
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Nuclear Sciences and Physical Engineering

Department of Mathematics
Theoretical Informatics Group

MASTER’S THESIS

Symmetries in Factor Languages and
Palindromic Richness

Symetrie faktorových jazyk̊u a bohatost
na palindromy

Author: BSc. Viola Hadjikyriacou
Supervisor: Prof. Ing. Edita Pelantová, CSc.

Academic year: 2022/2023

Název práce:
Symetrie faktorových jazyk̊u a bohatost na palindromy

Autor: BSc. Viola Hadjikyriacou

Studijńı program: Matematické inženýrstv́ı

Druh práce: Diplomová práce

Vedoućı práce: Prof. Ing. Edita Pelantová, CSc., Katedra matematiky, Fakulta jaderná
a fyzikálně inženýrská, ČVUT

Abstrakt: Ćılem této práce je studium nekonečných palindromických slov. Často
uvažujeme abecedu {A, C, G, T} a tato volba je motivována strukturou DNA. Nejprve
uvedeme potřebnou teorii, v ńıž je pro nás kĺıčový pojem obecného palindromu. Také
odvod́ıme nové výsledky týkaj́ıćı se rovnic na slovech, kde se vyskytuj́ı palindromy.
Jedńım z předmět̊u našeho zkoumáńı je generováńı palindromických slov. Shrneme
známé výsledky ohledně tohoto problému a následně zformulujeme obecnou teorii pro
H-palindromická a G-palindromická slova. Dále představ́ıme bohatost na palindromy jak
v klasickém, tak zobecněném smyslu. Naš́ı druhou úlohou je hledáńı G-bohatých slov.
Poṕı̌seme algoritmus, který vuyž́ıváme na testováńı G-bohatosti slov a uvedeme několik
tř́ıd morfizmů, které pravděpodobně generuj́ı G-bohatá slova.

Kĺıčová slova: HKS domněnka, kombinatorika na slovech, pevný bod morfizmu,
Watson-Crick palindrom, zobecněná bohatost na palindromy, zobecněný palindrom

Title:
Symmetries in Factor Languages and Palindromic Richness

Author: BSc. Viola Hadjikyriacou

Abstract: The aim of this work is to study infinite palindromic words. We frequently
consider the alphabet {A, C, G, T} and this choice is motivated by the structure of DNA.
We summarize some essential theory, where the central concept for us is a general
palindrome. We also derive some additional results concerning word equations with
palindromes. Our first objective is to generate palindromic words. We present known
results about this problem and then develop a more general theory for H-palindromic
and G-palindromic words. Next, we introduce palindromic richness in the classical sense
as well as its generalizations. Our second objective is to find examples of infinite G-rich
words. We describe an algorithm that we use to test G-richness and give several classes
of morphisms that likely generate G-rich words.

Key words: combinatorics on words, fixed point of morphism, generalized palindrome,
generalized palindromic richness, HKS conjecture, Watson-Crick palindrome

iii

Contents

1 Introduction 1

2 DNA computing 3
2.1 Structure of DNA . 3

2.1.1 Hairpin structure in DNA . 4
2.2 Operations with DNA . 5
2.3 Introduction to DNA computing . 5
2.4 NP-complete problems . 6

2.4.1 Hamiltonian path problem . 7
2.4.2 SAT problem . 9

3 Elements of combinatorics on words 11
3.1 Words . 11

3.1.1 Finite words . 11
3.1.2 Infinite words . 12
3.1.3 Factor complexity . 12

3.2 Morphisms . 15
3.2.1 Generating infinite words . 18

3.3 Antimorphisms . 22
3.3.1 Palindromes and palindromic words 23

3.4 Groups of morphisms and antimorphisms 24

4 Word equations with palindromes 27

5 General palindromicity 34
5.1 Palindromicity with respect to an antimorphism 34

5.1.1 Mirror image map R . 34
5.1.2 Exchange map E . 36
5.1.3 DNA map D . 37
5.1.4 General involutive antimorphism H 39

5.2 Palindromicity with respect to a group G 46
5.2.1 Groups generated by two antimorphisms 49

6 Palindromic richness 57
6.1 Classical palindromic richness . 57
6.2 Generalized palindromic richness . 60

6.2.1 Richness with respect to an antimorphism 60
6.2.2 Richness with respect to a group 62
6.2.3 Calculation of G-defect . 66

7 Conclusion 73

Bibliography 75

iv

Chapter 1

Introduction

In this work, we investigate some properties of infinite words concerning their symmetric
factors. Several results are linked to a specific choice of the alphabet and we often consider
infinite sequences of letters from the alphabet {A, C, G, T}. This choice is motivated by
the structure and significance of DNA molecules and we discuss this in more details in
Chapter 2.

In Chapter 3, we set up the notation and terminology and we also give an overview
of some important known results of combinatorics on words. We cover finite and infinite
words and their properties, such as factor complexity, for which we prove some known
results using the so-called Rauzy graphs. Then we move to morphisms, where we introduce
the concept of conjugation, showing that it is an equivalence relation on the set of
morphisms, and present definition of the incidence matrix of a morphism. Next, we
show how to generate infinite words by morphisms and summarize results regarding such
infinite words. Subsequently, we employ antimorphisms to give general definition of an
H-palindrome and an H-palindromic word, where H denotes an arbitrary involutive
antimorphism. In the case of the alphabet {A, C, G, T} we have a D-palindrome and
a D-palindromic word. By an R-palindrome and an E-palindrome we denote what is
commonly known as a palindrome and an antipalindrome, respectively. Lastly, we discuss
finite groups of morphisms and antimorphisms G and consider another generalization of
a palindrome called a G-palindrome.

Chapter 4 consists of our derivations of several results concerning equations on words
that contain R-palindromes and D-palindromes. We use one of these results in Chapter 5.

First part of our investigation focuses on palindromic words. The goal is to generate
H-palindromic and G-palindromic words and our method of doing so is described
in Chapter 5. After reviewing some known results about the class of morphisms
P , which is used to generate R-palindromic words, and briefly summarizing results
regarding E-palindromic words, we investigate D-palindromic words, defining new class
of morphisms D. We generalize this approach to any involutive antimorphism H by
defining a corresponding class H. We show that morphisms from class H that satisfy
certain graph condition generate H-palindromic words. Next, we address the question of
generating G-palindromic words. We define a class of morphisms G by specifying certain
relations such morphisms have to satisfy. Then we derive the form of such morphisms for
several concrete groups G. Again, we show that under certain conditions, fixed points of
morphisms from class G are G-palindromic.

Second problem we pursue is finding examples of G-rich words. The topic of
palindromic richness, both in the classical and a general sense, is covered in Chapter 6.
The generalization we are interested in is with respect to a group of morphisms and
antimorphisms G. We consider two specific groups and for each one design an algorithm
for deciding whether a given finite word is G-rich or not. Then we employ this algorithm

1

CHAPTER 1. INTRODUCTION

to test various fixed points of morphisms from class G. We present several classes of
morphisms that seem to generate G-rich words. It still requires formal proof to confirm
that these words are indeed G-rich, since we can be certain about the result of the
computer test only when the outcome is that given fixed point is not G-rich.

2

Chapter 2

DNA computing

One part of this work investigates words over the alphabet {A, C, G, T}. We are especially
interested in D-palindromes, words that are invariant under the so-called DNA map D,
which is motivated by the structure of DNA. In literature, they are known as Watson-Crick
palindromes. In this chapter, we look more closely at DNA, summarizing important facts
about this remarkable molecule, and introducing the field of DNA computing, where
results about D-palindromes could potentially be used.

2.1 Structure of DNA

Figure 2.1: Diagram of the structure of a DNA molecule.

DNA (deoxyribonucleic acid) is found in cells of living organisms and its function is to
encode information about structure of proteins that are produced. This information,
called the genetic code, determines characteristic features of the organism and is passed
on from generation to generation [37, 6]. One DNA molecule typically consists of two
strands, polymer chains of nucleotides, forming a double helix, however, it can also be in
the form of a single strand. One nucleotide contains a deoxyribose sugar, a phosphate
group and one of 4 different bases, adenine (A), cytosine (C), guanine (G) or thymine (T).

3

CHAPTER 2. DNA COMPUTING

Hence, a DNA strand can be represented as a sequence of letters from the set {A, C, G, T}
corresponding to the sequence of nucleotide bases in the molecule. Each strand has two
chemically distinct ends, a 3′ end and a 5′ end, which gives it a natural orientation. This
notation comes from the ordering of carbons in the sugar, the 3′ end has a hydroxyl group
on the 3′ carbon and the 5′ end has a phosphate group attached to the 5′ carbon. This is
shown in Figure 2.1. Standard convention is to write DNA sequences in a 5′ to 3′ direction.
The two strands of one molecule have opposite direction and are held together by bonds
between nucleotides, which are paired up in a specific way, A with T and C with G.
Two bases that can bind are called Watson-Crick complementary. This complementarity
enables DNA to replicate [41, 26].

In this work, we use the so-called DNA map, which is formally defined later. Let us
now illustrate the connection between this map and DNA. The DNA map sends a string
of letters from the set {A, C, G, T} to the string that is created by reversing the original
string and replacing each letter by its Watson-Crick complement. So, for example, the
DNA map sends CTTGA to TCAAG. This corresponds to sending a DNA sequence
to its Watson-Crick complementary sequence which would bind with it, as, for example,
5′ − CTTGA − 3′ binds with 3′ − GAACT − 5′, which also writes as 5′ − TCAAG − 3′.
If some string is sent by the DNA map to itself, we say that it is a D-palindrome. In
literature, it is known as a Watson-Crick palindrome. An example of a D-palindrome is
the sequence ACCGGT.

2.1.1 Hairpin structure in DNA

In DNA computing, where DNA molecules are used to perform calculations, the notion of
Watson-Crick complementarity plays an important role, as it allows scientists to design
and use DNA molecules in such a way that desired bindings occur. This can be observed
below in section 2.4, where two specific DNA algorithms are described. However, care
must be taken to ensure that the DNA molecules will not interact in undesirable ways.
An example of such situation is when one part of a DNA strand is complementary to a
different part of the same DNA strand and hence the DNA strand binds to itself. This
creates a secondary structure called a hairpin [26].

G C G A A C T G A G G T A
C G C

A

A

C A G C T T G A C T C C A T
A G T

C

Figure 2.2: Illustration of a hairpin structure in a DNA molecule.

Some DNA algorithms make use of the hairpin formation, for example in [39], an
algorithm based on hairpin formation was proposed to solve the SAT problem. This
problem, together with a different algorithm solving it, is described in section 2.4.2.
However, in most DNA algorithms, hairpin formation is not desirable and it would
interfere with the computation. Therefore, the information-encoding DNA molecules
should be designed such that hairpin formation and other unwanted bindings are avoided.
There are several approaches to optimal information encoding for DNA computing and
their overview can be found in [26]. One of those approaches is formal language theoretical
approach introduced in [24], where languages (i.e., sets of sequences of letters) with desired
properties are studied. This approach involves, among other things, study of the DNA

4

CHAPTER 2. DNA COMPUTING

map. The concept of a D-palindrome is also relevant for DNA encoding and some aspects
of this, as well as theoretical properties of D-palindromes, are discussed in [26].

2.2 Operations with DNA

Study and manipulation of DNA molecules has many various applications. Advances
in molecular biotechnology enable scientists to perform a variety of operations on DNA.
Here, following [37], we describe some operations that can be carried out in a lab and
that are also used in the field of DNA computing.

� Annealing and melting: Annealing is the process of pairing two complementary
single strands into one double-stranded molecule, whereas melting is the reverse
operation of separating the two strands of one molecule. This can be done by
setting suitable conditions of temperature, pH, etc.

� Synthesis: It is possible to synthesise a desired DNA strand up to a certain length.

� Extraction: Having a test-tube containing many DNA strands, this operation
extracts all the strands that contain a specific subsequence s and separates them
from the rest of the strands.

� Amplification: DNA strands in a test-tube can be amplified by duplicating all the
strands.

� Polymerase Chain Reaction (PCR): This technique amplifies DNA strands rapidly
and also allows to extract all the strands that begin (or end) with a given
subsequence.

� Separation by length: A specific technique called gel electrophoresis is used to sort
and separate DNA strands by length.

� Cutting: DNA molecules can be manipulated by other molecules called enzymes.
The so called restriction enzymes can be employed to cut double-stranded DNA
molecules at locations where specific subsequences appear.

� Ligation: Two strands of DNA can be joined end to end to form a single strand by
an enzyme called ligase.

2.3 Introduction to DNA computing

In the last decades, there has been great effort to use DNA molecules to perform
computations. The idea of computations at molecular level was first introduced by
Richard Feynman in 1959 in his talk ‘There’s Plenty of Room at the Bottom’ [19], but
it was not realized in practice until 1994, when Leonard Adleman [1] performed the
first molecular-level computation using DNA to solve an instance of the Hamiltonian
path problem. We describe this experiment in section 2.4.1. Since then, several other
mathematical problems have been solved experimentally and progress in theoretical design
of DNA computers has been made [44].

Scientist see enormous potential in DNA computing, as the operations can be done all
in parallel and DNA molecules offer excellent information density of approximately 1 bit
per nm3, which is several orders of magnitude more dense than the memory currently used
in computers. This means that if a DNA-based computer is build, it could potentially

5

CHAPTER 2. DNA COMPUTING

utilize more processors than all silicon-based computers in the world combined and
significantly outperform existing supercomputers in speed, energy efficiency and economic
information storing [17, 44].

However, for practical success of DNA computers a lot of research still needs to be done.
For the time being, the difficulties of building and using a DNA computer outweigh its
benefits. Most designs of DNA computers solve only a specific problem, and hence cannot
be used universally. Therefore, rather than replacing conventional computers, it seems
more feasible to employ DNA computers for other types of problems that are impossible
to solve effectively on conventional computers, but DNA computers are naturally good at
solving [44]. Examples of such problems can be found in the NP class of problems, more
specifically in NP-complete problems, which we focus on in the next section.

One discipline where DNA computers have huge advantage over conventional
computers is interacting with biochemical environment, even within a living organism,
by the means of other biological molecules. This ability of DNA could potentially be
used for example to construct a molecular computer that operates as an autonomous
“doctor” within a cell. It would register disease indicators, process them according to
preprogrammed medical knowledge, and in the case of a positive diagnosis output a signal
or an appropriate drug. Based on this vision, in 2004 Benenson et al. [11] programmed
a DNA-based finite automaton, which was designed and implemented by Benenson et al.
[10] in 2003, to identify and analyse certain molecular indicators of two specific types of
cancer and to release a short DNA molecule functioning as a drug on positive diagnosis.
They demonstrated that this molecular computer can operate in a test tube, however,
applying such a device inside cells, let alone living organisms, comes with many new
challenges [40, 25].

Other applications of DNA computing can be found in cryptography. Many
DNA-based security schemes have been proposed, however, they all have some
disadvantages. DNA cryptography is still in an early stage, nevertheless, DNA computing
is a popular approach to improving data security. It is also used in fields such as big data,
cloud computing and data storage [34].

2.4 NP-complete problems

There are several established classes of problems based on their time complexity. This
section describing them is based on [7], where formal definitions can be found. Firstly,
the class P consists of all decision problems that can be solved by a deterministic
Turing machine (or by a conventional computer) in polynomial time. Turing machine
is an abstract computing machine that enables us to formalize the intuitive notion of a
calculation. Informally described, it consists of one input tape with read-only head; a
finite set of work tapes and one output tape, where symbols from a given alphabet are
written or read by tape heads one cell at a time; finite set of states with one starting state
and one halting state; and set of rules that for each combination of a state and symbols
read by tape heads give an instruction on what the tape heads do and to which state
the machine transitions. A calculation starts in the starting state with the input on the
input tape and all tape heads pointing at the first cell of each tape, and it ends when the
halting state is reached with output on the output tape. Given a function f on strings
and a function T : N→ N, we say that a Turing machine M computes f in T -time if for
every possible input x the Turing machine halts with output f(x) after at most T (|x|)
steps, where |x| denotes the length of x.

Another variant of the Turing machine is the so-called non-deterministic Turing
machine (NDTM), which differs from the Turing machine described above by having

6

CHAPTER 2. DNA COMPUTING

two sets of rules to choose from in every step of the computation. Hence the computation
itself is non-deterministic, as it depends on the sequence of choices that are made. In
addition, the machine has a special accepting state. We say that a NDTM M accepts
an input x if there exists a sequence of choices leading to the accepting state. Given
a function T : N → N, M is said to run in T -time if for every possible input and every
sequence of choices, M reaches either the halting state or the accepting state within T (|x|)
steps. Given a language L, i.e., a subset of all finite strings over some alphabet, we say
that M decides L in T -time if it runs in T -time and M accepts an input x if and only if
x ∈ L. Analogously to the class P, class NP consists of languages that can be decided by
a non-deterministic Turing machine in polynomial time.

It is clear that P is a subset of NP. However, the exact relation between these two
classes is not known. The question whether or not P=NP is still a major open question
of theoretical computer science. There is a particular type of NP problems, namely
NP-complete problems, that are especially useful for the study of the NP class. A problem
is called NP-complete if it belongs to the class NP and it has the property that any other
problem in the NP class can be reduced to it in polynomial time. So if such a problem has
a polynomial-time deterministic algorithm solving it, than all NP problems are solvable
in polynomial time. However, it is mostly believed that P6=NP, as all efforts to find a
polynomial-time deterministic algorithm for an NP complete problem have failed so far.

Therefore, it seems likely that no efficient algorithm exists for solving NP-complete
problems on a conventional computer. But what about a DNA computer? In fact, a
DNA computer models a non-deterministic computer, since operations on DNA strings
can be done all in parallel, and hence DNA computer can theoretically implement a
polynomial-time non-deterministic algorithm for solving an NP-complete problem. This
was also demonstrated in practice by Adleman in 1994 on the Hamiltonian path problem.
Later, other models of DNA computation to solve NP-complete problems were suggested.
We describe below one of those models solving the SAT problem.

Apart from DNA algorithms solving specific problems, DNA models of a Turing
machine have also been suggested. Some early models of DNA-based Turing machines
were proposed by Beaver in 1995 [9] and by Rothemund in 1996 [38]. More recently, in 2017
[17], a non-deterministic universal Turing machine (NUTM) was designed using DNA and
functionality of the design was demonstrated both computationally and experimentally.
However, further research is needed to construct a fully working physical NUTM [17].

2.4.1 Hamiltonian path problem

Let us now describe Adleman’s experiment, which was published in [1]. In this experiment,
an instance of the Hamiltonian path problem in a directed graph was solved using DNA.
A path in a directed graph is a sequence of vertices (vi)

k
i=1 such that there is an edge

starting in vj and ending in vj+1 for all j ∈ {1, . . . , k− 1}. A Hamiltonian path is a path
where every vertex of the graph appears exactly once. The problem of deciding whether
a given directed graph has a Hamiltonian path or not is known to be an NP-complete
problem [7].

In this specific case, a particular graph with seven vertices was considered, which is
shown in Figure 2.3. The vertices were represented by numbers from 0 to 6. There were
two designated vertices vin = 0 and vout = 6, and the problem of the Hamiltonian path
was restricted only to the paths beginning in the vertex vin and ending in the vertex vout,
which is still an NP-complete problem. For this instance of the problem, there exists
exactly one suitable Hamiltonian path, and that is the path (0, 1, 2, 3, 4, 5, 6).

Adleman solved this problem by implementing the following algorithm:

7

CHAPTER 2. DNA COMPUTING

4

13

0 6

2 5

Figure 2.3: The directed graph used in Adleman’s experiment.

Input: directed graph G with n vertices, vertex vin, vertex vout.

1. Generate random paths in G.
2. Keep only the paths that start in vin and end in vout.
3. Keep only the paths consisting of exactly n vertices.
4. Keep only the paths that contain each vertex at least once.
5. If at least one path remains, the output is “yes”, otherwise the output is “no”.

The output states whether G has a Hamiltonian path starting in vin and ending in
vout or not.

The implementation was based on suitable encoding of the graph. Each vertex i of
the graph was associated with a random strand of DNA of length 20, denoted by Oi. The
DNA strand which is complementary to Oi was denoted by Oi. Then an edge i → j of
the graph was represented by a concatenation of the 3′ half of Oi (unless i = 0, in which
case it was the whole Oi) with the 5′ half of Oj (unless j = 6, in which case it was the
whole Oj), denoted by Oi→j. This is demonstrated below:

O2 : 5′ − TATCGGATCGGTATATCCGA− 3′

O3 : 5′ − GCTATTCGAGCTTAAAGCTA− 3′

O4 : 5′ − GGCTAGGTACCAGCATGCTT− 3′

O2→3 : 5′ − GTATATCCGAGCTATTCGAG− 3′

O3→4 : 5′ − CTTAAAGCTAGGCTAGGTAC− 3′

O3 : 3′ − CGATAAGCTCGAATTTCGAT− 5′

This encoding was designed in such a way that the DNA strands Oi→j, Oj→k and Oj

can anneal like in the case below:

5′ −
O2→3︷ ︸︸ ︷

GTATATCCGAGCTATTCGAG

O3→4︷ ︸︸ ︷
CTTAAAGCTAGGCTAGGTAC−3′

3′ − CGATAAGCTC GAATTTCGAT︸ ︷︷ ︸
O3

−5′

With this encoding, the algorithm was carried out in the following way:

1. For each vertex i of the graph G, except for i = 0 and i = 6, and for each edge
j → k in G, a sufficient amount of molecules Oi and Oj→k were mixed together
and a ligation reaction was performed. Due to the annealing process this reaction
resulted in double-stranded DNA molecules encoding random paths in G.

8

CHAPTER 2. DNA COMPUTING

2. The next step was performed by polymerase chain reaction, which allowed to extract
only molecules that encode paths that start in vertex 0 and end in vertex 6.

3. The molecules were separated by length using an agarose gel, and only those that
were 140 base pair long were kept. These molecules correspond to paths containing
exactly seven vertices.

4. All double-stranded molecules obtained in the previous step were melted into single
strands, and for each vertex i, except for i = 0 and i = 6, strands containing the
sequence Oi were successively extracted.

5. Finally, it was detected whether there are some DNA molecules left.

In between some of those steps described above, the amplification operation was used
to increase the number of copies of the DNA molecules.

This calculation performed by Adleman took him a week of lab work. In theory, the
number of procedures required grows linearly with the number of vertices of the graph.
However, scaling up the computation comes with some difficulties. Great care needs to
be taken with controlling errors and improvements in the method would have to be made
to make it efficient. The weight of DNA molecules needed for such an experiment grows
exponentially with the size of the problem, so this still places a barrier to the number of
vertices the graph can have. Nevertheless, this experiment was a great breakthrough that
demonstrated the possibility of employing DNA molecules to perform calculations [37].

2.4.2 SAT problem

In 1995, Richard J. Lipton [30] extended Adleman’s idea and proposed a DNA model for
solving another NP-complete problem, the so-called Boolean satisfiability (SAT) problem.

This problem can be formulated in the following way:
Given a set of Boolean variables {x1, x2, . . . , xn}, we define a literal to be some variable

xj or its negation, denoted by xj. A Boolean formula consists of literals and the logical
operators “and” (∧) and “or” (∨). We say that a Boolean formula is satisfiable if there
exists some assignment of values (0 or 1) to the variables such that the value of the whole
formula is 1. A clause is a Boolean formula of the form u1 ∨ u2 ∨ . . .∨ uk for some k ∈ N,
where ui is a literal for each i ∈ {1, . . . , k}. The SAT problem is the problem of deciding
whether a given Boolean formula F = C1 ∧ C2 ∧ . . . ∧ Cm, where Ci is a clause for each
i ∈ {1, . . . ,m}, is satisfiable or not.

a1

x1

x′1

a2

x2

x′2

a3

x3

x′3

a4

Figure 2.4: The directed graph G3.

In Lipton’s model, for a given instance of the SAT problem with m clauses
C1, C2, . . . , Cm and n variables x1, x2, . . . , xn, a directed graph Gn is created. The graph
Gn has 3n+ 1 vertices a1, x1, x

′
1, . . . , an, xn, x

′
n, an+1 and 4n edges, for each i ∈ {1, . . . , n},

there are edges ai → xi, ai → x′i, xi → ai+1, x
′
i → ai+1. For illustration, the graph G3

is shown in Figure 2.4. The graph Gn is constructed in such a way that every possible

9

CHAPTER 2. DNA COMPUTING

assignment of values to the variables corresponds to one path in the graph Gn starting in
vertex a1 and ending in vertex an+1. If vertex xi appears on the path, it means that the
variable xi has value 1. On the contrary, if vertex x′i appears on the path, it means that
the variable xi has value 0.

Lipton used the same method as Adleman to encode paths in the graph Gn, and
therefore all possible assignments of values to the set of variables, as DNA molecules. His
molecular computation solving the SAT problem for a formula F with m clauses and n
variables in linear time is the following:

1. In a test tube t0, prepare DNA molecules encoding paths in the graph Gn starting
in a1 and ending in an+1. This is done analogously to the method of Adleman
described in the previous section.

2. For each k ∈ {1, . . . ,m}, prepare a test tube tk, which contains DNA molecules
encoding assignment of values to the variables such that all clauses C1, C2, . . . , Ck
have value 1, as follows:

� Consider the clause Ck = u1∨u2∨ . . .∨ul. If u1 = xj, then from tk−1 extract all
DNA molecules that encode paths containing xj and place them in a test tube
p1, remainder of molecules place in a test tube p′1. If u1 = xj, then from tk−1
extract all DNA molecules that encode paths containing x′j and place them in
a test tube p1, remainder of molecules place in a test tube p′1.

� For each i ∈ {2, . . . , l} do the following: if ui = xj, then from p′i−1 extract all
DNA molecules that encode paths containing xj and place them in a test tube
pi, remainder of molecules place in a test tube p′i. If ui = xj, then from p′i−1
extract all DNA molecules that encode paths containing x′j and place them in
a test tube pi, remainder of molecules place in a test tube p′i.

� Pour all the test tubes p1, p2, . . . , pl together to form tk.

3. Detect whether the test tube tm contains at least one DNA molecule or not. If yes,
the output is “F is satisfiable”, otherwise the output is “F is not satisfiable”.

10

Chapter 3

Elements of combinatorics on words

We introduce some basic definitions and concepts from combinatorics on words that are
relevant for our topic, mostly based on [31, 32]. However, the notation may differ and we
present our examples and proofs.

