
Experimental web-based social network with advanced
activity analysis system

Study program: Software Engineering and Technology
Author: Viktor Kozhemiakin

Supervisor: Ing. Michal Lucki, Ph.D.
Feb, 2024

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499361 Personal ID number: Kozhemiakin ViktorStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and Technology Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Experimental web-based social network with advanced activity analysis system

Bachelor’s thesis title in Czech:

Tvorba experimentální webové sociální sítě s pokročilým systémem analýzy aktivit

Guidelines:

This work aims to create a web-based social network that provides an evaluation system (likes, comments). It analyzes
the history of reactions to a post and creates statistics in a form of graphs, identifies automatic bots and their possible
negative reactions (attacks) to posts. The social network can be completely autonomous or enable login via Facebook or
Google. The project will be created in Java Script (Full Stack) and will include a graphical user interface (Frontend).
Verification of the functionality and testing the system will be carried out on the target group based on the instructions from
the supervisor.

Bibliography / sources:

[1] A. Barenghi et al., Snake: An End-to-End Encrypted Online Social Network, 2014 IEEE Intl Conf on High Performance
Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, Paris, France, 2015
[2] Y. Lin, Chatbot Script Design for Programming Language Learning, 2022 IEEE 5th Eurasian Conference on Educational
Innovation (ECEI), Taipei, Taiwan, 2022
[3] U. Sa'adah et al., Implementing Singleton method in design of MVC-based PHP framework, 2015 International Electronics
Symposium (IES), Surabaya, Indonesia, 2015

Name and workplace of bachelor’s thesis supervisor:

Ing. Michal Lucki, Ph.D. Department of Telecommunications Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 05.02.2024 Date of bachelor’s thesis assignment: 30.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Michal Lucki, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

1

Acknowledgements

I would like to thank Ing. Michal Lucki, Ph.D. for becoming my supervisor, who
believed in me and my project. Also, I would like to thank my family, because they
believed in my success.

2

Declaration

I hereby declare that I have completed this thesis independently and that I have
listed all the literature and publications used.

3

Abstract:
The main goal of the work is to develop a web application that is a social

network and explore the problem of manipulation. The application is intended to
provide a comfortable platform for communication among users. Academic papers
that explore the problem of manipulation were read. Then existing popular social
networks were analyzed and the best features and options considering the
disadvantages and common problems were selected. Creating own social media
helps to understand their main problems from the owner’s side and the technical
side. Next application functions, implementation, and technologies were represented
– the solution of the problem. Finally, the results of the work were analyzed and
comprehended.

Keywords: Web application, social network, JavaScript, ReactJS, bots, figma,
microservices, microfrontends, Node.js, paid commenters

4

Abstrakt:
Hlavním cílem práce je vyvinout webovou aplikaci, která je sociální sítí a

prozkoumat problém manipulace. Aplikace má poskytovat pohodlnou platformu pro
komunikaci mezi uživateli. Byly přečteny akademické práce, které zkoumají problém
manipulace. Poté byly analyzovány existující populární sociální sítě a vybrány
nejlepší vlastnosti a možnosti s ohledem na nevýhody a běžné problémy. Vytváření
vlastních sociálních médií pomáhá porozumět jejich hlavním problémům ze strany
majitele i po technické stránce. Představeny byly další aplikační funkce,
implementace a technologie – řešení problému. Nakonec byly výsledky práce
analyzovány a pochopeny.

Klíčová slova: Webová aplikace, sociální sít’, JavaScript, ReactJS, boty,
figma, microslužby, microfrontends, Node.js, placené komentátory

5

Contents
Declaration 2
Contents 5
List of figures and tables 7
Chapter 1 9

Introduction 9
1.1 Motivation 9

Chapter 2 11
Research 11

2.1 Material and methods 11
2.2 Research of existing applications 11

2.2.1 Social network with photos 12
2.2.2 Social network with texts 14
2.2.3 Social network with videos 14
2.2.4 Messenger 15
2.2.5 Common traits of social networks 16
2.2.6 Comparison of social networks 17

2.3 Strategic analysis and planning 18
2.3.1 SWOT analysis 18
2.3.2 PEST analysis 18
2.3.3 5F analysis 19

2.4 Choice of technical solution 20
2.4.1 Frontend 21
2.4.1.1 Angular 22
2.4.1.2 Vue 22
2.4.1.3 React 22
2.4.1.4 Summary 23
2.4.2 Backend 24
2.3.2.1 Express 24
2.4.2.2 Nest 24
2.4.2.3 Summary 25
2.4.3 Manipulation 25
2.4.3.1 Bots 26
2.4.3.2 Paid commenters 27
2.4.3.3 Scam 28
2.4.4 Conclusion 29

2.5 Requirements 29
2.5.1 Functional requirements 29
2.5.2 Use cases 31
2.5.2.1 Posts 31
2.5.2.2 Comments 32
2.5.2.3 Users and roles 33

Chapter 3 35

6

Design 35
3.1 Class diagram 35
3.2 Deployment diagram 36
3.3 UI Design 37

3.3.1 Create a new post 37
3.3.2 Comments 38
3.3.3 Followers 39
3.3.4 User post 40
3.3.5 Conclusion 42

Chapter 4 43
Implementation 43
4.1 Backend 43

4.1.1 Authentication and authorization 45
4.1.2 Endpoints 47
4.1.3 Bot prevention 49

4.2 Frontend 49
4.2.1 Authentication and authorization 51
4.2.2 Components and pages 51

4.3 Implementation of project requirements 53
4.3.1 Writing posts 53
4.3.2 Open opinion 54
4.3.3 Attaching poll 55
4.3.4 Reactions 55
4.3.5 Adding options 55
4.3.6 Voting for options 56
4.3.7 Comments 56
4.3.8 Replies on comments 57
4.3.9 Viewing a post statistics 58
4.3.10 Subscribes and subscribers 58
4.3.11 Viewing a user’s statistics 59
4.3.12 Spam reporting 59
4.3.13 Requests about moderator 60
4.3.14 Ban users 61
4.3.15 Ban moderators 61
4.3.16 Consideration of request 61
4.3.17 End of moderator rights 61
4.3.18 Removing comments and posts by moderator 61
4.3.19 Removing comments and posts by admin 61

4.4 Deployment 61
4.4.1 Environment 61
4.4.2 Public access 64

Chapter 5 65
Testing 65
5.1 Automated tests 65

7

5.2 Paid commenters 66
5.3 Bots 68
5.4 Conclusion 70

Chapter 6 71
Conclusion 71

6.1 Total 71
6.2 Future plans 72

Bibliography 73
Acronyms 78

List of figures and tables
● Figure 2.2: Structure of Instagram posts
● Figure 2.3: Structure of Telegram comment with reply and multiple emojis
● Table 2.4: Comparison of social networks
● Table 2.5: SWOT analysis
● Table 2.6: PEST analysis
● Figure 2.7: Architectures of website
● Table 2.8: Comparisonf of client-side JS technologies
● Figure 2.9: NestJS component structure
● Figure 2.10: The architecture of a botnet
● Figure 2.11: The architecture of a factory
● Figure 2.12: Full information of votes on vk.com
● Figure 2.13: Use case model of posts
● Figure 2.14: Use case model of comments
● Figure 2.15: Use case model of users’ rights
● Figure 3.1: A class diagram of the system
● Figure 3.2: A deployment model
● Figure 3.3: Creating post page
● Figure 3.4: List of comments
● Figure 3.5: Followers page
● Figure 3.6: User’s post page
● Figure 4.1: Project structure of the post microservice
● Figure 4.2: Project structure of the api-gateway microservice
● Figure 4.3: Structure of token
● Figure 4.4: An endpoint
● Figure 4.5: Swagger UI
● Figure 4.6: User controller
● Figure 4.7: User service
● Figure 4.8: Project structure of shell microfrontend
● Figure 4.9: Project structure of user microservice

8

● Figure 4.10: Single Post page
● Figure 4.11: Poll component
● Figure 4.12: Mock comments
● Figure 4.13: Create post page
● Figure 4.14: Single post
● Figure 4.15: Post with poll
● Figure 4.16: Post with voted options
● Figure 4.17: Comment list
● Figure 4.18: A process of replying
● Figure 4.19: A list of subscribers
● Figure 4.20: Statistics of subscribers
● Figure 4.21: A modal window of report
● Figure 4.22: User info page
● Figure 4.23: Dockerfile for ms-api-gateway
● Figure 4.24: Docker-compose.yaml file
● Figure 4.25: Main page of the site
● Figure 5.1: Tests for User service
● Figure 5.2: Test of createComment function
● Figure 5.3: Comments of user
● Figure 5.4: Statistics of likes
● Figure 5.5: Statistics of subscribers
● Figure 5.6: Statistics of post’s votes

9

Chapter 1

Introduction

This chapter describes the motivation and the aim of the project. The
motivation is the explanation of why the main problem is important and relevant, the
aim is the desired outcome of this thesis.

1.1 Motivation

Social networks are one of the most important parts of public life today. People
can message their friends, share their thoughts with everyone and read posts from
other users or watch videos. But today social networks are not only sites for
communication, they also are an important tool of influence. A person can influence
other people or be influenced by famous people or trends. According to statistics,
many people use social networks almost every day. [1]

This influence can be used for misinformation and scam. Many modern social
networks have a weak and non-transparent system of rating. Users can’t see the
complete picture of a post: the number of likes and dislikes, and the author of a
post/video can delete unwanted comments, which can contain information about the
author's lie or misleading. Influencers can manipulate people, who don’t see the real
statistics and the full situation. Also, internet bots and paid commenters are another
huge problem. They simulate the activity of the network. Many special bots can
boost and change the numbers of likes/views/votes, paid commenters can write
hypocritical custom-made comments [2]. Then a user gets a distorted picture of
reality with fakes and lies. It’s a brazen manipulation and a usual person is
defenceless against this.

Social networks have user-friendly designs and high performance, but they
may have disadvantages, such as a non-transparent and complex for users system
of rating: likes/dislikes. Moreover these networks are afraid of changes.

1.2 Aims

The project aims at creating a modern user-friendly social network that
provides an opportunity for comfortable communication between users through posts
with video, photos, comments, and polls that contain options. Users can vote for
these options and see statistics, also they can add a new option if the post doesn’t
have the option yet. Users can react to posts and comments through likes and
dislikes, which cannot be disabled. Thanks to a user-friendly interface, the network is
available for all ages and levels of computer skills.

https://context.reverso.net/translation/english-russian/high+performance

10

Also, this network should be resistant to bots and paid commenters. The
network should recognize bots, special accounts that were created only for spam
and number boosting (likes and dislikes). Special farms can create thousands of bots
for self-interest manipulations or misinformation, and the network should prevent this
and automatically identify these bots. Paid commenters are real people, but every
professional paid commenter, who works on a farm, can have 1-10 accounts and
simulate the behavior of a normal user. [3] However, the social network can provide
some public information about every account: their followers, comments and
reactions, and people can decide for themselves: is this account a bot or not.

Before coding, technical documentation was developed: functional
requirements, deployment diagram, use cases, class model, list of languages and
technologies, architecture, etc. All this helped to create a modern social network that
can do its work quickly and effectively.

