
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Reinforcement Learning with Parametrized
Actions for Imitation Learning

Marek Majsner

Supervisor: Mgr. Karla Štěpánová, Ph.D.
January 2024

ii

Acknowledgements
First and foremost, I would like to use
this opportunity to thank my supervisor
for her advice and endless patience during
my work on this thesis. I would also like
to thank my family for providing me with
support during my studies and I want
to thank all my teachers for providing
me with the knowledge necessary for the
creation of this thesis.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 8. January 2024

iii

Abstract
This thesis explores the benefits of
temporal abstraction in reinforcement
learning by examining two approaches
for action generalization: Parameter-
ized Action Markov Decision Processes
(PAMDPs) and the options framework.
In this work, we employ the Manipula-
tion Primitive-augmented reinforcement
Learning (MAPLE) algorithm founded on
the PAMDPs framework. We describe the
inner workings of the MAPLE algorithm
and its underlying Robostuite simulation
framework and evaluate the framework
in new tasks and with different parame-
ters. Moreover, we propose an extension
to the framework to include observational
information.

Keywords: MAPLE, reinforcement
learning, PAMPDS, options, Robosuite

Supervisor: Mgr. Karla Štěpánová,
Ph.D.

Abstrakt
Tato práce zkoumá výhody časové abs-
trakce v posilovacím učení zkoumáním
dvou přístupů pro zobecnění akcí: Para-
meterized Action Markov Decision Pro-
cesses (PAMDP) a rámce options. V této
práci používáme zesílení Manipulation
Primitive-augmented reinforcement Lear-
ning (MAPLE) algoritmus založený na
struktuře PAMDPs. Popisujeme vnitřní
fungování algoritmu MAPLE a jeho zá-
kladního simulačního platformu Robostu-
ite, navíc hodnotíme metodu v nových
úlohách a s různými parametry. Kromě
toho navrhujeme rozšíření metody infor-
macemi z pozorování.

Klíčová slova: MAPLE, posilovací
učení, PAMPDS, options, Robosuite

iv

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Project goals 2
2 Background 3
2.1 Reinforcement Learning with

Markov Decision Processes 3
2.2 Reinforcement learning for option

discovery . 4
2.3 Reinforcement Learning with

Parameterized Action Space Markov
Decision Processes 4

2.4 Deep Reinforcement Learning . . . 5
2.5 Soft Actor-Critic 5
3 Related Work 9
3.1 Options frameworks 9

3.1.1 Options discovery using Deep
Skill Chaining 10

3.1.2 Flexible Option Learning . . . 11
3.2 Frameworks with Parameterized

Actions . 11
3.2.1 Accelerating Robotic

Reinforcement Learning via
Parameterized Action Primitives . 12

3.3 Augmenting Reinforcement
Learning with Behavior Primitives 13

3.4 Comparison of options versus
PAMDPs . 13

3.5 Methods for including the prior
knowledge . 14
3.5.1 Learning from demonstrations 14
3.5.2 Human-in-the-loop learning . 15
3.5.3 Reward Shaping 15
3.5.4 Skill-based learning 16

3.6 Selection of the suitable method
for incorporating prior knowledge 16

4 MAPLE and Robosuite
framework 17
4.1 Robosuite framework 17
4.2 MAPLE framework 18

4.2.1 MAPLE algorithm 20
5 The proposed extension of the
MAPLE framework 23
5.1 Leveraging prior human knowledge

for task completion 23
5.1.1 Type of prior knowledge 23

5.1.2 Prior knowledge mapping . . 24
5.2 Augmenting MAPLE architecture

with prior knowledge 25
5.2.1 Reward shaping 25
5.2.2 Incorporating prior knowledge

into the policy network 26
6 Experimental setup 29
6.1 Robosuite environments 29

6.1.1 Environment class 30
6.1.2 Object classes 31
6.1.3 MAPLE-specific reward and

observation methods 32
6.1.4 MAPLE’s parametrized action

implementation 33
6.2 Our extensions to the Robosuite

environments 34
6.2.1 Addition of YCB objects 34
6.2.2 Reward shaping 35
6.2.3 Creation of new benchmarks 36

6.3 Benchmarking environments . . . 37
6.4 Hyperparameters used in training

new Maple policies 40
7 Results 43
7.1 Evaluation of MAPLE sensitivity 43

7.1.1 Hidden layers sizes 43
7.1.2 Reward sensitivity 46
7.1.3 Environmental changes 50

7.2 Evaluation of MAPLE framework
extensions . 50
7.2.1 Skill addition 50
7.2.2 New environments 51
7.2.3 Prior knowledge 52

8 Discussion 53
8.1 MAPLE framework sensitivity . . 53
8.2 Our extension of the MAPLE

framework . 54
9 Conclusion and future work 55
Bibliography 57

v

Figures
2.1 Diagram of SAC’s replay pool D. 6
2.2 Diagram of SAC architecture. . . . 7

3.1 Option discovery using Skill
Chaining. 10

3.2 Creation of skill trees. 10
3.3 Option visualization in AntWalls

experiments within the MuJoCo
simulator. 11

3.4 A soccer goal episode using a
converged Q- PAMDP policy. White
agent goes around the goalkeeper to
score a goal. 12

3.5 Kitchen environment for simulating
long-horizon tasks used with RAPS. 12

3.6 MAPLE’s solution to the
Robosuite tasks of Nut Assembly. . 13

4.1 Diagram of the connections in the
MAPLE [5] framework. 18

4.2 Architecture of MAPLE’s
hierarchical policy. 19

4.3 Selection of primitive action in the
Pick and Place environment. 20

4.4 Example composition of Cube
Stacking environment 20

4.5 MAPLE’s six exploration
sequences in the Cube stacking task. 21

5.1 Direct mapping function. 24
5.2 Proposed MAPLE framework

incorporating human
demonstrations. 25

5.3 Example of primitive sequence in
the Cube Stacking environment. . . 26

6.1 Render of Robosuite environment. 29
6.2 Visualization of observation data

passed from the simulated peg
insertion task environment. The
relative position between the gripper
and the peg v, as well as the peg
orientation denoted by angle α, and
the relative position of the hole and
the peg denoted by (d1, d2). 30

6.3 Class diagram of Robosuite’s
environment implementation. 31

6.4 Class diagram of Robosuite’s
object implementation. 32

6.5 lustration of the reach
parametrized action in the peg
insertion task. After the task policy
has elected to use the reach primitive,
the corresponding primitive
sub-policy network has chosen the
target position (x, y, z) near the hole.
Subsequently, the ReachSkill passes a
series of positions to the OSC
controller to move the gripper to
(x, y, z). 33

6.6 Class diagram of MAPLE’s
parametrized action
implementation. 34

6.7 Example environments containing
YCB objects. 35

6.8 YCB’s bowl and scissors laser scans
before and after mesh simplification. 35

6.9 Renders of our Robosuite
manipulation tasks. 36

7.1 Learning curves showing average
episodic task rewards and success
rates for different hidden layer sizes
throughout training. 46

7.2 Learning curves showing the
average episodic task rewards and
success rates of different staged
reward multipliers. 49

7.3 Illustrations of skills employed in
the Peg Insertion task. Each row
corresponds to a single simulated
episode. 51

7.4 Learning curves of training with
and without prior knowledge. 52

vi

Tables
3.1 Comparison of Options

[10],[11],[12] and Parameterized
Action Frameworks [5],[13],[19]. . . . 14

4.1 Set of primitive actions used in
MAPLE [5]. 19

6.1 Descriptions of all environments
used in our experiments (Triple stack
and Cube sort are newly introduced
tasks). 39

6.2 SAC Parameter Values. 40
6.3 Maple Parameter Values. 41

7.1 Final Hidden size Success Rates
(%) . 44

7.2 Success rates (%) of environments
with clutter . 50

7.3 Final success rates (%) for different
reward multipliers 51

vii

Chapter 1
Introduction

1.1 Motivation

The recent success of predictive language models and the progress achieved
in advanced robot control systems (for instance, the large multimodal model
GPT-4 [21] and Bostons dynamics Atlas research platform[6]) have instilled
the idea that personal robotics is close to integrating with humans in the home
and workplace environments. Despite their success, state-of-the-art Deep
reinforcement learning (DRL) models fall far from tackling long-horizon tasks
due to the exploration and observation challenge in complex environments.
In order to come up with a solution, the robot has to explore a large number
of actions and observe the effects of each individual action on its environment.
For example, in a simple environment where the task is to pick up a cube,
random motor motions of a 6DOF robot will hardly ever get close to the
cube. Moreover, the learning time and the number of actions to explore this
simple environment using random exploration is unfeasible. This limits the
ability of DRL models to perform long-horizon tasks (such as handling and
cutting up ingredients) effectively and efficiently in stochastic environments.
Since the introduction of DRL, there have been many attempts to aid the
exploration burden by introducing higher levels of abstraction, for example,
using semi-Markov decision processes [1] or improved exploration strategies
[2].

To get around the problems of exploration in complex environments, an
abundance of work in robotics has been dedicated to learning robot control
for individual tasks, such as grasping [3]. With the combination of algorithms
for optimal motion planning, recent works tried to solve the necessity of
exploring complex environments by creating a hierarchical model [7] [8].

Nevertheless, there is a growing recognition in the field of the importance
of transferring knowledge between tasks to speed up the learning process
to accomplish long-horizon tasks. One promising approach to transferring
knowledge of learned controls for robots is to use a parameterized action
space, which allows for a compact representation of the robot’s behavior in
DRL algorithms.

Parameterized Action Markov Decision Processes (PAMDPs) allow for
representation that gives the underlying solution to the given task in the

1

1. Introduction
form of parameterized action, which could be transferred to similar tasks,
thus aiding the strain of exploration in DRL [4]. It also promises the ability
to solve long-horizon tasks in complex environments by dividing them into a
series of parameterized actions that lead to the successful completion of the
complex tasks [5].

1.2 Project goals

To assist long-horizon solutions by incorporating demonstration data, our first
goal is to identify a suitable method. We will explore approaches that leverage
hierarchical structures, such as options (generalized primitive actions) [1] and
parameterized action [13], and whose solutions lead to reusable policies. We
will:. Describe each method in detail.. Compare the advantages and limitations of options and parameterized

action.

Secondly, once we have identified the most suitable method, we will:. Evaluate the method’s training sensitivity to its parameters..Assess the method’s capability to adapt to newly designed environments.. Create and evaluate additional parametrized action.

Finally, our goal is to determine whether it is feasible to expand the selected
method by:. Integrating additional information (e.g., demonstrations, task descrip-

tions) into the learning process..Testing whether this extension can expedite the learning process.

2

Chapter 2
Background

In this section, we briefly introduce the core concepts in reinforcement learning
with Markov decision processes, deep reinforcement learning, options, and
finally the fundamentals behind Reinforcement Learning with Parameterized
Action Markov Decision Processes.

2.1 Reinforcement Learning with Markov Decision
Processes

A Markov Decision Process (MDP) is defined by the tuple (S,A, P,R, γ),
where S denotes a set of possible states that describe the current state in the
environment, A A set of possible actions that the agent can take in each state,
P is a transition function that defines the probability of moving from one
state to another state as a result of taking an action, R represents the reward
function that assigns a real-valued reward to each state-action pair and γ is
the discount factor [1]. The core idea of reinforcement learning (RL) is to
learn a Markov policy, a mapping from states to probabilities of taking each
available action, π : S ×A⇒ [0, 1], that maximizes the expected discounted
future reward from each state s ∈ S.