3.1 Words

3.1.1 Finite words

Firstly, by an alphabet, usually denoted A, we mean a non-empty set of finitely many
elements called letters. Typically, letters are chosen to be some symbols. We can have for
example the alphabet A = {0, 1} or A = {A, B, C}. A word w over A is a finite sequence
of letters from A, i.e., w = w1w2 . . . wn, where wi ∈ A for all i ∈ {1, . . . , n}. Its length is
|w| = n. By |w|a we denote the number of occurrences of letter a ∈ A in w. There is also
the empty word, denoted by ε, which has length zero. Taking the set of all finite words
over A and equipping it with the operation of concatenation, we get the free monoid A∗.
For all words w ∈ A we have wε = εw = w, and so ε is neutral element of A∗.
Definition 3.1. A word y ∈ A∗ is called a factor of a word w ∈ A∗, we also say that w
contains y, if there exist words x, z ∈ A∗ such that w = xyz. Moreover, if x = ε, resp.
z = ε, then y is called a prefix, resp. a suffix, of the word w. A factor, prefix or suffix x
of w is called proper if x 6= w.

Note that the empty word is a prefix, a suffix and a factor of every word.

Definition 3.2. Let A = {a1, . . . , ad} be an alphabet, where d ∈ N, and let w ∈ A∗. Then

the Parikh vector of w, denoted ~V (w), is defined by

~V (w) =

|w|a1...
|w|ad

 .

Proposition 3.3. Let A be an alphabet and let w ∈ A∗. Then

|w| = 1 · ~V (w),

where 1 is the row vector 1 = (1 · · · 1) with the dimension card(A).

Proof. Let A = {a1, . . . , ad}, where d ∈ N. Then

1 · ~V (w) = (1 · · · 1) ·

|w|a1...
|w|ad

 = |w|a1 + . . .+ |w|ad = |w| .

11

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

Example 3.4. Let A = {A, B, C, D} and take w = BBABCA. Letter A occurs in w
twice, letter B three times, letter C once and letter D does not occur in w. The Parikh
vector of w is therefore

~V (w) =


2
3
1
0


and we have

|w| = 1 · ~V (w) = 2 + 3 + 1 + 0 = 6.

3.1.2 Infinite words

So far we have seen finite words, but the definition of a word can be extended to infinite
words. An infinite word u over the alphabet A is an infinite sequence u = u1u2 . . . , where
ui ∈ A for all i ∈ N. We denote the set of all infinite words over A by AN.

Definition 3.5. Let u ∈ AN and w ∈ A∗. Then w is called a factor of u if w = ε or
there exist i, j ∈ N, i ≤ j such that w = ui . . . uj. In the latter case, the index i is called
an occurrence of w in u. The set of all factors of u is called the language of u and is
denoted L(u). By Ln(u) we denote the set of factors of length n in u.

It is worth defining some properties of infinite words.

Definition 3.6. Let u ∈ AN. Then u is called eventually periodic if there exist v, w ∈ A∗,
w 6= ε, such that u = vw∞. Here w∞ means concatenation of infinitely many w. In the
case that v = ε, u is called purely periodic. If u is not eventually periodic, we say it is
aperiodic.

Definition 3.7. Let u ∈ AN. Then u is called recurrent if each of its factors has at least
two occurrences in u. Moreover, u is called uniformly recurrent if for each n ∈ N there is
r ∈ N, r ≥ n, such that all factors of u of length n have at least one occurrence in the set
{i, i+ 1, . . . , i+ r − n} for all i ∈ N, or equivalently any factor of u of length r contains
all factors of u of length n.

Remark 3.8. In fact, u is recurrent if and only if all factors w ∈ L(u) have infinitely
many occurrences. Hence, this statement gives an alternative way of defining a recurrent
word. It is clear that if all factors have infinitely many occurrences, then u is recurrent.
To see the other implication, we consider a recurrent word u and some factor w ∈ L(u).
It is given that w occurs at least twice in u, and so we can find a factor v ∈ L(u),
which contains both occurrences of w. It follows that v has at least two occurrences, which
means w has at least one additional occurrence, and again we could find a larger factor
that contains all occurrences of w and it appears at least twice. In this way, we can always
increase the number of occurrences of w, and therefore there are infinitely many of them.

3.1.3 Factor complexity

When we work with an infinite word, we need some information about its factors. Here we
introduce the so-called complexity function, which gives the number of all existing factors
of certain length. It is then shown how this function relates to some other properties of
infinite words.

Definition 3.9. Let A be an alphabet and let u ∈ AN. Then we define the factor
complexity function of u, cu : N → N, by cu(n) = card(Ln(u)), that is the number of
factors in u of length n.

12

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

Proposition 3.10. Let u ∈ AN be eventually periodic. Then there exists m ∈ N such
that cu(n) ≤ m for all n ∈ N.

Proof. Let u ∈ AN be eventually periodic, so u = vw∞ for some v, w ∈ A∗, w 6= 0.
Denote p = |v| and q = |w|. We take n ∈ N and consider factors of u of length n.
We see that if we choose a factor x = up+q+iup+q+i+1 . . . up+q+i+n−1, where i ≥ 1, it is
equal to the factor y = up+iup+i+1 . . . up+i+n−1. Therefore to find the set Ln(u), it is
sufficient to only consider factors with occurrence between 1 and p+ q. This implies that
cu(n) = card(Ln(u)) ≤ p+ q for all n ∈ N, which concludes the proof.

The following definitions are helpful in studying factor complexity and can be found
in [35].

Definition 3.11. Let u ∈ AN and w ∈ L(u). A word r ∈ L(u) is said to be a complete
return word to w in u if w has exactly two occurrences in r, one as a prefix of r and one
as a suffix of r. If r is a complete return word to w, then it can be written as r = qw for
some non-empty q ∈ L(u), which is called a return word to w.

Definition 3.12. Let u ∈ AN and w ∈ L(u). A letter a ∈ A is called a left extension of
w in u if aw ∈ L(u). Lextu(w) denotes the set of all left extensions of w in u. We say
that w is left-special if card(Lextu(w)) ≥ 2. Analogously, a letter a ∈ A is called a right
extension of w in u if wa ∈ L(u), which leads to the analogous definition of Rextu(w) and
right-special word. We say that w is special if it is left-special or right-special. Moreover,
w is called bispecial if it is both left-special and right-special. We also define Bextu(w) =
{awb | a, b ∈ A, awb ∈ L(u)}.

Definition 3.13. Let u ∈ AN and w ∈ L(u). The bilateral order of w, denoted by bu(w),
is defined as

bu(w) = card(Bextu(w))− card(Lextu(w))− card(Rextu(w)) + 1.

We can relate these concepts to factor complexity [16].

Proposition 3.14. Let u ∈ AN be a recurrent word. Then the first difference ∆cu(n)
and the second difference ∆2cu(n) of the factor complexity satisfy

∆cu(n) = cu(n+ 1)− cu(n) =
∑

w∈Ln(u)

(card(Lextu(w))− 1) =
∑

w∈Ln(u)

(card(Rextu(w))− 1)

and
∆2cu(n) = ∆cu(n+ 1)−∆cu(n) =

∑
w∈Ln(u)

bu(w).

Another useful tool that uses factors of an infinite word is the Rauzy graph.

Definition 3.15. Let u ∈ AN and n ∈ N. Then the Rauzy graph Γn of u is a directed
graph Γn = (V,E), where the set of vertices is V = Ln(u) and the set of edges is E =
Ln+1(u). The vertices and edges are arranged so that an edge e = w1w2 . . . wn+1 starts in
the vertex v1 = w1 . . . wn and ends in the vertex v2 = w2 . . . wn+1.

Remark 3.16. We understand the Rauzy graph as an illustration of the structure of the
infinite word u. Moving along an edge e = ui . . . ui+n in Γn from one vertex to another
vertex represents shifting from a factor of length n with occurrence i to a factor of the
same length with occurrence i + 1. If we consider a factor w = uj . . . uj+m−1 of u of
length m > n, it is represented in the Rauzy graph Γn by a directed path from the vertex
v1 = uj . . . uj+n−1 to the vertex v2 = uj+m−n . . . uj+m−1. And so as we read the word u,
we move on a path in the Rauzy graph.

13

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

It follows that Γn is always connected graph, which means that for each pair of vertices
in Γn, there is a sequence of edges and vertices (not necessarily directed path) connecting
them. Next proposition gives condition on u that insures Γn is strongly connected,
meaning that for any vertex chosen as a starting point and any vertex chosen as an
end, there is a directed path between them.

Proposition 3.17. Let u ∈ AN. Then the Rauzy graph Γn of u is strongly connected for
all n ∈ N if and only if u is recurrent.

Proof. Firstly, assume that u is recurrent. As was discussed in Remark 3.8, then all
factors of u have infinitely many occurrences. For some fixed n ∈ N, we choose vertices
v1 and v2 in Γn and we want to show that there is a directed path between them. Using
the approach described in Remark 3.16, it is sufficient to find a factor of u with prefix
v1 and with suffix v2. As both factors have infinitely many occurrences, we can take an
occurrence i of v1 and occurrence j of v2 satisfying i < j. Then w = ui . . . uj+n−1 is the
desired factor. Therefore Γn is strongly connected for all n ∈ N.

Secondly, we start with the assumption that u is not recurrent and we want to show
that there exists some n ∈ N such that Γn is not strongly connected. In order to satisfy
the assumption, u has to have a factor that has exactly one occurrence. Moreover, u
has to have a prefix that has exactly one occurrence. To see this, we assume that every
prefix of u has at least two occurrences. Hence, also a prefix containing the factor with
only one occurrence must appear in u at least twice, which is a contradiction. So we have
a prefix v that appears in u only once and we choose n to be its length. Then this prefix
is represented in Γn by a vertex v. It follows that there is no edge in Γn ending in v and so
there cannot be a directed path ending in v. Therefore Γn is not strongly connected.

Lemma 3.18. Let u ∈ AN be aperiodic. Then for all n ∈ N the Rauzy graph Γn = (V,E)
of u satisfies card(E) ≥ 1 + card(V).

Proof. We prove the contrapositive statement. Assume that there is n ∈ N such that
for Γn = (V,E), card(E) ≤ card(V). V represents all factors of length n and from the
construction of Γn we know that Γn is connected and also for every vertex there is at least
one edge starting there. Therefore card(E) ≥ card(V). Hence, to satisfy our assumption,
we need card(E) = card(V), and so there is exactly one edge starting in every vertex.
There are two possibilities. One is that for every vertex there is exactly one edge ending
there, in which case the graph Γn is a cycle and u is purely periodic. Second possibility is
that there is exactly one vertex which is not an ending point of any edge and exactly one
vertex, which has exactly two edges ending there. This means that Γn contains a cycle and
u is eventually periodic. To conclude, u is not aperiodic, which proves the statement.

Next proposition relates aperiodicity and factor complexity.

Proposition 3.19. Let u ∈ AN be aperiodic. Then for all n ∈ N, cu(n) ≥ n+ 1.

Proof. Using the definition of a Rauzy graph, Lemma 3.18 gives us that for all m ∈ N,
card(Lm+1(u)) ≥ 1 + card(Lm(u)). If for a fixed n ∈ N we sum those inequalities from
m = 1 to m = n− 1, we get

card(L2(u)) + · · ·+ card(Ln(u)) ≥ card(L1(u)) + · · ·+ card(Ln−1(u)) + n− 1.

Subtracting terms from both sides and using that card(L1(u)) = card(A) ≥ 2, as u is
aperiodic, results in

cu(n) = card(Ln(u)) ≥ n+ 1.

14

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

Note that the opposite implication also holds, as we have shown in Proposition 3.10
that if a word is periodic, its factor complexity function is bounded. So if cu(n) ≥ n+ 1,
u is aperiodic word.

There is a special class of aperiodic words, called Sturmian words, for which the
factor complexity function attains the minimal possible values, i.e., cu(n) = n + 1 for
all n ∈ N. This condition implies that Sturmian words are over a binary alphabet,
because cu(1) = card(A) = 2. One example of a Sturmian word is the Fibonacci word
f = 01001010010010100101 . . . [12, p. 183]. We show how to generate this word in example
3.40. In the following example, we use the Fibonacci word to construct one of its Rauzy
graphs.

Example 3.20. Consider the Fibonacci word f = 01001010010010100101 . . . We want
to construct the Rauzy graph Γ4 = (V,E) of f . We know that it is a Sturmian word, and
therefore cf (n) = n + 1 for all n ∈ N. We have card(V) = card(L4(f)) = cf (4) = 5 and
card(E) = card(L5(f)) = cf (5) = 6. Hence, to construct the graph Γ4, it is sufficient to
consider only such a prefix of f that contains six distinct factors of length 5. The shortest
prefix of f satisfying this is the prefix w = 010010100100. Using this word, we obtain the
graph Γ4, which is shown in Figure 3.1.

1001

00100100

01011010

10010

00101

01010

10100

01001

00100

Figure 3.1: The Rauzy graph Γ4 of the Fibonacci word f discussed in
Example 3.20.

3.2 Morphisms

In this section, we define a type of mapping called morphism and introduce some related
concepts.

Definition 3.21. Let A,B be alphabets and let ϕ : A∗ → B∗ be a mapping satisfying
ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ A∗. Then ϕ is called a morphism.

In general, there are two alphabets in the definition of morphism, however, in most
cases we consider A = B. It follows from the definition that to specify a morphism, it is
sufficient to assign it only on letters. To find the image of a word w = w1w2 . . . wn under
the morphism ϕ, we concatenate the images of the letters in w, so ϕ(w1w2 . . . wn) =
ϕ(w1)ϕ(w2) . . . ϕ(wn). Note that the image of the empty word is the empty word. In
the same way we can find the image of an infinite word u = u1u2 . . . simply as ϕ(u) =
ϕ(u1)ϕ(u2) Hence, the domain of a morphism can be naturally extended to infinite
words.

Definition 3.22. Let ϕ : A∗ → A∗ be a morphism. We say that it is a uniform morphism,
if there exists l ∈ N such that |ϕ(a)| = l for all a ∈ A.

15

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

Definition 3.23. Let ϕ : A∗ → A∗ be a morphism. We say that ϕ is erasing if there exists
a ∈ A such that ϕ(a) = ε. Otherwise, we say that ϕ is non-erasing. If ϕ is a non-erasing
morphism, we define functions fstϕ, lstϕ : A → A by setting fstϕ(a) to be the first letter of
ϕ(a) and lstϕ(a) to be the last letter of ϕ(a) for all a ∈ A.

Definition 3.24. Let ϕ, ψ : A∗ → A∗ be morphisms. If there exist q ∈ A∗ such that
qϕ(w) = ψ(w)q for every word w ∈ A∗, then ϕ is called a left conjugate to ψ, ψ is called
a right conjugate to ϕ and q is called the conjugacy word of this pair of morphisms. We
also say that ϕ and ψ are conjugated and we denote it by ϕ ∼ ψ or equivalently ψ ∼ ϕ.
In addition, if ϕ is the only left conjugate to itself, then it is called the leftmost conjugate
to ψ, and it is denoted by ψL. Analogously, if ψ is the only right conjugate to itself, then
it is called the rightmost conjugate to ϕ, and it is denoted by ϕR.

Remark 3.25. Note that in the definition above, it is sufficient to consider only images
of letters instead of words, i.e., if qϕ(a) = ψ(a)q for all a ∈ A, then qϕ(w) = ψ(w)q for
all w ∈ A∗. To see this, consider a word w = w1 . . . wn. If qϕ(a) = ψ(a)q for all a ∈ A,
then

qϕ(w) = qϕ(w1)ϕ(w2) . . . ϕ(wn) = ψ(w1)qϕ(w2) . . . ϕ(wn)

= ψ(w1)ψ(w2)qϕ(w3) . . . ϕ(wn) = . . . = ψ(w1)ψ(w2) . . . ψ(wn)q = ψ(w)q.

Proposition 3.26. The relation of conjugation is an equivalence relation on the set of
morphisms on A∗.

Proof. Let ϕ, ψ, θ : A∗ → A∗ be morphisms. Then we have ϕ ∼ ϕ with the conjugacy
word q = ε. By definition, ϕ ∼ ψ if and only if ψ ∼ ϕ. Finally, assume that ϕ ∼ ψ
and ψ ∼ θ. Without loss of generality, we can assume that there exists q ∈ A∗ such that
qϕ(w) = ψ(w)q for every word w ∈ A∗. Now we have two possibilities.

In the first case, there is a word p ∈ A∗ such that pψ(w) = θ(w)p for every word
w ∈ A∗. This implies that, for every w ∈ A∗,

pqϕ(w) = pψ(w)q = θ(w)pq,

which means that ϕ ∼ θ.
In the second case, there is a word p ∈ A∗ such that pθ(w) = ψ(w)p for every word

w ∈ A∗. Hence, pθ(a) = ψ(a)p for all a ∈ A. From above, we have qϕ(a) = ψ(a)q for all
a ∈ A. This means that for each a ∈ A, there are words va and wa such that

ϕ(a) = vaq, ψ(a) = qva, θ(a) = wap, ψ(a) = pwa.

This implies that qva = pwa. Without loss of generality, assume |q| ≥ |p|. Hence, there is
a word s ∈ A∗ such that

q = ps, wa = sva.

Combining this together, we get

sϕ(a) = svaq = svaps = waps = θ(a)s,

which means, by Remark 3.25, that ϕ ∼ θ.

Example 3.27. Let A = {A, B, C} and let ϕ, ψ : A∗ → A∗ be morphisms given by

ϕ(A) = CBBBA ψ(A) = ACBBB

ϕ(B) = CACBA ψ(B) = ACACB

ϕ(C) = CCBA ψ(C) = ACCB.

16

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

In this example, ψ is a right conjugate to ϕ and the conjugacy word is q = A. However,
it is not the rightmost conjugate to ϕ. The rightmost and leftmost conjugates to ϕ are
given by

ϕR(A) = BACBB ϕL(A) = BBBAC

ϕR(B) = BACAC ϕL(B) = ACBAC

ϕR(C) = BACC ϕL(C) = CBAC.

We see that ϕR and ϕL are also the rightmost and leftmost conjugates to ψ, respectively.
This follows from Proposition 3.26.

Next, we introduce a useful tool for understanding some properties of a morphism.

Definition 3.28. Let A = {a1, . . . , ad} be an alphabet, where d ∈ N, and let ϕ : A∗ → A∗
be a morphism. Then the incidence matrix of ϕ, denoted Mϕ, is the d× d matrix defined
by

[Mϕ]ij = |ϕ(aj)|ai .

Example 3.29. Let A = {A, B, C} and let ϕ : A∗ → A∗ be a morphism given by

ϕ(A) = CA

ϕ(B) = BAB

ϕ(C) = AABAC.

Then the incidence matrix of ϕ is

Mϕ =

1 1 3
0 2 1
1 0 1

 .

Proposition 3.30. Let A be an alphabet and let ϕ, ψ : A∗ → A∗ be morphisms. Then the
incidence matrix of the composition ϕ ◦ ψ satisfies

Mϕ◦ψ = Mϕ ·Mψ.

Proof. Let A = {a1, . . . , ad}, where d ∈ N. Then, for all i, j ∈ {1, . . . , d}, we have

[Mϕ◦ψ]ij = |ϕ(ψ(aj))|ai =
d∑

k=1

|ϕ(ak)|ai · |ψ(aj)|ak =
d∑

k=1

[Mϕ]ik · [Mψ]kj = [Mϕ ·Mψ]ij ,

where we used that the number of letters ai in ϕ(ψ(aj)) is equal to the sum of the number
of letters ak in ψ(aj) times the number of letters ai in ϕ(ak) over all letters ak ∈ A.

Proposition 3.31. Let A be an alphabet, w ∈ A∗ and let ϕ : A∗ → A∗ be a morphism.
Then the Parikh vector of ϕ(w) satisfies

~V (ϕ(w)) = Mϕ · ~V (w).

Proof. Let A = {a1, . . . , ad}, where d ∈ N. Then, for all i ∈ {1, . . . , d}, we have

[
~V (ϕ(w))

]
i

= |ϕ(w)|ai =
d∑

k=1

|ϕ(ak)|ai · |w|ak =
d∑

k=1

[Mϕ]ik ·
[
~V (w)

]
k

=
[
Mϕ · ~V (w)

]
i
,

where we used that the number of letters ai in ϕ(w) is equal to the sum of the number of
letters ak in w times the number of letters ai in ϕ(ak) over all letters ak ∈ A.

17

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

3.2.1 Generating infinite words

Now we describe a way to employ morphisms with some specific properties to generate
infinite words.

Definition 3.32. Let ϕ : A∗ → A∗ be a morphism. It is called a primitive morphism if
there exists k ∈ N such that for all a, b ∈ A, a is a factor of ϕk(b).

Proposition 3.33. Let ϕ : A∗ → A∗ be a morphism. Then it is primitive if and only
if there exists k ∈ N such that the k-th power of the incidence matrix, Mk

ϕ, has all its
elements positive.

Proof. A morphism ϕ is primitive if and only if there exists k ∈ N such that for all
a, b ∈ A, a is a factor of ϕk(b). This is equivalent to the statement that all elements of
the incidence matrix Mϕk are positive. By Proposition 3.30, Mϕk = Mk

ϕ. Therefore ϕ is
primitive if and only if there exists k ∈ N such that Mk

ϕ has all its elements positive.

Example 3.34. Taking A = {A, B, C}, we define a morphism ϕ by

ϕ(A) = AB

ϕ(B) = BA

ϕ(C) = ABC.

Then we see that for all n ∈ N the iteration ϕn(A) contains only the letters A and B.
Therefore ϕ cannot be a primitive morphism, because C is not a factor of ϕn(A) for all
n ∈ N.

Example 3.35. Again A = {A, B, C}. Now we define a morphism ϕ by

ϕ(A) = B

ϕ(B) = AC

ϕ(C) = A.

Then if we look at the images of all the letters under iterations of ϕ, we get:

A
ϕ−→ B

ϕ−→ AC
ϕ−→ BA

ϕ−→ ACB
ϕ−→ BAAC

B
ϕ−→ AC

ϕ−→ BA
ϕ−→ ACB

ϕ−→ BAAC
ϕ−→ ACBBA

C
ϕ−→ A

ϕ−→ B
ϕ−→ AC

ϕ−→ BA
ϕ−→ ACB

It is enough to consider iterations up to the fifth one, as for all a ∈ A every letter in A
is a factor of the word ϕ5(a). Therefore we conclude that ϕ is a primitive morphism.

Definition 3.36. Let ϕ : A∗ → A∗ be a morphism. It is called a substitution if there exist
a ∈ A and w ∈ A∗ \ {ε} such that ϕ(a) = aw and limn→∞|ϕn(a)| =∞.

Consider again Example 3.35. In this case there is no a ∈ A satisfying ϕ(a) = aw for
some w ∈ A∗. Therefore ϕ is not a substitution. However, limn→∞|ϕn(a)| =∞ holds for
all a ∈ A and we notice that ϕ2(A) = AC, so ϕ2 is a substitution.

Example 3.37. Let A = {A, B, C} and let ϕ : A∗ → A∗ be a morphism defined by

ϕ(A) = AB

ϕ(B) = C

ϕ(C) = AA.

18

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

Then we can take a = A, w = B and we see that ϕ(a) = aw is satisfied. Also by
applying ϕ to A iteratively we get the sequence of words

A
ϕ−→ AB

ϕ−→ ABC
ϕ−→ ABCAA

ϕ−→ ABCAAABAB
ϕ−→ · · ·

and it is clear that limn→∞|ϕn(a)| =∞. Hence, ϕ is a substitution.

Definition 3.38. Let ϕ : A∗ → A∗ be a morphism and let u ∈ AN. Then u is called
a fixed point of ϕ if ϕ(u) = u.

Every substitution has at least one infinite fixed point. We can illustrate it by
considering the iterations of ϕ applied to a. We have the following sequence of words,
which is generalization of the sequence in Example 3.37:

a
ϕ−→ aw

ϕ−→ awϕ(w)
ϕ−→ awϕ(w)ϕ2(w)

ϕ−→ awϕ(w)ϕ2(w)ϕ3(w)
ϕ−→ · · ·

We see that for i ≤ j, ϕi(a) is a prefix of ϕj(a). If we take the infinite word

u = awϕ(w)ϕ2(w)ϕ3(w) . . . ,

we see that ϕ(u) = u, and so u is a fixed point of ϕ.

This gives us a way how to generate infinite words. First, we define a substitution,
and then we apply it iteratively, starting with a from the definition of a substitution. We
say that an infinite word obtained in this way is generated by ϕ.

Definition 3.39. Let ϕ : A∗ → A∗ be a morphism and let u ∈ AN be its fixed point. Then
we say that u is generated by ϕ if there exist a ∈ A and w ∈ A∗ \{ε} such that ϕ(a) = aw
and u = awϕ(w)ϕ2(w)ϕ3(w) . . .

Example 3.40. As one example we can take the so-called Fibonacci morphism
ϕf : {0, 1}∗ → {0, 1}∗ defined by

ϕf (0) = 01, ϕf (1) = 0,

which is a substitution.

We start with 0 and apply ϕf iteratively:

0
ϕf−→ 01

ϕf−→ 010
ϕf−→ 01001

ϕf−→ 01001010
ϕf−→ 0100101001001

ϕf−→ · · ·

This gives the Fibonacci word f = 0100101001001 . . .

Example 3.41. Another example uses the so-called Thue-Morse morphism ϕt : {0, 1}∗ →
{0, 1}∗ defined by

ϕt(0) = 01, ϕt(1) = 10,

which is a substitution.

We observe that this morphism has two fixed points. If we choose the one starting with
0, we generate it as follows:

0
ϕt−→ 01

ϕt−→ 0110
ϕt−→ 01101001

ϕt−→ 0110100110010110
ϕt−→ · · ·

and we obtain the Thue-Morse word t = 0110100110010110 . . .

19

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

It is important to note that not only substitutions can have infinite fixed points. One
example is the identity map, given by ϕ(a) = a for all a ∈ A. All finite and infinite words
are fixed points of this morphism, however, it is not a substitution. Another example is
the morphism ϕ : {A, B, C}∗ → {A, B, C}∗ given by

ϕ(A) = A

ϕ(B) = BC

ϕ(C) = ε.

It is not a substitution, yet the infinite word ABCABCABC . . . is its fixed point.
Now if we add the condition of primitivity, we get the following proposition.

Proposition 3.42. Let A be an alphabet with card(A) > 1 and let ϕ : A∗ → A∗
be a primitive morphism. Then ϕ has an infinite fixed point u if and only if ϕ is
a substitution. Moreover, u is generated by ϕ.

