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Abstrakt: Tato práce se zabývá použitím modelů založených na transformerech pro predikci sys-
témové odchylky v elektrické síti. Na začátku je stanoven kontext trhu s elektřinou a přenosové
soustavy. Jsou zdůrazněny výzvy, které přináší integrace obnovitelných zdrojů energie, a z toho
vyplývající potřeba přesné předpovědi systémové odchylky. Poté je zkoumána architektura a
schopnosti modelů transformerů s důrazem na použití attention mechanismu. Dále je podrobně
popsáno předzpracování a aplikace dat z belgického trhu s elektřinou pro trénování a testování
modelů. Následně je představena implementace modelů transformerů s důrazem na konkrétní
úpravy architektury pro predikci časových řad. Nakonec je provedena komparativní analýza s
metodami strojového učení, jako je vícevrstvý perceptron a XGBoost.
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Abstract:This thesis investigates the application of transformer-based models for predicting sys-
tem imbalance in the electrical grid. Initially, the study establishes the context of the electricity
market and transmission system, highlighting the challenges posed by the integration of vari-
able energy sources and the consequent need for accurate forecasting of system imbalance. It
then explores the architecture and capabilities of transformer models, highlighting the use of the
attention mechanism. The research meticulously details the preprocessing and use of Belgian
electricity market data for model training and evaluation. Furthermore, the implementation of
transformer-based models is examined, with an emphasis on specific architectural modifications
suitable for time series forecasting. Finally, a comparative analysis is conducted with other
machine learning forecasting methods, such as multilayer perceptron and XGBoost.
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Introduction

Electricity is essential to the operation of modern civilization, serving as a key component that
energizes daily life and fuels technological progress. In the quest for sustainability and reduced
carbon emissions, the integration of renewable energy sources like wind and solar is crucial.
However, these green energy solutions, dependent on variable weather conditions, introduce an
element of uncertainty and volatility into the power grid. In order to maintain the stability of
the grid, its operator is forced to implement strategies to compensate for these imbalances. This
necessity paves the way for developing advanced models to accurately predict and understand
the evolving variations over time, thereby enhancing grid stability. This thesis delves into various
modeling techniques, exploring their potential in managing the dynamic nature of today’s energy
landscape.
In this thesis, we focus on predicting system imbalances using transformer-based models. Trans-
formers, renowned for their effectiveness in processing sequential data, are particularly suitable
for this application. Their ability to capture long-term dependencies and patterns in data sets
them apart from traditional models. Unlike conventional approaches, Transformers can manage
large volumes of data and yield more accurate forecasts by considering the complete history of
data inputs. Despite these advantages, the application of Transformers in time series predic-
tion remains under-explored. Commonly, statistical modeling methods such as autoregressive
moving average models are employed. Additionally, prevalent techniques include leveraging ma-
chine learning models like decision trees and their variants, as well as neural networks, for time
series forecasting. In this thesis, we provide insights into system imbalance prediction using
transformer-based models, detailing their necessary modifications for this specific task and offer-
ing a comparative analysis with popularly used models.
The first chapter establishes the motivation of the thesis, introducing the electricity market
and defining key terms essential for understanding its mechanisms. Subsequently, the system
imbalance, a variable indicating the difference between electricity production and consumption,
which is the focus of the study, is defined.
The second chapter provides an introduction to time series forecasting. Next, benchmark models
from the machine learning world, such as the Multilayer Perceptron [49] and XGBoost [13], are
briefly introduced. The Transformer [57], a model prevalent in natural language processing, is
described. Emphasis is placed on a detailed description of the Transformer, its internal structure,
and its components. Special focus is given to the attention mechanism, a distinctive feature of
Transformers. At the end of the chapter, the Temporal Fusion Transformer [39], one of the most
advanced time series models built upon the Transformer architecture, is mentioned.
The third chapter examines the Belgian data utilized for training, testing, and comparing the
proposed models. The chapter begins by addressing temporal causality, which describes the prob-
lem associated with delayed data availability. Subsequently, all the transformations performed
on the data are described, from variable selection and feature engineering to data normalization,
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division into training, validation, and test sets, and the actual construction of the input data.
Three implemented transformer-based models, specifically tailored for time series analysis, are
detailed in the fourth chapter. The necessary modifications made to adapt these models to time
series forecasting are described. Furthermore, the chapter provides a comprehensive discussion
on each model, elucidating their respective advantages and disadvantages.
The final chapter presents the results achieved in this thesis. It includes a detailed comparison of
the implemented transformer-based models against benchmark models in the context of predict-
ing system imbalance. This comparative analysis highlights the effectiveness and performance
variations among the different models. Furthermore, conformal prediction intervals [41] are in-
corporated with the point predictions to indicate the quality of the forecast. Additionally, an
ensemble comprising the implemented models is constructed to enhance the overall prediction
accuracy.
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Chapter 1

Motivation

Safe and reliable access to the electricity grid is one of the essential features of modern society.
It is a crucial element in promoting sustainable development and forms the foundation of social
and economic well-being. Improving distribution networks and coverage is key to global progress
and to improving living standards in less developed regions. A shortage in electricity supply
could result in disruptions in critical sectors such as health and industry.

1.1 Electricity

Along with natural gas, coal, or oil, electricity is classified as an energy commodity and is traded
on electricity markets. However, its specific characteristics make it very different from other
physical commodities.
Electricity must be produced and consumed simultaneously, and the power grid must be balanced
in real time. This requirement implies that supply must exactly meet demand. The challenge
is to ensure that this balance is maintained. Other energy commodities are relatively easy
to store, and any shortages or surpluses can be dealt with by adding or storing reserves. In
the case of electricity, a complication arises because of the complexity of electricity storage, and
there are only a limited number of electrical energy storage (EES) options that humanity has
invented so far. Currently available EES technologies do not meet all the requirements such as
long life, affordability, high efficiency, and environmental friendliness. However, promising new
technologies are being further investigated [12].
Electricity generation is the process of producing electricity from different primary energy sources.
In practice, it consists of thermal and renewable power plants. Thermal power plants are a stable
source of electricity and account for the majority of electricity generation worldwide. These are
mainly fossil fuel and nuclear power plants.
Renewable power plants typically represent a minority of the energy mix and are a less stable
source of energy. Yet, they produce minimal carbon emissions and are a sustainable source of
energy. Renewable energy sources (RES) fall into two categories: variable, such as wind and
solar power, which are not easily dispatchable, and controllable, such as hydroenergy or biomass,
which allow their production to be more easily regulated. In some regions, the former account
for tens of percent of total electricity production [25]. Wind and photovoltaic energy production
is sensitive to weather conditions, and a sudden change can drastically affect production. In
extreme cases, it can lead to complete shutdown of the power generation.
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In contrast, controllable RES produce electricity on demand, as do thermal power plants. In
the electricity grid, therefore, generation can be alternated to balance the grid and compensate
for the intermittency of variable RES.
To reduce dependence on fossil fuels and the production of carbon emissions, the use of low-
carbon electricity is increasing. After the Fukushima nuclear disaster in 2011, the debate has
intensified, and nuclear power generation has been the subject of global controversy due to con-
cerns about safety and waste disposal [8]. In Europe, there has been a noticeable decline in
nuclear energy usage over the past two decades. This trend is characterized by the decommis-
sioning of several nuclear reactors and the phased-out operation of entire nuclear power plants,
largely influenced by a strategic shift toward other energy sources and significant policy deci-
sions aimed at reducing the dependence on nuclear energy [8, 59]. Wind and photovoltaic energy
utilization is simultaneously increasing and is expected to increase further in the coming years
[30, 53].
The electrical grid is a complex system designed to deliver electricity from its generation source
to end-users for their hourly requirements. Evolving from modest local setups, these systems
now span thousands of kilometers, interlinking millions of homes and commercial establishments
today. It comprises three essential components: electricity generation, transmission, and distri-
bution, each integral and indispensable within the system.
After electricity is generated in power plants, it is delivered to the grid. The transmission system
then employs high-voltage power lines to bridge the distance between power plants and local
distribution networks. Last, but not least, electricity distribution is the final part of the electricity
network that ensures the conversion to the appropriate voltage level and further distribution to
consumers.
As described in Section 1.1, the increasing trend towards integrating variable RES, such as
wind and photovoltaic power, leads to greater unpredictability in general electricity production
and disturbances in the balance of the grid between consumption and production. In addition,
the grid is also affected by various other factors. Electricity demand exhibits seasonal variations
on daily, weekly, and monthly scales. Furthermore, changes in delivery requirements from large
consumers can significantly affect the grid, as can various repairs, outages, and failures of both
power plants and the transmission system.
These challenges are primarily addressed by the Transmission System Operator (TSO), which is
responsible for operating the transmission system and keeping balance between electricity supply
and demand. The utility frequency of the power grid is a key indicator of this balance. Deviations
from the standard frequency (50 or 60 Hz) signal an imbalance between electricity generation
and consumption. Close cooperation between the TSO and the Distribution System Operator
(DSO) is also necessary to enable the energy transition. In Europe, TSOs form the European
Network of Transmission System Operators for Electricity (ENTSO-E), an association that now
consists of 39 members from 35 countries [26]. The main objectives of ENTSO-E are currently
to integrate renewable energy sources into the energy mix of member countries and to support
the creation of a single European energy market.
Electricity trading, like other tradable commodities, is fundamentally driven by the dynamics
of supply and demand. In addition to producers and buyers, there are several other players in
the market. To ensure balance on the grid, the TSO delegates responsibility for maintaining
balance to private entities called Balance Responsible Parties (BRPs). Each market participant,
whether a producer or an offtaker, must be under the management of a BRP or be its own
BRP. The primary function of a BRP is to balance the gap between electricity production
and consumption. Additionally, the Market Operator plays a pivotal role in setting prices and
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facilitating transactions. It is responsible for organizing day-ahead and intraday markets, as well
as for aligning supply and demand through the matching of bids.
There are several types of contracts that can be traded on European markets. The vast majority
of electricity trading takes place in advance of physical delivery on the forward and futures
markets [20]. These types of contracts can be concluded for different volumes and durations
and can be traded days, months, or even years in advance. Their main advantage is that they
reduce risk and give both producers and buyers certainty that they will be able to sell or receive
the electricity. Additionally, both parties can hedge against price fluctuations, allowing them to
negotiate a fixed price that is mutually beneficial.
Forward production and consumption forecasts are not very accurate, so market participants
have to adjust their position. This takes place on the spot markets, where contracts are traded
less than a day in advance on the so-called day-ahead and intraday markets.
As implied by its name, the day-ahead market involves trading electricity one day prior to its
delivery. Participants submit bids and offers, each specifying a desired quantity at a particular
price. Bids and offers are matched afterward, and the final price is established by the market
operator. In European countries, trading usually terminates at 12:00 local time the day before
delivery. If a participant is interested in further adjusting its market position, the intraday
market comes into play for the final settlement of trades. The market opens at 15:00 local time
on the day preceding delivery, providing participants an opportunity to settle any imbalances,
offering the possibility of trading up to 5 minutes before the delivery period.
For more information on how the markets work, see [2].

1.2 System Imbalance

Deviations from absolute balance in the grid are omnipresent. To resolve any imbalance in
the grid, the TSO is equipped with several ancillary services used to maintain stability. Apart
from monitoring frequency in the system, power plants are also scheduled by the TSO to start
up at times when electricity demand is expected to be high, referred to as peaks. Furthermore,
the TSO has operating reserves in case of an outage or imbalance in electricity demand and
supply.
This reserve energy ensures sufficient power is available. We distinguish between primary, sec-
ondary, and tertiary reserves, which differ in the speed of their activation.
The primary reserve, known as Frequency Containment Reserve (FCR), is used for immediate
network stabilization. It comprises a combination of resources, including battery generators,
pumped-storage hydroelectricity, and often gas-fired power plants, and is activated automatically
within 30 seconds. Its purpose is to keep the network running until additional reserve resources
are available.
The secondary reserve, called the Automatic Frequency Restoration Reserve (aFRR), is also trig-
gered automatically. It must be activated within 5 or 7.5 minutes, depending on the country, and
is provided by resources that can be activated quickly and sustained for a longer period. These
include not only conventional power plants but also battery systems in combination with biogas
stations and hydroelectric power. Additionally, international cooperation, facilitated between
some European countries on the PICASSO platform (Platform for the International Coordina-
tion of Automated Frequency Restoration and Stable System Operation), makes it possible to
deliver aFRR across borders.
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If aFRR does not compensate for the deviation in the network, a tertiary reserve called manual
Frequency Restoration Reserve (mFRR) can be activated. It must be triggered within 12.5 or 15
minutes, depending on the country. Inter-European sharing is again possible thanks to the MARI
(Manually Activated Reserve Initiative) platform.
Additionally, in some regions, a contingency reserve, also called Replacement Reserves (RR), is
subsequently activated. It takes longer to activate and is used to restore the operating reserves
to readiness. Although this mechanism is not used in all countries, it is possible to trade RR
across borders using TERRE (Trans European Replacement Reserves Exchange).
In addition to these ancillary services, which activate reserve resources as a counteraction to
a growing imbalance in the grid, there is a European platform IGCC (International Grid Con-
trol Cooperation). Unlike the aforementioned platforms designed for trading reserves, IGCC is
designed for cross-border balancing so that the energy from reserve resources does not need to
be activated at all. All these platforms are designed and managed by ENTSO-E.
Moreover, in the case of all reserves, a distinction can be made as to whether the regulation is
positive or negative. Positive regulation is used to offset shortages of electricity, while negative
regulation is utilized in instances of surplus electricity within the network. This mechanism is
essential to prevent power outages and ensure a consistent and stable energy supply.
The process of balancing the grid is known as the balancing mechanism. As mentioned in Section
1.1, market participants first trade contracts in the futures and forward markets, where they can
secure long-term supply and demand of electricity in advance. Prior to actual physical delivery,
they can adjust their position as their supply and demand forecasts become more precise.
However, at the time of physical delivery, the actual value of production and offtake may differ
from the contracted value. The system may then remain out of balance due to over-consumption
or over-production, for which the BRPs are responsible. The sum of the imbalances of all BRPs
is called the system imbalance. Correspondingly, the total amount of balancing energy, i.e.,
the difference between the sum of positive and negative reserve energy that the TSO has to
supply to the system, is called net regulation volume (NRV).
This imbalance needs to be regulated by the TSO to maintain a stable frequency in the power
system through the ancillary services. Balancing energy, whether domestic or obtained through
cross-border capacities, is paid for by the TSO. The price depends on various factors, but par-
ticularly on the origin of the reserve energy that had to be activated. Once the price is set
by the TSO, BRPs in deviation must settle their position. They are thus forced to buy or sell
the imbalance amount at a fixed price determined by the TSO. If a BRP can accurately forecast
market trends, this practice of settlement can be advantageous and profitable. However, if their
predictions are incorrect, it can lead to losses, such as the need to purchase electricity at a price
higher than the market rate.
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Chapter 2

