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Abstract

In this thesis, we focus on offloading a
computing task from user equipment (UE)
to a multi-access edge (MEC) comput-
ing server. We assume an offloading case
where the UEs are energy constrained de-
vices, such as smartphones, unmanned
aerial vehicles (UAVs) or IoT devices. We
also assume the channel between the UEs
and the BS is changing dynamically dur-
ing the offloading. We first analyze a cur-
rent state-of-the-art offloading optimiza-
tion framework in an environment with dy-
namic channel quality changes and show
that it is not usable, as only 50% of the
UEs finish the offloading successfully. To
this end, we propose a framework for the
optimization of offloading the computing
tasks to the MEC server in an environ-
ment with dynamically changing channel
quality, which on average yields 99% of
tasks successfully offloaded with only 16%
growth in energy consumption compared
to the current solution.
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computing, dynamic channel changes,
mobility, energy constrained devices

Supervisor: Ing. Pavel Mach, Ph.D.
České vysoké učení technické v Praze -
Fakulta elektrotechnická,
Technická 2,
Praha

Abstrakt

Tato práce je zaměřena na problém
přenášení výpočetně náročných úloh z
uživatelských zařízení na server umístěný
na hraně sítě. Předpokládáme scénář, kdy
mají uživatelská zařízení omezený přísun
energie (například mobilní telefony nebo
IoT zařízení). Předpokládáme také, že se
během přenosu dat může dynamicky mě-
nit kvalita spojení (například v důsledku
pohybu uživatelských zařízení). Nejprve
analyzujeme současné řešení problému a
ukážeme, že v prostředí s dynamickými
změnami v kvalitě spojení je toto řešení
nepoužitelné, jelikož se stihne včas
zpracovat pouze 50% přenášených úloh.
Následně navrhneme řešení, které v
průměru dosahuje 99% včas zpracovaných
úloh, přičemž spotřeba energie oproti
současnému řešení vzroste pouze o 16%.

Klíčová slova: přenášení výpočtů na
hranu sítě, dynamické změny v kvalitě
spojení, snížení spotřeby energie,
mobilita

Překlad názvu: Přenášení výpočtů na
hranu sítě v prostředí s dynamickými
změnami kvality rádiového kanálu
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Introduction
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1. Introduction .....................................
Multi access-edge computing (MEC)([1][2][3][4]) is a relatively new concept

in mobile networks. The idea is that a server is placed at the edge of the
network which can receive computational tasks from other devices connected
to the network (usually called user equipment or UEs). After the MEC server
is done computing a task, it sends results back to the UE which requested
the task. This approach brings many benefits, one of which is energy saving
at the devices which utilize the MEC capability of the network. Offloading of
demanding computation tasks to the MEC instead of processing them locally
can be an effective way to save energy. This is especially relevant for energy
constrained devices (f.e. smartphones, unmanned aerial vehicles (UAVs) or
IoT devices).

The computational tasks are also often constrained by a deadline, after
which the results need to be available at the UE. If we want to guarantee,
that the results will be available within the given time constraint while also
minimizing energy consumption at the UEs, making the decision of whether to
offload or compute locally can be quite challenging. The key challenges being
[1]: decision on the computation offloading ([5][6][7][8][9][10]), allocation of
the computing resources ([11][12]) and guaranteeing service continuity if the
UEs exploiting the MEC roam throughout the network ([13][14][15][16]).

A lot of energy constrained devices which could potentially benefit from
utilizing MEC capabilities are devices, which are not static but moving.
Movement of the UEs adds another layer of complexity to the offloading
problem, because now the channel quality between the UE and the base
station (BS) or relay can change rapidly during the offloading process due to
shadowing or simply due to UE heading away from the BS.

While there exist many works on the topic of the optimization of the
offloading to the MEC, the topic of mobility aware optimization is often
omitted or left for future works. We have been able to find some mobility-
aware approaches to the problem (i.e. [17], [18]). Nevertheless, in our research
we have not discovered any general mobility aware solution for setting the
optimal transmission power of an UE to finish the offloading within given
time constraint. For example, even though the work in [5] minimizes energy
consumption of the UEs in case they are all static, it would not work properly
for dynamic scenarios with moving users. In such dynamic scenario, it would
result in many tasks not offloaded in specified deadline, as we demonstrate
later in this thesis.

Thus, the objective of this thesis is to find a solution that is able to manage
offloading of tasks in a dynamic scenario with moving UEs. In particular, the
goal is to maximize the number of tasks offloaded in time to MEC while still
achieving low energy consumption as in [5].

2



......................................1. Introduction
The remainder of this paper is organized as follows: In chapter 2 we define

the system model used in this work. Chapter 3 contains a precise formulation
of the problem this work is aiming to solve. In chapter 4 we introduce a
current state-of-the-art optimization framework and analyze its performance
in an environment with dynamic channel changes. We then further examine
the trade-off between the number of successfully offloaded tasks and the
energy consumption in chapter 5. We propose a sub-optimal solution to the
problem in 6. In the same chapter follows also the performance analysis of
the proposed solution. Conclusion of this work is contained in 7 jointly with
suggestions for future work.

3
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Chapter 2

System model
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2. System model ....................................
This chapter contains an overview of the system model used in this thesis,

including network model, communication and computing models, and channel
model. Individual models are described in the following subsections.

2.1 Network model

We consider a scenario with one powerful MEC server located at the BS.
We further assume N UEs distributed over an area without any obstacles
obstructing the line-of-sight (LOS) to the BS. The UEs generate computa-
tionally demanding tasks. Each task has a time constraint, after which the
computation results need to be available at the UE. Each task can be either
offloaded to the MEC server or computed locally at the UE. In the current
model, the offloading to the MEC server is done directly without help of any
relays. The extension to the relays is relegated to potential future works.

2.2 Communication model

This section first describes communication model for static scenario with
users not moving. Further, communication model for dynamic scenario is
tackled as well.

2.2.1 Static communication model

We compute channel capacity C for any UE offloading its task according to
Shannon ([5]) as:

C = b · log2 (1 + p · g
b · (Ib + σ)) (2.1)

where b, p and g are the allocated bandwidth, transmission power and channel
gain between the UE and the BS respectively, σ is the noise spectral density
and Ib is the background interference.

The size of the data D(t) offloaded after transmitting over the duration of
time t can be expressed as:

D(t) = C · t (2.2)

6



.................................. 2.3. Computing model

The transmission delay td for offloading a task to the MEC server can therefore
be expressed as:

td = Dt

C
(2.3)

where Dt is the size of the offloaded task.