Proof. We have already seen that every substitution has at least one infinite fixed point
generated by this substitution. Now we want to show the other implication, that
a primitive morphism ϕ with an infinite fixed point u is a substitution and u is generated
by ϕ. Let us denote u = u1u2 . . ., where ui ∈ A for all i ∈ N, and set a = u1 and
d = card(A) > 1. Because ϕ(u) = u, we must have ϕ(a) = ε or ϕ(a) = aw, where
w ∈ A∗. ϕ(a) = ε is not possible, because ϕ is primitive. Hence, ϕ(a) = aw. If w = ε,
then ϕn(a) = a for all n ∈ N and so ϕ could not be primitive. Therefore w 6= ε. As ϕ is
primitive, there exists k ∈ N such that for all b, c ∈ A, b is a factor of ϕk(c). Therefore∣∣ϕk(c)∣∣ ≥ d for all c ∈ A. Hence

∣∣ϕnk(a)
∣∣ ≥ dn for all n ∈ N and so limn→∞ |ϕn(a)| =∞.

It follows that ϕ is a substitution. In addition, we have

a
ϕ−→ aw

ϕ−→ awϕ(w)
ϕ−→ awϕ(w)ϕ2(w)

ϕ−→ awϕ(w)ϕ2(w)ϕ3(w)
ϕ−→ · · · ,

which implies that u = awϕ(w)ϕ2(w)ϕ3(w) . . ., so u is generated by ϕ.

Proposition 3.43. Let ϕ : A∗ → A∗ be a primitive morphism and let u,v ∈ AN be its
fixed points. Then L(u) = L(v).

Proof. If A = {a}, then clearly u = aaa . . . = v, so the statement of the proposition is
trivially valid.

Assume that card(A) > 1 and let w ∈ L(u). We want to show that w ∈ L(v). By
Proposition 3.42, u is generated by ϕ, and this means that there is a ∈ A and k ∈ N such
that w is a factor of ϕk(a). As ϕ is primitive, a ∈ L(v). We know that v is a fixed point
of ϕ, and therefore also ϕk(a) ∈ L(v). It follows that w ∈ L(v).

Analogously, if we take z ∈ L(v), then also z ∈ L(u). Therefore L(u) = L(v).

This proposition motivates a definition of the language of a primitive morphism, which
is independent of a fixed point. However, to be able to define it also for a primitive
morphism that does not have an infinite fixed point, we still need to prove some more
properties of primitive morphisms.

Proposition 3.44. Let ϕ : A∗ → A∗ be a primitive morphism. Then ϕn is primitive for
all n ∈ N.

Proof. As ϕ is primitive, there exists k ∈ N such that all elements of the matrix Mk
ϕ are

positive. It also implies that there is no row or column in Mϕ with zeroes only. Hence
for all m ≥ k, Mm

ϕ has all its elements positive. Now if we consider ϕn for some n ∈ N,
by Proposition 3.30, its incidence matrix satisfies Mϕn = Mn

ϕ . Then the k-th power of
this matrix is Mnk

ϕ , and it has all its elements positive, as nk ≥ k. Therefore ϕn is
primitive.

20

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

Proposition 3.45. Let ϕ : A∗ → A∗ be a primitive morphism. Then there is k ∈ N such
that ϕk has an infinite fixed point.

Proof. If there is a ∈ A such that a = fstϕ(a), then ϕ has an infinite fixed point starting
with a. Now suppose that a 6= fstϕ(a) for all a ∈ A. Let d = card(A) and consider the
sequence fstϕ(a), fst2ϕ(a), . . . , fstd+1

ϕ (a) for some a ∈ A. It follows that there exists b ∈ A
which appears in this sequence at least twice. Hence there is i, j ∈ N, i < j, such that

b = fstiϕ(a) = fstjϕ(a) = fstj−iϕ (fstiϕ(a)) = fstj−iϕ (b).

This implies that ϕj−i has an infinite fixed point starting with b.

Proposition 3.46. Let ϕ : A∗ → A∗ be a primitive morphism, let i, j ∈ N, let u ∈ AN be
a fixed point of ϕi and let v ∈ AN be a fixed point of ϕj. Then L(u) = L(v).

Proof. Consider the morphism ϕij. By Proposition 3.44 it is primitive. We have

ϕij(u) = ϕi(j−1)(ϕi(u)) = ϕi(j−1)(u) = . . . = ϕi(u) = u,

and similarly ϕij(v) = v. Therefore u and v are fixed points of ϕij and by Proposition 3.43
L(u) = L(v).

Now we are ready to give the definition of the language of a primitive morphism.

Definition 3.47. Let ϕ : A∗ → A∗ be a primitive morphism. Then the language of ϕ,
denoted as L(ϕ) is defined by L(ϕ) = L(u), where u ∈ AN satisfies that there exists k ∈ N
such that ϕk(u) = u.

Now we state the following propositions, which can be found in [5, p. 5].

Proposition 3.48. Let ϕ : A∗ → A∗ be a primitive morphism and let u ∈ AN be its fixed
point. Then u is uniformly recurrent.

Proposition 3.49. Let ϕ, ψ : A∗ → A∗ be conjugated primitive morphisms, let u ∈ AN

be fixed point of ϕ and v ∈ AN be fixed point of ψ. Then L(u) = L(v).

More general formulation of Proposition 3.49 can be found in [29, p. 205]. We state it
below.

Proposition 3.50. Let ϕ, ψ : A∗ → A∗ be conjugated primitive morphisms. Then
L(ϕ) = L(ψ).

In the following examples, we show that the Fibonacci and the Thue-Morse morphisms
are primitive.

Example 3.51. Example 3.40 uses the Fibonacci morphism ϕf : {0, 1}∗ → {0, 1}∗ defined
by ϕf (0) = 01, ϕf (1) = 0 to generate the Fibonacci word f . Now we consider the incidence
matrix of this morphism,

Mϕf
=

(
1 1
1 0

)
.

We see that for this matrix, not all its elements are positive. However, if we take the
second power of this matrix,

M2
ϕf

=

(
1 1
1 0

)
·
(

1 1
1 0

)
=

(
2 1
1 1

)
,

all of its elements are positive. Therefore, by Proposition 3.33, the Fibonacci morphism ϕf
is primitive, and hence, by Proposition 3.48, the Fibonacci word f is uniformly recurrent.

Example 3.52. As shown in Example 3.41, the Thue-Morse word t is generated by the
Thue-Morse morphism ϕt : {0, 1}∗ → {0, 1}∗ defined by ϕt(0) = 01, ϕt(1) = 10. We see
that for all a, b ∈ {0, 1}∗ a is a factor of ϕt(b), and so, by Definition 3.32, ϕt is primitive.
Hence, by Proposition 3.48, the Thue-Morse word t is uniformly recurrent.

21

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

3.3 Antimorphisms

After defining morphisms, we introduce another type of mapping called antimorphism.

Definition 3.53. Let H : A∗ → A∗ be a mapping satisfying H(uv) = H(v)H(u) for all
u, v ∈ A∗. Then H is called an antimorphism.

Similarly to a morphism, to define an antimorphism, we only need to define the
images of letters. The image of a word is then constructed as H(w1w2 . . . wn) =
H(wn)H(wn−1) . . . H(w1).

We are interested in finite words that are fixed points of some specific antimorphism H.
We call such words H-palindromes and we introduce them in the next section. However, in
order to have finite fixed points and to be able to work with them, we place an additional
property on H. This property is that the composition of H with itself is the identity.
Then we say that H is an involution. Below we illustrate why is this condition necessary.

Example 3.54. Let H : A∗ → A∗ be an antimorphism and w = w1w2 . . . wn ∈ A∗ its
fixed point, i.e., H(w1w2 . . . wn) = H(wn) . . . H(w2)H(w1) = w1w2 . . . wn. Applying H
again and using the property of an antimorphism and the previous equality gives

H(H(wn) . . . H(w2)H(w1)) = H2(w1)H
2(w2) . . . H

2(wn) = H(w1w2 . . . wn) = w1w2 . . . wn.

So we see that for all i ∈ {1, . . . , n}, H2(wi) = wi. We want to be able to construct fixed
points from all letters of the alphabet A, and therefore H has to satisfy H2(a) = a for all
a ∈ A.

Below, we give examples of commonly used antimorphisms. It is easy to check that
they are also involutions.

Definition 3.55. Let A be an alphabet. Then the antimorphism R : A∗ → A∗ defined by
R(a) = a for all a ∈ A is called the mirror image map R.

Then for a word w = w1w2 . . . wn we have R(w1w2 . . . wn) = wnwn−1 . . . w1, e.g.
R(BBAC) = CABB.

Definition 3.56. Let A = {0, 1}. Then the antimorphism E : A∗ → A∗ defined by
E(0) = 1 and E(1) = 0 is called the exchange map E.

We can also write it as E(a) = 1 − a and then E(w1w2 . . . wn) = (1 − wn)(1 −
wn−1) . . . (1− w1), e.g. E(10111) = 00010.

Definition 3.57. Let A = {A, C, G, T}. Then we call the antimorphism D : A∗ → A∗
defined by D(A) = T, D(C) = G, D(G) = C, D(T) = A the DNA map D.

This map is called the DNA map as it is motivated by the structure of DNA, see
Chapter 2.

In [43], the following antimorphisms were defined:

Definition 3.58. Let A = Zm, i.e., integers modulo m, where m ∈ N. Then for each
x ∈ A, Ψx : A∗ → A∗ is the antimorphism defined by Ψx(k) = x − k mod m for all
k ∈ A.

Example 3.59. We will often work with the antimorphisms Ψ0, Ψ1, Ψ2 over the alphabet
A = Z3. They are of the form

Ψ0(0) = 0 Ψ1(0) = 1 Ψ2(0) = 2

Ψ0(1) = 2 Ψ1(1) = 0 Ψ2(1) = 1

Ψ0(2) = 1 Ψ1(2) = 2 Ψ2(2) = 0.

22

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

3.3.1 Palindromes and palindromic words

Definition 3.60. Let A be an alphabet, H : A∗ → A∗ an involutive antimorphism, w ∈ A∗
and u ∈ AN. Then w is called an H-palindrome if H(w) = w and u is called an
H-palindromic word if L(u) contains an infinite number of H-palindromes.

Note that the empty word ε is an H-palindrome for every H.
This is a general definition with any suitable H. The most common types

of palindromes are derived from antimorphisms R, E and D. Some examples of
R-palindromes are the words MADAM, NOON, 010, CGTTGC and also every word
that consists of only one letter. In the case of the alphabet A = {0, 1}, examples of
E-palindromes are the words 01, 0011 or 110100. Finally, for A = {A, C, G, T} we have
D-palindromes, and some of them are the words AT, GCGC or CGGTACCG.

Similarly to factor complexity, we define H-palindromic complexity of an infinite word
and evaluate it using H-palindromic extensions, following [36].

Definition 3.61. Let u ∈ AN and let H : A∗ → A∗ be an involutive antimorphism.
Then we define the H-palindromic complexity of u as the function pHu : N → N given by
pHu (n) = card({w ∈ Ln(u) | w = H(w)}), that is the number of H-palindromic factors in
u of length n.

Definition 3.62. Let u ∈ AN, let H : A∗ → A∗ be an involutive antimorphism and
w ∈ L(u) an H-palindrome. Then we define the set of H-palindromic extensions of w as
PextHu (w) = {a ∈ A | awH(a) ∈ L(u)}.

We use these definitions in Chapter 6. When we consider R-palindromes, also simply
called palindromes, we omit R in the notation and terminology and use pu for palindromic
complexity and Pextu(w) for the set of palindromic extensions of w.

Proposition 3.63. Let u ∈ AN and let H : A∗ → A∗ be an involutive antimorphism.
Then the H-palindromic complexity of u satisfies

pHu (n+ 2) =
∑

w∈Ln(u)
w=H(w)

card(PextHu (w)).

Later, we will need the following simple observation.

Proposition 3.64. Let A = {A, C, G, T} and w ∈ A∗. Then w is both an R-palindrome
and a D-palindrome if and only if w = ε.

Proof. It is clear that the empty word is both an R-palindrome and a D-palindrome.
Now suppose that w 6= ε is both an R-palindrome and a D-palindrome. Let us denote
the first letter of w as a and the last letter of w as b. w being an R-palindrome implies
that a = R(b) = b. Moreover, w being a D-palindrome implies that a = D(b) 6= b, which
is a contradiction.

Proposition 3.65. Let u ∈ AN. If u is uniformly recurrent and H-palindromic, then the
language of u is closed under the antimorphism H, i.e., if w ∈ L(u) then H(w) ∈ L(u).

Proof. Let u ∈ AN be uniformly recurrent and H-palindromic. We take some w ∈ L(u)
and we want to show that H(w) ∈ L(u). Set n = |w| and as u is uniformly recurrent, by
Definition 3.7 we have a number r ∈ N satisfying that every factor of u of length r contains
all factors of length n, and therefore also the factor w. Using that u is H-palindromic,
we can find an H-palindrome v of length greater of equal to n. Because of its length, v
has to contain w, so there exist x, y ∈ A∗ such that v = xwy. We know that v = H(v) =
H(y)H(w)H(x), so H(w) is also a factor of v and therefore H(w) ∈ L(u).

23

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

Now we state a result about an H-palindromic word, which is purely periodic.

Proposition 3.66. Let u ∈ AN be H-palindromic and purely periodic. Then there exist
H-palindromes u, v ∈ A∗ such that u = (uv)∞.

Proof. As u is purely periodic, there is a non-empty word w such that u = w∞. Any
factor of u is of the form xwky, where x is a proper suffix of w, y is a proper prefix of
w and k ∈ N0. Now suppose that xwky, where k ≥ 2, is an H-palindrome. This implies
that

xwky = H(y)H(w)kH(x).

Because |x| < |wy|, we have that H(x) is a proper suffix of wy and this means that there
exists a non-empty word s = wnz, where n ∈ N and z is a proper prefix of w, such that

wky = sH(x).

It is clear that s is a prefix of u. We know that xwky = xsH(x) is an H-palindrome,
therefore s is an H-palindrome.

Because u is H-palindromic, there are infinitely many factors of u that are
H-palindromes, hence there are also infinitely many prefixes of u that are H-palindromes.
So consider an H-palindrome wnp, where n ∈ N and p is a proper prefix of w. It
follows that there is a non-empty word q such that w = pq. Then wnp = (pq)np is
an H-palindrome, hence

(pq)np = H(p)(H(q)H(p))n,

which implies that p = H(p) and q = H(q), so p, q are H-palindromes. If we denote u = p
and v = q, then u = (uv)∞, where u, v are H-palindromes.

3.4 Groups of morphisms and antimorphisms

In this section we consider finite groups of morphisms and antimorphisms onA∗. Following
[36], we denote the set of all morphisms and antimorphisms on A∗ as AM(A∗) and we
consider a subset G of AM(A∗) satisfying that G is a finite group and G contains at least
one antimorphism. The first condition implies that every element ψ of G is non-erasing
(since otherwise ψ has no inverse in G) and for all a ∈ A, ψ(a) ∈ A (since otherwise
ψn 6= Id for all n ∈ N). Also for all b ∈ A there is a ∈ A such that b = ψ(a). Overall, ψ
restricted to A must be a permutation of A.

In section 5.2, we discuss a more general concept of palindromicity with respect to a
group G, where only involutive antimorphisms in G are relevant. So for this purpose, we
denote the set of all involutive antimorphisms in G by G inv. Often, we consider a group
G which is generated by a subset S of AM(A∗) and we write it as G = 〈S〉.

Example 3.67. Let A = {A, C, G, T} and consider the group G = 〈{R,D}〉. Then
G = {Id, R,D,R ◦D} and G inv = {R,D}.

Example 3.68. Let A = Zm. As given in [43], we can take the group

G = {Ψx | x ∈ Zm} ∪ {Πx | x ∈ Zm},

where Ψx, x ∈ Zm, are the antimorphisms from Definition 3.58 given by Ψx(k) = x − k
mod m for all k ∈ Zm, and Πx, x ∈ Zm, are morphisms defined by Πx(k) = x+k mod m
for all k ∈ Zm. It can be shown that this group is isomorphic to the dihedral group of
order 2m.

24

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

In the case of m = 3, we have the group G = {Ψ0,Ψ1,Ψ2,Π0,Π1,Π2}, where the
antimorphisms Ψ0,Ψ1,Ψ2 are given by

Ψ0(0) = 0 Ψ1(0) = 1 Ψ2(0) = 2

Ψ0(1) = 2 Ψ1(1) = 0 Ψ2(1) = 1

Ψ0(2) = 1 Ψ1(2) = 2 Ψ2(2) = 0

and the morphisms Π0,Π1,Π2 are given by

Π0(0) = 0 Π1(0) = 1 Π2(0) = 2

Π0(1) = 1 Π1(1) = 2 Π2(1) = 0

Π0(2) = 2 Π1(2) = 0 Π2(2) = 1.

We see that Π0 is the identity and Π2 = Π−11 . So if we denote Π1 = µ, we can write
G = {Id, µ, µ−1,Ψ0,Ψ1,Ψ2}. Then G inv = {Ψ0,Ψ1,Ψ2} and the Cayley table of G is
shown below, where for each θ ∈ G labelling a row and each σ ∈ G labelling a column
their composition θ ◦ σ is written:

◦ Id µ µ−1 Ψ0 Ψ1 Ψ2

Id Id µ µ−1 Ψ0 Ψ1 Ψ2

µ µ µ−1 Id Ψ1 Ψ2 Ψ0

µ−1 µ−1 Id µ Ψ2 Ψ0 Ψ1

Ψ0 Ψ0 Ψ2 Ψ1 Id µ−1 µ

Ψ1 Ψ1 Ψ0 Ψ2 µ Id µ−1

Ψ2 Ψ2 Ψ1 Ψ0 µ−1 µ Id

Definition 3.69. A word w ∈ A∗ is called a G-palindrome if there exists an antimorphism
θ ∈ G such that w = θ(w).

Definition 3.70. Let u, v ∈ A∗. We say that u and v are G-equivalent, denoted by
u ∼G v, if there exists σ ∈ G such that u = σ(v). This is an equivalence relation and the
class of equivalence containing u is denoted [u]G.

Definition 3.71. Let u ∈ AN. The language of u is said to be closed under G if for all
σ ∈ G we have w ∈ L(u) =⇒ σ(w) ∈ L(u).

When we discuss palindromic richness of an infinite word u with respect to a group G
in Chapter 6, we need the definition of graph of symmetries of the word u, introduced in
[35]. Firstly, we give the definition of the directed graph of symmetries, again based on
[35]. These concepts are derived from the Rauzy graph defined in Definition 3.15.

Definition 3.72. Let u ∈ AN such that L(u) us closed under G and let n ∈ N. The

directed graph of symmetries of u of order n, denoted by
−→
Γn(u), is the directed graph

−→
Γn(u) = (V,

−→
E) with the set of vertices V and the set of edges

−→
E given by the following:

1. V = {[w]G | w ∈ Ln(u), w is special },

2. e ∈ L(u) is an edge from vertex [u]G to vertex [v]G if

� the prefix of e of length n belongs to [u]G,

� the suffix of e of length n belongs to [v]G,

25

CHAPTER 3. ELEMENTS OF COMBINATORICS ON WORDS

� |e| ≥ n + 1 and all factors of e of length n except for its prefix and suffix are
not special.

Definition 3.73. Let u ∈ AN such that L(u) us closed under G, let n ∈ N and let
−→
Γn(u) = (V,

−→
E) be the directed graph of symmetries of u of order n. The graph of

symmetries of u of order n, denoted by Γn(u), is the undirected graph Γn(u) = (V,E)

with the same set of vertices as
−→
Γn(u) and the set of edges E given by the following:

� for e ∈ L(u), [e]G is an edge in E joining vertices [u]G and [v]G if and only if e is

an edge in
−→
E from [u]G to [v]G or vice versa.

Example 3.74. Let G = {Id, R} and consider the Fibonacci word f . Its Rauzy graph Γ4

was constructed in Example 3.20. It is shown again below:

1001

00100100

01011010

10010

00101

01010

10100

01001

00100

We see from the Rauzy graph that L4(f) = {1001, 0100, 0010, 1010, 0101}. There are
only two special words in L4(f), namely 0100 and 0010. These correspond to vertices
in Γ4 that have at least two incoming edges or at least two outgoing edges. Moreover,
0100 ∼G 0010, and we denote their class of equivalence [0100]. Hence, [0100] is the only

vertex of the graphs
−→
Γ4(f) and Γ4(f). The edges in the graph

−→
Γ4(f) are the words 010010,

00100 and 0010100 and they correspond to paths in Γ4 that start and end in a special word
and pass through non-special words only. In Γ4(f), the edges are the classes of equivalence
of the words 010010, 00100 and 0010100, i.e., [010010], [00100] and [0010100]. The graphs
−→
Γ4(f) and Γ4(f) are shown in Figures 3.2 and 3.3, respectively.

[0100]

00100

0100100010100

Figure 3.2: The directed graph of symmetries
−→
Γ4(f).

[0100]

[00100]

[010010][0010100]

Figure 3.3: The graph of symmetries Γ4(f).

26

Chapter 4

Word equations with palindromes

In this chapter, we derive several results concerning word equations with R-palindromes
and D-palindromes. But first, we need to state two basic propositions regarding word
equations, which can be found in [31, p. 8].

Proposition 4.1. Let x, y ∈ A∗ be non-empty words. Then xy = yx if and only if there
exists a non-empty word w ∈ A∗ and i, j ∈ N such that

x = wi, y = wj.

Proposition 4.2. Let x, y, z ∈ A∗ be words, where x, y are non-empty. Then equality
xz = zy holds if and only if there exist u, v ∈ A∗ and i ∈ N0 such that

x = uv, y = vu, z = (uv)iu.

Now, we present our proofs of three propositions. Proposition 4.3 is needed in
Chapter 5, more specifically in the proof of Theorem 5.55. In fact, a more general version
of Proposition 4.4 can be found in [26, Proposition 9].

Proposition 4.3. Let w, x, y, z ∈ A∗ be non-empty R-palindromes satisfying wx = yz.
Then there exist R-palindromes u, v and i, j, k, l ∈ N0 such that

w = (uv)iu, x = v(uv)j, y = (uv)ku, z = v(uv)l.

Proof. The proof is by induction on the value ||w| − |y||.
In the first step, we consider ||w| − |y|| = 0. This means that |w| = |y|. Then equality

wx = yz implies that w = y and x = z. Hence, if we take i = j = k = l = 0, u = w and
v = x the statement holds.

In the second step, we consider ||w| − |y|| = N for some N ∈ N and we assume that
the statement holds for all K ∈ N0 such that K < N . Without loss of generality, we
assume that |w| > |y|. Then equality wx = yz implies that there is some non-empty word
s such that w = ys and z = sx. Using that w, x, y, z are R-palindromes, we get

R(s)y = ys, sx = xR(s).

All the words occurring in those equalities are non-empty, and so we can use
Proposition 4.2 on each equality to get that there exist n,m ∈ N0 and a, b, c, d ∈ A∗
such that

R(s) = ab s = cd

s = ba R(s) = dc

y = (ab)na x = (cd)mc.

27

CHAPTER 4. WORD EQUATIONS WITH PALINDROMES

From the first two lines above we have

ab = R(s) = R(a)R(b), dc = R(s) = R(d)R(c),

which implies that a, b, c, d are R-palindromes. Combining the results from above we
obtain

y = (ab)na x = (cd)mc

w = ys = (ab)n+1a z = sx = (cd)m+1c.

Moreover, we know that s = ba = cd and |w| − |y| = |s|.
Now assume that all the words a, b, c, d are non-empty. Then

N = |w| − |y| > max{|b| , |c|} > ||b| − |c|| ,

and so from our assumption that the statement of the lemma holds for all K < N , we have
that the equality ba = cd implies that there exist R-palindromes p, q and e, f, g, h ∈ N0

such that

b = (pq)ep, a = q(pq)f , c = (pq)gp, d = q(pq)h.

Substituting this into the expressions for w, x, y, z gives

w = (ab)n+1a = (qp)(e+f+1)(n+1)+fq

x = (cd)mc = p(qp)(g+h+1)m+g

y = (ab)na = (qp)(e+f+1)n+fq

z = (cd)m+1c = p(qp)(g+h+1)(m+1)+g.

Hence, if we take u = q, v = p and

i = (e+ f + 1)(n+ 1) + f

j = (g + h+ 1)m+ g

k = (e+ f + 1)n+ f

l = (g + h+ 1)(m+ 1) + g

the statement holds.
It remains to discuss the case when at least one of the words a, b, c, d is empty. We

know that ba = s = cd and ab = R(s) = dc. Without loss of generality, assume that
a = ε. Then b = cd = dc.

If c, d are non-empty, we can use Proposition 4.1 to deduce that there exists
a non-empty word r and α, β ∈ N such that

c = rα, d = rβ.

Because c and d are R-palindromes, r is also an R-palindrome. Substituting this result
into the expressions for w, x, y, z gives

w = (ab)n+1a = bn+1 = r(α+β)(n+1)

x = (cd)mc = r(α+β)m+α

y = (ab)na = bn = r(α+β)n

z = (cd)m+1c = r(α+β)(m+1)+α.

28

CHAPTER 4. WORD EQUATIONS WITH PALINDROMES

Hence, if we take u = r, v = ε and

i = (α + β)(n+ 1)− 1

j = (α + β)m+ α

k = (α + β)n− 1

l = (α + β)(m+ 1) + α

the statement holds.
In the case that also one of c, d is empty, we assume, without loss of generality, that

c = ε. Then b = d. Therefore

w = (ab)n+1a = bn+1

x = (cd)mc = bm

y = (ab)na = bn

z = (cd)m+1c = bm+1.

Hence, if we take u = b, v = ε, i = n, j = m, k = n − 1 and l = m + 1 the statement
holds.

Proposition 4.4. Let A = {A, C, G, T} and let x, y ∈ A∗ be non-empty words satisfying
that xy and yx are D-palindromes. Then there is a non-empty word w ∈ A∗, i, j ∈ N0

and m ∈ {0, 1} such that

x = (wD(w))iwm, y = D(w)m(wD(w))j.

Proof. The proof is by induction on the value ||x| − |y||.
In the first step, we consider ||x| − |y|| = 0. This means that |x| = |y|. As xy is

a D-palindrome, xy = D(y)D(x). Because |x| = |D(y)|, we have x = D(y). This is
equivalent to y = D(x). Hence, if we take w = x, i = j = 0 and m = 1 the statement
holds.

In the second step, we consider ||x| − |y|| = N for some N ∈ N and we assume
that the statement holds for all K ∈ N0 such that K < N . Without loss of generality,
we assume that |x| > |y|. From the equality xy = D(y)D(x) we have that there is
a non-empty word u such that |u| = N and x = D(y)u. It also holds that D(x) = uy.
Hence, uy = D(x) = D(u)y, and so u is a D-palindrome. As yx is a D-palindrome,
yx = D(x)D(y). This implies that there is a non-empty word v such that |v| = N and
x = vD(y). It also holds that D(x) = yv. Hence, yv = D(x) = yD(v), and so v is a
D-palindrome. Moreover, we got two different expressions for x, and so we have

vD(y) = D(y)u.

