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Abstract
This thesis describes the development of
a state estimator for an electric vehicle
battery. Battery cell models are discussed,
and the so-called 2RC equivalent circuit
model is selected. The cell model is im-
proved in state of charge (SOC) model-
ing and the thermal dynamics execution
complexity. Next, model identification is
described using laboratory measured data
obtained from the Department of Elec-
trotechnology, Czech Technical University
in Prague. Challenges related to model
identification at low SOC values are dis-
cussed. After model parameter estimation
is described, the cell model state estima-
tor is presented. Conventional unscented
Kalman Filter and its improved imple-
mentation called square toot unscented
Kalman Filter (SR-UKF) are presented
and implemented. Further, numerical
enhancements are described and imple-
mented. In the last step, the state es-
timator is validated using the measured
data. The SR-UKF is compared with an
extended Kalman filter (EKF), which was
previously implemented in [12]. Overall,
EKF and SR-UKF appear to perform sim-
ilarly with respect to root mean square
error (RMSE) values. Although EKF does
not exhibit significant execution time on
average, UKF’s execution time is superior.

Keywords: battery management system,
mathematical modeling, filtering,
Kalman filter, battery, electric vehicle

Supervisor: Ing. David Vošahlík
Charles Square 13
Prague 2, 120 00, New Town

Abstrakt
Tato práce se zabývá vývojem odhado-
vače stavu pro baterii elektrického vozidla.
Možnosti modelování článku baterie jsou
porovnány a z nich je vybrán tzv. 2RC
model ekvivalentního elektrického obvodu.
Matematický model je vylepšen v odhado-
vání stavu nabití baterie (SOC) a teplotní
dynamika je vylepšena z pohledu výpo-
četní složitosti. Dále je popsána identifi-
kace modelu z dat, která byla převzata z
Katedry Elektrotechnologie, Českého vy-
sokého učení technického v Praze. Zmí-
něny jsou i výzvy spojené s modelováním
článku v rozmezí nízkých hodnot SOC.
Po identifikaci modelu je uveden odha-
dovač stavu baterie. Běžný “unscented
Kalman filter” a jeho vylepšená imple-
mentace “square root unscented Kalman
filter” (SR-UKF) jsou představeny a naim-
plementovány. Dále jsou popsána určitá
numerická vylepšení, která jsou následně
naimplementována. Jako poslední krok je
estimátor stavu validován pomocí naměře-
ných dat. SR-UKF je porovnán s “exten-
ded Kalman filter” (EKF), který byl dříve
naimplementován v [12]. Celkově odhadují
EKF a SR-UKF srovnatelně z pohledu
hodnot směrodatné odchylky (RMSE). Na
druhou stranu, SR-UKF dominuje v tes-
tech měřících výpočetní čas na cílovém
počítači.

Klíčová slova: systém správy baterie,
matematické modelování, filtrace,
Kalmanův filtr, baterie, elektrické vozidlo

Překlad názvu: Návrh systému
odhadování stavu a parametrů baterky
pro demonstrační vozidlo
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Chapter 1
Introduction

Nowadays, electric vehicles are rapidly evolving. For example, it can be seen
that from the start of production of the Tesla Roadster, which was the first
electric vehicle (EV) produced by Tesla1, in 2008, Tesla evolved into an EV
development giant, which is now producing futuristic vehicles such as the new
Tesla Cybertruck, which is supposedly built for any planet.2 Although Tesla

Figure 1.1: Tesla Cybertruck, adopted from [11]

can be considered a pioneer who pushed the EV industry forward, Tesla’s
innovative approach is not the only driving force. Recent activist events
raise awareness about environmental pollution and its possible consequences.
Partly because of that, new emission standards are published that aim at
lowering the emissions as much as possible. For example, the Euro 7 emission
standard [25] contains stricter rules regarding exhaust particle emissions. EVs
and hybrid electric vehicles are promising relief from the high pollution caused
by cars in general.

The Smart Driving Solutions research group at the Faculty of Electrical
Engineering Czech Technical University in Prague3 develops a prototype
electric vehicle with an individually actuated motor for each wheel. Each
motor has a rated power ≈ 90 kW. Brakes are controlled using the brake-
by-wire approach, which development was conducted in [31]. All brakes
are actuated independently. Similarly, steering is implemented as the steer-

1https://en.wikipedia.org/wiki/Tesla,_Inc.
2https://www.tesla.com/en_eu/cybertruck
3https://sds.fel.cvut.cz/
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1. Introduction .....................................
by-wire approach developed in [3]. The vehicle main computer runs Linux
with the PREEMPT_RT patch. The vehicle chassis is adopted from a first-
generation Skoda Fabia car and adapted accordingly to meet the electric
demonstration vehicle needs.

The overall goal of the project is to develop a prototype platform for
testing advanced algorithms for vehicle control. The advantage of developing
a custom EV is that by doing so, control over all aspects of the car is
granted. Borrowing a car from a large-scale manufacturer involves restrictions
caused by complex data protocols and bus communication encryption. As
the demonstration EV is still in development, a battery management system
(BMS) must be implemented to ensure proper battery handling and state
estimation.

1.1 Thesis Goal and Overview

This thesis describes the development of a battery state estimator that can
be used in the demonstration EV. Generally, a plant model is needed for
estimator development. Therefore, a classical procedure consisting of data
processing, model selection, model identification, estimator implementation
and overall testing, and validation is conducted.

Laboratory measurements were obtained externally. High-accuracy labora-
tory tools were used at the Department of Electrotechnology, Czech Technical
University in Prague to precisely measure the characteristics of a Panasonic
cells used in the target demonstration vehicle. Measurements are described
in further detail in Chapter 2.

As described later in Chapter 3, battery cell modeling options are presented.
An equivalent circuit model is chosen and a more detailed description is pro-
vided. Cell modeling modifications are presented that enable improvement in
state of charge (SOC) modeling and computational efficiency. The procedure
of using a cell model to model the entire vehicle battery pack is described,
and a Matlab implementation overview is provided.

Next, model identification is performed. The obtained data are processed
and cell model parameters are estimated. The estimation of cell capacity,
open-circuit voltage, internal resistance and resistor-capacitor (RC) couple
parameters is described in Chapter 4. The resulting parameters are repre-
sented as look-up tables depending on the temperature and state of charge.
The only exception is cell capacity, which is dependent only on temperature.
The cell model is validated using measured data. More details are provided
in the aforementioned chapter.

After the model identification, the cell state estimator is presented in
Chapter 5. A brief overview of battery state of health modeling and estimation
is provided. Uncented Kalman Filter (UKF) and square root unscented
Kalman filter (SR-UKF) implementation in Matlab is described. Furthermore,
a numerical robustness enhancement algorithm is presented, which makes
the implemented estimator robust with respect to runtime errors caused by
numerical inaccuracies.

4



............................... 1.1. Thesis Goal and Overview

In Chapter 6, testing and validation procedure is described. Successive
estimator validation steps are conducted. A comparison between two different
estimators is provided, and execution time is measured on the target hardware
platform using measured cell data.

Finally, Chapter 7 provides an overall conclusion of this thesis. The results
are summarized and evaluated. Furthermore, possible improvements and
future follow-up work are proposed.

5
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Chapter 2
Measurements

As stated in the introductory chapter, the goal of this thesis is to develop an
estimator for an electric vehicle battery pack. For this purpose, battery cell
measurements are needed to identify the mathematical model. This chapter
describes the measurements, how they were obtained, and their structure.
Different measuring scenarios are described and their later usage is briefly
outlined.

2.1 Cells and Measurement Conditions

Measurements were obtained from the Department of Electrotechnology,
Czech Technical University in Prague. The scenarios were measured on
Panasonic 18650 NCR cells. [20] NCR denotes the particular cell chemistry
that was used. NCR (equivalently NCA) indicates the specific usage of lithium
nickel cobalt aluminum oxides (LiNiCoAlO2) with a graphite anode. These
cells are used in the target demonstration EV, where the recycled Tesla Model
S car battery pack [5] is used.

In total, 12 cells were used in the measurement process. These cells were
divided into 2 groups of 6 cells. The first group was used for measurements
where active cooling was not incorporated. The second group was used
for measurements with active cooling. Active cooling was implemented
by heat sinks with fans. Cell dynamics was measured at four different
temperatures: −10 ◦C, 0 ◦C, 25 ◦C and 50 ◦C. Each group of cells was
divided into sets of 3 cells. The first set was used for the two lower temperature
measurements (−10 ◦C, 0 ◦C), and the second set was used for the two higher
temperature measurements (25 ◦C, 50 ◦C). All measurements were performed
in a thermal chamber to achieve the desired ambient temperature. Table 2.1
shows individual cells division between the measuring scenarios.

Cooling\T emp.[◦C] -10 0 25 50
Without cooling C1, C2, C3 C1, C2, C3 C4, C5, C6 C4, C5, C6

With cooling C7, C8, C9 C7, C8, C9 C10, C11, C12 C10, C11, C12

Table 2.1: Cells (Ci) division based on measurement conditions

The measurements always started from a fully charged state. The fully

7



2. Measurements ....................................
charged state was achieved using constant-current-constant-voltage (CC-CV)
approach. [27] This approach involves charging the battery with constant
current until the upper voltage threshold is reached. Then, constant voltage
charging begins and continues until the charging current is lower than a
specified value.

A direct cell temperature measurement was preformed for the scenarios
with active cooling. The cell temperature was measured at 4 points: anode,
cathode, cell’s center upper side and cell’s center lower side.

In this thesis, three types of cell measurements were used.. capacity and open-circuit voltage measurements. pulse measurements. driving profiles

The following sections describe each of these measurement types.

