
F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Text Embeddings for
Recommender Systems

Tomáš Černý

January 2024
Study program: Open Informatics
Specialization: Artificial Intelligence and Computer Science
Supervisor: Ing. Jan Drchal, Ph.D.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498948 Personal ID number: Černý Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Text Embeddings for Recommender Systems

Bachelor’s thesis title in Czech:

Textové reprezentace pro doporučovací systémy

Guidelines:

The task is to experiment with various semantic text embeddings and their applicability to recommender systems:
1) Research state-of-the-art recommender systems and methods of text embedding extraction.
2) Choose an appropriate recommender system approach (such as EASE or ELSA) and several modern approaches to
extract text embeddings (most likely Transformer-based contextual embeddings).
3) Find public datasets such as CiteULike, Epinions, or Netflix Prize (augmented by movie descriptions).
4) Research and design evaluation methodology.
5) Perform experiments measuring contribution of the embeddings to the quality of the recommendation.

Bibliography / sources:

[1] Ning, Xia, and George Karypis. "Slim: Sparse linear methods for top-n recommender systems." 2011 IEEE 11th
international conference on data mining. IEEE, 2011.
[2] Vančura, Vojtěch, et al. "Scalable Linear Shallow Autoencoder for Collaborative Filtering." Proceedings of the 16th
ACM Conference on Recommender Systems. 2022.
[3] Ghasemi, Negin, and Saeedeh Momtazi. "Neural text similarity of user reviews for improving collaborative filtering
recommender systems." Electronic Commerce Research and Applications 45 (2021): 101019.
[4] Guo, Weiwei, et al. "Deep natural language processing for search and recommender systems." Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Drchal, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 09.01.2024 Date of bachelor’s thesis assignment: 14.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jan Drchal, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I’d like to thank my family for support
and friends for their company and show-
ing me what not to do.

Also, I’d like to thank my supervisor
for his guiding hand, advice and calm
demeanor.

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague, on 9.1.2024, Tomáš Černý:

.......................

v

Abstrakt / Abstract

V této práci zkoumáme způsoby, jak
vylepšit existující doporučovací systémy
pomocí textových embeddingů položek
pro Top-N doporučování pomocí
Sentence-BERT modelů.

Vyhodnocujeme zvolené metody
vůči state-of-the-art baseline metodám
na datasetu MovieLens 100k, který
rozdělujeme na trénovací a testovací
množinu podle času interakce. Pro
ladění hyperparametrů využíváme
vnořenou validaci.

Zjistili jsme, že jedna metoda s
textovými embeddingy lehce zlepšuje
kvalitu doporučení podle metrik na
přítomnost položek (Hirate, Precision,
Recall) a pořadí položek (NDCG) na
zvoleném datasetu pro menší počet
doporučovaných položek ale ne pro
větší, kde je výkon srovnatelný.
Klíčová slova: doporučovací systémy,
Top-N doporučování, textové
embeddingy, Sentence-BERT, SBERT
Překlad titulu: Textové reprezentace pro
doporučovací systémy

In this thesis, we explore ways to en-
hance existing recommender systems
with items’ Sentence-BERT textual
embeddings for the Top-N recommen-
dation task.

We evaluate the chosen methods
against state-of-the-art baselines on the
MovieLens 100k dataset split into test
and train sets by interaction timestamp
while using nested validation to tune
hyperparameters.

We find that textual embeddings
used in one of the chosen methods
improve recommendation quality very
slightly as measured by both item-
presence (Hitrate, Precision, Recall)
and item-ranking metrics (NDCG) on
the chosen dataset for shorter recom-
mendation lists but not for longer where
performance is comparable.
Keywords: recommender systems, Top-
N recommendation, text embeddings,
Sentence-BERT, SBERT

vi

Contents /

1 Introduction 1

2 Recommendation 3
2.1 Recommendation Tasks 3
2.2 Content-Based & Collabo-

rative Filtering 3
2.3 User-Item Matrix 3
2.4 Explicit & Implicit Feedback . . 3
2.5 Types of Methods 4
2.6 Used Methods 4

2.6.1 Top-Pop 4
2.6.2 ItemKNN 4
2.6.3 UserKNN 5
2.6.4 EASE𝑅 6

3 Textual Embeddings 7
3.1 Word-level 7
3.2 Sentence-level 7
3.3 Beyond Sentences 8

4 Marrying Recommenda-
tion with Textual Embeddings 9

4.1 Approaches Without Em-
beddings 9

4.2 Why Embeddings? 9
4.3 Using Textual Embeddings

in Recommenders 10
4.3.1 Content-based ItemKNN . 10
4.3.2 Hybrid ItemKNN 10
4.3.3 EASE𝑅 with textual

embeddings 10
4.3.4 Failed Experiments 10

5 Evaluation Methodology 11
5.1 Reliability of Results 11

5.1.1 Simplicity over Complexity 11
5.2 Offline vs Online 11
5.3 Defining Offline Metrics 11

5.3.1 Item Presence Metrics . . . 12
5.3.2 Ranking Metrics 12
5.3.3 Rating Error Metrics . . . 12

5.4 Benchmarking Recommen-
dation by DaisyRec 13

6 Experiments 14
6.1 Setup 14
6.2 Dataset Details 15
6.3 Implementations 16
6.4 Tuning Baselines Without

Textual Embeddings 16

6.5 Tuning Methods With Tex-
tual Embeddings 16

6.5.1 Choosing an Embed-
ding Model for ml-100k . . 17

6.6 Results 19
7 Conclusion 21

References 22

vii

Tables / Figures

5.1 Sets of recommended and
relevant items. 12

6.1 Dataset summary. 15
6.2 ml-100K text field summary. . . 15
6.3 Nested evaluation of em-

bedding models in Content-
based ItemKNN on ml-100k
dataset. 17

6.4 Recommender hyperparam-
eters for final evaluation on
ml-100k. 19

6.5 Test set evaluation results. 20

1.1 Hyper-factors within the
whole recommendation
evaluation chain.1

1.2 Hyper-factors within the
whole recommendation
evaluation chain.2

3.1 BERT architecture with clas-
sification objective function.8

3.2 BERT architecture at infer-
ence. .8

6.1 Time-aware Split-By-Ratio
(TSBR) of user interactions . . . 14

6.2 Nested evaluation of EASE
on ml-100k. 16

6.3 Nested evaluation of
ItemKNN and UserKNN
on ml-100k. 17

6.4 Nested evaluation of Hybrid
ItemKNN on ml-100k for two
embedding models. 18

6.5 Nested evaluation of Hybrid
ItemKNN on ml-100k for all
embedding models. 18

6.6 Nested evaluation of Hybrid
EASE on ml-100k. 19

viii

Chapter 1
Introduction

The amount of content and products available at users’ fingertips is growing rapidly.
Helping users find what they are looking for or might be interested in is crucial for their
satisfaction and goals of the business. This is what recommender systems are for.

These recommender systems can some-
times be so good, users spend more time
consuming content than they would like to.
Examples of these platforms are YouTube,
Instagram and TikTok which have effec-
tively unlimited amount of content for a
single user to see and rely heavily on their
recommender system to increase time spent
on the platform which is probably their
main KPI (Key Performance Indicator).

If we take YouTube as an example, they
are able to utilize a variety of information
including user’s geographic location, age,
gender, past video watches, current search
query and similar users’ information to
maximize user retention [1]. An example
of their previosly used UI on a mobile app
can be seen in 1.1.

Due to the value recommender systems
can bring to a business, a lot of research is
most likely kept behind closed doors. Mean-
while, academic research can suffer from low
reproducibility and reliability of results as
demonstrated by [2]. One of the factors is
the plethora of choices when designing the
evaluation procedure of a recommender sys-
tem for a particular dataset. This is sum-
marized in figure 1.2. We’ll therefore at-
tempt to devise a fair evaluation strategy
since we won’t have a real service or plat-
form to experiment on.