Applying Proposition 4.2 gives that there exist words p, q ∈ A∗ and k ∈ N0 such that

v = pq, u = qp, D(y) = (pq)kp.

We see that pq and qp are D-palindromes and N = |v| = |pq| = |p|+ |q|.
Assume that both p and q are non-empty. Then

N = |p|+ |q| > max{|p| , |q|} > ||p| − |q|| ,

and so from our assumption that the statement of the lemma holds for all K < N , the
fact that p, q are non-empty and pq and qp are D-palindromes implies that there exist
a non-empty word r ∈ A∗, l, s ∈ N0 and n ∈ {0, 1} such that

p = (rD(r))lrn, q = D(r)n(rD(r))s.

29

CHAPTER 4. WORD EQUATIONS WITH PALINDROMES

Substituting this into the expression for D(y) gives

D(y) = (pq)kp = (rD(r))(l+n+s)k+lrn.

Hence,

x = vD(y) = pqD(y) = (rD(r))(l+n+s)(k+1)+lrny = D(r)n(rD(r))(l+n+s)k+l.

Therefore, if we take w = r, m = n and

i = (l + n+ s)(k + 1) + l

j = (l + n+ s)k + l

the statement holds.
Now we consider the case when one of the words p and q is empty. Without loss of

generality, we assume that p = ε. Then q is aD-palindrome, therefore there is a non-empty
word d such that q = dD(d) and

D(y) = (pq)kp = (dD(d))k.

Hence,

x = vD(y) = pqD(y) = (dD(d))k+1

y = (dD(d))k.

Therefore, if we take w = d, i = k + 1, j = k and m = 0 the statement holds.

Proposition 4.5. Let A = {A, C, G, T} and let x, y ∈ A∗ be non-empty R-palindromes
satisfying that

(D(x)x)i = (D(y)y)j

for some i, j ∈ N. Then there is a non-empty R-palindrome w ∈ A∗ and k, l ∈ N0 such
that

x = w(D(w)w)k, y = w(D(w)w)l.

Proof. Without loss of generality, assume |x| ≥ |y|. The proof is by induction on the
value |y| ≥ 1.

In the first step, we consider |y| = 1. Then (D(x)x)i = (D(y)y)j implies that D(x)
is a non-empty prefix of (D(y)y)j. Because both y and D(y) contain only one letter,
D(x) is either of the form D(x) = (D(y)y)α, where α ∈ N, or D(x) = (D(y)y)βD(y),
where β ∈ N0. Consider the first case. Then x = (D(y)y)α = D(x) and therefore x
is a D-palindrome. However, x is also an R-palindrome and by Proposition 3.64 this is
possible if and only if x is empty. But that is in contradiction with the assumption that
x is non-empty. Hence, x cannot be of such a form and the second case holds, so we
have D(x) = (D(y)y)βD(y). Then x = y(D(y)y)β. So if we take w = y, which is an
R-palindrome, k = β and l = 0 the statement of the lemma holds.

In the second step, we consider |y| = N ∈ N, N ≥ 2, and we assume that the statement
holds for all K ∈ N such that K < N . Then |x| ≥ |y| = N and (D(x)x)i = (D(y)y)j

implies that

D(x)x = (D(y)y)md,

where m ∈ N and d ∈ A∗ with 0 ≤ |d| < 2 |y|.

30

CHAPTER 4. WORD EQUATIONS WITH PALINDROMES

Consider the case when d = ε. Then

D(x)x = (D(y)y)m.

If m is even, then D(x) = x = (D(y)y)m/2 and x is a D-palindrome. This again gives
contradiction, as x is also a non-empty R-palindrome. Therefore m is odd and

x = y(D(y)y)(m−1)/2.

So if we take w = y, which is an R-palindrome, k = (m − 1)/2 and l = 0 the statement
holds.

Now consider the case when d 6= ε, so D(x)x = (D(y)y)md, where 0 < |d| < 2 |y|. This
implies that

2 |x| = 2 |y|m+ |d| ,

and so
|x|
|y|

= m+ r, (4.1)

where

r =
|d|

2 |y|
< 1.

The equality (D(x)x)i = (D(y)y)j implies that

2 |x| i = 2 |y| j,

and so
|x|
|y|

=
j

i
. (4.2)

Hence, from equations (4.1) and (4.2), we have

j = mi+ ri. (4.3)

Here, ri ∈ N, and because r < 1 it implies that i ≥ 2. It also means that j > i ≥ 2. Then
we have

((D(y)y)md)i = (D(x)x)i = (D(y)y)j = ((D(y)y)m)i(D(y)y)ri.

Let us denote z = (D(y)y)m. Then we have equality

(zd)(zd) . . . (zd)︸ ︷︷ ︸
i-times

= zzzz . . . z︸ ︷︷ ︸
i-times

(D(y)y)ri.

This implies that

d (zd) . . . (zd)︸ ︷︷ ︸
(i−1)-times

= zzz . . . z︸ ︷︷ ︸
(i−1)-times

(D(y)y)ri. (4.4)

We see from equality (4.4) that d is a prefix of z = (D(y)y)m, and hence d is also
a prefix of (D(y)y)ri. In the case of i = 2, it follows that dz is a prefix of z(D(y)y)ri and
at the same time zd is a prefix of z(D(y)y)ri. In the case of i > 2 it follows that dz is
a prefix of zz and at the same time zd is a prefix of zz. In both cases, zd and dz are
prefixes of the same word and they also have the same length. This implies that zd = dz.
Using this relation, we can rewrite equality (4.4) as

zi−1di = zi−1(D(y)y)ri.

31

CHAPTER 4. WORD EQUATIONS WITH PALINDROMES

Therefore
di = (D(y)y)ri (4.5)

for all possible i ∈ N.
Returning to the equality

D(x)x = (D(y)y)md, (4.6)

we define words a, b, c ∈ A∗ in the following way. We take a to be the prefix of the word
(D(y)y)m of half of its length, so |a| = 1

2
|(D(y)y)m| = |y|m and a is non-empty. Then

|a| = 1

2
|(D(y)y)m| < 1

2
|(D(y)y)md| = |D(x)| ,

and so a is also a proper prefix of D(x). Therefore there is a non-empty word b such that

D(x) = ab. (4.7)

We know that 0 < |d| < 2 |y| ≤ |(D(y)y)m|, and hence

|d| < 1

2
(|(D(y)y)m|+ |d|) =

1

2
|(D(y)y)md| = 1

2
|D(x)x| = |x| .

This implies that d is a proper suffix of x, and therefore there is a non-empty word c such
that

x = cd. (4.8)

Substituting this into equality (4.6), we get

abcd = (D(y)y)md,

and hence
(D(y)y)m = abc.

If m is even, we have

a = (D(y)y)m/2, bc = (D(y)y)m/2,

which implies that a = D(bc) = D(c)D(b).
If m is odd, we have

a = (D(y)y)(m−1)/2D(y), bc = y(D(y)y)(m−1)/2,

which again implies that a = D(bc) = D(c)D(b).
Therefore for all possible m we have

a = D(c)D(b). (4.9)

Combining equations (4.7) and (4.8) gives

ab = D(cd) = D(d)D(c). (4.10)

Substituting expression for a from equation (4.9) into equation (4.10) gives

D(d)D(c) = D(c)D(b)b.

We know that D(d) and D(b)b are non-empty words, and therefore Proposition 4.2 implies
that there exist words u, v ∈ A∗ and n ∈ N such that

D(d) = uv, D(b)b = vu, D(c) = (uv)nu. (4.11)

32

CHAPTER 4. WORD EQUATIONS WITH PALINDROMES

We see that vu = D(b)b is a D-palindrome. From equations (4.11) and (4.10) we have

d = D(v)D(u), ab = D(d)D(c) = (uv)n+1u. (4.12)

From above, we know that d is a prefix of (D(y)y)m and therefore it is a prefix of ab. We
see from equation (4.12) that the prefix of ab of length |d| is uv. Therefore

d = D(v)D(u) = uv,

which implies that uv is a D-palindrome. Substituting equations (4.11) into equation
(4.8) gives

x = cd = D(u)(D(v)D(u))n+1. (4.13)

Now suppose that one of the words u and v is empty. Without loss of generality,
assume u = ε. Then, as vu is a D-palindrome, v is a D-palindrome and equation (4.13)
becomes

x = vn+1.

We know that x is an R-palindrome, which means that v is also an R-palindrome. By
Proposition 3.64, v = ε, which is a contradiction. Therefore, both u and v are non-empty.

Now, as uv and vu are both D-palindromes and u, v are non-empty, we can use
Proposition 4.4 to deduce that there is a non-empty word p ∈ A∗, e, f ∈ N and g ∈ {0, 1}
such that

u = (pD(p))epg, v = D(p)g(pD(p))f . (4.14)

If we substitute this into equation (4.13), we get

x = D(u)(D(v)D(u))n+1 = D(p)g(pD(p))(e+f+g)(n+1)+e. (4.15)

If g = 0, then x being an R-palindrome implies that pD(p) is an R-palindrome. However,
it as also a D-palindrome, and so by Proposition 3.64 it is empty, which is a contradiction.

Therefore g = 1. Then x = R(x) if and only if D(p) and p are R-palindromes, which
happens if and only if p is an R-palindrome. Hence, p is an R-palindrome.

Next, we combine equation (4.5) with equations (4.12) and (4.14) to get

(D(y)y)ri = di = (D(v)D(u))i = (pD(p))(e+f+g)i.

Let q = D(p), so q is also an R-palindrome. Then substituting this into the equation
above gives

(D(y)y)ri = (D(q)q)(e+f+g)i. (4.16)

We know that r < 1 ≤ e+f+g. If we consider the lengths of the words in equation (4.16),
we have

2 |y| ri = 2 |q| (e+ f + g)i.

This implies that
|y|
|q|

=
e+ f + g

r
> 1,

and hence |q| < |y| = N. Therefore, from our assumption that the statement of the lemma
holds for all K < N , the equation (4.16) implies that there is a non-empty R-palindrome
s ∈ A∗ and h, t ∈ N0 such that

y = s(D(s)s)h

q = s(D(s)s)t.

Then substituting this and q = D(p) into equation (4.15) gives

x = q(D(q)q)(e+f+g)(n+1)+e = s(D(s)s)(2t+1)((e+f+g)(n+1)+e)+t.

Therefore, if we take w = s, k = (2t+1)((e+f+g)(n+1)+e)+t and l = h the statement
holds.

33

Chapter 5

General palindromicity

In this chapter, we examine in more details the topic of general palindromicity. In
the classical sense, an infinite word is palindromic if its language contains infinitely
many R-palindromes. This can be generalized to any involutive antimorphism H, and
H-palindromic words were defined in Definition 3.60. Section 5.1 focuses on this concept
of H-palindromicity, more specifically on classes of morphisms generating H-palindromic
words. We summarize some known results regarding R-palindromic and E-palindromic
words and then we study D-palindromic words and general H-palindromic words.

Another level of generalization is with respect to a group of morphisms and
antimorphisms G and this is discussed in section 5.2.

5.1 Palindromicity with respect to an antimorphism

5.1.1 Mirror image map R

In [23], authors Hof, Knill and Simon employed R-palindromic words in the study of
discrete Schrödinger operators. In order to generate R-palindromic words, they defined a
class of morphisms called class P . Following [23, p. 152], we define it below.

Definition 5.1. Let A be an alphabet. A morphism ϕ : A∗ → A∗ belongs to the class P if
it is primitive and there is an R-palindrome p ∈ A∗ such that for every a ∈ A, ϕ(a) = pqa,
where qa ∈ A∗ is an R-palindrome.

In this article, the authors showed that if an infinite word is generated by a morphism
from class P , then it is R-palindromic. We give this result in corollary of the following
lemma, given in [4, p. 4].

Lemma 5.2. Let ϕ be a morphism in class P of the form ϕ(a) = pqa, where qa ∈ A∗ is
an R-palindrome, for all a ∈ A and let u be its fixed point. Then

1. w ∈ L(u) =⇒ ϕ(w)p ∈ L(u),

2. w is an R-palindrome =⇒ ϕ(w)p is an R-palindrome.

Proof. 1. Let w ∈ L(u). w is a factor of u and it is followed by some letter a ∈ A,
so wa is a factor of u. Because ϕ(u) = u, ϕ(wa) is also a factor of u. We have
ϕ(wa) = ϕ(w)ϕ(a) = ϕ(w)pqa ∈ L(u) and therefore ϕ(w)p ∈ L(u).

34

CHAPTER 5. GENERAL PALINDROMICITY

2. Let w = w1 . . . wn be an R-palindrome, i.e., R(w) = w. We want to show that
R(ϕ(w)p) = ϕ(w)p. Using that w, p and qa are R-palindromes and R(ϕ(a)) = qap we get

R(ϕ(w)p) = R(p)R(ϕ(w)) = pR(ϕ(w1) . . . ϕ(wn)) = pR(ϕ(wn))R(ϕ(wn−1)) . . . R(ϕ(w1))

= pR(ϕ(w1))R(ϕ(w2)) . . . R(ϕ(wn)) = pqw1pqw2p . . . qwnp = ϕ(w1) . . . ϕ(wn)p

= ϕ(w1 . . . wn)p = ϕ(w)p.

Corollary 5.3. A fixed point of a morphism in class P is R-palindromic.

This follows from the fact that there is at least one non-empty R-palindrome in L(u),
p or qa for some a ∈ A, and then applying Lemma 5.2 repeatedly gives infinitely many
R-palindromes in L(u).

In [23], Hof, Knill and Simon also posed the question of whether all R-palindromic
words arise from morphisms in class P . In response, several versions of the so-called
HKS conjecture were formulated with the objective to answer this, more loosely worded,
question.

Following [29, p. 201-202], we give a partial overview of different versions of the HKS
conjecture and of some relevant results.

First result deals with periodic words, and it was proven in [2].

Theorem 5.4. Let u ∈ AN be periodic and R-palindromic. Then u is a fixed point of
a morphism in class P.

Another result, proven by Tan in [45], solves the question of Hof, Knill and Simon for
binary words.

Theorem 5.5. Let A be an alphabet with card(A) = 2 and let ϕ : A∗ → A∗ be a primitive
morphism and let u ∈ AN be a fixed point of ϕ. Then u is R-palindromic if and only if
there exists a morphism ψ in class P such that L(ϕ) = L(ψ).

In fact, it follows from [45] that a stronger version of this theorem holds, which has
the same assumptions but states that u is R-palindromic if and only if there exists a
morphism ψ in class P such that ψ ∼ ϕ or ψ ∼ ϕ2.

After the results above were derived, the following version of the HKS conjecture was
formulated in [27, 33].

HKS Conjecture (Version 1). Let u ∈ AN be a fixed point of a primitive morphism.
Then u is R-palindromic if and only if there exists a morphism ϕ 6= Id such that ϕ(u) = u
and ϕ is conjugated to some morphism in class P.

However, this statement was proven to be false by Labbé in [28], as a counterexample
was found. Nevertheless, in [29], it was shown that for a fixed point of a primitive
morphism from a specific class called marked morphisms Version 1 of the conjecture still
holds.

A different version of the HKS conjecture seems plausible, which was formulated by
Tan in [45].

HKS Conjecture (Version 2). Let u ∈ AN be a fixed point of a primitive morphism ϕ.
Then u is R-palindromic if and only if there exists a morphism ψ in class P such that
L(ϕ) = L(ψ).

Yet another formulation of the HKS conjecture exists, motivated by [22], where it was
proven for a certain class of words. This version uses the following definition.

35

CHAPTER 5. GENERAL PALINDROMICITY

Definition 5.6. Let A,B be alphabets and let v ∈ BN. We say that v is primitive morphic
if there exist a morphism f : A → B and u ∈ AN such that u is a fixed point of some
primitive morphism ϕ : A → A and v = f(u).

HKS Conjecture (Version 3). If u is an R-palindromic primitive morphic word, then
there exist morphisms ϕ, ψ with conjugates in class P and an infinite word v such that
v = ϕ(v) and L(u) = L(ψ(v)).

The question of Hof, Knill and Simon is still not fully answered, as only partial results
exist.

Here, we are interested in morphisms in class P , and for our purposes, the following
proposition is useful.

Proposition 5.7. Let ϕ be a morphism in class P. Then ϕ is conjugated to some
morphism ψ in class P satisfying, for all a ∈ A, ψ(a) = p̂q̂a, where q̂a ∈ A∗ is an
R-palindrome and p̂ ∈ A∗ with |p̂| ≤ 1.

Proof. The morphism ϕ is of the form ϕ(a) = pqa, for all a ∈ A, where p, qa ∈ A∗ are
R-palindromes. Assume that |p| ≥ 2, otherwise the proposition is trivially valid. Then p
can be expressed as p = wbR(w) for some non-empty word w and b ∈ A∗ with |b| ≤ 1.
Hence, we can write

ϕ(a) = wbR(w)qa for all a ∈ A.
Then we see that ϕ is conjugated to the morphism ψ given by

ψ(a) = bR(w)qaw for all a ∈ A.

We denote p̂ = b and q̂a = R(w)qaw for all a ∈ A. Then clearly |p̂| ≤ 1 and
R(q̂a) = R(w)R(qa)w = R(w)qaw = q̂a and so q̂a is an R-palindrome. Therefore ψ
has the required form.

5.1.2 Exchange map E

E-palindromic words have also been studied and some results have been derived. In [27],
for binary alphabet Labbé defines an analogy to the class P , the so-called class E-P .

Definition 5.8. A morphism ϕ : {0, 1}∗ → {0, 1}∗ belongs to the class E-P if there exist
E-palindromes p, q0, q1 such that ϕ(a) = pqa for all a ∈ {0, 1}.

Fixed points of morphisms in class E-P are not necessary E-palindromic, this is
demonstrated by an example in [5, p. 15], and we do not state here more results regarding
the class E-P .

Instead, we focus on [5], where two classes of morphisms, class A1 and A2, were defined
and studied. Here, we summarize the main results of this paper.

Definition 5.9. A morphism ϕ : {0, 1}∗ → {0, 1}∗ belongs to the class A1 if there exist
words p, s ∈ {0, 1}∗ such that p 6= ε, s is an E-palindrome, and ϕ(0) = ps, ϕ(1) = E(p)s.

Proposition 5.10. Let ϕ be a primitive morphism in class A1 and let u ∈ {0, 1}N be its
fixed point. Then u is E-palindromic.

The definition of the class A2 uses the Thue-Morse morphism ϕt, defined by ϕt(0) =
01, ϕt(1) = 10.

Definition 5.11. A morphism ϕ : {0, 1}∗ → {0, 1}∗ belongs to the class A2 if there
exist a non-empty word w ∈ {0, 1}∗ and k, l ∈ N such that ϕ(0) = ϕt

(
w(R(w)w)k

)
,

ϕ(1) = ϕt
(
(R(w)w)lR(w)

)
.

36

CHAPTER 5. GENERAL PALINDROMICITY

Proposition 5.12. Let ϕ be a primitive morphism in class A2 and let u ∈ {0, 1}N be its
fixed point. Then u is E-palindromic.

Lemma 5.13. Let u be an eventually periodic E-palindromic word. If u is recurrent,
then it is a fixed point of a morphism in class A1.

Theorem 5.14. Let ϕ : {0, 1}∗ → {0, 1}∗ be a primitive uniform morphism with an
aperiodic fixed point u. If u is E-palindromic, then ϕ or ϕ2 is conjugated to a morphism
in class A1.

Theorem 5.15. Let ϕ : {0, 1}∗ → {0, 1}∗ be a primitive non-uniform morphism with an
aperiodic fixed point u. If u is E-palindromic and R-palindromic, then ϕ or ϕ2 is in class
A2 with w from the definition of class A2 being an E-palindrome.

Based on these results, the authors of [5] formulated the following conjecture.

Conjecture 5.16. Let ϕ : {0, 1}∗ → {0, 1}∗ be a primitive morphism with an
E-palindromic fixed point u. Then ϕ or ϕ2 is conjugated to a morphism in class A1∪A2.

By Proposition 3.48, we know that a fixed point of a primitive morphism is uniformly
recurrent, hence also recurrent. Thus, Lemma 5.13 implies that this conjecture holds for
eventually periodic words. Then, by Theorems 5.14 and 5.15, the conjecture is valid for
ϕ uniform or u R-palindromic.

5.1.3 DNA map D

Here we define a class of morphisms D as an analogy to the class P and A1 for the DNA
map D. We show that it can be used to generate D-palindromic words.

Definition 5.17. Let A = {A, C, G, T}. A morphism ϕ : A∗ → A∗ belongs to the class
D if it is primitive and there is a D-palindrome s ∈ A∗ and some non-empty p, q ∈ A∗
such that ϕ(A) = ps, ϕ(C) = qs, ϕ(G) = D(q)s, ϕ(T) = D(p)s.

Proposition 5.18. Let ϕ be a morphism in class D. Then ϕ is conjugated to some
morphism ψ in class D satisfying ψ(A) = p̂, ψ(C) = q̂, ψ(G) = D(q̂), ψ(T) = D(p̂),
where p̂, q̂ are non-empty.

Proof. The morphism ϕ is of the form ϕ(A) = ps, ϕ(C) = qs, ϕ(G) = D(q)s, ϕ(T) =
D(p)s, where s is aD-palindrome and p, q non-empty words. Assume that s 6= ε, otherwise
the proposition is trivially valid. Then s can be expressed as s = wD(w) for some
non-empty word w. Hence, we can write

ϕ(A) = pwD(w)

ϕ(C) = qwD(w)

ϕ(G) = D(q)wD(w)

ϕ(T) = D(p)wD(w).

Then we see that ϕ is conjugated to the morphism ψ given by

ψ(A) = D(w)pw

ψ(C) = D(w)qw

ψ(G) = D(w)D(q)w

ψ(T) = D(w)D(p)w.

We denote p̂ = D(w)pw = ψ(A) and q̂ = D(w)qw = ψ(C). Then clearly D(p̂) =
D(w)D(p)w = ψ(T) and D(q̂) = D(w)D(q)w = ψ(G). Therefore ψ has the required
form.

37

CHAPTER 5. GENERAL PALINDROMICITY

From Proposition 3.50, we know that primitive conjugate morphisms have the same
language, and therefore when working with language of morphism ϕ in class D, we can
assume that s = ε.

Proposition 5.19. Let ϕ be a morphism in class D and let u be its infinite fixed point.
Then the language of u is closed under the antimorphism D, i.e., if w ∈ L(u) then
D(w) ∈ L(u).

Proof. Proposition 5.18 and Proposition 3.50 imply that there is a morphism ψ from
class D conjugated to ϕ and with a fixed point v such that L(u) = L(v) and ψ(A) =
p, ψ(C) = q, ψ(G) = D(q), ψ(T) = D(p), where p, q are non-empty. It is therefore
sufficient to prove that if w ∈ L(v) then D(w) ∈ L(v).

Let A = {A, C, G, T} and let w ∈ A∗ be in the language of v. Because ψ is primitive,
we know from Proposition 3.42 that its fixed point v is generated by ψ. Therefore there
is a ∈ A and k ∈ N such that w is a factor of ψk(a) ∈ L(v). Also D(a) ∈ L(v) and hence
ψk(D(a)) ∈ L(v).

Now we prove that ψ ◦D = D ◦ ψ. These compositions are antimorphisms, and so it
is sufficient to check the equality on images of letters:

ψ(D(A)) = ψ(T) = D(p) = D(ψ(A))

ψ(D(C)) = ψ(G) = D(q) = D(ψ(C))

ψ(D(G)) = ψ(C) = q = D(D(q)) = D(ψ(G))

ψ(D(T)) = ψ(A) = p = D(D(p)) = D(ψ(T)).

By applying this relation repeatedly, we get ψk(D(a)) = D(ψk(a)). Because w is
a factor of ψk(a), D(w) is a factor of D(ψk(a)) = ψk(D(a)) ∈ L(v) and so D(w) ∈ L(v).

Lemma 5.20. Let ϕ be a morphism in class D and let u be its fixed point. Then

1. w ∈ L(u) =⇒ sϕ(w) ∈ L(u),

2. w is a D-palindrome =⇒ sϕ(w) is a D-palindrome.

Proof. 1. Let w ∈ L(u). Firstly, we consider the case when w is not a prefix of u. Then
as a factor of u it is preceded by some letter, which we denote as a. Hence aw ∈ L(u).
Because ϕ(u) = u, we have ϕ(aw) = ϕ(a)ϕ(w) ∈ L(u). As s is a suffix of ϕ(a), then
sϕ(w) ∈ L(u).

Secondly, we consider w to be a prefix of u. We denote the first letter of w by c. As
the fixed point u is generated by applying ϕ to c repeatedly, there is k ∈ N such that w is
a prefix of ϕk(c). It follows from the fact that ϕ is primitive that the letter c has another
occurrence in u and therefore w has another occurrence in u. Then we can use the first
case to conclude that sϕ(w) ∈ L(u).

2. Let w = w1 . . . wn be a D-palindrome, i.e., D(w) = w. We want to show
D(sϕ(w)) = sϕ(w). Let us denote ϕ(wj) = ujs, where uj ∈ {p, q}. Then ϕ(D(wj)) =
D(uj)s. Using this and the fact that s and w are D-palindromes, we get

D(sϕ(w)) = D(ϕ(w))D(s) = D(ϕ(w1) . . . ϕ(wn))s = D(ϕ(wn)) . . . D(ϕ(w1))s

= D(uns) . . . D(u1s)s = sD(un) . . . sD(u1)s

= sϕ(D(wn)) . . . ϕ(D(w1)) = sϕ(D(w)) = sϕ(w).

Remark 5.21. This lemma implies that if there is a non-empty D-palindrome in the
language of u, where u is a fixed point of a morphism ϕ from the class D, then there
are infinitely many D-palindromes in L(u), i.e., u is D-palindromic. Clearly, the
D-palindrome s from the definition of class D belongs to L(u), and so if it is non-empty,
then u is D-palindromic. The case when s = ε is discussed in the following section.

38

CHAPTER 5. GENERAL PALINDROMICITY

5.1.4 General involutive antimorphism H

Now we generalize the class D from above and we define a class of morphisms H for a
general involutive antimorphism H. We derive analogous results to some results regarding
class D and discuss the conditions under which a fixed point of a morphism from class H
is H-palindromic.

