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Abstrakt: Tato práce přispívá k řešení problematiky v oblasti rozhodování, přesněji v oblasti dynamic-
kého rozhodování, kde je důležité provádět rozhodování s ohledem na čas a vývoj problému. Cílem této
práce bylo navrhnout řešení jež by vedlo k získání optimálního zastavovacího pravidla. K řešení rozho-
dovacího procesu jsme použili teorie plně pravděpodobnostního návrhu (PPN). PPN představuje rozší-
ření tradiční rozhodovací metody markovských rozhodovacích procesů. PPN řeší a modeluje vývoj stavů
v uzavřené rozhodovací smyčce pomocí ideální distribuce chování, která reprezentuje agentovy prefe-
rence. Optimální rozhodovací pravidlo v PPN je hledáno pomocí minimalizace Kullback-Leiblerovi
divergence mezi distribucí chování modelu a jejím ideálem. Metoda zjišt’ování preferencí v PPN slouží
k převodu preferencí na ideální distribuce chování agenta. V této práci jsme navrhli rozšíření PPN o za-
stavování a poskytli jeho řešení. Dále jsme navrhli způsob využití zjišt’ování preferencí v řešení PPN se
zastavováním. Nakonec jsme pomocí simulovaných experimentů a bayesovského odhadování parametrů
ověřili kvalitu a rychlost námi navrženého řešení.
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gence, markovské rozhodovací procesy, plně pravděpodobnostní návrh, zastavovací pravidlo, zjišt’ování
preferencí

Title:

Dynamic Fully Probabilistic Decision Making with Stopping
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Abstract: This work contributes to the problem in the area of decision making, more specifically in the
area of dynamic decision making, where it is important to make decisions with respect to time and the
evolution of the problem. The aim of this work was to propose a solution that would lead to obtain
an optimal stopping rule. We used the theory of Fully probabilistic design (FPD) to solve the decision
making processes. FPD is an extension of the well known Markov decision processes. FPD solves
and models the evolution of states in a closed decision loop using an ideal probability distribution (pd)
of behavior that represents the agent’s preferences. The optimal decision rule in FPD is evaluated by
minimizing the Kullback-Leibler divergence between the model’s pd of behavior and its ideal. The
preference elicitation (PE) method in FPD is used to convert the preferences into the agent’s ideal pd
of behaviors. In this work, we propose an extension of FPD to incorporate stopping and provide its
solution. We also proposed an approach to exploit PE in the solution of FPD with stopping. Finally,
we verified the quality and speed of our proposed solution using simulated experiments and Bayesian
parameter estimation.

Key words: Bayesian parameter estimation, dynamic decision making, fully probabilistic design, Kullback-
Leibler divergence, Markov decision processes, preference elicitation, stopping rule



Contents

Introduction 7

1 Preliminaries 9
1.1 Probability Theory and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Fully Probabilistic Design of Decision Strategies . . . . . . . . . . . . . . . . . . . . . 12
1.4 Preference Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 FPD with Stopping 16
2.1 Design of the Extended Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Design of the Extended Ideal Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Evaluation of the Optimal Policy using FPD with Stopping . . . . . . . . . . . . . . . . 19

3 Preference Elicitation in FPD with Stopping 22
3.1 Algorithm for PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Incorporation of Preference Elicitation into FPD with Stopping . . . . . . . . . . . . . . 23
3.3 Bayesian Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Simulations 26
4.1 Design of the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Input Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 First Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Second Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Third Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusion 41

6



Introduction

All living beings share a fundamental characteristic: the necessity to make decisions. While some
decisions are instinctive and occur automatically, others are complex and require significant time and
attention, see [7]. For example, consider a wild animal deciding whether to take the quickest or safest
path to water – a decision that balances urgency against risk. This scenario offers just an insight into the
omnipresence of decision making (DM) in almost every aspect of life.

Recognizing the importance of DM, this work emphasizes its role as a crucial and comprehensive
field of study. DM integrates knowledge from diverse disciplines to develop effective tools for tackling
complex problems. Effective decision making should be grounded in relevant knowledge, despite the
common human tendency to let emotions and extraneous information cloud the judgment. For more
information on rationality in non-rational DM, see [10], as an interesting but not yet fully explored area
of study.

We model DM processes using a closed loop comprising a system and an agent. The system rep-
resents the world segment the agent aims to understand and influence. The agent observes this system,
deciding on actions which he use to influence the system and achieve preferred outcomes from the sys-
tem. We refer to these outcomes as states. The agent generates actions, whereas the system generates
states.

Our work builds upon the Markov decision process (MDP) formalism [14], a mathematical frame-
work for describing this closed-loop interactions. The goal of a rational agent within this framework
is to select an optimal policy, a set of rules guiding its actions. MDP theory aids in finding the most
effective policy, incorporating the agent’s preferences and all relevant information, such as observations
of the system, expert insights, and other external knowledge.

The conditions under which agents seek optimal policies in the closed loop vary widely. Typical
difference is in the knowledge of the system model. The models of the system may be known or un-
known, and in the latter case, its parameters can be estimated using, for instance, Bayesian parameter
estimation [2].

This work focuses on DM under time constraints, a practical consideration given that the optimizing
decision making incurs additional costs and utilizes computational resources before resolution. This
problem, of when to stop the process of DM and make the decision or use the policy, is DM with a
stopping rule. This dynamic DM process is a part of the extensive field of sequential DM. For further
details, refer to Wald’s seminal work on sequential analysis, see [19].

One of the most renowned examples involving the stopping rule is the Secretary problem. This
problem likely emerged in the late 1950s, although similar concepts have been explored for centuries,
such as by A. Cayley in 1875 and possibly by J. Kepler in the early 17th century. For a comprehensive
history of this problem, refer to [5]. A detailed and exhaustive solution of this problem is presented
in [12].

Another significant application of the stopping rule is the diagnosis-versus-treatment dilemma in
medicine. A doctor must diagnose a patient’s disease in a timely manner to ensure that it is not too late
for effective treatment. For further details, refer to [20].

The list of examples requiring a stopping rule is extensive, including decisions like determining the
end of an experiment or ceasing the estimation of certain parameters.
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A significant challenge in DM, particularly under time pressure, is the enhanced tendency towards
irrational DM.

The aim of this work is to propose a robust methodology for optimizing the stopping rule, employing
Fully Probabilistic Design of decision strategies (FPD) theory. FPD, a relatively recent concept, is yet to
be fully explored in the context of DM with stopping rules. Unlike MDP, which utilizes a loss function
to evaluate the optimal policy, FPD probabilistically quantifies agent’s aims and preferences. In FPD the
agent’s preferences are represented in the so called ideal probability distribution (pd). High values are
assigned to preferred states and actions, low to unpreferred ones. The optimal policy is evaluated as an
argument minimizing the Kullback-Leibler divergence of the real pd and ideal pd. For a closer look on
FPD theory and its formulation see [9] and [10]. This work builds on work [6], and seeks to complete
its unfinished solution, dealing with stopping in FPD. Presently, there is no general solution for stopping
in FPD or for a partial stopping in dynamic DM.

The agent need not be completely independent. It may have to make decisions in order to fulfill
the preferences of a third party, which we call the user. The relationship between the agent and the
user can be thought of as a relationship between the requestor of a task and its handler. However, in
this work, we will only consider cases where the agent makes decisions with the aim of satisfying the
specified preferences. Of course, it may be the case that the agent and the user are the same person,
but in this work we distinguish these two roles. It allows us to cope with the fact the user expresses
preference incompletely and not in the form of ideal pd. The needed transformation how can the agent
reflects given aims and preferences into DM is called preference elicitation (PE). Use of the PE in FPD
provides a transformation of user’s preferences into non-empty set of prospective ideal pd and then
making a choice of the optimal ideal pd, see [10]. This approach is much easier with FPD mathematical
framework than with MDP, because working with the utility function might be more difficult from the
designing perspective: the deductive rules how to combine partial losses are missing, refer to [3], [4].

This work introduces an extension of FPD to incorporate DM with stopping. We have constructed a
theoretical solution of FPD with stopping. Then we have combined this solution with PE and proposed
the way how to evaluated the optimal policy with stopping. The effectiveness of the proposed solution
has been validated by experimental testing.

Chapter 1 recalls the theory necessary for this work, covering the basics of probability theory, MDP,
FPD and PE. Chapter 2 elaborates on the extension of FPD to include stopping and outlines the formu-
lation of newly established ideal pds, which include the stopping. This chapter results in the solution
of FPD with stopping. Chapter 3 explores how PE can be incorporated into FPD with stopping. In
Chapter 4, we introduce the simulated system used for testing, the studied metrics and various examples
with different settings. Here, our proposed method is directly compared with the standard method that
do not involve stopping. The results of these experiments are presented and briefly discussed. Finally,
Chapter 5 offers concluding thoughts and ideas about possible future research related to this work.
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Chapter 1

Preliminaries

In this chapter, we introduce the theory to the reader to the extent that is sufficient for the purposes
of this work. We will also introduce the notation that will be used throughout this work.

1.1 Probability Theory and Notation

In this section, we present only basic concepts of probability theory and auxiliary functions used
in the following sections and chapters. For the purpose of this work, we have chosen to adopt an
engineering perspective on the topic of probability theory. More deep and exhaustive view on probability
field of study can be found in [15].