Figure 1.1. Recommendations displayed
on YouTube mobile app home. Image and

caption from [1].

Recent advances in NLP (Natural Language Processing) based on the transformer
architecture from [4] make it possible for computers to understand human language [5]
and reproduce it [6] far better than before. One of the downstream advances is encoding
not just words but text into high-quality fixed-sized vectors called embeddings which
have numerous applications like STS (semantic textual similarity) [7].

As we will see, using only textual embeddings to recommend yields rather poor
results, at least on the data we’ve tried. Utilizing collaborative information alone

1

1. Introduction .

Figure 1.2. Hyper-factors within the whole recommendation evaluation chain. Image and
caption from [3].

without any textual processing has much better performance. In this work, we at-
tempt to improve collaborative recommendation using textual embeddings of the recom-
mended items. The methods we have as baselines are Top-Pop, Collaborative ItemKNN,
UserKNN, and EASE𝑅. As extensions with textual embeddings we have Content-based
and Hybrid ItemKNN, and Hybrid EASE𝑅.

There are two main motivations for this work. First, understanding the basics of
recommendation might come in handy in the author’s entrepreneurial endeavors re-
gardless of whether a SaaS (Software as a Service) is used or a custom implementation
is chosen. This understanding might provide a notion of the how and why of a recom-
mendation service and how real world platforms’ recommendation operates, at least on
a superficial level. Second, although the author’s study program includes basics of ma-
chine learning and artifical intelligence, unfortunately, no NLP techniques were taught
in any of the mandatory subjects. Understanding and using textual embeddings and
the models producing those embeddings on a concrete task is a first step worth taking.

This work is structured as follows — first we introduce basic recommendation terms
and what kind of recommendation we’re going to perform in chapter 2, then we delve
into details regarding of state-of-the-art textual embedding models in chapter 3, next
we describe ways of “marrying” recommendation and textual embeddings in chapter
4. Then we describe our evaluation methodology and its rationale in chapter 5 and
in chapter 6, we report on our experimental setup and its results where we compare
baseline recommendations with appraoches from chapter 4. Lastly in chapter 7, we
conclude our results and discuss what might be worth exploring in the future.

2

Chapter 2
Recommendation

2.1 Recommendation Tasks
In this work, we’re going to focus solely on Top-N recommendation. In Top-N recom-
mendation, given a set of users 𝑈 which interact with items 𝐼, the task is to recommend
a list of 𝑁 items from 𝐼 to each user 𝑢 ∈ 𝑈.

There are other recommendation tasks such as content-aware recommendation where
we might utilize the current search query, user’s location or time of day, and cold-start
recommendation where the goal is to recommend items to new users or items with no
historical interactions.

We’re also going to focus on one type of item. For example, in e-commerce setting,
many types of items are offered for purchase such as books, electronics, apparel, etc.
We’ll focus on one type of item such as books.

2.2 Content-Based & Collaborative Filtering
In content-based filtering, we utilize user and item attributes to make recommendations
[8, p. 133].

For example, a movie streaming service might ask a user their favourite genres
and recommend movies in these genres preferring movies that match all of the user’s
favourite genres.

In collaborative filtering, we utilize interactions between users and items and thus
don’t require user or item specific information [8, p. 91].

This means we can avoid feature engineering and apply CF algorithms generally to
many domains without modification.

Approaches that combine CF and CBF are known as Hybrids [8, p. 133].

2.3 User-Item Matrix
We have a set of users 𝑈 that interact with items 𝐼 according to values in matrix
𝗫 ∈ ℝ|𝑈|×|𝐼|. To shorten notation, we’ll be using 𝑚 = |𝑈| and 𝑛 = |𝐼|. Each row
represents feedback of one user and each column represents feedback for one item.

2.4 Explicit & Implicit Feedback
In recommendation, we work with two kinds of feedbacks, explicit and implicit [8,
p. 143].

An example of explicit feedback is user’s star rating on a movie or product. In those
cases, we might call the user-item matrix 𝗫 “rating matrix”.

3

2. Recommendation .
Implicit feedback is a mere interaction with an item such as watching a movie or

purchasing a product. In those cases, we might call the user-item matrix 𝗫 “interaction
matrix”.

Implicit feedback is more commonly used in recommendation models even when the
original data has explicit feedback. This is done by mapping explicit feedback such as
star rating via a function 𝑓(𝑟) = { 1 if 𝑟 ≥ 4,

0 otherwise
. Note that 0 has both meanings of

“user hasn’t interacted with the item” and “user doesn’t like the item”.

2.5 Types of Methods
Two broad groups of methods are commonly used: (1) neighbourhood-based methods
and (2) model-based methods [9].

The first group includes methods such as ItemKNN [10] (see 2.6.2). ItemKNN is
sometimes referred to as a memory-based method along with popularity based Top-
Pop (see 2.6.1) like in [11].

The second group is where all the fuzz is. However, it’s further division into subgroups
isn’t clear cut and methods can have elements of more than one subgroup. In [12]
model-based methods includes latent factor models, autoencoders and deep-learning
methods.

Latent factor models learn a “hidden” representation of items and users such as
Matrix Factorization (MF) [13–15] and Factorization Machines (FM) [16].

Autoencoders include MultVAE [17], SLIM [9], EASE𝑅 [18] (see 2.6.4) and ELSA
[12]. However, the author of SLIM draws similarities between it and matrix factorization
models as SLIM learns an item-item weight matrix and uses the original interaction
matrix as user representations.

As for deep-learning methods, there is NeuMF [19], Neural Factorization Machines
(NFM) [20] and many others. The two mentioned share similarities with latent factor
models in that they learn embeddings.

2.6 Used Methods

2.6.1 Top-Pop

For each item, we have a counter. By summing the number of non-zero columns of the
user-item matrix from the training set, we obtain each item’s popularity. Every user
then gets the same recommended list (non-personalized) which we obtain by sorting
item popularities in descending order. Last we truncate to get the top 𝑁 [2].

2.6.2 ItemKNN

This simple algorithm is inspired by the classic K-Nearest Neighborhs (KNN) algorithm.
We need to define a similarity function sim(i, j) outputing a real number measuring
the similarity of items 𝑖 and 𝑗. [10] An example of a similarity function is the cosine
angle of column vectors from the user-item matrix 𝗫.

In short, for every item 𝑗, it finds 𝐾 most similar items according to sim(i, j) except
for 𝑠𝑖𝑚(𝑖, 𝑖) which it ignores by setting it to zero. When recommending, it sums scores
of all items a user has interacted with and recommends top 𝑁 items the user hasn’t
interacted with yet.

4

. 2.6 Used Methods

We’ll adapt the definitions from [10] to match our notation and pseudocode to match
the rest of this text. We also add comments regarding the purpose of certain operations
for clarity’s sake.

Algorithm 2.1. Build ItemKNN Model(interaction matrix 𝗫, number of neighbours 𝑘)

M = zeros(n, n)

for j in items:
for i in items:

if i == j:
continue

M[i, j] = sim(i, j)

for i in items:
if not is_item_among_k_largest(M[:, j], M[i, j], k):

zero-out items not in `k` nearest neighbours
M[i, j] = 0

return M

Output is a learned square matrix 𝗠 with one column for each item.

Algorithm 2.2. Apply ItemKNN Model(𝗠, vector of user’s interacted items 𝘂, 𝑁)

x = M @ U

for j in items:
if U[j] != 0:

zero-out items the user has already interacted with
x[j] = 0

for j in items:
if not is_among_N_largest(x, x[j], N):

zero-out items not in `N` most relevant items
x[j] = 0

return x

Output is a vector 𝘅 with a score for each item with exactly 𝑁 scores being non-zero.

2.6.3 UserKNN

Using other users for prediction was probably first seen in [21] which used Pearson
correlation of two users’ ratings to compute how they “agree” with each other. Now
it’s common to use cosine similarity of users to measure how much their tastes agree
like in [22] and implementation of [2].

