

03/07/2023 – 22/12/2023

PARAMETRIZATION AND
AUTOMATION OF THE

CREATION OF A 3D MODEL

Master’s thesis

Alexandre PERIE

Industrial supervisors: Benoit GELY & Prasad MAHAJAN

University supervisor: Lukas KAZDA

Study program: Automotive Engineering

Department: Department of Technical Engineering

Public. © 2023 Capgemini. All rights reserved. 2

Table of Contents

1 Presentation of the company .. 6

2 Problem statement .. 7

3 State of the art .. 10

3.1 CATIA Automation .. 10

3.1.1 CATIA script .. 10

3.1.2 Pycatia .. 10

3.2 Ontology ... 11

3.3 Image processing .. 12

4 Parametrization of a CATIA model ... 14

4.1 Creation of all the parts of the assembly and definition of the parameters ... 14

4.2 Construction of the equations of the problem ... 15

4.3 Control of the parametrization ... 18

5 Use of Pycatia to automate the creation of a part ... 19

5.1 Reading data from an Excel file .. 19

5.2 Library of functions .. 20

6 Creation of a sketch from JSON file .. 21

6.1 Proposition of a structure for JSON file ... 21

6.2 Adaptation to structure of given JSON file ... 22

6.2.1 Data from contour recognition code ... 22

6.2.2 Processing data to be used with Pycatia ... 23

6.2.2.1 Points and segments .. 23

6.2.2.2 Splines .. 23

6.2.2.3 Constraints ... 24

7 Multiple contours shapes ... 25

7.1 Problems and hypotheses .. 25

7.1.1 Double contours .. 26

7.1.2 Wrong recognition of the contour by AI ... 26

7.2 Improvement of contour recognition .. 27

7.2.1 Circle detection ... 27

7.2.2 Removing double contours .. 29

8 Conclusion .. 32

9 Sources .. 33

Public. © 2023 Capgemini. All rights reserved. 3

Acknowledgements:

For the great experience during this internship, concluding long studies in engineering, I would like to thank:

My parents

All along my studies, they have been by my side supporting each of my decisions but also helping me when I

needed guidance. They knew how to keep me motivated and they have been a real source of inspiration.

My friends

During these studies and even during this internship, I discovered wonderful people, making my life even better

each day. A special thanks to Prasad, and I guess “Congratulations” are even in order since he invited me to his

wedding in India, showing how friendly and kind the people at Capgemini were.

My internship supervisors

This internship has been full of challenges, but Benoit, Prasad, and Lukas knew how to support me and provide

me with constructive feedback. I always tried to make the most of their remarks, and thanks to them I have been

able to achieve my goals.

Public. © 2023 Capgemini. All rights reserved. 4

Abstract

The goals of my internship were divided into two main tasks, parametrizing an entire bike frame model, and

automating the creation of a CATIA model from the data of its technical drawing. Since literature is short on

information about the automation process, one major obstacle would be to define this process for our case.

Make it as clear and structured as possible would allow us to open it up to a wide field of applications. Because

of the client constraints and the company preferences, I would have to work on software like CATIA and Python.

By studying CATIA features, I have been able to complete the parametrization of the bike frame. I also had to

work on CATIA scripts so I could begin to develop automation tools and create a quick animation of the

possibilities of the parametrization.

To automate the process of creation of a 3D model, I had to code on Python using software like Visual Studio

Code and GitLab. Additionally, I ventured into AI, employed for contour recognition on technical drawings. Thus,

I delivered a functional tool using data from the technical drawing as input and returning a sketch of the views

on a CATIA format file. My work would allow a precious time reduction in design operations, and a better result

in CAD models.

Public. © 2023 Capgemini. All rights reserved. 5

List of figures
Figure 1: Assembly of the bike frame .. 8
Figure 2: Example of a sketch for a simple shape .. 8
Figure 3: Resulting sketch after improvements of the algorithm .. 9
Figure 4: Explanation of the ontology [8] ... 12
Figure 5: Process of the creation of a part ... 14
Figure 6: Complete bike frame model ... 15
Figure 7: Scheme of the problem at the rear of the frame .. 17
Figure 8: Scheme of the problem of the symmetry of the parts at the rear of the frame ... 17
Figure 9: Sketch of the lug model... 19
Figure 10: Original shape, control points of the Bezier curves and result ... 24
Figure 11: Sketch of the main and hidden contours on the case of a seat track .. 25
Figure 12: First try for the lug face process ... 25
Figure 13: Study of the double contour problem ... 26
Figure 14: Detail of the seat track .. 27
Figure 15: Examples of checked contours (complex on the left, circle on the right) .. 28
Figure 16: Cleaned result with closed circles .. 28
Figure 17: Reference picture for hierarchy study ... 29
Figure 18: Ontology of the contours of the reference picture ... 30
Figure 19: Contours to remove after the analysis of the hierarchy ... 31

file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779312
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779313
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779314
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779315
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779316
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779317
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779318
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779319
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779320
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779321
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779322
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779323
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779324
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779325
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779326
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779327
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779328
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779329
file:///D:/Travail/Semestre%205%20-%20Prague/Thesis%20report.docx%23_Toc155779330

Public. © 2023 Capgemini. All rights reserved. 6

1 Presentation of the company
In 1967, Serge Kampf founded his enterprise management and data processing company called Sogeti. This

company will keep expanding and merging with other Information Technology (IT) companies to become the one

we know today: Capgemini. In 1974, Sogeti bought the American company Gemini Computer Systems and

merged with CAP (Centre d’Analyse et de Programmation) which will give the name of CAP Gemini Sogeti.

Today, the company is known as Capgemini and Sogeti is still one of its subsidiaries [1].

Capgemini Engineering is a subsidiary of Capgemini created from the acquisition of Altran Technologies in 2019.

It is now a global leader in engineering and R&D services with more than 65.000 engineers and scientists across

the globe. The company helps clients across a wide range of industries, including automotive, aerospace,

defense, energy, healthcare, life sciences, manufacturing, and telecom, to innovate and develop the products

and services of the future.

With 55 years of experience, Capgemini Engineering offers a comprehensive portfolio of services, including

digital, software and mechanical engineering and has a dedicated R&D team that is constantly developing

innovative technologies and solutions to help clients stay ahead of the curve. In 2022, the Group reached the

whooping figure of €22 billion sales [2].

Public. © 2023 Capgemini. All rights reserved. 7

2 Problem statement
If we want to realize a 3D model of an existing product, the first step would be to get a representation of

this object, whether an image or a drawing of it. Even if most of the creation is done today by Computer Aided

Design (CAD), creating the 3D model requires a non-negligible amount of time since it must be step by step.