2.2.2 Dynamic communication model

For dynamic communication model, we make an assumption, that the only
time dependent quantity affecting the channel capacity is the gain between the
BS and the UE (allocated power and bandwith, background interference and
the noise spectral density remain constant over the duration of the offloading).
The time-dependent channel capacity C(τ) can be expressed as:

C(τ) = b · log2 (1 + p · g(τ)
b · (Ib + σ)) (2.4)

where g(τ) is the time dependent channel gain between the UE and the BS.
The size of the data D(t) offloaded after transmitting over the duration of
time t can be expressed as:

D(t) =
∫ t

0
C(τ) · dτ (2.5)

2.3 Computing model

This section describes the individual parameters of each task. In particular,
any offloading task has the following parameters:

.Dt ... size of the task. Tmax ... time constraint placed on the task. c ... average number of CPU cycles needed to process one bit of the task

Then, the task can be either offloaded to the MEC server or computed
locally. In case of the offloading, the time tMEC needed by the MEC server
to compute the task is obtained as:

TMEC = Dt · c
FMEC

(2.6)

7



2. System model ....................................
where FMEC is the number of CPU cycles the MEC server is able to process
per second. The time Tlocal to compute the task locally is obtained as:

Tlocal = Dt · c
FUE

(2.7)

where FUE is the number of cycles the CPU of the UE is able to process per
second.

The energy Eoff consumed by an UE offloading its task to the MEC server
is expressed as:

Eoff = (Tmax − TMEC) · p (2.8)

where p is the UE’s transmission power. Then, the energy Elocal consumed
by an UE computing its task locally is expressed as [19]:

Elocal = Ec ·Dt · c (2.9)

where Ec is the energy consumption at the UE to run one CPU cycle. In this
work, we do not focus on the energy consumed by processing the tasks at the
MEC server.

2.4 Channel model

We base our channel model on the following widely used formula [20]. Accord-
ing to this channel model, the received power Prx at the BS can be expressed
as:

Prx = Ptx · g(c) ·Ψ(c) · ‖h(c)‖2 (2.10)

where Ptx is the transmission power of the UE, g(c) is the channel gain
between the UE and the BS dependent on UE coordinates c, Ψ(c) is the
location dependent shadowing (also known as slow fading) and h(c) is the
small scale fading (also known as fast fading). We assume the small scale
fading is going to be average out over the offloading time period [20][21].
We also assume the UEs have LOS to the BS at any location (there are no
obstacles in the area), therefore no location dependent shadowing is present.
We can simplify the formula 2.10 as:

Prx = Ptx · g(c) [W] (2.11)

or in alternative notation:

Prx = 30 + 10 · log10 (Ptx)− PL(c) [dBm] (2.12)

where PL(c) is the location dependent path-loss.
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The path-loss and gain are two different ways to describe the same quantity
and the conversion between them is done according to the formula:

PL(c) = −10 · log10 (g(c)) [dB] (2.13)

The channel gain and path-loss represent deterministic decay of the transmit-
ted signal over a distance. They depend solely on the distance between the
UE and the BS and can be expressed by deterministic mathematical models.
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3. Problem formulation .................................
We formulate a resource allocation problem to minimize the sum energy

consumption over UEs consumed by offloading of the tasks from the UEs
directly to the BS, while ensuring that the probability Pfail that each task
fails to finish the offloading within its time constraint is not going to exceed
an arbitrary upper limit PL ∈ [0, 1]. This is achieved by joint optimization
of the transmission time and power at all UEs. The problem can in general
formuted as:

T ,P = min
∑
n

En

s.t. (b) Pfail = P (Toff > (Tmax − TMEC)) ≤ PL
(b) Toff > 0
(c) pn ≤ pmax

(3.1)

where (a) ensures that the probability each task is not processed within Tmax
is lower or equal to an arbitrary upper limit PL, (b) ensures that the offloading
time Toff is going to be a positive number and (c) limits the transmission
power to pmax.

Similarly as in many works (e.g. [5], [22]), we don’t take the time nor the
energy consumed to transmit the results from the BS back to the UE into
account. That is because firstly, the amount of the data is usually much
smaller than the task itself and secondly because it would have no impact on
the results as it can be counted in to the time for processing the task at the
MEC server.
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4. Performance analysis of current solution .........................
In this chapter, we are going to analyze first the performance of current

state-of-the-art offloading solution, initially tailored for static environment,
in an environment with dynamic channel quality changes.

4.1 Offloading model

We base the offloading model on the current state-of-the-art solution for
optimizing the offloading energy consumption proposed in paper [5]. Without
loss of generality, we assume only one hop between the UE and the BS (the
data is going be transmitted directly without help of any relays – direct
offloading). According to [5], we do not take the changes of channel quality
during the offloading process into account. Therefore, we make our decision
based on initial channel gain gi between UE and BS at the moment of making
the offloading decision.

Time available for the offloading of the task to the MEC server is obtained
by subtracting the time needed to process the task at the MEC server from
the tasks time constraint:

Toff = Tmax − TMEC (4.1)

where Toff is the time available for the offloading, Tmax is the time constraint
for the task and TMEC is the time to process the task at the MEC server
(computed according to the formula 2.6).

For static channel model we can substitute the constant capacity according
to equation 2.3. Thus, we set the transmission power p of an UE as:

p = b · (Ib + σ)
g

·
(

2
D

Toff ·b − 1
)

(4.2)

The power remains constant during the transmission, therefore the energy
consumed by offloading E can be obtained from the formula:

E = Toff · p = Toff · b · (Ib + σ)
g

·
(

2
D

Toff ·b − 1
)

(4.3)

In the following section, we analyze what happens if the optimization for
static scenario is exploited for dynamic scenario, which is inherent to mobile
networks.
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4.2 Performance metrics

In this section, we introduce the performance metrics used to evaluate the
performance of the current offloading solution.

4.2.1 Offloading success rate

Offloading success rate demonstrates the probability with which we can offload
the task within its time constraint if we choose a given offloading model.
The tasks which are impossible to offload within the time constraint without
exceeding the maximum limit for transmission power pmax, even for the static
case, are not counted into this metric.

Offloading success rate Rs in percent is computed as:

Rs = 100 · Nsuccess

Ntotal −Nimpossible
(4.4)

where Nsuccess is the number of tasks offloaded within the time constraint,
Ntotal is the total number of all tasks and Nimpossible is the number of the
tasks which which are impossible to offload within the time constraint without
exceeding the maximum limit for transmission power, even if the UEs would
be static.

4.2.2 Average energy consumed by offloading

Average energy consumed by offloading demonstrates the average energy
consumed per UE if we decide to offload all the tasks to the MEC server.The
tasks which are impossible to offload within the time constraint without ex-
ceeding the maximum limit for transmission power pmax are not counted into
this metric.

This metric is useful for analyzing the energy consumption comparisons
between different optimization solutions without being distorted by specific
setting of maximum transmission power pmax and the cost of the local
computing.
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4. Performance analysis of current solution .........................
Average energy Eoff consumed by the offloading is computed according to

the following formula 4.5 as a sum of energy consumed at all tasks divided
by the total number of the tasks.

Eoff = Eall
Ntotal −Nimpossible

(4.5)

where Eall is the sum energy consumed at all UEs which do not exceed pmax
(computed according to the formula 4.3), Ntotal is the total number of all
tasks and Nimpossible is the number of task which which are impossible to
offload within the time constraint without exceeding the maximum limit for
transmission power.

