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Abstrakt / Abstract

Mobilní telefony se v posledních le-
tech staly velmi populární platformou
pro hraní her a jsou největším trhem pro
počítačové hry. Jejich hlavní výhody,
malé rozměry a provoz na baterii, jsou
zároveň jejich největší slabinou. Mobilní
hry jsou omezeny v grafické věrnosti
nižší výkonností mobilních čipsetů a
výrazně zkracují výdrž na baterii.

Tato diplomová práce představuje
řešení pro kolaborativní vykreslování
úpravou vykreslovacího stacku OpenGL
ES.

Klíčová slova: OpenGL; vzdálené vy-
hodnocování kódu; Android; počítačové
hry; Linux; mobilní zařízení; počítačová
grafika;

Překlad titulu: Kolaborativní vykres-
lování (pro pomalá GPU v mobilních za-
řízeních)

Mobile phones have become a very
popular platform for gaming in recent
years and are the largest market for
games. Their main advantages, their
small size and battery operation, are
also their greatest weakness. Mobile
games are limited in graphic fidelity by
the lower performance characteristics of
mobile chipsets and significantly reduce
battery life of the handsets.

This thesis introduces a solution for
collaboratively offloading rendering by
modifying the OpenGL ES rendering
stack.

Keywords: OpenGL; code offload;
Android; computer games; Linux; mo-
bile devices; computer graphics;
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Chapter 1
Introduction

Smartphones are the most popular platform for gaming. [1] In today’s world, many
people have a smartphone with them at all times. In emerging markets, smartphones
are often the only computing device someone might own, replacing the functions of both
desktop and portable computers, but also gaming consoles, cameras and more. Because
we always carry our smartphones with us, they are the device we turn to when we are
looking for a distraction, such as when sitting on the toilet. However, smartphones
are also an inherently limited platform for gaming. Games render complex virtual
worlds with the requirement of rendering 60 times per second for fluid and interactive
game-play. This requires a lot of computational power and as a result, energy.

While smartphones have been steadily increasing in performance, they are behind
desktop computers or home gaming consoles in terms of computational power. Fur-
thermore, unlike the aforementioned devices, smartphones are usually not plugged-in
when in use and have to operate on battery. As a result, mobile games provide a lim-
ited experience when compared to traditional gaming devices and negatively impact
battery life, making the smartphone a worse phone. Furthermore, high-performance
flagship smartphones are expensive, resulting instead in lower-performance low-end or
mid-range devices having the widest adoption. One advantage smartphones have over
other portable gaming devices is that they are connected to the mobile network. Many
smartphone games take advantage of this feature and are inherently multi-player in
nature.

The goal of this project is to try out various methods of alleviating the downsides
of mobile gaming when in the proximity of a different device. By offloading graphics
computation to a different device, we hope to reduce power consumption of the mobile
device, lower the SoC temperature, increase battery life, increase performance in GPU
limited scenarios and increase graphical fidelity.

This project focuses mainly on OpenGLES games on the Android operating sys-
tem. Android is the majority operating system on smartphones, with over 70% market
share. It is developed as an open source project by Google, however most companies
license and modify the operating system for their own devices. OpenGLES is a version
of OpenGL, the popular graphics API, modified for embedded systems. OpenGLES
closely resembles standard OpenGL. It uses the same client-server design as regular
OpenGL and also uses the GLSL language for programmable shaders. However, some
functionality from OpenGL is missing and as such, it is not possible to run OpenGL
applications on devices which only support OpenGLES. The intention of this project is
to leverage the natural client-server architecture of OpenGLES.

This thesis implements a collaborative rendering solution for rendering OpenGL ES
applications, such as those used on the Android OS. A main goal of this thesis is to

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
enable collaborative rendering for all OpenGL ES applications by modifying Android’s
rendering stack, rather than modifying each application individually. The following
chapters will discuss what technologies are used in Android’s 3D rendering, how different
games make use of those technologies, the design of our solution and its implementation.

2



Chapter 2
Background

In this chapter we make an overview of existing technologies which are relevant for this
thesis. We will look at both technologies used when running games, as well as useful
tools for tracing of running games.

2.1 OpenGL and OpenGL ES
OpenGL [2] is a cross-platform, open graphics API that allows developers to interact
with a computer’s graphics hardware. It provides a set of functions for rendering
2D and 3D graphics, making it a powerful tool for graphics programming and game
development. First released in 1992, OpenGL has become an industry standard and
is widely supported on various platforms. OpenGL does not include specification for
creating and managing windows and rendering contexts. This functionality is left to
specific platforms to decide how it should be implemented.

OpenGL ES [3] is a well-defined subset of desktop OpenGL suitable for low-power
devices. Aside form embedded systems, OpenGL ES is also available on Unix and
Unix-like desktop operating systems. Most importantly for this thesis, OpenGL ES is
the graphics API of choice of the Android operating system.

Both OpenGL and OpenGL ES APIs are developed by Khronos Group, an open
consortium of industry vendors. Currently the development of both APIs is suspended
in favour of the newer Vulkan API.

