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Instructions

When we hear the term “voting system”, usually our mind conjures up an image of some 

sort of election – presidential elections, parliamentary ones, there are many to pick from. 

The topic of computational social choice is, however, much broader. We pick between 

different alternatives every day; from the kind of sushi we want for lunch to which 

thermometers in a room we decide to trust when they all give different measurements. 

This phenomenon is not limited to humans either – a group of autonomous agents for 

example may also need to decide how to use up their resources in order to complete a 

set of tasks. All these situations can be modeled as elections in the form of datasets 

containing votes and these datasets then can be used for various purposes. Frequently, 

we also want to generate synthetic datasets from some statistical distributions – the urn 

model, the Mallows model, or the impartial culture model, just to name a few very 

common ones.

When working with these datasets, it is important to think about how the space of all 

possible elections looks like. For example, we may test an approximation algorithm and 

report its accuracy and computation time. However, it is possible we inadvertently tested 

it only on a small subsection of the election space and our algorithm achieves 

significantly worse results in real-life use as a result. Another similar example would be 

testing data for a machine learning model. If the training data does not contain any 

elections from a particular subspace, then the model will poorly classify such elections 

in the test data. To counter this, we first need a way of conceptualizing the election space, 

which is a complex task. Distance metrics between election datasets and their projection 

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 16 November 2023 in Prague.



onto a plane called “maps of elections” by Szufa et al. [1] aim to achieve precisely that.

 

The goals of this thesis are as follows:

1) Describe different voting systems, their strengths, and their weaknesses.

2) Familiarize yourself with the topic of maps of elections and describe the current state 

of the art.

3) Design and implement a distance metric between elections which can deal with 

elections that have a differing number of candidates. Test this metric on synthetic 

datasets and optionally on real-life datasets (for example from preflib.org). Discuss maps 

generated using this metric.

4) Optionally, explore the possibilities of a distance metric based on election features 

and discuss the results.
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Abstract

The maps of elections framework is a methodology for visualizing and analyzing election datasets.
So far, this framework was restricted to collections of election datasets that have equal numbers
of candidates. In this thesis, we extend this framework to be able to deal with datasets con-
taining different numbers of candidates. We do this in two ways: we extend an already existing
positionwise distance, and we also develop the idea and implementation of a feature distance.
We test the new distances on synthetic data generated using the Mapel package.

Keywords computational social choice, voting systems, maps of elections, generative models,
distance metrics, elections of different sizes

Abstrakt

Maps of elections je framework, který umožňuje vizualizovat a analyzovat sady volebních datasetů.
Dosud bylo možné pracovat pouze s datasety, ve kterých měly všechny volby stejný počet kan-
didátů. V této práci framework rozšiřujeme o možnost současného zpracování datasetů s různými
počty kandidátů. Toho dosahujeme jednak rozšířením již existující positionwise metriky, a dále
zavedením a implementací tzv. feature metriky. Tyto metriky testujeme pomocí syntetických
dat generovaných balíčkem Mapel.

Klíčová slova výpočetní sociální volba, volební systémy, mapy voleb, generativní modely,
metriky vzdálenosti, volby rozdílných velikostí
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Chapter 1

Introduction

…in which we learn what this thesis is (and is definitely not) about.

All voting is a sort of gaming, like checkers or backgammon, with a slight moral tinge
to it, a playing with right and wrong, with moral questions; and betting naturally accompanies
it. The character of the voters is not staked. I cast my vote, perchance, as I think right; but
I am not vitally concerned that right should prevail. I am willing to leave it to the majority.
— Henry David Thoreau [1]

When people hear “voting” or “election”, the sort of topic referred to by the opening quote
usually pops into their minds. The general election, politicians and their campaigns, ballots and
voting polls. Normative judgements about the character of each candidate and their promises,
critical choices behind the voting screen …and then the usually straightforward computation of
the winner or allocation of seats. However, that is by no means all there is to it! If it were so, then
voting rules would be a dull topic for a computer science thesis, would they not? Fortunately
for us, the world of elections is much richer (and therefore much more intriguing) to study. To
illustrate this claim, let us imagine a few distinct real-life scenarios that can be modelled as an
election:

A few friends wish to find a consensus on which restaurant to eat lunch in.

A championship in the sport of your choosing needs a system of matches and scoring that
would allow for determination of a winner, while also giving its participants a feel of fair play.

A school canteen manager has a list of meals that can be prepared from the ingredients
in stock and a weekly schedule that offers five different meals per day. He needs to figure
out which dishes to serve on which days of the week so that as many children as possible
are willing to eat at least one of the offered meals each day. To make matters worse, since
children can be famously bad at making decisions, it would be optimal if each child fancied
only one or two dishes on the daily menu rather than four or (God forbid!) all five.

A mine security engineer is getting different measurements from carbon monoxide sensors
and needs to decide which sensors to trust.

A neural network used in machine learning algorithms needs to decide between contradictory
predictions of neurons in the outer layer while completing a multi-class classification task.

Rothe [2] describes computational social choice as a relatively recent branch of classical social
choice theory which concerns itself (as the name suggests) mainly with its computational aspects.

1



2 Introduction

Since our technological capabilities have grown significantly over the past few decades, the re-
search interest in computational experiments grew with it. When running such experiments,
we usually work with a collection of datasets. Each dataset represents one particular election
instance—it contains all the votes cast in that election.

In order to then interpret the experimental results, it is important to think about how the
space of all possible elections looks like. For example, we may test an approximation algorithm
and report its accuracy and computation time. However, it is possible we inadvertently tested
it only on a small subsection of the election space and our algorithm achieves significantly worse
results in real-life use as a result. Another similar example would be testing data for a machine
learning model. If the training data does not contain any elections from a particular subspace,
then the model will poorly classify such elections in the test data. To counter this, we first need
a way of conceptualizing the election space, which is a complex task. Distance metrics between
election datasets and their projection onto a plane called maps of elections by Szufa et al. [3]
and Boehmer et al. [4] aim to achieve precisely that.

The thesis has the following aims:

Describe different voting systems, their strengths, and their weaknesses.

Familiarize yourself with the topic of maps of elections and describe the current state of the
art.

Design and implement a distance metric between elections which can deal with elections that
have a differing number of candidates. Test this metric on synthetic datasets and optionally
on real-life datasets (for example from preflib.org [5]). Discuss maps generated using this
metric.

Optionally, explore the possibilities of a distance metric based on election features and discuss
the results.

The thesis is structured as follows. The first chapter is dedicated to some of the basic building
blocks of computational social choice—elections, voting and voting systems. The second chapter
describes all the components that are required to make maps of elections—statistical cultures
for synthetic data generation, distance metrics and embedding algorithms. Finally, the third
chapter discusses the various distance metrics we propose—their definitions, implementations
and experimental results.

1.1 Mapel Package
Mapel1 is an ecosystem of Python packages whose development was started by Szufa et

al. [3]. It focuses on topics of computational social choice, mainly on maps of elections [6], stable
marriages [7] and stable roommates [8] problems. It has been in continuous development since
2020 and it is used mainly to visualize and analyze election datasets. I have worked with its
subsection called mapel-elections [6] and a majority of the code created for this thesis was
made with the intention to be integrated into Mapel. As of the submission of this thesis, I have
contributed to the package with 3 successful pull requests—a table of my commits can be found
in Appendix. The rest of my code will be gradually integrated into Mapel in the near future.

1.2 Acknowledgements
This thesis is part of a larger project called Distances Between Top-Truncated Elections of

Different Sizes. A paper of this name is scheduled to be submitted to the IJCAI 2024 conference
1https://github.com/szufix/mapel

https://github.com/szufix/mapel
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in mid January 2024. My co-authors are Piotr Faliszewski, Tomasz Wąs, Stanisław Szufa and
Pierre Nunn. In this thesis, I present my own work done for this project. Since (unlike IJCAI
conference) there is no strictly enforced page limit, I take the opportunity to discuss all my
material at length, including the “blind alleys”, less interesting results, and my implementation
in code. To make my experiments runnable, I have included the full Mapel package including
my code and the code of my co-authors which I build upon. A description of which parts of code
were done by me and how to run the experiments can be found in Appendix.

In researching this topic, I was supported by FIT CTU’s summer program for undergraduate
researchers called Výlet 2023.

1.3 Preliminaries
Let R be the set of real numbers, R+ be the set of non-negative real numbers, and N be the

set of natural numbers2. For a positive integer m, we write [m] to denote the set of integers from
1 to m. Given two sets A and B such that |A| = |B|, we denote the set of all bijections from A
to B as Φ(A,B).

An undirected graph is a pair Gu = (V,E), where V is a set of vertices and E is a collection
of edges between these vertices, such that for every distinct pair of vertices u and v, the edge
between them is denoted {u, v}. A directed graph is a pair Gd = (V,E), where V is a set of
vertices and E is a collection of edges between these vertices, such that for every distinct pair
of vertices u and v, the edge between them is denoted either (u, v) or (v, u) depending on its
orientation3. If every edge has a real number r corresponding to it as its weight, the graph
is called edge weighted.

A partition of a set V is a collection of sets V1, . . . , Vn such that V1 ∪ V2 ∪ . . . ∪ Vn = V and
for all i, j ∈ [n], i ̸= j it holds that Vi ∩ Vj = ∅.

Let x = (x1, . . . , xt) and y = (y1, . . . , yt) be two vectors from Rt
+ whose entries sum up to 1.

The Earth mover’s distance4 between x and y, denoted EMD(x, y), is defined as the lowest total
cost of operations that transform vector x into vector y. Each operation is of the form “subtract
δ from position i and add δ to position j” and costs δ · |i− j|. Such an operation is legal if the
current value at position i is at least δ [10].

We adopt the following distance and similarity definitions from the work of Deza et al. [11].
We write cos(x, y) to denote the cosine similarity between vectors x and y. Given that x · y
denotes the dot product between these vectors and ∥x∥ denotes a norm of vector x, we define
the cosine similarity as such:

cos(x, y) =
x · y

∥x∥∥y∥

We write ℓ1(x, y) to denote the ℓ1 distance (also called the Manhattan distance) between vectors
x and y. It is defined as follows:

ℓ1(x, y) =

t∑
i=1

|xi − yi|

We write ℓ2(x, y) to denote the ℓ2 distance (also called the Euclidean distance) between vectors
x and y. We define it as:

ℓ2(x, y) =

t∑
i=1

(xi − yi)
2

Let R ⊆ C2 be a binary relation over a set C.
2We do not consider 0 to be a natural number.
3Given the edge (u, v), v is called the head vertex and u is called the tail vertex of this edge.
4The earth mover’s distance was defined by Rubner et al. [9] as a distance between two distributions. It has

wide use in pattern recognition, image processing, and many more.



4 Introduction

R is connected if it holds that ∀a, b ∈ C, a ̸= b : aRb ∨ bRa.

R is transitive if it holds that ∀a, b, c ∈ C : aRb ∧ bRc⇒ aRc.