4.2.3 Average energy consumed in total

Average energy consumed in total demonstrates the average energy consump-
tion per UE if we make a realistic decision whether to compute locally or
to offload the task to the MEC server. This energy includes both the en-
ergy consumed by local computing and the energy consumed by offloading
(computed according to the formulas 2.9 and 4.3 respectively).

This metric is useful for obtaining a more real-world applicable energy
consumption of an optimization solution than the previous metric.

The algorithm for making the offloading decision is demonstrated in Al-
gorithm 1. The input arguments p, pmax, Tmax, Tlocal, Elocal are in this
respective order: offloading transmission power, maximum transmission power
of the UEs, time constraint for the task, time needed to compute the task
locally and energy consumed by computing the task locally. The outputs of
the algorithm [offload, compute_locally] are boolean values which decide
whether to either i) offload the task to the MEC server, ii) compute the task
locally, or iii) do neither of the two. The last option is chosen only when
the task is both impossible to offload within the time constraint without
exceeding pmax and simultaneously impossible to compute locally within the
time constraint.

The average energy consumed in total Etotal is computed according to the
formula 4.6 as a sum of the energy consumed by local computing and by
offloading divided by the total number of possible tasks:

Etotal = Elocal + Eoff
Ntotal −Nimpossible

(4.6)
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Algorithm 1 Algorithm for offloading decision
1: function make_offloading_decission(p, pmax, Tmax, Tlocal,
Elocal)→ [offload, compute_locally]

2: offload = false
3: compute_localy = false
4: if p ≤ pmax then
5: Eoffload = p · t
6: if Elocal > Eoffload then
7: offload = true
8: else
9: if Tlocal ≤ Tmax then

10: compute_localy = true
11: end if
12: end if
13: else
14: if Tlocal ≤ Tmax then
15: compute_localy = true
16: end if
17: end if
18: end function

where Elocal and Eoff are the energies consumed by the local computing and
the offloading of the tasks to the MEC server respectively, Ntotal is the total
number of all tasks and Nimpossible is the number of the tasks which are both
impossible to offload and compute locally within the time constraint.

4.3 Simulation setup

In this section, we describe the simulation scenario, UE movement model,
and the settings we have used for the simulations in Matlab.

4.3.1 UE mobility model

The UEs move according to the wrap-around random direction movement
model [23][24] with a following slight modification: the movement speed is
not chosen randomly at each UE, but remains constant across all UEs. That
is because we want to analyze how different parameters and solutions depend
on the movement speed of the UEs. Now follows a brief description of the
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4. Performance analysis of current solution .........................
model:

. At the beginning of the simulation, each UE randomly chooses a move-
ment direction d ∈ IR2, ‖d‖ = 1 and a duration in seconds. The UEs
then start moving in the directions they have chosen for the chosen
duration.. After an UE finishes moving, we go back to step 1 (it chooses new
movement direction and duration and starts a new movement).. If an UE hits the boundary of the simulation area, it instantly reappears
at the opposite side.

All important movement model parameters can be found in table 4.1.

Parameter Value
New direction time uniform distribution, U(0, 20) seconds

New direction distribution uniform

Table 4.1: UE movement model parameters.

4.3.2 Simulation scenario and settings

In this section we outline the simulation scenario and settings. For simulations
in Matlab we adopt a rural scenario with no buildings. The BS is located
at the center of the area at coordinates [250; 250]. The initial positions of
the UEs are randomly generated uniformly over the area. The BS splits the
available bandwith between all the UEs equally.

The offloading decision is made at the beginning of the simulation. The
UEs then start moving at a constant speed according to movement model
described in previous chapter 4.3.1, whilst simultaneously offloading their
tasks to the BS. The channels between the UEs and the BS are obtained
according to the model described in 2.2.1.

The simulation moves forward in time by time-steps. The size of the
time-step Tstep is equal to the total offloading time interval Toff uniformly
divided into N equal steps. The channel stays constant for the duration of
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each time-step, thus the size of the data offloaded by j-th UE in i-th time
step is equal to:

Dji = Cj(Tstep,j · i) · Tstep,j (4.7)

where Tstep,j is length of j-th UE’s time-step and Cj(t) is the channel capacity
between the j-th UE and the BS dependent on time.

All important movement model parameters can be found in table 4.2.

Parameter Value Parameter Value
Area size 500x500m B 100MHz
BS coord. [250,250,35] pmax 23dBm

Carrier freq. 2Ghz D [0.2 5]Mbits
σ + Ib -150 dB c [1.5, 2]x103 cyc./bit
FUE [1.5, 2]x109 cyc./s FBS 40x109 cyc./s
Ec [0 20]x10−11 Time steps 100

Numb. of UEs 100 Numb. of drops 30

Table 4.2: Simulation parameters.

4.3.3 Channel path-loss model

For the specific path-loss model, we adopt general modified COST 231 Hata
path-loss model at 2GHz.

4.4 Success rate of the current solution

This section analyzes the succes rate of the current state-of-the-art solution.
We can see the resulting success rate dependent on UE speed and offloading
time constraint in figure 4.1. Following the intuition only 50% of the tasks
were offloaded within the time constraint (channel quality in our model
depends solely on the distance from the BS – half of the UEs are going to
move towards the BS and the other half is going to move away).
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Figure 4.1: Success rate of static channel offloading model depending on UE
movement speed and time constraint for the offloaded tasks.

We can also see, that for 20 second time constraint and movement speeds
over 5 meters per seconds, the success percentage is starting to grow. We
conclude that with growing UE trajectory lengths (higher speeds and time
constraints), the improvements in channel capacity start to slowly outweigh the
worsening. However, for realistic movement parameters and time constraints,
the observed improvements in offloading success rate are too small to be
useful.

4.5 Energy consumption of the current solution

We can see the average energy consumed by offloading in figure 4.2 and
the average energy consumed (total) in figure 4.3. The energy grows with
decreasing offloading time according to the formula 4.3.

We see that the slight improvements in success rate for long trajectory
lengths (observed in previous section 4.4) also impact the energy, as it is
slightly decreasing for the UEs which travel for longer distances. That is
because energy follows the formula E = p ·t and the number of UEs who finish
the offloading before the time constraint grows. Thus the average offloading
time decreases as well as average energy consumed.
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Figure 4.2: Average energy consumed per UE by offloading with static channel
offloading model depending on UE movement speed and time constraint for the
offloaded tasks.
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Figure 4.3: Average energy consumed per UE with static channel offloading
model (including local computing) depending on UE movement speed and time
constraint for the offloaded tasks.

4.6 Conclusion

We found out that when the current solution is used for dynamically changing
channel, only half of the offloaded tasks are completed within their respec-
tive time constraints. This solution is therefore not usable for dynamically
changing channel.
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5. Closer inspection of the trade-off ............................
In this chapter, we propose a simple method addressing the problem

formulated in the previous section. This method should allow us to closely
examine the trade-off between the success rate and energy consumption.

