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Abstract
This bachelorŠs thesis investigates the task
of enabling the ARI humanoid robot to
learn and identify new objects using basic
concepts from machine learning and com-
puter vision. The study revolves around
developing and implementing a straight-
forward 3D object detection and classiĄ-
cation pipeline, with the aim of enabling
the robot to recognize objects it has not
previously encountered. The approach
integrates fundamental aspects of open
set recognition and incremental learning,
focusing on the application of these tech-
niques in a practical setting with the ARI
robot.

The effectiveness of the implemented
system is assessed through a series of el-
ementary experiments, concentrating on
its ability to detect and categorize new ob-
jects. These initial tests provide insights
into the basic functioning of the system
and its potential utility in a controlled
environment.

This thesis contributes to the Ąeld of
robotics at an introductory level, present-
ing an initial exploration into the use of
machine learning and computer vision in
a practical robotic context. It lays the
groundwork for future research in the area
of robotic object recognition.
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Machine Learning, Computer Vision,
Object Detection, Object ClassiĄcation,
Open Set Recognition, Incremental
Learning, ARI Robot, 3D Object
Recognition, Robotic Learning

Supervisor: doc. Ing. Tomáš Pajdla,
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Abstrakt
Tato bakalářská práce se zabývá úkolem
umožnit humanoidnímu robotu ARI učit
se a rozpoznávat nové objekty pomocí me-
tod strojového učení a počítačového vi-
dění. Práce se zabývá vývojem a imple-
mentací systému pro detekci a klasiĄkaci
3D objektů, s cílem umožnit robotu roz-
poznat objekty, se kterými se dříve nese-
tkal. Přístup integruje základní aspekty
rozpoznávání ve světě bez omezení a inkre-
mentálního učení, zaměřuje se na aplikaci
těchto technik v praktickém prostředí s
robotem ARI.

Účinnost implementovaného systému je
hodnocena prostřednictvím série základ-
ních experimentů, zaměřujících se na jeho
schopnost detekovat a kategorizovat nové
objekty. Tyto počáteční testy poskytují
náhled do základního fungování systému a
jeho potenciálního užití v kontrolovaném
prostředí.

Tato práce přispívá do oblasti robotiky
na úvodní úrovni, představuje počáteční
průzkum využití strojového učení a počí-
tačového vidění v praktickém robotickém
kontextu. Předkládá základy pro budoucí
výzkum v oblasti robotiky a rozpoznávání
objektů.

Klíčová slova: Humanoidní robotika,
Strojové učení, Počítačové vidění,
Detekce objektů, KlasiĄkace objektů,
Rozpoznávání ve světě bez omezení,
Inkrementální učení, Robot ARI,
Rozpoznávání objektů ve 3D, Učení
robotů

Překlad názvu: Učení neznámých
objektů s robotem ARI
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Chapter 1

Introduction

In recent years, the integration of robotics into various aspects of daily life
has signiĄcantly accelerated, transforming mundane tasks into automated
processes. One of the most intriguing developments in this domain is the
advancement of humanoid robots, exempliĄed by the ARI robot. Humanoid
robots like ARI have begun to move beyond their traditional roles in industrial
settings, making inroads into more dynamic and unpredictable environments
such as healthcare, hospitality, and domestic assistance.

This evolution of robotic applications necessitates a shift from pre-programmed
functionalities to adaptive learning capabilities. The ability of a robot to
recognize and learn about unknown objects in its environment is paramount
for efficient and intelligent interaction in real-world scenarios. This thesis
modestly contributes to this evolving Ąeld by exploring the potential of the
ARI humanoid robot to learn and classify unknown objects, employing ma-
chine learning techniques that bring together aspects of computer vision and
natural language processing.

1.1 Motivation and Goals

This thesis represents a step forward from a preceding work [1] focused
on detecting unknown objects, aiming to apply it in the real world and
enhance the ARI robotŠs ability not just to detect, but also to learn and
classify these objects. Embracing this challenge serves a dual purpose: it
contributes modestly to the Ąeld of robotics and plays a crucial role in my
academic and professional development. As a student, engaging in this
project has been instrumental in understanding the collaborative nature of
engineering and the importance of building upon existing work. This process
of learning, adaptation, and contribution is essential in shaping a thoughtful
and resourceful engineer.

The speciĄc goals of this thesis are:

.To explore and implement a system for the ARI robot, enhancing its
ability in open set recognition, enabling it to recognize and adapt to new
object classes it encounters.
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1. Introduction .....................................

.The system will incorporate methodologies that allow the ARI robot
to continuously expand its object knowledge base in a structured and
effective manner.

.The system will leverage NLP techniques to meld visual data with
linguistic elements, enriching the robotŠs comprehension and classiĄcation
capabilities of objects.

2



Chapter 2

Related work

This section presents a review of related work, highlighting signiĄcant research
and advancements that inform and contextualize our study

2.1 Open set recognition and Open set detection

Open-set detection stems from open-set recognition, which as described in
[49] deals with developing models which are are able to recognize unknown
classes of objects, that werenŠt present in their training dataset. To measure
the capability of these models [50] introduced open set risk, a measure of
the error of mistaking unknown objects for known ones. [45] recognizes
two types of approaches to minimizing open set risk, discriminative and
generative. While discriminative approaches rely on tight conĄnement of
known classes feature representation, generative approaches augment the
training dataset with artiĄcially generated data, to improve its recognition ca-
pabilities in diverse environments. The former is the more widely adopted one.

Open-set detection is a domain of open-set recognition concerned with ob-
ject detection. [47] proposed open-set detection as a means to address the
brought-up issue of over-conĄdent false positive detections by conventional
closed-set object detectors. In [1], inconsistencies in the classiĄcations of these
false positives when observing the same object from different perspectives
were observed and used to design an open set detector that relies on false
positives for the detection of unknown objects.

2.2 Open world detection, incremental learning

Open-world detection incorporates the process of continually extending the
set of known objects by learning to classify the detected unknown objects,
perhaps by external data annotation by an oracle. This closely resembles the
problem of incremental learning, which is all about incrementally teaching the
model new capabilities, while also retaining the old ones, [51] described three
types of incremental learning: task-incremental learning, domain-incremental
learning, and class-incremental learning [52], class-incremental learning bear-

3



2. Related work.....................................

ing the closest similarity to open world detection is deĄned by the ability
to learn new classes. ItŠs recognized as the most challenging of the three as
learning to distinguish a new class requires putting it into the context of all
already known classes.

[46] put forth the distinction between class-incremental learning and open-
world detection, that is, the ability to recognize unknown classes and distin-
guish them, which steps up the difficulty as it requires with each learned class,
the ability to put in the context of it something never seen before. Among
methods utilized in [46] to tackle this issue, the most relevant to our work is
the use of contrastive clustering as a training objective.