RL agent interacts with an environment following a policy π(at|st), which
represents the agent’s behavior at each time step t and perceived state st ∈ S.
The agent selects an action at ∈ A (by mapping from state st to actions at)
and as a result of the action receives a reward rt and transitions to the next
state st+1, which is the result of the agent’s interaction with the environment.
The agent’s goal is to maximize the discounted long-term returned reward
Rt =

∑∞
t=0 γ

trt+1, where the discount factor is γ ∈ (0, 1]. The expected
return vπ(s) = E[Rt|st = s] of the following policy π is called the value for
given state s. The value function then works as a prediction of the expected
accumulative future reward giving the representation of quality for each state-
action pair. The optimal state-value policy π∗ maximizes the value achievable
by any policy for state s and action a. To learn the optimal policy, the
agent explores the state and action spaces relevant to the task by executing
various sequences of state-action-next-state transitions. The average length
of such sequences is called the task horizon. If the horizon is long while
the task involves large state and action spaces, then the exploration space

3

2. Background
also becomes large. This results in the poor performance of the standard
RL algorithms on such long-horizon tasks without sophisticated exploration
techniques. Conventionally, the MDPs do not carry any temporal abstraction
or higher-level representation of behavior [9].

2.2 Reinforcement learning for option discovery

The term ’options’ (generalized primitive actions) was introduced in the semi-
Markov decision process (SMDP) in [1] as a step forward to incorporating
temporal abstraction.

The addition of options as courses of temporally extended actions allows
RL agents to learn and create a set of internal policies that in effect represent
temporal abstraction. An option ω is a tuple (I, π, β) where π : S×A→ [0, 1]
consists of a policy, I ⊆ S denotes the option’s initiation set and β : S →
[0, 1] represents the termination condition. Termination condition β is the
probability that option ω will terminate at a given state. In an initialization
state I the agent carries out actions according to the option’s policy ω, until
the termination conditions are satisfied.

The benefit of having the initiation set I and termination condition β as
part of an option is that it limits the range over which the option’s policy
needs to be defined [1]. This means that a robot follows a policy ϕ of washing
dirty dishes only if the initial state, for example, the presence of dirty dishes,
is met. Furthermore, options introduce a level of temporal abstraction and
allow for hierarchical representation and hierarchical planning. However, the
discovery and creation of options in high-dimensional continuous spaces is a
long-standing problem.

2.3 Reinforcement Learning with Parameterized
Action Space Markov Decision Processes

An alternative to using options to generate the compositional structure of long-
horizon tasks is reinforcement learning with parameterized actions [13] [14].
In Parameterized Action Space Markov Decision Processes (PAMDPs) is the
state space considered continuous S ∈ Rn, but the actions are parameterized.
The action set is a finite set of discrete actions Ad = (a1, a2, a3, ..., ak), where
each discrete action an ∈ Ad has a set of continuous parameters Xa ∈ Rma .
Action is defined as a tuple (a, x), where a represents a discrete primitive
action, and x denotes the parameters for that primitive action. Therefore, the
agent must select both primitive action ai and its corresponding parameters
xi at each decision-making step. Union over all discrete actions with all the
possible parameters for that action A = ∪a∈Ad{(a, x)|x ∈ Xa} is the action
space.

In PAMDPs, each task can be efficiently addressed by identifying the
suitable set of parametrized actions. The goal of reinforcement learning with
PAMDPs is to find this ideal set autonomously.

4

............................. 2.4. Deep Reinforcement Learning

2.4 Deep Reinforcement Learning

Deep reinforcement learning (DRL) combines the artificial neural networks
of deep learning with reinforcement learning algorithms. Training neural net-
works provide the means to solve complex, decision-making problems [31],[32].
The deep learning techniques enable us to approximate the optimal policy
πϕ or value function Vψ in RL with parameters ψ and ϕ. Nevertheless, deep
online RL methods encounter evaluation challenges. Inadequate account for
statistical variability[33] and sensitivity to the hyperparameter selection[34].

2.5 Soft Actor-Critic

The concepts of DRL in an on-policy manner necessitate new samples for
nearly every policy update [26]. This escalates the samples needed to develop
an effective policy. To address the challenges of high sample complexity, the
Soft Actor-Critic (SAC) algorithm employs off-policy DRL [27]. Furthermore,
SAC addresses the brittleness of convergence properties connected with the
model-free Deterministic Policy Gradient (DDPG) methods [36] by maximiz-
ing the policy entropy at each timestep. Maximizing entropy in the framework
nudges the agent to explore the environment more effectively and increases
the likelihood of uncovering new behaviors that may result in greater rewards
[26].

The network architecture is outlined in Figure 2.2. SAC concurrently
learns a parametrized policy πϕ and two parametrized Q-functions Qθ1 , Qθ2 .
Doubling of Q-functions helps to ensure the policy πϕ could not exploit
inconsistencies in the approximated Q function by taking the minimum of two
Q-values. SAC algorithm 1 first carries out the exploration endeavor inside
the simulated environment and stores the observations of action, state, and
reward tuples in replay pool D see Figure 2.1. Batches of data sampled from
the replay pool D are used in the second phase of SAC for the computation
of stochastic gradients, updating the parameters θ1, θ2, ϕ.

To train the policy πϕ SAC alters the goal of maximizing the expected sum
of rewards

T∑
t=0

E(st,at)∼ρπ [(r(st, at)] ,

where the environment returns a bounded reward r : S × A → [rmin, rmax],
by including the maximum entropy objective

J(π) =
T∑
t=0

E(st,at)∼ρπ [(r(st, at) + αH(π(·|st)))] ,

where ρπ(st, at) denotes the state-action marginal of the trajectory distribution
induced by the policy π(at|st), and α is a temperature parameter that scales
the importance of the entropy term. The policy parameters ϕ are then

5

2. Background
updated by minimizing the expected augmented Kullback-Leibler divergence

Jπ(ϕ) = Est∼D
[
Eat∼πϕ [α log(πϕ(at|st))−Qθ(st, at)]

]
.

To evaluate the gradient of objective Jπ the original authors in [26] used
the reparameterization trick

Jπ(ϕ) = Est∼D,ϵt∼N [log πϕ(fϕ(ϵt; st)|st)−Qθ(st, fϕ(ϵt; st))] ,

where the policy is replaced with a neural network transformation at =
fϕ(ϵt; st) with noise vector ϵt sampled from some fixed distribution as an
input. Since SAC is composed of two Q-functions the update uses the
minimum of the two approximators

Jπ(ϕ) = Est∼D,ϵt∼N

[
log πϕ(fϕ(ϵt; st)|st)− min

j=1,2
Qθj (st, fϕ(ϵt; st))

]
.

The Q-function parameters θ1 and θ2 are obtained by minimizing the Bellman
residual

JQ(θ) = E(st,at)∼D

[1
2

(
Qθ(st, at)− Q̂(st, at)

)2
]
,

Q̂ = r(st, at) + γ

(
min
j=1,2

Qθ̄j (ss+1, at+1)− α log πϕ(at+1|st+1)
)
,

where the next action at+1 is a newly sampled action from the stored ob-
servations from replay pool D see Figure 2.2. Parameters θ̄ refer to the
use of target Q-functions, which are exponentially moving averages of the
Q-functions.

Figure 2.1: Diagram of SAC’s replay pool D.

6

................................... 2.5. Soft Actor-Critic

Figure 2.2: Diagram of SAC architecture.

Algorithm 1 Soft Actor-Critic
1: Initialize Q networks weights θ1, θ2 and policy network weights ϕ
2: Initialize target network weights θ̄1 ← θ1, θ̄2 ← θ2
3: Initialize replay buffer D
4: for each iteration do
5: for each environment step do ▷ Exploration Phase
6: Sample action at from the policy πϕ(at|st)
7: Sample transition from the environment st+1
8: Add transition to replay buffer D ← D ∪ {(st, at, r, st+1)}
9: end for

10: for each gradient step do ▷ Training Phase
11: Update the Q networks θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}
12: Update policy weights ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
13: Entropy adjustment α← α− λ∇̂αJ(α)
14: Update target networks θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}
15: end for
16: end for

7

8

Chapter 3
Related Work

In this chapter, we discuss related works in solving long-horizon problems
using options and parametrized actions. We compare the two introduced
approaches in Table 3.1 and pick a suitable method for incorporating prior
knowledge. We conclude this chapter with different approaches to integrating
prior knowledge.

3.1 Options frameworks

One design of hierarchical structures in RL arises from Skill Chaining based
upon the proposed Options framework in [1]. Skill chaining presumes that
long-horizon tasks can be deconstructed into a sequence of smaller skills, which
are comparatively easier to learn. Each skill is represented as an option tuple
(I, π, β), transforming the problem from regular MDPs into Options as defined
in Section 2.2. Options reduce the complexity of representing the task’s value
function by segmenting it into multiple local value functions. Each option
then centers around its own specific local value function. This segmentation
helps the approximation in high-dimensional problems[10]. Therefore Skill
chaining appears to be a good solution for solving long horizon tasks.

Skill chains are created from the goal region of the task by linking options
backward to the starting point vis Figure3.1. Moreover, the method in [10]
proposed forming skill trees to allow for multiple solutions or start states see
Figure 3.2. The complexity of the skill tree is limited by avoiding the overlap
of options’ initiation sets targeting the same goal region. Agents using skill
chaining in [10] showed significantly better performance than those with a
flat policy. Furthermore, agents starting with pre-learned options achieved
faster learning. However, the experiments in [10] were run and tested only in
a simple two-dimensional Pinball Domain, where the goal is to guide a small
ball to a desired space in a maze.

9

3. Related Work.....................................

Figure 3.1: Option discovery using Skill Chaining.
Source: https://www.semanticscholar.org/paper/Skill-Discovery-in-Continuous-
Reinforcement-Domains-Konidaris-Barto/bdc5a10aa5805808cfca58ac527ddc23e73
7bee8

Figure 3.2: Creation of skill trees.
Source: https://www.semanticscholar.org/paper/Skill-Discovery-in-Continuous-
Reinforcement-Domains-Konidaris-Barto/bdc5a10aa5805808cfca58ac527ddc23e73
7bee8

3.1.1 Options discovery using Deep Skill Chaining

Deep Skill Chaining (DSC) [11] modifies the Skill chaining method by intro-
ducing policy over options πopt : st ∈ S → o ∈ O, which at decision-making
step t determines what option to execute based on the current state st. Each
option oi is represented by a tuple (Ii, πθi , βi), where the option’s policy πθi
is parameterized. The policy over options πopt starts with only one global
option og representing primitive actions with its initiation set being the whole
state space Ig = S and termination condition being the task’s goal state. The
algorithm first repeats the global option og until it gathers N number of suc-
cessful trajectories to train a new option policy πθi . As a result, long-horizon
tasks are broken down into a series of standard RL problems. DSC adds each
new option to its repertoire while chaining backward from the task’s goal
similar to Skill Chaining in Figure 3.1.