2.2 Capacity and Open Circuit Voltage
Measurements

Capacity and open-circuit voltage (OCV) were measured simultaneously using
one identical scenario. These measurements were performed without heat
sinks, i.e., the first group of cells was used (C1...6). The measurement scenario
was adopted from [21]. The procedure involves starting with a fully charged
cell. A specific test temperature is selected, e.g. 0 ◦C. The cell is discharged
at the test temperature by a low (C/30) current until the terminal voltage
reaches a given lower threshold value (2.5 V ). This threshold was chosen
based on typical lithium cell operating range. Then, the cell is placed in
25 ◦C and after 2 hours the battery is (dis)charged to achieve a terminal
voltage equal to the threshold value. After that, the cell is charged at the
test temperature with current of C/30 amplitude until the upper threshold
(4.2 V ) is reached. Finally, the cell is put into 25 ◦C again and after 2 hours,
it is (dis)charged to achieve a terminal voltage of 4.2 V . During this entire
procedure, the terminal voltage and accumulated ampere-hours are recorded.
A demonstration of this procedure is shown in Figures 2.1, 2.2, 2.3 and 2.4.
They depict the procedure for measuring OCV and capacity at 0 ◦C.

It is assumed that by using very low discharge current, the battery dynamics
is not very excited and thus negligible. Discharge and charge OCV curves
must be processed to obtain the final OCV curve dependent on the SOC.
Measurement processing is further described in Chapter 4, which is dedicated
to model identification.

This scenario was measured at sample time Ts = 1 s.
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Figure 2.1: Demonstration of the first phase of capacity and OCV measurement,
which took place at 0 ◦C, discharge current was 0.11 A
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Figure 2.2: Demonstration of the second phase of capacity and OCV measure-
ment, which took place at 25 ◦C. This phase was measured 2 hours after the
first phase took place. The discharge current was 0.11 A.
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Figure 2.3: Demonstration of the third phase of capacity and OCV measurement,
which took place at 0 ◦C, charge current was 0.11 A
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Figure 2.4: Demonstration of the fourth phase of capacity and OCV measure-
ment, which took place at 25 ◦C. This phase was measured 2 hours after the
third phase took place. The charge current was 0.11 A.
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................................. 2.3. Pulse Measurements

2.3 Pulse Measurements

The pulse measurements consist of discharging the cell with successive current
pulses until a terminal voltage lower threshold is reached. Then, a pulse
charging procedure, that is similar to the discharge procedure, is conducted.
An upper voltage threshold was considered as the end of the measurement.
Active cooling was incorporated into these measurements. Thus, the second
group of cells was used (C7...12).

These measurements are suitable for estimating the equivalent circuit model
parameters. Namely, internal resistance (R0) and RC pairs (R1, C1, R2 and
C2). The equivalent circuit model used is described in Section 3.1.

An excerpt from the measurement can be seen in Figure 2.5. A regular
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Figure 2.5: Pulse measurement illustration

discharge pulse lasted for 3 minutes. A 2 hour resting time was inserted
between each discharge cycle to allow the battery to achieve a steady state.
Measurement sample time Ts = 0.1 s was used.

2.4 Driving Profiles

The last measurement scenarios used in this thesis were the driving profiles.
International standard and certification organizations use predefined cycles
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2. Measurements ....................................
(the so called dynamometer drive schedules) to test car’s fuel consumption
and emissions production. [1] These driving cycles are used to imitate real
driving experience for different conditions (e.g. driving on a highway or in
a city). Current profiles based on the drive schedules were applied to the
battery cell repeatedly until the low-level voltage threshold was met.

The following driving profiles were measured.. Urban Dynamometer Driving Schedule (UDDS), which represents city
driving conditions [1]. US06, which represents an aggressive driving schedule [1].Worldwide harmonized Light duty driving Test Cycle (WLTC), which
represents an internationally accepted driving cycle developed for general
light vehicle testing [30]

An excerpt from the US06 driving profile can be seen in Figure 2.6.
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Figure 2.6: US06 driving profile measurement illustration

The driving profiles were used mainly for the validation of the final model
and estimator. The measured signals were compared with the simulated
and estimated outputs. Validation using driving profile data is described in
Chapter 6.

Measurement sample time Ts = 0.1 s was used.
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Chapter 3
Mathematical Model

To develop a battery pack estimation algorithm, a mathematical model of
the battery pack needs to be derived beforehand. Generally, when modeling
an electric vehicle battery pack, a single cell model is first established and is
later augmented to reflect the pack behavior. [22]

This chapter describes the development of the cell mathematical model.
Further, modeling of the entire battery pack and implementation of the cell
model in Matlab are given. Finally, a conclusion with a discussion on the
selected modeling approach is presented.

3.1 Cell Model

As stated in the introduction to this chapter, a cell model is developed first
and later augmented to reflect the entire battery pack. Such a procedure can
be seen e.g. in [22]. As it is described in [22], there are two main approaches
to cell modeling. An equivalent-circuit model (ECM) consists of modeling
the cell as an electrical circuit. The second approach is called physics-based
modeling (PBM). These are based on first-principles modeling, including
electrochemical reactions.

As a starting point, an ECM mathematical model from [12] was selected.
Choice of ECM in [12] is further justified by being a “sweet spot of both
acceptable accuracy, complexity, and computational effort.” As it is stated
in [22] “equivalent-circuit type models are used extensively (almost exclusively)
as the basis for real-time control algorithms in commercial battery packs.”
Although it is written in [22] that PBMs can be reduced to similar a complexity
as ECMs, ECMs are used more widely.

The decision to adopt a model from [12] was also made because it was
desirable to continue the team development conducted previously. In addition,
Garrett Motion, which supported this thesis, aimed at improving their models,
which were partly based on [12].

3.1.1 2RC Model

In [12], the author’s main target was mainly battery state of charge (SOC)
and state of health (SOH) estimation in a student formula car for improving
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3. Mathematical Model .................................
competition results. The model adopted from [12] is structured as follows.

˙SOC(t) = − I(t)
Qmax

(3.1)

V̇1(t) = − V1(t)
R1C1

+ I(t)
C1

(3.2)

V̇2(t) = − V2(t)
R2C2

+ I(t)
C2

(3.3)

Ṫbat(t) = V1(t)I(t)
Cth

+ V2(t)I(t)
Cth

+ R0(SOC, Tbat) · I(t)2

Cth
+ Tair(t) − Tbat(t)

RthCth

(3.4)
Q̇max(t) = 0 (3.5)

I(t) denotes input current, Qmax stands for maximum available charge, V1
stands for voltage on the first RC pair, R1 and C1 stand for values of the
first RC pair elements, V2, R2, and C2 are equivalent for the second RC
pair, Tbat stands for battery temperature, Cth stands for thermal capacitance,
Rth stands for thermal resistance, R0 stands for internal resistance and Tair

stands for temperature of the ambient air.
As can be seen, the so-called 2RC version of ECM is used, which describes an

equivalent circuit of a structure, as shown in Figure 3.1. The meaning of 2RC
stems from the use of an electrical circuit consisting of two resistor-capacitor
(RC) pairs.

I
R2

+−
V2

R1

+−
V1

R0

−
+

OCV

C2

C1

Figure 3.1: Schematics of the 2RC equivalent circuit model, OCV stands for an
open circuit voltage

3.1.2 Enhancing SOC Modeling

A drawback of the adopted model is its approach to modeling SOC. The
author of [12] chose to interpret SOC based on [8], which is taken as the ratio
of the available charge to the total charge.

SOC = Qcur

Qmax
· 100 (3.6)
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..................................... 3.1. Cell Model

As it is stated in [12], this approach does not reflect the temperature depen-
dency of Qmax. However, a simple solution was found in [9] where the authors
used an approach of exchanging the SOC state by a state that represents the
charge depleted from the battery with respect to a fully charged state. The
state equation describing the dynamics of this state is then as simple as

Q̇d = I. (3.7)

The momentary SOC can then be computed as an output equation

SOC = 100 ·
(

1 − Qd

C · 3600

)
, (3.8)

where C is the battery capacity available at the current moment with respect
to the operating conditions (mainly temperature and age). Scaling by a factor
of 3600 represents the conversion from ampere-hours (Ah) to ampere-seconds
(As).

This approach of modeling SOC, as it is done in [9], is more supported by
section 2.10.6 of [21], where it is shown that the total normalized capacity
(available charge) is constant for all operating conditions. However, what
changes with operating conditions is the capacity that the user can drain
from the battery. This is deduced from the fact that while discharging the
battery at −10 ◦C, a low voltage threshold of 2.5 V is reached for a lower
amount of depleted charge compared to the situation when the battery is
discharged at a higher temperature. However, after warming up the cell
from −10 ◦C to room temperature, the battery can provide some additional
charge before the 2.5V threshold is reached again. If the charge depleted
from the battery at −10 ◦C is summed up with the charge depleted later
after rest at room temperature, a similar result is obtained as if the discharge
phase was performed at room temperature. The obtained measurement data
presented in Tables 3.1 and 3.2 support this fact. As can be seen, the total

Temp. [◦C] Dchgd. Capacity [Ah] Capacity Left [Ah] Sum [Ah]
-10 2.95 0.41 3.37
0 3.15 0.22 3.38
25 3.37 0.02 3.39
50 3.38 0.01 3.39

Table 3.1: Discharge capacity measurements, Dchgd. Capacity reflects the
capacity discharged at a given temperature, Capacity Left reflects the capacity
discharged at 25 ◦C after the battery achieved a steady state at 25 ◦C

(dis)charged capacity, which is presented in the column Sum, does not vary as
much with respect to temperature. This capacity is further referred to as the
total capacity. However, the capacity (dis)charged at the given temperature
varies by hundreds of milliampere-hours. This capacity is further referred
to as the available capacity. Similar definitions are provided in Section 3.2
of [22].
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3. Mathematical Model .................................
Temp. [◦C] Chgd. Capacity [Ah] Capacity Left [Ah] Sum [Ah]

-10 3.19 0.18 3.37
0 3.30 0.08 3.38
25 3.39 0.03 3.42
50 3.42 0.02 3.45

Table 3.2: Charge capacity measurements, Chgd. Capacity reflects the capacity
charged at a given temperature, Capacity Left reflects the capacity charged at
25 ◦C after the battery achieved a steady state at 25 ◦C.

An immediate improvement in the modeling approach described by equa-
tions (3.7) and (3.8) can be seen from the fact that the proposed approach
reflects changes in SOC when no power is drained from the battery and
only the operating temperature is changed. Consider a situation in which a
50% charged electric vehicle stands in a garage at 25 ◦C. When the owner
forgets to close the garage door in winter and the battery is cooled down, the
available capacity changes. The proposed modeling approach reflects that in
a way that the SOC value at the output changes accordingly.