2.2 EGL
In the previous section we mentioned that OpenGL and OpenGL ES cover the func-
tionality of 3D and 2D rendering, but that they do not cover creating system windows,
surfaces and rendering contexts. EGL [4] is an API which manages interaction be-
tween the native platform window system and various Khronos Group rendering APIs,
including OpenGL ES.

2.3 Android
Android is an open-source operating systems primarily aimed at smartphones. It is
currently the most popular OS on mobile devices [1]. Android is built using many
pre-existing open-source projects and open standards, including EGL, OpenGL ES and
the Linux kernel.

Unlike destop Linux distributions, Android does not use the X Window System or its
newer replacement, Wayland [5]. Android instead uses a custom window and display
systems called SurfaceFlinger and WindowManager [6]. Helpfully this difference is
abstracted away by EGL, which also works on desktop Linux envirnments.

3



2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 apitrace
apitrace [7] is a set of tools to trace, replay and inspect OpenGL and Direct3D calls.
apitrace also allows for saving of recorded traces, which means it also includes a list-
ing of all OpenGL and OpenGL ES functions including all information required for
serialization of the function calls.

apitrace performs its tracing by injecting a tracing layer into games, this layer in-
tercepts all graphics API calls, records them, and forwards them to the real graphics
drivers. The approach employed by this thesis is similar to apitrace’s tracing mecha-
nism.

2.5 Software Libraries and ABI
As described in the section above, OpenGL is only a specification and implementations
are provided by various vendors in their driver packages. The mechanism of how this
is implemented and the limits thereof are important to understand the implementation
of this thesis, and some of the problems I encountered when implementing the solution.

Software libraries are collections of pre-written code and routines that developers
can use to perform common tasks or functions without having to write the code from
scratch. Some libraries are available in source code form and it is the responsibility
of the programmer to integrate the library with their code and compile it themselves.
Most system libraries are however provided in precompiled binary form. In precompiled
libraries functions are already compiled for the target architecture. While this has the
benefit that the library doesn’t require the lengthy compilation process, it also means
that a lot of information about the functions is lost. The compiled code is enough to
be executed by a CPU and location of each function is recorded in a provided symbol
table, but information about how many arguments the function expects, what types
they have, and where the arguments should be located is lost.

In order to use library functions, the compiler which compiled the library function,
and the compiler used for the rest of the application have to both know the types of
arguments, and they have to agree on where and how they should be placed before
the function is called. In source libraries, this is simple because the compilers are the
same and thus they will always agree. In precompiled libraries this doesn’t work. We
don’t know how and with what compiler the library was compiled with. Instead the
location and representation of data types and function arguments is specified in an
ABI (Application Binary Interface). If a library and an application using it is compiled
with the same ABI, even with different compilers, they are compatible and can be used
together. For system libraries a stable ABI is advantageus as any compiler can the
implement the ABI and give its user access to all system libraries compiled with the
same ABI. The C programming language has a stable ABI on most platforms, which is
why the C ABI is used for system libraries on Linux, Android and many more operating
systems. Developers are provided with a C header file which contains all declarations
needed to use the library, following the C ABI.

4



Chapter 3
Related Work

In the first chapter, we looked at the problems of mobile gaming and why we would like
to take advantage of dedicated hardware. In this chapter we will take a look at some
existing approaches in this area, which parts of the application they offload, how the
offload is performed and what trade-offs these approaches have.

3.1 Full Offload
This section focuses on approaches where the game is fully offloaded. The application
is fully run on a remote device and the local device is used only as an input device and
a display. A great advantage of this approach is that it has very small performance
requirements on the client device, especially if acceleration of video decoding can be
accelerated by dedicated hardware. Smart TVs, for example, are great devices for this
approach Mobile phones are currently a large platform for gaming, but the traditional
platforms of gaming consoles and personal computers have large libraries of existing
games and are the target for new big-budget experiences. As a result, a class of programs
has emerged which brings these games from traditional gaming platforms to low power
devices, including smartphones.

These programs run the game entirely on a gaming PC or a console and transmit
only game inputs, and fully rendered frames.

3.1.1 Local game streaming
Following is a list of programs which all require a powerful gaming PC within the local
network.

. Nvidia GameStream. AMD Link. Valve SteamLink. Sunshine + Moonlight

The main advantage of local game streaming is its lower latency in comparison to
approaches where data is transmitted over the internet. The main disadvantage is that
it requires preexisting ownership of a powerful gaming device. Local game streaming
is a good solution for enjoying the same gaming experience in multiple rooms within a
household, it does not however enable access to games which are harder to run, than
what the user’s hardware already supports.