The advantage of using policy over options is that each skill in DSC
can develop its unique state-abstraction, in contrast to Skill Chaining [10]
where each option uses fixed state-abstraction. As a result, DSC was able
to outperform non-hierarchical agents and state-of-the-art skill discovery
algorithms in five domains within the MuJoCo physics simulator [46] (for
example Four Rooms with a Lock and Key). Nevertheless, the current
implementation uses a basic exploration method of adding Gaussian noise
to actions and could benefit from a more sophisticated exploration strategy

10

........................ 3.2. Frameworks with Parameterized Actions

aided with observation information.

3.1.2 Flexible Option Learning

Flexible Option Learning (FOL)[12] edits the option policy learning by up-
dating all relevant options simultaneously. Instead of learning one option
at a time as described in DSC, FOL sets a hyperparameter to control the
probability of updating all options versus only updating the executed option.
Updating all relevant options improves performance and sample efficiency
in hierarchical RL. Moreover, the algorithm creates temporally extended
options with meaningful behavior since its transferred options outperform
other hierarchical agents in experiments within the MuJoCo framework [24]
(visualized in Figure 3.3).

Figure 3.3: Option visualization in AntWalls experiments within the MuJoCo
simulator.
Source: https://openreview.net/pdf?id=L5vbEVIePyb

3.2 Frameworks with Parameterized Actions

An alternative approach to divide long-horizon problems into a series of
primitive actions are PAMDPs (defined in Section 2.3). The concept of
parameterized actions was first proposed in [13] to allow for a distinct set
of simple actions with continuous adjustability in RL. To achieve this the
proposed method employs a two-level hierarchical policy with the top level
being a discrete-action policy πd(a|s) and the lower level consisting of action-
parameter policies πai(x|s). For example in the simplified soccer scoring
problem in Figure 3.4, the white agent’s action set could be the actions
Ad = (kick, run, shoot_goal) with each action being associated with a set
of parameters such as force and target position. The higher policy πd(a|s)
decides whether to kick, run, or shoot at the goal depending on the relative
positions and speeds of the keeper, the ball, and the agent. If the agent’s
higher-level policy chooses to shoot at the goal, the corresponding lower-level
policy πshoot_goal(x|s) selects the shot target position along the goal line.

The strong performance of the proposed Q-PAMDP [13] in the half-field
soccer offense was expanded upon with DRL in [14]. The addition of parame-
terized policies using deep neural networks laid the groundwork for the use
of PAMDPs in high-dimensional long-horizon tasks.

11

3. Related Work.....................................

Figure 3.4: A soccer goal episode using a converged Q- PAMDP policy. White
agent goes around the goalkeeper to score a goal.
Source: https://www.semanticscholar.org/paper/Reinforcement-Learning-with-
Parameterized-Actions-Masson-Ranchod/3f59bce00434b432dfd0b9ab20903aca
daefd456

3.2.1 Accelerating Robotic Reinforcement Learning via
Parameterized Action Primitives

Robot Action Primitives (RAPS) [19] were used to demonstrate the effective-
ness of PAMDPs on several multi-stage, long-horizon manipulation tasks in a
kitchen simulation environment [47] visualized in Figure 3.5. In environments
mimicking real-world RAPS displayed robust performance, outperforming
other methods. With a manually specified library of robot actions, RAPS was
able to speed up each episode 32 times compared to using raw robotic action.
Moreover, RAPS achieved a 100% success rate transferring policy trained on
a 7DOF robot to a 6DOF robot in Robosuite door opening environment.

A disadvantage of the RAPS is the lack of dynamic behavior. When a
primitive action begins it does not stop or alter the execution based on
environmental feedback. Another problem is that most sets of primitive
actions do not guarantee a general solution. To get around this, RAPS
incorporates primitive action corresponding to full non-parametrized action
space, giving the method ways to fill the lack of suitable primitive action.

Figure 3.5: Kitchen environment for simulating long-horizon tasks used with
RAPS.
Source: https://relay-policy-learning.github.io

12

............... 3.3. Augmenting Reinforcement Learning with Behavior Primitives

3.3 Augmenting Reinforcement Learning with
Behavior Primitives

Manipulation Primitive-augmented reinforcement Learning (MAPLE) [5]
employs a parametrized set of actions to solve multistep manipulation tasks
in Robosuite [20]. Figure 3.6 presents a series of parametrized actions,
MAPLE’s hierarchical policy employed to solve the tasks. The sequence
(Grasp,Reach,Release) resembles a compositional structure that can be
further exploited to accelerate learning when transferred to similar tasks.
Another advantage of the compositional structure is the resemblance to the
human task description.

In the Door opening task, MAPLE achieved a 100% success rate outper-
forming the Flat, Dual Actor-Critic, and Open Loop baselines, as well as in
other complex tasks, such as Peg insertion and Cube stacking. Furthermore,
the framework was successfully evaluated on real-world tasks. The Robosutie
benchmarking tasks are described in detail in Table 6.1. To achieve this
MAPLE algorithm incorporates an additional affordance score to its reward
function. This score evaluates the relevance of each discrete action for the
given state. We explain the MAPLE algorithm in detail in Section 4.2.

Figure 3.6: MAPLE’s solution to the Robosuite tasks of Nut Assembly.

3.4 Comparison of options versus PAMDPs

In the following Table 3.1, we summarize the major differences and similarities
in the Options and PAMDPs frameworks.

The main difference between the two approaches is that options learn their
own skills, while in PAMDPs, the skills are predefined parametrized actions.
Another distinction between the two approaches is that the represented
options methods revolve around navigational tasks. On the other hand, the
depicted PAMDPs methods are used in solving robot manipulation tasks
as can be seen in Table 3.1. Furthermore, the options approaches benefit
from high sample efficiency in contrast to the PAMDPs approaches, although
the predefined parametrized actions allow for greater insight into the robot’s
behavior [5].

13

3. Related Work.....................................
Feature Options Parameterized Action
Policy Type Policy over option tuples

(Ii, πθi , βi).
Higher level action policy
πd(a|s) with the lower
level action-parameter
policies πai(x|s).

Skills Form Algorithm learned option pol-
icy neural networks.

Hard coded set of func-
tions.

Transferability
of policies

Options transfer across simi-
lar tasks.

Higher-level policy trans-
fers in tasks with similar
compositional structure.

Learning pro-
cess

Goal oriented Skill chaining. Off-policy SAC update.

Exploration Dependent on a good explo-
ration algorithm.

SACs maximum entropy
objective.

Sample Effi-
ciency

High sample efficiency, updat-
ing multiple options per ob-
servation step.

Low efficiency, a great
number of samples is
needed to train both ac-
tor policies and critic net-
works.

Domain MuJoCo[24] Robosuite[20]
Environments The ant and The walker Mu-

JoCo environments.
One-arm robot manipula-
tion tasks outlined in Ta-
ble 6.1.

Skill scalability Algorithm updated set of op-
tions.

Limited by hand-coding
each parametrized action
function.

Table 3.1: Comparison of Options [10],[11],[12] and Parameterized Action
Frameworks [5],[13],[19].

3.5 Methods for including the prior knowledge

Human demonstrations promise to solve the problem of exploration versus
exploitation (the challenge of determining when to take exploratory actions
rather than following the policy). Recent works use human demonstrations
to guide the learning process with the promise of more efficient exploration
strategies by guiding the policy to uncover relevant behaviors for task comple-
tion [15],[30],[29],[37]. We recognize that there are many different methods to
incorporate demonstration data and in the following subsections, we outline
some of the common methods.

3.5.1 Learning from demonstrations

Approaches of learning complex behavior directly from human demonstrations
involve the following two techniques:

14

........................ 3.5. Methods for including the prior knowledge

.Behavioral Cloning (BC) [41] tries to directly replicate the demon-
strated actions.. Inverse Reinforcement Learning (IRL) [42] attempts to infer a
reward function (from the demonstrations) to train a policy maximizing
this deduced reward.

Although these methods can speed up the initial learning phase, states not
included in the training demonstrations limit the robustness of trained policies.
Moreover, human training datasets inherently limit the quality of trained
policies. Given that human physical skill in long-horizon tasks may be less
precise and slower when compared with the abilities of modern robot systems.
However, modern methods can surpass the performance in the demonstration
dataset and deal with unencountered states by using generalizations from
existing demonstrations.

3.5.2 Human-in-the-loop learning

Another method of dealing with unencountered states in demonstrations
is interactive Human-Assisted Learning [29],[43]. This approach leverages
active human feedback to gather additional demonstrations or domain-specific
knowledge to guide the learning process further. Different types of human
feedback are used:.Binary critique provides positive or negative feedback (that reflexes the

benefit of the last chosen action) as a reward or as policy information[44]..Guidance describes goals in an environment by specifying the objects
of interest..Action advice is a direct human intervention by manipulating or
shadowing the robot’s believed best action..Query presents a small set of rewards to gather information about the
unknown rewards in the environment.

Although these approaches have shown better results than the traditional
non-human-assisted methods, they require a significant amount of human time
to give the feedback [30]. New methods make use of generative adversarial
networks to minimize the amount of feedback (therefore limiting the time
cost) [37].

3.5.3 Reward Shaping

The next approach employs prior knowledge to guide the agent toward desired
behavior in certain states of the environment by adapting the reward function.
The goal-oriented reward function is supplemented by additional rewards
encoded with domain-specific knowledge. Adding the supplementary reward
can significantly speed up the learning process, however, the changes to the
reward function can result in a completely different goal [45].

15

3. Related Work.....................................
3.5.4 Skill-based learning

Hierarchical policies can take advantage of divided action space by pretraining
primitive skills from demonstrations. Leveraging these skills in long-horizon
tasks improves learning efficiency [28]. Furthermore, pretrained skills are
reusable in new unseen tasks.

3.6 Selection of the suitable method for
incorporating prior knowledge

We opted for the MAPLE [5] method based on the PAMDP [13] framework
defined in Section 2.3. We chose the generalization of skills provided by
parametrized action over the options because we believe the predefined
structure of actions makes mapping prior knowledge more practical. Moreover,
the aforementioned methods in Section 3.2 involve the solution of manipulation
tasks, which matches our ambition for solving long-horizon tasks in contrast
to the goal-oriented tasks of options frameworks as can be seen in Table 3.1.

We chose the MAPLE method specifically for their set of parametrized
actions, which in task solutions resemble human action depiction as illustrated
in Figure 3.6. Furthermore, MAPEL demonstrates the ability to transfer the
human-like task description across similar tasks. The last determining factor
in the selection of the MAPLE method was the provided integration with
the established Robosuite simulation framework [20] and the diverse set of
benchmarking environments.

16

Chapter 4
MAPLE and Robosuite framework

The main focus of this chapter is the detailed description of the MAPLE
framework and the underlying simulation framework Robosuite.

4.1 Robosuite framework

To provide insight into the MAPLE framework, we first introduce the Ro-
bosuite simulation framework[20] which is built upon the MuJoCo physics
engine from DeepMind [24]. This framework presents a standardized set of
benchmarking tasks for policy development with seven models of robotic
manipulators (for instance Franka Emika’s Panda, KUKA’s LBR iiwa robot
systems). The great benefit of this framework is the modularity of simulation
and environment APIs which allows for simple expansion to accommodate
new tasks and training algorithms. Consequently, Robosuite has been pro-
fusely used to develop robot learning algorithms to solve both custom and
robosuite’s benchmark tasks [5][22]. Furthermore, Robosuite was used to
learn task policies in simulated environments, which were later transferred
into real-world equivalent environments[5] [29].