R is asymmetric if it holds that ∀a, b ∈ C : aRb⇒ ¬(bRa).

R is antisymmetric if it holds that ∀a, b ∈ C : (aRb ∧ bRa) ⇒ a = b.

R is reflexive if it holds that ∀a ∈ C : aRa.

R is irreflexive if it holds that ∀a ∈ C : ¬(aRa).

Binary relation R over a set C is called a partial order if it is reflexive, antisymmetric and
transitive. The pair (C,R) is then called a partially ordered set. Two elements a, b ∈ C are
comparable if it holds either aRb or bRa. We say that R is a total order over C if every pair of
elements form C is comparable.

Given two vectors x = (x1, . . . , xt) and y = (y1, . . . , yt), we denote the arithmetic average
of each one’s elements as x̄ and ȳ, respectively. Their Pearson Correlation Coefficient (PCC)
is defined as follows [3]:

PCC(x, y) =

∑t
i=1(xi − x̄)(yi − ȳ)√∑t

i=1(xi − x̄)2
∑t

i=1(yi − ȳ)



Chapter 2

Elections and Voting Rules

…in which we describe the building blocks that elections and voting rules are made of.

This chapter is structured as follows. First, we provide basic terminology used in the field
of computational social choice. Second, an overview of the most interesting voting rules, their
classification, and their properties are presented. Finally, the use of voting rules in AI applications
and the ramifications they are guaranteed to have are discussed. The structure of this chapter
and the definitions provided are based on Rothe [2]. The notation is adopted from Szufa et al. [3]
and Boehmer et al. [4].

On an intuitive level, an election may be conceptualized as a set of decision-making agents,
the voters, expressing their preferences over a set of alternatives, the candidates. Formally [3]:

▶ Definition 2.1 (Election). An election E is an ordered pair (C, V ), where C = {c1, . . . , cm}
is the set of candidates and V = {v1, . . . , vn} is the set of voters. Let ζ be a bijection between
voter names and votes, which means that each voter casts exactly one vote. Both the voter and
their vote are denoted by vi, with their distinction clarified when necessary1.

This thesis always considers elections whose candidates set and voters set are not empty.
It is worth noting that the literature sometimes uses the term “alternative” as a synonym to
“candidate”, the term “ballot” as a synonym to “vote” and the term “election profile” or simply
“profile” as a synonym to the “set of votes” (with respect to a given set of candidates). What
is a vote may change depending on the voting system used. This thesis deals with voting rules
that require one of the following types of votes:

Each voter submits a full ranking of all the candidates from most to least desirable one, called
an ordinal preference.2 An election consisting of these votes is called an ordinal election.

▶ Definition 2.2 (Preference Relation ≺). The preference relation ≺ is a relation over
candidates that is connected, transitive, and asymmetric.3 Let a and b be candidates. The
term a ≺ b denotes that candidate a is preferred to candidate b and v : a ≺ b assigns this
preference to voter v.

Additionally, the term a ≺ all denotes that candidate a is preferred to all other candidates;
again, in the case of v : a ≺ all, this preference is assigned to voter v. Analogously, all ≺ a

1In this thesis, we usually use them interchangeably.
2In the literature, the term preference profile or preference order is sometimes used instead of “ordinal prefer-

ence”.
3Rothe [2] ascribes these properties to the symbol for a strict linear order (>), as he uses it throughout his

book. Since we use the preference relation ≺ instead, we took the liberty to extend Rothe’s definition to it.

5
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indicates that all other candidates are preferred to candidate a and in the case of v : all ≺ a,
this preference is assigned to voter v.The set of all total orders over C is denoted by L(C).

Each vote consists of two sets of candidates—the approved and the disapproved ones. There
is no further preference ordering within these two sets. Voters are not allowed to express
indifference about any candidate.

A combined approach, each vote consists of both a preference order and sets of approved and
disapproved candidates. Depending on the rule, voters may be required to rank all candidates
or only approved ones in their ordinal preference.

Note that the votes need not be defined in a way that disallows the voter to express indifference
about any of the candidates or to rank two candidates the same.4 In fact, there is a considerable
body of literature on the topic of incomplete preferences and the properties and challenges
such elections have when we apply voting rules on them (see, e.g., [12] and references therein).
However, this caveat is beyond the scope of this thesis.

Rothe [2] proposes to formalize voting rules and social welfare as functions that take an
election as its argument:

▶ Definition 2.3 (Voting Rule). A voting rule is a function that maps the election to a set of
its winners:

f : {(C, V ) | (C, V )is an election} −→ 2C .

The function’s domain is the space of all possible elections, its range is the powerset of the set of
candidates. In principle, it is possible that f(C, V ) = ∅.

▶ Definition 2.4 (Social Welfare Function). A social welfare function maps the election to
a complete ranking of all candidates:

f : {(C, V ) | (C, V )is an election} −→ L(C).

The term f(C, V ) : a ≺ b signifies that given the election (C, V ) and candidates a, b, the social
choice function f produces an ordering that prefers candidate a to candidate b.

Instead of a “voting rule”, the term “voting system” is often used as a synonym. Formally,
a voting rule only provides us with a set of winners without any further ordering of the losing
candidates, whereas a social welfare function outputs a preference list over all of the candidates
in C. However, some voting rules already return a complete linear ordering of the candidates
along with the winners (e.g., Kemeny), or they can be easily extended to do so, usually based on
the score they allocate to each candidate (e.g., all scoring protocols). For ease of notation, voting
rules are often treated similarly to the social welfare function in this thesis. When important,
the distinction between them is always clarified.

2.1 Basic Voting Rules
This section describes some basic voting rules. A more thorough overview of voting rules

is provided in Section 2.3. We start with probably the best known voting rule among the public,
the majority voting rule. Formally:

▶ Definition 2.5 (Majority Voting Rule). The majority winner is the candidate who occupies
the top position5 in more than half the votes. In the case of an even number of voters, a weaker

4In case of voters being allowed to be indifferent about candidates, for example, the preference relation ≺
cannot be required to be asymetric, because such a requirement also implies irreflexivity. Clearly, irreflexivity
cannot be satisfied when voters may be indifferent about some of the candidates [2].

5Top position means that the candidate in question is preferred to all other candidates, i.e., a ≺ all for a ∈ C.
Analogously, the bottom position means that all other candidates are preferred to the candidate in question.
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rule called the simple majority may be used. A candidate is a simple majority winner if it is in
the top position in at least half of the votes.

Clearly, since the total pool of top positions is limited to |V |, the majority winner is always
unique if it exists. If it does exist, it is also a simple majority winner (and vice versa if there
is an odd number of voters). If there is an even number of voters, a candidate is a simple majority
winner, but not a majority winner, if and only if it is ranked in the top position by exactly half
of the voters. There may be none, one, or two simple majority winners.6

A different approach to selecting the winner of an election are the pairwise comparisons,
which the Condorcet voting rule uses. In essence, each candidate enters a head-to-head contest
with all other candidates. Formally:

▶ Definition 2.6 (Condorcet Voting Rule). The Condorcet winner is the candidate that is pre-
ferred to every other candidate in a pairwise comparison by more than half of the voters. A weak
Condorcet winner is a candidate that is preferred to every other candidate by at least half of the
voters.

Naturally, every Condorcet winner is also a weak Condorcet winner but not vice versa. Since
the Condorcet winner needs to beat every other candidate in a pairwise comparison, it is always
unique if it exists. Like the majority winner, often the Condorcet winner in fact does not exist.
This situation is then called the Condorcet paradox. In every election, there is none or one
Condorcet winner and none, one or more weak Condorcet winners (see Table 2.1). Analogously,
the candidate who is defeated by every other alternative in their head-to-head contest with
a majority is called the Condorcet loser.

Table 2.1 The profile on the left produces one weak Condorcet winner (candidate a). The profile on
the right produces three weak Condorcet winners (candidates b, c and d).

Number of Votes Preference Order
3 a ≺ c ≺ d ≺ b
2 c ≺ b ≺ a ≺ d
1 d ≺ b ≺ a ≺ c

Number of Votes Preference Order
3 b ≺ c ≺ d ≺ a
3 c ≺ b ≺ d ≺ a
3 d ≺ b ≺ c ≺ a
3 d ≺ c ≺ b ≺ a

A useful election representation to determine the Condorcet winner is the majority graph.
Formally:

▶ Definition 2.7 (Majority Graph). Let E = (C, V ) be an election. Then the majority graph GE

is an edge weighted directed graph, such that its set of vertices is the set of candidates C and for
every two candidates a, b, (a, b) is an edge in this graph if and only if candidate a is preferred
over candidate b by at least half of the voters. The weight of this edge is equal to the difference
between the number of voters who voted a ≺ b and the number of voters who voted b ≺ a.

To determine the Condorcet winner, one may run the Kosaraju’s algorithm7 on the majority
graph and then find the sink8 component. If there is only one vertex present in this component,
then the corresponding vertex is the Condorcet winner. If there are multiple vertices in the sink
component, then this component is called a Condorcet top cycle and it means that there is no
Condorcet winner at all.

In a sense, majority and Condorcet voting represent a very different view of making a group
decision; thus both giving rise to distinct families of voting rules. In majority voting, the position

6The only case when two simple majority winners emerge is when one candidate is ranked first in exactly one
half of the votes and another candidate is ranked first in the other half.

7The Kosaraju’s algorithm, invented in 1978 by Sambasiva Rao Kosaraju, finds the strongly connected com-
ponents in an oriented graph [13].

8The sink component is a strongly connected component in an oriented graph that has no edges leaving it [13].
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of the candidates in the votes in their entirety matters the most. This gives rise to the family of
scoring protocols discussed in Subsection 2.3.1.

In contrast, the family of pairwise comparisons based on Condorcet voting examines candi-
dates in head-to-head contests with each other. Then it aggregates the results of these contests
to determine the winner, again discussed in detail in Subsection 2.3.2.

Although both these rules are fundamental enough to examine whether other voting rules
comply with the winners these two would have chosen, perhaps their biggest flaw is that in
practice they often do not select any winner at all. One would argue that especially in such
uncertain cases we would profit the most from having a robust voting rule to find a societal
consensus. Thus, both majority voting and Condorcet voting cannot be considered the ultimate
voting rules, but merely a stepping stone.

The last rule to be discussed in this section is the Kemeny voting rule:

▶ Definition 2.8 (Kemeny Voting Rule). Let E = (C, V ) be an election, u, v ∈ V and a, b ∈ C.
The distance between candidates a and b with respect to u and v is denoted du,v(a, b):

du,v(a, b) = 0 ⇐⇒ both u and v agree either on a ≺ b or b ≺ a.

du,v(a, b) = 2 ⇐⇒ (u : a ≺ b ∧ v : b ≺ a) or vice versa.

du,v(a, b) = 1 ⇐⇒ (u : a ≺ b ∨ u : b ≺ a) and v is ambivalent about the two candidates, or
vice versa.9

The distance between u, v ∈ V is denoted as follows:

dist(u, v) =
∑

{a,b}∈(C2)

du,v(a, b)

Then the Kemeny score of a preference order r ∈ L(C) can be computed:

KemenyScore(C,V )(r) =
∑
v∈V

dist(r, v)

A preference order with the smallest Kemeny score is selected as the winning ordering and its
top candidate is a Kemeny winner.

