16 bits are used for storing the initial block size which is not supposed
to be reached or exposed to a user. The registers are being conducted by control signals from
the controller.





Chapter 5

Testing

In Chapter 4 we discussed the implementation of individual components of the design. This
chapter will provide information about the TSDMA testing flow. The testing process was broken
down into two stages:

◦ The initial debug. There were primary test benches (TB) written alongside the design phase.
They served to test the basic functionality of each separate part of the design. This ap-
proach allowed us to detect any errors or mismatches in control signals before integrating the
sub-modules of TSDMA. By ensuring that each block worked as expected individually, we
minimized the chances of encountering errors later on.

◦ Proper tests using TBs written in UVM. The Universal Verification Methodology is the ver-
ification standard for the verification of the digital system, more information could be found
at [12]. These TBs were provided by Marek Santa from Tropic Square. These tests were
aimed at covering the widest possible range of configurations and cases that can be encoun-
tered in the utilization of the block. With Marek’s help and provided testing environment
we debugged the TSDMA controller and fixed encountered bugs that will be described in
Section 5.2.

This process is standard and crucial practice in design verification, as it is not safe to have
the same person responsible for both testing and the design itself. This could potentially lead
to errors being overlooked, which could have negative consequences in the future process of
integrating DMAC into a bigger microchip.

5.1 Basic functionality tests
Basic tests were not written in UVM, as they primarily focused only on verifying the fundamental
capabilities of individual components. Initially, the controller and AHB master components were
written and tested separately, but they were eventually merged into one comprehensive module.
To effectively test this united module, an additional module was created to simulate a slave on
the bus, complete with its own memory. This allowed for the loading of descriptor values into
the memory, which were then retrieved and executed by the controller. The outcomes of the
TSDMA operation were then stored in the same slave memory. Ultimately, in order to ensure
that everything was functioning as expected, the primary focus during testing was on monitoring
the memory registers.

By subjecting the arbiter and descriptor register to similar tests, we were able to effectively
identify and correct any significant malfunctions before integrating them with the controller and
other components.
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5.2 UVM tests

5.2.1 Structure of tests and TB
UVM tests used for TSDMA have the following structure. At the beginning of the test random
yet valid descriptors are being generated and located at random starting address sequentially.
Next, TSDMA is configured and enabled. Configuration is mostly randomly generated, but the
DESCRIPTOR ADDRESS register has to correspond to a previously generated value. After
the TSDMA set active, random SW and HW interrupts are being generated. Test runs until
all enabled channels have the TRANSFER COMPLETION flag. For the test to have relevant
runtime, descriptors are generated with certain limitations.

The TB itself is organized as shown in Figure 5.1. Any transfer that appears on the interface is
reported to the predictor – a model of TSDMA. It generates outputs based on received inputs that
are sent to Scoreboards – simple comparators. Transfers on TSDMA interfaces are reported to
Scoreboards as observed and later are compared to expected outputs. The number of Scoreboards
in TB corresponds with the number of monitored interfaces.

Figure 5.1 TB block diagram.
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5.2.2 Observed bugs
The first thing revealed during UVM tests was a mismatch in the bus interface – it was expected
to restrict several types of transfer (e. g. burst or undefined length), and signal ahb_hsel was
supposed to be generated by bus master contrasted to arbiter in interface standard. After
reduction to AHB-Lite 3 interface according to other components in the system, UVM testing
could be commenced.

The next thing to fix was the method of capturing incoming triggers to a buffer, which
resulted in capturing multiple entries of the trigger on one impulse that lasted for more than one
clock cycle, shown in Figure 5.2. The solution to this is simple. It was enough to add an edge
detector to capture a trigger on the rising edge only (Figure 5.3).

Figure 5.2 hw_trg capturing multiple interrupts on one impulse.

Figure 5.3 hw_trg capturing only positive edge of interrupt.

The next revealed error was the dropping of ahb_hsel signal with specific descriptor config-
uration between two blocks in repeat mode. It caused the invisibility of one read cycle which
resulted in a distorted sequence of transfers on the bus and could lead to loose of bus ownership.
In that case, transfer would be postponed until the bus is released and granted back to TSDMA

In addition, clearance of the software trigger was poorly written resulting in setting sw_trg_clr
signal to a logical one forever. This restricted the write of multiple software triggers at once,
since they were cleared right after.