MuJoCo is used to initialize the simulation environment (which stores infor-
mation about the object models and robotic manipulator models). The robot
movement is determined at each simulation step by joint torques computed
by the Robosuite controller, as seen in the diagram in Figure4.1. Controller
input action can be for example end-effector pose or joint configuration. The
results of the robotic action can be then observed with sensors with realistic
data collection (simulating realistic sensor sampling and delay). Additionally,
the Robosuite framework presents insight into the task progress and includes
task reward functions for learning purposes.

17

4. MAPLE and Robosuite framework............................

Figure 4.1: Diagram of the connections in the MAPLE [5] framework.

4.2 MAPLE framework

In the following part, we will describe how individual actions are represented
within the MAPLE framework. As shown in Figure 4.2, MAPLE’s policy
architecture is divided hierarchically. The higher-level policy network deter-
mines at each decision-making step which one of the behavioral primitives
to use. To illustrate the concept we provide the selection of primitives of
the higher-level policy network employed to complete the Pick and place
benchmark environment in Figure 4.3.

Each primitive consists of a hard-coded, closed-loop function. We list the
definitions of all the original MAPLE behavioral primitives as described in [5]
and our additional primitives in Table 4.1. The parameter sub-policy in the
diagram in Figure 4.2 represents the set of low-level parameter networks where
each sub-policy network determines the parameters for one of the primitives.
All these parameter policy sub-networks output a universal distribution over
parameters that fit all, and the parameters are truncated to the length of the
chosen primitive at execution.

The diagram in Figure 4.1 depicts the connection between the MAPLE and
Robosuite framework. Observation data is gathered from the simulation using
object-based observables which return the corresponding object’s positional
and rotational data. This data is subsequently processed by the environment
function into a vector of parameters relevant to the executions of parametrized
primitives in Table 4.1.

For example, in the benchmarking environment Cube stacking (visualized in
Figure 4.4) the observation vector is composed of the position and rotation of
the red cube, the position, and rotation of the blue cube, vectors representing

18

.................................. 4.2. MAPLE framework

the relative position of cubes to the gripper and the relative position between
the cubes. MAPLE policy networks process the relative environmental
composition into robot actions in the form of a 5-DoF end-effector pose (3
degrees of freedom to control the position of the end effector, 1 degree to
control the yaw angle, and 1 degree to open and close the gripper.). Afterward,
Robosuite invokes the operational space controller to translate the generated
robotic action into the joint torques necessary to run the Robot actuators
inside the simulation.

Figure 4.2: Architecture of MAPLE’s hierarchical policy.
Source: https://ut-austin-rpl.github.io/maple/

Primitive Description Atomic Actions
Reaching Move end-effector Up to 15

to a target location (x, y, z)
Grasping Move end-effector

to a pre-grasp location (x, y, z) Up to 20
at a yaw angle ψ and close gripper

Pushing Reaches a starting location (x, y, z)
at a yaw angle ψ Up to 20
then move the end-effector
by a displacement (δx, δy, δz)

Gripper Re-
lease

Apply atomic actions to open grip-
per

4

Atomic Applies an atomic action a ∈ RdA 1

Table 4.1: Set of primitive actions used in MAPLE [5].

19

4. MAPLE and Robosuite framework............................

Figure 4.3: Selection of primitive action in the Pick and Place environment.

Figure 4.4: Example composition of Cube Stacking environment

4.2.1 MAPLE algorithm

Intending to train hierarchical policy, the MAPLE framework[5] introduced
an augmented version of the Deep Reinforcement Learning (DRL) algorithm
based on the Soft Actor-Critic (SAC) [26] architecture. The key concept
of the algorithm is alternately collecting on-policy transitions within the
simulated Robosuite environment and performing off-policy training using
data sampled from a replay buffer.

The first of the changes to the SAC algorithm [26],[27] is the replacement
of the policy actor network πϕ(ao|s) with task policy network πtskϕ(a | s) and
parameter policy network πpψ(x | s, a), where s ∈ S is a state in the state
space S. Policy parameterization in SAC is possible as long as we can evaluate
the policy for any state-action pair [27]. In the original SAC [26] ao denotes
robotic action however in the two networks a represents behavioral primitive
and x ∈ RdA is the distribution over parameters, where dA = maxa da (da
is the number of parameters for primitive a, vis Table 4.1). Further, the
parametrization of actions ao alters the standard critic Q-network Qθ(s, ao)
into MAPLE’s critic network Qθ(s, a, x). Network parameters are symbolized
ϕ and ψ for policy networks respectively and parameters θ for Q-networks.
Training of the MAPLE Q network Qθ(s, a, x) and the task policy πtskϕ(a | s),
the parameter policy πpψ(x | s, a) networks involves the optimization through
gradient descent. Learning is therefore done by directly minimizing altered

20

.................................. 4.2. MAPLE framework

SAC losses defined:

JQ(θ) = (Qθ(s, a, x)− (r(s, a, x)+

γ
(
Qθ̄(s

′, a′, x′)− αtsk log(πtskϕ(a′|s′))− αp log(πpψ(x′|s′, a′))
))2

Jπtsk(ϕ) = Ea∼πtskϕ
[
αtsk log(πtskϕ(a|s))− Ex∼πpψQθ(s, a, x)

]

Jπp(ψ) = Ea∼πtskϕEx∼πpψ [αp log(πpψ(x|s, a))−Qθ(s, a, x)]

Coefficients αp and αtsk control the maximum entropy objective for the
task policy and parameter policy. While this optimization assumes contin-
uous primitive parameters, discrete parameters could be also included by
reparameterization with the Gumbel-Softmax trick [25].

Algorithm 2 presents a complete summary of the original MAPLE algorithm.
The exploration phase is simulated in an episodic manner. Each of these
episodes is time and primitive length limited. We include an example of the
primitive selection during the episodic exploration of the Stacking benchmark
in Figure 4.5. In this exploration, the limit was set to 100 primitives.

The major benefit of exploration through behavioral primitives is the
separation of action space into compositional structures. This temporal
abstraction means faster exploration of action space in a meaningful way.
However, to promote the use of primitives with purpose the framework
includes an additional reward function in the form of object affordances.
These affordances are expressed by adding an auxiliary affordance score
to the reward function. For the atomic and gripper release primitives, an
affordance score of 1 is always given, allowing universal applicability. As for
the remaining primitives affordance score is calculated as:

saff(s, x; a) = max
p∈P

(1− tanh (max (∥x− p∥ − τ, 0))) , (4.1)

where the keypoint p depends on the primitive a and the current state s,
threshold τ for the primitive parameters x is also set depending on the
primitive type. These keypoints are the locations of objects’ interest for the
specific primitive (location to push for the push primitive, the locations of
objects to grasp for the grasp primitive, etc).

Figure 4.5: MAPLE’s six exploration sequences in the Cube stacking task.

21

4. MAPLE and Robosuite framework............................

Algorithm 2 Manipulation Primitive-augmented reinforcement Learning
(MAPLE)

1: Initializatize Q-network Qθ(s, a, x), task policy πφtsk(a|s), parameter policy
πψp (x|s, a), replay buffer D

2: for i = 1 to N do ▷ Exploration Phase
3: for j = 1 to M do ▷ Episode
4: Initialize timer t← 0
5: Initialize episode s0
6: while episode not terminated do
7: Sample primitive type at from task policy πφtsk(at|st)
8: Sample parameters xt from parameter policy πψp (xt|st, at)
9: Execute at and xt in environment

10: Obtain reward rt and next state st+1
11: Add affordance rt ← rt + λsaff(st, xt; at)
12: Add transition to replay buffer D ← D ∪ st, at, xt, rt, st+1
13: Update timer t← t+ 1
14: end while
15: end for
16: for k = 1 to K do ▷ Training Phase
17: Update Q network: θ ← θ − λlr∇θJQ(θ)
18: Update task policy: φ← φ− λlr∇φJπtsk(φ)
19: Update parameter policy: ψ ← ψ − λlr∇ψJπp(ψ)
20: end for
21: end for

22

Chapter 5
The proposed extension of the MAPLE
framework

In this chapter, we describe the proposed extension of the MAPLE framework
(see Section 4.2) by incorporating prior knowledge from human demonstra-
tions.

5.1 Leveraging prior human knowledge for task
completion

In many instances, we can rely on human demonstrations to guide our
understanding of task execution [30]. These demonstrations can provide the
optimal set of primitive actions, as well as reveal the sequence necessary
to achieve the task objective. When available, taking advantage of this
insight can improve the initial search in RL. Instead of randomly exploring,
the human-informed sequences can direct the order of actions necessary for
effective learning and task completion.

5.1.1 Type of prior knowledge

As stated earlier in Section 3.5 models benefiting from temporal abstraction
have demonstrated improved performance in learning from human datasets.
The temporal abstraction that arises from the hierarchical policy structure
in MAPLE mirrors a human-like task description. As can be seen in Figure
4.3 the MAPLE’s selection of primitive actions Grasp, Reach, and Release
for the aptly named Pick and Place environment. This similarity to the
semantic solution of the task objective is only possible due to the particu-
lar definition of each primitive (see Table 4.1 for primitives descriptions).
Moreover, MAPLE framework [5] demonstrated faster learning of parameter
sub-policies with a fixed sequence of primitives. Considering the advantages
of temporal abstraction we augment the MAPLE framework with human
sequence description.

To ensure that our demonstration dataset is both compact and easy to
use within the existing MAPLE framework, knowledge prior(human demon-
stration data) is in the form of a sequence description as can be seen in

23

5. The proposed extension of the MAPLE framework.....................
the mapping diagram in Figure 5.1. Each primitive sequence is written in
a manner that would most efficiently lead to the completion of the task.
For example, the primitive sequence for the Pick and Place task would be
(Grasp,Reach,Release).

5.1.2 Prior knowledge mapping

In our proposed extension, we make use of a mapping function to mediate the
semantic description to the MAPLE framework as can be seen in Figure 5.2.
Description data is one-to-one mapped from the human-constructed semantic
solution Z to the set of corresponding primitive robot actions Op. For example
the mapping function f : Z → Op maps the suggestion of using grasping
action to the primitive of grasping. The mapping function directly applies
the semantic significance of each primitive from Table 4.1. The suggested
primitive represents the correct primitive function and connected parameter
sub-policy in the decision-making step. The observed primitives are mapped
into a matrix, where each column represents one primitive suggestion from
the description sequence and rows represent the type of primitive (see Figure
5.1). Each column vector has the same length as the output of MAPLE’s
task policy (number of defined primitives). Even though we recognize the
ineptness of direct mapping (for example for mapping hand trajectories), the
vector representation allows for further replacement of our mapping function
with more sophisticated methods. This improvement could be in the form of
a supplementary neural network for hand trajectory and gesture mapping.
Moreover, using neural networks could map any other human descriptive
guidance from human speech. These mapping methods could replace ours by
simply replacing the mapping function with the appropriate neural network
within our outline in Figure 5.2.

Figure 5.1: Direct mapping function.