Time Series Forecasting

This thesis is devoted to time series analysis and forecasting. Using historical data points of
a time series, the goal is to predict its future values. Time series forecasting, positioned at the
intersection of statistical analysis and predictive modeling, offers a range of methods for applica-
tion. The main goal, however, is to leverage historical data, indexed in temporal order, to make
predictions about future trends. Each approach employs distinct methodologies and assumptions
on time series, as will be discussed in this chapter.
Before proceeding, it is useful to consider the notation used in time series analysis. Consider time
series data (xt, yt) ∈ Rk × R, t = 1, . . . , n, where xt is a vector of explanatory (or exogenous)
features and yt is the target value. Additionally, k is the number of explanatory variables, which
can be represented by both stochastic and deterministic time series, as well as historical values
of yt, and n is the total number of observations in the data.
A forecasting method is a procedure that predicts future values of the target with the knowledge
of historical values of both the target and other exogenous variables. It typically consists of
designing a model µ̂, which is fitted on training data, that predicts future target values.
Furthermore, we can denote A as a mapping algorithm that uses training data to fit the model.
It formally maps all possible training sets collections to a space of regression functions R, i.e.

A :

n0⋃
m=1

(
Rk × R

)m
7→ R,

where n0 ∈ N, n0 < n represents the splitting index of the training data, comprising indices
{1, . . . , n0}. Therefore, it can be denoted

µ̂ = A ((x1, y1) , . . . , (xn0 , yn0)) ,

The situation described is called multivariate time series forecasting since other variables are
available in addition to the target.
Time series forecasting can be classified based on the forecasting horizon. While being at time
τ , predictions can focus on different time steps in the future. The straightforward variant is
a one-step-ahead prediction, which is usually the most accurate and aims to predict the target
value at time τ + 1. By generalizing to p ∈ N steps ahead, a forecast at time τ + p can also be
made. The last type is multi-horizon forecasting, which focuses on predicting the entire sequence
of values for time steps τ + 1, . . . , τ + p. Since the objective is to predict an entire sequence of
values, this task is the most challenging one.
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forecasting
model

Figure 2.1: An example of multi-horizon forecasting. At given time τ , past and present values
of target yt and explanatory variables xt for all t = 1, . . . , τ are used to forecast p target values
ŷτ+1, ŷτ+2, . . . , ŷτ+p.

There are several methods that can be used including statistical modeling, machine learning (ML)
or deep learning (DL) models. Statistical models explicitly consider the temporal dependency
and their pivotal role is identifying and exploring the internal structure of the data. These
models are designed to capture trends, seasonal fluctuations and other dynamics within the time
series. One of the drawbacks is the assumptions placed on the time series by specific models.
Violations of these assumptions can lead to biased or inefficient estimates and forecasts. The most
well-known statistical models are autoregressive integrated moving average (ARIMA), seasonal
ARIMA (SARIMA), exponential smoothing (ES), or their variants using exogenous variables
[33]. For more complex datasets, these models have been outperformed by ML and DL models
[52, 61].
Although initially designed for supervised learning tasks, machine learning and deep learning
models have been adapted for time series forecasting. This adaptation involves creating lags
such that past observations are used as features to capture temporal dependencies. This method
ensures that while the general dependency among observations is preserved through these lags,
the individual observations can be treated as independent. After restructuring the time series
as independent data, both ML and DL models can be applied effectively. The advantage of
this approach is the ability to leverage the power of machine learning algorithms, especially in
capturing complex nonlinear relationships and interactions in the data.
Several approaches can be employed in multi-horizon forecasting. One such method is multi-
output regression, which involves modifying the predictive model to simultaneously forecast
multiple future values. This approach directly targets the entire prediction horizon in a single
model. Another strategy is the creation of an ensemble of models, where each model is trained
to predict a specific time step within the entire forecast horizon. This method benefits from
the diverse perspectives of multiple models. Alternatively, models can be applied in an iterative
manner, where prediction for each step is fed into the next, gradually building the forecast
sequence.
One specific type of DL model is Transformer [57], originally developed for natural language
processing (NLP). Its ability to capture long-term dependencies and complex patterns is a good
prerequisite for accurate time series prediction, especially when working with large data sets.
Their application to time series is being investigated, and their application to time series data
are one of the main aims of this thesis.
Before focusing on the Transformer model, we describe two machine learning models that have
been used as benchmarks. We then focus on the Transformer, describing in detail the main
concepts and components of the model. We conclude with a description of a state-of-the-art
model called the Temporal Fusion Transformer [39], which is based on the original Transformer
structure.
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2.1 XGBoost

Gradient tree boosting (GTB) is a popular and powerful machine learning technique, applicable
to a broad range of supervised learning problems due to its flexibility and scalability. Its advanced
variant, eXtreme Gradient Boosting (XGBoost) [13], offers enhanced performance with faster
execution owing to various optimizations and improvements. Similarly to decision trees, XGBoost
iteratively adds trees that optimally reduce the objective function by leveraging the gradient and
Hessian of the loss function.

2.1.1 Gradient boosting

The XGBoost model optimizes an objective function that consists of a training loss and a regular-
ization term to control the complexity of the model. The CART method [7] is used to construct
the decision tree ensemble. Each of the trees predicts a score and the total score of the ensemble
is the sum of the scores of all the trees in the form

ŷi =

K∑
j=1

fj(xi), fj ∈ F , (2.1)

where K is the number of trees in the ensemble, fj is a function representing a single tree with
F being the set of all possible trees, and xi ∈ Rd is an input vector.
The objective function is given in general form by

obj =
n∑

i=1

l(yi, ŷi) +
K∑
j=1

ω(fj), (2.2)

where l(yi, ŷi) is a loss of i-th input vector and ω(fj) is the j-th tree complexity. Model training
is iterative and employs an additive strategy, in which an already trained tree is locked, and
another one is trained afterwards. This allows the new tree to be learned to correct the mistakes
of the previous ones. For the scenario, where k-th tree is being optimized, predictive function
(2.1) can be rewritten as

ŷ
(k)
i =

k∑
j=1

fj(xi) = ŷ
(k−1)
i + fk(xi), (2.3)

where ŷ
(t)
i is the prediction of tree ensemble with indices {1, . . . , k}.

By substituting (2.3) into (2.2) modified for k-th tree, the objective function can be written as

obj(k) =
n∑

i=1

l(yi, ŷ
(k−1)
i + fk(xi)) + ω(fk) + C,

where C ∈ R is a constant. We then develop the loss function into a second-order Taylor
expansion and after arithmetic adjustments, the objective function simplifies to

obj(k) =
n∑

i=1

[l(yi, ŷ
(k−1)
i ) + gifk(xi) +

1

2
hif

2
k (xi)] + ω(fk) + C,

while the terms gi and hi denote the respective derivatives

gi = ∂
ŷ
(k−1)
i

l(yi, ŷ
(k−1)
i ),

hi = ∂2

ŷ
(k−1)
i

l(yi, ŷ
(k−1)
i ).
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By removing the part of the objective function that does not depend on fk, we get the final form
of the objective function

obj(k) =
n∑

i=1

[gifk(xi) +
1

2
hif

2
k (xi)] + ω(fk).

The regularization term in XGBoost is formulated to include both L1 and L2 regularization, as
well as penalization for tree complexity, expressed as follows

ω(f) = γT +
1

2
λ

T∑
j=1

w2
j + α

T∑
j=1

|wj |.

In this equation, f is the tree, T is the number of leaves in the tree f , wj is the j-th leaf weight
in f , γ is the parameter that penalizes the number of leaves and λ and α are the L2 and L1
regularization parameters on leaf weights.
Compared to the GTB algorithm, XGBoost has several improvements that make it such a popular
method. Key features include advanced split-finding algorithms that efficiently find the best
split in the feature space, or ability to handle sparse data. Important system enhancements
include parallelization strategies that, together with cache-aware and out-of-core computation,
give XGBoost improved computational performance.
For a comprehensive explanation of the utilization of the score in tree pruning within XGBoost,
as well other details, please refer to [13].

2.2 MLP

A Multilayer Perceptron (MLP) is a variant of the feedforward artificial neural network (ANN),
initially conceptualized by Frank Rosenblatt in 1958 [49]. An MLP is composed of an input and
an output layer, as well as at least one hidden layer. Each layer consists of neurons that are
fully connected to every neuron in both the subsequent and preceding layers (see Figure 2.2).
Furthermore, each neuron-to-neuron connection is associated with a weight and every neuron is
associated with a bias.

hidden layersinput layer output layer

Figure 2.2: Architecture of a Multilayer Perceptron neural network with two hidden layers.

Associated weights indicate the importance of the specific connection between neurons, while
bias is introduced to increase flexibility. Each neuron computes a weighted sum of its inputs,
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achieved by multiplying each input by its respective weight and then summing these products,
with the bias added to the sum. An activation function is then applied to this weighted sum,
introducing nonlinearity to the neuron’s output. The output is subsequently passed to each
neuron in the next layer. Each layer in a MLP, encompassing both the input and output layers,
is characterized by its number of neurons, commonly referred to as the layer size.
The output of a neuron can be written as

o = f

∑
j

hjwj + b

 , (2.4)

where f is an activation function, hj is the j-th value from preceding layer with corresponding
weights wj , and b represents the neuron’s bias.
Let us now consider a MLP with M hidden layers with corresponding sizes l1, . . . , lM and let x ∈
Rd be the input vector. Furthermore, w(s)

j,k stands for the weight corresponding to the connection

between the j-th neuron in the (s − 1)-th layer and the k-th neuron in the s-th layer and b
(s)
k

stands for the bias of the k-th neuron in the s-th layer. Additionally, z(s) ∈ Rls is the output of
s-th hidden layer and for simplicity, let us set z(0) := x.
Adjusting the equation (2.4) for i-th neuron in s-th hidden layer, we get

z
(s)
i = f

 ls∑
j

z
(s−1)
j w

(s)
j,i + b

(s)
i

 .

The input layer size depends on the input data and the number of neurons corresponds to
the number of features. The output layer is shaped according to the task it is designed for.
Usually, one neuron for regression and multiple neurons in case of classification.
Additionally, the activation function is a crucial part of MLP, as it introduces nonlinearity into
the model. Without it, the whole MLP would be reduced to a composition of linear functions,
hence also a linear function. In hidden layers of a multilayer perceptron, a variety of activation
functions can be employed, commonly including sigmoid, tanh, or ReLU (see Figure 2.3). The
type of activation function used in the output layer depends on task. In the regression problem
considered in this thesis, the activation function in the output layer is identity activation.
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Figure 2.3: Examples of typically used activation functions.

The weights and biases in a MLP are updated using the gradient descent algorithm in the process
called backpropagation [50], which is an algorithm used to compute the gradient of the loss
function with respect to the network weights. It involves a forward pass to calculate the loss,
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followed by a backward pass to compute gradients using the chain rule. The weights w
(s)
j,k and

biases b
(s)
k are then updated in the direction that minimizes the loss function L. The updates

can be expressed as

w
(s)
j,k = w

(s)
j,k − α

∂L

∂w
(s)
j,k

,

b
(s)
j = b

(s)
j − α

∂L

∂b
(s)
j

,

where α is the learning rate, ∂L

∂w
(s)
j,k

and ∂L

∂b
(s)
j

are the partial derivatives of the loss function with

respect to weights and bias. The mean squared error is typically used as the loss function.
For detailed information on the multilayer perceptron and an in-depth explanation of backprop-
agation, reader is referred to [45].