2.3 Natural language processing, Multimodal

models

The progression of Natural Language Processing has seen a shift from focusing
solely on text to embracing multimodal approaches. Early developments in
word embeddings [5, 4, 6, 7] and sequence models [8, 10] set the stage for this
transition. Similarly, advancements in image processing models like VGG,
ResNet, and ViT [11, 12, 13] paralleled these efforts. The culmination of
these developments is seen in models like CLIP [15], which integrate language
and visual data, leading to the emergence of Multimodal Large Language
Models (MMLLMs)[19, 53]. These models, while still not well understood,
exhibit promising capabilities in visual reasoning tasks by blending textual
and visual understanding.

4



Chapter 3

Setup

This section is dedicated to offering a concise yet comprehensive overview of
the foundational prerequisites to our work.

3.1 Ari

ARI, developed by PAL Robotics, is a humanoid robot platform designed
primarily for Human-Robot Interaction (HRI) and front-desk tasks. It is
equipped with a range of features for multimodal expressions and gestures,
including a touchscreen, gaze control, and an LCD display for eyes, enhanc-
ing its interactive capabilities. The combination of an Intel i7 processor
and NVIDIA Jetson TX2 GPU provides the necessary processing power for
AI-driven tasks such as navigation, manipulation, perception, and speech
recognition. ARI is intended for use in controlled environments under super-
vision. Its functionalities are accessible through a user-friendly web interface
and an extensive ROS API, supporting both customization and application
development.

3.1.1 Body

The ARI robot features a neck with two degrees of freedom, arms with four
degrees of freedom, and hands with a single degree of freedom, providing a
range of motion for interactive tasks. Mobility is facilitated through two drive
wheels, and the unit is powered by an internal battery pack that supports its
autonomous operations.

3.1.2 Cameras

While our work primarily utilizes the front torso RGB-D camera for depth
perception, ARI is equipped with a range of cameras, each serving distinct pur-
poses, ensuring comprehensive visual capabilities for complete environmental
awareness.

5



3. Setup ........................................

Figure 3.1: the ARI robot

Front torso stereo RGB-D camera

Mounted on the torso, below the touchscreen, ARIŠs front-facing Intel Re-
alSense D435i provides RGB and depth imaging capabilities. It supports
depth image resolutions up to 1280 x 720, although for our applications, we
utilize a setting of 640 x 480. This camera is complemented by an integrated
IMU, enabling the monitoring of inertial forces and altitude within the robotŠs
environment.

Frontal and back stereo-Ąsheye cameras

Frontal and rear stereo-Ąsheye cameras are placed at both the front and
back sides of ARIŠs torso. These cameras deliver stereo images at 30 frames
per second, providing expansive Ąeld-of-view coverage in both Ąsheye and
black-and-white formats. Each camera is equipped with an IMU sensor.

6



........................................ 3.2. ROS

Figure 3.2: Placement of ARIŠs cameras

Head camera

Positioned on the head, there is an RGB camera capable of capturing high-
quality color images.

3.2 ROS

The Robot Operating System (ROS)[44] serves as the foundation for manag-
ing sensory data acquisition and processing within the ARI humanoid robot.
It operates through a network of nodes communicating via topics, services,
and actions, which establishes a modular and scalable system architecture.
This setup is essential for the effective coordination and utilization of sensory
inputs in our machine-learning task.

ROS also provides a useful set of tools, including RViz, a visualization tool
that is particularly beneĄcial for monitoring and debugging various aspects
of the robotŠs operation, and ROS bags, a feature of ROS that enables the
recording and playback of data streams into and from rosbag(.bag) Ąles,
allowing us to replay sensor and state data as if they were being transmitted
live from the robot, facilitating testing and analysis.

ROS also provides a comprehensive system for managing coordinate frames
and transforms, essential for accurately interpreting the spatial relationships
and movements within the robotŠs environment. This system creates a trans-
form tree that maintains the hierarchy and relationships between various
coordinate frames. Thanks to this transform tree, determining transforms
from one coordinate frame to any other within the tree is simpliĄed; we only
need a single transform between that speciĄc frame and any other frame
already in the tree.

7



3. Setup ........................................

Figure 3.3: An illustrative art of a transform tree

3.2.1 ROS on Ari

ARI offers a ROS API that facilitates control and access to its diverse sensor
data. This includes, but is not limited to, camera images, IMU readings, and
calibration data, all of which are transmitted to their own ROS topics. For
brevity, only the relevant topics will be listed.

./torso_front_camera/color/image_raw: This topic broadcasts 640x480
resolution RGB images from the front torso RGB-D camera.

./torso_front_camera/color/image_raw/compressed: Here, the RGB
image data from the front torso RGB-D camera is transmitted in a
compressed format, optimizing for reduced Ąle size, this is mostly useful
when recording ROS bags.

./torso_front_camera/aligned_depth_to_color/image_raw: This topic
provides depth data images from the front torso RGB-D camera, aligned
with the corresponding RGB images for cohesive depth and color infor-
mation.

./torso_front_camera/color/camera_info: This contains the intrinsic
parameters of the front torso RGB-D camera, essential for understanding
and processing the cameraŠs visual data.

Important coordinate frames within ARIŠs transform tree are the following:

. odom: This frame represents ARIŠs estimated position change based on
its odometry.

8



......................... 3.3. The foundational 3D open set detector

.map: This is the global coordinate frame of ARIŠs environment, estab-
lished by the localization module.

. base_link: This frame serves as the primary reference point for ARI,
linking its body to the coordinate system.

. torso_front_camera_color_optical_frame: This frame denotes the spe-
ciĄc coordinate system of the front torso RGB-D camera.

Localization

Mapping, the process of constructing ARIŠs environmental map, and local-
ization, the process of estimating ARIŠs position within this map, have been
implemented using rtabmap[54] by Ing. Rakshith Madhavan (refer to ac-
knowledgments). The localization ROS node contributes the map coordinate
frame and its transform to the transform tree. Additionally, it broadcasts
ARIŠs position and orientation to the /robot_pose/ topic.

3.3 The foundational 3D open set detector

Our work builds upon [1], where an open set 3D object detector was designed
and implemented. This section will brieĆy describe the implementation details
of this work, as it provides crucial context for the discussion of our work.

This detector is implemented as a multi-view meta-classiĄer, multi-view
meaning that it uses multiple 2D images (or views) of the detected objects
taken from different perspectives when classifying objects, and meta-classiĄer
meaning that the classiĄcation is decided by reasoning about the accumulated
outputs, also referred to as "feature vector", of another backbone classiĄer.
Refer to [1] for a formal deĄnition of a meta-classiĄer

The detector takes as input a series of RGB images (x1, ...xM ) and their
corresponding depth data (d1, ...dM ) and a series of corresponding camera
poses w.r.t. a global coordinate system ((R1, t1), ...(RM , tM )) where Ri ∈ R

3

is the rotation matrix of the camera pose and Ti is the cameraŠs coordinate
vector. The detector processes these series one by one and at each step
updates its internal state, which contains 3D coordinates of objectsŠ centroids
and their respective classiĄcations and conĄdence scores. Each component of
this detector will be described below.

3.3.1 Yolact

Yolact[28, 29] is a real-time instance segmentation CNN[43] model which
serves as the detectorŠs backbone for object detection and meta-classiĄcation.
Given an image xt it outputs, per each object detection oi

xt
, the following:

.moi
xt

∈ ¶0, 1♢H×W : The segmentation mask of the detected object, i.e.
the set of pixels which are a part of that object.

