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Abstract

The research and scalability of machine learning research have been accelerated by
moving from manual feature engineering to automatic feature extraction. The use of
JSON data format in various domains such as cybersecurity, physics or biochemistry
development motivated the automated processing of such data. Tree-structured data
has previously been shown to generalise the concept of the JSON data format [1].
However, only a mode for discriminative learning of such data has been proposed.
In this work, we propose a Sum-Product-Set Network (SPSN), a generative model
for tree-structured data based on explicit modelling of its density. We address the
challenges of modelling tree-structured data by using the theory of random finite
sets. Random finite set theory is combined with a tractable probabilistic model of
Sum-Product Networks. The experimental results provide in-depth insights into the
strengths and limitations of SPSN in different data domains and highlight the com-
petitiveness of tractable probabilistic models against intractable neural networks.

Keywords Sum-Product-Set Networks, Tree-structured data, JSON data format,
Probabilistic learning, Density learning, Classification, Clustering, Sum-Product
Networks, Multiple-instance learning, Hierarchical multiple-instance learning
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Abstrakt

Výzkum a škálovatelnost výzkumu v oblasti strojového učeńı se urychlily přechodem
od ručńıho vytvářeńı př́ıznak̊u k automatické extrakci př́ıznak̊u. Použit́ı datového
formátu JSON v r̊uzných oblastech, jako je kybernetická bezpečnost, fyzika nebo
biochemie, motivovalo k automatizovanému zpracováńı i těchto dat. Již dř́ıve
se ukázalo, že stromově strukturovaná data zobecňuj́ı koncept datového formátu
JSON [1]. Byl však navržen pouze zp̊usob diskriminačńıho učeńı takových dat.
V této práci navrhujeme śı̌t typu SPSN (Sum-Product-Set Network), generativńı
model pro stromově strukturovaná data založený na explicitńım modelováńı jejich
hustoty. Problémy modelováńı stromově strukturovaných dat řeš́ıme pomoćı teorie
náhodných konečných množin. Teorie náhodných konečných množin je kombinována
s pravděpodobnostńım modelem Sum-Product śıt́ı. Experimentálńı výsledky posky-
tuj́ı hluboký vhled do silných stránek a omezeńı SPSN v r̊uzných datových doménách
a zd̊urazňuj́ı konkurenceschopnost pravděpodobnostńıch model̊u v̊uči neuronovým
śıt́ım.

Kĺıčová slova Sum-Product-Set śıtě, Stromově strukturovaná data, JSON datový
formát, Pravděpodobnostńı učeńı, Učeńı hustoty pravděpodobnosti, Klasifikace,
Shlukováńı, Sum-Product śıtě, Vı́ce instančńı učeńı, Hierarchické v́ıce instančńı
učeńı
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Chapter 1

Introduction

The use of deep learning has become increasingly dominant in various downstream
tasks, notably in computer vision for tasks such as image classification [2], object detection
and segmentation [3], or point of interest detection and local feature description [4], and in
natural language processing such as machine translation [5, 6]. This surge in adoption has
coincided with a shift away from the traditional approach of extensive feature engineering, as
machine learning models have increasingly demonstrated the ability to automatically extract
relevant features from data.

Firstly, the thesis focuses on developing machine learning models tailored specifically
for a particular type of data called tree-structured data. While machine learning has histori-
cally concentrated on tensors (like images), sequences (such as language), and, more recently,
graphs, this thesis emphasizes JSON files as a data type that has received relatively little
attention in the field. Nonetheless, prior successful attempts to model such data have been
documented [1].

Secondly, the aim is to leave the dominant data-driven approach in machine learning
by proposing a model-based approach rooted in probability theory. Machine learning often
involves learning complex functions between observations and desired outputs. We take a step
back and explore a model-based strategy. The adoption of probability theory serves as a foun-
dational basis, providing theoretical robustness and soundness to the proposed models. The
adoption process includes carefully examining the data’s structure and unique characteristics
and crafting a model specifically tailored to match the data’s structure.

As only discriminative models based on neural networks [1] or distances [7] were pro-
posed for tree-structured data, there is a gap to fill by generative models. Therefore, we aim
to develop a generative model of such data.

1.1 Structured data

Pevný et al.’s work [8, 9] applied machine learning to hierarchically structured data
in cybersecurity, where the dominant approach was extensive feature engineering [10, 11].
Pevný et al.’s hierarchical data model [8], based on a neural network formalism, serves as a
generalisation of multiple instance learning [12]. Subsequently, this hierarchical data model
found practical application [1] in the automated processing of data stored in the JavaScript
Object Notation (JSON) file format [13], which inherently adheres to a similar hierarchical
structure, demonstrating the versatility and adaptability of these methods across different
data formats and domains.

Mandĺık provides a detailed description and extension of Pevný et al.’s approach [8]
to hierarchically structured data in his thesis [14]. Mandĺık further argues in his thesis that
we should build machine learning models directly on structured data. The simple illustration

CTU in Prague Department of Control Engineerng



2/57 1.2. DENSITY ESTIMATION

CHAPTER 3. HMILL FRAMEWORK

their maximum? Or minimum? Secondly, this way of species modelling does not reflect how humans
learned to recognise plants. Most of the time, a skilled botanist is able to identify a specimen not by
making use of any measuring device, but by visual or tactile inspection of its stem, leaves and blooms.
For different species, different parts of the plant may need to be examined for indicators. At the same
time, many species may have nearly identical-looking leaves or blooms, therefore, one needs to step
back, consider the whole picture, and appropriately combine lower-level observations into high-level
conclusions about the given specimen. Intuitively, if we want to develop artificial intelligence capable
of doing this task like humans do, we should provide it with the same input.

For instance, consider the depiction in Figure 3.2. We first logically split the plant into a stem,
three blossomed blooms and a bud. The stem is represented by vector xs encoding its distinctive
properties such as shape, color, structure or texture. Next, we inspect all blooms. Each of the blooms
may have distinctive discriminative signs, therefore, we describe all three in vectors xb1 ,xb2 ,xb3 , one
vector for each bloom. Finally, xu represents the only flower which has not blossomed. Likewise, we
could describe all leaves of the specimen if any were present. Here we assume that each specimen of the
considered species has only one stem, but may have multiple flowers or leaves. Hence, all blooms and
buds are represented as unordered sets of vectors as opposed to stem representation, which consists
of only one vector. Moreover, for simplicity, we decided to stop at the level of flowers and do not
decompose them further. Namely, we could as well describe a bloom as a set of vectors representing all
of its petals and one vector representing the only sepal. Last but not least, due to various reasons, some
collected specimens may have different amounts of flowers, or the flowers may be missing altogether.
Still, human botanists are able to identify the species in many cases. This implies that our system
should be able to tackle this kind of input as well.

f






xs

{xb1 ,xb2 ,xb3}
{xu}




 =





Iris setosa

Iris virginica

Iris versicolor

extract features

xs


xb1

xb2

xb3





{xu}

send to

a classifier

Figure 3.2: A more general representation of a specimen. In this case, we describe all components of the
specimen in a general way, dealing with different amounts of blooms and leaves. In this picture, the specimen
consists of a stem (olive), three blooms (navy) and one bud (green), which we describe in a hierarchical manner
(see text).

The representation we have presented encodes structure together with simple measurements in a
hierarchical manner, which is much more flexible than the representation from Figure 3.2. However,
this also introduces new challenges into the design of the classifier f . The example from this section,
together with discussion in Chapter 1 and benefits and drawbacks stemming from MIL formulation
introduced in Chapter 2, motivated the design of the HMill framework.

17

Figure 1.1: Example of iris flower viewed as an instance of tree-structured data. Refer to the
source [14] for more details.

{
"ind1": 1, "lumo": -1.246, "inda": 0, "logp": 4.23, "atoms": [
{
"element": "c",
"bonds": [
{"element": "c", "charge": -0.117, "bond": 7, "atom": 22},
{"element": "h", "charge": 0.142, "bond": 1, "atom": 3}

],
"charge": -0.117,
"atom": 22

},
.
.
.

{
"element": "h",
"bonds": [
{"element": "c", "charge": -0.117, "bond": 1, "atom": 22}
],

"charge": 0.142,
"atom": 3

}
]

}

a

x x x x
`

a a

x
`

x x x
`

x x

a a a

x x x x x x x x x x x x

. . .

Figure 1.2: (left) Sample of Mutagenesis dataset [19] stored in JSON data format. (right)
Leaf-attributed tree (defined later in the Chapter 3) of sample on the left.

is based on a well-known dataset of iris flowers [15]. The main argument is that botanists
would classify the flowers used to create the iris dataset by inspecting the whole flower (using
structured information), as shown in Figure 1.1, rather than some pre-processed features
commonly used in practice. To develop competitive artificial intelligence based on machine
learning, we should ideally provide it with the same inputs as humans, which overlaps with
the recent shift towards automatic feature extraction.

In this sense, structural data formats such as XML or JSON serve as human-readable
ways to store the data and preserve some of its structural information. While the JSON format
is widely used in computer security [11, 16, 17], it is not limited to storing data in this domain.
It is also used in biochemistry [18], for example, to store information about molecules [19], as
shown on the left in Figure 1.2.

1.2 Density estimation

Generative modelling is a fundamental aspect of machine learning that has been gain-
ing momentum. Recent advances in this area include realistic image synthesis [20] and text
generation using large language models [21]. These models exhibit exceptional expressiveness,
generating realistic outputs from probability distribution learned from an excessive amount
of existing data. The underlying principle defining the generative model is the probabilistic
nature of the model and the probability density it represents.

The knowledge of probability density function is critical to statistical analysis and in-

CTU in Prague Department of Control Engineerng



1. INTRODUCTION 3/57

ference. One can use it to calculate all descriptive statistics approximated from data when the
density is unavailable. One of the descriptive statistics includes the highest posterior density
region, which, as its name suggests, tries to find a region where a lot of probability density
is concentrated. This naturally leads to outlier detection methods based on the assumption
that outlying observations lie in areas with low probability density.

The probability density is not only limited to classical analysis but can be used in
various machine learning tasks - tasks called supervised, containing data annotations and
tasks called unsupervised, not containing annotations. Classification and clustering, respective
instances of supervised and unsupervised tasks, can be bridged using latent variable models
such as mixture models. Treating the data annotations as a latent variable leads to a natural
extension of unsupervised and supervised methods to semi-supervised ones, where the data
are only partially annotated. The idea of latent variables generalizes beyond clustering or
semi-supervised learning. Latent variables can assist in dealing with missing data. They can
be used in imputation models to estimate missing values based on observed data patterns,
assuming that the latent variables capture them.

Missing data on the prediction level can be naturally handled by marginal probability
densities – missing data values are marginalized out of the probability density. Marginal
density plays a role in computing conditional density by utilizing Bayes’ rule – extending the
concept of prediction beyond predicting only latent variables (data annotations) and data
features.

−4 −2 0 2

−2

0

2

4

x1

x
2

−4 −2 0 2

−2

0

2

4

x1

x
2

2

4

6

8

·10−2

Figure 1.3: (left) Random samples generated from probability distribution described by prob-
ability density on the (right).

1.3 Structure of the thesis

In this thesis, we propose a generative model for tree-structured data. We are motivated
by recent advances in automated JSON data learning, where discriminative methods for clas-
sification were proposed. JSON datasets can be realized as a special type of tree-structured
data. Since the area is relatively novel, there has yet to be a generative approach for this type
of data in its full complexity.

The thesis is organized as follows:

• The first chapter serves as an introduction to probability density, its estimation and use
cases. Some modern methods of density estimation are presented. At last, we introduce
the probabilistic model of the Sum-Product Network and mention its advantages that
revolve around its exact and efficient probabilistic inference.

CTU in Prague Department of Control Engineerng



4/57 1.3. STRUCTURE OF THE THESIS

• The second chapter introduces the studied data (trees) in more detail. Brief prior work on
learning special cases of tree-structured data, while special care is taken of probabilistic
models of random finite sets. Towards the end of the chapter, the Sum-Product-Set
model, an extension of Sum-product networks to leaf-attributed trees, is defined, and
its examples and basic capabilities are presented.

• The third chapter defines the experimental tasks which need to be restricted to classifi-
cation and clustering tasks due to the lack of competitive density estimation approaches
of general tree-structured data. Performance measures, datasets used, and experimental
setup form the rest of the chapter.

• The fourth chapter presents experimental results and discusses them.
• The last chapter summarizes the achievements of the thesis and explores the possible
areas of future work.

CTU in Prague Department of Control Engineerng
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Chapter 2

Density estimation in Rn

Construction of probability density

Probability space Let us consider a probability space (Ω, σ(Ω),P), where Ω represents the
sample space, σ(Ω) constitutes a σ-algebra on Ω (the event space), and P : Ω → [0, 1] is a
measure. If it holds that P(∅) = 0 and P(Ω) = 1, then P is referred to as probability measure.

Random variable A random variable X : Ω→ X is a measurable function between prob-
ablity space (Ω, σ(Ω),P) and measure space (X , σ(X ), µ). The measurability of X means that
X−1(A) = {ω ∈ Ω |X(ω) ∈ A} ∈ σ(Ω) for all A ∈ σ(X ). The set X−1(A) is called a pre-image
of A.

Probability distribution We define the distribution P : X → [0, 1] of X as P (A) = P(X ∈
A) = P ◦X−1(A) for all A ∈ σ(X ), where P = P ◦X−1 is called a push-forward measure. A
probability distribution ties together a probability measure and a random variable. It follows
that P (X ) = 1. Similarly to a probability measure, for the probability distribution, it holds
that P (∅) = 0 and P (X ) = 1.

Probability density The Radon-Nikodym theorem [22] states that if a probability distri-
bution P is absolutely continuous with respect to reference measure µ (defined on measurable
space (X , σ(X ))), then there exists a measurable function p : X → R+

0 , called a probability
density, defined as Radon-Nikodym derivative

p =
dP

dµ
, (2.1)

which can be equivalently expressed as a function p satisfying

P (A) =

∫
A
p dµ, (2.2)

for all A ∈ σ(X ).
When dealing with real-valued variables, X ∈ Rd, µ is commonly chosen as the Lebesgue

measure [23]. Contrary to that, for discrete-valued random variables X ∈ N, µ is chosen as the
counting measure [23] and p is then called a probability mass function, not a density function.
We will refer to the Radon-Nikodym derivative p simply as probability density regardless of
the type of X and the reference measure.

CTU in Prague Department of Control Engineerng
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2.1 Probabilistic learning

Estimation of probability density

Suppose we are given a dataset D = {xi ∈ X | i = 1 . . .m} where xi ∼ p∗(x) are
presumably independnet and identically distributed (i.i.d) instances of x. However, this true
generating (underlying) distribution, p∗(x), is generally unknown. We seek to learn a user-
specified density p(x) that approximates the true density p∗(x). An example of probability
density and samples generated from it is presented in Figure 2.1.