2.3 Transformer

In solving problems of sequence transduction—also referred to as sequence-to-sequence mod-
eling—in fields such as natural language processing (NLP), speech recognition, or time series
forecasting, one frequently used method involves models based on recurrent or convolutional
neural networks [54, 56, 63]. These complex models typically rely on the encoder-decoder archi-
tecture. The encoder processes the variable-length input and produces its abstract, fixed-length
vector representation, while the decoder reverses this process to produce a variable-length output
[14]. Improved results have been achieved using an attention mechanism that synergizes both
components [4, 36]. However, these models face several complications.
Recurrent models process data sequentially, and at time τ , the model’s output depends not only
on the current input data but also on the hidden state from time τ − 1. This interdependency
makes parallelization impossible and causes the loss of long-term temporal dependencies in longer
sequences due to the vanishing gradient problem [27]. The computational time increases with
larger sequence lengths, and training such a model can reach extremely long computational
time.Since these models do not benefit from parallelization, using hardware accelerators such as
GPUs or TPUs does not reduce training time. Although gradient-based limitations have already
been partially mitigated and performance has been improved, the primary challenge of their
parallelization persists [51].
However, in 2017, Vaswani et al. [57] proposed a groundbreaking model called the Transformer.
It relies solely on the attention mechanism and forgoes the use of recurrent and convolutional
layers. This novelty enables parallel processing, resulting in significant training enhancements
in terms of both resource utilization and computation time [55]. Furthermore, the Transformer
achieves exceptional results that surpass the performance of recurrent models in certain tasks.

2.3.1 Model Achitecture

Since the release of [57], numerous of articles have been published introducing new and improved
Transformer architectures. In this chapter, however, our focus will be solely on the original
paper and the Transformer architecture presented therein while introducing the model and illu-
minating its architecture. Notably, the Transformer model was originally developed to address
the challenges of machine translation and we will follow this purpose throughout this chapter.
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Modifications required to apply the Transformer to time series will be discussed later in this
thesis, although the internal structure of the Transformer remains intact.
Initially, we will provide an overview of the Transformer as a whole, introducing its components
and explaining their roles within the model. Special emphasis will be placed on the attention
mechanism and the operations performed by each part of the model.

En
co
de
r D
ec
od
er

Figure 2.4: A Transformer architecture proposed in [57].

The original problem that Transformer was supposed to solve was machine translation, i.e. to
receive a sequence of words in the source language as input and generate the corresponding
translation in target language as output. As previously noted, the most proficient models consist
of an encoder and a decoder, and this applies also to the Transformer architecture. Both encoder
and decoder blocks are constructed using stacked identical layers, and the visual representation
of this architecture is provided in 2.4.
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2.3.1.1 Encoder block

The encoder block comprises multiple consecutive layers referred to as encoder layers. Each
encoder layer is further composed of two sublayers. The initial sublayer is the multi-head self-
attention layer, which will be extensively discussed in the Section 2.3.3. The subsequent sublayer
is a fully-connected feedforward layer. Both layers are connected back-to-back with residual
connections. The outputs of both sublayers undergo layer normalization [3].
At the beginning of the encoding process, a source sequence serves as an input to the encoder.
This input sequence is passed through the input embedding, alongside with the positional en-
coding (described later in the Section 2.3.4.2). The encoder is responsible for understanding
the input sequence and extracting relevant information and dependencies between tokens.

2.3.2 Decoder block

The decoder block is similarly constructed using identical layers, although their internal structure
slightly varies. The decoder layer consists of three sublayers. The first comprises a masked multi-
head self-attention layer, designed to prevent future token visibility in the sequence. The final
sublayer features a fully-connected feedforward layer, similar to the one in encoder layer. The
key distinction in the decoder layer is found in the intermediate sublayer: the multi-head cross-
attention layer, also known as the encoder-decoder attention layer. This sublayer incorporates
both the internal hidden states incoming from the decoder input and the outputs originating
from the encoder output. This sublayer therefore provides interconnection of both encoder and
decoder blocks. All sublayers are properly normalized and linked with residual connections.
The decoder input is a target sequence which is again enriched by input embedding and positional
encoding. Once source sequence is processed by the encoder block, it is passed to the decoder
where it enters the second sub-layer mentioned earlier, the multi-head cross-attention. The
target sequence alias decoder input enters the first decoder sublayer, where masked multi-head
self-attention is applied to it, and continues to the cross-attention layer, where the encoder output
is also used for computation. The output is then passed to a fully-connected feedforward layer
and, finally, softmax is applied to the output to receive probabilities, which are further used to
predict the next word.
While the encoder provides language understanding, the decoder exercises its generative function
and produces new text. In addition to machine translation, it is also suitable for other text
generation tasks.

2.3.3 Attention mechanism

One of the key methods used in the Transformer is the attention mechanism. An attention
assigns different levels of importance to different parts of the input. It allows the model to
specifically focus on mutually-relevant parts and it is useful to capture contextual relationships
and improve the processing of long-range dependencies in sequential data.
The attention function operates with three vectors called query, keys and values. It maps
a query and a set of keys and values to an output vector. Multiple functions can be used to
calculate attention, however, the authors of the original paper suggested scaled dot-product
attention to be used.
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2.3.3.1 Scaled Dot-Product Attention

The query, keys, and values vectors are incorporated into the calculation. Although the authors
suggest that query and keys dimension dk ∈ N and values dimension dv ∈ N may be different,
in practical use dv = dk is usually considered. Therefore, while explaining the theoretical back-
ground of the Transformer, we will consider the same dimension for all query, keys and values
vectors.
Scaled dot-product attention is applied as follows. First, dot product of query with all keys is
computed. Second, softmax is applied to the results and weights are obtained. Finally, the dot
product of the weights with values is computed to obtain output vector. In this way, the attention
is calculated for one query. However, we can apply attention function to all queries at once by
stacking query vectors into matrix form.
Before we define the attention function, let us introduce the softmax function. It is an operation
commonly used in machine learning and statistical modeling to transform a vector of real numbers
into a probability distribution. Given a vector u = (u1, u2, . . . , ud)

T ∈ Rd, the softmax function
is defined as

softmax(ui) =
eui∑d
j=1 e

uj
, for u = 1, 2, . . . , d.

The softmax function has an important property, which is that

lim
ui→−∞

softmax(ui) = 0. (2.5)

Considering an arrangement of n vectors into a matrix U ∈ Rn,d, where U = (ui,j)
n,d
i,j=1, the sub-

sequent row-wise application of softmax can be denoted as follow

softmax (U)i,j =
eui,j∑d
l=1 e

ui,l
, for i = 1, 2, . . . , n, and j = 1, 2, . . . , d.

With the newly introduced softmax, it is possible to define scaled dot-product attention.

Definition 2.3.1 (Scaled Dot-Product Attention). Let Q,K,V ∈ Rn,dk be matrices of queries,
keys and values respectively with rows qTi , k

T
i , v

T
i ∈ Rdk , ∀i ∈ {1, . . . , n}. A scaled dot-product

attention is given by

zi = attention (qi, k1, . . . , kn, v1, . . . , vn)i =
n∑

j=1

softmax

(
qTi kj√
dk

)
vj , (2.6)

which can be expressed in matrix form

Z = attention(Q,K,V) = softmax

(
QKT

√
dk

)
V. (2.7)

The weighting of the values vector vj depends solely on keys and query vectors kj and qi re-
spectively. It also corresponds to the first element of cross-correlation between vectors kj and qi,
which is for two real vectors a, b ∈ Rd defined as

corr(a, b)j =

n−j−1∑
i=1

aibi+j−1, for j = 1, 2, . . . , d.
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The softmax operator serves as normalization and ensures that the sum of all weights is summed
to unity. In a sense, the attention function calculates the correlation between query and keys
vectors, which is then used as a weight for vector values. Vectors of values vj , for which keys
vector kj is highly correlated with given query qi, are given higher relevance.
As the dimension dk increases, the dot product tends to yield larger values. The subsequent soft-
max is not very sensitive for these high values, so the scaling constant 1√

dk
is used in the attention

formula (2.6) and (2.7), respectively. It was proposed by the authors of [57] and is intended to
prevent this phenomenon.

2.3.3.2 Multi-head Self-attention

In both the encoder and decoder blocks, the initial sublayer is the self-attention layer. It receives
only the sequence itself as input, enriched with embedding and positional encoding. As the name
implies, this process involves computing attention solely based on the input sequence.
The self-attention mechanism exclusively utilizes the sequence of n vectors x1, . . . , xn as input,
where xi ∈ Rd. These vectors must be processed to create vectors of queries, keys, and values. To
do so, three different linear transformations are applied to the input vectors. For this purpose,
we define weight matrices such that

qi = WT
q xi, ki = WT

k xi and vi = WT
v xi, ∀i ∈ {1, . . . , n},

where Wq, Wk, Wv ∈ Rd,dk and d ∈ N is know as model dimension. The weight matrices of each
transformation are learnable, and their specific values are learned during the training phase.
To exploit deeper relationships in the data, it is beneficial to perform several parallel self-attention
functions. As multiple heads of attention are performed, the information learning process could
be approached differently and, even though we work with the same input data, the weight
matrices may be learned differently for each head. In this way, new contexts can be mine from
the data.
For further use, we introduce the concatenation operator, which facilitates the merging of ma-
trices along the second dimension. Let Ai ∈ Rn,di , ∀i = 1, . . . , h be arbitrary matrices. Then
the concatenation operator

concat : Rm,d1 × . . .× Rm,dh 7→ Rm,
∑

di

is defined as follows
concat(A1, . . . ,Ah) =

(
A1 . . . Ah

)
.

We set h as the number of heads used in the multi-head attention. If each head is to be employed
equally, d must be divisible by the number of heads h. The following definition summarizes multi-
head self-attention.

Definition 2.3.2 (Multi-head self-attention). Let X ∈ Rn,d be a matrix of input sequence data.
Subsequently, let h ∈ N be a number of attention heads, d ∈ N the model dimension and dk ∈ N
is the head dimension. The output of an i-th attention head can be denoted as

headi = attention
(
XW(i)

q ,XW
(i)
k ,XW(i)

v

)
,

where W
(i)
q ,W

(i)
q ,W

(i)
q ∈ Rd,dk are learnable weight matrices of i-th head.

a multi-head self-attention function is then given by
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MultiHead (X) = concat (head1, . . . ,headh)Wo,

where Wo ∈ Rdkh,d is a learnable weight matrix.

2.3.3.3 Cross-attention

In the decoder, the data flow deviates slightly from the encoder. The second sublayer of the de-
coder uses two inputs: the output of the final stacked encoder Z(enc) ∈ Rn,d and the input of
the decoder Z(dec) ∈ Rm,d, which has already passed through the self-attention layer. Using
these inputs, a multi-head cross-attention is performed, facilitating interaction between the en-
coder and decoder. The keys and values vectors are derived from the encoder data Z(enc), while
the query vectors are generated by the decoder, specifically from the output Z(dec) of its previous
self-attention layer.
It is important to mention that the encoder output, coming from the encoder block to generate
keys and values, is passed from the last stacked encoder. Thus, the same data enters each of
the stacked decoders from the encoder block.
Therefore, let Wq,Wk,Wv ∈ Rd,dk be learnable weight matrices. Furthermore,

K(enc) = Z(enc)Wk, V(enc) = Z(enc)Wv and Q(dec) = Z(dec)Wq.

Then, the formula (2.7) is applied as follows

Z = attention(Q(dec),K(enc),V(enc)) = softmax

(
Q(dec)K

T
(enc)√

dk

)
V(enc),

to get the cross-attention matrix Z ∈ Rm,d. The values of n and m correspond to the length of
the embedded input sequence to the encoder and decoder, respectively. However, for the machine
translation task, the sequences are usually padded to the same length, and therefore n = m.
Multi-head cross-attention function is defined similarly as in Section 2.3.2.

2.3.3.4 Masking

When using the model, it is crucial to ensure that it remains causal in its operations. It means
that the prediction of the model must not depend on future values. When considering the en-
coder, there is no need to conceal any values within the model, as all information remains fully
accessible and available.
In the case of a decoder, however, the situation is different and the model needs to mask future
data, such as future words in a sentence for a machine translation model. To evade this situa-
tion, part of the decoder input data are masked, which prevents the model from learning from
forthcoming data.
The masking takes place in the self-attention sublayer in the decoder. Let us consider the inter-
mediate result of the attention calculation before applying softmax

Z(corr) =
QKT

√
dk

,

where Q,K ∈ Rm,dk and Z(corr) ∈ Rm,m.
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The resulting correlation-style matrix Z(corr) shows the relevance between each vector in the se-
quence. To achieve masking of future tokens, it is necessary to hide the values above the diagonal.
In practical implementations of the model, masking of future values is achieved by substituting
them with negative infinity. This takes place during the computation of the scaled dot-product
attention before the softmax is applied. As mentioned in (2.5), the softmax function approaches
0 as its input tends towards negative infinity.
In practice, the softmax application therefore assigns zero weight to each masked element in
the matrix, erasing all correlation information.