Now one found bug still remains unsolved and will be fixed in future work. The problem is
again with the software clear and the SW TRIGGER register has different values after identical
configuration depending on whether it was configured involving a prior reset of the TSDMA or
not.



Figure 5.4 sw_trg_clr sets at 1 lower 4 bits and sticks to value.

Figure 5.5 sw_trg has correct values.



Conclusion

In this thesis, we completed the main goal – designed TSDMA, a versatile DMA controller for
future application in an ASIC-targeted microcontroller by Tropic Square s. r. o. It has up to 32
configurable channels and trigger sources which provide the flexibility to arrange them as desired
using generic variables. Due to the flexibility of channels’ descriptors and the DMA controller
itself, it can be used for different projects.

The set of features was based on researched microcontrollers and their range of configuration
while taking into consideration advice and recommendations received during consultations with
Ing. Ondrej Ille – the supervisor of the thesis and company’s design team lead. Resulting in
versatile DMA, having separate descriptors for each channel with a possibility to extend it up to
216 − 1 descriptors for each channel, using Scatter-Gather.

Controlled by FSM, it has a register map acting as a slave on a bus with an AHB-Lite
interface for accessing configuration registers of TSDMA. The controller acts at the same time as
a bus master with equal interface handling data transfers initiated by one of the trigger sources.
When triggers arrive while the controller is occupied with a previous transfer, they are kept in
an internal buffer for later processing.

TSDMA was tested with RTL simulations using UVM test benches and works as expected,
transferring data in the system with high speed thanks to a small number of auxiliary operations
in the context of transfers and not wasting time. During the testing phase, TSDMA was put
through RTL simulations with the help of UVM test-benches. These simulations proved that
TSDMA functions accurately as intended in high-speed system data transfers. This success
can be attributed to the minimal use of auxiliary time for side processes during data transfers,
ensuring efficient and time-saving operations.

Due to the minimalistic yet wide functionality in the set of features, we made sure that the
design would not take up much chip surface in ASIC implementation which was one of the thesis’
goals.

5.3 Future work
TSDMA designed within this thesis undoubtedly brings valuable contribution to the field of DMA
controllers. Several factors were not completed in the best possible way which gives room for
future improvements of TSDMA. It combines high flexibility of channel and block configuration
making it a multipurpose versatile IC. Besides its primary goal to be integrated into the next
microcontroller to be designed by Tropic Square, it also has the potential to enhance other
projects. After it eventually becomes an open-source design it can be picked up by others and
improved in multiple directions.
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Appendix A

Register map

Address
Offset

Register Name Reset Value

0x0 BLOCK_ID —

0x4 DMA_CONFIG 0x00000000

0x8 DESCRIPTOR_ADDRESS —

0xc CHANNEL_ENABLE 0x00000000

0x10 SW_TRIGGER 0x00000000

0x14 HW_TRIGGER_A 0x00000000

0x18 HW_TRIGGER_B 0x00000000

0x1c HW_TRIGGER_C 0x00000000

0x20 HW_TRIGGER_D 0x00000000

0x24 HW_TRIGGER_E 0x00000000

0x28 HW_TRIGGER_F 0x00000000

0x2c CPU_PRIORITY_A 0x00000000

0x30 CPU_PRIORITY_B 0x00000000

0x34 CPU_PRIORITY_C 0x00000000

0x38 CPU_PRIORITY_D 0x00000000

0x3c CPU_PRIORITY_E 0x00000000

0x40 CPU_PRIORITY_F 0x00000000

0x44 TRANSFER_COMPLETION 0x00000000

0x48 INTERRUPT_ENABLE 0x00000000

0x4c SCATTER_GATHER 0x00000000
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Appendix B

Descriptor map

Address
Offset

Register Name Reset Value

0x0 CHx_CONFIG 0x00000000

0x4 CHx_SRC_ADR 0x00000000

0x8 CHx_DST_ADR 0x00000000

0xc CHx_DATA_CNT 0x00000000
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Appendix C

Interface

Figure C.1 Ports

Figure C.2 Generics
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Concents of the attachment

readme.txt................................a brief description of the content of the medium
licence.txt ..............................................................Apache2 licence
src

rtl.........................................................................source code
controller.................................RTL file with controller implementation
datapath...................................RTL files with datapath implementation
outdated...........................................outdates RTL files used for tests
regmap....................RTL files with regmap implementation and source .rdl file

thesis......................................................thesis source code in LATEX
simulation............................................demonstration of results in VCD

text
thesis.pdf................................................... text of the thesis in PDF
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