Remark 1. Throughout, p(·), m(·), π(·), c(·) always represent probability distributions (pds), where p(x)
and p(a) are two different pds which are distinguished by labels of the different random variables x and
a.

In the text we also use different font for other functions, e.g. d(·), h(·), we tried to distinguish these
functions, to not be mistaken with pds.

Notation Meaning
X Set of values of the variable X
|X| Cardinality of the set X
N Set of natural numbers
R Set of real numbers
T Set of time moments
S Set of states
A Set of actions
≡ Definition by assignment

π ≡ (π(at|st−1))|T |t=1 Policy, sequence of pds
Π Set of policies

(m(st|at, st−1))|T |t=1 System model
∝ Proportionality

Table 1.1: The notation that is used in the work.

Definition 1. A marginal probability distribution (pd) is defined using a joint probability distribution
p(a, b) by the following relation

p(a) =
∫
B

p(a, b) db,
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where B denotes the set of all possible values of b.

Definition 2. The conditional pd of the variable a, conditioned on the occurrence of b, is defined by

p(a|b) =
p(a, b)
p(b)

, p(b) > 0.

Definition 3. The independence of the variable a from the variable b is defined as follows

p(a, b) = p(a)p(b)

or equivalently

p(a|b) = p(a).

Theorem 1. The following formula is known as the chain rule

p(xn, xn−1, . . . , x1) ≡ p(xn, xn−1, . . . , x1|x0) =
n∏

k=1

p(xk|xk−1, . . . , x0). (1.1)

Proof. The chain rule can be obtained by a repeated use of definition 2. □

Remark 2. In this work the knowledge of x0 is considered implicitly. This knowledge influences all
other related relations and functions.

Definition 4. Kronecker delta function is denoted as δ(•, •) and is defined as follows

δ(x, y) ≡
{

1 if x = y,
0 if x , y.

(1.2)

Definition 5. The indicator function of a subset X̃ of X is defined as

1X̃(x) ≡
{

1 if x ∈ X̃,
0 if x < X̃.

(1.3)

Definition 6. Let k ≥ 1 be a real number. The k-norm of row vector x ≡ (x1, . . . , xn) with real-valued
entries xi for i = 1, . . . , n, is

||x||k ≡

 n∑
i=1

|xi|
k

1/k

, n ∈ N. (1.4)

Definition 7. Suppose that f : X → R+ is a non-negative valued function whose domain is an arbitrary
set X. The support of the function f is defined as:

supp( f ) ≡ {x ∈ X| f (x) , 0} . (1.5)

1.2 Markov Decision Process

In this section we focus on presenting closed loop description, already mentioned in Introduction,
but now in a more formal way and with the proper terminology used across this work.

The key structure studied in this work is called closed loop. A closed loop consists of a system and
an agent. The system generates states according to some, possibly unknown, random rules. These states
are observed by an agent, which generates actions that enter the system and possibly influence the closed
loop. The system can represent a part of the world or a general problem we want to study, while the
agent represents a decision maker, who wants to study the unknown system or influence it.

Our formal description exploits the next definition.
10



Definition 8. A Discrete Markov Decision Process is defined as a 5-tuple {T ,S,A, m, l}

• T ≡ {1, . . . , |T |}, is the set of time labels and |T | ∈ N is a fixed horizon.

• S ≡ {si}
|S|

i=0, where |S| ∈ N is the finite state space, with given values si.

• A ≡ {ai}
|A|

i=0, where |A| ∈ N is the finite action space, with given values ai.

• st ∈ S is the state obtained at time t ∈ T ; at ∈ A is the action obtained at time t ∈ T .

• m(st|at, st−1) is the system model, which is the probability that the state st−1 at time t−1 and action
at at time t, lead to the state st at time t.

• l(st, at, st−1) is the loss function, i.e. the function l : S ×A × S −→ R.

With respect to the DM domain, we use the following objects related to MDP.

Definition 9. As a decision rule we understand the probability π(at|st−1). The sequence of decision rules
from t = 1 up to t = |T | forms the policy.

Definition 10. The total loss function is defined by the formula L ≡
∑

t∈T l(st, at, st−1).

Definition 11. The definition of expected loss under the policy π is as follows

Eπ[l(st, at, st−1)] ≡
∑

st ,st−1∈S
at∈A

l(st, at, st−1)m(st|at, st−1)π(at|st−1)cπ(st−1), (1.6)

where cπ(st−1) is marginal probability of the state st−1.

Definition 12. The total expected loss under the policy π is defined as

Eπ[L] ≡
∑
t∈T

∑
st ,st−1∈S

at∈A

l(st, at, st−1)p(st|at, st−1)π(at|st−1)cπ(st−1), (1.7)

where the marginal probability cπ(st−1) depends on the used policy.

Definition 13. The value-function of a policy π is defined as follows

uπ(st−1) ≡ Eπ
[∑
τ∈T
τ⩾t

l(sτ, aτ, sτ−1)|st−1

]
for ∀st−1 ∈ S, (1.8)

where Eπ [l(sτ, aτ, sτ−1)|st−1] ≡
∑

aτ∈A
∑

sτ∈S l(sτ, aτ, sτ−1)m(sτ|aτ, sτ−1)π(aτ|sτ−1)cπ(sτ−1|st−1) for τ ⩾ t.

Definition 14. The optimal value-function is defined by the following formula

uπ
o
(st−1) ≡ min{

π(aτ |sτ−1)
τ⩾t

} Eπ
[∑
τ∈T
τ⩾t

l(sτ, aτ, sτ−1)|st−1

]
for ∀st−1 ∈ S. (1.9)

Definition 15. The optimal policy is defined as

πo ∈ arg min
π∈Π

uπ(s0). (1.10)

The optimal policy can be found through the usage of the backward recursion, which is also called
dynamic programming. Details about dynamic programming can be found in [16] and [19]. A more
detailed discussion of the MDP is available in [14].
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1.3 Fully Probabilistic Design of Decision Strategies

This section provides an overview of FPD theory to the extent that is sufficient for the purposes
of this work. FPD represents an extension of Bayesian DM theory, effectively generalizing the MDP
framework. For a more comprehensive explanation of FPD theory, readers can found in [9] and [10].

Below, we present exploitation of the introduced closed loop notation in the context of FPD theory.
In this work, we restrict our focus to discrete valued states and actions.

Definition 16. Behaviour of closed loop up to the finite horizon |T | ∈ N is

b ≡ (s|T |, a|T |, s|T |−1, . . . , s1, a1) ∈ B, s0 fixed (1.11)

where st ∈ S for ∀ t ∈ {0}
⋃
T and at ∈ A for ∀ t ∈ T and B denotes the set of all behaviours.

Remark 3. Thus, the behaviour b represents the sequence of consecutive states and actions in a closed
loop for given s0

Definition 17. Probability of behaviour in the closed loop is

cπ(b) ≡ cπ(b|s0) =
∏
t∈T

m(st|at, st−1)π(at|st−1) ≡ p(b)π(b). (1.12)

The transition probabilities m(st|at, st−1), modelling system in (1.12) are also referred in the literature as
the predictors especially when they result from estimation. π(at|st−1) is the decision rule see Definition 9.

Definition 18. Ideal probability of behaviour of the closed loop is defined as follows

ci(b) ≡ cπ(b|s0) =
∏
t∈T

mi(st|at, st−1)πi(at|st−1) ≡ mi(b)πi(b) (1.13)

and it describes the desired behaviours of a closed loop. mi, πi are ideal counterparts of the transition
probabilities (models) and decision rules.

Definition 19. Kullback-Leibler divergence (KLD) of probabilities f (b), g(b) on b ∈ B, |B| < ∞, where
g(b) > 0 whenever f (b) > 0, is defined as

D( f ||g) ≡
∑
b∈B

f (b) ln
f (b)
g(b)

. (1.14)

Remark 4. Kullback-Leibler divergence, as defined in (1.14), is used and studied in various areas of
mathematics, e.g. [17].

Definition 20. Optimal policy in FPD reads

πo ∈ arg min
π∈Π

D
(
cπ||ci

)
, (1.15)

where cπ and ci are defined as (1.12) and (1.13) respectively.

Theorem 2. KLD has the following additive form

D
(
cπ||ci

)
=

∑
t∈T

∑
st−1∈S

cπ(st−1)
∑
st∈S
at∈A

m(st|at, st−1)π(at|st−1)lπ(st, at, st−1). (1.16)

Proof. To see the complete proof of Theorem 2, refer to [6], page 21. □
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Definition 21. Loss function in FPD is defined with respect to selected policy, see Definition 9

lπ(st, at, st−1) ≡ ln
(

m(st|at, st−1)π(at|st−1)
mi(st|at, st−1)πi(at|st−1)

)
. (1.17)

Remark 5. FPD is specific by the dependence of the loss lπ on the policy π. This makes D
(
cπ||ci

)
nonlinear in π and the optimal policy randomized.