2.3.4 Input and output

We have already introduced the encoder and decoder blocks. Now, it remains to explain the for-
mat in which the data enters the whole encoder-decoder structure, and how the output is trans-
formed to obtain predictions of following tokens.
When using Transformers for time series, the architecture differs fundamentally only in the input
and output. In this section we will therefore limit ourselves to a brief description, supplemented
by references that will provide the reader with a more detailed description.

2.3.4.1 Linear projection and Softmax

We outlined that in the last stage the output of the encoder-decoder structure is passed to
the linear layer with associated softmax.
The linear layer

Linear : Rd 7→ Rdt

guarantees a dimensionality transformation of the decoder output Z(out) ∈ Rm,d as follows

Linear
(
Z(out)

)
= H,

where H ∈ Rm,dt . Value dt corresponds to the dimension of the target language dictionary.
Subsequently, a softmax operation is applied, introducing a non-linear transformation that scales
values of the vector to fall within the range of 0 to 1. This results in a vector, where each element
within signifies the probability of a specific word from the dictionary occurring as the next token
in the sequence.
This output layer configuration is applied for machine translation. However, it is convenient to
emphasize its adaptability. Depending on the task, the resulting layer can be modified.

2.3.4.2 Embedding

The input data to the encoder and decoder are sequences of tokens, that need to be converted into
numerical representations. This is done by embedding. Each token is first represented as a one-
hot vector, and then transformed into continuous, dense embedding by an embedding matrix.
This matrix learns contextual representations of the tokens, capturing semantic information.
If we consider the space of all possible words in the source language L, then a token w from
this space is first converted into a one-hot vector w̃ ∈ {0, 1}ds , where ds is the size of the source
dictionary. Simplistically, such a vector contains a one at the position in the dictionary corre-
sponding to the token w in L, and zeros elsewhere. Words that do not appear in the dictionary
are encoded as unknown token. In the last step, embedding is applied and w̃ is converted to
a numerical representation of x ∈ Rd. For more detailed description, please refer to [37, 43, 48].
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2.3.4.3 Padding

Padding is essential in Transformers due to its ability to process sequences of variable lengths in
parallel. Sequences delivered during training are padded with a special padding token to ensure
uniform length within a batch. This allows efficient batch processing and facilitating computation
across multiple sequences simultaneously. Usually, all batches are padded to the same length,
which is called maximum sequence length.
More information about padding can be found in [19].

2.3.4.4 Positional encoding

Among the remarkable advantages offered by the Transformer architecture, one of the most
significant is the positional encoding (PE). In traditional recurrent models, data are processed
sequentially, leading to a natural understanding of temporal order.
In Transformers, sequential information is not inherently captured and PE vectors are introduced
to address it. They are added to the encoder and decoder input vectors post-embedding, infusing
the data with information about its relative position in the sequence.
The use of positional encoding is proposed in [57], which offers an approach to encode information
about relative temporal order information within the data. This addition ensures that despite
parallel processing, the model retains an understanding of the temporal relationships, which is
crucial for various sequence-based tasks.
Positional encoding involves the computation of vectors utilizing sinusoidal functions. An es-
sential aspect of PE is that it requires no learnable parameters, making it both efficient and
versatile.

Definition 2.3.3. Let k ∈ {1, . . . , n} be a given position in an input sequence of length n and
pk ∈ Rd be its corresponding encoding, where d ∈ N is an even number representing the dimension
of the model. Then a mapping function f : {1, . . . , n} 7→ Rd represents a generator of positional
encoding and its i-th element is defined as follows

(pk)i = f(k)i :=

{
sin (ωl · k) , if i = 2l

cos (ωl · k) , if i = 2l + 1,
(2.8)

where
ωl =

1

10000
2l
d

, ∀l ∈
{
0, . . . ,

d

2
− 1
}
. (2.9)

The frequencies in Definition 2.3.3 decrease as i approaches d. This results in a progression of
wavelengths, ranging from 2π to 10000 · 2π.
It is noteworthy that the choice of the number 10000 in (2.9) is not fixed [34]. Rather, it can
vary depending on the length of the input sequence. This adaptability ensures that the PE
can effectively capture the nuances of different sequence lengths, adding to its versatility and
applicability.
The intuition behind positional encoding can be found in binary representation of numbers. If
we consider a sequence of natural numbers and their corresponding binary representations, we
observe that the least significant bit (0-1) changes with the highest frequency, i.e. the change is
occurring with each transition between even and odd numbers. The second bit in the sequence
(0-2) changes with a lower frequency, i.e. with each pair of consecutive numbers, and so on.
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Consider the relative distance of two natural numbers. When the numbers are close to each
other, then less significant bits in their representations change. On the other hand, if they are
far apart, we observe a change in more significant bits. The idea of positional encoding can be
seen in a similar way.
To further illustrate the motivation behind positional encoding, it is useful to establish its con-
nection to the rotation matrix. As we mentioned, the PE does not encode the absolute position
of the data in the sequence, but allows the model to learn relative positions. Thus, if we take
a shift of any number of positions l, we can show that this shift is equivalent to applying a linear
transformation, namely a rotation.
Let us state and prove a theorem that demonstrates this fact in two dimensions. This theorem
was outlined in [1].

Theorem 2.3.1. Let k ∈ N be a given position in a sequence and let ϕ ∈ N be a fixed offset.
For each sine-cosine pair corresponding to the frequency ω, there exists a linear transformation
M ∈ R2×2 independent of k such that

M ·
(
sin (ω · k)
cos (ω · k)

)
=

(
sin (ω · (k + ϕ))
cos (ω · (k + ϕ))

)
.

Proof. Let M be a matrix with elements m1,1, m1,2, m2,1 and m2,2, so that(
m1,1 m1,2

m2,1 m2,2

)
·
(
sin (ω · k)
cos (ω · k)

)
=

(
sin (ω · (k + ϕ))
cos (ω · (k + ϕ))

)
.

We can apply addition theorem to sine and cosine as follows(
m1,1 m1,2

m2,1 m2,2

)
·
(
sin (ω · k)
cos (ω · k)

)
=

(
sin (ω · k) cos (ω · ϕ) + cos (ω · k) sin (ω · ϕ)
cos (ω · k) cos (ω · ϕ)− sin (ω · k) sin (ω · ϕ)

)
,

which results in equations

m1,1 sin (ω · k) +m1,2 cos (ω · k) = cos (ω · ϕ) sin (ω · k) + sin (ω · ϕ) cos (ω · k)
m2,1 sin (ω · k) +m2,2 cos (ω · k) = − sin (ω · ϕ) sin (ω · k) + cos (ω · ϕ) cos (ω · k) .

By solving the equations, we get

m1,1 = cos (ω · ϕ) , m1,2 = sin (ω · ϕ) ,
m2,1 = − sin (ω · ϕ) , m2,2 = cos (ω · ϕ) ,

and so the transformation matrix M can be expressed as

M =

(
cos (ω · ϕ) sin (ω · ϕ)
− sin (ω · ϕ) cos (ω · ϕ)

)
.

Thus, the resulting rotation matrix does not depend on the absolute position k. The theorem
can be generalized to higher dimensions, and its validity confirms that a PE vector pk+ω can be
written as a linear transformation of a PE vector pk.
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2.3.5 Training and inference

To conclude this section, let us focus on the difference between training and testing a Transformer.
As in the whole Section 2.3, it is presented on a machine translation task. However, the concept
itself remains the same for time series.

2.3.5.1 Training

During training, a major advantage over recurrent networks is that the entire process runs in
parallel. The data are grouped into batches as part of the mini-batch optimization [15], but for
simplicity we consider a batch size of 1.
The input to the encoder is a sequence of words in the source language, which is first padded to
a given maximum sequence length. Next, the sequence is converted into numerical representations
by embedding, and PE is added to preserve the temporal order. The data then enters the encoder,
where it is processed by the encoder Nx times and then passed to the decoder.
The target language sequence at the decoder input is similarly padded, converted with input
embedding and enriched with PE. In the decoder, masking is usually applied in the self-attention
layer to prevent leakage of future information. On each pass through the decoder, the output of
the last encoder is used in the encoder-decoder layer. Finally, the linear layer upscales the decoder
output to the size of the target language dictionary and softmax outputs the probabilities of
the words in the dictionary.
The loss function is computed, comparing the predicted probability vectors for the subsequent
words against the ground truth targets. Based on this loss, the model parameters are optimized.

2.3.5.2 Inference

During the inference phase, the encoder works identically as during training. However, the fun-
damental change is in the decoder, that performs predictions iteratively.
Ground truth values cannot be used while testing the model, as they would reveal informa-
tion about true previous words, which is only applicable in the training phase. Therefore, only
the representation of the token that marks the beginning of sentence is input to the decoder to
get the first predicted word. This word is appended to the input of the decoder and the process
is repeated iteratively. Word by word is predicted with new words being appended to the al-
ready predicted words at the input of the decoder at each step. The prediction is complete
when the model predicts a token marking the end of sequence, or when the maximum length of
the sequence is reached.
The disadvantage of this iterative prediction is that the predictions are not independent and de-
pend on previous predictions. In addition to the standard error of the prediction, a multiplicative
error must be considered that increases with the length of the predicted sequence.

2.4 Temporal Fusion Transformer

The Temporal Fusion Transformer (TFT) is a deep neural network based on the attention mech-
anism [39]. It is an architecture for multi-horizon forecasting with an enhanced form of inter-
pretability, shown in Figure 2.5.
It incorporates components representing novel approaches to handle input data of different types,
such as static and real, or of a different temporal positions, namely known, past, and future
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Figure 2.5: Temporal Fusion Transformer architecture proposed in [39].

inputs. In accordance with this division, the inputs are then processed separately in different
parts of the model. We briefly review the different parts of TFT and discuss their contribution.
For further description and details of the model, we refer the reader to the original paper.
The authors proposed a Gated Residual Network (GRN), based on the Gated Linear Unit (GLU)
[16] mechanism, which gives the model the ability to skip non-linear processing when it is not
needed. Thus, the model is able to vary its complexity depending on the type and size of
the dataset.
Another component of the model are variable selection networks. In multi-variable datasets, it is
often unknown which variables have the greatest predictive power. Variable selection can select
the most significant variables at each point in time and suppress variables with potentially neg-
ative effects on predictive performance. The factor and continuous variables are first separately
encoded in feature embeddings, the former by entity embedding [28], the latter with a linear
layer. Within variable selection nets, the GRN is responsible for the selection itself.
The main part of the model is the Temporal Fusion Decoder, which is used to capture both short
and long term dependencies. A modified version of the attention mechanism, called interpretable
multi-head attention, is used together with masking to find relative dependencies in the data.
Before the data are loaded into the Temporal Fusion Decoder, the sequence-to-sequence layer is
applied, where LSTM blocks are used to encode the data into uniform temporal features. The
information is encoded sequentially, preserving the temporal information. This step replaces
the standard positional encoding.
Finally, the output of the Temporal Fusion Decoder is routed to a linear layer. As in [58],
quantile regression is used to obtain prediction intervals. At each time step, a set of predictions
is obtained for each quantile, which helps to determine the range of possible predicted values.

32



Chapter 3

Data

For the task of system imbalance prediction, the case of power exchange trading is simulated.
Belgium was chosen for this purpose, as it participates in the European exchange EPEX Spot
through short-term contracts on the intraday and day-ahead markets. This thesis focuses on
intraday market forecasting, specifically observing 15-minute contracts.
The system imbalance is modeled using data with 15-minute granularity from the Belgian trans-
mission system managed by the operator ELIA. The data are sourced from the ELIA web portal
[21, 22, 23, 24] and are accessible free of charge via their website. Additionally, ELIA offers an
API, facilitating the possibility for real-time data flow, which could be leveraged to deploy a
real-time forecasting system.
The data were collected from January 2022 to August 2023. Although complex DL models (such
as the Transformer) require a large amount of data, it was decided to use only this data for
this work. Earlier data from 2022 and 2021 are affected by a number of factors, such as the
unprecedented COVID-19 pandemic and the subsequent energy crisis. The data can deviate
significantly from normal behavior and were therefore omitted to avoid biasing the model.

3.1 Temporal causality

When working with time series, it is necessary to maintain temporal causality, thus not breaking
the natural sequential characteristics of the data. Consider the split times tk that divide the time-
line into 15-minute trading windows Tk = (tk, tk+1). During the training phase, the forecasting
system must not use information that was not known at time tk when predicting the system
imbalance of window Tk. In other words, it must be ensured that there is no data leakage from
the future.
There is no future data leakage in this thesis. However, it is important to consider an additional
obstacle, which is the delay between the end of the contract and the publication of the corre-
sponding data by the TSO. Consumption and production are monitored by a system of sensors
and other devices. Variables such as load, wind and solar generation, or most importantly, sys-
tem imbalance belonging to the quarter-hour window Tk−1, are collected over the entire time
interval (tk−1, tk). At the end of this period, the TSO has to acquire the data, summarize it, and
then publish it. Thus, there is a lag of ∆ between tk and the time of publication t̃k, as shown in
Figure 3.1.
From the perspective of the TSO, the delay is ∆, or potentially even less, as the TSO is tasked
with collecting the data and thus has access to it prior to its publication. Based on this data,

33



the TSO can evaluate the state of the grid and possibly use ancillary services to compensate
any deviation in the system.

time

data
collection lag

Figure 3.1: After data collection during interval (tk−1, tk), there is a delay ∆ = t̃k − tk during
which the TSO collects and publishes the data.