Automating this operation could save a lot of time for the employee as well as money for the client. If we want

to create a new product, we don’t have the existing drawing of the part, so our process would be applied to

retro-engineering. In our case, our motivation started from the fact that constructors often deliver drawings of

old parts, and not 3D models, created when CAD didn’t exist. We are nowadays living in a digital era, where we

want to have all files and parts on a digital support. Recreating the 3D model from old drawings, which rarely

include dimensions, has naturally become an essential step in the automation process.

It has been the driver of multiple studies, trying to find a way to convert a 2D drawing into a 3D model.

Today, we can find a lot of articles describing the process of the analysis of a technical drawing. For example,

Prasad A. and Harish A. defined an algorithm generating a 3D solid from different views of an object [3].

However, their algorithm does not describe how they store and represent their data used to create the 3D

model. Also, Lapo G., Rocco F., Matteo P., and Yary V. found a means to transform 2D orthographic drawings into

3D models. They specify how their image treatment works, how they retrieve clean curves from the drawing [4].

But they don’t specify their type of data, how they reconstruct the 3D model from it, and it is the heart of the

subject. Moreover, none of the work done today is applied on CATIA, that is why my objective during this

internship would be to give a clear process from the data structure to the creation of the CATIA file. To get to

this, three notions need to be understood:

• How is it possible to automate CATIA operations?

• How can we represent the data structure through a precise ontology?

• How can we extract contours from our drawing with a clear image process?

We proceeded step by step so we would not rush into anything, and we wanted to make sure we mastered each

stage before moving on to the next. To achieve every goal, the start involved getting familiar with CATIA and

especially with its automation tools. This would be done by creating the parametrization of the bike frame and

realizing an animation covering its possibilities (not detailed in the report because of the format of the

animation).

Public. © 2023 Capgemini. All rights reserved. 8

Then, writing a script automating the creation of a simple part seemed the logical way to approach. Defining a

structured format for data as our input appeared as the natural step to lead to the creation of more complex

sketches.

After getting this process cleared, we realized that the contour recognition algorithm was flawed and needed

some adjustments. By correcting and adding new functions, we have finally been able to get close to the result

desired.

Figure 1: Assembly of the bike frame

Figure 2: Example of a sketch for a simple shape

Public. © 2023 Capgemini. All rights reserved. 9

Figure 3: Resulting sketch after improvements of the algorithm

Public. © 2023 Capgemini. All rights reserved. 10

3 State of the art
As explained in problem statement (2), work is related to the CATIA automation and 3D model creation from the

industrial drawing. Bibliography has been done based on the CATIA scripting in Python and image processing.

3.1 CATIA Automation

Given industrial constraints about the subject, CATIA seemed to be the only conceivable tool for the 3D

modelling part of the problem. CATIA is a software used in CAD, Computer Aided Manufacturing (CAM) or

Computer Aided Engineering (CAE). It offers a wide range of features such as 3D modelling and design, and

product analysis [5]. Developed by Dassault Systèmes, CATIA stands out as a leading non-open-source software

package widely used in the engineering world. Its extensive user base and popularity within diverse industries

provide a strong foundation for applications and innovations, and building on this support would open up a wide

field of applications [5]. Many operations can be automated by using macros, scripts that the user can define and

write in the software. It is also possible to realize this automation through a module implemented in Python. The

preference for this final possibility is due to its simplicity and ease of understanding, attributed to the clear and

straightforward syntax of Python.

3.1.1 CATIA script

The tool present in CATIA is CATScript, its code language is called Vbscript, and it is the same as Visual

Basic (language used in Microsoft Excel macros, and one of the most popular in the world). The way CATIA

Automation works is object-oriented. It means that our variables are represented as objects that can be included

in classes or to which we can apply attributes and methods [6].

For example, to create a simple sketch we would have to create a part beforehand. These two objects, the

sketch, and the part, would belong to two classes. Like their names, they would be given attributes, and we can

apply methods to them. We can call a function in the sketch class like one that would create 2D elements or one

that would create a constraint between two elements of the sketch.

3.1.2 Pycatia

As mentioned before, Python is a better option for the automation. For this, we would need a module

that could call and use CATIA objects as needed. This module is called “Pycatia”. It offers a direct approach to

accessing and manipulating CATIA objects such as parts, assemblies, and geometries, enabling precise

parametrization of designs. Its module structure is like the one of CATIA Automation, with the primary

distinction lying in a slightly different syntax [7]. We would see later that we would separate the CATIA

operations from the main code to help for a better understanding of the algorithm. This approach, calling a

specialized script from a main one, is indeed simpler on Python than on CATScript.

Pycatia offers on Python almost all the features available on CATIA. We can create assemblies, parts, sketches,

geometries, and constraints. Even if it will be mentioned again later in this report, it is necessary to give

examples of the possibilities of this module in this section. So, a script realizing a simple extrusion must follow

the same logic we would do on the software. To create the pad, we need to draw the sketch beforehand. So, the

first step is to create the part, then the sketch, then the constrained geometry by creating each element

individually, and then we can do the extrusion. All the functions behind take the same inputs as the ones we

would enter in the software. For example, to create a closed circle we would have to enter the coordinates of

the centre and the radius. A sketch must be created from a reference plane and inside a part.

Public. © 2023 Capgemini. All rights reserved. 11

We can see the logic for the creation of a simple cube in the following process:

▪ Import Pycatia (as “caa”)

▪ Create a new document with “documents = caa.documents”

▪ Create a new part with “part1 = documents.add(“Part”).part”

▪ Create a new body from that part and a geometrical set: body1 = part1.bodies.item("Geometrical set.1")

▪ Create a new sketch inside that body from a reference plane with “sketch1 = body1.sketches.add(reference

plane)”

• Create the 2D elements library by opening the sketch edition mode: factory2D1 =

sketch1.open_edition()

• Create the lines for the square base of our cube: factory2D1.create_line(x_start, y_start, x_end, y_end)

▪ Close the sketch edition mode: sketch1.close_edition

▪ Update the part: part1.update

▪ Create the extrusion for the cube: part1.shape_factory.add_new_pad(sketch1, length)

▪ Update the part: part1.update

To use Pycatia, CATIA needs to be installed on the computer, however it doesn’t need it to be opened. This “bash

mode” execution allows us to save time in the process. We can then save the file created in a repertory on the

computer. Each element created with Pycatia is an object. It means that we can access the document as well as

the different elements of the geometry of a sketch as objects and get their attributes. We can also apply

functions to them. For example, we can update or save the document.

3.2 Ontology

In the IT world, ontology is a discipline that aims to formally represent the knowledge of a specific

domain. It relies on a taxonomy to organize entities into classes and subclasses, and semantic tables to describe

the properties and relationships between these entities. It supplies a semantic structure and a common

language for describing entities and their interactions within the domain. Such an approach makes it possible to

capture and model domain knowledge in such a way as to make it explicit and comprehensible to both machines

and humans.