3.1.3 Simplifying Thermal Dynamics

Furthermore, the thermal dynamics was simplified. In [12], a thermal model
of the form

Ṫbat(t) = V1(t)I(t)
Cth

+ V2(t)I(t)
Cth

+ R0I(t)2

Cth
+ Tair(t) − Tbat(t)

RthCth
(3.9)

is used. The voltage drops on resistors R1 and R2 are small and are further
divided by the parameter Cth. Therefore, the first two terms in equation (3.9)
are negligible. Removing them does not introduce significant errors. A new
proposed thermal model has a structure

Ṫbat(t) = R0I(t)2

Cth
+ Tair(t) − Tbat(t)

RthCth
. (3.10)

Another advantage of this simplification is that it improves computational
efficiency.

3.1.4 State of Health Modeling

As it is stated in [12] and [22], battery SOH is mostly defined on the basis
of either a gradual capacity decrease or an internal resistance increase. A
standard definition of SOH is not established and BMS engineers need to
make choices about how to represent and calculate SOH. Furthermore, it
is proposed in [22] that with battery aging, not only capacity and internal
resistance will change. However, the other parameters that change have a little
impact on the overall behavior and thus state-of-the-art battery management
systems mostly track either capacity or internal resistance value change or
both. Proper SOH estimation is important because it enables detection
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..................................... 3.1. Cell Model

when battery degradation reaches a point when its characteristics are below
acceptable performance.

As it is written in [22], proper internal resistance estimation has a significant
role in available-power calculation. However, later it is stated that for Kalman-
based filtering, change of internal resistance value has a minor effect when
capacity degradation is estimated. Therefore, defining SOH in terms of
capacity decrease is more suitable for this thesis. As it is used also in [12],
the suitable SOH definition for this thesis is

SOH = 100 · Qmax

Qinit
, (3.11)

where Qmax denotes the momentary maximal available capacity which de-
creases over time and Qinit denotes the maximum available capacity of an
unused battery.

As shown in Tables 3.1 and 3.2, the battery’s available capacity varies with
respect to temperature. It was decided to structure the model in such a way
that the battery capacity C is computed as C = C0 · Crel, where C0 is the
nominal capacity independent of temperature and Crel stands for relative
capacity, which is temperature dependent. More information is provided
in Section 4.1. The C0 value is then subject to age capacity degradation
estimation. Thus equivalently, (3.11) can be redefined as

SOH = 100 · C0
C0,init

, (3.12)

where C0,init is the value of C0 of a new cell. The estimation of C0 is covered
in Chapter 5 of this thesis.

3.1.5 Considering the Effect of Coulombic Efficiency

Another parameter that is generally present in cell models is the so-called
coulombic efficiency, which models the different behaviour of the cell when
charging compared to discharging. In [21], coulombic efficiency at room
temperature (25 ◦C), is defined as

η(25◦C) = Qdch

Qch
, (3.13)

where Qdch represents total ampere-hours discharged from the cell at 25 ◦C
and Qch represents total ampere-hours charged at 25 ◦C. In [21], the author
provides these definitions with respect to performing cell measurements as
described in Section 2.2. Thus the Qdch and Qch values are the sum of
ampere-hours (dis)charged at two consecutive steps.

Coulombic efficiencies for temperatures other than 25 ◦C are defined in
a more complex way. Nevertheless, considering the procedures described in
Section 2.2 of this thesis, the author of [21] defines the coulombic efficiency
for an arbitrary temperature T as

η(T ) = Qdch

Qch,T
− η(25◦C)Qch,25◦C

Qch,T
, (3.14)
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3. Mathematical Model .................................
where Qdch still denotes total ampere-hours discharged from the battery
(summed up discharging at temperature T and consequent discharging at
25 ◦C), Qch,T denotes ampere-hours charged at temperature T and Qch,25◦C

denotes the ampere-hours charged at 25 ◦C.
It was decided not to incorporate this coefficient into the model. Facts

supporting this decision are, for example, the computed η values. It was found
that for the measured cells, the coulombic efficiency is very close to 100 %
and thus neglecting it will not produce a significant error while effectively
reducing the model complexity. Specific values computed from the measured
data can be seen in Table 3.3. Qdch,T denotes ampere-hours discharged at
temperature T . A validation procedure, which further supports the neglect

T [◦C] Qdch [Ah] Qdch,T [Ah] Qch,T [Ah] η(T ) [-]
-10 3.37 2.95 3.19 99.8
0 3.38 3.15 3.30 99.9
25 3.39 3.37 3.39 99.3
50 3.39 3.38 3.42 98.4

Table 3.3: Capacity and coulombic efficiency values of one cell with respect to
temperature, computed from the measured data

of coulombic efficiency, is described in Section 6.2 of this thesis.

3.1.6 Full dynamic model

The entire dynamic cell model used in this thesis takes the following form:

u =
[

I(t)
Tair(t)

]
(3.15)

Q̇d(t) = I(t) (3.16)

V̇1(t) = − V1(t)
R1C1

+ I(t)
C1

(3.17)

V̇2(t) = − V2(t)
R2C2

+ I(t)
C2

(3.18)

Ṫbat(t) = R0 · I(t)2

Cth
+ Tair − Tbat

RthCth
(3.19)

y =


SOC
Vtrm

Tbat

C

 =


100 ·

(
1 − Qd(t)

C·3600

)
OCV − V1(t) − V2(t) − I(t) · R0

Tbat

C0 · Crel

 , (3.20)

where the meaning of the symbols is the same as for equations (3.1) to (3.5)
or as described above. Together with the other parameters of the equivalent
circuit model, Chapter 4 provides details on the identification and parameter
dependencies.
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Figure 3.2: Schematic of the battery

3.2 Battery Pack Modeling

Thus far, a single cell model has been considered. However, the battery used
in an electric vehicle is composed of many similar cells. As previously stated
in the introduction to this chapter, a cell model is usually developed first and
later augmented to reflect the entire battery pack. This section describes the
process of using the cell model to model the entire pack.

3.2.1 Battery Pack Structure

For this thesis, it is aimed to model the battery pack in the demonstration
vehicle. The demonstration vehicle uses battery modules from a Tesla Model S
car. There are 9 such modules in the entire battery pack of the demonstration
vehicle. All modules are connected in series. Each module comprises a
total of 444 cells. [5] Each module is wired in such a way that groups of 6
cells connected in series are assembled in parallel. Thus forming 74 parallel
connected groups. The module schematic is depicted in Figure 3.2a and
schematic of the modules in a pack is illustrated in Figure 3.2b.

3.2.2 Augmenting the Cell Model to the Whole Pack

This section is inspired by Chapter 2 of [22]. In general, it is necessary to
model every cell individually. However, if some simplifying assumptions are
met, a single cell model can be used to simulate the entire battery pack. The
assumptions are..1. identical cell dynamics
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3. Mathematical Model ...................................2. equal initial conditions for all cells and..3. similar operating conditions.

The first two assumptions were taken from [22] while the third one was added.
Regarding the first point, every manufactured cell will have different dy-

namics. However, the measurements show that the differences in dynamics
can be neglected. Figure 3.3 shows comparison of the measurements of the
Urban Dynamometer Driving Schedule (UDDS) drive cycle measured at
−10 ◦C. Specifically, the last cycle is depicted, i.e., the cells are in a highly
discharged state where highly nonlinear dynamics are expected. But even
then, the measurements are very close.
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Figure 3.3: Comparison of drive cycle measurements of all 3 measured cells

Considering the second point, assuming similar initial conditions for a
battery pack in a steady state is not a big simplification. However, one needs
to ensure that the battery pack is truly in a steady state, the temperature
distribution is homogeneous in the whole pack, and a cell balancing procedure
takes place beforehand.

For the third point, one should consider that when using the battery in an
environment where the difference between temperatures inside and outside
of the battery pack is large, cells in the center of the battery pack might be
warmer than those on the edges. Thus, there is a concern about the sufficiency
of a single cell model in the case of extreme temperature conditions.

Although not all assumptions are perfectly satisfied, it is sufficient to accept
them for this thesis. When these assumptions are accepted, it can be said
that the input current is equal in all modules because they are connected in
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............................... 3.3. Implementation in Matlab

series. Furthermore, the current is evenly divided into all parallel branches
of each module because each parallel branch consists of the same number of
cells connected in series. Furthermore, all series connected cells are exposed
to a current of equal amplitude, and the temperature is evenly divided. By
stating this, modeling the whole battery pack simplifies to dividing the input
current by an appropriate factor and multiplying the output terminal voltage
appropriately. The model’s cell temperature is taken as the temperature
inside the whole pack. The SOC state is treated similarly. Since there are 6
cells in series in each module, 74 parallel branches of cells in each module,
and nine series connected modules in the pack (refer to Section 3.2.1 for more
detail), this would mean that

Ī(t) = I(t)
74 , (3.21)

T air = Tair, (3.22)
SOC = SOC, (3.23)
Vtrm = 6 · 9 · V̄trm = 54 · V̄trm, (3.24)
Tpack = T bat. (3.25)

The overline symbols denote signals that come in or out of the cell model.
The symbols without an overline denote the interface with the battery pack
measurements.

3.3 Implementation in Matlab

The above described model was implemented in MATLAB in two variants.
One without nominal capacity degradation and one with C0 as a state. (Refer
to Chapter 5 for more details on capacity degradation modeling.) Both
versions were implemented in the Energy Management Framework (EMF) of
Garrett Motion as Matlab System objects with proper documentation. Both
models are parametrized by the parameters described in Table 3.4.

Name Symbol Unit Dimension Dependency
Battery relative capacity Crel - 1D Temperature
Battery nominal capacity C0 Ah 1D -
Internal resistance R0 Ω 2D Tmp., SOC
Open Circuit Voltage OCV V 2D Tmp., SOC
R1 resistance R1 Ω 2D Tmp., SOC
R2 resistance R2 Ω 2D Tmp., SOC
C1 capacitance C1 F 2D Tmp., SOC
C2 capacitance C2 F 2D Tmp., SOC
Battery thermal resistance Rth K/W Scalar -
Battery thermal capacitance Cth J/K Scalar -

Table 3.4: Matlab model parameters
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3. Mathematical Model .................................
Both models implement look-up table input argument saturation, i.e., when

a state reaches beyond the scope of a look-up table, the nearest value from
the look-up table is chosen. This prevents runtime errors when simulating in
extreme conditions. The interpolation of the look-up tables is set as linear.
Because the models are implemented as Matlab System objects, they can be
incorporated in Simulink schemes as regular blocks.