Theorem 3. (Solution of FPD) The optimal policy can be found using the following formulae, for t ∈ T ,

πo(at|st−1) = πi(at|st−1)
exp[−d(at, st−1)]

h(st−1)
, (1.18)

where

h(st−1) ≡
∑
at∈A

πi(at|st−1) exp[−d(at, st−1)] ≤ 1, for t < |T |, (1.19)

while h(s|T |) = 1, ∀ s|T | ∈ S and

d(at, st−1) ≡
∑
st∈S

m(st|at, st−1) ln
(

m(st|at, st−1)
h(st)mi(st|at, st−1)

)
. (1.20)

The solution is gained against the time course, starting at t = |T |, using the backward recursion.
Using decision rule, model on predictors and ideal models we can evaluate the optimal policy πo in FPD
and provide the minimum of

min
π∈Π

D
(
cπ||ci

)
= − ln h(s0) = uπ

o
(s0),

where the value function uπ is defined as (1.8).

Proof. The proof of Theorem 3 can be found in [9], where authors provides a detailed exposition in
Chapter 3. □

1.4 Preference Elicitation

In this section, we aim to introduce the preference elicitation (PE) approach to the extent sufficient
for this work. For a more detailed and in-depth insight into this field of study, refer to [11].

The reason for exploiting the preference elicitation approach is to construct the ideal pd ci in (1.15),
which reflects the preferences of the agent. Once we have ci, optimal DM policy πo can be evaluated as
shown in (1.15). The use of PE within FPD leads towards the selection of the pd cio , which represents
the agent’s incomplete preferences expressed in a non-probabilistic way. The agent’s preferences define
the set of ideal pds.

The incompletenessin the description of the preferences implies that the set Ci of ideal pds ci, acting
on B, might contain a large number of pds, potentially even infinitely many. The set Ci can be empty
as well, due to the inconsistencies in the agent’s preferences, e.g. "I do not want to pay anything for
heating, but I want it to be 25◦C during winter.".

In PE, is dealt with the non-empty set Ci, obtained by the use of reachable and reasonable preferences
or by transforming the agent’s preferences in a reasonable way to reflect his preferences while ensuring
a non-empty set Ci.

The PE principle chooses the optimal ideal pd as follows:

cio ∈ arg min
ci∈Ci

[
min
π∈Π

D
(
cπ||ci

)]
. (1.21)
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Use of this principle ensures that no other preferences or constrains are added to those expressed by the
agent.

The minimizing over cio-factors at any time t ∈ T are formally identical. Thus we minimize over one
factor of the closed-loop model, as the other optimizations are the same, i.e cio ≡ mio(s|a, s′)πio(s|a, s′), s, s′ ∈
S, a ∈ A. Thus the cio can be formally decomposed as cio ≡ mioπio , similarly to (1.12), then the optimal
ideal pd fulfills following relation

cio ∈ arg min
πi∈Π

 max
mi∈Mi

∑
a∈A

πi(a|s) exp[−d(a, s)]

 , s ∈ S, (1.22)

that exploits the form of min(D) at the considered time t, see (1.19). Using the (1.22) we can formulate
the way how to obtain the mio in following theorem.

Theorem 4. Let πi ∈ Πi define non-empty cross-section Mi. Let mi(st|at, st−1) ∈ Mi exists giving
d(at, st−1) < ∞, ∀ at ∈ A, ∀ st−1 ∈ S. Then the optimal mio-factor minimizes d(at, st−1), i.e.

mio(st|at, st−1) ∈ arg min
mi∈Mi

∑
a∈A

πi(at|st−1) exp[−d(at, st−1)] = arg min
mi∈Mi

d(at, st−1),

∀ st ∈ S,∀ at ∈ A,∀ st−1 ∈ S.
(1.23)

Proof. For the proof of Theorem 4 see [8]. □

In this part we take a closer look at finding optimal ideal πio-factor. From the nature of the FPD-
optimal πo it implies that supp(πo) ⊆ supp(πi), see (1.18).

We want guarantee that, a ∈ A is a priori excluded.

πi ∈ Πi ≡
{
πi : supp(πi) = A

}
(1.24)

The optimal ideal meeting this can be obtained using upcoming theorem.

Theorem 5. Let Πi be given by an opted k > 1 as follows

Πi ≡
{
πi : supp(πi) = A and ||πi||k < ∞

}
, (1.25)

with an assumption of |A| < ∞.
Let each πi from (1.25) define non-empty cross-section mio from (1.23). Let mi(st|at, st−1) exist such

as d(at, st−1) < ∞, ∀at ∈ A,∀st−1 ∈ S. Then the optimal ideal πio-factor is

πio(at|st−1) ∝ 1A(at) exp[−µdo(at, st−1)], µ ≡
1

(k − 1)
, (1.26)

where

do(at, st−1) ≡
∑
s∈S

m(s|at, st−1) ln
(

m(s|at, st−1)
h(s)mio(s|at, st−1)

)
⩽ d(at, st−1). (1.27)

The πio-factor is contained in (1.25).

Proof. To see proof of Theorem 5, refer to [8]. □

Remark 6. The value of k from the assumption in Theorem 5, respectively value of µ influences the
exploration rate in PE.

14



Let us now assume more specific preferences of the agent. He wants to obtain s ∈ Si and prefers use
of a ∈ Ai.

The optimal ideal πio-factor is uniquely given by the mio , symbolically written as πio ≡ πio(mio), and
by the value µ > 1. This approach ensures us that agent’s preferences are fulfilled, when mio ∈ Mi

respecting the selected preferences.
The optimal ideal rule πio(mio) then can be written in the following form:

πio(mio) ∈ arg max
mi∈Mi

∑
a∈A

ρ(a, st−1)πi(a|st−1) ≡ arg max
mi∈Mi

∑
a∈A

∑
s∈S

1Si(s)m(s|a, st−1) + w1Ai(a)

 πi(a|st−1)

(1.28)

The parameter w fulfills w ⩾ 0 and represent the importance of acting in Ai ⊂ A relatively to reaching
Si ⊂ S. The relation (1.28) has a solution if ideal setsAi,Si are "reachable", that is if ρ(a, st−1) > 0 on
a ∈ A, st−1 ∈ S.

Now we can derive the optimal value of do important for evaluating factor πio , mio and thus πo.

Theorem 6. Let supp(πi) = A, ||πi||p < ∞, p > 1, and |A| < ∞. Let the assumption ρ(a, st−1) > 0
be met. Then, the optimal ideal mio meeting (1.28) provides do(a, s), giving πio = πio(mio), as the new
function

do(at, st−1) = do(āt, st−1) + ln
[
ρ(āt, st−1)
ρ(at, st−1)

]
, āt ∈ arg max

at∈A
(ρ(at, st−1)), at ∈ A, st−1 ∈ S. (1.29)

Proof. The proof of Theorem 6 can be found in [8] □

The optimal ideal mio can now be derived giving πio via (1.28).

Theorem 7. Let m(st|at−1, st−1), at ∈ A, st−1 ∈ S, be non-uniform on st ∈ S and theorem 5. Then the
mio-factor meeting (1.28) has the form

mio(st|at, st−1) ∝ m(st|at, st−1) exp[−e(at, st−1)m(st|at, st−1)], (1.30)

defined under the assumption |S| < ∞.
The real-valued e(at, st−1) in (1.30) is the existing solution of the equation L(e(at, st−1)) = R(at, st−1),

where

L(e(at, st−1)) ≡ e(at, st−1)Λ(at, st−1) + ln

∑
s∈S

m(s|at, st−1) exp[−e(at, st−1)m(s|at, st−1)]

 , (1.31)

Λ(at, st−1) ≡
∑
st∈S

m2(st|at, st−1) > 0, (1.32)

R(at, st−1) ≡
∑
s∈S

m(s|at, st−1) ln(h(s)) + do(āt, st−1) + ln
[
ρ(āt, st−1)
ρ(at, st−1)

]
⩾ 0. (1.33)

Remark 7. For uniform pd m(s|at, st−1) on s ∈ S with |S| < ∞, the optimal mio has the form

mio ∝ exp[−e(at, st−1)o(st|at, st−1)] (1.34)

for any non-zero o(s|at, st−1), which fulfills assumption
∫

s o(s|at, st−1)ds = 0. The real-valued e(at, st−1)
is the existing solution of following equation

L(e(at, st−1)) ≡ ln
[∑

s∈S exp[−e(at, st−1)o(s|at, st−1)]
|S|

]
= R(at, st−1) (1.35)

R(at, st−1) ≡ do(āt, st−1) +
∑
s∈S

m(s|at, st−1) ln
[
h(s)ρ(āt, st−1)
ρ(at, st−1)

]
. (1.36)

Proof. Proofs of Theorem 7 and Remark 7 can be found in [8] in section 3. □
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Chapter 2

FPD with Stopping

This section exploits the theory presented in Section 1.3 and extends it by expanding the action and
state spaces by stopping related values. As a result of this extension, we needed to properly formulate
FPD to reflect stopping actions and states.

2.1 Design of the Extended Behaviour

First, we present the extension of the action space, and then we focus on the state space.

Definition 22. The newly established stopping action is denoted as ãt and it is defined as follows

ãt =

{
1 continue in generating the regular action at,
0 take the final regular action at and make an immediate change in generating actions.

(2.1)

By this immediate change in generating actions, we understand stopping the process or following another
decision rule. This mirrors the classic DM with stopping that does not continue after the stopping,
see [19], [14].

