Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Microelectronics

The Functional and Formal Verification of
The Jump Controller Block for RISC-V
Processor

Comparison of Functional and Formal Verification

Jiri Sindelar

Supervisor: prof. Ing. Jifi Jakovenko, Ph.D.
Field of study: Electronics and Communications
Subfield: Electronics

January 2024

ii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
(™\

Student's name: Sindel&F JiFi Personal ID number: 483575

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Microelectronics

Study program: Electronics and Communications

Specialisation: Electronics
N\ J
Il. Master’s thesis details
e N

Master’s thesis title in English:

Functional and Formal Verification of Jump Controller Block for RISC-V Processor
Master's thesis title in Czech:
Funké&ni a Formalni Verifikace Bloku Jump Controller pro RISC-V Procesor

Guidelines:

1. Study techniques, procedures and tool options for functional verification of digital circuits.

2. Study the possibilities of applying automated verification of formal assertions for the verification of digital circuits.
3. On an appropriate block, demonstrate the use of dynamic and formal verification techniques.

4. Compare and analyze the results achieved and evaluate the benefits of automated formal verification.

Bibliography / sources:

Seligman Erik: Formal Verification: An Essential Toolkit for Modern VLSI Design (ISBN: 9780128007273)
https://www.diva-portal.org/smash/get/diva2:872375/FULLTEXTO1.pdf
https://dspace.vutbr.cz/handle/11012/189360

https://dspace.cvut.cz/handle/10467/100975

Name and workplace of master’s thesis supervisor:

prof. Ing. Jifi Jakovenko, Ph.D. Department of Microelectronics FEE

Name and workplace of second master’s thesis supervisor or consultant;

Date of master’s thesis assignment: 14.02.2023 Deadline for master's thesis submission: 09.01.2024

Assignment valid until: 22.09.2024

prof. Ing. Jifi Jakovenko, Ph.D. prof. Ing. Pavel Hazdra, CSc. prof. Mgr. Petr Pata, Ph.D.

L Supervisor's signature Head of department’s signature Dean'’s signature

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank prof. Ing. Jifi
Jakovenko, Ph.D. for being the supervisor
of this work. I also thank my colleagues at
ASICentrum s.r.o. for their support, time,
and patience, without which I would not
be able to complete this work. Namely,

they are Ing. Lubos$ Hradecky and Ing.

Jakub Stastny, Ph.D. Lastly I want to
thank my family for support during the
time of my studies.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

In Prague, 09. January 2024

Abstract

In this work, we will present two funda-
mentally different methods used for the
verification of the digital circuit design.
These methods are functional verification,
which uses time simulation as the source
of data for verification, and formal veri-
fication, which interacts with the circuit
design as if it were a mathematical for-
mula to be solved. We will demonstrate
their use in the verification of the design of
the RISE branch predictor block created
by Martin Lastovka in his bachelor thesis.
In the end, we will report and discuss the
flaws found in the design and evaluate
the strengths of the methods used. The
flaws found include wrong updates and
access to prediction tables, which cause
the design to misbehave.

Keywords: verification, digital
verification, UVM, formal verification,
function verification

vi

Abstrakt

V této praci predstavime dvé me-
tody verifikace ndvrhu ¢islicovych obvodi,
které k tomuto problému pristupuji z
riznach smérd. Témito motodami jsou
funkéni verifikace, kterd pouzivd somu-
laci pro ziskdni podklada pro verifikaci,
a formalni verifikace, ktera pristupuje k
navrhu obvodu jako by se jednalo o mate-
maticky vzorec, ktery je potireba vyresit.
Jejich pouziti predvedeme na verifikaci
navrhu obvodu prediktoru skoku RISE,
ktery navrhl a vytvoril Martin Lastovka
v jeho bakalaiské praci. Na konci sepi-
seme vysledky obou verifika¢nich metod a
provedeme diskuzi nalezenych chyb, které
zpusobuji chybné chovani navrzeného ob-
vodu. Také zhodnotime prinos obou me-
tod, které jsme pouzili. Nalezené chyby
zahrnuji chybnou dpravu a pristup k pre-
dik¢énim dattm, které zpusobuji to, Ze na-
vrh se nechova podle oc¢ekavani.

Klicova slova: verifikace, digitalni
verifikace, UVM, formalni verifikace,
funkéni verifikace

Contents
Abbreviations 1
Introduction 3
Motivation 3
Objective
1 Methods
1.1 Functional verification.......... 5]
1.1.1 Simulation output........... (§
1.1.2 Self-checking tests...........
1.1.3 Constrained random stimuli .. [7
1.1.4 Blackbox vs whitebox (change
of perspective with assertions). . ..
L15UVM B ..o
1.2 Formal verification
1.2.1 Formal equivalence checking
(FEC) ..o
1.2.2 Formal property verification
(FPV) .ot
1.2.3 Complexity

vii

1.2.4 Languages

1.3 Coveragecoooiuvnn..

2 Verified design (RISE)

2.1 Prediction method

3 Verification plan

3.1 Design requirements

3.2 Design verification

3.2.1 Expected behavioral scenarios
for verification

3.2.2 Formal methods (JasperGold)

3.2.3 Functional (UVM)

4 Implementation

4.1 Formal (Jasper Gold)

4.2 Functional (UVM)

421tb top ...

422 test_base

423 m_cfg.........o o

424m env

4.2.5m scoreboard 6.3 Design flaws

426 m_virt_seqr 37| 6.4 Next steps
4.2.7 mipredictor Bibliography @l
4.2.8 m_ control_agent
A OBI - implemented functionality
4.2.9 m_memory_agent 38|
B Table of verification methods used
for requirements 59
4.2.10 m_ processor_agent 139
N A 1 =
5 Results 43
5.1 Results of tests
5.1.1 Formal (Jasper Gold).......
5.1.2 Functional (UVM)
5.2 Discussion of results...........
5.2.1 Formal (Jasper Gold).......
5.2.2 Functional (UVM)
6 Conclusion 51
6.1 Implemented files

6.2 Comparing the verification
approaches.....................

viii

Figures

1.1 Simplified block diagram of

functional verification environment. [6l
1.2 Block diagram of UVM
environment [2].

1.3 Adoption of formal techniques in
different years [4]................

1.4 Adoption of formal techniques for
different design sizes [4].

2.1 Block diagram of RISE by Martin
Lastovka. [7]

2.2 Block diagram of RISE integration
by Martin Lastovka. [7]

4.1 Block diagram of implemented

formal testbench.
4.2 Block diagram of implemented

UVM testbench. 35
5.1 Trace of failing design assertion

"asrt_table _read"................

5.2 Trace of failing design assertion
"ASRT RISE _TOP_KILL SIM ASRT"

ix

5.3 Simulator output with captured
wrong DUT predictor line update
and assigning of initial predictor
FSM value to the already initialized
line. (The trace can be also found as
attached file: screen-

shots/exp__table_wrong _state _transition.png

5.4 Simulator output with captured
scenario, where DUT updates the
wrong line of the FSM predictor
table. (The trace can be also found
as attached file: screen-
shots/exp__table__write__wrong_line.png

Tables

2110 signalsof RISE

2.2 Values of design parameters used
for verification. 21]

6.1 Table comparing different
attributes of used verification
methods. 52

A.1 List of OBI signals showing which
of them are used by the design and
tie-off values of unused signals. The
dynamic tie-off value means that
single value can’t be assigned to
signal and we act as if value of those
signals is always correct

A.2 Requirement list of the OBI
protocol with information about
which are relevant for our design. .

B.1 List of requirements and which
verification methods were used to
verify them. (The corresponding
columns are marked by 'X’)

Abbreviations

ABV
CEX
DUT
FEC
FPGA
FPV
FSM
GUI
HDL
iff
LSBs
MSBs
OBI
RAM
RN
uvC
UVM

Assertion-Based Verification
Counter-EXample

Design Under Test

Formal Equivalence Checking
Field-Programmable Gate Array
Formal Property Verification
Final State Machine

Graphical User Interface
Hardware Description Language
if and only if

Least Significant Bits

Most Significant Bits

Open Bus Interface

Random Access Memory
Random Number

Universal Verification Component
Universal Verification Methodology

Introduction

In this work, we will use two different verification methods to verify the given
design. We will call this the design under test (DUT). The two methods
we will use are formal verification and functional verification. Both of these
methods work by approaching the verification problem very differently.

. Motivation

When we create a new digital chip design, we need to check if the design is
compliant with our defined specification. This process is called verification,
and the design that is verified is called DUT. If we skip the verification process,
the design can cause security or safety hazards based on the application. There
are two approaches for verification (mentioned above). Both of these methods
have their strong and weak sides, coming from their different approaches, and
generally complement each other. Because of that, it is almost always more
efficient to use both of the verification methods in a reasonable ratio.

Functional verification uses the simulation of the DUT in the time domain
and needs the verification environment together with the behavioral model of
the DUT to be able to decide if the DUT behaved correctly during simulation.
On the other hand, formal verification needs only the DUT and a set of
properties to verify them. They both approach the problem from different
sides. The functional properties, defined by the verification engineer, are
designed to specify the good behavior of the design, and when proven by the
formal methods, they tell us that no allowed stimulation of the design will
cause it to behave poorly. Opposite to that is functional verification, where

3

the verification engineer specifies the test to stimulate the design in a way
that would cause poor behavior. This also means that the test is designed to
catch poor behavior.

[] Objective

The objective of this work is to use the verification methods mentioned above
to verify the correct behavior of the design created by Martin Lastovka in
his bachelor thesis 77. We will create both formal and functional verification
environments to use both of the methods in the verification scopes better
suited for them. Because we do not have the design specifications explicitly
provided, we will need to make a list of design specifications based on Martin’s
description of functions from his thesis. During the verification process, we
will monitor the effort spent on each of the methods and then compare them.
We can’t expect both methods to be effective or applicable for the verification
of all specifications. Because of that, we will only use each of them to verify
those specifications that are compatible with them. The final goal of this
work is to say if the design is behaving correctly and obeying all of the
specifications, or if the design has any flaws that would cause it to behave in
a way that would violate the specifications. If we find any cases where design
behavior causes a violation of the specification, we will record and report
them to the design team for corrections after the completion of this thesis.