From the other side, i.e., the market participants, the situation is similar. The incentive to enter
into a contract in the intraday market is to adjust their market position in view of the upcoming
settlement. To decide whether to execute a trade, a market participant can use only the data
available at the latest point in time when the contract can be traded. In the case of the EPEX
Spot exchange, the closing time is 5 minutes prior to delivery. Therefore, even if the delay ∆
were completely neglected, the trade would still not be possible with the data collected at the
end of window Tk−1.
As a result, it is effectively impossible at time tk to have knowledge of all the variables used
to predict the window Tk. This fact has to be openly admitted since this delay is omitted in
the thesis and the first possible trading window would be the one starting at time tk+1. This
simplification was made to streamline the data collection process.

time

data aggregation

gate closure

Figure 3.2: The diagram shows the use of data with 1-minute granularity to predict system
imbalance for a 15-minute contract. Time tclose

k denotes the gate closure, e.i. the point at which
trading is completed for block Tk. The operating time required to process the data, make
the prediction and execute the trade is neglected.

On the other hand, there are several ways to replace the unavailable values at time tk to model
system imbalance of the window Tk. The problem arises for measured values of solar and wind
production, total load, and also the target, system imbalance. To address this, the unavailable
values of wind production, solar production, and total load can be effectively replaced with one
of ELIA’s published forecasts. ELIA provides forecasts a week and a day in advance, along with
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a most recent forecast that is updated until just a few hours before delivery. These forecasts are
of high quality, as demonstrated later by the correlations shown in Tabs 3.2 and 3.3. Similarly,
it is possible to use lagged variables and thus settle for information from the Tk−2 window. The
correlation is comparable to the ELIA forecasts.
There are several methods to address the issue of unavailable system imbalance values. Firstly,
forecasts can again be used, since ELIA publishes its own forecasts of system imbalance. This
approach essentially forms an ensemble model, as it incorporates ELIA’s model predictions of
the imbalance of Tk−1 to predict the imbalance of Tk.
Secondly, ELIA publishes data at different granularities. While the most commonly used gran-
ularity is 15 minutes, aligning with the traded contracts, ELIA also provides data at 1-minute
intervals, available nearly in real-time. This finer granularity data can be aggregated to de-
termine the approximate imbalance for a corresponding 15-minute window, as shown in Figure
3.2.
Thus, although prediction is impossible in the first window, it is possible to substitute not
available data based on these facts. How the subsequent prediction would be affected is not part
of this thesis and is left unanswered.

3.2 Data preprocessing

An important part of the whole process of modeling system imbalance is to preprocess the data.
The key steps are variable selection and following feature engineering, which includes lags gener-
ation, aggregation and feature encoding. These steps will be discussed in detail in the following
sections.
As explanatory variables were selected those, that are likely correlated with the system imbalance.
In this case, the dynamics of the whole transmission network is taken into account. Notably,
special attention is directed towards RES, such as wind and solar production. The inherent
fluctuations in these energy sources are recognized as significant contributors to grid imbalance,
underscoring their importance in the analysis.

3.2.1 System imbalance

The key variable in forecasting is undoubtedly the target system imbalance itself. Historical val-
ues are instrumental in understanding the progression and trends of the time series.By analyzing
past data, model can identify patterns and anomalies, enabling more accurate predictions about
future imbalances. In addition, this historical insight allows the model to be refined, increasing
its ability to adapt to changes in patterns over time, thereby improving the overall accuracy and
reliability of the predictions.
In Figure 3.3, we observe the evolution of system imbalance during 7th May 2023. It is observed
that the system imbalance often changes abruptly. However, it still fluctuates around the desired
value of zero. This erratic behavior, marked by occasional extreme increases or decreases in the
imbalance, poses significant challenges in its prediction.
Compared to other variables observed in the transmission system, system imbalance does not
exhibit a clear pattern. As discussed, its behavior depends on unexpected changes in other
variables within the grid.
Also related to system imbalance is the price set by the TSO in the aftermarket settlement. There
is a clear dependence between these variables, that are negatively correlated. If the imbalance is
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negative and there is a shortage in the grid, the price increases. Conversely, if there is a surplus,
the price decreases and can even reach negative values.
The imbalance price is not used in this thesis. However, when the imbalance is precisely predicted,
it becomes possible to anticipate market price movements, thereby creating an opportunity for
speculation on the final price.
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Figure 3.3: System imbalance values in Belgian grid during 7th May 2023. For clarity, positive
imbalance is depicted in blue, whereas negative imbalance is depicted in red.

An analysis of the autocorrelation data in Table 3.1 reveals that the target sequence does show
some degree of correlation. However, within the context of time series analysis, this correlation
is not particularly strong. This finding is significant because it implies that traditional time
series forecasting models, which primarily rely on historical data, might not be highly effective in
predicting system imbalances. The relatively lower correlation observed in the sequence suggests
the need for more sophisticated or alternative forecasting approaches.

lag 1 2 3 4 5 6 7 8
autocorrelation 0.652 0.459 0.397 0.433 0.292 0.198 0.162 0.174

Table 3.1: Autocorrelation of system imbalance at different lags.

How volatile system imbalance is can also be verified by examining the aggregated monthly data
in Figure 3.4. Monthly standard deviations exceed 200 MW and extreme deviations reach in
absolute value over 1000 MW. It indicates the complexity of the forecasting task.
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Figure 3.4: Preview of the distribution of monthly system imbalance values.

The use of lagged values of system imbalance was proposed in feature engineering. It involves
extracting values from the past that are assumed to be similar, based on the periodicity of the
market. Different lags can then be used according to the expected cyclicality.
In the model, lags serve as reference values that capture past behavior of the time series. For
system imbalance, we expect a cyclical pattern that repeats daily and weekly.

historic values

values lagged by a day

values lagged by a week

Figure 3.5: Scheme corresponding to the used lags for system imbalance.

Let us consider a data sequence of length s ∈ N representing historic values, used as predictors,
and a future sequence of length r ∈ N, which is to be predicted. Lags are designed to cover
window of length s one day back (i.e. 24 hours), and one week back (168 hours). Specifically,
considering the situation shown in Figure 3.5, a future sequence of length r is predicted at time
tk. The historical sequence consists of data for windows (Tk−s, . . . , Tk−1) and the predicted
windows are (Tk, . . . , Tk−1+r).
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Consider notation given by T l
j = Tj−l for arbitrary j, l ∈ N. Both sequences of lags, which are

added to the input data, can be then written as
(
T 96
k−s+r, . . . , T

96
k−1+r

)
and

(
T 672
k−s+r, . . . , T

672
k−1+r

)
.

The values 96 and 672 are numbers of delayed quarter hours for a day and a week, respectively.
The length of both lags s corresponds to the length of the input sequence, ensuring compatibility
with the input dimensions required by certain models.

3.2.2 Total load

Another important and highly monitored variable in the power grid is total load. It consists of
all the electrical loads on the ELIA grid, including the connected distribution systems. Energy
losses in the system are also taken into account. Before publication, the measured data are
further processed by aggregation and extrapolation.
The total load is not affected by such frequent fluctuations and patterns are visible in the data. In
particular, it is possible to identify so-called peak demands, i.e. periods when the grid experiences
high load. The increase in energy consumption is attributed to operational demands of businesses
and factories, mainly during weekdays. The highest workload occurs in daytime working hours
and Figure 3.6 illustrates these weekly peak patterns. The EPEX Spot exchange is prepared for
these predictable demands and therefore one of the trading windows is marked as peakload. It
is defined as a 12-hour period from 8am to 8pm on weekdays.
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Figure 3.6: Total load during May 2023. It is evident that peaks during working days typically
exceed those observed on holidays and non-working days.

In addition to the load itself, forecasts available from ELIA are used. The first is the most recent
forecast, usually updated up to a few hours before the contract execution. The second is the day-
ahead forecast, available at 6pm the previous day. In Table 3.2 we present the correlations that
these forecasts have with the measured load.
Because of the high correlation, the use of forecasts in the model seems redundant. However,
it is suspected that the direction of change in real consumption relative to forecasts provides
additional information to the model.

38



forecast correlation with load
most recent 0.987
day-ahead at 6PM 0.969

Table 3.2: Pearson correlation between measured total load and its forecasts provided by ELIA.

3.2.3 Wind and solar

Wind and solar energy production is inherently variable and highly dependent on weather con-
ditions. This has a direct impact on the imbalance in the grid and is therefore an important
variable in forecasting. As discussed in Section 1.1, renewable resources, led by wind and solar,
are prone to unpredictable changes in generation. These deviations have to be taken into account
in the model.
In the data used, production for each time window is available separately for each region in
Belgium. Furthermore, the wind data are split according to whether the wind farm is onshore
or offshore. Despite the loss of information, the production data were summed. Thus, only the
total wind and solar production can be used. Since the system imbalance is aggregated as well,
it is considered that these aggregated variables are sufficient for predicting the imbalance in the
whole grid.
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Figure 3.7: Wind and solar production during May, 2023.

As with total load, there are forecasts available as well and they are the most recent and the
day-ahead forecasts. Both have been summed as well as real production. Table 3.3 presents
Pearson correlation between these forecasts with real production for both wind and solar.
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The progression of solar and wind production can be seen in Figure 3.7. In the case of wind,
a drop in production can be observed during windless periods. For solar, the pattern is much
more obvious, with peaks occurring during the day and production ceasing at night.

forecast correlation with wind correlation with solar
most recent 0.973 0.993
day-ahead at 6PM 0.956 0.982

Table 3.3: Pearson correlation between measured variables (wind and solar) and their forecasts
provided by ELIA.

3.2.4 Calendar data

Using the calendar data, it is possible to extract a lot of useful information. This is because each
time window can be uniquely identified by its timestamp. In the case of Transformer, this data
can be used to preserve temporal order information. Unlike NLP tasks, where the only temporal
component is given by the order of the words in a sentence, time series forecasting can benefit
from this explicit temporal data. Alternatively, it can be used instead of positional encoding by
incorporating additional variables that specify temporal order.
Several pieces of information can be extracted from datetime and are used to train the model.
In particular, these variables include:

• Information indicating the year, month, and day of the year.

• A variable specifying the day of the week. In 3.2.2, we have already discussed how this
information is crucial in the case of load, so it can also carry essential information for
modeling system imbalance.

• The hour and quarter-hour indicate the window for which the contract is traded. This
might be important information to identify daily peaks.

• Variables indicating whether a day is a holiday or a day off. It was collected for Belgium
[44] and serves as additional information. During these days, the market behaves more like
a weekend day, so it is useful to inject this knowledge into the data.

Factor time variables must be encoded into numerical representations to be used in modeling.
Essentially, there are two ways in which encoding can be performed.
The first one is one-hot encoding, which is a process of converting categorical variable into
binary vector for each category of the variable. Let C = {C1, C2, . . . , Ck} be a set of k ∈ N unique
categories. For all i = 1, 2, . . . , k, a given category Ci is encoded as a one-hot vector ei ∈ {0, 1}k
as

ei = (δij)
k
j=1 ,

where δij is the Kronecker delta, defined as

δij =

{
1 if i = j

0 otherwise.

The second option is to use ordinal encoding. This is a technique in which a numerical value is
assigned to each category of a factor variable based on the given order. Let C = {C1, C2, . . . , Ck}
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be an ordered set of k unique categories. The ordinal encoding of a category Ci is represented
by a mapping function f : C 7→ {1, . . . , k}, where:

f(Ci) = i, ∀i = 1, 2, . . . , k.

Categories must have meaningful ordering, often specified explicitly. An example might be the
order of days of week from Monday to Sunday, or months from January to December.
Both types of encoding have their disadvantages. One-hot encoding increases the dimensionality
of the data and for k categories it introduces k new variables to the data. For high values of
k, this increase may be excessive. In addition, this added data are sparse, which reduces its
informative value. Similarly, ordinal encoding introduces a notion of quantitative relationship
into the data that may not be true. For example, the encoding of weekdays gives the false
impression that Monday (0) and Sunday (6) are very far apart, whereas they are adjacent days.
There are observable patterns in the market that repeat periodically on a daily, weekly and so
on basis. In order to preserve cyclicity, temporal consistency, and avoid a rocketing increase in
dimensionality, the trigonometric functions sine and cosine were chosen to transform the data.
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Figure 3.8: Both the sine and cosine components of the cyclically encoded feature map it to
a two-dimensional space on a circle. In the example of weekdays, the transition from Sunday (6)
to Monday (0) is given as any other transition between two adjacent days.