Remark 8. The newly defined stopping action is joined with the regular action, creating new extended
action space with stopping. The extended actions with stopping are then defined as

(at, ãt) for t ∈ T .

From the definition 22, it is clear that the stopping action ãt can influence all future behaviour up to
the finite horizon |T |. We have to turn our attention to the state space and its extension to incorporate
the stopping states as well.

Definition 23. The new stopping state is denoted by s̃t and is defined as

s̃t =

{
1 the DM process continues,
0 the DM is stopped.

(2.2)

In the (2.2) s̃t = 1 stands for continuation of the DM process in a way similar to the regular DM process
without stopping. Whereas s̃t = 0 represents that the process is stopped, i.e. p(st+1|st) = δ(st+1, st).

Remark 9. The newly defined stopping state is joined with the regular state in the same way as in
Remark 8, forming together extended states with stopping as

(st, s̃t) for t ∈ T ,

where st is the original state generated by the closed loop and s̃t reflects, whether the DM process has
stopped or not at time t.
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Now when we have established extended actions with stopping and extended states with stopping
we can focus on transforming of the behaviour from Definition 16.

Definition 24. The behaviour of closed loop with stopping up to the finite horizon |T | ∈ N is

b̄ ≡ (s|T |, s̃|T |, a|T |, ã|T |, s|T |−1, . . . , a1, ã1, s0, s̃0) ∈ B̄, (2.3)

where st ∈ S, s̃t ∈ {0, 1} for ∀ t ∈ {0}
⋃
T and at ∈ A, ãt ∈ {0, 1} for ∀ t ∈ T and B̄ denotes the set of

all behaviours of closed loop with stopping.

Remark 10. The extended form of Definition 17 of the closed-loop model can be rewritten as

cπ(b̄) =
∏
t∈T

m(st, s̃t|at, ãt, st−1, s̃t−1)π(at, ãt|st−1, s̃t−1). (2.4)

The model in (2.4) can be factorized in the following way

m(st, s̃t|at, ãt, st−1, s̃t−1) = m(st|s̃t, at, ãt, st−1, s̃t−1)m(s̃t|at, ãt, st−1, s̃t−1). (2.5)

We propose those individual elements of this factorization to have following forms

m(st|s̃t, at, ãt, st−1, s̃t−1) = [m(st|at, st−1)]s̃t [δ(st, st−1)]1−s̃t , (2.6)

m(s̃t|at, ãt, st−1, s̃t−1) = δ(s̃t, ãt). (2.7)

Remark 11. In equation (2.6), we omitted s̃t−1 on the right-hand side because it does not have direct
impact on the state st if the process continued, but it influences ãt and s̃t, which then directly influences
generating of the next state st. Part [δ(st, st−1)]1−s̃t represents generating of states in our process after we
decided that it should be stopped, i.e. s̃t = 0.

Remark 12. The formula (2.7) was designed in this way, because we want to have stopping under our
full control. If we take the decision to stop ã = 0 we want the process to be stopped immediately. This
specific formula could be designed in a different way, but it would lead to a different solution.

Remark 13. By using ordinary chain rule we can obtain also a different decomposition, in this work we
use the one given above (2.5) due to its closeness to the model from Definition 17.

Now we can present our extended decision rule.

Remark 14. The extended decision rule can be decomposed as

π(at, ãt|st−1, s̃t−1) = π(at|ãt, st−1, s̃t−1)π(ãt|st−1, s̃t−1). (2.8)

The first factor π(at|ãt, st−1, s̃t−1) is defined as

π(at|ãt, st−1, s̃t−1) = [π(at|st−1)]ãt [π̃(at|st−1)]1−ãt . (2.9)

It reflects the fact that after deciding to stop ãt = 0, there can be made some change in generating of
regular actions described by an optional π̃, e.g. regular actions are optimized, generated only randomly
or are fixed.

The second factor π(ãt|st−1, s̃t−1) in (2.8) represents the decision rule determining whether the pro-
cess should stop or continue. The meaning of ãt implies the form of this decision rule

π(ãt|st−1, s̃t−1) =


1 for ãt = 0 if s̃t−1 = 0,
0 for ãt = 1 if s̃t−1 = 0,
1 − q(st−1) for ãt = 0 if s̃t−1 = 1,
q(st−1) for ãt = 1 if s̃t−1 = 1.

(2.10)

This decision rule expresses, that if the process is already stopped s̃t−1 = 0 it cannot continue. Then,
there is a part which contains the so-called prolonging probability represented by q(st−1) ∈ [0, 1], which
is the optional parameter of this decision rule. It is probability to continue if the process is in the state
st−1. The values of q(st−1) should be designed in the way that reflects the willingness to stop or continue
at certain state.
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2.2 Design of the Extended Ideal Probability

Using of FPD approach requires an ideal probability of behaviour of the closed loop that represents
our preferences.

Remark 15. The extended ideal probability of behaviours of the closed loop from Definition 18 can be
written as

ci(b̄) =
∏
t∈T

mi(st, s̃t|at, ãt, st−1, s̃t−1)πi(at, ãt|st−1, s̃t−1). (2.11)

The ideal model with the stopping from (2.11) can be decomposed in the following way

mi(st, s̃t|at, ãt, st−1, s̃t−1) = mi(st|s̃t, at, ãt, st−1, s̃t−1)mi(s̃t|at, ãt, st−1, s̃t−1). (2.12)

The first factor in (2.12) is designed in a following way

mi(st|s̃t, at, ãt, st−1, s̃t−1) = [mi(st|at, st−1)]s̃t [m(st|at, st−1)]1−s̃t . (2.13)

This form reflects that the original1 ideal model is used while the process is continuing, s̃t = 1. If the
process is stopped, s̃t = 0, we switch the ideal model to a non-ideal model because the DM process has
been stopped and our preferences do not matter.

The second factor in (2.12)is in the simple form

mi(s̃t|at, ãt, st−1, s̃t−1) = δ(s̃t, ãt). (2.14)

The reasoning leading to this form is the same as in Remark 12.

Remark 16. The ideal decision rule can be factorized in similar way as decision rule in Remark 14 as
follows

πi(at, ãt|st−1, s̃t−1) = πi(at|ãt, st−1, s̃t−1)πi(ãt|st−1, s̃t−1). (2.15)

The chosen form of the first factor is

πi(at|ãt, st−1, s̃t−1) = [πi(at|st−1)]s̃t [π̃(at|st−1)]1−s̃t , (2.16)

where πi(at|st−1) is the original ideal decision rule, π̃(at|st−1) is a unspecified2 decision rule. The second
factor in (2.15) reads

πi(ãt|st−1, s̃t−1) =


1 for ãt = 0 if s̃t−1 = 0,
0 for ãt = 1 if s̃t−1 = 0,
1 − qi(st−1) for ãt = 0 if s̃t−1 = 1,
qi(st−1) for ãt = 1 if s̃t−1 = 1,

(2.17)

where the ideal probability of continuation qi(st−1) reflects the price of prolonged action.

Remark 17. The values 1 and 0 in (2.17) are correct because they satisfy one of the main restrictions
given on stopping. This restriction is that if we change the process once s̃t = 0, it cannot be undone, so
the upcoming ãτ = 0 ∀τ > t.

1Original means in the DM task without stopping.
2For instance, π̃(at |st−1) can be uniform probability.
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2.3 Evaluation of the Optimal Policy using FPD with Stopping

Finally, after the previous extension of the joint pd of behaviours and related pds, we can solve FPD
with stopping. Thus, we can present our extension of Theorem 3.

Theorem 8. (Solution of FPD with Stopping) The optimal policy in the closed-loop process with stop-
ping can be evaluated by using following form

πo(at, ãt|st−1, s̃t−1) = πi(at, ãt|st−1, s̃t−1)
exp[−d(at, ãt, st−1, s̃t−1)]

h(st−1, s̃t−1)
, (2.18)

where

h(st−1, s̃t−1) =
∑
at∈A

ãt∈{0,1}

πi(at, ãt|st−1, s̃t−1) exp [−d(at, ãt, st−1, s̃t−1)] (2.19)

and

d(at, ãt, st−1, s̃t−1) =
∑
st∈S

s̃t∈{0,1}

m(st, s̃t|at, ãt, st−1, s̃t−1) ln
(

m(st, s̃t|at, ãt, st−1, s̃t−1)
mi(st, s̃t|at, ãt, st−1, s̃t−1)h(st, s̃t)

)
. (2.20)

The above given formulas are only the extended forms of (1.19) and (1.20).
We have to add an necessary assumption, which enables us to find the solution using backward

recursion. This assumption necessary for initialization of the backward recursion is

h(s|T |, s̃|T |) = 1,∀s|T | ∈ S, s̃|T | ∈ {0, 1}. (2.21)

Proof. The proof of Theorem 8 is identical with the proof of Theorem 3, but instead of action at and
states st in Theorem 3 we deal with (at, ãt) and (st, s̃t). □

Remark 18. The assumption (2.21) is extended version of h(s|T |) = 1, ∀ s|T | ∈ S in Theorem 3.

Now we can derive functions d(•) and h(•) which are required for calculation of the optimal rule
with stopping.