Throughout this thesis, we will assume parametric density estimation. This setting
specifies that the density function is parameterized by θ, an element of the parameter space
Θ, a set of all possible configurations of θ. We will be dealing with proper densities, meaning
that both the structural form of the density pθ and the set Θ are constrained in such a way
that for every θ ∈ Θ, the density pθ is non-negative and integrates to one over the entire space
X .

Given this setup, a common approach to density estimation is the maximum likeli-
hood estimation [24]. It proceeds by defining the likelihood function, denoted as L(θ|D), for
the parameters θ, and given the dataset D, which consists of independently and identically
distributed (i.i.d.) observations,

L(θ|D) =
∏
x∈D

pθ(x), (2.3)

and the log-likelihood function, denoted as follows:

L(θ|D) = logL(θ|D) =
∑
x∈D

log pθ(x). (2.4)

We are interested in finding θ̂ = argmaxθ∈ΘL(θ|D) which is referred to as the maximum
likelihood estimate of θ based on the dataset D. Both L and L attain maxima for the same
θ ∈ Θ, as log is a strictly increasing function.

Additionally, it has been shown in [25] that maximizing the log-likelihood is asymp-
totically equivalent to minimizing the Kullback-Leiber (KL) divergence DKL(p

∗(x)||pθ(x))
between the true (unknown) distribution p∗(x) and our approximation pθ(x) with respect to
θ ∈ Θ as |D| → ∞. This ensures that the maximum likelihood estimation gives asymptotically
the best approximation to the true distribution in terms of the forward KL divergence.

Unsupervised learning

Unsupervised learning is a machine learning paradigm where models try to capture some
underlying pattern in the data without being provided with the pattern during the training.
The datasets used in an unsupervised setting can be written as

DU = {xi ∈ X | i = 1 . . .m}

where xi ∼ p∗(x) are assumably i.i.d. Density learning task falls into this paradigm as it
provides the most fundamental insight into the data and its generative process. Nevertheless,
unsupervised learning encompasses more additional tasks, such as clustering and outlier de-
tection, where both of these can be formulated in probabilistic setting, making effective use
of the density estimation.

CTU in Prague Department of Control Engineerng



2. DENSITY ESTIMATION IN Rn 7/57

Clustering In clustering, the primary objective is to partition DU into a beforehand un-
known number of subsets, commonly referred to as clusters. The samples from DU assigned
to the same cluster should be as similar as possible, and the samples assigned to different
clusters should be as distinct as possible.

This challenge can be formulated as the search for a function f : X → C that assigns a
cluster label c ∈ C = {1, . . . , nc} to observations x ∈ DU . nc signifies the number of clusters, a
parameter estimated as part of the model learning or specified by the user. The probabilistic
formulation of clustering resorts to the estimation of p(x) while assuming the underlying
hidden structure by introducing hidden (latent) variable c ∈ C. This introduction creates a
joint probability density p(x, c) that p(x) =

∑
c∈C p(x, c) =

∑
c∈C p(x|c)p(c). The terms p(x|c)

represent the probability density of each cluster c. Models of this type are also called mixture
models (more on this later).

The assignment of a sample x to a specific cluster c ∈ C is determined by the most likely
component to have generated x. In other words, this is expressed as f(x) = argmaxc∈Cp(x, c).

Outlier detection In the outlier detection, we seek to find so-called outliers. Hawkins [26]
defines them as follows: “An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different mechanism”. Let us
assume that we have the true density p(x) of the data at our disposal. Under this definition,
the data generated by p(x) is not likely to appear in areas where p(x) is small and is more
likely to appear in areas with bigger valued of p(x). In the outlier detection approach based
on probability density, sample x ∈ DU is classified as an outlier if its density p(x) falls under
some non-negative threshold τ . Given a density p(x), threshold τ ≥ 0, set of outliers in dataset
DU reads

DO = {x ∈ DU | p(x) < τ}.
Setting appropriate threshold τ can done using the notion of highest density regions, defined
later in the subsection about probabilistic inference. The outlier detection task is especially
difficult because, realistically, we are rarely provided with the density p(x) and therefore need
to estimate it from the data.

Supevised learning

The classification is one of the most notable tasks that fall under the category of super-
vised problems. In classification tasks, the training data typically takes the form of

DL = {(xi, yi) ∈ X × Y | i = 1, . . . ,m} ,

where (xi, yi) are independently, identically distributed according to some true (usually un-
known) probability distribution p∗(x, y). Features x again originate from the feature space X ,
often a subset of Rd, and classification target (label) y originates from the target space Y,
typically a finite subset of N.

The objective is to learn a function, referred to as a classifier, hypothesis or predictor,
denoted as h : X → Y. Classification models are commonly categorized into two classes [27] –
discriminative and generative models. Discriminative models focus on learning the posterior
target distribution p(y|x). The classifier is then commonly formulated as Bayes classifier [28]
as follows:

h(x) = argmaxy∈Yp(y|x). (2.5)
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Compared to that, the generative approach seeks to model directly joint distribu-
tion p(x, y) instead of posterior target distribution p(y|x). Since y in p(x, y) is discrete
and takes only finitely many values, marginalizing it is and obtaining p(x) =

∑
y∈Y p(x, y)

is usually straightforward. Obtaining p(y|x) from p(x, y) is then also straightforward since

p(y|x) = p(x,y)
p(x) ∝ p(x, y). The hypothesis can be constructed in the same manner,

h(x) = argmaxy∈Yp(y|x); however, it can be also simplified to h(x) = argmaxy∈Yp(x, y) =
argmaxy∈Yp(x|y)p(y). For generative models, the task of classification is then decomposed
into learning the density of x conditioned on target variable y, p(x|y), and target y prior
distribution, p(y). The feature-only density p(x) can be easily recovered.

2.2 Probabilistic inference
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Figure 2.1: An example of some probabilistic queries of a given probability density function
p(x) = p(x1, x2): (upper-left) Random samples generated from the distribution p(x) – SAMP
query (upper-middle) Contour lines of probability density function p(x), brighter colour means
higher density – EVI query, (upper-right) Marginal probability density function p(x2) – MAR
query, (bottom) Conditional probability density function p(x1|x2 = 3) – COND query

Evidence query (EVI)

The evidence query is one of the most fundamental queries. It simply evaluates the
density p(x) at x ∈ X . The ability of explicit evaluation of p(x) is crucial to perform the
statistical tasks mentioned in the introduction, such as classification, clustering or outlier
detection. As discussed before, we consider that the density function, pθ(x), is parametrized
by θ. In this notation, we will refer to the evaluation pθ(x) for fixed θ as evidence evaluation
and, and following the classical statistical notion, to pθ(x) for fixed x as likelihood inference.
Evaluating likelihood is the first step to performing maximum likelihood estimation of the
parameters θ. The sum of log-likelihoods in Equation 2.4 serves as the optimization criterion.
It also indicates model quality for different parameters given the same dataset D.
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2. DENSITY ESTIMATION IN Rn 9/57

Marginal query (MAR)

We can think of a marginal query as a partial evidence query. Considering X ⊆ Rn as
the support of p(x), we want to evaluate a density for a subset of all variables. We split x into
xe and xm with e ⊂ {1, . . . , n} and m = {1, . . . , n} \ e representing the indexes of observed
(partial evidence) and unobserved (missing) parts of x, respectively. For the evaluation of xe,
we marginalize xm out of p(x) , which yields

p(xe) =

∫
p(xe,xm) dxm . (2.6)

For example, assume that x = (x1, x2, x3, x4)
T ∈ R4, and that we want to evaluate the partial

evidence xe = (x2, x3)
T = (1,−2)T ∈ R2, meaning values of x1, x4 are unknown. This results

in using Equation 2.6 with xe = (1,−2)T , e = {2, 3}, and m = {1, 4}.
The marginal query allows us to perform the same tasks as the evidence query but

now with missing data. We can perform not only inference tasks but also learn from missing
data by using the partial evidence pθ(xe) as the likelihood instead of the full evidence. This is
formalized for the classification purposes by Khosravi et al., who used the idea of the expected
prediction EP(xe) [29] to tackle the classification with missing features at the prediction time.
The expectation of the predictor p(y|xe,xm) with respect to the conditional density of missing
data given observed data, p(xm|xe), is written as EP(xe) = Ep(xm|xe)[p(y|xm,xe)]. Eric Wang
et al. [30] made use of the exact marginal inference of SPNs to compute the exact expected
prediction as follows:

EP(xe) = Ep(xm|xe)[p(y|xm,xe)] =
∫
p(y|xm,xe)p(xm|xe) dxm = p(y|xe). (2.7)

Eric Wang et al. then further used exact computation as a building block for an explanation
of classifiers.

As an additional reference, papers [31, 32, 33, 34] consider experiments with marginal
queries.

Conditional query (CON)

The conditional query is simply a query to evaluate the conditional density p(xc|xe)
at xc given the partial evidence xe. We consider x being split into xe, xc, and xm, where
e ⊂ {1, . . . , n}, c ⊂ {1, . . . , n}, e ∩ c = ∅, and m = {1, . . . , n} \ (e ∪ c). Generally, the ability
to compute the conditional query lies in the ability to compute the marginal query as

p(xc|xe) =
p(xc,xe)

p(xe)
=

∫
p(xc,xe,xm) dxm∫ ∫
p(xc,xe,xm) dxcdxm

. (2.8)

For example, experiments with conditional distribution can be found in [32].

Sampling query (SAMP)

The sampling query ensures drawing samples x from p(x), denoted as x ∼ p(x). The
ability to generate random samples is a focal point of current deep generative models. Models
like Generative Adversarial Networks(GANs) [35] can generate high-quality random samples
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Figure 2.2: An example of boundaries, whose interior defines the highest posterior density
region/regions for choices of α = 0.01 and α = 0.2. The same true density as in figure 2.1,
additionally, a few random samples are generated for better visual illustration.

without being able to model the probability density explicitly. This is one of their key ad-
vantages in the context of the Monte Carlo sampling since we do not need to resort to the
importance sampling.

Monte Carlo methods can be used, for example, for approximating the integrals∫
f(x)p(x)dx, where f : X → R. The integral can be approximated as 1

N

∑N
i=1 f(xi) where

xi ∼ p(x).

Highest density region (HDR)

The task of estimating the highest density region (HDR) is concerned with finding a
region C ⊆ X with a minimal volume such that the probability mass of at least 1 − α is
concentrated in this region C. Formaly, this is realized by solving the following problem:

min
C⊆X

λ(C) (2.9)

s.t.

∫
C
p(x)dx ≥ 1− α, (2.10)

where λ is a measure of volume defined on the feature space X and α ∈ (0, 1).

The HDR C is, for simplicity, mostly considered to take the form of C := Cτ = {x ∈
X | p(x) ≥ τ} [36]. This effectively leads to the simplification of the original optimization
problem in Equations 2.9 and 2.10 as follows:

max
τ≥0

τ (2.11)

s.t.

∫
Cτ

p(x)dx ≥ 1− α. (2.12)

Note that the threshold τ := τ(α) depends on the parameter α. An example of HDR and its
dependence on α is shown in Figure 2.2
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Tractability

Given a probabilistic modelM , a set of probabilistic queries Q is tractable if each query
in Q can be computed exactly and with time complexity that is polynomial in the size of
the model. By polynomial complexity, we understand that there exists k ∈ N such that the
complexity is O(|M |k) for all queries in Q. |M | denotes the size of the model M , whose
definition is specific to each model. This means intractability might come from two directions:
either a given query cannot be computed exactly, or its complexity is greater than polynomial.

EVI MAR CON SAMP

Variational Autoencoder (VAE) [37] ✓
Generative Adversarial Network (GAN) [35] ✓
RealNVP Flow [38] ✓ ✓
Sum-Product-Network (SPN) [39] ✓ ✓ ✓ ✓

Table 2.1: Tractability table. ✓symbolizes the tractability of a given query (column) for a
given model (row).

2.3 Prior art

A great amount of density estimation/generative models rely on the notion of latent
variables Z with realizations z ∈ Z. They assume that each observation x has some unknown
z associated with it and the generative process of x follows as

z ∼ p(z) , (2.13)

x ∼ pθ(x|z) , (2.14)

where p(z) is a (usually simple) prior density function over latent variables z and pθ(x|z) is a
density of observations, conditioned on the latent variable. The distributions pθ(x|z) and p(z)
are specifically designed by the concrete model.

Mixture models

Mixture models are models with discrete latent variable z ∈ Z = {1, . . . ,K}. The
latent variables z ∼ p(z) = Cat(z|π) are considered categorically distributed with parameters
π = (π1, . . . , πK)T as z is K-valued categorical variable in this case. p(x|z) is called mixture
component. Common choices for p(x|z) are distributions from the exponential family. A well-
known example is the Gaussian Mixture Model (GMM), with mixture components being
Gaussian distributions p(x|z) = N (x|µz,Σz).

The hierarchical generative process x ∼ p(x|z) where z ∼ p(z) defines probability
distribution of x

p(x) =
∑
z∈Z

p(x, z) =
∑
z∈Z

p(x|z)p(z) =
K∑
z=1

πzN (x|µz,Σz) , (2.15)

with the last equation 2.15 being specific to GMM. In the case of p(x|z) being a proper density
that can be evaluated, the computation of p(x) is straightforward due to z attaining only a
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finite number of values (K specifically). From the Bayes’ rule, this allows easy evaluation of
latent variable posterior distribution p(z|x).

Similarly to neural networks being universal function approximations, the Gaussian
Mixture Model is an asymptotical universal density approximator [40]. This means that as
K → ∞, GMM can approximate arbitrary probability density function. However, from a
practical point of view, obtaining reasonable density approximation may require a high number
of components K, making the GMM model computationally expensive.

Variational Autoencoders

Variational Autoencoder (VAE) [37] assumes d-dimensional continous latent variable
z ∈ Z ⊆ Rd. VAE chooses to model p(x|z) as multivariate normal distribution called decoder
pθ(x|z) = N (x | fθ(z), σ2I), where fθ : Z → X is a neural network with parameters θ,
I is an identity matrix of corresponding dimensions and σ2 is variance, usually treated as
hyperparamater. The latent prior distribution is chosen to be isotropic Gaussian distribution
p(z) = N (z |0, I). Again, generative process x ∼ pθ(x|z) where z ∼ p(z) defines distribution
of x as follows:

p(x) =

∫
Z
pθ(x, z)dz =

∫
Z
pθ(x|z)p(z)dz . (2.16)

The density p(x)is, however, in general, not tractable to compute in closed form, usually due
to the high dimensionality of z and the highly nonlinear relationship between z and x given
by fθ. It follows from Bayes’s rule that the latent variable posterior distribution p(z|x) is then
also intractable. VAE solves this problem by introducing variational distribution q(z|x) in
the hope of approximating the true p(z|x). The variational distribution q(z|x) is also called
decoder and is chosen to be qϕ(z|x) = N (z |µϕ(x),Σϕ(x)), meaning Gaussian distribution
with mean µϕ(x) and covariance Σϕ(x) for a given x.

x

qϕ(z|x)

z ∼ qϕ(z|x)

pθ(x|z)

x̂ ∼ pθ(x|z)

Figure 2.3: VAE model diagram.