Clearly, the Kemeny voting rule belongs to the family of pairwise comparisons. It is also
a social welfare function rather than a simple voting rule, since it outputs a complete ranking on
all candidates.

2.2 Properties of Voting Rules

In order to give evidence-based judgments about quality of voting rules, we first define the
specific properties that the examined voting rules may or may not have.10

9This case cannot happen with votes being strict preference orders and it is mentioned only for the sake of
completeness.

10Such classification of voting rules needs to be done with a bit of a disclaimer, though. As Blais [14] correctly
pointed out, when evaluating the quality of a voting rule, there is always some form of normative judgement on
what the desiderata should be. This effect is negligible for the purposes of this thesis, but it is worth to bear in
mind.
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2.2.1 Anonymity and Nondictatorship
A voting rule is considered anonymous when all voters are treated equally, i.e., the rule only

considers the set of votes themselves, not the names of the voters. If we fix the set of votes
and make every voter cast someone else’s vote by changing the naming bijection δ, the voting
rule selects the same winners as before. This property is closely linked with another desirable
feature of voting rules––nondictatorship, i.e., the absence of a dictator. To formally describe this
concept, we first turn to Arrow’s [15] definition of a dictatorial social welfare function:

▶ Definition 2.9 (Dictatorial Social Welfare Function). A social welfare function f is said to
be dictatorial if there exists a voter v ∈ V such that ∀a, b ∈ C, it holds that if v : a ≺ b, then
f : a ≺ b, regardless of the other voters. Voter v is called the dictator.

Rothe [2] transferred this notion to voting rules:

▶ Definition 2.10 (Dictatorial Voting Rule). A voting rule f is dictatorial if there is a voter v
such that for every election (C, V ) where v ∈ V , the preference order of v aligns with f(C, V ),
without regard for preferences of other voters. The voter v is then called the dictator.

Consequently, a voting rule is nondictatorial if none of the voters is the dictator. Majority,
Condorcet, and Kemeny voting rules are clearly all nondictatorial.

2.2.2 Neutrality and Citizens’ Sovereignty
Neutrality is in many ways a property analogous to anonymity, with the difference that it

requires equal treatment of all candidates, not voters. If we fix the set of votes in an election
and permutate the candidate names, winners of the new election will be the candidates who got
assigned names of the previous election winners. Again, the only thing taken into consideration
by the voting rule is the set of votes, not which specific candidate bears which specific name.
A trivial example of a nonneutral voting rule would be the following f : {(C, V ) | a ∈ C} −→ a.
The citizens’ sovereignty criterion requires that for every candidate, there exists a set of votes
such that the election rule selects that candidate as a winner.

▶ Theorem 2.11. Every neutral voting rule that does not always return an empty set as the set
of winners also fulfills the citizens’ sovereignty criterion.

Proof. Since there exists a set of votes that elects a winner and candidate names are irrelevant
because of neutrality, we simply need to permutate the candidate names to obtain a winning
profile for any other candidate. ◀

Majority, Condorcet, and Kemeny voting rules are all neutral and citizen sovereign.

2.2.3 Condorcet and Majority Criteria
A (simple) majority-consistent voting rule always selects the (simple) majority winner when-

ever it exists, i.e., it respects the (simple) majority winner. Similarly, a (weak) Condorcet-
consistent voting rule always selects the (weak) Condorcet winner whenever there is one, i.e., it
respects the (weak) Condorcet winner.

The Condorcet voting rule respects the Condorcet winner, but not the majority winner.
Conversely, the majority voting rule respects the majority winner, but not the Condorcet winner.
The Kemeny voting rule is Condorcet consistent, but not majority consistent.
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2.2.4 Consistency and Pareto Consistency
Let E = (C, V ) be an election and f a voting rule. The rule f is considered Pareto-consistent

if ∀a, b ∈ C, a ≺ b in all votes, then also f(E) : a ≺ b.
Let V1, V2, . . . , Vp be a partition of V . Let E1, . . . , Ep be elections such that E1 = (C, V1),

E2 = (C, V2), . . . , Ep = (C, Vp). The rule f is considered consistent if, for any partition choice,
it holds:

∀a ∈ C : f(E1) = a ∧ f(E2) = a ∧ . . . ∧ f(Ep) = a =⇒ f(E) = a

All voting rules discussed in this thesis are Pareto consistent but not all are consistent. Majority
voting rule is consistent, while Condorcet voting rule is not.

When it comes to Kemeny voting rule, the situation gets a bit tricky because Kemeny behaves
like a social welfare function. It is the only voting rule that is neutral, consistent, and compliant
with the Condorcet criterion at the same time, which was proven by Young and Levenbrick [16].
This, however, only holds for the definition of consistency in which we require that the Kemeny
rule produces the same preference order on all partitions, not only the same winning candidate.
If the winning preference order in any of the partitions differs from the rest and only the winning
candidate is the same, there is no guarantee that this candidate will win the entire election. This
situation is shown in Table 2.2. This election profile was taken from the Kemeny Wikipedia
page [17].

Table 2.2 The profile P1 (on the left) and the profile P2 (on the right) form a partition of P, i.e.,
P1 ∩ P2 = ∅ and P1 ∪ P2 = P . P1 produces a as a Kemeny winner with the winning preference order
being a ≺ b ≺ c. P2 produces also a as a Kemeny winner, but the winning preference order is a ≺ c ≺ b.
Even though both P1 and P2 select the same winning candidate, their output preference order differs,
therefore no claims can be made about whether Kemeny(P ) = a or not based on consistency. Indeed,
P produces b as a Kemeny winner, with the output preference order being b ≺ a ≺ c, which differs from
the results of the partition.

Number of Votes Preference Order
7 a ≺ b ≺ c
6 b ≺ c ≺ a
3 c ≺ a ≺ b

Number of Votes Preference Order
8 a ≺ c ≺ b
7 b ≺ a ≺ c
7 c ≺ b ≺ a

2.2.5 Monotonicity and Homogentity
Let E = (C, V ) be an election, v ∈ V be a voter, and f be a voting rule. Let E′ = (C, V ′) be

an election such that V ′ = V \ {v} ∪ {u}, where the voter u is created from voter v by copying
its preferences and then moving some candidate a ∈ C to a position closer to the top of the vote
than it previously occupied11. Other candidates remain in the same positions relative to each
other. The rule f is monotonous if it holds:

∀a ∈ C : f(E) = a =⇒ f(E′) = a.

A more restrictive requirement would be the strong monotonicity. It is defined analogously to
monotonicity, but relative positions of all candidates apart from a do not need to remain the
same in the new election. For each vote, it only needs to hold that the candidates who were
ranked behind a in the original election are still ranked behind a in the new election. Every rule
that is strongly monotonous is also monotonous.

Let E′′ = (C, V ′′) be an election such that V ′′ is created from V by multiplying the number
of occurrences of each vote by the same factor k, i.e., k|V | = |V ′′|. A rule f is homogeneous if it

11For example, given C = {a, b, c, d}, vote b ≺ c ≺ a ≺ d could become b ≺ a ≺ c ≺ d.
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holds:
∀a ∈ C : f(E) = a =⇒ f(E′′) = {a}

2.2.6 Participation and Twin Paradox
Let E = (C, V ) and E′ = (C, V ′) be elections such that V ′ = V ∪ {u} and u /∈ V . A voting

rule f satisfies the participation criterion if it holds that ∀a, b ∈ C, if f(E) : a ≺ b and v : a ≺ b,
then f(E′) : a ≺ b. In other words, when a voter casts their vote, it will always either make
the resulting preference order more aligned with the voter’s preferences or it will not change the
resulting preference order at all. However, it cannot make the resulting preference order less
favorable for the voter. The situation when any voter achieves a better result for themselves by
not casting their vote is known as the no-show paradox (this term was introduced by Brams and
Fishburn [18]).

A voter w is called a twin of voter v if their votes are identical12. Let E′′ = (C, V ′′) be an
election such that V ′′ = V ∪{w} and w /∈ V . Let voter w be a twin of voter v ∈ V . Voting rule f
suffers from the twin paradox if, for any pair of candidates a, b ∈ C, it holds that f(E) = a and
f(E′′) = b and w : a ≺ b.

If a voting rule suffers from the twin paradox, it cannot satisfy the participation criterion,
since the twin voters would have been better off not casting their ballots. A voting rule that
does not display the twin paradox is said to be twins welcome compliant.

Felsenthal and Nurmi [19] correctly point out that there are many definitions of properties
similar to the participation criterion described here and the corresponding paradoxes; however,
their thorough discussion is beyond the scope of this thesis.

2.2.7 Independence of Irrelevant Alternatives and Inde-
pendence of Clones

Let there be an election E = (C, V ) and a voting rule f . Let a, b ∈ C be a pair of candidates.
Election E′ = (C ′, V ′) is created as such: C ′ = C ∪ {c}, c /∈ C. The votes from V are copied
into V ′ and the candidate c is inserted into each vote in V ′ at a random position. This means
that the relative position of all candidates apart from {c} with respect to each other is the same
in both elections. The independence of irrelevant alternatives (IIA) requires that if f(E) : a ≺ b
then also f(E′) : a ≺ b.

No preference-based voting system presented in this thesis satisfies IIA13. When it comes
to approval-based voting, while intuitively less likely to violate the IIA based on the notion
that approval or disapproval of a candidate has little to do with other candidates present in
the election, Ohtsubo and Watanabe [20] showed that this assumption deserves a considerable
amount of scrutiny. They studied how the so-called contrast effect alters voter judgement of
candidates based on their mental comparison with a new candidate, thus making approval voting
systematically non compliant with IIA14.

The clone of candidate a is any candidate c that is right next to a in every vote. It is important
to note that since a and c are practically identical, a does not beat its clone in every vote—the

12In accordance with intuition, identical votes do not differ in preference ordering of any pair of candidates and
their approval and disapproval sets are the same (if applicable).

13In fact, no preference based voting system with |C| ≥ 3 can be simultaneously nondictatorial, Pareto consistent
and IIA. The author of this impossibility theorem is Kenneth J. Arrow, and thus the theorem bears his name. [15]

14An example of the contrast effect could be when Annemarie is trying to decide what she wants for lunch.
At first, she finds an apple and a banana in her backpack and decides that she will have the apple and save the
banana for dinner. Then her friend Clara comes over and gives her a piece of banana bread. Annemarie decides
to save the slice for later because she does not want to eat sweets for lunch; however, now that she is already
thinking about bananas, she has started to prefer the banana over the apple. So in the end, she eats the banana
and saves the apple for later. Therefore, the introduction of a new candidate (banana bread) made her change
the judgement from apple ≺ banana to banana ≺ apple [20].
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ordering a ≺ c is just as likely as the ordering c ≺ a. The only thing that is guaranteed is that
there is no other candidate between these two. Let there be an election E = (C, V ), a ∈ C,
a voting rule f , and f(E) = {a}. Rule f is independent of clones if ∀b ∈ C, b ̸= a, b cannot be
made a winner by adding clones to E.