Chapter 1

Methods

The design verification process has multiple stages, and the whole process of
verification is coordinated by the verification plan. The verification plan is the
first document created when starting the verification process and is gradually
updated during the verification. It has a list of design specifications that
need to be verified, together with all of the information for verification. The
information contains, besides other data, which of the verification methods
are to be used for the verification of each specification.

. 1.1 Functional verification

Functional verification uses simulation of DUT behavior in the time domain.
It is done in order to check if the DUT behavior is in compliance with its
specifications. To be able to simulate DUT behavior, we also need to generate
a sequence of logical values to be applied to the inputs of the design. This
sequence of signal logical values we call stimuli [10]. We also usually need
to read some of the design responses to be able to generate stimuli correctly
and for the stimuli to be reasonable. The interface is used to send stimuli
to the DUT and also to read responses. We call the block, responsible for
being the top-level module in our simulation and containing DUT together
with all other modules used in the simulation, the testbench. The simple
block diagram of how the simulation environment works is shown in Figure
The configuration of the initial state (DUT internal state and testbench
configuration), together with stimuli constrained to follow some scenario, is
called the test.

1. Methods

Methods similar to those used in formal verification (mentioned in section

/ Testbench

DUT
Generated
stimuli
Model

_ /

Figure 1.1: Simplified block diagram of functional verification environment.

1.2), can be used in parts of the DUT to assure that certain signals always
fulfill certain conditions or that used protocols are not violated. These
methods mainly use assertion command, which acts as a watchdog over the
properties of a signal or group of signals. The validity of requested properties
is evaluated and checked dynamically during simulation. Because of dynamic
evaluation, there is a chance that the state of DUT that violates assertions is
not reached during simulations but is reachable only when a specific sequence
of input signals is used.

B 1.1.1 Simulation output

The simulator output, in its raw form, is the value of signals for each simulation
time step (we will call them traces). The traces are useful for finding bugs
when we already know that there are bugs, but it is time-inefficient to check
for the existence of bugs when we have results from multiple test runs. The
traces are also very storage-inefficient. Because of the need to store the
values of desired signals for each simulation time step (even when logging only
changes), it uses relatively large amounts of space to store all that data. To
save data storage space, tests are designed to create log output files containing
reports of signal behavior in a format that is easy to read by person, and
contains only information relevant for the verification engineer. For the added
time efficiency of the verification engineer, we have the self-checking tests
(mentioned below) to simplify the analysis process of results generated by
batch runs.

1.1. Functional verification

B 1.1.2 Self-checking tests

When simulations are used for verification, there is still a need to check if the
data generated by the DUT is in compliance with the specification. Manually
checking all of the data requires a lot of time and effort from the verification
engineer.

The solution to this is the principle of self-checking tests. These tests create a
single output that contains the results of the test [6]. This can be either "pass"
when DUT behaves according to the specification or "fail" when DUT violates
the specification. For self-checking to work, we need to know what behavior
we expect from DUT. The expected output can be a waveform created prior to
the start of the simulation or, in most cases, an output generated by a model
of DUT that is fed the same inputs as DUT and usually runs in parallel.
Models are usually written on a higher abstraction level than DUT, which
allows better transparency of their functions and makes checking against
specifications easier. They can generate expected states of output signals, but
in most cases, they operate on a transaction level of abstraction, which can
transfer data as a set of values instead of relying on correctly encoding them
to the DUT interface and then correctly reading and decoding them (from
the DUT input interface). This allows them to predict expected behavior
without dependence on the used communication protocol or propagation
delay of DUT. Conversion between transaction and signal values needs to be
done. In Universal Verification Methodology (UVM) (mentioned below), this
is provided by the component driver and monitor.

B 1.1.3 Constrained random stimuli

For effective simulation, we need to generate randomized stimuli to get as
much information from our tests as possible. The random stimuli are used to
give each test some flexibility and decrease the number of individual tests
that need to be written. A test with randomization can be used multiple
times to produce different scenarios that are simulated.

A good example of a situation where randomization is very useful is the
verification of the read operation of a memory module. In this scenario,
without the use of randomization, we would need to specify every address
and memory contents to be checked. The randomization allows us to check
the read from any sequence of addresses with any memory content (provided
we have enough resources to simulate them all) to be checked.

The randomization seed, which is set at the beginning of the simulation, is
used to provide means for the same sequence of stimuli to be run. When
multiple simulations are run with the same seed and the same revision of
code is used, then all of these simulations should proceed exactly the same.

7

1. Methods

Any change to the code can result in different simulation behaviors, even
when using the same randomization seed. There should be no change in the
run of the simulations when they are run in batch mode or single simulation
mode with a graphical user interface (GUI). This fact is used to run multiple
simulations in batch mode, and from those, select only the simulations that
failed and use their seeds to run exactly the same simulation to get more
information for debugging. With randomization alone, it can be hard to reach
corner cases of generated stimuli sequences (from example above: reading
from maximum address data, which contains only bits asserted to a logical
value of 1). For that reason, constraints are used to limit the variation
of stimuli when absolute randomness is not needed. Constraints can also
be used to specify exactly the required stimuli so that the randomness is
effectively removed. Corner cases and critical sequences can be verified by
this approach.

B 1.1.4 Blackbox vs whitebox (change of perspective with
assertions)

Blackbox is when we view the design from a perspective that only allows
us to see the external behavior. When design is referred to as a graybox, it
means that in addition to the external behavior, we can also observe some
signals and states that are inside the design. The most transparent is the
whitebox, which allows us to see every internal state and signal of the design.
Use of assertions can change the perception of verified DUT from black box
to gray box [I0]. When using the assertions, we can more accurately find
the errors in the design and also detect errors before they can be seen as the
wrong state of the interface. Assertions are not synthesizable code, because
of that, they need to be wrapped in a synthesizer directive that disables the
synthesis of code. Also, because they are not propagated to the final design,
it is important to use them only as a sink of signals from the circuit design.
Blocks of code containing assertions should not create any signals that are
used in the function of the circuit.

H 115 UuvM [§]

The industry standard used for functional verification of digital circuit designs
is UVM [5]. It is a library written in SystemVerilog that contains basic
structures and classes that can be universally used in the process of building
a verification testbench. Its idea is to create a verification environment that is
as independent of the actual DUT as possible. Also to provide an environment

8

1.1. Functional verification

where it is easy to create new stimuli for testing DUT. These qualities give the
final verification environment high re-usability and flexibility, which reduces
demands on future efforts for the expansion of tests for additional design
requirements and increasing test coverage. UVM is a class-based system that
relies on the inheritance of properties and methods of the parent class. Details
of individual classes are described below. Communication between individual
components is provided via transactions, which allow for easy creation of
even complicated stimuli.

B Macros for writing into log output file

For easier logging of simulation events, UVM provides its own macros that
allow users to easily create log entries specifying what component created
an entry, the time of the simulation, and the severity of the entry. Specified
severity levels are info, warning, error and fatal. Error usually causes the
test to fail but allows for the continuation of the simulation. Fatal ends
the simulation and results in a fail of the test. Info severity also has a
verbosity setting, which allows the user to set a minimal level of verbosity
as an argument for the simulator. This can be used to create a log file with
more or less information without the need to compile the whole design again.
This function is especially useful for creating log files of simulations run in
batch mode that contain only basic information to reduce unnecessary usage
of memory space. Later, when some tests need to be reviewed, these macros
allow for an increase in the depth of information provided in the log file
without the need to change code or recompile the whole project.

B Components

The UVM verification structure is divided into components. Each compo-
nent has its own defined purpose and base class that contains most of the
required operations and is provided by the library, which it extends. UVM
handles communication protocols between individual components so that
the verification engineer only needs to specify the content of the transaction.
UVM also specifies the architecture that shall be used. These features allow
faster, clearer, and easier creation of verification environments. With all its
basic protocols and well-defined structure, it also provides good compatibility
when used for different DUTSs, as well as a uniform structure and interface for
multiple verification teams. The UVM testbench is built from the following
components:

1. Methods

- e \\

comparator €= refmod

T scoreboard T

|)

monitor_out

output_if driver_out

k agent_out
(monitor sequencer

input_if driver
agent)

AN

DUT

)

Figure 1.2: Block diagram of UVM environment [2].

® Tbh_ top:
Container that creates instances of DUT, interface, and UVM test envi-
ronment and connects DUT with the UVM environment via the created
interface.

B Test:
Defines conditions, configurations, and sequences of inputs used for
simulation. This component has multiple variations in each project. Each
variation is used to set and run different configurations and sequences to
verify some parts of the required design specifications.

® Environment:
Contains verification components that are reusable for all tests. Can
contain multiple agents and scoreboards. Creates connections between
scoreboards and individual agents to allow communication.

® Scoreboard:

Usually contains a behavioral model of DUT that is used to predict
expected outputs of DUT. This model is given the same inputs as those
sent to the interface, but in the format of a transaction, even for serial
communication, to simplify the block implementation. The output of the
model is then compared with the response from the DUT, and if some
unexpected difference is detected, a warning or error is recorded in the
log. An example of a situation where a difference is expected is when
DUT should present a random number (RN) to the interface. In this
case, the predicted response can be corrected with the actually received
RN before comparing.

B Agent:
Acts as a wrapper for driver, monitor, and sequencer. Can be set as active
or passive. An active agent creates instances for all three components.

10

1.1. Functional verification

A passive agent creates an instance only for monitor. Because of that, it
can’t send stimuli to the interface but only monitor its status and send
messages to the scoreboard.

B Sequencer:
Sends sequences set in the test component to the driver component.

® Driver:

Requests a sequence item from the sequencer and transfers it to the
interface. The sequence item is a transaction, so it can’t be directly put
into the interface. The driver implements functions for translating data
stored in sequence items into signals for the interface. Those signals must
be applicable to the physical interface for the possibility that hardware
acceleration, using a field-programmable gate array (FPGA) board to
run the design, is used.

® Monitor:
Collects information from the interface and sends it to the scoreboard in
transaction format.

B Phases

The run of a UVM-based simulation is separated into sections called phases.
They have a fixed order, and the next phase can start only after all UVM
components have completed all their objectives for the currently executed
phase.

All of the phases, except the run phase, are only allowed to use method calls
that don’t consume simulation time (must never allow simulation time to
progress). For this reason, they use only function method calls defined in
SystemVerilog that have the limitation of not allowing code that could result
in the progression of simulation time. For methods that progress simulation
time, a call with the type of task is called. Tasks should be only called during
the run phase.