If we look closely to assumption (2.21) and combine it with the fact, that already stopped process
does not develop further, i.e. s̃t = 0⇒ st = st−1. We get the following identities

h(st−1, s̃t−1 = 0) = h(st, s̃t = 0) = · · · = h(s|T |, s̃|T | = 0) = 1, for ∀ st−1 ∈ S. (2.22)

Now we move to calculation of the function d(•). We start with the evaluation of
d(at, ãt = 0, st−1, s̃t−1 = 0). For this evaluation we will be using following formulas (2.5), (2.6) and (2.7)
for extended model, (2.12), (2.13) and (2.14) for extended ideal model and finally the condition (2.22).

d(at, ãt = 0, st−1, s̃t−1 = 0) =
∑
st∈S

s̃t∈{0,1}

m(st, s̃t|at, ãt = 0, st−1, s̃t−1 = 0)

ln
(

m(st, s̃t|at, ãt = 0, st−1, s̃t−1 = 0)
mi(st, s̃t|at, ãt = 0, st−1, s̃t−1 = 0)h(st, s̃t)

)
= (2.23)

=
∑
st∈S

δ(st, st−1)δ(s̃t = 0, ã = 0) ln
(

δ(st, st−1)δ(s̃t = 0, ã = 0)
δ(st, st−1)δ(s̃t = 0, ã = 0)h(st, s̃t = 0)

)
= 0. (2.24)
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By the use of (2.7) we reduced the sum to the case when s̃t = 0, because
m(st, s̃t = 1|at, ãt = 0, st−1, s̃t−1 = 0) = 0, ∀ st ∈ S. Then, we inserted correct forms of extended model
and ideal model and we obtain last equality (2.24).

Finally with use of the condition (2.22) we can see, that

d(at, ãt = 0, st−1, s̃t−1 = 0) = 0,∀ at ∈ A, st ∈ S. (2.25)

Evaluation of d(at, ãt = 1, st−1, s̃t−1 = 0) is not necessary for the evaluation of the optimal policy,
because in evaluation of the optimal policy in (2.18) and in (2.19) is multiplied
by πi(at, ãt = 1|st−1, s̃t−1 = 0) which is as we can see in (2.16) equal to 0.

Next we evaluate d(at, ãt = 0, st−1, s̃t−1 = 1).

d(at, ãt = 0, st−1, s̃t−1 = 1) =
∑
st∈S

s̃t∈{0,1}

m(st, s̃t|at, ãt = 0, st−1, s̃t−1 = 1)

ln
(

m(st, s̃t|at, ãt = 0, st−1, s̃t−1 = 1)
mi(st, s̃t|at, ãt = 0, st−1, s̃t−1 = 1)h(st, s̃t)

)
= (2.26)

=
∑
st∈S

s̃t∈{0,1}

m(st|s̃t, at, ãt = 0, st−1, s̃t−1 = 1)δ(s̃t, ãt = 0)

ln
(

m(st|s̃t, at, ãt = 0, st−1, s̃t−1 = 1)δ(s̃t, ãt = 0)
mi(st|s̃t, at, ãt = 0, st−1, s̃t−1 = 1)δ(s̃t, ãt = 0)h(st, s̃t)

)
= (2.27)

=
∑
st∈S

δ(st, st−1)δ(s̃t = 0, ãt = 0) ln
(

δ(st, st−1)δ(s̃t = 0, ãt = 0)
δ(st, st−1)δ(s̃t = 0, ãt = 0)h(st, s̃t = 0)

)
=

=
∑
st∈S

δ(st, st−1) ln
(
δ(st, st−1)
δ(st, st−1)

)
= 0 (2.28)

Final form which we need to evaluate is d(at, ãt = 1, st−1, s̃t−1 = 1) and its final form is as follows

d(at, ãt = 1, st−1, s̃t−1 = 1) =
∑
st∈S

m(st|at, st−1) ln
(

m(st|at, st−1)
mi(st|at, st−1)h(st, s̃t = 1)

)
. (2.29)

Finally we focus on the examination of h(st−1, s̃t−1 = 1).

h(st−1, s̃t−1 = 1) =
∑
at∈A

πi(at, ãt = 0|st−1, s̃t−1 = 1) exp [−d(at, ãt = 0, st−1, s̃t−1 = 1)]+ (2.30)

+
∑
at∈A

πi(at, ãt = 1|st−1, s̃t−1 = 1) exp [−d(at, ãt = 1, st−1, s̃t−1 = 1)] = (2.31)

=
∑
at∈A

πi(at|st−1)
(
1 − qi(st−1)

)
+

∑
at∈A

πi(at|st−1)qi(st−1) exp [−d(at, ãt = 1, st−1, s̃t−1 = 1)] (2.32)

Now when we have all necessary forms of d(•), h(•) and ideal decision rule with stopping from
remark 16, we can present final for of our optimal policy:

πo(at, ãt|st−1, s̃t−1) ∝


π̃(at|st−1) for ãt = 0 if s̃t−1 = 0,
0 for ãt = 1 if s̃t−1 = 0,
πi(at|st−1)[1 − qi(st−1)] 1

h(st−1,s̃t−1=1) for ãt = 0 if s̃t−1 = 1,
πi(at|st−1)qi(st−1) exp[−d(at ,1,st−1,1)]

h(st−1,s̃t−1=1) for ãt = 1 if s̃t−1 = 1.

(2.33)
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Remark 19. In this remark we discuss how to compute the optimal rule using backward recursion used
on a selected sufficiently large time horizon |T |.

For this we will use previously derived relations. It can be seen from Theorem 8, that relation (2.19)
is inserted into relation (2.20). From that it is obvious that assumption needed for the initialization is the
one, which initializes value h(s|T |, s̃|T |).

As we can see above, if we prepare all the needed components and add the initialization step, we
can begin our backward recursion to compute the values of our functions h(•) and d(•), from which we
derive the optimal policy πo. That initialization step is the one already mentioned in Theorem 8 and has
the following form

h(s|T |, s̃|T |) = 1,∀s|T | ∈ S, s̃|T | ∈ {0, 1}.
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Chapter 3

Preference Elicitation in FPD with
Stopping

In this chapter is presented the incorporation of the PE from Section 1.4 into formalism derived in
Chapter 2. This would lead to easier work for DM designer, by removing necessity for designing ideal
probabilities mi in (2.20) and related formulas.

3.1 Algorithm for PE

For the illustration purpose we show here the overview of the algorithm we use for evaluation of mio

and πio .
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Algorithm 1 PE in FPD with stopping algorithm
1: Inputs:

• finite state space S and finite action spaceA, ideal state space Si and ideal action spaceAi

• System model m(s|a, s̄),∀s, s̄ ∈ S, a ∈ A

• Selected weight w ≥ 0, representing preferences between Si andAi

• Design horizon |T |, exploration parameter µ > 1 and an initial step for backward recursion
h(s|T |) = 1,∀s|T | ∈ S

2: Evaluation of all auxiliary functions
3: for all ∀st−1 ∈ S do
4: for all ∀at ∈ A do
5: ρ(at, st−1) =

∑
s∈S 1Si(s)m(s|at, st−1) + w1Ai(at)

6: Λ(at, st−1) =
∑

s∈Sm2(s|at, st−1)
7: end for
8: (āt) ∈ arg maxat ρ(at, st−1)
9: ρ̄ = ρ(āt, st−1)

10: end for
11: t ← |T |
12: while t > 0 do
13: Evaluation of do function
14: for all ∀st−1 ∈ S do
15: for all ∀at ∈ A do
16: do(āt, st−1) = max

[
0, maxat∈A

∑
s∈Sm(s|at, st−1) ln

(
ρ(at ,st−1)

h(s)ρ̄

)]
17: do(at, st−1) = do(āt, st−1) + ln

(
ρ̄

ρ(at, st−1)

)
18: if m(st|at, st−1) is non-uniform then

19: R(at, st−1) =
∑

s∈Sm(s|at, st−1) ln(h(s)) + do(āt, st−1) + ln
[

ρ̄

ρ(at, st−1)

]
20: L(e(at, st−1)) = e(at, st−1)Λ(at, st−1)+ln

[∑
s∈Sm(st|at, st−1) exp[−e(at, st−1)m(st|at, st−1)]

]
21: Find an existing real-valued solution e(at, st−1) in
22: R(at, st−1) = L(e(at, st−1))
23: mio(st|at, st−1) ∝ m(st|at, st−1) exp[−e(at, st−1)m(st|at, st−1)]
24: end if
25: πio(at|st−1) = exp[−µdo(at, st−1)]
26: end for
27: Normalize πio(at|st−1)
28: N(st−1) =

∑
a∈A π

io(at|st−1) exp[−do(at, st−1)]

29: πo(at|st−1) =
exp[−(µ + 1)do(at, st−1)]

N(st−1)
,∀at ∈ A

30: end for
31: h(st) = N(st−1),∀st ∈ S

32: t ← t − 1
33: end while
34: Outputs: mio , πio , πo factors

3.2 Incorporation of Preference Elicitation into FPD with Stopping

In this section we propose the way of exploiting the PE for solving FPD with stopping. The use
of PE relieve necessity of designing mi(st, s̃t|·) and πi(at|st−1). These probabilities are evaluated using
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selected preferred states Si, preferred actionsAi, weight w and exploration parameter µ as presented in
chapter 1.4.