9



3. Setup ........................................

. soi
xt

∈ R
N : The softmax distribution of classiĄcation scores.

. loi
xt

: the classiĄcation label

. scoi
xt

∈ [0, 1]: the classiĄcation conĄdence score

Where H, W ∈ N are the height and width of the image respectively, and
N ∈ N is the number of classes that Yolact is trained to recognize. In our
case H = 480, W = 640 and N = 80 Additionally, [1] includes coi

xt

∈ N
2,

which is the pixel coordinate of the centroid (center of mass) of moi
xt

3.3.2 Centroid back-projection

For each image, the object detections (o1
xt

, ...oD
xt

) are associated with 3D
coordinates (vo1

xt

, ...voD
xt

) w.r.t the global coordinate frame, where voi
xt

is
obtained by back-projecting coi

xt

as described below.

Point back-projection

For brevity, letŠs denote a general case, where indices of variables will not
be denoted. Given pixel coordinates p = [x, y]T , its corresponding depth
data z a rotation matrix R, camera position T and the cameraŠs intrinsic
matrix K (it represents the transformation from 3D points in the cameraŠs
coordinate frame to their respective pixel coordinates in the image x). Where
K is deĄned by:











fx s px 0
0 fy py 0
0 0 1 0
0 0 0 1











where fx and fy represent the focal length, px and py represent principal
point and s represents the skew coefficient between x and y axis. Note that
normally K would be a 3-dimensional square matrix, but here itŠs extended
to accommodate the use of homogeneous coordinates, which allow for the
representation of affine transformations in matrix form by using the 4th
coordinate for translation. This will be important in the construction of
the cameraŠs extrinsic matrix E as it uses homogeneous coordinates and we
intend on composing E with K WeŠll construct the cameraŠs extrinsic matrix
E (it represents the transformation from the global coordinate frame to the
cameraŠs coordinate frame) like so:



RT C

0 1

]

10



......................... 3.3. The foundational 3D open set detector

where C = −RT T Finally, we compute the 3D coordinates [xw, yw, zw] of p

like so:










xw

yw

zw

1











=



RT −RT T

0 1

]

K−1











x · z
y · z

z

1











3.3.3 Object representation and clustering

Objects are for simplicity represented as spheres of constant radius r, which
is the detectorŠs parameter. The detector maintains a set W of candidate
object coordinates, referred to as cluster centers because they are determined
by clustering the points voi

xt

in each time step t. This is done by searching
for the closest point w ∈W , if its distance is less than r then it is clustered
together and w is replaced by the average of all points that were clustered
to the cluster whose center was w, if its distance is greater than r, then it
becomes the center of a new cluster and is inserted into W . The following
pseudocode describes this process in more detail:

Algorithm 1 Clustering method pseudocode as described in [1]

1: Result: Clusters with assigned labels
2: enm← init_yolact()
3: env ← init_env()
4: clusters← ¶♢
5: episode_over ← False
6: while not episode_over do

7: image← env.step()
8: detections← cnn(image)
9: centroids← compute_centroids(detections)

10: assigned← False
11: for (centroid, detection) in zip(centroids, detections) do

12: world_position← backprojection(centroid)
13: cluster ← Ąnd_corresponding_cluster(world_position, clusters)
14: if cluster is None then

15: cluster ← init_cluster(world_position)
16: clusters.append(cluster)
17: else

18: cluster.update_center(world_position)
19: end if

20: cluster.append(detection)
21: end for

22: end while

11
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3.3.4 Cluster classiĄcation

[1] tested two possible methods for making a classiĄcation decision. ConĄdence
thresholding over the accumulated detection scores (feature vector), also
referred to as "maxsum" and entropy measurement over the mean softmax
vector (mean over the accumulated detections). In our work, we consider only
the Ąrst approach, as both methods resulted in similar results on real-world
data and our chosen approach would not be compatible with the second
method. The conĄdence thresholding approach is as follows:

. From the set of clusterŠs associated object detections O a feature vector
a ∈ R

N (N is the number of classes known to Yolact) is constructed such
that ak =

∑

o∈O,lo=k osc

.A vector v = [a1,...,aN ]T
∑

N

i=1
ai

is constructed

. ClassiĄcation is decided by

L∗(v) =

{

Karg max(v), if max(v) > θ1

unknown, otherwise

where θ1 ∈ [0, 1] is the conĄdence threshold, which is the detectorŠs
parameter.

12



Chapter 4

Approach

This chapter documents our approach to implementing a solution to the
assignment.

4.1 Yolact 3D on Ari

This section details the adaptation of Yolact 3D, as outlined in [1], for
practical deployment on the ARI robot in real-world settings. While NikitaŠs
initial work was a critical foundation, it primarily operated within simulated
environments. Transitioning to real-world applications presented unique
challenges, mainly due to the unpredictable and diverse nature of real-world
data. To address these, speciĄc modiĄcations and optimizations were required,
which are elaborated in the following subsections.

4.1.1 Caveats and adaptations

Implementing Yolact 3D in a real environment necessitated overcoming chal-
lenges chieĆy arising from the inherent uncertainty in real-world measurements.
This uncertainty led to a deviation from the methods outlined in [1], de-
manding a more robust and adaptable approach. The key adaptations are
delineated in the following segments, highlighting our tailored strategies to
enhance practical applicability.

4.1.2 Determining detections 3D position

[1] relied on the 3D back-projection of 2D centroids of detected object in-
stances pixel masks. Two issues were encountered:

Firstly, the pixel associated with the 2D centroid, may not lie inside its
pixelmap, given a nonconvex object, the resulting 3D thus may not corre-
spond to the real objectŠs position at all.

Second, the depth camera available (Intel® RealSense™ Depth Camera
D435i) could not consistently provide depth data for each pixel of its output
frame, even if in range compliant with the camera speciĄcations (28-200cm).

13



4. Approach ......................................

As a result of this, depth data for an objectŠs centroid pixel may not be
available even if it lies inside its segmentation pixel map, rendering the back-
projection impossible.

To address the issue, the strategy of determining the objectŠs 3D position
was changed from the back-projection of the 2D centroid of an objectŠs pixel
mask to taking the centroid of 3D backprojections of pixels from the pixel
mask for which depth data was available.

This solution introduced another issue, the segmented pixelmaps, especially
for low conĄdence detections, which [1] relies on, often, due to error also
include pixels in the objectŠs vicinity. This can have a signiĄcant impact on
the position of the 3D centroid as a multitude of outliers are introduced to
the back-projected point cloud.

To counter this, an outlier Ąltering method /citeoutlier is used in the process.
Note that this approach is still subject to failure if the segmentation error is
high enough.

4.1.3 Object representation

With the aforementioned change to determine the 3d position object detec-
tions a more natural approach to accumulating those detections into a single
object representation comes to mind, that is, representing the object as a
point cloud constructed by merging the back-projected pixel mask clouds.
Clustering appropriate detections together would then instead of centroid
proximity rely on a density-based point cloud clustering algorithm, in our
case dbscan[41].