3.1.2 Cloud Gaming
Cloud gaming is similar to local game streaming, but removes the requirement of owning
a gaming computer by moving the gaming device to a data center. Unlike local gaming,
cloud gaming is a paid service, where users pay for access to a device in a data center.
This reduces the cost of entry, but increases latency due to the gaming device being

5



3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
further away from the player. By moving the computation device to a data centre,
cloud gaming also allows users to enjoy games while moving around without carrying
a bulky gaming device. Notable examples of cloud gaming services are:

. GeForce Now

. Xbox GameCloud

. PlayStation Now

3.1.3 Remote play on own hardware

An interesting combination of the above two technologies is offered by both Sony and
Microsoft on their consoles. The Remote Play feature on Xbox and PlayStation relays
information through a server in the cloud, allowing for the convenience of cloud gaming,
but the user’s own gaming console at home is used for rendering the game, which is
why this approach does not require a monthly payment.

3.2 Remote Desktop

A rather different problem which converged to a similar solution is the problem of
accessing graphical applications on remote computers. The tools in this section are
popular for remotely managing many devices in corporate settings, or for allowing pro-
fessionals to utilize software which runs on a centralized server. The motivation for the
latter is usually due to licensing costs, performance constrains, security of data, or a
combination thereof. The tools in this section were developed to allow remote access to
graphical computer systems. They were designed for IT departments to manage soft-
ware installations in corporate settings, or to give employees access to licensed software
running on a central server. As a result, most of these tools provide inferior experience
for gaming applications when compared to the tools from the previous section. How-
ever, there are two tools which stand out in their technical approach and I will take a
deeper look into them in the rest of this section.

3.2.1 Remote X and GLX

The X Window System is a popular choice among Unix and Unix-like operating systems
to enable graphic windows. An important design aspect of the X System is that it
follows a client-server architecture, where each application is a client which connects to
a server in order to draw its window. More importantly the X protocol was designed to
communicate over a POSIX socket [8], including network sockets. To this day tunneling
an X connection over an SSH session is the way to use graphic Linux applications
remotely.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Kahawai

Figure 3.1. Current rendering structure of OpenGL using X11 on Linux 1

When OpenGL was being added to the X Window System, the GLX extension to
the X protocol was developed for managing OpenGL surfaces and configurations, a
precursor to modern EGL. Because the X protocol communicated over BSD sockets
and GLX was an extension to the X protocol, GLX also operated over BSD sockets. As
a consequence, rendering to a remote X server using a network socket also forwarded
GLX and OpenGL to be rendered on that X server. As we will learn later in this thesis,
serializing regular C library calls to a socket incurs a substantial overhead and a Direct
Rendering Infrastructure (DRI) was developed for rendering and displaying OpenGL
graphics locally. As a result, the lastest supported version of OpenGL over remote X
is 1.3 and needs to be explicitly enabled first in the graphics driver of the X server.

3.3 Kahawai
The current state-of-the-art and main inspiration for this thesis is Kahawai [9], a system
for high-quality gaming on mobile devices. Kahawai introduces two approaches for
partial offloading of GPU computation.

3.3.1 Delta Encoding
In this approach, the scene is rendered in low quality on the mobile device and in
both low and high quality on a remote computer. As the low and high quality images
are highly correlated, the image of their differences has very low entropy and can be
highly compressed for transmission. The high quality image is reconstructed on the low-
power device by decompressing the difference and applying it to the locally-rendered
low quality image. A bonus advantage of this approach is that if the connection with
the remote server is interrupted, the device can seamlessly fallback to displaying the
locally-rendered low quality frames.

The main downside of this approach is that rendering a scene in two different qualities
requires modifying the game or its underlying engine.
1 By Shmuel Csaba Otto Traian, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=29417694
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3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 I-frame rendering

The second approach is built around a typical idea in video compression. Assuming
subsequent frames are likely to be similar, only the first frame can be encoded fully
and following frames are encoded only as a difference from the previous frame. The
independently encoded frames are called I-frames, and the frames which are encoded
using a prediction from the previous frame are called P-frames.

I-frame rendering renders only I-frames on the low-power device, while rendering all
frames on the high-power device. A typical video encoding is then used to transmit
the P-frames to the low-power device, except that unlike a regular video encoder, the
I-frames are completely omitted from the compressed stream and instead the locally-
rendered P-frames are used for decoding.

While the paper demonstrated the theoretical advantages of this approach without
modifying the game, it did so by rendering all frames on both devices and discarding
P-frames on the low power device. Additionally, this approach is incompatible with
temporal effects [10], which have become popular since the release of Kahawai.

8



Chapter 4
Requirements

In the previous chapter, we looked at related work. In this chapter, we will summarize
the requirements we expect from the offloading system.

Given that this work is more exploratory, instead of a whole technical specification,
we will draw inspiration from dividing requirements into functional and non-functional
requirements.

The work is expected to be split into two components. One component running on
a client device and one running on a rendering server.

4.1 Functional requirements

Functional requirements describe specific behavior and capabilities that the system
must have to fulfill its intended purpose. These requirements outline what the system
should do, what features it should have, and how it should respond to various inputs -
detailing all actions, activities, and operations.