24

.................. 5.2. Augmenting MAPLE architecture with prior knowledge

Figure 5.2: Proposed MAPLE framework incorporating human demonstrations.

5.2 Augmenting MAPLE architecture with prior
knowledge

Although there exist several methods for integrating prior knowledge, as
discussed in Section 3.5, our approach involves incorporating sequence in-
formation in contrast to directly mimicking actions from observations. Con-
sequently, we do not employ behavioral cloning. Additionally, the SAC’s
off-policy learning introduces constraints on the in-loop methods that rely
on probing the user for additional information during the learning. Maple
could benefit from Demonstration-Guided RL[15], where the algorithm learns
short-horizon skills from offline datasets and then leverages this knowledge
in new tasks[16]. However, this method parallels pretraining the primitive
parameter sub-policy networks.

Acknowledging these factors, the MAPLE framework can benefit from
reward shaping and the incorporation of prior knowledge into the policy
model architecture. These strategies can be easily incorporated into the
preexisting SAC-based MAPLE framework. In the following subsections, we
describe the two extensions. The overall extended architecture is visualized
in Figure 5.2 and pseudocode is in the Algorithm 3.

5.2.1 Reward shaping

Reward shaping involves modifying the reward function based on the provided
primitive sequence to guide the learning toward the desired behavior. We
adjust the reward function by adding an additional reward to behavior
mimicking demonstration primitive. Task policy network outputs softmax-
normalized vector x which decides what primitive action will be enacted. We
use Cosine similarity multiplied by scaling constant αo to compute additional
observation reward λo(op, x) from the primitive type vector x and description
vector op:

λo = αo ∗ (x · op)/(||x|| ∗ ||op||). (5.1)

When the task policy network grants a probability value to the same primitive
as the one from the observed primitive, it gains an overlap bonus reward.

25

5. The proposed extension of the MAPLE framework.....................
Therefore nudging the policy to pick the same primitive as the one from
observations.

5.2.2 Incorporating prior knowledge into the policy network

We additionally incorporate prior knowledge into the task policy neural
network input. We concatenate the observation vector from the Robosuite
environment with the mapped demonstration data. Thus supplying the
compositional knowledge directly to the MAPLE policy as described in
Figure 5.2. supplying the compositional knowledge directly to the MAPLE
policy as In the visualized task in Figure 5.3, the first step of the decision-
making process involves the task policy neural network receiving a vector
composed of [observed scene, grasp]. In the following step, the task policy
neural network’s input is the vector containing [observed scene, reach]. While
the task policy network is not required to use the prior knowledge, imitating
it benefits the network. Therefore, leading to learning advantages.

Figure 5.3: Example of primitive sequence in the Cube Stacking environment.

26

.................. 5.2. Augmenting MAPLE architecture with prior knowledge

Algorithm 3 Extended MAPLE (extensions marked in blue)
1: Input: Demonstration data z
2: Initializatize Q-network Qθ(s, a, x), task policy πφtsk(a|s), parameter policy
πψp (x|s, a), replay buffer D

3: Get description primitives Op by mapping Op ← f(z)
4: for i = 1 to N do ▷ Exploration Phase
5: for j = 1 to M do ▷ Episode
6: Initialize timer t← 0
7: while episode not terminated do
8: Sample primitive at from πφtsk and parameters xt from πψp
9: Execute at and xt to obtain reward rt and next state st+1

10: Get demonstration primitive vector op ← Op(t)
11: Add primitive overlap reward rt ← rt + λo(at, op)
12: Add transition to replay buffer D ← D ∪ {st, at, xt, rt, st+1,op}
13: Update timer t← t+ 1
14: end while
15: end for
16: for k = 1 to K do ▷ Training Phase
17: Update Q network: θ ← θ − λlr∇θJQ(θ)
18: Update task policy: φ← φ− λlr∇φJπtsk(φ)
19: Update parameter policy: ψ ← ψ − λlr∇ψJπp(ψ)
20: end for
21: end for

27

28

Chapter 6
Experimental setup

This section aims to provide information for constructing new environments
within the MAPLE framework and present our methodology for creating
reward functions and new behavioral primitives. Furthermore, this section
describes employed benchmarking environments and the hyperparameters
used in training.

An overview of all the employed benchmarking environments is available
in Table 6.1, and all hyperparameters used during the training of policy and
SAC networks across all benchmark environments are available in Table 6.2.

6.1 Robosuite environments

In our experimentation with the MAPLE algorithm, we train new policies in
simulated environments constructed using Robosuite [20]. Every Robosuite
task includes a robot model, task-specific items, and an arena (example
environment rendered in Figure 6.1). All objects use the underlying MuJoCo
physics engine to simulate realistic physics (including robot dynamics, contact
mechanics, and friction). The following sections detail the Python imple-
mentation of the Environment class, object classes, and reward functions
necessary for new task creation.

Figure 6.1: Render of Robosuite environment.

29

6. Experimental setup
6.1.1 Environment class

The class diagram in Figure 6.3 outlines the dependency structure of the
Robosuite’s environment. Complete class diagram of all Robosuite classes
available with code in [48]. Moreover, we highlight four environment methods
that are important for the creation of new tasks and for understanding the
Robosuite framework...1. The load_model method sets up the MuJoCo instance by loading the

appropriate robot, arena, and object XML model files into the simulation.
The method loads specific attributes, textures, and geometry meshes of
task items and defines the initial task composition...2. The reset method sets the environment at the start of each episode
with a valid, non-colliding placement of all objects in the scene...3. The get_observation method is used to get all the necessary infor-
mation about the current state. In the Maple framework observation
includes the task objects positions and rotations and relative positions
and angles to the gripper. For example, observations in the peg insertion
benchmark comprise the position and rotation of the peg, the relative
positions between the gripper and the peg, and the relative position and
angle between the hole and the peg as demonstrated in Figure 6.2 .

Figure 6.2: Visualization of observation data passed from the simulated peg
insertion task environment. The relative position between the gripper and the
peg v, as well as the peg orientation denoted by angle α, and the relative position
of the hole and the peg denoted by (d1, d2)...4. The reward method function is an essential component of RL, the

Maple framework incorporates staged rewards to compute the reward of
the current state of the environment. The staged reward provides the
agent with feedback even when the task is not successfully completed. For
instance, in the peg insertion benchmark, the reward function consists
of a reward for grasping the peg, a reward for the alignment of the peg
with the hole, and a reward for successful insertion.

30

................................ 6.1. Robosuite environments..5. The check_success method is a binary task completion check. This
method defines the goal of the task by implementing constraints that
need to be accomplished. For example, in the cube stacking benchmark,
success is achieved when the smaller cube is placed on top of the other.
However, since the simulation runs for a fixed number of timesteps, this
method also checks for the stability of the discovered policy. If the
smaller cube is placed on the edge of the base cube, the stacked tower
can fall over invalidating the temporary success of the task.

Figure 6.3: Class diagram of Robosuite’s environment implementation.

6.1.2 Object classes

Each task contains an arena model, a manipulator model, and a list of object
model instances. All three subclasses represent a key component of the
environment (the robot, the workspace, and the task items) as rendered in the
example environment in Figure 6.1. This modularization allows for a simple
addition of new tasks by including the three subclasses in the load_model
method of the Environment class. We provide a brief description of each
subclass below:..1. The Robot class represents the real-life robot manipulator defined by

31

6. Experimental setup
a corresponding robot arm XML and gripper XML. These files define
manipulator characteristics, such as the degrees of freedom and the
control method. The robot model used in all of our tests was the same
as in [5] the 7-DoF Panda. The control method is Operational Space
Control guided by the behavioral primitive close loop controls...2. The Arena class defines the physical space where the robot operates
and performs tasks. The workspace is defined depending on the task.
In the pick and place benchmark, the Arena class defines the size and
height of the table and bins for the items. While in the door opening
task, the Arena is composed of a door and a handle...3. The MujocoObjec class represents the objects, the robots manipulator
interacts with in the tasks. These can be defined as simple geometric
shapes or complex models. The objects have their physical properties,
such as dimension, mass, and friction.

Figure 6.4: Class diagram of Robosuite’s object implementation.

6.1.3 MAPLE-specific reward and observation methods

MAPLE’s algorithm implementation makes changes to Robosuite environ-
ments by implementing additional methods below:

32

................................ 6.1. Robosuite environments..1. The staged_rewards methods are used with affordance to nudge the
hierarchical policy to use parametrized actions instead of atomic actions,
speeding up learning. Each task has its own set of staged rewards. For
example, in the peg insertion task one staged reward is added for peg
alignment and another for grasping and lifting the peg in Figure 6.2.
Staged rewards are all added up together and then normalized...2. The get_skill_info method returns environment observation for
keypoint computation of the affordance score. In the case of the before-
mentioned peg task in Figure 6.2, the observation contains points of
interest, the grasping position of the green tip, and the hole position...3. The get_aff_reward method computes additional rewards from
observed key points as outlined in Section 4.2.1.

6.1.4 MAPLE’s parametrized action implementation

MAPLE employs a SkillController class to enact a parametrized ac-
tion using Robosuite’s inbuilt operational space control (OSC). To execute
the parametrized action (skill) the SkillController repeatedly calls the
get_pos_ac() method of the chosen skill until the is_success() method
returns a True value. Each parametrized action is defined in its skill sub-
class as a closed loop of hard-coded end effector states computed from input
parameters (parameters generated by its primitive parameter sub-policy). In
Figure 6.5, we provide an example of a parametrized action instance.

Figure 6.5: lustration of the reach parametrized action in the peg insertion task.
After the task policy has elected to use the reach primitive, the corresponding
primitive sub-policy network has chosen the target position (x, y, z) near the hole.
Subsequently, the ReachSkill passes a series of positions to the OSC controller
to move the gripper to (x, y, z).

33

6. Experimental setup

Figure 6.6: Class diagram of MAPLE’s parametrized action implementation.

6.2 Our extensions to the Robosuite environments

As a part of our experiments, we make the following additions to the MAPLE
framework, which include:..1. Expanding Robosuite benchmarks by introducing "clutter."..2. Introducing a new reward function from prior knowledge...3. Creating new tasks with multiple task-relevant objects.

6.2.1 Addition of YCB objects

To represent realistic household items and tools, we decided to use the YCB
standardized benchmark models [23]. From the YCB objects dataset, we
have imported five objects to the Maple framework to use them to generate
artificial clutter. These objects are the Key, the Bowl, the Clamp, the
Scissors, and the Plate in image 6.7b. The four selected common items were
specifically included for the diversity they provide in the evaluation of the
maple framework. Each of the objects’ geometries amplifies the complexity
of the benchmarking task. For example, task objects are spawned in the
Bowl, the Key can block grasping action, and the plate can act as an uneven
moveable base for stacking. An example of a high-clutter environment is
depicted in Figure 6.7a.

All of the YCB model meshes are processed using Meshlab [35]. This
program allowed us to simplify the detailed geometric meshes into more gen-
eralized models with Laplace smoothing and quadric edge collapse decimation
as illustrated in Figure 6.8.

34

......................6.2. Our extensions to the Robosuite environments

(a) : Render illustrates the stack. Foriron-
ment with multiple objects forming ob-
stacles for task completion.