Using presented PE we can evaluate mio(st|at, st−1) and πio(at|st−1). Those can be used for obtaining
ideal model with stopping mi(st, s̃t|·) and ideal decision rule with stopping πi(at, ãt|·) in the following
way

mio(st, s̃t|at, ãt, st−1, s̃t−1) =
[
mio(st|at, st−1)

]s̃t [m(st|at, st−1)]1−s̃t δ(s̃t, ãt) (3.1)

m(st, s̃t|at, ãt, st−1, s̃t−1) = m(st|at, st−1)δ(s̃t, ãt) (3.2)

πi(at, ãt|st−1, s̃t−1) = πio(at|st−1)πi(ãt|st−1, s̃t−1), (3.3)

where πi(ãt|st−1, s̃t−1) we designed in already presented form in section 2.2 as follows, but with slight
modification

πi(ãt|st−1, s̃t−1) =


1 for ãt = 0 if s̃t−1 = 0,
0 for ãt = 1 if s̃t−1 = 0,
1 − qi for ãt = 0 if s̃t−1 = 1,
qi for ãt = 1 if s̃t−1 = 1.

(3.4)

Remark 20. We have made a modification of πi(ãt|st−1, s̃t−1) from (2.17) and implemented it in the
following way qi(s) = qi,∀s ∈ S, as we do not want to influence our stopping decision of dynamic
programming based on previous state.

These formulas can be inserted into Theorem 8, giving us the modified version of the solution of
FPD with stopping.

πo(at, ãt|st−1, s̃t−1) = πio(at|st−1)πi(ãt|st−1, s̃t−1)
exp[−dio(at, ãt, st−1, s̃t−1)]

h(st−1, s̃t−1)
, (3.5)

where

h(st−1, s̃t−1) =
∑
at∈A

ãt∈{0,1}

πio(at|st−1)πi(ãt|st−1, s̃t−1) exp
[
−dio(at, ãt, st−1, s̃t−1)

]
(3.6)

and

dio(at, ãt, st−1, s̃t−1) =
∑
st∈S

s̃t∈{0,1}

m(st, s̃t|at, ãt, st−1, s̃t−1) ln
(

m(st, s̃t|at, ãt, st−1, s̃t−1)
mio(st, s̃t|at, ãt, st−1, s̃t−1)h(st, s̃t)

)
. (3.7)

It can be easily derived that formulas from the above leads to the equivalent formula (2.33) for
πo(at, ãt|st−1, s̃t−1).

3.3 Bayesian Parameter Estimation

The FPD and PE inherently rely on knowledge of the model of system for evaluation of the optimal
policy. However, in cases where our knowledge of the system’s model is insufficient, we must estimate
it. One of the methods suitable for the estimation of the system model is Bayesian parameter estimation,
which we use in following simulation section. This method is used to illustrate practical use of our
proposed solutions from Section 3.2 on real-life example like controlling the system while estimating it.
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In this work we use standard version of this estimation which is sufficient for estimation of un-
known but time-invariant values of transition probabilities of the system Θ. Obtained parametric model
m(st|at, st−1,Θ) is from exponential family, refer to [1]. Counting the observed sequences of st−1 ∈

S, at ∈ A and st ∈ S forms the sufficient statistics for learning the unknown transition probability
Θst |at ,st−1 ≡ m(st|at, st−1,Θ) for st, st−1 ∈ S, at ∈ A. For further details about Bayesian approach to
estimation of the unknown system, see [13].

The exploratory aspect of FPD enables us to utilize a certainty-equivalent policy, employing point
estimates of transition probabilities rather than the use of probabilities themselves.

Diagram of PE in FPD with Stopping

Figure 3.1: Diagram of our proposed solution used in Simulations. User provides external settings to
the Agent. With letter H we understand value of horizon. With red color we distinguished parts that was
modified or added to the standard solution of FPD.
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Chapter 4

Simulations

This chapter is dedicated to the presentation of illustrative examples of FPD with stopping using PE
as presented in Chapters 2 and 3. Through a series of designed experiments, we aim to demonstrate
the performance of our proposed method in different settings. The subsequent sections will provide a
detailed account of the experimental setup, simulated unknown system, and a thorough analysis of sim-
ulated experiments. The objective is to offer a comprehensive evaluation of the method’s effectiveness,
considering its strengths, limitations, applicability, and its direct comparison with standard FPD using
PE with fixed horizon. By systematically comparing its performance metrics, we seek to provide an
objective and transparent assessment of our proposed solution. What we understand as performance
metrics is presented in the following Section 4.2.

4.1 Design of the Simulation

In this section, we outline the methodology used for generating the unknown transition probabilities
of the system that we are aiming to influence in the way to obtain preferred states and using preferred
actions. For the purposes of gaining the unknown transition probability of the system, we generated
10000 observations yt using following normal linear model

yt = 0.99yt−1 + 0.05at − 0.125 + 0.05et,

where et represents white noise with zero mean and unit variance, yt−1 represents previous data point
and at represents selected action. The actions at were generated using a uniform distribution over the set
{0, 1, 2, 3, 4}. The generation of the data was initialized to y0 = 5.5. All generated data points yt were
then grouped into 11 intervals of exactly the same length with empty intersections. Using this approach
we have discretized generated continuous data into 11 possible states.

After this discretization, we added a 1 to 3-dimensional occurrence table of shape 11 × 5 × 11 for
each observation of st, which was influenced by action at and the previous state st−1. For practical
and numerical purposes, we did not initialized this 3-dimensional occurrence table to 0 values, but we
initialized it to values of 10−5 to avoid any numerical problems, such as division by zero etc. Finally,
the unknown transition probabilities were estimated using the occurrence table, which was normalized
to form probabilities, cf. 3.3.

All experiments were run on the simulated system created in this way, and all experiments were
initialized to the same state and action.

In the experiments, we used the Monte Carlo method to attain a more comprehensive and complex
overview of overall performance of our proposed method. The Monte Carlo method is a powerful tool
to simulate diverse scenarios through random sampling. For more in-depth information about Monte
Carlo method and its use in various fields of study we refer to [18].
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4.2 Performance Metrics

In this section, we discuss the key performance metrics used to rigorously evaluate the effectiveness
of our proposed method. An understanding of these metrics is important in assessing performance of the
method across various dimensions. Each metric serves as a quantitative measure and provides insight
into specific aspects of the method’s functionality.

The first performance metric we are going to use is the amount of obtained preferred states. This
would be closely tied to comparing with the amount of used preferred actions. This metric is easily
comparable between our proposed method and regular FPD using PE with same settings. We also
compare the counts of realized preferred states and used actions, visualized using histograms.

The second performance metric is a computational time. The time needed for the evaluation of a
single run of the experiment. In all our presented examples we have made 50 Monte Carlo repetitions of
single runs for each method, both with and without stopping, under the same initial settings. This metric
illustrates the time-effectiveness of our dynamic method with stopping compared with the standard one
without stopping. This allow us to evaluate the quality of our solution with respect to computational
and time costs. We tried to maintain the same computational conditions for every single experiment.
The experiments were conducted on a server PC built to maintain stable long-term computing. No other
active processes were running on the PC during the computation of the experiments.

The last observed performance metric was the time at which the dynamic programming stopped. The
maximum value of this variable can be equal to the value of the design horizon |T | and the minimum
value is equal to 1.

4.3 Input Settings

Here we would describe all input variables, which can be selected at the beginning of the experiment.
The first variable which can be selected is the number of MC runs, which represents the number of times
the single experiment is repeated. The second one is the value of horizon |T |, which influences length of
the evaluation of the optimal decision rule in PE and in FPD with stopping as well. Then follows settings
of variables mentioned in PE as Si,Ai,w, µ, see section 1.4. The next variable, which needs to be filled
is the length of the single experiment, in other words how many cycles of observing state and generating
action, will be done. The last variable is value of qi, which represents probability of continuation of the
dynamic programming, cf. section 3.2.

The length of the simulation was for all presented experiments equal to 300. The number of Monte
Carlo repetitions was for all experiments set to 50. Choices of other input settings are described at
respective experiments.

4.4 First Experiment

In this experiment we were focusing on a scenario with given preferences only on the state space,
with no preferences put on the selection of actions. Our preferred states were Si = {4, 5, 6} and Ai =

{0, 1, 2, 3, 4} = A. Other related parameters were selected as follows µ = 1,w = 0.005 and |T | = 50.
Probability of continuation in ideal stopping probability was set to qi = 0.85.

First, we will examine histograms of states and actions in our experiment.
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(a) Histogram of actions in the experiment with no pre-
ferred actions selected.

(b) Histogram of states in the experiment with preferred
states Si = {4, 5, 6}.

Figure 4.1: Experiment with preferred states Si = {4, 5, 6} and no preferred actions Ai = A. The input
settings were µ = 1, w = 0.005, qi = 0.85, |T | = 50 and the length of the simulation was 300. Counts for
the method with fixed horizon with no stopping are darker, counts for the method with dynamic horizon
with stopping are lighter.