3.4 Conclusion of the Modeling Phase

Model selection and software implementation were described in this chapter.
As a result, two new functional cell models in the Garrett Motion EMF are
ready for use. Compared to the framework’s original state, they are more
adaptable with respect to temperature parametrization. The approach to pack
modeling was simplified, and a validation procedure needs to be performed
to test if this approach is sufficient in real operating conditions. This was not
conducted during the work on this thesis because the demonstration vehicle
was not fully assembled. In the case of larger pack model deviations, it is
possible to include a cell junction resistance into the model by increasing the
cell internal resistance R0 by an appropriate value.
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Chapter 4
Model Identification

With the cell model being chosen, this section describes the process of
identifying model parameters from the measured data. The procedure of each
parameter estimation is described and encountered challenges are discussed.

4.1 Cell Capacity

Cell capacity was determined from the slow discharge measurements described
in Section 2.2. Discharged capacity was directly measured; therefore, this
information was contained in the recorded data. The measurement was
performed for temperatures −10 ◦C, 0 ◦C, 25 ◦C and 50 ◦C. Results were
already presented in Table 3.3. It can be seen that the total capacity differs
very little with respect to temperature. On the other hand, the discharge
capacity varies not negligibly. It can then be written that

Crel = Qdch

C0
= Qdch

Qdch,25◦C
. (4.1)

For this thesis, the total capacity was used instead of available discharge
capacity.1 If it is needed to provide the user with the state of charge (SOC)
related to the available discharge capacity, it can be easily computed using
the available data. Both the total and available discharge capacity values are
available in the identified data. They are in the form of a lookup table that
is dependent on temperature.

4.2 Open-circuit Voltage

For the open circuit voltage (OCV) identification, the same measurement
data were used as for the capacity identification (i.e. those described in
Section 2.2). Because discharged capacity was directly measured during
the scenarios, extracting SOC-OCV relationships was straightforward. The
measured voltages are depicted in Figures 4.1, 4.2, 4.3 and 4.4 as curves
“Charge OCV” and “Discharge OCV”.

1Difference between total and available capacity is explained in Section 3.1.2.
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Figure 4.1: Transfer characteristic between the open-circuit voltage and the
state of charge of one cell at −10 ◦C. Comparison of charge, discharge and final
characteristic.
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Figure 4.2: Transfer characteristic between the open-circuit voltage and the
state of charge of one cell at 0 ◦C. Comparison of charge, discharge and final
characteristic.
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Figure 4.3: Transfer characteristic between the open-circuit voltage and the
state of charge of one cell at 25 ◦C. Comparison of charge, discharge and final
characteristic.
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Figure 4.4: Transfer characteristic between the open-circuit voltage and the
state of charge of one cell at 50 ◦C. Comparison of charge, discharge and final
characteristic.
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However, it can be seen that the curves obtained by charging and discharg-

ing differ, mainly at low temperatures. This can be attributed to internal
resistance and hysteresis. [21]

In [21], the author suggests using the following procedure to extract the
final OCV characteristic. Because so far only the cell capacity has been
identified, it is necessary to estimate the cell’s internal resistance R0. It can
be done at 100 % SOC and 0 % SOC by processing the immediate voltage
drops at the start of charge and discharge cycles. The R0 value at 50 % SOC
is approximated by the difference between the charge and discharge voltage
curves at that particular SOC state. By this method, 3 sample values are
obtained R0,100%, R0,50% and R0,0%. Furthermore, it is suggested to suppose
that the internal resistance varies linearly between these sample points. The
final OCV curve is then obtained at two stages.

First, the discharge curve is taken in the range 100 % - 50 % and it is
summed up with a value of

Uadd = R0(SOC) · I, (4.2)

where R0(SOC) is a value linearly interpolated between R0,100% and R0,50%.
Current I is the discharge current applied to the cell. So for 100 % - 50 %
SOC range, the following equation is applied:

Ufinal,100−50 = Udchg + Uadd, (4.3)

where Udchg is the measured discharge curve.
Second, the charge curve in the range 50 % - 0 % SOC it taken and from

this a value
Usub = R0(SOC) · I (4.4)

is subtracted. R0(SOC) is a value linearly interpolated between R0,50% and
R0,0%. Current I is the charge current applied to the cell. So for 50 % - 0 %
SOC range, the following equation is applied:

Ufinal,50−0 = Uchg − Usub, (4.5)

where Uchg is the measured charge curve.
The final OCV characteristics obtained by this method are depicted in

the above mentioned Figures 4.1, 4.2, 4.3 and 4.4. All of the final OCV
characteristics are shown together in Figure 4.5. It can be observed that
the final OCV curves do not differ very much with respect to temperature
as far as the SOC range 20 % to 100 % is concerned. The main difference
is evident in SOC values lower than 20 %. As stated in Section 3.3, the
SOC-OCV relationship is represented by a look-up table that depends on
both temperature and SOC.

4.2.1 Comparison with Pulse Data

For comparison, the OCV voltages obtained from pulse measurements (Sec-
tion 2.3) were also plotted in the above-mentioned figures. These values were
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Figure 4.5: Transfer characteristics between the open circuit voltage and the
state of charge of one cell for different temperatures

obtained as terminal voltages before each pulse, i.e., after the battery reached
a steady state; thus, it can be assumed that the transients had already faded
out and the terminal voltages corresponded to the open circuit voltage.

It can be seen that the pulse data correspond well with the final computed
OCV curves in the SOC range ≥ 25 %. However, the pulse data diverge
from the final OCV curve, especially for low temperatures when approaching
0 % SOC. This leads to doubts about the accuracy of the above procedure.
The topic of inaccurate model identification at low SOC values is revisited in
Section 4.4, where the estimation of the resistor-capacitor (RC) couple values
is described.

4.3 Internal Resistance

4.3.1 Extracting Values from the Data

Article [2] provides a technique for identifying cell internal resistance. Specif-
ically, it is stated in [2] that the pulse measurement data (described in
Section 2.3) can be used. There is a visible voltage drop at the start of each
pulse. This voltage drop is attributed to the static internal resistance R0 (an
illustration is shown in Figure 4.6). Thus, by considering the magnitude of
the current pulse, the value of R0 at the given SOC and temperature can be
computed.
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Figure 4.6: Demonstration of an immediate terminal voltage drop at the start
of a current pulse

4.3.2 Considering Dependence on the C-rate

As it was mentioned in [33], dependency of R0 on the C-rate is a recorded
phenomenon. Furthermore, this dependency changes with the cell age. Graphs
documenting this dependency can be seen in Figures 4.7 and 4.8. It was
investigated whether this behavior is also present in the cells used for this
thesis. Different amplitudes of the current pulses were measured. Specifically,
pulses of amplitudes 0.5C, 1C, and 1.5C were recorded. Since the minimal
guaranteed capacity of the Panasonic NCR18650B cells is 3250 mAh [20],
the corresponding current amplitudes are 1.625 A for 0.5C, 3.25 A for 1C,
and 4.875 A for 1.5C. When the internal resistances were extracted, it was
found that C-rate dependence was not evident. The result can be seen in
Figure 4.9. This might be caused by low values of current amplitudes while
performing the measurements, because data with 40× larger x-axis scale are
presented in Figures 4.7 and 4.8. This range is much higher than the one in
Figure 4.9. Nevertheless, the C-rate dependence of R0 was eventually not
considered in model identification.

4.3.3 Measured Data Fitting

When plotting the measured data on an R0-SOC axis for individual tempera-
tures, it was noticed that the internal resistance measurements were similar
to a basin shape. Thus a 2nd and 4th order polynomial fitting functions were
tested. It turned out that they fit the measured data reasonably well. The
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Figure 4.7: R0 dependence on C-rate for different SOC values, new cell [33]

Figure 4.8: R0 dependence on C-rate for different SOC values, aged cell [33]
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Figure 4.9: Measured R0 dependence on C-rate for different SOC values

fitting polynomial is described by the following formula.

f(x) =
n+1∑
i=1

pix
n+1−i (4.6)

The polynomial is used to derive R0-SOC dependence from the data. Later,
polynomial values are used to create the R0 look-up table. The fitted polyno-
mial coefficients are presented in Table 4.1. A comparison of measured data
and fitted polynomials for individual temperatures is shown in Figures 4.10,
4.11, 4.12 and 4.13. Figure 4.14 shows all the fitted polynomials for all
measured temperatures along one axis. It can be seen that internal resistance
decreases with increasing temperature. Look-up table data were extracted
from the fitted polynomials for cell model simulation.

Coefficient −10 ◦C 0 ◦C 25 ◦C 50 ◦C

p1 3.4e-09 3.5e-06 2.6e-06 7.4e-10
p2 -7.1e-07 -4.0e-04 -3.4e-04 -1.7e-07
p3 5.4e-05 8.9e-02 5.7e-02 1.5e-05
p4 -1.9e-03 - - -6.0e-04
p5 1.4e-01 - - 4.8e-02

Table 4.1: Coefficients values of fitting polynomial for the transfer function of
the internal resistance for different temperatures.
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Figure 4.10: Comparison of measured and fitted characteristic of internal
resistance at −10 ◦C
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Figure 4.11: Comparison of measured and fitted characteristic of internal
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Figure 4.12: Comparison of measured and fitted characteristic of internal
resistance at 25 ◦C
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Figure 4.14: Transfer characteristics between the cell’s internal resistance and
the state of charge at different temperatures, and final fitted polynomials

4.4 RC Couples

4.4.1 Identification Method

Identifying the values of R1, C1, R2, and C2 (RC) parameters was done
according to [2] using the pulse data measurements (Section 2.3). While
for capacity, OCV, and R0 identification, it was possible to develop fully
automated scripts that extract the values from the measurements, it was not
fully done for the RC parameters. The reason is that it is needed first to find
the point where it is considered that the first RC pair reached a steady state
and the second RC pair effect becomes dominant. Such a possible point (later
denoted as the middle point) is depicted in Figure 4.15 as a red circle. On
the other hand, an automatic script that identified the start and end points
of the transition period (green circles in Figure 4.15), was programed.