® Build phase
All instances of classes that create the verification environment and
instance of DUT and interfaces are created during this phase.

® Connect phase
During this phase, all of the instances are connected to enable com-
munication between individual instances and provide access to shared
structures where it is needed.

11

1. Methods

End of elaboration phase
Final adjustments to connections are done during this phase, as well as
checking if all needed connections exist.

Start of simulation phase
The final topology of the testbench is printed and written into a log file.

Run phase

Phase where the simulation in the time domain of DUT and testbench
is performed. Can be divided into sub-phases where each sub-phase has
pre__ and post__ additional parts that are executed before and after the
sub-phase, respectively.

Reset
DUT is put into reset state, which should be fully defined.

Configure

DUT is configured using either standard access via interface or
backdoor access directly to the memory.

Main

The central part of the simulation is where stimuli are sent to the
DUT and responses are checked.

Shutdown
Wait for all stimuli from the Main sub-phase to propagate through
DUT to ensure that no response is overlooked.

Extract phase
Phase where retrieval of statuses from scoreboards and functional cover-
age monitors is performed.

Check phase
Final check of DUT behavior during simulation.

Report phase
Report results of the performed simulation.

Final phase
Last phase for ending the simulation.

Simulator support

Most of the professional simulation programs today have integrated support
functions for interacting with UVM components. An example of these support
functions is the option to run simulation until the whole environment is built
and then stop. With this function, it is possible to view the UVM structure
and variables before the start of simulation in the time domain or to set

12

1.2. Formal verification

appropriate probes to record the time waveform of desired signals. However,
these functions are mainly used for debugging already-discovered errors
because simulations are mainly run in batch mode (multiple simulations are
started and processed in series or in parallel) that don’t have a GUIL. Results
of batch-run simulations are stored in log files that contain information about
stimuli applied to the DUT, the response from the DUT, and the result (pass
or fail) of the test with seed for replicating the run. The failing tests are then
run with a GUI, which is used to identify why the test failed.

. 1.2 Formal verification

Formal verification is a method of proving intended circuit functionality using
mathematical reasoning without simulation [3]. The evaluation of design is
exhaustive, meaning that all states of design are checked.

The positive of the formal verification approach is that all of the design
bugs caused by corner-case states of the circuit are found. This allows for
better confidence in a verified circuit design. When formal verification finds
a violation of the design’s intended behavior, it provides a counter example
(CEX), which shows stimuli causing the violation. This can be very useful
for decreasing the time required to find which part of the design must be
repaired. The formal methods can be categorized into two classes, which are
formal equivalence checking (FEC) and formal property verification (FPV).
The graphs showing the ratio of adoption of format techniques can be seen in
Figures and From these graphs, we can see that the ratio of adoption
of formal methods is increasing. We can conclude that the adoption ratio is
increasing with time.

ASIC adoption of formal techniques

409

Design Projects

Formal property checking Automatic formal verification
ASIC Adoption of Formal Technigues

u2014 w2018 w2022

Source:

SIEMENS

Figure 1.3: Adoption of formal techniques in different years [4].

13

1. Methods

ASIC adoption of formal property checking by design size
Gates of logic and datapath excluding memories

50%

~50% |: .

Adoption of formal property o
checking on designs greater
than 10M gates 10

Formal Property Checking Adoption by Design Size
a<1M = 1M-10M =10M-1B =>1B

Design Project

SIEMENS

Figure 1.4: Adoption of formal techniques for different design sizes [4].

B 1.2.1 Formal equivalence checking (FEC)

Today, this method is mostly used in the form of checking that the design has
not changed in between individual steps of implementation, from hardware
description language (HDL) to masks used for fabrication. This is done to
ensure that the intended design behavior is correctly translated to the next
step (e.g.: check that the RTL design is correctly translated to the netlist) and
that the behavior of both is equal. This method uses two input designs, which
are the golden design and the tested design (continuing from the previous
example, the golden design would be an RTL design and the tested design
would be a generated netlist) to ensure their equality. FEC is used mostly
as a precaution against bugs caused by compiler tools and to check that the
final design for manufacturing has all parts placed and routed.

B 1.2.2 Formal property verification (FPV)

To prove the correct behavior of the HDL design against specifications, a
static evaluation of properties is used. This means that a circuit is evaluated
as a mathematical construct using mostly boolean algebra. FPV doesn’t use
stimuli to check design behavior. Instead, the stimuli can be generated for
failing assertions, to show what stimuli cause the failure, or for reachable
covers (then the stimuli describe how to stimulate the design for the cover
to pass). Assumptions can be used to restrict the behavior of stimuli (e.g.:
specify that the block uses a handshake protocol for communication on certain
ports). Violations in the behavior of the design can be detected before output
ports are affected, and the cause of the design bug can be traced more
precisely. Design is viewed as a whitebox for verification tools to evaluate

14

1.2. Formal verification

and check internal behavior and detect bugs. The whitebox perspective does
not cause the previously mentioned problem with the volume of stored data
because the traces are relatively short. A similar approach can be used in
functional verification (as mentioned above), where all assertions are evaluated
dynamically instead of statically. This is called assertion-based verification
(ABV) and can be seen as an intermediate step between functional and formal
verification.

B Limitation of formal assertions

The assertions used for formal verification need to be efficient for formal tools
to verify. This places limitations mainly on the sequential length and width
of the signals used. The sequential length prevents us from creating sequences
that have the possibility to fail for traces of infinite length. The width of
signals used in the property that we are asserting is mostly applied to the
wide address or data buses. In a lot of situations, this can be resolved by
creating an assertion for each bit of the bus. An example situation is the
use of FPV to check that blocks do not change data when they are passing
through it. In this situation, we can write (generate) properties, which each
check the equivalence of the single bit of input and output data bus, instead of
properties, which only check for the equivalence of the buses. The separation
to single bits is more complex for implementation, so it is done to optimize
the code when the formal engines are having trouble resolving the assertion.

Bl 1.2.3 Complexity

Today, the FPV is not as widely spread as functional verification because
of its complexity, and resource requirements are exponentially dependent
on design complexity, which is exponentially dependent on time (following
Moore’s law). Additionally, the abstraction level used to create designs is too
low to efficiently deploy formal verification methods. Because of these reasons,
formal verification can’t be effectively used to verify the completed design
as a whole. Instead, it is a very powerful tool for verifying smaller parts of
complex systems because of its ability to uncover corner-case bugs in design,
which can be almost impossible to find by using functional verification.
Exponential dependence on design complexity implies that the best cases for
using FPV are combinational circuits and circuits that use short serial proto-
cols. Examples of these circuits are buffers, encoders, handshake protocols,
and interrupt controllers for processors.

15

1. Methods

B 1.2.4 Languages

The problem with formal verification is that there are lots of languages that
can be used. The language used by the verification tool is defined by the
vendor, and this may create problems with compatibility when using tools
from multiple vendors or when a transfer to the tool from a different vendor
is needed. Some of the most commonly known languages are OpenVera
Assertions (OVA), Open Verification Library (OVL), Property Specification
Language (PSL), e, and Sugar [11].

In 2002, the Sugar language was selected as an industry standard by IBM,
but other languages continued to develop, and today there are a lot of lan-
guages that are used. Also, design languages such as VHDL and Verilog have
implemented their own systems of assertions that can be easily used by design
developers for specifying intentional behavior design.

This work will use the tool JasperGold from the company Cadence De-
sign Systems, Inc. which was first introduced in 2003. This tool supports the
languages SVA and PSL for verification and Verilog with VHDL as design
languages, respectively.

B 13 Coverage

Coverage is a vital part of design verification. It tells us what behavior
of the design we have verified [9]. Without measuring the coverage of the
design, we wouldn’t know when to stop verification. In an ideal situation, we
would check if all possible reachable states were not violating the specification.
The exercise of all possible states of design and checking compliance with
specification is unrealistic due to the exponential increase of states dependent
on the size of the design. The coverage can help us decrease the required
verification effort by presenting a certain level of abstraction to the statespace
that we are verifying.

For example, when we have a group of signals forming a bus, we do not
usually need to check all possible values that can be present. Usually, we need
to know that a bus can obtain certain values and that nothing bad should
happen when a bus gets to state values outside of the expected range. For
this, we can use a small number of covers, where each cover can represent a
range of values or a corner case.

Without coverage, we could say that DUT did not have any bugs before we
exercised all specified behaviors or all important states. Also, there could be
hard-to-reach states that we could miss without covers.

16

1.3. Coverage

B Representation in Functional Environment

When simulating the design, the coverage is measured as the number of times
that design reached the state specified by the coverpoint. The check for an
increase in count for a certain coverpoint is not performed in each step of
the simulation. The check can be triggered manually. (eg.: when a new
transaction is to be driven to the input signals, we can sample it to count how
many times we sent a message of each type.) or automatically by binding the
sample trigger to some signal inside the design or auxiliary signal that we got
as a combination of design signals. An auxiliary signal is not synthesized and
thus can’t be used by design as an internal signal.

B Representation by formal tools

The formal tools, namely JasperGold from Cadence Design Systems Inc.,
represent the covers as states of the design that we would wish to observe.
JasperGold produces waveforms that show how the state, defined by cover,
can be reached from the reset state of the DUT. This can be used to check
if our design is capable of reaching important states or if some corner cases
can be reached. This is good for us because we can check the quickest way
to reach a given state without thinking of the inputs needed to be applied.
There are also some covers that can be automatically created by the tool to
check code reachability, signal toggles, reachable finite state machine (FSM)
states,...

17

18

Chapter 2

Verified design (RISE)

The design that we will verify using the mentioned methods is the branch
predictor for the RISC-V processor by Martin Lastovka named RISE. [7] This
block is designed to predict branches based on observation of the previous
sequence of addresses requested by the processor. The intended use of this
block is to be placed on the Open Bus Interface (OBI) between instruction
memory and processor in a way that cuts previous direct connection and
connects to the both ends independently. Physically, it should be placed as
close to the instruction memory as possible, because the main purpose of
this design is to shorten the combinational path of the address request to the
memory. A shorter critical combinational path should allow us to increase
effective processor performance by allowing a higher clock frequency. The
higher clock frequency should outweigh the cycles in which the processor
is stalling, caused by our wrong prediction. This block should be able to
correctly predict short branching patterns and quickly recover from wrong
predictions.

