
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Clustering Social Network Texts

Egor Sarana

Supervisor: Ing. Jan Drchal, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence and Computer Science
January 2024



ii



BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

499025 Personal ID number:  Sarana  Egor Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Open Informatics Study program: 

Artificial Intelligence and Computer Science Specialisation: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Clustering Social Network Texts  

Bachelor’s thesis title in Czech: 

Shlukování textů ze sociálních sítí  

Guidelines: 

The task is to experiment with various clustering methods and semantic text embeddings and their applicability to cluster 
texts from social networks such as Twitter (X) or Telegram: 
1) Research state-of-the-art text clustering systems and methods of text embedding extraction. 
2) Choose a set of diverse clustering and embedding methods most-likely appropriate for social network texts. 
3) Find public clustering datasets or create ones (with the help of the supervisor). 
4) Research and design evaluation methodology. 
5) Perform experiments measuring contribution of the embedding and clustering method choice to the quality of the overall 
clustering. 
6) Show and analyse results on Twitter and Telegram data supplied by the supervisor. 

Bibliography / sources: 

[1] Diana, Korladinova. Extracting Keywords from Textual Data Clusters. Bachelor thesis. České vysoké učení technické 
v Praze., 2023. 
[2] Ibrahim, R., S. Zeebaree, and K. Jacksi. "Survey on semantic similarity based on document clustering." Adv. sci. technol. 
eng. syst. j 4.5 (2019): 115-122. 
[3] Kharlamov, Alexander A., et al. "Social network sentiment analysis and message clustering." International Conference 
on Internet Science. Cham: Springer International Publishing, 2019. 
[4] Curiskis, Stephan A., et al. "An evaluation of document clustering and topic modelling in two online social networks: 
Twitter and Reddit." Information Processing & Management 57.2 (2020): 102034. 

Name and workplace of bachelor’s thesis supervisor: 

Ing. Jan Drchal, Ph.D.    Artificial Intelligence Center  FEE 

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   09.01.2024 Date of bachelor’s thesis assignment:   25.09.2023 

Assignment valid until:   22.09.2024 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Tomáš Svoboda, Ph.D. 

Head of department’s signature 
Ing. Jan Drchal, Ph.D. 

Supervisor’s signature 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



Acknowledgements
I would like to express my deepest thanks
to my supervisor Ing. Jan Drchal, Ph.D.,
he advised me whenever I ran into trouble.

I am also grateful to the CTU for all the
knowledge I acquired during my study.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, January 9, 2024

v



Abstract
This work aims to create a diverse dataset
for the evaluation of social network text
clustering and explores different combi-
nations of text embedding methods, di-
mensionality reduction techniques, and
clustering methods. We choose a wide
range of the most appropriate evaluation
metrics, build an evaluation pipeline, and
test the most interesting models.

Keywords: nlp, text embeddings,
dimensionality reduction, clustering,
social networks

Supervisor: Ing. Jan Drchal, Ph.D.

Abstrakt
Cílem této práce je vytvořit rozmanitou
datovou sadu pro hodnocení shlukování
textů ze sociálních sítí a vyzkoušet různé
kombinace metod vnoření textu, technik
redukce dimenzionality a metod shluko-
vání. Vybíráme širokou škálu nejvhod-
nějších metrik pro hodnocení, vytváříme
vhodné potrubí a testujeme nejzajímavější
modely.

Klíčová slova: nlp, vnoření textu,
redukce dimenzionality, shlukování,
sociální sítě

Překlad názvu: Shlukování textů ze
sociálních sítí

vi



Contents
1 Introduction 1
2 Text Embeddings 3
2.1 TF-IDF . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Word2Vec . . . . . . . . . . . . . . . . . . . . 4
2.3 DistilRoBERTa . . . . . . . . . . . . . . . . 4
2.4 MPNet . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Universal Sentence Encoder . . . . . 7
3 Dimensionality Reduction 9
3.1 Truncated SVD. . . . . . . . . . . . . . . . 9
3.2 UMAP . . . . . . . . . . . . . . . . . . . . . . 10
4 Clustering Methods 11
4.1 LDA . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 K-Means . . . . . . . . . . . . . . . . . . . . 12
4.3 CLARA . . . . . . . . . . . . . . . . . . . . . 12
4.4 HDBSCAN . . . . . . . . . . . . . . . . . . 13
5 Metrics 15
5.1 Intrinsic Metrics . . . . . . . . . . . . . . 15

5.1.1 Silhouette Score . . . . . . . . . . . 15
5.2 Extrinsic Metrics . . . . . . . . . . . . . 16

5.2.1 Adjusted Rand Index . . . . . . . 16
5.2.2 Adjusted Mutual Information 16
5.2.3 V-Measure, Homogeneity and

Completeness . . . . . . . . . . . . . . . . . 17
5.3 Classification Metrics . . . . . . . . . . 17

5.3.1 Label Matching . . . . . . . . . . . . 17
5.3.2 Accuracy . . . . . . . . . . . . . . . . . 18
5.3.3 F1 Score, Precision and Recall 18
5.3.4 Minimum Precision and

Minimum Recall . . . . . . . . . . . . . . . 19
5.4 Time . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . 19
6 Data 21
6.1 Source Datasets . . . . . . . . . . . . . . 21
6.2 Noise Removal . . . . . . . . . . . . . . . 22
6.3 Dataset Generation . . . . . . . . . . . 24
7 Evaluation 27
7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Results . . . . . . . . . . . . . . . . . . . . . . 27
7.3 Future work . . . . . . . . . . . . . . . . . . 28
Bibliography 33

vii



Figures
2.1 Transformer model architecture
(Vaswani et al. (2017)). . . . . . . . . . . . 5

2.2 A unified view of MLM and PLM,
where xi and pi represent token and
position embeddings (Song et al.
(2020)). . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Structure and attention mask of
MPNet (Song et al. (2020)). . . . . . . . 7

2.4 Sentence similarity scores using
embeddings from the universal
sentence encoder (Cer et al. (2018))). 7

3.1 Overview of UMAP (A → B) and
Parametric UMAP (A → C). . . . . . 10

4.1 Example of clusters produced by
K-Means and CLARA. Source:
Clustering Pokemon. . . . . . . . . . . . . 13

5.1 Contingency matrix based on
distilroberta+umap10+kmeans
pipeline clusterization. Columns
correspond to ground truth, rows to
the assigned cluster label. . . . . . . . . 18

6.1 Dataset pruning. . . . . . . . . . . . . . . 23
6.2 Topic distribution in the dataset. 24

7.1 Metric correlation heatmap. . . . . 31
7.2 Clusters of the best model
(distilroberta+umap5+hdbscan)
projected into 2 dimensions with
UMAP. . . . . . . . . . . . . . . . . . . . . . . . . 31

Tables
7.1 Pipeline ARI comparison. . . . . . . 29
7.2 Pipeline speed comparison. . . . . . 30

viii

https://rpubs.com/Buczman/ClusteringPokemon


Chapter 1
Introduction

Document clustering is a key task in machine learning. Clustering can be
used to extract topics from a group of documents and characterize the corpus
as a whole. Clustering is used in document group summarization, information
retrieval, noise document detection (filtering), content recommendation, news
aggregation, and many other applications.