Here are the listed functional requirements:

. The system intercepts OpenGL ES rendering calls from a client application

. The intercepted rendering calls are sent over a network to a server component of the
system

. The server evaluates the rendering requests

. The server sends the final picture back to the client part of the system

. The final picture is presented to the user as-if it were rendered regularly without any
intervention of the system

. The client may also evaluate some calls locally to improve the performance and user
experience of the system

9



4. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Non-functional requirements

Non-functional requirements state the demands on an application or system that
are not directly related to functional features but are essential for ensuring overall
effectiveness, usability, system performance, or security. They focus more on its
characteristics, technologies, quality, or constraints rather than specific behavior.

Here are the listed non-functional requirements:. The client must be compatible with the Android OpenGL ES rendering stack

. Communication between the client and server must be capable of operating over
Wi-Fi

. The server must be capable of evaluating OpenGL ES calls correctly

. The entire system must be transparent to the end-user

10



Chapter 5
Feasibility study

In the prior chapters, we have introduced the technologies used in Android gaming
and prior work in the field of remote gaming and collaborative rendering. In this
chapter we will review how existing games make use of the Android rendering stack,
what problems we might encounter when moving GPU rendering to a remote device
and if these problems occur in the games examined.

5.1 Motivation of the study

OpenGL (and by extension, OpenGL ES) is a one-directional API. Objects are
prepared on the CPU, then sent off to the GPU, rendered and displayed on a
monitor. In a typical application, when a scene is loaded, all objects contained
in that scene are uploaded to the GPU. When rendering the scene, the objects
are referred to only by their IDs, which were generated during the uploading
process. When changing scenes, unused objects are deallocated using their IDs
from the GPU and new objects are loaded instead. Furthermore, because displays
are usually connected to the GPU directly, presenting the newly rendered frame is
done by sending a command to the GPU containing the information to swap which
buffer is currently being rendered-into, and which is used for display scan-out. In
this architecture, moving the GPU to a remote device and sending the commands
over the network should increase the rendering latency only by the network latency
and the performance is not affected. However OpenGL also includes additional
commands which provide the CPU with some information about the current frame.
When such command is submitted, the GPU has to complete all work up until
that command, compute the information the CPU requested and send the result
back. The CPU is waiting for the result and does not do any useful work. On
traditional systems, the GPU is connected to the CPU using PCIe or even directly
when both are part of the same SoC. The latency on such systems is low enough
that sparse usage of these commands does not result in degraded performance. In
our case the latency between the CPU and GPU is significant.

In order to analyze how severe this issue is for current games, the following
process was proposed. Trace OpenGL ES calls of several Android games. If these
features are not used in practice, their performance is not of important concern.
Analyze the functionality of those commands, which were encountered. If possible,
replace their implementation with a conservative approximation. If a usable con-
servative approximation does not exist, the scene will have to be rendered locally
on the mobile device. However this does not have to mean rendering the frame
completely. Occlusion queries for example can be resolved completely by rendering
the depth buffer only, while most complexity of modern rendering lies in advanced
pixel shaders.

11



5. Feasibility study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Tracing
In order to evaluate which API calls were used by the games tested, several tracers
and debuggers were evaluated for capturing the calls.

5.2.1 apitrace
We previously looked at apitrace in section 2.4 for its definitions of OpenGL APIs.
Unfortunately while apitrace is a great tool for capturing rendering traces on desk-
top devices, it does not support Android.

5.2.2 Android GPU Inspector
Android GPU Inspector (AGI) [11] in an official Google tool to help profile graph-
ics on Android. Unfortunately it works mainly on Google’s Pixel devices, which
the author does own. Furthermore, OpenGL ES applications are run using AN-
GLE [12], an emulation layer implementing OpenGL ES over Vulkan, resulting in
graphical glitches.

Lastly, I have found AGI less ergonomic to work with than RenderDoc.

5.2.3 RenderDoc
RenderDoc [13] is an MIT licensed graphics debugger with broad support for both
platforms and APIs. Due to its wide platform support, it will allow us to compare
traces of local and remote rendered frames.

Figure 5.1. RenderDoc displaying a trace of the Viking Unity Village Demo

5.3 Games
To find out which APIs games use and validate remote rendering once imple-
mented, the following games were selected:

5.3.1 GDTLancer
GDTLancer1 is an open-source game in Godot, an open-source game engine. Se-
lected to have a game with full source code available for easier debugging and
development.

1 https://github.com/roalyr/GDTLancer
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Figure 5.2. A screenshot of the game GDTlancer

5.3.2 Viking Village Unity Demo

Viking Village Unity Demo2 is a graphically intensive demo of the Unity game
engine. Intended to run on desktops and gaming consoles, but can also be compiled
to run on Android phones, resulting in very poor performance.

Figure 5.3. A screenshot of the Viking Village Unity Demo

5.3.3 Solar Smash

Solar Smash3 is a single-player game built using the Unity game engine. It is
graphically significantly simpler than the Viking Village Demo and is more repre-
sentative of the graphic fidelity of mobile games.