The basic principle of the proposed method is shortening of the offloading
time to have some safety margin if the UEs are moving. Then, even if the
UEs are moving, the transmission power is set in such way that the task is
offloading before its current deadline and even if the channel gain is decreasing
during offloading itself, we are able to increase the number of offloaded tasks
in the required time deadline accordingly.

We propose to lower the original offloading time as follows:

Tlowered = Tmax · (1−∆t) (5.1)

where ∆t represents the margin by which Tmax is shortened. Please note that
the offloading decision is identical to decision described in chapter 4, only
difference being that we substitute Tmax for Tlowered.

Of course, the proposed shortening of Tmax also leads to some increase
in the energy consumption during the offloading, since longer offloading
time results in lower energy consumption at the side of the UEs, and vice
versa. Thus, the setting of ∆t should be carefully optimized to obtain a
reasonable trade-off between the number of the tasks successfully offloaded
and energy consumption of the offloading. The analysis is delivered in the
next subsections.

5.1 Performance analysis of proposal

Note that for the performance analysis of ∆t setting, we adopt the same
performance metrics and simulation setup as in chapter 4. Now let’s analyze
again the success rate and energy consumption.

5.1.1 Success rate

Figures 5.1-5.3 demonstrate the percentage of the tasks offloaded within
Tmax depending on ∆t if Tmax is set as 1 second, 5 second, and 20 seconds,
respectively. Notice that if ∆t = 0, the situation copy the current state of
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............................ 5.1. Performance analysis of proposal

the art as offloading time is equal to Tmax. We can see the resulting success
rates dependent on relative time reserve for each particular Tmax.

With high enough time reserve, we are able to compensate for the channel
changes and eventually get to 100 percent of the tasks offloaded within the
time constraint. It is visible, that with growing time constraints and UE
movement speeds, we need to increase the time reserve to compensate for the
channel changes. For example, for UE moving at 1 meter per second and the
time constraint 5s, mere 5 percent of time reserve will result in almost 100
percent success rate. On the other hand, for movement speed of 20 meters
per second and the time constraint 20 seconds, we need 80 percent of time
reserve to achieve a comparable success rate.
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Figure 5.1: Success rate of the static channel offloading model improved by time
reserve, depending on the relative time reserve ∆t and displayed for various UE
movement speeds and a fixed time constraint of 1 second.
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Figure 5.2: Success rate of the static channel offloading model improved by time
reserve, depending on the relative time reserve ∆t and displayed for various UE
movement speeds and a fixed time constraint of 5 seconds.
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Figure 5.3: Success rate of the static channel offloading model improved by time
reserve, depending on the relative time reserve ∆t and displayed for various UE
movement speeds and a fixed time constraint of 20 seconds.

This result is consistent with our intuition - the channel between the
UE end the BS changes more rapidly when the UE travels across longer
trajectory during the offloading. Thus, with growing movement speeds and
time constraints, we need to increase the time reserve to compensate for the
dynamic changes of the channel.

5.1.2 Energy consumed

In previous section, we have demonstrated that even simple setting of ∆t

to a reasonable value can result in almost 100% success of offloaded tasks.
This section now answers what is the cost in terms of energy consumption.
We can see the energy consumed by offloading dependent on relative time
reserve for the time constraints of 1 second, 5 seconds and 20 seconds in
figures 5.4, 5.5 and 5.6 respectively. Furhter, the total energy consumed,
considering also local computing, and dependent on relative time reserve for
the time constraints of 1 second, 5 seconds and 20 seconds in figures 5.7, 5.8
and 5.9 respectively. The energy again grows with decreasing offloading time
according to the formula 4.3.

For a better illustration of the success rate - energy trade-off, we include a
comparison table of "optimal" trade-off for different time constraints (table
5.1). For each time constraint we have chosen the smallest value of ∆t so
that the resulting success rate is over 90 percent for any UE movement speed.
We can observe that even though for 20 second time constraint we need
much greater ∆t than for 1 second (80% versus 10%), the relative increase
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in consumed energy is quite comparable. Furthermore, the 20 second time
constraint has much lower overall energy consumption than 1 second, so the
40% energy increase is much less "punishing". In overall, we can say that
the increase of successfully offloaded tasks easilly outweights the incereased
energy consumption (please note that in case state-of-the-art solution, only
roughly 50% of tasks are offloading in time).

Tmax [s] ∆t [%] Min. success rate [%] Max. energy increase [%]
1 10 98 35
5 40 93 26
20 80 97 40

Table 5.1: Comparison of the "optimal" trade-off for each time constraint versus
the current state-of-the-art solution.
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Figure 5.4: Average energy consumption (per UE) of the static channel offloading
model improved by time reserve, depending on the relative time reserve ∆t and
displayed for various UE movement speeds and a fixed time constraint of 1
second. Only the energy consumed by the offloading.
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seconds. Only the energy consumed by the offloading.
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Figure 5.6: Average energy consumption (per UE) of the static channel offloading
model improved by time reserve, depending on the relative time reserve ∆t and
displayed for various UE movement speeds and a fixed time constraint of 20
seconds. Only the energy consumed by the offloading.
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Figure 5.7: Average energy consumption (per UE) of the static channel offloading
model improved by time reserve, depending on the relative time reserve ∆t and
displayed for various UE movement speeds and a fixed time constraint of 1
second. Total energy including local computing at the UEs.
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Figure 5.8: Average energy consumption (per UE) of the static channel offloading
model improved by time reserve, depending on the relative time reserve ∆t and
displayed for various UE movement speeds and a fixed time constraint of 5
seconds. Total energy including local computing at the UEs.
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Figure 5.9: Average energy consumption (per UE) of the static channel offloading
model improved by time reserve, depending on the relative time reserve ∆t and
displayed for various UE movement speeds and a fixed time constraint of 20
seconds. Total energy including local computing at the UEs.
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5.2 Conclusion

There is a visible trade-off between success rate and consumed energy. Both
the success rate and the energy consumed are growing with increasing time
reserve. But there is no "universally optimal" time reserve, as the trade-off
between the success rate and consumed energy differs for every combination
of UE movement speed and time constraint.

An important lesson can be taken from this chapter: the trade-off between
the success rate and the consumed energy differs for different movement
speeds and time constraints. We can take this conclusion one level further:
The channel changes in our model depend solely on UE movement (see 2.4,
2.2.2) - therefore, the solution to the problem of finding the optimal trade-off
between the consumed energy and offloading success rate has to be built upon
the parameters of the UE movement.
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6. Offloading optimization using prediction of future movement ................
We have demonstrated in the previous chapter that even simple shortening

of offloading time can achieve significant improvements in terms of successfully
offloaded tasks at the cost of only marginally increased energy consumption.
Still, the proposed method sets the ∆t for all UEs disregarding their current
moving direction or potential changes of moving direction during the offloading.
Thus, in this chapter, our aim is to further improve the proposed solution to
get even more promising results.