Computation-wise, it’s very similar to ItemKNN 2.6.2. 𝐾 most similar users are
found based on their interactions or ratings via a similarity function. To predict, find
the 𝐾 most similar users and multiply their respective ratings or interactions by how
similar the user is, exclude already seen items and return the top 𝑁 items.

5

2. Recommendation .
2.6.4 EASE𝑅

EASE𝑅 stands for Embarassingly Shallow Auto-Encoder (when reversed) and it’s meant
for sparse data [18]. It learns an 𝑛×𝑛 square matrix 𝗕 by optimizing the following
convex objective function with 𝜆 as a regularization parameter that has to be tuned.

min
𝐵

‖𝗫 − 𝗫𝗕‖2
𝐹 + 𝜆‖𝗕‖2

𝐹

s.t. diag(𝗕) = 0
(1)

The condition on diagonals of 𝗕 ensures that an item isn’t used to predict itself and
so the model is forced to rely on other items. The author of EASE𝑅 used Lagrangian
multipliers to arrive at the following closed-form solution:

𝗣 = (𝗫𝑇𝗫 + 𝜆𝗜)−1 (2)

𝗕𝑖,𝑗 = {
0 if 𝑖 = 𝑗,

−𝗣𝑖𝑗
−𝗣𝑗𝑗

otherwise (3)

EASE𝑅 doesn’t use a non-negativity constraint on the learned weights so it can
capture dissimilarity. Otherwise it would be the same as SLIM which uses gradient
optimization as there is no closed-form solution [9].

One downside of EASE𝑅 is it’s memory requirements which grow with 𝒪(𝑛2) due to
dimensions of 𝗕 and 𝗫𝑇𝗫. In [12] they’ve drastically lowered the memory requirements
by learning a matrix 𝗔 of size 𝑛×𝑟 where 𝑟 is tunable. Matrix 𝗔𝗔𝑇 is then the equivalent
of 𝗕 from EASE𝑅.

However, we’ll be using EASE𝑅 as it doesn’t require gradient optimization and
ELSA’s performance gains over EASE𝑅 aren’t substantial.

6

Chapter 3
Textual Embeddings

A common and fairly universal technique for many tasks is to encode data that’s hard
for a computer to understand directly such as text and images to fixed-size vectors.
Once precomputed, they can be used without high computing power to power various
tasks such as semantic search and classification.

3.1 Word-level
In Word2Vec [23], the authors proposed two new models, Continuous Bag-of-Words
Model (CBOW) and Continuous Skip-gram Model for learning vector word representa-
tions. The former learns using a context window of words to predict the middle word
and the latter learns using a middle word to predict it’s surrounding context. Both can
be considered a single-layer neural networks. Due to their simplicity over feed-forward
and recurrent neural networks, they could train the models on a much larger data set
(at the time) while still achieving high quality vectors.

GloVe [24] used co-occurrence probabilities of words which [23] use did not. It trains
a matrix factorization model with bias terms which had outperformed other proposed
models while being able to learn fast.

3.2 Sentence-level
SIF [25] and Siamese-CBOW [26] produce sentence embeddings via weighted averages
of word embeddings and [27] averages learned n-gram embeddings to yield sentence
embeddings.

Language representation model BERT [5] trained on a bidirectional context achieved
state-of-the-art performance on various NLP tasks with the transformer architecture
from [4] with its attention mechanism. BERT is trained on the masked language mod-
eling (MLM) task where input is corrupted with 15% probability and the model is
tasked to predict the original text. Another training task used in BERT is the next
sentence prediction (NSP) task where the model is trained to predict whether two input
sentences are consecutive in some larger text.

It has been shown that pre-training a language model on a large dataset and further
finetuning and augmenting the model to a specific task yields better results than training
a model from scratch [28–31].

Using BERT with finetuning only is unsuitable for sentence-pair regression tasks such
as sentence similarity at scale due to high computational costs. A sentence-pair has to
be passed to BERT with a [SEP] token between them. This has to be done for every
sentence-pair which scales with 𝒪(𝑛2) [7].

Sentence-BERT (SBERT) [7] uses a siamese architecture finetuned on NLI data [32]
to train for sentence similarity. At inference time, output vector of the last pooling
layer is used as the sentence embedding. See figures 3.1 and 3.2. SBERT achieves

7

3. Textual Embeddings .
state-of-the-art performance on semantic textual similarity (STS) tasks outperforming
InferSent [33] and Universal Sentence Encoder [34].

BERT has downstream models such as DistilBERT [35] and RoBERTa [36]. There
are also models which borrowed some ideas from BERT such as MPNet [37]. Textual
embeddings can also be finetuned on a specific task such as semantic search or question
answering. Another dimension is whether the model is multilingual (explored in [38])
or not, its suitable similarity, size and therefore speed. These models are publicly
available via a Python package1. A few example models are all-mpnet-base-v2,
multi-qa-distilbert-cos-v1, and paraphrase-multilingual-mpnet-base-v2.

Figure 3.1. BERT architecture with clas-
sification objective function, e.g., for
fine-tuning on SNLI dataset. The two
BERT networks have tied weights (siamese
network structure). Image and caption

from [7].

Figure 3.2. BERT architecture at infer-
ence, for example, to compute similarity
scores. This architecture is also used with
the regression objective function Image

and caption from [7].

3.3 Beyond Sentences
SBERT models have input size limitation. The main factor is that transformers from [4]
have a quadratic time complexity with regards to input length. According to SBERT’s
documentation2, the default input size limit is 128 tokens although some of the models
can accept longer inputs when configured to do so. For longer inputs, only the prefix
tokens are considered. They mention that 512 tokens is around 300-400 words in En-
glish, so 128 tokens should be around 75-100 words. Since there is vast choice of models
and recommenders have hyperparameters to tune, we don’t play with the limit in this
work to not increase the search space further and rather focus on model selection.

1 https://sbert.net
2 https://sbert.net/examples/applications/computing-embeddings/readme.html#input-sequenc

e-length

8

https://sbert.net
https://sbert.net/examples/applications/computing-embeddings/readme.html#input-sequence-length
https://sbert.net/examples/applications/computing-embeddings/readme.html#input-sequence-length

Chapter 4
Marrying Recommendation with Textual
Embeddings

4.1 Approaches Without Embeddings

Attempts at using textual information in recommendation were made even before
Word2Vec [23]. In [39], the authors used multiple bags-of-words (title, cast, etc.) with a
naive Bayesian classifier to enhance collaborative filtering and called it content-boosted
collaborative filtering. A user vector would contain all the user’s ratings. A score from
the content-based predictor would serve as fallback making user vectors dense. Then,
a UserKNN neighbourhood-based approach with Pearson correlation as similarity be-
tween users was applied.

More recently, using user reviews to extract topics was explored in [40–41]. [42] used
attention-based CNNs. The input to their network is all of user’s reviews as the user
document and all of item’s reviews as the item document. In their approach, certain
words in reviews were informative as their learned model to pay higher attention to
them. [43] also used review texts and convolution but not any kind of attention and
performed worse than [42] on both Yelp and Amazon Music Instruments datasets in
terms of root mean square error (abbreviated as RMSE, see 5.3.3).

However, training these big networks is computationaly expensive and not all datasets
contain user reviews. [42] used multiple GPUs to train and optimize their neural net-
work.

In [44], they measured user similarity by maximum similarity of reviews of a pair of
users in the first module and in the second module, they used cosine similarity of users’
ratings. Output of these two modules was combined with equal weights to produce
rating prediction. In the review similarity module, they used seven methods of which
the best one was cosine similarity of LSTM-based textual embeddings. The other six
methods included TF-IDF and Word2Vec.

4.2 Why Embeddings?

One of the reasons recommendation techniques often use implicit feedback is that ex-
plicit feedback in the form of ratings and reviews is harder to come by in great quantities.