Consider an ordered set of k unique categories with categories C = {C1, C2, . . . , Ck} and a cyclical
categorical variable u ∈ Cn, that repeats every T steps. Next, consider that the variable u was
encoded element-wise using ordinal encoding map f . Therefore, the numerical representations
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are encoded as C̃ = {1, 2, . . . , k} and the encoded vector u is denoted as v. Subsequently, the
cyclical feature encoding with sine and cosine transformations of v is defined as

xs =sin

(
2π · v
T

)
,

xc =cos

(
2π · v
T

)
.

The variable v is thus effectively mapped onto a circle using the xs and xc. The periodic nature
of the data are preserved along with the information about the continuity of the data at the
end of the cycle, as shown in Figure 3.8. This approach is particularly useful in time series
forecasting, where cyclical features play a key role in predicting future values.

3.3 Data processing

The preprocessed data were initially split into training, validation and test sets, standardized,
and then formatted appropriately for input depending on the model used.
Since we work with time series, it is necessary to split the data properly. The commonly used
procedure of shuffling the data and then performing a random split cannot be used, as this would
break the causality in the data and introduce information leakage from the future. Therefore,
a time split should be performed, and the data should be split into whole blocks, with training
performed on the oldest available data and validation and testing on the more recent data. The
data were split according to Table 3.4.

set start date end date % of dataset
training 2022-01-01 2023-02-28 70
validation 2023-03-01 2023-05-31 15
test 2023-06-01 2023-08-31 15

Table 3.4: Defined partitioning of data into training, validation and test sets.

There are missing data in the following features: wind production (0.04 %), load (0.27 %), and
day-ahead load forecast (0.16 %). Although this represents a small portion of the data, it is
important to note that the majority was found in the test set. The cause of this missing data
are likely due to a measurement error in the transmission system or an incorrect publication by
ELIA.
Instead of using common techniques to fill in missing data, such as mean or median imputer,
it was suggested to use forecasts to replace them. As ELIA offers multiple forecasts for these
variables at various times, the most recent forecast can substitute for the actual value, and any
missing forecast can be replaced by an earlier one.
All features were standardized except for binary variables and time variables encoded by cyclical
feature encoding. The target variable system imbalance was also scaled in the same way.
Let us consider a variable u ∈ Rn. The standardization is given by formula

vi =
ui − ū

sn
, i = 1, . . . , n,

where ū is the estimated mean and sn is the estimate of standard deviation.
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Subsequently, these estimates are defined as follows

ū =
1

n

n∑
j=1

uj , sn =

√√√√ 1

n− 1

n∑
j=1

(uj − ū)2.

Standardization is performed for training, validation, and test data using mean estimation and
standard deviation calculated on the training set to avoid data leakage.
Once all three datasets are available, they need to be converted into a format suitable for model
input, which essentially depends on the type of model. For the sake of simplicity, we will also
consider a batch size of one throughout the rest of this section. In addition, in this and subsequent
chapters, we will occasionally consider matrices where one of the dimensions is 1. This notation
is intentional and is intended to correspond to the data during implementation of the models.
As mentioned in Chapter 2, some of the models used were not originally designed to work with
time series and therefore need to be modified. Observations representing individual time steps
must be grouped into sequences of length s, representing history, and future sequences of length
r. Let xt ∈ Rp be a vector of explanatory features and yt ∈ R be the target value, where
t ∈ {1, . . . , n} and p ∈ N is the number of explanatory variables. Then Et ∈ Rs,p+1 is the input
data matrix, given by

Et =

(
yt−s+1 yt−s+2 . . . yt−1 yt
xt−s+2 xt−s+2 . . . xt−1 xt

)T

and Gt ∈ Rr,1 is the target matrix given as

Gt =
(
yt+1 yt+2 . . . yt+r−1 yt+r

)T
.

In order to construct the matrices Et and Gt correctly, the index domain must be reduced to
t ∈ {s, . . . , n− r}. This initial setting is valid for all models implemented in this thesis.
Standard machine learning models, such as MLP and XGBoost, are directly fed by the input
vector batch. The input matrix Et has to be flattened to the input vector et, where it does not
matter in which dimension this operation is performed. If we define the flattening operation for
any d1, d2 ∈ N as

vec : Rd1,d2 7→ Rd1·d2 ,

then ∀t ∈ {s, . . . , n− r} holds
vec (Et) = et,

where et ∈ R(k+1)·s.
The specific setup for transformer-based models is described for each model in the next chapter.
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Chapter 4

Transformer for Time Series

In Section 2.3, we thoroughly discussed the Transformer and its initially defined architecture in
[57], that was originally released for machine translation. Therefore, there are necessary changes
that need to be made in order to rebuild the model to the use case of time series forecasting.
Major modifications must be made in the processing of input data, while leaving the internal
structure of the encoder and decoder intact. Further modifications are also required in the output
layer to adapt the model to solve the regression problem.
Since the original paper, numerous studies have been published dealing with the application
of transformers to time series. Some retain the internal architecture and attention mechanism,
such as [11, 61]. Others, including [38, 40, 47, 60, 65] introduce significant changes that al-
ter the architecture, modify the attention mechanism or optimize the overall functionality of
the transformer.
In this section, we first discuss general changes in the transformer structure for time series. We
then present the proposed models and describe the mechanisms used.

4.1 Input Data

Let us first discuss the differences that we need to bridge. The most important are the data
itself in the form of a time series with explanatory variables. Instead of a sequence of words for
the NLP task, there is a sequence of vectors that provide numerical values of the explanatory
variables and the target at each observed time t. In the straightforward case, we only consider
numerical explanatory variables, since we assume that all variables have been already encoded
and transformed into numeric representations, as described in Chapter 3.
Therefore, consider a matrix of input values representing the sequence of s historical observations
Et ∈ Rs,p+1, as defined in Section 3.3. Unlike machine learning models, transformer-based models
use the input matrix Et directly.
The first general change is that since all input data are aligned to the length of the sequence s,
there is no need to use padding at all. For embedding, there are two approaches that can be
used to mimic the transformations of the original transformer:

• Instead of embedding, a linear layer

Linear : Rp+1 7→ Rd

can be used, which converts the data into numerical representations, i.e. transforms
the data from dimension p+1 to model dimension d. Numerical features can be converted
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to representations with higher dimensionality, but this step removes the direct contextuality
of the data.

• Since the data are already in numerical form, the use of embedding can be completely
omitted. However, it must be set that the model dimension is d = p+ 1.

To preserve contextuality, the latter approach is used in this thesis and only normalized data,
where d = p+ 1, are input into the encoder.
The last stage of the data before entering the encoder is the addition of PE, but the procedure
is the same as for the language transformer. Alternatively, the transformed temporal variables
can be used, which have already been discussed in Section 3.2.4. Since it was assumed that the
use of temporal variables would not only preserve temporal order but also aid in prediction, it
was decided to use them instead of PE.
Let us now introduce the implemented models.

4.2 Vanilla Transformer

The first model used for forecasting is Vanilla transformer, which except for the necessary changes
for the time series forecasting use case, follows the original structure from [57]. As mentioned
above, we have already made modifications to the encoder input data.

Encoder Decoder

Linear

Linear
Linear

Figure 4.1: Architecture and dimension changes of the data in Vanilla transformer. In our case,
d = p+ 1, so the linear layer at the encoder input is suppressed.

Let us focus now on the target sequence that is passed into the decoder. Instead of a sequence of
words in the target language, there is a sequence of r future target values. A matrix Dt ∈ Rr,1

of decoder input must be constructed, which is used during training and is given by

Dt =
(
yt yt+1 . . . yt+r−2 yt+r−1

)T
. (4.1)
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Note that matrices Dt and Gt (defined in Section 3.3) are almost identical, except for the index
shift. The target value yt is also shared with the encoder input Et. This value is equivalent to
the token of beginning of sentence and does not bring any new information value, since it was
already exposed to the encoder.
The challenge is that the target sequence matrix does not have the same dimensions as the en-
coder input sequence. For this purpose, a linear layer

Linear : R 7→ Rd

is used as an embedding to upscale dimensionality to d.
Output layer is adapted to the regression problem and consists of a linear layer

Linear : Rd 7→ Rr

to transform the output of the decoder into a sequence of r predicted values. The exact dimen-
sionality change of the input and output data are shown in Figure 4.1.

Decoderencoder output

Linear

Linear

Figure 4.2: During iterative inference, the Vanilla transformer predicts successively values
ŷt+1, . . . , ŷt+r, which are added to the initialization value yt at each step. In the last step,
the entire sequence (ŷt+1, . . . , ŷt+r) is predicted.

The architectural changes discussed are sufficient to apply the model to time series data. A mask-
ing layer is applied during training to mask future targets. In the testing phase, new values are
iteratively predicted at each step, using the previous predictions as shown in Figure 4.2. At each
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subsequent prediction step, the model adds a single new piece of information, which is the pre-
vious predicted value. However, this is a prediction that is inherently subject to error. Thus,
the first prediction gives the trend of the entire predicted sequence and can significantly bias the
whole sequence, in case of a significant error.

4.3 Encoder model

Another implemented model is a transformer using only the encoder part. This type of model is
inspired by the architecture popularized by the BERT language model [17]. Encoder models use
the encoder to find relevant information in the input sequence. Although these models are used
for NLP tasks such as text classification and question answering, they can be similarly adapted
for time series. Because of the missing decoder, the only input of the model is the one into
encoder.

Encoder

Dense

Linear

Figure 4.3: Encoder model architecture with marked dimensions of the data.

Compared to transformers with an encoder-decoder structure, it cannot perform sequential infer-
ence. To design a model for multi-horizon prediction, a similar approach to that used in machine
learning is required. This involves either modifying the linear output layer to predict multiple
values simultaneously or training multiple distinct models, that share the same input and each is
dedicated to predict k steps ahead. In this thesis, the latter approach is chosen for k ∈ {1, . . . , r}.
While the input data are processed as in Section 4.2, the encoder output layer has to perform
a thorough downscaling. The output matrix is flattened to a vector and then, since it is a sig-
nificant dimension reduction, a dense layer is used, which is defined as follows
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Dense : Rs·d 7→ R.

In the terminology of neural networks, dense layer refers to a MLP and in this scenario it
is convenient due to its hidden layer to facilitate downscaling. The complete architecture of
Encoder model is shown in Figure 4.3.
The model applies attention without masking to all observations in the sequence entering the en-
coder. It is suspected that the encoder could be used to find contexts in the data that are
subsequently processed by the dense layer. Thus, the efficiency of the benchmark MLP model
could be improved by this model.

4.4 Transformer with future lags

Although both models proposed so far make effective use of the attention mechanism, the funda-
mental flaw lies in the input data itself. Neither model uses any additional information belonging
to the predicted values. Both models base their predictions solely on information that occurred
in the past and are part of the input sequence of historical values.
The most comprehensive transformer architecture in this thesis addresses this shortcoming by
using so-called future lags. The idea is that information known in the future can be leveraged to
make predictions. Some deterministic features, such as temporal information and holidays (refer
to Section 3.2.4), are available for any prediction window in the future, since this information is
known. This principle has already been used in [39], where these variables enter the model as
known features.
However, not all features are deterministic and therefore known. Variables corresponding to
measured values, such as load and RES generation, are examples of this. It has already been
mentioned in Section 3.1, that among the available data from ELIA are several forecasts that
are highly correlated with the realizations. These can be used to replace the measured values
and to construct a new feature vector for each forecast window, which we call the future lag.
Let us denote a future lag vector as ξt ∈ Rp. Given our specific data, a future lag vector can be
constructed such that it includes all the explanatory variables, or their corresponding forecasts.
For the decoder input, we use the matrix Dt defined as (4.1) in Section 4.2, extended with future
lags. The enriched matrix Dξ

t ∈ Rr,p+1 is then given by

Dξ
t =

(
yt yt+1 . . . yt+r−2 yt+r−1

ξt+1 ξt+2 . . . ξt+r−1 ξt+r

)T

=
(
Dt Ξt

)
,

where we denote

Ξt =
(
ξt+1 ξt+2 . . . ξt+r−1 ξt+r

)T
.

Matrix Dξ
t is used to train the model. During inference, it must take into account that the matrix

Dξ
t is formed sequentially. Similarly to Figure 4.2, the ground truth values are successively

replaced by predictions in the matrix Dξ
t . The whole process is initialized by the input

D̂1
t =

(
yt
ξt+1

)T

.
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The predicted value ŷt+1 then forms a new input together with the matrix D̂0
t , which is denoted

as

D̂2
t =

(
yt ŷt+1

ξt+1 ξt+2

)T

.

Finally, for prediction steps k = 2, . . . , r, the input to the decoder consists of

D̂k
t =

(
yt ŷt+1 . . . ŷt+k−1

ξt+1 ξt+2 . . . ξt+k

)T

.

In the last step, matrix D̂r
t enters the decoder, which outputs the last predicted value ŷt+r. This

completes the final prediction sequence.

Decoder

Linear

Encoder

Figure 4.4: Transformer with future lags.