Independence of clones is tricky to assess for the majority voting rule. By adding a clone of
the majority winner, it is possible to either make both the original winner and the clone weak
majority winners, make the clone the majority winner or keep the original majority winner. No
other candidate, however, can benefit from addition of a clone than the clone candidate itself.
Neither Condorcet [21] nor Kemeny voting rules are independent of clones.

2.2.8 Resoluteness
Another highly desirable property is resoluteness. A voting rule is considered resolute if for

every election, there exists always exactly one winner; this single winning candidate is then called
the unique winner of the election. All voting rules discussed in this thesis are not resolute unless
they implement some sort of tie-breaking within its structure15. To illustrate this, consider the
trivial case of two candidates, and all voters’ preferences split into two groups of equal size, with
one preferring the first candidate and the other one the other candidate. There is no reasonable
voting rule which is both neutral and nondictatorial that produces a unique winner of this election
without tie-breaking of some sort. It may be part of the voting rule itself, therefore appearing to
have no need for additional tie-breaking, but at that point, it is just a difference in nomenclature.
Majority, Condorcet, and Kemeny voting rules are not resolute.

2.2.9 Strategy-proofness
The notion of a voting rule being resistant to manipulation is expressed by the property

of strategy-proofness. If a voting rule is not strategy-proof, it is susceptible to manipulation.
Casting an untruthful vote (i. e., a vote that does not align with inner preferences of the voter)
or adding a new candidate for the purpose of changing the winners of the election are the two
most significant ways to influence voting rules discussed in this thesis. If an election is strategy-
proof, then it naturally follows that it also fulfills the participation criterion—if no strategic
voting is possible, then every voter achieves the best result for themselves if they attend the
election and cast their truthful vote. Unfortunately, all voting rules described in this thesis do
not satisfy the strategy-proofness requirement16. However, it is useful to know how “sure” the
winner’s victory was, with the idea that more secure victory means less room to manipulate the
election. To this end, the corresponding metric is defined as follows:

▶ Definition 2.12 (Margin of Victory). With respect to a voting rule f and an election (C, V ),
the margin of victory (MOV) is the smallest number of votes, which, when changed17, would
result in a different set of election winners.

15If |C| ≥ 3, there is no preference-based voting rule that simultaneously satisfies nondictatorship, citizens’
sovereignty, strong monotonicity, and resoluteness. This finding is called the Muller and Satterthwaite impossi-
bility theorem [2, 22].

16Moreover, if |C| ≥ 3, there is no preference-based voting rule that simultaneously satisfies strategy-proofness,
nondictatorship, resoluteness, and citizens’ sovereignty. This fact is often called the Gibbard and Satterthwaite
impossibility theorem [2, 23, 24].

17To change a vote means to generate any other preference order over the candidates and replace the original
vote with it, e.g., a ≺ b ≺ c ≺ d can be changed to a ≺ d ≺ c ≺ b or b ≺ a ≺ d ≺ c or any other preference order
over {a, b, c, d}.
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2.3 Examples of Voting Rules
The following subsections provide a thorough overview of various voting rules, their formal

definitions, and characteristic properties. For each voting rule, the corresponding function is de-
noted by its name, i.e., majority(E) = {a} means that the majority voting rule selected candidate
a as the winner of the election E.

2.3.1 Scoring Protocols
All voting rules in this subsection depend on the so-called scoring vector, denoted α, which

determines how many points a candidate gets for its ranking in the vote. The score of each
candidate is then the sum of points the candidate obtained over all the votes. The candidate
who obtains the highest total score is then a winner of the election. The following voting rules
differ only in which scoring vector they use:

▶ Definition 2.13 (k-Approval). For a fixed 1 ≤ k ≤ m − 1, the first k elements in vector α
are equal to 1 and the remaining elements are equal to 0. Such α is then the k-approval scoring
vector. The 1-approval is more commonly called the plurality voting rule, and (m-1)-approval
is called the veto.

▶ Definition 2.14 (Borda Count). The vector α is defined as follows: α = (m−1,m−2, . . . , 1, 0).

The computational complexity of both k-approval and Borda count is in the P18 class, since
summing the partial scores over each vote and computing the result is easily done in polynomial
time. Plurality voting complies with majority criterion, while Borda does not.

The term Borda paradox refers to a situation when a Condorcet loser is elected by some
voting rule as the winner. It is a bit of misnomer, though, as it never occurs in the Borda voting
rule. However, it occurs in plurality voting, as illustrated in Table 2.3.

Table 2.3 Voting profile in which candidate a is a plurality winner and a Condorcet loser.

Number of Votes Preference Order
4 a ≺ b ≺ c
3 b ≺ c ≺ a
3 c ≺ b ≺ a

No scoring protocol can be independent of clones — whenever we introduce a clone of the
election winner, it is going to place above the previous winner in some of the votes, essentially
robbing the previous winner of some portion of points. Because of that, it can allow another
candidate to take over. An example of such manipulation in plurality voting is shown in Table 2.4.

Table 2.4 The election profile on the left produces candidate a as a plurality winner. When a clone
of a denoted c is added, the election profile on the right produces b as a plurality winner.

Number of Votes Preference Order
4 a ≺ b
3 b ≺ a

Number of Votes Preference Order
2 a ≺ c ≺ b
2 c ≺ a ≺ b
3 b ≺ a ≺ c

18In complexity theory, a decision problem is in P class if it is solvable in polynomial time. [13] An equivalent
definition is that it can be solved using a deterministic Turing machine in polynomial time. In contrast, a deci-
sion problem is said to be NP-hard if it is solvable using nondeterministic Turing machine in polynomial time.
A problem is NP-complete if it is NP hard and it itself is in the NP class. [2]
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In contrast, all scoring protocols naturally obey monotonicity for the identical reason — by
moving a candidate up in some of the votes, he can only gain points and his opponents can only
lose points.

2.3.2 Pairwise Comparisons
The core idea of the voting systems discussed in this subsection is pairwise comparisons

introduced by the Condorcet voting rule in Section 2.1. Unlike this rule however, the following
rules always produce a set of winners, even in cases where no Condorcet winner exists.

▶ Definition 2.15 (Copelandα Voting Rule). Let α ∈ [0, 1] be a parameter. For each pairwise
comparison, the candidate that receives the majority of votes gains 1 point. In case of a tie, both
candidates gain α points. The candidate who obtains the highest total score is then a winner of
the election.

Dodgson and Young voting rules are quite similar to the Kemeny voting rule (introduced
in Section 2.1) in the way they approach the election. If there exists a Condorcet winner, it
is elected. If not, then the candidate who is “closest” to becoming a Condorcet winner is elected
instead, with the definition of a distance metric being different for each rule.

▶ Definition 2.16 (Dodgson Voting Rule). The Dodgson score of a candidate is the minimum
number of swaps between adjacent candidates in the votes so that the candidate becomes the
Condorcet winner. A candidate who obtains the lowest total score is then a winner of the
election.

Given an election E = (C, V ) and a candidate c, it is PNP
|| -hard19 problem to decide whether

Dodgson(E) = {c}, which was proven by Hemaspaandra, Hemaspaandra, and Rothe. [2, 25]
The Dodgson voting rule is neither monotonous, nor consistent, or homogeneous.

▶ Definition 2.17 (Young Voting Rule). The Young score for each candidate is equal to the
minimum number of votes that need to be deleted from V to allow that candidate to become the
Condorcet winner. A candidate with the lowest Young score wins the election.

Despite being monotonous, the Young voting rule is neither homogeneous nor consistent. It
is also susceptible to the twin paradox, as shown in Table 2.5. The example profiles were created
based on Felsenthal [26]. Given an election E = (C, V ) and a candidate c, it is PNP

|| -complete
problem to decide whether Young(E) = {c}.

▶ Definition 2.18 (Maximin Voting Rule). Let E = (C, V ) be an election and a and b be
a pair of candidates. The number of voters that have the preference a ≺ b is denoted by N(a, b).
The maximin score of a is computed as follows:

MaximinScore(a) = min
a ̸=b

N(a, b)

The candidate with the highest maximin score wins the election.20

19A decision problem is PNP
|| -hard if it can be decided in polynomial time using a deterministic Turing machine

that has access to an NP oracle and asks it the queries in parallel. Therefore, one query cannot depend on the
oracle’s answer to another query. An example of NP oracle implementation is a SAT solver that is given a set of
formulas and decides whether they are satisfiable or not. A problem is PNP

|| -complete if it is PNP
|| -hard and it

is in PNP
|| class.

20The maximin voting rule is also frequently called the Simpson voting rule.
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Table 2.5 The profile on the left produces candidate e as a Young winner. When 9 clones of the
vote e ≺ d ≺ a ≺ b ≺ c are added, the profile on the right produces candidate d as a Young winner, even
though the added voters have the preference of e ≺ d.

Number of Votes Preference Order
11 b ≺ a ≺ d ≺ e ≺ c
10 e ≺ c ≺ b ≺ d ≺ a
10 a ≺ c ≺ d ≺ b ≺ e
2 e ≺ c ≺ d ≺ b ≺ a
2 e ≺ d ≺ c ≺ b ≺ a
2 c ≺ b ≺ a ≺ d ≺ e
1 d ≺ c ≺ b ≺ a ≺ e
1 a ≺ b ≺ d ≺ e ≺ c
1 e ≺ d ≺ a ≺ b ≺ c

Number of Votes Preference Order
11 b ≺ a ≺ d ≺ e ≺ c
10 e ≺ c ≺ b ≺ d ≺ a
10 a ≺ c ≺ d ≺ b ≺ e
2 e ≺ c ≺ d ≺ b ≺ a
2 e ≺ d ≺ c ≺ b ≺ a
2 c ≺ b ≺ a ≺ d ≺ e
1 d ≺ c ≺ b ≺ a ≺ e
1 a ≺ b ≺ d ≺ e ≺ c
10 e ≺ d ≺ a ≺ b ≺ c

2.3.3 Approval Voting
Approval-based voting was described in great detail by Brams and Fishburn [18]. They assert

that it increases the voter turnout and other empirically desirable traits.

▶ Definition 2.19 (Approval Voting Rule). The approval score of each candidate is the number
of voters who placed the said candidate in their set of approved candidates. The candidate with
the highest score wins the election.

2.3.4 Voting Systems with Multiple Stages
Some voting rules require multiple stages to select a winner. Due to their iterative nature,

their definitions usually strongly resemble an algorithm.

▶ Definition 2.20 (STV). In the first round, a check is made to see whether there exists
a majority winner. If there is one, it is selected as the STV winner and the process stops. If
not, then the candidate with the least number of top positions is removed from all votes. Then
another round is held to see whether a majority winner exists. The rule continues to iterate until
the set of winners ceases to be empty, at which point it stops and returns the winners.