In many recommendation scenarios, we have textual (and visual) information about
the items, be it a movie’s title or a product’s description. As outlined in 3.2, there are
easily available high quality sentence-level embeddings. The only missing piece then is
the how of using them in recommendation.

9

4. Marrying Recommendation with Textual Embeddings .

4.3 Using Textual Embeddings in Recommenders

4.3.1 Content-based ItemKNN
The simplest way to recommend with textual embeddings is finding items similar to
those a user has already interacted with or rated positively using the embeddings.
We will refer to this as Content-based ItemKNN [45]. Instead of measuring item-item
similarities by their user interactions like in 2.6.2, we can use textual embeddings of item
title or description in the similarity function. The exact similarity function depends on
the used embedding model, some are suitable with dot product, some with euclidean
distance and some with cosine angle.

One obvious issue is that information about other users isn’t used at all as this is
a purely content-based method. Users might have problems discovering relevant items
that are “dissimilar enough” from their historical interests.

4.3.2 Hybrid ItemKNN
[2] described ItemKNN-CFCBF (Collaborative Filtering & Content-based Filtering)
where for each item 𝑖 we concatenate a vector of ratings/interactions and item features
with a weight — [𝗿𝑖, 𝑤 ⋅ 𝗳𝑖]. To avoid long abbreviations, we’ll refer to this method as
Hybrid ItemKNN. We’ll also use a weight 𝑤 = 1.

4.3.3 EASE𝑅 with textual embeddings
How can we add item features to EASE𝑅? Given item-specific features 𝗙𝐼 ∈ ℝ𝑛×𝑓𝑖 , we
can create an augmented matrix 𝗫′ like in Hybrid ItemKnn (4.3.2):

𝗫′ = [𝗫
𝗙𝑇

𝐼
] ∈ ℝ(𝑚+𝑓𝑖)×𝑛

If we expand EASE𝑅’s closed-form solution in equation (2) for 𝗣, we get

𝗫′𝑇𝗫′ = 𝗫𝑇𝗫 + 𝗙𝗜
𝑇𝑇𝗙𝗜

𝑇 = (𝗫𝑇𝗫 + 𝗙𝗜𝗙𝗜
𝑇) ∈ ℝ𝑛×𝑛

We’re essentially adding similarities of items onto item co-occurrence matrix 𝗫𝑇𝗫.

4.3.4 Failed Experiments
We’ve experimented with two-tower neural network architecture similar to [1] where one
of the inputs was the average of items’ textual embeddings that a user has interacted
with. However, we completely failed to make this work — our metrics (which we’ll see
in 5.3) were 0 even during training, binary cross-entropy jumped quite a lot even for
very low learning rates and multiple optimizers. Due to that we’ve decided to abandond
this approach.

10

Chapter 5
Evaluation Methodology

5.1 Reliability of Results
In recent years, neural recommendation approaches came under critique due to several
reasons. (1) They’ve compared to weak baselines, (2) they’ve compared to weak meth-
ods that had compared to weak baselines themselves, and (3) their results are difficult
to reproduce [2].

The neural approaches benchmarked in [2] includes Collaborative Varational Au-
toencoder (CVAE) [46] presented at KDD ’18, Neural Collaborative Filtering (NCF or
sometimes NeuMF) [19] presented at WWW ’17 and Spectral Collaborative Filtering
(SpectralCF) [47] presented at RecSys ’18.

5.1.1 Simplicity over Complexity

Authors of [2] demonstrated better performance than several neural approaches by
tuning relatively simple algorithms. This included ItemKNN (2.6.2), UserKNN (2.6.3),
SLIM (similar to EASE𝑅, 2.6.4) and trivial Top-Pop (2.6.1) which worked best for one
dataset better than relatively complicated neural approaches.

A conclusion that can be drawn from this is that simple algorithms can work very
well when tuned.

5.2 Offline vs Online

Online evaluation works by A/B testing where each user can be routed to a different
recommender and the better one is chosen using some metric such as Click Through
Rate (CTR). When evaluating offline, we measure how well a recommender does on a
specific dataset [48].

In online evaluation there are, of course, other metrics than CTR such as video watch
time and article reading time. These can be considered business KPIs (key performance
indicators) that a stakeholder might be intersted in.

There are many metrics for offline evaluation too. We’ll see some of them in 5.3. In
this work, we’ll be focusing solely on offline evaluation as it doesn’t require a real site
or service.

5.3 Defining Offline Metrics
Given a list of recommended items and a list of relevant items for a user, we can assign
items into 4 sets as seen in table 5.1.

Below we’ll be using abbreviations tp for true positive, fp for false positive, fn for
false negative and tn for false negative.

11

5. Evaluation Methodology .

relevant ¬relevant
recommended true positive false positive

¬recommended false negative true negative

Table 5.1. Sets of recommended and relevant items.

5.3.1 Item Presence Metrics
The definitions below are useable for a single user. To compute them for multiple users,
we would average them.

Hitrate is 1 if there is at least one relevant recommended item and 0 otherwise.
Hitrate = { 1 if |tp| > 1,

0 otherwise
.

Precision is the ratio of recommended items that are relevant. It’s value is computed
by Precision = |tp|

|tp|+|fp|
.

Recall is the ratio of relevant items that are recommended. It’s value is computed
by Recall = |tp|

|tp|+|fn|
.

5.3.2 Ranking Metrics
Now we’ll build a definition for Normalized Discounted Cumulative Gain (NDCG) [49]
piece by piece.

Cumulative Gain (abbreviated as CG) is computed by a prefix sum ∑𝑁
𝑖=1 𝐺𝑖. It has

the obvious disadvantage that every item, even those at the far end, contribute the
same as the first few items. It’s sometimes referenced to as Direct Cumulative Gain.

Discounted Cumulative Gain (abbreviated as DCG) is computed by
𝑁

∑
𝑖=1

𝐺𝑖
log2 𝑖 + 1

It improves over CG by discounting items that are farther down the list even though
they might have high relevance. However, this still doesn’t allow us to compare two
lists since we have no information about which items aren’t in the result list.

Idealized Discounted Cumulative Gain (abbreviated as iDCG) is the max possible
DCG. We can obtain it by sorting relevances of all items and keeping the first 𝑁.

Normalized Discounted Cumulative Gain (abbreviated as NDCG) is a ratio of DCG of
a result list and iDCG by computing DCG𝑁

iDCG𝑁
.

Although NDCG is able to work with different revelancy values, we’ll be using binary
values. Relevant items will have relevance equal to 1 and irrelavant items will have
relevance equal to 0. Irrelavant items includes those a user has already interacted with
(interactions are in the training set) and items a user has not interacted with in the
whole dataset.

5.3.3 Rating Error Metrics
In recommendation tasks predicting users’ ratings, we might want to know what’s the
average error, e.g. the average number of stars a recommender is off by from the real
rating.

Root Mean Square Error (abbreviated as RMSE) is computed by

√∑𝑇
𝑖=1(̂𝑟𝑖 − 𝑟𝑖)2

𝑇

12

. 5.4 Benchmarking Recommendation by DaisyRec

where 𝑇 is the number of ratings, 𝑟𝑖 is the 𝑖-th ground truth rating and ̂𝑟𝑖 is the 𝑖-th
predicted rating.

5.4 Benchmarking Recommendation by DaisyRec
According to [3], evaluation methodologies differ wildy in recommender system research.
A minority of 4% out of 141 the papers they’ve studied don’t provide important details
such as how they split datasets into train and test sets. 21% of papers don’t specify
data filtering methods (e.g. ignoring users with less than 5 interactions) and more than
50% don’t report parameter initialization methods (e.g. Normal distribution or Xavier
initialization).