In Figure 4.1a it can be seen that none action was dominantly selected over the other actions. How-
ever in the case with fixed horizon actions 3 and 4 were slightly more used than other actions. That
indicates that these actions lead to generating preferred states 4, 5, 6. In the case with dynamic horizon
the actions are distributed relatively similarly. But because we did not have any specific action selected
as preferred, we will focus on counts of observed preferred states Si = {4, 5, 6}. For the fixed horizon
preferred states were observed 149 time in total. That is approximately 49.7 % of all states. When
we compare it with our proposed method with dynamic horizon we observed preferred states 140 times.
That means that in this case 46.7% of all states were preferred states. That is drop in performance around
6.0% in the number of realized preferred states. It is the cost for a significant spearing of time. It is seen
on the change in time performance.

Type of Horizon Median Mean Std. Deviation Max. Min.
Fixed 44.02 43.94 1.68 47.31 42.11

Dynamic 20.54 20.46 1.08 22.42 17.99

Table 4.1: Statistics of computational time (in seconds) for a single run of the experiment with the input
settings Si = {4, 5, 6},Ai = {0, 1, 2, 3, 4}, µ = 1,w = 0.005, qi = 0.85, horizon |T | = 50, length of the
simulation 300, made from 50 repeated runs.

From the values in Table 4.1 we can see that our dynamic method did very well in comparison
with the method with fixed horizon. Whether we compare mean or median values we can see drop in
computational time around 53%, which is really a significant improvement. When we compare other
statistics like standard deviation, maximum or minimum, it can be seen that even in these statistics our
dynamic method is better.

It is up to every designer or decision maker, what is more important for him, whether quality of final
results or speed of computational costs. The ideal probability of continuation qi controls this balance.

Finally we display the histogram of stopping time in the first experiment.
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Figure 4.2: Histogram of stopping time of the experiment using input settings Si = {4, 5, 6},Ai =

{0, 1, 2, 3, 4}, µ = 1,w = 0.005, qi = 0.85, horizon |T | = 50, length of the simulation 300, made from 50
repeated runs.

It shows that the horizon was never reached and the majority of runs stop dynamic programming
before 20 iterations.

4.5 Second Experiment

In this experiment we were considering both preferred states and preferred actions. Specifically in
this experiment our preferred states was Si = {5, 6} and Ai = {3}. Other input parameters were as
follows µ = 1,w = 0.05, |T | = 50, qi = 0.85 and length of the simulation was 300.

It is obvious, that evaluating the performance metrics in this experiment is more difficult, because in
this experiment unlike the first experiment there is selected preferred action as well. The preferences on
actions might contradict the preferences put on states. The weight w balances them.

The histograms of actions and states of the second experiment are shown below.
In Figure 4.3a we can see that for both methods action 3 was most used as we would expect with

respect to PE. The method with fixed horizon used action 3 in more than one third of times, 103 time to
be more precise. Our designed method with dynamic horizon used action 3 87 times.

In Figure 4.3b it can be seen that neither of both methods did especially well. The use of standard
method with fixed horizon lead to observation of 71 times of state 5 and 30 times 6, which is around one
third of all observed states. The use of our proposed method with dynamic horizon lead to observation
of 58 times of state 5 and 18 times of state 6. That is drop in the realized preferred states by 25%.

Now we take closer look at the computational time performance of the second experiment.
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(a) Histogram of actions in the experiment with pre-
ferred actionAi = {3}.

(b) Histogram of states in the experiment with preferred
states Si = {5, 6}.

Figure 4.3: Experiment with preferred states Si = {5, 6} and with preferred action Ai = {3}. The input
settings were µ = 1, w = 0.05, qi = 0.85, |T | = 50 and and the length of the simulation was 300. Counts
for the method with fixed horizon with no stopping are darker, counts for the method with dynamic
horizon with stopping are lighter.

Type of Horizon Median Mean Std. Deviation Max. Min.
Fixed 40.39 40.54 0.41 41.44 40.15

Dynamic 21.92 21.65 1.22 24.40 19.29

Table 4.2: Statistics of computational time (in seconds) for a single run of the experiment with the input
settings Si = {5, 6},Ai = {3}, µ = 1,w = 0.05, qi = 0.85, horizon |T | = 50, length of the simulation 300,
made from 50 repeated runs.

In Table 4.2 we can see that in this experiment our proposed method of dynamic horizon lead to
saving of computational time by around 45%, which is comparable with results in Table 4.1 from the
previous experiment.

Last we show the histogram of the stopping time in the second experiment.
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Figure 4.4: Histogram of stopping time of the experiment using input settings Si = {5, 6},Ai = {3}, µ =
1,w = 0.05, qi = 0.85, horizon |T | = 50, length of the simulation 300, made from 50 repeated runs.

In Figure 4.4 we can see that histogram of stopping time ressembles the exponential distribution and
again the vast majority of the number of dynamic programming steps is below 20.

4.6 Third Experiment

In this experiment we focus on studying of influence of values qi representing ideal probability of
continuation, one of the key parameters in selection of dynamic horizon. We wanted to observe the
influence of this parameter on computational time, stopping time and overall performance, such as the
number of preferred states and actions realized. Other input settings are fixed atSi = {3},Ai = {1, 2}, µ =
1,w = 0.1 and horizon |T | = 50.

For the comparison of computational time for varying value of qi see Table below.
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Type of Horizon qi Median Mean Std. Deviation Max. Min.
Fixed – 37.62 37.87 0.85 41.44 37.54

Dynamic 0.85 19.70 19.43 1.23 21.73 16.94
Dynamic 0.90 25.40 25.09 1.83 28.22 22.19
Dynamic 0.95 40.73 39.81 3.31 44.73 32.86

Table 4.3: Statistics of computational time (in seconds) for a single run of the experiment with the input
settings Si = {3},Ai = {1, 2}, µ = 1,w = 0.1, horizon |T | = 50, length of the simulation 300, made from
50 repeated runs. The values of varying qi are captured in the table.

In Table 4.3 it can be seen steadily increasing trend in computational time with increasing qi, which
is understandable. We can see that for qi = 0.95 computational time in median and in mean got over the
computational time of method with fixed horizon as the stopping brings computational overheads.

Now we are take a look at how did the histograms of actions and states changed based on the selected
values qi.

(a) Histogram of actions in the experiment with pre-
ferred actionAi = {1, 2}.

(b) Histogram of states in the experiment with preferred
state Si = {3}.

Figure 4.5: Experiment with preferred state Si = {3} and the preferred actions Ai = {1, 2}. The input
settings were µ = 1, w = 0.1, qi = 0.85, |T | = 50 and the length of the simulation was 300. Counts for
the method with fixed horizon with no stopping are darker, counts for the method with dynamic horizon
with stopping are lighter.
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(a) Histogram of actions in the experiment with pre-
ferred actionAi = {1, 2}.

(b) Histogram of states in the experiment with preferred
state Si = {3}.

Figure 4.6: Experiment with preferred state Si = {3} and preferred actions Ai = {1, 2}. The input
settings were µ = 1, w = 0.1, qi = 0.90, |T | = 50 and the length of the simulation was 300. Counts for
the method with fixed horizon with no stopping are darker, counts for the method with dynamic horizon
with stopping are lighter.

(a) Histogram of states in experiment with preferred
state Si = {3}.

(b) Histogram of states in experiment with preferred
state Si = {3}.

Figure 4.7: Experiment with preferred state Si = {3} and preferred actions Ai = {1, 2}. The input
settings were µ = 1, w = 0.1, qi = 0.95, |T | = 50 and the length of the simulation was 300. Counts for
the method with fixed horizon with no stopping are darker, counts for the method with dynamic horizon
with stopping are lighter.

From Figures 4.5a, 4.6a and 4.7a we can see that histogram of states observed when the dynamic
horizon method was used were getting closer and closer to histogram of states generated using the stan-
dard fixed horizon method. That development makes sense and behaves as we could have expected.
When qi = 1 the method with dynamic horizon becomes the method with fixed horizon. In Figure 4.7b
we can see, that with the value of parameter qi = 0.95 counts of preferred state Si = {3} in dynamic sce-
nario got almost same number as in standard method, that was a bit surprising and probably was caused
by randomness in simulation. However this result suggests that with qi = 0.95 observed results reaches
comparable results with method with fixed horizon. This increase in the performance of the number of
observed preferred states lead to the increase in the computational time, surpassing computational time
of the method with fixed horizon.

However development of the generated actions did not change in the same way as the states did and
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we can not see any regular dependence. Only fact that we can see from the displayed figures is that our
proposed dynamic method does not put the same relevance or importance on the preferred actions as the
standard method with fixed horizon.

Finally we are going to check the development of the stopping time based on varying qi.

Figure 4.8: Histogram of stopping time of the experiment using input settings Si = {3},Ai = {1, 2}, µ =
1,w = 0.1, qi = 0.85, horizon |T | = 50, length of the simulation 300, made from 50 repeated runs.
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Figure 4.9: Histogram of stopping time of the experiment using input settings Si = {3},Ai = {1, 2}, µ =
1,w = 0.1, qi = 0.90, horizon |T | = 50, length of the simulation 300, made from 50 repeated runs.
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Figure 4.10: Histogram of stopping time of the experiment using input settings Si = {3},Ai = {1, 2}, µ =
1,w = 0.1, qi = 0.95, horizon |T | = 50, length of the simulation 300, made from 50 repeated runs.
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In the Figures 4.8, 4.9 and 4.10 it is displayed increasing trend in stopping time as we expected. The
stopping time in the experiment with qi = 0.95 our dynamic method reached peak in histogram around
stopping time equal to 5. Displayed histograms are not that smooth, which is due to the insufficient
number of repetitions of experiment. Higher number of repetition would solve this problem, but it was
not within our technical capabilities to provide such a large number of independent evaluations.