The interfaces that are connected to the processor and memory use OBlIv1.4
[1] as a communication protocol.

. 2.1 Prediction method

Design does not implement decoding of prefetched instructions to obtain
information about instruction type or content. This allows us to predict

19

2. Verified design (RISE)

instruction data prefetched instruction address
- Prefetcher -
instruction address NVM read data
predicted address
CPU control NVM
Predictor
Finite
State
CPU IF handshake Machine NVM controller handshake
\\”/‘ B \‘
k\\ N
A

Figure 2.1: Block diagram of RISE by Martin Lastovka. [7]

C P U address channel signals RI S E addres:

ignals NVM

response channel signals response channel signals

Figure 2.2: Block diagram of RISE integration by Martin Lastovka. [7]

independently on the instruction coding used by the processor. The design
predicts based on previous recorded branching (the record contains the source
of the branch and its destination). The global history of branching results
is also used for prediction. The matrix of 4-state FSM predictors is stored
in random access memory (RAM), where each line contains 2" predictors
(viz.: Table 2.2)), which are addressed by the least significant bits (LSBs) of
address. The active predictor from the line is selected based on the current
value of branching history. The sets, containing recorded branching sources
and destinations, are designed as associative memory and can be expressed
as a matrix that has row indexes equal to set index, column indexes equal to
LSBs, and each cell contains active state, ID bits of address, and last bits
of destination address. The predictor table is only used when we encounter
an address that has the same ID as some set of corresponding positions
inside associative memory. The predictor table is also updated only when
we encounter the address that we can declare as active by the data stored
inside the associative memory. The branch is registered only when the most
significant bits (MSBs) that are not recorded as LSBs of the destination
address are the same for the source and destination addresses. In the opposite
situation, the registration of the branch would not have any meaning because
there would be no possible way to reconstruct the destination address from

20

2.1. Prediction method

signal name direction | use

clk_in IN clock signal common to processor and memory
rst n in IN rst signal that is active in low
rise_en IN enable signal

instr_req_in IN OBI for processor

instr_gnt_ out ouT OBI for processor

instr rvalid out ouT OBI for processor

instr addr in IN OBI for processor

instr rdata_ out ouT OBI for processor

flash_ gnt_in IN OBI for memory

flash rvalid in IN OBI for memory
flash_req_out ouT OBI for memory

pref instr_addr_out | OUT OBI for memory

pref instr rdata_in | IN OBI for memory

Table 2.1: 10 signals of RISE

’ Parameter \ label \ Value
Address bit length - 17
Tag index width - 2
Set index width (addr LSBs) m 5
Global branching history M 0
Number of sets S 1
Number of lines in each set N 2m
Memory budget B S*N
Clipped destination addr width | ¢y 10
Number of predictor states - 4
Preciction type - One level

Table 2.2: Values of design parameters used for verification.

available information.

21

22

Chapter 3

Verification plan

A verification plan is an important part of the verification process that
tells us what needs to be verified and in what order. It defines steps that
need to be taken for the design to successfully pass verification process [§].
It also specifies the verification approach for proving that the design does
not violate specifications and all desired functions of the design are present.
Some specifications can be easily verified by formal methods, and some
by simulation. There can also be specifications that are so complex that
simulation and formal are both practically unusable due to the time required
to run formal tools and simulation. In that case, we can try to verify those
specifications using hardware acceleration such as an FPGA, an emulator, or
a manufactured prototype.

B 31 Design requirements

The requirements for our design are derived from the specification of the OBI
protocol and the intended use of our design.

= OBI protocol requirements [I]:

OBI-R-1 E| Signals clk and reset_n are common between the master
and slave.

! This OBI requirement is not to be verified by used verification methods

23

3. Veerification plan

OBI-R-2 Signals req and rvalid shall be driven low during reset.
OBI-R-3 Address channel A shall use a two-way control handshake
(signals req and gnt).

OBI-R-4 | Response channel R shall use a two-way control hand-

shake (signals rvalid and rready).

OBI-R-5 The response phase shall not start before the address
phase is finished. Signal rvalid shall not be asserted before previous
observed assertion of req and gnt in the same cycle.

OBI-R-6 Response transfers shall be sent in the same order as
their corresponding address transfers.

OBI-R-19 ¥ OBI link outputs (excluding gnt) shall not combina-
torially depend on OBI link inputs.

OBI-R-20 P Signal gnt shall not combinatorially depend on OBI
link inputs.

OBI-R-22 Y OBI link outputs of any master interface shall not
combinatorially depend on OBI link inputs of any other master
interface.

OBI-R-23 Y The OBI link outputs of any slave interface shall not
combinatorially depend on the OBI link inputs of any other slave
interface.

OBI-R-24 ' A transaction’s req shall not depend on the gnt for
that transaction.

OBI-R-26 Unused pins of the OBI interface shall be tied off as
shown in Table [A.1] unless specified otherwise.

B Design specification requirements:

SPEC-R-1 When signal en is deasserted, the design shall act only
as a passthrough for OBI signals with minimal delay.

SPEC-R-2 When the rst_n signal is deaserted, RISE shall set all
internal registers to their default values.

SPEC-R-3 Pins assigned to the OBI interface communicating
with the processor shall obey OBI protocol specifications as a slave
side of the connection.

SPEC-R-4 Pins assigned to the OBI interface communicating
with memory shall obey OBI protocol specifications as a master
side of the connection.

SPEC-R-5 Both OBI interfaces shall support the following opera-
tions:

2Due to the signal rready is not used and is thus assumed to have a tie-off value. The
length of response is only one cycle.
3Constant COMB_GNT is not defined in design. The default value of False is assumed.

24

3.1. Design requirements

» SPEC-R-5-1 Master reads word®, whose position in memory
is defined by addr , from slave.

SPEC-R-6 The req out shall be asserted if the req in is asserted.

SPEC-R-7 The req out shall be deasserted if it is not required®
to be asserted.

SPEC-R-8 The gnt_in shall not be assumed to be always asserted.
SPEC-R-9 The gnt_out shall be deasserted if gnt_in is deasserted.

SPEC-R-10 The rvalid_in shall not be assumed to be always
asserted.

SPEC-R-11 The rvalid_out shall be deasserted if rvalid in is
deasserted.

SPEC-R-12 When the prediction is correct. The RISE shall
request instruction from memory on the same address as is received
from the processor in the same cycle.

SPEC-R-13 When prediction is wrong (the addr in is not the
same as addr_out). The following shall happen:
= SPEC-R-13-1 0 cycles after: The gnt out shall be deasserted.

= SPEC-R-13-2 1 cycle after: The value of the addr_out shall
be set to the same value as the addr_in .

= SPEC-R-13-3 1 cycle after: Signal gnt_out shall be asserted
if and only if (iff) gnt_in is also asserted in the same cycle.
If gnt_in is not asserted, RISE shall wait in the current state
until gnt_in is asserted.

= SPEC-R-13-4 1 cycle after: Signal rvalid shall be deasserted.

= SPEC-R-13-5 2 cycles after: Signal rvalid out shall be
asserted iff rvalid_in is also asserted in the same cycle. If
rvalid__in is not asserted, RISE shall wait in the current state
until rvalid in is asserted.

SPEC-R-14 Every address requested by the processor shall be
requested from memory.

SPEC-R-15 The processor shall receive only instructions from
addresses that it has requested.

= SPEC-R-15-1 When a wrong prediction occurs, rvalid shall
remain deasserted until instruction from the correct address is
presented.

= SPEC-R-15-2 The deassertion of rvalid , due to wrong pre-
diction, shall be no longer than one cycle.

SPEC-R-16 Recovery from a missed prediction shall not take
longer than one clock cycle.

Word is, in this case, 32 bits wide
5Sources that can require req out to be asserted are asserted req in and specification of
OBI protocol.

25

3. Veerification plan

SPEC-R-17 Every address sent to the memory interface shall be
aligned to a multiple of 4 (two LSBs are 2’b00).

SPEC-R-18 The processor shall receive instructions in the same
order as it requested their addresses.

SPEC-R-19 RISE shall be able to register a new branch and
record it in predictor memory.

SPEC-R-20 RISE shall be able to update an already-recorded
branch with a new destination.

SPEC-R-21 RISE shall be able to decide when the branch should
or should not be used based on branching history.

SPEC-R-22 RISE shall not modify the content of any fetched
instruction.

SPEC-R-23 The prediction algorithm shall be compliant with the
following requirements:

= SPEC-R-23-1 The branch history shall record whenever the
branch was taken (T) or not taken (NT).

= SPEC-R-23-2 The branch history shall be global for all
addresses.

= SPEC-R-23-3 The branch history shall be updated iff a new
branch is detected or the last addr_in is already registered as
a branching address.

= SPEC-R-23-4 The branch prediction shall be the output of
a 4-state saturating FSM predictor that has states with transi-
tions depending on the last branch result from the respective
address:

- ST - strongly taken (T -> ST, NT -> WT)
- WT - weakly taken (T -> ST, NT -> WNT)
+ WNT - weakly not taken (T -> WT, NT -> SNT)
- SNT - strongly not taken (T -> WNT, NT -> SNT)
= SPEC-R-23-5 The initial state of each 4-state predictor shall
be WT.
» SPEC-R-23-6 The set of predictors shall consist of 2tength_of _prediction_history
4-state predictors.
s SPEC-R-23-7 The index of the set of predictors shall be N
bits long. (We shall have 2/ sets of predictors.)
= SPEC-R-23-8 Each address shall access the set of predictors
with an index equal to the [N+1:2] bits of the address. (The
last two bits of address are omitted due to the requirement
SPEC-R-17.)
= SPEC-R-23-9 The selected predictor from the set of predic-
tors shall correspond with the current state of branch history.
= SPEC-R-23-10 Each 4-state predictor shall have its state
updated iff:

26

3.2. Design verification

+ The predictor was used for prediction in the last cycle.
SPEC-R-23-11 The identifier (ID) of the branching address
shall be of length K.

SPEC-R-23-12 When a new branching address is encoun-
tered, its ID (address bits [K+N+1:N+2]) and destination (bits
[D+1:2] of the destination address) shall be recorded and set
as active.