In the fourth chapter “Benchmarking recommendation” of [3], the authors conclude
the following recommendations on fair, reproducible and reliable evalution:

1. Evaluate on at least one public dataset for reproducibility.
2. Report used filtering of users and items with few interactions as it affects performance

but helps with sparsity.
3. Prefer time-aware data splitting into train & test sets as random splitting approxi-

mates real recommendation scenarios better.
4. For hyperparmeter tuning, they claim a nested validation is mandatory. Bayesian

HyperOpt for intelligent search is recommended.
5. Choose representative baselines - they hint at using at least one memory-based

method, latent-factor model and deep-learning model.
6. Adopt at least one metric measuring whether an item is present in the top-N recom-

mendation list (e.g. Precision) and one measuring ranking positions of items (e.g.
NDCG).

7. Use the same objective function with different methods (e.g. cross-entropy loss, BPR
[14]) to measure each method’s contributions.

8. Consistently use the same parameter initializer and optimizer.
9. Use the same negative sampling approach. This can refer to negative sampling used

while training (e.g. using uniform sampling, popularity-based sampling) and negative
sampling used in evaluation. The claim in [3] is that 1000 negative samples during
evaluation is enough while speeding up the evaluation.

10. Use the same overfitting prevention strategies (e.g. early-stop).
11. Source code should be available. Conferences could make them required.

We’ll therefore specify our evaluation methodology and all of its aspects with great
detail. Note that some algorithms don’t require parameter initialization (e.g. EASE
with it’s closed form solution) and some don’t have a hyperparmeters (e.g. Top-Pop).

13

Chapter 6
Experiments

6.1 Setup
Here’s the overview of our choices regarding evaluation and our reasoning. It follows
the same numbering as in 5.4.

1. We evaluate on ml-100k [50], which is a public dataset1.
2. We filter out users with less than 5 interactions and items with no interactions.

Datasets are sometimes already prefiltered and our filtering is therefore a no op as is
the case for ml-100k.

3. We use Time-aware Split-By-Ratio (TSBR) as recommended by [3] as the data split-
ting method. This should approximate real-world scenarios better where we try to
predict the next item a user will interact with using past information. The other
recommended choice was Time-aware Leave-One-Out (TLOO). Both imply weak
generalization [18] where splits share users.

Figure 6.1. Time-aware Split-By-Ratio (TSBR) of user interactions

4. We use nested validation for hyperparmeter tuning using the same TSBR approach
with 90% of interactions in the nested train set (out of the 80% of the whole) and
10% in the nested validation set. Although the reasoning for nested validation in [3]
isn’t justified, it makes sense to do as we have more training data than if we would
have distinct train, validation and test splits.

5. We choose Top-Pop (see 2.6.1) and every algorithm we try to extend with textual
embeddings as baselines. We’re therefore missing a true latent-factor method and
any deep-learning method.

1 https://grouplens.org/datasets/movielens/100k

14

https://grouplens.org/datasets/movielens/100k

. 6.2 Dataset Details

6. We use precision and recall together to study the tradeoff between them for different
lengths of the recommendation list as well as hitrate for item presence. For measuring
ranking, we use NDCG. This follows the recommendation in [3] to use both item
presence and ranking metrics.

7. We don’t choose any objective function since the used algorithms don’t require any.
8. We don’t choose any parameter initializer nor optimizer since the used algorithms

don’t require any.
9. We don’t use any negative sampling and both train and evaluate on the whole dataset

or split.
10. We don’t use any overfitting prevention strategies beside what the algorithms already

provide e.g. via regularization.
11. Making the source code available is a requirement for this work.

6.2 Dataset Details

See table 6.1 for a summary of the used dataset and table 6.2 for text field descriptions.
It’s important to note that no movie has title longer than what any textual embedding
model is capable of handling. For movie plot this doesn’t hold true but only ≤ 1% of
movies have plot longer than the limit of around 75-100 English words.

The process of obtaining movie plots from IMDB was quite elaborate as links in the
dataset aren’t functional. Some movies have a slightly different title in the dataset and
on IMDB so the process was partly automatic and partly manual. For a minority of
movies, no plot was found and movie title with release year is used instead as fallback.

Sparsity of a dataset 𝑠 is calculated as

𝑠 = 1
|𝑈||𝐼|

∑
(𝑢,𝑖)∈𝑈×𝐼

𝛾𝑢,𝑖

𝛾𝑢,𝑖 = { 1 if 𝗫𝑢,𝑖 = 0,
0 otherwise

dataset time # users # items # interactions sparsity
ml-100k yes 943 1 682 100 000 93.70%
filtered ml-100k yes 942 1 447 55 375 95.94%

Table 6.1. Dataset summary. Filtering refers to ignoring users with less than 5 interactions
and items with no interactions after the first filtering step.

field source q{50,99,100}(# words) example
title (with year) dataset 4, 10, 16 Toy Story (1995)
plot IMDB, fallbacks to title 25, 69, 181 A cowboy doll is profoundly threatened...

Table 6.2. ml-100K text field summary. The third column refers in order to 50th percentile,
99th percentile and 100th percentile (max) of the number of words.

15

6. Experiments .

6.3 Implementations

For both UserKNN and ItemKNN, we used our implementations based on the respec-
tive sources although the original sources would use a different similarity metric. For
EASE𝑅, we used the implementation from [3] available at [11]2 which we modified to
suit our input and needs.

6.4 Tuning Baselines Without Textual Embeddings

All baselines were tuned using the same nested splits.
For EASE𝑅, we tried

𝜆 ∈ {0.01, 0.1, 1, 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,
1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500, 4000, 4500, 5000}

and chose 𝜆 = 250 which performed best. How NDCG@10 changed with 𝜆 is displayed
in figure 6.2.

Figure 6.2. Nested evaluation of EASE on ml-100k for different values of 𝜆. Values
𝜆 > 1000 are not displayed since the values are consistently lower and lower.

For collaborative ItemKNN and UserKNN, we tried 𝐾 ∈ {1, 2, . . . , 100} with dot and
cosine similarity. We chose 𝐾 = 14 with cosine similarity for ItemKNN and 𝐾 = 20
with cosine similarity for UserKNN. How NDCG@10 changed with 𝐾 and similarity is
displayed in figure 6.3.

6.5 Tuning Methods With Textual Embeddings

We’ll choose an embedding model from the SBERT family. The criterion will be again
NDCG@10 on nested train & validation splits.

2 https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/dev/daisy/model/EASERecommender.
py

16

https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/dev/daisy/model/EASERecommender.py
https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/dev/daisy/model/EASERecommender.py

. 6.5 Tuning Methods With Textual Embeddings

Figure 6.3. Nested evaluation of ItemKNN (left) and UserKNN (right) on ml-100k for
different values of 𝐾 and similarity.

field K best model similarity NDCG@10
title 5 all-mpnet-base-v2 cosine 0.0780

10 all-mpnet-base-v2 cosine 0.0735
15 multi-qa-mpnet-base-dot-v1 cosine 0.0745
20 multi-qa-mpnet-base-dot-v1 cosine 0.0758
25 all-mpnet-base-v2 cosine 0.0711
30 all-mpnet-base-v2 cosine 0.0693

plot 5 distiluse-base-multilingual-cased-v2 cosine 0.0340
10 smarco-bert-base-dot-v5 dot 0.0323
15 msmarco-distilbert-cos-v5 dot 0.0301
20 msmarco-bert-base-dot-v5 cosine 0.0298
25 msmarco-bert-base-dot-v5 cosine 0.0293
30 msmarco-bert-base-dot-v5 cosine 0.0282

Table 6.3. Nested evaluation of embedding models in Content-Based ItemKNN for each
field and 𝐾 ∈ {5, 10, 15, 20, 25, 30} on ml-100k dataset. Only best embedding model is

shown.

6.5.1 Choosing an Embedding Model for ml-100k

Initially, we tried to select an embedding model, field and similarity function for all
methods using performance of Content-based ItemKNN with that embedding model.