A rather interesting property of STV is that while in theory, of course, prone to strategic
voting, Bartoldi and Orlin [27] described that it is computationally resistant to manipulation,
regardless of whether the manipulator learns all the other votes. Thus, while STV is not mono-
tone (see Table 2.6), Bartoldi and Orlin suggest that this flaw is more or less “covered up” by
the inherent computational resistance to manipulation. This claim was experimentally tested
by Gallagher [28], who concluded that of 1,326 examined cases of real-life data, violation of
monotonicity occurred in approximately 1.5 % of them.

Another theoretical (and undesirable) property of STV that rarely affects the rule’s behavior
on real-life datasets is the no-show paradox, which was experimentally shown by Mohsin [29].
Mohsin showed this result also for Copeland and maximin voting rules.

▶ Definition 2.21 (Bucklin Voting rule). The rule proceeds in stages with a scoring vector αi

in the i-th round. The scoring vector αi has 1 in the first i positions and 0 in all the remaining
positions.
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Table 2.6 The election profile on the left produces candidate a as an STV winner in the first round.
When two b ≺ c ≺ a votes are changed to a ≺ b ≺ c by improving position of candidate a, the profile on
the right produces c as an STV winner.

Number of Votes Preference Order
15 a ≺ c ≺ b
3 a ≺ b ≺ c
16 b ≺ c ≺ a
15 c ≺ a ≺ b

Number of Votes Preference Order
15 a ≺ c ≺ b
5 a ≺ b ≺ c
14 b ≺ c ≺ a
15 c ≺ a ≺ b



Chapter 3

Maps of elections

…in which we learn how to project elections onto a planar surface, what such projections mean
and how they may be useful.

When working with election datasets, one might wish to classify them based on their inherent
properties, which would then give them a way to describe the space of all possible elections. An
algorithm that generates a uniform distribution of synthetic data covering the whole election
space would be of great use for, e.g., benchmarking approximation algorithms or studying the
generative models for synthetic data themselves, among many other uses. With this final goal in
mind, a possible approach is to gather a large number of datasets, define a distance metric be-
tween two elections, compute this distance for each election pair, and then embed these distances
into a 2D space, making a planar projection. The resulting plot is called a map of elections and
was proposed by Szufa et al. [3] and Boehmer et al. [10]; it offers valuable information on how
the election space may be conceptualized.

This chapter describes all the major components for making a map of elections, especially
various kinds of distance metrics with their strengths and weaknesses and generative models for
synthetic data. The notation and definitions used in this chapter were adopted from Szufa et
al. [3] and Boehmer et al. [10].

3.1 Distance Metrics
A distance metric is defined as follows:

▶ Definition 3.1 (Distance). Let X be a set. We say that a function d: X×X −→ R is a distance
over X if ∀x, y, z ∈ X all of the following holds:

non-negativity: d(x, y) ≥ 0,

identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y,

symmetry: d(x, y) = d(y, x),

triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

If a metric does satisfy all the criteria apart from the identity one, it is called a pseudodistance
instead. Faliszewski et al. [30] relax the identity condition so that only d(x, x) = 0 is required,
and keep the distance nomenclature for the sake of simplicity. This thesis adopts a similar
approach.

17
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3.1.1 Distances Between Voters
In order to talk about distances between elections, we first need to define distances between

voters [30]:

▶ Definition 3.2 (Discrete Distance). Let E = (C, V ) be an election. For voters u, v ∈ V , the
discrete distance ddisc(u, v) is 0 if u = v and 1 otherwise.

▶ Definition 3.3 (Swap Distance). Let E = (C, V ) be an election. For voters u, v ∈ V , the
swap distance dswap(u, v) is the number of swaps of adjacent candidates that must be performed
to transform u into v.

For a candidate c ∈ C, his position in a vote v ∈ V is denoted as posv(c). If v : c ≺ all, then
posv(c) = 1 and if v : all ≺ c, then posv(c) = |C|.

▶ Definition 3.4 (Spearman distance). Let E = (C, V ) be an election. For voters u, v ∈ V , the
Spearman distance dSpear(u, v) is equal to

∑
c∈C | posv(c)− posu(c)|.

3.1.2 Isomorphic Distances
Szufa et al. [3] describe the idea behind the isomorphic distance of two elections as finding of

a mapping between candidates and voters of the elections such that the sum of distances across
all individual matched pairs of voters is minimal. Either the swap distance or the Spearman
distance can be used for computing the distance between votes, giving rise to the isomorphic
distances ID-dswap and ID-dSpear, formally defined as follows:

▶ Definition 3.5 (Swap Isomorphic Distance and Spearman Isomorphic Distance). Let there
be two elections E1 = (C1, V1) and E2 = (C2, V2) such that |C1| = |C2| and |V1| = |V2|. Let
δ : C1 −→ C2 and σ : V1 −→ V2 be two bijections on the candidates’ and the voters’ names,
respectively.1 For D ∈ {dswap, dSpear} we define2:

dδ,σD -ID(E1,E2) =
∑

v1∈V1

dD(δ(v1), σ(v1)).

The isomorphic distance dD-ID(E1,E2) denotes the minimum dδ,σD -ID(E1,E2) taken over all δ
and σ.

While these distances are very appealing on an intuitive level, their computational complexity
renders them unusable for our purposes. Moreover, they require both the number of voters and
candidates to be equal across all elections. This poses a significant problem when applying these
metrics to a collection of real-life datasets, in which this is rarely the case. The solution to this
is twofold. In the case of the same number of candidates and differing numbers of votes, we will
denote ℓ as the minimum number of votes across all the elections studied. We can then delete
at random votes from elections for which |V | > ℓ until for each election, we have |V | = ℓ. In the
case of differing numbers of candidates, an analogous approach of deleting a candidate selected
at random from all the votes until each election has the same number of candidates may be
deployed. Although rather easy to execute, the deletion approach is highly undeterministic and
causes a great deal of data distortion and misinterpretation, making it unusable when comparing
multiple elections with largely differing number of candidates. The positionwise and pairwise
distances introduced in the following subsection, however, offer an approach to compare datasets
with differing number of votes.

1Szufa [3] stresses that the bijection is not over votes but voter names, meaning that voters with the same
preference order in V1 can be mapped to different voters in V2.

2Note that we overload our notation in the following way: if v = (c1, c2, . . . , cm), then we write δ(v) to denote
(δ(c1), δ(c2), . . . , δ(cm)).
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3.1.3 Pairwise and Positionwise Distances
Given an election E = (C, V ), position i ∈ [|C|], and candidates a and b, the fraction of voters

in V who prefer a over b is denoted as ME(a, b) and the fraction of voters in V that rank a on
the i-th position is denoted as ψE(a, i). Then a candidate distribution vector, denoted ψE(a),
is defined as follows:

ψE(a) = (ψE(a, 1), ψE(a, 2), . . . , ψE(a, n)).

Szufa et al. [3] define positionwise and pairwise distances as follows:

▶ Definition 3.6 (Positionwise Distance). Let E1 = (C1, V1) and E2 = (C2, V2) be two elections
such that |C1| = |C2|. Let δ : C1 −→ C2 be a bijection. We define

δ-POS(E1, E2) =
∑
c∈C1

EMD(ψE1
(c), ψE2

(δ(c))).

The positionwise distance between elections E1 and E2, denoted POS(E1, E2), is the minimum
of the δ-POS(E1, E2) values, taken over δ.

▶ Definition 3.7 (Pairwise Distance). Let E1 = (C1, V1) and E2 = (C2, V2) be two elections
such that |C1| = |C2|. Let δ : C1 −→ C2 be a bijection. We define

δ-PAIR(E1, E2) =
∑

(c,d)∈C1×C2

∣∣ME1(c, d)−ME2(δ(c), δ(d))
∣∣.

The pairwise distance between elections E1 and E2, denoted PAIR(E1, E2), is the minimum value
of the δ-PAIR(E1,E2) values, taken over δ.

Again, note that while the number of voters need not be the same across all elections for
these distances, it is still required that the number of candidates remains the same across all
elections. While the pairwise distance is still NP hard to compute, the positionwise distance, on
the other hand, can be computed in polynomial time, which is why Szufa et al. [3] and Boehmer
et al. [4] focus on it. It was also used by Faliszewski et al. [31], Boehmer et al. [32] and Boehmer
et al. [33], among others.

The Mapel package computes the positionwise distance by reducing the election instances to
their corresponding frequency matrices. Instead of trying every possible mapping δ to find the
minimal one, it uses methods from Scipy Python package based on linear programming [34].

▶ Definition 3.8 (Frequency Matrix). Let E = (C, V ) be an election, C = {c1, . . . , cm} be
a set of candidates and V = {v1, . . . , vn}. Given i ∈ [m], let ψE(ci) be the candidate distribution
vector for candidate ci. The frequency matrix corresponding to this election, denoted FE, is an
m×m matrix such that it has vector ψE(ci) in its ith column:

FE = [ψE(c1), . . . , ψE(cm)]

Each element of the frequency matrix has a nonnegative value and each of its column’s elements
sum up to 1.

Computation of the positionwise distance between two elections then boils down to finding
the matching between columns of their frequency matrices such that the sum of Earth mover’s
distances between matched columns is minimal. [3, 4].

Since both positionwise and pairwise distances try all possible candidate matchings and pick
the optimal one, they are both neutral and anonymous—this is an important (and favourable)
feature of these distances, since they can be used to draw maps of synthetic datasets, where the
candidate names carry no inherent meaning, alongside real-life datasets.
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3.2 Generative Models
When generating synthetic data, we need to define a set of rules that the generative model

will use. Such rules are called a statistical culture and usually take the form of an algorithm that
prescribes how to generate vote vi+1 given already generated votes v0, . . . , vi. In this thesis, we
largely use the same statistical cultures as Szufa et al. [3] and Boehmer et al. [4] used to generate
synthetic data.

3.2.1 Impartial Culture and Impartial Anonymous Culture
In the Impartial Culture (IC) model, all votes are sampled uniformly at random, which

means that when we construct the election vote by vote, every possible vote has exactly the
same probability of being added to the election. An extension of this model is the Impartial
Anonymous Culture (IAC), in which every possible voting situation (i.e., the numbers of votes
with a given preference profile) appears with the same probability. This means that when
constructing an election under IAC, the votes that had already been added to the election in
previous iterations are accounted for when computing the probabilities of the next added vote.
Subsequently, IAC generates the election profiles uniformly at random.

3.2.2 Urn Model
In the urn model, the parameter α is introduced to describe the correlation between votes. In

the beginning, the urn contains one copy of each possible vote, i.e., m! votes. In each iteration,
a random vote is taken from the urn, its copy is included in the election, whereupon it is returned
together with αm! of its copies to the urn. If α = 0, then the urn model behaves identically to IC.
If α = 1/m!, the urn model behaves identically to IAC. In general, the higher the α parameter,
the more correlated the votes in an election are. If α = ∞, then a unanimous election is produced.
Szufa et al. [3] point out that out of all the statistical cultures studied in their paper, the urn
model produces elections with largest distances between them, which results in this culture being
the most spread out in their maps. We denote the urn model parameterized by α as Urn(α).