The intractability of p(x) makes it difficult to apply maximum likelihood directly. So,
instead, the evidence lower bound (ELBO) L(x) is derived to be the objective of optimization.

log p(x) ≥ L(x) = Ez∼qϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)) . (2.17)

The ELBO L(x) combines reconstruction loss term with regularization in form KL-divergence
between decoder distribution and prior latent distribution. It is shown that maximizing ELBO
minimizes DKL(qϕ(z|x)||p(z|x)), giving us the best approximation of p(z|x) in the terms of
reverse KL-divergence. Since the evaluation of full evidence p(x) is intractable, one can directly
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use evidence lower bound as its approximation or use tighter Monte Carlo estimate (derived
in [37]) for inference tasks involving full evidence evaluation. The work IWAE [41] further
investigates tighter log-likelihood lower bounds derived from the importance weighting.

Normalizing flows

Normalizing flow relates the density of prior latent representation pZ(z) to the density
pX(x) of a real sample x using bijective function g = f−1, giving x = g(z)

(
or x = f−1(z)

)
.

Generative process x = g(z) where z ∼ p(z) is deterministic given a z and density pZ(x) is
induced by the change of variables formula. All normalizing flow models use this general idea
and vary in how they construct the mappings g : Z → X or f : X → Z, which are bijective
neural networks.

x

g−1(x)

z z ∼ pZ(z)

g(z)

x

Figure 2.4: Normalizing flow model diagram.

Change of variables formula Given realizations of random vectors x ∈ X, z ∈ Z, known
probability density function pZ of Z and bijective differentiable mapping g(Z) = X with
differentiable inverse, then

pX(x) = pZ
(
g−1(x)

) ∣∣∣∣det ∂g−1(x)

∂x

∣∣∣∣ . (2.18)

The bijective function g is commonly defined in such a form that Jacobian of g−1 is easy and
efficient to compute. In practice, this means Jacobian of g−1 being diagonal, block-diagonal
or triangular.

Assume x ∈ X = RD, the Real NVP flow [38] uses a class of functions f(x) = z called
affine coupling layer [42] defined as follows

z1:d = x1:d (2.19)

zd+1:D = exp (s(x1:d))⊙ xd+1:D + t (x1:d) (2.20)

where za:b = (za, za+1, . . . , zb−1, zb)
T , for a, b ∈ N, b > a, ⊙ is elementwise product and s and

t are arbitrary functions Rd → RD−d. The parameters of the functions s and t are estimated
by maximum likelihood estimation. The loglikelihood reads

log pX(x) = log pZ (f(x)) + log

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ , (2.21)
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where the second term can be simplified into

log

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ = D∑
j=d+1

s(x1:d)j , (2.22)

which follows from the Jacobian of f(x)

∂f(x)

∂x
=

(
I O

∂zd+1:D

∂x1:d
diag(exp (s(x1:d)))

)
, (2.23)

where I O are identity and zero matrices of adequate dimensions, respectively.

2.4 Sum-Product Networks

Since this thesis builds upon the concept of Sum-Product Networks (SPNs), we provide
their definition in this section. SPNs are deep tractable models. The term “deepness” arises
from the structural similarity of SPNs to deep neural networks. We start by introducing
a slightly more general class of models called probabilistic circuits (PCs). To wrap up the
primary definitions, we formally define SPNs as a special case within the framework of PCs
and demonstrate their benefits and effectiveness in solving selected probabilistic inference
tasks.

The computational graph contains leaf, sum, and product nodes and describes how
they are connected and how to proceed in the evaluation of the density. Each node of the
computational graph represents a probability density over some subset of random variables
X, where the specific subsets are indicated by a scope function. Intuitively, PCs represent a
probability density over a set of random variables X. The density is computed as a recursive
propagation of some elementary probability densities (leaf nodes) using their mixtures (sum
nodes) and independent products (product nodes). We resort to more detailed and rigorous
definitions of PCs and SPNs in the following text.

2.4.1 Definitions

Before defining computational graphs, we begin with a broader insight into graphs and
notatin we use. Generally, a graph G constitutes a set of vertices V (also called nodes) and
a set of edges E. The edges for the undirected graph reads E ⊆

(
V
2

)
and for the directed

E ⊆ V × V . Mainly, we will be dealing with directed graphs, which means that for two nodes
u, v ∈ V , we distinguish between (u, v) ∈ E, which symbolizes edge leading from node v to
node u, and (v, u) ∈ E, which symbolizes edge leading from node u to node v. We define more
detailed characteristics of the graphs as follows.

• For a node v ∈ V , pa(v) = {u ∈ V | (v, u) ∈ E} denotes the set of parent nodes of
node u. The root node is a node v ∈ V for which pa(v) = ∅ – in other words, v has no
parents.

• For a node v ∈ V , ch(v) = {u ∈ V | (u, v) ∈ E} represents the set of children nodes of
node N . A leaf node is a node v ∈ V for which ch(v) = ∅ – in other words, v has no
children.
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Definition 1 (Computational graph) The computational graph of a probabilistic circuit de-
noted as G, is a directed acyclic graph, G = (V,E), where V represents a set of computational
nodes, and E ⊆ V × V defines a set of edges connecting these computational nodes. For a
node v ∈ V , we define its type t(v) as t(v) ∈ {S,P, L}, indicating whether a node v is a sum
node S, a product node P, or a leaf node L.

(a) Sum node S

+S

N1 N2 . . . Nn

(b) Product node P

×P

N1 N2 . . . Nm

(c) Leaf node L

pL

Figure 2.5: Nodes from the computational graph of PC with depicted node types.

Definition 2 (Scope function) Given a set of variables X = {X1, . . . , Xk}, along with the
computational graph, G = (V,E), the scope function ψ of n ∈ V (denoted as ψn) is a function
ψ : V → F({1, . . . , k}) that maps the nodes n ∈ V to the indices of the random variables in
X. Furthermore, scope function ψ satisfies following:

1. let v ∈ V be a sum or product node, then ψn =
⋃
c∈ch(n) ψc,

2. let v ∈ V be a root node, then ψv = {1, . . . , k}.

The scope function indicates the variables over which node v defines the distribution. A leaf
node v represents a user-defined input density function over variables Xψv ⊆ X and computes
density p(xψv). We adopt the same indexing notation as when introducing probabilistic queries
in previous chapters. That is that set of indices m ⊆ {1, . . . , d} indexes a d-dimensional
observation x ∈ X – giving xm. Similarly, a scope ψ at SPN node v, ψv ⊆ {1, . . . , d} is used
to select corresponding dimensions of x in the same manner – giving xψv .

The density p(x) of realization of X is recursively computed by using the computational
rules of each node in the computational graph. When traversing the computational graph top
down and encountering a product node v ∈ V , we compute:

pv(xψv) =
∏

c∈ch(v)
pc(xψc), (2.24)

and when encountering a sum node n ∈ V , we calculate:

pv(xψv) =
∑

c∈ch(v)
wc,v pc(xψc). (2.25)

As introduced in the previous equation, each sum node n ∈ V is associated with one scalar
weight wc,v for each of its children c ∈ ch(v). All wc,v are non-negative, and for all v ∈ V , it
holds that: ∑

c∈ch(v)
wc,v = 1, (2.26)

meaning that they are locally normalized. The set of all these weights w is denoted as θS.
Together with a set of parameters for all leaf distributions θL, they collectively constitute the
parameters θ = θS ∪ θL of a given probabilistic circuit S = (G,ψ, θ).
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+v1

×v2 ×v3 ×v4

+v5 +v6 +v7 +v8

pv9 pv10 pv11 pv12

X1 X1 X2 X2

t(v) = S for v ∈ {v1, v5, v6, v7, v8}
t(v) = P for v ∈ {v2, v3, v4}
t(v) = L for v ∈ {v9, v10, v11, v12}
ψv9 = ψv10 = {1}
ψv11 = ψv12 = {2}

Figure 2.6: Example of SPN, representing a distribution over a set of random variables X =
{X1, X2}.

Definition 3 (Probabilistic circuit) A probabilistic circuit (PC) with a probability density pX
over a set of random variables X is a three tuple S = (G,ψ, θ), comprising the computational
graph G, the scope function ψ, and the parameters θ.

Definition 4 (Structural constraints) A probabilistic circuit (G, θ, ψ) is said to be:

1. smooth if for every Sum Node n it holds that (∀u, v ∈ ch(n))(ψu = ψv),
2. decomposable if for every Product Node n it holds that (∀u, v ∈ ch(n))(u ̸= v)(ψu ∩

ψv = ∅).

Definition 5 (Sum-Product Network) A probabilistic circuit satisfying smoothness and de-
composability structural constraints is called a Sum-Product Network (SPN).

The smoothness constraint simplifies equation 2.25 into

pv(xψv) =
∑

c∈ch(v)
wc,v pc(xψv) . (2.27)

being a convex combination of distribution over the same scope (variables). Effectively, with
smoothness, the sum node represents a valid mixture distribution as seen from the introduc-
tion to mixture models 2.3. This also implicitly defines a hidden categorical variable associated
with each sum node. Peharz et al. noticed the same fact in [43]. Compared to the sum node,
decomposability makes a product node implement a product of independent children distri-
butions, creating a factorization of joint distributions.

Not only do structural constraints give a probabilistic circuit clearer semantics and in-
terpretation, but they also simplify the computation of some probabilistic queries and make
them tractable [44]. The work of Choi et al. explores additional structural constraints of prob-
abilistic circuits and their impact on the tractability of given queries; refer to [45] for a more
detailed description. The next part of the thesis explains how to compute the probabilistic
queries introduced in Section 2.2.
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2.4.2 Inference and tractability in SPNs

In SPNs, we consider leaves to be tractable distributions, concretely being tractable for
evidence, marginal and sampling queries. Usually leaf distributions are usually chosen from
the exponential family [46, 47, 48].

Evidence query

Computing evidence query is straightforward as the computational graph of SPN di-
rectly encodes a way to compute a density over the full set of random variables X at full
evidence x. We start at the root node v, for which x = xψv , and we evaluate pv(xψv) recur-
sively as follows

pv(xψv) =


∑

c∈ch(v)wc,v pc(xψv), if t(v) = S,∏
c∈ch(v) pc(xψc), if t(v) = P,

p(xψv), if t(v) = L.

(2.28)

In other words, at first, we traverse a computational graph top-down, making use of com-
putational rules for sum and product nodes, essentially spitting scopes, until we reach leaf
nodes. Distributions at leaves are evaluated at corresponding parts of observations. Then, we
propagate values of leaf distributions using the same sum and product node computational
rules until we reach the root node, which, as a result, encodes a value of distribution at x.

For the evaluation, we need to traverse a computational graph top-down, propagating
and splitting scopes, where we need to apply recursion |E| times, once for each edge in the
computational graph. Then, we assume that corresponding evidence can be evaluated at each
leaf with constant complexity C, which is a reasonable assumption for many distributions
(especially exponential family). Propagating the values of leaf distributions bottom-up to
root also takes the complexity of the number of edges |E|. This gives the total complexity of
O(2|E|+C|L|), where |L| denotes the number of leaf nodes in the computational graph. This
leads to complexity O(|E|) – linear complexity in the number of edges in the big O notation
since |L| ≤ |E|. It is important to point out that the size of the edge set may be exponential
in some SPN hyperparameters (such as depth); see, for example, [47].

Marginal query

Marginal query evaluates a marginal probability distribution. This is performed similarly
to a full evidence query, except that variables corresponding to scope m are marginalized.
Given a root node v ∈ V , we can say m ⊆ ψv as x = xψv . Marginal query is computed by
recursive evaluation of the following

∫
pv(xψv)dxm =


∑

c∈ch(v)wc,v
∫
pc(xψv)dxm, if t(v) = S,∏

c∈ch(v)
∫
pc(xψc)dxψc∩m, if t(v) = P,∫

p(xψv)dxm, if t(v) = L,

(2.29)

which essentially says that integration is pushed down to leaf nodes. The intersection of scope
ψc of product node child c and marginalization scope m reflects the fact that the product
node implements scope splitting, and integration needs to be correctly propagated into its
children. We further define corner case if m = ∅ as∫

pv(xψv)dxm := pv(xψv). (2.30)
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Also, it is easy to say that if m = ψv then∫
pv(xψv)dxm =

∫
pv(xm)dxm = 1. (2.31)

In SPNs, for marginal queries to be tractable, we assume that leaves with multivariate
distribution can be marginalized in a constant time. When the SPN contains only univariate
distributions, marginalization becomes particularly easy – we simply set values of leaf distri-
bution corresponding to marginalized RVs to one. This results in the same complexity O(|E|)
as with full evidence query.

Conditional query

Computing a conditional query reduces the computation of the ratio of two marginal
queries. Given that marginal queries are tractable and have complexity O(|E|), any conditional
query can also be easily computed in O(|E|).

Sampling query

Sampling in SPNs follows the same philosophy as previously mentioned queries, that is,
traversing the computational graph top-down, performing query at the leaf level and traversing
the graph back bottom-up. In sampling, this is sometimes referred to as ancestral sampling.
It proceeds as follows: if v ∈ V is sum node, t(v) = S, then

xψv ∼ pc(xψv) , c ∼ Categorical(c|wv) , (2.32)

where wv is a vector of weights corresponding to children on sum node v. If v ∈ V is product
node, t(v) = P, then xψv is constructed from the samples of children c ∈ ch(v)

xψc ∼ pc(xψc) (2.33)

as by definition of scope function, ψv =
⋃
c∈ch(v) ψc and as by decomposability structural

constraint, scopes ψc are pairwise disjoint. If v ∈ V in a leaf, t(v) = P, then we perform
generating random samples as defined for a given distribution.

For tractability of the sampling query, it is crucial to generate samples at leaves with
constant complexity. Then computing sampling query also has the complexity of O(|E|).

2.4.3 Development of SPNs

Sum-product networks are based on the work of arithmetic circuits [49]. This fact is
reflected in the first mentioned work on SPNs [39] by Poon and Domingos, where the notation
is similar to that of arithmetic circuits due to the use of indicator functions as leaf distributions.
Peharz et al. [44] showed that the leaf distributions can be chosen as arbitrary tractable
distributions. The prominence of SPNs was motivated by exact inference for certain queries
with linear complexity in the concrete SPN’s size.