Compared to the vanilla transformer, each prediction step adds additional information in the form
of lags to the previous prediction, which can significantly improve the next prediction. The
architecture can be viewed in Figure 4.4, which includes the labeling of each data dimension in
the model.
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Chapter 5

Results

The previous chapters laid out the theoretical underpinnings of each model, including their
modifications for time series. We also discussed the transformations performed on the data,
the feature engineering and the split into training, validation and test sets.
In this chapter, the implemented transformer-based models are compared with benchmark ma-
chine learning models. The comparison is based on three commonly used metrics for model
evaluation. Let us denote target values yk and a predicted values ŷk for k = 1, . . . , n, where n is
a number of observations and ȳ = 1

n

∑n
i=k yk. Then the metrics are defined as follows:

• Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

This metric measures the square root of the average of squared differences between actual
and predicted values.

• Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|yi − ŷi|

It represents the average magnitude of the errors in a set of predictions, without considering
their direction.

• R-squared (R2)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

R-squared quantifies the proportion of the variance in the target variable that is explained
by the explanatory variables.

All implemented models were subjected to hyperparameter optimization prior to actual training.
The actual tuning was done on the combined training and validation data set. It is not possible
to use the standard k-fold method for time series, as it randomly shuffles the data, which would
cause data leakage from the future.
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Therefore, it is necessary to split the data according to the time sequence and use a time split
method. Such a data split is shown in Figure 5.1. The model is trained on a set of variable size,
which always represents history. Validation is performed on the fixed length set, which follows
the set to be trained. At each fold, the validation set is added to the training set and the model
is trained and evaluated again.

traininig validation

Figure 5.1: An indication of how the time split is performed in k-fold cross validation for hyper-
parameter tuning. In this thesis, 4 splits were used.

The selection of hyperparameters was conducted through a randomized search, where the param-
eter grid was explored uniformly without the use of any advanced heuristics. The chosen param-
eter grid, encompassing all possible combinations of hyperparameters, was based on the tested
behavior of the models or aligned with parameters specified in the corresponding original paper.
Due to computational complexity, the number of searched parameter combinations was limited
for certain models.
In this chapter, we will further concentrate on comparison of the models employed in this the-
sis. We will present the transformer-based models relevant to this work, encompassing details
on hyperparameter tuning and training processes. The benchmark models, used primarily for
comparative purposes, will be presented without this additional information. Comprehensive
details, including all the source code, are accessible in the GitHub repository [46] corresponding
to this thesis.
It is worth mentioning a fundamental difference between the models compared. As mentioned
in Chapter 2, ML models in particular, which are not designed for the sequence-to-sequence
task, can be applied in two ways. The model can be modified to be multi-output, i.e. it can
be constructed to predict the whole sequence. However, this is at the expense of the predictive
power of the model. The second way is to construct r models so that each performs a prediction
on a learned time window. The assembly of models thus has a higher prediction accuracy, but
it is compensated by a higher computational complexity. This is because each model is trained
separately. In this thesis, the latter approach was used, including hyperparameter tuning for
each of r separate models.
Both traditional approaches have a limitation: they cannot predict sequences longer than a pre-
defined length r without training a new model or multiple models. In contrast, transformer-based
models are inherently designed to predict entire sequences of any length. They can extend the
predicted sequence to r̃ > r without needing multiple models or retraining. This makes trans-
formers more flexible, as they use just one stand-alone model for varying sequence lengths.
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This thesis does not delve into the computational complexity of computational complexity of
training of the employed models. However, it is clear that machine learning models generally
have lower complexity, making their training computationally less intensive. A future research
direction could explore under what conditions the process of selecting hyperparameters and train-
ing multiple machine learning models becomes more computationally demanding than tuning and
training a single, but more complex, Transformer model. This would help in understanding the
trade-offs between model simplicity and computational efficiency.

5.1 Conformal prediction intervals

In general case of prediction, whether using classical statistical modeling methods or machine
learning and neural networks, only point predictions are obtained. Although the model is op-
timized on training data to minimize the point prediction error, when validating the model on
unseen data, we have no information on the quality of the new prediction.
This problem is addressed by a novel Model Agnostic Prediction Interval Estimator (MAPIE)
package [41], which is based on [5, 35, 62]. It includes a variety of methods that provide prediction
intervals in addition to the point prediction.
Given n0 < n, then index set {1, . . . , n0} corresponds to training data. The goal is to construct
an interval around the point prediction ŷk that is likely to contain a ground truth target value yk,
where k ∈ {n0+1, . . . , n}. With a significance level α, we construct prediction interval Ĉn0,α (xk)
as

P
{
yk ∈ Ĉn0,α (xk)

}
≥ 1− α,

where
Ĉn0,α : Rp 7→ R2.

The actual probability, that the predicted value ŷk ends up inside the conformal prediction
interval, is with respect on both the training data and (xk, yk).
Various resampling methods used for regression problems, such as those in [5], are valid only
under the assumption of the exchangeability hypothesis. This hypothesis allows arbitrary rear-
rangement of the data, which is not possible in the context of time series, hence invalidating the
hypothesis.
Therefore, a method based on the jackknife+-after-bootstrap method [35], known as the En-
semble batch prediction intervals (EnbPI) [62], is proposed for time series. The procedure for
constructing prediction intervals involves the use of the bootstrap method and is used as follows:

• The training data ara resampled K times using the block bootstrap method, which involves
randomly selecting blocks of the same size and joining them together. We refer the reader to
[42] for more details. Thus, we obtain K bootstraps B1, . . . , BK and their complementary
sets BC

1 , . . . , B
C
K .

• Next, K models are trained. For each model index j, where j = 1, . . . ,K, the model is
represented as µ̂j .

• For every i = 1, . . . , n0, we compute

µ̂−i (xi) = ϕ
({

µ̂j (xi) | i ∈ BC
j

})
,
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where ϕ represents mean aggregating function. The error of i-th observation

ϵi = yi − µ̂−i (xi)

is then calculated.

• Finally, we construct β and (1− α+ β) quantiles as

q̂− = q̂n0,β {ϵi | i ∈ {1, . . . , n0}} , and q̂+ = q̂n0,(1−α+β) {ϵi | i ∈ {1, . . . , n0}} ,

where β is a parameter, which is being minimized during the training process.

The resulting prediction interval for xk ∈ {n0 + 1, . . . , n} is then defined as

ĈEnbPI
n0,α (xk) =

(
µ̂ϕ (xk) + q̂−, µ̂ϕ (xk) + q̂+

)
,

where
µ̂ϕ (xk) = ϕ

({
µ̂j (xk) | i ∈ {1, . . . , n0}

})
.

However, the resulting coverage of the prediction interval for this method is not absolute but
asymptotic. Further details of the EnbPI method, can be found in [41, 62].

5.2 Model evaluation and comparison

We divide the comparison into two distinct cases. The first case involves the use of models
without future lags, where only historical information is used to predict the entire sequence
ahead. In this scenario, we compare the Vanilla Transformer and the encoder model against
the benchmark models, namely MLP and XGBoost.
The second method involves the use of future lags, introduced in Section 4.4. This approach
is implemented for the Transformer with future lags but is not applicable to other transformer-
based models. Benchmark models, such as MLP and XGBoost, can be easily modified to take
advantage of future lags.
To formally indicate the input data, let us recall the input vector et ∈ R(p+1)·s for MLP and
XGBoost. If future lags are used for modeling, they are simply added to the input vector.
Denoting future lags vector as ξt ∈ Rp, the enriched input vector is written as

ê k
t = concat

(
eT
t , ξT

t+1, . . . , ξT
t+k

)T
,

where the vector dimension of ê k
t is (p + 1) · s + kp and k ∈ {1, . . . , r} corresponds to the time

window on which the model is predicting. Thus, differently large input data are used for each of
the models.
For the experiments, the input sequence length s is set to 32, and the output sequence length r to
8, corresponding to 8 hours of historical data (with a 15-minute granularity) and predictions for
the next 2 hours. Although all time windows are treated equivalently in our analysis, predictions
for the first hour, comprising the initial four time windows, are of main interest.
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5.2.1 Results without future lags

In scenarios where future lags are not utilized, the metrics achieved for each prediction window
by models are detailed in Table 5.1. These results are provided for the test set, and all models
were optimized using the mean squared error (MSE) loss function.

Step Model Metrics
RMSE MAE R2

1

MLP 109.07 81.07 0.56
XGBoost 110.36 81.22 0.55

Transformer 134.11 93.38 0.34
Encoder 112.31 82.84 0.53

2

MLP 134.10 97.57 0.34
XGBoost 134.01 97.79 0.34

Transformer 146.22 103.89 0.21
Encoder 134.88 97.63 0.33

3

MLP 142.35 103.11 0.25
XGBoost 143.92 104.02 0.24

Transformer 152.58 108.56 0.14
Encoder 144.87 103.59 0.23

4

MLP 148.52 106.92 0.19
XGBoost 148.85 106.48 0.18

Transformer 154.37 109.29 0.12
Encoder 149.28 106.85 0.18

5

MLP 154.58 109.80 0.12
XGBoost 155.44 110.79 0.11

Transformer 159.08 112.94 0.07
Encoder 157.35 113.14 0.09

6

MLP 157.56 111.66 0.08
XGBoost 159.59 113.23 0.06

Transformer 160.81 114.26 0.05
Encoder 158.58 112.74 0.07

7

MLP 158.46 112.12 0.07
XGBoost 160.82 113.67 0.05

Transformer 161.72 115.14 0.03
Encoder 161.53 113.58 0.04

8

MLP 159.73 112.14 0.06
XGBoost 161.07 113.57 0.04

Transformer 161.44 114.85 0.04
Encoder 161.69 115.03 0.03

Table 5.1: Comparison of MLP, XGBoost, Transformer and the Encoder model across different
metrics. The models are compared for each time window separately. None of the models use
future lags.

Surprisingly, the MLP model emerges as a highly effective option, dominating almost uniformly
across all time windows. Both XGBoost and the Encoder yield competitive capabilities, man-
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aging to nearly match or even slightly surpass MLP in certain steps. The Vanilla Transformer
model, employing a distinct prediction principle discussed earlier, lags behind in performance.
Contrary to expectations, the Encoder model, despite leveraging an advanced attention mecha-
nism, did not surpass the performance of the MLP. This outcome challenges the initial assumption
that an attention-based model would improve on the MLP on this specific task.
An assessment of performance using specific metrics reveals that the MLP shows absolute domi-
nance in R-squared values. Additionally, MLP model exhibits strong performance in both RMSE
and MAE metrics across most steps. However, in step 4, the rest of the models marginally out-
perform the MLP in terms of MAE. Furthermore, in step 2, XGBoost slightly outperforms MLP
in terms of RMSE.
Comparing the XGBoost and Encoder model, the latter dominates in a 7 out of 8 time steps in
RMSE. On the other hand, the Encoder model showcases superior performance over XGBoost
in steps 1, 3, 4, 6, and 7 concerning MAE. Finally, the Vanilla Transformer level increases only
in later time steps, where it outperforms the Encoder model in terms of MAE.
However, a notable trend across all models is a tendency for their predictive accuracy to decline as
the forecasting window extends into the future. This decline is evident in the gradual reduction
of the R-squared values, suggesting that all models face increasing challenges in maintaining
accuracy over longer prediction horizons.
Finally, we provide details of the final parameter grid that was used to find suitable parameters.
Table 5.2 shows these values for the Encoder model, where df is the size of the hidden layer in the
output dense layer and dd is the size of the hidden layer in the encoder and decoder blocks. Other
hyperparameters include the number of heads h, the number of sequential applications of encoder
and decoder Nx, dropout, and learning rate. Subsequently, the resulting hyperparameters are
also listed in Table 5.3.

Hyperparam Possible values
df 64, 128, 256
dd 256, 512
Nx 1, 2, 4
h 2

dropout 0.2, 0.4
lr 0.0005, 0.00025

Table 5.2: Grid of hyperparameters for Encoder model.

Hyperparam 1 2 3 4 5 6 7 8
df 256 128 256 128 256 128 256 128
dd 512 256 512 256 512 256 512 256
Nx 1 2 1 2 1 2 1 2
h 2 2 2 2 2 2 2 2

dropout 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
lr 0.0005 0.00025 0.0005 0.00025 0.0005 0.00025 0.0005 0.00025

Table 5.3: Selected hyperparameters for the Encoder model for each step ahead.

Similarly to the Encoder model, we present a hyperparameter grid for the Vanilla Transformer.
Table 5.4 lists both the examined values and the values selected as the best.
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Hyperparam Possible values Selected value
df 128, 256 256
Nx 4, 6 6
h 2 2

dropout 0.1, 0.25, 0.5 0.25
lr 0.00075, 0.00025 0.00075

Table 5.4: Hyperparameter grid with selected values for Vanilla Transformer.

To illustrate the prediction behavior, we visualize the prediction comparison in Figure 5.2 for
each model on the selected date of June 28, 2023, focusing particularly on the differences in their
predictions. The encoder model appears to attempt to capture peaks, which is a potential result
of slightly higher RMSE. Subsequently, the predictions of MLP and XGBoost are quite similar,
which aligns with the calculated metrics.
Most notably, the behavior of the Vanilla Transformer model stands out. For reasons to be deter-
mined, its predictions are very cautious, limiting the range of predicted values to the (−131.71, 107.67)
on the whole test set. Therefore, in areas where the real system imbalance curve exhibits ex-
tremely high or low values, the Transformer prediction curve shows a constant-like behavior.
This pattern suggests a limitation in the ability of this model to accurately predict peak values
and shows a conservative approach that keeps the Transformer prediction relatively close to zero
compared to other models. Due to this deficiency, it results in higher RMSE errors.
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Figure 5.2: Prediction comparison for models without the use of future lags.