The first step was the Frontend. The Frontend part was created first because it
shows all moments and all endpoints that a site needs. The Frontend was written in
the modern library for JavaScript – ReactJS, which is used for Instagram and Twitter.
Also, this Frontend was separated into different small parts - microfrontends: every
solid part is a small application. This software architectural style simplifies scalability.

The second step was the Backend. The Backend was written in NestJS with
PostgreSQL – a SQL database. The backend also uses the separation style -
microservices: every solid functionality is a small application.

The final step was testing: unit tests were written for the public API methods
and non-trivial functions as well as end-to-end frontend interface tests. The public
API methods and non-trivial functions were documented and described. Also, this
part includes usability testing.

GitHub was used for version control. Every major change was committed and
commented. It ensures quality and the opportunity to find and correct errors.
Personal web server was used for deployment and hosting.

11

Chapter 2

Research

This chapter contains the analysis of existing social networks, a technical
solution, and requirements. The requirements of the project were determined based
on the advantages and disadvantages of modern applications.

2.1 Material and methods

Creating an experimental web application as a model for testing
The first step in problem-solving is to create a website as a model for testing.

This experimental website should be used for constructing and testing different
possible situations. Also, the website will show unexpected moments and errors.

Analysis of activity
Every action in the system should be registered and added to the database.

Analysis of all data provides detailed statistics, then it will be used for advanced
analysis and data visualization in the form of charts. Firstly, analysis of activity helps
to identify bots, secondly, data visualization helps users to see a complete picture of
a post/account.

Creating “fake” bots and paid commenters
Creating fake bots will support testing the antibot system and simulate the

behavior of a typical farm of bots or paid commenters. These bots will attack the
application: boosting likes, dislikes, or subscriptions. The stress test shows the
efficiency of the system and helps to find new methods of identification of bots. If the
system passes this stress test, then it is successful and working.

Analysis of the other experience and academic papers
The main problem of this work is well researched and many academic papers

explore this problem. Also, solving the problem is relevant for companies, which
create new solutions.

2.2 Research of existing applications

Social networks with millions of users were analyzed because a modern and
competitive application should use real-life best practices. These applications are a
suitable choice for analysis.

The main criteria are:
● User-friendly post system. A post (video, photo, text) is the main unit of

content. Other features such as comments, likes/dislikes depend on the posts;
● Transparency of data. Transparent data provides full statistics and enables

users to make informed decisions about the content. These users cannot be
misled;

12

● Comment system. Comments are an important part of a post that
complements the post. Comments provide feedback from users and help
other users to understand the post better through detailed reviews.

● Variety of reactions. Social networks should offer different types of reactions
because users can react to posts or comments differently. Reactions as
comments also provide feedback from other users and help other users
understand the post better using quick statistics based on numbers.

Social networks with a large number of users are most relevant, because these
networks use best practices for attracting users and creating engaging content. Table
2.1 shows the most popular social networks in January 2022.

Social network Number of users (million users)

Facebook 2910

YouTube 2562

WhatsApp 2000

Instagram 1478

TikTok 1000

Telegram 550

Pinterest 444

Twitter 436

Table 2.1: Most popular social networks worldwide as of January 2022, ranked by the
number of monthly active users

2.2.1 Social network with photos

Different types of social networks exist: with a focus on photos, videos and
texts. The first type for analysis is a social network with photos - Instagram, which
was created by Meta. Instagram is one of the largest social platforms in the world.
Instagram has 1.5 billion users. The core ideas of these social networks are showing
and exchanging photos. Users can watch photos of friends or famous influencers
and post their photos with short text for sharing with other users. Also, Instagram
provides the ability to promote and grow businesses, where business owners can
show their services or products in photos and communicate with customers. [4]

The main focus of Instagram is photos. Therefore Instagram has a required
photo for a post. It has advantages, for example, Instagram allows users to see all
posts in a list with 3 photos per line, and a photo serves as an identifier for each

13

post. A user can scroll through all Instagram posts to the oldest post and can find
any post if he knows which photo the post has. Figure 2.2 shows the structure of
Instagram posts.

Figure 2.2: Structure of Instagram posts.

But the comment system is not user-friendly. Replies are sorted in ascending
order, but a user can see only 3 last comments, if he wants to see more than 3
comments, then he must click again. Finally, if a user wants to see the first reply to a
comment with 150 replies, he must click "show more replies" 49 times (150-3)/3. It
takes a lot of time.

Instagram has only likes, but it can be disabled. It makes Instagram a very
non-transparent social network. Meta company writes: “We tested hiding like counts
to see if it might depressurize people’s experience on Instagram. What we heard
from people and experts was that not seeing like counts was beneficial for some,
and annoying to others, particularly because people use like counts to get a sense
for what’s trending or popular, so we’re giving you the choice.” [5] However, a
non-transparent system is very vulnerable to bots and paid commenters. For
example, an author can buy subscribers for an account, hide comments and promote
some product. It can be noticed that an account has many subscribers and some
likes, but without any number, however people can believe this advertisement. If

14

someone wants to see likes, it’s possible through special services or extensions, but
most people will not do this, because they are lazy, and most people don’t pay
attention, and they don’t know the full situation.

2.2.2 Social network with texts

A social network with a text focuses on text. This network can have a video, or
a photo, but the main content and goal is text. Twitter (now “X”) is a large social
network for short messages - tweets. Users use text as the main unit of information,
they divide text into multiple parts or put text into an attached picture if text exceeds
the limit.

The main problem of Twitter's comments is the fact that every comment, reply
in Twitter is a tweet. Twitter uses a microblogging structure. [6] Twitter has no
separation of comments and posts (twitts). It creates a chaotic heap of everything.
But this comment system is comfortable for viewing replies, because under each
tweet the replies - retweets are displayed. It allows users to concentrate on one topic
and keep their attention.

Twitter has only likes like Instagram. It also creates problems with transparency
of public opinion, however the number of likes on Twitter cannot be disabled, as on
Instagram. On the contrary to Instagram, Twitter has a transparent system for polls.
A poll has a limited time from 5 minutes to 7 days, then the poll ends. The voting in
the poll is anonymous, the poll shows only results. The poll is closed, only the author
can define options, because it's a common practice of online-polls in social networks.

2.2.3 Social network with videos

A social network with a focus on videos has videos as its main content.
YouTube is a video hosting and a social network with videos. YouTube has many
interesting technical features that can serve as examples for inspiration.

YouTube had a likes/dislikes system, which could represent the viewers’
preference. [7] But now dislikes are disabled, nevertheless, people can install an
extension for the browser and see dislikes, however dislikes make no sense
because most people don’t use the extension, people are lazy, and not everyone has
time for this.

Comments are a very inalienable part of a video because people can discuss
the video and communicate with each other, comments may increase the total
number of viewers. [8] YouTube has a complex and advanced system of comments.
Users can sort comments by date and by popularity, which is computed by YouTube
algorithms. This mode sorts comments in an actual order by the number of likes,
period and trends. If a video was popular some years ago, and it became relevant
again, users see new popular comments, YouTube system understands that an old

15

comment (5 years ago) with 1000 likes is less important than a new comment (1 day
ago) with 800 likes. Also, the author of the video can like and pin comments, it helps
to display some important information about the video, because pinned comments
have high priority. Finally, the comment shows all replies. But YouTube comments
have one major disadvantage: videos for children have no comments and so do
videos for non-children users too.

YouTube provides a lot of data for detecting the boost on YouTube Analytics.
YouTube comment system is well-developed and responsive, but YouTube has
problems with bots, spambots on YouTube are a common thing. YouTube has its
own moderation system for comments and this can prevent provocative comments,
also the author of the channel can add their own "red" words. Another serious
problem is clickbaits: an author of a channel shows a picture with a new movie, and
writes that this video is a teaser of the new movie, but in reality this is a video with
the opinion of the author with a black background.

YouTube is a very popular platform among paid commenters and bots. Bots are
used for like/dislike/subscription boosting. Some channel wants to add new
subscribers. An author can buy 10000 new subscribers for 1000$, or buy positive
comments for their own video. The rise in popularity makes YouTube vulnerable to
bots and paid commenters. [9] However, YouTube can prevent bots, creating bots for
YouTube is hard.

2.2.4 Messenger

Telegram is not a social network. But it’s a messenger that evolves into a social
network. Telegram has public channels with messages - posts with optional photos,
videos, and audio messages. Also, people can comment on these post and message
each other.

The main advantages of Telegram are its abilities. Telegram is the most
extensible platform among others. The Telegram platform helps to get feedback from
the audience of the channel. People can use Telegram bots (not spam bots) for
automation of processes: premium subscriptions to private channels, support bots
for answering, etc. Bots have become a new opportunity to receive information from
followers and communicate with them directly. [10] Telegram has the best reactions
with custom emojis.

A technical problem of Telegram is its comments system, which means an
uncomfortable list of comments. One comment is good, because it can contain
images, audio messages and people can put any available emoji, including custom,
if it’s not disabled. But Telegram doesn’t provide any sorting system for the list of
comments, only an infinite stream of comments sorted by date, and you can’t see all
replies, however the application at least shows the original comment that has this

16

reply. One comment can have different emojis. Figure 2.3 shows the structure of a
Telegram comment

Figure 2.3: Structure of Telegram comment with reply and multiple emojis.

Telegram became a very popular platform among manipulators and scammers.
Telegram has the best system of emotions, because the standard pack includes:
likes, dislikes, smiling, sadness, anger, crying, etc, and also users can create their
own custom emojis: from cars and words to rabbits and ponies. Author of the
channel can add some emoji, but he also can disable some emojis, or even all of
them. And in this situation Telegram becomes the most non-transparent social media
where it is possible to know only the number of views and no more. In contrast to
YouTube, disabling emojis and comments are usual and normal practice, because
Telegram has a chat format for short information. Users don’t trust YouTube video
with disabled comments and even disabled likes, but the Telegram channel has no
problems with this. Besides the technical side, the user-experience side is very
important. Because every social network is a network of users, technologies are only
means of communication between people. And manipulators with disabled emotions
have more chances in Telegram than in YouTube.

2.2.5 Common traits of social networks
After analyzing these 4 social networks, some trends and frequently used

practices can be identified:
1. Only likes

These sites prefer to use only likes. The main reason is resistance to negativity. If
potential haters have no opportunities, they can’t hate someone, or this hate has less
impact. But sometimes dislikes or alternative reactions must exist. Users can prevent
bots’ comments through the report system because their comments usually are
spam. But paid commenters’ comments are harder to detect. These comments look
like usual ones, but paid commenters have a goal to persuade users or mislead
them, in most cases these comments are provocative, and dislikes can expose this.

2. Non-transparent information.

17

These sites prefer to hide information. Sites do not consider transparency necessary,
because the main goal and meaning of their existence is commercial profit. Also
people don’t need transparency and don’t ask for it. Transparency is an advanced
feature that is unusual for the average users, who are used to trusting themselves
and short statistics (number of likes). However, transparency is needed for advanced
users, advertisers and journalists, which can analyze statistics and draw
conclusions.