If an antimorphism H : A∗ → A∗ is an involution, it means that there are three disjoint
sets of letters Aa = {a1, a2, . . . , ak}, Ab = {b1, . . . , bl} and Ac = {c1, . . . , cl} such that

A = Aa ∪ Ab ∪ Ac

and

H(ai) = ai for all i ∈ {1, . . . , k},
H(bi) = ci for all i ∈ {1, . . . , l}, (5.1)

H(ci) = bi for all i ∈ {1, . . . , l},

where k, l ∈ N0. In what follows, we keep this notation.

Definition 5.22. Let A = {a1, a2, . . . , ak, b1, . . . , bl, c1, . . . , cl} be an alphabet and H an
antimorphism of the form (5.1) above. Then we say that a morphism ϕ : A∗ → A∗ belongs
to the class H if it is primitive and there are words p1, p2, . . . , pl ∈ A∗ and H-palindromes
q1, q2, . . . , qk, s ∈ A∗ such that

ϕ(ai) = qis for all i ∈ {1, . . . , k},
ϕ(bi) = pis for all i ∈ {1, . . . , l}, (5.2)

ϕ(ci) = H(pi)s for all i ∈ {1, . . . , l}.

Example 5.23. Consider the antimorphism R. Since R(a) = a for all a ∈ A, we have
A = Aa = {a1, a2, . . . , ak} for some k ∈ N, so the sets Ab and Ac are empty. Hence, the
class H for H = R consists of primitive morphisms ϕ of the form

ϕ(ai) = qis for all i ∈ {1, . . . , k},

where q1, . . . , qk, s ∈ A∗ are R-palindromes.
There is a clear correspondence between morphisms from this class and morphisms

from the class P, which are of the form

ψ(ai) = pqai for all i ∈ {1, . . . , k},

where qa1 , . . . , qak , p ∈ A∗ are R-palindromes. We see that if we set p = s and qai = qi,
then ϕ ∼ ψ. As conjugated morphisms have the same language, this class H and the class
P are effectively the same.

Example 5.24. Consider the antimorphism E, which is defined by E(0) = 1, E(1) = 0.
In this case, Aa is empty, Ab = {0} and Ac = {1}. Therefore, the class H for H = E
consists of primitive morphisms ϕ of the form

ϕ(0) = ps,

ϕ(1) = E(p)s,

where s is an E-palindrome and p ∈ A∗. Note that the Thue-Morse morphism, which is
defined by

ϕt(0) = 01, ϕt(1) = 10,

belongs to this class.

39

CHAPTER 5. GENERAL PALINDROMICITY

Example 5.25. Consider the antimorphism D. Here, Aa is empty, Ab = {A,C} and
Ac = {T,G}. It follows that the class H for H = D consists of primitive morphisms ϕ of
the form

ϕ(A) = p1s,

ϕ(C) = p2s,

ϕ(T) = D(p1)s,

ϕ(G) = D(p2)s,

where s is a D-palindrome and p1, p2 ∈ A∗. If we denote p1 = p and p2 = q, we see that
this class H is exactly the class D defined earlier.

Lemma 5.26. Let H be an antimorphism of the form (5.1) and let ϕ be a morphism from
class H. Then for all w ∈ A∗ we have sϕ(H(w)) = H(ϕ(w))s.

Proof. Firstly, we show that the relation holds for all a ∈ A.
If we consider the letters ai, i ∈ {1, . . . , k}, we get

sϕ(H(ai)) = sϕ(ai) = sqis,

H(ϕ(ai))s = H(qis)s = sqis,

for all i ∈ {1, . . . , k}. Hence

sϕ(H(ai)) = H(ϕ(ai)) for all i ∈ {1, . . . , k}.

For letters bi, i ∈ {1, . . . , l}, we have

sϕ(H(bi)) = sϕ(ci) = sH(pi)s,

H(ϕ(bi))s = H(pis)s = sH(pi)s,

for all i ∈ {1, . . . , l}. Hence

sϕ(H(bi)) = H(ϕ(bi)) for all i ∈ {1, . . . , l}.

If we take letters ci, i ∈ {1, . . . , l}, we obtain

sϕ(H(ci)) = sϕ(bi) = spis,

H(ϕ(ci))s = H(H(pi)s)s = spis,

for all i ∈ {1, . . . , l}. Hence

sϕ(H(ci)) = H(ϕ(ci)) for all i ∈ {1, . . . , l}.

Now let us take an arbitrary word w ∈ A∗ and denote |w| = n, so w = w1w2 . . . wn,
where wi ∈ A for all i ∈ {1, . . . , n}. Then we have

sϕ(H(w)) = sϕ(H(w1w2 . . . wn)) = sϕ(H(wn)H(wn−1) . . . H(w1))

= sϕ(H(wn))ϕ(H(wn−1)) . . . ϕ(H(w1)) = H(ϕ(wn))H(ϕ(wn−1)) . . . H(ϕ(w1))s

= H(ϕ(w1)ϕ(w2) . . . ϕ(wn))s = H(ϕ(w1w2 . . . wn))s = H(ϕ(w))s,

where we used that sϕ(H(a)) = H(ϕ(a))s for all a ∈ A.

Proposition 5.27. Let H : A∗ → A∗ be an antimorphism of the form (5.1), let
ϕ : A∗ → A∗ be a primitive morphism and let s be an H-palindrome such that |s| ≤ |ϕ(a)|
for all a ∈ A. Then sϕ(H(w)) = H(ϕ(w))s for all w ∈ A∗ if and only if ϕ belongs to the
class H and is of the form (5.2) with the given s.

40

CHAPTER 5. GENERAL PALINDROMICITY

Proof. We have already proved one of the two implications in Lemma 5.26. To prove the
other implication, we assume that sϕ(H(w)) = H(ϕ(w))s for all w ∈ A∗ and we want to
show that ϕ is of the form (5.2). Since the relation holds for all words w, in particular, it
holds for all letters a ∈ A.

Firstly, we consider the letters ai, i ∈ {1, . . . , k}. We have

sϕ(H(ai)) = H(ϕ(ai))s for all i ∈ {1, . . . , k}.

Hence,

sϕ(ai) = H(ϕ(ai))s = H(ϕ(ai))H(s) = H(sϕ(ai)) for all i ∈ {1, . . . , k},

which means that sϕ(ai) is an H-palindrome for all i ∈ {1, . . . , k}. Since |s| ≤ |ϕ(ai)| for
all i ∈ {1, . . . , k}, this implies that for each i ∈ {1, . . . , k}, there exists an H-palindrome
qi ∈ A∗ such that ϕ(ai) = qis.

Secondly, we consider the letters bi, i ∈ {1, . . . , l}. We have

sϕ(H(bi)) = H(ϕ(bi))s for all i ∈ {1, . . . , l}.

It follows that
sϕ(ci) = H(ϕ(bi))s for all i ∈ {1, . . . , l}.

If we apply the antimorphism H to both sides of this equality, we get

H(ϕ(ci))s = sϕ(bi) for all i ∈ {1, . . . , l}.

This is equivalent to the relation for letters ci, i ∈ {1, . . . , l}. Since |s| ≤ |ϕ(bi)| for all
i ∈ {1, . . . , l}, this implies that for each i ∈ {1, . . . , l}, there exists a word pi ∈ A∗ such
that H(ϕ(ci))s = sϕ(bi) = spis. Therefore, ϕ(bi) = pis and H(ϕ(ci)) = spi, which is
equivalent to ϕ(ci) = H(pi)s.

Overall, we have

ϕ(ai) = qis for all i ∈ {1, . . . , k},
ϕ(bi) = pis for all i ∈ {1, . . . , l},
ϕ(ci) = H(pi)s for all i ∈ {1, . . . , l},

where qi, i ∈ {1, . . . , k}, are H-palindromes. This is exactly the form (5.2).

Corollary 5.28. Let H : A∗ → A∗ be an antimorphism of the form (5.1) and let
ϕ : A∗ → A∗ be a primitive morphism. Then ϕ(H(w)) = H(ϕ(w)) for all w ∈ A∗ if
and only if ϕ belongs to the class H and is of the form (5.2) with s = ε.

Lemma 5.29. Let H be an antimorphism of the form (5.1), let ϕ be a morphism from
class H and let u be its fixed point. Then

1. w ∈ L(u) =⇒ sϕ(w) ∈ L(u),

2. w is an H-palindrome =⇒ sϕ(w) is an H-palindrome.

Proof. 1. Let w ∈ L(u). Since u is a fixed point of a primitive morphism, it is
uniformly recurrent (Prop. 2.44), and therefore w has infinitely many occurrences in
u. Hence there exists a ∈ A such that aw ∈ L(u). Because ϕ(u) = u, we have
ϕ(aw) = ϕ(a)ϕ(w) ∈ L(u). As s is a suffix of ϕ(a) for all a ∈ A, we have sϕ(w) ∈ L(u).

2. Let w be an H-palindrome, i.e., H(w) = w. We want to show H(sϕ(w)) = sϕ(w).
By using Lemma 5.26, we get

H(sϕ(w)) = H(ϕ(w))s = sϕ(H(w)) = sϕ(w),

hence sϕ(w) is an H-palindrome.

41

CHAPTER 5. GENERAL PALINDROMICITY

Lemma 5.30. Let H be an antimorphism of the form (5.1) and let ϕ be a morphism from
class H of the form (5.2). Then ϕ2 also belongs to class H and it is of the form

ϕ2(ai) = Qisϕ(s) for all i ∈ {1, . . . , k},
ϕ2(bi) = Pisϕ(s) for all i ∈ {1, . . . , l},
ϕ2(ci) = H(Pi)sϕ(s) for all i ∈ {1, . . . , l},

where P1, P2, . . . , Pl ∈ A∗ and Q1, Q2, . . . , Qk, sϕ(s) are H-palindromes.

Proof. Let us examine images of letters under the morphism ϕ2.
Firstly, we take letter ai for some i ∈ {1, . . . , k}. Since ϕ(ai) = qis, we have ϕ2(ai) =

ϕ(qi)ϕ(s). It is clear that ϕ(qi) has s as its suffix, therefore we can write ϕ(qi) = Qis,
where Qi ∈ A∗. Hence,

ϕ2(ai) = Qisϕ(s).

Now we need to show that Qi and sϕ(s) are H-palindromes.
Let us consider the word sQis. Since qi is an H-palindrome, we have

sQis = sϕ(qi) = sϕ(H(qi)).

Lemma 5.26 implies that sϕ(H(qi)) = H(ϕ(qi))s. Hence,

sQis = H(ϕ(qi))s = H(Qis)s = sH(Qi)s.

It follows that Qi = H(Qi), i.e., Qi is an H-palindrome.
To show that sϕ(s) is an H-palindrome, we consider H(sϕ(s)). Since s is an

H-palindrome, we have H(sϕ(s)) = H(ϕ(s))s. By Lemma 5.26, H(ϕ(s))s = sϕ(H(s)).
Overall,

H(sϕ(s)) = sϕ(H(s)) = sϕ(s),

which means that sϕ(s) is an H-palindrome.
Secondly, we take letters bj and cj for some j ∈ {1, . . . , l}. Since ϕ(bj) = pjs, we have

ϕ2(bj) = ϕ(pj)ϕ(s). Again, we can write ϕ(pj) = Pjs for some Pj ∈ A∗. Hence,

ϕ2(bj) = Pjsϕ(s).

As ϕ(cj) = H(pj)s, we have ϕ2(cj) = ϕ(H(pj))ϕ(s). We denote ϕ(H(pj)) = Rjs for
some Rj ∈ A∗. It remains to be shown that Rj = H(Pj), as this would give us

ϕ2(cj) = H(Pj)sϕ(s).

Consider the word sRjs. Using Lemma 5.26, we get

sRjs = sϕ(H(pj)) = H(ϕ(pj))s = H(Pjs)s = sH(Pj)s.

This implies Rj = H(Pj), which is what we wanted to show.

Proposition 5.31. Let H be an antimorphism of the form (5.1), let ϕ be a morphism
from class H and let u be its fixed point. Then the language of u is closed under the
antimorphism H, i.e., if w ∈ L(u) then H(w) ∈ L(u).

Proof. Let w ∈ L(u) and denote n = |w|. Since ϕ is primitive, by Proposition 3.48, u
is uniformly recurrent. This means that there exists r ∈ N such that any factor of u of
length r contains all factors of u of length n, so in particular also w. Moreover, it follows

42

CHAPTER 5. GENERAL PALINDROMICITY

from primitivity of ϕ that there exists k ∈ N such that
∣∣ϕk(a)

∣∣ ≥ r for all a ∈ A. Without
loss of generality, we can assume that k = 2l for some l ∈ N.

Let us denote ψ = ϕk = ϕ2l . Lemma 5.30 implies that ψ also belongs to class H,
so we can assume that it is of the form (5.2). Furthermore, u is a fixed point of ψ.
Consider some letter a ∈ A. Since ϕ is primitive, all letters of the alphabet are contained
in L(u), so in particular H(a) ∈ L(u). If we apply Lemma 5.29 to the antimorphism ψ,
we obtain sψ(H(a)) ∈ L(u). We know that |ψ(a)| ≥ r, hence w is a factor of ψ(a) and
clearly also of sψ(a). Then H(w) is a factor of H(sψ(a)) = H(ψ(a))s. By Lemma 5.26,
H(ψ(a))s = sψ(H(a)). Hence, H(w) is a factor of sψ(H(a)) ∈ L(u) and therefore
H(w) ∈ L(u).

Remark 5.32. Again as in the case of the antimorphism D discussed in the previous
section, Lemma 5.29 implies that if there is a non-empty H-palindrome in the language
of u, where u is a fixed point of a morphism ϕ from the class H, then there are infinitely
many H-palindromes in L(u), i.e., u is H-palindromic. Clearly, the H-palindrome s
from the definition of class H belongs to L(u), and so if it is non-empty, then u is
H-palindromic. Another case for which H-palindromicity is guaranteed is when k 6= 0,
i.e., the set of letters fixed by H is non-empty. Then all letters ai, i ∈ {1, . . . , k} are
H-palindromes and by primitivity of ϕ they are in the language of u.

Hence, we have the following proposition.

Proposition 5.33. Let H : A∗ → A∗ be an involutive antimorphism such that H(a) = a
for some a ∈ A. Let ϕ be a morphism from the class H and let u ∈ AN be its fixed point.
Then u is H-palindromic.

Proof. Since ϕ is primitive, the language of u contains all letters, in particular a ∈ A such
that H(a) = a. Hence, there is a non-empty H-palindrome in L(u). Lemma 5.29 tells us
that for every H-palindrome w in L(u), sϕ(w) is an H-palindrome in L(u). Therefore,
L(u) contains infinitely many H-palindromes.

Now we want to address the question of whether u is H-palindromic when H(a) 6= a
for all a ∈ A, i.e., k = 0. In other words, we want to be able to decide if there exists a
non-empty H-palindrome in L(u). For this purpose, it is sufficient to restrict ourselves
only to H-palindromes of length two, since if k = 0, any non-empty H-palindrome has
even length and is of the form waH(a)H(w), where w ∈ A∗ and a ∈ A. Hence it contains
the factor aH(a), which is a H-palindrome of length two. Therefore L(u) contains a
non-empty H-palindrome if and only if it contains a H-palindrome of length two.

The antimorphism D from the previous section belongs to this category of
antimorphism with k = 0, i.e., no letter is fixed by D. In the following example, we
observe that there are fixed points of morphisms from the class D that do not contain
any D-palindrome of length two.

Example 5.34. Let A = {A, C, G, T} and let ϕ : A∗ → A∗ be a morphism defined by

ϕ(A) = ACA

ϕ(C) = CTC

ϕ(G) = GAG

ϕ(T) = TGT.

This morphism is primitive and it belongs to the class D with p = ACA, q = CTC and
s = ε. It has four fixed points, but as was shown in Proposition 3.43, their languages
coincide. Let us consider for example the fixed point

u = ACACTCACACTCTGTCTCACACTCACA . . .

43

CHAPTER 5. GENERAL PALINDROMICITY

As u is generated by ϕ, a factor of u of length two is either a factor of ϕ(a) for some
a ∈ A or it is a concatenation of the last letter of ϕ(b) and the first letter of ϕ(c), where
bc is a different factor of u of length two. In this case, for all a ∈ A, ϕ(a) does not
contain any D-palindrome and it starts and ends with the letter a. Hence concatenating
the last letter of ϕ(b) with the first letter of ϕ(c) gives again the factor bc, and therefore
all the factors of u of length two are also factors of some ϕ(a). This implies that there is
no D-palindrome of length two in L(u).

We want to generalise the method used in this example to any morphism from the
class H. In order to describe how a factor of length two is created, we use the 2-factor
graph defined below.

Definition 5.35. Let ϕ : A∗ → A∗ be a non-erasing morphism. Then the 2-factor graph
Φ of ϕ is a directed graph Φ = (V,E), where the set of vertices is V = A2, i.e., the set of
all words of length two over A, and the set of edges is E = {(ab, lstϕ(a) fstϕ(b)) | a, b ∈ A}.

The 2-factor graph is defined for a general alphabet A. The following example gives
a 2-factor graph for the alphabet A = {A, B, C}.

Example 5.36. Let A = {A, B, C} and let ϕ : A∗ → A∗ be a morphism defined by

ϕ(A) = AAB

ϕ(B) = CB

ϕ(C) = ACC.

Clearly it is a non-erasing morphism. In the 2-factor graph of ϕ, there is exactly one edge
starting in each vertex. If we take for example the vertex AB, the edge starting here ends
in the vertex lstϕ(A) fstϕ(B), which is the vertex BC. This corresponds to the fact that the
image of AB under ϕ contains apart from factors of length two of images of individual
letter also the factor BC, as ϕ(AB) = AABCB. In the same way, we find all the edges of
the 2-factor graph Φ of ϕ, which is shown in Figure 5.1.

AA

AB

AC

BA

BB

BC

CA

CB

CC

Figure 5.1: The 2-factor graph Φ of the morphism ϕ from Example 5.36.

Remark 5.37. If we have a primitive morphism ϕ generating a fixed point u, we can
use the 2-factor graph Φ of ϕ to find the set L2(u). It follows from the way how u is
generated and from the definition of Φ that a word w ∈ A2 belongs to L2(u) if and only
if there is u ∈ A2 such that u is a factor of ϕ(a) for some a ∈ A and there is a directed
path in Φ starting in the vertex u and ending in the vertex w. This path can have length
zero, i.e., u = w. If the length of such path is some n ∈ N0, it means that w is a factor
of ϕn+1(a).

44

CHAPTER 5. GENERAL PALINDROMICITY

Therefore, for a primitive morphism ϕ with infinite fixed point u, the method from
Remark 5.37 gives the set L2(u). This motivates the following definition.

Definition 5.38. Let A be an arbitrary alphabet, let H : A∗ → A∗ be an involutive
antimorphism, let ϕ : A∗ → A∗ be a primitive morphism and Φ = (V,E) be its 2-factor
graph. Let VA be the set of vertices v of Φ satisfying that v is a factor of ϕ(a) for some
a ∈ A. Also let VH be the set of vertices v of Φ satisfying that v is a H-palindrome. Then
we say that the 2-factor graph Φ of ϕ allows H-palindromes if there is a directed path
starting in a vertex from VA and ending in a vertex from VH .

For an alphabet with n letters, the 2-factor graph of any morphism over this alphabet
has n2 vertices and n2 edges. Even with a naive algorithm, it would take O(n2) steps to
decide whether a given 2-factor graph allows H-palindromes or not.

Remark 5.37 implies that if a primitive morphism ϕ with infinite fixed point u has
a 2-factor graph that allows H-palindromes, then the set L2(u) contains a H-palindrome.
Therefore, we can formulate the following proposition.

Proposition 5.39. Let H : A∗ → A∗ be an involutive antimorphism such that H(a) 6= a
for all a ∈ A. Let ϕ be a morphism from the class H and let u ∈ AN be its fixed point.
Then u is H-palindromic if and only if the 2-factor graph Φ of ϕ allows H-palindromes.

Proof. By Remark 5.32, u is H-palindromic if and only if L(u) contains a non-empty
H-palindrome. We have shown that this is equivalent to L2(u) containing an
H-palindrome and it follows from Remark 5.37 and Definition 5.38 that this is equivalent
to Φ allowing H-palindromes.

We illustrate this result on the example of antimorphism D.

Example 5.40. Let A = {A, C, G, T} and let ϕ : A∗ → A∗ be a morphism defined by

ϕ(A) = ACC

ϕ(C) = CTT

ϕ(G) = AAG

ϕ(T) = GGT.

This morphism is primitive and it belongs to the class D with p = ACC, q = CTT and
s = ε. One of its fixed points is u = ACCCTTCTTCTTGGT. . . . ϕ is also a non-erasing
morphism and we can find its 2-factor graph Φ, which is shown in Figure 5.2. The vertices
from the set VA are coloured yellow and the vertices from the set VD are coloured red. There
is a directed path from the vertex AG ∈ VA to the vertex TA ∈ VD and therefore Φ allows
D-palindromes. This path has length two and as AG is a factor of ϕ(G), by Remark 5.37,
TA is a factor of ϕ3(G). We conclude that L2(u) contains a D-palindrome.

Example 5.41. Let A = {A, C, G, T} and let ϕ : A∗ → A∗ be a morphism defined by

ϕ(A) = AC

ϕ(C) = TG

ϕ(G) = CA

ϕ(T) = GT.

This morphism is primitive and it belongs to the class D with p = AC, q = TG and s = ε.
It has a fixed point u = ACTGGTCACAGT. . . . It is also non-erasing and we can find
its 2-factor graph Φ, which is shown in Figure 5.3. We mark the vertices in the same way
as in the previous example. We see that there is no directed path from a vertex in VA to
a vertex in VD and therefore Φ does not allow D-palindromes. We conclude that L2(u)
does not contain a D-palindrome.

45

CHAPTER 5. GENERAL PALINDROMICITY

AA

AC

AG

AT

CA

CC

CG

CT

GA

GC

GG

GT

TA

TC

TG

TT

Figure 5.2: The 2-factor graph Φ of the morphism ϕ from Example 5.40.
The set of vertices VA is marked with yellow colour and the set VD with
red colour.

AA

AC

AG

AT

CA

CC

CG

CT

GA

GC

GG

GT

TA

TC

TG

TT

Figure 5.3: The 2-factor graph Φ of the morphism ϕ from Example 5.41.
The set of vertices VA is marked with yellow colour and the set VD with
red colour.

5.2 Palindromicity with respect to a group G

In section 3.4, we introduced groups of morphisms and antimorphisms. Now, we generalize
the concept of palindromicity to such groups. As before, G denotes a finite group of
morphisms and antimorphisms on A∗ containing at least one antimorphism and G inv is
the set of all involutive antimorphisms in G.

Definition 5.42. Let u ∈ AN. We say that u is G-palindromic if L(u) contains infinitely
many H-palindromes for every H ∈ G inv.

Theorem 5.43. Let ϕ be a primitive morphism on A∗ and let u be its fixed point. If
there exists a permutation π of G inv, π : G inv → G inv, such that H ◦ ϕ = ϕ ◦ π(H) for
all H ∈ G inv, then the language of u is closed under each antimorphism H ∈ G inv, i.e.,
w ∈ L(u) =⇒ H(w) ∈ L(u) for all H ∈ G inv.

Proof. Consider some antimorphism H ∈ G inv and an arbitrary word w ∈ L(u). We want
to show that under the assumptions of the theorem we have H(w) ∈ L(u).

Since u is a fixed point of ϕ, there exist a ∈ A and k ∈ N such that w is a factor of
ϕk(a). Then H(w) is a factor of H(ϕk(a)). Using the relation H ◦ ϕ = ϕ ◦ π(H) for all

46

CHAPTER 5. GENERAL PALINDROMICITY

H ∈ G inv, we get

H(ϕk(a)) = H ◦ϕk(a) = ϕ◦π(H)◦ϕk−1(a) = ϕ2 ◦π2(H)◦ϕk−2(a) = . . . = ϕk ◦πk(H)(a).

Clearly, πk(H)(a) ∈ A, and let us denote πk(H)(a) = b. Since ϕ is primitive, we have
b ∈ L(u), and hence ϕk(b) ∈ L(u). As H(w) is a factor of ϕk(b), we obtain H(w) ∈ L(u).

Remark 5.44. In the statement of the theorem above, it would be sufficient to assume
that there exists a mapping τ : G inv → G inv such that for all H ∈ G inv, H ◦ϕ = ϕ ◦ τ(H).
However, we will show that for H,K ∈ G inv, H 6= K =⇒ τ(H) 6= τ(K), and hence τ
must be a permutation.

Assume that there exist H,K ∈ G inv, H 6= K and τ(H) = τ(K). Then we have
ϕ ◦ τ(H) = ϕ ◦ τ(K) and therefore H ◦ ϕ = K ◦ ϕ. Since ϕ is primitive, there exists a
word w containing all letters a ∈ A such that H(w) = K(w). But H and K restricted
to letters are permutations of A, and hence H(w) = K(w) implies H = K. This is a
contradiction.

In section 5.2.1, we study more closely some specific examples of groups G. We also
employ these groups in Chapter 6. All of them satisfy G = 〈G inv〉, and for this reason,
we state the following corollary of Theorem 5.43.

Corollary 5.45. Let G be a group such that G = 〈G inv〉, let ϕ be a primitive morphism
on A∗ and let u be its fixed point. If there exists a permutation π of G inv, π : G inv → G inv,
such that H ◦ ϕ = ϕ ◦ π(H) for all H ∈ G inv, then the language of u is closed under G.

Proof. We want to prove that for all σ ∈ G, w ∈ L(u) =⇒ σ(w) ∈ L(u). Since
G = 〈G inv〉, any σ ∈ G can be expressed as a composition of antimorphisms from G inv.
Therefore the result immediately follows from Theorem 5.43, as the language of u is closed
under each antimorphism H ∈ G inv.

Theorem 5.46. Let ϕ be a primitive morphism on A∗ and π be a permutation of G inv

such that for all H ∈ G inv, H ◦ϕ = ϕ◦π(H). Let u be a fixed point of ϕ. If L(u) contains
a non-empty H-palindrome for some H ∈ G inv, then u is H-palindromic.

Proof. Assume that L(u) contains a non-empty H-palindrome w for some H ∈ G inv, i.e.,
H(w) = w. We want to show that L(u) contains infinitely many H-palindromes. Since
π is a permutation of G inv, there is some k ∈ N such that πk(H) = H. Now consider the
word ϕk(w). Clearly, ϕk(w) ∈ L(u) and

∣∣ϕk(w)
∣∣ > |w|. Moreover,

H ◦ ϕk(w) = ϕ ◦ π(H) ◦ ϕk−1(w) = ϕ2 ◦ π2(H) ◦ ϕk−2(w) = . . .