Short text clustering (STC) is a separate topic. It is used within social
applications for sentiment analysis, spam detection, recommendations, and
so on. In the era of social media, short text data is very abundant and it
has its own specific features (Stieglitz et al. (2018)). It is the sparsity of
representation, the maximum concentration of information in short text which
is difficult to extract, and a large number of errors and misspellings per word.

In this work, we will create a dataset, select metrics, and evaluate which
models do the best job of dealing with the challenges of short text clustering.
The paper (Ahmed et al. (2023)) can serve as a very good starting point.
It describes and provides an overview of the main models from TF-IDF to
transformers, from LDA to DBSCAN, and in general how an end-to-end
pipeline should be constructed.

The work has associated code with repository1.. In generate_dataset.ipynb we are dealing with the problem of quali-
tative dataset generation and noise tweet detection.. clustering.ipynb contains the main pipeline from text tokenization
and pre-processing up to clusterization, basic evaluation, and saving of
results..Within analysis.ipynb you can find evaluation table analysis and basic
visualization.. evaluation.py contains evaluation metrics, a class for storing evaluation
table, embeddings, and clustering of every model..And finally data folder has all source datasets and the final one.

1https://github.com/anabolicobsession/tweet-clustering

1



2



Chapter 2
Text Embeddings

Computers are not good at working directly with symbols compared to
humans. To use all the computing capabilities, you need to be able to
represent words, sentences, and entire texts (depending on the task) in
numerical form. Depending on the method of mapping, there may be many
additional benefits of numerical representation. Word embeddings can often
extract semantic relationships. The word embedding space, despite its limited
dimension, is capable of representing a potentially unimaginable amount
of textual data. In this chapter, we will go through the basic methods of
representing text in computer memory.

2.1 TF-IDF

TF-IDF (short for term frequency-inverse document frequency) is a
measure that assigns importance to each word in a collection of documents
based on statistics. In the context of text embeddings, it has some similarities
to simple word counting, but it penalizes words that appear too often in the
corpus. It assigns less weight to them. Since a word that appears in most
documents does little to characterize one particular document.

TF-IDF, as the name implies, is calculated based on two terms:.TF: represents the frequency of a term t within a particular document d.

TF (t, d) = number of occurrences of t in d

number of terms in d. IDF: inverse document frequency, or how often the term t is present in
documents.

IDF (t) = log number of documents d that contain term t

number of documents

Using this technique it is possible not only to estimate how important a
term is in a document but also to represent an entire document as a vector.

We will use scikit-learn1 TF-IDF implementation that differs slightly from
the original, such as adding one to the inverse document frequency to "smooth

1Python module for machine learning.

3

https://scikit-learn.org/stable/


2. Text Embeddings ...................................
out" the weights. This is the same if each term was in at least one document
by default. This helps to avoid division by zero. There are also some
other modifications; all words with a maximum frequency greater than 0.5
are excluded from the dictionary because they do little to distinguish one
particular document from the rest. The specific implementation is contained
within clustering.ipynb jupyter notebook.

2.2 Word2Vec

Word2Vec is an influential word embedding technique introduced by a team
of researchers led by Tomas Mikolov at 2013 (Mikolov et al. (2013a) and
(Mikolov et al. (2013b)). Word2Vec aims to capture semantic relationships
between words. Basically, Word2Vec is a shallow, two-layer neural network
that is trying to learn word representations that maximize the prediction of
other context words on a large corpus of text.

We have short documents, so it is a good idea to focus on the skip-gram
architecture. In the skip-gram architecture, the model predicts the context
words (surrounding words) given the target word (center word). The input
is a single target word, and the output is a probability distribution over the
context words. The objective is:∏

i∈C

Pr(wj : j ∈ N + i|wj)

where C is a corpus (tokens) and N represents sliding window. In other
words, we are trying to maximize the probability of the whole corpus. It
is not computationally efficient to evaluate the objective through the whole
process, so the hierarchical softmax and/or negative sampling.

The sentence (tweets) embeddings can be obtained by simple average word
embeddings of the whole tweet. One can use TF-IDF weights for better
averaging, but the former is a more general choice, so we will use it.

Word2Vec has significantly influenced the field of NLP and has paved the
way for more advanced models, such as GloVe (Pennington et al. (2014)), Fast-
Text (Bojanowski et al. (2017)), and contextualized embeddings like ELMo
and BERT. It remains a foundational technique for capturing distributed
representations of words. We include it as the baseline model.

2.3 DistilRoBERTa

DistilRoBERTa (short for Distilled RoBERTa, Sanh et al. (2020)) is
a compressed and lighter version of the RoBERTa (Robustly optimized
BERT approach, Liu et al. (2019)) model. RoBERTa is itself a version of
BERT (Bidirectional Encoder Representations from Transformers), which
has been pre-trained on a huge corpus and has demonstrated state-of-the-art
performance on various tasks. So we need to start the explanation from the
beginning.

4



....................................2.3. DistilRoBERTa

Figure 2.1: Transformer model architecture (Vaswani et al. (2017)).

The objective of transformers is to produce language models that can create
numerical representations from text using pretraining, where each token could
only rely on context information from previous tokens, and then fine-tuned
for some downstream tasks like text classification, text summarization and so
on.

The architecture of the base BERT follows follows:. 12 transformer blocks.. 12 self-attention heads within each attention layer for base. Embeddings of hidden size of 768 for base.

Benefit of BERT over more traditional approaches is that it learns to
compute text representations in context. This means that the representations
computed for a word in a specific sentence would be different from the
representations for the same word in a different sentence. This context
also comprises stopwords, which can very much change the meaning of a
sentence. The same goes for punctuation: a question mark can certainly
change the overall meaning of a sentence. Therefore, removing stopwords
and punctuation would just imply removing context which BERT could have
used to get better results.

Now, RoBERTa is actually based on BERT, with a few changes:.Training the model longer, with bigger batches, over more data.. Removing the next sentence prediction objective.

5



2. Text Embeddings ...................................

Figure 2.2: A unified view of MLM and PLM, where xi and pi represent token
and position embeddings (Song et al. (2020)).

.Training on longer sequences.. Dynamically changing the masking pattern applied to the training data.

DistilRoBERTa, as the name implies, follows the same training procedure as
DistilBERT. The model has 6 layers, 768 dimensions, and 12 heads, totalizing
82M parameters (compared to 125M parameters for RoBERTa-base). On
average DistilRoBERTa is twice as fast as RoBERTa-base.

2.4 MPNet

MPNet (Song et al. (2020)) is an attempt to combine the best achievements
of BERT and XLNet (Yang et al. (2019)) and at the same time avoid their
limitations. MPNet leverages the dependency among predicted tokens through
permuted language modeling (vs. MLM in BERT), and takes auxiliary
position information as input to make the model see a full sentence and thus
reducing the position discrepancy (vs. PLM in XLNet) (the figure 2.2).