To this end, we propose a sub-optimal solution to the problem (defined in
3). First, we start by deriving a formula for making the offloading decision
based on predicted future values of channel gain (across the UE’s future
trajectory). Then we introduce a very simple UE channel gain prediction
framework. This allows us to make to make an offloading decision, which
takes dynamicity of the channel into account.

We derive the proposed solution in following steps:..1. We propose a method for setting the optimal offloading transmission
power at the UE supposing we had the information about the future
values of channel gain to the BS across the whole offloading time period
(6.1)...2. We propose a sub-optimal solution for the prediction of the UE’s future
channel gain values to the BS across the offloading time period (6.2).

6.1 Optimal transmission power

We are now going to derive a formula, which takes the future (predicted)
values of the channel gain between the UE and the BS as input parameters
and which yields us the optimal transmission power needed to finish the
offloading within the time constraint.

According to the dynamic channel model described in 2.2.2 we know, that
size of offloaded data can be obtained from the following equation:

D =
∫ t

0
C(τ) · dτ =

∫ t

0
bn · log2 (1 + p · g(τ)

b · (Ib + σ)) · dτ (6.1)

To derive an analytic formula, we adopt a widely used ([25], [26]) approxi-
mation that log2(1 + γ) ≈ log2(γ), where γ = (p · g(τ))/(b · (I + σ)) is the
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signal-to-interference-plus-noise ratio (SINR). This approximation is generally
valid under the condition that γ >> 1, thus it is often called “high SINR
regime”. In realistic offloading scenarios, we transmit relatively large amounts
of data under short time constraints (often in real time) and the SINR is
therefore high enough to make this approximation valid.

We can now rewrite the integral as:

D ≈
∫ t

0
bn · log2 ( p · g(τ)

b · (Ib + σ)) · dτ (6.2)

And derive the formula for the transmission power (as in chapter 4.1).

p = b · (Ib + σ) · 2
D
t·b−

1
t
·
∫ t

0 log2(g(τ))·dτ (6.3)

Further we split the exponential for D
t·b and −1

t ·
∫ t

0 log2(g(τ)) · dτ :

p = b · (Ib + σ)

2
1
t
·
∫ t

0 log2(g(τ))·dτ
· 2

D
t·b (6.4)

If we compare this result with the formula for optimal offloading power
derived under the approximation log2(1 + γ) ≈ log2(γ) (assuming static
channel capacity C = D/t), which is:

p = b · (Ib + σ)
g

· 2
D
t·b (6.5)

We see that in the divisor of the fraction in formula 6.4 we have obtained an
equivalent of the static channel gain. And the channel gain in this case is
equal to geometric mean of the future gain values.

gm = 2
1
t
·
∫ t

0 log2(g(τ))·dτ = GM(g) (6.6)

This result can be also rewritten into summary form for obtaining the predic-
tion of channel gain from future channel gain measurements (taken uniformly
over an time window):

gm = 2
1
t
·
∑n

i=1 log2(gi)·tstep = n

√√√√ n∏
i=1

gi = GM [g] (6.7)

where gi is the i-th channel gain measurement and tstep = t/n is the time-step
between the individual measurements. We now have the tools to make the
offloading decision for dynamic channel based on future (predicted) values of
gain across the UE’s future trajectory.

We then insert the mean channel gain gm obtained according to the formulas
6.6, 6.7 into the formula for setting the offloading power p without the
approximation γ >> 1 (4.2) described in the previous chapter 4.1:

p = b · (Ib + σ)
gm

·
(

2
D

Toff ·b − 1
)

(6.8)
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6. Offloading optimization using prediction of future movement ................
where gm is the mean channel gain between the UE and the BS over the
offloading period.

6.2 Prediction of future channel gain to BS

We are now going to present a sub-optimal solution to obtain future channel
gain values for making the offloading decision. Because this work does
not take shadowing into account, the channel gain depends solely on the
distance between the UE and the BS and can be expressed by deterministic
mathematical models. Thus to obtain the information about the UE’s channel
gain to the BS at specific time, all we need to know is the UE’s location at
that time. The channel gain prediction problem is therefore transformed into
one of predicting trajectory. We chose to divide the trajectory prediction
problem into two sub-problems.

We assume we have access to the information about geographical location,
UE’s movement speed and direction of movement at the time of making the
offloading decision. Note that UE’s location can be easily obtained by GPS
or even by mobile network itself depending on channel qualities to several
BSs. From this information, we are able to make predictions about the UE’s
future trajectory. We further assume, that the predicted trajectory is going
to deviate from the real one more the farther we are from the starting point.
In other words, the location prediction error is going to grow with time.
If we were to choose an arbitrary lower limit for location prediction error,
after which the prediction is not usable for making the offloading decision,
there might exist future point in time Tchange in which the prediction error is
going to drop under the chosen limit. It is therefore beneficial to divide the
offloading time interval into two parts, and solve the problem for each part
individually:

. Sufficent trajectory prediction. t = [Tstart, Tchange].We have a “good enough“ UE trajectory prediction at hand..Uncertain trajectory. t = [Tchange, Tend],.We do not have any sufficient prediction of UE future trajectory.

This approach is illustrated in figure 6.1.
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BS

UE

???

1

2

Figure 6.1: Illustration of the problem. For the first part of the offloading
interval (1), we have a sufficent prediction of the UEs future trajectory. For the
second part (2) we have no relevant information about the trajectory.

6.2.1 Sufficent trajectory prediction

In this part we propose a simple UE trajectory prediction model. We look
at the UE’s current geographical location, movement speed and movement
direction. We then assume that the UE will continue moving in the same
direction until Tchange. The UE’s future trajectory can be than obtained from
the equation:

cUE = cUE,start + α · vUE · tchange · dUE, ∀α ∈ [0; 1] (6.9)

where cUE are UEs coordinates on Cartesian plane, cUE,start is UEs starting
position and dUE is UEs movement direction (‖dUE‖ = 1). The prediction
of channel gain can be then computed as line integral of first type:

g = 2
1
‖l‖ ·
∫

l log2(g(‖cUE−cBS‖))·dl (6.10)

where g(‖cUE − cBS‖) = g(d) is channel gain between the UE and the BS
dependent on UEs distance from the BS, l is UEs trajectory defined in 6.9
and ‖l‖ is the trajectory length.
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6. Offloading optimization using prediction of future movement ................
6.2.2 Uncertain trajectory

In case we do not have any sufficient prediction of the UE’s trajectory, we do
not have many options. Because we need to achieve a 100% success percentage,
we decided to assume the worst-case scenario. Thus, we assume the UE will
travel straight away from the BS for the whole time. The prediction of channel
gain for this case can be derived from 6.6 as following:

g = 2
1
l
·
∫ dstart+l

dstart
log2(g(

√
h2

diff
+d2

BS))·

√
d2

BS
+h2

diff

d2
BS

·ddBS

(6.11)

where l = tmovement·vUE is UEs trajectory length, dstart = ‖cUE,start − cBS‖
is UEs starting distance from the BS (on 2-D Cartesian plane), hdiff =
hBS − hUE is the height difference between the UE and the BS and dBS =
‖cUE − cBS‖ is UEs distance from the BS on 2-D Cartesian plane.