In practice, an ontology is represented in the form of graphs, such as the one shown in Figure 4, where a concept

can be described by several attributes and may have one or more relationships (hierarchical, partial, association)

with other concepts or systems [8].

Public. © 2023 Capgemini. All rights reserved. 12

The use of ontologies in IT offers several advantages. Firstly, it eases the understanding and exchange of

knowledge between different applications and systems. By using a common ontology, developers can ensure

that the various parts of the system in question interact coherently. Ontologies also help information retrieval

and data access. By describing concepts and relationships in a structured way, it becomes possible to perform

precise queries and extract relevant information from heterogeneous data sources [8].

3.3 Image processing

In generating a CATIA model from the technical drawing data, we depend on the functionality of the

contour recognition algorithm. It is imperative to understand the workings of the image processing involved. In

our approach, the Python module named cv2 is employed to execute operations for extracting contour data and

manipulating the input image [9]. For example, this library allows us to convert the input image into a black and

white picture using a threshold for the pixel’s intensity. The threshold value is an integer between 0 and 255, 0

being a white pixel and 255 a black pixel. This functionality will be very useful when we will process drawings

which are not clear enough or maybe even blur. If the threshold is too low, we might extract too many contours

and if it is too high, we might lose some.

After transforming the colours and getting a clearer image, cv2 can extract the contours of the shapes on

the image by using the function “findContours”. The retrieval method for the contours depends on the

attributes entered in the function. It also returns us the hierarchy matrix of the contours, we will explain this

notion in detail later in this report, but it essentially represents the relationship between the contours. The

hierarchy will not be the same depending on the retrieval method.

 Cv2 is even able to extract the dominant points of the contours with “approxPolyDP”. Thanks to this

function, we can approximate the shape of a contour depending on the number of points composing it.

However, we lose data if a shape is rounded for example. This method would only extract the starting and

ending points, and we will not recognize an ark but a segment.

Also, cv2 enables us to get other attributes of the contours such as their areas or their perimeters, but we will

not use it. We studied some ways to use them to delete the problematic contours, but it led us on wrong tracks.

The contour recognition method using the approximation of the number of points composing the contour is

called a “morphological method”. Another one is the “predictive method”, using an Artificial Intelligence which

simply recognizes the shape and categorizes it into a class. This last method needs the AI to be well trained,

Figure 4: Explanation of the ontology [8]

Public. © 2023 Capgemini. All rights reserved. 13

which is not really the case of the one we use for our algorithm. This caused us some problems regarding the

nature of the contours we studied and their representations.

We need now to mention that the input for our work will be a clear image of the technical drawing. It means that

the technical drawing has been cleared from all the dimensions and notations on it, we simply have the shape of

the part. The algorithm which cleans the drawing will not be studied in this report since it concerns a different

approach of the subject. In the future, it may become necessary to consider it to perfect the way our algorithm

could work or how the technical drawing data could be more accurate.

Public. © 2023 Capgemini. All rights reserved. 14

4 Parametrization of a CATIA model
The first goal of the internship was the parametrization of an entire CATIA model so it would help for the

optimization of the design. The bike frame is already on the market, but the study would help for a future

product. To get started, we could rely on the model of the existent frame. From it, it is possible to retrieve the

dimensions and the geometry for a simplified model. To achieve this objective, we would proceed in four steps:

• Create the model from assumptions we would make about the geometry

• Define the parameters

• Get as much relations as possible between them to decrease the number of inputs

• Control the parameters from an Excel sheet and a macro.

4.1 Creation of all the parts of the assembly and

definition of the parameters

The first step to parametrize the bike frame assembly is to realize the whole assembly. To do that, we

need to make assumptions about the geometry of the frame, decompose it into segments. Each segment

corresponds to a part of the frame that has no radical changes in geometry, volume or simply corresponds to a

piece of the frame. That way, we can isolate each interesting part and simplify its geometry.

We try to stay true to the original geometry as best we can. We can approach the section of the segments to

rectangular or circular ones. When there is a noticeable change in dimensions of the section along the segment,

we realize an extrusion with a variable section. For each part, we try to name the parameters of the geometry, so

it will be easier to recognize them during the parametrization step. Since the parts are created as volumes, we

then need to extract the surfaces for the realization of the final part as 2D element. What we mean by a 2D

element is like a beam with a defined section and a surface thickness. Then, we deactivate the volume and keep

the resulting part. We can see the process on Figure 5:

Figure 5: Process of the creation of a part

Public. © 2023 Capgemini. All rights reserved. 15

We need to make sure the joints between the parts fit correctly, we can also adapt these joints with our own

values to be sure the assembly will fit. For example, some parts of the frame are just beams linked to other parts

with a special function, like receiving a pivot. This link is a flush-mounted liaison as the two parts are melded

together. This kind of connection needs accurate measurements since the symmetry of the whole geometry

could depend on it.

After completing the production of all components, the next phase involves assembly. If the measurements are

correct, the parts should seamlessly come together. Otherwise, the small gaps or errors are readjusted. It is

crucial to precisely set up the assembly constraints, ensuring that when the frame is in motion, it adheres to the

bike's actual dynamics. For this kind of assembly, only pivot and flush-mounted connections are employed.

The bike frame can be divided into two main parts: the front and the rear parts. The front can represent the

frame itself, the elements not moving and all mounted together. The rear part is the most interesting and will be

the focus of our research for parameters. The rear part will move with the suspension of the bike. A shock

absorber connects the rear and the front parts (not represented on Figure 6). It is coupled to a connecting rod

system so the “rear triangle” keeps a circular translation movement (parallelogram JGOI on Figure 7). The main

characteristics that we would like to act on are the position of the top pivot liaison (point G), the angle at the

rear triangle (α1), and the space between the two rear triangles where the rear wheel is. And we will change the

angle at the front of the frame on the bar connecting the pedal masterpiece and the cylinder where the bicycle

fork comes.

Also, all the sections parameters like the widths, the heights, and the thicknesses will be monitored. We will not

change them, but we include this possibility so that we can present more options when the optimization of the

frame needs to be done.

4.2 Construction of the equations of the problem

Between the assembly phase and the creation of the parts, it became necessary to find relationships

between the measurements, so it fits correctly. This implies mathematical and geometrical relations between

the parameters defined previously during the creation of the parts. All these relationships result in a problem

with multiple variables, some unknowns, and others we need to impose. For that, we define which parameters

are our inputs, what geometry we want to change, and which parameters are affected. For example, if we want

Figure 6: Complete bike frame model

Public. © 2023 Capgemini. All rights reserved. 16

to change the angle at the rear of the frame, it will imply that the lengths of the parts at the rear would change

as well as the position of pivot liaisons.