3.2.3 Extreme Points
Boehmer et al. [10] introduced the concept of “extreme points” on the map of elections,

called a compass. Given that m is the number of candidates, these extreme points are special
elections with the following properties:

Identity compass point corresponds to election in which all voters agree on placement of all the
candidates—all the votes are perfect copies of each other. The frequency matrix of such an
election is called the identity matrix. It is denoted as IDm and it is an m ×m matrix with
ones on the diagonal and zeros everywhere else.

Uniformity compass point corresponds to election in which each candidate takes each position
equally often3. The uniformity matrix is denoted as UNm and each of its elements is equal
to 1/m.

Antagonism compass point corresponds to election in which half of the voters have opposite
preferences orders to the other half. The antagonism matrix is denoted as ANm. Given that
rIDm denotes the identity matrix with reversed order of columns, the antagonism matrix
is defined as follows:

ANm =
1

2
IDm +

1

2
rIDm

3This sounds awfully lot like the IC, right?
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Stratification compass point corresponds to election in which all voters agree on one half of the
candidates being preferable to the other half, but on nothing else (i.e., there is no agreement
on preferences within the preferable and nonpreferable group). Assume that m is an even
number. Then the stratification matrix is defined as follows:

STm =

[
UNm/2 0

0 UNm/2

]

Convex combinations of compass point matrices form paths between extreme points. Since
there are four compass points, the corresponding paths are called ANUN, ANID, STID, STUN.

The Mapel package implements also an approximation of these elections, since it sometimes
happens that there is no election which would correspond to the defined extreme matrix. The
approximate compass elections are sampled from real elections which resemble the extreme points
as closely as possible.

3.2.4 Mallows Models
Mallows model has two parameters—a number ϕ ∈ [0, 1] and a central vote v. The model

then generates votes at random such that every vote u has the probability ϕdswap(v,u) to be
generated. If ϕ = 0, then the only vote with non-negative probability of being generated is one
that has zero swap distance from the central vote4. The only such vote is v itself, which means
the election contains only copies of vote v and is unanimous. If ϕ = 1, then the probability of
each vote is the same no matter the exponent5, meaning the model behaves identically to IC. We
denote the Mallows model parameterized by ϕ and a central vote v drawn uniformly at random
as Mallows(ϕ).6

Boehmer et al. [4] introduced a normalised version of Mallows parameterized by rel-ϕ ∈ [0, 1]
rather than ϕ and their work in this field was continued by Faliszewski et al. [35], who introduced
parametrization by norm-ϕ instead of rel-ϕ. Merits of these changes include a more evenly
distributed Mallows elections when drawn on a map. For further details on rel-ϕ and norm-ϕ
definitions and implementations, see e.g., Boehmer et al. [36] and their references.

3.2.5 Single-Peaked Models
To discuss these models, we first need to define the single-peakedness (SP) property [3]:

▶ Definition 3.9 (Single-Peaked Vote). Let C = {c1, . . . , cm} be a set of candidates and let
c1 ◁ c2 ◁ · · · ◁ cm be a strict, total order over C, referred to as the societal axis. Let vote v be
a preference order over C. We say that v is single peaked with respect to ◁ if for each ℓ ∈ [m],
the set of ℓ top ranked candidates according to v forms an interval within ◁. We say that v
is single peaked on a circle if for each ℓ ∈ [m], the set of ℓ top ranked candidates either forms an
interval within ◁ or a complement of an interval.

▶ Definition 3.10 (Single-Peaked Election). Let C = {c1, . . . , cm} be a set of candidates and
let c1 ◁ c2 ◁ · · ·◁ cm be a societal axis. An election is single peaked if there exists a ◁ such that
each voter’s preference order is single-peaked with respect to it. An election is single peaked on
a circle if there exists a ◁ such that each voter’s preference order is single peaked on a circle with
respect to it.

4Indeed, 00 = 1, but 0k = 0 for every k such that k ̸= 0.
5Again, 1k = 1 for every k such that k ≥ 1.
6A slight variation on this is the Bi-Mallows model parameterized in the same way as standard Mallows. The

difference is that half of the votes is reversed after being drawn, i.e., vote a ≺ b ≺ c becomes c ≺ b ≺ a.
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The Mapel package implements two cultures that produce single peaked elections: a culture
based on an approach of Walsh [37] and a culture based on an approach of Conitzer [38]. Sur-
prisingly, Szufa et al. [3] discovered that these two models each produce an election cluster with
large distance between the two. Because of that, we assume it is highly likely that these two
models do not cover the whole space of SP elections.

3.2.6 Single-Crossing Model
Another interesting property that an election may have is being single crossing (SC).

▶ Definition 3.11 (Single-Crossing Election). Let E = (C, V ) be an election. E is called single
crossing (SC) if it is possible to order the voters in such a way that for every pair of candidates
a, b ∈ C, the set of voters with a ≺ b preference either forms a prefix or suffix of this order.

▶ Definition 3.12 (Single-Crossing Domain). Let D be a set of preference orders. D is called
a single crossing domain if every election containing only votes from this domain is single crossing.

The Mapel package implements SC model by generating the whole SC domain and then
draws the required number of votes from it uniformly at random. The process of generating the
domain, however, is not uniform.

3.2.7 Euclidean Models
The Euclidean elections are defined as follows:

▶ Definition 3.13 (t-Euclidean Election). Let t be a positive integer. An election E = (C, V )
is t-Euclidean if it is possible to associate each candidate and each voter with their ideal point in
the t-dimensional Euclidean space Rt in such a way that the following holds: For each voter v
and a pair of candidates a, b, v : a ≺ b if and only if v’s point is closer to the point of a than to
the point of b.

The implementation in Mapel package chooses the ideal points for candidates and voters
and then derives voters preference orders to fit them. Given t ∈ N, the ideal points are gen-
erated uniformly at random either from [−1, 1]t (the t-dimensional hypercube model, denoted
tD-Hypercube) or from a hypersphere with center at (1, . . . , 1) and radius 1 (the t-dimensional
hypersphere model, denoted tD-Hypersphere). The most notable tD-Hypercube models are
Interval (1D-Hypercube), Square (2D-Hypercube) and Cube (3D-Hypercube). Most notable tD-
Hypersphere models are Circle (2D-Hypersphere) and Sphere (2D-Hypersphere).

3.3 Space Projections
When the distance between each election pair is computed, the final task lies in computation of

a suitable embedding. The Mapel package implements its embeddings based on several algorithms
for graph drawing—elections are treated as vertices and their distances as weighted edges. The
Mapel embeddings notable for our purposes are the following:

Fruchterman-Reingold (FR) embedding uses the force-directed placement algorithm intro-
duced by Fruchterman and Reingold [39].

Kamada-Kawai (KK) embedding is based on an algorithm for drawing undirected graphs by
Kamada and Kawaii [40]. It treats graph vertices as particles connected by springs. The
degree of imbalance of the system is then expressed as the total energy of the springs and the
algorithm then tries to minimize this energy.
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Multidimensional scaling (MDS) embedding is based on7 standard multidimensional scal-
ing methods, which take a set of distances between points as an input and output their
configuration in Euclidean space [41].

Although embedding algorithms add another significant layer of complexity to the studied
problem, their thorough discussion is beyond the scope of this thesis.

7As the name suggests.
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Chapter 4

Elections of Different Sizes

…in which we show the metrics we have defined and the maps we have drawn.

All of the distances described in the previous chapter share a common weakness—they require
that all elections have the same number of candidates1. This is very restrictive when trying to
create a comprehensive map of a large number of real-life datasets. In this thesis, we propose
two different approaches to solve this issue. The first one is to extend the existing positionwise
distance, which is described in Section 4.3. The second one is to create a framework based on
election features, as described in Section 4.4.

4.1 Metodology and datasets
Before we discuss any of our experiments and their resuts, we need to describe the datasets

we run our experiments on and the methodology of our experiments. Each Mapel experiment
contains a set of election instances on which it runs the distance computations and then embeds
the results. Election instances can be either created directly from votes or generated from various
statistical cultures described in Chapter 3. When generated from a statistical culture, we can
define a family size, which specifies how many election instances will be generated from the
statistical culture.

We decided to generate the following distinct datasets:

Standard 10×100 dataset (see Table 4.1) contains only elections of the same size—every
election has 10 candidates and 100 voters. Each model has a family size of 15, with the
exception of the extremes, where the family size is 1. This dataset was made to closely
resemble the dataset of Szufa et al. [3], so that the resulting figures can be compared.

Standard mixed dataset extends the standard 10×100 dataset with elections of different sizes—
every culture from the 10x100 dataset is present with 10, 12 and 15 candidates and a family
size of 7. The only exception are again the extremes with family size of 1. Again, each
election has 100 voters.

Mallows mixed dataset (see Table 4.2) focuses on Mallows elections with larger variance in
the choice of the parameter value. The family size is 30. Apart from Mallows elections, it also
contains IC as a reference point with family size of 20 and UN, ID and AN compass points
with family size of 1. Compass point elections have 100 voters, the rest of the elections have
500 voters.

1We say that they require that all elections have the same size.
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Table 4.1 Statistical cultures in standard 10x100 dataset.

Model Group Model and Parameters
IC IC

Urn Urn(0.01)
Urn Urn(0.02)
Urn Urn(0.05)
Urn Urn(0.1)
Urn Urn(0.2)
Urn Urn(0.5)

Mallows Norm-Mallows(0.001)
Mallows Norm-Mallows(0.01)
Mallows Norm-Mallows(0.1)
Mallows Norm-Mallows(0.5)
Mallows Norm-Mallows(0.75)
Mallows Norm-Mallows(0.99)
Mallows Bi-Mallows(0.001)
Mallows Bi-Mallows(0.01)
Mallows Bi-Mallows(0.1)

SP Walsh
SP Conitzer
SP SPOC
SC SC

tD-Hypercube Interval
tD-Hypercube Square
tD-Hypercube Cube
tD-Hypercube 4D H-Cube
tD-Hypercube 10D H-Cube
tD-Hypercube 20D H-Cube

tD-Hypersphere Circle
tD-Hypersphere Sphere
tD-Hypersphere 5D H-Sphere

Extremes ID
Extremes UN
Extremes AN

Table 4.2 Statistical cultures in Mallows mixed dataset.