SPEC-R-23-13 The branching addresses shall be stored in
associative memory, which assigns each ID and its destination
bits to the lower bits ([N+1:2]) of the source address.
SPEC-R-23-14 There shall be a maximum number of L active
branching addresses, that have the same bits [N+1:2].
SPEC-R-23-15 When a new branching address that has the
same bits [N+1:2] as L of already active branching addresses
is encountered, it shall replace the oldest recorded branching
address, which shall be deactivated/removed.
SPEC-R-23-16 Update of associative memory shall have a
higher priority than reading currently stored data. When two
branching addresses are read consecutively, the prediction for
the second address is skipped due to the priority to update
associative data for the first address. The second address shall
be treated as if it were not registered in the associative memory.
SPEC-R-23-17 When the prediction result is that branch is
not taken, the next addr_out shall be the current addr_out +
4.

SPEC-R-23-18 When the prediction result is that branch
is taken, the next addr_out shall be constructed by following

pattern:
- [1:0] <= 2"b00
- [D+1: 2] <= recorded bits of destination address
« others <= bits on same position as the addr_in

B 32 Design verification

The first step is to verify assertions written by the designer using JasperGold,
because the low level of assertions should make it easy for formal engines
to verify them and are a lot quicker to start than simulation (no additional
verification environment is needed). From this observation, we can create
basic assumptions if they are needed for the designer’s assertions to pass.
Assumptions need to be added carefully to not restrict behavior so much
that we could ignore valid interface behavior. Then we will proceed with
verification in the following order of steps:

27

3. Veerification plan

1. Create basic sequences in SVA.
2. Write basic covers in SVA.

3. Create a universal verification component (UVC) that has assertions for
the correct use of the OBL

4. Bind this UVC to the two OBI interfaces that our design implements.
5. Create assertions that check design behavior.

6. Carefully add more assumptions if they are needed.

7. Complete formal verification.

8. Make UVM environment.

9. Create a model of design.

10. Write UVM tests and simulate.

B 3.2.1 Expected behavioral scenarios for verification

Because we already have specified design use, we can assume certain sequences
of the addr_in , that need to be verified. These scenarios can be verified
only after we have already verified the compliance of design interfaces with
the specification standard. To exercise the design in expected patterns, the
following scenarios are identified:

® SCEN-1 Linear sequence of addresses
SCEN-2 Branch of address surrounded by linear reads

SCEN-3 Branch from addr A to random address, then linear read and
jump back to address A+4 (simulate entering subprogram or processor
interrupt)

® SCEN-4 Branch to a random address, then loop back to the same
address as we previously branched to. After N repetitions of the loop, do
N repetitions of the loop, starting from the address sequentially following
the address of the end of the previous loop. After the loop ends, branch
to the address following the address from which we branched randomly.
(Simulate recursive function calls.)

SCEN-5 Nested loops simulating nested "for cycles" in a program.

28

3.2. Design verification

® SCEN-6 A single address is requested over and over again. (Simulate a
stall after the main embedded program ends and the processor is waiting
for interrupts.)

®m SCEN-7 Linear read that overflows the maximum value of address
space

SCEN-8 The address is selected randomly each cycle.

8 SCEN-9 Combinations of previously mentioned scenarios.

B 3.2.2 Formal methods (JasperGold)

First, we do reset and clock analysis to check that all important signals have
defined reset values and ports used for OBI are compliant with the OBI
specification’s required reset values and active clock edges. Then we will write
a sanity cover that will tell us if our design is able to perform some elementary
operations. This cover should be as simple as possible to minimize the chance
of error. For this reason, we chose to cover when output data is valid for
three values checked independently as separate covers. The checked values
are 0, the mazimum_value_of data, and the random__nonzero_wvalue. After
we check that the design is capable of elemental operations, we create basic
sequences of stimulating design so that writing more complex covers is easier.
Those sequences shall be parametrized to increase reusability. Requested
sequences are:

Read operation from processor

Response from NVM

Simulate program without branching

Simulate branch

Simulate loop

After that, we will write covers to observe the simple and more complex
behavior of the design. The covers should show behavior when:

® Address is branching randomly (satisfy SCEN-8)

® Address is constant (satisfy SCEN-6)

29

3. Veerification plan

® Address starts at 0 and is linear (increments by 4) for n cycles (satisfy
SCEN-1)

® Address is linear and looping with a loop length of 3 (satisfy SCEN-2)
® Address is linear and looping with a loop length of 7 (satisfy SCEN-2)
® Address is linear with two loops that do not intersect

® Address is linear with two nested loops (internal loop breaks after 4
repetitions) (satisfy SCEN-5)

® Address is linear and overflows (satisfy SCEN-7)

B En is deasserted, then show 10 cycles of signals passing through without
delay (satisfy SPEC-R-1)

® Different address can be requested each cycle without data validity falling

The control signal en is asserted for each case unless explicitly mentioned
otherwise. When all covers are checked and are reachable, then we can
continue with the writing of verification assertions. The first assertions, that
we make are to check the correct implementation of the OBI protocol. This
implicates creating a verification component in SystemVerilog that binds
to the interface ports and contains two sets of assertions (master and slave
side), checking correct interface behavior with respect to the specification [IJ.
We can expect protocol violations caused by a known bug in the targeted
processor, also mentioned in Table |A.2, and acknowledged at the end of the
OBI specification. For the next assertions, derived from the design’s intended
functionality, we want to check the following:

® When en is deasserted, design mirrors signals inputs from one interface
to the outputs of the other interface (satisfy SPEC-R-1)

® Fach address (that is, a multiple of 4) can be requested on the memory
interface

® Processor only receives instruction after it requests it (satisfy OBI-R-5)

® Data from memory is the same as data presented to the processor (satisfy

SPEC-R-22)

® Only instruction from the address requested by the processor is marked
as valid (satisfy SPEC-R-15 and OBI-R-6)

B Data arrive to the processor in the same order as their addresses are
requested (satisfy SPEC-R-18 and OBI-R-6)

30

3.2. Design verification

® Every address requested by the processor is eventually requested from
memory (satisfy SPEC-R-14)

® Request to memory is only after previous request from processor (multiple
requests to memory can be done as response to one request from processor)
(satisfy SPEC-R-T)

B 3.2.3 Functional (UVM)

For functional verification via simulation, we will create a testbench using the
UVM environment and guidelines. Our testbench environment will contain
all standard components of UVM, as shown in [1.2. The block diagram of the
implemented environment is in Figure [4.2.

We will use three separate agents to stimulate and monitor the DUT. The
first agent is assigned to the generation of clock, reset, and enable signals.
The second is to model memory that can be modeled without randomization
because we have already formally verified that this interface is behaving
in compliance with the OBI specification. The third generates stimuli on
the processor interface and contains the main driver. All sequences that
we will write for testing will be bound to the third driver. The handshake
protocol used in OBI will be implemented in drivers. We will also need to
create a model of our DUT that shall behave in compliance with the design
specification. The model will operate at the transaction level of abstraction.

B Sequences

The sequences contain behavior patterns that are used in tests. Because
we already implemented the handshake protocol in drivers, we only need to
create a sequence of addresses that will be sent as requests to the DUT. All
addresses in sequences need to be divisible by 4, because we only read whole,
4 byte-long words. The sequences of address reads that we will need are:

Random sequence

Non-branching (linear) sequence with variable length

Random sequence that is repeated with variable loop count

Loop that can contain other sequences

31

3. Veerification plan

B Tests

The tests will all be derived from the basic test class, which will define
configuration and provide access to sequences. The purpose of these tests is
to verify the correct implementation of the prediction algorithm. We don’t
need to verify requirements that are already proven by formal methods. The
tests are mostly based on expected behavior patterns that the instruction
addresses. The list of patterns that need to be tested is as follows:

Sanity: linear from 0 to N and some loops

Full random: N random addresses (N taken branches in success)

Full random loop: previous repeated K times

Cpu simulation

Linear with inserted loops (depth 1)
Linear with inserted loops (depth 2)
Linear with inserted loops (depth k)
Recursion

NxN matrix multiplication

Bubble sort

32

Chapter 4

Implementation

The implementation was done in the order mentioned in section First,
the assertions already implemented by the designer were run through formal
verification engines. After that, the formal testbench was created and verified
by formal engines. After the formal verification was concluded, the UVM
testbench for simulation was created, and tests were run on it. For the purpose
of this work, I implemented the UVM environment and the verification
components, with the top module used for formal verification. For the
simplification of commands used to run the verification tools, I also created
scripts to pass the tool all of the arguments that are passed to the tool
every time. The files imported from the work of Martin Lastovka [7] are
all located in the attached file inside folders src/design/ and src/package/.
Additional assertions and coverage that I created for formal verification can
be found in files src/tb/th_verif top.sv and src/th/vcomp/*.sv. Those were
used alongside the assertions created by the designer in the src/design/* files
for formal verification. The script that I created for compiling the design in
JasperGold and setting up the tasks for verification of design functions can
be found in the file scripts/jg_run.tel.

B 41 Formal (Jasper Gold)

For the verification of assertions created by the designer, there was no need
to create or change any code. Only JasperGold was used at first to compile
the design and run the formal engines. The first iteration has been done
without using assumptions in order to not limit the tool in any way. Then

33

4. Implementation

the first version of the formal verification environment was implemented. It
was written in SystemVerilog and at first functioned only as a wrapper of
design with the same interface. After the correct connection between the
formal testbench and design was checked, the sequences and covers were
created inside the testbench. The verification component, which contains
assertions for the correct behavior of OBI on both sides of communication,
was created to allow easy reusability of these assertions. This component
was then binded to each of the two OBIs that the design implements, once
as a slave checker and once as a master checker. These modes were bound
to the interface connecting to the processor and memory, respectively. In
the final phase of formal verification, the assertions for the correct functional
behavior of the design (from an external perspective) were made. Some of the
assertions required assumptions to be placed on the design inputs, but none
of the assumptions were too complicated, instead, they restricted the inputs
by a reasonable amount to get closer to the OBI protocol specification. The
list of requirements verified by the formal verification can be viewed in Table
B.1. The block diagram of the implemented formal testbench is captured in
Figure 4.1,

tb_form%
Covers

and
OBIUVC Formal assertions OBIUVC

slave mode master mode

OBI
to memory

K Yy V VY /

Figure 4.1: Block diagram of implemented formal testbench.