The first assumption is that all the parameters concerning the sections would be entered manually. Then, we

decide to impose the angle alpha1 (Figure 7), and the distances between the symmetrical parts (Figure 8) at the

rear as our inputs. All the other parameters affected will have to be calculated and actualized.

In identifying the relationships, we initially mapped out the problem on paper and deduced the necessary

equations. To simplify the complexity, we broke down the problems into smaller components, isolating the

unknowns. Recognizing the persistent difficulty, we opted to stabilize the geometry by fixing it in a predefined

position, termed as the initialization position, thereby reducing the number of unknowns. Utilizing these

equations, we obtained parameter values crucial for the main equations of our problem. Employing geometric

closures and fundamental relations within triangles, we established sufficient connections to effectively address

and solve the problems. After simplifying the equations, we were able to get the following results, the main

parameters can be seen in the figures 7 and 8, the other ones are just “transition” parameters:

• Geometric closure inside GOIJ projected on 𝑦⃗:

 −(𝐿𝑝𝑖𝑣𝑜𝑡 + |𝐻𝑂|)𝑠𝑖𝑛(𝛼0) − |𝑂𝐼|𝑐𝑜𝑠(𝜑1) + 𝐿𝑏𝑖𝑒𝑙𝑒𝑡𝑡𝑒𝑐𝑜𝑠(𝛼𝐼 + 𝜑1) + |𝐽𝐺|𝑐𝑜𝑠(𝜑3) = 0 (1)

• Geometric closure inside GOIJ projected on 𝑧:

 −(𝐿𝑝𝑖𝑣𝑜𝑡 + |𝐻𝑂|)𝑐𝑜𝑠(𝛼0) − |𝑂𝐼|𝑠𝑖𝑛(𝜑1) + 𝐿𝑏𝑖𝑒𝑙𝑒𝑡𝑡𝑒𝑠𝑖𝑛(𝛼𝐼 + 𝜑1) + |𝐽𝐺|𝑠𝑖𝑛(𝜑3) = 0 (2)

• Geometric closure inside ABCDEFGOI projected on 𝑦⃗:

 −|𝐴𝐵| − |𝐵𝐶| + |𝐶𝐷|𝑐𝑜𝑠(𝛼1) + |𝐷𝐸|𝑐𝑜𝑠(𝛼4 + 𝛼1 − 𝜋) + |𝐸𝐹|𝑐𝑜𝑠(𝛼2 + 𝛼4 + 𝛼1) + |𝐹𝐺|𝑐𝑜𝑠(𝛼3 − 𝜑3)

− (𝐿𝑝𝑖𝑣𝑜𝑡 + |𝑂𝐻|)𝑠𝑖𝑛(𝛼0) − |𝑂𝐼|𝑐𝑜𝑠(𝜑1) − |𝐼𝐴|𝑐𝑜𝑠(𝜑1 − 𝛼5 + 𝜋) = 0

(3)

• Geometric closure inside ABCDEFGOI projected on 𝑧:

 |𝐶𝐷|𝑠𝑖𝑛(𝛼1) + |𝐷𝐸|𝑠𝑖𝑛(𝛼4 + 𝛼1 − 𝜋) + |𝐸𝐹|𝑠𝑖𝑛(𝛼2 + 𝛼4 + 𝛼1) + |𝐹𝐺|𝑠𝑖𝑛(𝛼3 − 𝜑3) − (𝐿𝑝𝑖𝑣𝑜𝑡 + |𝑂𝐻|)𝑐𝑜𝑠(𝛼0)

− |𝑂𝐼|𝑠𝑖𝑛(𝜑1) − |𝐼𝐴|𝑠𝑖𝑛(𝜑1 − 𝛼5 + 𝜋) = 0

(4)

• Triangle relation:

 𝛼𝐼 + 𝛼𝐽 + 𝜑1 − 𝜑3 = 𝜋 (5)

• Vector relations:

 |𝐷𝐸𝑥| = |𝐷𝐸𝑥0| + (𝑉𝑜𝑖𝑒𝑎𝑟𝑟𝑖è𝑟𝑒 − 𝑉𝑜𝑖𝑒𝑎𝑟𝑟𝑖è𝑟𝑒0) − (𝐸𝑐𝑎𝑟𝑡𝑐𝑒𝑛𝑡𝑟𝑎𝑙 − 𝐸𝑐𝑎𝑟𝑡𝑐𝑒𝑛𝑡𝑟𝑎𝑙0) (6)

 |𝐴𝐵𝑥| = |𝐴𝐵𝑥0| + (𝑉𝑜𝑖𝑒𝑎𝑟𝑟𝑖è𝑟𝑒 − 𝑉𝑜𝑖𝑒𝑎𝑟𝑟𝑖è𝑟𝑒0) − (𝑉𝑜𝑖𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑒 − 𝑉𝑜𝑖𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑒0) (7)

Since Equations 1, 2, 3, and 4 are not linear, we used the solver from Excel. This method relies on least-squares

averaging calculations, so it is possible the values are correct but not physically possible. In our case, the results

were plausible enough, so we kept this method.

Public. © 2023 Capgemini. All rights reserved. 17

Figure 7: Scheme of the problem at the rear of the frame

Figure 8: Scheme of the problem of the symmetry of
the parts at the rear of the frame

𝑧

𝑦⃗

α1

Public. © 2023 Capgemini. All rights reserved. 18

4.3 Control of the parametrization

Once the assembly is done and the equations defined, the last step is the parametrization. For this, we

will use the built-in tool of CATIA: the design table. The benefit of having already named our parameters as we

wanted is that now they are recognizable among all the parameters the design table tool presents us. In parallel

to this, we create an Excel file in which each parameter is represented in a column. Then, the design table on

CATIA is smart enough to automatically make the connection between the values of the parameters in the Excel

files and the parameters we selected before.

To streamline this process across different configurations, a concise algorithm has been developed using

CATScript. This not only automates the procedure but also enables us to generate animations based on the

various configurations.

The layout of the Excel file needs to be specific because we need to have the parameters’ names on the first line,

then all the values and nothing else in the table. In our case, we have another sheet where we put the equations

of our problems so when we change a value in the first sheet, we launch the algorithm which will update the

impacted parameters according to our equations. Also, we must be careful with the units because CATIA will

read them in the International System if they are not mentioned in the name’s cell. Because of the important

number of parameters, almost a hundred, we put our focus on the ones defined previously such as the rear angle

α1, the distance of the pivot located in G and the distances between the symmetrical parts around the rear

wheel.