In table 6.3, we can observe that (1) using the title field is generally better than
using the plot field, (2) with increasing 𝐾, the performance doesn’t increase, (3) cosine
similarity is overall better than dot product, (4) there is also an unexpected result that
models finetuned with dot product sometimes perform better with cosine similarity
(field plot, 𝐾 ∈ {20, 25, 30}).

For evaluating Content-based ItemKNN, we’ll use multi-qa-mpnet-base-dot-v1
with title field in the final evaluation since it had the highest NDCG@10 for 𝐾 = 20.

Based on the previous data, we came to the conclusion of using both all-mpnet-
base-v2 and multi-qa-mpnet-base-dot-v1 for the title field with cosine similarity
would be best for other methods.

However, when running Hybrid ItemKNN with those embedding models, we found
that multi-qa-mpnet-base-dot-v1 performed way worse in nested evaluation than
the other model all-mpnet-base-v2 which can be seen in figure 6.4. This indicates

17

6. Experiments .
that using Content-based ItemKNN (where they performed simiarly although for dif-
ferent 𝐾) is not a suitable proxy for choosing which embedding model to use in Hybrid
ItemKNN and possibly other methods. Maybe even the choice of the title field is invalid.

Figure 6.4. Nested evaluation of Hybrid ItemKNN on ml-100k for two embedding models
using title and cosine similarity.

We therefore ran another set of experiments for Hybrid ItemKNN for all combinations
of 2 fields, 21 models, and 2 similarities totalling 84 experiments on the nested train
& validation splits. To save computing resources, we only tried 𝐾 ∈ {1, 2, . . . , 50} as
it seemed unlikely that higher values of 𝐾 would perform better. The best performing
model was in the group using plot and cosine similarity whose results can be seen in
figure 6.5. We can see that most embedding models performed well with few exceptions
which includes the previously chosen all-mpnet-base-v2 and multi-qa-mpnet-base-
dot-v1. The best result was achieved by msmarco-distilbert-cos-v5 using the plot
field at 𝐾 = 16 which is what we’ll use for the final evaluation.

Figure 6.5. Nested evaluation of Hybrid ItemKNN on ml-100k for all embedding models
with plot and cosine similarity. Relevant embedding models are highlighted.

As for Hybrid EASE𝑅, we ran all combinations of 21 models, and 2 fields. Fortu-
nately, EASE𝑅 has no similarity options and only one hyperparmeter 𝜆. We tried the

18

. 6.6 Results

following values:

𝜆 ∈ {0.01, 0.1, 1, 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,
1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500, 4000, 4500, 5000}

In figure 6.6, we can see the best performing embedding model is multi-qa-
distilbert-dot-v1 with 𝜆 = 250 on the title field. This is what we’ll use for
the final evaluation.

Figure 6.6. Nested evaluation of Hybrid EASE on ml-100k. Embedding models using the
title field (left) and plot field (right). Values 𝜆 > 1000 are not displayed since the values

are consistently lower and lower. Relevant embedding models are highlighted.

6.6 Results
See used hyperparameters and textual embedding models in table 6.4 for reference.

recommender hyperparams textual embedding model(field)
Top-Pop — —
EASE𝑅 𝜆 = 250 —
UserKNN 𝐾 = 20, cosine —
ItemKNN 𝐾 = 14, cosine —
Content-based ItemKNN 𝐾 = 20, cosine multi-qa-mpnet-base-dot-v1(title)
Hybrid EASE𝑅 𝜆 = 250 multi-qa-distilbert-dot-v1(title)
Hybrid ItemKNN 𝐾 = 16, cosine msmarco-distilbert-cos-v5(plot)

Table 6.4. Recommender hyperparameters for final evaluation on ml-100k. Textual em-
bedding models aren’t used in all methods.

Out of all of the baselines, EASE𝑅 performs the best no matter the recommendation
list length as can bee seen in table 6.5. It’s important to note that the much older
methods still perform not that far from EASE𝑅.

As for approaches with textual embeddings, Hybrid EASE𝑅 performed the best for
all recommendation list lengths over other approaches using textual embeddings. It
also performed very slightly better than plain EASE𝑅 but only for shorter list lengths.
With longer list lengths, the performance is on par.

19

6. Experiments .

@10 @20
HR Prec. Rec. NDCG HR Prec. Rec. NDCG

Top-Pop 0.094 0.012 0.010 0.013 0.252 0.019 0.026 0.021
EASE𝑅 0.623 0.120 0.144 0.165 0.777 0.099 0.225 0.186
UserKNN 0.594 0.113 0.131 0.151 0.764 0.095 0.220 0.176
ItemKNN 0.597 0.105 0.130 0.148 0.747 0.087 0.202 0.167
Content-based ItemKNN 0.417 0.066 0.044 0.076 0.558 0.057 0.073 0.080
Hybrid EASE𝑅 0.629 0.123 0.145 0.167 0.781 0.099 0.229 0.187
Hybrid ItemKNN 0.594 0.105 0.133 0.147 0.738 0.087 0.203 0.166

@50 @100
HR Prec. Rec. NDCG HR Prec. Rec. NDCG

Top-Pop 0.477 0.022 0.066 0.044 0.608 0.019 0.109 0.069
EASE𝑅 0.930 0.075 0.398 0.246 0.972 0.057 0.554 0.302
UserKNN 0.889 0.070 0.373 0.230 0.952 0.053 0.518 0.282
ItemKNN 0.899 0.064 0.333 0.215 0.937 0.047 0.447 0.257
Content-based ItemKNN 0.728 0.043 0.132 0.099 0.855 0.034 0.209 0.128
Hybrid EASE𝑅 0.928 0.075 0.399 0.248 0.971 0.057 0.555 0.303
Hybrid ItemKNN 0.889 0.064 0.338 0.215 0.945 0.049 0.466 0.262

Table 6.5. Test set evaluation results for list length of 𝑁 ∈ {10, 20, 50, 100}. Best result in
each metric and 𝑁 is underlined.

20

Chapter 7
Conclusion

We attempted to extend existing Top-N recommendation approaches with textual em-
beddings of items and evaluated the performance by time-splitting the data which
should simulate real-world scenarios better, and used both item-presence and ranking
metrics as recommended by [3]. In accordance with findings in [2], we used simple
approaches for which we finetuned hyperparameters. The choice of the textual em-
bedding model was individual to each approach where we tried all items’ textual fields
separately with a full range of hyperparameters for each method.

We managed to very slightly improve over baselines for shorter recommendation list
lengths and kept performance on par for longer. However, why aren’t the gains big-
ger? The embeddings definitely provide some information as demonstrated by semantic
search and other NLP tasks [7]. Maybe we’re not using them right?

Previous work focused mainly on using NLP approaches to user reviews and not items
themselves which improved recommendation performance in [44]. Could somebody
already have tried something similar, have found it not to work and not have published
it?

Maybe the reason could be that the used dataset is too small or not suitable for this
kind of approach. More experiments on more datasets could unveil the answer.

Another question is whether other kinds of content embeddings such as image em-
beddings could prove more useful for Top-N recommendation than textual embeddings.
We leave this for future work. It’s also possible that other recommendation tasks and
scenarios benefit from textual embeddings of items better than Top-N recommendation.

21

References
[1] Covington, Paul, Jay Adams, and Emre Sargin. Deep Neural Networks for

YouTube Recommendations. In: Proceedings of the 10th ACM Conference on Rec-
ommender Systems. New York, NY, USA: Association for Computing Machin-
ery, 2016. pp. 191–198. RecSys ’16. ISBN 9781450340359. Available from DOI
10.1145/2959100.2959190. Available from https://doi.org/10.1145/2959100.
2959190.

[2] Dacrema, Maurizio Ferrari, Paolo Cremonesi, and Dietmar Jannach. Are We
Really Making Much Progress? A Worrying Analysis of Recent Neural Recommen-
dation Approaches. CoRR. 2019, Vol. abs/1907.06902. Available from http://
arxiv.org/abs/1907.06902.