6.2.3 Optimal setting of Tchange

In this section, we derive a probabilistic formula for the optimal setting of
the time Tchange. Tchange expresses the time for which we assume the UE is
going to travel in its initial direction. We imagine the UE is going to change
it’s direction in the time Tchange and is going to travel straight away from the
BS afterwards for the remainder of the offloading time.
Lemma 6.1. Suppose we have an UE moving according to the random
direction movement model. Suppose the time before the UE changes its
direction t1 has an uniform probability distribution t1 = U(0, tmax) with
cumulative distribution function (CDF) F (t1). We let the UE move for the
duration of t = [0; t2].
Then the probability P (t2) that the UE is going to change its direction before
the time t2 can be expressed as:
P (t2) = F (t2)

Proof. From the definition of the cumulative distribution function.
Lemma 6.2. Suppose we have an UE moving according to the random
direction movement model. Suppose the time before the UE changes its
direction t1 has an uniform probability distribution t1 = U(0, tmax). We let
the UE move for the duration of t = [0; t2], where t2 > 0.
Suppose the UE has changed its direction before the time t2. Then the
conditional probability P (t3|t2) that the UE has changed its direction before
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the time t3 ∈ [0, t2] given it has changed its direction before the time t2 has
an uniform probability distribution t3 = U(0, t2).

Proof. From the definition of the (conditional) probability: P (t3|t2) =
P (t2∩t3)
P (t2) = P (t3)

P (t2) = t3·tmax
t2·tmax

= t3
t2

= CDF of U(0, t2).
Lemma 6.3. Suppose we have an UE moving according to the random
direction movement model. Suppose the time before the UE changes its
direction t1 has an uniform probability distribution t1 = U(0, tmax). We let
the UE move for the duration of t = [0; t2], where t2 > 0.
Suppose we are given an upper limit PL on probability P (t3∩ t2) ≤ PL. Then
the maximum time t3 which satisfies the limit can be expressed as:
t3 = PL · tmax for t2 ∈ {t2|P (t2) ≥ P}
t3 = t2 for t2 ∈ {t2|P (t2) < P}

Proof. P ≥ P (t3∩t2) = P (t3|t2)·P (t2), therefore P (t3|t2) ≤ P
P (t2) . Let F

−1(t)
be the inverse CDF of U(0, t2). Then according to 6.1, 6.2 and the definition of
the inverse CDF of uniform distribution: t3 ≤ F−1( P

P (t2)) = P
P (t2) ·t3 = P ·Tmax

for P
P (t2) ≤ 1 and t3 ≤ t2 for P

P (t2) ≥ 1.

We set the Tchange according to the lemma 6.3 as:

Tchange = PL · Tmax (6.12)

For offloading time satisfying Toff ∈ {Toff |P (Toff ) ≥ PL}, and:

Tchange = Toff (6.13)

otherwise (for offloading time satisfying Toff ∈ {Toff |P (Toff ) < PL}).

PL is a desired upper limit of the probability that the UE is going to change
it’s direction before Tchange, P (Toff ) = F (Toff ) is a cumulative distribution
function of the uniform distribution U(0, Tmax) and Tmax is the parameter of
the uniform distribution.

6.3 Combined solution

Now it is time to put both parts of the solution derived in the previous
sections together. We suppose the UE is going to move in its initial direction
until Tchange and afterwards it is going to move straight away from the BS
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6. Offloading optimization using prediction of future movement ................
for the rest of the offloading time. The combined channel gain prediction ge
for the whole UE trajectory is obtained according to formula 6.6 as:

gp = √g1 · g2 (6.14)

where g1 is the mean channel gain computed over the duration of [0, Tchange]
(according to 6.2.1), g2 is the mean channel gain computed over the duration
[Tchange, Toff ] (according to 6.2.2) and the Tchange is obtained according to
6.2.3.

We then set the offloading transmission power of each UE (identically as
in the chapter 4.1) as:

p = b · (Ib + σ)
gp

·
(

2
D

Toff ·b − 1
)

(6.15)

where gp is the predicted mean channel gain of the UE.

The combined solution is illustrated in figure 6.2.

BS

UE

1

2 t = Tchange

Figure 6.2: Illustration of the proposed solution. We assume (1) that the UE is
going to continue moving in its initial direction until Tchange (2) that it is going
to move straight away from the BS for the rest of the offloading time.
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6.4 Performance analysis of the proposed solution

In this section, we analyze the solution for dynamically changing channel
proposed in former section of this chapter.

We start by analyzing two extreme settings of the parameter PL: PL = 1
and PL = 0. While those settings result in poor offloading performance, they
help us to analyze and demonstrate some of the properties of the proposed
solution. After the analysis of the both extremes we move to the analysis of
the proposed solution for PL = 0.96 which we experimentally determined to
result in a good trade-off between the success rate and consumed energy.

6.4.1 Simulation setup

We adopt the same performance metrics and simulation setup as in chapter
4. We also often compare the proposed solution to the ideal, obtained in a
following manner. We first let all the UEs move according to their random
movement model for the duration of Toff . We save the information about
their channel gain to the BS and their geographical location in each time-
step. From the information about the channel gains we compute the optimal
channel gain according to the chapter 6.1.

Then follows the offloading process where the UEs offload their data while
moving. The UEs start from their originally generated locations, but instead
of moving according to the random movement model, they follow precisely
the same path we have saved before. All important simulation parameters
are summarized in the table 4.2.

6.4.2 Analysis of the proposed framework for extreme
settings of PL

Performance analysis for PL = 1

First, we are going to analyze our solution for the setting of the parameter PL
as PL = 1. This setting of PL means, that when predicting the trajectory of

39



6. Offloading optimization using prediction of future movement ................
the UEs, we suppose that the UEs will move in the initial movement direction
for the whole time of the offloading.

This is not a proposed offloading optimization solution as the setting PL = 1
is an extreme that yields unusable results. But analysis of this extreme helps
us to demonstrate some of the properties of our solution.

The offloading success rate, average energy consumption for offloading
and average energy consumption including local computing are displayed in
figures 6.3, 6.4 and 6.5, respectively.1
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Figure 6.3: Comparison of success rate of the ideal solution (obtained under the
approximation SINR>> 1, 6.1) and the proposed optimization framework under
the extreme setting PL = 1. The success rate depends on UEs movement speed
and the results are displayed for different time constraints.
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Figure 6.4: Comparison of energy consumed by offloading by the ideal solution
(obtained under the approximation SINR>> 1, 6.1) and the proposed optimiza-
tion framework under the extreme setting PL = 1. The energy consumption
depends on UEs movement speed and the results are displayed for different time
constraints. The energy consumption of both solutions overlap.