Research in SPNs features not only learning their parameters given a fixed structure [47,
50] but also joint learning of their structure as well as parameters from data [51, 31, 52, 53,
48]. Structure learning means that the computational graph is expanded during the learning
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phase. The intuitive approach presented by LearnSPN [31] relies on recursively partitioning the
current scope into approximately independent subsets of variables – inducing a product node
and grouping similar observations based on clustering – inducing a sum node. While numerous
papers have considered structure learning, more recently, automatic learning algorithms have
been slowly abandoned in favour of models with fixed and dense structures such as RAT-
SPN [47] and EinSumNet [50]. Peharz et al. showed in [47, 50] that these dense-structure
models performed surprisingly well even compared to models with complex structure learning
algorithms such as ID-SPN [52].

Advances in scalability and expressiveness have been a significant focus of SPN research.
This has brought to light tensorised SPN architectures - the aforementioned RAT-SPN [47]
and EinSumNet [50] - which allow SPNs to scale more easily to the tasks performed by state-
of-the-art machine learning models. The tensorised architecture makes the similarity of SPNs
to neural networks more obvious. However, the field of neural networks is more mature – there
are many tools available for neural networks, for example, allowing more accessible training,
regularisation, or calibration of classification confidence. The field of SPNs is less advanced,
but there has been some focus on it. For example, the works [48, 54] use a Bayesian setting
for learning SPN parameters - allowing regularisation by placing prior distributions over the
SPN parameters. Dropout in SPNs for the purpose of regularisation has been investigated
in [47]. Furthermore, the issue of calibration of SPNs has been addressed by the introduction
of tractable dropout [55] as an analytical counterpart to Monte Carlo dropout used in neural
networks.

Learning other than homogeneous tabular data has also been discussed in the field of
SPNs. The paper Mixed SPN [53] introduces complex distributions over hybrid domains -
containing discrete and continuous variables - based on SPN with piecewise polynomial distri-
butions. ABDA [54] tackles the problem of distribution over a hybrid domain by automatically
choosing the appropriate distribution (from the exponential family) for given variables.

There have been efforts to link SPNs to existing density estimation models such as
normalising flows [56, 57] or variational autoencoders [58]. Pevný et al. introduced the Sum-
Product-Transform network - by extending the computational graph of the SPN to include a
transformation node that realises a change of the variable formula - effectively combining SPNs
and flow models. Tan et al. [58] introduced a hierarchical mixture model over low-dimensional
VAE models - effectively creating a combination of SPNs and variational autoencoders. How-
ever, these combinations lead to improved expressiveness of SPNs at the cost of losing some
tractable queries of SPNs – losing some of the advantages of SPN.
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Chapter 3

Density estimation of tree-
structured data

3.1 Tree-structured data

The tree-structure data are nicely defined in the work about HMIL framework [14];
the data are called HMIL samples. The introduction of such samples is motivated by JSON
data format. The JSON files consist of some elementary data (vectors or strings), objects
(dictionaries or tuples) and lists (sets.)

{"element": "c", "charge": -0.117, "bond": 1, "atom": 22}

(a) JSON dictionary.

[
{"element": "c", "charge": -0.117, "bond": 7, "atom": 22},
{"element": "h", "charge": 0.142, "bond": 1, "atom": 3}
]

(b) JSON list.

Figure 3.1: An example of elementary building blocks of JSON data format.

The simplest instances of JSON samples, elementary data, can be seen in Figure 3.1 (a)
and (b) in the blue colour. Samples of this form can be described as instances x of some feature
space X , most commonly a subset of Rd. The atomic data refer to the most developed topic
of interest in machine learning - it covers a broad scope of possible feature spaces, expressing
various modalities. Some examples of these modalities can be boolean values, arbitrary real
values or human-readable text. Some concrete examples of feature spaces are X = {0, 1}d,
X = {0, 1, 2, . . . , k}d for k ∈ N, X = Rd or X = set of all text strings.

Figure 3.1 (a) shows another more complex example of JSON. Here, the sample consists
of the dictionary (tuple of key-value pairs) with several atomic elements data. Such sample
is mathematically expressed as ordered tuple (x1,x2,x3,x4) ∈ X1 × X2 × X3 × X4, where Xi
represents the feature space for each element of x.

In Figure 3.1 (b), we encounter a different instance of JSON. Here, a sample is a set
of JSON objects. The list can alternatively be perceived as a finite set. It can be represented
as b = {T1, . . . , Tk}, where Ti are arbitrary JSON samples. In b, its elements Ti are not only
random, but the cardinality of b itself is also random.

For the purposes of this thesis, we define an alternative formulation of HMIL samples,
which we call a leaf-attributed tree.

Definition 6 (Leaf-attributed tree) Let T = (V,E,D) be a rooted directed tree with a set of
nodes V , edges V and attributes D. T is equipped with a node type function t(v) ∈ {H,O,A}
that tells whether a node v ∈ V is a heterogeneous node H, homogeneous node O, or an atomic
node A. Moreover
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x

(a) (b)

`

x x x

(c)

a

x x x x

Figure 3.2: Examples of simple leaf-attributed trees. In (a), the tree represents a vector x ∈ §.
In (b), the tree is set x1,x2,x3 modelling a JSON list. In (c), the tree is tuple (x1,x2,x3,x1)
modelling a JSON object. Here,

a
is the heterogeneous node (green colour),

`
is the homo-

geneous node (red colour), and x is the leaf node (blue colour).

1. if n ∈ V is an atomic node A, then n is attributed with feature x = Dn ∈ Xn ⊆ Rdn,
additionally ch(n) = ∅,

2. if n ∈ V is a homogeneous node O, then for all u, v ∈ ch(n) it holds that t(u) = t(v).

Heterogeneous nodes H possess no restrictions on their children. In fact, its children may be an
arbitrary leaf-attributed tree, potentially completely different for each child. In the works [1,
7], authors consider edges (u, v), leaving heterogeneous nodes v provided with string labels ku
carrying semantic meaning about the tree rooted at u. We will omit this label for the sake of
reducing clutter in the visual representation.

{
"ind1": 1, "lumo": -1.246, "inda": 0, "logp": 4.23, "atoms": [
{
"element": "c",
"bonds": [
{"element": "c", "charge": -0.117, "bond": 7, "atom": 22},
{"element": "h", "charge": 0.142, "bond": 1, "atom": 3}

],
"charge": -0.117,
"atom": 22

},
.
.
.

{
"element": "h",
"bonds": [
{"element": "c", "charge": -0.117, "bond": 1, "atom": 22}
],

"charge": 0.142,
"atom": 3

}
]

}

(a)

a

x x x x
`

a a

x
`

x x x
`

x x

a a a

x x x x x x x x x x x x

. . .

(b)

Figure 3.3: (a) An example of Mutagenesis dataset in JSON data format. (b) Leaf-attributed
tree, Definition 6, of sample depicted in (a) along with schema (black dashed line), Definition 7,
of the given sample.

Definition 6 describes the category of data we will be dealing with, but it is not enough
to ensure regularity among children on homogeneous nodes needed for building a model with
the ability to effectively generalize to unseen data as described in [1, 14]. To ease the definition
of regular data samples, we define the concept of schema.

Definition 7 (Schema) Given a leaf-attributed tree T = (V,E,D), its schema S = (VS , ES)
is a subtree of (V,E), meaning that VS ⊆ V and ES ⊆ E. A subtree S is constructed such by
recursively traversing (V,E), beginning at root node n ∈ V , for a homogeneous node n ∈ V , S
contains only one (arbitrary) children node of n, for a heterogeneous node n ∈ V , S contains
all of the children nodes of v.
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One leaf-attributed tree can have multiple schemas given by choice of selecting one of the
children in homogeneous nodes in the Definition 7 where traversing the tree. Because of that,
we further consider only trees satisfying the following regularity assumption.

Assumption 1 (Regularity assumption) We consider leaf-attributed trees T that satisfy the
following

1. T contains only a single root node,
2. all schemas of T are the same (isomorphic).

Figure 3.4 illustrates the difference between a tree satisfying the regularity assumption and
not satisfying the assumption.

(a)

`

a a

x x x x x x x x

(b)

`

a a

x x x x x x

Figure 3.4: (a) A tree satisfying the assumption 1, (b) A tree not satisfying the second condition
of the Assumption 1.

The main goal of the thesis is to build a notion of density function p(T ) over the leaf-
attributed trees with fixed schema. In other words, we will estimate p(T ) from datasets taking
form of D = {Ti ∈ T | i = 1, . . . ,m}, where all of the leaf-attributed trees Ti share the same
schema.

3.2 Prior art

3.2.1 Set data

In this part, we consider prior art of models for observations of type ϕ = {x1, . . . ,xk} ∈
F(X ). In other words, each observation is a finite set, with possibly variable cardinality
k. In literature, these observations appear in the context of, for example, multiple instance
learning [19], point cloud processing [59] or group anomaly detection [60]. In the context of
multiple instance learning, ϕ is called a bag, and its elements instances.

As mentioned in the introduction of the thesis, Pevný et al. introduced a form of neural
network [8] for discriminative learning (classification) of multiple instance problems. The main
point lies in introducing differentiable and permutation invariant function f(ϕ) parametrized
by neural networks. This function consists of three elementary building blocks, which are an
instance-level transformation fI : X → Rm, elementwise aggregation function g : F(Rm) →
Rm and bag-level transformation fB : Rm → Rc. Altogether, f(ϕ) can be written as

f(ϕ) = fB(g({fI(x) |x ∈ ϕ})). (3.1)

Please refer to Figure 3.5 for an example. Various aggregation functions are commonly em-
ployed, with common choices being elementwise mean and maximum. Notably, Tomczak et
al.[61] introduced an approach of using self-attention[62] as an aggregation function. Further-
more, in the model definition, it’s possible to stack multiple aggregation functions together,
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fI

fI

fBg

x1

...
...

xk

Figure 3.5: An example of Bag Model for multiple instance data. The input {x1, . . . ,xk}
is a set of k instances xi ∈ R3. Each instance is transformed by instance transformation
fI : R4 → R3 and then aggregated elementwise aggregation function g : F(R3) → R3. After
that, bag transformation fB : R3 → R2.

concatenating their outputs. Consequently, this necessitates adjusting the input dimension of
the bag-level transformation fB.

The Neural Statistician paper [59] introduces a model that combines neural networks
with probabilistic modelling to enable the learning and generation of set data ϕ. It proposes a
framework where a neural network learns to summarize data observations ϕ into a fixed-size
set of statistics, which are then used to reconstruct the data. The model employs a variational
autoencoder (VAE), which allows for generating new data points ϕ.

Vo et al. [63] introduced a framework for model-based learning from point pattern data
based on the random finite set theory [64]. It leverages likelihood functions derived from
this theory to extend various learning tasks, such as classification, novelty detection, and
clustering. Since Vo et al.’s approach and random finite set theory are crucial for this thesis,
we will feature more details in the next section.

Muandet et al. [65] represent each set ϕ as empirical distributions, which are then used
to build empirical kernels. This approach facilitates an extension of Support vector machines
called Support measure machines.

Zhang et al. [66] use Hausdorf distances between sets ϕ1 and ϕ2 to cluster multiple
instance data using the k-medoids algorithm. For non-empty ϕ1 and ϕ2, maximal Hausdorf
distance is defined as

dHmax(ϕ1, ϕ2) = max{max
x∈ϕ1

min
y∈ϕ2

d(x,y),max
y∈ϕ2

min
x∈ϕ1

d(x,y)}, (3.2)

minimal Hausdorf distance can be written as

dHmin(ϕ1, ϕ2) = min
y∈ϕ2

min
x∈ϕ1

d(x,y), (3.3)

and average Hausdorf distance is defined as

dHave(ϕ1, ϕ2) =

∑
x∈ϕ1 miny∈ϕ2 d(x,y) +

∑
y∈ϕ2 minx∈ϕ1 d(y,x)

|ϕ1|+ |ϕ2|
. (3.4)

Squared L-2 norm is usually used as distance on distance level [66, 67], d(x,y) = ||x − y||22,
then unnormalized average Hausdorf distance coincides with the Chamfer distance [67] used
in pointcloud processing. Both minimal and average are not metrics in the mathematical sense
as they do not satisfy the triangle inequality axiom of metric, see [66].
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3.2.2 Heterogeneous data

In this part, we consider prior art of models for observations of type x = (x1, . . . ,xk) ∈
X1 × . . . × Xk. In other words, each observation is a tuple of k elements xi ∈ Xi, where k
is fixed. Each element possibly resides in different features space Xi, representing a different
modality.

Mandĺık [14] tackles this problem in the HMIL framework by defining the so-called
Product Model. It consists of one function for each element of x – f1, . . . , fk where fi : Xi →
Rmi . Moreover, he defines a function acting on the concatenation of outputs of fi; it is denoted
as fP : Rm → Rc where m =

∑k
i=1mi. The whole procedure of applying Product Model on x

is written as

f(x) = fP

 k∥∥∥
i=1

fi(xi)

 , (3.5)

where
∥∥k
i=1

represents concatenation of k vectors, creating an m dimensional vector. See an
example in Figure 3.6.

f1
x1

x3

x2
f2

f3

fP

Figure 3.6: An example of Product Model for heterogeneous data. The input is a tuple
(x1,x2,x3) where x1 ∈ R3, x2 ∈ R4 and x3 ∈ R. Each element of tuple is transfrom its
corresponding function f1 : R3 → R, f2 : R4 → R3 and f3 : R → R2. The transformed ele-
ments of tuples are concatenated together into one vector xc ∈ R6, and finally, the function
fP : R6 → R3 is applied.

The probabilistic model for heterogeneous data consists mostly of choosing appropriate
base distribution for different models of modality [68, 53, 54].

3.2.3 Tree-structured data

HMIL framework is tailored directly for tree-structured data; essentially, it creates a
vector embedding of each node by iteration from leaves of the tree and iteratively applying Bag
models (Figure 3.5) on homogenous nodes and Product models (Figure 3.6) on heterogeneous
nodes. Similarly, the tree can traversed using TreeLSTM [69] with little tweaking as was shown
in [70]. A similar solution, utilizing LSTM models, was proposed by Woof et al. [13]

There has also been research in distance-based approaches for tree-structured data. For
example, tree edit distance [71] is a metric used to quantify the dissimilarity or similarity
between two tree structures by measuring the minimum cost of transforming one tree into
another through a sequence of edit operations. These operations typically include node in-
sertion, deletion, substitution, or relabeling. Šoṕık et al. [7] developed a version of tree edit
distance compatible with HMIL framework [14].
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3.3 Random finite sets

Let us call X a feature space, then a realization ϕ of a random finite set takes the form
of

ϕ = {x1,x2, . . . ,xn}, xi ∈ X , (3.6)

where the elements xi are random, and the cardinality card(ϕ) = |ϕ| = n of ϕ is random
as well. This gives us an idea that an RFS can be jointly characterized (i) by a cardinality
distribution p(n), describing the random nature in the cardinality of ϕ, and (ii) by a feature
distribution p(x1,x2, . . . ,xn) on X n, describing the randomness of elements of ϕ in X given
ϕ has cardinality n.