[3] Sun, Zhu, Hui Fang, Jie Yang, Xinghua Qu, Hongyang Liu, Di Yu, Yew-Soon
Ong, and Jie Zhang. DaisyRec 2.0: Benchmarking Recommendation for Rigorous
Evaluation. arXiv preprint arXiv:2206.10848. 2022. Available from https://doi.
org/10.48550/arXiv.2206.10848.

[4] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is
All you Need. In: I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, eds. Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2017. Available
from https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[5] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding.

[6] Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language Models are Few-Shot Learners.

[7] Reimers, Nils, and Iryna Gurevych. Sentence-BERT: Sentence Embeddings us-
ing Siamese BERT-Networks.

[8] Ricci, F., L. Rokach, and B. Shapira. Recommender Systems
Handbook. Springer US, 2022. ISBN 9781071621967. Available from
https://books.google.cz/books?id=V6KzzgEACAAJ.

[9] Ning, Xia, and George Karypis. SLIM: Sparse Linear Methods for Top-N Recom-
mender Systems. In: 2011 IEEE 11th International Conference on Data Mining.
2011. pp. 497-506. Available from DOI 10.1109/ICDM.2011.134.

22

http://dx.doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
http://arxiv.org/abs/1907.06902
http://arxiv.org/abs/1907.06902
https://doi.org/10.48550/arXiv.2206.10848
https://doi.org/10.48550/arXiv.2206.10848
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://books.google.cz/books?id=V6KzzgEACAAJ
http://dx.doi.org/10.1109/ICDM.2011.134

. .
[10] Deshpande, Mukund, and George Karypis. Item-Based Top-N Recommendation

Algorithms. ACM Trans. Inf. Syst. New York, NY, USA: Association for Comput-
ing Machinery, jan, 2004, Vol. 22, No. 1, pp. 143–177. ISSN 1046-8188. Available
from DOI 10.1145/963770.963776. Available from https://doi.org/10.1145/
963770.963776.

[11] Recsys-Benchmark. Recsys-benchmark/DAISYREC-v2.0. Available from http
s://github.com/recsys-benchmark/DaisyRec-v2.0.

[12] Vančura, Vojtěch, Rodrigo Alves, Petr Kasalický, and Pavel Kordík. Scal-
able Linear Shallow Autoencoder for Collaborative Filtering. In: Proceedings of the
16th ACM Conference on Recommender Systems. New York, NY, USA: Association
for Computing Machinery, 2022. pp. 604–609. RecSys ’22. ISBN 9781450392785.
Available from DOI 10.1145/3523227.3551482. Available from https://doi.org/
10.1145/3523227.3551482.

[13] Koren, Yehuda, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer . IEEE, 2009, Vol. 42, No. 8, pp. 30–37.

[14] Rendle, Steffen, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. BPR: Bayesian Personalized Ranking from Implicit Feedback.
Available from https://doi.org/10.48550/arXiv.1205.2618.

[15] Kang, Zhao, Chong Peng, and Qiang Cheng. Top-n recommender system via
matrix completion. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. 2016.

[16] Rendle, Steffen. Factorization machines. In: 2010 IEEE International conference
on data mining. 2010. pp. 995–1000.

[17] Liang, Dawen, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara.
Variational Autoencoders for Collaborative Filtering. Available from https://doi.
org/10.48550/arXiv.1802.05814.

[18] Steck, Harald. Embarrassingly Shallow Autoencoders for Sparse Data. In: The
World Wide Web Conference. New York, NY, USA: Association for Computing
Machinery, 2019. pp. 3251–3257. WWW ’19. ISBN 9781450366748. Available
from DOI 10.1145/3308558.3313710. Available from https://doi.org/10.1145/
3308558.3313710.

[19] He, Xiangnan, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. Neural Collaborative Filtering. In: Proceedings of the 26th International
Conference on World Wide Web. Republic and Canton of Geneva, CHE: Inter-
national World Wide Web Conferences Steering Committee, 2017. pp. 173–182.
WWW ’17. ISBN 9781450349130. Available from DOI 10.1145/3038912.3052569.
Available from https://doi.org/10.1145/3038912.3052569.

[20] He, Xiangnan, and Tat-Seng Chua. Neural factorization machines for sparse pre-
dictive analytics. In: Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval. 2017. pp. 355–364.

[21] Resnick, Paul, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl. GroupLens: An Open Architecture for Collaborative Filtering of
Netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported
Cooperative Work. New York, NY, USA: Association for Computing Machin-
ery, 1994. pp. 175–186. CSCW ’94. ISBN 0897916891. Available from DOI
10.1145/192844.192905. Available from https://doi.org/10.1145/192844.
192905.

23

http://dx.doi.org/10.1145/963770.963776
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/963770.963776
https://github.com/recsys-benchmark/DaisyRec-v2.0
https://github.com/recsys-benchmark/DaisyRec-v2.0
http://dx.doi.org/10.1145/3523227.3551482
https://doi.org/10.1145/3523227.3551482
https://doi.org/10.1145/3523227.3551482
https://doi.org/10.48550/arXiv.1205.2618
https://doi.org/10.48550/arXiv.1802.05814
https://doi.org/10.48550/arXiv.1802.05814
http://dx.doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3308558.3313710
http://dx.doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1145/192844.192905
https://doi.org/10.1145/192844.192905
https://doi.org/10.1145/192844.192905

References .
[22] Wang, Jun, Arjen P. de Vries, and Marcel J. T. Reinders. Unifying User-Based

and Item-Based Collaborative Filtering Approaches by Similarity Fusion. In: Pro-
ceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. New York, NY, USA: Association for
Computing Machinery, 2006. pp. 501–508. SIGIR ’06. ISBN 1595933697. Avail-
able from DOI 10.1145/1148170.1148257. Available from https://doi.org/10.
1145/1148170.1148257.

[23] Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Esti-
mation of Word Representations in Vector Space.

[24] Pennington, Jeffrey, Richard Socher, and Christopher Manning. GloVe:
Global Vectors for Word Representation. In: Alessandro Moschitti, Bo Pang,
and Walter Daelemans, eds. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, 2014. pp. 1532–1543. Available from DOI
10.3115/v1/D14-1162. Available from https://aclanthology.org/D14-1162.

[25] Arora, Sanjeev, Yingyu Liang, and Tengyu Ma. A Simple but Tough-to-Beat
Baseline for Sentence Embeddings. In: International Conference on Learning Rep-
resentations. 2017. Available from https://openreview.net/forum?id=
SyK00v5xx.

[26] Kenter, Tom, Alexey Borisov, and Maarten de Rijke. Siamese CBOW: Op-
timizing Word Embeddings for Sentence Representations. In: Katrin Erk, and
Noah A. Smith, eds. Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Asso-
ciation for Computational Linguistics, 2016. pp. 941–951. Available from DOI
10.18653/v1/P16-1089. Available from https://aclanthology.org/P16-1089.

[27] Pagliardini, Matteo, Prakhar Gupta, and Martin Jaggi. Unsupervised Learn-
ing of Sentence Embeddings Using Compositional n-Gram Features. In: Proceed-
ings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). Association for Computational Linguistics, 2018. Available from DOI
10.18653/v1/n18-1049. Available from http://dx.doi.org/10.18653/v1/N18-
1049.

[28] Dai, Andrew M., and Quoc V. Le. Semi-supervised Sequence Learning.
[29] Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-

pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations.

[30] Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving language understanding by generative pre-training. 2018 .

[31] Howard, Jeremy, and Sebastian Ruder. Universal Language Model Fine-tuning
for Text Classification.

[32] Bowman, Samuel R., Gabor Angeli, Christopher Potts, and Christopher
D. Manning. A large annotated corpus for learning natural language
inference. In: Lluís Màrquez, Chris Callison-Burch, and Jian Su, eds.
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. Lisbon, Portugal: Association for Computational Linguistics, 2015.
pp. 632–642. Available from DOI 10.18653/v1/D15-1075. Available from
https://aclanthology.org/D15-1075.