Why do people dislike something? There are many reasons, but the main 4
reasons were selected:

1. Scam: illegal casinos or financial pyramids, this reason is illegal, and this
content will be deleted.

2. Lie of the author. Author can promote overpriced low-quality products or some
famous person. It’s legal, but it’s a lie because people trust their favorite
blogger, but this blogger can manipulate own followers.

3. Users don’t like it. An author can change their own style, and people, who
love the consistent style, don’t like this. Or the new author’s experiment is
bad. But through dislikes the author can understand what the problem is and
can fix this. The author can read comments, but it doesn’t show the full size of
the situation and requires much time.

4. Default hate. When people hate someone or this person doesn’t like their
favorite blogger: conflicts between famous media persons. Existing
companies use this argument for non-transparent data: For example,
YouTube writes: “We want every creator to feel they can express themselves
without harassment.” [11]

2.2.6 Comparison of social networks

This table was created after analyzing these 4 social networks. The table
shows every important and relevant factor. Grades are relative: 1/5 for the comment
system in Instagram means that only the comment system of Instagram is worse
than YouTube, Twitter, Telegram. Telegram’s 5/5 doesn’t mean that the comment
system in Telegram is the best in the world, but the system is the best among the
other 3 networks.

In addition, low grades don’t mean that a network cannot be used for analysis.
These applications have many users and this relevance has its own serious reasons,
every application has strong points which are good practices. Table 2.4 shows the
final comparison.

18

Instagram Twitter YouTube Telegram

Comment system 1/5 2/5 5/5 3/5

Post system 4/5 3/5 5/5 3/5

Reactions (including likes) 1/5 2/5 3/5 5/5

Transparency of data 1/5 2/5 4/5 3/5

Final grade 1.75/5 2.25/5 4.25/5 3.5/5

Table 2.4: Comparison of social networks

2.3 Strategic analysis and planning

This chapter contains three different analytic methodologies: SWOT, PEST, 5F

2.3.1 SWOT analysis
SWOT analysis is a technique of strategic planning and management that

helps to evaluate the strengths, weaknesses, opportunities, and threats of a project.
SWOT analysis helps to find the best way to use the available resources and
capabilities, to avoid risks and to maximize benefits. Strengths and weaknesses are
internal conditions that depend only on the company. Opportunities and threats are
the external environment of an enterprise [12]. Table 2.5 shows SWOT analysis of
the project

Strengths Weaknesses

● Low cost of development
● Bold and innovative decisions
● Clean community

● Non user-friendly interface
● Lack of advertising

Opportunities Threats

● Exploration of new markets
● Transition of personalities from other

platforms

● Regulation changes

Table 2.5: SWOT analysis

2.3.2 PEST analysis
PEST analysis is a framework of macro-environmental factors used in strategic

management. Standard basic PEST analyzes four factors: political, economic, social
and technological. [13] Political factors analyze the role and influence of the

19

government in the economy and the current political situation. Economic factors
include the inflation rate, economic growth, taxes, prices. Social factors analyze the
population and socio-cultural aspects. Technological factors include the technological
level of the society: automation, innovation, and importance of technologies in public
life, technological capabilities of the country and the business. Table 2.6 shows the
PEST analysis of the project.

PEST analysis is unique for each society and country. The project focuses on
Czechia and EU countries.

Political ● Czechia is a member of the Europe Union
● Political situation in Czechia and EU is stable
● However EU regulates many aspect of the Internet

Economic ● Inflation is medium
● Overall economic situation is stable

Social ● Social networks and internet communication has significant
role in public live

● Social situation is stable

Technological ● Czechia and EU are high-urbanized societies with high
availability of devices

● Almost each person and household has the Internet
● Technological situation is stable

Table 2.6: PEST analysis

2.3.3 5F analysis
Porter’s Five Forces framework analyzes five competitive forces that shape

each project and industry. These five competitive forces affect the status and
development of an industry. [14]

● Threat of substitutes:
Main substitutes for social networks are messengers. Threat of substitutes is
real.

● Bargaining power of suppliers:
The project is independent from external suppliers.

● Bargaining power of customers (buyers):
Target market is the default people and influencers. Customers have
alternatives for communication and creativity in social networks, but only a
few social networks provide transparent information.

● Competitive rivalry:
Many competitive social networks exist, but the project has unique features
that can be successful among users.

20

● Threat of new entrants:
New entrants will not become a barrier, because the social network has its
own unique community. However, social network is a profitable idea. Threat is
real, but not critical.

2.4 Choice of technical solution

The beginning of each project is understanding the problem because
technologies must solve the problem, but not vice versa.

JavaScript is a programming language. Javascript is a fundamental piece of
modern web apps that's used to construct a variety of systems, including web apps
with sophisticated user interfaces. [15] JavaScript is a universal language that
supports OOP principles, but using OOP isn’t required. The main reason for
selecting JS is the universality and efficiency of the language, which can be used for
everything: from web programming (frontend and backend) to artificial intelligence.
GitHub statistics shows that JavaScript has been in 1st place for the last 9 years. A
large amount of JavaScript frameworks exist for frontend: Angular, Vue, React and
for backend: Express, Nest [16].

The project uses a modern standard application style: client + server
application as most social networks. [17] Client and server are independent
applications. Client is frontend, server is backend. Nowadays, two software
engineering paradigms dominate modern enterprise application development:
monolithic and microservice-based architecture. A microservice architecture
decomposes a business domain into small pieces implemented by autonomous,
self-contained, loosely coupled, and independently deployable services. [18] Every
service solves its own task. The main advantage of a monolith is that it is easy to
write. Monolith doesn’t require any extra tools like Kafka, Redis, etc. But monolith is
harder to scale, because all project pieces are closely related. Microservice-based
architecture is a more modern style, that can solve problems with scalability,
availability and maintainability. However, microservice-based applications have their
own challenges, like increased consumption of computing resources and maintaining
data consistency and transaction management across microservices. But for modern
large projects like a social network microservices are the best solution. A social
network is a complex and extensible system.

Microfrontend style is based on microservice style, but only for frontend. [19]
Every microfrontend is a small application that is responsible for its own task.
Microfrontends have the same advantages and disadvantages as
microservice-based architecture. Microfrontends were selected for the frontend part
of the project. Differences between architectural styles are shown in Figure 2.7.

21

Figure 2.7: Architectures of websites

2.4.1 Frontend

Frontend development is one of the main aspects of web applications, as it
determines how the user interface is designed and implemented. However, frontend
development can also pose many problems, especially for large and complex
applications that require frequent updates, scalability, and performance.

JavaScript frameworks are an important feature of frontend development
because they provide tools for creating scalable, dynamic applications. Frameworks
aim to accelerate the process of developing a website. [20] JavaScript has many
frameworks and libraries for the Frontend. Three main technologies for frontend are

22

Angular, Vue and React. In this subsection, some basic information about the
libraries and frameworks is described.

2.4.1.1 Angular

AngularJS is an open-source JavaScript framework for creating front-end single
page web applications using TypeScript, a superset of JavaScript that adds static
typing and other features. [21] TypeScript is not mandatory for Angular, but is
recommended. Angular was created by Google in 2010 and is maintained by a large
community of developers. Angular uses a component-style architecture, where each
component consists of a template, a class - TypeScript, and metadata (decorators).
Angular also provides different features such as data binding, dependency injection,
routing, forms, testing, and more.

One of the main advantages of Angular is that it is a complete and opinionated
framework that offers a consistent way of developing SPAs. Angular also benefits
from the TypeScript language, which helps to catch errors at compile time and
improve code quality and readability. Angular is suitable for large and complex
applications that require high performance and scalability.

However, some of the drawbacks of Angular are that it has a steep learning
curve, a large bundle size, and frequent breaking changes.

2.4.1.2 Vue

Vue is an open-source progressive framework for building web user interfaces
based on JavaScript. Vue was created by former Google engineer Evan You in 2014,
and is supported by a small core team and a large community of contributors. [22]
Vue uses a component-style architecture, where each component consists of a
HTML template, CSS styles and JS script. Vue also provides different features such
as data binding, directives, transitions, routing, state management, and more.

One of the main advantages of Vue is that it is lightweight and flexible, which
makes it easy to use. Vue is suitable for small to medium-sized applications that
need a simple and elegant UI.

One of the main disadvantages of Vue is that Vue has less community and less
demand in the labor market than React and Angular. It means that Vue has less
supporting libraries and frameworks for solving problems, and that it has some
compatibility issues with older browsers.

2.4.1.3 React

React is an open-source library for building user interfaces based on JavaScript
or JSX, a syntax extension that allows writing HTML-like code in JavaScript while
using React features. React was created by Facebook, and was first launched in

23

2013. [22] React uses a component style, where components are reusable pieces of
the UI that have their own logic, styles and state. React, like Vue, uses its own virtual
DOM, which is a representation of the real DOM in memory, to efficiently update the
UI when the state changes. React DOM compares the new values to the previously
stored values and only re-renders if there is a difference between the two states. [23]
React is compatible with TypeScript, which is optional.

One of the main advantages of React is that it is declarative, which makes it
easy to create interactive and dynamic UIs. React is suitable for small to large-sized
applications. React also has an active community that provides many tools and
libraries to enhance its functionality, such as React Router for routing, and Next.js for
server-side rendering. However, some of the disadvantages of React are that it is
only a UI library, which means that it is necessary to choose and integrate other
technologies for the rest of the application stack, and that it has a high initial setup
cost.

2.4.1.4 Summary

In conclusion, Angular, React, and Vue are three main libraries/frameworks for
building client-side JavaScript applications. [24] Each of them has its own
advantages and disadvantages. React was selected as the core library for frontends,
because React has a solid ecosystem of tools and libraries from an active
community for solving different tasks. React was created by Meta company, and is
used for Instagram, Facebook, and Twitter - modern social networks. React is a
suitable choice for the social networks because React uses a component style: every
part of the interface can be separated into one component, every button, every
image, and every block of content. The project consists of posts and comments -
reusable components. Table 2.8 shows a comparison of these 3 technologies.

React Angular Vue

NPM packages 251641 70067 82301

Stack Overflow questions 467175 299943 105656

Weekly downloads on NPM web 21385508 8611884 3960281

LinkedIn job positions (Czechia) 1036 793 558

Using by developers (by Stack Overflow) 42.62% 20.39% 18.82%

Jobs.cz job positions 133 68 42

Table 2.8: Comparison of client-side JS technologies

Relevance of React allows one to find a programmer or a technical solution for
almost every problem. According to information from npm, LinkedIn and
StackOverflow, React is the most discussed among other JS technologies.

http://www.npmjs.com
https://survey.stackoverflow.co/2022/#web-frameworks-and-technologies

24

2.4.2 Backend

Backend development is the second important aspect of web applications, as it
determines how the business logic is designed and implemented. The server is
responsible for centralized work with data of users and storage. Frameworks work
with data, the database is the storage. Every microservice has its own small
database for its own part of data.

Databases can be relational and nonrelational. Relational databases use SQL.
SQL - Structured Query Language - is a language for working with relational
databases, which consist of a set of tables where the data are classified by category
and type. SQL - typed databases have fixed and predefined schemes. The main
benefit of relational databases is stability.

NoSQL databases are non relational. NoSQL databases can be document -
typed, graph or key - values. Non Relational databases have dynamic schemes. The
main benefit of non relational databases is flexible storage [25].