Another phenomenon that can be seen on the figure is the delayed peak identification, likely
attributable to the high volatility of the data. This delay in peak recognition suggests a lagged
response in all the models. Such behavior underscores the complexity of system imbalance
forecasting and highlights the need for method that can adapt to this problem and capture these
volatile patterns.
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5.2.2 Results with future lags

Let us now focus on models that incorporate future lags and are able to leverage forecasts and
additional information to enhance prediction accuracy. As with the two ML models, the perfor-
mance of the Transformer is expected to improve. In addition to these models, we also present
results for the Temporal Fusion Transformer specifically trained for system imbalance prediction.
While the TFT model does not directly implement future lags in its architecture, it uniquely
incorporates known future inputs in modeling the target variable. This characteristic justifies its
inclusion in our comparative analysis despite its architectural differences.

Step Model Metrics
RMSE MAE R2

1

Transformer 119.11 87.25 0.48
MLP 109.61 80.98 0.56

XGBoost 110.36 81.22 0.55
TFT 116.14 86.12 0.50

2

Transformer 138.79 100.60 0.29
MLP 132.33 97.05 0.35

XGBoost 134.03 97.99 0.34
TFT 136.91 100.18 0.31

3

Transformer 146.70 105.18 0.21
MLP 141.35 101.87 0.26

XGBoost 143.57 103.35 0.24
TFT 146.53 106.54 0.21

4

Transformer 150.38 106.62 0.17
MLP 149.28 106.55 0.18

XGBoost 148.63 106.09 0.18
TFT 152.56 110.27 0.14

5

Transformer 155.96 110.60 0.10
MLP 153.08 110.06 0.13

XGBoost 154.47 109.68 0.12
TFT 157.53 113.64 0.08

6

Transformer 158.54 112.16 0.07
MLP 155.15 110.28 0.11

XGBoost 157.96 112.31 0.08
TFT 160.31 115.31 0.05

7

Transformer 160.07 113.16 0.05
MLP 155.52 110.78 0.11

XGBoost 159.69 112.59 0.06
TFT 162.00 116.20 0.03

8

Transformer 160.69 113.63 0.05
MLP 155.36 111.32 0.11

XGBoost 159.53 112.40 0.06
TFT 162.62 116.42 0.02

Table 5.5: Comparison of MLP, XGBoost, Transformer and TFT model across different metrics.
The models are compared for each time window separately. Models incorporate future lags or,
in case of TFT, another method to leverage known future variables to refine the prediction.
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The metrics for each time window, detailed in Table 5.5, reveal a pattern similar to our previous
comparison. Implemented models were optimized using the MSE loss function, whereas quantile
loss was utilized to optimize TFT. The MLP model dominates in terms of R-squared across all
time steps. As for RMSE, it outperforms other models in all but one time step, which is the
fourth time step, where it is marginally surpassed by XGBoost. The latter model achieves better
MAE results than MLP in time steps 4 and 5.
Both Transformer and TFT lag behind MLP and XGBoost. However, as the time step increases,
they start catching up with the benchmark models. Although TFT performs better than the
Transformer in the first three time windows for RMSE and the first two for MAE and R-squared,
the Transformer surpasses TFT in all subsequent windows.
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Figure 5.3: Prediction comparison for models with the use of future lags.

The quality of the predictions can be seen in Figure 5.3, where, as in the previous case, we
demonstrate the situation for the June 28, 2023. Both MLP and XGBoost exhibit similar be-
havior as without the use of future lags. The predictions of the TFT model are characterized by
changes in the direction of large deviations in an attempt to capture peaks. As for the Trans-
former, we again obtain more conservative predictions, where the model captures the main trend
of the system imbalance, but not the extreme fluctuations.
Contrary to expectations, transformer-based models did not surpass the machine learning bench-
marks in our thesis. However, it should be taken into account the reliance of benchmarks on
multiple models for prediction, as opposed to the single-model approach of sequence-to-sequence
models. Additionally, transformer-based models tend to accumulate errors in prediction. The
high volatility and lower autocorrelation of Belgian data present a significant challenge, which is
probably one of the aspects why the transformers were outperformed.
Despite falling short of the benchmarks, the Transformer model with future lags did outperform
the state-of-the-art TFT model in terms of RMSE and MAE in time windows 4 to 8. Additionally,
its conservative forecasts can particularly relevant in applications where only the direction of
the imbalance, i.e., whether the imbalance is positive or negative, is required. In such scenarios,
a Transformer with conservative predictions may be a suitable choice.
Across different tasks, XGBoost usually appears to be a superior model to MLP, but this is not
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the case in our task. The reason is most likely due to the size of the input data, which is not
handled by XGBoost as easily as by MLP. To this end, feature selection could be performed
to select only significant variables, but this optimization was not performed for this benchmark
model.
To maintain consistency, we provide a grid search performed for the Transformer model with
future lags, which is summarized in Table 5.6. Both possible hyperparameter values and those
selected during tuning are listed.

Hyperparam Possible values Selected value
df 256, 512, 1024 512
Nx 4, 6 6
h 2 2

dropout 0.1, 0.2 0.1
lr 0.000075, 0.00025, 0.0005 0.0005

Table 5.6: Hyperparameter grid with selected values for Transformer with future lags.

One of the major contributions of this thesis is certainly the introduction and implementation of
future lags. Their effect can be directly compared in the MLP and XGBoost models, which add
future lags to the input data vector. Similarly, the effect on the Transformer with future lags
and its prediction accuracy compared to the Vanilla Transformer can be observed.
Contrary to expectations, the ML models show no improvement. The error rates remain un-
changed, any improvement is negligible and some time windows even show a slight decline. This
outcome implies that each model within the ensemble, though optimized independently, may not
effectively incorporate the additional variables.
We observe significant improvements for the Transformer, and we report the percentage decrease
in terms of RMSE and MAE in Table 5.7. Compared to the ML models, this is most likely due
to the use of the attention mechanism, which utilizes associations found between the future lags
vectors, subsequently employed in the prediction.

Step RMSE decrease (%) MAE decrease (%)
1 11.18 6.56
2 5.08 3.17
3 3.85 3.11
4 2.58 2.44
5 1.96 2.07
6 1.41 1.84
7 1.02 1.72
8 0.46 1.06

Table 5.7: The table shows the percentage decrease in the RMSE and MAE metrics of Trans-
former with future lags compared to the Vanilla Transformer.

The Transformer model achieves its greatest improvement in the first window, where it exceeds
11 %. However, with subsequent time steps, the rate of improvement diminishes significantly.
Since transformer-based models, specifically Transformer with future lags and TFT, are not
equivalent to MLP and XGBoost in terms of training. Sequential models optimize the prediction
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on r windows simultaneously, which includes optimization over the entire sequence, in contrast
to ML models that optimize for each window separately.
Therefore, both models were re-trained focusing solely on one-step-ahead prediction. The results
achieved are shown in Table 5.8 and are compared with the MLP and XGBoost models for the
first time window.

Step Model Metrics
RMSE MAE R2

1

Transformer 112.55 83.22 0.53
MLP 109.61 80.98 0.56

XGBoost 110.36 81.22 0.55
TFT 109.61 81.11 0.56

Table 5.8: Comparison of TFT and Transformer trained on one step ahead prediction with
benchmarks.

It turns out that when optimized for one-step-ahead prediction, the Transformer significantly
approaches the prediction error of both MLP and XGBoost. Under the same conditions, TFT
even matched MLP in terms of RMSE. Admittedly, these results are indicative of the capabilities
of transformer-based models, although only when predicting one step ahead.

5.3 Ensemble

To improve the results even further, an ensemble model approach was proposed with models
that use future lags. An ensemble refers to a system that uses the outputs of other models to
improve the accuracy of the prediction. The aim is to combine the strengths of various models
to improve predictive power. In general, any type of model can be build upon ensemble, simpler
models are often preferred.
To maintain objectivity and prevent bias, the ensemble model was trained only on data from the
original validation set. Then, it was tested on the original test data to evaluate its performance.
For detailed information on ensemble models and their applications, please refer to [10].

Step RMSE MAE R2
1 107.55 79.40 0.57
2 130.07 95.33 0.38
3 140.31 101.49 0.27
4 146.14 104.20 0.21
5 151.17 107.56 0.16
6 154.33 109.40 0.12
7 155.58 110.06 0.11
8 154.70 109.71 0.12

Table 5.9: Performance Metrics for Different Models

Several ensemble models have been proposed in this thesis. In addition to a simple averaging
method, linear regression and decision trees [6] have been implemented. In addition to the
predictions from the 4 models with future lags (MLP, XGBoost, TFT, and Transformer), selected
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features of the input data of original models were added to the ensembles. In the case of decision
trees, a grid search was also implemented to find the best hyperparameters.
Eventually, the most effective ensemble model turned out to be a linear model that utilized only
the predictions from the original models as predictors. A more complex random forest struggled
with overfitting despite hyperparameter optimization. A significant challenge in this context
involved the size of the training data for the ensemble models, which matched the size of the test
data. This may have caused a poor generalization of the model.

5.4 Prediction intervals

As mentioned in the 5.1, in addition to point estimates, prediction intervals can also be obtained.
A combined training and test dataset was used to use the EnbPI method. For model training, four
block bootstraps were performed, and MLP, XGBoost, and Transformer models were trained, all
including future lags. The confidence level was set to α = 0.05.
Of the MLP and XGBoost models, only the submodels designed for the first time step were used,
and the Transformer was specifically trained to predict one step ahead.
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Figure 5.4: Conformal interval predictions for 28th June, 2023.

The results for June 28, 2023, can be seen in Figure 5.4. Next, we need to specify the important
global values for each model, namely the width of prediction intervals and the coverage, which
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indicates the actual coverage of the predictions made by the intervals. We also report the RMSE
achieved on the test set. However, it should be noted that the models were trained on different
parts of the joint training and test set, and the EnbPI model used performs predictions using
an ensemble of models. Thus, the outputs are not directly comparable to those in the previous
sections.

Model Coverage Width RMSE
MLP 0.9577 467.50 108.67
Transformer 0.9633 495.07 112.69
XGBoost 0.9402 419.91 109.32

Table 5.10: Performance metrics for conformal interval predictions.

In Table 5.10, we show the results obtained using the EnbPI method. We can see that although
MLP achieves the lowest prediction RMSE, XGBoost shows the narrowest interval width, indi-
cating the most reliable prediction. As for coverage, XGBoost slightly underperforms compared
to the set coverage, as it is guaranteed asymptotically.
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Conclusion

Recent transformer-based models, such as the Temporal Fusion Transformer [39] and the Informer
[65], illustrate that the attention mechanism can be effectively applied to time series forecasting,
achieving state-of-the-art results in certain datasets. In contrast, the findings of several studies,
including [18, 64], present a dissenting view, arguing against the efficacy of Transformers and
attention mechanism.
In this thesis, our focus is on Transformers and their comparative analysis with benchmark
machine learning models, namely MLP and XGBoost. The initial chapter of this thesis presents
an overview of the electric transmission system, introduces the concept of system imbalance, and
discusses the motivation behind its forecasting. In the second chapter, the theoretical foundations
of the Transformer model and its internal structure are detailed. Additionally, the fundamental
concepts of benchmark models are presented. The third chapter analyzes the Belgian data utilized
in this thesis and describes the preprocessing of this data for its application in the models. The
necessary modifications for adapting transformer-based models to time series forecasting are
detailed in the subsequent chapter, including the introduction of the specific models proposed in
this thesis. The concluding chapter presents results and comparative analysis.
In our research, transformer-based models did not surpass the performance of popular machine
learning models, such as MLP and XGBoost, in predicting system imbalance at 8 time steps
ahead. However, their prediction metrics were closely comparable to those of XGBoost and
MLP. When trained for one-step-ahead prediction, the prediction accuracy of the Transformer
approached that of the benchmark models, while the TFT even matched the benchmark predic-
tion error.
An important contribution of this thesis is the incorporation of future lags, which utilize available
forecasts and known future data. This approach significantly enhanced the Transformer model,
demonstrating its potential effectiveness. Conformal prediction intervals were also calculated
to increase the understanding of prediction quality, while provide additional insights into the
reliability and accuracy of the point estimates.
There are several possibilities to improve the results obtained. The first of these is certainly the
enhancement of the architecture and improving its complexity. Additional possible improvements
include enhancing hyperparameter optimization with heuristic algorithms, expanding the data to
include more variables or increase the volume of training data.
Time series forecasting still remains an open task with great potential for improvement, especially
in the context of rapidly evolving models and methodologies. With the emergence of novel
models, such as TimeGPT [29], which utilize transfer learning and large datasets, the question
emerges as to whether these models will dominate in time series analysis.
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