24

http://dx.doi.org/10.1145/1148170.1148257
https://doi.org/10.1145/1148170.1148257
https://doi.org/10.1145/1148170.1148257
http://dx.doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
http://dx.doi.org/10.18653/v1/P16-1089
https://aclanthology.org/P16-1089
http://dx.doi.org/10.18653/v1/n18-1049
http://dx.doi.org/10.18653/v1/N18-1049
http://dx.doi.org/10.18653/v1/N18-1049
http://dx.doi.org/10.18653/v1/D15-1075
https://aclanthology.org/D15-1075

. .
[33] Conneau, Alexis, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine

Bordes. Supervised Learning of Universal Sentence Representations from Natu-
ral Language Inference Data. In: Martha Palmer, Rebecca Hwa, and Sebastian
Riedel, eds. Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Copenhagen, Denmark: Association for Computational Lin-
guistics, 2017. pp. 670–680. Available from DOI 10.18653/v1/D17-1070. Available
from https://aclanthology.org/D17-1070.

[34] Cer, Daniel, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni
St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Universal Sentence
Encoder .

[35] Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108. 2019 .

[36] Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
RoBERTa: A Robustly Optimized BERT Pretraining Approach.

[37] Song, Kaitao, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MPNet: Masked
and Permuted Pre-training for Language Understanding.

[38] Reimers, Nils, and Iryna Gurevych. Making Monolingual Sentence Embeddings
Multilingual using Knowledge Distillation. In: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics, 2020. Available from https://arxiv.org/abs/2004.09813.

[39] Melville, Prem, Raymod J. Mooney, and Ramadass Nagarajan. Content-
Boosted Collaborative Filtering for Improved Recommendations. In: Eighteenth
National Conference on Artificial Intelligence. USA: American Association for
Artificial Intelligence, 2002. pp. 187–192. ISBN 0262511290.

[40] Musat, Claudiu, Yizhong Liang, and Boi Faltings. Recommendation using tex-
tual opinions. In: 2013. pp. 2684-2690.

[41] Ling, Guang, Michael R. Lyu, and Irwin King. Ratings Meet Reviews, a Com-
bined Approach to Recommend. In: Proceedings of the 8th ACM Conference on
Recommender Systems. New York, NY, USA: Association for Computing Machin-
ery, 2014. pp. 105–112. RecSys ’14. ISBN 9781450326681. Available from DOI
10.1145/2645710.2645728. Available from https://doi.org/10.1145/2645710.
2645728.

[42] Seo, Sungyong, Jing Huang, Hao Yang, and Yan Liu. Representation Learning
of Users and Items for Review Rating Prediction Using Attention-based Convolu-
tional Neural Network. In: 2017. Available from https://api.semanticscholar.
org/CorpusID:38864450.

[43] Zheng, Lei, Vahid Noroozi, and Philip S. Yu. Joint Deep Modeling of Users and
Items Using Reviews for Recommendation.

[44] Ghasemi, Negin, and Saeedeh Momtazi. Neural text similarity of user reviews
for improving collaborative filtering recommender systems. Electronic Commerce
Research and Applications. 2021, Vol. 45, pp. 101019. ISSN 1567-4223. Available
from DOI https://doi.org/10.1016/j.elerap.2020.101019. Available from https://
www.sciencedirect.com/science/article/pii/S156742232030096X.

25

http://dx.doi.org/10.18653/v1/D17-1070
https://aclanthology.org/D17-1070
https://arxiv.org/abs/2004.09813
http://dx.doi.org/10.1145/2645710.2645728
https://doi.org/10.1145/2645710.2645728
https://doi.org/10.1145/2645710.2645728
https://api.semanticscholar.org/CorpusID:38864450
https://api.semanticscholar.org/CorpusID:38864450
http://dx.doi.org/https://doi.org/10.1016/j.elerap.2020.101019
https://www.sciencedirect.com/science/article/pii/S156742232030096X
https://www.sciencedirect.com/science/article/pii/S156742232030096X

References .
[45] Lops, Pasquale, Marco de Gemmis, and Giovanni Semeraro. Content-based

Recommender Systems: State of the Art and Trends. In: Francesco Ricci, Lior
Rokach, Bracha Shapira, and Paul B. Kantor, eds. Recommender Systems
Handbook. Boston, MA: Springer US, 2011. pp. 73–105. ISBN 978-0-387-85820-3.
Available from DOI 10.1007/978-0-387-85820-3_3. Available from https://doi.
org/10.1007/978-0-387-85820-3_3.

[46] Li, Xiaopeng, and James She. Collaborative Variational Autoencoder for Recom-
mender Systems. In: Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. New York, NY, USA: Association
for Computing Machinery, 2017. pp. 305–314. KDD ’17. ISBN 9781450348874.
Available from DOI 10.1145/3097983.3098077. Available from https://doi.org/
10.1145/3097983.3098077.

[47] Zheng, Lei, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip
S. Yu. Spectral collaborative filtering. In: Proceedings of the 12th
ACM Conference on Recommender Systems. ACM, 2018. RecSys
’18. Available from DOI 10.1145/3240323.3240343. Available from
http://dx.doi.org/10.1145/3240323.3240343.

[48] Gebremeskel, Gebrekirstos G., and Arjen P. de Vries. Recommender Systems
Evaluations : Offline, Online, Time and A/A Test. In: Conference and Labs of the
Evaluation Forum. 2016. Available from https://api.semanticscholar.org/
CorpusID:15506824.

[49] Järvelin, Kalervo, and Jaana Kekäläinen. Cumulated Gain-Based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. New York, NY, USA: Association for
Computing Machinery, oct, 2002, Vol. 20, No. 4, pp. 422–446. ISSN 1046-8188.
Available from DOI 10.1145/582415.582418. Available from https://doi.org/
10.1145/582415.582418.

[50] Harper, F. Maxwell, and Joseph A. Konstan. The MovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. New York, NY, USA: Association
for Computing Machinery, dec, 2015, Vol. 5, No. 4. ISSN 2160-6455. Available from
DOI 10.1145/2827872. Available from https://doi.org/10.1145/2827872.

26

http://dx.doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
http://dx.doi.org/10.1145/3097983.3098077
https://doi.org/10.1145/3097983.3098077
https://doi.org/10.1145/3097983.3098077
http://dx.doi.org/10.1145/3240323.3240343
http://dx.doi.org/10.1145/3240323.3240343
https://api.semanticscholar.org/CorpusID:15506824
https://api.semanticscholar.org/CorpusID:15506824
http://dx.doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
http://dx.doi.org/10.1145/2827872
https://doi.org/10.1145/2827872

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Recommendation
	Recommendation Tasks
	Content-Based \& Collaborative Filtering
	User-Item Matrix
	Explicit \& Implicit Feedback
	Types of Methods
	Used Methods
	Top-Pop
	ItemKNN
	UserKNN
	EASE^R

	Textual Embeddings
	Word-level
	Sentence-level
	Beyond Sentences

	Marrying Recommendation with Textual Embeddings
	Approaches Without Embeddings
	Why Embeddings?
	Using Textual Embeddings in Recommenders
	Content-based ItemKNN
	Hybrid ItemKNN
	EASE^R with textual embeddings
	Failed Experiments

	Evaluation Methodology
	Reliability of Results
	Simplicity over Complexity

	Offline vs Online
	Defining Offline Metrics
	Item Presence Metrics
	Ranking Metrics
	Rating Error Metrics

	Benchmarking Recommendation by DaisyRec

	Experiments
	Setup
	Dataset Details
	Implementations
	Tuning Baselines Without Textual Embeddings
	Tuning Methods With Textual Embeddings
	Choosing an Embedding Model for ml-100k

	Results

	Conclusion
	References