PostreSQL was selected as the RDBMS for all services of the project.
PostgreSQL is open-sourced, supports the transaction function and data integrity
checking. [26] PostgreSQL is suitable for the social network because SQL is stable.
However, NoSQL databases also can be suitable for social networks, because
NoSQL is more scalable and is good for BigData. Backend can interact with
databases directly or through ORM tools. Prisma was selected as the ORM for the
project.

JavaScript is a language for Backend, not only for Frontend. It’s possible due to
NodeJS, which is based on C++ and allows the use of JS for working with hardware.
Two main JavaScript frameworks for the backend are Express and Nest. In this
subsection, some basic information about the frameworks is described.

2.3.2.1 Express
Express is a Node.js minimalistic and flexible open source web application

framework that provides a set of features that extends a standard NodeJS. Express
JS has no specific structure, it has a free architectural style and code organization.
[27] Express JS extends NodeJS through its own features, such as routing, error
handling, middleware, and template engines. Many JS frameworks are based on
Express: Blueprint, NestJS, Locomotive, Sails.

2.4.2.2 Nest
Nest is a progressive Node.js framework for building highly scalable server-side

applications. [28] It is based on TypeScript and JavaScript. Nest is used over default
Express. Nest uses Express and extends it. One of the advantages of Nest is that

25

anything supported in Express is also supported in Nest. Nest is inspired by Angular
and uses Angular - like syntax with annotations and components. Nest has a
modular structure, which is shown in Figure 2.9.

Figure 2.9: NestJS component structure

Every module is microservice-like, Module exports dependencies from libraries
and other modules, and imports objects and functions which can be used by other
modules. Each module can have its own controller and service. A service is
responsible for business logic. A controller defines the API: endpoints. App module is
the core module of the application.

2.4.2.3 Summary
NestJS was selected for the project. NestJS is an Express based framework

with its own structure and features. Express is faster, but Nest provides more tools
and features for solving the problems. Also the Nest syntax with annotations allows
for a more usable configuration.

Nest provides a structured architecture that is good for large and scalable
projects. Nest is compatible with microservice architecture. Each service works
through the core app module.

Each microservice can communicate with another through a message broker. A
message broker sends messages (commands/requests) from one microservice to
another. Apache Kafka uses publish - subscriber model for asynchronous
communication. Apache Kafka was selected as the message broker because Kafka
is compatible with Nest, and Kafka systems are decoupled; hence they are easier to
maintain and scale. [29]

2.4.3 Manipulation
Social networks have to be resistant against bots, paid commenters and scam

information.

26

2.4.3.1 Bots
Bots are special fake accounts, often they are empty and without photos and

additional information. A set of bots creates a botnet. A botnet is a set of
Internet-based computers under a common controller, the architecture of the botnet
is shown in Figure 2.10. Large groups of bots (botnets) are controlled by the same
entity, called a bot master, acting behind the scenes in a command-and-control
fashion. There are many ways in which social bots can disrupt or influence online
discourse, such as spamming hashtags, scamming twitter users, and astroturfing.
[30]

Traditional methods of detecting bots include feature based and text-based
methods. Feature-based methods involve extracting features from an account such
as word distribution in a text, posting rates, or followers. Text-based methods utilize
frameworks in natural language processing when examining user profiles and posts.
Feature-based approaches do not perform well as recent bots can avoid detection by
emulating behaviors of real users. A text-based approach to detecting bots is
vulnerable to newer bots whose posts also contain real posts from human users.
Graph-based methods involve constructing users as nodes and relationships among
nodes as edges for the initial graph data, such as relational graph convolutional
networks. [31]

Figure 2.10: The architecture of a botnet

Bots are used for manipulation of numbers of likes/followers or for creating fake
activity. These actions have three main goals:

1. Changing public opinion. If people see a big number of likes, they are likely to
believe it. Big number of dislikes can undermine trust to comment or post, or
even lead to deleting this.

2. Abusing the recommendation system. Big number of likes can boost a post or
person for trends or personal recommendation.

27

3. Creating a good picture for advertising. Price of adverts depends on different
parameters, such as likes, views, followers. If bloggers or media are popular
with many followers and views, they earn more money. Advertisers assess
price for ads based on numbers and decide for themselves.

The main problem of bots is suspicious activity. A real human has own account
with subscriptions, messages, posts and personal recommendations. A human is
connected with own account, an account is a digital identity. The behavior of bots
differs from real accounts. Botmaster should create many accounts without free time
for customization and setting. An account with 1000 subscribers, a five-years history
of activity, has equal like or another reaction as an account, which was created two
days ago for boosting.

2.4.3.2 Paid commenters
Paid commenters are accounts, which are created by special factories. A

factory worker can manage many accounts (from 1 to 15), in contrast to bots, paid
commenters are not automatic, in most cases workers login and directly write each
comment or post. A factory is shown in Figure 2.11.

Figure 2.11: The architecture of a factory

Main goals of paid commenters are provocations and disinformation. [32] It’s
possible if information cannot be checked quickly because nobody has free time for
deep fact-checking and analysis. When a paid commenter writes some comment
with controversial information, people can see replies and compare their positions.

28

Nevertheless, comments and a number of likes have a big impact on the opinion of
people. A person doesn’t understand who is right, a human is a social creature, and
it’s normal if a person believes the majority. If data is transparent, a paid commenter
has no chances for misleading, because people can see the full situation easily.

The behavior of a paid commenter differs from a usual user, because a paid
commenter must write many comments, and these comments are similar to each
other. Real users can be active, but their comments are different and natural based
on the situation.

The project shows all comments of users, because it’s public information and
each user can try to find and collect all comments independently, but it requires a lot
of time. This project doesn’t need any extra services for providing data (such as
Socialblade, etc), standard providing data is enough, also this includes creating
graphs.

2.4.3.3 Scam
Authors can lie and manipulate the facts for their own profit. This problem has

the same reasons as paid commenter’s manipulation - lack of information. A person
doesn’t see many dislikes, which exist because the author lies, and believes the
author. Providing the information is possible on the technical side, but many social
networks provide less information than they can. But full information allows the users
to see the full situation and analyze this for themselves. Figure 2.12 shows an
example of full and transparent statistics of the poll with a chart.

Figure 2.12: Full information of votes on vk.com site

29

2.4.4 Conclusion
Technical implementation of the project isn’t hard or revolutionary. The Internet

suggests many technical solutions and working methods. The main reason for
manipulation is the reluctance of people. They think that non-transparent data is their
advantage, but it’s not right.

2.5 Requirements

Project requirements are part of software engineering. Requirements describe
what the project should be able to do. Requirements are used for business, although
the project is not commercial, nevertheless these requirements help to simulate the
real project.

2.5.1 Functional requirements

Business Goal (BG)

Create a social media network with advanced statistics for 5 – 20 million users.

Business Requirements (BRQ)

1. Posts
Users should be able to create/read/update/delete posts and add optional photos
and a video to their posts because this will allow them to create the content for the
site. Every post also can have a poll with different options.

2. Comments
Users should be able to write comments for posts and options and they can
communicate with other users.

3. Users' role and bans
Admins should be able to manage rights of users and appoint moderators because
admins need to maintain public order.

4. Statistics
Users should be able to see statistics of post reactions, votes for polls and
subscribers, so everyone can view results, understand the situation about public
opinion.

Functional Requirements (FRQ)

The word “manage” means CRUD operations

Admins have all rights of moderator, moderators have all rights of user

1. Writing posts (BRQ 1)
Users can manage their posts with optional photos and a video.

30

2. Open opinion (BRQ 1, BRQ 4)
Likes/dislikes for posts cannot be disabled.

3. Attaching poll (BRQ 1)
Users can attach a poll to their posts while creating them

4. Reactions (BRQ 1, BRQ 2)
Users can react to posts and comments (like/dislike)

5. Adding options (BRQ 1)
Users can add one option for a poll if it's allowed

6. Voting for options (BRQ 1)
User can vote for any option of any post and only once

7. Comments (BRQ 2)
Users can manage their comments

8. Replies on comments (BRQ 2)
Users can reply to comments

9. Viewing a post statistics (BRQ 1, BRQ 4)
Users can watch the statistics of the poll and post reactions

10. Subscribes and subscribers (BRQ 3)
Users can subscribe to other users and have their own subscribers

11. Viewing a user’s statistics (BRQ 3, BRQ 4)
Users can watch the statistics of the user’s followers

12. Spam reporting (BRQ 3)
Users can report spam/misinformation

13. Requests about moderator (BRQ 3)
Users can send a request to become a moderator when they want to become one

14. Ban users (BRQ 3)
Moderators can ban or mute any user for a selected time

15. Ban moderators (BRQ 3)
Admins can ban any moderator or user

16. Consideration of request (BRQ 3)
Admins can accept/deny a request to become a moderator

17. End of moderator rights (BRQ 3)
Admins can stop moderator rights for any moderator

18. Removing comments and posts by moderator (BRQ 1, BRQ 2, BRQ 3)
Moderators can remove any non-moderator posts and comments

31

19. Removing comments and posts by admin (BRQ 1, BRQ 2, BRQ 3)
Admins can remove any posts and comments

Non – functional requirements (NRQ)

1. Integration into browsers
The site is available and works equally for different browsers (Firefox, Edge,
Chrome, Opera)

2. Compatibility (Responsive design) with mobile devices
The site has an adaptive design for all devices and displays

3. Password protection
The site will encrypt passwords for effective protection

4. User–friendly interface
The site has a user–friendly and intuitively understandable interface

2.5.2 Use cases
Use cases help to model all actions of users and distribute these actions

between different user roles. Use - case diagram complexity has a major impact on
the quality of the resulting system. [33] The project has three parts in the UC
diagram: posts, comments and user relationships.

2.5.2.1 Posts
A post is one of two main entities of content. The social network consists of a

set of posts and comments. Figure 2.13 shows how users can interact with posts. A
user can create posts and make CRUD actions with their own posts. User can create
a post with optional photos, a video and a poll that contains options, then the user
must allow or forbid adding new options. If adding of options is allowed, any user can
add a new option once. Also users can react to any post, including their own posts. If
a post or some option has inappropriate content such as spam, misinformation, hate
speech, moderators and admins can delete the post or the option. Users can report
about violations, and admins and moderators can accept or deny these reports.

32

Figure 2.13: Use case model of posts

2.5.2.2 Comments
A post is the second of two main entities of content. A comment can be written

under a post or an option. Figure 2.14 shows how users can interact with comments.
User can write their own comments and make CRUD actions with these comments.
Users can react to comments and reply. If a comment has inappropriate content
such as spam, misinformation, hate speech, moderators and admins can delete the
comment. Users can report about violations, and admins and moderators can accept
or deny these reports.

33

Figure 2.14: Use case model of comments

2.5.2.3 Users and roles
Default users are most users in the system. Users fill information about

themselves while registering. Moderators and admins have to maintain order and
prevent violations. If a default user wants to become a moderator, this user can send
a request. If an admin accepts this request, the user will become a moderator. Admin
can suspend moderator rights. Admins are defined by the system and programmers.
Admins and moderators can ban users, banned users have no rights, and blocked
accounts are saved, but cannot be used. Figure 2.15 shows interactions between
different users and hierarchy.