(b) : Render of imported YCB objects

Figure 6.7: Example environments containing YCB objects.

(a) : Original high vertex density meshes. (b) : Our simplified YCB object meshes.

Figure 6.8: YCB’s bowl and scissors laser scans before and after mesh simplifi-
cation.

6.2.2 Reward shaping

Our implementation of prior knowledge is outlined in Section 5.2.1. The
additional observation reward is implemented inside the SkillController
class using Pytorch’s torch.nn.CosineSimilarity function. The primitive
sequence is loaded and mapped into the environment as a numpy array. The

35

6. Experimental setup
observation reward is computed after each environmental step similarly to
the affordance score.

6.2.3 Creation of new benchmarks

A new task is created by implementing the environment class as depicted in
the class diagram in Figure 6.3. MAPLE environment creation is composed
of the following steps:..1. Implementing the load_model method which defies the composition

and objects used...2. Defining the reward functions and task success conditionions...3. Defining the get_observation method which serves as the input to
MAPLE’s hierarchical policy...4. Configuring the get_skill_info method for affordance score.

A detailed description of how to implement new tasks within the MAPLE
framework is provided with code in [48].

We created two new manipulation tasks to test the MAPLE framework [5]
in multi-stage long-horizon tasks:..1. The cube sorting environment provides the challenge of sorting three

cubes of different sizes. The task’s goal is to sort the cubes on the grey
part of the table in ascending order, with the smallest on the left and
the largest on the right...2. The triple stacking environment benchmark is a more complex
scenario of cube stacking. We increased the number of cubes needed
stack to complete the task by adding an extra cube and augmenting the
reward functions and cube positions.

(a) : Cube sorting environment (b) : Triple cube stacking task.

Figure 6.9: Renders of our Robosuite manipulation tasks.

36

.............................. 6.3. Benchmarking environments

6.3 Benchmarking environments

We run our experiments on ten different robot manipulation tasks. Eight
of these tasks are part of the MAPLE framework [5]. Additional two tasks,
triple cube stack, and cube sort, were created to further evaluate MAPLE’s
performance. In Table 6.1, we provide a brief description of each task.

37

6. Experimental setup
Task: env_lift (Block Lifting)
Scene Description: A cube is placed on the
tabletop in front of a single robot arm.
Goal: The robot arm must lift the cube above
a certain height.
Start State Distribution: The cube location
is randomized at the beginning of each episode.

Task: env_stack (Block Stacking)
Scene Description: Two cubes are placed on
the tabletop in front of a single robot arm.
Goal: The robot must place one cube on top of
the other cube.
Start State Distribution: The cube locations
are randomized.

Task: env_pnp (Pick and Place)
Scene Description: Four objects are placed in
a bin in front of a single robot arm. There are
four containers next to the bin.
Goal: The robot must place each object into its
corresponding container.
Start State Distribution: The object loca-
tions are randomized.

Task: env_nut_assembly (Nut Assembly)
Scene Description: One square peg and one
round peg are mounted on the tabletop, and two
nuts (one square and one round) are placed on
the table in front of a single robot arm.
Goal: The robot must fit the square nut onto
the square peg and the round nut onto the round
peg.
Start State Distribution: The nut locations
are randomized at the beginning of each episode.

Task: env_door (Door Opening)
Scene Description: A door with a handle is
mounted in front of a single robot arm.
Goal: The robot arm must turn the handle and
open the door.
Start State Distribution: The door location
is randomized at the beginning of each episode.

38

.............................. 6.3. Benchmarking environments

Task: env_wipe (Table Wiping)
Scene Description: A table with a whiteboard
surface and dark markings is placed in front of a
single robot arm, which has an eraser mounted.
Goal: The robot arm must learn to wipe the
whiteboard surface and clean all of the markings.
Start State Distribution: The whiteboard
markings are randomized at the beginning of
each episode.
Task: env_cleanup (Clean Up)
Scene Description: Spam box and jello box
are placed on the tabletop in front of the single
robot arm.
Goal: The robot arm must learn to place the
spam box into the storage bin and move the jello
onto the grey part of tabletop next to the bin.
Start State Distribution: Locations of both
boxes are randomized.

Task: env_peg_in_hole (Peg Insertion)
Scene Description: Peg is placed on the table-
top in front of a single robot arm next to a box
with a square hole.
Goal: The robot arm must lift the peg and insert
it a certain distance into the box.
Start State Distribution: The peg location is
randomized at the beginning of each episode.

Task: env_stack3 (Triple Stack)[NEW TASK]
Scene Description: Three cubes, each of a
different size, are placed on the tabletop in front
of a single robot arm.
Goal: The robot must learn to stack all three
cubes on top of each other.
Start State Distribution: The cubes locations
are randomized at the beginning of each episode.
Task: env_cube_sort(Cube Sort) [NEW TASK]
Scene Description: The tabletop is divided
into a grey sorting part and a white part, on
which there are placed three different cubes.
Goal: The robot must sort all three cubes by
size onto the grey part.
Start State Distribution: The cubes’ loca-
tions are randomized within the white part of
the tabletop.

Table 6.1: Descriptions of all environments used in our experiments (Triple
stack and Cube sort are newly introduced tasks).

39

6. Experimental setup
6.4 Hyperparameters used in training new Maple
policies

Hyperparameter selection in RL algorithms significantly impacts performance,
stability, and convergence of the learning process [38],[39]. Therefore to
reliably replicate results achieved with Maple [5], we retained the training
hyperparameters of the SAC architecture see Table 6.2. In all conducted
experiments with Maple, the optimizer employed was Adam [40], SAC’s
automatic entropy tuning was enabled, and the sizes of both critic networks
were kept the same. Moreover, the Maple hierarchical structure makes use
of two entropy targets, the entropy target for the task policy (primitive
selection network) had an increased entropy target for the first 200 epochs to
0.97 · log(k), where k is the number of primitives.

Maple-specific hyperparameters used within our tests are listed in Table 6.3.
The hyperparameters employed with our extension reflect the lesser necessity
for exploration as we provide foundational knowledge of the task structure
to the environment. Consequently, we skip the initial high entropy phase in
training our extended Maple policies. Furthermore, we limit the number of
primitives in each episode to 100. However, to allow a direct comparison of
learning speeds across the two methods, we retained the number of primitives
per exploration phase.

Tuning hyperparameters allows for deeper insights into the algorithm’s
behavior. In Section 7.1, we present findings on how the hidden size and
reward influence policy training. All experiments detailed in chapter 7 were
carried out on Google’s Colab research infrastructure with Tesla K40 GPU
and a cluster with NVIDIA GeForce 1080 Ti.

Parameter Value
Optimizer Adam [40]
Batch Size 1024
Policy Learning Rate 3× 10−5

Q-function Learning Ratef 3× 10−5

Discount factor 0.95
Replay Buffer Size 106

Number of Hidden Layers 2
Hidden size 256
Target Task Policy Entropy 0.50 · log(k), k is number of primitives
Target Parameter Policy Entropy −maxa da
Activation Nonlinearity ReLU
Target Smoothing Coefficient (τ) 0.001
Target Update Interval 1

Table 6.2: SAC Parameter Values.

40

...................6.4. Hyperparameters used in training new Maple policies

Parameter Maples Value Extension Value
First exploration phase length 30000 primitives 20000 primitives
Training steps per epoch 1000 1000
Number of primitives

per exploration phase 3000 3000

Max episode length 150 primitives 100 primitives
Reward scale 5 5
Affordance scale 3 Not in use
Observation scale αo Not in use 4

Table 6.3: Maple Parameter Values.

41

42

Chapter 7
Results

In this chapter, we present results attained from testing the MAPLE algo-
rithm’s sensitivity to hyperparameter, reward, and environment changes and
provide results achieved with the changes made to the MAPLE framework
outlined in Section 6.2.

7.1 Evaluation of MAPLE sensitivity

To evaluate the robustness of the MAPLE algorithm, we have run the following
experiments:..1. Impact of hidden layer size on learning performance...2. Effects of staged reward multipliers on the success of learning new policies...3. Evaluation of policies in cluttered environments.

7.1.1 Hidden layers sizes

The graphs in Figure 7.1, display the effects of hidden layer size in learning
new MAPLE policies in the Cleaning up environment, the Peg insertion
environment, and the Cube stacking environment.

Policies trained with smaller hidden layer sizes of 64 and 32 failed to solve all
three tasks see Table 7.1. Policies with a higher number of neurons generally
outperformed smaller ones. The baseline size of 256 achieved comparatively
the best learning speed-to-success ratio. However, in the complex task of pin
insertion, the policy with the highest number of neurons 512 outperformed the
baseline in learning speed. All experiments are averaged over 5 seeds. (Each
set of runs in one environment was done on a single platform to eliminate
the effects of cross-platform on the Robosuite simulator.)

43

7. Results
Hidden Size 32 64 128 256 512

Clean up 0.0± 0.0 0.0± 0.0 7.0± 12.8 83.0± 4.3 86.0± 5.6
Peg insert 0.0± 0.0 4.0± 4.8 2.0± 3.0 98.0± 2.0 93.0± 3.4
Cube stack 0.0± 0.0 0.5± 1.8 1.0± 0.9 99.0± 1.2 100.0± 2.0

Table 7.1: Final Hidden size Success Rates (%)

(a) : Clean up

44

............................7.1. Evaluation of MAPLE sensitivity

(b) : Peg Insertion

45

7. Results

(c) : Cube Stacking

Figure 7.1: Learning curves showing average episodic task rewards and success
rates for different hidden layer sizes throughout training.

7.1.2 Reward sensitivity

To test the MAPLE’s sensitivity to the reward function divergence, we use
three different sets of staged reward multipliers. Each of the Robosuite
benchmarking environments comes with staged reward functions where each
function has a different emphasizing multiplier. We compare MAPLE’s
multipliers [5] with the multipliers from Robosuite [20] and lastly with all
multipliers set to a single value.

The learning curves in Figure 7.2 show the effects of staged reward mul-
tipliers on learning new policies. Each learning curve is averaged over 5
seeds.

46

............................7.1. Evaluation of MAPLE sensitivity

Robosuite reward multipliers produced learning times and success rates
similar to the original MAPLE multipliers in all four experiments. In contrast,
uniform reward multipliers failed to teach successful policies in the Door
Opening and Nut Assembly tasks. In the Wiping environment, all sets of
multipliers yielded similarly successful policies. Learning curves from the Nut
Assembly task (in Figure 7.2b) show similar behavior for around the first 300
epochs. However, policies trained with uniform reward multipliers reached a
local optimum and failed to meaningfully complete the task for another 1000
epochs.

47

7. Results

(a) : Door Opening

(b) : Nut Assembly

48

............................7.1. Evaluation of MAPLE sensitivity

(c) : Table Wiping

(d) : Lift
Figure 7.2: Learning curves showing the average episodic task rewards and
success rates of different staged reward multipliers.

49

7. Results
7.1.3 Environmental changes

In Table 7.2, we provide results from evaluating MAPLE policies in cluttered
environments. Low-clutter environments contain a single nonrelevant object,
and high-clutter environments contain four nonrelevant objects. Success
rates are averaged over 5 evaluation runs (one evaluation run spans over 20
episodes).