This approach, in theory, provides a more robust solution capable of handling
objects of radically different sizes and arranged in close proximity. However,
in practice, it proved impractical, as the error in the robotŠs localization was
signiĄcant enough to cause misalignment between different detections of the
same object.

Instead, we opted for a similar approach to the original one, which is more
robust to inaccuracies in object positions. This approach is only different in
the way in which a new object centroid is determined after merging detections.
Previously, this was done by taking the average of the detections of centroids,
which can shift the resulting position towards that side of the object, from
which it has been observed the most. Our approach is to take the average of
the detectionŠs point clouds after merging and downsampling with a voxel grid
Ąlter, this way the downsampling step takes care of overlapping detections.

14
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4.1.4 Yolact3d ROS node

The classiĄerŠs implementation was, with the help of Ing. Rakshith Madhavan
(see acknowledgments), encapsulated within a ROS node, and designed to
integrate seamlessly with ARIŠs existing system architecture. This node
subscribes to the RGB-D cameraŠs depth and image topics, as well as the
localization moduleŠs pose topic "/robot_pose", and publishes the resulting
poses and classiĄcation scores of detected objects.

4.1.5 Experiments

The performance of the detector was then evaluated in an experimental setting
in a controlled environment. (see 5.1)

4.2 Formalizing the Pipeline

This section aims to abstractly delineate the systemŠs structure, facilitating
initial reasoning about its design without delving into the complexities of its
physical implementation.

The system is conceptualized as a tuple (S, O, M, R, D, s, o, r, d, g, l),
with each element representing a distinct component or function within the
pipeline. This formalization serves as a foundational framework, guiding the
implementation and ensuring clarity in the systemŠs functional dynamics. See
4.1

. S the set of all possible data given the systemŠs sensors

. O the set of all possible observations given a single observed unit of data

.M the set of all memory states, this is where the information about the
observed world as well as oracle input is accumulated.

. R the set of all scene representations, this is where the model constructs
an internal representation of its surroundings from the observed data.

.D The set of all object descriptions, the purpose of those is to have
an interface through which the input and output of information about
individual detected objects can occur.

. s : R −→ S The sensing function, it encapsulates the process of collecting
sensor data from (approximately) one point in time

. o : S −→ O The observation function, it encapsulates all processing done
on data from just one point in time

. r : R×M ×O −→ R×M The scene representation function, it encap-
sulates the process of constructing the model of the systemŠs immediate
surroundings as well as the knowledge base of the world it is situated in
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Figure 4.1: Diagram of the pipelineŠs formal description

. d : R ×M −→ ∪∞

n=0Dn The object description function. Since R and
M are arbitrary, it is not guaranteed that individual objects will be
explicitly represented in either of them, the object description function
encapsulates the process of extracting these explicit representations per
each instance of an object detected.

. g : D −→ D The ground truth (oracle) function. It encapsulates the
process of obtaining the ground truth from the oracle.

. l : M ×D −→M The learning function. It encapsulates the process of
applying the results from the oracle such that future predictions will be
in better alignment with the ground truth provided by the oracle, what
it means to be in better alignment is implementation-speciĄc.

4.2.1 Similarity to the PAC framework

The Probably Approximately Correct (PAC) learning framework, as for-
malized in [2], is widely recognized in machine learning for conceptualizing
the learning process as an optimization task. It emphasizes minimizing the
error between a modelŠs output (hypothesis mapping) and the ground truth
(concept mapping).

This framework evaluates the conditions under which a concept can be
learned with a speciĄed accuracy, based on a Ąnite set of examples. Simi-
lar to our approach, the PAC framework uses ground truth annotations to
guide the learning process and focuses on accurate classiĄcations. While our
model emphasizes an incremental approach, adapting continuously to new
information, it shares with the PAC framework the core objective of reĄning
classiĄcation accuracy through learning.

While our focus isnŠt on the accuracy guarantees of the PAC framework,
we draw inspiration from its methodology of deconstructing complex prob-
lems into clear, manageable components.
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4.3 Implementing the pipeline

In this section, we delve into the practical aspects of designing and implement-
ing each element of the formal pipeline, as deĄned in the previous section.
Central to this undertaking is the challenge of data scarcity, which is inherent
to the system, since the robot has to collect the data it is supposed to learn
from and any realistic environment where the robot will operate will be
limited in the number of present instances of objects.

There are a couple of ways to approach this, one is through few-shot deep
learning, this approach relies on a classiĄer architecture, which once pre-
trained on a large dataset, can utilize its intrinsic knowledge to extend its
label set given just a few samples of data per new class, these methods may
be prone to what is known as "catastrophic forgetting", which is the inability
to maintain original performance on old classes after introducing enough new
ones.

There are some models in the incremental learning literature that are de-
signed to combat this issue /citefew-shot-incremental, however, it is not
known, whether such model architectures would exhibit the same properties
as were observed in [1] and maintain them throughout the process of extending
the set of known classes. For that reason, we opted for another approach,
which will be described in the following section

4.3.1 Language-aligned embeddings as the basis for semantic

understanding

Instrumental to our approach to tackling the scarcity of learning data is
comparing unknown objects to known ones in terms of semantic similarity.
This is an approach natural to humans, who instinctively associate unknown
objects with known ones that exhibit similar features [3].

vector space embeddings

A widely used approach to encode the features descriptive of the semantics of
a concept is to use vector space embeddings, which is a mapping from given
data to an Euclidian space R

n (also often referred to as a latent space). These
embeddings became prominent in the Ąeld of natural language processing,
where they were Ąrst used to represent the semantic meaning of individual
words [5, 4, 6, 7] these methods were among the Ąrst to introduce the map-
ping of concepts to the latent space, such that the semantics structure was
preserved in the latent space in a meaningful manner. For example, the vector
connecting the embeddings for "queen" and "king" would be very close to the
vector connecting the word embeddings for "man" and "woman" (4.2).

Methods for embedding the semantic meaning of entire sequences of words,
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Figure 4.2: Visualization of the semantic structure captured in word em-
bedding latent space ( https://developers.google.com/machine-learning/crash-
course/embeddings/translating-to-a-lower-dimensional-space )

beyond individual words, were also developed [8, 10] most image classiĄcation
models also rely on mapping the image data into lower-dimensional arrays
[11, 12, 13], this could also be seen as a latent space mapping (up to an
isomorphism), these methods (both for images and sequences of words) do
not produce a structure in the latent space, which would produce examples
as intuitive as the previous one, however, they still preserve the semantic
structure in a meaningful way, such that semantically similar sentences, or
images also produce similar embeddings. (4.3)

Such methods, when trained on sufficiently sized datasets, exhibited great
generalization capabilities, that is, the produced embeddings corresponded
very well with the underlying semantic meaning behind given data and werenŠt
very much affected by nuanced shifts in the data.

These capabilities are well suited for our application, since being able to
tell, which of the objects of unknown class share the underlying semantic
meaning, which is closely associated with the classiĄcation of that object,
seems promising as the mechanism for connecting the information gained
from the oracle function g to already observed data in M .