34

Figure 2.15: Use case model of users’ rights

35

Chapter 3

Design

3.1 Class diagram

A class diagram is a type of diagram in UML that shows the structure and
relationships of classes in an object-oriented system. Class diagram describes the
class structure of a system, attributes of these classes, hierarchy and relations
among different classes. [34] The main goal of the class diagram is the
representation of the project as an interrelated collection of entities.

Entities are connected by two-way relations:

● 0..1: A can have a B or not
● 1..1: A has a B
● 0..N: A has any instances of B
● 1..N: A has 1 or more instances of B

These relations work also in the other direction, for example: User can write
any number of posts: 1..N, but one post can be written only by one user: 1..1. Class
diagram helps to design database. Figure 3.1 shows the class diagram of the
project.

36

Figure 3.1: A class diagram of the system

3.2 Deployment diagram

A deployment diagram is a type of UML diagram that shows how a system is
deployed on different hardware or software components, in other words - it is used to
represent the deployment view of an application. [35] This diagram allows one to
view relationships between every service and connection with the database or
relationships between every frontend. The diagram is used to model the physical
aspects of an object-oriented system, such as the configuration of nodes and
connections. A deployment diagram can help to model the topology of a system, the
distribution of components across different nodes, and the communication paths
between these nodes.

37

Frontend is a client, each client works with frontend on their own computer
independently. Backend is the centralized remote server which accepts requests
from clients and returns responses back. Frontend part consists of four
microfrontends on React, then microfrontends communicate with backend through
API Gateway, API Gateway also is one of four microservices, which is responsible
for external communication and authentication. Each microservice has its own
database in PostgreSQL. Figure 3.2 shows the deployment diagram of the project.

Figure 3.2: A deployment model

3.3 UI Design

The creation of UI/UX design is described in this section. This design was
created in Figma. UI design must show how the system will look like, UI is a visual
representation of the layout structure. UX analyzes the behavior of users. [36]

3.3.1 Create a new post

Users can create posts on a special page. This page includes a form with a
title, a text, photos, a video and a poll that contains options.

38

Figure 3.3: Creating post page

Text and title are required fields. The maximum number of photos is ten. If
options are empty then the post will be without a poll.

Also each page has a menu on the top with the project name “Myselect”, with a
search field for posts and users, with a button for creating new posts and a
login/logout button. Figure 3.3 shows creating post page.

3.3.2 Comments

Each post or option can have comments if this is allowed.

39

Figure 3.4: List of comments

Each comment has a nickname of the author, time of creating, text, number of
likes/dislikes and reply button. If a comment is a reply to another comment, this
comment has a short text of the replying comment. Figure 3.4 shows a list of
comments.

3.3.3 Followers

Each user can follow (or subscribe) to another user. Users can see their
followings as a list and unfollow (unsubscribe) from them. If a user clicks on the
nickname of a following user, he will be redirected to the public user page, which
contains all posts of this user. Figure 3.5 shows a list of subscribers.

40

Figure 3.5: Followers page

3.3.4 User post

The User’s page in Figure 3.6 contains a list of all posts of the user. A post has
short info about the author, a button for adding new options if it’s available. Post
shows a text first, then options, photos, and a video if the post has this. Bottom part
of the post has likes/dislikes and a button for the number of comments. If comments
are allowed, a user can click on the button and he will be redirected to a page with a
list of comments.

Clicking on the option means that the user votes for this option, and can see
the statistics of all options. If the number of options is more than 5, users can use a
search field for finding a preferred option. Clicking on the option after voting redirects
the user to the comments page.

41

Figure 3.6: User’s post page

42

3.3.5 Conclusion

The design was created. Design must direct the frontend part and be a manual
guide that explains how the frontend looks like. The final version can have
differences from the design, but the main goal of the design is solving core problems
and overall definition of the user interface of application and user experience from
using the application.

43

Chapter 4

Implementation

Implementation of the project was divided into 2 parts: backend + frontend. In
this chapter the process of implementation is described.

4.1 Backend

Backend part has 4 microservices:

● Api - gateway: the main microservice that has authorization, guard protection
and accepts all requests from client and redirects them through Kafka to
another microservices.

● User: works with user’s data: full information, followers, users’ statistics
● Post: works with posts and polls: reactions, options, votes, posts’ statistics.
● Comment: works with comments to posts and options.

Each microservice was created through the npm console by the command
“nest new project_name –strict”, this command creates a project on NestJS with
basic configuration and with the use of TypeScript.

Api - gateway, post and comment microservices have a short table of users
with main data: email, role, link nickname that provides short author info for
authentication/posts/comments without extra requests to the user microservice.

Post, comment and user microservices have similar structure, because they
are microservices with their own task. Figure 4.1 shows the structure of the post
microservice:

● /dist - an automatic folder for the built application
● /node_modules - an automatic folder, where the installed libraries are
● /prisma - database schema and history of all migrations - changes of DB
● /src - main folder, which contains source code of the project
● /src/dtos/ - has DTO (Data Transfer Object) files, which define the accepting

and requesting form of data
● /src/prisma - prisma service in this big microservice, defines how database

must work
● /src/types - defines custom types of data for objects in TypeScript
● /src/app - files with core code of microservice, for post microservice these files

contains functions for creating, deleting and working with posts
● /src/main - configuration of microservice and start file for running
● /test - tests
● .env - configuration of database, env is Environment

44

● .eslinter.js - ESLint configuration - special plugin for formatting of the code
● .gitignore - which files should be ignored, when project is loaded to GitHub
● .prettierrc - automatic supporting file for configuration
● nest-cli.json - automatic supporting file for configuration
● package.json - list of libraries and dependencies, which will be installed in

folder “node_modules”
● package-lock.json - supporting file for “package.json”
● README.md - automatic file with description of project
● tsconfig.json - configuration of TypeScript and building of project, because

compiler works with clean JS, but TypeScript is used for development, after
project building TypeScript will be transformed to JavaScript

● tsconfig.build.json - file for building TS project

Figure 4.1: Project structure of the post microservice

45

Api - gateway is the main microservice, and has its own structure, which is
described in Figure 4.2. The microservice has differences only in the /src folder

● src/auth - HTTP endpoints for external interactions with authentication:
tokens, login, logout

● src/comment - HTTP endpoints for external interactions with comments
● src/post - HTTP endpoints for external interactions with posts
● src/user - HTTP endpoints for external interactions with users
● app.module.ts - connects all modules
● main.ts - running start file with auth protection

Figure 4.2: Project structure of the api-gateway microservice

4.1.1 Authentication and authorization
Some actions are available without authentication, such as getting a list of all

posts. But the majority of actions require authentication. The project provides its own
authentication system.

After successful authentication, users get their own access and refresh token.
A token contains information, such as in Figure 4.3, where the token has info about
id, email, role. When the site gets the token in the header of the HTTP request, the
site can decode the token and read info. The access token is used for interactions
with endpoints that require authentication, the access token has a small time of life -
45 seconds. But the refresh token has a large lifetime of life - 90 days. The refresh
token is used for getting a new pair of tokens and so that the site could check if the

46

user is signed up or not. Tokens are stored in cookies on the Frontend side in
cookies.

Figure 4.3: Structure of token

When a user sends an HTTP request, which needs authentication, this request
has access token in its own header. Then the site guard system - strategy - reads
the header, extracts the token and decodes it. If the token is invalid, the system
returns “Unauthorized error” with code 401, else the system accepts the token and
puts the user through the auth guard filter. Then system checks role, if this endpoint
requires a some role. Figure 4.4 shows how filters work.

Figure 4.4: An endpoint

This endpoint can be activated only by admins and moderators. If “Roles” and
“UseGuards” annotations are empty, endpoints are available for any authenticated
users. If an endpoint has a “Public” annotation, the endpoint doesn’t require
authentication.

47

4.1.2 Endpoints
The project follows REST API architecture which means that the Backend is an

API, which consists of requests. Figure 4.5 shows the total API of the project. This
documentation was generated by using the tool Swagger.

Figure 4.5: Swagger UI

All endpoints are located in controller files. When an endpoint receives a
request from a browser or a Kafka message, this endpoint calls a function from the
service file. The service layer works with a database, generates responses, sends
requests to other microservices in the api-gateway, in other words the service
implements the business logic. A module joins the controller and the service.

48

Figure 4.6: User controller

Functions inside controllers are endpoints. These endpoints have annotations,
which define and configure all aspects of the endpoint: path, method, roles’
requirements, code of answer, requirement of authentication. Input arguments of the
function are from form fields or search parameters. The main goal of the controller
layer is to work with user requests and filter them. Figure 4.6 shows how the
controller works on the example with the user controller.

Figure 4.7: User service

The service layer works with the database and returns built answers. Figure 4.7
shows how a service works on the example with the user controller.

49

4.1.3 Bot prevention
The project goals prevent bots that boost the numbers of statistics. An account

is a digital identity of a person.
There are many methods to identify a user:

● Attaching a payment card, this methods are used by online streaming
platforms

● Double email verification: after creating a user and in multiple hours or days, it
can protect the system from short-time mail services, which can provide an
email for 10 minutes

● Personal SMS code for verification.
● Combinations of different methods. This method is used by Amazon for AWS.

These methods are reliable, but are beyond the extent of a bachelor’s work.
The system gives each user 90 days after creating an user for full verification
through a special verification link, this method is used for testing and replaces email
letters or payment card. Also a user can get full verification if he becomes a
moderator, because it means that this user is real. The system checks the user after
each login or request for tokens. If in 90 days after creating the account, the user
doesn’t verify this account fully, he will be banned by the system automatically. The
user can write to the admin on his working email and ask for unlocking. The main
idea of this prevention is to complicate the use of bots, because this prevention will
increase the cost of bots’ services.

4.2 Frontend

Frontend part has 4 microfrontends:

● Shell: the main microfrontend, which has an authorization, sends all requests
to the backend and redirects through Kafka to other microservices.

● User: user’s components: registration, user info, moderator requests,
subscriptions

● Post: post’s components: single posts, lists of posts.
● Comment: comment’s components, list of comments.

Each microfrontend was created through the npm console by the command
“npm create vite”, this command allows one to create a React project with basic
configuration and with the use of TypeScript.

Shell is the main microfrontend, and has its own structure, which is described in
Figure 4.8. Microfrontends have differences only in /src folder

● /dist - automatic folder for built application
● /node_modules - automatic folder, where the installed libraries are
● /public - files, which must be preloaded publicly

50

● /src - main folder, contains source code of the project: components and pages
● /src/components - own components of microservice
● /src/router - router, with all paths
● /src/views - views of the frontend
● /src/App - core component of virtual DOM structure
● /src/main - start file for running
● .gitignore - which files should be ignored, when project is loaded to GitHub
● index.html - start HTML file for project
● package.json - list of libraries and dependencies, which will be installed in the

folder “node_modules”
● package-lock.json - supporting file for “package.json”
● tsconfig.json - configuration of TS
● tsconfig.node.json - support file for configuration of TS
● vite.config.ts - configuration of microfrontend, defines connection with other

frontends and properties of the frontend

Figure 4.8: Project structure of shell microfrontend

Post, comment and user have similar structure, which is shown on Figure 4.9:

51

● src/mockData - special mock data for testing
● src/pages - pages of site created from components

Figure 4.9: Project structure of user microfrontend

4.2.1 Authentication and authorization
When a user logs in, he sends his own credentials to the server and receives

tokens. These tokens are stored in cookies. Cookies store tokens and their own
expiration time. When a user sends a request, which requires an access token, the
access token is stored in the header of the HTTP request. The project has
interceptors, which are used before each request. Interceptors are responsible for
setting up the token in the header and for requesting a new access token after each
request.