1We display these specific results for larger number of time constraints than in latter
sections, so that the aspects of the success rate results we want to demonstrate here are
better visible (in exchange for worse readability of the energy consumption).
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Figure 6.5: Comparison of total energy consumed by the ideal solution (obtained
under the approximation SINR>> 1, 6.1) and the proposed optimization frame-
work under the extreme setting PL = 1. The energy consumption depends on
UEs movement speed and the results are displayed for different time constraints.
The energy consumption of both solutions overlap.

The success rates are somewhat evenly distributed between 60 and 100
percent. The probabilities of the UEs changing their movement direction
during the offloading in our simulation are: 5 percent for time constraint of 1
second, 25 percent for 5seconds, 50 percent for 10 seconds, 75 percent for 15
seconds and 100 percent for 20 seconds.

The displayed results make sense, because the probability of the UE
worsening its channel gain to the BS after changing it’s direction is about 50
percent (as shown in the chapter 4.1). Therefore, even if all of the UEs change
their direction during the offloading time, only 50 percent are not going to
finish the offloading within the time constraint. Thus the real probability
Preal that the UE finishes offloading can be expressed approximately as:

Preal ≈ PL + 1− PL
2 (6.16)

The additional improvements in success rates for the UEs with longer time
constraint and movement speeds are caused by the "high SINR regime"
approximation under which we compute the channel gain (see 6.1), as it
slowly falls apart for such long time constraints.

Energy-wise is this solution almost identical with the ideal solution. We
can see the energy slightly increasing over the ideal solution for the UEs who
travel for longer trajectories during the offloading. This goes in hand with
the improvements in offloading success rate improvements described in the
previous paragraph.
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Performance analysis for PL = 0

We are now going to analyze our solution for the setting of the parameter PL
as PL = 0. This setting of PL means, that when predicting the UE trajectory,
we suppose that the UE will move straight away from the BS for the whole
time of the offloading. In other words, we are trying to be always on the safe
side so that tasks are offloaded successfully, but at the cost of higher energy
consumption.

We emphasize, that this is not a proposed offloading optimization solution
as the setting PL = 0 is an extreme that yields unusable results. But analysis
of this extreme helps us to demonstrate some of the properties of our solution.

The offloading success rate, average energy consumption for offloading
and average energy consumption including local computing are displayed in
figures 6.6, 6.7 and 6.8 respectively.
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Figure 6.6: Comparison of success rate of the ideal solution (obtained under the
approximation SINR>> 1, 6.1) and the proposed optimization framework under
the extreme setting PL = 0. The success rate depends on UEs movement speed
and the results are displayed for different time constraints.
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Figure 6.7: Comparison of energy consumed by offloading by the ideal solution
(obtained under the approximation SINR>> 1, 6.1) and the proposed optimiza-
tion framework under the extreme setting PL = 0. The energy consumption
depends on UEs movement speed and the results are displayed for different time
constraints.
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Figure 6.8: Comparison of total energy consumed by the ideal solution (ob-
tained under the approximation SINR>> 1, 6.1) and the proposed optimization
framework under the extreme setting PL = 0. The energy consumption depends
on UEs movement speed and the results are displayed for different time con-
straints.

According to the intuition, the offloading success rate now stays at 100
percent for every time constraint and every UE movement speed. On the other
hand, we can see a large increase of the consumed energy (both consumed
by offloading and in total). We are wasting a lot of energy, because about
50 percent of the UEs do not travel away from the BS and almost none of
the UEs do really move straight away from the BS. We are assuming the
worst possible scenario, but we can see that this assumption is unreasonably
pessimistic for the vast majority of the cases.
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Interesting is also the energy "spike" for time constraints of 5 and 20 seconds

at low movement speeds. This is due to the UEs whose starting position is at
the edge of the simulation. Some part of the UEs which have really low initial
channel gain to the BS (and on top of that possibly even travel further away
from the BS) cross the threshold of the transmission power limit pmax. These
UEs then decide to compute their tasks locally. But the local computing of
the tasks on average costs much more energy than offloading of the tasks to
the BS. Further, the energy increase caused by this decision makes a bigger
difference for longer offloading time constrains, as these have a lower average
energy consumption.

6.4.3 Performance analysis of the proposed solution

We have achieved the best overall trade-off between the success rate and
consumed energy by trial and error approach with the setting of PL = 0.96.
The offloading success rate, average energy consumption for offloading and
average energy consumption including local computing are displayed in figures
6.9, 6.10 and 6.11 respectively. With this setting of PL, the resulting success
rates stay above ≈ 98% (in accordance to formula 6.16).
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Figure 6.9: Comparison of success rate of the ideal solution (obtained under the
approximation SINR>> 1, 6.1) and the proposed optimization framework under
the proposed "optimal" setting PL = 0.96. The success rate depends on UE
movement speed and the results are displayed for different time constraints.
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10 -3 Average energy consumed by offloading
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Figure 6.10: Comparison of energy consumed by offloading by the ideal solution
(obtained under the approximation SINR>> 1, 6.1) and the proposed optimiza-
tion framework under the proposed "optimal" setting PL = 0.96. The energy
consumption depends on UE movement speed and the results are displayed for
different time constraints.
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Figure 6.11: Comparison of total energy consumed by the ideal solution (ob-
tained under the approximation SINR>> 1, 6.1) and the proposed optimization
framework under the proposed "optimal" setting PL = 0.96. The energy con-
sumption depends on UE movement speed and the results are displayed for
different time constraints.

Both the energy consumption by offloading and the energy consumed in
total stay (relatively) close to the ideal. Much more information can be seen
if we make a relative comparison between the proposed solution and the ideal
solution. The comparison for energy consumed by offloading and total energy
consumption are displayed in figures 6.12 and 6.13, respectively. For short
time constraints, the energy increase over the ideal stays around few percent
(1 percent for the time constraint of 1s). It gets much worse for longer time
constraints - for the time constraint of 20s we can see a peak increase of
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6. Offloading optimization using prediction of future movement ................
≈ 40% in energy consumed by offloading and a colossal peak increase of
≈ 200% in total energy consumed. These are again caused by some of the
UEs computing locally instead of offloading their task due to being positioned
far from the BS in combination with sub-optimal future trajectory prediction
(as in 6.4.2).