2 https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-
29140
3 https://play.google.com/store/apps/details?id=com.paradyme.solarsmash
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Figure 5.4. A screenshot of the game Solar Smash

5.3.4 SimCity BuildIt
SimCity BuildIt4 is a mobile version of the popular EA city-building game.

Figure 5.5. A screenshot of the game SimCity BuildIt

5.4 Tracing Results
I have tested the listed games and recorded several API call traces from each game.
Following is an exhaustive list of used OpenGL ES calls used by the games tested.
The API calls are sorted by the frequency of occurrence in descending order. glVertexAttribPointer. glBindBuffer. glActiveTexture. glDrawElements. glBindBufferRange. glBindTexture. glUniform4fv. glBindBufferBase. glTexParameteri. glInvalidateFramebuffer. glUseProgram

4 https://www.ea.com/games/simcity/simcity-buildit

14

https://www.ea.com/games/simcity/simcity-buildit


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Tracing Results

. glBufferSubData. glUnmapBuffer. glFlushMappedBufferRange. glBindFramebuffer. glEnableVertexAttribArray. glDisableVertexAttribArray. glViewport. glScissor. glDrawElementsBaseVertex. glEnable. glDisable. glBlendFuncSeparate. glCullFace. glUniform3fv. glStencilOpSeparate. glStencilFuncSeparate. glClear. glDepthFunc. glDepthMask. glClearDepthf. glStencilMask. glColorMask. glClearStencil. glClearColor. glPolygonOffset. glFrontFace. glDrawArrays. glBlendEquationSeparate. glUniform1i. glFenceSync. glClientWaitSync. glBufferData. eglSwapBuffers
All OpenGL ES functions utilized by the tested games either modify state in

the rendering server, or render elements in the rendering server. None of the
functions is blocking for the client, with the sole exception of the combination of
glFenceSync and glClientWaitSync. The former sets up a synchronization fence
and the latter blocks the client until the server reaches the previous synchroniza-
tion fence. However, these functions were always used to wait on the rendering
of the previous frame, which leaves one frame of acceptable delay to report the
completeness of the previous frame to the client, which should not be limiting in
our use-case.
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Chapter 6
Design

In this chapter, we delve into the intricacies of designing the library. We explore
the Android rendering stack and how we can modify it to achieve the goals set
forth in chapter ??.

6.1 High level overview

Application

OpenGL Driver

GPU

Display

Figure 6.1. The layers of a standard OpenGL rendering stack.
One of the important goals of this thesis was to interoperate with existing ap-

plications without modification to said applications. OpenGL is a specification
by Khronos group, a consortium of various vendors. Each vendor implements
OpenGL and provides it to customers in a driver package as a shared library. The
architecture of a regular OpenGL rendering stack is shown in figure 6.1. We can
pretend to be a driver vendor and implement a shared library which will behave as
a regular driver OpenGL implementation from the viewpoint of client applications.
Internally however, the library forwards OpenGL API calls to a different device
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over the network and utilizes native OpenGLES and EGL only to present rendered
frames.

Application

Stub OpenGL Driver

GPU

Display

OpenGL Driver

Stub Application

GPU

OpenGL Driver

Client Application Rendering Server

Figure 6.2. Server and client in our OpenGL offloading rendering stack.
We call the remote rendering device the rendering server. Figure 6.2 shows how

we can slot-in to the existing OpenGL rendering stack. A stub driver injected into
the client application offloads rendering calls to the rendering server, where a stub
application uses the rendering stack on the server device to render the frame. The
rendered frame is then sent back to the client stub driver, which uses the existing
OpenGL infrastructure to display the frame. The communication between the
server and client is implemented over a network socket.

6.2 Serialization
A key part of this thesis is serialization of all OpenGL calls. By assigning each
function a unique ID and serializing it with the function’s arguments, we can
reconstruct which function and with what arguments was requested and perform
the call on the server. The specific value of the ID is arbitrary and serves only for
the client and server to transmit which function was called. A simple sequence of
increasing integers in declaration order of the functions is sufficient.

Although OpenGL ES was created as a reduced variant of standard OpenGL,
and EGL was designed to be a simpler alternative for OpenGL state management

17
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to existing libraries, I still had to implement 171 different function calls and decide
for many more that they are safe to omit. Implementations for many of these
functions are very similar. On the client side, each function has to serialize its ID
and arguments to the network socket. On the server side, the application reads the
id of the next function from the socket, deserializes arguments for said function and
calls it. If it is a function that returns some information to the driving program,
that information also has to be serialized and sent back to the client, which then
deserializes it and returns it to the application.

As implementing all functions would be a tedious and error-prone work, which
would have to be redone if the communication format were to change, I im-
plemented several approaches for generating these functions automatically. As
OpenGL is a C library, it comes in two parts. The shared object library we are go-
ing to create, and one or more C header files which describe the API of the library.
I implemented a generator which would create the serialization and deserialization
functions from the C header definitions. This worked great for many functions
and would have been the preferred solution. Unfortunately, C headers only de-
scribe functions within the semantics of the C language. Some functions, such
as glGenTextures or glGetAttachedShaders, require more information, which
cannot be described in C headers, to properly implement and call.