Public. © 2023 Capgemini. All rights reserved. 19

5 Use of Pycatia to automate the creation of

a part
After we understood the basics of the CATIA Automation process during the realization of the script for the

parametrization, it became possible to go to the next step: directly automating the creation of the part. We

would rely on clean pictures of technical drawings, simple shapes at first, then we would apply our algorithm to

more complex shapes. However, as mentioned earlier, we lack documentation about the process from the 2D

drawing analysis, the data storage, to the creation of the 3D model. It would be our role to define this road map,

and make it as clear and structured as possible. And since much of the work would have to be done on Python,

we needed to find the correct module to make the link with CATIA. Pycatia was the solution. We would try to

structure the code as logical as it could be, separating the Pycatia part and the main code involving more Python

in-built methods.

5.1 Reading data from an Excel file

Since during the parametrization we were using an Excel sheet to define a configuration of our model,

we decided to keep this method to define a configuration for our part. In our case, the configuration would

concern the geometry of the part like the fillet radius or distances for example.

Our model is a lug, so we know its geometry and it is a good start to develop a method that will be applied to

any part. We create a sketch on which we know all the constraints and the names of our geometric elements

(Figure 9). In the Excel file we would create three columns with the names of our parameters: the side length,

the base length, and the fillet radius.

To read the Excel file, we use the module in Python called “pandas”; it extracts the Excel values as a table and

automatically recognizes the names of our columns. Then, we catch the correct value corresponding to the

Figure 9: Sketch of the lug model

Public. © 2023 Capgemini. All rights reserved. 20

configuration we want and apply it to the model. We update it and since the geometry is correctly constrained,

when we change the distances there is no problem in the sketch.

5.2 Library of functions

With the example of our lug, since we know the specifics of the part we are creating, we know which

operations to make and in which order. So, the first script we realized was specific to that case. To aim for a

broader field of application, we decided to divide our operations. It means that we would have our main code

realizing the logical operations and another code in which we would define functions that would be focused on

CATIA operations like sketch creation, geometry’s elements, constraints creation… To realize this script, which

could be like a library of functions, we decided to match its ontology to the one of Pycatia. We have our part and

our sketches represented as classes so we can get their attributes and call their own methods.

For example, we create a part, then a sketch, then we create a Factory2D element associated to this sketch. This

Factory2D element allows us to create points, lines, circles and other 2D geometric elements in our sketch. Then,

we create a Constraints element associated to our sketch. This Constraints element will allow us to create the

horizontal, perpendicular, parallel constraints between the 2D elements we created before, and that we can find

in our sketch. Finally, we can update or save the part thanks to methods in our Part class.

Incorporating 3D operations, such as pads, holes, or pockets, into our script represents a final crucial step. Prior

to implementing these operations, it is imperative to ensure the integrity of the sketch. The sketch must be

closed and without any self-intersections. To address potential issues, we created a function capable of

detecting gaps within a geometry. It is designed to work seamlessly on geometries composed exclusively of

segments. This function finds gaps between the endpoint of one segment and the starting point of the next,

calculates the intersection point, and generates two more segments to effectively fill these gaps.

For now, the main code is structured as we know how to create the part. We know which operation to make, we

simply separated the CATIA functions from the logic of conception. Our objective is now to adapt our main script

to any sketch it could encounter. So, it means that we need to define a precise type of input to represent the

data of our sketch. We could keep the Excel format, but we decided to change to a JSON file because the data

representation was simpler and easier to construct.

Public. © 2023 Capgemini. All rights reserved. 21

6 Creation of a sketch from JSON file
As mentioned before, since we knew the geometry and the constraints of the part we were studying, the

input was known. But, to realize a script that could be applied to any sketch, we needed to define an input easily

understandable and that could also be done easily by the contour recognition code. The JSON format seemed

appropriate since we needed to store attributes, values, or names into our file.

6.1 Proposition of a structure for JSON file

To make the input adaptable to any sketch, it was imperative to identify and specify the necessary

parameters, universal data applicable to any model. Once these parameters were defined, we organized them

into a format that mirrored the structure of our existing library of CATIA functions. This structured approach

ensures consistency and compatibility throughout the implementation.

The skeleton of the JSON file would be as followed:

- Sketches/Sketch1

o Geometry

▪ Points

• Point1: {x, y}

▪ Lines

• Line1: {𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑒𝑛𝑑 , 𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑}

▪ Arcs

• Fillet1: {𝑥𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑦𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑛𝑎𝑚𝑒}

▪ Circles

• Cirlce1: {𝑥𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑦𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑟𝑎𝑑𝑖𝑢𝑠}

▪ Splines

• Spline1: [𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 1, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 2, 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑛𝑎𝑚𝑒]

o Constraints

▪ Horizontality

• [𝑙𝑖𝑛𝑒1 𝑛𝑎𝑚𝑒, 𝑙𝑖𝑛𝑒2 𝑛𝑎𝑚𝑒,…]

▪ Verticality

• [𝑙𝑖𝑛𝑒1 𝑛𝑎𝑚𝑒, 𝑙𝑖𝑛𝑒2 𝑛𝑎𝑚𝑒,…]

▪ Parallelism

• {𝐹𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒}

▪ Coincidence

• {𝐹𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒}

▪ Symmetry

• {𝐹𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒}

▪ Distance between points

• {𝐹𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒}

▪ Tangency

• {𝐹𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑎𝑚𝑒}

▪ Radius

• {𝐶𝑖𝑟𝑐𝑙𝑒 𝑜𝑟 𝑎𝑟𝑘 𝑛𝑎𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒}

▪ Fixed

• [𝑒𝑙𝑒𝑚𝑒𝑛𝑡1 𝑛𝑎𝑚𝑒, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡2 𝑛𝑎𝑚𝑒,…]

Public. © 2023 Capgemini. All rights reserved. 22

6.2 Adaptation to structure of given JSON file

The contour recognition code does not yield the precise data needed for our CATIA creation script.

Consequently, we decided to store an extensive amount of data, aiming to align with the predetermined frame

example as closely as possible. Notably, the output from the contour recognition code diverges from our first

concept, as it captures not only the coordinates of all points but also keeps information on all contours and

constraints, all at the same hierarchical level.

6.2.1 Data from contour recognition code

The contour recognition code is separated in various parts. There is a first part in which the technical

drawing is cleaned of all the dimensions or notations and gives us a clean image of the technical drawing. But we

will not study this part since it does not involve any matter that could affect our results.

Then, there is the extraction of the contours and the categorization of the nature of these contours. These two

steps are especially important because they both relies on sensitive methods of detection end classification. The

contours extraction is done using the method findContours from cv2 module. And the determination of the

nature of the contours is done using an Artificial Intelligence (AI).

For each contour, the findContours method will give us a list of all the points ordered as we follow the contour in

a clockwise direction. There exist different methods of contour recognition inside this method, and each of them

would give us a different result. Also, findContours gives us the hierarchy of all the contours. The hierarchy will

be explained later in this report, but it is important to know that it is a criterion used to sort the useful contours

of the shape.