B 4.2 Functional (UVM)

The implemented simulation environment is based on the UVM [5] standard,
as explained in [2]. The block diagram can be seen in Figure [4.2. The
testbench contains three separate agents, which each control one interface.
The interfaces are OBI connected to the driver acting as the processor (this
is the main driver on which we run test sequences), OBI connected to the
driver acting as memory with the lowest possible latency, and the final

34

4.2. Functional (UVM)

driver is responsible for generating clock, reset, and enable signals, which are
transferred via the control interface. Each driver has their own configuration
class, which is created from global configuration and passed down to the
agents as a reference to the object.

4 th_top \

g - \test_base\
m_cfg
‘ Control agent cfg ’ ‘ Memory agent cfg J [Processor agent cfg’
N "/
4 N m_env\
‘m_sooreboard }4-{ m_predictor [m_virt_seqr
A A A e

- N ~
m_control_agent m_processor_agent

m_sequencer m_sequencer
m_monitor m_monitor P

m_driver 3 m_driver
\\\ J =\ J . /) ')
\ 4 \ 4 : \ 4
OBI memory =1 control r=*° OBI processor
interface interface interface
rise_top

- /

Figure 4.2: Block diagram of implemented UVM testbench.

B 421 tb_top

This component is the top module of the simulation testbench. It creates an
instance of each interface. The DUT instance is also created here, and its
ports are connected to the respective signals inside interfaces. The interfaces
are also connected to the correct agents. The desired format of simulation
time, to be used as the default when viewing the simulation waveform or the

35

4. Implementation

log, is defined here. The test, passed as an argument to the simulator, is
instantiated and run using the UVM method "run_ test()".

B 4.2.2 test_base

This component is the template upon which all tests are extended, using it as
the base class. It contains only two instances, one instance of the verification
environment and one instance of the global configuration. The configuration
instance is then registered in the UVM configuration database to be accessible
from the environment. During run_ phase the simulation drain time is set at
1us to stop simulation at a reasonable time after the test sequence has ended.
The function to set the default configuration is defined but is empty because
all configurations are set during the creation of the configuration object. This
function would be used in a more complex testbench to have all the needed
configuration data in one place for easy access and debugging.

B 423 m_cfg

Main configuration object. Contains configuration data for assembling the
test environment and also holds other configuration objects that are used by
the agents. The reason for the centralization is to allow tests to easily access
and change configurations to adjust the environment for that particular test.

B 424 m_env

This component creates instances for control_agent, memory_agent, proces-
sor__agent, rise_ predictor, virtual sequencer, and scoreboard. Each compo-
nent is created iff it is enabled in the m_ cfg that is received. The sequencers
inside agents are connected to the central virtual sequencer, and ports
of monitors and predictor are connected to the scoreboard. The port on
processor__driver is connected to the port on the predictor.

36

4.2. Functional (UVM)

B 4.2.5 m_scoreboard

This component collects packets of data recorded by monitors and predicted
by m_ predictor and compares them. When a packet is received from the
source, other than a slave response from the OBI processor interface, the data
packet is cloned, and the clone is pushed to the back of the respective queue.
When the packet contains the response from the OBI processor interface,
then the comparison is done. The comparison is done in two stages. First,
the packet with the request to the memory must have the same address and
data as the predicted packet. These packets are popped in parallel, and the
order and contents must always match. The rule of the first stage applies
always, and wrong data or address is reported as an error. In the second
stage, three outcomes can be observed:

1. Address and data are matched with the request, and correctly received
packed is counted.

2. Address don’t mach, then the comparing returns to the stage one and
next memory and predictor packets are popped and compared. The
predictor miss is recorded with severity 'info’.

3. Addresses match, but data doesn’t match. The error is reported, but a
new memory packet is not popped because the packet with the matching
address has already been matched.

At the end of the simulation, the total number of received packets from
individual ports is reported, along with statistics about comparison. If at any
point we try to pop from an empty queue, the simulation ends with a severity
of 'fatal’. When this occurs, there is already a problem in the simulation that
renders all the following data pointless, and the time would only be wasted
by continuing with the simulation.

B 426 m_virt_seqr

Virtual sequencer that provides easy access to the individual sequencers to
simplify the writing of tests.

37

4. Implementation

B 4.2.7 m_predictor

Predictor of requests to the memory. Contains models of associative and
FSM predictor memories. The operation on data inside memories is imple-
mented inside models. Data are read and written to the memories based on
specifications. When a prediction miss is predicted, the address, which should
be requested from memory by RISE as the result of the miss, is sent to the
scoreboard before the address and data that correspond with the processor
request.

Bl 4.2.8 m_control_agent

This agent’s purpose is to drive control signals (en , clk , rst_n). These signals
can be affected by sending sequences to the driver, which changes parameters
according to the requested action in the transaction. The commands are
provided by sequence_ api which provides easy and clean access to required
operations:

Switch reset on/off

Switch enable on/off

Enable/disable clock

Do a reset with the requested duration

Do the power-up scenario, enable the clock, assert the enable signal, and
do the reset pulse

The generated clock signal has a period and duty cycle defined in the corre-
sponding configuration object. The clock generation process is run in parallel
with the rest of the code, and before asserting a clock signal, it checks if the
clock is enabled.

B 4.29 m_memory_agent

The memory agent is similar to the control agent in that all commands set
the parameters of operation. The sequence api provides methods for:

38

4.2. Functional (UVM)

Memory_start

Memory_ stop

Memory_ randomize

8 Memory set_ gnt_delay range
8 Memory_set_ data_delay range
® Power_ up

The delay ranges are set by default to their lowest values, gnt delay has
a single value of 0 cycles, and the data delay has a single value of 1 cycle.
The driver with these values acts as RAM, which grants requests in the
same cycle and presents data in the next cycle. The power_up scenario
randomizes the contents of the memory, sets these minimal delays, and starts
the operation of the memory. The memory is in a continuous function state,
which means that it can grant requests before data for previous requests has
been presented. The driver has outputs synchronized to the clk signal from
the control interface.

B 4.2.10 m_processor_agent

The processor agent is the main agent that drives the simulation sequences.
The monitor in it has two ports, one for sending recorded requested addresses
to the scoreboard and predictor, and one for sending recorded responses
to the scoreboard. The sequence of addresses to be requested is controlled
by sequence__api and the driver only receives addresses to be driven to the
DUT and sends them as requests in compliance with the OBI protocol. The
sequence__api for this agent is the most complex because it has to be able to
provide easy access to the basic sequences of addresses that we can expect
from the processor. The basic methods, which are meant to be used internally,
of sequence__api are:

Drive addr

Increment addr

Drive addr increment

Set_addr

Get_addr

39

4. Implementation

The higher-level methods, which are meant to be used by tests, are:

® Linear read
® Loop_ plain

® Recursion_ plain

These use constrained randomization to create different scenarios based on
a seed that is set at the start of the simulation. This allows them to create
many different sequences with minimal change that can be automated to
provide a large number of different stimuli for simulation.

B 4.2.11 Tests

In this stage of verification, only three tests have been written so far. All of
them extend the base class test_base, and each of them creates an instance of
test <testname>__seq sequence created for each test in the same file as the
test class. The sequences are all extended from the test base_seq sequence,
which provides access to the sequence_ apis for easy control of each agent. The
configuration used by the tests is the default configuration without changes.
During the run phase, the tests raise objection to disallow UVM from ending
the simulation before the sequence has ended. Then it creates an instance of
the appropriate test sequence and calls the init functions of each sequence_ api
to bind them to appropriate agent sequencers. After the apis are initialized,
the test sequence is started, and after it ends, the objection is dropped to
allow the simulation to end after the specified drain time mentioned above.

B test_sanity

This test is designed to check if our environment runs correctly and the design

is capable of the basic required behavior. The sequence for this test consists
of:

1. Generating reset signal

2. Short linear read from address 0x0

40

4.2. Functional (UVM)

Short looping sequence of addresses
Longer looping sequence of addresses

Setting address near address upper value limit and linear read to check
address overflow behavior

Setting address to a random value and then reading a linear sequence of
addresses

Requesting the same address multiple times to simulate the end of the
embedded main program

test__loop

This test is designed to check the behavior of DUT when requesting an address
sequence that is similar to the for loops without nesting them. The sequence
for this test consists of:

Generating reset signal
Short linear read from address 0x0

A linear loop of addresses that have a relatively short length of one loop
and are repeated relatively many times

Same sequence as before, but repeated five times from random addresses,
from which the loop starts

test__recursion

This test is designed to check the behavior of DUT when it encounters a
sequence of addresses, which can be expected when a program encounters a
recursive function. The sequence for this test consists of:

1.
2.

3.

Generating reset signal
Short linear read from address 0x0

Recursion sequence with a maximum depth of 5 from the current address

41

4. Implementation
4. 4 recursion sequences with a maximum depth of 5 from random addresses

5. 5 recursion sequences with a maximum depth of 128 from random
addresses

42

Chapter 5

Results

The first part of this chapter will focus on reporting the results of tests
performed. After that, we will discuss the implications, possible causes, and
severity of the problems found.

. 5.1 Results of tests

The first reported results are from an evaluation of assertions, written by
the block designer, using the tool JasperGold. After that, we will summarize
the results of the covers and assertions written for formal verification. The
last part of the report will cover the results of the simulation tests that we
created in our UVM environment.

B 5.1.1 Formal (Jasper Gold)

The results of formal verification were obtained by using the program Jasper-
Gold from Cadence Design Systems, Inc.

43

5. Results

B Result of designer’s checks of code

For the evaluation of assertions written by the designer, we did not use any
additional assumptions to limit the possible stimulation of the design. When
evaluating the assertions placed inside the code by the designer, we found
that all related covers are satisfied. Only two of the assertions produced a
CEX. All other assertions passed.

The first assertion that did not pass is asrt_table_read, which appears to be
failing when two consecutive read misses are detected. The signal instr_req
does not need to be asserted during this mispredicted sequence of addresses.
The shortest signal trace required for this assertion to fail can be seen in
Figure 5.1

ElS

4 a0

ERERERE]

e e eeeseessss

]
@ ® a8

sl & E
8

@

Figure 5.1: Trace of failing design assertion "asrt_table read".

The second one was assertion kill sim__asrt, which was needed to be
rewritten inside tb_ verif top.sv because it was not inside synthesizable code
of the design. For this reason, the formal verification tool did not compile it.