= ϕk ◦ πk(H)(w) = ϕk ◦H(w) = ϕk(w).

Therefore ϕk(w) is also a H-palindrome. By repeating this process, we can find infinitely
many H-palindromes in L(u).

Corollary 5.47. Let ϕ be a primitive morphism on A∗ and π be a permutation of G inv

such that for all H ∈ G inv, H ◦ϕ = ϕ◦π(H). Let u be a fixed point of ϕ. If L(u) contains
a non-empty H-palindrome for every H ∈ G inv, then u is G-palindromic.

This gives us a method for generating G-palindromic words. However, we need to
pose some additional requirements on the morphism ϕ to ensure that its fixed point is
G-palindromic. We have already discussed this for H-palindromic words in section 5.1.4
and the conditions for the case of G-palindromic words follow from this discussion. We
state it in the following proposition.

47

CHAPTER 5. GENERAL PALINDROMICITY

Proposition 5.48. Let ϕ be a primitive morphism on A∗ and π be a permutation of G inv

such that for all H ∈ G inv, H ◦ ϕ = ϕ ◦ π(H). Let u be a fixed point of ϕ. Then u is
G-palindromic if and only if the 2-factor graph Φ of ϕ allows H-palindromes for every
H ∈ G inv such that H(a) 6= a for all a ∈ A.

Proof. By Corollary 5.47, we know that u is G-palindromic if and only if L(u) contains a
non-empty H-palindrome for every H ∈ G inv. Let us take some H ∈ G inv. If there exists
a ∈ A such that H(a) = a, then a ∈ L(u) is a non-empty H-palindrome. If H(a) 6= a for
all a ∈ L(u), then L(u) contains a non-empty H-palindrome if and only if L2(u) contains
an H-palindrome and this is equivalent to Φ allowing H-palindromes.

Proposition 5.49. Let ϕ be a primitive morphism on A∗ and π be a permutation of G inv

such that for all H ∈ G inv, H ◦ ϕ = ϕ ◦ π(H). Then there exists some k ∈ N such that
the morphism ϕk satisfies that H ◦ ϕk = ϕk ◦H for all H ∈ G inv.

Proof. Since π is a permutation of G inv, there exists some k ∈ N such that πk is the
identity permutation. Then for every H ∈ G inv we have

H ◦ ϕk = ϕ ◦ π(H) ◦ ϕk−1 = . . . = ϕk ◦ πk(H) = ϕk ◦H.

Corollary 5.50. Let ϕ be a primitive morphism on A∗ and π be a permutation of G inv

such that for all H ∈ G inv, H ◦ ϕ = ϕ ◦ π(H). Then there exists a primitive morphism ψ
satisfying H ◦ ψ = ψ ◦H for all H ∈ G inv such that L(ϕ) = L(ψ).

Proof. This is a direct consequence of Proposition 5.49 and Definition 3.47.

As we are interested in morphisms generating G-palindromic words, this corollary tells
us that we do not need to consider morphisms satisfying the condition H ◦ ϕ = ϕ ◦ π(H)
for all H ∈ G inv for a general permutation π of G inv, but that we can restrict ourselves
only to the identity permutation, and hence to morphisms satisfying H ◦ ϕ = ϕ ◦H for
all H ∈ G inv. This leads us to the following definition of a class of morphisms G.

Definition 5.51. Let G be a group as above. We say that a morphism ϕ : A∗ → A∗
belongs to the class G if it is primitive and it satisfies H ◦ ϕ = ϕ ◦H for all H ∈ G inv.

We can reformulate Proposition 5.48 for morphisms from class G.

Proposition 5.52. Let ϕ be a morphism from the class G and let u be its fixed point.
Then u is G-palindromic if and only if the 2-factor graph Φ of ϕ allows H-palindromes
for every H ∈ G inv such that H(a) 6= a for all a ∈ A.

There is a connection between the class G and the individual classes H for H ∈ G inv,
stated in the following proposition.

Proposition 5.53. Let ϕ : A∗ → A∗ be a morphism. Then ϕ belongs to the class G if
and only if ϕ ∈ Hε for each H ∈ G inv, where Hε denotes the set of morphisms belonging
to the class H and being of the form (5.2) with s = ε.

Proof. This is a direct consequence of Corollary 5.28 and Definition 5.51.

Another, more general, way of generating G-palindromic words would be to consider
morphisms that belong to the class H for each H ∈ G inv. By Proposition 5.27,
this is equivalent to considering morphisms ϕ satisfying for each H ∈ G inv the
relation sHϕ(H(w)) = H(ϕ(w))sH for all w ∈ A∗ and some H-palindrome sH such that
|sH | ≤ |ϕ(a)| for all a ∈ A.

48

CHAPTER 5. GENERAL PALINDROMICITY

Even more generally, we could consider fixed points of morphisms that are conjugated
to a morphism from class H for each H ∈ G inv.

However, both these approaches are much more complicated and it is not clear whether
they would bring something new compared to the method with class G. In the following
section, we consider some specific examples of groups G and we show that under some
condition, in the case of the group G = 〈{R,D}〉, these more general approaches do not
produce different G-palindromic words than morphisms from class G (Theorem 5.55).

5.2.1 Groups generated by two antimorphisms

In what follows, we study some concrete examples of groups generated by two involutive
antimorphisms. Given a group G, we want to determine whether there exist some
morphisms belonging to the class G and of what form these morphisms are. By
Proposition 5.52, such morphisms can generate G-palindromic words.

Firstly, we consider the group G = 〈{R,D}〉. Except for morphisms from class G, in
this case we also examine morphisms satisfying the condition H ◦ ϕ = ϕ ◦ π(H) for all
H ∈ G inv for a general permutation π of G inv to demonstrate the results from above.

1. G = 〈{R,D}〉

Let us take A = {A, C, G, T} and consider the group G = 〈{R,D}〉, i.e.,
G = {Id, R,D,RD}. In this case, G inv = {R,D}. There are two permutations of the set
G inv, the identity permutation and the permutation π given by π(R) = D, π(D) = R.

Firstly, let us consider a morphism ϕ belonging to the class G, i.e., satisfying

R ◦ ϕ = ϕ ◦R,
D ◦ ϕ = ϕ ◦D.

We can restrict these equalities to letters only, as two antimorphisms are equal if and only
if they coincide on letters. The first equality is equivalent to

R(ϕ(a)) = ϕ(a), for all a ∈ A,

i.e., ϕ(a) is an R-palindrome for all a ∈ A. The second equality is equivalent to

D(ϕ(A)) = ϕ(T),

D(ϕ(C)) = ϕ(G).

We omit the other two equalities, as they are equivalent to the two equalities above.
Overall, ϕ belongs to the class G if and only if it is primitive and is of the form

ϕ(A) = p, ϕ(C) = q, ϕ(G) = D(q), ϕ(T) = D(p),

where p, q are R-palindromes. This is sufficient, since necessarily D(p) and D(q) are
R-palindromes. Note that a morphism of this form indeed satisfies that it belongs to the
class P with p from the definition of P being empty and it also belongs to the class D
with s from the definition of D being empty, as stated in Proposition 5.53. An example
of such morphism ϕ is

ϕ(A) = ACGTGCA,

ϕ(C) = GAG,

ϕ(G) = CTC,

ϕ(T) = TGCACGT.

49

CHAPTER 5. GENERAL PALINDROMICITY

Let us denote its fixed point starting with A as u. Clearly, L(u) contains a non-empty
R-palindrome (e.g. GAG) and a non-empty D-palindrome (e.g. ACGT), hence by
Corollary 5.47 u is G-palindromic.

Secondly, let us take the permutation π and consider a morphism ϕ satisfying

R ◦ ϕ = ϕ ◦D,
D ◦ ϕ = ϕ ◦R.

(5.3)

The first equality is equivalent to

R(ϕ(A)) = ϕ(T),

R(ϕ(C)) = ϕ(G).

The second equality is equivalent to

D(ϕ(a)) = ϕ(a), for all a ∈ A,

i.e., ϕ(a) is a D-palindrome for all a ∈ A. Overall, ϕ satisfies equalities (5.3) if and only
if it is of the form

ϕ(A) = p, ϕ(C) = q, ϕ(G) = R(q), ϕ(T) = R(p), (5.4)

where p, q are D-palindromes. An example of such morphism ϕ that is also primitive is

ϕ(A) = AGCT,

ϕ(C) = TA,

ϕ(G) = AT,

ϕ(T) = TCGA.

(5.5)

Let us denote its fixed point starting with A as u. Clearly, L(u) contains a non-empty
R-palindrome (e.g. any letter) and a non-empty D-palindrome (e.g. AGCT), hence by
Corollary 5.47 u is G-palindromic.

Since π satisfies that π2 is the identity permutation, Proposition 5.49 implies that for
every primitive morphism ϕ of the form (5.4), ϕ2 belongs to the class G. For the morphism
ϕ given by (5.5), we have

ϕ2(A) = AGCTATTATCGA,

ϕ2(C) = TCGAAGCT,

ϕ2(G) = AGCTTCGA,

ϕ2(T) = TCGATAATAGCT,

which indeed belongs to the class G.
We can summarize the main result of this discussion by the following proposition.

Proposition 5.54. Let A = {A, C, G, T} and let G = 〈{R,D}〉. Then a primitive
morphism ϕ : A∗ → A∗ belongs to the class G if and only if it is of the form

ϕ(A) = p, ϕ(C) = q, ϕ(G) = D(q), ϕ(T) = D(p),

where p, q are R-palindromes.

As mentioned above, there are more general approaches for generating G-palindromic
words. The following theorem suggests that in the case of G = 〈{R,D}〉, it is sufficient to
consider only morphisms from class G. The proof of this theorem is quite technical and
it requires one result about word equations with palindromes derived in Chapter 4.

50

CHAPTER 5. GENERAL PALINDROMICITY

Theorem 5.55. Let A = {A, C, G, T} and let ϕ : A∗ → A∗ be a morphism conjugated
to a morphism from class D and also conjugated to a morphism from class P such that
ϕ(A) 6= ϕ(T) or ϕ(C) 6= ϕ(G). Then ϕ is conjugated to a morphism ψ which is of the
form

ψ(A) = p, ψ(C) = q, ψ(G) = D(q), ψ(T) = D(p),

where p, q are non-empty R-palindromes, i.e., ψ belongs to the class G for G = 〈{R,D}〉.

Proof. Let ϕ̃ be a morphism from class D that is conjugated to ϕ. By Proposition 5.18,
ϕ̃ is conjugated to some morphism θ satisfying

θ(A) = p̂, θ(C) = q̂, θ(G) = D(q̂), θ(T) = D(p̂),

where p̂, q̂ are non-empty.
By Proposition 3.26, ϕ ∼ ϕ̃ and ϕ̃ ∼ θ implies that ϕ ∼ θ.
Since ϕ is conjugated to a morphism in class P , then also θ is conjugated to this

morphism in class P . Proposition 5.7 implies that such a morphism from class P is
conjugated to a morphism σ of the form

σ(A) = pAγ, σ(C) = pCγ, σ(G) = pGγ, σ(T) = pTγ,

where pA, pC, pG, pT are R-palindromes and |γ| ≤ 1.
Therefore, θ ∼ σ. This means that there exists w ∈ A∗ such that θ(a)w = wσ(a) for

all a ∈ A or wθ(a) = σ(a)w for all a ∈ A. It is sufficient to consider only the first option,
since in the other case when wθ(a) = σ(a)w for all a ∈ A we can take the morphism σ̃
given by σ̃(a) = γpa for all a ∈ A, which satisfies γσ(a) = σ̃(a)γ for all a ∈ A. Then we
have ŵθ(a) = σ̃(a)ŵ for all a ∈ A, where ŵ = γw, and these equalities are symmetric to
the equalities θ(a)w = wσ(a) for all a ∈ A and can be solved analogously.

Hence, using the form of θ and σ, we get the equalities

p̂w = wpAγ

q̂w = wpCγ

D(q̂)w = wpGγ

D(p̂)w = wpTγ.

(5.6)

Now we distinguish two possibilities, either |w| ≤ |γ| or |w| > |γ|.

A. |w| ≤ |γ|
Since |γ| ≤ 1, we have either w = γ or w = ε.
If w = γ, then equalities (5.6) imply

p̂ = γpA

q̂ = γpC

D(q̂) = γpG

D(p̂) = γpT.

(5.7)

If w = ε, then equalities (5.6) become

p̂ = pAγ

q̂ = pCγ

D(q̂) = pGγ

D(p̂) = pTγ.

(5.8)

51

CHAPTER 5. GENERAL PALINDROMICITY

Let us consider only equalities (5.8), as equalities (5.7) can be solved analogously. Our
goal is to show that γ = ε, since then p̂ and q̂ are R-palindromes and if we take ψ to
be the morphism θ, then it has the required form. Hence, to reach a contradiction, we
assume that γ 6= ε, i.e., |γ| = 1.

From equalities (5.8), we obtain the following relations

D(p̂) = pTγ = D(γ)D(pA) (5.9)

D(q̂) = pGγ = D(γ)D(pC). (5.10)

Here, all the words γ, D(γ), pT, D(pA), pG, D(pC) are non-empty R-palindromes, as the
image of an R-palindrome under the antimorphism D is again an R-palindrome. Hence,
we can use Proposition 4.3. Applying this proposition to equality (5.9) implies that there
exist R-palindromes α, β ∈ A∗ and i, j, k, l ∈ N0 such that

pT = (αβ)iα, γ = β(αβ)j, D(γ) = (αβ)kα, D(pA) = β(αβ)l. (5.11)

Since |γ| = 1 and γ 6= D(γ), it follows from equalities (5.11) that γ = β and D(γ) = α.
Hence we get

pT = (D(γ)γ)iD(γ)

D(pA) = γ(D(γ)γ)l.

Since |pT| = |pA|, we have i = l and

pT = (D(γ)γ)iD(γ)

pA = (D(γ)γ)iD(γ),

hence we obtained pT = pA. This implies that p̂ = D(p̂), i.e., θ(A) = θ(T).
Analogously, applying Proposition 4.3 to equality (5.10) would result in the observation

pG = pC. Hence, q̂ = D(q̂), i.e., θ(C) = θ(G).
These results are in contradiction with the assumption that ϕ(A) 6= ϕ(T) or ϕ(C) 6=

ϕ(G), as this implies that θ, which is conjugated to ϕ, also satisfies θ(A) 6= θ(T) or
θ(C) 6= θ(G).

So we conclude that γ = ε, which is what we wanted to show.

B. |w| > |γ|
In this case, equalities (5.6) imply that w = xγ for some x 6= ε, and we can write

p̂x = xγpA (5.12)

q̂x = xγpC (5.13)

D(q̂)x = xγpG (5.14)

D(p̂)x = xγpT. (5.15)

Let us take equalities (5.12) and (5.15). We can apply Proposition 4.2 to both these
equalities. Then equality (5.12) implies that there exist a, b ∈ A∗, a 6= ε, and m ∈ N0

such that

p̂ = ab, γpA = ba, x = (ab)ma. (5.16)

Similarly, equality (5.15) implies that there exist c, d ∈ A∗, c 6= ε, and n ∈ N0 such that

D(p̂) = cd, γpT = dc, x = (cd)nc. (5.17)

52

CHAPTER 5. GENERAL PALINDROMICITY

Since |p̂| = |D(p̂)|, we have |ab| = |cd|. In addition, |a| ≤ |ab| and |c| ≤ |cd|. Therefore,
x = (ab)ma implies

m |ab| < |x| ≤ (m+ 1) |ab|

and x = (cd)nc implies
n |ab| < |x| ≤ (n+ 1) |ab| .

Combining this together, we get m < n + 1 and n < m + 1. Therefore, m = n. Hence,
we have

x = (ab)ma = (cd)mc. (5.18)

If m 6= 0, then clearly a = c and b = d. This implies p̂ = ab = cd = D(p̂), i.e.,
θ(A) = θ(T).

Now let us consider the case when m = 0. Then equality (5.18) becomes x = a = c
and from equalities (5.16) and (5.17) we have

p̂ = ab, D(p̂) = ad, γpA = ba, γpT = da. (5.19)

Since |p̂| = |D(p̂)|, we have |b| = |d|.
If b = d = ε, then p̂ = a = D(p̂), i.e., θ(A) = θ(T).
So let us take |b| > 0. If |a| ≥ |b|, then necessarily p̂ = D(p̂), i.e., θ(A) = θ(T). Hence,

consider |a| < |b|. Since |γ| ≤ 1, we have |b| > |γ|. Then it follows from equalities (5.19)
that there exist y, z ∈ A∗, |y| = |z| > 0, such that

b = γy, d = γz.

Using these relations, we obtain from equalities (5.19) the following:

p̂ = aγy, D(p̂) = aγz, pA = ya, pT = za. (5.20)

Since |a| < |b|, we have |a| ≤ |y| = |z|. In the case when |a| = |y|, we get y = R(a) = z,
hence p̂ = D(p̂), i.e., θ(A) = θ(T). Consider the other case when |a| < |y|. Since pA, pT
are R-palindromes, we have

ya = R(a)R(y), za = R(a)R(z).

Then |a| < |y| implies that there exist R-palindromes u, v such that |u| = |v| > 0 and

y = R(a)u, z = R(a)v. (5.21)

Hence, equalities (5.20) become

p̂ = aγR(a)u, D(p̂) = aγR(a)v, pA = R(a)ua, pT = R(a)va. (5.22)

From here, we get
D(p̂) = aγR(a)v = D(u)D(aγR(a)), (5.23)

where all the words aγR(a), v, D(u), D(aγR(a)) are non-empty R-palindromes.
Therefore, we can apply Proposition 4.3 to equality (5.23). Hence, there exist
R-palindromes δ, η and e, f, g, h ∈ N0 such that

aγR(a) = (δη)eδ, v = η(δη)f , D(u) = (δη)gδ, D(aγR(a)) = η(δη)h. (5.24)

If one of the two R-palindromes δ, η is empty, we get aγR(a) = D(aγR(a)), which means
that aγR(a) is a D-palindrome. But this is not possible, since aγR(a) is a non-empty

53

CHAPTER 5. GENERAL PALINDROMICITY

R-palindrome. Hence, we have 0 < |δ| ≤ |δη| and 0 < η ≤ |δη|. Since |aγR(a)| =
|D(aγR(a))|, equalities (5.24) imply

e |δη| < |aγR(a)| ≤ (e+ 1) |δη| ,
h |δη| < |aγR(a)| ≤ (h+ 1) |δη| .

Combining this together, we get e < h+ 1 and h < e+ 1. Therefore, e = h.
Similarly, since |v| = |D(u)|, we get f = g.
Now, we have

D(aγR(a)) = η(δη)e = D((δη)eδ) = D(δ)(D(η)D(δ))e.

This implies η = D(δ).
Overall, we obtain from equalities (5.24) that

v = D(δ)(δD(δ))f , D(u) = (δD(δ))fδ.

It follows that

u = D(δ)(δD(δ))f ,

hence, u = v. Substituting this into equalities (5.22), we get p̂ = aγR(a)u = D(p̂), i.e.,
θ(A) = θ(T).

To summarize, we showed that equalities (5.12) and (5.15) imply θ(A) = θ(T). If
we consider equalities (5.13) and (5.14) and proceed analogously, we obtain θ(C) = θ(G).
These results are in contradiction with the assumption that ϕ(A) 6= ϕ(T) or ϕ(C) 6= ϕ(G),
therefore, the case B. is not possible.

2. G = 〈{Ψ0,Ψ1}〉

Let us take A = Z3 and consider the group G = {Id, µ, µ−1,Ψ0,Ψ1,Ψ2} from
Example 3.68. Here, G inv = {Ψ0,Ψ1,Ψ2}. It can be observed from the Cayley table given
in Example 3.68 that G = 〈{Ψ0,Ψ1}〉, so this group is also generated by two involutive
antimorphisms. Recall that the involutive antimorphisms Ψ0,Ψ1 and Ψ2 are of the form

Ψ0(0) = 0 Ψ1(0) = 1 Ψ2(0) = 2

Ψ0(1) = 2 Ψ1(1) = 0 Ψ2(1) = 1

Ψ0(2) = 1 Ψ1(2) = 2 Ψ2(2) = 0.

Now, let us consider a primitive morphism ϕ belonging to the class G, i.e., satisfying

Ψ0 ◦ ϕ = ϕ ◦Ψ0, (5.25)

Ψ1 ◦ ϕ = ϕ ◦Ψ1, (5.26)

Ψ2 ◦ ϕ = ϕ ◦Ψ2. (5.27)

As G = 〈{Ψ0,Ψ1}〉, Ψ2 can be expressed as some composition of Ψ0 and Ψ1, in particular,
we have Ψ2 = Ψ0◦Ψ1◦Ψ0. Therefore, the equalities (5.25) and (5.26) imply equality (5.27),
since

Ψ2 ◦ ϕ = Ψ0 ◦Ψ1 ◦Ψ0 ◦ ϕ = Ψ0 ◦Ψ1 ◦ ϕ ◦Ψ0 = . . . = ϕ ◦Ψ0 ◦Ψ1 ◦Ψ0 = ϕ ◦Ψ2.

So it is sufficient to consider only the first two equalities.

54

CHAPTER 5. GENERAL PALINDROMICITY

Equality (5.25) is equivalent to

Ψ0(ϕ(0)) = ϕ(Ψ0(0)) = ϕ(0), (5.28)

Ψ0(ϕ(1)) = ϕ(Ψ0(1)) = ϕ(2), (5.29)

Ψ0(ϕ(2)) = ϕ(Ψ0(2)) = ϕ(1). (5.30)

Equality (5.28) is equivalent to ϕ(0) being a Ψ0-palindrome, and since Ψ0 is an involution,
both (5.29) and (5.30) are equivalent to ϕ(2) = Ψ0(ϕ(1)).

Equality (5.26) is equivalent to

Ψ1(ϕ(0)) = ϕ(Ψ1(0)) = ϕ(1), (5.31)

Ψ1(ϕ(1)) = ϕ(Ψ1(1)) = ϕ(0), (5.32)

Ψ1(ϕ(2)) = ϕ(Ψ1(2)) = ϕ(2). (5.33)

Equality (5.33) is equivalent to ϕ(2) being a Ψ1-palindrome, and since Ψ1 is an involution,
both (5.31) and (5.32) are equivalent to ϕ(1) = Ψ1(ϕ(0)).

Combining this together, a primitive morphism ϕ belongs to the class G if and only if

ϕ(0) is a Ψ0-palindrome, (5.34)

ϕ(1) = Ψ1(ϕ(0)), (5.35)

ϕ(2) = Ψ0(ϕ(1)) and (5.36)

ϕ(2) is a Ψ1-palindrome. (5.37)

Using (5.34) and (5.35) as well as the relation Ψ2 = Ψ0 ◦Ψ1 ◦Ψ0, we can rewrite (5.36) as

ϕ(2) = Ψ0(ϕ(1)) = Ψ0 ◦Ψ1(ϕ(0)) = Ψ0 ◦Ψ1 ◦Ψ0(ϕ(0)) = Ψ2(ϕ(0)).

Now we can deduce that (5.34), (5.35) and (5.36) imply (5.37), since

Ψ1(ϕ(2)) = Ψ1 ◦Ψ2(ϕ(0)) = Ψ1 ◦Ψ2 ◦Ψ0(ϕ(0)) = Ψ2(ϕ(0)) = ϕ(2),

where we used Ψ1 ◦ Ψ2 ◦ Ψ0 = Ψ2, which can be seen form the Cayley table given in
Example 3.68.

Therefore, we conclude that a primitive morphism ϕ belongs to the class G if and only
if it is of the form

ϕ(0) = p, ϕ(1) = Ψ1(p), ϕ(2) = Ψ2(p),

where p is a Ψ0-palindrome. An example of such morphism is ϕ given by

ϕ(0) = 02010,

ϕ(1) = 10121,

ϕ(2) = 21202.

Any fixed point of this morphism is G-palindromic, since each of the antimorphisms Ψ0,
Ψ1 and Ψ2 satisfies that there exists a letter a ∈ A being fixed by it.

Based on this analysis, we can state the following proposition.

Proposition 5.56. Let A = Z3 and let G = {Id, µ, µ−1,Ψ0,Ψ1,Ψ2}. Then a primitive
morphism ϕ : A∗ → A∗ belongs to the class G if and only if it is of the form

ϕ(0) = p, ϕ(1) = Ψ1(p), ϕ(2) = Ψ2(p),

where p is a Ψ0-palindrome.

55

CHAPTER 5. GENERAL PALINDROMICITY

3. G = 〈{Ψ0, R}〉

Let us take A = Z3 and consider the group G = 〈{Ψ0, R}〉, i.e., G = {Id,Ψ0, R,Ψ0 ◦R}.
Here, G inv = {Ψ0, R}.

We consider a morphism ϕ satisfying the relations

Ψ0 ◦ ϕ = ϕ ◦Ψ0, (5.38)

R ◦ ϕ = ϕ ◦R. (5.39)

Equality (5.38) is the same as equality (5.25) from above. We have seen that it is
equivalent to ϕ(0) being a Ψ0-palindrome and ϕ(2) = Ψ0(ϕ(1)).

On the other hand, equality (5.39) is equivalent to

R(ϕ(a)) = ϕ(a), for all a ∈ A,

i.e., ϕ(a) is an R-palindrome for all a ∈ A.
Therefore, ϕ(0) has to be a Ψ0-palindrome and an R-palindrome at the same time.

This can be satisfied if and only if ϕ(0) contains only the letter 0. In the case of ϕ(1)
and ϕ(2), it is sufficient to take ϕ(1) = p, where p is an R-palindrome, and ϕ(2) = Ψ0(p).
Then ϕ(2) is also an R-palindrome, since

R(ϕ(2)) = R ◦Ψ0(p) = Ψ0 ◦R(p) = Ψ0(p) = ϕ(2),

and hence both equalities (5.38) and (5.39) are satisfied.
Overall, we obtain that ϕ has to be of the form

ϕ(0) = 0i, ϕ(1) = p, ϕ(2) = Ψ0(p),

where i ∈ N and p is an R-palindrome. However, in this case ϕ cannot be primitive.
Hence no primitive morphism satisfies the relations (5.38) and (5.39), so we conclude that
the class G is empty.

56

Chapter 6

Palindromic richness

This chapter is devoted to the concept of palindromic richness. Firstly, we summarize some
results about classical palindromic richness and secondly, we discuss its generalizations.
We focus on the generalization with respect to a group of morphisms and antimorphisms
G and describe an algorithm for deciding whether a given finite word is G-rich or not.
We also present results of our tests, which lead us to formulate some conjectures about
classes of morphisms generating G-rich words.