Let F(X ) be a set of all subsets of X , also called a powerset. Then, ϕ takes values in the
power set F(X ), meaning ϕ is interpreted as a subset of X . For example, considering X = N,
realizations of random finite sets can look as ϕ1 = {2, 3}, ϕ2 = ∅ or ϕ3 = {1, 8, 5, 4, 18}.
Another example with X = R2 is shown in Figure 3.7.
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Figure 3.7: Each of four plots depicts one realization of the RFS with the features space X =
R2. Note that each realization (meaning a set) may contain a different number of elements.
The spatial positions of elements also differ among different realizations.

Random finite set Similarly to classical random variables, a random finite set is defined
as a measurable mapping, Γ : Ω → F(X ), between measure spaces – namely a probability
space (Ω, σ(Ω),P), and a measurable space (F(X ), σ(F(X )), µ). Throughout the rest of the
thesis, we will be using the term RFS for the realizations Γ(ω) ∈ F(X ) for ω ∈ Ω as well as
for the random process itself.

Probability distribution The probability distribution P of H ∈ σ(F(X )) is again defined
using the push-forward measure as P (H) = P(Γ ∈ H) = P ◦ Γ−1(H), also expressed as
P (H) = P({ω ∈ Ω |Γ(ω) ∈ H}).

Reference measure To further investigate the properties of RFSs, we need to build the
notion of the reference measure µ on the measurable space (F(X ), σ(F(X ))). Let X i represents
i-th cartesian product of the feature space X considering X 0 := ∅. Let λ be the Lebesgue
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measure defined on the measurable space (X , σ(X )). Let λi be the product Lebesgue measure
defined on the product measurable space (X i, σ(X i)) for all i ∈ N0. Then, the reference
measure on (F(X ), σ(F(X ))) is commonly defined [72, 64, 63] as

µ(H) =
∞∑
i=0

1

i!U i

∫
X i

1H({x1, . . . ,xi})λi(dx1, . . . , dxi) (3.7)

for all measurable H ⊆ F(X ). We consider the units of measurement of λ as ι and of λi as ιi.
Importantly, given k, l ∈ N, K ∈ σ(X k) and L ∈ σ(X l), the sum λk(K) + λl(L) is undefined
for k ̸= l due to the mismatch between the units of measurements. To fix that, the constant U
represents the intensity measure of unit volume on X and has the same units of measurement
as λ. It ensures that the summands in Equation 3.7 are unitless, and the sum is well-defined.
In this sense, the resulting reference measure defined in Equation 3.7 is unitless.

The approach to modelling the random finite sets took two paths – one considers the
measure-theoretic integral and the standard notion of the probability density as the “mod-
elling” tools [72], and, in contrast, the other adopts the set integral and the belief function [73].
These approaches are shown to be numerically equivalent if U = 1ι and to differ in the def-
inition of the reference measure [72, 74]. In this work, we consider the first approach (using
the measure-theoretic integral and probability density), employing the probability density to
align ourselves with the terminology of classical probability densities defined on Rn.

Measure-theoretic integral For any measurable function f : F(X ) → R its integral is
defined with respect to reference measure µ (Equation 3.7) as∫

H
f(ϕ)µ(dϕ) =

∞∑
i=0

1

i!U i

∫
X i

1H({x1, . . . ,xi})f({x1, . . . ,xi})λi(dx1, . . . , dxi) (3.8)

for all measurable H ⊆ F(X ). We will use a shorter notation for the integral over the whole
domain F(X ) as follows: ∫

f(ϕ)µ(dϕ) :=

∫
F(X )

f(ϕ)µ(dϕ). (3.9)

The introduction of the integral allows the definition of other measures, inevitably leading
to the idea of the relationship between the probability distribution and the base measure.
Also, as the definition of the integral stems from the definition of the base measure, the
reference measure can be straightforwardly recovered from Equation 3.8 as µ(H) =

∫
H 1·µ(dϕ).

That is because setting f(ϕ) = 1 in Equation 3.8 gives directly the reference measure from
Equation 3.7.

Probability density function The density function of an RFS, ϕ ∈ F(X ), is defined as
the Radon-Nikodym derivative of the probability distribution P with respect to the reference
measure µ (Equation 3.7). In other words, it is a function p : F(X )→ R+ satisfying

P (H) =
∫
H
p(ϕ)µ(dϕ) (3.10)

for all measurableH ⊆ F(X ). For ϕ ∈ F(X ), the quantity p(ϕ)µ(dϕ) represents the probability
that the elements of ϕ lie in their infinitesimally small surroundings. The probability density
of an RFS, {x1, . . . ,xn}, with respect to the reference measure µ can be written [64, 63] as

p({x1, . . . ,xn}) = n!Unp(n)p(x1, . . . ,xn), (3.11)
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where p(n) is the cardinality distribution evaluated at n, p(x1, . . . ,xn) is the premutation-
invariant joint feature distribution evaluated at the elements of the RFS given the cardinality
n. The quantity Un ensures that the probability density of the RFS is unitless, and n! accounts
for all possible permutations of the set given the cardinality.

It can be easily verified by computing
∫
p(ϕ)µ(dϕ) that the probability density, as

defined in Equation 3.11, is properly normalized.

∫
p(ϕ)µ(dϕ) =

∞∑
i=0

1

i!U i

∫
X i

p({x1, . . . ,xi})λi(dx1, . . . , dxi)

=
∞∑
i=0

1

i!U i

∫
X i

i!U ip(i)p(x1, . . . ,xi)λ
i(dx1, . . . , dxi)

=
∞∑
i=0

p(i)

∫
X i

p(x1, . . . ,xi)λ
i(dx1, . . . , dxi)︸ ︷︷ ︸

=1

=
∞∑
i=0

p(i)

= 1.

Expectation Naturally, introducing the integral and the probability density allows the
definition of the expected values. RFSs are a bit different since it is unclear what E[ϕ] should
look like. It is because there is no definition of addition and subtraction of sets, and, therefore,
we define the function g : F(X ) → R, projecting the RFSs to the reals. We can define the
expected value of the function g as follows:

E[g(ϕ)] =
∫
g(ϕ)p(ϕ)µ(dϕ), (3.12)

where p is the probability density of RFSs. Computing the expected values boils down to
computing the integrals (as with classical random variables) over g(ϕ)p(ϕ). We usually con-
sider computing the expectation over the whole domain of the probability density. We can,
however, calculate the expected values over the measurable set H ⊆ F(X ) simply by changing
the integrand g(ϕ)p(ϕ) to 1H(ϕ)g(ϕ)p(ϕ).

Cardinality distribution For n, k ∈ Z, the Kronecker delta δn(k) is defined as

δn(k) =

{
1, if n = k,

0, otherwise.
(3.13)

Then, the cardinality distribution of an RFS can take the following form:

p(|ϕ| = n) = p(n) = E[δn(|ϕ|)]. (3.14)
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Using the probability density of an RFS (Equation 3.11), the relationship between E[δn(|ϕ|)]
and p(n) is illustrated by utilising the definition of the expected value

E[δn(|ϕ|)] =
∞∑
i=0

1

i!U i

∫
X i

δn(i)p({x1, . . . ,xi})λi(dx1, . . . , dxi) (3.15)

=
1

n!Un

∫
Xn

p({x1, . . . ,xn})λn(dx1, . . . , dxn) (3.16)

=
1

n!Un

∫
Xn

n!Unp(n)p(x1, . . . ,xn)λ
n(dx1, . . . , dxn) (3.17)

= p(n)

∫
Xn

p(x1, . . . ,xn)λ
n(dx1, . . . , dxn) (3.18)

= p(n). (3.19)

IID cluster model Assuming the elements of {x1, . . . ,xn} are independent and identically
distributed simplifies the joint feature density as follows: p(x1, . . . ,xn) =

∏n
i=1 p(xi). The

class of models that assumes this independence among the elements of an RFS is called the
IID cluster model [63], and its probability density can be written as follows:

p({x1, . . . ,xn}) = p(n)n!Un
n∏
i=1

p(xi). (3.20)

Some models consider dependencies between the elements but are usually too complex,
and the proper normalization of the probability density is intractable. An example of such a
model may be the finite Gibbs model [75].

3.4 Sum-Product-Set Networks

This thesis proposes a Sum-Product-Set Network (SPSN) model for density estimation
of tree-structured data (leaf-attributed trees). SPSNs act as an extension of SPNs from tabular
data to structured data. The extension is done by introducing a new node in the computa-
tional graph. The inspiration for an extension comes from Sum-Product-Transform Networks
(SPTN) [56], which introduced a transformation node for additional expressivity of SPN. In
our case, the newly added node, called a set node, has a different purpose – that is, to model
homogeneous nodes in the leaf-attributed tree employing the theory of the random finite sets.
The following section is concerned with the definition of the Sum-Product-Set Network.

Definition 8 (Extended computational graph) The computational graph, denoted as G, is a
directed acyclic graph, G = (V,E), where V represents a set of computational nodes, and
E ⊆ V × V defines the set of edges connecting these computational nodes. Additionaly, for
a node v ∈ V , we define its type t(v) as t(v) ∈ {S,P, L,B}, indicating whether node N is a
sum node S, a product node P, a set node B, or a leaf node L. A set node v ∈ V has exactly
two children ch(v) = {cv, fv}, where cv and fv are called cardinality and feature children,
respectivelly.

A newly introduced set node computes probability density, given its children, by utilizing the
IID cluster model from RFS theory. The choice of cardinality distribution is up to the user’s
choice.
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Definition 9 (Extended scope function) Given a set of variables X = {X1, . . . , Xk} along
with computational graph G = (V,E). Exteded, scope function ψ of n ∈ V denoted as ψn is
a function ψ : V → F({1, . . . , k}) that maps extended computational graph nodes n ∈ V to
indices of random variables in X. Furthermore, scope function ψ satisfies following:

1. let v ∈ V be a sum, product node or set node, then ψn =
⋃
c∈ch(n) ψc,

2. let v ∈ V be a root node, then ψv = {1, . . . , k}.

Definition 10 (Sum-Product-Set Network) A 3-tuple (G,ψ, θ), where G is an extended com-
putational graph, ψ is an extended scope function, θ are parameters of computational nodes in
G, and computational graph satisfies decomposability and completeness structural constraints,
is called a Sum-Product-Set Network (SPSN).

Building SPSN The construction of SPSN begins by extracting schema from the leaf-
attributed tree (Figure 3.8 (a)). The structure of SPSN follows directly from the extracted
schema. The simplest SPSN, which we call Näıve SPSN, can be constructed as follows. We
traverse the schema starting at the root node and expand the initially empty computational
graph G of SPSN recursively as follows. The procedure illustrated in Algorithm 1 takes as an
input schema S. E, V represent nodes and edges of computational graph G, respectively.

Algorithm 1 Construct Näıve SPSN

procedure build SPSN(S,E, V, v)

s← get root(S) ▷ Get root node s from schema S
if t(s) = H then ▷ If s is heterogeneous node

u← create unique node

t(u)← P ▷ Create a unique product node u
V ← V ∪ {u}
E ← E ∪ {(u, v)}
for all c ∈ ch(s) do

build SPSN(Sc, E, V, u)
end for

else if t(s) = O then ▷ If s is homogeneous node
u← create unique node

t(u)← B ▷ Create a unique set node u
uc ← create unique node

t(uc)← L ▷ Create a unique cardinality leaf node uc
V ← V ∪ {u, uc}
E ← E ∪ {(u, v), (uc, u)}
build SPSN(Sch(s), E, V, u) ▷ Homogeneous node has a single child

else if t(s) = A then ▷ If s is atomic node
l← create unique node

t(l)← (L) ▷ Create a unique leaf node l
V ← V ∪ {l}
E ← E ∪ {(l, v)}

end if

Näıve SPSN is the simplest form of a probabilistic model of tree-structured data. It
assumes the independence of children of heterogeneous nodes. More complex SPSN follow
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from Näıve SPSN, but heterogeneous are modelled similarly as in SPNs by alternating between
sum nodes and produce nodes. A part of a more complex SPSN can be seen in Figure 3.9.

(a) Tree+schema
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Figure 3.8: (a) An example of a leaf-attributed tree along with its schema. (b) Näıve SPSN
constructed from the schema of the sample in (a)
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Figure 3.9: An example of a more complex SPSN.

Inference Inference in SPSNs is almost the same as in SPNs. Additionally, the newly added
set nodes compute the probability density of homogeneous nodes (also interpreted as sets).
Assume v ∈ V is a set node, and T = {T1, . . . , Tk} is a leaf-attributed tree rooted at the
homogeneous node. Then, the set node computes

pv(T ) = pcv(|T |)|T |!
|T |∏
i=1

pfv(Ti), (3.21)

where pcv is cardinality distribution of node v and pfv is feature distribution of node v.
Similarly, sampling is extended for set node v ∈ V by first, sampling the cardinality from
k ∼ pcv(|T |) and secondly sampling k subtrees from Ti ∼ pfv(Ti). Putting all together results
in T = {T1 . . . Tk}. Marginalization follows from the fact that SPNs are a special case of
SPSNs. SPNs can be tractably marginalized, and the addition of a set node does not violate
this property as marginalization can be propagated from sets to their instances as the instances
are assumed to be i.i.d.
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Chapter 4

Experiments

The title of this thesis reads Sum-Product-Set Networks for Density Learning of Tree-
Structured Data. In the previous chapter, we introduced a probabilistic model for density
estimation of tree-structured data based on the Sum-Product network. However, to the best
of our knowledge, no other probabilistic approach in its whole generality for tree-structured
data has not been proposed before. This fact introduces inconvenience – what competing
models to choose for comparison as there is a density estimation model for this task. Thus,
we resort to comparing tasks that can be solved using SPSN and where prior work exists.

Therefore, in the experiments, we demonstrate the following matters in the context of
the goals of the thesis.

1. We show simple examples of SPNs applied to classification problems of observations
x ∈ X = Rd. We use the advantages of SPNs to demonstrate their capability to deal
effectively with missing values at prediction time.

2. We demonstrate predictive capabilities of SPSNs for random finite sets ϕ ∈ F(Rd) on
problems of classification and clustering with various feature probability densities.

3. Finally, we show the capabilities of full SPSN on datasets consisting of leaf-attributed
trees. The analysis is performed on classification and clustering problems, as well.

In all classification problems, we take the calibration of classifiers into consideration.

4.1 Performace metrics

This section serves as a brief introduction to the performance measures used in the
thesis. We focus on metrics for classification and clustering tasks as they are the main points
of experimental comparison, as stated before.