The new assertion has exactly the same expression to evaluate and has the
name "ASRT RISE TOP KILL SIM ASRT". The trace for this failure is

captured in fugure

B Result of created formal coverage

All of the created formal covers passed with the exception of one cover. The

cover that the tool reported to be unreachableis COVER_ P _ADDR_LOOP_NESTED,
which is the expected result because the design specification does not permit

this behavior with the used parameters. If this cover were reachable, it would

be due to the unexpected design behavior.

44

5.1. Results of tests

» ASRT_RISE_TOP _KILL_SIM_ASRT
B mio
b aW[N\ [\ |
- rst_n
rise_en
instr_req f
g flash_req T
g instr_gnt ! e W
- flash_gnt f
& instr_rvalid |
flash_rvalid]
@ instr_addr [0000
B @ pref_instr_addr [T 50000))
] instr_rdata 'MW
+ @ pref_instr_rdata I 2" hoooo_poox
Figure 5.2: Trace of failing design assertion

"ASRT RISE _TOP_KILL SIM ASRT".

The trace shown for COVER._ P ADDR RANDOM FEACH CYCLE s a
linear sequence of addresses, which is not the desired behavior for this specific
cover.

The cover COVER_P_ADDR LOOPING 2 SEQUENTIAL LOOPS is
only reachable when the assumption ASSUMFE_ADDR_1S STABLE DURING_REQ
is disabled.

B Result of created formal assertions

OBI connection with processor. The OBI for communication with the
processor is in the slave mode, for which we check only OBI-R-5 by assertions.
The assertion for this interface was passed along with its related cover.

OBI connection with memory. The OBI for communication with memory is
in the master mode, for which we have implemented assertions for OBI-R-3.
The assertion for OBI-R-3-1 fails even with all reasonable assumptions about
design inputs. The assertion for OBI-R-3-2 passes when the assumption
about correct interface operation by processot is active, but when it is disabled,
the assertion fails.

Assertions checking function of the design. From the assertions written so
far to check the correct behavior of the design, there is only one failing. This
assertion is ASRT DATA FROM CORRECT ADDR. The CEX for this
assertion shows the request sent to the memory when there is a prediction
miss.

45

5. Results

B 5.1.2 Functional (UVM)

The results of functional verification were obtained with the help of the simula-
tor Xcelium from Cadence Design Systems, Inc. The simulator support for the
UVM package was used during the debugging of the UVM environment. Each
test was run multiple times with random seeds by using a custom script to run
the test and then save the .log file under the name: <test name>.<seed>.log,
for manual check for errors. Each test was run with 50 different seeds to
decrease the chance of missing scenarios that would cause the test to fail.

B Found problems

By running the simulations, we were able to identify the following problems
with the design:

® The DUT is not able to detect the request for a single address multiple
times correctly. Instead of requesting the same address from memory,
it starts to oscillate between requesting the current address and the
sequentially next address.

® Some of the tests are failing due to the sudden change of predictor FSM
for a given address from ST to SNT. This scenario is captured in Figure
0.3l

® When two consecutive mispredictions are encountered, the DUT registers
the second address in association memory to the position that has the
line index increased by one. The wrong index is also used to access and
update the FSM predictor table. This scenario is captured in Figure [5.4.

. 5.2 Discussion of results

Here we will discuss the probable causes of design bugs, their effect on the
function of the design, and some possible ways to fix them. Some of the
problems are most likely caused by the same undesired behavior of the design.
Since the modification of the DUT is outside of the scope of this work, we
will present the probable cause of the design problem, and in some cases, we
will propose a solution. All of the bugs will be reported to the design team
for resolution.

46

5.2. Discussion of results

Figure 5.3: Simulator output with captured wrong DUT predictor line
update and assigning of initial predictor FSM value to the already ini-
tialized line. (The trace can be also found as attached file: screen-
shots/exp_table _wrong state transition.png)

Figure 5.4: Simulator output with captured scenario, where DUT updates the
wrong line of the FSM predictor table. (The trace can be also found as attached
file: screenshots/exp table write _wrong_line.png)

B 5.2.1 Formal (Jasper Gold)

B Discussion of designers’ checks of code results

The failing assertion ASRT RISE TOP_KILL SIM ASRT shows us that
the design will read the wrong instruction from memory when the processor is
stalling at a single address. This behavior was also observed in the sinulation,
where we needed to remove the processor stall sequence at the end of the
sanity test because of oscillation. The solution for this particular failing
assertion can be to simply route the instr_gnt signal through an AND gate,
which would force a logical value of 0 to the signal when instr_addr and the
pref _instr_addr are not the same.

47

5. Results

In the case of assertion asrt_table read, it is harder to find the leading cause
of this bug without a deep understanding of the design because of the complex
assertion disable expression. Because of that, the failing assertion will only
be reported to the designer with the data provided by JasperGold.

B Discussion of created formal coverage results

The cover designed to show correctly predicting the end of the nested loop is
not reachable, as was expected. This cover is not reachable because we would
need to correctly predict the end of the inner loop multiple times, which is
not possible with the design parameters that we selected.

The cover to request a random, different address for each cycle has been
reached by the tool, but when reviewing the results, we classified it as failing.
The cause of this decision is that we wanted to see a random sequence of
addresses, but we got a linear sequence. This could be fixed by limiting the
new address to not be a sequential address or an address visited in some
number of previous cycles. Since this cover did not produce the desired trace
to show us, it did not contribute any new information to the verification
process.

The cover that was designed to show us the two looping sequences of ad-
dresses that are consecutively requested is only reachable when we disable
the assumption, which is forcing instr__addr to stay stable during the address
phase of the OBI protocol. This means that our design is able to exercise
this behavior, but only if the processor OBI violates the specifications of the
OBI protocol.

The cover, whose purpose is to show us that pref instr_addr is being constant
for 10 continuous cycles, is reachable, against the found bug, which forced us
to remove stall simulation at the end of the sanity test. The provided trace
shows us that the address sequentially after the address that we want to stall
on needs to be set as a branch with the destination pointing to the address
of the stall. From this trace, we can infer that the address used as a base for
prediction after a branch is taken is the address sequentially following the
branch destination address. Although this cover was marked as reachable by
JasperGold, it was not possible to reach it in the way that we would expect,
and thus the trace is a sign of a design flaw.

B Discussion of created formal assertions results

The DUT violates the OBI protocol on the connection interface with memory.
Violation of address stability during a request before a grant is received can

48

5.2. Discussion of results

be overlooked for two reasons. The first reason is that it is the same bug that
is already acknowledged, for the type of processor that the design is intended
for, at the end of the OBI specification. The second reason is that we can
expect the memory to have an instant reaction time because it is intended to
store and provide instructions for the processor. We can expect the clock to
be at the frequency where the memory is able to present the data from the
requested address in the cycle immediately following the cycle in which the
request was received. Because of that, this violation has low severity.

The other part of the violation of OBI-R-3 is more concerning. The fact
that the flash_req out signal is able to violate the specifications of the
OBI protocol can be a problem when integrating this design into a larger
system. When we looked at the source of this behavior, we found that the
flash__req_out signal is always directly connected to the instr_req in signal,
which is allowing it to violate the OBI protocol. This is a very severe problem
because it directly violates specification SPEC-R-7, which is connected to
the OBI specification OBI-R-3.

The failing assertion ASRT DATA_FROM_ CORRECT ADDR is failing
because of a flaw in its implementation. This assertion always checks if the
input and output addresses are the same when sending a request to memory,
but we missed the possibility that the prediction was incorrect and the correct
address will be requested in the next cycle. The application of this fix should
not be very problematic.

B 5.2.2 Functional (UVM)

The problem with the design not being able to comply with the processor stall
at the single address is already mentioned above. This time we confirmed it
by simulation, and we could see that the address requested from memory was
oscilating between the address requested by the processor and the address
sequentially after. This behavior is strongly undesirable in our design because
of its intended use for applications focused on low power consumption. The
switching of gates caused by the address oscillation and the resulting need
for memory to recall data from different addresses each cycle leads to an
undesirable increase in power consumption. Because of these reasons, the
severity of this problem is medium (corner case).

The violation of predictor FSM transitions, defined by the 4-state FSM
predictor diagram, could be caused by the wrong resolution of the signal
pred__npredthat is used inside the rise_table block of the design. The logical
zero value of this signal defines the state of the currently accessed FSM
predictor as 2’b00, which then overwrites the state stored in the predictor
table. This directly violates the possible state transitions defined by the
4-state FSM predictor. It also breaks the already-recorded data inside our
predictor. From that, we can conclude that the severity is medium (corner

49

5. Results

case) because the design is able to recover from mispredictions at the expense
of one clock cycle.

The wrong index that is used for accessing the associative memory and
table of predictors is caused by using the address, sequentially following the
branch destination address, as the source of the index value. This bug causes
problems in two ways. First, it hinders the registration of consecutive jumps
(which could be a result of the decision tree in the embedded program), and
second, it may affect other registered branches. This behavior also breaks
the prediction mechanism and rewrites our recorded data with the wrong
values. That means the severity is the same as above (medium (corner case)
severity).

50

Chapter 6

Conclusion

In this work, we presented two approaches to the verification of digital
circuit design. The first was formal verification, which uses mathematical
proofs to present us with answers about design. We also used these proven
properties of the design to decrease the complexity of the UVM environment.
The simplification was possible due to the fact that we verified the block
interface, so there was no real reason to add more randomized parameters
for driving stimuli in simulation tests. The implemented UVM testbench
environment incorporates three separate agents for individually driving each
of the interfaces. The previous formal verification saved us a lot of work with
verifying the interface protocols, and we could focus more of the verification
effort on the verification of design functionality. Since, for the purpose of
this work, there is no iteration between finding the flaws in the design and
reporting them to the designer for fixing, we will report the design flaws
after this work is complete. In a normal situation, there would be multiple
iterations of verification, finding design flaws, and fixing them by designers.

B 6.1 Implemented files

In this work, I implemented the UVM environment used for functional
verification and the verification components with their top module used in
formal verification. The files created by me are inside the attached package
in folders scripts/ , src/th/ , and src/list_files/ . The files inside folders
src/design/ and src/package/ were not created by me.

o1

6. Conclusion

B 6.2 Comparing the verification approaches

With the formal verification, it was very easy to verify the properties of the
OBI interface, especially in situations where the en signal is deasserted and
the design shall directly connect the interfaces together. Also, the verifica-
tion effort for checking compliance with certain points of the OBI protocol
specification was very low. Contrary to that, the formal verification of the
valid memory position of data passed to the processor would be a lot more
difficult than using the simulation with a simple model of the memory. The
time required to first run the formal verification tool and to verify some
combinatorial behavior, which is sequentially relatively short, is very short.
When using the UVM environment for verification via simulation, it requires
a non-negligible amount of verification effort. After the UVM environment is
completed, it is relatively easy to add more tests when needed. The difficulty
of implementing additional tests is also strongly influenced by the implemen-
tation quality of the UVM environment.