These points served as an initial guess for computing the RC values. Note
that the computed values were assigned to a particular temperature and SOC
based on the pulse processed. The R1 value was computed using the formula

R1 = Vstart − Vmiddle

I
, (4.7)

where I is the amplitude of the current pulse, Vstart and Vmiddle correspond
to the terminal voltage values at the start and middle points. The C1 value
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Figure 4.15: Demonstration of the border point (red) when effect of the 2nd RC
pair starts to dominate the 1st RC pair. The green points indicate the start and
end of the transition period

was computed using the fact that the time constant equation is τ = R · C.
This leads to the formulas

C1 = τ

R1
, (4.8)

τ = tmiddle − tstart

3 , (4.9)

where tstart and tmiddle correspond to the times when the start and middle
points were identified. The fact that a step response of a first-order system
reaches 95 % of the steady-state value after time t = 3 · τ was used. Similarly,
R2 and C2 were computed using the following formulas

R2 = Vmiddle − Vend

I
, (4.10)

C2 = τ

R2
, (4.11)

τ = tend − tmiddle

3 , (4.12)

where Vend and tend correspond to the terminal voltage and time value of the
end point.

After obtaining the initial guesses, a rough manual tuning was conducted:
measurements of all 3 cells were compared with a response generated by a
cell model (3.15)-(3.20) and the RC values were adjusted by a trial-and-error
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approach. After manual tuning was performed, fine tuning was performed
using an automated optimal identification Matlab tool provided by the Garrett
Motion company.

4.4.2 Limitations of the Method Used

Before stating the actual limitations, the definitions of terms “active” and
“passive” part of the current pulse must be provided. The terms “active”
and “passive” part of a pulse simply distinguish between the part where the
current pulse is applied and the part where the battery returns to the steady
state. This is illustrated in Figure 4.16, where the “active” side is on the
left of the black dashed line. This applies when we consider discharge pulses.
For the charge pulses, the “active” part would be the one where the terminal
voltage rises and the “passive” part would be the one where the terminal
voltage decreases.
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Figure 4.16: Explanation of the terms “active” and “passive” part of the current
pulse

Regarding the actual limitations, note that identification was performed
only on the “active” part of each pulse. The dynamics of the cell returning
to the rested state after the pulse ends was not considered in deriving RC
parameter values. This decision was based on the fact that, due to cell’s
nonlinearity, the “passive” part has different dynamic properties than the
“active” one. This is demonstrated in Figure 4.17. Identifying both parts
at the same time would lead to poor match for both parts; therefore, only
the “active” part was chosen as a reference. Adding a hysteresis to the cell
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equations (3.15)-(3.20) might solve this issue. However, since the hysteresis
is not modeled, the aforementioned approach was selected.
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Figure 4.17: Demonstration of different dynamics for the active and passive
part of a pulse

4.4.3 Identification at Low SOC Values

Particularly difficult was identifying RC values for low SOC ranges (e.g.,
below 20 %). Figure 4.18 demonstrates a response to the last discharge
current pulse of 1C amplitude measured at 25 ◦C. The measured terminal
voltage in the “active” part of the pulse exhibits a concave shape rather than
the usual convex one. As mentioned before in Section 4.2, which deals with
OCV estimation, there are doubts about the accuracy of the computed OCV
values in the low SOC range.

One possibility that could explain the mismatch of simulation data at low
SOC values, is that the identified SOC-OCV relationship is not accurate
enough in that range. As mentioned earlier in Section 4.2, this is suspected
partly because of the different results of the estimated OCV values compared
with the pulse measurements. However, it can be seen that for the temperature
25 ◦C the OCV measurements correspond well. However, as depicted in
Figure 4.18, the simulated and measured curves differ excessively.

It can be stated that the problem is not caused by the wrong values of
the RC elements because the RC elements cannot produce a concave shape
response. Eventually, the cause of this inaccuracy was not identified and can
be attributed to the unmodelled behavior of the cell. However, the usual
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Figure 4.18: Demonstration of poor fitting at low SOC values, excerpt from
measurement taken at 25 ◦C

operating range of Li-ion cells is between 80 % and 20 % SOC. This means
that the model identification inaccuracy below 20 % SOC can be neglected.

4.4.4 Final RC Estimation Results

The final identified values of R1, C1, R2, and C2 parameters are showed in
Figures 4.19, 4.20, 4.21 and 4.22. It can be observed that some dependencies
are flat at low SOC values (e.g. R1 values at SOC ≤ 30 %, −10 ◦C). This is
caused by a lack of measurement data. As mentioned, identification of these
parameters was performed from pulse data. Especially at low temperatures,
it happened that the low threshold voltage was hit soon, i.e., the pulse that
started at e.g. 30 % SOC caused the terminal voltage to hit the threshold.
This caused the discharging phase to stop and the charging phase to start,
and thus only values down to 30 % SOC were obtained. Such a situation was
handled by extrapolating the characteristic using the last measured value.
Thus, a flat characteristic is produced. When the shape of the characteristic
allowed this, the values were extrapolated in such a way as to follow the
characteristic shape. Simulation verification was then conducted to test the
performance of the model at low SOC values is acceptable.

Some of the characteristics appear chaotic and no specific curve can be
fitted. Similar results are published in [9] or [14]. The author of [9] states
that the shape of the characteristic of C1 is jagged and that “The reason for
this behavior is not clear at this moment.” A possible explanation could be
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Figure 4.19: Final values of R1 parameter
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Figure 4.20: Final values of C1 parameter
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Figure 4.21: Final values of R2 parameter
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Figure 4.22: Final values of C2 parameter

43



4. Model Identification..................................
that the equivalent circuit model (ECM) is just a representation of outer

cell’s behavior. Thus, since the ECM schematic parts do not correspond to
all electrochemical phenomena that occur in the cell, but are just approx-
imations; the measured characteristics do not need to exhibit any specific
shape. If a more precise ECM is used (e.g. an ECM containing the Warburg
impedance [21]), the resulting characteristics could exhibit less chaotic shapes.

It can be seen from the measured characteristics that temperature depen-
dence is evident. This observation supports the fact that the values R1, C1,
R2, and C2 are represented by a lookup table with SOC and temperature as
input parameters.

4.5 Thermal Dynamics

Identification of the temperature dynamics must be performed with data
measured from the real battery pack to reflect the pack-specific conditions.
The provided measurements were performed only on a single cell that was
placed in a thermal chamber. Because the demonstration vehicle was not ready,
thermal dynamics measurements were not conducted. Thus thermal dynamics,
parametrized by the thermal resistance Rth and thermal capacitance Cth, was
left unidentified and the values were guessed.

4.6 Comparison of the Identified Model and
Measured Data

The cell model is compared with measured data. For this purpose, driving
profile datasets, which are described in Section 2.4, were used. The input
current and ambient temperature signals were taken as the cell model input,
and the measured terminal voltage and model terminal voltage were compared.
For this validation, a cell model without nominal capacity C0 as a state
was considered. I.e. equations described in Section 3.1.6 were considered.
Figures 4.23, 4.24, 4.25 and 4.26 depict comparison between the terminal
voltage generated by the cell model and the measured data.
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Figure 4.23: Validation of a cell model using UDDS data, −10 ◦C
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Figure 4.24: Validation of a cell model using UDDS data, 0 ◦C
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Figure 4.25: Validation of a cell model using UDDS data, 25 ◦C
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Figure 4.26: Validation of a cell model using UDDS data, 50 ◦C
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Figure 4.27: Voltage V2 generated by the cell model, −10 ◦C

It can be seen that, particularly for temperature −10 ◦C, the cell model
diverges significantly from the measured data at low state of charge (SOC)
values. The cause might be attributed to an inaccuracy in open-circuit
voltage identification, as described in Section 4.2.1. Furthermore, the values
of the second resistor-capacitor (RC) pair might be inaccurate because it
was observed that the second RC pair does not discharge fully in the rest
time between measurement phases. Problems with RC values identification
are described in Section 4.4.3. This behavior is depicted in Figure 4.27 and
is represented by gradual ascent and descent around the middle of the test
scenario. However, as stated earlier in this thesis, the general operating range
of lithium cells is from 20 % to 80 % SOC. In this range, the overlap of the
model and measurements is sufficient for all temperatures.

4.7 Conclusion of the Identification Phase

The identified model reflects cell behavior well in the SOC range ≥ 20 %.
Below this value, the parameters are considered inaccurate and further inves-
tigation should be conducted to improve the behavior if the operation in the
SOC range ≤ 20 % is desired in the future. Furthermore, thermal dynamics
are still left to be identified. Thermal dynamics model identification and
validation must be performed once the demonstration vehicle is prepared.
Estimated look-up tables were stored in the form of a Matlab structure.

47



48



Chapter 5
State Estimation and Filtering

An extended Kalman filter (EKF), which was previously implemented in [12],
was already available in the Garrett Motion repository. An unscented Kalman
filter (UKF) was implemented for the sake of comparison. There are articles
which state that UKF performs better than EKF when used for BMS state
estimation. As an example, [6] or [23] and [24] can be cited. The superiority
of UKF over EKF is supposedly due to the fact that UKF does not need
to compute a Jacobian of the mathematical model. Numerical Jacobian
approximation, which is needed by the EKF, using e.g. finite differences is an
extra computational burden, and numerical inaccuracies are present when a
nonlinear part of the model is encountered. Analytical Jacobian computation
is not an option when the model contains look-up tables. UKF better suits
this task because no jacobian is needed.

One of the goals of this thesis is to estimate the battery state of health
(SOH) at runtime, an introduction to SOH estimation is provided first. This
chapter then describes the implementation of UKF in Matlab. First, its
conventional variant is presented, followed by its square root (SR-UKF)
modification. The numerical properties of the implemented filters are then
discussed, analyzed, and improved using a covariance matrix recovery algo-
rithm. Possible improvements are also suggested. Finally, the conclusion of
the estimator implementation phase is provided.