The process of generalizing concepts learned from training data to novel,
but similar concepts is called zero-shot learning. Many models, which were
pre-trained on large datasets with a wide range of concepts [15, 14, 16] have
demonstrated zero-shot generalization capabilities. CLIP [15] is among the
more widely known ones

CLIP

CLIP [15] is a famous multimodal embedding model, which maps both se-
quences of words as well as images into the same latent vector space.

This was achieved by pretraining two encodings (embedding) models (a
Transformer [17] for encoding text sequences and a Visuion Transformer
(ViT) [13] for encoding images) on a large dataset of image-description pairs
scraped from the internet, optimizing a contrastive learning task, where the
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Figure 4.3: Visualization of the semantic structure captured in image embedding
latent space it is the low dimensional projection of embeddings of images of
animals (grouped by color) (https://github.com/smivv/tensorĆow-cifar-10)

objective is to, given batches of N pairs of images and text descriptions and
their encodings, maximize the cosine similarity between the encodings of the
N correct image-text pairings and minimize the cosine similarity between the
encodings of N2 −N image-text pairings.

As mentioned before, CLIP demonstrated generalized zero-shot learning
capability, or as referred to in the paper: zero-shot transfer, where by com-
paring cosine similarity between the encodings of an arbitrary set of labels
and the encoding of an image, CLIP could be without any modiĄcation or
Ąne-tuning used for the task of image classiĄcation, despite being trained for
a different task. It achieved 76% accuracy on the Imagenet classiĄcation task.
These results mark CLIP as a promising solution to the problem of deriving
some sort of semantic understanding from the observed data and comparing
them. (Since all images of a class of object are similar to the class label, they
must therefore be close to one another)

In the literature, there are multiple instances of CLIP being used to de-
rive semantic meaning from images for a wide array of applications, such as
scene understanding, semantic segmentation, text-to-image generation, and
even visual commonsense reasoning. [18, 19, 20, 21, 22]

However, it is not clear how well these results will transfer to the data
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Figure 4.4: Visual overview of CLIP approach (from [15])

Figure 4.5: Clip robustness vs (former) sota models on datasets designed around
the shift in distribution. (from [15])

captured by the robot, since the data distribution, i.e. the type of images
present in the CLIP training dataset, differs from the image data captured
by the camera used. CLIP was trained on images salvaged from the internet,
those are mostly hand-captured photographs and the objects from the cor-
responding descriptions are usually at the center of the image composition.
The rigid position of the camera on the robot imposes an awkward view of
captured objects from an unusual angle (see 3.1.2), which is not likely to be
well represented in the CLIP training dataset.

This concern is alleviated by the fact that [15] observed remarkable ro-
bustness to data distribution shifts when using CLIP for classiĄcation tasks
(see 4.5). [23, 24] further cement these results and reveal that it is the careful
selection of training examples, not the size of the dataset, that contributes the
most towards the observed robustness. There are also different alternatives
to CLIP [26, 27], and an open source implementation [25], which are worth
considering in future work.
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4.3.2 Sensing

Capturing and synchronizing sensor data is already implemented in ROS, see
3.2.1. The Robot localization node provides seamless access to pose data as
if it were sensor data, see 3.2.1. S is in our case comprised of RGB images
and depth maps from the front torso RGB-D camera images and pose of the
camera with respect to the robotŠs map coordinate frame. Thus

S = ¶0, 1 . . . 255♢480×640×3 × R
480×640 × R

3 ×H

(H denotes the set of all quaternions, they are commonly used in robotics
and computer vision to represent orientation/rotation in 3D space)

4.3.3 Adapting existing code

The codebase of the classiĄer described in 3.3 was refactored into encapsulated
modules such that the encapsulation of the code is in accord with the formal
encapsulation from 4.2. This allows for modularity in its components, most
importantly, the YOLACT classiĄer [28, 29], which since its release has
been outperformed in both speed and accuracy simultaneously [30, 31, ?].
Whether the current state-of-the-art approaches exhibit the same properties
when it comes to the distribution of classiĄcation conĄdence for known and
unknown classes as observed in [1] remains to be explored in future work, as
YOLACT[28, 29] has proved to be sufficiently performant for the purposes of
our work.

4.3.4 Observing

All logic from the aforementioned metaclassiĄer regarding its underlying
model inference and the processing of its outputs was compartmentalized
into two encapsulated modules. One for processing the image data with 2D
models and one for using the spatial data from the cameraŠs depth map and
pose data. O is therefore made up of the union of all possible outputs of
these two modules. (Some outputs of the 2D module may be omitted as they
are used only by the second module) The output of these two modules is as
follows:

2D

. (mi)n
i=1 : m ∈ ¶0, 1♢480×640 Segmentation pixelmaps of detected instances

of objects

. (li)n
i=1 : l ∈ L Class labels of detected instances of objects

. (si)n
i=1 : s ∈ R ConĄdence scores of detected classiĄcations

. (xi)n
i=1 where
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. (ei)n
i=1 : e ∈ R

k Vector space embeddings of the image cropped to the
bounding box of the detections. These are used to store the semantic
information about the surrounding world

Where n is the number of detected instances of objects, k is the dimension of
the embedding space of the embedding model used and L is the set of labels
of classes known to the instance segmentation model.

3D

. (pi)n
i=1 : p ∈ ¶X : ♣X♣ < ∞, X ⊂ R

3♢ back-projected point clouds of
detected pixel masks, as described in 4.1.2

. (ci)n
i=1 : c ∈ R

3 Centroids of back-projected point clouds

Where n is the number of detected instances of objects

4.3.5 Scene reperesentation

Just like in the previous section, all logic from 3.3 regarding the aggregation
of individual observations of objects in 3D was separated into an encapsu-
lated module, the 3D positions of objects and their observed data are what
was chosen as our scene representation R. While according to the formal
description of the pipeline, the process of obtaining individual instances of
objects and their descriptions (classiĄcation labels in this case) from the scene
representation should be encapsulated in its own module, it has in this case
proven to be more practical to include it in the same module as the used
scene representation is by design composed of object instances.

4.3.6 Memory

Memory is a crucial component of our system, it acts as a repository for
two distinct types of information: the semantics of detected objects and the
descriptions (labels) provided by the oracle. This section elaborates on the
structure and functionality of the memory component, detailing the database
technologies employed and their integration into the overall system.

Vector databases

As the name implies, vector databases are designed around storing vectors,
usually vector space embeddings of data, this allows for querying the database
based on semantic similarity to the queried data. Vector databases have
seen a surge in popularity with the rise of artiĄcial intelligence and large
language models, serving as a memory for storing long-term contexts, usually
in the form of embeddings of documents or text. They are also being used in
image-based multimodal applications, for example for relevant image retrieval
and image search tasks. These are very similar to our application.
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SC(AB) =
A ·B

∥A∥2∥B∥2
cos θ

Figure 4.6: The cosine similarity of vectors A and B. θ is the angle between A

and B

ChromaDb

ChromaDb [33] was chosen as a back end for storing the semantics of de-
tected objects, it is a lightweight open-source vector database. Chroma was
chosen because it offers native support for multimodal embeddings and for
its developer-friendly design philosophy. For the purposes of our application,
it stores the image embeddings e and metadata containing the classiĄcation
score and label assigned by the open-set meta-classiĄer(3.3) as well as a
boolean Ćag to signal whether the classiĄcation is made by the oracle, or
by the classiĄer, it is possible that the meta-classiĄer does not associate the
observation with an object and does not classify it, this can happen if there
arenŠt enough observations paired with it. In that case, the label is assigned
a sentinel value of "undecided". These entries are deleted every time a new
scene representation R is being constructed.