As we can see from this experiment with selected values of qi with higher values we got better
results in form of number of observed preferred states, but for the price of increasing computational
time. When with higher values of qi getting closer to value 1, benefits of our proposed method in form
of faster computational time blurs away.

4.7 Discussion

In this section, we summarize experience from all the previously presented simulations that are
representative examples, including relevant details about the simulations that we tested but not presented
in this work.

Our proposed method did relatively well in the first experiment, it lead to reasonable decrease in
number of observed preferred states, but significant boost in computational time. Decrease in compu-
tational time was our main goal. At the same time, we wanted to maintain the quality of the decisions
to achieve comparable results in meeting the preferences placed on states and actions. This goal was in
this specific experiment satisfied.

In the second experiment we presented results, that was not so pleasant as the results from the first
experiment, because of the drop in number of observed preferred states in comparison with standard
method. Boost in computational time was still very good, around 45% in average. So maybe in this
specific experiment it would be better to select higher value of qi, to increase the reached quality with
respect to observed states in our proposed dynamic method. But this decision what is more important,
if time and computational costs or quality of observed states, is up to decision maker who is solving the
specific problem.

The third experiment was focused on the parameter qi and its influence in our proposed dynamic
method. The presented results confirmed that with the increasing value of qi the observed results of the
dynamic method were getting closer to the standard method with fixed horizon. That trends seems to be
reasonable to use.

When we take a look at the second and the third experiment it seems, that our proposed dynamic
method cares less about the preferred actions, as in all results from these experiments our dynamic
method used preferred actions less often than the standard method. We tried to briefly check this hy-
pothesis on several other experiments with selected both preferred actions and states. They seem to
support it. The samples of histograms of actions are displayed below, with specific settings of each
experiment described are in Figure 4.11.
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(a) Histogram of actions in experiment with preferred
state Si = {5} and preferred actions Ai = {3, 4}. The
input settings were µ = 1, w = 0.05, qi = 0.90, |T | = 50
and the length of the simulation was 300.

(b) Histogram of actions in experiment with preferred
state Si = {6} and preferred action Ai = {1}. The input
settings were µ = 1, w = 0.05, qi = 0.85, |T | = 50 and
the length of the simulation was 300.

Figure 4.11: Histograms of generated actions in selected experiments. Counts for the method with fixed
horizon with no stopping are darker, counts for the method with dynamic horizon with stopping are
lighter.

The choice of the value |T | is also worth discussion. The critical reader might suggest that all
previously mentioned experiments were done on the horizon with value |T | = 50 and the stopping
occured much earlier. How would the proposed dynamic method be doing in the experiment with smaller
horizon? These type of experiment and results are commented here, first from the computational time
perspective and then from the quality of performance perspective. We show two examples how does
both methods performed in cases with |T | = 25 and |T | = 35.
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Figure 4.12: Histogram of states in experiment with preferred state Si = {3} and preferred actions
Ai = {1, 2}. The input settings were µ = 1,w = 0.1, qi = 0.80, |T | = 25 and the length of the simulation
was 300. Counts for the method with fixed horizon with no stopping are darker, counts for the method
with dynamic horizon with stopping are lighter.

Comparing Figure 4.12 with the results of the third example, namely, Figures 4.5b, 4.6b and 4.7b,
it can be seen that drop in performance of both standard and dynamic method due to the selection of
insufficiently large horizon.

Now we are going to present results from the experiment with not yet presented settings, showing
its histograms of states.

(a) Histogram of states in the experiment with |T | = 25. (b) Histogram of states in the experiment with |T | = 35.

Figure 4.13: Histograms of generated states in experiments with different |T |. The input settings of the
experiment were Si = {5},Ai = {3, 4}, µ = 1,w = 0.1, qi = 0.90 and the length of the simulation was
300. Counts for the method with fixed horizon with no stopping are darker, counts for the method with
dynamic horizon with stopping are lighter.
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In Figure 4.13 we can see significant increase in quality of decisions, due to the increase of the used
horizon. It also confirms that the used value of horizon equal to |T | = 50 was sufficiently large. We
checked that larger |T | did not provide any noticeable improvement in the quality of the made decisions.

Finally in following table we present computational times of previously displayed experiments.

Type of Horizon |T | Median Mean Std. Deviation Max. Min.
Fixed 25 23.31 22.94 1.42 25.51 20.99

Dynamic 25 28.57 28.84 2.33 33.76 24.19
Fixed 35 32.15 32.00 2.07 37.69 29.33

Dynamic 35 30.31 30.08 2.78 35.21 24.66

Table 4.4: Statistics of computational time (in seconds) for a single run of the experiments with different
values of horizon with the input settings Si = {5},Ai = {3, 4}, µ = 1,w = 0.1, qi = 0.90, length of the
simulation 300, made from 50 repeated runs. The values of varying |T | are captured in the table.

Finally, it is worth stressing, that when the selected preferences are unreasonable, then the standard
design can not work very well and do not provide any good results. Similarly, our proposed method can
not work well under these conditions.

Examples of such unreasonable preferences consisted of preferring states with transition probabili-
ties close to zero (in our system, the states 9, 10) or selecting two separated groups of preferred states
like Si = {1, 2, 5, 6}.

Summary of Discussion

• Our proposed dynamic horizon method significantly improves computational time, often with a
reasonable compromise in the achieved decision quality.

• The increasing the value of qi made our dynamic method’s results closer with the standard method
with a fixed horizon.

• The dynamic method appeared less restrictive towards preferred actions in comparison to the
standard method.

• The experiments with shorter horizons demonstrated that insufficiently large horizons deteriorate
the performance quality of both methods.

• The unreasonable preferences cannot be met both the proposed dynamic method and the standard
method.
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Chapter 5

Conclusion

In this work, we have studied dynamic decision making with stopping using the FPD theory. The in-
corporation of the stopping into FPD is our main non-trivial contribution. FPD closed-loop formulation
has a wide range of applications and any generalization of it will extend the applicability range.

Dynamic DM processes with stopping are very important part of the sequential DM area. As a
possible examples of problems, which can be solved by our proposed FPD with stopping, is the famous
Secretary Problem or any pharmaceutical testing of a new drug. In both those examples, the main task
is to take a decision to stop in a right time, not too early, not too late. Our proposed solution can be used
for evaluation of the optimal policy on all sorts of problem containing some form of the stopping, if can
be expressed in the terms of closed-loop DM with stopping.

In the work, firstly, we have introduced the reader to the theory and notation necessary for the
sufficient understanding of this work. Presented theory contained basics of probability theory, Markov
Decision Process, Fully Probabilistic Design of Decision Strategies and Preference Elicitation.

Then, we have presented our proposition of extending the action and state space by stopping states
and stopping actions. Those stopping states and actions represent indicators whether the DM process
continues or is already stopped. These extended action and state spaces were after used for formulat-
ing the solution of DM processes with stopping using the extended form of FPD. This solution was
formulated in a new theorem used for evaluation of the optimal policy in closed-loop process with stop-
ping. This solution was then applied in the combination with preference elicitation (PE), which relieved
necessity to design part of the ideal pds. The only necessary value to be designed, in addition to the
values related to PE, is the ideal pd of continuation in dynamic programming, denoted qi throughout this
work. The outcome of this solution is the optimal rule, which then is used by agent to make a decision
(generate action) to influence the system into the way agent prefers.

To demonstrate usability of our proposed method of solution in practice, we have implemented and
performed a range of simulation experiments. In these experiments, to mimic the real-world problem,
we have used Bayesian parametric estimation to iteratively update the estimates of the model of the
unknown system. We have studied the impact of our proposed dynamic solution on the overall quality
of the decisions taken and the impact on the time cost. We have compared our dynamic method with the
standard method using standard FPD with PE. Our proposed method performed relatively well and in a
number of experiments it provided a significant decrease in computation time at the cost of reasonable
decrease in quality of taken decisions.

We see these results promising and worth of an effort for further improvements.
A more detailed and deeper study of selection the value of horizon |T | and value qi which are now

inserted into the solution at the beginning based on prior expert knowledge, is needed. Designing a
solution that automatically selects these values could lead to a more robust and general method.

Another possible extension of this work could be to use PE in the form of a dialogue with the user,
rather than using time-invariant preferences as we did. This is because the user’s preferences may change
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during the DM task itself, and the dialogue can catch up with this development. This approach to PE
was discussed in [8].

A direct comparison between our proposed approach and other dynamic methods on several different
examples would be very useful for any future implementation. Experimental testing of the proposed
solution on some real-world data could also help to identify advantages and limitations in real-world
performance.

The most promising seems to be reformulation of FPD with PE and partial stopping. For instance,
switching off estimation can spare computation time and prevent overfitting in a various models.
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[18] M. Virius. Metoda Monte Carlo. Vydavavatelství ČVUT, 2010.
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