All evaluated policies showed decreased success rates in clutter environ-
ments apart from policies in the Wipe environment. In low-clutter environ-
ments, MAPLE policies managed similarly high success rates in all but one
environment. On the other hand, success rates plummeted in highly clut-
tered environments. Mainly in the high-clutter Pick and Place environment,
MAPLE policies failed completely.

Environments with No Clutter Low-clutter high-clutter
Nut Assembly 100.0± 0.0 73.0± 34.0 7.0± 12.8

Wipe 34.0± 10.3 35.0± 9.3 29.0± 15.3
Lift 100.0± 0.0 99.0± 2.2 46.0± 30.9

Stack 99.0± 1.2 98.0± 5.8 26.0± 47.9
Pick and Place 97.0± 2.7 95.0± 6.2 0.0± 0.0

Clean Up 83.0± 4.3 83.0± 6.9 15.0± 34.9
Peg Insertion 98.0± 2.0 91.0± 8.0 33.0± 28.9

Table 7.2: Success rates (%) of environments with clutter

7.2 Evaluation of MAPLE framework extensions

In this section, we analyze the effects of our additions to the MAPLE frame-
work. We provide the results of the following extensions:..1. Inclusion of new parametrized action, the align primitive...2. Creation of new benchmarking environments...3. Incorporation of prior knowledge.

7.2.1 Skill addition

Our newly introduced parameterized action (Align) aimed to solve the use of
atomic actions in the peg insertion task. Align action was used during the
early exploration phases of learning see Figure 7.3a. However, as shown in
Figure 7.3b, the hierarchical policy did not apply our parametrized action in
the final solution (i.e., the policy still elected the atomic primitive to align
and insert the peg to solve the task).

50

....................... 7.2. Evaluation of MAPLE framework extensions

(a) : Action sequences used in the exploration of epoch 100.

(b) : Action sequences used in the evaluation of epoch 2000.

Figure 7.3: Illustrations of skills employed in the Peg Insertion task. Each row
corresponds to a single simulated episode.

7.2.2 New environments

In Table 7.3 are averaged success rates over 5 evaluation runs in the environ-
ments outlined in Section 6.2.3. Each policy has been training for 2500 epochs
(approximately 48 hours on our setup). The first stage in Cube sorting is
pushing the largest cube into its position and in Triple Stack it signifies two
cubes being stacked on top of each other. The second stage is equivalent to
the task goal condition as listed in Table 6.1

Success Rate (%) First Stage Second Stage
Cube Sort 100.0± 0.0 76.0± 38.0

Triple Stack 100.0± 0.0 23.0± 9.8

Table 7.3: Final success rates (%) for different reward multipliers

51

7. Results
7.2.3 Prior knowledge

Figure 7.4 presents results of extended MAPLE with priors compared with
original MAPLE algorithm [5]. The observation sequence used in training
extended MAPLE was (Grasp,Reach,Realease). As can be seen in Figure
7.4b, the introduction of prior knowledge accelerates the learning process, as
is evident from the success rate rising significantly earlier around epoch 300.
Eventually, both methods achieve the same success rate.

(a) : Comparison of average episodic task rewards. Shaded areas indicate the standard
deviation.

(b) : Comparison of average episodic success rates. Shaded areas indicate the standard
deviation.

Figure 7.4: Learning curves of training with and without prior knowledge.

52

Chapter 8
Discussion

We segment our analysis of our results from Chapter 7 into two corresponding
discussions.. In the first discussion, we interpret the results of sensitivity testing of

the MAPLE algorithm under different parameters and reward functions.
Furthermore, we discuss the evaluation of MAPLE policies in cluttered
environments. We try to explain the different behaviors seen in our data
and provide context for outlier results..The second discussion is regarding the results we achieved with our
extensions of the MAPLE framework. We expand on the results from
newly included tasks and review the failed addition of new parametrized
action. Finally, we analyze the results of the proposed learning with
prior knowledge.

8.1 MAPLE framework sensitivity

In testing with different hidden layer sizes, MAPLE displayed the best learning-
to-success ratio for the baseline hidden layer size 256, see Table 7.1. In general,
the number of epochs to complete the tasks slowed with the biggest networks
with hidden layer size 512, as shown in Figure 7.1, most likely due to the added
size complexity of the network. The 512 networks achieved slightly better
success rates when comparing the three manipulation tasks: clean up, peg
insert, and cube stack. However, success rate results are within the standard
deviations of each other. Moreover, each epoch was more computationally
demanding, and on average, the 512 networks took 20 percent more time to
train. This, combined with the relative sample inefficiency, meant training
policies spanned over multiple days. We can conclude that the solutions to the
tested manipulation tasks require policy networks made up of at least 2 layers
with hidden sizes of 256. Moreover, this size makes a perfect compromise to
maximize learning efficiency.

Policies trained with different sets of staged reward multipliers depict the
dependency of MAPLE exploration on staged rewards. This can be seen
when comparing the learning curves of the Nut assembly task and the Lift
task in Figure 7.2. Policies trained with uniform reward multipliers achieve

53

8. Discussion
the staged reward for grasping the task-relevant object. This allows the
policy to solve the simpler Lift task. However, in the Nut assembly tasks,
the learning in Figure 7.2b lacks the "reward push" of the original MAPLE
staged multipliers to manipulate the nut object onto the peg (i.e., learning
achieves local optima and only after an additional 1000 epochs discovers and
learns the complete set of actions for reaching and releasing the nut onto the
right peg).

Evaluation in cluttered environments displayed the robustness of learned
policies in low-clutter environments. Policies were able to avoid unnecessary
objects and complete tasks. However, evaluation in the high-clutter envi-
ronments has not demonstrated any new complex behavior. This can be
seen in the Pick and Place high-clutter environment, where the policy failed
completely, see Table 7.2, 3rd column. The number of items in the left bin,
see the Pick and Place render in Table 6.1, made it impossible for the policy
to pick up any objects. One exception was the evaluation of the Wipe task,
where the applied cutter had seemingly no effect. This was due to the nature
of the task, where the robot solution repeatedly applied the push primitive
to clean spots on the table. This amounted to seemingly random swiping
motions around brown spots, pushing everything out of the way.

8.2 Our extension of the MAPLE framework

The sequences of parametrized actions used to solve the Peg insertion task
in Figure 7.3b illustrate that our Align parametrized action was completely
omitted from the solution as can be seen in Figure 7.3b. This could be
the result of improper action design or insufficient affordance rewards. The
creation of new tasks was plagued with difficulties regarding the staged
reward functions. Policies would often find loopholes in reward definitions,
which resulted in nondesired behavior (for example, continuously picking
and releasing one cube). The multi-object tasks entailed longer episodes
affecting the learning times. Nonetheless, the MAPLE algorithm managed
to solve our multi-object long-horizon tasks with a 76% success rate in the
Cube sorting task and a 23% success rate in the Triple stack task (see results
for Triple stack and Cube sorting tasks in Table 7.3). Last and foremost,
our extension of the MAPLE framework with prior knowledge improved the
exploration strategy of MAPLE policy networks, resulting in accelerated
learning. However, the high sample demand for MAPLE learning is time and
resource-consuming even with the benefits of our modification.

54

Chapter 9
Conclusion and future work

In this work, we introduced and compared two methodologies: PAMDPs
and options. Both approaches are employed in state-of-the-art works to
achieve hierarchical reasoning with temporarily extended actions (skills or
parametrized actions). We decided to leverage PAMDPs as the predefined
parametrized actions allow for more straightforward demonstration mapping
than the algorithm-learned options. Moreover, we chose the MAPLE frame-
work [5] for its ability to solve complex manipulation tasks with sequences of
parametrized actions resembling human task descriptions.

This thesis describes the implementation of the MAPLE algorithm in
Python and produces a simple overview of the most important classes and
methods necessary for building on to the existing framework. This descrip-
tion also involves the explanation of the underlying Robosuite simulation
framework [20]. We detail the inclusion of the YCB objects [23] and two new
environments: Triple Stack and Cube Sort; see renders in Figure 6.9. Fur-
thermore, we propose our extension of the MAPLE framework with mapped
observations (task-solving human action sequences). The proposed extension
incorporates prior knowledge directly into the neural networks and by reward
shaping.

Additionally, we presented the results showing the MAPLE algorithm
sensitivity to different hidden layer sizes, concluding the networks with the
hidden layer sizes of 256 showed the best trade-off between success and
learning speed. Analysis of staged reward tests showed the dependency of
exploration on staged reward multipliers. Furthermore, we highlighted the
MAPLE policies’ sensitivity to environmental changes.

We have introduced a new Align primitive. Nevertheless, our parametrized
action was not used in the final solution of the Peg insertion task. On the
other hand, we presented a 76% success rate in the newly introduced Cube
sorting task and a 23% success rate in the Triple stack task. We successfully
improved the MAPLE framework by incorporating prior knowledge, achieving
faster learning in the Cube stacking task.

Further expansion of the mapping function could lead to obtaining prior
knowledge from gesture recordings or internet videos [17],[18]. Moreover,
future work could attempt to transfer the MAPLE policies to real-life envi-
ronments.

55

56

Bibliography

[1] SUTTON, Richard S.; PRECUP, Doina; SINGH, Satinder. Between MDPs
and semi-MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial intelligence, 1999, 112.1-2: 181-211.

[2] BELLEMARE, Marc, et al. Unifying count-based exploration and intrinsic
motivation. Advances in neural information processing systems, 2016, 29.

[3] BOHG, Jeannette, et al. Data-driven grasp synthesis—a survey. IEEE
Transactions on robotics, 2013.

[4] MASSON, Warwick; RANCHOD, Pravesh; KONIDARIS, George. Re-
inforcement learning with parameterized actions. In: Thirtieth AAAI
Conference on Artificial Intelligence. 2016.

[5] NASIRIANY, Soroush; LIU, Huihan; ZHU, Yuke. Augmenting reinforce-
ment learning with behavior primitives for diverse manipulation tasks.
In: 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022. p. 7477-7484.

[6] KUINDERSMA, Scott, et al. Optimization-based locomotion planning,
estimation, and control design for the atlas humanoid robot. Autonomous
robots, 2016, 40: 429-455.

[7] KARAMAN, Sertac; FRAZZOLI, Emilio. Sampling-based algorithms for
optimal motion planning. The international journal of robotics research,
2011, 30.7: 846-894.

[8] GARRETT, Caelan Reed, et al. Integrated task and motion planning.
Annual review of control, robotics, and autonomous systems, 2021, 4:
265-293.

[9] MACHADO, Marlos C., et al. Temporal abstraction in reinforcement
learning with the successor representation. Journal of Machine Learning
Research (JMLR) 24, 1-69, 2023.

[10] KONIDARIS, George; BARTO, Andrew. Skill discovery in continuous
reinforcement learning domains using skill chaining. Advances in neural
information processing systems, 2009, 22.

57

9. Conclusion and future work
[11] BAGARIA, Akhil; KONIDARIS, George. Option discovery using deep

skill chaining. In: International Conference on Learning Representations.
2020.

[12] KLISSAROV, Martin; PRECUP, Doina. Flexible option learning. Ad-
vances in Neural Information Processing Systems, 2021, 34: 4632-4646.

[13] MASSON, Warwick; RANCHOD, Pravesh; KONIDARIS, George. Re-
inforcement learning with parameterized actions. In: Thirtieth AAAI
Conference on Artificial Intelligence. 2016.