In real world, the relative energy difference between the proposed and
the ideal solution does not matter by far as much as the absolute increases
in consumed energy. The greatest absolute increase in energy consumption
occurs for short time constraints (the energy consumed grows exponentially
with decreasing offloading time, see 4.3). By setting the PL = 0.96, we can
achieve a very good trade-off between the success rate and energy consumption
for short time constraints, while keeping the success rates for every time
constraint and UE movement speed over ≈ 98%.
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Figure 6.12: Relative comparison of the increase in energy consumed by the
offloading by proposed optimization framework under the proposed "optimal"
setting PL = 0.96 compared against the ideal solution (obtained under the
approximation SINR>> 1, 6.1). The relative energy consumption depends on
UE movement speed and the results are displayed for different time constraints.
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Figure 6.13: Relative comparison of the increase in total energy consumed by
proposed optimization framework under the proposed "optimal" setting PL =
0.96 compared against the ideal solution (obtained under the approximation
SINR>> 1, 6.1). The relative energy consumption depends on UE movement
speed and the results are displayed for different time constraints.
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6.4.4 Performance comparison of our solution (PL = 0.96)
and the current state-of-the-art

We are now going to compare the performance of our solution to the current
state-of-the-art solution for the best setting of PL, that is for PL = 0.96.
The offloading success rate, average energy consumption for offloading and
average energy consumption including local computing are displayed in figures
6.14, 6.15 and 6.16 respectively. Success rates of the proposed solution stay
above ≈ 98% (in accordance to formula 6.16), while the current solution stays
on ≈ 50% (the slight increase for the time constraint of twenty seconds is
explained in chapter 4.4).
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Figure 6.14: Comparison of success rate of the current state-of-the-art (static)
offloading solution and the proposed optimization framework under the proposed
"optimal" setting PL = 0.96. The success rate depends on UE movement speed
and the results are displayed for different time constraints.
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Figure 6.15: Comparison of energy consumed by offloading by the current state-
of-the-art (static) offloading solution and the proposed optimization framework
under the proposed "optimal" setting PL = 0.96. The energy consumption
depends on UE movement speed and the results are displayed for different time
constraints.
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Figure 6.16: Comparison of total energy consumed by the current state-of-the-
art (static) offloading solution and the proposed optimization framework under
the proposed "optimal" setting PL = 0.96. The energy consumption depends on
UE movement speed and the results are displayed for different time constraints.

The relative comparison for energy consumed by offloading and total energy
consumption are displayed in figures 6.17 and 6.17 respectively. Comparisons
of the energy consumption (both absolute and relative to ideal) are comparable
with the energy consumption analyzed in the previous section 6.4.3.
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Figure 6.17: Relative comparison of the increase in energy consumed by the
offloading by proposed optimization framework under the proposed "optimal"
setting PL = 0.96 compared against the current state-of-the-art (static) offloading
solution. The relative energy consumption depends on UE movement speed and
the results are displayed for different time constraints.
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Figure 6.18: Relative comparison of the increase in total energy consumed by
proposed optimization framework under the proposed "optimal" setting PL = 0.96
compared against the current state-of-the-art (static) offloading solution. The
relative energy consumption depends on UE movement speed and the results are
displayed for different time constraints.
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We also include a general result comparison of the two solutions averaged

over twenty different values of movement speed ([0, 20] meters per second) and
five different time constraints (1, 5, 10, 15 and 20 seconds). This comparison
is displayed in figures 6.19, 6.20, 6.21 for success rate, average offloading
energy and total energy respectively.
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Figure 6.19: Overall comparison of success rate of the current state-of-the-art
(static) offloading solution and the proposed optimization framework under the
proposed "optimal" setting PL = 0.96. The success rate is averaged over twenty
different values of movement speed ([0, 20] meters per second) and five different
time constraints (1, 5, 10, 15 and 20 seconds).
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Figure 6.20: Comparison of energy consumed by offloading by the current state-
of-the-art (static) offloading solution and the proposed optimization framework
under the proposed "optimal" setting PL = 0.96. The energy is averaged over
twenty different values of movement speed ([0, 20] meters per second) and five
different time constraints (1, 5, 10, 15 and 20 seconds).
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Figure 6.21: Comparison of total energy consumed by the current state-of-the-
art (static) offloading solution and the proposed optimization framework under
the proposed "optimal" setting PL = 0.96. The energy is averaged over twenty
different values of movement speed ([0, 20] meters per second) and five different
time constraints (1, 5, 10, 15 and 20 seconds).

6.4.5 Conclusion

We see that for realistic movement speeds and time constraints, we were
able to achieve ≈ 99% offloading success rate, which is twice the success
rate of the current state-of-the-art solution (≈ 50%). The increase in energy
consumption of our solution is on other hand on average only ≈ 10% when
we count only offloading and ≈ 16% if we count in also the cost of local
computing.
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Conclusion
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7. Conclusion......................................
In this thesis, we have analyzed the current state-of-the-art offloading

optimization framework in an environment with dynamic channel quality
changes and we have shown that it is not usable. We then analyzed a simple
modification of the current framework, where we left a time-reserve for the
offloading to have some safety margin if the UEs are moving. This analysis
allowed us to better understand the trade-off between the consumed energy
and the number of tasks successfully offloaded. With this trade-off in mind, we
have proposed a framework for the optimization of offloading computing tasks
to the MEC server in an environment with dynamically changing channel
quality. We have transformed the channel quality prediction problem into
one of predicting the future trajectory of the UEs. We then introduced a
simple proof-of-concept method for predicting the UEs trajectories.

We have shown, that the current state-of-the-art offloading solution is
unusable when the channel is changing dynamically during the offloading,
because only ≈ 50% of the tasks finish the offloading within their time
constraints. On the other hand, the framework proposed in this thesis is able
to guarantee ≥ 98% of the tasks offloaded within the time constraint, while
the average energy increase over the current state-of-the-art static channel
solution is for realistic movement speeds and time constraints on average
only ≈ 10% and ≈ 16% if we do not consider local computing or if the local
computing is assumed, respectively.

Even though the thesis presents very encouraging results, there are many
open challenges that can be addressed in the future. Some of them are:

. Splitting of the tasks with longer time constraints into smaller parts
and making the offloading decision for each part individually. The
energy consumption of the proposed solution is growing for longer time
constraints, as we are not able to predict the future channel quality as
accurately (see 6.4.4). Optimizing the splitting of the tasks into smaller
sub-tasks could therefore bring great benefits.. The UE trajectory prediction framework proposed in this thesis is simple
but sub-optimal. There exist more complex and accurate frameworks
(as summarized i.e. in [27]). Leveraging a more optimized mobility
prediction framework would certainly improve the results and the real-
world applicability of our solution.. In this work, we imagine a scenario, where all of the UEs have direct
line-of-sight (LOS) to the BS and the proposed solution is therefore not
applicable to scenarios where the line of sight is obstructed (for example
urban scenarios with buildings). Without the line of sight to the BS, our
solution could be improved by utilizing a framework to predict shadowing
based on the UEs geographical location (proposed for example in [28]).

54



...................................... 7. Conclusion

. Extension from direct offloading to offloading in multiple hops over relays
(see for example [5], [29]) could prove very beneficial both in environments
without the line-of-sight and overall. Here, an interesting direction to
investigate could be the optimization of the relay selection based on the
movement of both the UE and the relays.

55



56



Appendix A

List of Acronyms

Acronym Meaning

UE User equipment
BS Base station
MEC Multi-access edge computing
UAV Unmanned aerial vehicle
SINR Signal-to-interference-plus-noise ratio
IoT Internet of things
LOS Line of sight
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