When a user opens the web after some time, he is logged in, if his refresh
token didn’t expire. Refresh token stores for 90 days, it means, if a user logged in on
the 1st March 14:00, ended to use this page in 19:00, for example, liked someone,
this user is logged in until the 30th May 19:00. If the user doesn't use the page for a
long time, he will be logged out.

4.2.2 Components and pages
Every frontend is a library of components. The main idea of React is reusable

components. Every component is a JSX object with logic. JSX is special XML - like
syntax, which simplifies the development, because it allows the use syntax, which

52

looks as HTML with React features, such as onClick event, value of field from state
variable, etc.

Figure 4.10: Single Post page

Every frontend is a library of components. The main idea of React is reusable
components. The page is also a component. Almost each entity in React is a
component. A component can use other components. Figure 4.10 shows a page,
which uses custom component Post and special components from library Material
UI: Grid, List. Post component has arguments, which impact on final returned result
from component.

Figure 4.11: Poll component

53

Figure 4.11 shows a poll component. Poll component is used inside the Post
component, this component has input arguments which follow the interface. Function
returns different values, which depend on one of the arguments.

These components must use data from Backend, but mock data were used for
testing of UI while development. Mock Data used interfaces, which were acceptable
for destructurization inside JSX tags and functions. Figure 4.12 shows mock
comments, which follow the interface, which is used for response data from the
server, because server’s responses are configured for this data type.

Figure 4.12: Mock comments

4.3 Implementation of project requirements

The main goal of the project requirements is to define: what the system does.
This chapter describes the implementation of the requirements.

4.3.1 Writing posts
Figure 4.13 shows a page for creating a post. A title and text are required

fields, photos, a video and a poll are optional. Maximum number of photos is 10.
Function createPost creates a post on the Backend side, this function receives
arguments from the Frontend. User can delete his own post or update it. Editing of
the post uses the same page as for creating a post, but with fulfilled fields.

Users can read a list of posts: current, or list of posts of some user.

54

Figure 4.13: Create post page

4.3.2 Open opinion
Figure 4.14 shows how the reaction system looks. Reaction is selected in bold

style. The bar under reactions shows the relationship between likes and dislikes.
This post has no comment button, because comments are disabled, but reactions
can not be disabled.

Figure 4.14: Single post

55

4.3.3 Attaching poll
If a user while creating a post writes at least one option, he creates a poll for

the post. If a post has options, they will be shown. Adding of new options is worth if
the post has options, else this post doesn’t have an attached poll.

4.3.4 Reactions
When a user clicks like or dislikes for the first time, this action will be recorded

to the database, with status and start time. If a user has clicked a reaction on the
post or the comment and clicks on another reaction he ends the current reaction with
end time and begins the new record of another reaction with new status and start
time. If a user clicks his own current reaction again, they only end the record of this
reaction. Backend functions reactOnPost and reactOnComment are responsible for
reaction. Function receives type of reaction, post or comment id, and user. If a user
clicked some reaction on the post or the comment this reaction will be in bold.

4.3.5 Adding options
An user can add an option if he has not voted yet and if the post is open for

new options. Function addVariant adds an option with checking of all requirements.
Figure 4.15 shows how the post looks for the user, which has not voted.

Figure 4.15: Post with poll

56

4.3.6 Voting for options
A user can vote for some option only once per post. When a user votes, a

record about voting is saved, but the system knows only the post, in which the user
voted, without the option. It ensures secret voting The Figure 4.16 shows how the
poll looks for a user, who already selected any option. The user sees results, and
can’t add his own custom option. If the user clicks on the option he will be redirected
to the page with the option's comments.

Figure 4.16: Post with voted options

4.3.7 Comments
The Figure 4.17 shows the comment list and the comment field. If a post allows

comments, any user can write a comment for the post or option. Comments contain
only text and text of possible referred comment if the comment is reply on the
another comment. Function createComment creates a comment, this function
requires an author, post or option id, type of placement (post or option). A list of
comments has a filter by date, likes and dislikes, in default case all comments are
filtered by date in ascending order. Each comment has a removing and edit button,
which can be used by the author. Also admins and moderators can delete this
comment.

57

Figure 4.17: Comment list

4.3.8 Replies on comments
Users can reply to any comment from the list. If users want to answer, they

must click on the “reply” button, and this comment after publishing will be referred to
the original comment, and will have the id of the original comment in the ‘repliedTo’
field. Figure 4.18 shows how the text field looks when a user replies to someone.

Figure 4.18: A process of replying

58

4.3.9 Viewing a post statistics
Users view statistics of likes/dislikes and number of votes. Function

getReactionInfo provides the statistics of likes and dislikes. If a post has options, the
function getPollInfo provides the statistics with the number of votes, only votes,
because voting is secret, and the system knows only users who participated in the
poll of the post.

Figure 4.19: A statistics of poll

4.3.10 Subscribes and subscribers
Following system has a similar concept as the react system, when a user

follows a user for the first time, he begins a new record with start time. If a user
sends a request for following again, he unfollows. When the system counts the
current number of followers, it counts the number of all following records without an
ending date, because it means that the user is still a follower. Figure 4.19 shows the
list of subscribers for random users.

Figure 4.19: A list of subscribers

59

4.3.11 Viewing a user’s statistics
The Figure 4.20 shows how frontend visualize statistics based on mock data.

Blue points are numbers of all subscribers (followers), green - only verified after the
full verification. It’s a normal situation when the number of all subscribers is a little
more than verified, because some people finish using the application or create other
accounts. But this case illustrates boosting through bots, because from June of 2021
to August number of subscribers increases too fast, but the number of verified
subscribers still has a normal trend. It means that bots boosted this user. But after
August this user stopped to boost the subscribers, however everyone can see that
this user used boosting.

Backend generates these statistics in function getFullFollowing(), which returns
an array for creating the chart based on this data. Only a full day of subscription
counts as subscription in the chart.

Figure 4.20: Statistics of subscribers

4.3.12 Spam reporting
The Figure 4.21 shows how the window for spam reporting looks. If the user

clicks the flag on the top, the window opens. Users can report any post or comment.
Backend implements this through reportComment and reportPost functions.

60

Figure 4.21: A modal window of report

4.3.13 Requests about moderator
Any default user can send a moderator request on his profile page. He must

write why he wants to become a moderator. Backend function
createModeratorRequest is an implementation of this opportunity and allows sending
these requests only to default users. Figure 4.22 shows the button for sending
requests.

Figure 4.22: User info page

61

4.3.14 Ban users
Admins and moderators can ban users. Function banUser changes user role

from ‘DEFAULT_USER’ to ‘BANNED_USER’. If a user is banned, he can’t even sign
in or get his token. The button for ban is located on the user page instead of ‘Delete
the account’.

4.3.15 Ban moderators
Admins can ban even moderators the same as default users.

4.3.16 Consideration of request
All requests are on a special page. Only an admin can decide on the request.

He can accept it and the user becomes a moderator or deny it, then the user doesn’t
become a moderator. Functions acceptRequest and denyRequest are used for
controlling the request, and removing the request from the list of all requests.

4.3.17 End of moderator rights
An admin can stop moderator rights. Function endModerator terminates the

moderator’s powers and transforms this user from moderator to default. This button
is near the “ban” button.

4.3.18 Removing comments and posts by moderator
Moderator can delete any post of user or moderator, functions deletePost and

deleteComment allows the moderator to delete this content the same as the author.
Comments and posts of default users have the delete button for moderators and
admins as for authors of these posts and comments.

4.3.19 Removing comments and posts by admin
Admin can delete any post of user or moderator, functions deletePost and

deleteComment allows the admin to delete this content.

4.4 Deployment

This part describes the deployment phase of the project from working on local
host to remote.

This site is available via: https://myselect.airule.io

4.4.1 Environment

Different services with their own frameworks, dependencies and databases
require their own environments with local variables such as database passwords,

https://myselect.airule.io

62

IDs and keys for services. Docker solves the problems with compatibility. Docker is a
free and open-source container engine for developing, shipping, and running
applications created by Docker Inc. [37] Docker allows applications to separate
applications from infrastructure. Containers and images contain all the required
environments for correct work of frameworks and other processes.

Dockerfile builds the project, connects and sets up dependencies and exports
the project to an image. Images are importable and exportable to a global store.
Instead of starting the project, a user can run the image, which contains the built
project. Figure 4.23 shows the Dockerfile for ms-api-gateway as an example.

Figure 4.23 : Dockerfile for ms-api-gateway

63

Files with environmental variables are ignored for the remote repository (Git) in
most cases for security. So the docker-compose file must describe all the missing
variables for connecting to databases and other services. The docker-compose file
uses templates for variables, which are set up by the remote server console,
because remote variables differ from local: local databases and services have
different credentials than remote. Figure 4.24 shows the docker-compose file for the
project.

Figure 4.24 : Docker-compose.yaml file

64

4.4.2 Public access

The site should be available via browsers that all people could use this.
Standard html hosting cannot be used for nodejs application, because nodejs based
applications such as NestJS and React require runtime server with supporting of
nodejs environment. This site was set up on personal web server, which supports
installation and running of nodejs for microservices. S3 based storage is used for
frontend.

Figure 4.25 shows the main page of the site, which is available via link -
https://myselect.airule.io

GitHub repository with link - https://github.com/GameTV12/myselect-full

Figure 4.25 : Main page of the site

https://myselect.airule.io
https://github.com/GameTV12/myselect-full

65

Chapter 5

Testing
Testing is an essential part of software development [38] that can show how the

system works if every part is working. The test phase is described in this chapter. It
includes automated tests and usability testing of two main project challenges: bots
and paid commenters.

5.1 Automated tests
The main goal of automated tests is to inspect and validate the correct

functioning of the program at the code level. Automated tests help to ensure correct
work of the program after changes. Unit tests are a type of automated tests. Unit
tests cover some units of code, mainly, functions. Activation of the endpoint calls
many bound functions, so a unit test should verify a single function. Some unit tests
were written for backend services. These tests can validate specific inner functions,
which work autonomously and isolatedly from the database, by using mock data. [39]
When the test case calls a database function, this function instead of calling the
database returns a mock value. Unit tests are indispensable, because they allow
testing of a single function, which is impossible with manual testing.

Figure 5.1 shows unit tests for the user service, similar tests were written for
other services.

Figure 5.1: Tests for User service

66

Figure 5.2 shows how one test works, this test creates a comment and verifies
the function and its input and output.

Figure 5.2: Test of createComment function

The correct working of the backend, frontend and full application was tested
manually. Manual testing helps to see the project from the point of view of typical
users.