MPNet leverages the dependency among the predicted tokens through
permuted language modeling and makes the model to see auxiliary position
information to reduce the discrepancy between pre-training and fine-tuning.
Experiments on various tasks demonstrate that MPNet outperforms MLM
and PLM, as well as previous strong pre-trained models such as BERT,
XLNet, RoBERTa by a large margin.

The training objective of MPNet is:

Ez∈Zn

n∑
t=c+1

log P (xzt)|xz<t , Mz > C; θ)

So the main difference is that MPNet is conditioned on xz<t (the tokens
before xzt rather than only the non-predicted tokens xz≤c

in MLM). MLM
can see the position information of the full sentence, but cannot model the
dependency among the predicted tokens, which cannot learn the complicated
semantic relationships well; 2) PLM can model the dependency among the
predicted tokens with autoregressive prediction, but it cannot see the position
information of the full sentence, which will cause mismatches between the
pretraining and fine-tuning since the position information of the full sentence
can be seen in the downstream tasks. In the end, MPNet carries more
information.

6



.............................. 2.5. Universal Sentence Encoder

Figure 2.3: Structure and attention mask of MPNet (Song et al. (2020)).

2.5 Universal Sentence Encoder

Figure 2.4: Sentence similarity scores using embeddings from the universal
sentence encoder (Cer et al. (2018))).

The main concept of USE (Cer et al. (2018)) is to be able to summarize any
sentence into a vector of 512 dimensions. This shared embedding is employed
for various tasks, and based on the errors encountered during these tasks,
the sentence embedding is updated. Since the same embedding is utilized
across multiple generic tasks, it selectively captures the most informative
features while discarding noise. The intuition is that this results in a universal
embedding transferable to a diverse range of NLP tasks, including relatedness,
clustering, paraphrase detection, and text classification.

In a simplified version, the encoder is constructed based on the architecture
proposed by Iyyer et al. (2015). Initially, the embeddings for words and
bi-grams present in a sentence are averaged together. Subsequently, they
pass through a 4-layer feed-forward deep neural network (DNN), yielding
a 512-dimensional sentence embedding as the output. The embeddings for
words and bi-grams are learned during the training process.

The speed of the USE is an order of magnitude faster than some modern
transformers, even at the expense of lower accuracy. Its main advantage, is
ease and speed of use.

7



8



Chapter 3
Dimensionality Reduction

Dimensionality reduction is a technique that reduces the dimensionality of
data while preserving maximum information and mutual relationships. There
are many reasons to include this technique in your pipeline:.Computational efficiency: high-dimensional word embeddings can

be computationally expensive and memory-intensive, especially when
working with large datasets. Dimensionality reduction helps make compu-
tation more efficient by speeding up the training and inference processes..Curse of dimensionality: the curse of dimensionality (Köppen (2000))
refers to the challenges and issues that arise when working with high-
dimensional data: sparsity of data, computational instability, all distances
approximating the same value and so on..Memory usage: storing and processing high-dimensional vectors re-
quires more memory. By reducing the dimensionality of word embeddings,
memory requirements are reduced, making it more feasible to work with
large vocabularies and models..Noise reduction: high-dimensional word embeddings may capture
noise or irrelevant information, especially when trained on large and
diverse datasets. Dimensionality reduction can help in removing less
informative dimensions and emphasizing the most relevant features.

3.1 Truncated SVD

Truncated singular value decomposition (truncated SVD) is a dimensionality
reduction technique that is particularly useful for sparse or large matrices.
SVD decomposes a matrix into three other matrices, and truncated SVD is
a variant of this decomposition that retains only a specified number of the
most significant singular values and their corresponding vectors. In other
words, SVD decomposition allows us to find the hidden axes along which the
variance is maximized. It is very similar to PCA, except that truncated SVD
does not center data, and decomposition is not done on the covariance matrix.
SVD decomposition is such a decomposition of matrix X ∈ Rm×n that:

9



3. Dimensionality Reduction ...............................

Figure 3.1: Overview of UMAP (A → B) and Parametric UMAP (A → C).

X = U · S · V T

where U is an m × m orthogonal matrix, S is an m × n diagonal matrix
with singular values on the diagonal, and V T is an n × n orthogonal matrix.
The truncated matrix is obtained by taking the most significant singular
values and their corresponding axes.

Even though truncated PCA is fast, it also has its drawbacks. Trun-
cated SVD can not learn any non-trivial dependencies, it is limited to linear
projections.

3.2 UMAP

UMAP (Uniform Manifold Approximation and Projection, McInnes et al.
(2020), the figure 3.1) is a novel manifold learning technique for dimension
reduction. UMAP is constructed from a theoretical framework based in
Riemannian geometry and algebraic topology. In contrast to PCA or truncated
SVD, the projection is non-linear. The algorithm can be viewed as an
alternative to t-SNE (t-Distributed Stochastic Neighbor Embedding, van der
Maaten and Hinton (2008)). It is an order of magnitude faster, scalable to
large real data, needs no much parameter tuning (as compared to t-SNE), and
has minimal output variance during multiple runs. It is a truly state-of-the-art
dimensionality reduction algorithm.

The main tuning parameter is n_neighbors. In simple terms, it has a
similar role to perplexity in t-SNE. It allows for regulation of the balance
between preserving the local and global structure of original data. As a rule of
thumb, we will use n_neighbors=15 for dimensionality reduction and output
embedding size in range (5, 15).

10



Chapter 4
Clustering Methods

Clustering is a technique and unsupervised learning task that aims to group
similar samples based on their features, forming so-called clusters. The main
goal is to find patterns and hidden structures without using ground truth.

4.1 LDA

The first technique is exceptional in the sense that it does not require convert-
ing words into a numerical representation. Only tokenization (and standard
preprocessing: lowercasing, lemmatization, and so on). Latent Dirichlet
Sllocation (Blei et al. (2001)) is a probabilistic generative model based on
the statistical properties of documents.

LDA is based on the assumption that each document in a collection can
be represented as a mixture of a fixed number of topics, and each word in
a document is attributable to one of the document’s topics. The "latent"
part of it refers to the hidden or unobservable variables in the model. These
latent variables include the topics associated with each document and the
distribution of words within each topic. It utilizes the Dirichlet distribution
to model the distribution of topics in documents and the distribution of words
in topics.

LDA utilizes the Dirichlet distribution to model the distribution of topics
in documents and the distribution of words in topics. The model outputs two
distributions..Document-topic distribution: the proportion of topics present in

each document..Topic-word distribution: the distribution of words for each topic.

The goal of LDA is to infer the underlying topic structure of the documents.
Given a set of documents, LDA estimates the parameters (document-topic
distribution and topic-word distribution) that best explain the observed data
(words in the documents).

Even though this is basically a topic modeling field, we can still use it
for clustering as well, because topics are the same clusters. We will use the

11



4. Clustering Methods ..................................
gensim1 implementation with the number of passes (over a corpus) of 10.

4.2 K-Means

K-Means is one of the most popular, if not the most popular clustering
algorithm. And it is not surprising, that it is fast enough, easy to implement,
easy to interpret, time-tested, and scalable to large data. K-Means can be
considered as a special case of expectation–maximization2 algorithm. After
initialization of centroids consists of two iterative steps:.Assignment step: assign all the points to the closest cluster centroid..Update step: recalculate centroids for observations assigned to each

cluster.