Classification

For the evaluation of classification, we assume true labels Y = (y1, . . . yn) and predicted
labels Ŷ = (ŷ1, . . . , ŷn) for corresponding observations (x1, . . . ,xn). We suppose that yi, ŷi ∈
Y, where Y = {1, . . . , c}, meaning we are performing classification to c classes.

Confusion matrix A confusion matrix for multiclass classification provides a detailed
breakdown of a model’s predictions across multiple classes. It is a square matrix where each
row corresponds to the true classes, and each column corresponds to the predicted classes.
Suppose we have a multiclass classification problem with c = |Y| classes. We denote a confu-
sion matrix as C ∈ Nc×c0 . The diagonal elements Cii of the matrix C represent the number of
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1 · · · c

1 C11 · · · C1c
...

...
. . .

...
c Cc1 · · · Ccc

Table 4.1: Confusion matrix for classification into c classes.

instances correctly predicted for class i. The entries Cij in column j and row i for i ̸= j count
the number of instances that belong to class i but were incorrectly classified as class j.

The confusion matrix serves as a good summary of classification. However, more com-
monly used metrics are based on their summarization, such as accuracy or balanced accuracy.

Accuracy (ACC) The classical accuracy is one of the most common classification measures.
It represents an average number of matches between the model’s prediction and the true labels.
It can be defined directly on the level of predictions and true labels or using a confusion matrix
as follows

ACC =
1

n

n∑
i=1

Jyi = ŷiK =
1∑c

i=1

∑c
j=1Cij

c∑
i=1

Cii. (4.1)

The accuracy gives values in the [0, 1] range where 1 represents the perfect classification result.

The standard accuracy is not appropriate when facing a big class imbalance. Image we
have c = 2 classes, but the first class accounts for 99% of observations and the second only
for 1%. Then, one could achieve 99% accuracy by predicting the first class, and it can lead to
misleading results. The ideal case is to inspect confusion matrices directly, which is infeasible
if comparing a large number of different models or datasets.

Balanced accuracy (BACC) Balanced accuracy [76] aims to solve the issue of class im-
balance. It does so by computing accuracies for each class separately, and it takes an average
of class accuracies. It can be expressed using the confusion matrix as follows:

BACC =
1

c

c∑
i=1

Cii∑c
j=1Cij

. (4.2)

Again, BACC gives values in the [0, 1] range where 1 represents the perfect classification
result.

However, considering the mentioned 99 : 1 class imbalance. When predicting the first
class only, balanced accuracy gives the result of 50% compared to 99% of classical accuracy.
This makes BACC more suitable for classification in imbalanced datasets. Moreover, when
the classes are perfectly balanced, BACC and ACC coincide.

Other performance metrics Other performance metrics include other summarizations of
confusion matrix; for example, a popular one is Matthews correlation coefficient [77]. Then, in
binary classification case (c = 2), one can define more metrics that are not based on predicted
labels Ŷ but on some classification scores Ŝ = (ŝ1, . . . , ŝk), where the prediction label ŷi is
recovered based on thresholding score ŝi by threshold τ . Receiver characteristic operating
(ROC) or precision-recall (PR) curves study the effect of changing τ .
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Clustering

Evaluation of the clustering performance is slightly more challenging than evaluation
classification. This is given by the fact that clustering is an unsupervised task and that the
number of clusters is mostly regarded as unknown. Since the task is unsupervised, the identi-
fied cluster may be correct up to permutation. Consider ground truth labels Y = (1, 1, 2, 2),
and clustering result Ŷ = (2, 2, 1, 1), in this case, classical accuracy would be 0%. However,
swapping labels 1 and 2 produces 100% accuracy. Motivated by this simple example, cluster-
ing performance metrics should measure agreement between clustering prediction and true
labels considering the label permutation of clustering prediction.

A commonly used measure, called Rand index (RI) [78] is computed by calculating true
positives (pairs of points that are in the same cluster in both the true and predicted clusterings)
and true negatives (pairs of points that are in different clusters in both the true and predicted
clusterings) against all possible pairs of points. RI can be seen as computing accuracy on
pairs of points induced by clustering and true labels, which is invariant to renaming clusters
(permuting cluster labels). There is a variation of the Rand index, called the Adjusted Rand
Index (ARI) [79], which corrects against random clustering assignment. This correction helps
prevent the high index values that can occur with a random assignment of clusters (especially
with unbalanced true cluster labels).

Another standard measure is the Silhouette coefficient (SC) [80]. It calculates the aver-
age distance between data points within the same cluster compared to the distance to points
in the nearest neighbouring cluster. The problem with SC is that it is, by its definition, re-
stricted to clustering methods based on distances or spaces where the distance between two
observations is defined.

Unsupervised accuracy (UACC) This thesis features an extension of supervised accu-
racy to unsupervised problems. For example, this extension called Unsupervised accuracy
(UACC) was used in [81]. It assumes that the number of clusters is the same as the number
of ground truth classes. UACC can be defined as

UACC = max
π

1

N

n∑
j=1

Jyj = π(ŷj)K (4.3)

where π : Y → Y is permutation function of cluster assignments. Evaluation of UACC can
be done by enumerating the classical accuracy of all possible c! permutations and choosing
the maximal value of those, which can be computationally expensive for a large number of
clusters. However, the problem of computing UACC can be more effectively solved by the
Hungarian matching algorithm [82] with complexity O(c3).

Calibration

A well-calibrated classifier should predict accurate labels and provide probabilities that
reliably reflect the true chance of those labels. For instance, if a model predicts a 75% chance of
x being of class y, it should actually be class y about 75% of the time among observations with
a predicted 75% probability. Calibration is especially crucial in applications where accurate
probability estimates are necessary, such as computer security or medical diagnoses.

Naeini et al. [83] define an Expected calibration error (ECE). The ECE quantifies the
discrepancy between predicted probabilities and the actual outcomes. It measures the average
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difference between predicted probabilities and the true accuracy within different probability
bins. A lower ECE signifies better calibration.

Suppose Y = (y1, . . . yn) constitute true labels, Ŷ = (ŷ1, . . . , ŷn) are predicted labels and
P̂ = (p̂1, . . . , p̂n) are corresponding prediction confidences. Let Bm be the set of observations
whose prediction confidence falls into the interval (m−1

M , mM ] for m = 1, . . . ,M , whereM reads
the number of bins M ∈ N. ECE can be written as

ECE =
1

n

M∑
i=m

|Bm| · |ACC(Bm)− CONF(Bm)|, (4.4)

where ACC(Bm) is accuracy of observation in Bm and CONF(Bm) is average confidence of
prediction of observations in Bm. ECE gives values in the interval [0, 1], where 0 signifies the
perfect calibration.

4.2 Datasets

Tabular data

We use thirteen tabular datasets from the UCI dataset repository [84] for classification
purposes. The observations are vectors x ∈ Rd. The summary of statics of tabular datasets is
shown in Table 4.2.

name d ndata c

blood 4 747 2
breast 9 683 2
climate 18 540 2

ecoli 7 336 8
glass 9 214 6
iris 4 150 3
leaf 14 340 30
olive 9 572 3

parkinsons 22 195 2
seeds 7 210 3

vehicle 18 846 4
vertebral column 6 620 4

wine 13 178 3

Table 4.2: Statistics of tabular datasets. Each row represents one dataset D with its name,
dimension d of is features x ∈ Rd, number of observations ndata = |D| and number of classes
c.

Multiple-instance problems

For demonstration purposes of SPSN and the model of random finite sets, we utilise
the same twenty datasets used by Pevný et al. [8], which are available at https://github.
com/pevnak/MIProblems. These datasets contain observations ϕ ∈ F(Rd), where d is instance
dimension. The summary of statics of multiple-instance datasets is shown in Table 4.3.
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dataset nbags ninst d c ratio

brown creeper 548 10232 38 2 64 : 36
corel african 2000 7947 9 2 95 : 5
corel beach 2000 7947 9 2 95 : 5

elephant 200 1391 230 2 50 : 50
fox 200 1320 230 2 50 : 50

musk 1 92 476 166 2 49 : 51
musk 2 102 6598 166 2 62 : 38

mutagenesis 1 188 10486 7 2 66 : 34
mutagenesis 2 42 2132 7 2 69 : 31
newsgroups 1 100 5443 200 2 50 : 50
newsgroups 2 100 3094 200 2 50 : 50
newsgroups 3 100 5175 200 2 50 : 50

protein 193 26611 9 2 87 : 13
tiger 200 1220 230 2 50 : 50

ucsb breast cancer 58 2002 708 2 55 : 45
web 1 75 2212 5863 2 72 : 28
web 2 75 2219 6519 2 76 : 24
web 3 75 2514 6306 2 81 : 19
web 4 75 2291 6059 2 73 : 27

winter wren 548 10232 38 2 80 : 20

Table 4.3: Statistics of multiple-instance problems datasets. Each row represents one dataset
D with its name, number of observations (bags) nbags = |D|, number of instances ninst =∑

ϕ∈D |ϕ|, dimension d of instances, number of classes c and the ratio of number class labels.

Hierarchical multiple-instance problems

Full capabilities of SPSN are used on datasets, which we refer to as Hierarchical multiple-
instance problems, following the HMIL paradigm [14]. The datasets come from CTU Rela-
tional datasets database [85] and are available at https://relational.fit.cvut.cz/. We
downloaded thirteen suitable datasets and saved them in JSON file format. We selected only
one-hop neighbourhoods of relational datasets that contain cycles in their database schema.
The summary of statics of multiple-instance datasets is shown in Table 4.4. Each JSON dataset
has its schema extracted by JsonGrinder.jl library [86].

4.3 Models

Tabular data

Table 4.5 shows models used in the experiments with tabular data.

For classification with missing values using neural network-based classifiers (mlp), we
consider a feature vector x ∈ Rd, d ∈ N, with corresponding binary mask b ∈ {0, 1}d, with
bi = 1, i ∈ {1, . . . , D}, indicating that feature element xi at position i is missing. Missing
values are tackled by imputation used in [14]. Imputed feature vector x̃ element x̃i reads
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name ndata c nO nH nA n̄O n̄H n̄A
mutagenesis 188 2 5081 15567 57375 27 83 305

genes 862 15 3544 17941 125712 4 21 146
cora 2708 7 16274 13566 247663 6 5 91

citeseer 3312 6 16071 12759 411929 5 4 124
webkp 877 5 4970 4093 396890 6 5 453
world 239 7 478 5302 18296 2 22 77
chess 295 3 10325 590 53593 35 2 182

uw cse 278 4 782 782 3128 3 3 11
hepatitis 500 2 1500 7008 65039 3 14 130

pubmed diabetes 19717 3 236503 108393 10896008 12 5 553
ftp 30000 3 30000 96491 392455 1 3 13
ptc 343 2 18953 55279 128184 55 161 374

premier league 380 3 760 10749 2084929 2 28 5487

Table 4.4: Statistics of hierarchical multiple-instance problems datasets. Each row represents
one dataset D with its name, number of observations ndata = |D| and the number of classes
c. The quantities nO, nH and nA represent the number of homogeneous, heterogeneous and
atomic nodes in the entire dataset, respectively. n̄O, n̄H are n̄A the corresponding average
numbers of nodes per one observation.

name description hyperparameters

ratspn RAT-SPN [47] Table A.1
mlp Multi-layer perceptron Table A.2

mlp+mcd
Multi-layer perceptron with
Monte Carlo dropout [87]

Table A.2 + (MCD rate 0.2)

lin Perceptron none

Table 4.5

x̃i = (1− bi)xi + biψi, where ψi is an element of static (i.e., the same for all x) but learnable
imputing vector ψ ∈ Rd.

• mlp 5 reads Multilayer perceptron trained with randomly sampled missing values (5%
for each batch) at the input, bi ∼ Bernoulli(0.05),

• mlp uniform reads Multilayer perceptron trained with randomly sampled missing values
(uniformly sampled missing rate for each batch) at the input, bi ∼ Bernoulli(p), p ∼
U(0, 0.9).

Multiple instance problems

Hierarchical multiple instance problems

4.4 Experimental setup

In all experiments, consider splits of the dataset in three parts - training, validation and
testing dataset, where 64% of observation of the original dataset accounts for the training part,
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name description hyperparameters

spsn+gmm SPSN with GMM leaf distribution Table A.3
spsn+spn SPSN with SPN leaf distribution Table A.5

spsn+relanvp SPSN with RealNVP flow leaf distribution Table A.4
hmil HMIL [14] Table A.6

hmil+mcd HMIL [14] with Monte Carlo dropout [87] Table A.6 (+ MCD rate 0.2)

Table 4.6: Classification methods used on multiple instance datasets.

name description hyperparameters

spsn+gmm SPSN with GMM leaf distribution Table A.3
spsn+relanvp SPSN with RealNVP flow leaf distribution Table A.4

k-medoids k-medoids with Hausdorf distance [66] {dHave , dHmax , dHmin}

Table 4.7: Clustering methods used on multiple instance datasets.

16% for validation and 20% is left out for testing. All datasets are split using random stratified
partitioning, meaning the class distribution ratio is the same across training, validation, and
testing. The splits are controlled by fixed random seeds for easier reproduction of the results.
The best configuration of hyperparameters is selected using 5-fold cross-validation.

We implemented models containing keywords spsn, gmm, spn, realnvp ourselves. For
ratspn, we used the original implementation available at https://github.com/cambridge-mlg/
RAT-SPN. For the hmil model, we used the implementation available at https://github.com/
CTUAvastLab/Mill.jl. BAMIC [66] version of k-medoids is also our implementation, along
with variations of Hausdorf distances. Lastly, authors of tree edit distance [7] provided us
with its implementation, which cannot be openly shared.

The experimental pipeline and all methods implemented by ourselves are coded in the
Julia programming language [88]. All experiments are run on a computational cluster with 46
× Intel Xeon Scalable Gold 6146 CPUs and scheduled using Slurm job manager. One Slurm
job consists of running one model on one dataset and for one hyperparameter setup. The run
time of one job was restricted to 1 day of computation time with computational resources of
1 CPU core and 16 GB RAM.
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name description hyperparameters

spsn SPSN Table A.7
hmil HMIL Table A.8

Table 4.8: Classification methods used on hierarchical multiple instance datasets.

name description hyperparameters

spsn SPSN Table A.7
k-medoids k-medoids with tree edit distance [7] none

Table 4.9: Clustering methods used on hierarchical multiple instance datasets.
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Chapter 5

Results

For a more convenient comparison of methods presented in the result tables, we deploy
the average ranking [89] on each dataset (lower is better).

5.1 Tabular data

The experiments performed on tabular data serve as a check that SPN models can be
seen as competitive approaches to classification compared to more expressive models based
on neural networks. As can be seen in Table 5.1, spsn is on par with mlp. Both of these
models, however, fall short in comparison to mlp+mcd, which improves the classification and
calibration results. It has to be mentioned that the difference between the methods on some
datasets is slight and mostly falls within a standard deviation of presented results. Further
significance testing would have to be performed for a more precise conclusion. The small
difference in results can also be accounted for by the small sizes of the datasets and their
simplicity, illustrated by the fact that the lin model is consistently relatively competitive to
other methods.