5.2 Paid commenters
Usability is a critical aspect of software systems because poor user experience

can lead users to choose other products. [40] The created project is transparent and
can help users to understand if a user is a paid commenter or a real account of a
normal human. It’s the responsibility of the graphical part to ensure that the
information is clear and understandable. In this test case, the paid commenter
defends abstract “Cookies” smartphones.

The test has the following scenario:
1. Register six new accounts: A, B, C, D, E, F.
2. Account A creates a post about his own negative experience of using the

‘Xiaomi” smartphone.
3. Account B writes comments under A’s post, where he agrees with the author.

67

4. Account C creates a post with story about vacation in France, and his
“Iphone” was dead while taking photos.

5. Account D writes comment under C’s post, where he jokes that “Iphone” is still
better than “Xiaomi”

6. Account E creates a post, where he asks his followers to help with selecting a
new phone

7. Account F writes comments for all these users, where he protects Cookies.
8. Any account can see the statistics of comments.
For simulating real situations, ChatGPT generated some comments and posts

for these users based on scenarios. Chatbot can simulate the behavior and style of
human text. [41] Figure 5.3 shows all comments of the account F - statistics. This
test helped to visualize the real test case and look at the situation from the user's
view.

Figure 5.3: Comments of user

68

5.3 Bots
Bot testing should check if the system can provide some protection against

bots and if the diagrams can separate potential bots and real users.
The first test has the following scenario:

1. Register ten accounts: A, B, C and 7 X - accounts.
2. Account A creates a post with any text.
3. Account B likes the post.
4. Account C dislikes the post.
5. Accounts X like the post
6. Accounts A, B, C get a full verification through direct DB action.
7. Account C checks the post statistics.
Figure 5.4 shows the statistics of the post’s likes, because they were boosted.

Figure 5.4: Statistics of likes

The second test has the following scenario:
1. Register ten accounts: A, B, C and 7 X - accounts.
2. Accounts B and C start to follow the user A.
3. Accounts X also starts to follow the user A.
4. Accounts B, C get a full verification through direct DB action.
5. Account C checks the user statistics of A.
Figure 5.5 shows the statistics of subscribers of user A.

69

Figure 5.5: Statistics of subscribers

The third test has the following scenario:
1. Register ten accounts: A, B, C and 7 X - accounts.
2. Account A creates a post with a poll of two options.
3. Accounts A and B vote for the first option.
4. Account C votes for the second option.
5. Accounts X vote for the second option.
6. Accounts A, B, C gets a full verification through direct DB action.
7. Account C checks the post statistics.
Figure 5.6 shows the statistics of the post’s votes.

70

Figure 5.6: Statistics of post’s votes

5.4 Conclusion
Testing helped to check the system and simulate the main cases, which can

occur in real life. These tests helped to test real use cases and how users will see
statistics - an important unique feature of the project.

71

Chapter 6

Conclusion
The final conclusion of the project is described in this chapter.

6.1 Total

The main goal of the work was to create a social network that can help users
understand and prevent manipulations on the technical side. Modeling of the modern
system helped to test it and verify that the system is viable in real conditions. The
suggested solution should be effective.

The first part was an understanding of the problem: why manipulations are
effective and dangerous. A person often wants to be a part of society. Paid
commenters and farms of bots use this factor for manipulation. They fake and distort
public opinion for commercial or other reasons.

Another type of manipulation is the lie of dishonest people: creators of financial
pyramids and people who promote and sell counterfeit goods. Also, a big problem is
the lie of influencers, where influencers sell their own opinion and principles to
people who trust them. People tend to trust their favorite bloggers or indulge in
wishful thinking. If people lack information, they can’t make the right decision and it’s
the perfect situation for manipulations.

The second part was an analysis of existing applications: Instagram, Twitter,
YouTube, and Telegram. These applications have many active users, so this
experience can be analyzed and used for the project.

The third part of the work was the selection of technologies for solving the
problem. Requirements were used to describe the problem in detail. JavaScript was
selected as the core language: React for the Frontend, and NodeJS (Nest) for the
Backend. It allows using JavaScript as a universal language and simplifying
development. PostgreSQL was selected as the core database system for
microservices. Microfrontends were selected as the architectural style for the
frontend part, and microservices for the backend. The project has a standard modern
structure client-side (frontend-backend). But, programming languages and
frameworks are only tools, after all. Professional skills of the programmer matter
most.

The fourth part was the design of the application. The graphic design was
created as a guide for the frontend part. The deployment diagram and class diagram
are a guide for the backend part. The design describes the project’s construction.
The main challenge of designing was the impossibility of foreseeing everything; of

72

course, the final version has differences from the design. Also, a full analysis of the
project and its requirements was done.

The fifth part is the implementation of the application. Microfrontends and
microservices allowed to scale and develop the application increasingly: starting
from authorization and the users’ role system to comments. Also, implementation
includes unit testing because unit testing isn’t testing, but it’s rather a check of
working.

The sixth part is the testing of the application. Good testing requires good data
and an analysis of possible situations. This project needed two complete tests. The
first test is the testing of the user interface. It should be comfortable and adaptive.
Also, the user interface must visualize statistics. The second test is the test of
backend functions.

In conclusion, I would like to say that I’ve always wanted to create own social
network that I could use for myself too. I spend a lot of time on the Internet and on
social networks. The Internet is one of the greatest inventions of modern times, and
the opportunities of the Internet are infinite. I am absolutely sure that people are able
to use these opportunities.

6.2 Future plans

The project can become an independent and solid social network in the future.
However, an expanding application brings increasing problems. Certainly, a large
social network with many users will have new problems with new methods of
manipulation. For example, bot factories and paid commenters didn’t exist 15 years
ago, but now they are a reality. This project must be ready to expand its functions
and find creative solutions to new and unusual challenges. Modern problems require
modern solutions.

Microfrontends architecture is scalable and allows to expand this project and
add new features. Also, this architecture allows rewriting the code if some parts of
the code are not suitable for a large project. Changing of the language, framework,
and architecture is a normal process. React has existed for 11 years, but Instagram,
which is written in React now, for 14 years. Therefore, the project can and should be
ready for rewriting and updating. Step changes of every microservice and
microfrontend will lead to a new, even more modern and fast project.

Social networks are an important part of modern life, and people need social
media that can provide an open and honest environment without lying, fakes, and
manipulation. Demand creates supply.

73

Bibliography
1. Auxier B., Anderson M., “Social Media Use in 2021”, Pew Research Center, April

2021
https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/

2. Mayzlin D., Dover Y., Chevalier J. A., “Promotional Reviews: An Empirical
Investigation of Online Review Manipulation”, American Economic Review,
August 2012
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2128860

3. Lee E.J., Shin S.Y., “When do consumers buy online product reviews? Effects of
review quality, product type, and reviewer’s photo”, November 2013
https://www.sciencedirect.com/science/article/pii/S0747563213004007

4. M. J. Ekosputra, A. Susanto, F. Haryanto and D. Suhartono, "Supervised
Machine Learning Algorithms to Detect Instagram Fake Accounts," 2021 4th
International Seminar on Research of Information Technology and Intelligent
Systems (ISRITI), Yogyakarta, Indonesia, 2021, pp. 396-400, doi:
10.1109/ISRITI54043.2021.9702833.
https://ieeexplore.ieee.org/document/9702833

5. Meta, “Giving People More Control on Instagram and Facebook”, May, 2021
https://about.instagram.com/blog/announcements/giving-people-more-control

6. A. Tsakalidis, S. Papadopoulos, A. I. Cristea and Y. Kompatsiaris, "Predicting
Elections for Multiple Countries Using Twitter and Polls," in IEEE Intelligent
Systems, vol. 30, no. 2, pp. 10-17, Mar.-Apr. 2015, doi: 10.1109/MIS.2015.17.
https://ieeexplore.ieee.org/document/7021854

7. Y. Hou et al., "Predicting Movie Trailer Viewer's “Like/Dislike” via Learned Shot
Editing Patterns," in IEEE Transactions on Affective Computing, vol. 7, no. 1, pp.
29-44, 1 Jan.-March 2016, doi: 10.1109/TAFFC.2015.2444371.
https://ieeexplore.ieee.org/document/7124458

8. W. Wijaya, I. M. Murwantara and A. R. Mitra, "A Simplified Method to Identify the
Sarcastic Elements of Bahasa Indonesia in Youtube Comments," 2020 8th
International Conference on Information and Communication Technology
(ICoICT), Yogyakarta, Indonesia, 2020, pp. 1-6, doi:
10.1109/ICoICT49345.2020.9166269.
https://ieeexplore.ieee.org/document/9166269

9. M. N. Hussain, S. Tokdemir, N. Agarwal and S. Al-Khateeb, "Analyzing
Disinformation and Crowd Manipulation Tactics on YouTube," 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), Barcelona, Spain, 2018, pp. 1092-1095, doi:
10.1109/ASONAM.2018.8508766.
https://ieeexplore.ieee.org/document/8508766

10. I. A. Bykov, M. V. Medvedeva and A. A. Hradziushka, "Anonymous
Communication Strategy in Telegram: Toward Comparative Analysis of Russia
and Belarus," 2021 Communication Strategies in Digital Society Seminar

https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2128860
https://www.sciencedirect.com/science/article/pii/S0747563213004007
https://ieeexplore.ieee.org/document/9702833
https://about.instagram.com/blog/announcements/giving-people-more-control
https://ieeexplore.ieee.org/document/7021854
https://ieeexplore.ieee.org/document/7124458
https://ieeexplore.ieee.org/document/9166269
https://ieeexplore.ieee.org/document/8508766

74

(ComSDS), St. Petersburg, Russia, 2021, pp. 14-17, doi:
10.1109/ComSDS52473.2021.9422858.
https://ieeexplore.ieee.org/document/9422858

11. Susan Wojcicki, “Letter from Susan: Our 2022 Priorities” Jan, 2022
https://blog.youtube/inside-youtube/letter-susan-our-2022-priorities/

12. Y. Hongxiong and W. Huiming, "Background analysis of digital transformation of
automobile enterprises based on SWOT analysis method," 2022 IEEE
International Conference on Electrical Engineering, Big Data and Algorithms
(EEBDA), Changchun, China, 2022, pp. 386-389, doi:
10.1109/EEBDA53927.2022.9744917.
https://ieeexplore.ieee.org/document/9744917

13. Will Kenton, “What Is PEST Analysis? Its Applications and Uses in Business”
June, 2023
https://www.investopedia.com/terms/p/pest-analysis.asp

14. Yuanlin Hu and Shuang Yang, "The competition situation analysis of
environmental service industry in China: Based on Porter's Five Forces Model,"
2016 13th International Conference on Service Systems and Service
Management (ICSSSM), Kunming, 2016, pp. 1-5, doi:
10.1109/ICSSSM.2016.7538556.
https://ieeexplore.ieee.org/document/7538556

15. M. Ramos, M. T. Valente and R. Terra, "AngularJS Performance: A Survey
Study," in IEEE Software, vol. 35, no. 2, pp. 72-79, March/April 2018, doi:
10.1109/MS.2017.265100610.
https://ieeexplore.ieee.org/document/7950843

16. S. Delcev and D. Draskovic, "Modern JavaScript frameworks: A Survey Study,"
2018 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi
Sad, Serbia, 2018, pp. 106-109, doi: 10.1109/ZINC.2018.8448444.
https://ieeexplore.ieee.org/document/8448444