The algorithm has converged when the assignments no longer change. The
algorithm is not guaranteed to find the optimum.

The main goal of K-Means is to minimize inertia (loss, WCSS) defined as:

min
S

k∑
i=1

∑
x∈Si

||x − µi||2

where (x1, x2, . . . , xn) are observation in d-dimensional space, S = S1, S2, . . . , Sk

is space clustering and µi is the mean (centroid) of points in Si.
There are also smarter ways to initialize first centroids. For example, K-

Means++ (Arthur and Vassilvitskii (2007)) initialized centroids not randomly,
but using a specific distribution. There are also modifications to process big
amounts of data, such as mini-batch K-Means. We will utilize all of that.
As both K-Means and mini-batch K-Means optimize a non-convex objective
function, their clustering is not guaranteed to be optimal for a given random
seed. So we will run the algorithm more times (specifically 5) and choose one
final clusterization based on the lowest inertia (loss).

Before any experiments we must be aware of curse dimensionality (Köppen
(2000)) as K-Means is especially affected by this phenomenon. K-Means based
on the notion of distance, most often Euclidean, and the larger space we deal
with, the more sparse it is, the more similar distances have any two points in
the space. There are many more details that are described in the chapter 3
and in the associated paper.

4.3 CLARA

CLARA (Clustering for Large Applications) is based on a very similar to
K-Means algorithm K-Medoids. The main difference is that K-Medoids uses

1https://radimrehurek.com/gensim/
2Iterative method to find (local) maximum likelihood or maximum a posteriori (MAP)

estimates of parameters in statistical models, where the model depends on unobserved
latent variables

12



..................................... 4.4. HDBSCAN

Figure 4.1: Example of clusters produced by K-Means and CLARA. Source:
Clustering Pokemon.

medoids instead of centroids (analogy median and mean). A medoid is a
data point within a cluster whose average dissimilarity to all the other points
in the cluster is minimal. Medoids must be part of the dataset, so the
main implication is that K-Medoids better deal with noise (outliers). But
K-Medoids are too slow for large applications, so CLARA solves this problem
by utilizing random subsets of datasets.

Otherwise, it has very similar properties to K-Means and share similar
drawbacks (such as the curse of dimensionality), so we will replicate the
evaluation technique for CLARA (five runs with the lowest inertia).

4.4 HDBSCAN

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications
with Noise) is a clustering algorithm that extends traditional density-based
clustering methods (DBSCAN). HDBSCAN is particularly designed to handle
datasets with varying densities and is capable of identifying clusters of different
shapes and sizes.

As the name implies, it identifies clusters based on the density of data
points in the feature space. HDBSCAN builds a hierarchy of clusters by
considering different levels of density. It uses a condensed tree representation
called a Minimum Spanning Tree (MST) to encode the hierarchy of clusters.
The key features are:. Unlike traditional density-based methods, HDBSCAN can identify clus-

ters of varying densities. It adapts to the local density of the data,
allowing it to find clusters in regions with different levels of density.. HDBSCAN is robust to noise and is capable of distinguishing noise

13

https://rpubs.com/Buczman/ClusteringPokemon


4. Clustering Methods ..................................
from actual clusters. It identifies points that do not belong to any cluster
as noise or outliers.. It is capable of auto-detecting the most appropriate number of
clusters.

Even though it does not handle high dimensionality well. In most cases, a
dimensionality reduction to less than 100 dimensions of input is a must-have.
It is also not the easiest clustering algorithm for evaluation with ground truth,
as it throws noise labels along with normal labels and it is up to you how to
interpret those labels. We will use the simple approach. We will assign the
label of the nearest non-noise sample to every noise sample.

14



Chapter 5
Metrics

A metric refers to a quantitative measure used to evaluate a model’s perfor-
mance on a specific task. Metrics allow you to evaluate the effectiveness of a
model and can be used to compare different models. However, it is difficult
to characterize an entire model with a single number, so we will look at a
variety of metrics that attempt to evaluate most aspects of clustering

5.1 Intrinsic Metrics

Intrinsic metrics are the most common for evaluating clustering because they
do not require ground truth. As the name implies, they try to estimate
the final clustering based on the intrinsic properties of the clusters. This
is also their limitation, as they often assume the simplest, most probable
form of clusters (convex or isotropic). They often fail to take into account
that clusters may overlap. In higher dimensions, intrinsic metrics may get
worsen for comparing different models because of the curse of dimensionality1.
And most importantly, they are very dependent on the choice of model and
parameters. In our case, on embedding space. As we will see later, often
intrinsic in different spaces are incomparable. That is why we will limit
ourselves to one, but the most popular intrinsic metric.

5.1.1 Silhouette Score

Silhouette score (Rousseeuw (1987)) is probably the most popular intrinsic
evaluation metric (Naik et al. (2015), Lossio-Ventura et al. (2021)). It is
computed as follows:

a(i) =
∑

j∈CI ,i ̸=j d(i, j)
|CI | − 1

In other words, it is the mean distance between sample i and all other
samples between clusters. Then the mean dissimilarity of sample i to some
cluster CJ (where CI ̸= CJ) is computed as:

1Curse of dimensionality refers to the challenges and issues that arise when work-
ing with high-dimensional data (sparsity of data, computational instability, all distances
approximating the same value and so on).

15



5. Metrics .......................................

b(i) = min
J ̸=I

∑
j∈CJ

d(i, j)
|CJ |

Then we can finally define a silhouette score of one sample i:

s(i) =


b(i)−a(i)

max a(i),b(i) , if |CI | > 1
0, if |CI | = 1

(5.1)

To get the silhouette score of a dataset, we average the silhouette score
over all samples. Values range from −1 to 1. Higher values often indicate
good clustering.

5.2 Extrinsic Metrics

Extrinsic metrics allow for a much better analysis of the resulting clusters.
They can be used freely to compare a wide variety of models (clustering in
different embedding spaces).

5.2.1 Adjusted Rand Index

Adjusted rand index (ARI) is probably the most popular extrinsic clustering
evaluation metric (Lossio-Ventura et al. (2021), Ahmed et al. (2023)). ARI is
adjusted for the chance rand index (RI). The latter can be computed as:

RI = TP + TN

TP + FP + FN + TN

in terms of true positives and false negatives pairs. Adjusted rand index:

ARI = RI − E(RI)
max(RI) − E(RI)

Even from the formula above we can see similarity with accuracy. In fact,
this is what it is, the main difference is that with ARI for computing pairs
are used and it is not necessary to know the mapping between ground truth
clusters and the model’s clusters.

5.2.2 Adjusted Mutual Information

Adjusted mutual information (AMI) is an adjustment of the mutual infor-
mation (MI) score to account for chance. It accounts for the fact that the
MI is generally higher for two clusterings with a larger number of clusters,
regardless of whether there is actually more information shared. It can be
computed in a similar fashion as ARI:

ARI = MI(U, V ) − E(MI(U, V ))
max(H(U), H(V )) − E(MI(U, V )

AMI ranges from 0 to 1 (the higher is better).