TinyDb

Complementing ChromaDb, TinyDb[34] is employed as a lightweight, JSON-
based database to store descriptions provided by the oracle. Its minimalistic
design makes it ideal for managing the less complex but equally crucial
data related to Oracle inputs. TinyDbŠs primary role is to store the labels
assigned to objects by the oracle, ensuring they are readily accessible for
future reference

4.3.7 Description

In our case, the description of an object is simply its classiĄcation label, as
the purpose of this work is to build upon an existing classiĄer, which uses just
that. The label is also paired with the associated cropped images in order to
provide sufficient information to the oracle. The implementation of the object
description function g is split into two steps (both of these implemented in
the scene representation module as explained in 4.3.5):

ClassiĄcation from scene representation

This process is a direct application of the open-set classiĄcation method
described in 3.3
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ClassiĄcation from memory

If an unknown object is detected, the memory is searched for similar objects
that have either been classiĄed as a known class or assigned a label by the
oracle.

The search is done by querying the vector database for k(is a parameter)
nearest neighbors (determined by the cosine similarity α of image embed-
dings). The vector, which is used to query the database is obtained by taking
the mean of the observation embeddings e that were associated with the object.

This is justiĄed by empirical results of methods [21, 22] which fused CLIP
embeddings of images taken from different perspectives by taking the mean
with good results, indicating that the semantic meaning of these embeddings
is well preserved by taking their mean.

After that, a score is calculated for each of the neighbors, given by max(α−λ,0)
α∗−λ

where λ ∈ R is a parameter, α is the cosine similarity of the neighbor and α∗

is the cosine similarity of the nearest neighbor.

Finally, a meta-score is computed, and a classiĄcation is made, using the con-
Ądence thresholding method (maxsum) from 3.3. The approach of classifying
an unknown object by looking at the closest matches from a set of known
objects is well-known in the domain of machine learning, itŠs referred to as a
k-nearest-neighbors (knn) classiĄer.

There is a similar approach employing a knn classiĄer on top of CLIP embed-
dings explored in the literature [35] it maintained competitive performance
within the domain of classiĄers capable of incremental learning. While this
approach makes its classiĄcation decision based on the majority vote of its
neighborŠs classiĄcations, our approach extends upon it by accounting for
the difference in similarity with different neighbors and extends the clas-
siĄer itself from a closed set to an open-set by employing the methods of
meta-classiĄcation as explored in [1].

4.3.8 Oracle

The ŠOracleŠ in our system is conceptualized as the primary source of ground
truth, providing labels for objects belonging to unknown classes. We explored
two avenues for this role: direct user input and we also conducted preliminary
exploration into the use of a multimodal large language model (MMLLM) as
an automated alternative. The process of applying the knowledge obtained
from the oracle, i.e. implementing l is as simple as inserting the right label
into the appropriate vector database entries metadata.
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User as oracle

While some software for managing user interaction with ARI has been de-
veloped, [36] provides a back end for the process of approaching people and
starting an interaction, on top of which various user interactions may be
implemented, it is not well-documented, nor accessible.

We have for those reasons chosen to only provide an API for interfacing
with the pipeline that could be simply implemented into an application for
interacting with people, which we leave as a subject for future work. Altho the
best interface for real-life applications is to ask users directly via face-to-face,
speech-to-speech interactions with the ARI robot. It is not important for the
purposes of this work, as it does not provide any functional beneĄt for the
task of learning new objects.

Interaction API

The API provides functions for fetching the appropriate data, i.e. images
and labels objects of unknown classes or uncertain classiĄcation, and for
saving OracleŠs labels back to memory. We have, for the purposes of our
work implemented a simple interface for displaying appropriate images and
querying for labels on top of it.

MMLLM as oracle?

In considering alternative approaches for the oracle component in the system,
the potential use of a multimodal large language model (MMLLM) emerges as
an intriguing substitute for direct user input. This theoretical consideration
is driven by the extensive dataset exposure and sophisticated capabilities
inherent in MMLLMs, which could potentially provide a broader and more
nuanced knowledge base compared to an average user.

Can LLMs adapt to known label sets?

In future research, itŠs essential to explore whether Large Language Models
(LLMs) can adapt to the speciĄc linguistic domain of known labels within our
system. This adaptability is crucial for providing contextually relevant labels
and for aligning the LLMŠs outputs with the systemŠs evolving knowledge
base. Such an investigation would involve assessing the LLMŠs performance
across various contexts and its ability to generate speciĄc labels, ultimately
determining if LLMs can serve as automated, context-aware oracles within
dynamic environments. This area of research promises to signiĄcantly enhance
the systemŠs adaptability and responsiveness to new information.

The uncertainty of obtaining unknown labels

As [1] acknowledged the open set recognition literature [?, 48] recognizes
classes in terms of associated labels. This in our case poses a challenge, since it
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Figure 4.7: Visual summary of the pipelineŠs implementation and its data Ćow

implicitly posits that each detected object of the unknown class is associated
with exactly one class label. However, in practice, it is not guaranteed that
two different instances of an object of a certain class will be assigned the
same label by the oracle, it is not even guaranteed that the oracle will provide
the same label twice given two separate queries.

One way to approach this issue would be to expand the capabilities of
our from-memory classiĄer to support multi-label classiĄcation, this would
however introduce a wide range of nuanced issues, such as the effect of the
number of labels on the decision of whether a meta-classiĄcation should be
known or unknown, what even is an unknown class when multiple labels are
considered, and dealing with label hierarchies, which would require compli-
cated solutions, especially since labels are introduced incrementally.

For those reasons, we have opted for a simpler approach, which relies on
keeping all labels assigned to objects by the oracle stored in memory and from
these selecting the most relevant one based on the text-to-image embedding
similarity. This approach introduces an issue regarding synonymous labels,
that is, two instances of objects of the same class may be assigned different
synonymous labels (i.e. cup and mug) and would thus be seen as objects of
different classes. This would negatively affect the Ąnal classiĄcation results.
This issue could be solved by clustering objects from memory based on image
and/or label similarity, introducing another interaction with the oracle, which
ensures that the clustered objects are in fact in the same class, and Ąnally
selecting one class label for each cluster. Since this is just a theoretical edge
case, we leave addressing it as a subject for further work.