5.1 State of Health Estimation

A general introduction to the SOH modeling methods is provided in Sec-
tion 3.1.4 of this thesis. Thus, SOH is modeled according to equation 3.12.

With regard to the estimation of SOH degradation, section 4.6 of [22]
provides mathematical derivation that shows that sensitivity of cell’s output
voltage to the total capacity is very small. Thus, estimating C0 is not an
easy task. While in Section 4.4, the author of [22] derived a simple algorithm
to estimate internal resistance from two consecutive cell measurements, this
cannot be done in the case of capacity estimation, as the author states. The
author of [22] further states that capacity is estimated more easily when
a measurement containing a large SOC change is available. Two possible
options for capacity estimation are provided in [22]. First, a nonlinear Kalman
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filter is proposed. Second, regression techniques are discussed in [22].

In addition to the previously mentioned methods, machine learning is also
widely used and tested for SOH estimation. As an example, [32] provides a
survey of machine learning methods currently used for battery estimation.

The author of [12] used the Kalman filter approach. The nominal capacity
C0 was modeled as an additional model state with zero dynamics.

Ċ0 = 0 (5.1)

Using Kalman filtering methods, a momentary estimate of nominal capacity
degradation over time is provided. It can be noted that the value of C0
changes much slower than the other state variables such as the depleted
charge Qdep. However, the estimator can be guided to retain the nominal
capacity value and change it very slowly by proper tuning. Specifically, if
the model with zero dynamics for nominal capacity is trusted, (low Q matrix
value for the Kalman filter) the estimator will change the nominal capacity
value very slowly.

This thesis uses the same approach as [12] and compares the EKF previously
implemented in [12] and newly implemented SR-UKF.

5.2 Conventional Unscented Kalman Filter

As stated in the introduction to this chapter, a basic form of the UKF was
implemented first. UKF is part of a larger group of filters known as sigma
point Kalman filters (SPKF). UKF was first proposed by the author of [10].
As stated in the cited article, the main problem that the UKF was designed
to solve is estimation in nonlinear systems. The newly proposed technique is
named unscented transform and is at the core of UKF.

5.2.1 Matlab Implementation

Basic UKF was implemented as a Matlab System class in the Garrett Motion
Energy Management Framework (EMF). The class contains a reference to a
model of the estimated plant that is used for propagation of the sigma points.
Any dynamic model implemented in the EMF can be used with this filter.
Furthermore, both continuous and discrete time models are supported.

The user can define input, output, and state scaling to improve the nu-
merical properties of the filter. Thus, signals can be brought to a certain
interval so that the values are in a similar order of magnitude. Furthermore,
the user can specify the precision (single or double) with which the estimates
are output.

Part of the UKF is a scaling parameter that controls the spread of sigma
points. The user can specify it based on the needs of the current application.
Each step of the filter is divided into separate data and time update step.
The filter outputs the predicted next sample time output and state values.
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Covariance Scaling

Because the filter implements input, output, and state scaling, the covariance
matrices provided by the user need to be scaled accordingly. The following
example illustrates how the covariance is scaled on the basis of the given
scaling coefficients. Here, a mutual input-output scaled covariance is derived.

Pxy =
(

xi − x̂

cxi

)(
yi − ŷ

cyi

)T

=
[∆x1,1

cx1
∆x1,2

cx2

] [
∆y1,1

cy1

∆y1,2
cy2

]

=

∆x1,1∆y1,1
cx1cy1

∆x1,1∆y1,2
cx1cy2

∆x1,2∆y1,1
cx2cy1

∆x1,2∆y1,2
cx2cy2

 (5.2)

The cxi and cyi parameters are the scaling coefficients of state xi and output
yi, respectively. As observed in the very-last matrix, the scaling coefficients in
the denominator form a dyad produced by the individual scaling coefficients.

Diagnostic Output

The UKF system also provides a diagnostic output that signals numerical
issues encountered during runtime. In normal mode, the diagnostic port
outputs 0. When a problem occurs, the output is set to 1 in the given sample
time. If the problem does not occur again, the output returns to the value 0.
Section 5.2.2 describes the numerical issues in more detail.

5.2.2 Numerical Robustness Issues

In specific numerical conditions, it can be observed that UKF suffers from
numerical instability. Namely, that the state covariance matrix can become
non-positive definite. A non-positive definite covariance matrix causes nu-
merical problems when the algorithm tries to decompose it using Cholesky
factorization. [15] Cholesky factorization is used in UKF to compute the
sigma points.

After a deeper investigation, it was found that the method by which the
sigma points are computed affects the occurrence of this error. Specifically, a
situation was encountered when simply transposing the covariance Cholesky
factor solved the problem. That is, computing the sigma points using

xi = x̂ ± Si (5.3)

produced the error. Si denotes the ith column of the covariance Cholesky
factor S. However, when using equation

xi = x̂ ± ST
i , (5.4)

the error did not occur. Although runtime errors in certain situations were
mitigated, a different scenario was encountered where even this modification
did not help to resolve the error. Therefore, SR-UKF was implemented.
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5.3 Square Root UKF

As mentioned above, it was decided to implement the SR-UKF algorithm to
resolve the above-mentioned numerical issue. SR-UKF is described in [18].
The author of [18] states, that “the square-root forms have the added benefit
of numerical stability and guaranteed positive semi-definiteness of the state
covariances.” With this being discovered, the SR-UKF was implemented in a
very similar way as the conventional UKF. I.e., the Matlab System structure
was preserved and only the necessary methods, which are different between
these two implementations, were changed. This means that all the benefits
described in Section 5.2 were preserved.

The square root implementation is superior to conventional UKF because
Cholesky decomposition of covariance is computed only in the initialization
phase of the filter and not at every sample time, as in the conventional UKF.
In contrast, SR-UKF uses the computed Cholesky factor in every sample time,
and all operations are conducted with the factored matrix. Some necessary
covariance updates are computed using QR decomposition and a procedure
called “cholupdate”, which is described in the next paragraph.

The function “cholupdate” computes a rank 1 update to the Cholesky
factor matrix. [16] Cholesky update and downdate are distinguished based
on the sign with which the rank 1 matrix is added to the original factored
matrix.

Surprisingly, although it is stated that SR-UKF is numerically stable,
it was observed that, in certain scenarios, the problem with non-positive
definite covariance persists. This is caused by the following property of the
“cholupdate” function. As the referenced documentation states, Cholesky
downdate fails “when the downdated matrix is not positive definite and so
does not have a Cholesky factorization.” The downdated matrix can in reality
become negative definite if the rank 1 matrix, which is being subtracted, has
a specific form that makes the overall matrix negative definite. Therefore, the
Cholesky downdate operation is the high-risk part of the algorithm. With this
being observed, a necessary covariance recovery method was implemented to
prevent runtime errors caused by a negative definite covariance matrix both
in both UKF and SR-UKF. The recovery method is described in Section 5.4.

5.4 Covariance Matrix Recovery

The covariance matrix recovery algorithm is a function of the implemented
UKF and SR-UKF class, which is called when a problem with covariance defi-
niteness occurs during runtime. This algorithm takes the original problematic
covariance matrix and returns a Cholesky factor that corresponds to a positive
definite matrix, which is close in a certain sense to the original covariance.
The meaning of matrix closeness in this specific context is described later in
this section. This algorithm was implemented after neither UKF nor SR-UKF
provided sufficient numerical robustness.
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In general, the recovery algorithm comprises decomposing the covariance
matrix using spectral decomposition, manipulating the eigenvalues, and then
composing back a modified covariance matrix with the desired properties.
This modified matrix is then decomposed using Cholesky factorization, and
the Cholesky factor is returned. Each of the abovementioned steps is described
in more detail in the following sections.

5.4.1 Covariance Decomposition

First, the input covariance matrix is decomposed using spectral decomposition

Pin = V DV −1 (5.5)

as stated above. This procedure is inspired by [7] where a procedure for
computing the nearest symmetric positive semidefinite matrix is described.

A necessary step is to prove that all matrices that can be expected at the
input have their spectral decomposition. In Theorem 2.1 of [7] and its proof,
the author requires the matrix A, which is to be made positive semidefinite,
to be only square and real. The author then forms a matrix B = (A+AT )

2
which is then in the proof decomposed by spectral decomposition. Thus, if
our input covariance matrix is real, square, and symmetric, it has its spectral
decomposition according to proof of Theorem 2.1 in [7]. After the input
covariance matrix is decomposed, a discussion on numerical tolerance for
positive definiteness is provided in the next section. Eigenvalue manipulation
is described later.

5.4.2 Numerical Tolerance for Positive Definiteness

Before describing the procedure of manipulating the eigenvalues, a note on
tolerance for positive definiteness from the numerical point of view must be
presented. A specific procedure for testing for numerical positive definiteness
is provided in [4]. The authors suggest comparing all eigenvalues to the value
of a Matlab expression length(d)*eps(max(d)), where d is a vector of eigen-
values, legnth(d) is the number of eigenvalues, and the term eps(max(d))
corresponds to the order of the highest eigenvalue. If any of the eigenvalues
are smaller than the tolerance

di < length(d) · eps(max(d)), ∀i, (5.6)

the matrix is considered non-positive definite. This tolerance term is further
explained in the following paragraph.

The floating point representation of numbers in a computer must be consid-
ered. The format of the floating point number representation is standardized
in the IEEE 754 standard. In short, a floating point number is represented by
3 values: sign, mantissa, and exponent. The Matlab function eps(x) “returns
the positive distance from abs(x) to the next larger floating-point number of
the same precision as x.” [17] For double precision representation, where a
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number x is represented by a 52-bit mantissa and its exponent e is offset by
−1023, the value of eps(x) can be analytically represented as

eps(x) = 2−52 · 2e−1023 = 2e−1075. (5.7)

This procedure of defining tolerance based on the current matrix eigenvalues
is very helpful and will be used in a later description of the recovery algorithm.
The usefulness is mainly caused by the fact that analytical positive definiteness
is not sufficient. A matrix with positive eigenvalues with large differences in
exponents does not need to be considered as positive definite by the numerical
implementation of Cholesky decomposition in Matlab. However, from the
analytical point of view, this matrix is truly positive definite. Next, the
procedure of eigenvalue manipulation to achieve numerical positive definiteness
is described.