Arrays are the most problematic structures of all. The C language does not
support passing arrays directly in functions argument. Instead, passed arrays
undergo pointer decay, and only a pointer to the first element is passed. The
length of the array has to be passed as a different argument, or the end of the
array is marked by a sentinel value, such as the nul byte in C-style strings. When
an array is passed in OpenGL, a pointer type is present in the header file, but in
order to determine how many elements should be passed, documentation of the
specification has to be consulted. Considering how many OpenGL functions accept
an array and how many different kinds of arrays are present, this approach rapidly
devolved into implementing most functions manually by hand.

Specification, documentation and C headers are not the only description of
OpenGL API available. Because OpenGL is a very popular API, many tools
have been created which help in debugging and tracing of OpenGL applications.
These tools also faced the challenges described in the previous section and created
their own description of the OpenGL API, with added information to describe the
semantics of the API which cannot be described using C headers alone.

One such tool, apitrace, maintains a description of OpenGL APIs using Python
objects. It then generates its serialization and deserialization code from this de-
scription. Unfortunately apitrace’s serialization is intended for a different use-case.
Because apitrace is primarily a record-replay debugger for various graphics APIs, it
records information about out arguments only after the function is called. One of
the added semantics in the OpenGL API is that some functions behave differently
if some of their out arguments are null pointers (e.g. eglGetConfigs). Therefore
we must also encode if a pointer was null or not into the serialized stream. apitrace
is a complex tool which supports multiple graphics APIs and its code is flexible
to support this use case. This flexibility is however a source of complexity and
because we support only a single API, a simpler approach was chosen.
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A compromise between generating code from C headers and modifying apitrace’s
generation code is to use apitrace’s OpenGL description, but write a custom gen-
erator. The custom generator is much simpler than apitrace and better suits the
needs of this thesis. However the better description of the API from apitrace’s
Python objects can still be utilized.
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Chapter 7
Implementation

We have discussed the theoretical background and the design of the implementa-
tion. This chapter delves deeper into the details of implementation and how to
use the final software.

The implementation itself is split into two main parts. The first part is a gen-
erator which generates serialization and deserialization code for most functions in
the OpenGL ES and EGL APIs. The second part is a combination of a library
which replaces OpenGL ES and EGL in the client and a server application, which
evaluates the offloaded OpenGL calls. Some apitrace definitions include C code
snippets for calculating array lengths, which limited the choice of language to C
or C++. C++ was chosen because it allowed for a slightly more ergonomic im-
plementation of the serializer. A portion of the client code is written in Zig and
heavily utilizes its compile-time reflection capabilities.

7.1 Generator
Due to the size of the OpenGL ES API, a large portion of the final code is generated
using a Python script. The goal of the generator is to take apitrace definitions and
generate code for the client, and corresponding code for the server.

# Example function as listed by apitrace
GlFunction(Void, "glGenTextures", [(GLsizei, "n"),
Out(Array(GLtexture, "n"), "textures")])

// Generated client stub code
extern "C" void APIENTRY glGenTextures(GLsizei n, GLuint *textures) {
ser_de.ser(static_cast<uint32_t>(130));
ser_de.ser(n);
ser_de.flush();
bool textures_present = ser_de.deser<bool>();
if (textures_present) {
size_t len = ser_de.deser<size_t>();
for (size_t i = 0; i < len; i++)

textures[i] = ser_de.deser<unsigned int>();
}

}

// Corresponding code generated for the server
void glGenTexturesImpl() {
int n;
n = ser_de.deser<int>();
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GLuint textures[n];
glGenTextures(n, textures);
ser_de.ser(textures != nullptr);
if (textures) {
size_t len = n;
ser_de.ser(len);
for (size_t i = 0; i < len; i++) {

ser_de.ser(textures[i]);
}

}
ser_de.flush();

}

The generator is implemented in the file generator.py. The sources also include
several Python files from the apitrace [7] project, these files include the definitions,
or supporting code used by the definitions.

apitrace represents types in the OpenGL API by nesting Python objects, each
adding a modification onto the previous, until the last object, which represents a
trivial type. Similarly, functions are also objects with fields for the output type,
function name and a list of argument types. apitrace uses this object structure in
conjunction with the visitor pattern to generate its serialization code. I decided
to use a simpler approach using recursive functions and Python’s run-time type
reflection facilities.

Generating code works for most functions whose implementations are similar
to each other. However some functions include constructs which are not used by
many other functions and implementing their required functionality in the genera-
tor would be more work than to implement them manually. An example of a very
special function is glShaderSource, which expects the shader string in a rope-
like data structure, composed of either 0-terminated, or length-delimited strings
depending on if the lengths argument is present. However as the string is concate-
nated by the serialization process anyway, the server complement of this function
is significantly simplified. All manually implemented functions are located in the
the file manual.cpp.