Model Group Model and Parameters
IC IC

Mallows Norm-Mallows(0.001)
Mallows Norm-Mallows(0.01)
Mallows Norm-Mallows(0.05)
Mallows Norm-Mallows(0.1)
Mallows Norm-Mallows(0.25)
Mallows Norm-Mallows(0.5)
Mallows Norm-Mallows(0.75)
Mallows Norm-Mallows(0.99)
Mallows Norm-Mallows(0.999)
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A detailed guide on how to use the to the Mapel package was done by Stanislaw Szufa [42].
In our experiments, we use the offline experiment class in order to store our election instances
and computation results. Our experiment structure is shown in Code listing 4.1.2

Code listing 4.1 Mapel experiment structure.

import mapel.elections as mapel

def experiment_1():
positionwise_name = 'emd-positionwise'
my_distance_name = 'example_distance'

# Load offline experiment
experiment = mapel.prepare_offline_ordinal_experiment

(experiment_id="example_1")
experiment.prepare_elections()

# Compute custom distance and print map
experiment.add_distance(my_distance_name , my_distance_function)
experiment.compute_distances(distance_id=my_distance_name)
example_embedding='kk'
experiment.embed_2d(embedding_id=example_embedding)
experiment.print_map_2d(legend=False)

# Compute correlation if applicable
experiment.compute_distances(distance_id=positionwise_name)
print("Test correlation between: "

+ my_distance_name + " and "
+ positionwise_name + ": \n")

experiment.print_correlation_between_distances
(distance_id_1=positionwise_name ,
distance_id_2=my_distance_name)

# Compute a custom feature
feature_name = 'example_feature'
experiment.add_feature(feature_name , my_feature_function)
experiment.compute_feature(feature_name)

# Load a feature from csv file
experiment.features[feature_name] = experiment.import_feature

(feature_name)

# Prepare feature vectors for feature distace computation
experiment.prepare_feature_vectors(['d', 'a', 'p'])

if __name__ == "__main__":
experiment_1()

2Note that we usually run the experiment in parts rather than in bulk as shown here.
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4.2 Reference maps
In this section, we introduce maps made by Szufa et al. [3], Boehmer et al. [4] and Faliszewski

et al. [31], which we use as a comparison to judge the merits of each of our new metrics.
Figure 4.1 shows the “original” map of elections made by Szufa et al. [3], which Boehmer et al. [4]

builds upon by adding the compass to it and testing where real-life elections are placed (see Figure
4.2). Figure 4.3 shows maps done by Faliszewski et al. [31], which visualize three extreme points
(UN, ID, AN) and their relationship to agreement, polarization and diversity indices (defined in
Subsection 4.4.1).3 From these maps, we derive the criteria that our maps should meet:

Cluster elections based on their statistical cultures.

Place the UN, ID and AN extreme points so that the rest of the elections are placed roughly
between them.

Place IC and Mallows(0.99) elections close to the UN extreme point.

Place Mallows(0.001) and Mallows(0.01) close to the ID extreme point.

Place Mallows elections as a path between UN and ID extreme points, such that lower pa-
rameter values are closer to ID and higher parameter values are closer to UN.

Place the Cube, 4D H-Cube, 10D H-Cube and 20D H-Cube relatively close to each other.

Figure 4.1 A map of synthetic datasets with 10 candidates and 100 votes each. We call it the original
map for short.

4.3 Extended Positionwise Distance: Positionwise Infinity
The idea behind positionwise infinity distance is simple: given two elections E1 and E2 with

r and s candidates respectively, we conceptually extend frequency matrices of both these elections
3For the reader’s convenience, we decided to put all reference maps in one place so that they can be easily

searched for when we compare them to our own maps. We realise that it is unfortunate to introduce the diversity
maps before defining the diversity, agreement and polarization indices, but we consider it to be the lesser of evils.
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Figure 4.2 The compass and the dataset of Szufa et al. [3] (left) and the compass and various real-life
elections (right). We call it the compass maps for short.

Figure 4.3 A map of elections obtained using isomorphic swap distance and MDS embedding (left) and
an affine transformation of this plot where x/y coordinates of the elections are their agreement/diversity
indices (right). We call it the diversity maps for short.

to infinity and then compute the distance between them. Since infinite matrices are rather hard
to work with in terms of computation, in our code implementation we settle for extending each
matrix by the factor of lcm(r, s)/r and lcm(r, s)/s respectively instead. We also decided to use
the Wasserstein distance (WD) instead of EMD for our positionwise infinity distance4.

Formally:

▶ Definition 4.1 (Stepwise Function). Given a vector a = (a1, . . . , am) ∈ Rm
+ , we identify it

with a stepwise function a : [0, 1] → R+, such that for each i ∈ [m] and each x in ( i−1
m , i

m ], we
have:

a(x) = (m · ai)/(a1 + · · ·+ am)

For the sake of completeness, we set a(0) = 0. For each x ∈ [0, 1] we set A(x) =
∫ x

0
a(y)dy. The

normalizing factor m is chosen so that A(1) = 15.

▶ Definition 4.2 (Wasserstein Distance). For two vectors a ∈ Rs and b ∈ Rt6, we define their
Wasserstein distance (WD), denoted W (a, b), as the Wasserstein distance of their corresponding

4The Wasserstein distance is closely related to the Earth mover’s distance and its choice is discussed in the
Distances Between Top-Truncated Elections of Different Sizes IJCAI paper. We consider this discussion beyond
the scope of this thesis.

5Because of that, one may interpret a(x) as a probability density function and A(x) as its cumulative distri-
bution function.

6It is possible that s ̸= t.



30 Elections of Different Sizes

functions:

W (a, b) =

∫ 1

0

|A(x)−B(x)|dx

As a(x) and b(x) are stepwise functions and A(x) and B(x) are piecewise linear functions,
W (a, b) can be computed in polynomial time, assuming we can perform arithmetic operations in
polynomial time.

We redefine the standard positionwise distance so that it uses WD instead of EMD:

▶ Definition 4.3 (Wasserstein Positionwise Distance). Let Ea = (Ca, Va) and Eb = (Cb, Vb)
be two elections such that |Ca| = |Cb|, Ca = {ca1

, . . . , cam
} and Cb = {cb1 , . . . , cbm}. Let

FEa
= [ψEa

(ca1
), . . . , ψEa

(cam
)] and FEb

= [ψEb
(cb1), . . . , ψEb

(cbm)] be their respective frequency
matrices. The Wasserstein positionwise distance between matrices FEa

and FEb
is defined as fol-

lows:
W-POS(FEa

, FEb
) = min

σ∈Π([m],[m])

1

m

∑
i∈[m]

W (ψEa(cai), ψEb
(cbσ(i)

))

The positionwise distance between Ea and Eb is then equal to the positionwise distance between
their frequency matrices:

W-POS(Ea, Eb) = W-POS(FEa
, FEb

)

For a frequency matrix FE = [ψE(c1), . . . , ψE(cm)] and a positive integer k, we write strmk(FE)
to denote the matrix obtained from FE by copying each of its component vectors k times, so that
for each i ∈ [mk], the i-th vector of strmk(FE) is ψE(c⌈i/k⌉).

▶ Definition 4.4 (Positionwise Infinity Distance). Let Ea and Eb be two elections with possibly
differing numbers of candidates and voters. Let FEa

= [ψEa
(ca1

), . . . , ψEa
(car

)] and FEb
=

[ψEb
(cb1), . . . , ψEb

(cbs)] be their respective frequency matrices, such that lcm(r, s) = m. Then
the positionwise infinity distance between Ea and Eb, denoted POS-INFTY(E1, E2), is defined
as follows:

POS-INFTY(E1, E2) = W-POS(strm(FEa), strm(FEb
))

In our implementation, we normalize this distance by the number of candidates. Figures
4.4 and 4.5 show maps the positionwise infinity distance produced given the standard and the
standard mixed datasets, respectively7. When we compare the two figures with each other,
we see that the positionwise infinity distance successfuly clusters elections of the same culture
but different size, which is precisely what we desire.Both figures resemble the original map and
compass maps with their positioning of cultures relative to each other. IC is correctly paced
near the UN extreme, Mallows (0.001) and Mallows(0.01) merge with ID extreme point and
so on. Interestingly, there are nonzero distances between extreme point elections of different sizes.
Even though worrisome at first glance, this result is natural - since we use only approximations
of extreme points, there has to be a verz small, but nonyzero distance between them. The
same effect can me observed for Mallows (0.001) and Mallows(0.01), since their extremely low
parameter values make them very close to identity extreme point in practice. It also seems that
some clustering based on election size emerges the closer we get to ID extreme point. A reason
for this currently remains unknown to us.

The PCC between the standard EMD-positionwise distace by Szufa et al. [3] and our po-
sitionwise infinity distance is 0.999, which is a very strong positive correlation. This value was
computed based on distance vectors from the standard dataset—since EMD-positionwise distance
can work only with elections of the same sizes.

7All positionwise infinity maps use the KK embedding.
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Figure 4.4 The positionwise infinity distance and the standard dataset.

Figure 4.5 The positionwise infinity distance and the standard mixed dataset.

4.4 Feature Distance

Let Λ = {λ1, . . . , λk} be a set of functions that accept an election as their argument and
output a value from [0, 1]. Each of these functions can be called an election feature. Given an
election E, we call (λ1(E), . . . , λk(E)) the feature vector of E and denote it as ΛE . The feature
distance dΛ between two elections E1 and E2 is then the distance between their corresponding
feature vectors ΛE1 and ΛE2 . Neither EMD nor WD can be used in this case, however, because
there is no inherent meaning to the ordering of the election features in the feature vector. In their
stead, we use the ℓ1 and ℓ2 distances, giving rise to ℓ1-dΛ and ℓ2-dΛ feature distances8.

All of the election features presented in the subsections below are normalized between 0 and
1 when used for the feature distance computation. All feature distance maps use the MDS
embedding.

8Sadly, cosine similarity fails both triangle inequality and identity of indiscernibles. Therefore, it is not a dis-
tance metric and cannot be used for our experiments alongside the ℓ1 and ℓ2 distances.
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4.4.1 DAP Distance
The DAP distance takes advantage of agreement, diversity and polarization indeces introduced

by Faliszewski et al. [31].

▶ Definition 4.5 (Agreement Index). Let E = (C, V ) be an election. Its agreement index,
denoted AE, is computed as follows:

AE =

∑
{a,b}⊆C |ME(a, b)−ME(b, a)|(|C|

2

)
In order to define diversity and polarization, we first need to define the k-Kemeny ranking:

▶ Definition 4.6 (k-Kemeny Ranking). k-Kemeny rankings of election E = (C, V ) are the ele-
ments of a set X = {χ1, . . . , χk} of k linear orders over C that minimize

∑
v∈V mini∈[k] swap(v, χi).

▶ Definition 4.7 (Diversity Index). Let E = (C, V ) be an election. The diversity index, denoted
DE, is defined as:

DE =

∑
k∈[|V |] κk(E)/k

|V | ·
(|C|

2

)
▶ Definition 4.8 (Polarization Index). Let E = (C, V ) be an election. The polarization index,
denoted PE, is computed as follows:

PE =
2(κ1(E)− κ2(E))

|V | ·
(|C|

2

)
▶ Definition 4.9 (DAP Feature vector). Given an election E, the DAP feature vector is defined
as:

ΛDAPE
= (DE , AE , PE)

Since the DAP distance between two election is equal to the distance between their DAP
feature vectors, we distinguish ℓ1-DAP and ℓ2-DAP feature distances. Both are anonymous and
neutral.