5.4.3 Eigenvalue Manipulation

Second, when the input matrix is decomposed and robust numerical tolerance
is defined, the eigenvalues can be manipulated to achieve the desired numerical
positive definiteness. In [7], the author suggests in the proof of Theorem 2.1
to set all negative eigenvalues to 0.

di =
{

di, di ≥ 0
0, di < 0

(5.8)

Thus, positive semi-definiteness is achieved. The author of [7] further states
that by this approach, the “nearest symmetric positive semidefinite matrix in
the Frobenius norm to an arbitrary real matrix” is composed (after composing
the matrix back, which is described in the next section.) Our goal, however,
is to find not a semidefinite matrix, but a positive definite one. Thus, the
aforementioned procedure is further modified.

The implemented procedure first takes the absolute value of all the eigen-
values. Thus, the magnitude of the eigenvalues is preserved. Second, all
eigenvalues are saturated from below by a lower threshold 10−6. Finally, an
upper bound on eigenvalues is computed on the basis of the value of the
smallest eigenvalue. With this upper bound, all eigenvalues are saturated
from above.

Derivation of the Upper Bound

The eigenvalue upper bound is computed on the basis of the tolerance de-
scribed in Section 5.4.2. From equation (5.6), the following requirement for
all eigenvalues can be derived.

di > length(d) · eps(max(d)), ∀i, (5.9)

If the focus is on double-precision floating-point representation and the
exponent of the largest eigenvalue is denoted as em, an analytical bound on
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em can be derived. Manipulation of equation (5.9) gives

di > length(d) · 2em−1075, ∀i, (5.10)
di

length(d) > 2em−1075, ∀i, (5.11)

log2

(
di

length(d)

)
+ 1075 > em, ∀i, (5.12)

where the values of eps(x) from equation (5.7) were used. An analytical
expression to compute the maximal possible exponent based on the smallest
eigenvalue can be derived from equation (5.12).

em = ⌊log2

( min(di)
length(d)

)
⌋ + 1074 (5.13)

With an appropriate value of the exponent em, the upper bound for the
actual eigenvalue can be computed. This can be done by considering the
largest floating point number in double precision with an exponent equal to
em. Such a number is represented as

(1. 111 . . . 1︸ ︷︷ ︸
52×

)2 · 2em−1023, (5.14)

where
(1. 111 . . . 1︸ ︷︷ ︸

52×

)2 ≈ (1.9999999999999998)10 > (1.9999)10. (5.15)

Thus, using the eigenvalue upper bound

dmax = 1.9999 · 2em−1023, (5.16)

where em was computed according to equation (5.13), provides a numerically
safe upper bound for all eigenvalues.

Matrix with saturated eigenvalues on its diagonal

di =


di, 10−6 ≤ di ≤ dmax

10−6, di < 10−6

dmax, di > dmax

(5.17)

is later denoted as D̄. The process of covariance backward composition is
described below.

5.4.4 Composition of the Modified Matrix

In the second to last step of the covariance recovery algorithm, the modified
covariance matrix is composed back. Backward composition of the form

Pout = V D̄V −1 (5.18)

can be performed. However, it is possible to replace inversion with transposi-
tion.
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5. State Estimation and Filtering .............................
A classical spectral decomposition takes the form of equation (5.18). I.e.,

inversion is used. Here, a derivation of the fact that the spectral decomposition
of a real and symmetric matrix is

Pout = V D̄V T (5.19)

which is equivalent to V D̄V −1. This replacement improves the computation
time and numerical accuracy of the algorithm.

As a quick explanation, the proof of Theorem 2.1 in [7] can be referenced
because the author uses spectral decomposition with transposition instead of
inversion. However, a more in-depth derivation is provided in the following
paragraphs.

Schur decomposition of matrix P

P = V UV −1 (5.20)

contains by definition eigenvalues of P on the diagonal of the upper triangular
matrix U . [29] But if P is normal, then U is diagonal. [28] A normal matrix
is defined in [28] as a matrix with the property AA∗ = A∗A, where the
operator ∗ denotes a conjugate transposition. Furthermore, if P is real and
symmetric, [28] provides a fact that Schur decomposition becomes

P = V UV T . (5.21)

By stating these facts, it can be concluded that since our covariance matrix
is real and symmetric, its Schur decomposition leads to a diagonal matrix U ,
and thus the spectral decomposition can be composed as

Pout = V D̄V T . (5.22)

5.4.5 Computation of the Returned Cholesky Factor

In the last step, computation of the Cholesky factor of the modified covariance
matrix is discussed. Although all computations are performed in the real
domain, Matlab Code Generator does not recognize this fact. When a
simulation is attempted to run in Code Generation mode, an error is thrown
stating that the Code Generator cannot assure that the covariance matrix
Pout, which is being decomposed using the Cholesky decomposition, is real.
Therefore, a real part of the matrix Pout is extracted first, and then a final
Cholesky decomposition is performed. In this way, the Code Generator
accepts the input as formally correct.

5.5 Possible Improvements

Although the covariance recovery algorithm was implemented to assure nu-
merical stability of the implemented (SR-)UKF, there are other UKF im-
plementations that should supposedly guarantee positive definiteness of the
covariance matrix. As a reference, [19] can be cited. The authors claim that
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they “propose a mathematically equivalent filter that numerically guaran-
tees positive semi-definiteness for any arithmetic precision at the cost of a
negligible runtime increase.”

Furthermore, additional research on possible improvements of the imple-
mented recovery algorithm can be conducted to improve execution time.
Possible simplifications and computational complexity reduction can be in-
vestigated.

5.6 Conclusion of the Estimator Implementation
Phase

In this chapter, the SOH estimation methods were analyzed and estimation
using an additional zero-dynamics state C0 was described. Furthermore, two
implementations of the UKF were presented, namely the conventional UKF
and SR-UKF. Both filters were implemented as Matlab System classes in the
Garrett Motion EMF and were fully documented. The problem of covariance
positive definiteness was resolved using a covariance recovery algorithm, which
was precisely described and explained. Possible improvements were considered
for future development and the implementation of another UKF version was
suggested.
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Chapter 6
Testing and Validation

In the previous chapters, model selection, model identification, and estimator
implementation were described. When the model parameters are fixed and
the state estimator is implemented, formal testing and validation must be
performed to check if the model and estimator performance meet the required
criteria.

In this section, the root-mean-square error calculation is established first.
Next, a validation procedure, which supports the neglect of coulombic effi-
ciency, is presented. Next, the state estimator is validated using modified
real driving experience (RDE) data in a model-in-the-loop (MIL) scenario.
Then, the estimator is validated using raw RDE data, and the computation
time on the target hardware is presented. The conclusion of the testing and
validation phase is provided together with an overall conclusion in Chapter 7.

Graphs are labeled using cell identifiers established in Table 2.1 of this
thesis.

6.1 Root Mean Square Error

To objectively quantify the quality of the validation data, the root-mean-
square error (RMSE) is used. A definition of RMSE is provided in this section
to ensure the correct interpretation of the provided data.

RMSE for signal processing is defined for the purpose of this thesis as

RMSE(θ, θ̂) =
√

E
(
(θi − θ̂i)2

)
, (6.1)

where θi denotes a true sample value at time i, θ̂i denotes estimated or
modelled sample value at time i and E denotes the operator of the expected
value.

6.2 Validation of Neglecting Coulombic Efficiency

An experiment was performed after the cell model was identified, which
supports the neglect of coulombic efficiency. Drive cycle measurement data
were taken and the cell model (without coulombic efficiency) was fed with the
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same inputs as the cell during real measurement was driven with. Drive cycle
data were considered appropriate because they simulate a real environment
and contain many consecutive charge and discharge pulses, which makes them
suitable for this test.

The discharged capacity at the end of the simulation was compared with
the discharged capacity at the end of the real cell measurement. A summary
of this experiment is presented in Table 6.1. The absolute difference between
the simulated and measured discharged capacity is presented in the column
Qdiff . Furthermore, the ratio of Qdiff compared to the total discharged
capacity is presented. It can be seen that the difference is in the range of
tenths per mille, and thus, coulombic efficiency truly represents a negligible
value for this particular cell type.

T [◦C] Qdiff [mAh] Qdiff [‰]
-10 0.3 0.1
0 0.4 0.1
25 0.5 0.2
50 0.5 0.2

Table 6.1: Difference in total drained capacity, absolute difference and relative
difference with respect to total drained capacity.

6.3 Estimator MIL Validation

In this section, estimator MIL validation is described. The MIL scenario
consists of real RDE input data that are fed into the cell model. RDE
inputs are then combined with model outputs. Model outputs were combined
with white noise to simulate the measurement noise. These signals form an
input to the estimator, which is being validated. For this validation, square
root unscented Kalman filter (SR-UKF, Section 5.3) and extended Kalman
filter (EKF, implemented by [12]) are compared. Schematic depicting the
connection between individual elements of this scenario if shown in Figure 6.1.

Measured Data Cell model Noise

Estimator

Figure 6.1: MIL scenario schematic

The RDE data used for MIL validation were modified to suit the validation
purposes. The RDE data were repeated multiple times with simple charging
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phases inserted. In this way, multiple discharge cycles were executed to
simulate real-world operating conditions.

The MIL validation procedure consists of three scenarios. In the first
scenario, the estimator response to incorrect initial conditions was tested.
The second scenario tests the filter response to cell capacity degradation.
The last scenario validates whether the filter correctly estimates through
changing temperature conditions. The filter covariance setup is kept the same
for all validation scenarios. Apart from the ambient temperature operation
validation, all other MIL validations were executed at ambient temperature
25 ◦C. The symbols used in the following sections correspond to the cell
model described by equations (3.15)-(3.20). All three scenarios are described
in more detail in the following sections.

6.3.1 Incorrect Initial Conditions

The first validation scenario compares SR-UKF and EKF with respect to
incorrect initial condition response. While the cell model was initialized
with a value of Qd = 1000 As (see equation (3.16)) and C0 = 3.4 Ah
(see equation (5.1)), the filters were initialized with values Qd = 0 As and
C0 = 2 Ah.