6.1 Classical palindromic richness

In this section, we describe the concept of palindromic richness in the classical sense,
where only classical palindromes, i.e., R-palindromes, are considered. Here, we also use
the word palindrome for an R-palindrome.

Definition 6.1. Let w ∈ A∗. By P(w), we denote the set of all palindromic factors of w.
This includes the empty word ε.

Example 6.2. Let A = {A, B, C} and w = ABBCBBC. Then

P(w) = {ε,A,B,C,BB,BCB,CBBC,BBCBB}.

Note that |w| = 7 and card(P(w)) = 8.

In [18], the following proposition was given.

Proposition 6.3. Let w ∈ A∗. Then w has at most |w|+ 1 distinct palindromic factors,
i.e., card(P(w)) ≤ |w|+ 1.

This upper bound on the number of palindromic factors in a word motivates the
definition of a rich word, stated in [20].

Definition 6.4. A word w ∈ A∗ is called rich if card(P(w)) = |w|+ 1. An infinite word
u ∈ AN is called rich if all its factors are rich.

We see that in Example 6.2, card(P(w)) = |w|+ 1, so the upper bound on the number
of palindromic factors is attained and w is rich.

Palindromic richness can be reformulated in terms of the notion of defect of a word,
introduced in [14].

Definition 6.5. The defect of a finite word w ∈ A∗, denoted by d(w), is defined as

d(w) = |w|+ 1− card(P(w)).

The defect of an infinite word u ∈ AN, denoted by d(u), is defined as

d(u) = sup{d(w) | w ∈ L(u)}.

57

CHAPTER 6. PALINDROMIC RICHNESS

Clearly, a finite or an infinite word is rich if and only if its defect is zero. If an infinite
word has finite defect, it is called almost rich [20].

There is another equivalent characterisation of rich words, which uses the definition
below [18, 20].

Definition 6.6. Let w ∈ A∗. A factor v of w is called unioccurrent in w if v has exactly
one occurrence in w.

Proposition 6.7. Let w ∈ A∗. Then w is rich if and only if all its prefixes have a
unioccurrent palindromic suffix (UPS).

Example 6.8. Let us take again the word w = ABBCBBC from Example 6.2. We will
show that w satisfies the condition from Proposition 6.7. The prefixes of w are ε, A, AB,
ABB, ABBC, ABBCB, ABBCBB, ABBCBBC and their UPS are ε, A, B, BB, C, BCB,
BBCBB, CBBC, respectively.

In fact, if a word w has a UPS, then this UPS is unique and it is the longest palindromic
suffix (LPS) of w [20]. This follows from the observation that if w has two different
palindromic suffixes, then the shorter one cannot be unioccurrent, since it is both proper
suffix and proper prefix of the longer palindrome.

Following [36], we summarize results characterizing rich infinite words with language
closed under reversal, which can be found in [20, 18, 15, 8]. As defined before, cu is
the factor complexity of u, pu is the palindromic complexity of u, Γn(u) is the graph of
symmetries, in this case for G = {Id, R}, bu(w) is the bilateral order of w ∈ L(u) and
Pextu(w) is the set of palindromic extensions of a palindrome w ∈ L(u).

Theorem 6.9. Let u ∈ AN be an infinite word with language closed under the mirror
image map R. Then the following statements are equivalent:

1. u is rich,

2. all complete return words to any palindromic factor of u are palindromes [20],

3. for any w ∈ L(u), every v ∈ L(u) that contains w only as its prefix and R(w) only
as its suffix is a palindrome [20],

4. for any w ∈ L(u), the longest palindromic suffix of w is unioccurrent in w [18, 20],

5. for all n ∈ N, cu(n+ 1)− cu(n) + 2 = pu(n) + pu(n+ 1) [15],

6. for all n ∈ N, the graph of symmetries Γn(u) satisfies that all its loops are
palindromes and by removing loops from Γn(u) a tree is obtained [15],

7. for any bispecial factor w of u, bu(w) = card(Pextu(w)) − 1 if w is a palindrome
and bu(w) = 0 otherwise [8].

We will illustrate these properties of rich words on the Fibonacci word f . The
Fibonacci word is a fixed point of the Fibonacci morphism ϕf : {0, 1}∗ → {0, 1}∗ defined
by

ϕf (0) = 01, ϕf (1) = 0,

which belongs to the class P , hence, by Proposition 5.31, the language of f is closed
under R. Moreover, f is known to be rich [18].

58

CHAPTER 6. PALINDROMIC RICHNESS

Example 6.10. Consider the Fibonacci word

f = 01001010010010100101001001010010 . . .

We know that this word is rich, hence also all the other statements in Theorem 6.9 must
hold. We illustrate each property on an example.

2. Let us take the palindromic factor 101 of f . Below, we underline the first four
occurrences of 101 in f :

f = 01001010010010100101001001010010 . . .

From these occurrences, we can identify its complete return words 10100100101 and
10100101 and we see that both are indeed palindromes.

3. Consider w = 1010 ∈ L(f). Then R(w) = 0101 and for example v = 10100100101 ∈
L(f) contains w only as its prefix and R(w) only as its suffix. As expected, v is a
palindrome.

4. If we take for example w = 01001010, then the longest palindromic suffix is 01010,
which is truly unioccurrent in w.

5. Here, we choose n = 3 and we want to verify the relation cf (4)− cf (3) + 2 =
pf (3) + pf (4). It can be determined that L3(f) = {010, 100, 001, 101} and
L4(f) = {0100, 1001, 0010, 1010, 0101}. Then cf (3) = card(L3(f)) = 4, cf (4) =
card(L4(f)) = 5, and as the number of palindromes in L3(f) and L4(f) is 2 and 1,
respectively, we have pf (3) = 2 and pf (4) = 1. Overall,

cf (4)− cf (3) + 2 = 5− 4 + 2 = 3 = 2 + 1 = pf (3) + pf (4).

6. For n = 4, the graph of symmetries Γ4(f) was constructed in Example 3.74 and it
is shown again in Figure 6.1. Clearly, all its loops are palindromes and if they are
removed, we get a tree.

[0100]

[00100]

[010010][0010100]

Figure 6.1: The graph of symmetries Γ4(f) for the Fibonacci word.

7. An example of a bispecial factor of f is w = 010. It is a palindrome, so it should
hold that bf (w) = card(Pextf (w))− 1. By definition,

bf (w) = card(Bextf (w))− card(Lextf (w))− card(Rextf (w)) + 1

= card({00101, 00100, 10100})− card({0, 1})− card({0, 1}) + 1

= 3− 2− 2 + 1 = 0.

Pextf (w) is the set of all palindromic extensions of w, and in this case 0 is the only
palindromic extension of w, as 00100 is the only palindrome in Bextf (w). Hence
card(Pextf (w))− 1 = 0 and the relation is satisfied.

59

CHAPTER 6. PALINDROMIC RICHNESS

Example 6.11. Let us take the Thue-Morse word

t = 01101001100101101001011001101001 . . .

Unlike the Fibonacci word, the Thue-Morse word is not rich. We can see this by
considering the palindromic factor 11 of t. Below is underlined one of its complete return
words:

t = 01101001100101101001011001101001 . . .

This word is not a palindrome, and so property 2. from Theorem 6.9 is not satisfied.

6.2 Generalized palindromic richness

There are some generalizations of palindromic richness, which we will discuss in this
section. Firstly, instead of the antimorphism R, we can take any involutive antimorphism
H and define H-richness analogously. Second method, which is a lot more interesting, is
to consider a group of morphisms and antimorphisms G.

6.2.1 Richness with respect to an antimorphism

Here, by H we mean a general involutive antimorphism H : A∗ → A∗, and we discuss the
concept of H-richness.

Definition 6.12. Let w ∈ A∗. By PH(w), we denote the set of all H-palindromic factors
of w. This includes the empty word ε.

In [42], the following proposition was given.

Proposition 6.13. Let w ∈ A∗. Then

card(PH(w)) ≤ |w|+ 1− γH(w),

where γH(w) = card
({
{a,H(a)} | a ∈ A, a occurs in w, a 6= H(a)

})
.

Definition 6.14. A word w ∈ A∗ is called H-rich if card(PH(w)) = |w|+ 1− γH(w). An
infinite word u ∈ AN is called H-rich if all its factors are H-rich.

Note that for the antimorphism R, we have R(a) = a for all a ∈ A, and therefore
γR(w) = 0 for all w ∈ A∗. So Proposition 6.13 gives the same upper bound on the
number of R-palindromic factors in a word as Proposition 6.3.

Example 6.15. Consider the antimorphism E : {0, 1}∗ → {0, 1}∗ given by E(0) = 1 and
E(1) = 0, and let w = 10101. Then

card(PE(w)) = card({ε, 10, 01, 1010, 0101}) = 5.

Also we have

γE(w) = card
({
{0, 1}

})
= 1,

therefore

|w|+ 1− γE(w) = 5 + 1− 1 = 5

and we conclude that w is E-rich.

60

CHAPTER 6. PALINDROMIC RICHNESS

Example 6.16. Consider the antimorphism D and let w = TTAA. Then

γD(w) = card
({
{A,T}

})
= 1,

so
|w|+ 1− γD(w) = 4 + 1− 1 = 4.

However,
card(PD(w)) = card({ε,TA,TTAA}) = 3,

so w is not D-rich.
On the other hand, if we take v = ATCGAT, we have

γD(v) = card
({
{A,T}, {C,G}

})
= 2,

and
|v|+ 1− γD(v) = 6 + 1− 2 = 5.

Since
card(PD(v)) = card({ε,AT,CG,TCGA,ATCGAT}) = 5,

we conclude that v is D-rich.

Definition 6.17. The H-defect of a finite word w ∈ A∗, denoted by dH(w), is defined as

dH(w) = |w|+ 1− γH(w)− card(PH(w)).

The H-defect of an infinite word u ∈ AN, denoted by dH(u), is defined as

dH(u) = sup{dH(w) | w ∈ L(u)}.

Again, it immediately follows that a finite or an infinite word is H-rich if and only if
its H-defect is zero. If an infinite word has finite H-defect, it is called almost H-rich.

Example 6.18. Let us consider the Thue-Morse word t = 011010011001011010 . . ., which
is a fixed point of the Thue-Morse morphism given by

ϕt(0) = 01 ϕt(1) = 10.

Firstly, note that ϕt belongs to the class H for H = E and hence L(t) is closed under E
and E-palindromic. Moreover, ϕ2

t belongs to the class P, since

ϕ2
t (0) = 0110 ϕ2

t (1) = 1001,

and so L(t) is also closed under R and R-palindromic.
We have already seen in Example 6.11 that the Thue-Morse word is not rich. In fact,

it is not E-rich either. We can see this by considering the word w = 0110 ∈ L(t). We
have

dE(w) = |w|+ 1− γE(w)− card(PE(w)) = 4 + 1− card
({
{0, 1}

})
− card({ε, 01, 10})

= 4 + 1− 1− 3 = 1 6= 0,

so w is not E-rich.

We have shown that the Thue-Morse word is neither R-rich nor E-rich. In fact, a
stronger result, stated in [35, 13], holds.

61

CHAPTER 6. PALINDROMIC RICHNESS

Theorem 6.19. The Thue-Morse word is not almost H-rich for any involutive
antimorphism H.

Furthermore, the concept of E-richness does not prove to be interesting, since it was
shown in [21] that the only finite words that are E-rich are (01)k, (01)k 0, (10)k and
(10)k 1 for some k ∈ N0 and hence there are only two infinite E-rich words, 010101 . . .
and 101010 . . .

However, there is another generalization of palindromic richness that takes into account
more types of palindromes at the same time and we describe this in the next section. We
will see that in the case of the Thue-Morse word, if we consider both R-palindromes and
E-palindromes simultaneously, then in some sense the Thue-Morse word is rich.

6.2.2 Richness with respect to a group

We have already discussed the concept of G-palindromicity in section 5.2. Now, we focus
on G-richness, following [35, 36]. Again, G denotes here a finite group of morphisms
and antimorphisms on A∗ containing at least one antimorphism and G inv is the set of all
involutive antimorphisms in G.

There are more possible ways how to approach generalization of palindromic richness
to a group G, since there are several equivalent characterisation of palindromic richness,
see Theorem 6.9. In [35], G-richness of an infinite word u was defined using the graph of
symmetries of u. But later, it was shown by the same authors in [36] that there are again
equivalent characterizations of G-rich words analogous to the characterizations given in
Theorem 6.9 using analogous concepts, including the so-called G-defect of a word. Here,
we choose to define G-rich word by their property of having zero G-defect.

Definition 6.20. Let w ∈ A∗. By PG(w), we denote the set of all G-palindromic classes
of equivalence in w, i.e.,

PG(w) = {[v]G | v is a factor of w and a G-palindrome }.

Example 6.21. Let G = 〈{R,E}〉 and consider w = 011010. For this group, a word is
a G-palindrome if it is an R-palindrome or an E-palindrome. The set of R-palindromic
factors of w is

PR(w) = {ε, 0, 1, 11, 101, 0110}
and the set of E-palindromic factors of w is

PE(w) = {ε, 01, 10, 1010}.

Note that [0]G = [1]G and [01]G = [10]G. Then we have

PG(w) = {[ε]G, [0]G, [01]G, [11]G, [101]G, [0110]G, [1010]G},

i.e.,

PG(w) =
{
{ε}, {0, 1}, {01, 10}, {11, 00}, {101, 010}, {0110, 1001}, {1010, 0101}

}
.

In [36], it was shown that there is again an upper bound on the number of elements
in the set PG(w) as there was for the set PH(w), and hence an analogy to the notion of
the defect of a word can be defined in this case as well.

Proposition 6.22. Let w ∈ A∗. Then

card(PG(w)) ≤ |w|+ 1− γG(w),

where

γG(w) = card
({

[a]G | a ∈ A, a occurs in w, a 6= θ(a) for every antimorphism θ ∈ G
})
.

62

CHAPTER 6. PALINDROMIC RICHNESS

Definition 6.23. The G-defect of a finite word w ∈ A∗, denoted by dG(w), is defined as

dG(w) = |w|+ 1− γG(w)− card(PG(w)).

The G-defect of an infinite word u ∈ AN, denoted by dG(u), is defined as

dG(u) = sup{dG(w) | w ∈ L(u)}.

Definition 6.24. A word w ∈ A∗ is called G-rich if dG(w) = 0. An infinite word u ∈ AN

is called G-rich if dG(u) = 0 and it is called almost G-rich if dG(u) is finite.

Remark 6.25. Note that if we take the group G = {Id, H} for some involutive
antimorphism H, then the concept of G-richness coincides with the concept of H-richness.
We can see this by considering the G-defect of a finite word w. We have

dG(w) = |w|+ 1− γG(w)− card(PG(w)),

where

γG(w) = card
({

[a]G | a ∈ A, a occurs in w, a 6= θ(a) for every antimorphism θ ∈ G
})
.

Since G = {Id, H} and H is the only antimorphism in G, we have

γG(w) = card
({
{a,H(a)} | a ∈ A, a occurs in w, a 6= H(a)}

)
= γH(w).

Also a word v is a G-palindrome if and only if it is an H-palindrome, hence PG(w) =
PH(w).

Overall

dG(w) = |w|+ 1− γG(w)− card(PG(w)) = |w|+ 1− γH(w)− card(PH(w)) = dH(w)

and so a finite or an infinite word is G-rich if and only if it is H-rich.

Example 6.26. Let G = 〈{R,E}〉 and consider w = 011010. The set PG(w) was given
in Example 6.21 and we observe that card(PG(w)) = 7. Since a = R(a) for all letters a,
we have γG(w) = 0. Hence

dG(w) = |w|+ 1− γG(w)− card(PG(w)) = 6 + 1− 0− 7 = 0,

and we can conclude that w is G-rich.

The word w from Example 6.26 is a prefix of the Thue-Morse word t. As discussed
above, despite its language being closed under R and R-palindromic, the Thue-Morse word
is not rich, and in spite of its language being closed under E and E-palindromic, it is not
E-rich either. However, if we consider the group generated by both antimorphisms that
the Thue-Morse word is closed under, i.e., G = 〈{R,E}〉, we find that the Thue-Morse
word is in fact G-rich, as was shown in [35]. We state it in the following theorem.

Theorem 6.27. The Thue-Morse word is G-rich for G = 〈{R,E}〉.

Except for the Thue-Morse word, there are other known examples of G-rich words. It
was shown in [43] that the so-called generalized Thue-Morse words are G-rich, and for
each such word the corresponding group G was explicitly given. We describe these words
below.

63

CHAPTER 6. PALINDROMIC RICHNESS

Definition 6.28. Let b,m ∈ N, b ≥ 2 and m ≥ 1. Let sb(n) denote the sum of digits of an
integer n in the base b representation and let A = Zm. Then the infinite word tb,m ∈ AN

defined by
tb,m = (sb(n) mod m)n∈N0

is called a generalized Thue-Morse word.

The generalized Thue-Morse words include the classical Thue-Morse word, which is
equal to the word t2,2. As stated in [3], tb,m is a fixed point of a primitive morphism given
by the following lemma.

Lemma 6.29. Let b,m ∈ N, b ≥ 2 and m ≥ 1. Let A = Zm. Then the word tb,m is a
fixed point of the morphism ϕb,m : A∗ → A∗ defined by

ϕb,m(k) = k (k + 1) (k + 2) . . . (k + b− 1) for k ∈ A,

where the letters are expressed as sums modulo m.

Finally, we state the theorem about G-richness of tb,m from [43].

Theorem 6.30. Let b,m ∈ N, b ≥ 2 and m ≥ 1. Let A = Zm and let G be the group

G = {Ψx | x ∈ Zm} ∪ {Πx | x ∈ Zm}

from Example 3.68, where Ψx, x ∈ Zm, are antimorphisms defined by Ψx(k) = x − k
mod m for all k ∈ Zm, and Πx, x ∈ Zm, are morphisms defined by Πx(k) = x+k mod m
for all k ∈ Zm. Then the word tb,m is G-rich.

Example 6.31. Consider the case m = 3. Then the group G from Theorem 6.30 is equal
to G = {Id, µ, µ−1,Ψ0,Ψ1,Ψ2}, using the notation from Example 3.68. By Theorem 6.30,
all words tb,3 for b ≥ 2 are G-rich.

First, let us take b = 2. The sequence of non-negative integers in the base 2
representation is

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, . . .

and the corresponding sequence of sums of digits modulo 3 is

0, 1, 1, 2, 1, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 1 . . .

Hence t2,3 = 0112122012202001 . . . By Lemma 6.29, it is a fixed point of the morphism
given by

ϕ2,3(0) = 01,

ϕ2,3(1) = 12,

ϕ2,3(2) = 20.

Note that ϕ3
2,3 is given by

ϕ3
2,3(0) = 01121220,

ϕ3
2,3(1) = 12202001,

ϕ3
2,3(2) = 20010112

and we observe that ϕ3
2,3(0) is a Ψ0-palindrome, let us denote it by p, ϕ3

2,3(1) = Ψ1(p) and
ϕ3
2,3(2) = Ψ2(p). Therefore, ϕ3

2,3 belongs to the class G given in Proposition 5.56.
Second, let us take b = 3. The sequence of non-negative integers in the base 3

representation is

0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, . . .

64

CHAPTER 6. PALINDROMIC RICHNESS

and the corresponding sequence of sums of digits modulo 3 is

0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, . . .

Hence t3,3 = 0121202011202010 . . . By Lemma 6.29, it is a fixed point of the morphism
given by

ϕ3,3(0) = 012,

ϕ3,3(1) = 120,

ϕ3,3(2) = 201.

Note that ϕ3
3,3 is given by

ϕ3
3,3(0) = 012120201120201012201012120,

ϕ3
3,3(1) = 120201012201012120012120201,

ϕ3
3,3(2) = 201012120012120201120201012

and it again belongs to the class G given in Proposition 5.56.

We want to find some other examples of morphisms generating G-rich words for the
group G = 〈{Ψ0,Ψ1,Ψ2}〉 and also for the group G = 〈{R,D}〉. A necessary condition
for an infinite word to be G-rich is that it is G-palindromic. Hence, we consider some
examples of morphisms belonging to the class G and test whether their fixed points could
be G-rich or not using a computer program. This is described in section 6.2.3, but first
we need some more theory introduced in [36].

Definition 6.32. Let v, w ∈ A∗ and w = w1 . . . wn, where wk ∈ A for all k ∈ {1, . . . , n}.
An index i ∈ {1, . . . , n+ 1} is called an occurrence of v in w if v = wi . . . wj for some

j ∈ {i, . . . , n} or v = ε.
An index i ∈ {1, . . . , n+ 1} is called a G-occurrence of v in w if there exists u ∈ [v]G

that has occurrence i in w.
We say that v is G-unioccurrent in w if v has an occurrence in w and no other index

is a G-occurrence of v in w.

Definition 6.33. A suffix v of a word w ∈ A∗ is called G-longest palindromic suffix
(G-LPS) of w, if it is a G-palindrome and it satisfies |v| ≥ |u| for any G-palindromic
suffix u of w.

Note that it can happen that the G-LPS of some word w is the empty word ε.

Definition 6.34. Let w = w1 . . . wn ∈ A∗, where wk ∈ A for all k ∈ {1, . . . , n}. An
index i ∈ {1, . . . , n} is called a G-lacuna in w if both wi and G-LPS of w1 . . . wi are
not G-unioccurrent in w1 . . . wi.

The G-defect of a finite word w can be expressed using G-lacunas in w, as was shown
in [36].

Proposition 6.35. Let w ∈ A∗. Then

dG(w) = card({i ∈ N | i is a G-lacuna in w}).

Example 6.36. Let G = 〈{R,E}〉 and consider w = 01101111001. The words w1 . . . wi
for i ∈ {1, . . . , 11} are 0, 01, 011, 0110, 01101, 011011, 0110111, 01101111, 011011110,
0110111100 and 01101111001 with their G-LPS being 0, 01, 11, 0110, 101, 11011, 111,
1111, 011110, 1100 and 1001, respectively.

65

CHAPTER 6. PALINDROMIC RICHNESS

For each i ∈ {1, . . . , 10}, G-LPS of w1 . . . wi is G-unioccurrent in w1 . . . wi and hence
i is not a G-lacuna in w.

For i = 11, w11 = 1 is not G-unioccurrent in w1 . . . w11 = w and also G-LPS of w,
which is the word 1001, is not G-unioccurrent in w, since 0110 ∈ [1001]G has occurrence
j = 1 in w. Therefore, i = 11 is a G-lacuna in w.

By Proposition 6.35, we have

dG(w) = card({i ∈ N | i is a G-lacuna in w}) = card({11}) = 1 6= 0,

so w is not G-rich.
We can check that this is indeed correct by considering the set PG(w), which is equal

to {[ε]G, [0]G, [01]G, [11]G, [101]G, [111]G, [0110]G, [1111]G, [1100]G, [11011]G, [011110]G}.
Then, by definition,

dG(w) = |w|+ 1− γG(w)− card(PG(w)) = 11 + 1− 0− 11 = 1.

Example 6.37. Let G = {Id, D} and consider w = TTAA. By Remark 6.25, dG(w) =
dH(w), and from Example 6.16, we know that

dH(w) = |w|+ 1− γH(w)− card(PH(w)) = 4 + 1− 1− 3 = 1.

Let us now find the G-lacunas of w. The words w1 . . . wi for i ∈ {1, . . . , 4} are T, TT,
TTA and TTAA with their G-LPS being ε, ε, TA and TTAA, respectively.

For i = 1, w1 = T is G-unioccurrent in w1 = T and hence i = 1 is not a G-lacuna in
w.

For i = 2, w2 = T is not G-unioccurrent in w1w2 = TT and also G-LPS of TT, which
is the empty word ε, is not G-unioccurrent in TT. Therefore, i = 2 is a G-lacuna in w.

For i = 3 and i = 4, G-LPS of w1 . . . wi is G-unioccurrent in w1 . . . wi and hence i is
not a G-lacuna in w.

Hence,

dG(w) = card({i ∈ N | i is a G-lacuna in w}) = card({2}) = 1,

as expected.

6.2.3 Calculation of G-defect

In this section, we describe algorithms that we use to determine whether a given finite
word w = w1 . . . wn is G-rich or not for two specific groups G, namely G = 〈{R,D}〉
and G = 〈{Ψ0,Ψ1,Ψ2}〉. The algorithms calculate the G-defect of w using the relation
from Proposition 6.35. In the algorithms, we use the notation w[i : j] ..= wi . . . wj for
i, j ∈ {1, . . . , n}, i ≤ j. We also make use of the following lemmas.

Lemma 6.38. Let G = 〈{R,D}〉 and let p be a G-palindrome. Then

[p]G = {R(p), D(p)}.

Proof. Since G = {Id, R,D,R ◦D}, we have

[p]G = {p,R(p), D(p), R ◦D(p)}. (6.1)

It is easy to see that R ◦D = D ◦R. We know about p that it is either an R-palindrome
or a D-palindrome.

66

CHAPTER 6. PALINDROMIC RICHNESS

First, consider the case when p is an R-palindrome, so p = R(p). Then

R ◦D(p) = D ◦R(p) = D(p),

and hence it follows from equality (6.1) that [p]G = {R(p), D(p)}.
Second, assume that p is a D-palindrome, so p = D(p). Then

R ◦D(p) = R(p),

and hence equality (6.1) implies that [p]G = {R(p), D(p)}.

Lemma 6.39. Let G = 〈{Ψ0,Ψ1,Ψ2}〉 and let p be a G-palindrome. Then

[p]G = {Ψ0(p),Ψ1(p),Ψ2(p)}.

Proof. We can write G = {Id, µ, µ−1,Ψ0,Ψ1,Ψ2} using the notation from Example 3.68.
Hence,

[p]G = {p, µ(p), µ−1(p),Ψ0(p),Ψ1(p),Ψ2(p)}. (6.2)

In Example 3.68, the Cayley table of G was given, and we use the relations from this
table below. We have three possibilities here.

First, if p = Ψ0(p), then

µ(p) = µ ◦Ψ0(p) = Ψ1(p)

µ−1(p) = µ−1 ◦Ψ0(p) = Ψ2(p).

Second, if p = Ψ1(p), then

µ(p) = µ ◦Ψ1(p) = Ψ2(p)

µ−1(p) = µ−1 ◦Ψ1(p) = Ψ0(p).

Third, if p = Ψ2(p), then

µ(p) = µ ◦Ψ2(p) = Ψ0(p)

µ−1(p) = µ−1 ◦Ψ2(p) = Ψ1(p).

Overall, we get from equality (6.2) that [p]G = {Ψ0(p),Ψ1(p),Ψ2(p)}.

Lemma 6.40. Let v be a G-palindrome. Then every u ∈ [v]G is a G-palindrome.