After having detected and deleted the useless contours, the AI processes the remaining contours to figure out

their nature. It can be “Triangle”, “Rectangle”, “Circle” or “Complex”. According to their nature, the algorithm

processes the contour points and gives us all the components of the contours sorted in different lists:

• Points (or nodes)

• Segments

• Curves

• Circle parameters (centre point coordinates and radius)

Of course, these lists can be empty depending on the nature of the contour. For example, if it is a rectangle, we

would only have data in the nodes and segments lists.

From these data, we build a JSON file with a structure as close as the one defined before. It would store the

hierarchy, all the contours and their points, the constraints between all the elements and a more structured list

of the contours, all this at the same level in the dictionary represented by the JSON format.

The more structured list of the contours would include data such as:

• Identification number

• Points coordinates

• Nature of the contour

• Lists of the segments, curves, or circle parameters

Public. © 2023 Capgemini. All rights reserved. 23

6.2.2 Processing data to be used with Pycatia

The second and main objective of the internship was to convert data from the technical drawing into a

sketch on CATIA. To achieve that, it needs a good comprehension of the data given by the contour recognition

algorithm and what is needed for the functions of Pycatia.

We previously established how Pycatia works, so we need now to explain how we enter our data from the JSON

file into our functions. But firstly, it is necessary to mention that in the algorithm creating the sketch, we browse

each list of geometric elements for each contour in the JSON file and call the corresponding Pycatia function.

For example, for each contour, we extract the segments, curves, and circles and then we create them without

necessarily respecting the direction of the contour. Concerning how the data is processed between the

extraction and the creation, we would only focus on three elements, each of which requiring a different process.

6.2.2.1 Points and segments

The points and the segments are quite simple examples because they need little modifications. Since we

already have the list of our points represented as lists of coordinates, it is quite easy to extract the data and

enter it into our function responsible of the creation of a 2D point.

We quickly realized that we do not need to create the points from the list of the nodes that we can find in the

JSON file. For each element inside a contour, like a segment or a curve, we would have the points coordinates of

its geometry. For example, the list of segments in a contour would include for each segment its identification

number and the coordinates of the starting and ending points. So, for each geometry we have access to the

points, and we would create them before creating the main component: the line, the curve, or any other

geometry.

6.2.2.2 Splines

The splines are a more complex example because there is a difference between how they are

interpreted in the contour recognition code and how they are parametrized in CATIA. First, the algorithm

recognizes the curves as Bezier curves, which means it finds control points, but the curve does not pass through

these. Whereas in CATIA, a spline is defined also by control points but passes through these points. The JSON

file stores the curves as lists of points, with the control points and the starting and ending points at the

beginning and the end of the list.

Since the representation is not the same in CATIA, we must recalculate the Bezier curve from the control points,

extract points that are on the curve and send them into our function creating the spline. However, one minor

problem persists. The contour recognition algorithm is not able to configure the entire curve correctly, it is cut at

some points by segments. From the moment it detects a vertical or horizontal slope or with a value of 1 or -1 in

the curve, it cuts it to represent a segment. This is why in the result on CATIA in Figure 10 we do not have one

but nine curves.

Public. © 2023 Capgemini. All rights reserved. 24

6.2.2.3 Constraints

In the JSON file, the constraints are stored in a particular format. The name of the constraint

corresponds to the nature, and it is numbered. The data inside depends on the nature, but we would normally

find all the data of the different elements involved. For example, a constraint called “parallel_segments_0”

would be a parallelism constraint and we would have all the data of the two segments involved (their

identification and the coordinates of the starting and ending points).

In CATIA, we select the components to constraint them, we do not really see how they are processed. After

having registered a macro while doing a constrained sketch, we were able to understand the process and which

functions to call with which parameters.

In our algorithm creating the sketch, the constraints come last, after the creation of every geometrical element.

During the creation of the 2D elements, we take care to store the created object in a dictionary with their

identification number as identification key. Thus, when it comes to the constraint creation, we have access to

every 2D objects and their names.

To create the constraint, first we must create “references” objects from the elements involved. To do that, we

get the identification of the elements and get the corresponding 2D object in our dictionary previously

mentioned. It is important to get that type of object because the Pycatia function only takes in this type of

variable. When we have the references, we apply to them the function corresponding to the constraint

encountered, then we activate the constraint.

Figure 10: Original shape, control points of the Bezier curves and result

Public. © 2023 Capgemini. All rights reserved. 25

7 Multiple contours shapes
After the algorithm for the creation of the sketch proved to be successful on simple shapes, we tried it with

shapes involving multiple contours. We have mentioned before that our algorithm browses each contour data in

the JSON file, but a few changes had to be made because we discovered some problems in the way the data

were stored in the JSON. After rectifying that we were able to get the results in CATIA.

7.1 Problems and hypotheses

The first results were remarkably close to the original image, and it was very promising. However, we

soon realized abnormalities in the contours. Even if the global shape were close to the original, when we zoom

in, we could see a slight gap between the lines, as though there were two overlapping contours. To highlight this

problem, we hid the double elements, using the Show/hide tool on CATIA. This way, we were able to see the

main contours and the hidden elements in two different pages (Figure 11).

Another problem was obvious: the accuracy of the contour lining. Some contours were clearly not well

represented. We could notice major changes in the curvature of a line while in the original image the contour

was simple, like a segment (Figure 12).

Figure 11: Sketch of the main and hidden contours on the case of a seat track

Figure 12: First try for the lug face process

Contour

recognition and

JSON file

Public. © 2023 Capgemini. All rights reserved. 26

7.1.1 Double contours

As mentioned before, we can notice that some contours are doubled. To overcome this problem, we

made some assumptions about its origin. Maybe it was an error in the algorithm which could consider the same

contour twice in a certain case. After revision of the code, it was not due to this, so we made tests with an image

on which we could have the control of the contour thickness.

As we increase the thickness of the contour, we notice the contours become distinct and they clearly stand out

from each other (Figure 13). It means the root of the problem is the method used for the contour detection:

findContours.

Indeed, the method detects the limits of a shape with the same intensity [10]. That is why we must define well

the threshold in the parameters of the method. If we have an enclosed shape, we will detect the external and

internal contours of the shape, twice the same contour. In this case, we can delete the double contour with a

method we developed, relying on the hierarchy of the contour. This method will be explained later.

But if we have two different contours sharing the same boundary (example of the lug Figure 12), it means that

one of the contours could be a combination of the other contours. This is more difficult to detect and to prevent,

it can be the subject of a paper that would stand by itself.

7.1.2 Wrong recognition of the contour by AI

The second problem was the quality of the contour’s shape, it was far from the original shape. To solve

this, one solution is to train the algorithm of the AI more. This method, using an AI, is called a predictive

approach.