Probabilistic models are intuitively believed to be better calibrated than their non-
probabilistic counterparts. This idea was disproven in [55] and is supported by the results of
our experiments as shown in Table 5.2. The mentioned results might lower the anticipation
of SPSN’s excellent performance.

In terms of robustness to missing values, mlp 5 seems to be inferior mlp uniform, which
was to be expected because mlp uniform learns to impute the missing values better. However,
rat-spn performs as good or better, except iris, ecoli or parkinsons datasets. This is a good
result, given that rat-spn can naturally handle missing data (using marginalization) without
additional tweaking.
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dataset mlp ratspn linear mlp+mcd

blood 0.79±0.03 0.79±0.04 0.76±0.04 0.79±0.04
breast 0.95±0.02 0.97±0.02 0.96±0.02 0.97±0.02
climate 0.96±0.02 0.97±0.01 0.96±0.01 0.96±0.02

ecoli 0.87±0.03 0.85±0.02 0.86±0.03 0.86±0.05
glass 0.71±0.07 0.70±0.05 0.60±0.04 0.73±0.08
iris 0.96±0.03 0.89±0.05 0.87±0.02 0.96±0.03
leaf 0.70±0.07 0.55±0.07 0.64±0.06 0.75±0.06
olive 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

parkinsons 0.91±0.02 0.93±0.04 0.84±0.03 0.91±0.04
seeds 0.93±0.02 0.95±0.02 0.93±0.03 0.94±0.03

vehicle 0.82±0.03 0.76±0.03 0.75±0.03 0.83±0.02
vertebral column 0.53±0.04 0.57±0.07 0.53±0.05 0.54±0.02

wine 0.97±0.05 0.97±0.05 0.97±0.05 0.97±0.02
rank 1.92 1.92 2.92 1.38

Table 5.1: Testing dataset accuracy (ACC) of classification tabular data. The best model is
chosen according to the best ACC achieved on the validation dataset.

dataset mlp ratspn linear mlp+mcd

blood 0.06±0.01 0.05±0.01 0.06±0.02 0.05±0.02
breast 0.04±0.02 0.02±0.01 0.02±0.01 0.03±0.02
climate 0.04±0.01 0.04±0.01 0.06±0.02 0.04±0.02

ecoli 0.07±0.03 0.13±0.01 0.10±0.02 0.08±0.03
glass 0.26±0.06 0.21±0.06 0.15±0.04 0.12±0.06
iris 0.04±0.02 0.25±0.04 0.15±0.02 0.04±0.01
leaf 0.20±0.06 0.16±0.05 0.21±0.05 0.12±0.05
olive 0.00±0.00 0.01±0.00 0.02±0.00 0.00±0.00

parkinsons 0.08±0.02 0.10±0.01 0.11±0.03 0.08±0.04
seeds 0.07±0.02 0.12±0.02 0.12±0.02 0.05±0.02

vehicle 0.09±0.05 0.06±0.01 0.06±0.03 0.10±0.02
vertebral column 0.12±0.04 0.10±0.03 0.13±0.03 0.08±0.03

wine 0.05±0.02 0.12±0.01 0.06±0.01 0.03±0.02
rank 2.23 2.46 3.00 1.46

Table 5.2: Testing dataset expected calibration error (ECE) of classification tabular data. The
best model is chosen according to the best ACC achieved on the validation dataset.

5.2 Multiple-instance problems

Classification

The experiments performed on multiple instance data present a step up from tabular
data and aim to test the probabilistic model of random finite sets. From Table 5.3, spsn+spn
shows a promise compared to the established baseline model hmil. As with tabular data, the
combination of hmil with Monte Carlo dropout generally yields the best result in BACC, which
illustrates the strength of this approach, which was, however, redemption by higher compu-
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Figure 5.1: Dependency of testing dataset balanced accuracy (BACC) of classification tabular
data with changing ratio of missing values at prediction time. The best model is chosen
according to the best BACC achieved on the validation dataset (at 0% missing rate), and the
same model is used to evaluate data with different ratios of missing values.

tational cost and slower convergence. Of three spsn approaches, spsn+realnvp performed the
worst. We believe the reason is the usual overfitting of normalizing flow models, which we
observed during the experiments, even though we tried to implicitly regularize the flow by
reducing its size. Contrary to that, spsn+gmm is believed to perform poorly due to a lack of
expressivity. Arguments for interpretation of calibration error results follow the ones used for
BACC, except that spsn+spn was better calibrated than the baseline hmil in this case.

Additionally, the ablation study of covariance type of spsn+gmm. Authors of [47] stated
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that choosing the unit matrix as the covariance matrix of Gaussian distribution gave the best
result. This was not proven in our case, and the diagonal covariance matrix yielded the best
results in terms of both BACC and ECE. Not even the regularization of the covariance matrix
helped to achieve better or more stable results. See tables 5.5 and 5.6.

dataset spsn+gmm spsn+spn spsn+realnvp hmil hmil+mcd

brown creeper 0.94±0.01 0.94±0.02 0.93±0.01 0.94±0.02 0.94±0.01
corel african 0.78±0.07 0.79±0.05 0.78±0.06 0.78±0.05 0.81±0.04
corel beach 0.88±0.05 0.88±0.06 0.90±0.03 0.91±0.04 0.93±0.06

elephant 0.82±0.04 0.83±0.06 0.74±0.08 0.83±0.05 0.85±0.04
fox 0.54±0.15 0.59±0.10 0.48±0.04 0.55±0.15 0.60±0.11

musk 1 0.80±0.13 0.84±0.09 0.89±0.06 0.82±0.14 0.88±0.10
musk 2 0.85±0.06 0.75±0.08 0.78±0.07 0.79±0.09 0.83±0.06

mutagenesis 1 0.87±0.07 0.83±0.08 0.83±0.04 0.80±0.06 0.81±0.07
mutagenesis 2 0.66±0.23 0.69±0.20 0.78±0.10 0.69±0.10 0.60±0.20
newsgroups 1 0.77±0.08 0.81±0.10 0.68±0.12 0.78±0.08 0.77±0.09
newsgroups 2 0.57±0.19 0.53±0.10 0.60±0.11 0.65±0.08 0.66±0.11
newsgroups 3 0.71±0.09 0.65±0.07 0.58±0.06 0.67±0.14 0.65±0.05

protein 0.64±0.10 0.64±0.13 0.65±0.09 0.67±0.09 0.75±0.08
tiger 0.75±0.04 0.77±0.05 0.67±0.03 0.77±0.13 0.77±0.03

ucsb breast cancer 0.75±0.11 0.79±0.06 0.79±0.04 0.82±0.10 0.75±0.11
web 1 0.65±0.12 0.82±0.07 0.66±0.12 0.66±0.10 0.62±0.10
web 2 0.49±0.18 0.86±0.14 0.38±0.07 0.53±0.17 0.43±0.05
web 3 0.53±0.09 0.97±0.03 0.62±0.14 0.55±0.15 0.55±0.11
web 4 0.57±0.07 0.62±0.08 0.70±0.08 0.64±0.12 0.72±0.20

winter wren 0.95±0.02 0.96±0.02 0.92±0.05 0.95±0.04 0.97±0.02
rank 3.35 2.40 3.40 2.40 2.25

Table 5.3: Testing dataset balanced accuracy (BACC) of classification multiple-instance data.
The best model is chosen according to the best BACC achieved on the validation dataset.

Clustering

Clustering and its evaluation are difficult tasks, even on tabular data. The whole proce-
dure becomes even more complex with structured data. In clustering experiments on multiple
instance data, spsn+gmm resulted in the best performance as observed in Table 5.7. Again,
the poor performance of spsn+realnvp might be attributed to its overfitting. It is notable that
spsn+gmm beat distance-based method k-medoids as the distance-based methods tend to be
highly competitive on these tasks.

5.3 Hierarchical multiple-instance problems

5.3.1 Classification

Hierarchical multiple-instance datasets are the most difficult classification problems we
face in this thesis. They also demonstrate the ability to scale SPSNs to tree-structured data in
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dataset spsn+gmm spsn+spn spsn+realnvp hmil hmil+mcd

brown creeper 0.05±0.01 0.05±0.01 0.06±0.01 0.05±0.02 0.04±0.01
corel african 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.02±0.01
corel beach 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00

elephant 0.16±0.03 0.16±0.06 0.26±0.08 0.17±0.06 0.14±0.04
fox 0.46±0.14 0.37±0.10 0.51±0.04 0.43±0.14 0.24±0.09

musk 1 0.20±0.13 0.15±0.09 0.11±0.06 0.17±0.14 0.12±0.10
musk 2 0.17±0.07 0.27±0.08 0.21±0.06 0.21±0.08 0.18±0.06

mutagenesis 1 0.08±0.05 0.10±0.04 0.13±0.03 0.16±0.03 0.11±0.05
mutagenesis 2 0.30±0.19 0.25±0.13 0.21±0.12 0.27±0.10 0.31±0.14
newsgroups 1 0.24±0.09 0.19±0.10 0.32±0.11 0.23±0.08 0.20±0.10
newsgroups 2 0.43±0.19 0.47±0.10 0.40±0.11 0.34±0.08 0.31±0.11
newsgroups 3 0.29±0.09 0.35±0.07 0.42±0.06 0.33±0.13 0.19±0.13

protein 0.15±0.06 0.13±0.05 0.14±0.04 0.14±0.03 0.10±0.02
tiger 0.24±0.04 0.22±0.05 0.33±0.03 0.23±0.13 0.21±0.04

ucsb breast cancer 0.25±0.10 0.23±0.07 0.22±0.05 0.20±0.06 0.21±0.10
web 1 0.32±0.10 0.21±0.09 0.33±0.14 0.31±0.05 0.30±0.07
web 2 0.45±0.18 0.11±0.08 0.43±0.10 0.25±0.04 0.30±0.04
web 3 0.40±0.08 0.05±0.06 0.28±0.07 0.36±0.17 0.25±0.06
web 4 0.34±0.10 0.23±0.04 0.21±0.06 0.33±0.12 0.23±0.17

winter wren 0.03±0.01 0.03±0.01 0.05±0.03 0.03±0.02 0.02±0.01
rank 3.35 2.30 3.45 3.05 1.75

Table 5.4: Testing dataset expected calibration error (ECE) of classification multiple-instance
data. The best model is chosen according to the best BACC achieved on the validation dataset.

their full hierarchy. Table 5.8 suggests that SPSNs present a competitive approach compared
to neural networks. spsn significantly lacks on the world dataset, which contains a lot of
observations in the form of text (strings), which are easier to learn using neural networks. In
terms of calibration, hmil model appears to be better calibrated. The cause of this phenomenon
is the subject of further investigation in future work.

5.3.2 Clustering

As mentioned in experimental results on multiple-instance problems, clustering prob-
lems are hard. It becomes even harder with more complex data, such as hierarchical multiple-
instance problems. The results are present in Table 5.10. The table illustrates that spsn per-
forms better than k-medoids in terms of UACC. However, some fields in the table are filled with
nan, and those say that the model training or evaluation was not finished. In all cases, it was
due to a restricted computational budget, especially RAM. For spsn, the problem arises when
the number of clusters is large since, for clustering, we use a mixture of SPSNs. For the genes
dataset, which has 15 clusters, this essentially means evaluating 15 independent SPSNs. The
problem with k-medoids is that it requires the computation of pairwise distances between all
the observations on training data, which becomes quickly infeasible. Dataset pubmed diabetes
and ftp both have more than ten thousand observations, which confirms our findings.

No clear preference for clustering methods can be given. The ambiguity in evaluating
clustering results caused by possible permutation of clusters and low values of UACC makes
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dataset diag scalar unit reg. diag reg. scalar

brown creeper 0.95±0.01 0.92±0.03 0.95±0.02 0.94±0.03 0.95±0.01
corel african 0.83±0.05 0.81±0.06 0.79±0.06 0.80±0.06 0.82±0.04
corel beach 0.89±0.05 0.89±0.04 0.88±0.05 0.84±0.07 0.91±0.04

elephant 0.81±0.05 0.82±0.04 0.80±0.05 0.71±0.04 0.82±0.03
fox 0.59±0.11 0.56±0.05 0.51±0.10 0.54±0.15 0.49±0.04

musk 1 0.80±0.13 0.78±0.07 0.83±0.09 0.87±0.06 0.83±0.09
musk 2 0.85±0.04 0.85±0.06 0.79±0.05 0.80±0.05 0.83±0.07

mutagenesis 1 0.83±0.08 0.82±0.08 0.87±0.07 0.81±0.08 0.84±0.05
mutagenesis 2 0.72±0.20 0.73±0.16 0.75±0.14 0.61±0.20 0.63±0.16
newsgroups 1 0.82±0.14 0.77±0.08 0.68±0.12 0.70±0.08 0.76±0.07
newsgroups 2 0.75±0.08 0.61±0.14 0.50±0.11 0.61±0.08 0.57±0.19
newsgroups 3 0.69±0.10 0.71±0.09 0.66±0.08 0.60±0.12 0.49±0.10

protein 0.66±0.08 0.65±0.12 0.64±0.15 0.64±0.10 0.65±0.13
tiger 0.71±0.08 0.75±0.04 0.73±0.07 0.72±0.06 0.74±0.04

ucsb breast cancer 0.83±0.12 0.71±0.09 0.81±0.08 0.83±0.13 0.83±0.06
web 1 0.51±0.11 0.65±0.12 0.54±0.12 0.52±0.06 0.55±0.04
web 2 0.45±0.14 0.43±0.21 0.49±0.18 0.43±0.16 0.46±0.19
web 3 0.53±0.09 0.53±0.07 0.60±0.10 0.49±0.11 0.51±0.10
web 4 0.55±0.15 0.57±0.07 0.59±0.10 0.57±0.04 0.63±0.10

winter wren 0.98±0.02 0.93±0.03 0.95±0.03 0.97±0.01 0.95±0.03
rank 2.30 2.65 3.05 3.65 2.50

Table 5.5: Ablation study for covariance type of spsn+gmm model on classification multiple-
instance problems. Testing dataset balanced accuracy (BACC) of classification multiple-
instance data is presented. The best model is chosen according to the best BACC achieved
on the validation dataset.