In summary, formal verification is quick to deploy and is very useful for
the verification of combinatorial or short sequential logic. This allows us to
decrease the complexity of the UVM verification environment. The UVM
simulation approach is slow to deploy because it needs all modules for con-
trolling the simulation and evaluation of gathered data, but when correctly
designed, it allows relatively quick implementation of sequentially long tests.
The UVM is better for verification of longer sequences and the functionality
of more complex designs.

parameter Functional Formal
UVM + XCELIUM | JasperGold

Time required for the first results long very short

Complexity of the implemented en- high low

vironment

Difficulty for expanding verifica- low high

tion

Scope of specifications that can be large small

verified

Provides exhaustive proof no yes

Table 6.1: Table comparing different attributes of used verification methods.

52

6.3. Design flaws

B 63 Design flaws

During verification, we encountered some major flaws in the design that are
preventing the next verification until they are fixed. One of them is the
wrong indexation of associative memory and the FSM predictor table when
two consecutive branches/prediction misses are detected. The other is the
inability of the design to stay at requesting a single address because this
request from the processor (without previous preparation of the prediction
table and memory) results in pref addr_out oscilating between two values.

B 64 Next steps

The next steps in the verification of this design are fixing the already-found
flaws. Until the fixes are done, we shall implement coverage for simulation,
which we skipped due to the limited time. After that, we shall iteratively
write more tests, debug the UVM environment, and fix bugs in the design.
Functional coverage will also need to be added, and automatic formal coverage
will need to be performed.

Run the tests for more configurations of design parameters. In this work, we
were only able to use the parameters as they were defined by the designer
because, after changing them, we encountered a compilation error of the
design on the second compilation. Because of that, we were only able to use
one level of prediction, and we could not verify any of the functions that
require branching history to be present. (The UVM environment is already
prepared for the existence of the global branch history.)

53

o4

8]

Bibliography

Arjan, Bink. OBI-v1.4 [online]. Mar 2022 [cit. 2023-11-15]. Avaible from:
https://github.com/openhwgroup/obi/blob/main/0BI-v1.4.pdf|

Nelson, Campos. A basic tutorial of uvm [online]. Sep 2016 [cit. 2023-11-
15]. Avaible from: https://sistenix.com/basic_uvm.html|

Jasper formal fundamentals training [online]. Cadence Design Systems,
Inc. [cit. 2023-11-15]. Avaible from: https://www.cadence.com/en_US/
home/training/all-courses/86123.html|

Harry, Foster. The 2022 wilson research group functional verification
study [online]. Jan 2023 [cit. 2024-01-04]. Avaible from:
[//blogs.sw.siemens.com/verificationhorizons/2022/12/18/ |

part-9-the-2020-wilson-research-group-functional-verification-study-2/|

IEEE Standard for Universal Verification Methodology Language Ref-
erence Manual, in IEEE Std 1800.2-2017 , pp.1-472, 26 May 2017, doi:
10.1109/IEEESTD.2017.7932212.

Jonas Julian, Jensen. How to create a self-checking testbench [on-
line]. Jul 2023 [cit. 2023-11-14]. Avaible from: https://vhdlwhiz.com/
lhow-to-create-a-self-checking-testbench/|

Martin Lastovka, Implementace instrukéni sady pro risc-v procesor [on-
line]. Jun 2022 [cit. 2023-11-15]. Avaible from: https://dspace.cvut}
|cz/handle/10467/100975|

Verification Plan: A document that defines what functional
verification is going to be performed [online]. Semiconduc-
tor Engineering. Nov 2018 [cit. 2023-11-19]. Avaible from:

55

https://github.com/openhwgroup/obi/blob/main/OBI-v1.4.pdf
https://sistenix.com/basic_uvm.html
https://www.cadence.com/en_US/home/training/all-courses/86123.html
https://www.cadence.com/en_US/home/training/all-courses/86123.html
https://blogs.sw.siemens.com/verificationhorizons/2022/12/18/part-9-the-2020-wilson-research-group-functional-verification-study-2/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/18/part-9-the-2020-wilson-research-group-functional-verification-study-2/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/18/part-9-the-2020-wilson-research-group-functional-verification-study-2/
https://vhdlwhiz.com/how-to-create-a-self-checking-testbench/
https://vhdlwhiz.com/how-to-create-a-self-checking-testbench/
https://dspace.cvut.cz/handle/10467/100975
https://dspace.cvut.cz/handle/10467/100975

6. Conclusion

https://semiengineering.com/knowledge_centers/eda-design/ |
verification/verification-plan/|

[9] Systemwverilog accelerated verification with uwvm training v1.2.5 [online].

Cadence Design Systems, Inc. [cit. 2023-11-15]. Avaible from:
www . cadence.com/en_US/home/training/all-courses/86070.html]

[10] Systemwverilog for design and verification training [online]. Cadence De-
sign Systems, Inc. [cit. 2023-11-15]. Avaible from: https://www.cadence!
|com/en_US/home/training/all-courses/82143.html]

[11] Various, Writers. Formal wverification 101 [online]. Sep 2013
[cit. 2023-02-15]. Avaible from: |https://semiengineering.com/
|formal-verification-101/|

56

https://semiengineering.com/knowledge_centers/eda-design/verification/verification-plan/
https://semiengineering.com/knowledge_centers/eda-design/verification/verification-plan/
https://www.cadence.com/en_US/home/training/all-courses/86070.html
https://www.cadence.com/en_US/home/training/all-courses/86070.html
https://www.cadence.com/en_US/home/training/all-courses/82143.html
https://www.cadence.com/en_US/home/training/all-courses/82143.html
https://semiengineering.com/formal-verification-101/
https://semiengineering.com/formal-verification-101/

Appendix A

OBl - implemented functionality

port ‘ implemented ‘ tie-off value H port ‘ implemented | tie-off value
clk Y

reset n Y

req Y rvalid Y

gnt Y rready N 1’bl
addr][] Y rdatal] Y

we N 1’b0 err N 1’b0
be]] N 4'b1111 ruser]] N dynamic
wdatal] N b0 rid]] N dynamic
auser]] N b0 exokay N 1'b0
wuser N b0 rvalidpar N dynamic
aid(] N b0 rreadypar N dynamic
atop[5:0] N b0

memtype[1:0] N 2'b0

prot[2:0] N 3’b111

dbg N 1’b0

reqpar N dynamic

gntpar N dynamic

achk]] N dynamic

Table A.1: List of OBI signals showing which of them are used by the design
and tie-off values of unused signals. The dynamic tie-off value means that single
value can’t be assigned to signal and we act as if value of those signals is always
correct

o7

A. OBI - implemented functionality

ID relevant | note

R-1 Y

R-2 Y

R-3 Y A known bug of RI5CY processor is that it doesn’t
necessarily keep its address phase signals stable
during the address phase [7]

R-4 Y Signal rready not used

R-5 Y

R-6 Y

R-7 N Signal be not used

R-8 N Signal be not used

R-9 N Signals aid and rid not used

R-10 N Signal atop not used

R-11 N We only use read transactions

R-12 N Signal exokay not used

R-13 N Signal regpar not used

R-14 N Signal gntpar not used

R-15 N Signal rvalidpar not used

R-16 N Signal rreadypar not used

R-17 N Signal achk not used

R-18 N Signal rchk not used

R-19 Y

R-20 Y Constant COMB__GNT is not defined.
Default value of False is assumed.

R-21 N

R-22 Y

R-23 Y

R-24 Y

R-25 N Signal rready not used

R-26 Y

Table A.2: Requirement list of the OBI protocol with information about which
are relevant for our design.

o8

Appendix B

Table of verification methods used for
requirements

ID

Formal

Functional

Not verified by presented methods

OBI-R-1

X

OBI-R-2

OBI-R-3

OBI-R-4

OBI-R-5

slisiislls

OBI-R-6

OBI-R-19

OBI-R-20

OBI-R-22

OBI-R-23

OBI-R-24

Slksikaiksikalls

OBI-R-26

SPEC-R-1

SPEC-R-2

SPEC-R-3

SPEC-R-4

SPEC-R-5

SPEC-R-6

SPEC-R-7

SPEC-R-8

SPEC-R-9

SPEC-R-10

SPEC-R-11

PR AL P AL DR | AL < | R | A

SPEC-R-12

99

B. Table of verification methods used for requirements

SPEC-R-13

SPEC-R-14 X

SPEC-R-15

Slksikalls

SPEC-R-16

SPEC-R-17 X

SPEC-R-18

SPEC-R-19

SPEC-R-20

SPEC-R-21

SPEC-R-22 X

Slksiisiksikalls

SPEC-R-23

Table B.1: List of requirements and which verification methods were used to
verify them. (The corresponding columns are marked by 'X’)

60

	Abbreviations
	Introduction
	Motivation
	Objective

	Methods
	Functional verification
	Simulation output
	Self-checking tests
	Constrained random stimuli
	Blackbox vs whitebox (change of perspective with assertions)
	UVM IEEE1800.2-2017

	Formal verification
	Formal equivalence checking (FEC)
	Formal property verification (FPV)
	Complexity
	Languages

	Coverage

	Verified design (RISE)
	Prediction method

	Verification plan
	Design requirements
	Design verification
	Expected behavioral scenarios for verification
	Formal methods (JasperGold)
	Functional (UVM)

	Implementation
	Formal (Jasper Gold)
	Functional (UVM)
	tb_top
	test_base
	m_cfg
	m_env
	m_scoreboard
	m_virt_seqr
	m_predictor
	m_control_agent
	m_memory_agent
	m_processor_agent
	Tests

	Results
	Results of tests
	Formal (Jasper Gold)
	Functional (UVM)

	Discussion of results
	Formal (Jasper Gold)
	Functional (UVM)

	Conclusion
	Implemented files
	Comparing the verification approaches
	Design flaws
	Next steps

	Bibliography
	OBI - implemented functionality
	Table of verification methods used for requirements