16



................................. 5.3. Classification Metrics

5.2.3 V-Measure, Homogeneity and Completeness

V-measure, homogeneity, and completeness in clustering are in some sense
similar to F-measure, recall, and precision in classification.

A clustering result satisfies homogeneity if all of its clusters contain only
samples that are members of a single class. The metric is independent of the
absolute values of the labels (as well as other extrinsic clustering metrics): a
permutation of the cluster labels will not change the score value in any way.

A clustering result satisfies completeness if all the samples that are members
of a given class are elements of the same cluster. The metric can also be
computed by swapping inputs for homogeneity metric.

V-measure is then defined as their harmonic mean:

V-measure = 2 ∗ homogeneity ∗ completeness
homogeneity + completeness

that can also be biased into one of two metrics using additional parameter
beta, but we will not use it, because there are no reasons to prefer one metric
over another.

5.3 Classification Metrics

5.3.1 Label Matching

In general, there is no point in applying classification metrics to clustering, be-
cause clustering labels do not carry any meaning. These are just designations
that if you mix them up, nothing will change. But if we visualize assignments,
for example using a contingency matrix2, we can notice a pattern. When
clusters are initially highly separated and have few common samples, it is
relatively easy to map clustering labels to ground truth labels.

In the figure 5.1 we can clearly see that cluster 1 label corresponds to the
topic airline support. Any other assignments make no sense due to minimum
overlap. There is no need to start from scratch, as the assignment problem3 is
already solved. Hungarian algorithm solves the problem in polynomial time,
which we utilize in evaluation.match_cluster_labels using scipy4 solver.

def match_cluster_labels(clusters0, clusters1):
mapping = linear_sum_assignment(

-sklearn.metrics.cluster.contingency_matrix(clusters0, clusters1)
)[1].tolist() # mapping from classes to clusters
reversed_mapping = [0] * len(mapping) # mapping from clusters to classes
for i, v in enumerate(mapping): reversed_mapping[v] = i
return [reversed_mapping[c] for c in clusters1]

2Table that displays the multivariate frequency distribution of the variable.
3Special type of linear programming problem where the objective is to minimize the cost

or time of completing a number of jobs by a number of persons.
4https://scipy.org

17



5. Metrics .......................................

Figure 5.1: Contingency matrix based on distilroberta+umap10+kmeans
pipeline clusterization. Columns correspond to ground truth, rows to the as-
signed cluster label.

5.3.2 Accuracy

Accuracy is a fairly simple metric that shows how accurate the classifier is.
It is one of the most common metrics in classification tasks. In multiclass
classification accuracy is defined as follows:

Accuracy = number of correct classifications
number of all classifications

However, accuracy is far from being the best metric, especially when the
classes are not balanced. After all, a class with more samples will have a
much higher weight. We are talking about the so-called accuracy paradox5.
A classifier can have a very high accuracy in general, but a terrible precision
in a poorly represented class. That is why we do not stop at accuracy and go
further.

5.3.3 F1 Score, Precision and Recall

Precision is a measure of the accuracy of the positive predictions made by a
model. In terms of true-positives and false-negatives counts it is defined as:

Precision = TP

TP + FP
5Paradox that higher accuracy does not necessarily result in higher predictive perfor-

mance.

18



........................................ 5.4. Time

High precision indicates that the model has a low rate of false positives. In
other words, when the model predicts a positive outcome, it is more likely to
be correct.

Recall accordingly is defined as:

Recall = TP

TP + FN

A high recall indicates that the model is good at identifying positive samples
among all the actual positives.

Precision and recall are often in tension with each other; improving one
may come at the cost of the other. So here comes the F1 score, a harmonic
mean of precision and recall:

F1 = 2 ∗ precision ∗ recall
precision + recall

Those metrics are computed per class. So we need to aggregate them to one
number. There are multiple choices. For example, weighted by cardinality of
classes aggregation of recall will result in accuracy. Simple averaging seems
to be the most appropriate aggregation approach for this work. Because we
want all classes (topics) to be equally represented by the metric. Otherwise,
in the case of weighted aggregation, larger classes will dominate smaller ones.

5.3.4 Minimum Precision and Minimum Recall

Previous metrics may miss one case. When one small class is almost completely
misclassified. On some metrics, this will appear more, but overall it will still
not be very noticeable. That is why we will use the worst (minimum) recall
and the worst (minimum) precision in the class in addition to other metrics.
They will immediately show if some class was underrepresented in previous
metrics.

5.4 Time

Some models may have the best performance, but will it make sense if they
take an order of magnitude longer to run? To handle this, the running time
will be measured for each model. Since some models are pre-trained and
others require no training, it makes sense to call this time running time
rather than training time. It will help you evaluate models from a completely
different perspective.

5.5 Notes

It is worth noting that all metrics (except time) range from 0 to 1 and
higher values indicate better performance. It is no coincidence. During
the testing phase of the whole project, many more metrics were selected.
For example, such as CHI (Calinski–Harabasz index), DBI (Davies–Bouldin

19



5. Metrics .......................................
index), FMI (Fowlkes-Mallows index), PMF (pair-counting F-measure), and
so on. But they were all excluded for different reasons. Some are simply not
very informative, others are too correlated with existing metrics.

20



Chapter 6
Data

6.1 Source Datasets

Individual datasets have been collected using freely available sources.

. airline support: Airline Twitter Sentiment (data.world, 2015, 14640
tweets)
Tweets mentioning different airline companies. Mainly to get help or
give feedback.
Example: "@United Wonder why people hate dealing with airlines?
Ridiculous and inflexible "policies". I need a phone number and a
resolution. Now.". australian elections Australian Election 2019 Tweets (Kaggle, 2019,
182748 tweets)
Example: "I did not vote for the liberal party ... I never normally share
who I vote for ... I care about Australia and our planet and our future...
climate change was the biggest concern I have and liberals will not deliver
on that. I’m very concerned for our country #ripaustralia". chatgpt: 500k ChatGPT-related Tweets Jan-Mar 2023 (Kaggle, 2023,
493745 tweets)
Tweets that contain hashtags and mentions about ChatGPT.
Example: "@famous_dyl Love how everyone is doing these GPT chal-
lenges. I’ve actually modified pinescript trading scripts using chatGPT
that made great trades.". climate change: Twitter Climate Change Sentiment Dataset (Kaggle,
2019, 43943 tweets)
This dataset aggregates tweets pertaining to climate change collected
between Apr 27, 2015 and Feb 21, 2018. Each tweet is labeled inde-
pendently by 3 reviewers. This dataset only contains tweets that all 3
reviewers agreed on (the rest were discarded)