As mentioned in chapter 2, the semantics of many functions cannot be ex-
pressed using C headers, which is why apitrace definitions were used. The functions
glFinish and glFlush have semantics which are out-of-scope even for apitrace.
The generated implementations for these functions were modified to satisfy the
OpenGL specification, but are not part of manual.cpp due to the small size of the
modifications.

7.2 Serialization
Serialization and deserialization is implemented in the file serde.cpp. It is im-
portant to send the rendering commands as quickly as possible, but the amount
of data these commnds need is very little. The system is latency sensitive but the
calls used to draw each frame do not require transporting large amounts of data.
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I decided to implement a simplicity-focused serialization system by writing each
value in network-endian to the network socket. This approach is significantly more
efficient than possible textual encodings or the encoding used by apitrace, which
includes additional information to allow playing back traces from different versions
of apitrace.

Another aspect of serialization is buffering of data. As mentioned above, most
OpenGL calls comprise of small amounts of data but a scene is rendered using many
such calls. Sending each call independently would result in substantial overhead
from the operating system’s network stack. Buffering of data is performed to
reduce the total number of packets sent by incresing their average size.

7.3 Presentation

After a frame is rendered on the remote device and the client receives it, it has to
be displayed to the user. One set of APIs which can be used to display the image
and we know is present is EGL and OpenGL ES. A full-screen triangle is drawn
and the received image is used as its texture, displaying the frame to the user.

There is one problem with this implementation. We are using OpenGL ES and
EGL functions inside our library, which implements the same set of functions.
As a result, using the required functions in the usual manner is not possible.
POSIX specifies a second method for accessing dynamic library functions, dlopen
and dlsym. These function manually open a shared library and look-up symbols
by name. Using the reflection and compile-time evaluation tools offered by Zig,
the following excerpt automatically populates a structure of function pointers to
OpenGL ES functions.

const gles_so = std.c.dlopen("/usr/lib/libGLESv2.so", 1);
inline for (@typeInfo(@TypeOf(gles)).Struct.fields) |field| {

@field(gles, field.name) = @ptrCast(std.c.dlsym(
gles_so,
(field.name ++ [_]u8{0})[0..field.name.len :0]

));
}

The result is a structure whose fields have the same name and type as the
function they represent, and the value is a function pointer to the native
implementation of said function. An analogous structure exists for EGL
functions. Using these functions is very similar to their normal usage —
gles.glDrawArrays(c.GL_TRIANGLES, 0, 3);.

7.4 Configuration

Although the implementation was designed to be as transparent to the end user as
possible, some aspects require or offer some configuration. This section describes
what configuration options exist and how to modify them.

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Building

7.4.1 Native Shared Object Location

In the previous section we have explained that the client implementation must load
OpenGL ES and EGL implementations manually using dlopen. In order to load
the libraries, their locations on the client device must be known. The expected
location of the libraries is configured in the file src/client.zig at lines 39 and
40 for EGL and OpenGL ES respectively. The default location should work on
most Linux systems, but some distributions may place system libraries in different
locations.

7.4.2 Network Options

The server and client parts of this thesis communicate together over the network.
In order for the client to connect to the server, the client must be configured with
the server’s IP address. The IP address is configured in the file src/serde.cpp at
line 74. The port number can also be configured in the same file and is defined at
line 32.

7.4.3 Buffer Size

The implementation uses sending and receiving buffers to join multiple requests
together before sending them over the network, reducing the overhead of sending
many individual network packets. Increasing the buffer size reduces the number
of system calls, improving performance. Increasing the buffer size however also
increases memory consumption and delays the execution on the remote server
until the buffer is flushed, reducing performance.

Choosing a size for a buffer is always a trade-off, optimal buffer sizes for one
setup may result in poor performance on a different setup. Tuning the buffers is
accomplished by modifying the values in src/serde.cpp at lines 37 and 38 for
output and input buffers respectively.

7.5 Building
The software is provided in source code form and is implemented in a compiled
language. Before using it, the source files must first be converted to an executable
application and a binary library by building the project. The project has a few
libraries which must be installed before compilation.

7.5.1 Dependencies

The run-time dependencies of the project were intentionally kept at a minimum.
Adding dependencies to the client library might cause conflicts if the application
also used the same dependencies. For compiling this project the following depen-
dencies have to be installed locally.. Zig 0.11.0:1 Used for compiling both Zig, but also C++ source code.. XCB [14]: Library for registering an X window with the X server for the server

application. EGL and OpenGL ES: Required by the server to execute the offloaded com-
mands.

1 https://ziglang.org/download/#release-0.11.0
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7.5.2 Compilation

Compilation is done using the Zig build system. With the dependencies installed,
the project is compiled with the following command.

zig build -Doptimize=ReleaseSafe

Both the server application and the client library are produced with the previous
command and are stored in the zig-out folder.

7.6 Usage
Using the In order to use the software, the server application must be started first.

./zig-out/server

Once the server application is running, the game can be started. The following
command forces the dynamic loader to use functions from our library instead of
loading them from the system-provided implementation.