Figures 4.6 and 4.7 show maps the ℓ1-DAP distance produced given the standard and the
standard mixed datasets respectively. Similarly, figure 4.8 shows maps the ℓ2-DAP distance
produced given these datasets.

We note that there is no significant difference between the ℓ1 and ℓ2 distance metrics—
both produce maps of triangular shape with extreme points in their vertices and place each
statistical culture in the similar spot on the map with respect to other cultures. We therefore
conclude that in terms of the DAP feature distance, the choice between ℓ1 and ℓ2 is not important.
Because of this, we further describe only ℓ1-DAP distance applied on the standard mixed dataset
(Figure 4.7). This map bears a striking similarity to our reference diversity maps9—placement of
all the cultures is almost identical, perhaps with the difference that the triangle shape is slightly
stretched to the right bottom.

9Figure 4.3.
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Figure 4.6 The ℓ1-DAP distance applied on the standard dataset.

Figure 4.7 The ℓ1-DAP distance applied on the standard mixed dataset.

Figure 4.8 The ℓ2-DAP distance applied on the standard dataset (left) and on the standard mixed
dataset (right).
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4.4.2 APE Distance
In this thesis, we introduce a new election feature called the entropy index. It is defined

as follows:

▶ Definition 4.10 (Entropy Index). Let E = (C, V ) be an election. The entropy index of its
frequency matrix FE, denoted HE, is defined as follows:

HE = −
|C|∑
i=1

|C|∑
j=1

FEi,j · log2(FEi,j )

Naturally, for a given number of candidates the largest possible entropy is that of FUN matrix.

▶ Definition 4.11 (APE Feature Vector). Given an election E, the APE feature vector is defined
as:

ΛAPEE = (AE , PE ,HE)

Since the APE distance between two election is equal to the distance between their APE
feature vectors, we again distinguish ℓ1-APE and ℓ2-APE feature distances.

Figures 4.9 and 4.10 show maps the ℓ1-APE distance produced given the standard and the
standard mixed datasets. Similarly, figure 4.11 shows maps the ℓ2-APE distance produced given
these datasets.

As with the DAP distance, we note that there is still no major difference between the ℓ1-APE
and ℓ2-APE distance metrics, so we further describe only maps made with ℓ1-APE distance.
The maps still have roughly triangular form, even though it is more deformed into arc-like shape
in the bottom left. Extreme points are placed in the appropriate triangle vertices. While still
roughly similar to the reference diversity maps, the urn elections especially seem to be more
stacked to the bottom left part of the map.

Figure 4.9 The ℓ1-APE distance applied on the standard dataset.
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Figure 4.10 The ℓ1-APE distance applied on the standard mixed dataset.

Figure 4.11 The ℓ2-APE distance applied on the standard dataset (left) and on the standard mixed
dataset (right).

4.4.3 Compass Distance
The compass distance is based on distances from the extreme points:

▶ Definition 4.12 (Compass feature vector). Let E be an election with m candidates. Its
compass feature vector is defined as follows:

ΛCOMPASSE
= (POS-INFTY(E,UNm),POS-INFTY(E,ANm),POS-INFTY(E, IDm),

POS-INFTY(E, STm))

The compass feature distance is anonymous and neutral and again we distinguish between
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ℓ1-COMPASS and ℓ2-COMPASS distances. Figure 4.12 shows maps the ℓ1-COMPASS distance
produced given the standard and the standard mixed datasets. Similarly, Figure 4.13 shows maps
the ℓ2-COMPASS distance produced given these datasets. All these maps manage to separate
different statistical cultures, which is a good sign. Cultures in the standard mixed dataset form
clusters based on the statistical culture, not based on the number of candidates, which is also
promising. Unlike the original and the compass maps, however, these maps appear to be rather
“one dimensional”—squashed in terms of the y axis. In addition to this, they also split the Bi-
Mallows cultures in half, which is not desirable. However, since we verified that all Bi-Mallows
elections in the experiment have a relatively small value of the compass distance between them10,
this seems to be a problem of the embedding rather than the distance per se. For the time being,
we do not examine this distance any further, but we would like to go back to it in our future
works.

Figure 4.12 The ℓ1-COMPASS distance with the standard dataset (top) and the standard mixed
dataset (bottom).

10We manually tested this and the average distance between a pair of Bi-Mallows elections is roughly six times
smaller than the average distance between a pair of elections in which one is Bi-Mallows and the other one is IC.
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Figure 4.13 The ℓ2-COMPASS distance with the standard dataset (top) and the standard mixed
dataset (bottom).

4.4.4 MOV Distance
The MOV feature distance is based on the concept of margin of victory. Given an election E,

we denote MOVX(E) to be its margin of victory given the voting rule X.

▶ Definition 4.13 (MOV feature vector). Let E be an election with m candidates. Its MOV
feature vector is defined as follows:

ΛMOVE
= (MOVPLURALITY(E),MOVVETO(E),MOV1-APPROVAL(E), . . . ,MOVm-APPROVAL(E),

MOVBORDA(E))

We based our implementation of MOV on algorithms described by Xia [43]. The MOV feature
distance is again anonymous and neutral and we distinguish between ℓ1-MOV and ℓ2-MOV
distances. Figure 4.14 shows the standard dataset, the ℓ1-MOV distance (top) and the ℓ2-MOV
distance (bottom). Since these maps fail the basic criterion to separate statistical cultures into
clusters, we conclude the MOV distance is much less promising than other feature distances we
propose and thus we do not examine it any further.
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Figure 4.14 Standard dataset with the ℓ1-MOV distance (top) and with the ℓ2-MOV distance (bot-
tom).

4.5 Mallows mixed dataset
We tested the following distance metrics on the mallows mixed datasets: positionwise infinity,

ℓ1-DAP, ℓ2-DAP, ℓ1-APE, and ℓ2-APE. Surprisingly, all of these distances (both the positionwise
infinity and feature metrics11) produced strikingly similar maps—three extreme points as vertices
of a triangle and a path of Mallows elections from UN to ID extreme points. The map for ℓ1-DAP
is shown below as Figure 4.15.

Figure 4.15 Mallows mixed dataset with the ℓ1-DAP distance.

11Note that for this dataset, we used approximated agreement, polarization and diversity indices to speed up
their computation. For the purposes of our distance metric, the approximation error should be negligible.



Chapter 5

Conclusion

…in which we sum up all the work done in this thesis, discuss what could have been done
better, what could have been done worse, and how the results in this thesis may be used in the
future.

In Chapter 2 we described some of the building blocks of computational social choice: elec-
tions, voting systems and their approaches to making a collective decision. We discussed the
properties of the introduced voting systems and when possible, showed the interesting ones on
election profiles.

In Chapter 3 we described the maps of elections framework—the distance metrics between
voters and elections, generative models for synthetic data and embedding algorithms.

In Chapter 4 we presented our distance metrics for elections of different sizes and we discussed
the experimental results these distances yielded. Based on similarity between Figures 4.4 and
4.5 and Figure 4.2, as well as on the value of PCC, we consider our positionwise infinity distance
to be a good extension of the “old” EMD-positionwise distance. When it comes to the feature
distances, we consider ℓ1-DAP, ℓ2-DAP, ℓ1-APE, and ℓ1-APE all to be very good distance metrics
as discussed. The DAP distances produced a more triangle-like shape, which is more in line with
our expectations based on the reference diversity map (Figure 4.3), but it is not self-evident that
the triangle shape is necessarily superior. The compass metric had some favourable traits, but
we suppose it will require nontrivial fine-tuning. Sadly, we conclude that the MOV features we
tested are not informative enough to be used as a feature vector.

Our work could be continued in the following ways:

Fine-tune the compass distance and consider its other possible variants, e.g., a feature vector
which would contain positionwise distances from selected point on paths between the extreme
points.

In this thesis, we used only projections on a 2D plane, which is the state of the art to the best
of our knowledge. In the future, we would like to test projections onto a 3D plane (probably
a sphere).

We ended up not testing our metrics on real-life election data. We suspect that they would
follow the same pattern as they did in the reference compass map (see the left map in
Figure 4.2), but it would be worthwhile to check this assumption.

It would be worthwhile to develop a framework for judging the quality of an election map.
So far, we form the judgment based on human perception of how the map fulfils our precon-
ceived desiderata. However, it could be beneficial to formalize this in form of some quality
metric.

39



40 Conclusion



Appendix A

Code

My commits to the Mapel Github repository [44] are shown in Table A.1.

Table A.1 List of my Mapel commits.

Date Hash Identifier
2023-10-02 d7cf20b93725e560ec9e685fb91dd73399a17e35
2023-10-24 6abc2c4a3155b8d63c28434cb984b7caa4640fcc
2023-11-09 5a9cc3f44b64eb8dc25c7e211c5031de6b721ad4

The majority of my code was made with the intention to be integrated into Mapel. However,
major changes were done in the Mapel package while I was working on this thesis. These changes
sadly break backwards compatibility. My implementation of MOV and compass distances as well
as the utilities.py script for generating the map.csv file are all dependent on the old Mapel
version, making the compass.py, mov_featurewise.py and utilities.py files not runnable
(or produce unexpected results). Since the MOV distance is not useful, it will be dropped, and
the compass distance and utilities script will be rewritten to comply with current form of Mapel
package in the future. The positionwise infinity implementation does not depend on the mapel
version and the DAP and APE distances were made to be runnable in the new Mapel version1.
Table A.2 describes important files and folders in the attachment file. In order to run (most of)
the code, it is necessary to install the current Mapel package from provided source code in the
mapel folder. For guidance on how to use the Mapel package, consult the manual written by
Szufa [42].

1Which of course makes them not runnable in the old one. There is no winning sometimes.
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Table A.2 Description of my source files.

File and Its Location Description
attachment/mapel/ The current Mapel package source code.
attachment/experiments/ The folder with experiment data.
attachment/mapel/mapel-elections/src/
mapel/elections/objects/
ElectionExperiment.py

Mapel file with added functionality to support
my distances.

attachment/mapel/mapel-elections/src/
mapel/elections/objects/
ElectionFeatures.py

My file containing supporting code for MOV
distance and feature distance.

attachment/compass.py My implementation of the compass distance.
attachment/compute_features.py Script for computing election features.
attachment/diversity_truncated.py Fast computation of approximate indices, im-

plemented by Tomasz Wąs.
attachment/entropy.py Fast computation of entropy index, imple-

mented by Stanisław Szufa.
attachment/features_vector.py My implementation of the feature distance.
attachment/mov_featurewise.py My implementation of compass distance.
attachment/
positionwise_different_sizes.py

My implementation of the positionwise infin-
ity distance.

attachment/
positionwise_diffsize_experiments.py

Driver functions for positionwise infinity dis-
tance.

attachment/utilities.py Utility script to generate a map.csv file.
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