21

https://data.world/crowdflower/airline-twitter-sentiment
https://data.world/crowdflower/airline-twitter-sentiment
https://www.kaggle.com/datasets/taniaj/australian-election-2019-tweets
https://www.kaggle.com/datasets/taniaj/australian-election-2019-tweets
https://www.kaggle.com/datasets/khalidryder777/500k-chatgpt-tweets-jan-mar-2023
https://www.kaggle.com/datasets/khalidryder777/500k-chatgpt-tweets-jan-mar-2023
https://www.kaggle.com/datasets/edqian/twitter-climate-change-sentiment-dataset
https://www.kaggle.com/datasets/edqian/twitter-climate-change-sentiment-dataset


6. Data ........................................
Example: "@bakerlarry84 @tedcruz There are enough evidence to proof
global warming exist. The clowns in the republican party don’t believe
in global". covid19: Coronavirus tweets NLP - Text Classification (Kaggle, 2020,
44955 tweets)
Example: "@JohnnyKirsch Wells Fargo is committed to helping cus-
tomers experiencing hardships due to COVID-19. Customers can call
1-800-219-9739 to speak with a trained specialist about options available
for their consumer lending, small business and deposit product". fifa world cup: FIFA World Cup 2022 Tweets (Kaggle, 2022, 22360
tweets).
The dataset includes tweets in English containing the hashtag #World-
Cup2022.
Example: "Qatar lied and cheated their way to host a World Cup. There
is nothing for them to be proud of #Worldcup2022 #WorldCup". self-driving cars: Sentiment Self-driving Cars (data.world, 2015, 7156
tweets).
Example: "Driverless cars are not worth the risk. Don’t want to be on the
highway when the server crashes #SadMacFace #BlueScreenofDeath".. stock market crash: Huge crash in the Stock market 2022 (Kaggle,
2022, 33164 tweets).
Example: "Hopefully this #stockmarketcrash ain’t too bad. At least it’s
a good discount on some stonks like #GME. I can’t wait to add to my
portfolio"..weather: Weather sentiment evaluated (data.world, 2015, 1000 tweets).
Example: "Love this Iowa weather that goes from warm and sunny to
rainy and lightening in less than 2 seconds:):):)".

The topics were not chosen at random. For the most part, they are
disjunctive, have little in common, and it is not so easy to find a tweet that
would belong to two topics at once. This is important during evaluation, as
it removes ambiguity when using ground truth metrics. That is, it is possible
to uniquely associate each tweet with a specific topic in most cases.

6.2 Noise Removal

Some of the original datasets contain a huge number of tweets. They were
collected using just hashtags, without manual verification. As a result, you
can often find languages other than English, encoding errors, tweets that do
not carry any meaning or do not belong to any topic. This will significantly
worsen the evaluation, so cleaning up noise tweets is necessary.

22

https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification
https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification
https://www.kaggle.com/datasets/tirendazacademy/fifa-world-cup-2022-tweets
https://www.kaggle.com/datasets/tirendazacademy/fifa-world-cup-2022-tweets
https://data.world/crowdflower/sentiment-self-driving-cars
https://data.world/crowdflower/sentiment-self-driving-cars
https://www.kaggle.com/datasets/tejasurya/huge-stock-market-crash-2022
https://www.kaggle.com/datasets/tejasurya/huge-stock-market-crash-2022
https://data.world/crowdflower/weather-sentiment-evaluated


....................................6.2. Noise Removal

Figure 6.1: Dataset pruning.

Outlier removal, as well as generating one large dataset, is contained inside
generate_dataset.ipynb. To remove noise the following approaches were used
(the figure 6.1):.Pruning by tweet length: tweets from each topic were sorted by

length and tweets with extreme values were removed. These values are
different for different topics; in some places, tweets that are 30 characters
long are already noise, but in others they are only starting from 70
characters. Too long ones also sometimes became outliers, but this was
less common..Pruning by word fraction: or each tweet, the proportion of words
(tokens that begin with letters of the alphabet) was calculated and
outliers were removed. The approach was very effective for pruning, it
was good at finding tweets that contained few words or information..Pruning by token length: the average token length was calculated
and, as a rule, tweets with values outside the interval (3, 10) were noise..Pruning by English confidence: using Google’s Compact Language
Detector 2 (Ooms (2023)) was calculated confidence if a tweet was written
in English. Tweets with scores below 600 were mostly noise and tweets
with scores below 800 were quite common. CL2 is one of the fastest
language detectors with enough good accuracy.. Similar tweet detection: many of the original datasets contain dupli-
cates. Complete matches are very easy to remove using the pandas1 drop
function. But there are also many tweets that differ by one character, one
mention, or one hashtag. To detect such similar tweets, the RapidFuzz2

library function was used. Among all the libraries, one of the few was
1https://pandas.pydata.org/
2https://github.com/rapidfuzz/RapidFuzz

23



6. Data ........................................

Figure 6.2: Topic distribution in the dataset.

fast enough to run on a large dataset. For each tweet, the similarity with
each subsequent (not previous tweet) was calculated and the similarity
(directed acyclic graph) was obtained. Tweets with a similarity score
higher than 0.8 were removed. This is not the most accurate method, but
one of the fastest, because computing similarity is not a cheap operation.

6.3 Dataset Generation

Basic preprocessing was done. All invalid characters were removed and
incorrectly decoded characters were replaced, if possible. In datasets where
there were too many hashtags of the same type, such as in stock crash mar-
ket or australian elections, some hashtags were removed, since otherwise
it would be too easy to determine topic. There were a lot of tweets of the
same type that began with rt @ and were actually retweets. If there were too
many such tweets (retweets) within topic, the first part containing retweet
was removed.

When a significant part of the noise has been removed, the encodings have
been corrected, the invalid characters have been fixed - the final dataset can
be generated. The size of the dataset is controlled by constants defined in
constants.py. For evaluation, a dataset with 70406 tweets was generated.
The generation can be completely reproduced; one should use seed 0. The
distribution of topics was deliberately made unbalanced (the figure 6.2).
weather topic only contains 587 tweets (compared to australian election’s
10,000). This brings clustering closer to real-world applications, where not
all topics may have thousands of samples.

The final dataset is quite diverse. Some tweets contain almost no hashtags
or mentions (weather). Some are the complete opposite of this (stock
market crash, fifa world cap). In some topics, mentions do not carry any

24



..................................6.3. Dataset Generation

information at all, while in others, due to frequent mentions, it is possible
to make a forecast based on mentions alone (airline support). The final
dataset is saved as data/datased70000.csv and can be explored in any of all
three jupyter notebooks.

25



26



Chapter 7
Evaluation

7.1 Setup

Since the use of any qualitative metrics other than intrinsic requires the
same number of classes (topics) and clusters (produced by the model), it was
decided not to use automatic detecting of the number of clusters where this
is allowed (HDBSCAN). Otherwise, the evaluation would be too subjective.
It would be necessary to evaluate the clusters using intrinsic metrics that are
not comparable along different embedding spaces, visualization, and judge
by keywords, and although there are metrics for this, such as topic keyword
Coherence score or UMass index, the analysis would still be quite subjective.
Therefore, for massive evaluation, the models utilize the number of clusters
in advance.

The dataset was pre-processed in clustering.ipynb. Spacey’s tokenizer and
lemmatizer "en_core_web_md" were used to produce the tokenized corpus.
All links were replaced with %link, numbers with %number, words with a
document frequency of less than 4 and above 0.5 were removed from the
vocabulary. Transformers use their own tokenizers.