4.3.9 Possible scene representation alternatives

For future work, it may be interesting to consider different scene representa-
tions R, that provide more complete information about the surrounding world.
We have conducted some preliminary exploration of this possibility with dense
point cloud reconstructions with corresponding semantic language-aligned
embeddings per each point. They will be referred to as embedded point clouds.
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Other methods worth considering include other geometric data structures
commonly used in computer vision, such as voxel grids or mesh grids, these
would, much like point clouds allow for a more Ąne-grained spatial description
of the detected objects and reasoning about its 3D geometry.

There are also relatively new radiance Ąeld-based methods for represent-
ing 3D scenes [37, 38], that are capable of capturing visual information in
unprecedented detail. Their capability has recently been extended to capture
semantic information as well [22, 39, 40]. Such methods could thus provide
a powerful backbone for understanding the world, however, efficiently using
the information stored in these world models, without converting them to
more classical ones such as point clouds or mesh grids, is still an active area
of research.

4.4 Visualization

To demonstrate, observe, and understand the workings of a system, it is
beneĄcial to have a way of viewing the exchanged and accumulated data in a
human-interpretable format. For this purpose, a real-time visualization utility,
which provides an intuitive and interactive way to explore the observed data
O, the scene representation R, and memory M , was developed using the RViz
utility.

4.4.1 Rviz

Rviz, short for ROS visualization, is a utility distributed along most ROS
distributions. ItŠs a powerful tool used to visualize the data from most of the
standard ROS messages. It also provides a library for building basic interactive
robotics applications and visualization software, where the workĆow can be
controlled by interacting with the displayed visualization elements.

4.4.2 Visualization server

The ROS visualization library allows for displaying various types of geometries
and an interface to interact with them, either by clicking or dragging them
with the mouse cursor, or via a pop-up context menu.

To provide interactive visualization capabilities to our application, we im-
plemented a visualization server, which communicates with a running RViz
instance over the ROS infrastructure. This server runs as a component of the
classiĄer ROS node and is provided access to its relevant internal data. This
server manages the visualization and interaction with data from R and M

via an interface described in the next section.

A separate non-interactive visualization server was implemented to broadcast
in visualizable ROS messages the observation data from O, as well as relevant
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Figure 4.8: Visualization of detected objects and depth cloud images processed
by the detector

Figure 4.9: Visualization of points associated with an object cluster

sensor data from S, namely the RGB-D depth image, detection point clouds,
and detection labels with scores.

Note that the aforementioned broadcast of RGB-D via the implemented
server is only needed when using a rosbag recording, as only compressed cam-
era data, which is incompatible with RViz is available there. The serialization
of the RGB-D data into a point cloud message, which was our approach
to work around the issue presents a major performance bottleneck due to
inefficiencies in rospy, a ROS programming library for Python.

4.4.3 Interface

Each object detection is represented geometrically by a sphere (4.8). Clicking
on this sphere brings up a context menu that allows for the display of
camera positions from which it was observed4.10, plotting relevant data and
visualizing the back-projected mask points (4.9).
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Figure 4.10: Visualization of detections, their respective camera poses, and
centroids. Clicking on the individual detections opens a context menu that allows
for the plotting of data relevant to the detection.

29



30



Chapter 5

Experiments

Carrying out a full-scale qualitative evaluation in the real world requires a lot
of resources, so weŠll have to make do with a few proof-of-concept experiments.

5.1 Initial classiĄer experiments

This section describes the initial evaluation of 3.3 on ARI that was done in
collaboration with Rakshith Madhavan (see acknowledgments). This section
is a paraphrase of the Deliverable D2.6 report for the SPRING research
project

5.1.1 Procedure

The experiment went like so:

.Objects of varying sizes were placed around the Ćoor in a small radius
around a center point. See Ąg 5.3

.ARI navigated autonomously in a trajectory of concentric circles, looking
toward the center, of multiple radii around the objects. See Ąg 5.1

The circular trajectory ensures that ARI captures the objects from all orien-
tations, and multiple radii make ARI view the objects from varying distances.
ARI moves to points along the circle, facing the center of the circle (where
the objects are) at speciĄed intervals.

Recorded topics

The following topics were recorded in rosbags:

. Robot pose in the map: /robot_pose

.Tf: /tf and /tf_static

.Torso front camera image: /torso_front_camera/aligned_depth_to_color/image_raw

.Torso front camera parameters: /torso_front_camera/color/camera_info
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5.1.2 Results

Overall, three sets of data were recorded (5.5), each observed in an interactive
data visualization interface (example in Ągure 5.3) and evaluated, due to the
small scale of the test, manually.

Figure 5.2: The three observed data recordings

Used metrics for measuring the performance of the model consisted of recall
((??)) and precision ((??)) at both differentiating unknown from known and
detecting that an object is present. As every known class was detected and
classiĄed correctly, no metric was required for known class classiĄcation.

Precision =
True Positives

True Positives + False Positives
(5.1)

Recall =
True Positives

True Positives + False Negatives
(5.2)

Results are presented in Ągure 5.4.

Probable cause of failure cases in object detection is the modelŠs (3.3)
representation of objects as spheres of constant radius, which as a consequence
may result in one object having multiple clusters representing it (this is treated
as false positive detection), or, having YOLACT detections of another object
clustered to the cluster that represents it. The Ąrst case was especially notable
in Data 2 as it contained an open umbrella, which spans a relatively large area,
the second case was rare enough to not cause signiĄcant interference in most
classiĄcation decisions, however, there are two cases, where an object was not
detected as its YOLACT detections were clustered to clusters representing
other objects. Besides the addressable errors, the results have shown that the
detector is somewhat applicable for real-world experimental applications.
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Figure 5.4: Results of the experiment. Above is the confusion matrix for the
Known vs Unknown classiĄcation. Below are the precision and recall scores for
object detection (not classiĄcation) and recognition of Unknown over Known
(Unknown is regarded as a positive).

33



5. Experiments .....................................

5.2 Method application experiments

5.2.1 Data collection

Figure 5.5: The testing environment

The approach to collecting data was similar to that of the initial experiment.
Objects were placed on the ground and ARI navigated around them while
observing them, however, having learned from previous mistakes, the objects
were arranged with more spatial separation in a straight line instead of a
circle, this however, as will be later pointed out again, introduced a drawback,
as due to ARIŠs limited maneuverability fewer views of tested objects were
captured. Due to spatial constraints, the data was recorded 3-4 objects at a
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time

Used objects

A data on 29 objects, 25 of which unknown, of 14 classes, 10 of which unknown,
was recorded.

. 3 different candelabrums.

. 5 different structures constructed from colored wooden blocks.

. 5 pairs of different glasses

. 2 pairs of different chess boards, including pieces

. 2 different calculators

. 2 different Ągurines of a tapir

. 3 different hats

. 4 more unknown objects each of a different class and 4 known objects of
different classes. These were included to increase the number of classes
and increase the difficulty of the learning task.

[Candelabrum1] [Candelabrum3]

[blocks]

[glasses2] [glasses3] [tapir1]

[tapir2] [hat1] [hat2]

Figure 5.6: Some of the used objects
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5.2.2 Method

All relevant data from the individual recordings resulting in scene representa-
tions was accumulated into one merged representation (disregarding spatial
information) and evaluated together.