The terminal voltage is depicted in Figure 6.2. The nominal capacity is
depicted in Figure 6.3, depleted charge in Figure 6.4 and state of charge in
Figure 6.5. It can be seen that both filters arrive at the model reference
sufficiently fast and then track the dynamics very well. Table 6.2 shows
RMSE values for the above mentioned signals. UKF performs better with
respect to all mentioned signals.

Signal RMSE SR-UKF RMSE EKF
Vtrm [mV] 2.7 6.8
C0 [Ah] 0.26 0.35
SOC [%] 0.34 0.76
Qdep [As] 417 658

Table 6.2: RMSE values for estimator validation, incorrect initial condition
scenario
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Figure 6.2: Estimator validation, response to incorrect filter initial conditions,
terminal voltage course
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Figure 6.3: Estimator validation, response to incorrect filter initial conditions,
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Figure 6.4: Estimator validation, response to incorrect filter initial conditions,
depleted charge course
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Figure 6.5: Estimator validation, response to incorrect filter initial conditions,
state of charge course
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6.3.2 Capacity Degradation

The next validation scenario consists of testing whether the filter can track
the nominal capacity decrease during the simulation time. This time, a larger
C0 decrease was set up compared with the previous validation scenario. The
filter initial conditions were the same as for the cell model.

Table 6.3 depicts computed RMSE values for both SR-UKF and EKF. It can
be seen that for this scenario, SR-UKF tracks the depleted charge and nominal
capacity better than EKF. However, EKF is better at tracking the terminal
voltage and SOC. The terminal voltage course is depicted in Figure 6.6.
Nominal capacity is depicted in Figure 6.7, depleted charge in Figure 6.8 and
state of charge in Figure 6.9. It can be observed that both filters estimate
the signals precisely.

Signal RMSE SR-UKF RMSE EKF
Vtrm [mV] 1.0 0.7
C0 [mAh] 7.5 19.5
SOC [%] 0.10 0.08
Qdep [As] 7.6 39.3

Table 6.3: RMSE values for estimator validation, C0 decrease scenario
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Figure 6.6: Estimator validation, response to nominal capacity decrease, terminal
voltage course
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Figure 6.7: Estimator validation, response to nominal capacity decrease, nominal
capacity course
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Figure 6.8: Estimator validation, response to nominal capacity decrease, depleted
charge course
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Figure 6.9: Estimator validation, response to nominal capacity decrease, state
of charge course

6.3.3 Temperature Behavior

In this scenario, all initial conditions were the same for both the cell model
and the estimator. The estimator’s ability to estimate when the ambient
temperature changes throughout the simulation time was validated. The
ambient temperature was simulated in such a way that it exceeded the
temperature range of the identified look-up tables. In this way, it was validated
that there are no runtime errors originating in look-up table extrapolation
issues. It must be noted here, that this validation scenario is not intended to
test cell model thermal dynamics. The cell model thermal dynamics was not
identified as described in Section 4.5.

Table 6.4 depicts comparison of RMSE values for both SR-UKF and EKF.
It can be seen that EKF exhibits lower RMSE values than SR-UKF. The
terminal voltage is depicted in Figure 6.10. The nominal capacity is depicted
in Figure 6.11, depleted charge in Figure 6.12 and state of charge in Figure 6.13.
The ambient temperature course is depicted in Figure 6.14. Even for this
scenario, it can be stated that the signals are estimated properly.
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Signal RMSE SR-UKF RMSE EKF
Vtrm [mV] 1.4 0.9
C0 [mAh] 7.0 2.4
SOC [%] 0.15 0.01
Qdep [As] 6.1 4.6

Table 6.4: RMSE values for estimator validation, ambient temperature change
scenario

0 20 40 60 80 100 120 140 160 180

3

3.5

4

4.5

5

5.5

6

Time t [h]

Te
rm

in
al

Vo
lta

ge
V

tr
m

[V
]

Cell model
SR-UKF

EKF

Figure 6.10: Estimator validation, response to ambient temperature change,
terminal voltage course
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Figure 6.11: Estimator validation, response to ambient temperature change,
nominal capacity course
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Figure 6.12: Estimator validation, response to ambient temperature change,
depleted charge course
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Figure 6.13: Estimator validation, response to ambient temperature change,
state of charge course
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Figure 6.14: Estimator validation, response to ambient temperature change,
ambient temperature course
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6.4 Estimator RDE Data Validation

Next, the estimator was validated using raw measured data. That is, terminal
voltage and cell temperature signals were taken directly from the obtained
data set. Here, SR-UKF and EKF were compared as well. Intentionally, the
initial nominal capacity of the filters was set to 3 Ah to test the estimator
response. The true cell capacity is ≈ 3.39 Ah.

Table 6.5 depicts RMSE values of SR-UKF and EKF for comparison. It can
be seen that here, SR-UKF is superior for signal tracking. Signal courses are
depicted in Figures 6.15, 6.16, 6.17 and 6.18. It can be observed that terminal
voltage tracking works well. However, the nominal capacity estimation does
not reach the true value over the simulation time. This can be caused by the
length of the validation data. Since there is no cell model in this scenario
that generates terminal voltage and cell temperature signals, drive cycle
data cannot be supplemented with an artificial charge phase and repeated
to simulate more discharge-charge cycles. If more discharge-charge cycles
were measured in the laboratory, the capacity estimation would improve after
several cycles.

Signal RMSE SR-UKF RMSE EKF
Vtrm [mV] 3.4 5.1
Qdep [As] 147.2 301.1

Table 6.5: RMSE values for estimator validation, RDE data scenario
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Figure 6.15: Estimator validation, RDE data scenario, terminal voltage course
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Figure 6.16: Estimator validation, RDE data scenario, nominal capacity course

6.5 Execution Time Measurement

In this validation scheme, a C code for the SR-UKF and EKF estimators was
generated using Simulink Coder. This code was executed on the target vehicle
computer. The computer operates on Intel Code i7 dual core processor with
DDDR3 memory capable of operation at up to 1600 MHz. Raw measured
data were used as input. The goal was to measure the execution time of
both filters. The time was measured using CLOCK_THREAD_CPUTIME_ID under
Linux. Thus, the time spent only on filter execution was measured.

The statistical results are presented in Table 6.6. It can be seen that
although SR-UKF exhibits a larger maximal execution time value, the minimal
and average values are lower than those for EKF. Histogram in Figure 6.19
shows that the overall execution time of SR-UKF is superior to EKF. The
large maximal execution time value of SR-UKF is caused by one measurement
outlier around 220 µs.

SR-UKF EKF
Minimum [µs] 37.0 62.1
Maximum [µs] 215.9 158.2
Average [µs] 38.9 65.0

Table 6.6: Execution time statistics, comparison of SR-UKF and EKF
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Figure 6.17: Estimator validation, RDE data scenario, depleted charge course
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Chapter 7
Conclusion

7.1 Overall Results

The process of cell state and parameter estimator development was presented
in this thesis. The obtained laboratory measurements were presented and cell
model selection was described. The model was improved compared to [12].
The improvement consisted of modifying the state of charge (SOC) modeling
and simplifying the thermal dynamics. The approach of using a cell model to
simulate the entire battery pack was described.

The modeling framework of Garrett Motion Company was extended by the
new cell models. The first model does not contain nominal capacity C0 as
a separate state, and thus capacity degradation cannot be estimated using
standard Kalman filtering methods. The second model contains C0 as a
separate state and was used in the Kalman filters to validate the estimators.

Next, the model identification procedure was outlined. The obtained
measurement data were used to estimate the cell parameter dependency on
the state of charge and temperature. Because the demonstration vehicle
being not assembled, the thermal dynamics was not identified. Further, the
state estimator was implemented in two variants, namely the conventional
unscented Kalman filter and square root unscented Kalman filter (SR-UKF).
Because neither of the two variants provided sufficient numerical robustness,
a covariance recovery algorithm was implemented to prevent runtime errors
that terminated estimator execution.

Lastly, testing and validation procedures were conducted to examine
whether the cell model and implemented SR-UKF performed correctly. The
cell model simulates the real battery cells well enough in the main operation
range from 20 % to 80 % SOC. A comparison of SR-UKF with an extended
Kalman filter implemented in [12] was presented. Overall, both filters esti-
mate the cell state variables well enough. However, SR-UKF exhibits a lower
execution time on average. Testing and validation were performed using only
simulations.
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7.2 Possible Extensions of this Work

As stated in Section 4.5, the thermal dynamics of the cell model were not
identified because the demonstration vehicle was not assembled at the time
of work on this thesis. Therefore, it is advised to conduct identification
measurements of the thermal dynamics of the battery pack after the vehicle
is fully assembled.

If it is desired to operate the battery at a low SOC range, it is recommended
to improve the battery model. Possible improvements include hysteresis or
Warburg impedance modelling [21]. If possible, electrochemical impedance
spectroscopy measurements can be performed to improve cell model identifi-
cation. [2]

In addition, adding hysteresis into the equivalent circuit model might
improve the dynamics of the passive side of pulses, as described in Section 4.4.2.
Moreover, in general, charging dynamics might be improved by incorporating
hysteresis.

Next, it is proposed to investigate whether the provided method of simu-
lating the whole battery pack, presented in Section 3.2, is sufficient. After
the demonstration vehicle is fully assembled, validation measurements should
be performed to compare the behavior. In particular, it is advised to conduct
the validation measurements at low ambient temperature if operation in such
ambient conditions is desired. It is stated in [26] that “. . . in the case of HEVs
and PHEVs including high power battery packs containing hundreds of cells
some phenomena are exaggerated or even some are seen only in battery packs
not in single cells. This shows that modeling battery packs of HEVs and
PHEVs needs special attention.”1 Thus, if the method proposed in Section 3.2
shows to be inaccurate, [13] or [26] are advised to be investigated.

As stated in Section 5.5, there is another unscented Kalman filter imple-
mentation, which guarantees numerical stability. It is advised to test this
implementation if it performs better from the estimation and execution time
viewpoints.

1Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV)
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