All methods were run with minimal parameter fine-tuning to avoid overfit-
ting (usually 1 or 2 parameter tuning except embedding size). The results
can be approximately reproduced with constants.SEED = 0. Hardware used:
A4000 (45 GiB RAM, 8 CPU, 16 GiB GPU).

To save space, abbreviations were used, i.e use = Universal Sentence
Encoder, GMM = Gaussian Mixture Model, mrec = Minimum Recall, time
= Time in seconds and so on.

It is hard to fit all metrics to PDF width, so some less important metrics
were pruned, but the full table can still be found in evaluation/<name of
dataset>.

7.2 Results

The best performance (the figure 7.1) was shown by distilroberta+umap5+hdbscan,
which is surprising because MPNet always outperformed DistilRoBERTa on
smaller data (10000 tweets) and UMAP is the current state-of-the-art trans-

27



7. Evaluation ......................................
former.

UMAP has proven to be one of the best state-of-the-art reduction dimen-
sionality techniques. in contrast to SVD, it creates embeddings of a very
small size, but of excellent quality, preserving most of the semantic properties
and relationships between tweets. It outperforms K-Means most of the time.
UMAP with embedding size 5 is a good default choice. Also, UMAP +
HBDCSAN often work well together.

use+umap5+kmeans combines excellent performance and high speed
(the figure 7.2). If you need speed, Universal Sentence Autoencoder is a good
default choice. On the contrary, MPNet is the slowest.

Word22Vec can be a good choice if you do not want to use pre-trained
transformers and do the training from scratch.

LDA and Doc2Vec perform just horribly on short texts. No wonder, LDA
is based on counting; it requires large numbers. For Doc2Vec to be trained,
the corpus and document length are too small.

The figure 7.1 can give a hint which metrics (AMI, homogeneity, complete-
ness and so on) can be excluded without affecting the quality of evaluation.

7.3 Future work

There’s a lot of room to continue. Next, one can explore methods with
automatic detection of the number of clusters. Even though it is harder to
evaluate, but one can use other intrinsic metrics1 or analyze clusters using
topic keywords extraction (KeyBART Kulkarni et al. (2022)) and calculate
Coherence or UMass score.

Some other methods can be added for comparison: Deep Amortized Clus-
tering (Lee et al. (2019)) or Tweet2Vec (Vosoughi et al. (2016)).

The deep_embedded_clustering.py file contains code for Deep Embeddings
Clustering (Xie et al. (2016)), which is really interesting approach to clustering.
I have never managed to choose the right architecture and train it with high
enough ARI, but this may be due to the fact that there is an error in the
code. One might try to fix it, as this method looks very promising.

1Calinski–Harabasz index and Davies–Bouldin index

28



..................................... 7.3. Future work

ari acc f1 rec pre mpre ss h c time
ground truth assignment 1.000 1.000 1.000 1.000 1.000 1.000 NaN 1.000 1.000 NaN
distilroberta+umap5+hdbscan 0.914 0.963 0.958 0.959 0.958 0.901 0.775 0.899 0.898 132
distilroberta+umap5+gmm 0.908 0.958 0.937 0.957 0.925 0.605 0.762 0.895 0.890 112
word2vec300+umap5+kmeans 0.903 0.958 0.952 0.951 0.953 0.886 0.795 0.885 0.886 134
word2vec300+umap5+hdbscan 0.903 0.957 0.952 0.951 0.953 0.888 0.793 0.885 0.885 146
word2vec100+umap5+kmeans 0.896 0.954 0.949 0.944 0.954 0.921 0.786 0.876 0.878 104
word2vec100+umap5+gmm 0.896 0.954 0.948 0.944 0.954 0.922 0.786 0.876 0.878 104
mpnet+umap5+hdbscan 0.893 0.946 0.852 0.852 0.852 0.003 0.748 0.882 0.881 186
word2vec50+umap5+kmeans 0.882 0.948 0.938 0.934 0.944 0.872 0.759 0.862 0.863 78
mpnet+umap5+kmeans 0.876 0.926 0.874 0.936 0.877 0.165 0.748 0.887 0.860 171
mpnet+umap5+clara 0.875 0.925 0.872 0.935 0.877 0.160 0.743 0.887 0.859 166
distilroberta+umap10+clara 0.871 0.912 0.836 0.826 0.854 0.000 0.758 0.887 0.863 114
mpnet+umap10+kmeans 0.869 0.923 0.842 0.834 0.854 0.001 0.769 0.878 0.857 172
distilroberta+umap5+clara 0.863 0.901 0.829 0.817 0.850 0.000 0.766 0.885 0.859 112
distilroberta+umap10+kmeans 0.862 0.896 0.826 0.813 0.849 0.000 0.770 0.886 0.858 114
distilroberta+umap5+kmeans 0.862 0.897 0.826 0.813 0.850 0.000 0.765 0.886 0.858 111
mpnet+svd50+kmeans 0.835 0.895 0.828 0.818 0.850 0.010 0.206 0.850 0.823 113
use+svd30+kmeans 0.828 0.923 0.921 0.922 0.920 0.850 0.739 0.819 0.819 13
use+umap5+kmeans 0.828 0.923 0.921 0.922 0.920 0.850 0.739 0.819 0.819 56
tfidf+umap5+kmeans 0.826 0.907 0.856 0.917 0.859 0.157 0.556 0.821 0.795 76
fasttext100+umap5+kmeans 0.825 0.876 0.812 0.796 0.839 0.002 0.677 0.843 0.814 79
tfidf+umap5+clara 0.818 0.901 0.833 0.842 0.843 0.052 0.545 0.813 0.791 78
word2vec20+umap5+hdbscan 0.802 0.876 0.810 0.795 0.835 0.001 0.677 0.816 0.791 139
word2vec20+umap5+kmeans 0.802 0.876 0.810 0.795 0.835 0.001 0.677 0.816 0.791 71
tfidf+svd50+kmeans 0.749 0.867 0.795 0.786 0.814 0.007 0.159 0.782 0.769 3
lda 0.237 0.482 0.438 0.479 0.492 0.039 NaN 0.294 0.297 84
doc2vec100+umap5+kmeans 0.034 0.235 0.216 0.211 0.242 0.001 0.238 0.062 0.062 143
random clustering 0.000 0.110 0.104 0.112 0.110 0.009 NaN 0.000 0.000 NaN

Table 7.1: Pipeline ARI comparison.