Proof. Since v is a G-palindrome, there exists an antimorphism θ ∈ G such that v = θ(v).
Let us take some u ∈ [v]G. This means that u = σ(v) for some σ ∈ G. Then σ◦θ◦σ−1 ∈ G
is an antimorphism and we have

σ ◦ θ ◦ σ−1(u) = σ ◦ θ(v) = σ(v) = u,

hence u is a G-palindrome.

Lemma 6.41. Let n ∈ N and let w = w1 . . . wn ∈ A∗. Then we have

PG(w) = {[ε]G} ∪ {[v]G | v is a G-LPS of w1 . . . wi for some i ∈ {1, . . . , n}}.

67

CHAPTER 6. PALINDROMIC RICHNESS

Proof. Clearly, PG(w) contains the union of the two sets on the right-hand side of the
equality. Hence, it remains to show that PG(w) is also contained in this union. By
definition,

PG(w) = {[v]G | v is a factor of w and a G-palindrome }.
So let us consider some G-palindromic factor u of w. We want to show that [u]G is an
element of the union {[ε]G} ∪ {[v]G | v is a G-LPS of w1 . . . wi for some i ∈ {1, . . . , n}}.
If u = ε, then this is trivial. Hence, suppose that u 6= ε. Let m = |u| and let j be the
first G-occurrence of u in w. It follows that there exists s ∈ [u]G such that s is a suffix of
w1 . . . wj+m−1 and s is G-unioccurrent in w1 . . . wj+m−1. Moreover, by Lemma 6.40, s is a
G-palindrome. We will show that s is a G-LPS of w1 . . . wj+m−1.

Assume, for the sake of contradiction, that there is a G-palindromic suffix p of
w1 . . . wj+m−1 such that |p| > |s|. Let us denote the occurrence of p in w1 . . . wj+m−1
as k. Then k < j and it follows that s is a proper suffix of p, i.e., p = rs for some
r 6= ε. Since p is a G-palindrome, there exists an antimorphism θ ∈ G such that
rs = p = θ(p) = θ(s)θ(r). This implies that k is a G-occurrence of s in w1 . . . wj+m−1,
but since j > k is also a G-occurrence of s in w1 . . . wj+m−1, it is in contradiction with
the fact that s is G-unioccurrent in w1 . . . wj+m−1.

Hence, s is a G-LPS of w1 . . . wj+m−1 and so [u]G = [s]G is an element of the set
{[v]G | v is a G-LPS of w1 . . . wi for some i ∈ {1, . . . , n}}.

1. G = 〈{R,D}〉

Firstly, we take G = 〈{R,D}〉 and describe the algorithm calculating G-defect of a finite
word w ∈ {A, C, G, T}∗ with |w| = n, see Algorithm 1 below. At the beginning, the
variable called defect is set to zero (line 2). For each index j ∈ {1, . . . , n} the algorithm
decides whether j is a G-lacuna or not. This happens in the for loop starting at line 7. If j
is a G-lacuna, the defect is increased by 1 (lines 30 and 32). At the end of the calculation,
the value of the defect corresponds to the G-defect of w.

An index j is a G-lacuna if both wj and G-LPS of w1 . . . wj are not G-unioccurrent
in w1 . . . wj. To check the first condition, we create a variable called letterClasses which
is initialized to be the set {[a]G | a ∈ A} = {{A,T}, {C,G}} (line 3). This variable
corresponds to classes of letters that do not yet occur in the prefix of w that has been
processed up to that point. For each index j ∈ {1, . . . , n}, it is first checked whether
the equivalence class of wj, which is equal to {wj, D(wj)}, is in the set letterClasses or
not (line 8). If it belongs to this set, it means that wj is G-unioccurrent in w1 . . . wj and
hence j cannot be a G-lacuna. Then, {wj, D(wj)} is removed from letterClasses (line 9).
Note that this is always the case for j = 1. If it does not belong to the set letterClasses,
wj is not G-unioccurrent in w1 . . . wj and so j can be a G-lacuna, but then the second
condition has to be verified.

In order to check the second condition, we create a variable called GpalClasses, which
corresponds to the set of equivalence classes of G-palindromes of length greater than 1
that have already occurred in w (line 4). By Lemma 6.41, this set can be obtained by
adding only the equivalence classes of words v such that |v| > 1 and v is a G-LPS of
some prefix of w. For the given index j > 1, the algorithm finds the G-LPS of w1 . . . wj
(we describe this part of the algorithm below), and the G-LPS is stored in variable Glps
(line 28). If Glps is only one letter, than it follows from the first condition that it is not
G-unioccurrent in w1 . . . wj and hence j is a G-lacuna (lines 29 and 30). If |Glps | > 1,
the algorithm checks whether the equivalence class of Glps, which, by Lemma 6.38, is
equal to {R(Glps), D(Glps)}, belongs to GpalClasses (line 31). If it does, then Glps is not
G-unioccurrent in w1 . . . wj and therefore j is a G-lacuna (line 32). If it does not, j cannot
be a G-lacuna, since Glps is G-unioccurrent in w1 . . . wj. In this case, the equivalence class

68

CHAPTER 6. PALINDROMIC RICHNESS

of Glps is added in the set GpalClasses (line 34). After that, the algorithm moves to the
next index, unless j = n, in which case the value of defect is outputted.

Algorithm 1 RD-defect(w)

1: n← |w|
2: defect← 0
3: letterClasses← {{A,T}, {C,G}}
4: GpalClasses← {}
5: prevR-index,R-index← {}, {}
6: prevD-index,D-index← {}, {}
7: for j ∈ {1, . . . , n} do
8: if {wj, D(wj)} ∈ letterClasses then
9: remove {wj, D(wj)} from letterClasses

10: else
11: G-index← {}
12: prevR-index← R-index
13: add j − 1, j in prevR-index
14: R-index← {}
15: for i ∈ prevR-index do
16: if wi = wj then
17: add i in G-index
18: if i 6= 1 then
19: add i− 1 in R-index
20: prevD-index← D-index
21: D-index← {}
22: add j − 1 in prevD-index
23: for i ∈ prevD-index do
24: if wi = D(wj) then
25: add i in G-index
26: if i 6= 1 then
27: add i− 1 in D-index
28: Glps← w[min(G-index) : j]
29: if |Glps | = 1 then
30: defect← defect + 1
31: else if {R(Glps), D(Glps)} ∈ GpalClasses then
32: defect← defect + 1
33: else
34: add {R(Glps), D(Glps)} in GpalClasses
35: return defect

The G-LPS of w1 . . . wj for j > 1 is obtained by finding all G-palindromic suffixes of
w1 . . . wj while storing their occurrences in the set G-index and then taking the one that
is longest, i.e., with the lowest index of occurrence (lines 11-28). In the process of finding
all G-palindromic suffixes, we use the fact that for i ≤ j, wi . . . wj is an H-palindrome if
and only if wi = H(wj) and wi+1 . . . wj−1, which we consider to be empty if i > j − 2, is
an H-palindrome.

In order to find all R-palindromic suffixes of w1 . . . wj, we use the sets prevR-index
and R-index. The set prevR-index contains all the indices i for which wi . . . wj is an
R-palindrome if and only if wi = R(wj) = wj. This means that either i ∈ {j − 1, j} or
wi+1 . . . wj−1 is an R-palindrome. The indices i such that wi+1 . . . wj−1 is an R-palindrome

69

CHAPTER 6. PALINDROMIC RICHNESS

are taken from the previous step of the calculation when we considered the index j − 1,
and they correspond exactly to the indices in the set R-index at the end of that step.
Hence, prevR-index gets all the elements of the set R-index from the previous step of the
calculation (line 12) plus the elements j − 1 and j (line 13). The set R-index is then
emptied (line 14). To find the occurrences of all R-palindromic suffixes of w1 . . . wj, it is
then sufficient to take only the indices i from the set prevR-index that satisfy wi = wj
(lines 15-17). In addition, for each such index i 6= 1 we add the index i − 1 in the set
R-index (lines 18-19).

Finding all D-palindromic suffixes of w1 . . . wj is analogous (lines 20-27). The only
difference is that now we know that no D-palindrome of length 1 exists, so the suffix wj
cannot be a D-palindrome. Hence, we do not add the index j in the set prevD-index as
we did in the case of prevR-index (line 22).

Having this algorithm, we conducted some computer experiments to test whether some
morphisms from the class G could generate G-rich words.

Example 6.42. Let G = 〈{R,D}〉 and consider morphisms from the class G of the form

ϕ(A) = (AT)i (CG)j C (TA)i,

ϕ(C) = (AT)k A,

ϕ(G) = (TA)k T,

ϕ(T) = (TA)i (GC)j G (AT)i,

where i, j, k ∈ N. We tested whether the fixed points of these morphisms could be G-rich
or not by considering a prefix of such a fixed point starting with A and calculating
its G-defect using Algorithm 1. The results we obtained are that for all combination
of i, j, k ∈ {1, . . . , 5} the corresponding prefix of length 10000 has G-defect equal to 0.
Therefore, it seems plausible that fixed points of the morphisms of this form are G-rich.

These results lead us to formulating the following conjecture.

Conjecture 6.43. Let G = 〈{R,D}〉. Then fixed points of morphisms of the form

ϕ(A) = (AT)i (CG)j C (TA)i,

ϕ(C) = (AT)k A,

ϕ(G) = (TA)k T,

ϕ(T) = (TA)i (GC)j G (AT)i,

where i, j, k ∈ N, are G-rich.

2. G = 〈{Ψ0,Ψ1,Ψ2}〉

Let us now take the group G = 〈{Ψ0,Ψ1,Ψ2}〉 and again consider the algorithm
calculating G-defect of a finite word w ∈ {0, 1, 2}∗ with |w| = n, see Algorithm 2. It
is analogous to Algorithm 1 described above. However, in this case we can determine
whether an index j ∈ {1, . . . , n} is a G-lacuna without checking if wj is G-unioccurrent
in w1 . . . wj or not. This is because there is only one class of equivalence of letters, i.e.,
{[a]G | a ∈ A} = {{0, 1, 2}}, and hence wj is G-unioccurrent in w1 . . . wj only for j = 1.
So j = 1 cannot be a G-lacuna and for j ∈ {2, . . . , n} we only check whether the G-LPS
of w1 . . . wj is G-unioccurrent in w1 . . . wj or not. This is done in the same way as in
Algorithm 1. Here we use Lemma 6.39 as an analogy of Lemma 6.38.

70

CHAPTER 6. PALINDROMIC RICHNESS

Algorithm 2 Psi012-defect(w)

1: n← |w|
2: defect← 0
3: GpalClasses← {}
4: prevPsi0-index,Psi0-index← {}, {}
5: prevPsi1-index,Psi1-index← {}, {}
6: prevPsi2-index,Psi2-index← {}, {}
7: for j ∈ {2, . . . , n} do
8: G-index← {}
9: prevPsi0-index← Psi0-index

10: add j − 1, j in prevPsi0-index
11: Psi0-index← {}
12: for i ∈ prevPsi0-index do
13: if wi = Ψ0(wj) then
14: add i in G-index
15: if i 6= 1 then
16: add i− 1 in Psi0-index
17: prevPsi1-index← Psi1-index
18: add j − 1, j in prevPsi1-index
19: Psi1-index← {}
20: for i ∈ prevPsi1-index do
21: if wi = Ψ1(wj) then
22: add i in G-index
23: if i 6= 1 then
24: add i− 1 in Psi1-index
25: prevPsi2-index← Psi2-index
26: add j − 1, j in prevPsi2-index
27: Psi2-index← {}
28: for i ∈ prevPsi2-index do
29: if wi = Ψ2(wj) then
30: add i in G-index
31: if i 6= 1 then
32: add i− 1 in Psi2-index
33: Glps← w[min(G-index) : j]
34: if |Glps | = 1 then
35: defect← defect + 1
36: else if {Ψ0(Glps),Ψ1(Glps),Ψ2(Glps)} ∈ GpalClasses then
37: defect← defect + 1
38: else
39: add {Ψ0(Glps),Ψ1(Glps),Ψ2(Glps)} in GpalClasses
40: return defect

Example 6.44. Let G = 〈{Ψ0,Ψ1,Ψ2}〉 and consider morphisms from the class G of the
form

ϕ(0) = (0102)i 0,

ϕ(1) = (1210)i 1,

ϕ(2) = (2021)i 2,

where i ∈ N. Using Algorithm 2, we found out that for each i ∈ {1, . . . , 50} the prefix
of length 10000 of the fixed point of ϕ starting with the letter 0 has G-defect equal to 0.

71

CHAPTER 6. PALINDROMIC RICHNESS

Hence, the results of our experiments suggest that fixed points of these morphisms are
G-rich.

Example 6.45. Let G = 〈{Ψ0,Ψ1,Ψ2}〉 and consider morphisms ϕ and ψ from the class
G of the form

ϕ(0) = (0)i 12 (0)i,

ϕ(1) = (1)i 20 (1)i,

ϕ(2) = (2)i 01 (2)i,

and

ψ(0) = 0 (12)j 0,

ψ(1) = 1 (20)j 1,

ψ(2) = 2 (01)j 2,

where i, j ∈ N. For all i, j ∈ {1, . . . , 50}, we tested the fixed points of these morphisms
starting with the letter 0. We obtained that the G-defect of the prefix of length 10000 of
each of these fixed points has G-defect equal to 0. This leads us to the belief that fixed
points of these morphisms ϕ and ψ are G-rich.

However, if we take morphisms σ from the class G of the form

σ(0) = (0)i (12)j (0)i,

σ(1) = (1)i (20)j (1)i,

σ(2) = (2)i (01)j (2)i,

where i, j ∈ {2, 3, . . .}, we do not get the same results. Our calculations show that for all
i, j ∈ {2, . . . , 5} the fixed points of σ are not G-rich.

Again, based on our results we formulate the following conjectures.

Conjecture 6.46. Let G = 〈{Ψ0,Ψ1,Ψ2}〉. Then fixed points of morphisms of the form

ϕ(0) = (0102)i 0,

ϕ(1) = (1210)i 1,

ϕ(2) = (2021)i 2,

where i ∈ N, are G-rich.

Conjecture 6.47. Let G = 〈{Ψ0,Ψ1,Ψ2}〉. Then fixed points of morphisms ϕ and ψ of
the form

ϕ(0) = (0)i 12 (0)i,

ϕ(1) = (1)i 20 (1)i,

ϕ(2) = (2)i 01 (2)i,

and

ψ(0) = 0 (12)j 0,

ψ(1) = 1 (20)j 1,

ψ(2) = 2 (01)j 2,

where i, j ∈ N, are G-rich.

72

Chapter 7

Conclusion

To conclude, we have investigated some areas of combinatorics on words, working with
general alphabets as well as more specifically with the alphabet {A, C, G, T}, which is
motivated by the molecule of DNA, as was discussed in Chapter 2. In this chapter, we
also reviewed the field of DNA computing, where study of symmetries in words over the
alphabet {A, C, G, T} could potentially be used.

In Chapter 3, we summarized some essential concepts from combinatorics on words
while including our proofs for a number of the known results. We focused mainly on
two types of functions on words, namely morphisms and antimorphisms. In addition, we
discussed finite groups composed of these mappings.

In Chapter 4, we derived new results about equations on words with palindromes.
One of these results is used in the proof of Theorem 5.55, which specifies the form of
a morphism ϕ that is conjugated both to a morphism in class P and to a morphism in
class D and satisfies ϕ(A) 6= ϕ(T) or ϕ(C) 6= ϕ(G).

At the centre of our focus were fixed points of primitive morphisms. One goal of our
work was to find a way how to generate uniformly recurrent H-palindromic and more
generally G-palindromic words. This was discussed in Chapter 5. Firstly, we gave an
overview of known results about class P and of different versions of the HKS conjecture
relating this class to R-palindromic words. We also summarized results of [5] regarding
classes A1 and A2 for E-palindromic words. Then, we suggested a new class of morphisms
H as an analogy to the previously mentioned classes for H-palindromic words. We
showed, however, that not all morphisms from this class generate H-palindromic words,
so we developed a way how to distinguish morphisms that generate H-palindromic words
using directed graphs. We demonstrated our results on the example of antimorphism D.
Our hypothesis is that an analogy of the HKS conjecture holds for the class H and all
H-palindromic fixed points of primitive morphisms are related to morphisms from class
H.

In the case of G-palindromic words, we defined a class of morphisms G by a set
of relations such morphisms have to satisfy. We proved that under some conditions
morphisms from class G generate G-palindromic words. We discussed concrete examples
of groups G, which are generated by two involutive antimorphisms, and for those cases
derived the specific form of a morphism belonging to class G. We also showed that class
G is closely related to classes H for involutive antimorphisms H in G and this suggests
that there is a more general approach to generating G-palindromic words. However, this
approach seems overly complicated and it is not clear whether it would bring something
new. In fact, Theorem 5.55 suggests that in the case of the group G = 〈{R,D}〉 the
approach with class G is sufficient. However, investigating the more general approach for
an arbitrary group G still remains to be an open problem. This would provide further
details about characterising G-palindromic fixed points of primitive morphisms.

73

CHAPTER 7. CONCLUSION

Chapter 6 was devoted to the concept of palindromic richness. We started by
introducing palindromic richness in the classical sense and then reviewed different
generalizations of this notion. The most interesting generalization is with respect to
a group of morphisms and antimorphisms and it is called G-richness. Our objective was
to find some examples of G-rich infinite words. An infinite word can be G-rich only if it is
G-palindromic. Hence, we examined G-palindromic fixed points of morphisms from class
G, and using a computer program, we tested whether they could be G-rich or not. By
these experiments, we discovered several classes of morphisms that are likely generating
G-rich words. It is an incentive for further research to prove that fixed points of these
morphisms are indeed G-rich.

74

Bibliography

[1] Leonard M Adleman. Molecular Computation of Solutions to Combinatorial
Problems. Science, 266(5187):1021–1024, 1994.

[2] Jean-Paul Allouche, Michael Baake, Julien Cassaigne, and David Damanik.
Palindrome Complexity. Theoretical Computer Science, 292(1):9–31, 2003.

[3] Jean-Paul Allouche and Jeffrey Shallit. Sums of Digits, Overlaps, and Palindromes.
Discrete Mathematics and Theoretical Computer Science, 4(1):1–10, 2000.

[4] Petr Ambrož, Ondřej Kadlec, Zuzana Masáková, and Edita Pelantová. Palindromic
Length of Words and Morphisms in Class P . Theoretical Computer Science,
780:74–83, 2019.

[5] Petr Ambrož, Zuzana Masáková, and Edita Pelantová. Morphisms Generating
Antipalindromic Words. European Journal of Combinatorics, 89:103160, 2020.

[6] Martyn Amos. DNA Computation. PhD thesis, University of Warwick, 1997.

[7] Sanjeev Arora and Boaz Barak. Computational Complexity: a Modern Approach.
Cambridge University Press, 2009.

[8] L’ubomı́ra Balková, Edita Pelantová, and Štěpán Starosta. Sturmian Jungle
(or Garden?) on Multiliteral Alphabets. RAIRO-Theoretical Informatics and
Applications, 44(4):443–470, 2010.

[9] Donald Beaver. Molecular Computing. Pennsylvania State University, Department
of Computer Science and Engineering, College of Engineering, 1995.

[10] Yaakov Benenson, Rivka Adar, Tamar Paz-Elizur, Zvi Livneh, and Ehud Shapiro.
DNA Molecule Provides a Computing Machine with Both Data and Fuel. Proceedings
of the National Academy of Sciences, 100(5):2191–2196, 2003.

[11] Yaakov Benenson, Binyamin Gil, Uri Ben-Dor, Rivka Adar, and Ehud Shapiro. An
Autonomous Molecular Computer for Logical Control of Gene Expression. Nature,
429(6990):423–429, 2004.

[12] Valérie Berthé and Michel Rigo. Combinatorics, Automata and Number Theory.
Number 135. Cambridge University Press, 2010.

[13] Alexandre Blondin-Massé, Srecko Brlek, Ariane Garon, and Sébastien Labbé.
Combinatorial Properties of f-palindromes in the Thue-Morse Sequence. Pure
Mathematics and Applications, 19(2-3):39–52, 2008.

[14] Srecko Brlek, Sylvie Hamel, Maurice Nivat, and Christophe Reutenauer. On the
Palindromic Complexity of Infinite Words. International Journal of Foundations of
Computer Science, 15(02):293–306, 2004.

75

BIBLIOGRAPHY

[15] Michelangelo Bucci, Alessandro De Luca, Amy Glen, and Luca Q Zamboni. A
Connection Between Palindromic and Factor Complexity Using Return Words.
Advances in Applied Mathematics, 42(1):60–74, 2009.

[16] Julien Cassaigne. Complexité et facteurs spéciaux. Bulletin of the Belgian
Mathematical Society-Simon Stevin, 4(1):67–88, 1997.

[17] Andrew Currin, Konstantin Korovin, Maria Ababi, Katherine Roper, Douglas B Kell,
Philip J Day, and Ross D King. Computing Exponentially Faster: Implementing
a Non-Deterministic Universal Turing Machine Using DNA. Journal of the Royal
Society Interface, 14(128):20160990, 2017.

[18] Xavier Droubay, Jacques Justin, and Giuseppe Pirillo. Episturmian Words and
Some Constructions of de Luca and Rauzy. Theoretical Computer Science,
255(1-2):539–553, 2001.

[19] Richard P Feynman. There’s Plenty of Room at the Bottom. Engineering and
Science, 23(5):22–36, 1960.

[20] Amy Glen, Jacques Justin, Steve Widmer, and Luca Q Zamboni. Palindromic
Richness. European Journal of Combinatorics, 30(2):510–531, 2009.

[21] Chuan Guo, Jeffrey Shallit, and Arseny M Shur. On the Combinatorics of
Palindromes and Antipalindromes. arXiv preprint arXiv:1503.09112, 2015.

[22] Tero Harju, Jetro Vesti, and Luca Q Zamboni. On a Question of Hof, Knill and Simon
on Palindromic Substitutive Systems. Monatshefte für Mathematik, 179(3):379–388,
2016.

[23] Albertus Hof, Oliver Knill, and Barry Simon. Singular Continuous Spectrum for
Palindromic Schrödinger Operators. Communications in Mathematical Physics,
174(1):149–159, 1995.

[24] Salah Hussini, Lila Kari, and Stavros Konstantinidis. Coding Properties of DNA
Languages. Theoretical Computer Science, 290(3):1557–1579, 2003.

[25] Maya Kahan, Binyamin Gil, Rivka Adar, and Ehud Shapiro. Towards Molecular
Computers That Operate in a Biological Environment. Physica D: Nonlinear
Phenomena, 237(9):1165–1172, 2008.

[26] Lila Kari and Kalpana Mahalingam. Watson–Crick Palindromes in DNA Computing.
Natural Computing, 9(2):297–316, 2010.

[27] Sébastien Labbé. Propriétés combinatoires des f-palindromes. Master’s thesis,
Université du Québec à Montréal, 2008.

[28] Sébastien Labbé. A Counterexample to a Question of Hof, Knill and Simon. The
Electronic Journal of Combinatorics, 21(P3.11), 2014.

[29] Sébastien Labbé and Edita Pelantová. Palindromic Sequences Generated from
Marked Morphisms. European Journal of Combinatorics, 51:200–214, 2016.

[30] Richard J Lipton. DNA Solution of Hard Computational Problems. Science,
268(5210):542–545, 1995.

76

BIBLIOGRAPHY

[31] M. Lothaire. Combinatorics on Words, volume 17. Cambridge University Press,
1997.

[32] M. Lothaire. Algebraic Combinatorics on Words, volume 90. Cambridge University
Press, 2002.

[33] Alexandre Blondin Massé. Sur le défaut palindromique des mots infinis. PhD thesis,
Université du Québec à Montréal, 2008.

[34] Suyel Namasudra and Ganesh Chandra Deka. Advances of DNA Computing in
Cryptography. Chapman & Hall/CRC, 1st edition, 2018.

[35] Edita Pelantová and Štěpán Starosta. Languages Invariant Under More Symmetries:
Overlapping Factors Versus Palindromic Richness. Discrete Mathematics,
313(21):2432–2445, 2013.

[36] Edita Pelantová and Štěpán Starosta. Palindromic Richness for Languages Invariant
Under More Symmetries. Theoretical Computer Science, 518:42–63, 2014.

[37] Nadia Pisanti. DNA Computing: a Survey. Bull. EATCS, 64:188–216, 1998.

[38] Paul WK Rothemund. A DNA and Restriction Enzyme Implementation of Turing
Machines, volume 27 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. DIMACS/AMS, 1996.

[39] Kensaku Sakamoto, Hidetaka Gouzu, Ken Komiya, Daisuke Kiga, Shigeyuki
Yokoyama, Takashi Yokomori, and Masami Hagiya. Molecular Computation by DNA
Hairpin Formation. Science, 288(5469):1223–1226, 2000.

[40] Ehud Shapiro and Yaakov Benenson. Bringing DNA Computers to Life. Scientific
American, 294(5):44–51, 2006.

[41] Richard R Sinden. DNA Structure and Function. Gulf Professional Publishing, 1994.

[42] Štěpán Starosta. On Theta-Palindromic Richness. Theoretical Computer Science,
412(12-14):1111–1121, 2011.

[43] Štěpán Starosta. Generalized Thue-Morse Words and Palindromic Richness.
Kybernetika, 48(3):361–370, 2012.

[44] Somnath Tagore, Saurav Bhattacharya, M Islam, and Md Lutful Islam. DNA
Computation: Application and Perspectives. Journal of Proteomics and
Bioinformatics, 3(07), 2010.

[45] Bo Tan. Mirror Substitutions and Palindromic Sequences. Theoretical Computer
Science, 389(1-2):118–124, 2007.

77

	Introduction
	DNA computing
	Structure of DNA
	Hairpin structure in DNA

	Operations with DNA
	Introduction to DNA computing
	NP-complete problems
	Hamiltonian path problem
	SAT problem

	Elements of combinatorics on words
	Words
	Finite words
	Infinite words
	Factor complexity

	Morphisms
	Generating infinite words

	Antimorphisms
	Palindromes and palindromic words

	Groups of morphisms and antimorphisms

	Word equations with palindromes
	General palindromicity
	Palindromicity with respect to an antimorphism
	Mirror image map R
	Exchange map E
	DNA map D
	General involutive antimorphism H

	Palindromicity with respect to a group G
	Groups generated by two antimorphisms

	Palindromic richness
	Classical palindromic richness
	Generalized palindromic richness
	Richness with respect to an antimorphism
	Richness with respect to a group
	Calculation of G-defect

	Conclusion
	Bibliography