[14] HAUSKNECHT, Matthew; STONE, Peter. Deep reinforcement learn-
ing in parameterized action space. In: Proceedings of the International
Conference on Learning Representations (ICLR). 2016.

[15] ARGALL, Brenna D., et al. A survey of robot learning from demonstra-
tion. Robotics and autonomous systems, 2009, 57.5: 469-483.

[16] PERTSCH, Karl, et al. Demonstration-Guided reinforcement learning
with learned skills. In: Conference on Robot Learning (CoRL). 2021.

[17] SHAW, Kenneth; BAHL, Shikhar; PATHAK, Deepak. VideoDex: Learn-
ing Dexterity from Internet Videos. In: Conference on Robot Learning
(CoRL). 2022.

[18] YANG, Yezhou, et al. Robot learning manipulation action plans by"
watching" unconstrained videos from the world wide web. In: Proceedings
of the AAAI conference on artificial intelligence. 2015.

[19] DALAL, Murtaza; PATHAK, Deepak; SALAKHUTDINOV, Russ R.
Accelerating robotic reinforcement learning via parameterized action
primitives. Advances in Neural Information Processing Systems, 2021, 34:
21847-21859.

[20] ZHU, Yuke, et al. robosuite: A modular simulation framework and
benchmark for robot learning. arXiv preprint arXiv:2009.12293, 2020.

[21] OPENAI(2023). GPT-4 technical report. arXiv: 2303.08774, 2023.

[22] ZHU, Yifeng; STONE, Peter; ZHU, Yuke. Bottom-up skill discovery
from unsegmented demonstrations for long-horizon robot manipulation.
IEEE Robotics and Automation Letters, 2022, 7.2: 4126-4133.

[23] CALLI, Berk, et al. The YCB object and model set: Towards common
benchmarks for manipulation research. In: 2015 international conference
on advanced robotics (ICAR). IEEE, 2015. p. 510-517.

[24] TODOROV, Emanuel; EREZ, Tom; TASSA, Yuval. Mujoco: A physics
engine for model-based control. In: 2012 IEEE/RSJ international confer-
ence on intelligent robots and systems. IEEE, 2012. p. 5026-5033.

58

............................... 9. Conclusion and future work

[25] MADDISON, Chris J.; MNIH, Andriy; TEH, Yee Whye. The Concrete
Distribution: A Continuous Relaxation of Discrete Random Variables. In:
International Conference on Learning Representations. 2016.

[26] HAARNOJA, Tuomas, et al. Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochastic actor. In: International
conference on machine learning. PMLR, 2018. p. 1861-1870.

[27] HAARNOJA, Tuomas, et al. Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905, 2018.

[28] PERTSCH, Karl; LEE, Youngwoon; LIM, Joseph. Accelerating reinforce-
ment learning with learned skill priors. In: Conference on robot learning.
PMLR, 2021. p. 188-204.

[29] LIU, Huihan, et al. Robot Learning on the Job: Human-in-the-Loop
Autonomy and Learning During Deployment. Robotics: Science and
Systems (RSS), 2023.

[30] MANDLEKAR, Ajay, et al. What Matters in Learning from Offline
Human Demonstrations for Robot Manipulation. In: Conference on Robot
Learning. PMLR, 2022. p. 1678-1690.

[31] MNIH, Volodymyr, et al. Playing atari with deep reinforcement learning.
In: NIPS Deep Learning Workshop, 2013.

[32] SILVER, David, et al. Mastering the game of Go with deep neural
networks and tree search. nature, 2016, 529.7587: 484-489.

[33] AGARWAL, Rishabh, et al. Deep reinforcement learning at the edge
of the statistical precipice. Advances in neural information processing
systems, 2021, 34: 29304-29320.

[34] HENDERSON, Peter, et al. Deep reinforcement learning that matters.
In: Proceedings of the AAAI conference on artificial intelligence. 2018.

[35] CIGNONI, Paolo, et al. Meshlab: an open-source mesh processing tool.
In: Eurographics Italian chapter conference. 2008. p. 129-136.

[36] LILLICRAP, Timothy P., et al. Continuous control with deep rein-
forcement learning. In : Proceedings of the International Conference on
Learning Representations (ICLR). 2016.

[37] ZHAN, Huixin; TAO, Feng; CAO, Yongcan. Human-guided robot be-
havior learning: A gan-assisted preference-based reinforcement learning
approach. IEEE Robotics and Automation Letters, 2021, 6.2: 3545-3552.

[38] HUSSENOT, Léonard, et al. Hyperparameter selection for imitation
learning. In: International Conference on Machine Learning. PMLR, 2021.
p. 4511-4522.

59

9. Conclusion and future work
[39] HENDERSON, Peter, et al. Deep reinforcement learning that matters.

In: Proceedings of the AAAI conference on artificial intelligence. 2018.

[40] KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic
Optimization. international conference on learning representations. 2015.

[41] POMERLEAU, Dean A. Alvinn: An autonomous land vehicle in a neural
network. Advances in neural information processing systems, 1988.

[42] ABBEEL, Pieter; NG, Andrew Y. Apprenticeship learning via inverse
reinforcement learning. In: Proceedings of the twenty-first international
conference on Machine learning. 2004. p. 1.

[43] ARZATE CRUZ, Christian; IGARASHI, Takeo. A survey on interactive
reinforcement learning: Design principles and open challenges. In: Pro-
ceedings of the 2020 ACM designing interactive systems conference. 2020.
p. 1195-1209.

[44] GRIFFITH, Shane, et al. Policy shaping: Integrating human feedback
with reinforcement learning. Advances in neural information processing
systems, 2013, 26.

[45] NG, Andrew Y.; HARADA, Daishi; RUSSELL, Stuart. Policy invariance
under reward transformations: Theory and application to reward shaping.
In: Icml. 1999. p. 278-287.

[46] DUAN, Yan, et al. Benchmarking deep reinforcement learning for con-
tinuous control. In: International conference on machine learning. PMLR,
2016. p. 1329-1338.

[47] GUPTA, Abhishek, et al. Relay Policy Learning: Solving Long-Horizon
Tasks via Imitation and Reinforcement Learning. In: Conference on Robot
Learning. PMLR, 2020. p. 1025-1037.

[48] Augmented MAPLE framework. [Accessed 9 January 2024]. Available
from: https://gitlab.ciirc.cvut.cz/majsnmar/pamdps-with-priors

60

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492336 Personal ID number: Majsner Marek Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Reinforcement Learning with Parametrized Actions for Imitation Learning

Bachelor’s thesis title in Czech:

Posilované učení parametrizovaných akcí pro imitační učení

Guidelines:

Children learn to sequence individual movements to perform the given task (e.g. get a toy). Depending on whether their
actions were successful or not, they correct their behaviour. Similarly, a teacher (parent) can adjust their behaviour, which
can help them to achieve their goal quicker. Similarly, reinforcement learning methods with parametrized action primitives
are learning how to sequence and parametrize individual primitive motions to fulfil the given task. This thesis aims to
compare and evaluate available methods and extend them by new tasks or actions, and possibly incorporate into learning
the prior knowledge about the suitable primitive actions and their sequencing coming from the supervisor (demonstrator).
1. Review and qualitatively compare methods of deep reinforcement learning with parametrized action space (e.g. [1], [2],
[3],[4]). The comparison should focus on the type of algorithm, loss function, testing environment, set of primitive actions,
etc..
2. Select one of the methods and evaluate its sensitivity to various settings, such as environment (configuration of objects,
the complexity of the task, etc.), type of the search, loss function, initialisation, etc..
3. For a selected set of tasks evaluate and visualise the quality of recognition of the sequence of primitive actions leading
to the fulfilment of the given task by the chosen method.
4. For the same set of tasks, evaluate and visualise the quality of recognition of the sequence of primitive actions from
gestures demonstrated by a human. Use the available Gesture toolbox [5].
5. Extend and possibly improve the method's performance by one of the following options:
a) Adaptation to new environment and tasks (new object types and configuration, various complexity of the tasks, etc.)
b) Extension by own parametrized actions
c) Initialize the method with demonstration data (the demonstrator shows the primitive actions by gestures).

Bibliography / sources:

[1] Nasiriany, Soroush, Huihan Liu, and Yuke Zhu. "Augmenting reinforcement learning with behavior primitives for diverse
manipulation tasks." 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.
[2] Z. Wu, N. M. Khan, L. Gao and L. Guan, "Deep Reinforcement Learning with Parameterized Action Space for Object
Detection," 2018 IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan, 2018, pp. 101-104, doi:
10.1109/ISM.2018.00025.
[3] Bagaria, Akhil, and George Konidaris. "Option discovery using deep skill chaining." International Conference on Learning
Representations. 2020.
[4] Dalal, Murtaza, Deepak Pathak, and Russ R. Salakhutdinov. "Accelerating robotic reinforcement learning via
parameterized action primitives." Advances in Neural Information Processing Systems 34 (2021): 21847-21859.
[5] Vanc, Petr, Jan Kristof Behrens, and Karla Stepanova. "Context-aware robot control using gesture episodes." 2022
International Conference on Robotics and Automation (ICRA). IEEE, 2023.

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Mgr. Karla Štěpánová, Ph.D. Robotic Perception CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 09.01.2024 Date of bachelor’s thesis assignment: 04.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Mgr. Karla Štěpánová, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

	Introduction
	Motivation
	Project goals

	Background
	Reinforcement Learning with Markov Decision Processes
	Reinforcement learning for option discovery
	Reinforcement Learning with Parameterized Action Space Markov Decision Processes
	Deep Reinforcement Learning
	Soft Actor-Critic

	Related Work
	Options frameworks
	Options discovery using Deep Skill Chaining
	Flexible Option Learning

	Frameworks with Parameterized Actions
	Accelerating Robotic Reinforcement Learning via Parameterized Action Primitives

	Augmenting Reinforcement Learning with Behavior Primitives
	Comparison of options versus PAMDPs
	Methods for including the prior knowledge
	Learning from demonstrations
	Human-in-the-loop learning
	Reward Shaping
	Skill-based learning

	Selection of the suitable method for incorporating prior knowledge

	MAPLE and Robosuite framework
	Robosuite framework
	MAPLE framework
	MAPLE algorithm

	The proposed extension of the MAPLE framework
	Leveraging prior human knowledge for task completion
	Type of prior knowledge
	Prior knowledge mapping

	Augmenting MAPLE architecture with prior knowledge
	Reward shaping
	Incorporating prior knowledge into the policy network

	Experimental setup
	Robosuite environments
	Environment class
	Object classes
	MAPLE-specific reward and observation methods
	MAPLE's parametrized action implementation

	Our extensions to the Robosuite environments
	Addition of YCB objects
	Reward shaping
	Creation of new benchmarks

	Benchmarking environments
	 Hyperparameters used in training new Maple policies

	Results
	Evaluation of MAPLE sensitivity
	Hidden layers sizes
	Reward sensitivity
	Environmental changes

	Evaluation of MAPLE framework extensions
	Skill addition
	New environments
	Prior knowledge

	Discussion
	MAPLE framework sensitivity
	Our extension of the MAPLE framework

	Conclusion and future work
	Bibliography