29



7. Evaluation ......................................

ari acc f1 rec pre mpre ss h c time
tfidf+svd50+kmeans 0.749 0.867 0.795 0.786 0.814 0.007 0.159 0.782 0.769 3
use+svd30+kmeans 0.828 0.923 0.921 0.922 0.920 0.850 0.739 0.819 0.819 13
use+umap5+kmeans 0.828 0.923 0.921 0.922 0.920 0.850 0.739 0.819 0.819 56
word2vec20+umap5+kmeans 0.802 0.876 0.810 0.795 0.835 0.001 0.677 0.816 0.791 71
tfidf+umap5+kmeans 0.826 0.907 0.856 0.917 0.859 0.157 0.556 0.821 0.795 76
tfidf+umap5+clara 0.818 0.901 0.833 0.842 0.843 0.052 0.545 0.813 0.791 78
word2vec50+umap5+kmeans 0.882 0.948 0.938 0.934 0.944 0.872 0.759 0.862 0.863 78
fasttext100+umap5+kmeans 0.825 0.876 0.812 0.796 0.839 0.002 0.677 0.843 0.814 79
lda 0.237 0.482 0.438 0.479 0.492 0.039 NaN 0.294 0.297 84
word2vec100+umap5+kmeans 0.896 0.954 0.949 0.944 0.954 0.921 0.786 0.876 0.878 104
word2vec100+umap5+gmm 0.896 0.954 0.948 0.944 0.954 0.922 0.786 0.876 0.878 104
distilroberta+umap5+kmeans 0.862 0.897 0.826 0.813 0.850 0.000 0.765 0.886 0.858 111
distilroberta+umap5+gmm 0.908 0.958 0.937 0.957 0.925 0.605 0.762 0.895 0.890 112
distilroberta+umap5+clara 0.863 0.901 0.829 0.817 0.850 0.000 0.766 0.885 0.859 112
mpnet+svd50+kmeans 0.835 0.895 0.828 0.818 0.850 0.010 0.206 0.850 0.823 113
distilroberta+umap10+clara 0.871 0.912 0.836 0.826 0.854 0.000 0.758 0.887 0.863 114
distilroberta+umap10+kmeans 0.862 0.896 0.826 0.813 0.849 0.000 0.770 0.886 0.858 114
distilroberta+umap5+hdbscan 0.914 0.963 0.958 0.959 0.958 0.901 0.775 0.899 0.898 132
word2vec300+umap5+kmeans 0.903 0.958 0.952 0.951 0.953 0.886 0.795 0.885 0.886 134
word2vec20+umap5+hdbscan 0.802 0.876 0.810 0.795 0.835 0.001 0.677 0.816 0.791 139
doc2vec100+umap5+kmeans 0.034 0.235 0.216 0.211 0.242 0.001 0.238 0.062 0.062 143
word2vec300+umap5+hdbscan 0.903 0.957 0.952 0.951 0.953 0.888 0.793 0.885 0.885 146
mpnet+umap5+clara 0.875 0.925 0.872 0.935 0.877 0.160 0.743 0.887 0.859 166
mpnet+umap5+kmeans 0.876 0.926 0.874 0.936 0.877 0.165 0.748 0.887 0.860 171
mpnet+umap10+kmeans 0.869 0.923 0.842 0.834 0.854 0.001 0.769 0.878 0.857 172
mpnet+umap5+hdbscan 0.893 0.946 0.852 0.852 0.852 0.003 0.748 0.882 0.881 186
ground truth assignment 1.000 1.000 1.000 1.000 1.000 1.000 NaN 1.000 1.000 NaN
random clustering -0.000 0.111 0.104 0.110 0.111 0.008 NaN 0.000 0.000 NaN

Table 7.2: Pipeline speed comparison.

30



..................................... 7.3. Future work

Figure 7.1: Metric correlation heatmap.

Figure 7.2: Clusters of the best model (distilroberta+umap5+hdbscan) projected
into 2 dimensions with UMAP.

31



32



Bibliography

Ahmed, M. H., Tiun, S., Omar, N., and Sani, N. S. (2023). Short text clus-
tering algorithms, application and challenges: A survey. Applied Sciences,
13(1).

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advantages of
careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’07, page 1027–1035, USA.
Society for Industrial and Applied Mathematics.

Blei, D., Ng, A., and Jordan, M. (2001). Latent dirichlet allocation. volume 3,
pages 601–608.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching
word vectors with subword information.

Cer, D., Yang, Y., yi Kong, S., Hua, N., Limtiaco, N., John, R. S., Constant,
N., Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung, Y.-H., Strope, B., and
Kurzweil, R. (2018). Universal sentence encoder.

Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé III, H. (2015). Deep
unordered composition rivals syntactic methods for text classification. In
Zong, C. and Strube, M., editors, Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1681–1691, Beijing, China. Association for Computational Linguistics.

Köppen, M. (2000). The curse of dimensionality. In 5th online world conference
on soft computing in industrial applications (WSC5), volume 1, pages 4–8.

Kulkarni, M., Mahata, D., Arora, R., and Bhowmik, R. (2022). Learning rich
representation of keyphrases from text.

Lee, J., Lee, Y., and Teh, Y. W. (2019). Deep amortized clustering.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach.

33



7. Evaluation ......................................
Lossio-Ventura, J. A., Gonzales, S., Morzan, J., Alatrista-Salas, H.,

Hernandez-Boussard, T., and Bian, J. (2021). Evaluation of clustering and
topic modeling methods over health-related tweets and emails. Artificial
Intelligence in Medicine, 117:102096.

McInnes, L., Healy, J., and Melville, J. (2020). Umap: Uniform manifold
approximation and projection for dimension reduction.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation
of word representations in vector space.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b).
Distributed representations of words and phrases and their compositionality.

Naik, M. P., Prajapati, H. B., and Dabhi, V. K. (2015). A survey on semantic
document clustering. In 2015 IEEE International Conference on Electrical,
Computer and Communication Technologies (ICECCT), pages 1–10.

Ooms, J. (2023). cld2: Google’s compact language detector 2. R package
version 1.2.4.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors
for word representation. volume 14, pages 1532–1543.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53–65.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020). Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. (2020). Mpnet: Masked
and permuted pre-training for language understanding.

Stieglitz, S., Mirbabaie, M., Ross, B., and Neuberger, C. (2018). Social
media analytics – challenges in topic discovery, data collection, and data
preparation. International Journal of Information Management, 39:156–
168.

van der Maaten, L. and Hinton, G. (2008). Viualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.

Vosoughi, S., Vijayaraghavan, P., and Roy, D. (2016). Tweet2vec: Learning
tweet embeddings using character-level cnn-lstm encoder-decoder. In Pro-
ceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, SIGIR ’16. ACM.

Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised deep embedding
for clustering analysis.

34



..................................... 7.3. Future work

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le,
Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language
understanding. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-
Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.

35


	Introduction
	Text Embeddings
	TF-IDF
	Word2Vec
	DistilRoBERTa
	MPNet
	Universal Sentence Encoder

	Dimensionality Reduction
	Truncated SVD
	UMAP

	Clustering Methods
	LDA
	K-Means
	CLARA
	HDBSCAN

	Metrics
	Intrinsic Metrics
	Silhouette Score

	Extrinsic Metrics
	Adjusted Rand Index
	Adjusted Mutual Information
	V-Measure, Homogeneity and Completeness

	Classification Metrics
	Label Matching
	Accuracy
	F1 Score, Precision and Recall
	Minimum Precision and Minimum Recall

	Time
	Notes

	Data
	Source Datasets
	Noise Removal
	Dataset Generation

	Evaluation
	Setup
	Results
	Future work

	Bibliography