5.2.3 Yolact vs zero-shot CLIP

A possibility for relying on CLIPŠs representational power also for the initial
open-set classiĄcation decision was also explored. For this purpose, the
softmax distribution over the cosine similarity to labels known to yolact
was compared with yolactŠs softmax distribution, over multiple views of
aforementioned objects, to see if similar regulariaties emerge.

Figure 5.7: Chaotic distribution on objects of unknown class seems like a
desirable behaviour, however, the distribution is equally as chaotic on objects of
known classes
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............................ 5.2. Method application experiments

Figure 5.8: Spike on mouse label, likely due to ambiguity of the label resulting
in correlation with the animal.

Figure 5.9: No increase around the known class observed over the usual Ćuctua-
tions.

As can be seen, CLIPŠs softmax distribution is much more entropic than
YolactŠs, even on known classes (5.9), and does not appear usable. Studying
these distributions in greater detail, or evaluating whether it is due to the
relatively low resolution of detected cut-outs thatŠs causing a misalignment
between language and image latent space is left for future work.

5.2.4 Detection of unknown objects

We have conducted the same evaluation of the detectorŠs performance as dur-
ing the initial experiments, this time free of errors caused by the environment
being incompatible with the detectorŠs scene representation. However, overall
5 objects were not detected since there werenŠt as many viewing perspectives
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of the observed objects as before and Yolact simply didnŠt make enough
detections for the meta-classiĄer to make a valid classiĄcation decision.

Figure 5.10: Confusion matrix of recognizing unknown from known. One
known object was misclassiĄed as unknown, but the remaining remains correctly
classiĄed. Thus same evaluation metrics as in the previous experiments can be
employed.

5.2.5 Learning of unknown objects

The data from the unclassiĄed/undetected object clusters (candelabrum2 and
3, charger, glasses5, and blocks2) was still used as if it were a detected object
for the purposes of this section.

Inspecting the mean of embeddings

Figure 5.11: Heat map of pairwise cosine similarities between the mean embed-
dings of each object cluster.

The pairwise cosine similarity between the mean embeddings of observed
objects embeddings As can be seen in 5.14 objects of the same class bear
the closest similarity. One exception is the candelabrums class since two of
the three objects in that class were among the non-detected objects, whose
clusters did not accumulate enough appropriate data. Also, many detections
of the detected candelabrum were not of the whole object, but of parts, which
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when cropped, bear very little similarity to the original object, thus polluting
its mean embedding. The surprising result however, is the dissimilarity of
hat1 to the other hats, since all hats had enough quality detections, and while
it is a different type of hat made of different material, one would still expect
that to have minimal impact on the general semantics of the concept of a hat.
An intuitive observation however is that hats are similar to glasses and that
glasses are similar to a blindfold(mask) since all of them appear in similar
contexts (are worn on a head).

Figure 5.12: The same heat map as 5.14, except with normalized columns

Another interesting observation is that while the cosine similarity is usually
highest amongst the groups of objects of the same class, the actual value of
the cosine similarity varies signiĄcantly between different classes, i.e. tapir1
is of all the objects closest to tapir2, however, a banana is just as close to a
candelabrum, even when it itself would be much closer to another banana.
This observation is what motivated our proposed neighbor scoring function,
which scales the cosine similarity by the closest neighbor.

Evaluating classiĄcation from learned memory

In this experiment, every object but the evaluated one was annotated with
ground truth labels and saved to memory. The evaluated object was then
assumed to be detected as unknown in the Ąrst stage of its classiĄcation
and classiĄed by the second memory-based stage, if it was among the 8
objects that were the only ones in their class, then the correct classiĄcation
is unknown. If there are other representatives of the evaluated objectŠs class,
then that class is the correct classiĄcation.
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Figure 5.13: The initial results of the experiment. Candelabrum and Hat failed
to learn properly, which was foreshadowed in the previous section. Overall 9
classiĄcation errors were made, resulting in a classiĄcation accuracy of 0.68

The initial results (??) showed over-conĄdent detections (mat and chair),
upon further inspection it was revealed that this was, in fact, the result
of all neighbors but one being too far from those objects, the parameter λ

implicitly deĄnes a threshold of a distance a neighbor needs to be within to be
considered relevant if he crosses that distance, his score goes to zero and he
is no longer considered in the classiĄcation process. This result necessitates
the introduction of another parameter, which controls the minimal number
of valid neighbors for a classiĄcation to be made, otherwise, the classiĄcation
will remain as "unknown".

Figure 5.14: The results after applying a threshold for minimal neighbors. Also,
candelabrum was removed, since it was clearly not well represented. Notice the
change in the classiĄcation of calc2, this is due to calc2 having few high-resolution
detections. Most of calc2Šs detections were blurred and captured from a distance.
Overall 6 classiĄcation errors were made, resulting in a classiĄcation accuracy of
0.77
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That being said, systematically searching for the optimal set of parameters
serves little purpose given the size of the experimental dataset, as it would
only overĄt the scarce amount of data and is therefore left as a subject for
future work. One approach worth considering in this endeavor would be
the use of dynamically determined parameters based on the current size of
memory and the uncertainty of an open-set classiĄcation as some classes will
be inevitably more represented in memory than others.
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[b]0.35

[b]0.36

Figure 5.1: Circular trajectory around objects with goal poses along the circle
looking at the objects. This ensures that ARI captures the objects at different
angles, and viewpoints
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............................ 5.2. Method application experiments

Figure 5.3: The interface used for evaluation. The top left contains an interactive
3D visualization of the camera and cluster positions. Below is a visualization of
detections in a speciĄc cluster from Figure 1. The top right contains an image
with a speciĄc detection bounding box. Below is the YOLACT softmax score
for that detection.

43



44



Chapter 6

Closing chapter

6.1 Conclusion

This thesis represents an initial foray into the integration of machine learning,
computer vision, and natural language processing within the ARI humanoid
robot, particularly focusing on the challenge of learning and recognizing
unknown objects. Through the development of a 3D object detection and
classiĄcation pipeline, the project sought to enhance ARIŠs ability to interact
with its environment by identifying objects not previously encountered.

Key to this endeavor was the application of open-set recognition techniques,
allowing the robot to categorize objects outside its pre-deĄned dataset. This
approach showed potential in expanding ARIŠs understanding of novel objects,
though the results also highlighted the complexities inherent in real-world
applications. Incremental learning methodologies were explored to enable
ARI to continually update its knowledge base, an essential step towards
adaptive learning in robotic systems.

Experiments conducted provided preliminary insights into the systemŠs
performance, revealing both successes in controlled settings and areas for
improvement toward more dynamic environments.

Looking ahead, there are several avenues for further exploration and de-
velopment. Improving the accuracy and robustness of the object detection
system under varying conditions remains a key challenge. Integrating more
nuanced NLP models could potentially enhance ARIŠs interactive and com-
municative abilities. In summary, this thesis is a step towards understanding
how robots like ARI can better learn and adapt in complex environments.
While the work conducted is preliminary, especially given the constraints of
an undergraduate project, it contributes to the broader dialogue on the future
of interactive and adaptive robotics, setting the stage for further research in
this exciting Ąeld.
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