LD_PRELOAD=./zig-out/lib/libclient.so <application>
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Chapter 8
Results

In this chapter we will take a look at the final library and how it performs at
offloading. We will examine the graphical fidelity of the rendered image and the
performance of an application running through our OpenGL ES offloader.

8.1 Testing Hardware
All testing was done on a laptop computer equipped with an Intel Core i5 7300U
with Intel HD Graphics 620 and 8GB RAM, running Linux 6.6.8.

8.2 Software
The performance of the offloading library was evaluated on a simple testing appli-
cation, es2gears1. es2gears is part of the Mesa demos package of OpenGL demo
applications.

8.3 Performance

Figure 8.1. es2gears running at 300. 300 through OpenGL ES offloader

Running the testing application through the network offloader resulted in full
performance of 60 FPS and no visual artifacts are present. In these conditions the
offloading layer is fully transparent to the user.

1 https://cgit.freedesktop.org/mesa/demos/tree/src/egl/opengles2/es2gears.c
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Figure 8.2. ES2gears running at 1920. 1080 through OpenGL ES offloader

Increasing the window size and thus the rendering resolution has a negative
impact on the performance. The offloading layer is not able to supply rendered
frames from the server to the application fast enough and performance is degraded
to 22 FPS. Furthermore at this window resolution the application is stuttering
leading to a degraded experience to the user.

The implemented offloading method correctly runs over a network socket and
produces identical images to and application running natively. Unfortunately the
performance becomes a limiting factor at greater resolutions.
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Chapter 9
Conclusion

In conclusion this thesis has sought to review existing methods for collaborative
rendering, analyze the Android OpenGL ES rendering stack, propose and partially
implement collaborative rendering.

In chapter 6 we have analyzed the OpenGL ES rendering stack and proposed
implementing collaborative rendering using a virtual driver as shown in figure 6.2.

This solution for collaborative rendering on a remote device has been imple-
mented. The CPU part of the application is kept on the low-power device, but
the more power-intensive GPU part is fully offloaded over a network socket. This
thesis thus shows that the idea of collaborative rendering is possible by modifying
the existing OpenGL ES rendering stack without modifying the applications.

Performance of the offloading solution was also tested. At lower screen resolu-
tions the implementation performed well and was transparent to the user. However
at larger screen resolutions the implementation slowed down and slowed down the
entire application.

9.1 Future Work
OpenGL is a complex API to implement. In it’s current state the work presented
here does not implement the full OpenGL ES specification. Furthermore the per-
formance of the offloading library is disappointing and causes a regression in user
experience.

Both of these aspects could be addressed in possible future work.

9.1.1 Compatibility
Following is a list of OpenGL features currently missing in this library. Implement-
ing them would increase compatibility with currently incompatible applications.. BLOB arguments. eglGetProcAddress. returning arrays. sync objects. buffer mapping

9.1.2 Performance
As discussed in chapter 8, the performance of the offloading library is not good
and causes performance regressions on larger display resolutions even with simpler
applications. The following is a list of proposed features which should improve the
performance of the whole system.
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. FrameBuffer compression. asynchronous network operations. relaxing synchronization primitives. implement I-frame rendering, described in section 3.3.2. Buffer size tuning. UDP sockets instead of TCP
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Appendix A
Attachments

A.1 Source Code
All source code is bundled in the archive source.tar.gz. The contents of the
archive are listed below.

source.tar.gz
+-- build.zig
+-- gen
| +-- debug.py
| +-- eglapi.py
| +-- eglenum.py
| +-- generator.py
| +-- glapi.py
| +-- gles2_whitelist.txt
| +-- gles3_whitelist.txt
| +-- glparams.py
| +-- gltypes.py
| +-- stdapi.py
+-- src

+-- client.cpp
+-- client.zig
+-- glsize.hpp
+-- serde.cpp
+-- server.cpp
+-- signatures.zig
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Appendix B
Glossary

ABI . Application Binary Interface
AGI . Andorid GPU Inspector
API . Application Programming Interface
BLOB . Binary Large OBject, A large amount of opaque binary data,

without information about internal structure
DRI . Direct Rendering Infrastructure, A framework for managing ac-

cess of unprivileged user-space programs to graphics hardware
EGL . Embedded-Systems Graphics Library
OpenGL . Open Graphics Library
OpenGL ES . OpenGL for Embedded Systems
OS . Operating System
PC . Personal Computer
PCIe . PCI express, A high-speed point-to-point interconnect used be-

tween the CPU and other components inside of a computer
POSIX . Portable Operating System Interface, IEEE standard for compat-

ibility between operating systems
SoC . System on a Chip, A single chip which includes functionality of

CPU, GPU and more, which are usually implemented using more
chips.

Vulkan . A modern cross-platform graphics API, intended to replace both
OpenGL and OpenGL ES by granting developers lower-level ac-
cess to graphics hardware features

XCB . X protocol C-language Binding, A library for communicating us-
ing the X protocol from C programs
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