drawing clear decisions unreliable. However, from the methods‘ definition and issues men-
tioned, k-medoids can be deployed on data with a bigger estimated number of clusters and
fewer observations. On the other hand, spsn handled a higher number of observations quite
well, and its problems arise for a bigger number of clusters.
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dataset diag scalar unit reg. diag reg. scalar

brown creeper 0.04±0.01 0.07±0.02 0.04±0.01 0.05±0.02 0.05±0.01
corel african 0.01±0.00 0.02±0.01 0.02±0.00 0.02±0.01 0.05±0.01
corel beach 0.01±0.01 0.02±0.00 0.01±0.00 0.02±0.00 0.04±0.01

elephant 0.19±0.05 0.16±0.03 0.19±0.04 0.28±0.04 0.19±0.03
fox 0.41±0.11 0.43±0.06 0.49±0.09 0.46±0.14 0.50±0.04

musk 1 0.20±0.13 0.22±0.07 0.17±0.09 0.13±0.06 0.15±0.08
musk 2 0.15±0.04 0.17±0.07 0.21±0.05 0.21±0.07 0.18±0.08

mutagenesis 1 0.10±0.04 0.10±0.02 0.08±0.05 0.15±0.06 0.12±0.04
mutagenesis 2 0.26±0.19 0.25±0.14 0.25±0.12 0.32±0.17 0.30±0.14
newsgroups 1 0.18±0.15 0.24±0.09 0.30±0.10 0.30±0.08 0.24±0.07
newsgroups 2 0.25±0.08 0.39±0.15 0.49±0.11 0.39±0.08 0.43±0.19
newsgroups 3 0.31±0.10 0.29±0.09 0.35±0.09 0.40±0.12 0.50±0.09

protein 0.15±0.03 0.15±0.03 0.21±0.09 0.15±0.06 0.22±0.05
tiger 0.28±0.08 0.24±0.04 0.27±0.07 0.28±0.05 0.26±0.04

ucsb breast cancer 0.18±0.12 0.25±0.06 0.22±0.07 0.17±0.13 0.20±0.07
web 1 0.39±0.09 0.32±0.10 0.37±0.10 0.41±0.09 0.43±0.04
web 2 0.40±0.11 0.47±0.18 0.45±0.18 0.46±0.14 0.47±0.15
web 3 0.40±0.08 0.35±0.09 0.24±0.04 0.29±0.08 0.35±0.09
web 4 0.37±0.17 0.34±0.10 0.29±0.07 0.31±0.10 0.33±0.12

winter wren 0.03±0.02 0.03±0.00 0.06±0.03 0.03±0.02 0.07±0.03
rank 2.10 2.40 2.60 2.95 3.70

Table 5.6: Ablation study for covariance type of spsn+gmm model on classification multiple-
instance problems. Testing dataset expected calibration error (ECE) of classification multiple-
instance data is presented. The best model is chosen according to the best BACC achieved
on the validation dataset.
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dataset spsn+gmm spsn+realnvp k-medoids

brown creeper 0.82±0.07 0.65±0.00 0.69±0.06
corel african 0.91±0.00 0.92±0.00 0.59±0.10
corel beach 0.92±0.00 0.92±0.00 0.70±0.06

elephant 0.61±0.09 0.49±0.10 0.58±0.09
fox 0.53±0.03 0.56±0.01 0.56±0.07

musk 1 0.60±0.05 0.53±0.09 0.59±0.05
musk 2 0.60±0.07 0.61±0.13 0.56±0.04

mutagenesis 1 0.65±0.04 0.63±0.00 0.60±0.07
mutagenesis 2 0.80±0.07 0.60±0.22 0.65±0.06
newsgroups 1 0.76±0.09 0.47±0.14 0.70±0.06
newsgroups 2 0.63±0.06 0.54±0.08 0.61±0.04
newsgroups 3 0.56±0.07 0.57±0.08 0.52±0.03

protein 0.95±0.00 0.95±0.00 0.78±0.07
tiger 0.67±0.05 0.52±0.08 0.65±0.13

ucsb breast cancer 0.70±0.10 0.38±0.07 0.68±0.11
web 1 0.63±0.09 0.60±0.12 0.67±0.00
web 2 0.63±0.10 0.65±0.17 0.80±0.00
web 3 0.80±0.00 0.73±0.09 0.80±0.00
web 4 0.73±0.13 0.76±0.04 0.71±0.06

winter wren 0.78±0.00 0.78±0.00 0.84±0.05
rank 1.50 2.15 2.10

Table 5.7: Testing dataset unsupervised accuracy (UACC) of clustering multiple-instance data.
The best model is chosen according to the best UACC achieved on the validation dataset, and
the permutation of predicted clusters on the validation data is stored and used to evaluate
testing data.

dataset spsn hmil

chess 0.31±0.05 0.35±0.04
citeseer 0.71±0.01 0.69±0.01

cora 0.85±0.01 0.81±0.01
ftp 0.43±0.09 0.40±0.05

genes 0.79±0.05 0.82±0.02
hepatitis 0.91±0.03 0.90±0.02

mutagenesis 0.88±0.04 0.88±0.05
ptc 0.57±0.05 0.56±0.07

pubmed diabetes 0.88±0.01 0.89±0.01
uw cse 0.78±0.06 0.79±0.08
webkp 0.63±0.03 0.67±0.05
world 0.73±0.11 0.87±0.06
rank 1.50 1.42

Table 5.8: Testing dataset balanced accuracy (BACC) of classification hierarchical multiple-
instance data. The best model is chosen according to the best BACC achieved on the validation
dataset.
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dataset spsn hmil

chess 0.65±0.05 0.32±0.21
citeseer 0.22±0.01 0.14±0.07

cora 0.12±0.01 0.08±0.05
ftp 0.50±0.06 0.05±0.02

genes 0.07±0.01 0.01±0.00
hepatitis 0.09±0.03 0.09±0.03

mutagenesis 0.11±0.03 0.09±0.04
ptc 0.28±0.06 0.34±0.09

pubmed diabetes 0.05±0.01 0.03±0.01
uw cse 0.10±0.04 0.10±0.05
webkp 0.23±0.02 0.08±0.03
world 0.30±0.10 0.09±0.04
rank 1.75 1.08

Table 5.9: Testing dataset expected calibration error (ECE) of classification hierarchical
multiple-instance data. The best model is chosen according to the best BACC achieved on
the validation dataset.

dataset spsn k-medoids

chess 0.38±0.00 0.35±0.05
citeseer 0.21±0.01 0.27±0.03

cora 0.33±0.07 0.25±0.02
hepatitis 0.75±0.05 0.49±0.07

mutagenesis 0.75±0.00 0.76±0.02
premier league 0.41±0.00 0.35±0.08

ptc 0.57±0.00 0.43±0.00
uw cse 0.46±0.16 0.43±0.15
webkp 0.49±0.01 0.33±0.06
world 0.20±0.02 0.24±0.04

ftp 0.50±0.00 nan
pubmed diabetes 0.57±0.00 nan

genes nan 0.21±0.02

Table 5.10: Testing dataset unsupervised accuracy (UACC) of clustering hierarchical multiple-
instance data. The best model is chosen according to the best UACC achieved on the validation
dataset, and the permutation of predicted clusters on the validation data is stored and used
to evaluate testing data.
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Chapter 6

Conclusion

The thesis aimed to propose a density estimation model tailored for tree-structured data
as an extension of Sum-Product Networks (SPNs). The defined goal of the thesis was fulfilled.
We further summarize the achieved results in the following text.

We provided an overview of classical probability density estimation methods, estima-
tion, and practical applications. WE resented contemporary methods for estimating density.
It concluded by introducing the Sum-Product Network (SPN) probabilistic model, emphasiz-
ing its unique advantages, particularly its ability to perform exact and efficient probabilistic
inference.

The following chapter delved deeper into the data studied – trees. It provided a detailed
exploration of tree-structured data, discussing prior research on learning from such structures.
Notably, it highlighted the probabilistic model of random finite sets and introduced the Sum-
Product-Set model, an extension of Sum-Product Networks designed for leaf-attributed trees.

In the subsequent sections, the experimental scope was specified, emphasizing classi-
fication and clustering tasks due to the lack of competitive density estimation methods for
general tree-structured data. This segment provided detailed insights into performance met-
rics, dataset selection, and the setup necessary for empirical analysis. Following this, the
empirical findings from the predefined tasks were rigorously presented and discussed, thor-
oughly analyzing the outcomes of classification and clustering experiments conducted within
the predefined framework.

The initial set of experiments centered on tabular data analysis, primarily compar-
ing the effectiveness of Sum-Product Networks (SPNs) against neural networks, specifically
Multi-Layer Perceptrons (MLPs), in classification tasks Results indicated that both SPN and
MLP models exhibited competitive performance. Notably, the MLP combined with Monte
Carlo Dropout (MCD) showed slightly superior classification results. Additionally, the belief
that probabilistic models possess better calibration than non-probabilistic counterparts was
challenged, with the experiment’s results showing no clear advantage in calibration metrics.
Moreover, SPN models showcased promising results in handling missing data while performing
equally well or even better than MLP models.

Moving onto experiments with multiple instance data, the focus shifted to evaluating
SPSN models for random finite sets. Results suggested that SPN models displayed potential
in classification tasks compared to established baseline models like the Heterogeneous Multi-
Instance Learning (HMIL) model. However, combinations of HMIL with Monte Carlo Dropout
exhibited superior performance, mimicking the results from tabular data. Among the com-
bination of SPSN approaches tested, SPSN with RealNVP flow leaves faced challenges such
as overfitting issues, impacting their performance negatively. Furthermore, an in-depth anal-
ysis of the covariance type of the SPSN with the Gaussian Mixture Model (GMM) leaves
highlighted that a diagonal covariance matrix yielded the best results, both in terms of clas-
sification accuracy and calibration error. In clustering experiments conducted on multiple
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instance data, SPSN with Gaussian Mixture Model (GMM) emerged as the most effective
model, outperforming distance-based methods. The proposed method spsn is also competi-
tive on BACC on multiple instance data compared to hmil, which is a really good result given
the completely different nature of both models.

Overall, these experiments offered extensive insights into the strengths and limitations
of various models concerning classification, handling missing data, and clustering tasks across
tabular, multiple-instance data and hierarchical multiple-instance data. Moreover, the fact
that tractable probabilistic models with relatively sparse computational graphs rivalled in-
tractable neural networks with dense computational graphs is a significant highlight of the
thesis.

As for future work, we have to ask some more fundamental questions, such as: Are
discriminative methods generally better calibrated than generative ones? When is it better to
use probabilistic methods for discriminative tasks over non-probabilistic ones? Are imputation
techniques enough for handling missing values?
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[46] Mattia Desana and Christoph Schnörr. “Expectation maximization for sum-product networks
as exponential family mixture models”. In: arXiv preprint arXiv:1604.07243 (2016).

[47] Robert Peharz et al. “Random Sum-Product Networks: A Simple and Effective Approach to
Probabilistic Deep Learning”. In: Proceedings of The 35th Uncertainty in Artificial Intelligence
Conference. Ed. by Ryan P. Adams and Vibhav Gogate. Vol. 115. Proceedings of Machine
Learning Research. PMLR, 2020, pp. 334–344. url: https://proceedings.mlr.press/v115/
peharz20a.html.

[48] Martin Trapp et al. “Bayesian Learning of Sum-Product Networks”. In: Advances in Neu-
ral Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates,
Inc., 2019. url: https : / / proceedings . neurips . cc / paper files / paper / 2019 / file /
5421e013565f7f1afa0cfe8ad87a99ab-Paper.pdf.

[49] Adnan Darwiche. “A differential approach to inference in Bayesian networks”. In: Journal of the
ACM (JACM) 50.3 (2003), pp. 280–305.

[50] Robert Peharz et al. “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits”. In: Proceedings of the 37th International Conference on Machine Learning. Ed. by
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Chapter A

Appendix A: Hyperparameters

description values

number of product node splits (D) {1, 2, 3, 4, 5}
number of product node children (S) {2, 4, 8}
number of input distributions per leaf (I) {2, 4, 8}
number of product node scope repetitions (R) {1, 5, 10}
leaf distribution normal
cardinality distribution Poisson
number of training epochs 500
optimizer ADAM [90]
learning rate {0.1, 0.01, 0.01}
batch size 50

Table A.1: Hyperparameter setup for RATSPN model for classification on tabular datasets.
See [47] for more details about RATSPN’s hyperparameters.

description values

hidden layer dimension {5, 10, 20, 30, 40}
number of hidden layers {1, 2, 3, 4}
aggregation function concatenation of mean and maximum
activation function ReLU, Sigmoid
number of training epochs 500
optimizer ADAM
learning rate {0.1, 0.01, 0.01}
batch size 50

Table A.2: Hyperparameter setup for MLP model for classification on tabular datasets.
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description values

number of product node splits 1
number of sum node children {1, 2, 4, 8, 16, 32, 64}
leaf distribution type Gaussian

covariance matrix type
{diagnoal, scalar, unit,

diagonal+regularization (σmin = 0.01),
scalar+regularization (σmin = 0.01)}

cardinality distribution Poisson
number of training epochs 4000
optimizer ADAM [90]
learning rate {0.1, 0.01, 0.01}

Table A.3: Hyperparameter setup for SPSN+GMM model for multiple instance datasets.

description values

number of product node splits 1
number of sum node children 1
leaf distribution type RealNVP flow
cardinality distribution Poisson
number of training epochs 4000
optimizer ADAM [90]
learning rate {0.1, 0.01, 0.01}

Table A.4: Hyperparameter setup for SPSN+RealNVP model for multiple instance datasets.

description values

number of product node splits {2, 3, 4}
number of sum node children {2, 4, 6, 8, 10}
leaf distribution type Gaussian

covariance matrix type
{diagnoal, scalar, unit, diagonal+regularization (σmin = 0.01),

scalar+regularization (σmin = 0.01)}
cardinality distribution Poisson
number of training epochs 4000
optimizer ADAM [90]
learning rate {0.1, 0.01, 0.01}

Table A.5: Hyperparameter setup for SPSN+SPN model for multiple instance datasets.
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description values

hidden layer dimension {8, 16, 32, 64, 128, 256}
number of hidden layers per edge of schema {1, 2, 3, 4}
aggregation function concatenation of mean and maximum
activation function ReLU, Sigmoid
number of training epochs 1000
optimizer ADAM
learning rate {0.1, 0.01, 0.01}

Table A.6: Hyperparameter setup for HMIL model for multiple instance datasets.

description values

number of product node splits {1, 2, 3}
number of product node children 2
number of sum node children {1, 2, . . . , 8}
cardinality distribution Poisson
number of training epochs 200
optimizer ADAM [90]
learning rate {0.1, 0.01, 0.01}
batch size 10

Table A.7: Hyperparameter setup for SPSN model for clustering and classification on hierar-
chical multiple instance datasets.

description values

hidden layer dimension {10, 20, 30, 40, 50}
number of hidden layers per edge of schema {1, 2}
aggregation function concatenation of mean and maximum
activation function ReLU, Sigmoid
number of training epochs 200
optimizer ADAM
learning rate {0.1, 0.01, 0.01}
batch size 10

Table A.8: Hyperparameter setup for HMIL model for classification on hierarchical multiple
instance datasets.
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