Another solution we thought would change the result was to mix a predictive and a morphological approach. The

last one is a method in which we realize a simplification of the contour with its main points and from these points

we deduce its shape. For example, a square would have four main points and since it has four points, the

morphological approach would recognize it as such. While the predictive approach would only tell it is square

because the algorithm recognizes a shape it has already seen before and back then we said it was a square.

The morphological approach only relies on mathematics: if it has five sides then it is a pentagon and the same for

any polygon. But the limit to this method is when we have circles or rounded shapes, we do not have sides as

Figure 13: Study of the double contour problem

Public. © 2023 Capgemini. All rights reserved. 27

such. One way is to put a limit to our case disjunction, and from a threshold we consider it to be a circle, but that

only works for closed circles. If we had rounded shapes, we would not be able to retrieve the rounding data.

For now, we only use the AI algorithm to define the nature of the contour we set as input. The problem is that

even when it is recognized as a rectangle or triangle, there is still actually curves in the contour data. So, it is

possible that a complex shape could be recognized as a rectangle. It is not important because the geometry will

be created the same way whatever the shape is, but if we want to perfect the process of the contours in the

future, depending on their nature, it would be better to get the correct geometry from the first try.

7.2 Improvement of contour recognition

As mentioned earlier, challenges arose when applying the algorithm to shapes with multiple contours.

Certain issues can be addressed by directly changing the algorithm's approach, while others require a higher-

level adjustment in the sequence of actions to proactively prevent these problems. We will focus on two

improvements that helped getting a result closer to the reality.

7.2.1 Circle detection

Due to the AI's inability to accurately discern the nature of contours, the algorithm treated every

contour as a complex shape, regardless of its actual nature. Consequently, both circles and rectangles were

processed uniformly, with circles being represented as shapes composed of Bezier curves. This representation

introduced challenges, particularly in achieving a closed shape, as illustrated in Figure 14. This example is drawn

from the case of the seat track in Figure 11.

With the aim of accommodating future requirements that involve processing each contour based on its unique

characteristics, we have opted to introduce a verification step in the shape recognition process, specifically for

circles.

After having recognized the nature of the contour, the algorithm creates a contour with the correct parameters

by calling the corresponding class in another script, and it is at that step that we short circuit the algorithm by

treating every shape as a complex one.

The improvement would involve calling the circle contour definition at this step. Also, we would have to slightly

change the Circle class, so it considers the data we enter as input and gives us in return the correct output. For

example, we want to enter the same data for the contour as we have for any contour, but it returns empty lists

of segments and curves, and a list for the circle parameters (centre point coordinates and radius).

But to call this class, we need to detect the contour as a circle, or check if the circle detected is really a circle.

That is where the verification step comes in. In the shape recognition script, after we get the nature of the

contour, we check for each of them whether its nature is a circle or not. We do it for every contour because as

we mentioned before, the AI is not able to classify them correctly. But, as the AI improves, it will become

necessary to perfect it.

Figure 14: Detail of the seat track

Public. © 2023 Capgemini. All rights reserved. 28

For the verification step, we retrieve the points of the contour and calculate the assumed centre point as if it

was a circle and an average radius (Figure 15). Then, we loop again through the points and check if the distance

between them and the assumed centre point lies within a range of values around the radius. If it is not the case

for at least one point, it means it is not a circle, and we redefine the nature of the contour as complex.

Otherwise, we keep the calculated values for the coordinates and the radius and the nature as a circle. We can

see on Figure 16 the result obtained after cleaning manually the double shapes (problem seen on Figure 8). The

circles are detected correctly, and we have a sufficient accuracy as they are still aligned.

Figure 15: Examples of checked contours (complex on the left, circle on the right)

Figure 16: Cleaned result with closed circles

Public. © 2023 Capgemini. All rights reserved. 29

7.2.2 Removing double contours

As mentioned earlier, the contour recognition algorithm detects every zone limit in the picture. Thus, if a

shape is closed, like a simple circle, we would detect the external and internal contours of the circle; we would

have two contours representing the same shape. Beforehand, it needs to be understood that the contour

retrieval method also detects the boundaries of the picture. Thus, in the contours data, the first contour

(number 0) corresponds to the external shape of the picture, a rectangle, and will be ignored in the rest of the

analysis since it will be automatically deleted.

A first approach to avoid this double contour problem was to find a way to fill some zones of the drawing. That

way, the algorithm would not detect the internal contours since they do not exist anymore. For this, we used the

library cv2 again and its function floodFill. However, this function automatically inverts the contrast of the

picture, which means that we do not detect the image boundary anymore, but the drawing becomes white on a

black background.

Another solution was to select the zones to fill, but it was more complex since there is no function able to

directly do this. We needed to define a mask on the picture, apply it and superimpose it on the original image.

Obviously, the results were not as good as expected so we looked for another solution.

That is why we developed a function which deletes the redundant contours based on their hierarchy. This

concept is crucial to understand since it depicts the ontology between the contours, and it is the heart of the

function which already existed to delete the redundant contours. The hierarchy is represented as a matrix of

numbers, each line would correspond to a contour and each column specifies its relationships with the other

contours: [Next, Previous, First child, Parent].

On Figure 17, contours 2, 4, 6, 8 and 10 are internal and are the ones we want to remove. The hierarchy of the

contours depends on the contour retrieval mode we set in the method findContours. We briefly described

earlier how the contour retrieval mode works, so we will now focus on the hierarchy.

Figure 17: Reference picture for hierarchy study

Public. © 2023 Capgemini. All rights reserved. 30

In the case of Figure 17, it would return this hierarchy matrix:

[

−1 −1 2 0
−1 −1 3 1
7 −1 4 2

−1 −1 5 3
−1 −1 6 4
−1 −1 −1 5
9 3 8 2

−1 −1 −1 7
−1 7 10 2
−1 −1 −1 9]

If we take the example of contour C3 (third line in the matrix), we have this: [7 -1 4 2]. It means that contour C7 is

the next one in hierarchy, which is obvious since they are inside the same shape, contour C2, which is also their

parent. Then, we have -1 as the value for the previous contour, meaning there is no previous contour. C4 is the

first child of the contour since it is the internal contour of the ellipse [11].

Figure 18: Ontology of the contours of the
reference picture

Public. © 2023 Capgemini. All rights reserved. 31

From this we can draw a quick ontology of the contours (Figure 18). We can notice contour C0 which corresponds

to the limits of the picture, and which is ignored, that is why it does not appear in the hierarchy matrix. We are

also able to see that the contour we want to remove are alone at their rank in hierarchy, which means that they

have no next nor previous contours, so their hierarchy begins with [-1 -1 _ _].