17. A. Barenghi, M. Beretta, A. Di Federico and G. Pelosi, "Snake: An End-to-End
Encrypted Online Social Network," 2014 IEEE Intl Conf on High Performance
Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst
(HPCC,CSS,ICESS), Paris, France, 2014, pp. 763-770, doi:
10.1109/HPCC.2014.128.
https://ieeexplore.ieee.org/document/7056830

18. Y. Romani, O. Tibermacine and C. Tibermacine, "Towards Migrating Legacy
Software Systems to Microservice-based Architectures: a Data-Centric Process
for Microservice Identification," 2022 IEEE 19th International Conference on
Software Architecture Companion (ICSA-C), Honolulu, HI, USA, 2022, pp. 15-19,
doi: 10.1109/ICSA-C54293.2022.00010.
https://ieeexplore.ieee.org/document/9779850

19. J. Lorenz, C. Lohse and L. Urbas, "MicroFrontends as Opportunity for Process
Orchestration Layer Architecture in Modular Process Plants," 2021 26th IEEE
International Conference on Emerging Technologies and Factory Automation

https://ieeexplore.ieee.org/document/9422858
https://blog.youtube/inside-youtube/letter-susan-our-2022-priorities/
https://ieeexplore.ieee.org/document/9744917
https://www.investopedia.com/terms/p/pest-analysis.asp
https://ieeexplore.ieee.org/document/7538556
https://ieeexplore.ieee.org/document/7950843
https://ieeexplore.ieee.org/document/8448444
https://ieeexplore.ieee.org/document/7056830
https://ieeexplore.ieee.org/document/9779850

75

(ETFA), Vasteras, Sweden, 2021, pp. 01-04, doi:
10.1109/ETFA45728.2021.9613474.
https://ieeexplore.ieee.org/document/9613474

20. U. Sa'adah, J. Akhmad and M. Hisyam, "Implementing Singleton method in
design of MVC-based PHP framework," 2015 International Electronics
Symposium (IES), Surabaya, Indonesia, 2015, pp. 212-217, doi:
10.1109/ELECSYM.2015.7380843.
https://ieeexplore.ieee.org/document/7380843

21. W. Chansuwath and T. Senivongse, "A model-driven development of web
applications using AngularJS framework," 2016 IEEE/ACIS 15th International
Conference on Computer and Information Science (ICIS), Okayama, Japan,
2016, pp. 1-6, doi: 10.1109/ICIS.2016.7550838.
https://ieeexplore.ieee.org/document/7550838

22. P. Singh, M. Srivastava, M. Kansal, A. P. Singh, A. Chauhan and A. Gaur, "A
Comparative Analysis of Modern Frontend Frameworks for Building Large-Scale
Web Applications," 2023 International Conference on Disruptive Technologies
(ICDT), Greater Noida, India, 2023, pp. 531-535, doi:
10.1109/ICDT57929.2023.10150911.
https://ieeexplore.ieee.org/document/10150911

23. A. Javeed, "Performance Optimization Techniques for ReactJS," 2019 IEEE
International Conference on Electrical, Computer and Communication
Technologies (ICECCT), Coimbatore, India, 2019, pp. 1-5, doi:
10.1109/ICECCT.2019.8869134.
https://ieeexplore.ieee.org/document/8869134

24. R. N. V. Diniz-Junior et al., "Evaluating the performance of web rendering
technologies based on JavaScript: Angular, React, and Vue," 2022 XVLIII Latin
American Computer Conference (CLEI), Armenia, Colombia, 2022, pp. 1-9, doi:
10.1109/CLEI56649.2022.9959901.
https://ieeexplore.ieee.org/document/9959901

25. T. Capris, P. Melo, N. M. Garcia, I. M. Pires and E. Zdravevski, "Comparison of
SQL and NoSQL databases with different workloads: MongoDB vs MySQL
evaluation," 2022 International Conference on Data Analytics for Business and
Industry (ICDABI), Sakhir, Bahrain, 2022, pp. 214-218, doi:
10.1109/ICDABI56818.2022.10041513.
https://ieeexplore.ieee.org/document/10041513

26. Mengying Zhang, "PMT: A procedure migration tool from oracle to postgreSQL,"
IET International Conference on Smart and Sustainable City 2013 (ICSSC 2013),
Shanghai, 2013, pp. 391-396, doi: 10.1049/cp.2013.1999.
https://ieeexplore.ieee.org/document/6737864

27. D. Laksono, "Testing Spatial Data Deliverance in SQL and NoSQL Database
Using NodeJS Fullstack Web App," 2018 4th International Conference on
Science and Technology (ICST), Yogyakarta, Indonesia, 2018, pp. 1-5, doi:
10.1109/ICSTC.2018.8528705.
https://ieeexplore.ieee.org/document/8528705

https://ieeexplore.ieee.org/document/9613474
https://ieeexplore.ieee.org/document/7380843
https://ieeexplore.ieee.org/document/7550838
https://ieeexplore.ieee.org/document/10150911
https://ieeexplore.ieee.org/document/8869134
https://ieeexplore.ieee.org/document/9959901
https://ieeexplore.ieee.org/document/10041513
https://ieeexplore.ieee.org/document/6737864
https://ieeexplore.ieee.org/document/8528705

76

28. Pham, Anh Duc "Developing back-end of a web application with NestJS
framework: Case: Integrify Oy’s student management system", 2020
https://www.theseus.fi/handle/10024/353200

29. Srijith, K. B. R, G. N and A. M. R, "Inter-Service Communication among
Microservices using Kafka Connect," 2022 IEEE 13th International Conference
on Software Engineering and Service Science (ICSESS), Beijing, China, 2022,
pp. 43-47, doi: 10.1109/ICSESS54813.2022.9930270.
https://ieeexplore.ieee.org/document/9930270

30. Norah Abokhodair, Daisy Yoo, and David W. McDonald. 2015. Dissecting a
Social Botnet: Growth, Content and Influence in Twitter. In Proceedings of the
18th ACM Conference on Computer Supported Cooperative Work & Social
Computing (CSCW '15). Association for Computing Machinery, New York, NY,
USA, 839–851.
https://doi.org/10.1145/2675133.2675208

31. T. Bui and K. Potika, "Twitter Bot Detection using Social Network Analysis," 2022
Fourth International Conference on Transdisciplinary AI (TransAI), Laguna Hills,
CA, USA, 2022, pp. 87-88, doi: 10.1109/TransAI54797.2022.00022.
https://ieeexplore.ieee.org/document/8529342/authors#authors

32. Ushma B., Divya I., Keshin J., Swati M., “Troll-Detection Systems Limitations of
Troll Detection Systems and AI/ML Anti-Trolling Solution”, IEEEXplore, Apr.
2018. ISBN:978-1-5386-4273-3,
https://ieeexplore.ieee.org/document/8529342/authors#authors

33. S. Sabharwal, R. Sibal and P. Kaur, "Deriving Complexity Metric based on Use
Case Diagram and its validation," 2014 IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT), Noida, India, 2014, pp.
000102-000107, doi: 10.1109/ISSPIT.2014.7300571.
https://ieeexplore.ieee.org/document/7300571

34. N. F. Setiyawan, Y. Priyadi and W. Astuti, "Development of Class Diagrams
Based on Use Case, and Sequence Diagrams Using a Text Mining Approach in
SRS Penguin," 2023 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA,
2023, pp. 0070-0076, doi: 10.1109/AIIoT58121.2023.10174287.
https://ieeexplore.ieee.org/document/10174287

35. R. G. Mohammadi and A. A. Barforoush, "Enforcing component dependency in
UML deployment diagram for cloud applications," 7'th International Symposium
on Telecommunications (IST'2014), Tehran, Iran, 2014, pp. 412-417, doi:
10.1109/ISTEL.2014.7000739.
https://ieeexplore.ieee.org/document/7000739

36. G. Goel, P. Tanwar and S. Sharma, "UI-UX Design Using User Centred Design
(UCD) Method," 2022 International Conference on Computer Communication
and Informatics (ICCCI), Coimbatore, India, 2022, pp. 1-8, doi:
10.1109/ICCCI54379.2022.9740997.
https://ieeexplore.ieee.org/document/9740997

37. S. Agarwal, S. Jain and A. Kumar, "GUI Docker Implementation: Run Common
Graphics User Applications Inside Docker Container," 2021 10th International

https://www.theseus.fi/handle/10024/353200
https://ieeexplore.ieee.org/document/9930270
https://doi.org/10.1145/2675133.2675208
https://ieeexplore.ieee.org/document/8529342/authors#authors
https://ieeexplore.ieee.org/document/8529342/authors#authors
https://ieeexplore.ieee.org/document/7300571
https://ieeexplore.ieee.org/document/10174287
https://ieeexplore.ieee.org/document/7000739
https://ieeexplore.ieee.org/document/9740997

77

Conference on System Modeling & Advancement in Research Trends (SMART),
MORADABAD, India, 2021, pp. 424-427, doi:
10.1109/SMART52563.2021.9676270.
https://ieeexplore.ieee.org/document/9676270

38. A. Arcuri, G. Fraser and R. Just, "Private API Access and Functional Mocking in
Automated Unit Test Generation," 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST), Tokyo, Japan, 2017, pp.
126-137, doi: 10.1109/ICST.2017.19.
https://ieeexplore.ieee.org/document/7927969

39. H. Zhu et al., "MockSniffer: Characterizing and Recommending Mocking
Decisions for Unit Tests," 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Melbourne, VIC, Australia, 2020, pp.
436-447.
https://ieeexplore.ieee.org/document/9286134

40. F. Dias and A. C. R. Paiva, "Pattern-Based Usability Testing," 2017 IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Tokyo, Japan, 2017, pp. 366-371, doi:
10.1109/ICSTW.2017.65.
https://ieeexplore.ieee.org/document/7899082

41. Y. Lin, "Chatbot Script Design for Programming Language Learning," 2022 IEEE
5th Eurasian Conference on Educational Innovation (ECEI), Taipei, Taiwan,
2022, pp. 123-125, doi: 10.1109/ECEI53102.2022.9829460.
https://ieeexplore.ieee.org/document/9829460

https://ieeexplore.ieee.org/document/9676270
https://ieeexplore.ieee.org/document/7927969
https://ieeexplore.ieee.org/document/9286134
https://ieeexplore.ieee.org/document/7899082
https://ieeexplore.ieee.org/document/9829460

78

Acronyms
API - Application Programming Interface
REST - Representational State Transfer
UML - Unified Modeling Language
JS - JavaScript
TS - TypeScript
HTTP - Hypertext Transfer Protocol
AWS - Amazon Web Services
SQL - Structured Query Language
DOM - Document Object Model
SWOT - Strengths Weaknesses Opportunities Threats
SPA - Single page application
PEST - Political, Economic, Socio-cultural, Technological
UI - User Interface
UX - User Experience
OOP - Object-Oriented Programming
JSX - Java Script XML
XML - Extensible Markup Language
ORM - Object - relational Mapping
RDBMS - Relational Database Management System
HTML - HyperText Markup Language
CSS - Cascade Style Sheets