We wanted to change the function detecting the redundant contours since it was not correctly configured.

Indeed, we noticed that it deleted only the contours having no next, no previous and no child contours. If we

take the example of Figure 17 and the scheme in Figure 18, it will mean that it removed only the contours at the

end of each branch (6, 8 10). So, this function would not delete contour C4 even if it is a redundant contour.

However, to differentiate contour C7 from the contours to delete, we need to make sure that we are not dealing

with a “parent” contour. Indeed, the external contours act like parents, they contain other contours.

So, in our algorithm we define a “parent state” that we read during each loop and redefine according to the

contour we are currently analysing and the one we analysed the loop right before. The logic states that every

first child of a parent contour corresponds to an internal contour. So, if the one before was a parent, and if the

one we are reading has no next nor previous contours, it means we are dealing with a double contour and we

remove it (result in Figure 19).

We notice that only the internal contours are deleted and contour C7 has been recognized as a parent contour,

and so has been kept. This function will allow us to get better results in the representation of the technical

drawing. We will not lose data because of a bad understanding of how the contour retrieval mode works.

The next step would be being able to detect the combination between the contours. For example, two contours

could be inside the same parent, share some limits with the parent while having a different shape. We would

have twice the same boundary drawn on the sketch while having two distinct contours. This, however,

represents too much work to be studied in this subject.

Figure 19: Contours to remove after the analysis of the hierarchy

Public. © 2023 Capgemini. All rights reserved. 32

8 Conclusion
In the context of my studies in Engineering at the ENSTA Bretagne and Prague Technical University, I

realized my end-of-study internship at Capgemini Engineering in Blagnac, France. Working in the research

department was for me a rich experience because I worked on mechanical subjects while applying automation

tools. By participating actively in the company life and bringing a new point of view on the subjects, I have been

able to complete my goals and return a satisfying result to the team.

Indeed, my internship has been driven by the objective of parametrizing and automating the creation of CATIA

models. After being able to parametrize an entire bike frame from a control sheet on Excel and a CATIA script, I

could apply this knowledge to the automation process. This latter goal has been more challenging. The logical

sequence of action to create the model was simple to define, but we realized that the input data were not

structured or clear enough. So, I had to work on image processing and on the contour recognition algorithm to

get the correct results.

Working in such various fields made me put in perspective what I would expect to do in the future. Combining

both programming and mechanics was thrilling, working on Python to get a result on CATIA was something

special. It allowed me to increase my knowledge in both those tools but also in automation methodology, with a

touch of AI experience.

Thanks to this experience, I now have a clearer idea of what I want to do after my studies. Working in an IT

company on subjects involving mechanics was a first for me, and I really enjoyed it. I discovered a new way to

work on subjects I have always been interested in, but with tools that embody the future of engineering. And

again I would like to thank all the people at Capgemini or at any point during my higher education years who

helped me along my way.

Public. © 2023 Capgemini. All rights reserved. 33

9 Sources
[1] ‘Capgemini’, Wikipédia. Aug. 08, 2023. Accessed: Oct. 26, 2023. [Online]. Available:

https://fr.wikipedia.org/w/index.php?title=Capgemini&oldid=206772009

[2] Capgemini, ‘Capgemini Engineering’. Accessed: Aug. 11, 2023. [Online]. Available:

https://www.capgemini.com/fr-fr/notre-groupe/nous-connaitre/nos-marques/capgemini-engineering/

[3] A. B. Harish and A. R. Prasad, ‘Photo2CAD: Automated 3D solid reconstruction from 2D drawings using

OpenCV’, 2021, doi: 10.48550/ARXIV.2101.04248.

[4] L. Governi, R. Furferi, M. Palai, and Y. Volpe, ‘3D geometry reconstruction from orthographic views: A

method based on 3D image processing and data fitting’, Comput. Ind., vol. 64, no. 9, pp. 1290–1300, Dec. 2013,

doi: 10.1016/j.compind.2013.02.003.

[5] ‘CATIA’, Dassault Systèmes. Accessed: Dec. 04, 2023. [Online]. Available:

https://www.3ds.com/products/catia

[6] ‘CATIA Automation Home Page’. Accessed: Oct. 26, 2023. [Online]. Available:

http://catiadoc.free.fr/online/CAAScdBase/CAAScdAutomationHome.htm

[7] ‘Pycatia documentation’, GitHub. Accessed: Nov. 27, 2023. [Online]. Available:

https://github.com/evereux/pycatia/tree/master/examples

[8] C. EL BEZZAR, ‘Reconstruction de topologies 3D à partir d’informations de coupes ou projection 2D’.

[9] ‘OpenCV: Structural Analysis and Shape Descriptors’. Accessed: Nov. 30, 2023. [Online]. Available:

https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a

[10] ‘Python | cv2 findContours() Method - Java2Blog’. Accessed: Nov. 22, 2023. [Online]. Available:

https://java2blog.com/cv2-findcontours-python/

[11] ‘OpenCV: Contours Hierarchy’. Accessed: Nov. 22, 2023. [Online]. Available:

https://docs.opencv.org/4.x/d9/d8b/tutorial_py_contours_hierarchy.html

About Capgemini Engineering

As the world leader in engineering and R&D services, Capgemini Engineering applies in-depth
sector knowledge and mastery of the latest digital and software technologies to support the

convergence of the physical and digital worlds. Combined with the Group's full range of
capabilities, Capgemini Engineering helps its clients accelerate their transformation towards

the Intelligent Industry. Capgemini Engineering employs 65,000 engineers and scientists in
over 30 countries, and operates in sectors such as Aerospace, Defense, Naval, Automotive,
Rail, Infrastructure & Transportation, Energy, Utilities & Chemicals, Life Sciences,
Communications, Semiconductors & Electronics, Manufacturing & Consumer Goods, Software
& Internet.

Capgemini Engineering is part of the Capgemini Group, a responsible, multicultural global
leader with 360,000 people in over 50 countries. A strategic partner to companies as they
transform their businesses by harnessing the full power of technology, the Group is guided
every day by its raison d'être: unleashing human energies through technology for an inclusive
and sustainable future. With 55 years of experience and extensive industry expertise,
Capgemini is recognized by its clients for meeting all their needs, from strategy and design to

operations management, leveraging innovations in the ever-evolving fields of cloud, data,
Artificial Intelligence, connectivity, software, digital engineering, and platforms. The Group
achieved sales of 22 billion euros in 2022.

Get the Future You Want | www.capgemini.com/engineering

This document contains information that may be privileged

or confidential and is the property of the Capgemini Group.

Public. Copyright © 2023 Capgemini. All rights reserved.

https://www.capgemini.com/fr-fr/notre-groupe/nous-connaitre/nos-marques/capgemini-engineering/

